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Institut für Theorie der Kondensierten Materie
Universität Karlsruhe
Postfach 69 80
76128 Karlsruhe, Germany
Phone: +49 (7 21) 6 08 35 90
Fax: +49 (7 21) 6 08 77 79
Email: woelfle@tkm.physik.uni-karlsruhe.de
www-tkm.physik.uni-karlsruhe.de

Complex Systems, Editor

Frank Steiner
Institut für Theoretische Physik
Universität Ulm
Albert-Einstein-Allee 11
89069 Ulm, Germany
Phone: +49 (7 31) 5 02 29 10
Fax: +49 (7 31) 5 02 29 24
Email: frank.steiner@uni-ulm.de
www.physik.uni-ulm.de/theo/qc/group.html



Peter Schmüser
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Preface

The high scientific interest in coherent X-ray light sources has stimulated
world-wide efforts in developing X-ray lasers. In this book a particularly
promising approach is described, the free-electron laser (FEL), which is pur-
sued worldwide and holds the promise to deliver ultra-bright X-ray pulses of
femtosecond duration. Other types of X-ray lasers are not discussed nor do we
try a comparison of the relative virtues and drawbacks of different concepts.

The book has an introductory character and is written in the style of a
university textbook for the many newcomers to the field of free-electron lasers,
graduate students as well as accelerator physicists, engineers and technicians;
it is not intended to be a scientific monograph for the experts in the field.
Building on lectures by one of us (J. R.) at the CERN Accelerator School,
and motivated by the positive response to a series of seminars on “FEL the-
ory for pedestrians”, given by P. S. within the framework of the Academic
Training Program at DESY, we have aimed at presenting the theory of the
low-gain and the high-gain FEL in a clear and concise mathematical language.
Particular emphasis is put on explaining and justifying the assumptions and
approximations that are needed to obtain the differential equations describ-
ing the FEL dynamics. Although we have tried our best to be “simple”, the
mathematical derivations are certainly not always as simple as one would like
them to be. However, we are not aware of any easier approach to the FEL
theory. Some of the more involved calculations are put into the appendices.

The starting points are the Maxwell equations and the basic elements
of special relativity. We avoid the Hamiltonian formalism in the main text
because many potential readers may not be familiar with this powerful for-
malism. A short introduction into the Hamiltonian treatment of the electron
motion in an undulator magnet and its interaction with the radiation field
is given in Appendix A. The FEL equations are derived in the framework
of classical electrodynamics. Quantum theory is not needed to explain the
theoretical basis and the functioning of presently existing or planned FEL
facilities.



VIII Preface

The differential equations describing the time evolution of the laser light
wave are derived in a one-dimensional approximation and turn out to be
quite powerful. In this book they are evaluated using rather straightforward
programs for computing the FEL gain curve, laser saturation, bandwidth and
other quantities of interest. The implications and modifications of the full
three-dimensional treatment are discussed.

The available experimental data on high-gain ultraviolet and soft X-ray
FELs are presented but the wide field of FELs in the visible and infrared
regime is not covered. We apologize for having to omit the important re-
sults obtained in this field as well as other interesting developments and refer
to the literature quoted in the book and to the Free-Electron Laser (FEL)
conferences and the American and European Particle Accelerator conferences
(PAC, EPAC) for a complete overview over the rapidly growing FEL activities
worldwide.

The international system (SI) of units is used throughout to enable the
reader to obtain practical numbers from the equations in the book. Our math-
ematical codes (written by M. D.) are available on request. The majority of
the illustrations and graphical presentations shown in the book have been
prepared by us using these codes, except when otherwise noted.

We have benefited a great deal from fruitful discussions with our colleagues
at DESY and other laboratories and want to thank them for their advice, in
particular Evgueni Saldin, Evgeny Schneidmiller and Mikhail Yurkov. We
are very grateful to Erich Lohrmann and Sara Casalbuoni for a thorough
reading of an early version of the manuscript and many valuable suggestions,
and to Sven Reiche for a critical reading of the complete manuscript and his
suggestions for improvement. Bernd Steffen’s help with LATEX problems and
editing of figures is gratefully acknowledged, as well as Roxana Tarkeshian’s
help with checking the references. We are particularly grateful to all members
of the TESLA collaboration and of the FLASH team for their invaluable
contributions to the design, construction and operation of a superconducting
free-electron laser in Hamburg.

Hamburg, Germany Peter Schmüser1

Martin Dohlus
April 2008 Jörg Rossbach

1 Corresponding author Peter.Schmueser@desy.de
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Introduction

1.1 Overview

The principle of the Free-Electron Laser (FEL) was invented by John Madey
in 1971 [1]. The first FEL, operating in the infrared at a wavelength of 12 μm,
was built at Stanford University in the 1970s by Madey and coworkers [2, 3].
For many years FELs have played a marginal role in comparison with con-
ventional lasers except at microwave and infrared wavelengths. Only in recent
years it has become clear that these devices have the potential of becom-
ing exceedingly powerful light sources in the X-ray regime [4, 5, 6]. The ul-
traviolet and soft X-ray free-electron laser facility FLASH in Hamburg has
been playing a pioneering role in the development of X-ray FELs. The suc-
cessful operation of FLASH as a user facility, providing radiation pulses of
unprecedented brightness and shortness at wavelengths down to 6.5 nm, has
paved the way for new FELs in the Ångström regime. As demonstrated by
FLASH the short-wavelength FEL pulses have a power in the Gigawatt range
and a time duration of only 10–30 femtoseconds. Similarly, the X-ray pulses
produced in the Linac Coherent Light Source LCLS [7] in Stanford (USA)
and in the European facility XFEL [8] in Hamburg (Germany) will be far
shorter than the pulses from most existing X-ray sources, and their peak bril-
liance will be about eight orders of magnitude higher. The high pulse energy
and the femtosecond duration of the X-ray pulses as well as their coherence
open entirely new fields of research, for example structural analysis of individ-
ual biomolecules, which are inaccessible at the present third-generation light
sources. Alternative concepts of X-ray lasers (see e.g. [9, 10, 11, 12]) are not
discussed in this book.

In this introductory chapter a comparison is made between conventional
quantum lasers and free-electron lasers. Chapter 2 deals with undulator radi-
ation which is intimately related to FEL radiation. The theory of the low-gain
FEL is derived in Chap. 3. The high-gain FEL theory is treated in Chap. 4
in the one-dimensional approximation. A set of coupled first-order equations
is derived as well as a third-order differential equation which permit deep
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2 1 Introduction

insight into the physics of the FEL. The third-order equation is valid in the
so-called linear regime of the FEL where the output field depends linearly on
the input field. We often call this the exponential gain regime since here the
FEL power grows exponentially with the distance traveled in the undulator.
The coupled first-order equations are more general and encompass in addition
the nonlinear regime in which the FEL power goes into saturation.

Numerous applications of the high-gain FEL equations follow in Chap. 5
illustrating the power of the high-gain theory. The refinements of the one-
dimensional theory are discussed in Chap. 6, these comprise electron beam
energy spread, space charge forces, finite electron beam radius, betatron os-
cillations, optical diffraction, and slippage effects in short electron bunches.

Special emphasis is put on the principle of Self-Amplified Spontaneous
Emission (SASE). The SASE mechanism is illustrated in Chap. 7 with numer-
ical simulations and experimental data. SASE-FELs are frequently considered
the fourth generation of accelerator-based light sources. In contrast to existing
synchrotron radiation light sources, which are mostly storage rings equipped
with undulators, the SASE FEL requirements on the electron beam quality in
terms of small beam cross section, high charge density and low energy spread
are so demanding that only linear accelerators can be used to provide the
drive beam.

The free-electron laser FLASH is described in Chap. 8 in some detail to
give an impression of the complexity of such an accelerator-based light source.
The last chapter gives an outlook on the physical and technological challenges
associated with FELs in the Ångström regime and discusses the layout of the
LCLS, the first X-ray FEL to go into operation.

A short introduction into the Hamiltonian treatment of electron motion
in an undulator and the coupling between electron and light wave is given in
Appendix A, see also [13, 14]. In Appendix B we prove that the high-gain FEL
theory reduces to the simpler low-gain theory if the undulator magnet is short
and the increase in light intensity per undulator passage is small. The general-
ization of the coupled first-order equations to non-periodic cases is discussed
in Appendix C. The concepts of Gaussian beam optics are presented in Ap-
pendix D since Gaussian modes are not only important for conventional laser
beams but also for FEL beams. The eigenmode approach for solving the FEL
equations is explained in Appendix E, and it is applied to the one-dimensional
and the three-dimensional case. Appendix F deals with an important feature
of SASE FELs, namely the current modulation resulting from shot noise in the
electron beam. The gamma distribution describing the statistical properties
of SASE FEL radiation is derived in Appendix G. In the last Appendix H we
summarize our conventions and list frequently used symbols, their dimension
in SI units, their physical meaning, and the defining equation resp. the chapter
where the quantity is introduced. Important formulas are put into boxes.

Since the invention of the free-electron laser, an enormous amount of work
has been done in this field. Useful reviews of the work up to 1990 can be
found in the Laser Handbook, Vol. 6 - Free Electron Lasers [15]. The articles
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by Murphy and Pellegrini [16] and by Colson [17] present good introductions
into the physics of the low-gain and the high-gain FEL. For additional reading
we refer to the other articles in the handbook and to the books by Brau [18]
and by Freund and Antonsen [19] and to an article by O’Shea and Freund
[20]. A useful account of the progress in FEL physics and technology up to
2004 is presented in two articles by Pellegrini and Reiche [21, 22]; see also
the literature quoted therein. The FEL theory is thoroughly treated on a high
mathematical level in the book The Physics of Free Electron Lasers by Saldin,
Schneidmiller and Yurkov [23]. An excellent review of the current status of
X-ray free-electron laser theory is found in an article by Huang and Kim [24].

1.2 Electron Accelerators as Short-Wavelength
Light Sources

In the bending magnets of a high-energy electron synchrotron or storage ring
the relativistic electrons are accelerated toward the center of the ring and
emit synchrotron radiation tangentially to the circular orbit [25, 26, 27, 28].
Usually different electrons in a bunch radiate independently, so the radiation
is incoherent. The frequency spectrum is continuous and extends from zero to
frequencies beyond the critical frequency ωc

ωc =
3cγ3

2R
. (1.1)

Here R is the radius of curvature in the bending magnet, γ is the Lorentz
factor

γ =
1

√
1 − (v/c)2

=
W

mec2
(1.2)

and W the total relativistic energy of the electron1. The radiated power in a
bending magnet of field B is

Psyn =
e4γ2B2

6πε0cm2
e

=
e2c γ4

6πε0R2
. (1.3)

Most of the power is contained inside a narrow cone of opening angle 1/γ
which is centered around the instantaneous tangent to the circular orbit.
In modern synchrotron light sources the radiation used for research is pro-
duced in wiggler or undulator magnets which are periodic arrangements of
many short dipole magnets of alternating polarity. The electrons move on a
sinusoidal orbit through such a magnet (Fig. 1.1), the overall deflection of
the beam is zero. Undulator radiation is far more useful than bending-magnet
1 The total relativistic energy of the electron is denoted by W in this book since

we reserve the letter E for electric fields.
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Fig. 1.1. Schematic representation of electron motion in a planar undulator and
the emission of undulator radiation. For simplicity the alternating magnetic field
and the sine-like electron orbit have been drawn in the same plane. The amplitude
of the sinusoidal orbit is exaggerated, in reality it is only a few μm

radiation because it consists of narrow spectral lines and is concentrated in a
narrow angular cone along the undulator axis. The fundamental wavelength
can be roughly estimated from the following consideration. Call λu the period
of the magnet arrangement. In a coordinate system moving with the speed of
the beam the relativistic length contraction reduces the period to λ∗

u = λu/γ,
and the electrons oscillate at a correspondingly higher frequency ω∗ = 2πc/λ∗

u

and emit radiation just like an oscillating dipole. For an observer in the labo-
ratory who is looking against the electron beam the radiation appears strongly
blue-shifted by the relativistic Doppler effect. The wavelength in the labora-
tory system is λ� ≈ λ∗

u/(2γ) ≈ λu/(2γ2). For example, at an electron energy
of 500 MeV the radiation wavelength is more than a million times shorter than
the undulator period.
A more accurate treatment, taking into account the sinusoidal shape of the
electron trajectory and the fact that the longitudinal velocity of the electrons
is lower than their total velocity, leads to the formula

λ� =
λu

2γ2

(
1 +

K2

2

)
with K =

eB0λu

2πmec
. (1.4)

The dimensionless quantity K is called the undulator parameter, and B0 is the
peak magnetic field on the undulator axis. The undulator parameter is in the
order of 1. The proof of formula (1.4) is presented in Chap. 2. Equation (1.4),
which is also valid for the FEL, describes the fundamental wavelength λ1 ≡ λ�.
Note that the radiation in forward direction contains odd higher harmonics
with the wavelengths

λm =
λ�

m
, m = 1, 3, 5, .. (1.5)

The wavelength of undulator radiation can be varied at will, simply by chang-
ing the electron energy W = γ mec

2.
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It is interesting to note that the power radiated by a relativistic electron
in an undulator is the same as that in a bending magnet with a magnetic field
B = B0/

√
2, however, the intensity is concentrated in a narrow spectral range.

Different electrons radiate independently which means that the total energy
produced by a bunch of Ne electrons is just Ne times the radiation energy of
one electron. Coherent radiation with an intensity scaling quadratically with
the number of electrons would happen for electron bunches shorter than the
light wavelength, a condition that is never satisfied in practice in the optical,
ultraviolet and X-ray regime.

1.3 Free-Electron Lasers and Quantum Lasers

The next big improvement in the performance of accelerator-based light
sources is given by the Free-Electron Laser. The main components of an FEL
are an accelerator providing a bunched relativistic electron beam and an undu-
lator magnet. In an FEL a huge number of electrons radiate coherently because
there exists a process of self-organization on the scale of the light wavelength,
the so-called microbunching. The radiation power scales then quadratically
with the number of these particles. For a typical number of 106 electrons in a
coherence region the FEL will yield a million times higher light output than
an undulator.

1.3.1 Stimulated and Spontaneous Emission

The word LASER is an acronym for Light Amplification by Stimulated Emis-
sion of Radiation. A conventional laser (Fig. 1.2) consists of three basic com-
ponents: the laser medium with at least three energy levels, an energy pump
which creates a population inversion, and an optical resonator. The axis of
the optical cavity defines the direction of the photons to better than 1 mrad
typically. In a mono-mode laser exactly one optical eigenmode of the cavity
is excited. The photons in this mode have all the same frequency ω, the same
direction (described by the wave vector k = (k1, k2, k3)), the same polariza-
tion and the same phase. These quantum numbers characterize a well-defined
quantum state which we denote by the Dirac ket vector |a〉. Photons have
spin 1 and obey the Bose-Einstein statistics; they have a strong tendency to
occupy the same quantum state.

Inside the resonator there are many atoms in the excited state E2 which
can emit radiation of frequency ω = (E2 − E1)/� by going into the ground
state E1. In the beginning of the lasing process zero photons are present in the
quantum state |a〉. Call pspon the probability that an atom emits its photon
by spontaneous emission into this quantum state. This photon will travel
back and forth between the mirrors and will remain in the cavity. However,
any other photon, emitted with the same probability pspon into a quantum
state |b〉 with a direction different from the resonator axis, will immediately
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E3

Active medium

Permeable mirror

Energy pump

E2

Laser transition

Mirror

E1

Pump

Optical resonator

Fig. 1.2. Principle of a quantum laser where the electrons are bound to atomic,
molecular or solid-state energy levels (“bound-electron laser”)

escape from the optical resonator. Therefore, the number of photons in state
|a〉 increases with time. If already n photons are present in state |a〉, the
probability that photon number (n + 1) will also go into this state is (n + 1)
times larger than the probability pspon for emission into any other state |b〉:

pn = (n + 1)pspon . (1.6)

Here the factor n stands for the stimulated emission, induced by the already
existing photons in the quantum state |a〉, and the factor 1 stands for the
spontaneous emission which has the same probability pspon for any final state
allowed by energy conservation. This equation, which can be derived in quan-
tum field theory, is the physical basis of the laser. The lasing process starts
from noise, namely spontaneous emission by the excited atoms, and the stim-
ulated emission results in an exponential growth of the light intensity.

One can understand within the framework of quantum mechanics that the
probability for stimulated emission is proportional to the number of photons
already present. The usual method to compute optical transitions in quan-
tum mechanics is by means of perturbation theory. The electron in the atom
is described by a wave function obeying the Schrödinger equation. The tran-
sition from the ground state to an excited state or vice versa is caused by a
perturbing Hamiltonian which is basically the potential energy of the electron
in the field of an external light wave. This electromagnetic field, however, is
treated as a classical quantity, using the laws of classical electrodynamics. The
matrix element for the transition between two states of the atom is found to
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be proportional to the electric field E0 of the light wave, and the transition
probability, which can be calculated using Fermi’s Golden Rule, is propor-
tional to E2

0 . The field energy inside the volume V of the optical resonator is

ε0

2
E2

0V = n �ω (1.7)

where n is the number of photons in the optical cavity. Hence the probability
for stimulated emission is indeed proportional to the number n of already
existing photons in the quantum state |a〉.

The Origin of Spontaneous Emission

The two radiative processes which are accessible to quantum mechanical per-
turbation theory are the absorption of radiation and the stimulated emission
of radiation, and both have the same probability. The factor “1” in (1.6) cor-
responds to the spontaneous emission which cannot be explained in quantum
mechanics nor in classical electrodynamics. For a theoretical explanation of
spontaneous emission not only the electron but also the radiation field must
be “quantized”. This leads to Quantum Electrodynamics, the quantum field
theory of electromagnetic interactions. In quantum field theory, the ground
state, although usually called the “vacuum”, is by no means the same as the
empty set in mathematics. On the contrary, the ground state is full of activ-
ity: all the time short-lived virtual photons and particle-antiparticle pairs are
created and annihilated. These so-called vacuum fluctuations have a theoret-
ically well-understood and experimentally verified influence on atomic energy
levels. The spontaneous emission of radiation by an excited atom or by an
electron moving through an undulator may be interpreted as emission that is
stimulated by vacuum fluctuations.

1.3.2 Is the FEL Really a Laser?

The electrons in a conventional quantum laser are bound to atomic, molecular
or solid-state energy levels, so one may call this device a bound-electron laser,
in contrast to the free-electron laser where the electrons move in vacuum.

In a free-electron laser (Fig. 1.3) the role of the active laser medium and
the energy pump are both taken over by the relativistic electron beam. An
FEL operating at infrared and optical wavelengths can be equipped with an
optical resonator, but this is no longer possible if the wavelength is decreased
below 100 nm, because here the reflectivity of metals and other mirror coatings
drops quickly to zero at normal incidence. In the extreme-ultraviolet and
X-ray regime a large laser gain has to be achieved in a single passage of a very
long undulator magnet. The principle of Self Amplified Spontaneous Emission
(SASE) allows to realize high-gain FELs at these short wavelengths.
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Mirror
Undulator

(a) Low gain FEL

(b) SASE FEL

Permeable mirror

Undulator

Circulating
electron bunches

Electron
bunch

Fig. 1.3. Principle of free-electron laser. For visible or infrared light an optical
resonator can be used. A increase in light intensity of a few % per passage of a short
undulator magnet is sufficient to achieve laser saturation within many round trips.
In the ultraviolet and X-ray region one can apply the mechanism of Self-Amplified
Spontaneous Emission where a large laser gain is achieved in a single passage of a
very long undulator

We will see in the chapter on the low-gain FEL theory that the coupling
between the electrons and an already existing light wave in the undulator is
proportional to the electric field E0 of the light wave, and the laser gain is
proportional to E2

0 , i.e. to the number of photons in the light wave. Hence one
is well justified to speak of light amplification by stimulated emission of radi-
ation when talking about a free-electron laser. Moreover, the light emerging
from an FEL has the same properties as conventional laser light, it is nearly
monochromatic, polarized, extremely bright, tightly collimated, and possesses
a high degree of transverse coherence.

The equations of the free-electron laser can be derived from classical rela-
tivistic electrodynamics without using the methods of quantum theory. Unlike
for optical transitions in atoms, the computation of the power radiated in an
undulator or an FEL needs no quantum mechanical matrix elements but can
be traced back to the classical Larmor formula for radiation by an accelerated
charge. Of course, when the number of photons is of interest or the change
in energy and momentum which an electron experiences upon the emission of
a photon, the fundamental Planck relation E = �ω must be used. A genuine
quantum theoretical treatment of the FEL [29, 30, 31] is only needed under
extreme conditions which are not fulfilled in presently existing or planned
FEL facilities.
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2

Undulator Radiation

2.1 Magnetic Field of a Planar Undulator

The motion of an electron in a planar undulator magnet is shown schematically
in Fig. 2.1. The undulator axis is along the direction of the beam (z direction),
the magnetic field points in the y direction (vertical). The period λu of the
magnet arrangement is in the order of 30 mm. For simplicity we assume that
the horizontal width of the pole shoes is larger than λu, then one can neglect
the x dependence of the field in the vicinity of the tightly collimated electron
beam. In the vacuum chamber of the electron beam we have ∇×B = 0,
hence the magnetic field can be written as the gradient of a scalar magnetic
potential

B = −∇Φmag .

y

x
z

permanent
magnet

iron pole shoe

electron beam

Fig. 2.1. Schematic view of a planar undulator magnet with alternating polarity
of the magnetic field and of the sine-like trajectory of the electrons. In the magnet
shown here the field is produced by permanent magnets that are placed between
iron pole shoes. The distance between two equal poles is called the undulator period
λu. A typical value is λu = 30 mm
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12 2 Undulator Radiation

The potential Φmag fulfills the Laplace equation

∇2Φmag = 0 .

The field on the axis is approximately harmonic. Making the ansatz

Φmag(y, z) = f(y) sin(kuz) ⇒ d2f

dy2
− k2

uf = 0 , ku =
2π

λu

we obtain for the general solution

f(y) = c1 sinh(kuy) + c2 cosh(kuy) .

The vertical field is

By(y, z) = −∂Φmag

∂y
= −ku(c1 cosh(kuy) + c2 sinh(kuy)) sin(kuz) .

By has to be symmetric with respect to the plane y = 0 hence c2 = 0. We set
kuc1 = B0 and obtain By(0, z) = −B0 sin(kuz). So the potential is

Φmag(x, y, z) =
B0

ku
sinh(kuy) sin(kuz) . (2.1)

For y �= 0 the magnetic field has also a longitudinal component Bz.

Bx = 0
By = −B0 cosh(kuy) sin(kuz) (2.2)
Bz = −B0 sinh(kuy) cos(kuz) .

In the following we restrict ourselves to the symmetry plane y = 0 and use
the idealized field

B = −B0 sin(kuz)ey (2.3)

where ey is the unit vector in y direction.

2.2 Electron Motion in an Undulator

2.2.1 Trajectory in First Order

We call W = Wkin+mec
2 = γmec

2 the total relativistic energy of the electron.
The transverse acceleration by the Lorentz force is

γmev̇ = −ev × B . (2.4)

This results in two coupled equations

ẍ =
e

γme
By ż z̈ = − e

γme
Byẋ (2.5)
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which are solved iteratively. To obtain the first-order solution we observe that
vz = ż ≈ v = β c = const and vx 	 vz. Then z̈ ≈ 0 and the solution for x(t)
and z(t) is

x(t) ≈ eB0

γmeβck2
u

sin(kuβct) , z(t) ≈ βct (2.6)

if the initial conditions

x(0) = 0 , ẋ(0) =
eB0

γmeku

are realized by a suitable beam steering system in front of the undulator1

(the undulator magnet starts at z = 0). The electron travels on the sine-like
trajectory

x(z) =
K

βγku
sin(kuz) . (2.7)

In this equation we have introduced the important dimensionless undulator
parameter

K =
eB0

mecku
=

eB0λu

2πmec
= 0.934 · B0 [T] · λu [cm] . (2.8)

The transverse velocity is

vx(z) =
K c

γ
cos(kuz) . (2.9)

It is a general property of the radiation emitted by relativistic electrons in a
magnetic field that at large distance most of the intensity is concentrated in a
narrow cone of opening angle 1/γ, see e.g. [2]. The cone is centered around the
instantaneous tangent to the particle trajectory. The direction of the tangent
varies along the sinusoidal orbit in the undulator magnet, the maximum angle
with respect to the axis being

θmax ≈
[
dx

dz

]

max

=
K

βγ
≈ K

γ
. (2.10)

If this directional variation is less than 1/γ the radiation field contributions
from various sections of the trajectory overlap in space and interfere with each
other. The consequence is, as will be shown in the next sections, that the ra-
diation spectrum in forward direction is not continuous but nearly monochro-
matic (more precisely, it is composed of a narrow spectral line at a well-defined

1 In practice the initial conditions can be realized by augmenting the undulator
with a quarter period preceding the periodic structure and by displacing the
electron orbit at z = −λu/4 by x(−λu/4) = −K/(βγku) with the help of two
dipole magnets. A similar arrangement at the rear end restores the beam orbit
downstream of the undulator. For an illustration see [1].
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frequency and its odd higher harmonics). This is the characteristic feature of
undulator radiation. The condition is

θmax ≤ 1
γ

⇒ K ≤ 1 . (2.11)

If however the maximum angle θmax exceeds the radiation cone angle 1/γ
by a large factor, which is the case for K � 1, one speaks of a wiggler mag-
net. Wiggler radiation consists of many densely spaced spectral lines forming
a quasi-continuous spectrum which resembles the spectrum of ordinary syn-
chrotron radiation in bending magnets. We will not discuss it any further in
this book.

2.2.2 Motion in Second Order

Due to the sinusoidal trajectory the z component of the velocity is not con-
stant. It is given by

vz =
√

v2 − v2
x ≈ c

(
1 − 1

2γ2
(1 + γ2v2

x/c2)
)

.

Inserting for vx = ẋ(t) the first-order solution, the z velocity becomes

vz(t) =
(

1 − 1
2γ2

(
1 +

K2

2

))
c − cK2

4γ2
cos(2ωut) (2.12)

with the abbreviation ωu = β̄cku. The average longitudinal speed is

v̄z =
(

1 − 1
2γ2

(
1 +

K2

2

))
c ≡ β̄ c . (2.13)

The particle trajectory in second order is described by the equations

x(t) =
K

γku
sin(ωut) , z(t) = v̄zt −

K2

8γ2ku
sin(2ωut) . (2.14)

The motion in a helical undulator is treated in Sect. 4.9 and Appendix A.

2.3 Emission of Radiation

2.3.1 Radiation in a Moving Coordinate System

Consider a coordinate system (x∗, y∗, z∗) moving with the average z velocity
of the electrons:

v̄z ≡ β̄c , γ̄ =
1

√
1 − β̄2

≈ γ
√

1 + K2/2
. (2.15)
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The Lorentz transformation from the moving system to the laboratory system
reads

t∗ = γ̄(t − β̄z/c) ≈ γ̄t(1 − β̄2) = t/γ̄

x∗ = x =
K

γku
sin(ωut)

z∗ = γ̄(z − β̄ct) ≈ − K2

8γku

√
1 + K2/2

sin(2ωut).

The electron orbit in the moving system is thus

x∗(t∗) = a sin(ω∗t∗) , z∗(t∗) = −a
K

8
√

1 + K2/2
sin(2ω∗t∗) (2.16)

with the amplitude a = K/(γku) and the frequency

ω∗ = γ̄ωu = γ̄β̄ c ku ≈ γ c ku√
1 + K2/2

.

Note that ωut = ω∗t∗. The motion is depicted in Fig. 2.2. It is mainly a
transverse harmonic oscillation with the frequency ω∗ = γ̄ωu. Superimposed
is a small longitudinal oscillation with twice that frequency. If we ignore the
longitudinal oscillation for the time being, the electron will emit dipole radi-
ation in the moving system with the frequency ω∗ = γ̄ωu and the wavelength
λ∗

u = λu/γ̄.
The radiation power from an accelerated charge is given by the well-known

Larmor formula

0 1

0

1

z*/a

x*
/a

–1
–1

Fig. 2.2. The electron trajectory in the moving coordinate system for an undulator
parameter of K = 1 (continuous red curve) or K = 5 (dashed blue curve). The curve
has the shape of the number 8. For K � 1 the excursion in longitudinal direction
is z∗

max/a =
√

2/8 = 0.18. For K → 0 the longitudinal width shrinks to zero
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P =
e2

6πε0c3
v̇2 (2.17)

see Jackson [2] or any other textbook on classical electrodynamics. For an
oscillating charge, v̇2 must be averaged over one period. The Larmor formula
is applicable for an oscillating dipole which is either at rest or moving at
non-relativistic speeds. This condition is satisfied in the moving coordinate
system. Ignoring the longitudinal oscillation the acceleration has only an x
component

v̇∗
x =

d2x∗

dt∗2
= − K

γku
ω∗2 sin(ω∗t∗) = − Kγc2ku

1 + K2/2
sin(ω∗t∗) .

Then the time-averaged square of the acceleration becomes

〈
v̇2
〉

=
K2γ2c4k2

u

(1 + K2/2)2
1
2

.

The total radiation power in the moving system is thus

P ∗ =
e2c γ2K2k2

u

12πε0(1 + K2/2)2
. (2.18)

2.3.2 Transformation of Radiation into Laboratory System

The radiation characteristics of an oscillating dipole which is either at rest or
moving at relativistic speed is depicted in Fig. 2.3. With increasing Lorentz
factor γ the radiation becomes more and more concentrated in the forward
direction. To compute the light wavelength in the laboratory system as a
function of the emission angle θ with respect to the beam axis it is appropriate
to apply the Lorentz transformation

�ω∗ = γ̄(Eph − β̄ c pph cos θ) = γ̄�ω�(1 − β̄ cos θ)

which expresses the photon energy �ω∗ in the moving system in terms of the
photon energy Eph = �ω� and the photon momentum pph = �ω�/c in the
laboratory system. The light frequency in the laboratory system is thus

Fig. 2.3. Radiation characteristics in the laboratory system of an oscillating dipole
at rest (left) or moving horizontally at a speed of v = 0.9 c (right). The dipole
oscillates in vertical direction
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ω� =
ω∗

γ̄ (1 − β̄ cos θ)
⇒ λ� =

2πc

ω�
≈ λu (1 − β̄ cos θ) .

Using β̄ =
(
1 − 1

2γ2 (1 + K2/2)
)

and cos θ ≈ 1 − θ2/2 (the typical angles are
θ ≤ 1/γ 	 1) we find that the wavelength of undulator radiation near θ = 0
is in good approximation

λ� =
λu

2γ2

(
1 +

K2

2
+ γ2θ2

)
. (2.19)

The radiation is linearly polarized with the electric vector in the plane of the
wavelike electron trajectory.

T. Shintake has written a computer code in which the electric field pattern
of a relativistic electron moving through the undulator is computed [3]. The
field lines are shown in Fig. 2.4. One can clearly see the optical wavefronts
and the dependence of the wavelength on the emission angle.

The total radiation power is relativistically invariant [2]. This can be seen
as follows. Since we have ignored the longitudinal oscillation of the electron
its longitudinal coordinate and momentum are zero in the moving system

z∗ = 0 , p∗z = 0 .

Then the Lorentz transformations of time and electron energy read

Fig. 2.4. Undulator radiation of an electron with v = 0.9 c. The undulator param-
eter is K = 1. The wavy curve indicates the electron trajectory in the undulator.
(Courtesy T. Shintake)
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t = γ̄ t∗ , W = γ̄ W ∗

so the radiation power in the laboratory system becomes

P = −dW

dt
= −dW ∗

dt∗
= P ∗ .

The undulator radiation power per electron in the laboratory system is
therefore

P1 =
e2c γ2K2k2

u

12πε0(1 + K2/2)2
. (2.20)

Since this formula has been derived neglecting the influence of the longitudinal
oscillation it describes only the power P1 contained in the first harmonic. The
total power of spontaneous undulator radiation, summed over all harmonics
and all angles, is equal to the synchrotron radiation power in a bending magnet
whose field strength is B = B0/

√
2.

Pspont =
e4γ2B2

0

12πε0cm2
e

=
e2c γ2K2k2

u

12πε0
. (2.21)

This is easy to understand because the undulator field varies as B(z) =
−B0 sin(kuz) and hence

〈
B2
〉

= B2
0/2. Formula (2.21) is valid for any value of

K and thus also applicable for wiggler radiation. With increasing undulator
parameter K the ratio P1/Pspont drops, hence the fraction of power contained
in the first harmonic decreases.

2.4 Lineshape and Spectral Energy
of Undulator Radiation

An important property of undulator radiation is that it consists of narrow
spectral lines. How wide is such a line? In this section we consider the first
harmonic only and look in forward direction. An electron passing through
an undulator with Nu periods produces a wave train with Nu oscillations
(Fig. 2.5) and a time duration of T = Nuλ1/c. The electric field of the light
wave is written as

E�(t) =
{

E0 exp(−i ω1t) if − T/2 < t < T/2
0 otherwise (2.22)

Due to its finite length, this wave train is not monochromatic but contains a
frequency spectrum which is obtained by Fourier transformation

A(ω) =
∫ +∞

−∞
E�(t)eiωtdt = E0

∫ +T/2

−T/2

e−i(ω1−ω)tdt

= 2E0 ·
sin((ω1 − ω)T/2)

ω1 − ω
. (2.23)
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Fig. 2.5. A finite wave train with 10 oscillations and the lineshape function of
forward undulator radiation (i.e. the intensity as a function of frequency) in a magnet
with Nu = 10 periods. Only the first harmonic is considered here

The spectral intensity is

I(ω) ∝ |A(ω)|2 ∝
(

sin ξ

ξ

)2

with ξ =
(ω1 − ω)T

2
= π Nu

ω1 − ω

ω1
. (2.24)

It has a maximum at ω = ω1 and a full width at half maximum of

Δω ≈ ω1

Nu
. (2.25)

The lineshape function for a wave train with 10 oscillations is shown in Fig. 2.5.
The angular width of the first harmonic around θ = 0 can be estimated

as follows. We know from (2.19) that the frequency decreases with increasing
emission angle θ:

ω1(θ) = ω1(0) · 1 + K2/2
1 + K2/2 + γ2θ2

.

The intensity drops to zero when δω1 = ω1(0)−ω1(θ) exceeds the bandwidth
following from (2.24). The root-mean-square value is found to be [4]

σθ ≈ 1
γ
·

√
1 + K2/2

2Nu
≈ 1

γ
· 1√

Nu

for K ≈ 1 . (2.26)

Obviously, the first harmonic of undulator radiation is far better collimated
than synchrotron radiation: the typical opening angle 1/γ is multiplied by the
factor 1/

√
Nu 	 1. It is important to realize that this tight collimation of the

first harmonic applies only if one requests that the frequency stays within the
bandwidth. If one drops the restriction to a narrow spectral line and accepts
the entire angular-dependent frequency range as well as the higher harmonics,
the cone angle of undulator radiation becomes for K > 1, using (2.10)

θcone ≈
K

γ
. (2.27)
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2.5 Higher Harmonics

To understand the physical origin of the higher harmonics of undulator ra-
diation we follow the argumentation in the excellent book The Science and
Technology of Undulators and Wigglers by J.A. Clarke [5]. In the forward
direction (θ = 0) only odd higher harmonics are observed while the off-axis
radiation contains also the even harmonics. How can one explain this obser-
vation?
Consider a detector with a small aperture centered at θ = 0 which is placed in
the far-field at large distance from the undulator. The electrons moving on a
sinusoidal orbit with maximum angle of K/γ emit their radiation into a cone of
opening angle 1/γ. If the undulator parameter is small, K 	 1, the radiation
cone points always toward the detector and therefore the radiation from the
entire trajectory is detected. One observes a purely sinusoidal electric field
which has only one Fourier component at the fundamental harmonic ω1, see
Fig. 2.6 (top). The situation changes if the undulator parameter is significantly
larger than 1, because then the angular excursion of the electron is much larger
than the cone angle 1/γ and the radiation cone sweeps back and forth across
the aperture, so the detector receives its light only from short sections of the
electron trajectory. The radiation field seen by the detector consists therefore
of narrow pulses of alternating polarity as sketched in the bottom part of
Fig. 2.6. The frequency spectrum contains many higher harmonics. In forward
direction only the odd harmonics occur because the positive and negative
pulses are symmetric in shape and uniformly spaced. When the detector is
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Fig. 2.6. Schematic view of the electric light-wave field seen by a small detector in
forward direction and the corresponding frequency spectrum. Top: small undulator
parameter K = 0.2, bottom: undulator parameter K = 2
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placed at a finite angle θ > 0, the field pulses are no longer equally spaced
and the radiation spectrum contains the even harmonics as well (see [5] for
an illustration).

The wavelength of the mth harmonic as a function of the angle θ is

λm(θ) =
1
m

λu

2γ2
(1 + K2/2 + γ2θ2) , m = 1, 2, 3, 4, . . . . (2.28)

In forward direction only the odd harmonics are observed with the wavelengths

λm =
1
m

λu

2γ2
(1 + K2/2) , m = 1, 3, 5, . . . (2.29)

so λ3 = λ1/3, λ5 = λ1/5. We will present an alternative derivation of (2.29)
in Chap. 3.

The spectral energy density per electron of the radiation emitted in forward
direction (emission angle θ = 0) is for the mth harmonic [4, 5, 6]

d2Um

dΩdω
=

e2γ2 m2K2

4πε0c(1 + K2/2)2
· sin2(πNu(ω − ωm)/ω1)

sin2(π(ω − ωm)/ω1)
· |JJ |2

JJ = Jn

(
mK2

4 + 2K2

)
− Jn+1

(
mK2

4 + 2K2

)
, m = 2n + 1 . (2.30)

Here ωm = mω1 ≡ mω� is the (angular) frequency of the mth harmonic. The
harmonic index m is related to the index n by m = 2n + 1 and takes on the
odd integer values m = 1, 3, 5, . . . for n = 0, 1, 2, . . .. The Jn are the Bessel
functions of integer order.
The absolute bandwidth at θ = 0 is the same for all harmonics

Δω1 = Δω3 = Δω5 . . .

but the fractional bandwidth drops as 1/m

Δωm

ωm
=

1
mNu

(2.31)

because the wave train comprises now mNu oscillations in an undulator with
Nu periods. The angular width is [4]

σθ, m ≈ 1
γ
·

√
1 + K2/2

2mNu
≈ 1

γ
· 1√

mNu

for K ≈ 1 . (2.32)

The corresponding solid angle

ΔΩm = 2πσ2
θ, m ≈ 2π

γ2
· 1
mNu
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Fig. 2.7. Left : Example of a computed photon energy spectrum of undulator ra-
diation for an undulator with 10 periods. Plotted is the differential spectral energy
density d2Um/dΩdω at θ = 0. The units are arbitrary. Right : the spectral energy
Um(ω) of the mth harmonic that is emitted into the solid angle ΔΩm. The electron
Lorentz factor is γ = 1000, the undulator has the period λu = 25 mm and the pa-
rameter K = 1.5. Note that the energy ratios Um/U1 depend only on the harmonic
index m and the undulator parameter K, but not on γ nor on λu

decreases as 1/m with increasing harmonic order. Within the solid angle ΔΩm

the angular-dependent frequency shift is less than the bandwidth. Of practical
interest is the spectral energy contained in this solid angle:

Um(ω) =
d2Um

dΩdω
ΔΩm m = 1, 3, 5, . . . . (2.33)

This spectral energy is shown in Fig. 2.7 for m = 1, 3, 5, 7 for a short undulator
with ten periods and K = 1.5.

The angular dependence of the spectral energy is derived in [5]. For emis-
sion angles θ �= 0 the radiation will contain all higher harmonics (m =
1, 2, 3, 4, . . .), as mentioned above.
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3

Low-Gain FEL Theory

The schematic setup of a low-gain FEL is shown in Fig. 3.1. The main com-
ponents are

• an electron storage ring in which relativistic electron bunches carry out
many revolutions or a linear accelerator providing a long periodic train of
bunches,

• a short undulator magnet,
• an optical cavity.

We assume the presence of an initial light wave with wavelength λ� which
may be provided either by an external source such as an optical laser, or
by the spontaneously emitted undulator radiation which is captured in the
optical cavity. Following the terminology in laser physics, one speaks of an
FEL amplifier if the lasing process is initiated by seed radiation, and of an
FEL oscillator if the lasing process starts from spontaneous radiation. The
bunches make very many passages through the undulator. Upon each passage
the light intensity grows by only a few per cent, which is the reason why

Fig. 3.1. Principle of a low-gain FEL oscillator equipped with an optical resonator.
In this example the undulator is inserted in a storage ring

P. Schmüser, et al.: Low-Gain FEL Theory, STMP 229, 23–36 (2008)

DOI 10.1007/978-3-540-79572-8 3 c© Springer-Verlag Berlin Heidelberg 2008
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such a device is called a low-gain FEL. The small gain per undulator passage,
however, does not prevent the FEL from reaching very high output powers (in
the order of Gigawatts) if the electron beam makes a sufficiently large number
N of passages and if the lifetime of the optical eigenmode (being proportional
to the quality factor of the optical cavity) is long enough:

Pout = Pin(1 + δ)N . (3.1)

Here Pin is the input power and δ the relative increase per turn. Note that δ
will decrease when the FEL saturation power is approached.

3.1 Energy Exchange Between Electron Beam
and Light Wave

We consider here the case of an FEL amplifier which is seeded by an exter-
nal laser. For simplicity, the light wave co-propagating with the relativistic
electron beam is described by a plane electromagnetic wave

Ex(z, t) = E0 cos(k�z − ω�t + ψ0) with k� = ω�/c = 2π/λ� . (3.2)

(In reality the seed laser will be a pulsed laser to achieve sufficient instanta-
neous power. Likewise, the FEL light is concentrated in a short pulse that is
traveling back and forth between the mirrors of the optical resonator). The
time derivative of the electron energy W = γmec

2 is

dW

dt
= v · F = −evx(t)Ex(t) . (3.3)

Energy conservation tells us that the light wave gains energy if dW/dt < 0.
Hence the x component of the electron velocity and the electric vector Ex of
the light wave must point in the same direction to get an energy transfer from
the electron to the light wave1. Suppose this is the case at some position z0 in

zvxvx

vxvx

Ex

Ex

electron trajectoryelectron trajectory

light wave

Fig. 3.2. Condition for sustained energy transfer from electron to light wave: the
light wave has to advance by λ�/2 per half period of the electron trajectory

1 We remark that in Chap. 4 the inhomogeneous wave equation will be used to
compute the energy exchange between the electron beam and the FEL wave.
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the undulator (see Fig. 3.2). Now a problem arises. The light wave, traveling
with the speed c along the z axis, will obviously slip forward with respect to
the electron whose average speed in z direction is v̄z = c

(
1 − (2 + K2)/(4γ2)

)

according to (2.13). This speed is definitely less than c because the electrons
are massive particles and thus slower than light, but more importantly, be-
cause they travel on a sinusoidal orbit which is longer than the straight path
of the photons.

The question is then: how is it at all possible to achieve a steady energy
transfer from the electron beam to the light wave along the entire undulator?
The answer is that the phase of the light wave has to slip by the right amount,
and this proper slippage is only possible for certain wavelengths. Figure 3.2
illustrates that the transverse velocity vx and the field Ex remain parallel if
the light wave advances by half an optical wavelength λ�/2 in a half period of
the electron trajectory. The difference of the electron and light travel times
for a half period of the undulator is

Δt = tel − tlight =
[

1
v̄z

− 1
c

]
λu

2
.

The condition for sustained energy transfer is thus

cΔt = λ�/2 .

Inserting Δt allows us to compute the light wavelength. In good approximation
it is given by

λ� =
λu

2γ2

(
1 +

K2

2

)
. (3.4)

We remark that slippages by 3λ�/2, 5λ�/2 . . . are also possible leading to
odd higher harmonics (λ�/3 , λ�/5 . . .) of the FEL radiation. Note however
that cΔt = 2λ�/2, 4λ�/2 . . . yields zero net energy transfer from the electron
to the light wave: the even harmonics (λ�/2 , λ�/4 . . .) are not present.

Quantitative Treatment

The energy transfer per unit time from an electron to the light wave is de-
scribed by the equation

dW

dt
= −evx(t)Ex(t) = −e

cK

γ
cos(kuz)E0 cos(k�z − ω�t + ψ0)

= −ecKE0

2γ
[cos((k� + ku)z − ω�t + ψ0) + cos((k� − ku)z − ω�t + ψ0)]

≡ −ecKE0

2γ
cos ψ − ecKE0

2γ
cos χ . (3.5)

Due to the fact that the electron bunch is far longer than the light wavelength,
Lb � λ� , we must admit that the light wave may be phase-shifted against the
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sinusoidal trajectory of an arbitrary electron by an arbitrary phase ψ0. Now
we consider the first term in (3.5). It is customary in FEL physics to call the
argument ψ of the first cosine function the ponderomotive phase:

ψ ≡ (k� + ku)z − ω�t + ψ0 . (3.6)

The position z of the electron is a function of time t according to (2.14), so
we can write the ponderomotive phase as a function of the single variable t:

ψ(t) ≡ (k� + ku)z(t) − ω�t + ψ0 . (3.7)

The first term in (3.5) will provide a continuous energy transfer from the
electron to the light wave if ψ(t) is constant along the undulator (independent
of time), the optimum value being ψ = 0 resp. ψ = ±n 2π. The condition
ψ = const can only be fulfilled for a certain wavelength. To find this we insert
z(t) from (2.14) but neglect for the time being the longitudinal oscillation,
hence we put z(t) = v̄z t.

ψ(t) = (k�+ku)v̄z t−ω�t+ψ0 = const ⇔ dψ

dt
= (k�+ku)v̄z−k�c = 0 . (3.8)

Insertion of v̄z permits us to compute the light wavelength, which is in good
approximation

λ� =
λu

2γ2

(
1 +

K2

2

)
. (3.9)

This is a very important result: The condition for sustained energy transfer
all along the undulator yields the same light wavelength as is observed in un-
dulator radiation at θ = 0. This fact is the reason why spontaneous undulator
radiation can serve as seed radiation in a low-gain FEL amplifier or a SASE
FEL.
Now we look at the second cosine function in (3.5). Here the argument cannot
be kept constant since from

χ(t) ≡ (k� − ku)v̄zt − ω�t + ψ0 = const (3.10)

we would get
k�(1 − β̄) = −kuv̄z/c ⇒ k� < 0

which means that the light wave propagates in negative z direction. Writing
ψ as a function of z = v̄z t we can immediately verify that

χ(z) = ψ(z) − 2kuz .

So for ψ(z) = const, which happens if (3.9) is fulfilled, the second cosine
function behaves as cos(2kuz), i.e. it makes two oscillations per undulator
period and cancels out. This is shown in Fig. 3.3. Neglecting the rapidly
oscillating term, (3.5) reduces to

dW

dt
= −ecKE0

2γ
cos ψ . (3.11)
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z/ λ u

cos ψ
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Fig. 3.3. The z dependencies of the terms cos ψ and cos χ

3.2 Internal Bunch Coordinate

The ponderomotive phase ψ has an intuitive interpretation: it can be trans-
formed into a longitudinal coordinate ζ inside the bunch.

ζ =
ψ + π/2
k� + ku

≈ ψ + π/2
2π

λ� . (3.12)

This is schematically shown in Fig. 3.4. We define a reference position ζ =
ζr = 0 by the condition that the energy exchange between electron and light
wave is zero; this corresponds to an initial phase ψ0 = −π/2, see Fig. 3.5.
The z position of this reference electron and its ponderomotive phase have
the time dependencies

zr(t) = v̄zt , ψr(t) = (k� + ku)zr(t) − ω�t − π/2 .

For an arbitrary electron the position along the undulator is

z(t) = zr(t) + ζ(t) = v̄zt + ζ(t)

ζ

ψ

–2λ –λ 0 2λ

2
−

λ

3ππ
2

7π
2

5π
2

−− 9π
2

Fig. 3.4. Definition of the internal longitudinal bunch coordinate ζ. The light
wavelength is written here as λ instead of λ�. The ponderomotive phase is ψ =
2π ζ/λ − π/2. The reference position ζr = 0 corresponds to an initial phase
ψ0 = −π/2 in (3.5), (3.6) and vanishing energy exchange between electron and
light wave. The reference position moves with the average electron speed v̄z along
the z axis of the undulator. Note that the length scale of the coordinate ζ refers to
the laboratory system and not to the co-moving coordinate system of the relativistic
bunch. Hence there is no relativistic length expansion



28 3 Low-Gain FEL Theory

Reference particle: ψ0 = –π/2  
zero energy transfer between electron and light wave  

electron trajectory 

light wave

Fig. 3.5. Ponderomotive phase ψ0 = −π/2 corresponding to vanishing energy ex-
change between electron and light wave

and the ponderomotive phase is

ψ(t) = (k� + ku)(v̄zt + ζ(t)) − ω�t − π/2 .

At time t = 0 we get

ψ0 ≡ ψ(0) = (k� + ku)ζ(0) − π/2 .

Hence the initial distance ζ0 of an arbitrary electron from the reference elec-
tron is related to its initial phase ψ0 by:

ζ0 = ζ(0) =
ψ0 + π/2
k� + ku

≈ ψ0 + π/2
2π

λ� . (3.13)

The meaning of the ponderomotive phase is illustrated in Figs. 3.5 and 3.6.
The general electron will be at an initial position ζ0 �= 0 in the bunch and it will
thus possess an initial phase ψ0 �= −π/2. When this phase is chosen as ψ0 = 0
(see the left part of Fig. 3.6), we get ψ = 0 all along the undulator since ψ =
const = ψ0 if the light wavelength obeys the basic equation (3.9). Hence there
will be sustained energy transfer from the electron to the light wave, which

FEL case: ψ0 = 0
energy transfer from electron to light wave energy transfer from light wave to electron

Laser-acceleration: ψ0 = –π

Fig. 3.6. Left: ponderomotive phase ψ0 = 0 for optimum energy transfer from
electron to light wave (FEL operation). Right: phase ψ0 = −π for optimum energy
transfer from light wave to electron (acceleration of particles by a laser field). This
is sometimes called an inverse FEL
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is the optimal working condition for the FEL. Choosing ψ0 = −π, we obtain
maximum energy transfer from the light wave to the electron, corresponding
to particle acceleration by a laser field (right part of Fig. 3.6).

3.3 The FEL Pendulum Equations

We treat the low-gain FEL as a laser amplifier and assume that the lasing
process in the undulator is initiated by an incident monochromatic light wave
of amplitude E0 and wavelength λ�. We define the resonance electron energy
Wr = γr mec

2 by the equation

λ� =
λu

2γ2
r

(
1 +

K2

2

)
⇒ γr =

√
λu

2λ�

(
1 +

K2

2

)
. (3.14)

Wr is sometimes also called the reference energy. Its meaning is that electrons
with the energy Wr would emit undulator radiation with just the incident
wavelength λ�.

Let now the electron energy W be slightly different from Wr and define
the relative energy deviation

η =
W − Wr

Wr
=

γ − γr

γr
|η| 	 1 . (3.15)

The Lorentz factor γ and the ponderomotive phase ψ of an electron will both
change due to the interaction with the radiation field. In contrast to this the
electric field amplitude E0 grows so slowly in a low-gain FEL that it can be
considered as roughly constant during one passage of the undulator. The time
derivative of the ponderomotive phase is no longer zero for γ �= γr :

dψ

dt
= (k� + ku)v̄z − ω� ≈ kuc − k�c

2γ2

(
1 +

K2

2

)

where we have inserted v̄z from (2.13). According to (3.14) we can write

kuc =
k�c

2γ2
r

(
1 +

K2

2

)

and obtain
dψ

dt
=

k�c

2

(
1 +

K2

2

)(
1
γ2

r

− 1
γ2

)
.

From this follows in good approximation, using (3.15) and the fact that γ
differs very little from γr :

dψ

dt
= 2kuc η . (3.16)
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The time derivative of the relative energy deviation η is according to (3.5)

dη

dt
= − eE0K

2mecγ2
r

cos ψ . (3.17)

The two equations (3.16) and (3.17) are called the FEL pendulum equations.
They are of fundamental importance for both the low-gain FEL and the high-
gain FEL.

In order to stress the similarity with the mathematical pendulum it is
convenient to introduce a shifted phase variable2 φ by

φ = ψ + π/2 ⇒ cos ψ = sin φ . (3.18)

The two coupled first-order differential equations (3.16) and (3.17) read then

dφ

dt
= 2kuc η ,

dη

dt
= − eE0K

2mecγ2
r

sin φ . (3.19)

Combining them we arrive at the second-order pendulum equation of the
low-gain FEL

φ̈ + Ω2 sinφ = 0 with Ω2 =
eE0Kku

meγ2
r

(3.20)

which is mathematically fully equivalent to the second-order differential equa-
tion of a mathematical pendulum. We point out that this equation is not ap-
plicable in the high-gain FEL theory because the growth of the electric field
has been neglected in the derivation of (3.20).

3.4 Phase Space Representation and FEL Bucket

3.4.1 Phase Space Trajectories

There is a close analogy between the dynamics of a low-gain FEL and the
motion of a mathematical pendulum which is treated in Appendix A. The
first-order differential equations are

FEL
dφ

dt
= 2kuc · η dη

dt
= − eE0K

2mecγ2
r

· sin φ

pendulum
dφ

dt
=

1
m�2

· L dL

dt
= −mg � · sin φ

Owing to the same mathematical structure of the two sets of coupled equations
we can describe the FEL by a Hamiltonian, too. In analogy with (A.5) the
Hamiltonian of the low-gain FEL is given by
2 The shifted phase φ is only needed for our comparison between FEL and pendu-

lum. It will not be used in the other chapters.
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H(φ, η) = kuc η2 +
eE0K

2mecγ2
r

(1 − cos φ) . (3.21)

The equations (3.19) are an immediate consequence of the Hamilton equations

dφ

dt
=

∂H

∂η
= 2kuc η ,

dη

dt
= −∂H

∂φ
= − eE0K

2mecγ2
r

sinφ . (3.22)

The trajectories in the (φ, η) phase space are the curves of a constant Hamil-
tonian: H = const. The region of bounded motion (periodic oscillation in case
of the pendulum) is separated from the region of unbounded motion (rotation
of pendulum, see Appendix A) by a curve called the separatrix. The equation
of the FEL separatrix is in analogy to (A.7)

ηsep(φ) = ±
√

eE0K

kumec2γ2
r

cos(φ/2) . (3.23)

The phase space trajectory of an electron in an FEL can be easily constructed
by writing the coupled differential equations (3.22) as difference equations and
solving these in small time steps. An electron at the reference position would
have zero energy exchange with the light wave as illustrated in Fig. 3.5. If
moreover the energy of the reference electron is chosen as W = Wr = γrmec

2

(hence η = 0), then the equations (3.22) show that the phase space coordinates
of this reference electron will be stationary during the motion through the
undulator. The point (φ, η) = (0, 0) is therefore a fixpoint in the phase space
diagram.

The phase space trajectories for 15 electrons of different initial phases φ0

are shown in Fig. 3.7 for the two cases γ = γr and γ > γr. When the electrons
are on resonance, γ = γr , the net energy transfer is zero since there are as
many electrons which supply energy to the light wave as there are electrons
which remove energy from the wave. For γ > γr , however, the phase space
picture clearly shows that there is a positive net energy transfer from the
electron beam to the light wave. This will be computed in the next section.

3.4.2 Definition of the FEL Bucket

The particle dynamics in a low-gain FEL has some similarity with the longi-
tudinal dynamics in a proton storage ring. When the proton beam has been
accelerated to the design energy the phase of the radio-frequency (RF) in
the accelerating cavities is adjusted such that the bunch receives zero energy
gain on average. The energy of a “reference” particle at the bunch center will
remain constant. However, individual protons inside the bunch will either be
accelerated or decelerated depending on their position relative to the reference
particle. The particles carry out longitudinal oscillations about the reference
position and energy oscillations about the reference energy. The phase space
picture looks exactly alike the FEL phase space diagrams in Fig. 3.7.
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−π 0 π
phase φ phase φ

0

η 
= 

ΔW
/ W

0

η 
= 

ΔW
/ W

−π 0 π

Fig. 3.7. Phase space trajectories for 15 electrons of different initial phases φ0. Left
picture: electrons are on resonance, γ = γr, η = 0. The electrons with negative initial
phases −π < φ0 < 0 withdraw energy from the light wave while those with positive
initial phases 0 < φ0 < π supply energy to the light wave. From the symmetry it is
obvious that the net energy transfer from the ensemble of electrons to the light wave
is zero for γ = γr . The particle at the center (φ, η) = (0, 0) does not move at all, so
(0, 0) is a fixpoint. The separatrix (3.23) is drawn as a dashed curve. Right picture:
γ > γr, η > 0. Now there are more particles losing energy than gaining energy,
so the net energy transfer from the electron beam to the light wave is positive (in
this example there are seven electrons inside the separatrix that lose energy and five
electrons that gain energy). Note that for η > 0 the fixpoint is not occupied by a
particle, and that moreover the first and the last particle are outside the separatrix
and carry out an unbounded motion

The proton bunches are contained in the potential minima of the Hamil-
tonian, the so-called RF buckets. By analogy we call the area enclosed by the
separatrix (3.23) the FEL bucket. The phase space picture in Fig. 3.7 can be
periodically repeated (making the replacement φ → φ ± n 2π). Hence there
will be very many FEL buckets for a long electron bunch.

Written in terms of the ponderomotive phase ψ = φ−π/2 the equation of
the separatrix reads

ηsep(ψ) = ±
√

eE0K

kumec2γ2
r

cos
(

ψ − ψb

2

)
(3.24)

where
ψb = −π/2 ± n 2π (3.25)

is the phase of the bucket center. The energy exchange between electron and
light wave vanishes at the bucket center (see also Fig. 3.5).

It is interesting to note that the frequency of the longitudinal oscillations
in a storage ring (the so called synchrotron oscillations) is quite small: in the
920 GeV proton storage ring HERA at DESY, for example, the particles carry
out less than 0.001 longitudinal oscillation per revolution. The circumference
of the machine is 6.2 km. In a similar manner the phase space motion of the
electrons in the FEL is very slow. To see this we rewrite the first pendulum
equation in the form
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dψ

dz
≈ dψ

c dt
=

4π

λu
η .

In an undulator of 1 m length and with a period of λu = 0.025 m the phase
advance is only Δψ = 0.16π for a typical fractional energy deviation η = 0.001.

3.5 FEL Gain and Madey Theorem

We have seen in the previous section that the energy transfer between the
electron beam and the light wave depends on the relative energy deviation
η = (γ − γr)/γr . Figure 3.7 shows quite clearly that the light wave gains
energy when η is positive but remains invariant for η = 0. Likewise, the
light wave loses energy when η is negative. Now we look for a quantitative
description. The FEL gain function is defined as the relative energy increase
of the light wave during one passage of the undulator

G =
ΔW�

W�
.

Treating the phase space motion of the electrons by second-order perturbation
theory it can be shown (see e.g. [1]) that the gain function3 is given by the
expression

G(ξ) = −π e2K̂2N3
uλ2

u ne

4ε0mec2γ3
r

· d

dξ

(
sin2 ξ

ξ2

)
. (3.26)

Here ne is the number of electrons per unit volume, Nu the number of undula-
tor periods and K̂ the modified undulator parameter defined in (3.31) below.
The dimensionless variable ξ = πNu (ω1−ω)/ω1 is a measure of the frequency
deviation from the initial frequency ω1. Equation (3.26) is the Madey theo-
rem which states that the FEL gain curve is proportional to the negative
derivative of the line-shape curve of undulator radiation [2]. We omit here the
somewhat cumbersome proof of the Madey theorem because we will demon-
strate in Chap. 5 and Appendix B that (3.26) can be obtained by taking the
low-gain limit of the more general high-gain FEL theory.

In (3.26) the frequency ω is taken as the independent variable. In practice
the equation is often applied in a different way. The initial frequency ω1 ≡ ω�

is fixed by an external seed laser or by the eigenmode of the optical resonator.
The electron energy W = γmec

2, however, may differ from the resonance
energy Wr = γrmec

2 defined in (3.14). Then we can rewrite the quantity ξ in
the form

ξ = πNu
ω1 − ω

ω1
≈ 2πNu

γ − γr

γr
= 2πNuη (3.27)

3 This is the traditional definition of the gain function in FEL theory. In the termi-
nology of electronic amplifiers as well as of standard laser physics the gain should
be defined as gain = G + 1 because unity gain means that the output signal is
equal to the input signal.
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spectral line of undulator gain function of FEL
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Fig. 3.8. Left: the line-shape curve I(ω) for the first harmonic ω1 ≡ ω� of undulator
radiation. Right: a typical gain function G(η) of the low-gain FEL

which means that the equation (3.26) represents the FEL gain curve as a
function of the relative energy deviation η . Electrons with positive η enhance
the intensity of the light wave, while those with negative η reduce it. An
illustration is given in Fig. 3.8.

3.6 Higher Harmonics and Modified
Undulator Parameter

In the previous sections we have only considered the average longitudinal
speed v̄z of the particles in the computation of the energy exchange between
electron and light wave. Now the longitudinal oscillation of z(t) is explicitly
taken into account, see (2.14)

z(t) = v̄zt −
cK2

8γ2ωu
sin(2ωut) .

We insert this into (3.5), choosing ψ0 = 0 to simplify the notation:

dW

dt
= −ecKE0

2γ
[cos(k�z(t) − ω� t + kuv̄z t) + cos(k�z(t) − ω� t − kuv̄z t)] .

An approximation has already been made here: kuz(t) ≈ kuv̄z t, which is
justified since ku 	 k� and the amplitude of the oscillating term in z(t) is
small. At this place it is convenient to write the cosine functions as the real
part of the complex exponential function of the form

exp
[
ik�(β̄ − 1)c t ± ikuv̄z t

]
· exp

[
−i

K2k�

8γ2ku
sin(2ωut)

]
.

The second exponential can be expanded into a Fourier-Bessel series
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exp(iY sin Φ) =
∞∑

n=−∞
Jn(Y ) exp(inΦ) (3.28)

with Y = − K2k�

8γ2ku
, Φ = 2ωut = 2v̄zkut .

The two cosine terms in (3.5) yield now
[ ∞∑

n=−∞
Jn(Y ) exp(i[2n + 1]kuv̄zt) +

∞∑

m=−∞
Jm(Y ) exp(i[2m − 1]kuv̄zt)

]

× exp(ik�[β̄ − 1]c t) .

In the second sum we make the replacement m → (n + 1) ⇒ (2m − 1) →
(2n + 1). Then both sums can be combined into one sum. Taking the real
part, the energy change of the electron becomes

dW

dt
= −ecKE0

2γ

∑

n

[Jn(Y ) + Jn+1(Y )] cos [(k� + (2n + 1)ku)v̄zt − k�c t] .

The condition for continuous energy transfer from the electron to the light
wave is for the term with index n

(k� + [2n + 1]ku)v̄z − k�c = 0 ⇒ ku =
1

2n + 1
· k�

2γ2

(
1 +

K2

2

)
.

Since the light wavelength must be positive only the non-negative integers
n = 0, 1, 2, . . . are allowed. Therefore the FEL wavelengths of the harmonics
m = 2n + 1 are in good approximation given by the expression

λm =
1
m

· λu

2γ2

(
1 +

K2

2

)
m = 1, 3, 5, . . . . (3.29)

We see that only the odd higher harmonics are present. This equation is
equally valid for undulator radiation in forward direction, see (2.29).

The energy transfer from electron to light wave is described by the equation

dW

dt
= −ecKE0

2γ

∞∑

n=0

[Jn(Yn) + Jn+1(Yn)] cos [(k� + (2n + 1)ku)v̄zt − k�c t]

with Yn = − (2n + 1)K2

4 + 2K2
. (3.30)

The sum extends over all integers n ≥ 0.
The oscillatory term in the longitudinal velocity of the electrons leads not

only to the generation of odd higher harmonics but has also an influence on the
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fundamental harmonic m = 1. From (3.30) follows that the coupling between
the charged particle and the electromagnetic wave is changed by the factor
[J0(Y0) + J1(Y0)] if the longitudinal oscillation is taken into consideration. We
can absorb this correction factor into a modified undulator parameter4

K̂ = K ·
[
J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
. (3.31)

Here we have used the facts that J0 is an even function and J1 is an odd
function. For K = 1 the modified undulator parameter is K̂ = 0.91.
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4

One-Dimensional Theory of the High-Gain FEL

4.1 General Principles of High-Power FELs

There are basically two ways to build a high-power FEL. At infrared and op-
tical wavelengths an optical resonator is utilized and the FEL radiation pulse
passes a short undulator magnet very many times in close spatial overlap with
an electron bunch. In each passage the light intensity grows by just a few per
cent but after very many round trips a large overall amplification is achieved.
A striking example is the infrared FEL at the Thomas Jefferson Laboratory
in Newport News, Virginia, USA where an average FEL beam power of more
than 10 kW has been achieved at wavelengths of 6 resp. 1.6 μm [1]. It is
even possible to reach laser saturation in an FEL equipped with an optical
cavity, but one has to realize that near saturation the initially uniform parti-
cle distribution inside the bunch acquires the microbunch structure discussed
below. When such a bunch traverses the bending magnets of a storage ring
the microbunches will be washed out, so a recirculated bunch entering the
undulator will essentially be a “fresh” bunch without a microstructure at the
level of the optical wavelength.

In the vacuum ultraviolet and X-ray region an optical resonator cannot
be realized due to the lack of mirrors, and thus the light amplification must
be achieved in a single pass through a very long undulator magnet. Here the
low-gain FEL theory is obviously inadequate and one has to admit that the
amplitude of the light wave grows considerably during the motion through the
undulator. This growth and the development of a microbunch structure at the
level of the optical wavelength are the essential new features of the high-gain
FEL theory. The regime of microbunching and saturation is inaccessible to
the low-gain FEL theory.

P. Schmüser, et al.: One-Dimensional Theory of the High-Gain FEL, STMP 229, 37–60 (2008)

DOI 10.1007/978-3-540-79572-8 4 c© Springer-Verlag Berlin Heidelberg 2008
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4.2 Microbunching

The essential advantage of high-gain FEL radiation as compared to undulator
radiation is its much higher intensity because a large number of electrons ra-
diate coherently. The intensity of the radiation field grows quadratically with
the number of coherently acting particles: IN = N2 I1. If it were possible to
concentrate all electrons of a bunch into a region far smaller than the light
wavelength then these N particles would radiate like a “point macroparti-
cle” with charge Q = −Ne. The problem is, however, that this concentra-
tion of some 109 electrons into a tiny volume is totally unfeasible, even the
shortest conceivable particle bunches are much longer than the wavelength
of an X-ray FEL. The way out of this dilemma is given by the process of
microbunching which is based on the following principle: electrons losing en-
ergy to the light wave travel on a sinusoidal trajectory of larger amplitude
than electrons gaining energy from the light wave (compare (2.14)). The re-
sult is a modulation of the longitudinal velocity which eventually leads to
a concentration of the electrons in slices which are shorter than the optical
wavelength λ�. These microbunches are close to the positions where maxi-
mum energy transfer to the light wave can happen according to Fig. 3.2 (we
will prove this statement in Sect. 5.6.2). A numerical simulation of the mi-
crobunching process is shown in Fig. 4.1. The particles within a microbunch
radiate like a single particle of high charge. The resulting strong radiation
field enhances the microbunching even further and leads to an exponential
growth of the radiation power. In Fig. 4.2 experimental data at a wave-
length of 98 nm are shown. They agree very well with the theoretical pre-
diction.
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Fig. 4.1. Numerical simulation of microbunching. The particles are plotted as dots
in a (x, ζ) plane where x is the horizontal displacement from the undulator axis and
ζ the longitudinal internal bunch coordinate. (a) Initial uniform distribution, (b)
beginning of microbunching, (c) fully developed microbunches with a periodicity of
the light wavelength λ� . (Courtesy S. Reiche)
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Fig. 4.2. The exponential growth of the FEL pulse energy as a function of the
length z traveled in the undulator. The data (open circles) were obtained at the
SASE FEL of the TESLA Test Facility [2], the electron energy was 245 MeV. The
progressing microbunching is indicated schematically. Laser saturation sets in for
z ≥ 12 m. Here the microbunches are fully developed and no further increase in
laser power can be expected

4.3 Basic Elements of the One-Dimensional FEL Theory

We restrict ourselves here to the one-dimensional FEL theory where a de-
pendency of the bunch charge density and the electromagnetic fields on the
transverse coordinates x, y is neglected. This is justified if the electron beam
possesses a homogeneous charge density and if its radius rb is sufficiently
large. A lower limit for rb will be derived in Sect. 6.2. The electron bunches
are treated as being very long, the effects occurring at the head or tail of
a bunch are ignored. Betatron oscillations and diffraction of the light wave
are disregarded as well. The influence of these effects will be investigated in
Chap. 6. The full three-dimensional treatment of the FEL is quite complicated
and cannot be carried through by analytical methods.

In this chapter we use complex notation to simplify the mathematics and
designate complex quantities with a tilde. For example, the electric field of
the light wave inside the undulator is written in the form

Ẽx(z, t) = Ẽx(z) exp[i(k�z − ω�t)] (4.1)

with a complex amplitude function Ẽx(z). The actual field is obtained by
taking the real part of this equation

Ex(z, t) = �{Ẽx(z) exp[i(k�z − ω�t)]} . (4.2)
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The analytic description of a high-gain FEL amounts to a self-consistent
treatment of

• the coupled pendulum equations (3.16, 3.17), describing the phase-space
motion of the particles under the influence of the electric field of the light
wave,

• the inhomogeneous wave equation for the electric field of the light wave,
• the evolution of a microbunch structure coupled with longitudinal space

charge forces.

The charge density is initially distributed uniformly along the bunch. Dur-
ing the passage through the undulator, the interaction with the periodic light
wave will gradually produce a periodic density modulation. In analogy with
the treatment of longitudinal instabilities in circular accelerators [3] we antic-
ipate the microbunching effect by assuming that the initially uniform charge
distribution acquires a small modulation which is periodic in the internal
bunch coordinate ζ with the period given by the light wavelength λ�. From
(3.12) follows then a periodicity in the ponderomotive phase variable ψ with
the period 2π. Hence we express the electric charge density in the form

ρ̃(ψ, z) = ρ0 + ρ̃1(z)eiψ with ψ =
ζ

λ�
· 2π − π

2
. (4.3)

The real charge density is of course given by

ρ(ψ, z) = ρ0 + �
(
ρ̃1(z)eiψ

)
.

The complex amplitude ρ̃1 = ρ̃1(z) grows while the bunch moves through the
undulator. From jz = vzρ follows that the current density acquires a similar
modulation:

j̃z(ψ, z) = j0 + j̃1(z) eiψ = j0 + j̃1(z) exp[i(k� + ku)z − iω�t] . (4.4)

In the high-gain FEL theory there is a slight difference in the definition
of the phase ψ as compared to the low-gain case, see equation (3.6). The
incident light wave is taken as the reference, so we choose ψ0 = 0, and the
initial positions ζn of the electrons inside the bunch are specified by assigning
a start phase ψn to each particle (see Sects. 4.6 and 5.6).

In this chapter we ignore the oscillatory part in the longitudinal velocity
and put

z(t) = v̄zt = β̄c t , β̄ =
(

1 − 1
2γ2

(
1 +

K2

2

))
. (4.5)

Higher harmonics are therefore not considered in our treatment of the high-
gain FEL, but the modified undulator parameter K̂ from (3.31) is used wher-
ever appropriate, see Sect. 4.5. When the electron beam is on resonance
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(we will see in Chap. 5 that a high-gain FEL is always operated close to
γ = γr) we obtain to a good approximation

k� + ku = k�/β̄

where we have used the equations (2.13 ) and (3.14). Hence the current density
can be written as

j̃z(ψ, z) = j0 + j̃1(z) exp (i k′[z − v̄zt]) with k′ = (k�/β̄) . (4.6)

From this equation it is evident that the current modulation moves along the
z direction with the same speed v̄z = β̄ c as the electron bunch, except for a
very slight slippage which is due to the phase evolution of j̃1(z). This will be
studied in Sect. 5.6.2.

The periodic charge density modulation leads to repulsive space charge
forces with the same periodicity. These longitudinal forces counteract the mi-
crobunching effect and tend to smear out any structure in the longitudinal
charge distribution. Hence we have to consider these two opposing effects in
describing the evolution of the microbunch structure.

The question arises whether it is really justified to assume the existence
of an initial periodic density modulation. We can convince ourselves that this
is indeed the case. The argument is as follows. The electrons in a bunch
entering the undulator are in general randomly distributed along the bunch
axis. In Appendix F we show that the random longitudinal distribution has a
non-vanishing Fourier component at the optical wavelength λ� . This Fourier
component will be strongly amplified in the FEL gain process. Of course
one might as well make a Fourier expansion with another wavelength as the
period. It will turn out, however, that the FEL gain is large only in a narrow
interval around the optical wavelength (see Sect. 5.2), while the gain becomes
negligible if λ is very different from λ� . Hence the Fourier components at
other wavelengths will in general not be amplified but retain their small initial
values.

Some care is needed in applying the Maxwell equations in the 1D FEL
theory because these are intrinsically three-dimensional. For example, the first
Maxwell equation in its integral form states that the flux of the electric field
through the closed surface of a volume is given by the enclosed electric charge:

∮
E · dS = Q/ε0 .

An interesting consequence is that the internal longitudinal Coulomb force in
highly relativistic bunches can be neglected if the bunch length is much larger
than its radius (an intuitive explanation is that all particles have velocities
very close to c and do not “see” each other). Mathematically we demonstrate
this as follows. In the rest frame of the electrons the bunch length appears
stretched by the Lorentz factor γ̄ � 1 and is thus very much larger than the
bunch radius which remains invariant: L∗

b = γ̄ Lb � r∗b = rb. Consequently,
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the flux of the electric field through a cylindrical surface enclosing the bunch
is mainly in radial direction, the flux through the end faces of the cylinder is
almost negligible. Therefore the electric field in the rest frame of the bunch
is radial, and it preserves this feature after Lorentz back-transformation into
the laboratory system.

In the 1D FEL theory described in this chapter the bunches are assumed
to be very long. Then the longitudinal electric field can be neglected as long
as the charge distribution remains homogeneous. However, as soon as the pe-
riodic charge density modulation sets in at the very tiny scale of the light
wavelength, which in the co-moving coordinate frame corresponds to a pe-
riodic modulation at the scale of λ∗

u = λu/γ̄ 	 L∗
b , a periodic longitudinal

Coulomb field will arise.

4.4 Electromagnetic Fields

4.4.1 Radiation Field

The wave equation for the electric field E of the light wave reads
[
∇2 − 1

c2

∂2

∂t2

]
E = μ0

∂j

∂t
+

1
ε0

∇ρ (4.7)

with the current density j and the electric charge density ρ. In the one-
dimensional approximation the equation for the x component becomes in
complex notation

[
∂2

∂z2
− 1

c2

∂2

∂t2

]
Ẽx(z, t) = μ0

∂j̃x

∂t
(4.8)

where j̃x is the x component of the current density resulting from the sinu-
soidal motion of the electron bunch in the undulator. The derivative ∂ρ/∂x is
not present in the 1D theory1.

We assume that the lasing process in the undulator is initiated (seeded)
by an incident electromagnetic wave Ex(z, t) with horizontal polarization. In
the low-gain FEL, an approximate solution of the wave equation is

Ex(z, t) = E0 cos(k�z − ω�t + ψ0)

with a constant amplitude E0 of the light wave (in reality the amplitude grows
by a few per cent during one passage of a short undulator). For the high-
gain FEL, however, we have to admit that the amplitude of the light grows
considerably along the undulator. Hence we assume a solution of the form

1 The derivative ∂ρ/∂x plays no role in the 3D theory either, see Appendix E and
[4], if one considers only the first harmonic. However, this term becomes important
for higher harmonics.
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Ẽx(z, t) = Ẽx(z) exp[i(k�z − ω�t)] (4.9)

with a complex amplitude Ẽx(z) which will be a function of the path length z
in the undulator. The initial phase ψ0 is put to zero, see the previous section.
The phase of Ẽx(z) may vary with z which means that the phase velocity of
the FEL light wave may differ slightly from the phase velocity c of a plane
electromagnetic wave. This effect will be studied in Chap. 6. Inserting (4.9)
into the wave equation yields

[
2 i k�Ẽ

′
x(z) + Ẽ′′

x(z)
]
exp[i(k�z − ω�t)] = μ0

∂j̃x

∂t
. (4.10)

To proceed further we make the slowly varying amplitude (SVA) approxima-
tion in order to be able to drop the second derivative Ẽ′′

x . The amplitude Ẽx(z)
is assumed to be a smooth function of z which varies slowly in the sense that
the change within one undulator period λu is small. Then the change within
one light wavelength is even much smaller. This implies that the first deriva-
tive of the field is also small

∣∣∣Ẽ′
x(z)
∣∣∣λ� 	

∣∣∣Ẽx(z)
∣∣∣ ⇒

∣∣∣Ẽ′
x(z)
∣∣∣	 k�

∣∣∣Ẽx(z)
∣∣∣ . (4.11)

Nevertheless, the first derivative, characterizing the slope of the function
Ẽx(z), must of course be retained in order to describe the growth of the FEL
power as a function of undulator length. The change of the slope, however,
will be extremely small in one undulator period λu and practically negligible
in one optical wavelength

∣∣∣Ẽ′′
x(z)
∣∣∣λ� 	

∣∣∣Ẽ′
x(z)
∣∣∣ ⇒

∣∣∣Ẽ′′
x(z)
∣∣∣	 k�

∣∣∣Ẽ′
x(z)
∣∣∣ . (4.12)

Hence one can safely omit the second derivative of the field in (4.10). The
differential equation of the slowly varying amplitude reads in the SVA ap-
proximation

dẼx

dz
= − iμ0

2k�
· ∂j̃x

∂t
· exp[−i(k�z − ω�t)] . (4.13)

Now a connection is made between the longitudinal and transverse com-
ponents of the current density. This relation is given by the motion of the
particles in the undulator. From

j̃x = ρ̃vx , j̃z = ρ̃vz

follows
j̃x = j̃z vx/vz .

The x component of the electron velocity in a planar undulator is taken from
(2.9). We get

j̃x = j̃z
vx

vz
≈ j̃z

vx

c
= j̃z

K

γ
cos(kuz) . (4.14)
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This relation between the currents in x and z direction is put into (4.13):

dẼx

dz
= − iμ0K

2k�γ
· ∂j̃z

∂t
exp[−i(k�z − ω�t)] cos(kuz) .

The current density

j̃z(ψ, z) = j0 + j̃1(z) exp(iψ) = j0 + j̃1(z) exp[i(k�z − ω�t) + ikuz]

has to be partially differentiated with respect to time

[
∂j̃z

∂t

]

z=const

= −iω� j̃1 exp[i(k�z − ω�t) + ikuz] .

The derivative of the transverse field becomes

dẼx

dz
= −μ0cK

2γ
j̃1 exp[i(k�z − ω�t) + ikuz] exp[−i(k�z − ω�t)]

eikuz + e−ikuz

2

= −μ0cK

4γ
j̃1 {1 + exp(i2kuz)} .

The phase factor exp[i2kuz] carries out two oscillations per undulator period
λu and averages to zero (see also Fig. 3.3). So within the SVA approximation
we can express the derivative of the transverse field in terms of the modulation
amplitude of the current density by

dẼx

dz
= −μ0cK

4γr
· j̃1 . (4.15)

In this equation we have replaced γ by γr because a high-gain FEL is always
operated close to resonance (see Sect. 5.1).

4.4.2 Space Charge Field

The longitudinal space charge field created by the modulated charge density
(4.3) is computed using the Maxwell equation ∇ · E = ρ/ε0. According to
the discussion in Sect. 4.3 the homogeneous part ρ0 of the charge density can
be disregarded. The periodic part of the charge density generates a periodic
longitudinal field according to the equation

∂Ẽz(z, t)
∂z

=
ρ̃1(z)

ε0
exp[i((k� + ku)z − ω�t)] . (4.16)

Writing
Ẽz(z, t) = Ẽz(z) exp[i((k� + ku)z − ω�t)]
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the derivative of the field with respect to z is in the SVA approximation

∂Ẽz(z, t)
∂z

≈ i (k� + ku)Ẽz(z) exp[i((k� + ku)z − ω�t)]

since for a slowly varying amplitude
∣∣∣∣∣
dẼz(z)

dz

∣∣∣∣∣
	 (k� + ku)

∣∣∣Ẽz(z)
∣∣∣ .

Comparing with (4.16) and using ku 	 k� we obtain for the complex ampli-
tude of the longitudinal electric field

Ẽz(z) ≈ − i

ε0k�
ρ̃1(z) ≈ − iμ0c

2

ω�
· j̃1(z) . (4.17)

Combining (4.17) and (4.15) allows us to relate the longitudinal field to the
derivative of the transverse field

Ẽz(z) = i
4γrc

ω�K
· dẼx

dz
. (4.18)

4.5 Corrections Due to the Longitudinal Oscillation

In the previous section we have disregarded the longitudinal oscillation of the
electrons during their motion through the undulator. We know from Sect. 3.6
that this oscillation leads to a modification of the energy transfer from the
electron to the light wave, see (3.30). The modified undulator parameter de-
fined in (3.31)

K̂ = K ·
[
J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]

enters the energy-transfer equation (3.17) which has to read

dη

dt
= − eE0K̂

2mecγ2
r

cos ψ . (4.19)

Moreover, K̂ appears in the longitudinal component of electron-beam current
density. Therefore in the equations (4.15) and (4.18) the replacement K → K̂
must be made:

dẼx

dz
= −μ0cK̂

4γr
· j̃1 . (4.20)

Ẽz(z) = i
4γrc

ω�K̂
· dẼx

dz
. (4.21)

On the other hand, the FEL wavelength equations (3.9) and (3.29) remain
unchanged, so they contain the unmodified undulator parameter K.
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4.6 The Coupled First-Order Equations

In Sect. 3.4 we have studied how an ensemble of electrons moves in the (ψ, η)
phase space due to the interaction with the field of the light wave. The time
derivative of an electron’s ponderomotive phase (or, alternatively, of its posi-
tion ζ inside the bunch) is given by the first pendulum equation (3.16). Re-
placing the time t by the longitudinal coordinate z according to z(t) = β̄c t,
we get

dψ

dz
= 2kuη (β̄ ≈ 1) . (4.22)

The change in the relative energy deviation η is described by the second
pendulum equation (4.19)

dη

dz
= − eE0K̂

2mec2γ2
r

cos ψ .

In case of the low-gain FEL the electric field amplitude E0 of the light wave is
treated as a constant but now we have to take into account the z dependence
of the field. In our present complex notation we rewrite the second pendulum
equation as [

dη

dz

]

�

= − eK̂

2mec2γ2
r

�(Ẽxeiψ) .

At this place it is mandatory to take the real part because the relative energy
deviation is always a real quantity. The index “�” indicates the coupling to the
light wave. One has to add the energy change due to the interaction between
the electron and the space charge (sc) field. The rate of change of the electron
energy due to the longitudinal force is

dW

dt
= v̄zFz = −e v̄z�(Ẽze

iψ) .

Using z = v̄zt we find then
[
dη

dz

]

sc

= − e

mec2γr
�(Ẽze

iψ) .

Combining the two effects yields

dη

dz
= − e

mec2γr
�
{(

K̂Ẽx

2γr
+ Ẽz

)

eiψ

}

. (4.23)

Our goal is now to study the phase space motion of the electrons in a
similar manner as in the low-gain case, but to take explicitly into account the
growth of the field amplitude Ẽx(z) of the light wave and the evolution of the
space charge field Ẽz(z). Both are related to the modulation amplitude j̃1(z)
of the electron beam current density by the equations (4.20) and (4.17):
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dẼx

dz
= −μ0cK̂

4γr
· j̃1(z) , Ẽz(z) = − iμ0c

2

ω�
· j̃1(z) . (4.24)

The obvious task is to compute j̃1 for a given arrangement of electrons in
phase space. To this end we subdivide the electron bunch into longitudinal
slices of length λ�. Since the bunch is much longer than the light wavelength,
there will be very many of these slices (in fact infinitely many in the periodic
1D theory where one neglects the beginning and the end of the bunch). Each
slice has an area Ab = πr2

b where rb is the radius of the bunch. Written in
terms of the ponderomotive phase these are slices of length 2π. In the slice
0 ≤ ψ < 2π we have N electrons with the phases ψn (n = 1...N) . Treating the
electrons as point-like particles the longitudinal distribution can be expressed
in the form

S(ψ) =
N∑

n=1

δ(ψ − ψn) ψ, ψn ∈ [0, 2π] . (4.25)

In this chapter and in Chap. 5 we restrict ourselves to the special cases that
the initial state is characterized either by a perfectly uniform longitudinal
distribution of the electrons in the bunch or by a density distribution that is
periodic in ψ with the period 2π. To this end we continue the function (4.25)
periodically so that is is defined for all |ψ| < ∞. We call this the periodic
model. The more realistic case of a random longitudinal particle distribution
will be investigated in the chapter on the SASE FEL and in Appendix F. The
uniformity (resp. periodicity) implies that the function S(ψ) can be expanded
in a real Fourier series

S(ψ) =
a0

2
+

∞∑

k=1

[ak cos(k ψ) + bk sin(k ψ)] (4.26)

ak =
1
π

∫ 2π

0

S(ψ) cos(k ψ)dψ k = 0, 1, 2 . . .

bk =
1
π

∫ 2π

0

S(ψ) sin(k ψ)dψ k = 1, 2 . . .

Defining the complex Fourier coefficients ck = ak − ibk one can rewrite S(ψ)
in the form

S(ψ) =
c0

2
+ �
{ ∞∑

k=1

ck exp(i k ψ)

}

. (4.27)

The complex Fourier coefficients are given by

ck =
1
π

∫ 2π

0

S(ψ) exp(−i k ψ)dψ . (4.28)

In order to find the relation between the Fourier coefficients and the current
density we look first at the dc part of the current density which is proportional
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to the zeroth Fourier coefficient c0/2 ≡ a0/2 = N/(2π). From j0 = −e c ne

and ne = N/(Abλ�) follows then

j0 = −e c
2π

Abλ�
· c0

2
.

Remember that ne is the number of electrons per unit volume, N the number
of electrons in a slice of area Ab and length λ� , and j0 the dc current density
in [A/m2].

The modulation current j̃1 is proportional to the coefficient of the first
harmonic k = 1

c1 =
1
π

∫ 2π

0

(
N∑

n=1

δ(ψ − ψn)

)

exp(−i ψ)dψ =
1
π

N∑

n=1

exp(−iψn) .

By analogy with j0 we obtain

j̃1 = −e c
2π

Abλ�
· c1 = −e c

2π

Abλ�
· 1
π

N∑

n=1

exp(−iψn) = j0
2
N

N∑

n=1

exp(−iψn) .

(4.29)

Now we have collected all equations that are needed to compute numerically
the time evolution of our system. (We remind the reader that our time vari-
able is here the path length z in the undulator magnet which is related to the
normal time t by z = v̄zt).

The complete set of coupled first-order equations in the periodic model is

dψn

dz
= 2kuηn , n = 1...N (4.30a)

dηn

dz
= − e

mec2γr
�
{(

K̂Ẽx

2γr
− iμ0c

2

ω�
· j̃1

)

exp(iψn)

}

(4.30b)

j̃1 = j0
2
N

N∑

n=1

exp(−iψn) (4.30c)

dẼx

dz
= −μ0cK̂

4γr
· j̃1 . (4.30d)

The equations (4.30) describe the time evolution of the ponderomotive phase
ψn and the relative energy deviation ηn = (γn − γr)/γr of the nth electron
(n = 1...N), as well as the time evolution of the modulated current density
j̃1 and the amplitude of the light wave Ẽx. Since N is a large number we are
confronted with a true many-body problem for which no analytical solution
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exists. The set of 2N + 2 coupled differential and algebraic equations can be
solved by numerical integration as will be discussed in Sect. 5.4.

We point out that the coupled equations in the form (4.30) are restricted
to uniform or periodic initial particle distributions. They are well suited for
a simulation of the saturation process in an FEL amplifier that is seeded by
monochromatic light, but a SASE FEL cannot be handled because here the
initial particle distribution is random. Now we describe briefly how the peri-
odic model can be generalized. The main changes are:

(a) The initial phase space distribution must be specified for the whole bunch
and not just for one period of length λ� .

(b) The electron beam current is a function of z, like j̃1(z), but depends in
addition on the internal bunch coordinate ζ = z − β̄ c t = z − v̄zt. The
current density is therefore written as

j̃z = j0(ζ) + ĵ1(z, ζ) exp(i ψ) .

(c) To describe variations of the electric field inside the FEL pulse we intro-
duce an internal longitudinal coordinate

u = z − c t =
(

1 − c

v̄z

)
z +

c

v̄z
ζ

and make the ansatz

Ẽx(z, t) = Ê(z, u) exp[i(k�z − ω�t)]

in which the complex amplitude function Ê(z, u) depends on the posi-
tion z in the undulator, like Ẽx(z), but also on the internal FEL pulse
coordinate u = z − ct.

The detailed treatment is found in Appendix C where also a non-periodic
form (C.7) of the coupled equations is presented.

4.7 The Third-Order Equation of the High-Gain FEL

The main physics of the high-gain FEL is contained in the coupled first-order
equations presented in the previous section, but unfortunately these equations
possess no analytical solution. If we make the additional assumption that
the periodic density modulation remains small it is possible to eliminate the
quantities ψn and ηn characterizing the particle dynamics in the bunch and
derive a differential equation containing only the electric field amplitude Ẽx(z)
of the light wave. This equation has the great advantage that it can be solved
analytically.
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4.7.1 Particle Distribution Function

In a one-dimensional description of particle motion in an accelerator we have
to specify two quantities for each particle in a bunch: (1) its internal position
inside the bunch, we choose the distance ζ from a reference position ζr = 0,
and (2) its relative deviation η from the reference energy. These two quantities,
which are conjugate variables in a Hamiltonian description of the FEL, define
the so-called longitudinal phase space. The ponderomotive phase is related to
the longitudinal coordinate of an electron inside the bunch, compare (3.12):

ψ =
2πζ

λ�
− π

2
. (4.31)

Furthermore, it is customary in accelerator physics to replace the indepen-
dent variable time t by the path length z along the nominal beam orbit. The
equations of the one-dimensional high-gain FEL can therefore be written in
terms of the variables (ψ, η, z) where z plays the role of a quasi time.

The ensemble of particles can be described by a distribution function F (ψ, η, z)
in the (ψ, η) phase space. The number of electrons in a phase space volume
element (dψ dη) is

dne = ne F (ψ, η, z)dψ dη (4.32)

where ne is the particle density in the bunch (the number of particles per unit
volume). The distribution function is normalized to unity:

1
2π

∫ 2π

0

(∫
F (ψ, η, z) dη

)
dψ = 1 . (4.33)

A microscopic expression for the distribution function is presented in [4].
From our assumption of a periodically modulated charge distribution fol-

lows that there will be a periodic term in the distribution function, too. Hence
we write in complex notation

F (ψ, η, z) = �
{

F̃ (ψ, η, z)
}

= F0(η) + �
{

F̃1(η, z) · eiψ
}

. (4.34)

The modulation amplitude must remain small to justify the approximations
which will be made in the derivation of the third-order equation,

∣
∣∣F̃1(η, z)

∣
∣∣	

|F0(η)|. An example for a periodically modulated particle distribution function
is presented in Fig. 4.3.
For the unperturbed term F0 we assume a narrow distribution in the relative
energy deviation, for example a Gaussian

F0(η) =
1√

2π ση

exp
(
− (η − η0)2

2σ2
η

)
with η0 =

W0 − Wr

Wr
. (4.35)

Note that in general the mean value W0 of the electron energy may differ
slightly from the resonance energy Wr which is defined by the wavelength
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ψ

η

ψ

η

Fig. 4.3. Illustration of a periodically modulated charge density. The particle dis-
tribution function is plotted as a function of the ponderomotive phase ψ and the
relative energy deviation from resonance η = (W − Wr)/Wr. Note that in the be-
ginning the periodic modulation is mainly an energy modulation which results from
the energy exchange between the electrons and the periodic light wave. The rela-
tion between the particle distribution function and the charge density can be found
in (4.37)

λ� of the incident light wave according to (3.14). The variance ση is usually
small, ση ≤ 10−4 . . . 10−3 for the electron beam in a linac-driven FEL. Hence
the relative energy deviation is restricted to a narrow range |η| < δ, where
0 < δ 	 1 is chosen such that F0(η) vanishes identically for all |η| ≥ δ.
The integral over the unmodulated part of the distribution function yields 1

∫ δ

−δ

F0(η)dη = 1 . (4.36)

The relation between distribution function and charge resp. current density is

ρ̃1(z) = ρ0

∫ δ

−δ

F̃1(η, z)dη , j̃1(z) = j0

∫ δ

−δ

F̃1(η, z)dη . (4.37)

4.7.2 Vlasov Equation

According to the Liouville Theorem of Hamiltionian mechanics, the phase
space volume occupied by an ensemble of particles is conserved along the
particle trajectory. This leads to a generalized continuity equation which is
called the Vlasov equation (see for example [3])

dF

dz
=

∂F

∂z
+

∂F

∂ψ

dψ

dz
+

∂F

∂η

dη

dz
= 0 . (4.38)
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Note that ψ, η and z are real variables. Inserting (4.34) one obtains

dF

dz
= �
{(

∂F̃1

∂z
+ i F̃1

dψ

dz

)

eiψ

}

+

(
dF0

dη
+ �
{

∂F̃1

∂η
eiψ

})
dη

dz
= 0 .

The derivative of F̃1 with respect to η will be neglected here since we assume a
small modulation amplitude,

∣
∣∣F̃1(z, η)

∣
∣∣	 |F0(η)|. Using the pendulum equa-

tions (4.22) and (4.23) we obtain

�
{(

∂F̃1

∂z
+ i 2kuηF̃1 −

e

mec2γr

dF0

dη

[
K̂

2γr
Ẽx + Ẽz

])

eiψ

}

= 0 . (4.39)

This equation is certainly fulfilled if we can find a function F̃1 obeying the
more demanding equation

∂F̃1

∂z
+ i 2kuηF̃1 −

e

mec2γr

dF0

dη

[
K̂

2γr
Ẽx + Ẽz

]

= 0 .

To this end we replace the longitudinal space charge field by the derivative
of the transverse field according to (4.21) and construct a solution of the
following equation

∂F̃1

∂z
+ i 2kuηF̃1 =

e

mec2γr
[. . .]

dF0

dη
(4.40)

with

[. . .] =

[
K̂

2γr
Ẽx + Ẽz

]

=

[
K̂

2γr
Ẽx + i

4γrc

ω�K̂

dẼx

dz

]

. (4.41)

The differential equation (4.40) is of the type

y′ + iαy(z) = f(z)

with the general solution

y(z) =
∫ z

0

f(s) exp(−iα · (z − s))ds + c1 exp(−iα z)

with an arbitrary constant c1. Since the beam is unmodulated at the entrance
to the undulator we request F̃1(0) = 0 and thus c1 = 0, so we obtain

F̃1(η, z) =
e

mec2γr

z∫

0

[. . .]
dF0

dη
exp [−i 2kuη · (z − s)] ds . (4.42)
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4.7.3 Integro-Differential Equation

The time evolution of the radiation field amplitude is described by the differ-
ential equation (4.20)

dẼx

dz
= −μ0cK̂

4γr
j̃1 =

μ0c
2K̂nee

4γr

∫ δ

−δ

F̃1(η, z)dη . (4.43)

Inserting F̃1(η, z) from (4.42) we get

dẼx

dz
=

μ0K̂nee
2

4meγ2
r

∫ z

0

{

[. . .]
∫ δ

−δ

dF0

dη
exp(−i2kuη · (z − s))dη

}

ds

Integrating by parts over η, using F0(±δ) = 0, yields an integro-differential
equation

dẼx

dz
= i ku

μ0K̂nee
2

2meγ2
r

∫ z

0

[
K̂

2γr
Ẽx + i

4γrc

ω�K̂

dẼx

dz

]

h(z − s)ds (4.44)

with h(z − s) =
∫ δ

−δ

(z − s) exp [−i 2kuη · (z − s)] F0(η)dη .

The two-dimensional problem in the variables (η, z) has now been reduced to
a one-dimensional problem in z.

4.7.4 Third-Order Equation

The integro-differential equation (4.44) can be simplified if we assume a mono-
energetic beam of energy W = W0. Then

h(z − s) = (z − s) exp [−i 2kuη0 (z − s)] with η0 = (W0 − Wr)/Wr

and (4.44) becomes

dẼx

dz
= i ku

μ0K̂nee
2

2meγ2
r

∫ z

0

[. . .] (z − s) exp [−i 2kuη0 (z − s)] ds . (4.45)

In the following we write η instead of η0, dropping the subscript. Equation
(4.45) is of the type

y(z) =
∫ z

0

f(s)(z − s) exp[−iα (z − s)]ds .

It is easy to verify that the function y(z) fulfills the differential equation

y′′ + 2iαy′ − α2y = f .
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Applied to (4.45) this yields

Ẽ′′′
x + 4ikuηẼ′′

x − 4k2
uη2Ẽ′

x = i ku
μ0K̂nee

2

2meγ2
r

[
K̂

2γr
Ẽx + i

4γrc

ω�K̂
Ẽ′

x

]

.

Ordering terms we obtain finally the well-known third-order differential equa-
tion of the high-gain FEL

d3Ẽx(z)
dz3

+ 4ikuη
d2Ẽx(z)

dz2
+
(
k2

p − 4k2
uη2
) dẼx(z)

dz
− iΓ 3Ẽx(z) = 0 . (4.46)

Two new coefficients appear in this equation which depend on the beam prop-
erties and the layout of the undulator and which have both the dimension of
an inverse length. The first one is called the gain parameter Γ , the second one
is often called the space charge parameter kp

Γ =

[
μ0K̂

2e2kune

4γ3
rme

]1/3

, kp =

√
2kuμ0nee2c

γrmeω�
=
√

2λ�

λu
·
ω∗

p

c
. (4.47)

The space charge parameter is related to the plasma frequency ω∗
p in the

relativistic electron bunch

ω∗
p =

√
n∗

ee
2

ε0me
=

√
nee2

γrε0me
. (4.48)

(When computing the plasma frequency in the relativistic bunch one has to
take into account that the particle density in the rest frame of the bunch is
n∗

e = ne/γr due to Lorentz expansion of the bunch length). We will see in
Chap. 6 that space charge forces can be neglected if kp is small in comparison
with the gain parameter Γ .

It is instructive to rewrite the third-order equation in the form

Ẽ
′′′

x

Γ 3
+ 2i

2ku

Γ
η

Ẽ
′′

x

Γ 2
+

(
k2

p

Γ 2
−
(

2ku

Γ
η

)2
)

Ẽ
′

x

Γ
− i Ẽx = 0 .

The coefficient of the relative energy deviation η = (W − Wr)/Wr is 2ku/Γ .
This motivates the introduction of a new quantity which is called the FEL
parameter (or Pierce parameter)

ρFEL =
Γ

2ku
=

1
4π

√
3
· λu

Lg0
(4.49)

where Lg0 is the power gain length defined below in (4.53). With the dimen-
sionless FEL parameter the third-order equation reads
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Ẽ
′′′

x

Γ 3
+ 2i

η

ρFEL

Ẽ
′′

x

Γ 2
+

(
k2

p

Γ 2
−
(

η

ρFEL

)2
)

Ẽ
′

x

Γ
− i Ẽx = 0 . (4.50)

The form (4.50) of the third-order equation shows quite clearly that significant
changes must be expected if the fractional energy deviation comes in the order
of the FEL parameter. This will be studied in Chap. 5. We will also show that
the FEL parameter is closely related to two important properties of a high-
gain FEL: its bandwidth and its saturation power.

4.8 Analytic Solution of the Third-Order Equation

The linear third-order differential equation (4.50) can be solved analytically
using the trial function Ẽx(z) = Aeαz. We consider first the special case
η = 0, which means that the electron energy is equal to the resonant energy
(W = Wr), and assume in addition kp = 0 (the plasma frequency becomes
small for low electron density ne or for very large γr). Then one obtains

α3 = i Γ 3

with the three solutions

α1 = (i +
√

3)Γ/2 , α2 = (i −
√

3)Γ/2 , α3 = −iΓ . (4.51)

The first solution has a positive real part and leads to an exponential growth
of the field Ẽx(z), while the other two eigenvalues correspond to exponentially
damped or oscillatory eigenfunctions. For sufficiently large z the power of the
light wave grows as

P (z) ∝ exp(2�{α1}) = exp(
√

3Γz) ≡ exp(z/Lg0) (4.52)

where we have defined the power gain length by2

Lg0 =
1√
3Γ

=
1√
3

[
4γ3

rme

μ0K̂2e2kune

]1/3

. (4.53)

The index “0” in formula (4.53) indicates that Lg0 is the idealized gain length
of the one-dimensional theory assuming a mono-energetic beam and neglecting
space charge forces. The power gain length Lg of a realistic FEL will in general
be larger because beam energy spread, space charge, betatron oscillations and
optical diffraction tend to weaken the exponential gain with the unfortunate
consequence that the undulator length must be increased if one wants to

2 Some authors define the field gain length which is a factor of two larger than the
power gain length.
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preserve the FEL gain and aims at laser saturation. This will be investigated
in Chap. 6. The general definition of the power gain length is

Lg = P

(
dP

dz

)−1

. (4.54)

In the general case η �= 0 and kp �= 0 the linear third-order differential
equation is again solved by assuming a z dependence of the form exp(αz).
The resulting cubic equation for the exponent α has three solutions α1, α2, α3

which are computed in Appendix E. The general solution of (4.50) can be
written as a linear combination of the three eigenfunctions Vj(z) = exp(αjz):

Ẽx(z) = c1V1(z) + c2V2(z) + c3V3(z) Vj(z) = exp(αjz) . (4.55)

For the first and second derivative we obtain

Ẽ′
x(z) = c1α1V1(z) + c2α2V2(z) + c3α3V3(z)

Ẽ′′
x(z) = c1α

2
1V1(z) + c2α

2
2V2(z) + c3α

2
3V3(z) .

Since Vj(0) = 1 the coefficients cj can be computed by specifying the initial
conditions for Ẽx(z), Ẽ′

x(z) and Ẽ′′
x(z) at the beginning of the undulator at

z = 0. The initial values can be expressed in matrix form by
⎛

⎜
⎝

Ẽx(0)

Ẽ
′

x(0)

Ẽ
′′

x (0)

⎞

⎟
⎠ = A ·

⎛

⎝
c1

c2

c3

⎞

⎠ with A =

⎛

⎜
⎝

1 1 1
α1 α2 α3

α2
1 α2

2 α2
3

⎞

⎟
⎠ . (4.56)

The coefficient vector is then computed as

⎛

⎝
c1

c2

c3

⎞

⎠ = A−1 ·

⎛

⎜
⎝

Ẽx(0)

Ẽ
′

x(0)

Ẽ
′′

x (0)

⎞

⎟
⎠ . (4.57)

To be more specific we go back to the simple case η = 0 and kp = 0. Then
the eigenvalues are given by (4.51) and the matrix A and its inverse assume
the forms

A =

⎛

⎝
1 1 1

(i +
√

3)Γ/2 (i −
√

3)Γ/2 −iΓ

(i +
√

3)2Γ 2/4 (i −
√

3)2Γ 2/4 −Γ 2

⎞

⎠ , (4.58)

A−1 =
1
3
·

⎛

⎝
1 (

√
3 − i)/(2Γ ) (−i

√
3 + 1)/(2Γ 2)

1 (−
√

3 − i)/(2Γ ) (i
√

3 + 1)/(2Γ 2)
1 i /Γ −1 /Γ 2

⎞

⎠ . (4.59)

Let now the FEL process be started by an incident plane light wave of wave-
length λ� and amplitude Ein
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Ex(z, t) = Ein cos(k�z − ω�t) with k� = ω�/c = 2π/λ�

which to a good approximation happens when the FEL is seeded by an external
laser. The initial density modulation is assumed to be zero: j̃1(0) = 0 so
Ẽ

′

x(0) = 0 from (4.20). Also the second derivative of the field vanishes at
z = 0. Hence the initial condition is

⎛

⎜
⎝

Ẽx(0)

Ẽ
′

x(0)

Ẽ
′′

x (0)

⎞

⎟
⎠ =

⎛

⎝
Ein

0
0

⎞

⎠ . (4.60)

From (4.57) we find that all three coefficients have the same value, cj = Ein/3.
So the field of the FEL wave is

Ẽx(z) =
Ein

3

[
exp((i +

√
3)Γz/2) + exp((i −

√
3)Γz/2) + exp(−iΓz)

]
.

(4.61)
The first term in the square bracket exhibits exponential growth, the second
term carries out a damped oscillation and the third term oscillates as a func-
tion of the position z along the undulator axis. So after a certain distance the
first term will dominate and the FEL field will grow as

∣∣
∣Ẽx(z)

∣∣
∣ ≈ Ein

3
exp(

√
3Γz/2) ≡ Ein

3
exp(z/(2Lg0)) .
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Fig. 4.4. Computed power rise in a high-gain FEL. The lasing process is started
by incident seed radiation, the input light wave is a plane wave with power Pin. The
electron beam is mono-energetic and on resonance, i.e. η = 0. The solid curve shows
the normalized FEL power P (z)/Pin as a function of z/Lg0. The dashed line is the
exponential function f(z) = (Pin/9) exp(z/Lg0)



58 4 One-Dimensional Theory of the High-Gain FEL

The FEL power as function of z is plotted in Fig. 4.4. Due to the presence of
the other two terms it stays almost constant in the so-called “lethargy regime”
(0 ≤ z ≤ 2Lg0 in the present example) and grows then asymptotically as

P (z) ∼= Pin

9
exp(z/Lg0) for z ≥ 2Lg0 (4.62)

where Pin is the power of the incident seed light wave at z = 0. The starting
value of the exponential function is one ninth of the incident power Pin. This
behavior is quite typical for seeded high-gain FELs.

4.9 High-Gain FEL with Helical Undulator

We present here without proof a short description of the electron motion in a
helical undulator and the emission of circularly polarized radiation. Some of
the results are derived in Appendix A.

A helical undulator can be thought of as a long dipole magnet that is
twisted about its axis. The idealized field (valid near the axis) for a right-
handed screw sense is

B = −B0 [cos(kuz)ex + sin(kuz)ey] (4.63)

where ex and ey are the unit vectors in x resp. y direction. Note that this field
is only approximate and does not obey the Maxwell equations. The electron
moves on a helical trajectory of radius

rhel =
K

γku
.

The longitudinal speed is constant and given by

vz ≈ v0 ≡ c

[
1 − 1

2γ2

(
1 + K2

)]
. (4.64)

The wavelength of helical undulator radiation is

λ� =
λu

2γ2

(
1 + K2

)
. (4.65)

The radiation produced in the undulator field (4.63) has positive helicity and
its electric vector can be written in the form (see Appendix A)

E(z, t) = E0 [cos(k�z − ω�t)ex − sin(k�z − ω�t)ey] (4.66)

If the helical magnet is twisted like a left-handed screw the circularly polarized
radiation will have negative helicity.

In Table 4.1 we compare important high-gain FEL equations which are
different for planar and helical undulators. The main change concerns the
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undulator parameter: K̂ has to be replaced by K when going from a planar to
a helical undulator. Moreover one has to keep in mind that the electric vector
of the radiation field has two components which couple both to the electron
and double the energy transfer. They are related by Ẽy = ∓i Ẽx.

The space charge parameter kp remains invariant, and the third-order
equation retains its form (4.50) if the correct value of the gain parameter Γ
is used.
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5

Discussion of the High-Gain FEL Equations

In the first part of this chapter we want to exploit the third-order differential
equation for the amplitude of the FEL wave in order to gain a deeper under-
standing of the properties and peculiarities of high-gain Free-Electron Lasers.
It will turn out that a remarkable number of predictions can be deduced from
the analytic description of the high-gain FEL although we have made rather
simplifying assumptions in deriving (4.50), for example by neglecting any de-
pendencies on the transverse coordinates x and y. The coupled first-order
equations are evaluated in the second part. They contain even more physics.
We will apply them to study the saturation regime and the evolution of mi-
crobunching. In the model calculations discussed in this chapter we investigate
the amplifier mode of the high-gain FEL and consider either a perfectly uni-
form initial particle distribution, in which case the lasing process has to be
started by an incident light wave, or we assume a density modulation of the
electron bunch which is periodic in the optical wavelength. Then no “seed
light” is needed. The startup from “noise” via the SASE mechanism will be
investigated in Chap. 7.

5.1 Gain Function in the High-Gain Regime

5.1.1 Third-Order Equation with Energy Detuning

The third-order equation (4.50) has been derived in the previous chapter
within the one-dimensional (1D) approximation of the high-gain FEL the-
ory, and we have constructed the solution for the simplest case of a mono-
energetic electron beam (ση = σW /Wr = 0) whose energy obeys the FEL
resonance condition η = 0 ⇒ W = Wr = γrmec

2. The third-order equation
can also be solved for a beam energy W �= Wr. The procedure is as follows. In
the first step the three complex eigenvalues αj are calculated, using the meth-
ods described in Appendix E. These eigenvalues are functions of the energy

P. Schmüser, et al.: Discussion of the High-Gain FEL Equations, STMP 229, 61–81 (2008)
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detuning η = (W − Wr)/Wr , see (E.18). Once they are known, the general
solution of equation (4.50) can be written in the form

Ẽx(η, z) =
3∑

j=1

cj(η) exp(αj(η)z) . (5.1)

The field Ẽx inside the undulator magnet depends implicitly on the relative
energy deviation η through the eigenvalues αj(η). The coefficients cj are de-
termined by the initial conditions (compare (4.56), (4.57)):

⎛

⎝
c1

c2

c3

⎞

⎠ = A−1 ·

⎛

⎝
Ẽx(0)
Ẽ′

x(0)
Ẽ′′

x(0)

⎞

⎠ with A =

⎛

⎝
1 1 1
α1 α2 α3

α2
1 α2

2 α2
3

⎞

⎠ . (5.2)

From this equation it is clear that the coefficients depend on η as well. Let
again the lasing process be started by an incident plane wave of amplitude
Ein. The gain function G(η, z) of an FEL amplifier depends on the relative
energy deviation η and the position z in the undulator

G(η, z) =

∣∣
∣∣∣
Ẽx(η, z)

Ein

∣∣
∣∣∣

2

− 1 (5.3)

(compare the discussion of the FEL gain function in Chap. 3).

5.1.2 Short Undulator: Low-Gain Limit

We have seen in Fig. 4.4 of the previous chapter that the FEL power stays
almost constant in the lethargy regime 0 ≤ z ≤ 2Lg0. Therefore we expect
the low-gain FEL theory to be applicable here. This is indeed the case. As an
illustration we consider an undulator magnet that is shorter than two power
gain lengths, say Lu = Lg0. The gain curve computed according to (5.3) is
compared in Fig. 5.1 with the gain curve obtained in the low-gain theory, using
the Madey theorem (3.26). An almost perfect agreement is observed, both in
the shape of the gain curve and also in its magnitude. This demonstrates that
the low-gain FEL theory is the limiting case of the more general high-gain
theory for short undulator magnets. The mathematical proof of this statement
is presented in Appendix B.

5.1.3 Long Undulator: High-Gain Regime

For undulator magnets that are longer than several gain lengths we obtain
significant differences between the low-gain and the high-gain theory. This is
demonstrated in Fig. 5.2 where the gain function is shown at various longi-
tudinal positions inside a long undulator (Lu � Lg0). In the next section
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we will see that the width of the gain curve is closely related to the FEL
parameter which is the reason why G(η, z) is plotted as a function of η/ρFEL .
For a long undulator, the high-gain FEL features a much larger amplification
than the low-gain FEL. A very interesting observation is that the maximum
amplification happens close to the point η = 0, i.e. on resonance, where the
gain function vanishes in the low-gain theory.

5.2 FEL Bandwidth

The width of the gain curves G(η, z) shown in Fig. 5.2 shrinks with increasing
undulator length. Which quantity determines the bandwidth of the high-gain
FEL amplifier? A good measure for the bandwidth turns out to be the dimen-
sionless FEL parameter defined in the previous chapter

ρFEL =
1

4π
√

3
· λu

Lg0
.

The numerical value of the FEL parameter is typically in the 10−3 range.
One observes that the FEL gain drops significantly when the relative energy
deviation η exceeds the FEL parameter. The full width at half maximum
(FWHM) of the gain curves of Fig. 5.2 is about 2 ρFEL at z = 4Lg0 and drops
to ≈ 1 ρFEL at z = 16Lg0. These observations show that the high-gain FEL
acts as a narrow-band amplifier of variable bandwidth.

5.2.1 Detuning Parameter

The third-order equation describes the FEL process for a given combination of
light frequency ω� and beam energy W = γmec

2. The eigenvalues αj depend
on the detuning. Detuning means a deviation from the resonance condition.
We distinguish two important cases:

(1) FEL seeding with a single frequency

In a monochromatically seeded FEL, which we have extensively studied in the
previous sections, the incident seed light of frequency ω� defines the resonant
frequency

ωr ≡ ω� (5.4)

but the electron energy W = γmec
2 may be different from the resonant energy

Wr = γrmec
2. In this case the detuning parameter is a function of γ

η = η(γ) =
γ − γr

γr
with γr =

√
ω�

2c ku

(
1 +

K2

2

)
. (5.5)
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(2) Seeding with different frequencies or SASE FEL

Suppose several stimulation frequencies ω1, ω2, . . . are simultaneously present,
either in an incident seed wave or in the Fourier spectrum of the bunch charge
distribution. The latter case applies for the SASE FEL. Now it is appropriate
to take the electron beam energy W as reference (we disregard energy spread
at this point)

W ≡ Wr = γrmec
2 (5.6)

and define the detuning parameter as a function of frequency

η = η(ω) = −ω − ωr

2ωr
with ωr =

2γ2
r c ku

1 + K2/2
. (5.7)

The factor of two in the denominator is due to the proportionality ωr ∝ γ2
r ,

and the minus sign comes in because an electron energy higher than the
resonance energy in a seeded FEL is equivalent to a light frequency lower
than the resonance frequency in a SASE FEL. With (5.7) we have basically
translated a frequency deviation of the FEL wave into an equivalent energy
deviation of the electron beam.

The coefficients cj(η1), cj(η2), . . . of the eigenfunction expansion are now
calculated individually by applying (5.2) for each detuning parameter η ν =
η(ων). The resulting field is the superposition of the individual contributions

Ex(z, t) = �
{
∑

ν

Ẽ(ν)
x (z) exp(iων [z/c − t])

}

= �
{

exp(iωr[z/c − t])
∑

ν

Ẽ(ν)
x (z) exp(iΔων [z/c − t])

}

(5.8)

where Δων = ων − ωr is the respective frequency deviation from resonance.
The time variable can be eliminated using the relation (compare Appendix C)

ζ(z, t) = z − β̄ c t

which means that the field can be considered as being a function of the position
z in the undulator and the internal coordinate ζ in the bunch:

Ex(z, t) = �
{

exp(iωr[z/c − t)])
∑

ν

Êν(z, ζ(z, t))

}

(5.9)

with the complex field amplitudes

Êν(z, ζ) = Ẽν
x(z) exp(iΔων [z/c + (ζ − z)/(β̄ c)]) . (5.10)

The current density can be computed by means of (4.20). The method
sketched here will be applied in Sect. 5.5 to investigate under which circum-
stances the superposition principle is applicable in a high-gain FEL.
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5.2.2 Analytical Determination of FEL Bandwidth

In order to investigate the relevance of the FEL parameter in a quantitative
way we determine the eigenvalues αj for the case that the beam energy W
differs from the resonance energy Wr. In the special case of a mono-energetic
beam (ση = 0), and for negligible space charge (kp = 0), the three com-
plex eigenvalues αj(η) are computed analytically in Appendix E, see (E.18),
(E.19). In the exponential regime the eigenfunction exp(α1z) dominates and
the real part of α1 determines the growth rate of the field Ẽx. The functional
dependence �(α1(η)) is discussed in Appendix E. In the vicinity of η = 0 the
real part of α1(η) can be expanded in a Taylor series

�{α1(η)} ≈ 1
2Lg0

(
1 − η2

9 ρ2
FEL

)
. (5.11)

From this follows that the gain curve in the exponential regime can be ap-
proximated by a Gaussian1

G(η, z) ∝ exp(z/Lg0) exp
(
− η2z

9 ρ2
FEL

Lg0

)
= exp(z/Lg0) exp

(
− η2

2τ2

)

(5.12)
with a z dependent variance

τ2 =
9 ρ2

FEL
Lg0

2z
.

From (5.7) follows that the rms frequency bandwidth of a SASE FEL is

σω(z) = τ(z) 2ω� = 3
√

2 ρFELω�

√
Lg0

z
. (5.13)

Note that σω refers to the power of the light wave. The formula is only valid in
the exponential regime between about 4Lg0 and the beginning of saturation.
The so-defined bandwidth will be used in Chap. 7 to compute the power of a
SASE FEL.

5.3 FEL Startup by a Periodically
Modulated Electron Beam

Now we want to demonstrate that the FEL process can also be initiated by
a periodic charge density modulation in the electron beam, instead of an

1 In reality the Gaussian is not centered at η = 0 but is shifted to slightly positive
values. This shift, which is due to the energy dependence of the coefficients cj(η),
has little effect on the bandwidth and is neglected here.
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incident light wave for seeding. Hence we consider a beam current which is
modulated periodically in the ponderomotive phase variable ψ according (4.4)

jz = j0 + j̃1(z) exp(iψ) .

In the previous chapter we have shown that this leads to a non-vanishing
derivative of the transverse electric field, see (4.20). At the entrance of the
undulator at z = 0 one gets

E′
0 ≡ dẼx

dz
(0) = −μ0cK̂

4γr
· j̃1(0) .

The second derivative is

E′′
0 = −μ0cK̂

4γr
· j̃′1(0)

so the question arises how to compute the derivative of the current density.
For that purpose we use two of the coupled equations (4.30):

j̃1(z) = j0
2
N

N∑

n=1

exp(−iψn(z)) and
dψn

dz
= 2kuηn .

Under the assumption that initially all particles have the same energy

η1(0) = η2(0) = . . . ηN (0) ≡ η

we obtain

j̃′1(0) =

[
N∑

n=1

dj̃1
dψn

dψn

dz

]

z=0

= −i 2kuηj̃1(0) .

From this follows

E′′
0 = i 2kuη

μ0cK̂

4γr
· j̃1(0) .

Hence the initial condition of the third-order equation is
⎛

⎝
Ẽx(0)
Ẽ′

x(0)
Ẽ′′

x(0)

⎞

⎠ =

⎛

⎝
0

E′
0

E′′
0

⎞

⎠ =

⎛

⎝
0
−1

i 2kuη

⎞

⎠ μ0c K̂

4γr
j̃1(0) . (5.14)

It is straightforward to compute the coefficients cj of the eigenfunction ex-
pansion

Ẽz(z) =
∑

j

cj exp(αjz)

with the help of (5.2). The resulting FEL power as a function of undulator
length is shown in Fig. 5.3. At the entrance of the undulator (z = 0) the
radiation power is of course zero but it rises rapidly with increasing undulator
length and approaches the exponential function exp(z/Lg0) after about two
gain lengths.

A third type of stimulation of the high-gain FEL process is a periodic
energy modulation of the incident electron beam.
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Fig. 5.3. Power rise in a high-gain FEL which is started by a periodic initial electron
charge density modulation with the period λ�. The electron beam is assumed to
be mono-energetic and on resonance, i.e. η = 0. Shown as a dotted line is the
exponential function f(z) = exp(z/Lg0)

5.4 Laser Saturation

The exponential growth cannot continue indefinitely because the beam energy
decreases due to the energy loss by radiation and the modulated current den-
sity j̃1 becomes eventually comparable in magnitude to the dc current density
j0. Moreover, the particles begin to move into the phase space region where
energy is taken out of the light wave.

The numerical solution of the coupled differential equations (4.30) will now
be applied to study the regime of FEL saturation.

In this calculation we use typical parameters of the extreme-ultraviolet
free-electron laser FLASH: Lorentz factor γ = 1000, number of electrons in
the leading spike of the electron bunch Ne = 109, length of the spike 100 fs, rms
bunch radius σx = 0.07 mm. This leads to the following values of the relevant
FEL quantities: peak current Ipeak = 1600 A, 1D gain length Lg0 = 0.5 m,
space charge parameter kp = 0.24 m−1, FEL parameter ρFEL = 0.003. To
reach saturation at about 20 gain lengths the field of the seed light wave is
chosen as Ein = 5 MV/m, corresponding to a seed laser power of Pin ≈ 1 kW
for laser pulses that are about 1 ps long. An important practical consideration
is that the seed laser beam has to be well focused over the whole extension of
the lethargy region, typically over 2–3 gain lengths, to initiate the FEL gain
process. Only after this region the exponential amplifications sets in, and then
the seed laser beam is no longer needed.

The computed power rise is shown in Fig. 5.4. For 0 ≤ z ≤ 16Lg0 one
obtains perfect agreement with the eigenfunction approach of the third-order
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Fig. 5.4. Computed power P (z)/Pin as a function of z/Lg0 in a seeded FEL with
typical FLASH parameters, given in the text. The continuous curve shows the re-
sult of the numerical integration of the coupled first-order equations. The circles
have been computed from the third-order equation (4.50). Here the exponential rise
continues beyond 16 gain lengths, however it must be kept in mind that (4.50) is
no longer valid in the saturation regime where the modulated current density j̃1
becomes comparable in magnitude to the dc current density j0.

equation. In the saturation regime the figure displays an oscillatory behavior
of the FEL power which means that energy is pumped back and forth between
the electron beam and the light wave. This will be studied in more detail in
Chap. 6.

An interesting observation is that different input powers of the seeding
wave lead to the same saturation level. This is demonstrated in Fig. 5.5.

The radiation power at saturation can be very roughly estimated as follows.
We assume full modulation, i.e.

∣∣j̃1
∣∣ ≈ |j0|. The major part of the intensity is

generated in the last section of the exponential regime. The field amplitude
at saturation is approximately given by the slope of the field gain curve,
multiplied with the field gain length (which is twice as large as the power gain
length)

∣∣∣Ẽx

∣∣∣
sat

≈
∣∣∣∣
∣
dẼx

dz

∣∣∣∣
∣
· 2Lg0 =

μ0c K̂

4γr
|j0| 2Lg0

The saturation power is

Psat =
cε0

2

∣∣∣Ẽx

∣∣∣
2

sat
Ab ≈

cε0

2

(
μ0c K̂

4γr

)2
I2
0

Ab
4L2

g0

where Ab is the beam cross section and I0 = |j0| Ab is the magnitude of the
dc beam current. Introducing the FEL parameter and the power contained in
the electron beam
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Fig. 5.5. Computed power rise in a high-gain FEL, resulting from the numerical
integration of the equations (4.30), for three different power levels of the incident
seeding wave. Solid curve: Pin ≡ P0 ≈ 1 kW, dashed curve: Pin = 100 P0, dotted
curve: Pin = 0.01 P0. In the linear regime, comprising the lethargy and the exponen-
tial gain regime, the curves differ by factors of 100 which means that the FEL output
power depends here linearly on the input power. The saturation level, however, is
the same in all three cases, so the saturated FEL is definitely in the nonlinear regime

Pbeam =
γrmec

2I0

e
(5.15)

one finds a rule of thumb for estimating for the FEL power at saturation

Psat ≈ ρFEL Pbeam . (5.16)

A better estimate of the saturation power is presented in the next
chapter, equation (6.31). The FEL power at saturation is thus in the order of
0.1% of the electron beam power. For typical beam parameters of FLASH one
obtains a saturation power of several GW.

5.5 Linear and Nonlinear Regime of a High-Gain FEL

The free-electron laser is an intrinsically nonlinear system. This is immediately
evident from one of its basic equations, the pendulum equation

dη

dz
= − eE0K̂

2mec2γ2
r

cos ψ .

In Chap. 4 the single-particle coordinates have been eliminated with the
help of a distribution function, and a linearization has been achieved by ne-
glecting the term dF̃1/dη. We have derived the linear third-order differential
equation (4.50) for the amplitude of the light wave. The solutions of a linear
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differential equation depend linearly on the initial conditions. The same ap-
plies for the integro-differential equation (4.44) which is more general than
(4.50) as it can be used for a beam with energy spread, too. The linear regime
of a high-gain FEL amplifier is characterized by the following features:

(1) The response (output electric field) is proportional to the stimulation (the
input field).

(2) The superposition principle applies: the response to a superposition of
different stimulations is equal to the superposition of the responses to the
individual stimulations.

An illustration of the linear relationship between the input field Ein of
a monochromatic seed wave and the FEL output field Ẽx has already been
presented in Fig. 5.5 where this linearity is observed over a wide range of z
values. The linear relationship is completely lost in the saturation region.

Now we give an example for the superposition principle and study the
response of the FEL to a seed radiation containing two different frequencies.
According to Sect. 5.2.1 the electron beam energy W defines now the reference
frequency:

W ≡ Wr = γrmec
2, ωr =

2γ2
r c ku

1 + K2/2
.

We choose symmetrically detuned frequencies for our seed wave

ωa = ωr(1 − ρFEL), ωb = ωr(1 + ρFEL)

with equal initial amplitudes, Ea
in = Eb

in = 5 MV/m. The coupled first-order
equations (C.7) in the non-periodic model are used to compute the individual
response functions. We introduce the complex field amplitudes according to
(5.10)

Êa(z, ζ) = Ẽa
x(z) exp(iΔωa[z/c + (ζ − z)/(β̄ c)]) (5.17)

Êb(z, ζ) = Ẽb
x(z) exp(iΔωb[z/c + (ζ − z)/(β̄ c)])

which are functions of the position z along the undulator and the position ζ
inside the bunch. In the same manner one computes the sum-response function
Ês(z, ζ) corresponding to the simultaneous excitation with two frequencies
and the initial field Es

in = Ea
in + Eb

in. A bunch with a flat charge profile and a
length of 1000 optical periods has been used in the computation, but for the
sake of clarity the effects at the bunch head and tail are ignored here. The
result obtained in the linear regime at z = 15 �Lg0 is depicted in Fig. 5.6. One
finds that the equation

Ês(z, ζ) = Êa(z, ζ) + Êb(z, ζ) (5.18)

is satisfied both for the real part and the imaginary part. Incidentally, the
curves shown in Fig. 5.6 can also be computed using (5.8), but only in the
flat-top region of the bunch and not at the head or the tail.
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Fig. 5.6. Response of the FEL in the linear regime at z = 15 Lg0. Top left graph:
real part, imaginary part and absolute magnitude of the field Êa(z, ζ) of frequency
ωa, plotted versus ζ/λ0 (λ0 denotes the FEL wavelength corresponding to the reso-
nance energy). Top right graph: real part, imaginary part and absolute magnitude

of the field Êb(z, ζ) of frequency ωb. Bottom left graph: the sum of the real parts

�{Êa(z, ζ) + Êb(z, ζ)} of the individual responses is shown as solid red curve, the

real part �{Ês(z, ζ)} of the sum-response (5.18) is shown as the blue circles. Bottom
right graph: same for the imaginary parts

A completely different behavior is found in the nonlinear regime, see
Fig. 5.7. While the individual excitations in this example lead still to almost
sinusoidal responses the sum-response is strongly distorted and the superpo-
sition principle is badly violated. Equation (5.8) is obviously not applicable
in the nonlinear regime.

The Figs. 5.6 and 5.7 reveal that the amplitude of the field Ea is larger
than that of Eb in spite of the symmetrical detuning. This asymmetry is due to
an asymmetric shape of the curve �{α1(η)}, see Fig. 6.1 in the next chapter.

In summary one can say that the third-order differential equation is well
suited for the description of the linear regime of the high-gain FEL, comprising
the lethargy and the exponential-gain regime. However this equation breaks
down in the nonlinear regime where the laser power goes into saturation. The
coupled first-order equations encompass both the linear and the nonlinear
regime.
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Fig. 5.7. FEL response in the nonlinear regime at z = 20 Lg0. Left graph: the sum
of the real parts �{Êa(z, ζ)+ Êb(z, ζ)} of the individual responses is shown as solid

red curve, the real part of the sum-response �{Ês(z, ζ)} is shown by the blue circles.
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5.6 Simulation of Microbunching

5.6.1 Evolution of Phase Space Structures

In our next example we demonstrate that the periodic form (4.30) of the
coupled first-order equations can be used to study the microbunching effect.
Again we use typical parameters of the ultraviolet FEL FLASH. As initial
condition for the numerical simulation we take a beam whose mean electron
energy W0 is equal to the resonance energy Wr , hence η0 = 0. A total of N =
50000 test particles are distributed uniformly in the initial ponderomotive
phase variable over an interval of Δψ0 = 2π. The distribution is periodically
continued to the full range −∞ < ψ0 < ∞ as assumed in the periodic model. A
randomly distributed Gaussian energy spread is imposed with ση = 0.1 ρFEL .
The FEL process is started by a seed laser beam with Ein = 5 MV/m.

In Fig. 5.8 we show the distribution of the particles in the phase space
(ψ, η) shortly after the beginning of the undulator at z = 0.2Lg0, together
with the projection onto the ψ axis. The energy modulation of the electron
bunch is very small, well below the rms energy spread ση, and the normalized
charge density ρn(ψ, z) = |ρ̃(ψ, z)| /ρ0 shows no significant deviation from
unity. The FEL buckets are centered at nearly the same phase values as they
are at the beginning of the undulator at z = 0, compare (3.25)

ψb(0.2Lg0) ≈ ψb(0) = −π/2 ± n 2π .

The equation of the separatrix is practically the same as in the low-gain case,
see (3.24)

ηsep(ψ) = ±

√√√√e
∣∣∣Ẽx(z)

∣∣∣ K̂

kumec2γ2
r

cos
(

ψ − ψb(z)
2

)
. (5.19)

Note that due to the initial beam energy spread many particles are outside
the FEL bucket, i.e. the area enclosed by the separatrix. With increasing z
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Fig. 5.8. Top: distribution of particles in the (ψ, η) phase space at z = 0.2 Lg0.
The separatrix is indicated by the dashed curves. Shown are several adjacent FEL
buckets. Bottom: normalized charge density ρn(ψ) = |ρ̃(ψ)| /ρ0, plotted as a function
of ψ. Remember that the phase ψ corresponds to the internal bunch coordinate
according to ζ = λ� · (ψ + π/2)/(2π)

the height of the separatrix grows with the square root of the FEL field,
according to (5.19), and most particles are eventually captured in the FEL
buckets (this can be seen in Fig. 5.9). Most importantly, the bucket center
moves with increasing z toward smaller phase values. The z dependence of
the bucket center phase ψb(z) will be determined in the next section.

Strong changes in the phase space pictures and the charge density distri-
butions become visible after about 10 gain lengths. At z ≥ 12Lg0 one can
nicely see the evolution of the microbunch structure, see Fig. 5.9. The micro-
structure with the periodicity of the light wavelength λ� is fully developed
after 16 power gain lengths.

We make several important observations:

(1) With increasing z the FEL buckets move towards smaller phases and the
amplitude of the separatrix grows.

(2) The energy modulation is almost harmonic up to 12–14 gain lengths but
acquires unharmonic distortions for z ≥ 14Lg0 .

(3) Due to the bucket motion many particles do not stay in their original
bucket but move into the next one.

(4) The normalized particle density gradually develops narrow peaks which
are located in the right half of the respective FEL bucket, i.e. at the
phase value where energy transfer from the electrons to the FEL wave
will happen.
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Fig. 5.9. Evolution of the microbunch structure. Top left: z = 12Lg0, top right:
z = 14Lg0. Bottom left: z = 16Lg0, bottom right: z = 18Lg0. The upper subplots
show the distribution of the particles in the (ψ, η) phase space. The separatrices are
indicated by the dashed curves. The lower subplots show the normalized particle
density as a function of ψ

Deep in the saturation regime the phase space distributions acquire large
distortions as shown in Fig. 5.10. Many particles move over into the left halves
of the FEL buckets with the consequence that energy is withdrawn from the
light wave. This is the reason for the reduction of the FEL power at about 20
gain lengths that is visible in Fig. 5.4. The microbunches develop a substruc-
ture. The energy spread of the beam increases considerably with increasing
undulator length. The distortions of the particle distribution in phase space
and the oscillatory behavior of the FEL gain curve in the saturation regime
are well-known from the literature, see e.g. [1], [2].
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Fig. 5.10. Distortion of the phase space distribution and evolution of substructure
of the microbunches deep in the saturation regime at 20 resp. 23 gain lengths

5.6.2 Evolution of Phases in the FEL Gain Process

Phases of Electric Field and Current Density

To determine the phase evolution of the field Ẽx(z) and the current density
j̃1(z) in the linear FEL regime we express the slowly varying complex field
amplitude as a superposition of the three eigenfunctions of the third-order
equation

Ẽx(z) =
Ein

3

3∑

j=1

exp(αjz) ≡
∣∣∣Ẽx(z)

∣∣∣ exp(i ϕE(z)) . (5.20)

In the simplest case η = 0 and kp = 0 the eigenvalues αj are given by (4.51).
The phase ϕE(z) is readily computed from (5.20). The phase of the modulated
current density j̃1(z) can be related to the phase of Ẽx(z) by means of (4.20)

j̃1(z) = − 4γr

μ0c K̂
Ẽ′

x(z) = − 4γr

μ0c K̂

3∑

j=1

αj exp(αjz) ≡
∣∣j̃1(z)

∣∣ exp(i ϕj1(z)) .

(5.21)
The z dependence of the two phases is depicted in Fig. 5.11. The phase of
the field grows initially faster than that of the current. The phase difference
Δϕ = [ϕE(z) − ϕE(0)] − [ϕj1(z) − ϕj1(0)] grows from Δϕ = 0 at small z
to Δϕ = π/3 for 4Lg0 ≤ z ≤ 17Lg0. In the saturation regime the coupled
first-order equations must be used. One finds a cross-over of the phases at
about 20 gain lengths.
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Fig. 5.11. The phase ϕE(z) − ϕE(0) of the complex field Ẽx(z) (solid red curve)
and the phase ϕj1(z) − ϕj1(0) of the modulated current density j̃1(z) (solid blue
curve) as a function of z/Lg0. The phases have been computed using the coupled
first-order equations. In the linear regime there is perfect agreement with the phases
derived from (5.20), (5.21). The dashed lines show the extrapolation of the linear
theory into the nonlinear regime z > 17 Lg0

Bucket Center Phase and Microbunch Phase

In Sect. 4.2 we have discussed the origin of microbunching as being due to
a modulation of the longitudinal velocity: particles losing energy to the light
wave move on an undulator trajectory of larger amplitude and have a smaller
average speed in z direction than particles gaining energy from the light wave.
This reasoning is unable to predict the position of the microbunches inside
the FEL buckets. Now we address this question which is of crucial importance
for the functioning of the high-gain FEL: why are the microbunches located
in the right half of the respective FEL bucket where energy is transferred
from the electron beam to the light wave, and why not in the left half where
energy would be withdrawn from the light wave? The explanation is based on
the observation that the FEL bucket center moves in phase space during the
exponential gain process. The peak of the charge density modulation moves
also but at a slower rate, and the resulting phase difference turns out to be
essential.

The second of the coupled first-order equations (4.30) can be utilized to
determine the phase evolution of the bucket center. Since the FEL bucket is
generated by the light-wave field Ẽx we consider only the first term in this
equation but neglect the second term (the term with j̃1(z)). For a particle “b”
at the bucket center the equation (4.30b) reads then

dηb

dz
= − e

mec2γr
�
{

K̂Ẽx(z)
2γr

exp[i ψb(z)]

}

∝ cos[ϕE(z) + ψb(z)]
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where ϕE(z) is the z dependent phase of the complex field Ẽx(z). At z = 0
the bucket center is located at

ψb(0) = −π/2 ± n 2π .

The energy of particle “b” has to remain invariant if this particle should
represent the bucket center for all z ≥ 0. Hence we request dηb/dz = 0 which
implies

ϕE(z) + ψb(z) = const ≡ ϕE(0) + ψb(0) .

This leads to the important relation between the bucket center phase and the
phase of the complex field amplitude:

ψb(z) − ψb(0) = −(ϕE(z) − ϕE(0)) . (5.22)

In a similar way (4.30b) can be utilized to determine the phase evolution of
the peak of the charge distribution, i.e. the position of the “microbunch”.

In this case the current density term j̃1(z) in (4.30b) is relevant because
it describes the particle’s energy variation due to space charge forces, while
the light-wave field term has to be ignored. From the condition dηc/dz = 0
we infer that the “microbunch phase” obeys the equation

ψm(z) − ψm(0) = −(ϕj1(z) − ϕj1(0)) . (5.23)

Evolution of Particle Phases in the Gain Process

The phase variation of a selected number of particles in three adjacent FEL
buckets is depicted in Fig. 5.12. The ponderomotive phases ψn have been
computed with the coupled equations (4.30) and are plotted as a function
of the distance z traveled in the undulator. The particles are initially on
resonance (W = Wr, η = 0). Until about 10 gain lengths the particle phases
ψn remain almost invariant. We look at the central bucket which is initially at
−3π/2 < ψ0 < π/2. Bucket center phase and microbunch phase are identical
here, ψb(0) = ψm(0) = −π/2. We observe that the central bucket moves
towards negative ψ values and that about half of the particles remain in this
bucket while the other half is captured by the next bucket. The microbunching
process is thus associated with a mixing of neighboring buckets.

The motion of the central FEL bucket is depicted in Fig. 5.13. One can see
very clearly that the bucket moves with respect to the particles. Moreover it
becomes evident that the microbunch is formed in the right half of the bucket.
This is the explanation for the strong rise of the FEL power.

For z > 13Lg0 a dramatic variation of the particle phases is observed. They
begin to concentrate in narrow bands which are fully developed at 18–20 gain
lengths. These bands are the microbunches.

We emphasize again that the phase ψb(z) of the bucket center as well as
the phase ψm(z) of the microbunch move with respect to the particles. In the
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exponential gain regime 4Lg0 ≤ z ≤ 17Lg0 we find Δψ = ψm(z)−ψb(z) ≈ π/3
so the peaks in the charge distribution are in the right half of the respective
bucket, as required for energy transfer from the electron beam to the light
wave. Above 20 gain lengths, however, the maximum of the charge density
has moved to the left half of the bucket, corresponding to energy transfer
from the light wave to the electron beam.

It may appear strange at first sight that the particle phases are nearly in-
variant in the lethargy regime and a large part of the exponential gain regime,
while the charge density modulation is moving. This, however, is quite a com-
mon phenomenon. In a sound wave in air, for example, the molecules carry
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Fig. 5.14. The normalized charge density distribution within the central FEL
bucket at z = 0.5 Lg0, 2 Lg0, 4 Lg0, 6 Lg0, 8 Lg0, 10 Lg0. Note the rather different ver-
tical scales
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out small longitudinal oscillations about stationary positions, but the density
fluctuations propagate with the speed of sound. To demonstrate explicitly that
a density modulation evolves already quite early in the undulator we show in
Fig. 5.14 the normalized charge density within the central FEL bucket at var-
ious locations z. At the very beginning the maximum of the charge density is
found at the bucket center at ζ = 0, but already after two gain lengths the
maximum has moved toward positive ζ values. In the exponential gain regime
4Lg0 ≤ z ≤ 17Lg0 the maximum is located at ζ ≈ λ�/6, corresponding to
Δψ ≈ π/3 (compare Figs. 5.14, 5.13).

5.6.3 Higher Harmonics in FEL Radiation

According to Fig. 5.14 the particle density distribution inside the FEL bucket
is almost harmonic for 0.5Lg0 ≤ z ≤ 10Lg0. At z ≥ 12Lg0 the picture
changes. It is evident from Fig. 5.9 that the longitudinal charge distribution
has still the periodicity of the fundamental light wavelength λ1 ≡ λ� but
is no longer a simple harmonic distribution. Its Fourier decomposition will
therefore contain higher harmonics. These higher harmonics, however, will not
be amplified in our simplified one-dimensional FEL model because we have
averaged over the oscillatory part in the longitudinal velocity, compare (4.5).
It is possible to generalize the coupled first-order equations in such a way that
the odd higher harmonics are incorporated. In three-dimensional FEL codes
such as GENESIS the longitudinal oscillation is properly accounted for, and
then higher harmonics can be computed as well. There is ample experimental
evidence for the existence of higher harmonics, see Chap. 7.
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6

Refinements of the One-Dimensional
FEL Theory

The realistic description of FELs operating in the high-gain regime has to
be based on a three-dimensional theory. The dependencies of the electron
beam current density and of the light wave on the transverse coordinates x
and y must be taken into account. Betatron oscillations of the electrons and
diffraction of the light wave play an important role. Moreover, energy spread
in the electron beam and the longitudinal slippage of the FEL pulse with
respect to the short electron bunch must be considered (in the 1D theory
as described in Chaps. 4 and 5 the bunch is treated as being infinitely long,
which is far from reality). No analytical methods are known to carry through
the full 3D theory and one has to resort to numerical simulation codes such as
GINGER [1], GENESIS [2] or FAST [3] which have been developed to a high
degree of sophistication. The full three-dimensional treatment of the FEL is
beyond the scope of this introductory book, the interested reader is referred to
the monograph The Physics of Free Electron Lasers by Saldin, Schneidmiller
and Yurkov [4] and to the review article Review of x-ray free-electron laser
theory by Huang and Kim [5] and the literature quoted therein.

In this chapter we consider first the effects that are already present in
the 1D theory: energy detuning, beam energy spread and space charge forces,
and we analyze their impact on the FEL gain length. Then 3D effects are
treated in a somewhat qualitative manner in order to explain the influence
of betatron oscillations and optical diffraction on the FEL performance. A
simplified three-dimensional model is applied to determine numerically the
FEL growth rate parameter and the gain length for a cylindrical electron
beam of uniform charge density. In the next section, X-ray FEL parameter
studies of other authors are presented which were derived from numerical
simulations. Finally, slippage effects in short electron bunches are discussed.
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6.1 Increase of 1D Gain Length by Beam Energy Spread
and Space Charge

In Sect. 4.8 the FEL power gain length has been defined in the 1D approx-
imation and for a mono-energetic beam that is on resonance. According to
(4.52) the power gain length is related to the real part of the first eigenvalue
of the third-order equation:

P (z) ∝ exp(2�{α1} z) ≡ exp(z/Lg0) . (6.1)

We infer that 2�{α1} is the inverse gain length. This insight allows us to
compute the gain length in more general cases.

6.1.1 Energy Detuning

We consider first energy detuning, W �= Wr , η �= 0, but keep ση = 0 and
kp = 0. It is shown in Appendix E how the eigenvalues αj = αj(η) of the
third-order differential equation can be determined for the case η �= 0. The
real parts of the eigenvalues are depicted in Fig. 6.1.

The real part of the first eigenvalue determines again the growth rate but
it is now a function of the relative energy deviation η. According to (6.1) it
appears reasonable to define the inverse gain length by the maximum value
of 2�{α1(η)}. So the gain length is given by the expression
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Fig. 6.1. The real part of the first resp. second eigenvalue, multiplied with 2Lg0,
is plotted as a function of η/ρFEL , the relative energy deviation divided by the
FEL parameter. Note that �(α1) (continuous red curve) is positive, corresponding
to exponential growth of the eigenfunction V1(z) = exp(α1z). However, the real
part vanishes above η ≈ 1.88ρFEL which means that the exponential growth stops
if the electron energy W exceeds the resonant energy Wr by more than ΔW =
1.88 ρFEL Wr. The real part of α2 (dashed blue curve) is always negative, hence the
eigenfunction V2(z) drops exponentially. Finally, �(α3) ≡ 0, so V3(z) oscillates along
the undulator axis
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Lg =
1

max [2�{α1(η)}] . (6.2)

In this special case of a beam without energy spread and space charge we
obtain Lg = Lg0. For the investigation of the general case it is convenient to
define a dimensionless “growth rate function” by

fgr(η) = 2�{α1(η)} · Lg0 . (6.3)

The maximum value of the growth rate function is equal to the ratio Lg0/Lg:

max [2�{α1(η)} · Lg0] =
Lg0

Lg
.

6.1.2 Space Charge and Energy Spread

Now we drop the assumption of a mono-energetic beam and admit energy
spread ση > 0 and space charge kp > 0. The mean beam energy is called
W0, it may be different from the resonance energy (W0 �= Wr , η0 �= 0). The
third-order equation is not suitable for a beam with energy spread but the
integro-differential equation (4.44) can be used. It is discussed in Appendix E
how the eigenvalue α1(η0) with positive real part can be determined. The
function �{α1(η0)} depends on kp and ση. This is shown in Fig. 6.2.

The impact of space charge on the gain length is often rather small. The
gain length increases by about 10% if the space charge parameter has the
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Fig. 6.2. Left: the growth rate function fgr(η0) = 2�(α1(η0))Lg0 is plotted versus
η0/ρFEL for different values of the space charge parameter kp. Continuous red curve:
kp = 0, dotted blue curve: kp = 0.5 Γ , dashed green curve: kp = 1.0 Γ . The energy
spread is put to zero.
Right: the growth rate function fgr(η0) = 2�(α1(η0))Lg0 is plotted versus η0/ρFEL

for different values of the relative beam energy spread ση = σW /Wr. Continuous red
curve: ση = 0, dotted blue curve: ση = 0.5 ρFEL , dashed green curve: ση = 1.0 ρFEL .
Here the space charge parameter is set to zero
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value kp = 0.5Γ and by ≈ 30% for kp = 1.0Γ . The space charge forces can
thus be neglected if

kp 	 Γ ⇔ k−1
p � Lg0 . (6.4)

At the FLASH facility kp ≈ 0.2Γ , and the increase of the gain length is less
than 1%.

The influence of beam energy spread is bigger. For ση = 0 the growth
rate function has a maximum value of 1 which means that the power gain
length Lg is indeed identical to Lg0 (this case has already been discussed in
the previous section). However, for an energy spread of ση = 0.5 ρFEL the
maximum drops to 0.8, implying that the gain length is about 25% larger
than the ideal 1D gain length, Lg ≈ 1.25Lg0. At ση = ρFEL the gain length
increases by more than a factor of two. Consequently, the energy spread of
the electron beam must be sufficiently small because only the particles inside
a narrow energy window contribute constructively to the FEL gain process.
A reasonable upper limit for the tolerable rms energy spread is

σW

Wr
≡ ση < 0.5 ρFEL . (6.5)

At FLASH the beam energy spread is ση ≈ 0.7 · 10−3 ≈ 0.2 ρFEL , which
means that the increase in gain length due to energy spread is less than
10%. Note, however, that the achievement of a low energy spread is a serious
technical challenge for FELs operating in the X-ray regime because the FEL
parameter becomes quite small here. For instance, in the X-ray FEL facility
LCLS presently under construction at SLAC, the FEL parameter is ρFEL ≈
4 · 10−4.

It is important to realize that any kind of energy variation inside the
electron bunch, and not only the rms energy spread, will have a negative
impact on the FEL gain.

6.2 Increase of Gain Length by 3D Effects

Up to now we have neglected the transverse dimensions of the electron beam.
In Appendix E the three eigenvalues αj of the third-order equation are de-
termined for a three-dimensional beam. A cylindrical bunch with radius rb

and homogeneous charge density is considered. The amplitude of the electric
field can be expressed by the Bessel function J0 for r < rb and the modified
Bessel function K0 for r > rb. The boundary conditions at r = rb lead to a
determinant equation which is solved by numerical iteration and yields the
eigenvalues αj .

Is it possible to establish a criterion under which circumstances the 1D
theory is sufficient or if the more complicated 3D treatment is needed? It turns
out useful to define a scale parameter for the radial width of the electron beam,
namely the geometric means of power gain length and optical wavelength:
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Fig. 6.3. The growth rate function fgr(η0) = 2�(α1(η0))Lg0 plotted vs. η0/ρFEL for
a cylindrical beam with energy spread (ση = 0.5 ρFEL). Continuous red curve: wide
beam with a radius rb � w0 =

√
Lg0λ�, dotted blue curve: narrow beam rb = 2.2 w0,

dashed green curve: very narrow beam, rb = 0.4 w0

w0 =
√

Lg0λ� . (6.6)

The growth rate function fgr(η0) = 2�(α1(η0))Lg0 is shown in Fig. 6.3 for a
cylindrical beam of constant charge density with three different radii: rb � w0,
rb = 2.2w0, and rb = 0.4w0. We present here the computation for a beam
with an energy spread of ση = 0.5 ρFEL . According to Fig. 6.2 the 1D gain
length is then L1D

g ≈ 1.25Lg0. From the curves in Fig. 6.3 it is obvious that in
case of a “thick” beam the gain length retains its 1D value of about 1.25Lg0

while for a very “thin” electron beam (rb <
√

Lg0λ� ) a considerable further
increase in gain length has to be expected, for example by a factor of 2.5 for
rb = 0.4

√
Lg0λ� . Hence the one-dimensional FEL theory is adequate if the

criterion
rb �

√
Lg0λ� (6.7)

is satisfied (see also Appendix E.4), but a three-dimensional treatment is
needed for beams of small radius. The 1D theory is usually insufficient for a
quantitative description of FELs in the UV and X-ray regime.

6.3 Overlap Between Electron and Photon Beam

The amplification process in the high-gain FEL depends critically on a good
transverse overlap between electron and photon beam. Intuitively, both beams
should have the same cross section to ensure that the energy transfer is opti-
mized all along the undulator. Considering the fact that the typical diameter
of a GeV electron beam is below 100 μm the undulator must be manufactured
and aligned with great precision such that the deviation of the electrons from
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the design orbit is not larger than 10 μm over several gain lengths. This puts
stringent requirements on the field quality and mechanical accuracy of the
undulator.

6.3.1 Electron Beam Focusing and Emittance

Transverse focusing is mandatory in the long undulator structures of high-gain
FELs. The so-called “natural focusing” in an undulator is analogous to the
“weak focusing” in circular accelerators [6]. A horizontally deflecting dipole
magnet of rectangular shape exerts a weak vertical focusing which is caused by
end field effects. A planar undulator is a sequence of short rectangular dipole
magnets and provides thus weak focusing in vertical direction. This “natural
focusing” has two disadvantages: (1) it acts only in the vertical plane, while
the horizontal motion remains unfocused, and (2) it is too weak for short-
wavelength FELs. To avoid the first disadvantage Scharlemann [7] proposed
to shape the pole faces to be parabolic. In this way, the natural focusing can
be distributed equally among both transverse directions. This solution has
not been widely pursued because of the mechanical complications and the
inability to adjust the beta function to the needs of the FEL. The generally
adopted solution is to apply the principle of “strong focusing” [6], known from
synchrotrons, by augmenting the undulator system with a periodic lattice
of quadrupole lenses of alternating polarity, a so-called FODO lattice where
F denotes a focusing quadrupole, D a defocusing quadrupole, and O a drift
space or a weakly focusing element such as a bending magnet or an undulator.
This FODO lattice can be realized either by superimposing quadrupole fields
inside the undulator itself or, more conveniently, by placing electromagnetic
quadrupoles between the segments of a long undulator structure. Since these
segments are typically 5 m long, the period of the FODO lattice is in the order
of 10 m and can be easily tuned to yield beta functions in the range from 5 to
30 m.

The rms horizontal (vertical) width of the electron beam at the position z
is computed from

σ2
x(z) =

〈
x2(z)

〉
= εxβx(z) , σ2

y(z) =
〈
y2(z)

〉
= εyβy(z) (6.8)

where βx(z) resp. βy(z) is the horizontal resp. vertical beta function inside
the undulator and εx (εy) the horizontal (vertical) emittance. The concept
of the beta function is explained in any textbook on accelerator physics, see
for example [6]. The brackets in (6.8) indicate an averaging over the betatron
oscillation amplitudes and phases in the beam. The mean squared angles are
given by [6]

〈
x′2〉 (z) =

1 + (β′
x(z)/2)2

βx(z)
εx ,

〈
y′2〉 (z) =

1 + (β′
y(z)/2)2

βy(z)
εy . (6.9)

Here x′ = dx/dz, y′ = dy/dz are the slopes of the particle trajectory in the
horizontal resp. vertical plane.
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The emittance is, roughly speaking, the product of beam size and beam
divergence. The statistical definition is

εx =
√

〈x2〉 · 〈x′2〉 − 〈x · x′〉2 , εy =
√

〈y2〉 · 〈y′2〉 − 〈y · y′〉2 (6.10)

with the subsidiary condition that the beam is centered in phase space, i.e.

〈x〉 = 〈x′〉 = 0 , 〈y〉 = 〈y′〉 = 0 .

In the following rough estimations one can ignore the z dependence of the beta
function. Hence we average the beta function over the longitudinal coordinate
z, assuming

βx(z) = βy(z) ≡ βav . (6.11)

Furthermore, we assume a round beam (εx = εy ≡ ε). The emittance shrinks
like 1/γ with increasing electron energy [6]. It is convention to define the
normalized emittance by

εn = γεx . (6.12)

In principle εn should remain constant all along the accelerator provided col-
lective effects or radiation can be neglected. In practice, space charge forces,
radiation effects and wake fields often lead to an emittance growth and a
dilution of the particle density in the beam.

Besides determining the beam size and divergence the emittance has an
additional influence on the lasing process. The horizontal and vertical be-
tatron oscillations introduce additional transverse velocity components. The
average longitudinal speed of a particle carrying out betatron oscillations in
the undulator is lower than the speed v̄z in (2.13)

v̄β
z ≈ v̄z −

v2
x

2c
−

v2
y

2c
= c

(
1 − 1

2γ2

(
1 +

K2

2

))
− v2

x

2c
−

v2
y

2c

where the superscript “β” indicates the presence of a betatron oscillation. The
averaging over the betatron amplitudes yields

〈
v2

x

〉
≈ c2

〈
x′2
〉
≈ c2 εx

βav

and a corresponding expression holds for v2
y. The average longitudinal speed

in a beam with betatron oscillations is hence given by

〈
v̄β

z

〉
=
(

1 − 1
2γ2

(
1 +

K2

2

))
c − εx

βav
c . (6.13)

Note that three different averaging procedures are applied in this equation: the
“bar” in v̄z denotes the mean longitudinal speed of an electron moving through
the undulator on its sinusoidal trajectory, but without betatron oscillation, the
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brackets in
〈
v̄β

z

〉
indicate the averaging over the various betatron amplitudes in

a beam, and finally, βav is the longitudinal average (6.11) of the beta function.
Concerning the FEL synchronization process, the reduction of the longi-

tudinal speed is equivalent to a reduction of the mean electron beam energy.
The equivalent energy reduction is computed as

(δγ)eq =
dγ

dv̄z
δv̄z ≈ γ3δv̄z

c
= −γ3εx

βav
.

Owing to the fact that the particles in the beam have all different betatron
oscillation amplitudes one obtains in fact not only a reduction in the longitu-
dinal speed but in addition a smear which is equivalent to an energy spread
of the incident beam:

(ση)eq =
(σγ)eq

γr
≈ γ2

rεx

βav
.

The energy spread of the incident beam and the equivalent energy spread
caused by betatron oscillations have to be added in quadrature as they
stem from statistically independent sources. Requesting that the total energy
spread stays below the tolerable value, which according to the inequality (6.5)
is about ρFEL/2, we derive an upper limit for the beam emittance:

εx <
βav

2
√

2 γ2
r

ρFEL . (6.14)

The magnitude of the transverse velocity can in principle be reduced by choos-
ing a sufficiently large beta function. On the other hand, a larger beta function
yields a lower electron density and a longer gain length, so there is an optimum
in between. An estimate on this optimum beta function will be given below
in (6.30). In the X-ray regime the optimum beta function is in the 10–30 m
range.

6.3.2 Optical Diffraction and Gain Guiding

Ideally the photon beam should have the same transverse size as the elec-
tron beam. However, like any electromagnetic wave, the FEL wave in the
undulator undergoes optical diffraction. Since FEL radiation has a lot of sim-
ilarity with optical laser beams we use here the Gaussian beam description,
see Appendix D. The Rayleigh length zR is defined as the distance over which
the beam cross section grows by a factor of 2 from its minimum value at a
beam waist. It is related to the beam waist radius w0 by

zR =
πw2

0

λ�
. (6.15)

A typical number is zR ≈ 1 m for w0 ≈ 100 μm and λ� = 30 nm. Moving away
from the waist the beam radius grows as
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w(z) = w0

√

1 +
(

z − z0

zR

)2

. (6.16)

Note that in Gaussian laser beam optics it is convention to define the radial
width by the condition that the intensity of a TEM00 beam drops to 1/e2 =
0.135 of its value at r = 0 (the electric field drops to 1/e). From this definition
follows that the rms radial width of the light beam intensity is

σr(z) = w(z)/2

and the Rayleigh length can be written as

zR =
4πσ2

r

λ�
. (6.17)

The diffractive widening of a seed laser beam is not affected by the presence
of the electron beam. It is therefore important to realize a sufficiently long
Rayleigh length of this beam to obtain efficient seeding in the entire lethargy
regime. Once the exponential FEL gain process has started, the additionally
created field depends on the transverse dimensions of the electron beam and
becomes decoupled from the seed beam.

The FEL beam will also be subject to diffraction, and the resulting widen-
ing could readily spoil the good overlap with the electron beam and reduce the
energy transfer from the electrons to the light wave. Fortunately there exists
an effect counteracting the widening of the FEL beam which is called gain
guiding.1 Gain guiding can be understood as follows. We consider an observa-
tion point z0 in the exponential gain region. Most of the FEL intensity at this
point has been produced in the last two or three gain lengths upstream of z0,
and the width of this newly generated radiation is determined by the electron
beam width. The more distant contributions are widened by diffraction, how-
ever they play a minor role because they are much smaller in amplitude. The
overall result is an exponential growth of the central part of the light wave,
and this part will retain its narrow width. Nevertheless, diffraction losses will
occur. Three-dimensional numerical simulations show indeed that some field
energy evades radially from the light beam [10].

Another beneficial effect of gain guiding is the ability of the FEL beam to
follow slow, “adiabatic” deviations of the electron beam away from its nominal
orbit, which might be caused by spurious magnetic background fields. This
guiding is important in the very long undulator magnets of an X-ray FEL.

To provide efficient gain guiding the FEL amplification has to be large
enough so that the growth of the light intensity near the optical axis over-
compensates the losses by diffraction. A gain length shorter than the Rayleigh
length appears thus desirable. This criterion, however, is not easy to fulfill be-
cause the gain length depends on the particle density and the rms electron
beam radius as
1 In the FEL literature, another effect named refractive or optical guiding has been

discussed, see e.g. [8], [9].



92 6 Refinements of the One-Dimensional FEL Theory

Lg0 ∝ n−1/3
e ∝ σ2/3

r .

A very short gain length requires a small transverse beam size, which in turn
would lead to a short Rayleigh length if we want to keep the width of the
photon beam equal to that of the electron beam. A good compromise is to
choose a Rayleigh length that is somewhat larger than the FEL field gain
length (or twice the power gain length)

zR ≈ 2Lg0 ⇒ 4πσ2
r

λ�
≈ λu

2π
√

3ρFEL

. (6.18)

Combining this with (6.8) and (6.14) we can derive an upper limit for the
emittance of the electron beam that depends only on the light wavelength.

4πεxβav

λ�
≈ λu

2π
√

3 ρFEL

<
λu

2π
√

3
βav

2
√

2γ2
r εx

<
λ�

4π

βav

εx

using λu/(2γ2
r ) < λ� . So the emittance must be less than about λ�/(4π).

This rather approximate result can be refined by a more physical argu-
mentation. In Appendix D we show that one can define an emittance for a
Gaussian laser beam as the product of rms beam width and divergence:

εL = σx σθ =
λ

4π
. (6.19)

Requesting that the electron beam emittance does not exceed the light beam
emittance leads to the criterion

ε ≤ λ�

4π
(6.20)

which is an extremely demanding requirement on the quality of the electron
beam driving an X-ray FEL and cannot be fully satisfied in practice.

6.4 Parametrization of Gain Length in an X-Ray FEL

We have seen above that the power gain length computed in the full three-
dimensional theory will be larger than the 1D gain length of a mono-energetic
beam. Many effects such as electron beam energy spread and emittance, space
charge, finite bunch length and radiation diffraction play a role. Three dimen-
sionless parameters are useful in the characterization of a short-wavelength
FEL. Following [11] we write them in the form

Xγ =
Lg04πση

λu
energy spread parameter (6.21a)

Xd =
Lg0λ�

4πσ2
r

diffraction parameter (6.21b)

Xε =
Lg04πε

βavλ�
angular spread parameter . (6.21c)
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From our previous considerations follows that all these parameters should be
less than 1. If we insert the FEL parameter (4.49) into the inequality (6.5) we
obtain

Xγ <
1√
3

. (6.22)

The diffraction parameter is

Xd =
Lg0

zR
≈ 1

2
(6.23)

according to (6.18). Finally, using (4.49) and (6.14) the angular spread pa-
rameter can be written as

Xε =
λuε√

3 〈βav〉λ� ρFEL

<
λu

2
√

2γ2
r

1√
3λ�

<
1√
6

(6.24)

where we have used λu/(2γ2
r ) < λ� .

M. Xie [11] has expressed the 3D gain length of an X-ray FEL in the form

Lg = Lg0(1 + Λ) (6.25)

where Lg0 = λu/(4π
√

3ρFEL) is the 1D gain length according to (4.53). Based
on three-dimensional numerical studies he obtains a parametrization of the
correction term Λ in the form

Λ = a1X
a2
d + a3X

a4
ε + a5X

a6
γ + a7X

a8
ε Xa9

γ + a10X
a11
d Xa12

γ

+a13X
a14
d Xa15

ε + a16X
a17
d Xa18

ε Xa19
γ (6.26)

with the dimensionless parameters defined in (6.21). The fitted coefficients are

a1 = 0.45, a2 = 0.57, a3 = 0.55, a4 = 1.6, a5 = 3.0,

a6 = 2.0, a7 = 0.35, a8 = 2.9, a9 = 2.4, a10 = 51,

a11 = 0.95, a12 = 3.0, a13 = 5.4, a14 = 0.7, a15 = 1.9,

a16 = 1140, a17 = 2.2, a18 = 2.9, a19 = 3.2 . (6.27)

Quite a different parametrization has been proposed by Saldin et al. [12].
The power gain length2 is written as

Lg = 1.19
(

IA

Ipeak

)1/2 (εnλu)5/6(1 + K2/2)1/3

λ
2/3
� K̂

(1 + δ) (6.28)

with

δ =
262 IA

Ipeak

ε
5/4
n σ2

γ

K̂2(1 + K2/2)1/8λ
1/8
� λ

9/8
u

. (6.29)

2 Note that in [12] the field gain length is computed which is a factor of two larger
than the power gain length.
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Here IA = 17.5 kA is the so-called Alvfén current and Ipeak the peak current in
the electron beam. The formula is only valid if the beta function is optimized
according to

βopt = 15.8
(

IA

Ipeak

)1/2
ε
3/2
n λ

1/2
u

K̂λ�

(1 + 8δ)−1/3 . (6.30)

The two parametrizations (6.25) and (6.28) are in reasonable agreement
for the LCLS and the European X-ray FEL while for FLASH the formula by
Saldin et al. is not directly applicable because the average beta function in
the FLASH undulator is βav ≈ 5 m and thus much larger than the optimized
beta function of 0.9 m as computed from (6.30). Since the quadrupoles in
the FLASH undulator are spaced by about 5 m it is impossible to realize a
beta function of less than 1 m. The Xie formula (6.26) yields for the FLASH
parameters quoted in Chap. 5 a value of Λ = 0.32 for a beta function βav =
5 m, so the 3D gain length is about 30% longer than the 1D gain length.

From numerical FEL simulations Kim and Xie [13] derived the following
approximate formula for the saturation power

Psat ≈ 1.6 ρFELPbeam

(
Lg0

Lg

)2

. (6.31)

Here Pbeam is the power of the electron beam.

6.5 FEL Radiation from Short Bunches

In an ultraviolet or X-ray FEL facility the electron bunches must be made very
short because otherwise the required high peak current densities cannot be
achieved. But also for scientific reasons a short bunch length is desirable since
it permits the generation of femtosecond X ray pulses which are indispensable
in the study of ultrafast processes.

In the 1D FEL theory of Chap. 4 we have totally disregarded the effects
at the head and the tail of the bunch and basically treated the bunches as
being infinitely long and having a periodic substructure. Here we consider
what happens if the bunch length is finite and amounts to only a few hundred
radiation wavelengths.

6.5.1 Velocities

In a high-gain FEL we have to distinguish different velocities which are all
lower than the speed c of a plane electromagnetic wave in vacuum: the longi-
tudinal speed v̄z of the electrons, and the phase and the group velocity of the
FEL light wave.

The terms phase and group velocity are familiar from other fields of
physics. As an example we take a plane electromagnetic wave, e.g. a light
wave
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Ex(z, t) = A exp[i (kz − ωt)] .

The phase and group velocities are

vph =
ω

k
, vg =

dω

dk
.

For a light wave in free space the relationship between frequency and wave
number is linear, ω = c k, so phase and group velocity are equal, vph = vg = c.
The situation is different in a dispersive medium like glass where the refractive
index depends on frequency, n = n(ω). Then the wavelength is λ′ = λ/n and
the wave number becomes

k′ = nk = n(ω)ω/c

The phase velocity
vph =

ω

k′ =
c

n
(6.32)

is now different from the group velocity

vg =
dω

dk′ =
(

dk′

dω

)−1

= c

(
n + ω

dn

dω

)−1

. (6.33)

The group velocity is relevant for the propagation of wave packets, for example
for digital data transmission through a glass fiber.

FEL Phase Velocity

The electron beam generates the FEL wave and has an influence on its prop-
agation. We will see that the phase and group velocities are both less than
the speed of light in vacuum and rather different from each other. The phase
velocity of the FEL light wave is smaller than c because of the z-dependent
phase of the complex field amplitude Ẽx. In the exponential gain regime the
field grows as

Ẽx(z, t) = A exp[α1z] exp[i kz − iωt]
= A exp[�(α1)z] exp[i (k + �(α1))z − iωt]
≡ A exp[�(α1)z] exp[i k′z − iωt] (6.34)

where we have written ω and k instead of ω� and k� to simplify the notation
and introduced a modified wave number k′ by

k′ = k + �(α1) . (6.35)

The phase velocity is according to (6.32)

vph =
ω

k′ =
ω

k + �(α1)
≈ c

(
1 − c�(α1)

ω

)
. (6.36)
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Assuming for simplicity that we are on resonance (η = 0) and that space
charge can be neglected (kp ≈ 0) then �(α1) = Γ/2, see (4.51). In this case
the phase velocity of the FEL wave becomes (writing now again ω� instead
of ω)

vph = c

(
1 − c Γ

2ω�

)
= c

(

1 − λ�

4π
√

3 Lg0

)

. (6.37)

The correction term is very small. In an undulator which is 4π
√

3 ≈ 22 gain
lengths long the FEL wave slips by just one optical wavelength with respect
to a plane electromagnetic wave in vacuum. This slow slippage is responsible
for the FEL bucket motion shown in Fig. 5.13.

FEL Group Velocity

Of particular interest for a SASE FEL is the velocity of a “spike” in the FEL
wave that extends over many optical wavelengths. The spike is represented
by a wave packet propagating with the group velocity. The group velocity is
according to (6.33)

vg =
dω

dk′ =
(

dk′

dω

)−1

=
(

dk

dω
+

d�(α1)
dω

)−1

=
(

1
c

+
d�(α1)

dω

)−1

≈ c

(
1 − c

d�(α1)
dω

)
. (6.38)

The derivative d�(α1)/dω is computed in Appendix E, see (E.21).

d�(α1)
dω

≈ 2ku

3ωr
.

From (6.38) and c ku = ωr(1 + K2/2)/(2γ2
r ) follows then that the group ve-

locity is given by the expression

vg ≈ c

(
1 − 1

3γ2
r

[
1 +

K2

2

])
. (6.39)

Remarkably, the group velocity of a spike in the electron beam current
density is identical with the optical group velocity. The proof is as follows.
The current density is

j̃z(ψ, z) = j0 + j̃1(z) exp(i ψ) with ψ = (k� + ku)z − ω�t .

According to (4.20) the complex amplitude j̃1 is proportional to the derivative
of Ẽx. In the exponential gain regime, the z dependence of j̃1 is therefore the
same as that of Ẽx, namely exp(α1z).
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j̃1 exp(i ψ) ∝ exp[�(α1)z] exp[i�(α1)z] exp[i(k� + ku)z − i ω�t]

The phase of the modulated current density differs from that of the FEL
field only by the term kuz. Now ku = 2π/λu is a constant, independent of
frequency. Application of formula (6.38) yields thus the exactly same group
velocity as in the FEL wave. This equality has a deep physical relevance: a
bump in the electron charge distribution is associated with a corresponding
bump in the FEL field due to the FEL gain process, and hence one would
expect that both bumps move with the same speed, which they indeed do.

The group velocity is considerably lower than the phase velocity. We have
seen above that in an undulator of the length Lu = 22Lg0 the phase of a
harmonic FEL wave slips by one optical wavelength with respect to a plane
electromagnetic wave. In contrast to this an FEL wave packet slips by a few
hundred optical wavelengths. On the other hand, the group velocity is larger
than the average longitudinal speed of the electrons which is according to
(2.13)

v̄z = c

(
1 − 1

2γ2
r

[
1 +

K2

2

])
.

The difference is

vg − v̄z =
c

6γ2
r

[
1 +

K2

2

]
. (6.40)

From this we conclude that spikes (wave packets) in the FEL wave, or spikes
in the electron charge distribution, will slip forward inside the electron bunch
during the motion through the undulator.

6.5.2 Slippage Effects in Short Bunches

We consider an example which illustrates very nicely the slippage effects oc-
curring in free-electron lasers driven by short electron bunches. The bunch
considered has a narrow leading spike and a long tail, which is similar to the
shape of the compressed bunch in FLASH. The local current I0 as a function
of the internal bunch coordinate ζ is depicted in Fig. 6.4. The peak current is
Ipeak = 1600 A. We assume that the lasing process is started by seed radiation
with an amplitude of E0 = 5 MV/m. The simulation of the FEL process is
done using the coupled first-order equations (C.7) in their generalized form,
including the dependencies on the internal bunch coordinate ζ. The typical
FLASH parameters quoted in Chap. 5 are used. At a position of z = 18Lg0

in the undulator the maximum of the modulation current has almost reached
the peak current, but the width of the curve I1(t) is narrower than the bunch
itself which is described by the curve I0(t). This is due to the fact that the
FEL gain depends on the beam current and is suppressed in the tail of the
bunch.

In Fig. 6.5 the electric field of the light wave (in units of 1010V/m) and
the normalized modulation current I1/Ipeak are shown at various positions in
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profile of the field resembles closely the shape of the I1 distribution inside the
bunch, but is a bit narrower than the bunch itself.

0

0.5

1

no
rm

al
iz

ed
 c

ur
re

nt
 r

es
p.

 fi
el

d
no

rm
al

iz
ed

 c
ur

re
nt

 r
es

p.
 fi

el
d

I

Ex

1

0

0.5

1

–20 –40 –20–40 0

ζ [μm] ζ [μm]

20

z = 18 Lg0

z = 30 Lg0

z = 23 Lg0

z = 40 Lg0

0 20
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Next we look into the saturation regime. At z ≥ 20Lg0, the modulation
current develops a structure with two or more peaks that is quite different
from the bunch shape. The electric field amplitude of the light wave is also
characterized by a complicated structure. Narrow wave packets of the FEL
field escape from the bunch and move away from the bunch head. This is
clear evidence for the slippage effect. When an FEL wave packet has slipped
away from the bunch it will move with the speed c of light in vacuum, and its
magnitude will remain invariant because the overlap with the electron beam
is no longer existent and the FEL gain process has come to an end.

It is important to note that the spikes are by no means identical with
the microbunches. Rather they are wave packets extending over many optical
wavelengths. Inside the bunch they propagate with the FEL group velocity
(6.39) and are thus faster than the microbunches which move with a speed that
is very close to the average longitudinal speed v̄z of the electrons (compare
Figs. 5.12, 5.13).

Longitudinal Structure of the FEL Pulses

The above figures show that the simulated FEL pulses contain amazingly
short wave packets. What is the physical origin of these sharp substructures?
We want to demonstrate that this is nothing else but the oscillatory behavior
of the FEL power in the saturation regime that we observed earlier in Chap. 5.
In order to see this we go back to Fig. 5.4 where the computed FEL power
on a logarithmic scale has been plotted against z/Lg0. The same data are
used to show in Fig. 6.6a the z dependence of the absolute magnitude of the
electric light wave field

∣∣∣Ẽx(z)
∣∣∣ on a linear scale. Here the oscillations reflect

obviously the back-and-forth energy exchange between electron bunch and
light wave. Converting to the internal bunch coordinate ζ and taking into
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as a function of the longitudinal position z in the undulator. The parameters are
the same as in Fig. 5.4. (b) Comparison of the field rise in the 1D and the 3D FEL
theory
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consideration that bunch head enters the saturation regime earlier than the
tail (which implies a sign reversal) one obtains similar sharp time spikes as
seen in Fig. 6.5.

The question arises whether these sharp peaks are to be expected in a
realistic FEL or whether they are just an artifact of our oversimplified one-
dimensional FEL model. The second alternative turns out to be correct.
According to computations with three-dimensional FEL codes the gain os-
cillations in the saturation regime are much less pronounced than predicted
by the 1D theory, see Fig. 6.6b. This is in fact easy to understand. In the
1D model the density of the electron beam and the amplitude of the light
wave do not depend on the radial coordinate r =

√
x2 + y2 while in reality

both charge density and field amplitude drop with increasing distance from
the beam axis. The reduced coupling strength at r > 0 implies that the satu-
ration regime is reached later for off-axis electrons than for on-axis electrons.
Consequently, we can expect that the gain oscillations will be smeared out
for realistic electron and photon beams. This smearing will also wash out the
spike structure of the FEL pulses as demonstrated in Fig. 6.7. In addition,
optical diffraction plays a larger role in the saturation regime and reduces the
electric field close to the axis.

6.6 Superradiance

Bonifacio and others [14] have predicted the possibility of a reduction of the
light pulse length to values below the electron bunch length if the exponential
gain regime has been passed. The term superradiance is used to describe this
pulse shortening regime in which the radiated FEL power is proportional to
the square of the number of electrons. In a recent experiment [15] superradi-
ance has been observed in a single-pass high-gain FEL which was seeded by
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a titanium-sapphire laser at 800 nm. Using frequency resolved optical gating
the FEL pulse duration was measured to be 81.7 fs (rms) while the seed pulse
was 150 fs long, and the electron bunch was even more than 1 ps long. In the
superradiant regime the FEL power is expected to grow quadratically with
the distance z along the undulator.

The interpretation of superradiance is based on the assumption that the
radiation pulse slips forward inside the bunch, owing to the fact that the
optical group velocity is larger than the longitudinal speed of the electrons,
and that this light pulse therefore withdraws energy from “fresh” electrons
that have not yet been microbunched.
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7

Self-Amplified Spontaneous Emission

For wavelengths in the ultraviolet and X-ray regime the start-up of the FEL
process by seed radiation is not readily done due to the lack of suitable lasers.
Seeding by a high harmonic of an optical laser is a widely discussed idea. The
process of Self-Amplified Spontaneous Emission SASE permits the startup of
lasing at an arbitrary wavelength, without the need of external radiation. The
SASE mechanism was proposed and theoretically explored in the early 1980s
[1, 2, 3, 4] but it took 20 years before it could be verified experimentally at
visible and ultraviolet wavelengths.

The most intuitive explanation of SASE is that the electrons produce spon-
taneous undulator radiation in the first section of a long undulator magnet
which serves then as seed radiation in the main part of the undulator. The
FEL can also be started by a periodic charge density modulation in the elec-
tron beam, as discussed in Sect. 5.3. The bunches coming from the accelerator
do not possess such a modulation at the light wavelength. But due to the fact
that they are composed of a large number of randomly distributed electrons
a white noise spectrum is generated which has a spectral component within
the FEL bandwidth (see Appendix F). This component will be amplified ac-
cording to Fig. 5.3.

The above two interpretations of SASE are physically equivalent: seeding
by spontaneous undulator radiation or FEL start-up by the proper Fourier
component of the stochastic density modulation in the electron beam. Ran-
domness is obviously essential in the second model of the SASE process but
it is equally important in the first model. It must be noted that the emis-
sion of undulator radiation by a bunch much longer than the light wavelength
would be impossible if the longitudinal particle distribution were perfectly
uniform, in the extreme case, if the electron beam current would be a perfect
direct current (dc current). A perfect dc current moving on a sinusoidal orbit
through the undulator magnet cannot emit any radiation because there are
no oscillating charges. Likewise, a perfect dc current circulating in an electron
synchrotron or storage ring would be unable to emit ordinary synchrotron
radiation.

P. Schmüser, et al.: Self-Amplified Spontaneous Emission, STMP 229, 103–120 (2008)
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7.1 Computation of the SASE Process in the 1D Theory

7.1.1 Solution of the Third-Order Equation

In this section the equivalent current density modulation j̃1 arising from the
random time distribution of the electrons in the bunch is used as an input
for calculating the time evolution of the FEL power by means of the method
discussed in Sect. 5.3. The initial conditions are according to (5.14)

⎛

⎝
Ẽx(0)
Ẽ′

x(0)
Ẽ′′

x(0)

⎞

⎠ =

⎛

⎝
0
−1

i 2kuη

⎞

⎠ μ0c K̂

4γr
j̃1(0) .

It is convenient to factor out the driving term μ0c K̂ j̃1(0)/(4γr) by introducing
new coefficients dj

⎛

⎝
d1

d2

d3

⎞

⎠ =

⎛

⎝
1 1 1
α1 α2 α3

α2
1 α2

2 α2
3

⎞

⎠

−1

·

⎛

⎝
0
−1

i 2kuη

⎞

⎠ . (7.1)

Then the field amplitude becomes

Ẽx(z) =
3∑

j=1

dj exp(αjz) · μ0c K̂

4γr
j̃1(0) . (7.2)

In Appendix F it will be shown that the equivalent modulated current density
resulting from shot noise is given by the formula

j̃1(0) =

√
e I0Δω

π

1
Ab

(7.3)

where I0 is the absolute magnitude of dc electron beam current, Ab the beam
cross section and Δω the width of the FEL bandwidth curve (assuming a
rectangular shape of the bandwidth curve). Using the transmission function
(see below) one finds

Δω =
√

2π σω .

First an approximate computation is made with a constant bandwidth. To
achieve saturation one needs about 20 gain lengths in FLASH, see Fig. 7.1
below. Using (5.13) we compute then a bandwidth of Δω ≈ 2.4ω� ρFEL . This
is substituted in (7.3). The central frequency is taken as ω = ωr hence η = 0
in (7.1). The FEL power as a function of the position z in the undulator is
computed with (7.2).

Pcb(z) =
Ab

μ0c

∣∣∣Ẽx(z)
∣∣∣
2

=
μ0c K̂2

16γ2
r

∣∣∣∣
∣∣

∑

j

dj exp(αjz)

∣∣∣∣
∣∣

2

e I0

πAb
2.4 ρFELω� (7.4)
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Fig. 7.1. Computed SASE FEL power in FLASH as a function of z/Lg0 (continuous
red curve). The startup is provided by the electron current density modulation with
the period λ� which is due to the random distribution of the electrons in the bunch.
For comparison the power rise of a seeded FEL is also shown, choosing a seeding
field of E0 = 0.5 MV/m (dashed blue curve). Here the gain curve has been computed
by means of the coupled first-order equations so that the FEL saturation is included

where we have assumed that electron beam and light beam have the same
cross section Ab. The subscript “cb” stands for constant bandwidth. The FEL
power as a function of z/Lg0 is shown in Fig. 7.1. It is interesting to compare
the power rise curve of a SASE FEL to that of a seeded FEL. The field
amplitude E0 of the seed wave has been adjusted to yield the same power level
in the exponential regime as obtained in the SASE FEL. For typical FLASH
parameters at an electron energy of 500 MeV we find E0 = 0.5 MV/m. This
computation permits us to determine the minimum seed laser field which is
needed to be well above the SASE level. In the present example seeding will
dominate for an initial field value E0 exceeding a few MV/m. We come back
to this important issue in Sect. 7.1.3.

We learn from Fig. 7.1 that saturation is reached after about 20 gain
lengths, so the saturation length is

Lsat ≈ 20Lg0 .

This is in fact a rather typical number. In Ref. [5] the following formula is
given for the saturation length of a SASE X-ray FEL

Lsat ≈
λu

ρFEL

= 4π
√

3Lg0 = 21.8Lg0 . (7.5)

In the next step we abandon the restriction to a constant bandwidth be-
cause in reality the FEL bandwidth is larger in the beginning of the undulator
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and drops with increasing z. For example, the bandwidth at z = 5Lg is about
twice as large as at z = 20Lg. Therefore the curve in Fig. 7.1 underestimates
the FEL power in the first part of the undulator but should be correct near
the end of the exponential regime. The variable bandwidth will be taken into
account using formula (5.13). The FEL power as a function of the distance z
along the undulator axis becomes then

Pvb(z) =
μ0c K̂2

16γ2
r

∣∣∣∣∣
∣

∑

j

dj exp(αjz)

∣∣∣∣∣
∣

2

2 e |I0|
πAb

6
√

π ρFEL ω�

√
Lg0

z
. (7.6)

where the subscript “vb” stands now for variable bandwidth. The FEL power
computed with a z dependent bandwidth is higher at low values of z/Lg0 but
approaches the constant-bandwidth curve for z > 10Lg0. In the exponential
gain regime 4Lg0 ≤ z ≤ Lsat, only the eigenfunction exp(α1z) contributes
and the following approximate formula holds

Pvb(z) ≈ m2
ec

4γ2
r

3
√

π
ρ2

FEL
ω� exp

(
z

Lg0

)√
Lg0

z
. (7.7)

7.1.2 Transmission Function Approach

In the previous section we have implicitly assumed that the eigenvalues αj

are given by their values on resonance (η = 0), and we have taken into ac-
count the bandwidth of the FEL by the multiplicative factor Δω. This is only
approximately correct. Now we make a more careful analysis.

We study the SASE mechanism with a mono-energetic electron beam.
The detuning parameter is a function of frequency according to (5.7). Our
first goal is to compute the eigenvalues αj for a certain light frequency ω
which will in general be different from the resonance frequency ωr . In the
spirit of the argumentation in Sect. 5.2.1 we translate this frequency shift into
an equivalent energy shift of the electron beam. The eigenvalues for a beam
with energy detuning are given by (E.18) in Appendix E. These eigenvalues
depend now implicitly on frequency.

We define a transmission function relating current and field in frequency
domain

H(ω, z) =
(
eα1z eα2z eα3z

)
·

⎛

⎝
1 1 1
α1 α2 α3

α2
1 α2

2 α2
3

⎞

⎠

−1

·

⎛

⎝
0
−1

i 2kuη

⎞

⎠ . (7.8)

The spectral component of the electric field at the position z is

Ẽx(ω, z) =
μ0c K̂

4γr
H(ω, z)J(ω) (7.9)

where J(ω) is the spectral current density whose magnitude is
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|J(ω)| =

√
e I0

π

1
Ab

according to equation (F.13). The radiated power is

P (z) =
Ab

μ0c

∫ ∞

0

∣∣∣Ẽx(ω, z)
∣∣∣
2

dω =
μ0c K̂2e I0

16πγ2
rAb

∫ ∞

0

|H(ω, z)|2 dω . (7.10)

The power computed from this equation is compared in Fig. 7.2 with the
constant-bandwidth formula. The transmission function automatically incor-
porates the variable bandwidth and yields thus higher FEL power in the first
section of the undulator.

7.1.3 Comparison of FEL Startup by Seeding or by SASE

In order to compare the two different startup mechanisms we use (4.57) to
determine the coefficients cj in the eigenfunction expansion

Ẽx(z) =
∑

j

cj exp(αjz)

according to ⎛

⎝
c1

c2

c3

⎞

⎠ = A−1 ·

⎛

⎝
Ẽx(0)
Ẽ′

x(0)
Ẽ′′

x(0)

⎞

⎠ .
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Fig. 7.2. Dashed blue curve: Computed SASE FEL power as a function of z/Lg0 ac-
cording to (7.10). Solid red curve: power Pcb(z) according to the constant-bandwidth
formula (7.4)
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We take the simplest form of the matrix A−1, see (4.59):

A−1 =
1
3
·

⎛

⎝
1 (

√
3 − i)/(2Γ ) (−i

√
3 + 1)/(2Γ 2)

1 (−
√

3 − i)/(2Γ ) (i
√

3 + 1)/(2Γ 2)
1 i /Γ −1 /Γ 2

⎞

⎠ . (7.11)

In case of seeding by an external laser, corresponding to field stimulation, the
initial condition is ⎛

⎝
Ẽx(0)
Ẽ′

x(0)
Ẽ′′

x(0)

⎞

⎠ = Ein

⎛

⎝
1
0
0

⎞

⎠

and from (7.11) follows that the cj are all equal,

cj =
Ein

3
, j = 1, 2, 3 .

In case of SASE we have current stimulation caused by shot noise. Then
the initial condition reads

⎛

⎝
Ẽx(0)
Ẽ′

x(0)
Ẽ′′

x(0)

⎞

⎠ = −μ0cK̂

4γr
j̃1

⎛

⎝
0
1
0

⎞

⎠

(here we have assumed η = 0). Applying (7.11) we find

|cj | =
1

3Γ

μ0cK̂

4γr

∣∣j̃1
∣∣ .

The equivalent input field is hence

Eequiv =
μ0cK̂

4γrΓ

∣∣j̃1
∣∣ =

μ0cK̂

4γrΓ

√
e I0Δω√
π Ab

. (7.12)

With the FLASH parameters used in Sect. 7.1.1 we obtain an equivalent input
field of 0.54 MV/m, in good agreement with the value of 0.5 MV/m used in
Fig. 7.1. Only in the case that the seeding field E0 exceeds the equivalent field
Eequiv by a sufficient margin one can expect that the properties of the FEL
output radiation such as pulse length, coherence and bandwidth are deter-
mined by the seed radiation rather than by the SASE process. The required
seeding field level has to be maintained over a stretch of more than three gain
lengths such that the seeded FEL is able to leave the lethargy regime and en-
ter the exponential-gain regime. This is an important constraint on the beam
quality and power of the seed radiation which becomes very demanding if one
wants to use a high harmonic of optical laser radiation.
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7.2 Experimental Results on SASE FEL Radiation

7.2.1 Detection of SASE, Exponential Gain and Saturation

The first experimental demonstration of the SASE mechanism was carried
out in the infrared wavelength range [6, 7]. The first successful operation of a
SASE FEL in the visible and near-ultraviolet range was accomplished at the
low-energy undulator test line LEUTL at Argonne National Laboratory near
Chicago, USA [8]. The gain curve measured at 530 nm is shown in Fig. 7.3.
Similar data were obtained at 385 nm. The exponential rise and saturation
of the FEL intensity is nicely seen both at the visible and the ultraviolet
wavelength.

The LEUTL team has made a very nice experimental verification of the
microbunching associated with the high-gain FEL process. Coherent optical
transition radiation at the FEL wavelength was detected.1 The data shown
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Fig. 7.3. Left side: SASE radiation in the low-energy undulator test line LEUTL at
530 nm. The FEL intensity is shown as a function of the distance in the undulator
(courtesy S. Milton). Right side: energy of SASE FEL radiation (labeled as UR)
and of coherent optical transition radiation (COTR) as a function of distance in
the undulator [9]. The wavelength was 530 nm resp 539 nm. The dashed curve shows
the prediction of the FEL code GENESIS. In the COTR measurement the FEL
light beam was absorbed by a thin foil which did not disturb the microbunching
inside the electron bunch. The radiation screen was mounted downstream of this
foil. (Figure reprinted with permission from [9]. Copyright 2002 by the American
Physical Society).

1 Transition radiation is produced when relativistic particles cross the boundary be-
tween two media of different refractive indices. The radiation emitted in backward
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in Fig. 7.3 demonstrate convincingly the formation of microbunches with the
periodicity given by the light wavelength. A similar exponential rise is ob-
served both in the FEL light and in the coherent optical transition radiation.

Shortly afterwards a successful SASE experiment was carried out at DESY
in Hamburg, Germany at the vacuum-ultraviolet (VUV) wavelength of 109 nm
[10]. In the next series of measurements wavelengths between between 80
and 180 nm were covered and FEL saturation was established [11, 12]. The
data at 98 nm have already been presented in Fig. 4.2. These were the first
measurements showing FEL saturation in the VUV regime. After an energy
upgrade to 700 MeV (1 GeV at a later stage) and an increase of the undulator
length from 13.5 to 27 m the FEL was renamed into FLASH. This FEL user
facility will be described in Chap. 8. At FLASH lasing has been measured so
far at 32, 25, 13.7 and 6.5 nm.

The data at a fundamental wavelength of 13.7 nm [13] are presented in
Fig. 7.4. Exponential gain and FEL saturation have been established for the
first time in the extreme ultraviolet. Analysis of the exponential part of the
gain curve yields a power gain length of Lg = 1.25±0.15 m. Quite remarkable
is the observation of the third and fifth harmonic at 4.6 nm resp. 2.75 nm, see

0 10 15 20 25 30
z [m]

0.01

0.1

1

10

100

F
E

L 
pu

ls
e 

en
er

gy
 [μ

J]

5

Fig. 7.4. Experimental evidence for exponential gain and FEL saturation in the
extreme ultraviolet at λ� = 13.7 nm [13]. The average light pulse energy is plotted
as a function z. Note that this light pulse energy is in fact the sum of the FEL
pulse energy and the contribution from spontaneous undulator radiation entering
the light detector. The effective undulator length z is varied in the experiment by
switching on kicker magnets at selected positions inside the long undulator system,
thereby destroying the good overlap between electron and photon beam in the down-
stream section of the undulator and inhibiting further FEL gain. The intensity of
the spontaneous radiation is hardly affected by the induced small orbit distortions

direction is in the visible and infrared range. Optical transition radiation (OTR)
is frequently applied at electron accelerators to obtain images of the beam cross
section, see Sect. 8.9.2. The radiation is incoherent in most cases because the
bunch is much longer than the optical wavelength. Coherent optical transition
radiation will be generated if the bunch possesses a periodic density modulation
with the period being equal to the optical wavelength.
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Fig. 7.5. Spectra of the third harmonic (left) and fifth harmonic (right) of 13.7 nm
FEL radiation [13]. For an average pulse energy of 40 μJ at the first harmonic, a
pulse energy of 0.25 μJ was measured at the third harmonic (4.6 nm) and of 10 nJ
at the fifth harmonic (2.75 nm)

Fig. 7.5. The fifth harmonic is within the so-called water window , a spectral
region in the extreme ultraviolet where water becomes transparent. Radiation
in this region is crucially important for the investigation of biological matter.
Higher harmonics of the 32 nm line have also been seen [14] (Fig. 7.6). In
this measurement the second harmonic at 15.9 nm was observed, but with a
twenty times lower intensity than the third harmonic at 10.5 nm. According
to theoretical predictions [15] the contribution of the second harmonic to
the total radiation power depends on the ratio of the FEL gain length to the
Rayleigh length of the radiation. In the parameter range of FLASH the second
harmonic is found to be strongly suppressed [13].

SASE radiation at 840 nm and at the second and third higher harmonic
have been reported from the VISA FEL at Brookhaven National Laboratory
(BNL), USA [16]. The FEL pulse energy as a function of distance traveled in
the undulator exhibits an exponential rise (Fig. 7.7). Both SASE and seeded
FEL lasing have been accomplished at wavelengths of 266 and 400 nm in the
Deep Ultra-Violet (DUV) FEL at the National Synchrotron Light Source at
BNL [17]. SASE radiation at 49 nm was observed in 2006 at the test accel-
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Fig. 7.6. Spectra of the second harmonic (left) and third harmonic (right) of 32 nm
FEL radiation [14]
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Fig. 7.7. FEL pulse energy vs. distance of the 840 nm FEL radiation at VISA
((Visible to Infrared SASE Amplifier). (a) First harmonic, (b) second harmonic, (c)
third harmonic. We thank S. Reiche for providing us with this figure

erator SCSS of the Japanese XFEL project [18], see Fig. 7.8. Saturation has
been achieved at 30–60 nm with a pulse energy of 30 μJ (T. Shintake, private
communication).

7.2.2 Statistical Properties of SASE radiation

The emission of spontaneous undulator radiation is a stochastic process, and
as a consequence SASE FEL radiation, starting from shot noise, has the prop-
erties of chaotic light. A characteristic feature are shot-to-shot fluctuations in
wavelength. An experimental example is shown in Fig. 7.9. The FEL pulses
seen in this figure show 1–3 spikes of variable height. The averaged spectrum
of many FEL pulses has a smooth lineshape according to the gain curve dis-
cussed in Sect. 5.1.

Fig. 7.8. SASE FEL spectrum as measured at SCSS. The blue curve shows a single
shot spectrum exhibiting several longitudinal modes. The red curve is the averaged
spectrum from 50 FEL pulses (courtesy M. Yabashi, H. Tanaka)
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Fig. 7.9. Left : The measured spectra of individual SASE FEL pulses at an average
wavelength of 97 nm. The single-shot spectra show two to three peaks which fluctuate
in size and position from shot to shot. The average spectrum of 100 FEL pulses is
wider than the individual spikes. Its shape is determined by the coherence time.
Right : spectra of individual SASE pulses and the averaged spectrum at 13.7 nm

An important quantity for the characterization of chaotic light is the co-
herence time, i.e. the time over which there exists a correlation in the field.
To determine this quantity we look at the first-order correlation function

g(t − t′) =
〈E(t)〉 〈E∗(t′)〉

|〈E(t)〉|2
=

∫ ∣∣∣Ẽ(ω)
∣∣∣
2

exp[−i ω(t − t′)]dω

∫ ∣∣∣Ẽ(ω)
∣∣∣
2

dω
(7.13)

We use (7.9):

Ẽx(ω, z) =
μ0c K̂

4γr
H(ω, z)J(ω)

to express the field by the transmission function and, using (5.12) and (5.13),
we write the transmission function in the approximate form

H(ω) ≈ const · exp
(
− ω2

2σ2
ω

)
.

The transmission function is thus a Gaussian of variance σ2
ω . (The z depen-

dence of σω is ignored for the time being). The correlation function becomes

g(t − t′) = exp
(
−σ2

ω(t − t′)2

2

)
.

The coherence time is

τcoh =
∫

(g(t))2dt ≈
√

π

σω
. (7.14)
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Owing to the fact that the rms power bandwidth depends on the longitudinal
position in the undulator, see (5.13),

σω = σω(z) = 3
√

2 ρFEL ω�

√
Lg0

z

the coherence time will also be a function of z.
Consider now a “flat-top” bunch with a time duration of Tbunch. The

average number of wave packets (spikes) in the wavelength spectra is

M =
Tbunch

τcoh
(7.15)

if the bunch duration exceeds the coherence time because each wave packet
has a time duration of about τcoh and thus M = Tbunch/τcoh non-overlapping
wave packets can exist in the bunch. For Tbunch ≤ τcoh only one wave packet
can exist and hence M = 1. The wave packets are sometimes called the “longi-
tudinal modes”. The frequency width of the individual spikes in the spectrum
is equal to the Fourier transform limit determined by the bunch duration:

Δωspike =
2
√

2 ln 2
Tbunch

. (7.16)

This formula holds for a bunch with a flat time profile.
In the exponential gain regime the radiation pulse energy Urad fluctuates

according to the so-called gamma distribution, see Appendix G:

p
M

(u)du =
MM uM−1

Γ (M)
exp(−M u)du with u =

Urad

〈Urad〉
. (7.17)

Here Urad is the energy of an individual radiation pulse, 〈Urad〉 the average
energy of many pulses and u = Urad/ 〈Urad〉 the normalized pulse energy;
Γ (M) is the gamma function of argument M . The mean value and the variance
of the normalized FEL pulse energy are

〈u〉 =
∫ ∞

0

u p
M

(u)du = 1 , σ2
u =
〈
(u − 〈u〉)2

〉
=

1
M

. (7.18)

As said above, the number of modes is equivalent to the number of spikes seen
in the wavelength spectra.

As a nice illustration we show in Figs. 7.10 and 7.11 data obtained at
the VUV FEL at DESY at a wavelength of about 97 nm [12]. In a long FEL
pulse more wave packets are excited than in a short pulse, and the probability
distribution of SASE pulse energy has a correspondingly lower variance. This
is indeed verified by the data. When one selects a single longitudinal mode
(M = 1) by means of a monochromator the probability distribution changes
dramatically into a negative-exponential distribution, see Fig. 7.12. We note
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Fig. 7.10. Left : single-shot spectrum of a long FEL pulse [12]. The average number
of modes is M = 6. Right : single-shot spectrum of a short FEL pulse. Here the
average number of modes is M = 2.6
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Fig. 7.11. Fluctuation of SASE pulse energy for long and short electron bunches
[12]. The mode number is M = 6 for the long pulse and the variance is σu = 41%.
For the short pulse one finds M = 2.6 and σu = 61%. The data have been taken in
the exponential gain regime. Solid curves: gamma distribution
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Fig. 7.12. Pulse energy distribution in FEL radiation having passed a monochro-
mator slit [12]. Here M = 1 and σu = 100%
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Fig. 7.13. Left : measured probability distribution of FEL pulse energy in the ex-
ponential regime at a wavelength of 13.7 nm [13]. Solid curve: gamma distribution.
The average pulse energy is 1 μJ. Right : probability distribution of FEL pulse energy
in the saturation regime. Here the gamma distribution is not applicable, the solid
curve has been computed with the code FAST. The average pulse energy is 40 μJ.

that the pulse energy fluctuations are quite large in the exponential gain
regime, in the order of 60 − 70%. This has also been verified in a FLASH
measurement at a wavelength of 13.7 nm (Fig. 7.13). From the experimental
value M = 1.9 and an estimated coherence time of τcoh ≈ 4.2 ± 0.5 fs one
obtains an estimate for the radiation pulse length at the end of the exponential
regime of about 8 ± 1 fs [13].

When saturation is reached the gamma distribution is no longer applicable
and the fluctuations drop to less than 20%. The regimes of exponential gain
and saturation are compared in Fig. 7.13.

A thorough characterization of the 840 nm SASE radiation produced at
VISA can be found in [19]. A gain length shorter than 18 cm has been ob-
tained and a gain of 2×108 at saturation. For uncompressed bunches the SASE
radiation spectra exhibit 4–5 longitudinal modes, and the shot-to-shot inten-
sity fluctuations are described by a gamma distribution with M = 4.3, while
for compressed bunches only one mode is seen and the observed fluctuations
are well fitted with the negative exponential distribution (i.e. the gamma dis-
tribution with M ≈ 1). In another experiment at VISA [20] the microbunching
was verified by detecting coherent optical transition radiation at the first and
second harmonic of the SASE FEL radiation (at 845 resp. 422 nm).

The spikes in the wavelength spectra have their origin the presence of
several wave packets that are separated in time. Consequently, the FEL pulses
in time domain will also feature sharp spikes. A direct observation of the
temporal spikes has not yet been possible due to the lack of detectors with
a time resolution of better than 10 fs. Experiments with such a high time
resolution are just on the verge of becoming feasible at free-electron lasers
(M. Drescher, private communication). All FEL simulation codes predict the
existence of sharp spikes in the time domain. As an example we show in
Fig. 7.14 a computation made with the code GENESIS.

The origin of the fluctuations in wavelength and FEL pulse energy in the
SASE process is easy to understand. A typical undulator section in which
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Fig. 7.14. The computed time structure of two different FEL pulses in FLASH at
a position of z = 27m in the undulator. We thank Igor Zagorodnov for carrying out
the GENESIS calculation

the spontaneous radiation is produced may comprise Nu ≈ 100 undulator
periods. This corresponds to a bandwidth of 1%. If several electrons radiate
independently the photon energy may therefore fluctuate by up to ±1%.
Moreover, the longitudinal position at which an electron emits its radiation
will vary from particle to particle. The radiation which is emitted first will
profit most from the exponential amplification while radiation starting at a
later position will be lower on the gain curve. In the end, only a few of the
initial radiation modes will survive because they absorb the lion’s share of
the energy extracted from the relativistic electron bunch. Deep in the satura-
tion region all excited modes reach a plateau, and thus the FEL pulse energy
variations will be much reduced.

7.2.3 Transverse Coherence

According to Appendix D the fundamental Gaussian mode TEM00 has its
highest intensity on the beam axis while the higher TEMmn modes extend
to larger radial distances and some of them even vanish on the axis. With
increasing length in the undulator, the fundamental TEM00 mode will there-
fore grow faster than the other modes, owing to its superior overlap with the
electron beam. This process is called mode competition. When the saturation
regime is approached the fundamental mode will usually dominate and the
FEL radiation will possess a high degree of transverse coherence. This has
indeed been verified by double-slit diffraction experiments. The data shown
in Fig. 7.15 prove that almost full transverse coherence has been achieved at
FEL wavelengths of 100 nm and 7 nm. This feature is of extreme importance
for a large class of experiments.

It is interesting to note [5] that a SASE FEL can reach almost full trans-
verse coherence even if the emittance criterion ε ≤ λ�/(4π) is not fulfilled. Nu-
merical calculations for the Linac Coherent Light Source, made by S. Reiche
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Fig. 7.15. Measured double-slit diffraction patterns. Left : at a fundamental wave-
length of λ1 = 100 nm [21, 22]. The slit separation is 0.5 mm. Right : at λ1 = 7 nm
(courtesy Marion Kuhlmann, DESY)

with his code GENESIS, show that in the early part of the undulator several
transverse FEL beam modes will be excited because of too large an electron
beam cross section, see the left picture in Fig. 7.16. The fundamental TEM00

mode grows faster than the other modes and exceeds their intensity already
at 10 gain lengths. At the end of the exponential gain regime (z = 19Lg ) the
TEM00 mode dominates and the FEL beam has acquired almost full trans-
verse coherence. This is a nice illustration of “mode cleaning”.
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Fig. 7.16. Computed evolution of the transverse angular distribution of the FEL
light in the LCLS at different longitudinal positions z in the undulator.
Left : z = 4 Lg , center: z = 10 Lg , right : z = 19 Lg . The gain length is Lg = 5 m.
We thank S. Reiche for providing us with this figure



References 119

Deep in the saturation regime of the fundamental mode, the higher modes
are not yet saturated and may continue to grow with increasing z, depending
on the beam energy spread in the last section of the undulator. Consequently,
the degree of transverse coherence may drop below 90%.
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8

The Ultraviolet and Soft X-Ray FEL
in Hamburg

8.1 Introductory Remarks

The idea to use a long linear accelerator (linac) for providing the drive beam
for an X-ray free-electron laser was conceived at the Stanford Linear Accel-
erator Center SLAC. In the Linac Coherent Light Source (LCLS) project [1]
a 1 km long section of the SLAC electron linac, which has been the major
facility for elementary particle physics at Stanford since 1965, will deliver the
beam needed in the FEL. The SLAC machine is based on normal-conducting
accelerating structures working at 3 GHz. The world’s first linear collider SLC
was realized utilizing this linac to accelerate electrons and positrons to 46 GeV
and collide them after the traversal of an arc to study electro-weak physics at
the Z0 resonance.

Since more than 15 years large groups of particle and accelerator physicists
have been working on the development of linear electron-positron colliders in
the TeV regime. While at Stanford and in Japan normal-conducting machines
were designed the TESLA collaboration decided for superconducting cavities
as the acceleration devices. After a decade of intense R&D the collaboration
succeeded in raising the accelerating field from a few Megavolts per meter
to more than 35 MV/m in multi-cell niobium cavities [2]. The success of the
TESLA cavity program was the essential motivation to base the future Inter-
national Linear Collider ILC on the superconducting TESLA technology.

The TESLA Test Facility TTF was built at DESY with the intention to
investigate the performance of superconducting cavities with an accelerated
electron beam and to study whether the high beam quality needed in a collider
could be achieved. Already at an early stage the decision had been taken to
couple the envisaged TESLA collider with an X-ray free-electron laser [3, 4].
As a first test of this concept, the TTF machine was augmented with a 13.5 m
long undulator magnet. In February 2000 the worldwide first ultraviolet FEL
began its operation at wavelengths between 80 and 180 nm. Meanwhile the
TTF linac has been upgraded in two steps to a maximum energy of 1 GeV by
adding more cavities, and the undulator was extended to a length of 27 m. The
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new FEL facility has been named FLASH.1 The shortest wavelength achieved
up to now is 6.5 nm in the first harmonic.

Presently, there are several FEL projects underway all aiming at femtosec-
ond FEL pulses in the UV and soft X-ray regime. They are facing similar
scientific and technological challenges as met at FLASH. To some extent the
FLASH facility can serve as a blue-print for a new class of accelerator-driven
light sources, and the physical considerations and technical solutions described
in this chapter are of interest for the envisaged new sources as well.

8.2 Layout of the Free-Electron Laser FLASH

The vacuum-ultraviolet and soft X-ray Free-Electron Laser FLASH is shown
schematically in Fig. 8.1. The electron bunches are produced in a laser-driven
photo-injector and accelerated to energies between 440 to 1000 MeV by a
superconducting linac. The bunch charge is 0.5 to 1 nC. At intermediate en-
ergies of typically 125 and 370 MeV the electron bunches are longitudinally
compressed, thereby increasing the peak current from initially 50–80 A to
approximately 1–2 kA as required for the FEL operation. The 27 m long un-
dulator consists of NdFeB permanent magnets with a fixed gap of 12 mm, a
period of λu = 27 mm and a peak magnetic field of B0 = 0.47 T. Finally, a
dipole magnet deflects the electron beam into a dump, while the FEL radi-
ation propagates to the experimental hall. The SASE FEL process demands
a bunched electron beam of extremely high quality which can be produced
only by a linear but not by a circular accelerator. Specifically, high peak
current, low emittance, small momentum spread and short bunch length are
required.

photo injector

FEL beam

4 MeV 125 MeV 380 MeV 1 GeV

undulatorscollimator

bunch
compressorUV laser

bunch
compressor

acceleration modules

Fig. 8.1. Schematic view of the UV and soft X-ray FEL FLASH at DESY. In
2007 the linac has been upgraded to a maximum energy of 1 GeV. Six acceleration
modules are installed, each containing eight superconducting cavities. Two magnetic
chicanes are used for longitudinal bunch compression. A collimator removes electron
beam halo to prevent radiation damage in the permanent magnets of the undulator

1 A detailed description of the facility and the scientific program can be found
in the brochure “FLASH, the Free-Electron Laser in Hamburg” which can be
downloaded from http://pr.desy.de/.
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8.3 Electron Source

8.3.1 Layout of the Radio-Frequency Photo-Cathode

The high bunch charge needed in a SASE FEL can be accomplished with
photo-cathodes which are illuminated with short ultraviolet laser pulses [5].
The injector at FLASH, shown in Fig. 8.2, consists of a laser-driven photo-
cathode which is mounted inside a 11

2 -cell radio-frequency (RF) cavity. The
cathode is made from molybdenum and is coated with a thin Cs2Te layer
to achieve a quantum efficiency for photo-electron emission of typically 5%.
The UV laser pulses are generated in a mode-locked solid-state laser system
(Nd:YLF) built by the Max Born Institut, Berlin [6, 7]. Another difference to
conventional cathodes is the rapid acceleration to relativistic energies which
can only be achieved with radio frequency fields and not with a dc electric field.
The photo-cathode is located at the backplane of the half-cell where the accel-
erating field assumes its peak value of about 40 MV/m (60 MV/m in the most
recent design). A static magnetic solenoid field is superimposed and provides
transverse focusing in order to preserve a small beam cross section. The perfor-
mance of the electron injector is described in [8]. The pulsed UV laser is syn-
chronized to the 1.3 GHz RF of the linac with a precision of better than 100 fs.

It is impossible to generate the high peak current of several kA immediately
in the gun because then huge space charge forces would arise and immediately

Fig. 8.2. Cut through the electron gun of FLASH. The Cs2Te photo-cathode is
mounted at the backplane of a 1.3 GHz 1 1

2
-cell copper cavity. The cavity is excited

in a TM010-like mode, the electric field assumes its maximum value at the cathode.
The RF power of about 4 MW is guided to the cavity through a wave guide and
a coaxial coupler. The UV laser beam is reflected onto the cathode by a small
mirror outside the electron beam axis. A solenoid coil provides transverse focusing
(see Sect. 8.4.3). A second solenoid, called “bucking coil”, compensates the magnetic
field in the cathode region where the photo-electrons have very low energy (Courtesy
K. Flöttmann)
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disrupt the bunch. Therefore bunches with a modest current of some 50 A are
produced by laser pulses of 10 ps duration, but even in this case the particles
must be accelerated as quickly as ever possible to relativistic energies. In
the relativistic regime the repulsive electric forces between the equal charges
are largely canceled by the attractive magnetic forces between the parallel
currents. Space charge is discussed in the next section.

8.4 Space Charge Effects in FLASH

Space charge forces in the intense electron bunches of a high-gain FEL have
a profound influence on the beam dynamics and constitute in fact one of the
main performance limitations of an X-ray FEL. We consider first space charge
forces in highly relativistic bunches because these are easy to understand, and
address then the rather intricate effects that happen in the low-energy electron
cloud close to the photo-cathode.

8.4.1 Electric and Magnetic Forces Inside a Relativistic Bunch

We consider for simplicity a bunch of N relativistic electrons which are uni-
formly distributed in a cylinder of radius rb and length Lb (measured in the
laboratory system). In a co-moving coordinate system, the electrons are at
rest and we have a pure Coulomb field inside the bunch. The number of parti-
cles and the bunch radius remain invariant (r∗b = rb) when transforming from
the laboratory system to the co-moving coordinate system, but the length
is Lorentz-expanded to L∗

b = γLb. For γ � 1 the bunch length L∗
b will be

very much larger than the radius, hence one can compute the radial electric
field inside the bunch using the approximation of an infinitely long cylindrical
charge distribution. The field of an infinitely long charged cylinder has only a
radial component

E∗
r (r) =

−N e

2πε0L∗
b

· r

r2
b

for r ≤ rb (8.1)

=
−N e

2πε0L∗
b

· 1
r

for r ≥ rb .

A magnetic field does not exist because the charges are at rest in the co-
moving system. Now we transform the field (8.1) into the laboratory system.
This yields a radial electric field and an azimuthal magnetic field:

Er(r) = γE∗
r (r) =

−N e

2πε0Lb
· r

r2
b

, Bφ(r) =
v

c2
Er(r) for r ≤ rb (8.2)

where v is the speed of the electrons. Outside the bunch (r > rb) the fields
drop as 1/r. A test electron inside the bunch experiences a force due to the
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radial electric and the azimuthal magnetic field which is computed using the
formula

F = −e (E + v × B) .

The electric force points radially away from the axis, the magnetic force points
inwards but is a bit weaker, hence the overall force points outwards and is
thus a defocusing force, given by the expression

Fr(r) =
N e2

2πε0Lb
· r

r2
b

·
(

1 − v2

c2

)
=

N e2

2πε0Lb
· r

r2
b

· 1
γ2

for r ≤ rb . (8.3)

The overall force is a factor of 1/γ2 smaller than the electric force alone and
vanishes in the ultra-relativistic limit γ → ∞. This “repulsive” total force
may lead to a radial blowup of the bunch. The electrons leave the gun with
an energy of 4–5 MeV (γ ≈ 10) which is far too low to preserve a small normal-
ized emittance over a large distance. Therefore the first acceleration module,
raising the energy to 125 MeV, is mounted directly behind the electron gun.

8.4.2 Partial Compensation of Space Charge Forces
by External Focusing

Recognizing that repulsive space charge forces remain an unavoidable problem
we may ask the question whether it is possible to counteract these internal
forces at least partially by applying an external focusing field. For the cylin-
drical electron bunch with constant charge density, described in the previous
section, this is in fact possible. In such a bunch the total space charge force
depends linearly on the displacement r from the axis, see (8.3). A magnetic
lens whose field grows linearly with r can indeed exert a focusing force that
counteracts the internal force and preserves the emittance.

Now it is important to realize that the transverse intensity distribution in
a standard laser beam is described by a Gaussian (see Appendix D). Then
the photo-emitted electron bunch will also have a Gaussian transverse density
distribution. For such a bunch the total internal force is given by the expression

F (r) =
N e2

2πε0Lbr

[
1 − exp

(
− r2

2σ2

)]
· 1
γ2

. (8.4)

The radial force inside a bunch with either a constant or a Gaussian charge
distribution is depicted in Fig. 8.3. In the Gaussian bunch the force grows
almost linearly with r for 0 ≤ r ≤ 0.8σ but then the slope dF/dr levels
off, and for r > 1.8σ the force even decreases. It is virtually impossible to
compensate such a highly nonlinear force by means of an external magnetic
field (but of course one can correct for part of it). For this reason the Gaussian
charge distribution is quite undesirable in the electron injector region. Great
effort is made to shape the UV laser beam toward a flat transverse profile in
order to produce cylindrical electron bunches with an approximately constant
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charge Q(r)

force F(r)

rb 0 1 2 3
r/σ

force F(r)

charge Q(r)

Fig. 8.3. Left: charge distribution Q(r) and radial space charge force F (r) in a
cylindrical electron bunch with constant charge density and radius rb . Right: charge
distribution Q(r) and radial space charge force F (r) in a Gaussian bunch. The units
for charge and force are arbitrary

charge density. Also in the longitudinal direction a flat profile is desirable
because otherwise the defocusing due to space charge would vary along the
bunch while an external focusing force is necessarily the same all along the
bunch.

8.4.3 Space Charge in the Electron Gun

The electrons leave the photo-cathode with small velocity and pile up in front
of the cathode. The velocity as a function of distance to the cathode is in non-
relativistic approximation v(z) =

√
2eE z/me where E is the accelerating

field. Assuming a uniform emission current, i.e. a longitudinally uniform laser
pulse profile, the charge density is just inversely proportional to the velocity.
In rough approximation the charge density in the vicinity of the cathode can
be considered as a superposition of a longer bunch with low charge density and
a very short bunch with high charge density. The aspect ratio of the bunch
in its rest frame, a∗ = 2rb/L∗

b , is close to 1 near the cathode and drops to
zero at the relativistic energies. The space charge field of a bunch with a non-
vanishing aspect ratio can in general not be described by analytical formulas.
Numerical calculations reveal that a bunch with a∗ ≈ 1 and a uniform charge
distribution exhibits still a linear relationship between the radial space charge
force and the distance r from the axis. The strength of the force, however,
depends on the longitudinal position ζ inside the bunch. It is strongest in the
center slice and falls off toward the head and tail of the bunch.

The ζ dependence of the radial defocusing force leads to a distortion of the
phase space distribution and an associated emittance growth. The stronger
defocusing in the center of the bunch as compared to head and tail produces a
fan-like structure in phase space, see Fig. 8.4b. The emittance within a short
longitudinal slice, the so-called slice-emittance, is not significantly affected by
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Fig. 8.4. Transverse phase space plots showing schematically the emittance growth
due to space charge and its compensation by means of a focusing lens. (a) Initial
phase space distribution near the photo-cathode. (b) Phase space distribution after
beam transport to the lens. Not only the two ellipses, representing bunch slices at
the center resp. at the head or the tail of the bunch, are filled with particles but
also the shaded area between them. This is because the strength of the space charge
force varies continuously between center and head of the bunch. (c) Rotation of
phase space distribution by a focusing lens. (d) Shrinkage of the fan-like structure
in the drift section behind the lens. We thank Klaus Flöttmann for useful discussions
on this subject

the ζ dependence of the radial force, but the orientation of the phase space
ellipses of different slices varies with the longitudinal position. Fortunately,
the radial blowup of the bunch due to space charge can be counteracted by
a clever focusing scheme known as emittance compensation [9]. (A more ap-
propriate expression is emittance-growth compensation because it is not the
emittance as such that is compensated but rather its growth). With the help
of a magnetic solenoid field the evolution of the fan-like phase-space structure
can be reversed. This is a very complicated mechanism which cannot be ex-
plained in terms of linear beam optics alone. The rapid particle acceleration
inside the gun and the energy exchange due to longitudinal space charge forces
play a role as well.

The mathematical analysis [10] of the emittance-growth compensation pro-
cess is beyond the scope of this book. Elaborate numerical studies using the
code ASTRA [11] and detailed experimental investigations [8] have been car-
ried out for FLASH to optimize the geometry of the solenoid coil arrangement
and to determine the proper coil currents.
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8.5 Superconducting Linear Accelerator

The electron injector section is followed by six 12.2 m long acceleration mod-
ules each containing eight superconducting niobium cavities. The cavities are
made from pure niobium and consist of nine cells each. Figure 8.5 shows the
layout of the nine-cell TESLA cavity [12]. The basic principles of supercon-
ducting cavities for particle acceleration are explained in [13]. An important
property of superconductors is that their resistance does not vanish in alter-
nating electromagnetic fields, in contrast to the direct-current case. In a mi-
crowave cavity the oscillating magnetic field of the RF wave penetrates into
the superconductor down to a depth of about 50 nm (London penetration
depth) and induces forced oscillations of the “normal-conducting” electrons,
namely those which are not bound in Cooper pairs. The resulting microwave
surface resistance is many orders of magnitude smaller than in normal copper
cavities but nevertheless responsible for significant RF power dissipation at
the inner cavity surface. The dissipated power in an RF cavity is given by the
formula

Fig. 8.5. Longitudinal cut and photo of the nine-cell TESLA cavity which is made
from pure niobium and cooled by superfluid helium of 2 K. The resonance frequency
is f0 = 1.3 GHz. The electric field lines are shown at the instant when an electron
bunch has just entered the first cell. The length �c of a cell is chosen such that the
field direction has inverted when the relativistic bunch has moved to the next cell.
This is fulfilled for a cell length equal to half the RF wave length, �c = c/(2f0).
Thereby it is ensured that the particles receive the same energy gain in each cell
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Pdiss =
Rsurf

2
H2

RFS (8.5)

where Rsurf is the microwave surface resistance of the superconductor, HRF

the magnitude of the RF magnetic field at the cavity surface, and S the
surface area of the cavity. According to the Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity the surface resistance depends exponentially on
temperature, see e.g. [13]

RBCS =
Af2

0

T
exp
(
−1.76Tc

T

)
. (8.6)

Here Tc is the critical temperature, and A is a coefficient that depends on
the London penetration depth and other material properties. The surface
resistance of a superconducting cavity can be written as

Rsurf = RBCS + Rres

with a “residual resistance” of a few nΩ that is caused by surface impurities.
The exponential temperature dependence is the reason for cooling the high-
field TESLA cavities with superfluid helium at 2 K (Rsurf ≈ 10nΩ = 10−8Ω)
instead of using pressurized normal liquid helium at 4.4 K (Rsurf ≈ 1000 nΩ).

The BCS surface resistance scales quadratically with the radio frequency
f0, hence it is advantageous to build superconducting cavities with relatively
low resonance frequencies. The value of 1.3 GHz chosen for TESLA is a good
compromise between low surface resistance and manageable size of the cav-
ities. The measured surface resistance of the high-purity niobium material
used for the TESLA cavities follows the predicted exponential temperature
dependence over a wide temperature range. Below 2 K the residual resistance
of a few nΩ begins to dominate.

The quality factor of a cavity can be expressed as the ratio of resonance
frequency to the width of the resonance curve. It is inversely proportional to
the surface resistance.

Q0 =
f0

Δf
=

G

Rsurf
(8.7)

where G is a “geometry factor” that depends only on the shape of the cavity
but not on its material. A typical value for a one-cell cavity is G = 300Ω.
For niobium at 2 K the surface resistance is a few nΩ so the quality factor is
Q0 > 1010. In principle the quality factor should stay constant when the field
in the cavity is raised from zero to an upper limit which is reached when the
RF magnetic field approaches the critical magnetic field of the superconduc-
tor. For niobium at 2 Kelvin the critical field is Bc ≈ 200 mT, corresponding
to a maximum accelerating field Eacc ≈ 45 MV/m, averaged over the length of
the cavity. In practice, however, the excitation curve Q0 = Q0(Eacc) usually
ends at a lower field due to “dirt effects” such as contamination of the inner
cavity surface or field emission of electrons. By applying the clean room tech-
niques of the semiconductor industry during the assembly and preparation of
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Fig. 8.6. The quality factor of one of the best TESLA nine-cell cavities as a function
of the accelerating field Eacc. The data were taken at liquid helium temperatures
between 1.6 and 2.0 K. In the linac of FLASH the cavities are operated at an average
gradient of 20MV/m (courtesy L. Lilje)

the cavities one can almost achieve the physical limit of the superconducting
material, see Fig. 8.6.

In the European X-ray FEL an accelerating field of 21 MV/m is needed to
reach an FEL wavelength below 0.1 nm. Although the quality factor exceeds
the excellent value of 1010 the RF power dissipation in the cavities would be
in the order of 100 kilowatts for the whole linac if the cavities were operated
in continuous mode. This is far too large for the liquid helium plant because a
heat deposition of 100 kW at 2 K requires a primary electric power of almost
100 MW at the refrigerator. The necessary reduction of the cryogenic load is
the only (and unfortunate) reason to operate the cavities in pulsed mode with
a duty cycle of about one per cent. Continuous operation becomes a realistic
option if the accelerating field and the electron beam energy are decreased by
a factor of 2.5.

8.6 Bunch Compression

8.6.1 Principle of Longitudinal Compression

We have seen above that the high peak currents of several 1000 A that are
needed in linac based UV and X-ray free electron lasers cannot be produced
directly in the electron gun because huge space charge forces would destroy
the brilliance of the beam within a short distance. Therefore bunches with a
peak current of about 50 A are created in the RF photo-injector, accelerated to
higher energy and then compressed in length by two orders of magnitude. The
electrons in the linac have speeds very close to c, and the velocity differences
are too small that a trailing electron would have a chance to catch up with
a leading electron if the particles move on a straight line. This possibility is
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Fig. 8.7. Principle of longitudinal compression of a relativistic electron bunch. The
bottom row shows an accelerating cavity and the four dipole magnets of the magnetic
chicane. The top figures show the longitudinal bunch charge distribution and the
correlation between the internal position ζ of an electron inside the bunch and its
relative energy deviation η = (W − Wr)/Wr at various positions. (a) Before the
cavity, (b) behind the cavity, (c) behind the magnetic chicane. In the RF cavity the
particles are accelerated on the slope of the RF wave. Thereby the trailing electrons
receive a larger energy gain than the leading ones. In the magnetic chicane the
electrons at the tail move on a shorter orbit than those at the head and catch up
with them. Note that the ellipse enclosing the beam in the (ζ, η) phase space is
transformed by shearing and not by rotation. The enclosed area remains invariant.
(Figure adapted from R. Ischebeck [14])

opened if the particles travel through a chicane made of a sequence of bending
magnets (such a chicane is shown in Fig. 8.7).

Longitudinal bunch compression is achieved in two steps: first an energy
slope is imprinted on the bunch by off-crest acceleration in the first accelera-
tion module, the particles at the head of the bunch receiving a smaller energy
gain than those at the tail. Afterwards the particles are passed through a
magnetic chicane where the trailing electrons of larger energy travel a shorter
distance than the leading ones of smaller energy and are thus enabled to catch
up with them. The principle of longitudinal bunch compression is illustrated
in Fig. 8.7.

8.6.2 Practical Realization of Bunch Compression

In practice it is not advisable to accomplish the longitudinal bunch compres-
sion in a single stage. Such a single-stage compression, leading to peak currents
of several 1000 A, would have to take place at rather high energy in order to
avoid an emittance blowup due to space charge forces. However in that case
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the required energy chirp would introduce a far too large energy spread in
the electron beam (remember that a large energy spread reduces the FEL
gain as shown in Sect. 6.1). For this reason a two-stage bunch compression
system is used in FLASH. The two magnetic chicanes are shown in Fig. 8.1.
To realize the energy slope, the RF phases in the acceleration modules pre-
ceding the magnetic chicanes are adjusted such that the particles receive their
energy gain on the slope of the RF wave. The first compression takes place at
125 MeV, and the second one at 380 MeV. This has considerable advantages
over a single-stage system because a large part of the energy chirp is applied
at low energy and contributes less to the final energy spread of the beam.

Due to the cosine shape of the RF wave, adding a nonlinear term to the
position-energy relationship inside the bunch, and due to collective effects
(coherent synchrotron radiation, space charge and wake fields) in the magnetic
chicanes the final bunches do not possess the desired narrow shape but consist
of a leading spike with a width of less than 100 fs and a tail extending over
several picoseconds. Nonlinear dispersion in the chicane contributes also to
shape distortions. The leading spike contains 10–20% of the total bunch charge
and reaches a peak current in excess of 1000 A which is needed in the high-
gain FEL process. In the long tail, the local current is too small to expect any
significant FEL gain. The various steps are shown in more detail in Fig. 8.8.

8.6.3 Collective Effects in the Bunch Compression System

While the principle of magnetic bunch compression is easy to understand
(there is a lot of resemblance with the compression of laser pulses by the
chirping technique) there are subtle details which are special for relativistic
electrons. The main problem is that short bunches moving on the curved tra-
jectory through the magnetic chicane will emit coherent synchrotron radiation
(CSR) of high intensity. Radiation emitted at the bunch tail takes a shortcut
through the vacuum chamber of the magnetic chicane and interacts with the
electrons at the bunch head, changing their energy. Also space charge forces
have a considerable influence on the shape of the bunches. These interactions
and self forces are not present in photon beams. The strong modifications of
the bunch shape and the internal energy distribution caused by the collective
effects in a 0.5 nC bunch are demonstrated in Fig. 8.9. The bunch shape be-
hind the first bunch compressor is not much affected by the collective effects
but behind the second bunch compressor we observe severe distortions in the
shape and energy distribution of the bunch. The magnetic deflection in front
of the collimator protecting the undulator (see Fig. 8.1) has an additional
influence on the bunch shape. Figure 8.10 shows the computed shape of the
electron bunch at the entrance of the undulator. A strong energy variation is
observed within the leading peak. The energy “chirp” in the lasing portion
of the bunch results in an additional broadening of the FEL spectral distri-
bution and a reduction of the FEL gain. The influence of collective effects
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Fig. 8.8. Numerical simulation of bunch compression in FLASH. The mean final
beam energy is 377 MeV, the bunch charge is 0.5 nC. The top figures show the de-
pendence of electron beam current on the internal bunch coordinate ζ, the bottom
figures show the dependence of electron energy on ζ. Left: behind the first acceler-
ation module. The bunch has an rms length of 1.3 mm and the energy varies from
122.3 MeV at the head of the bunch to 125.3MeV at the tail. The curvature in the
energy chirp is visible. Middle: behind the first magnetic bunch compressor. The
lower energy electrons have collected themselves in a narrow peak at the bunch
head, the higher energy particles form a long tail. The peak current has grown from
35 to 350A. Right: behind the second magnetic bunch compressor. Now the peak
current has grown to 1250 A. Note that the electrons which where at the front
in the left picture are moved backwards in the second bunch compressor due to
“overcompression” (blue color in the plots)
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on the beam properties of the SASE FEL in Hamburg has been thoroughly
investigated in so-called start-to-end simulations [15].

8.6.4 Linearization of the RF Wave

The FLASH bunch compression system in its present form has the consider-
able advantage that FEL pulses as short as 10 fs can be produced by the very
sharp front spike of the electron bunch. The drawback is that a large fraction
of the bunch charge is contained in the tail and does not produce significant
FEL radiation.

For FEL users who are not so much interested in the extreme shortness
of the FEL pulse but more in its total energy a scheme is under development
to supplement the 1.3 GHz cavities with a 3.9 GHz cavity in order to linearize
the RF wave. With such a system it should be possible to squeeze almost the
entire bunch charge into a single pulse whose length is in the order of 400 fs
(FWHM) at peak currents of more than 2500 A at a bunch charge of 1 nC. The
computations are shown in Fig. 8.11. In principle, a compression to shorter
pulse lengths and higher peak currents appears feasible but great care must
be taken to keep space charge and CSR effects at a tolerable level.
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Fig. 8.11. Dependence of beam current and electron energy on the internal bunch
coordinate ζ with a third-harmonic cavity for linearizing the energy chirp. Left: be-
hind the first acceleration module. The bunch has an almost linear energy-position
relationship. Middle: behind the first magnetic bunch compressor. Almost all elec-
trons are collected into a narrow pulse with a peak current of 350A. Right: behind
the second magnetic bunch compressor. The peak current has grown to 2600 A while
the bunch length has shrunk to 120 μm (FWHM), corresponding to a time duration
of 400 fs. The bunch charge is 1 nC in this computation. Collective effects have been
neglected here

8.7 Undulator Magnet System

The undulators at FLASH [16] are made from iron pole shoes with Nd-
FeB permanent magnets in between. The gap height is 12 mm, the period
is λu = 27 mm and the peak magnetic field is B0 = 0.47 T. To achieve FEL
saturation in a single pass the undulator structure must be more than 20 m
long for wavelengths in the 10 nanometer regime. The FLASH undulator sys-
tem consists of six magnets of 4.5 m length each. A photo is shown in Fig. 8.12.
An excellent field quality has been achieved in the undulator, after orbit cor-
rection the deviation of the electrons from the ideal orbit is about 10 μm. This
ensures a good overlap between the electron beam and the light wave which is
a prerequisite for achieving a high gain in the lasing process. The field along
the axis is purely sinusoidal to a high degree of precision. Due to symmetry
only odd higher harmonics are allowed:

By(z) = −B0[sin(kuz) + b3 sin(3kuz) + b5 sin(5kuz) . . .] .

Measurements show that b3 < 0.001 and b5 < 0.0005. In the 60 cm drift space
between the segments, quadrupoles are installed for beam focusing as well as
beam diagnostics tools.
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Fig. 8.12. Photo of a FLASH undulator magnet

8.8 Wake Field Effects

A fast ship moving down a narrow canal produces a wake that is reflected
by the shore and acts back on the ship itself or on other ships in the canal.
Similar effects happen when intense relativistic particle bunches travel in the
vacuum chamber or the cavities of an accelerator. The charged particles gener-
ate electromagnetic fields that are modified by the metallic boundaries. These
so-called wake fields may act back on the bunch itself or on trailing bunches
and perturb the motion of the particles and change their energy distribution.
Wake fields are thoroughly treated in the book Physics of Collective Beam
Instabilities in High Energy Accelerators by A.W. Chao [17].

We consider first the simplest case of an ultra-relativistic bunch traveling
on the axis of a smooth cylindrical beam pipe of circular cross section. The
walls are assumed to have perfect conductivity. Since for γ → ∞ the electric
field lines emerging from the bunch are exactly perpendicular to the direction
of motion, these field lines enter the metallic wall at right angles and fulfill
thus the boundary condition at the interface between vacuum and a perfect
conductor. This means that the field pattern inside the beam pipe is not
changed by the presence of the metallic wall. In other words: the metallic
boundary does not “exist” for the particle bunch, and wake field effects are
absent in this case.2

2 In beam pipes of an arbitrary cross section the field pattern will be modified, but
wake field effects are still absent if the resistance of the wall vanishes and the
particles are ultra-relativistic.
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The situation changes if one of the above assumptions is not fulfilled. We
consider two important cases

• a finite conductivity of the beam pipe leads to resistive-wall wake fields,
• a variation of the cross section results in geometric wakes.

8.8.1 Resistive-Wall Wake Fields

Resistive-wall wake fields play a role in the 30 m long beam pipe in the un-
dulator system which has a radius of only 5 mm and is made from aluminum.
The computed longitudinal wake field for a compressed bunch in FLASH is
plotted in Fig. 8.13. The wake field is negative in the bunch head but becomes
slightly positive in the tail. This means that the electrons in the bunch head
lose energy while those in the tail gain energy. We are mainly interested in
the bunch head because it is this region of the bunch that contributes to the
SASE FEL process. The energy spread in the bunch head region, induced by
resistive wall wake fields, is estimated as

σwake
η < 0.1ρFEL .

It is thus uncritical for FLASH but may be a serious concern in an X-ray
FEL where the undulator beam pipe is much longer and the FEL parameter
significantly smaller than at FLASH. For the XFEL a more careful analysis
is required which is beyond the scope of this book.

0 0.2 0.4 0.6
time [ps]

bunch current

wake field

0

Fig. 8.13. Resistive-wall wake field effect in the aluminum beam pipe of the FLASH
undulator. The bunch current as a function of time is shown as a dash-dotted blue
curve. The longitudinal electric wake field is shown as a continuous red curve. For
a bunch charge of 0.5 nC the maximum bunch current is about 1200A. The peak
value of the wake field amounts to –30 kV/m. The bunch head is at the left side
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Fig. 8.14. Top: the computed field pattern in a nine-cell cavity which is excited to
the fundamental TM010 mode by a klystron operating at 1.3 GHz. Bottom: the wake
field pattern generated by a short relativistic electron bunch

8.8.2 Geometric Wakes

Geometric wakes occurring in the nine-cell superconducting cavities are shown
in Fig. 8.14. The upper part of the figure shows the field lines and the energy
density of the accelerating field that is generated by a klystron, the lower part
shows the electromagnetic energy density of the wake fields which are induced
by a passing relativistic electron bunch. Many of the induced higher-order
eigenmodes of the cavity are coupled out by a specially designed antenna and
their energy is absorbed in a dump resistor at room temperature. The very
high-frequency modes may leave the cavity and travel along the beam pipe.
Damping of the traveling modes is a challenging task in a superconducting
linear accelerator.

8.9 Electron Beam Diagnostics

The requirements on electron beam quality are very demanding and in some
respects at the limit of present-day technology. High-resolution diagnostic
instruments are essential for a detailed understanding of the physical prin-
ciples of emittance preservation, bunch compression and lasing in the SASE
mode. Moreover, they are an indispensable prerequisite for providing the in-
put signals of the feedback systems for beam energy stabilization and bunch
compression.

8.9.1 Longitudinal Charge Distribution

We restrict ourselves here to a description of two techniques permitting single-
shot direct visualization of longitudinal electron bunch profiles with very high
resolution: the transverse deflecting RF structure (TDS) and electro-optic
(EO) detection systems.
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Transverse Deflecting RF Structure

In the TDS the temporal profile of the electron bunch is transferred to a spatial
profile on a view screen by a rapidly varying electromagnetic field, analogous
to the sawtooth voltage in conventional oscilloscope tubes but with a thou-
sandfold better time resolution [18, 19]. The TDS at FLASH is a 3.6 m long
traveling wave structure operating at 2.856 GHz in which a combination of
electric and magnetic fields exerts a transverse force on the electron bunches.
The bunches pass the TDS near zero crossing of the RF field (phase zero)
and receive no net deflection but are streaked in the transverse direction. A
single bunch out of a train can be streaked. With a fast kicker, this bunch
is deflected toward an optical transition radiation (OTR) screen viewed by a
CCD camera. The other electron bunches are not affected. The time resolu-
tion of the TDS installed at FLASH is about 20 fs (rms) if the beam optics is
optimized for the measurement. A CCD picture of a streaked electron bunch
is shown in Fig. 8.15. The figure shows also the computed temporal charge
profile. One observes a sharp peak at the head with a full width at half max-
imum of 65 fs and a long tail to later times. The sharp peak contains about
20% of the bunch charge, only here the local charge density is high enough to
obtain significant gain in the SASE process.
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Fig. 8.15. Top: Two-dimensional CCD image of a single electron bunch whose
time profile is translated into a spatial coordinate on an observation screen. In
the photo the bunch is streaked horizontally with the bunch head at the left side.
Bottom: Current as a function of time. The maximum current is Imax = 1.8 kA in
this measurement [20]
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Electro-Optic Detectors

The electro-optic (EO) effect offers the possibility to measure the longitudinal
charge distribution in the electron bunches with a resolution of 50 fs. The
principle is as follows: the electric field of the relativistic bunch induces an
optical birefringence in a crystal such as gallium-phosphide (GaP), which is
then probed with femtosecond titanium-sapphire (Ti:Sa) laser pulses. One EO
experiment is installed in the FLASH linac in the straight section between the
last acceleration module and the undulator. The EO crystal is mounted inside
the vacuum chamber of the linac at a distance of 4–5 mm to the electron beam.
The linearly polarized Ti:Sa laser pulse enters the chamber at a small angle,
crosses the EO crystal and is then coupled out through a quartz window. In
the birefringent GaP crystal the laser pulse acquires an elliptical polarization
which is transformed into an intensity modulation using a quarter wave plate,
a half wave plate and a crossed polarization filter. An experimental challenge
is to find and maintain the temporal overlap of the 15 fs long laser pulse and
the < 100 fs long electron bunch. The Ti:Sa laser produces a periodic pulse
train with a repetition rate of 81 MHz. This frequency is adjusted to exactly
1/16 of the 1300 MHz radio frequency of the linac and then locked to the RF
in a phase-locked loop circuit. The measured time jitter is less than 40 fs.

In the electro-optic sampling (EOS) method, which is usually applied in
THz physics, the narrow laser pulses are moved in small steps across the
wider electron bunches. Thereby the average time profile of many bunches
is obtained. Due to time jitter this method is not adequate for the analy-
sis of ultrashort electron bunches. Several single-shot techniques are applied
at FLASH permitting the analysis of individual electron bunches, based on
spectral, temporal or spatial decoding. The simplest one is the electro-optic
spectral decoding (EOSD) method. For this purpose the laser pulse is passed
through a dispersive material and stretched (chirped) to a length of several ps,
longer than the electron bunch. In the chirped pulse the long wavelengths are
at the head of the pulse and the short ones at the tail (note that a 15 fs Ti:Sa
laser pulse has a bandwidth of 800± 30 nm). In the GaP crystal the temporal
structure of the electron bunch is imprinted onto the spectral components of
the laser pulse. With a diffraction grating and a gated CCD camera the time
information can be recovered. The principle is explained in Fig. 8.16.

Typical single-bunch measurements are shown in Fig. 8.17. The data are
very useful for accelerator diagnostics. For instance, wrong parameters in the
bunch compression scheme are immediately visible from the reconstructed
bunch shape. The best achievable rms resolution in the spectral decoding
method is about 100 fs.

A better resolution of about 50 fs (rms) is attainable with the technically
more involved temporal decoding (EOTD) method. This intrinsic resolution
limit has been reached in an experiment which has been carried out [22] in
collaboration with a group from the infrared FEL FELIX in the Netherlands.
Results are shown in Fig. 8.18.
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Fig. 8.16. Scheme of the electro-optic reconstruction of the time profile of an elec-
tron bunch by spectral decoding [21]. At the top the chirped laser pulse of 1–2 ps
length is shown, at the bottom the charge distribution in the electron bunch. In
the GaP crystal the electric field distribution is imprinted onto the two polarization
components of the laser pulse

The EO experiments are inferior to the TDS in terms of time resolution
but have the considerable advantage of being “non-destructive”: the same
bunch which has been analyzed with the EO system can be used to generate
FEL radiation downstream. In contrast to this a bunch that has been streaked
by the TDS is too diffuse to produce FEL radiation. Moreover, the EO signals
can be utilized as arrival time signals of the FEL pulses in pump-and-probe
experiments. To fully exploit these capabilities an improved synchronization
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Fig. 8.17. Pulse shape of single electron bunches measured with the spectral decod-
ing method [21]. Left column: wrong off-crest phase in the first acceleration module
ACC1. The bunches develop a double-peak structure. Right column: correct phase
in ACC1, leading to optimum compression of the bunch
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Fig. 8.18. Comparison of two high-resolution measurements on single compressed
electron bunches in FLASH. Top curve: transverse deflecting structure (TDS), bot-
tom curve: electro-optic temporal decoding (EOTD)

system for the accelerating cavities and other time-critical components is un-
der construction, based on periodic infrared lasers pulses that are distributed
in the FLASH linac via length-stabilized glass fibers [23, 24]. The measured
accuracy in a prototype setup is 10 fs, far better than an electronic signal
distribution system using coaxial cables can ever achieve. This optical syn-
chronization system will be absolutely indispensable in the XFEL. Similar
systems are developed at other laboratories [25].

Bunch Arrival Time Monitor

A bunch arrival time monitor using the future laser-based synchronization sys-
tem at FLASH has been developed and tested with a fiber laser [26]. The sig-
nal of a beam pick-up antenna with GHz bandwidth is sampled by a periodic
pulse train from the fiber laser, using a broadband electro-optical modulator.
Bunch arrival time deviations are converted into amplitude modulations of
the sampling lasers pulses, which are then detected in a photo-detector. The
principle of the monitor is sketched in Fig. 8.19. Data recorded at FLASH are
shown in Fig. 8.20. In a train of 30 bunches one observes a systematic vari-
ation of the arrival time. The most likely cause is an energy variation in the
bunch train which translates into a time variation in the magnetic chicanes of
the bunch compressor. There is a good correlation between the arrival times
of two bunches within a train. From the scattering around the correlation line
the accuracy of the bunch arrival time monitor is estimated at 30 fs (rms).
Meanwhile the resolution has been improved to better than 10 fs.

8.9.2 Transverse Emittance

The FEL gain depends critically on a small transverse size of the electron beam
all along the undulator. To obtain high efficiency in the SASE process, a tightly
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Fig. 8.19. Principle of the bunch arrival time monitor [26]. A period train of laser
pulses is passed through an electro-optical modulator EOM. If a laser pulse coincides
with an electron bunch, it is amplitude-modulated by the beam pick-up signal. A
high timing accuracy is obtained by working in the zero-crossing scheme

collimated beam with high local charge density is needed. The emittance is
a measure of the area in transverse phase occupied by the beam. Loosely
speaking, it is the product of transverse beam size and beam divergence. A
small emittance means that one can realize a small beam cross section over
a long distance, which is very essential in the long undulator magnets of an
ultraviolet or X-ray FEL. Usually one normalizes the emittance to the particle
momentum

εn =
p

mec
ε ≈ γε

since this quantity is independent of the particle energy (provided there are
no disturbances). To illustrate the importance of a small emittance we show in
Fig. 8.21 the gain length as a function of emittance for FLASH at an energy of
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Fig. 8.20. Left: arrival time variation in a train of 30 bunches. Right: correlation
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and the 1D power gain length Lg0 (dashed blue curve and squares) as a function
of the normalized emittance. The calculations are done for an energy of 1 GeV in
FLASH and are based on (4.53), (6.25) with the following parameters: peak current
Ipeak = 2500 A, average beta function βav = 5 m, energy spread ση = 0.5 ρFEL

1 GeV. One can see that the 3D power gain length Lg is rather close to the 1D
gain length Lg0 as long as the emittance criterion (6.20) is fulfilled. For FLASH
operating at 1 GeV this corresponds to a normalized emittance εn ≤ 1 μm. If
the criterion is violated the 3D gain length grows rapidly with increasing beam
emittance while the 1D gain length exhibits a moderate growth, Lg0 ∝ ε

1/3
n .

Reducing the beam emittance is hence of utmost importance.
The value εn = 2 μm chosen for FLASH is a realistic lower limit of what

can be achieved with present-day technology. The emittance criterion (6.20)
is fulfilled for γ ≤ 1000 and λ� ≥ 23 nm:

ε =
εn

γ
= 2 · 10−9,

λ�

4π
= 1.8 · 10−9

but at γ = 2000 and a wavelength of about 6 nm the emittance is a factor of
two larger than λ�/(4π).

Average Emittance of Many Bunches

Emittance measurements are routinely carried out in two diagnostic sections
of FLASH. The two-dimensional transverse intensity profile of the beam is
imaged by CCD cameras at four locations using optical transition radiation
(OTR). From the known beam-optical transfer matrices between the OTR
screens the particle distribution in phase space can be reconstructed by tomog-
raphy using the so-called maximum entropy method, and the beta function
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Fig. 8.22. The normalized horizontal resp. vertical emittance as a function of the
main solenoid current in the electron gun (courtesy Florian Löhl, DESY). The data
were obtained for an uncompressed electron beam (note that 1 mm mrad =1 μm)

and the beam emittance can be determined. Figure 8.22 shows the normalized
transverse emittance as a function of the current in the main solenoid magnet
of the electron gun. This figure demonstrates how critically the beam focusing
in the electron injector depends on the focal properties of the solenoid coil.
The emittance shown in Fig. 8.22 is averaged over the longitudinal charge
distribution inside the bunch and over many successive bunches.

Slice Emittance

What is really of interest for the SASE FEL is not the average emittance of
the entire bunch but the emittance of the high-current region in the bunch
head. Standard emittance measurements are incapable of extracting this in-
formation. Fortunately, the transverse deflecting RF structure TDS, described
above, permits the determination of the emittance in selected time slices of the
bunches. For this purpose the quadrupole strengths in the beam optics section
between the TDS and the observation screen are varied. This so-called slice
emittance is shown in Fig. 8.23. The normalized emittance is εn ≈ 10 μm
in the head of the bunch and drops to less than 4 μm in the tail of the
distribution. This result is surprising at first sight because an emittance of
εn ≈ 10 μm is far too large to be compatible with the high FEL gain mea-
sured in FLASH.

The complexity of the obtained data is illustrated in Fig. 8.24 where the
reconstructed horizontal phase space distribution is shown for a slice in the
bunch head region. Large deviations from the ideal elliptic shape are observed.
The long wings extend appreciably beyond the central elliptic region towards
large values of x and x′, and according to (6.10), they contribute strongly
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Fig. 8.23. The normalized beam current I/Imax and the normalized horizontal
emittance as a function of the temporal position in the bunch [20]. (The maximum
current is Imax = 1.8 kA)

to the large normalized emittance of about 10 μm in the bunch head. These
wings have too low a charge density to yield appreciable FEL gain. If we
restrict ourselves to the central elliptic region with sufficient charge density
(see Fig. 8.25) we obtain a normalized emittance of a few μm at an acceptable
peak current of about 1.4 kA. This central region is indeed responsible for the
FEL gain.
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Fig. 8.24. Horizontal phase space distribution in the bunch head region. The long
wings extending appreciably beyond the central elliptic region are the main source
for the large emittance in the bunch head that is shown in Fig. 8.23 [20]
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Fig. 8.25. The central elliptic phase space distribution in the bunch head region.
The peak current is about 1.4 kA, the normalized emittance is εn = 4 μm [20]

References

1. The LCLS Design Study Group, LCLS Design Study Report, http://www-ssrl.
slac.stanford.edu/lcls/ 121

2. Lilje, L., et al.: Achievement of 35 MV/m in the superconducting nine-cell cav-
ities for TESLA. Nucl. Instr. Meth. A 524, 1 (2004) 121

3. Brinkmann, R., Materlik, G., Rossbach, J., Schneider, J.R., Wiik, B.H.: An
X-ray FEL laboratory as part of a linear collider design. Nucl. Instr. Meth. A
393, 88 (1997) 121

4. Rossbach, J.: A VUV free electron laser at the TESLA test facility at DESY.
Nucl. Instr. Meth. A 375, 269 (1996) 121

5. Fraser, J., Sheffield, R., Gray, E.R.: A new high-brightness electron injector for
free-electron lasers driven by rf linacs. Nucl. Instr. Meth. A 250, 71 (1986) 123

6. Schreiber, S., Will, I., et al.: Running experience with the laser system for the
rf gun based injector at the tesla test facility linac. Nucl. Instr. Meth. A 445,
427 (2000) 123

7. Will, I., et al.: The upgraded photocathode laser of the TESLA test facility.
Nucl. Instr. Meth. A 541, 467 (2005) 123

8. Abrahamyan, A., et al.: Characterization of the electron source at the photoin-
jector test facility at DESY Zeuthen. Nucl. Instr. Meth. A 528, 360 (2004) 123, 127

9. Carlsten, B.E.: New photoelectric injector design for the Los Alamos National
Laboratory XUV FEL accelerator. Nucl. Instr. Meth. A 285, 313 (1989) 127

10. Serafini, L., Rosenzweig, J.B.: Envelope analysis of intense relativistic quasil-
aminar beams in rf photoinjectors: A theory of emittance compensation. Phys.
Rev. E 55, 7565 (1997) 127
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9

Physical and Technological Challenges
of an X-Ray FEL

9.1 Brilliance

One of the most exciting aspects of a free-electron laser as compared to al-
ternative X-ray sources is its extreme brightness or brilliance. The expected
peak brilliance of the Linac Coherent Light Source and the European XFEL
are shown in Fig. 9.1, together with measured values from FLASH and from
a selected number of third-generation synchrotron light sources. The spectral
brilliance B describes the intensity of a radiation source including its spectral
purity and opening angle according to

B =
Φ

4π2ΣxΣθxΣyΣθy
. (9.1)

Here Φ is the photon flux, defined as the number of photons per second and
within a spectral bandwidth of 0.1%. For radiation sources with only par-
tial transverse coherence (e.g. wigglers and undulators in storage rings), the
quantities Σx, . . . are calculated from the transverse rms size and angular
divergence of the photon and the electron beam

Σx =
√

σ2
x, ph + σ2

x, e , Σθx =
√

σ2
θx, ph + σ2

θx, e

and Σy, Σθy likewise.
For a light source with full transverse coherence, the transverse size and

angular divergence are no longer independent. According to (D.14) in Ap-
pendix D we get

σx · σθ =
λ

4π
(9.2)

for a photon beam in the fundamental Gaussian mode. In an X-ray FEL
equipped with a long undulator the fundamental Gaussian mode will usually
dominate, compare Fig. 7.16. If this happens the electron beam properties
drop out and one can write
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Fig. 9.1. Expected peak brilliance (number of photons per second, mm2, mrad2

and 0.1% bandwidth) of the planned X-ray FELs LCLS and XFEL. For comparison
the measured peak brilliance of FLASH is shown (blue dots) as well as the brilliance
achieved in some third-generation synchrotron light sources: APS (USA), BESSY
(Germany), ESRF (France), SLS (Switzerland), SPring-8 (Japan). The storage-ring-
type X-ray source PETRA III is under construction at DESY

ΣxΣθx = ΣyΣθy =
λ�

4π
.

Hence the brilliance of the FEL is simply inversely proportional to the square
of the photon wavelength

BFEL =
4Φ

λ2
�

. (9.3)

Indirectly, the electron beam parameters play of course an essential role be-
cause stringent upper limits on the transverse size and divergence must be
obeyed in order to achieve high FEL gain and the formation of a Gaussian
FEL beam.

The peak brilliance at FLASH (this is the brilliance measured during the
short duration of the FEL pulse) exceeds that of other existing light sources
by some eight orders of magnitude at the wavelength of first harmonic. Two
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physical reasons are responsible for the extremely high instantaneous power:
the coherent superposition of the radiation fields from a large number of elec-
trons present in each microbunch (this number is responsible for the large
total power), and the coherent superposition of radiation fields from all mi-
crobunches within a coherence length (this effect is responsible for the small
divergence and the narrow spectrum). The brilliance determines how much
monochromatic radiation power can be focused onto a tiny spot on the tar-
get. The peak brilliance is the essential figure of merit for an entire class of
important experiments. It should be noted though, that often also the average
brilliance is quoted which is relevant for some applications. Moreover, there
are experiments which just need a high X-ray flux. In such cases, an FEL is
probably not the adequate source but a storage ring or a recirculating linac
might be more appropriate.

While the two quantities peak brilliance and pulse duration make the FEL
a unique X-ray source it must be realized that the technical requirements on
the FEL facility become more and more demanding with decreasing wave-
length and correspondingly increasing particle energy. Here we want to discuss
only a few aspects of an X-ray FEL and refer the reader for more information
to the technical design reports of the LCLS [1] and the European XFEL [2].
Further valuable information is found in the review articles by Huang and
Kim [3] and by Pellegrini and Reiche [4].

9.2 Choice of Electron Energy

From the basic equation

λ� =
λu

2γ2

(
1 +

K2

2

)
(9.4)

we learn that a factor of 10 increase in electron energy yields a reduction of
the wavelength by a factor of 100. The power gain length (4.53) depends on
the electron energy γmec

2 and on the particle density ne in the form

Lg0 =
1√
3

[
4γ3

rme

μ0K̂2e2kune

]1/3

The transverse emittance shrinks inversely proportional to the energy

ε =
εn

γr
⇒ ne ∝ γr

Therefore the power gain length scales with energy as:

Lg0 ∝ γ2/3
r (9.5)

Raising the electron energy from 1 to 10 GeV means that the light wavelength
drops by a factor of 100 while the gain length grows by a factor of about
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4.6. This is valid under the assumption that the undulator period λu and
the undulator parameter K are kept constant. Consider as an example the
FLASH undulator with λu = 27 mm and K = 1.18. Raising the energy of the
FLASH linac to 10 GeV would lead to a light wavelength of 0.06 nm which is
the below the target value of the European XFEL.

Unfortunately this simple scaling is not always possible. The emittance
criterion (6.20) becomes very demanding at small wavelengths. With increas-
ing Lorentz factor of the electrons the transverse emittance shrinks as 1/γ but
the light wavelength shrinks as 1/γ2. It is obvious that beyond some threshold
value of γ the condition

ε ≤ λ�

4π

can no longer be fulfilled. They way out is to increase the undulator period λu

and/or the undulator parameter K so that the light wavelength (9.4) decreases
less steeply with energy than 1/γ2. Such a modification of the undulator has
unfortunate consequences: the particle energy must be chosen considerably
higher than 10 GeV, and the physical length of the undulator system must be
increased. This becomes obvious if one looks at the design parameters of the
LCLS at Stanford, USA, the first X-ray FEL to come into operation. They
are summarized in Table 9.1. If one were able to use the FLASH undulators
at LCLS, an electron energy of 6.5 GeV would suffice for reaching the design
wavelength of 0.15 nm. The undulators of LCLS have a parameter K = 3.5,
significantly larger than that of the FLASH undulator (K = 1.18), to fulfill
the emittance criterion, and the electron energy is 13.6 GeV.

The power gain length computed with the formula (6.25) is in good agree-
ment with the value Lg = 5.1 m quoted in the table. The optimal beta function
is closer to 22 m than 30 m, but the difference in gain length is marginal and the
predicted saturation power is slightly higher at βx = 30 m (we thank P. Emma
for this information). The larger beta function was chosen for practical

Table 9.1. Parameters of the linac coherent light source [1]

Electron energy W = 13.6 GeV
Bunch duration 200 fs
Bunch current ( flat part) I0 = 3400A
Normalized transverse emittance εn = 1.2 μm
Average beta function βav = 30 m
Undulator period λu = 0.03 m
Undulator field B0 = 1.25 T
Undulator parameter K = 3.5
Active undulator length Lu = 112m
Fundamental wavelength λ1 = 0.15 nm
FEL parameter ρFEL = 4.2 · 10−4

Power gain length Lg = 5.1 m
Saturation power Psat = 8 GW
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Fig. 9.2. Schematic view of the Linac Coherent Light Source under construction at
Stanford (courtesy J. Galayda). Remark: R56 = dζ/dη

reasons, such as weaker quadrupole fields and relaxed alignment tolerances.
A schematic view of the LCLS facility is shown in Fig. 9.2.

One of the most critical parameters is obviously the transverse emittance,
compare also Fig. 8.21. Any progress in reducing the normalized emittance
εn would have a strong impact on the layout of the FEL facility because the
same wavelength could be reached at reduced electron energy, smaller undu-
lator period, and smaller K parameter. This, in turn, would mean reduced
overall size and costs. It is therefore not surprising that great efforts are un-
dertaken worldwide to design and build electron sources that are capable of
delivering very low emittance beams. Another important task is to preserve
the small normalized emittance during acceleration and bunch compression.
A breakthrough in these attempts, however, would not mean that the in-
vestment in a high-energy linac would turn out unnecessary with hindsight.
Indeed, the improved injector performance could then be utilized for reaching
even shorter wavelengths in the same accelerator facility.

9.3 Spontaneous Undulator Radiation
and Quantum Effects

In addition to the FEL radiation, a large amount of spontaneous undulator
radiation is emitted. The total power of spontaneous radiation emitted by a
beam of Ne electrons is according to (2.21):

Pspont =
Nee

4γ2B2
0

12πε0cm2
e

. (9.6)
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It exceeds the FEL saturation power at LCLS by some factor of 10. This is
a peculiarity of all FELs driven by multi-GeV electron beams for the follow-
ing reason. While Pspont increases quadratically with beam energy, the FEL
saturation power (6.31)

Psat ≈ 1.6 ρFELPbeam

(
Lg0

Lg

)2

increases only rather weakly with energy. The power Pbeam contained in the
electron beam grows linearly with energy while the FEL parameter drops
by about a factor of 7 if one compares FLASH (W = 1 GeV) and LCLS
(W = 13.6 GeV). Thus there is a crossover where the spontaneous power
begins to exceed the FEL power when the beam energy is increased. This
crossover takes place at around 10 GeV.

Solid Angle and Spectral Width

In view of such a big amount of spontaneous undulator radiation power, the
question arises what the benefit of FEL radiation is at all in the X-ray regime.
This benefit is in fact present and is very convincing; it results from the fact
that FEL radiation is emitted into a tiny solid angle and a narrow spectral
band. The solid angle can be estimated as follows. We have seen above that
the FEL beam at the end of a long undulator structure is well described by the
fundamental Gaussian mode. According to Appendix D the rms divergence
angle of a TEM00 beam is

σθ =
λ�

4πσx

If the photon beam is matched in size to the electron beam then

σx =
√

εxβx

With the parameters of LCLS listed in Table 9.1 one obtains a divergence
angle of σθ ≈ 3 · 10−7rad and a solid angle of

ΔΩFEL < 10−12 sterad . (9.7)

In contrast to this the cone angle containing most of the spontaneous undu-
lator radiation power (2.27) is much larger1

θspont =
K

γ
≈ 1.5 · 10−4rad .

The corresponding solid angle is some five orders of magnitude larger than
the solid angle of the FEL radiation, so there will a strong suppression of the
1 We remind the reader that the tight collimation (2.26) of first-harmonic undulator

radiation is due to the requirement that the angle-dependent wavelength shift
stays within the width of the spectral line observed in forward direction.
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spontaneous radiation if one restricts the acceptance range of the detector to
the small solid angle ΔΩFEL.

Likewise, the spectral width of the entire FEL radiation is very small
(

Δω

ω

)

FEL

≈ 2 ρFEL ≈ 10−3

while the spectrum of spontaneous undulator radiation is very wide if one
integrates over all directions. This is illustrated in Fig. 9.3, where the spectral
flux of the spontaneous undulator radiation and the FEL radiation are plotted
for LCLS. The FEL radiation contributes very sharp and high spikes at the
first and third harmonics.

Electron Energy Loss by Spontaneous Undulator Radiation

The large power of spontaneous radiation has a number of consequences.
Firstly, it complicates the commissioning procedure of the X-ray FEL. This
procedure normally starts at a rather small FEL gain, far below satura-
tion. The low-level FEL radiation must be discriminated against the large
background from spontaneous undulator radiation which is of course always
present.

Secondly, the energy loss by spontaneous radiation may drive the electrons
out of resonance. The fractional electron energy change due to the emission
of spontaneous undulator radiation in an undulator of length Lu can be com-
puted using (2.21). One finds

Fig. 9.3. Computed spectral flux of spontaneous undulator and FEL radiation
at LCLS. Plotted is the number of photons per second and 0.3% bandwidth as a
function of photon energy (courtesy H.-D. Nuhn)
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ΔW

W
≡ Δγ

γ
= −e2γK2k2

uLu

12πε0mec2
. (9.8)

In the 112 m long undulator of LCLS the fractional energy loss amounts to
1.6 · 10−3 which is well above the energy bandwidth. One can say that the
electrons “fall out of resonance” after having passed through a certain length
of the undulator structure. In order to restore the resonance condition one
can gradually reduce the undulator parameter with increasing z by reducing
the magnetic field, for example by widening the gap in a permanent-magnet
undulator or by reducing the coil current in an electromagnetic undulator.
This method is often called “undulator tapering”.

Quantum Effects and Beam Energy Spread

The classical FEL theory turns out to be adequate for a theoretical description
of all existing and proposed FEL facilities. Nevertheless, the quantum nature
of the photons, playing an important role for synchrotron radiation in storage
rings, must be taken into consideration. When an electron emits a photon
its energy will abruptly change, and the question is whether the particle will
stay within the FEL gain bandwidth. It is shown in [5] that quantum effects
become relevant in a high-gain FEL when the photon energy is comparable
to the FEL bandwidth:

�ω ∼ ρFELγmec
2 .

Consider as an example the LCLS. For an electron energy of 13.6 GeV and
a corresponding FEL photon wavelength of 0.15 nm and photon energy of
8 keV, the fractional energy change of the electron is only 6 · 10−7, which is
far below the FEL bandwidth (ρFEL = 4.2 · 10−4). So quantum recoil is of no
importance if only one photon is emitted. However, the accumulated effect
of many photon emissions in the very long undulator of an X-ray FEL may
exceed the FEL bandwidth, as we have seen above. The quantum regime of
FELs starting from noise is discussed in [6].

Another undesirable effect of incoherent undulator radiation is an addi-
tional energy spread in the electron beam which has its origin in the statistical
nature of the radiation. This energy spread can be estimated as follows. The
growth rate of (Δγ)2 caused by quantum excitation is calculated to be [7, 8]

d(Δγ)2

dz
=

7e2
�γ4K3k3

u

60πε0m2
ec

3

(
1.2 +

1
K + 1.33K2 + 0.4K3

)
(9.9)

where the correction factor in the bracket is derived in [8]. For LCLS the cor-
rection factor amounts to 1.22. It turns out that the additional energy spread
caused by this so-called “quantum diffusion effect” is of minor importance
for FLASH and the planned X-ray FELs and does not lead to an appreciable
increase in gain length.
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9.4 Photon Beam Lines

The peak intensity of the X-ray beam leaving the undulator is many orders
of magnitude higher than what can currently be handled with existing op-
tical technologies. The best method of reducing the power density without
degrading the beam quality is to let the photon beam propagate through a
long vacuum pipe until it is spread out over a substantially increased area
via its natural divergence. Thereby a tolerable level for optical elements like
mirrors, lenses and monochromators can be achieved. An alternative is the
attenuation of the beam by means of a gas absorption cell which may provide
a continuous variation of the power density at the experimental stations.

What matters at the photon beam lines of an X-ray FEL is the high instan-
taneous energy dose delivered to a thin surface layer of the optical elements.
The surface layer is far from thermal equilibrium during the femtosecond X-
ray pulse, and it is meaningless to consider equilibrium properties like melt-
ing temperatures or expansion coefficients. The tolerable energy dose causing
no damage is approximately 0.01 eV/atom (for comparison, graphite requires
0.9 eV/atom for melting). In order to reduce the energy dose, the optical el-
ements are designed to achieve the highest possible reflectivity. For mirrors
this can be realized by choosing a grazing incidence geometry, at angles below
the critical angle for total external reflection (remember that the refractive
index of common materials is slightly less than 1 in the X-ray regime). This
is the only way for reaching a reflectivity of more than 90% over a wide range
of X-ray wavelengt. A good material combination is a highly polished silicon
substrate with carbon coating. For 1 Ångström radiation, such mirrors are
operated at a glancing angle of 2 mrad, but still photon beam drift lengths

undulator

M

M

G

G

M M

M

M

M

focus

focus

top view

side view

Fig. 9.4. Top view and side view of a 400m long X-ray beam line equipped with
a high-power grating monochromator, foreseen for the European XFEL. M are
grazing-incidence mirrors, G is a diffraction grating (courtesy Th. Tschentscher)
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of some 100 m are needed to stay below the 0.01 eV/atom limit. The conse-
quence of the grazing incidence geometry and the long drift length is that the
mirrors and lenses have to be about 0.5 m long. The surface must be polished
to 0.1 nm residual roughness and 0.3 μrad tangential slope errors to preserve
the wave fronts of the FEL radiation. As an example, a photon beam line
design for the European XFEL is shown in Fig. 9.4.
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A

Hamiltonian Formalism

A.1 Basic Elements of the Hamilton Formalism

In this appendix we demonstrate how Hamiltonian mechanics can be used to
derive the trajectory of an electron in an undulator magnet and the coupling
to the radiation field. For a thorough presentation of the Lagrange-Hamilton
formulation of classical mechanics we refer to the textbooks by Landau and
Lifshitz [1] and Goldstein [2].

A.1.1 Non-Relativistic Hamiltonian

In non-relativistic mechanics the Hamilton function of a particle is the sum
of its kinetic and potential energies

H(qj , pj , t) = Wkin + Wpot . (A.1)

The qj and pj are the generalized coordinates and momenta. The Hamilton
equations express the time derivatives of the coordinates and momenta in
terms of partial derivatives of the Hamiltonian

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (A.2)

The total time derivative of the Hamiltonian is

dH

dt
=

∂H

∂t
+
∑

j

[
∂H

∂qj
q̇j +

∂H

∂pj
ṗj

]
. (A.3)

Because of the Hamilton equations the second term vanishes, hence

dH

dt
=

∂H

∂t
. (A.4)
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This means that the total energy of the particle is conserved if the Hamilton
function has no explicit time dependence. The implicit time dependence con-
tained in the generalized coordinates and momenta may increase the kinetic
energy at the expense of the potential energy, or vice versa, but the sum of
both remains invariant.

A.1.2 Example: Mathematical Pendulum

A mechanical example which is of relevance for the FEL is the mathematical
pendulum. The mathematical pendulum consists of a mass m attached to
a massless bar of length �. In this case the natural choice for the canonical
coordinate is the angle φ, the conjugated canonical momentum is then the
angular momentum L

q = φ , p = L = m�2φ̇ .

The kinetic and potential energies and the Hamiltonian are

Wkin =
L2

2m�2
, Wpot = mg �(1 − cos φ) ,

H(φ,L) =
L2

2m�2
+ mg �(1 − cos φ) (A.5)

where g is the acceleration of gravity. The Hamiltonian is independent of time,
and hence the total energy is conserved:

W = Wkin + Wpot =
L2

2m�2
+ mg �(1 − cos φ) = const .

The Hamilton equations are

dφ

dt
=

∂H

∂L
=

L

m�2
,

dL

dt
= −∂H

∂φ
= −mg � sinφ . (A.6)

The trajectories in the phase space (φ,L) can be easily constructed by writing
the coupled differential equations (A.6) as difference equations and solv-
ing these in small time steps. These trajectories are the curves of constant
Hamiltonian. For small angles, sinφ ≈ φ and the pendulum carries out a
harmonic oscillation of the form:

φ(t) = φ0 cos(ωt) , L(t) = −m�2ω φ0 sin(ωt)

corresponding to an elliptic phase space curve. With increasing angular mo-
mentum the motion becomes unharmonic. At very large angular momentum
one gets a rotation (unbounded motion). The two regions of motion are sepa-
rated by a curve called the separatrix. The equation of the separatrix can be
derived from the initial conditions

φ0 = π , L0 = 0 ⇒ Hsep = mg �(1 − cos φ0) = 2mg � .
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Since the Hamiltonian is constant on the separatrix the angular momentum
as a function of the angle φ can be computed from

[Lsep(φ)]2

2m�2
= Hsep − mg �(1 − cos φ)

from which follows

Lsep(φ) = ±2m�2
√

g/� cos(φ/2) . (A.7)

The phase space picture of the mathematical pendulum is shown in Fig. A.1.

A.1.3 Relativistic Hamiltonian

The relativistic Hamiltonian of a particle of rest mass m0 moving in a force-
and field-free region is

H(qi, pi) ≡ γm0c
2 = c

[
p2 + m2

0c
2
]1/2

. (A.8)

The canonical coordinates qi are taken here as the Cartesian coordinates r =
(x, y, z), and the canonical momentum is p = γm0v. The Hamiltonian is
identical with the total relativistic energy of the particle, for a free particle it
is the sum of kinetic energy Wkin and rest energy m0c

2.
In the presence of an electromagnetic field the Hamiltonian of a particle

with charge q must be modified. We characterize the field by its scalar and
vector potentials:

E = −∇Φ − ∂A

∂t
, B = ∇ × A . (A.9)

Remember that we use the SI system in contrast to many articles and books
on FEL theory that use Gaussian cgs units. To account for the electromagnetic
field we have to add the potential energy Wpot = qΦ, and moreover the kinetic
momentum p = γm0v has to be replaced by the canonical momentum

P = p + q A = γm0v + q A . (A.10)
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Fig. A.1. Phase space curves of a mathematical pendulum. The separatrix (dashed
curve) separates the region of bounded motion (periodic oscillation) from that of
unbounded motion (rotation). The point (0, 0) is a fixpoint
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The relativistic Hamiltonian of a charged particle in an electromagnetic field
is thus

H(r,P , t) = c
[
(P − q A)2 + m2

0c
2
]1/2

+ q Φ . (A.11)

Again this Hamiltonian is identical with the total relativistic energy of the
particle, namely the sum of kinetic energy, potential energy, and rest energy
m0c

2. The Hamiltonian has to be considered a function of the canonical co-
ordinates r = (x, y, z), the canonical momenta P = (Px, Py, Pz), and the
time t.

In the following we consider an electron (charge q = −e, rest mass m0 =
me) moving in the magnetic field of an undulator magnet and in the electric
field of a light wave. Then no scalar potential Φ is present and the Hamilton
function has the form

H(r,P , t) = c
[
(P + eA)2 + m2

ec
2
]1/2 ≡ γmec

2 (A.12)

where the vector potential A(r, t) comprises both fields. This Hamiltonian
is equal to the total energy W = γmec

2 of the electron and will be time-
dependent if the electron exchanges energy with the light wave, in which case
the Lorentz factor is a function of time, too. The Hamilton equations are
evaluated using the formula

d
√

f(x)
dx

=
f ′(x)

2
√

f(x)
.

With the help of this formula we find for example

dx

dt
=

∂H

∂Px
=

2c(Px + eAx)
2
√

(P + eA)2 + m2
ec

2
=

(Px + eAx)
γme

=
γmevx

γme
= vx . (A.13)

Note that one can replace the square root in the denominator by γmec. The
time derivative of the Hamiltonian is found by the same method

∂H

∂t
=

(P + eA)
γme

· ∂(eA)
∂t

= −ev · E (A.14)

where we have used P + eA = γmev and E = −∂A/∂t.

A.2 Electron Motion in a Planar Undulator

The Hamiltonian formulation is now applied to compute the electron trajec-
tory in a planar undulator, following partly the procedure in [3]. The emission
of undulator radiation is neglected for the time being. We consider a simplified
form of the undulator field, see (2.3)

B = −B0 sin(kuz)ey (A.15)



A.2 Electron Motion in a Planar Undulator 163

which can be derived from the vector potential

A =
B0

ku
cos(kuz)ex . (A.16)

Here ex,ey are the unit vectors in x resp. y direction. An electric field is
not present in the undulator, hence the potential energy term is missing. We
note that the vector potential has only an x component which depends on the
single variable z. The Hamiltonian of the electron becomes thus

H(z, Px, Py, Pz) = c

[(
Px + e

B0

ku
cos(kuz)

)2

+ P 2
y + P 2

z + m2
ec

2

]1/2

≡ γmec
2 . (A.17)

The two Hamilton equations

Ṗx = −∂H

∂x
= 0, Ṗy = −∂H

∂y
= 0

imply that Px = γmevx − eAx and Py = γmevy are constants of motion.
The vector potential Ax vanishes at z = λu/4, right after the beginning of
the undulator. Choosing the initial conditions such that vx = vy = 0 at this
position, we obtain Px, Py ≡ 0 all along the undulator from which follows
vy(z) ≡ 0 and

vx(z) =
eB0

γmeku
cos(kuz) =

K c

γ
cos(kuz) . (A.18)

This is identical with (2.9) in Chap. 2.
Since the canonical momenta Px, Py are zero all along the undulator, the
Hamiltonian depends only on z and Pz:

H = H(z, Pz) = c

[
e2B2

0

k2
u

cos2(kuz) + P 2
z + m2

ec
2

]1/2

. (A.19)

The Hamilton equations yield (compare (A.13))

ż =
∂H

∂Pz
=

Pz

γme
, Ṗz = −∂H

∂z
=

e2B2
0

2γmeku
sin(2kuz) .

Using z(t) ≈ v̄zt the second equation can be integrated over time. Inserting
the result into the first one we obtain

vz(t) ≈ v̄z −
e2B2

0

4γ2m2
ek

2
uc

cos(2kuv̄zt)

where the first term comes from the integration constant. By the same con-
sideration as in Chap. 2 we find that the constant velocity term is identical
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with the average z speed (2.13). If we define ωu = v̄zku the above expression
is identical with (2.12). The particle trajectory is, choosing x(0) = y(0) = 0,

x(t) =
cK

γωu
sin(ωut) , y(t) = 0 , z(t) = v̄zt −

cK2

8γ2ωu
sin(2ωut) (A.20)

in agreement with (2.14).

A.3 Electron Motion in a Helical Undulator

Generalizing (A.16) we choose a vector potential

A =
B0

ku
[cos(kuz)ex + sin(kuz)ey] (A.21)

which corresponds to the helical undulator field

B = −B0 [cos(kuz)ex + sin(kuz)ey] . (A.22)

This field has the sense of rotation of a right-handed screw. Note that it is
a simplified field, not in accordance with the Maxwell equation ∇ × B = 0,
but it is a good approximation for the field of a real helical undulator for
small deviations from the axis. Again the Hamiltonian does not depend on x
and y with the consequence that the corresponding canonical momenta are
constants of motion and can be set equal to zero by choosing appropriate
initial conditions. Hence we have Px ≡ 0, Py ≡ 0, yielding the important
equations:

γmevx(z) = eAx(z) =
eB0

ku
cos(kuz)

γmevy(z) = eAy(z) =
eB0

ku
sin(kuz)

hence
vx =

cK

γ
cos(kuz) , vy =

cK

γ
sin(kuz) . (A.23)

Like in the planar undulator the Hamiltonian depends only on z and Pz

H = H(z, Pz) = c

[
e2B2

0

k2
u

(cos2(kuz) + sin2(kuz)) + P 2
z + m2

ec
2

]1/2

but now even the z dependence drops out:

H = H(Pz) = c

[
e2B2

0

k2
u

+ P 2
z + m2

ec
2

]1/2

. (A.24)

From this expression follows immediately
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Ṗz = −∂H

∂z
= 0 ⇒ Pz = γmevz = const (A.25)

so the speed in z direction is a constant. From (A.23) we find

v2
x + v2

y =
K2c2

γ2

and

vz =
√

v2 − v2
x − v2

y = c
√

β2 − K2/γ2 ≈ v0 ≡ c

(
1 − 1

2γ2
(1 + K2)

)

(A.26)
which differs from the planar undulator case in two aspects: the factor (1+K2)
appears instead of (1 + K2/2), and longitudinal oscillations do not exist. The
absence of these oscillations is the reason why helical undulator radiation
has no higher harmonics (this applies for radiation in forward direction). The
particle trajectory is found by integration of (A.23)

x(t) =
eB0

γmek2
uv0

sin(ωut) , y(t) = − eB0

γmek2
uv0

cos(ωut) , z(t) = v0t .

(A.27)
It is a right-handed helix with the radius

rhel =
eB0

γmek2
uv0

≈ K

γku
. (A.28)

A.4 Energy Exchange Between Electron and Light Wave

A.4.1 Planar Undulator

We want to demonstrate that the equation (3.5), describing the energy transfer
between electron and light wave, can also be obtained in the Hamiltonian
formalism. Like in Chap. 3 the radiation field is described by a plane wave
with linear horizontal polarization

Ex(z, t) = E0 cos(k�z − ω�t + ψ0) .

The field can be derived from the vector potential

A�(z, t) =
E0

ω�
sin(k�z − ω�t + ψ0)ex (A.29)

which satisfies the homogeneous wave equation. The total vector potential
is the sum of the vector potentials of the undulator (A.16) and the light
wave (A.29):

A(z, t) = Au(z) + A�(z, t) .
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It has only an x component but is a function of both z and t. The Hamiltonian
of an electron passing a planar undulator in the presence of a horizontally
polarized light wave is thus

H(r,P , t) = c
[(

Px + eAu
x(z) + eA�

x(z, t)
)2

+ P 2
y + P 2

z + m2
e

]1/2

. (A.30)

The important new feature of this Hamiltonian is its explicit time dependence,
brought in by the vector potential of the radiation field. The electron energy
is therefore not conserved, which we know already, because there is energy
exchange with the radiation field. To find the rate of change dW/dt of the
electron energy we compute the partial derivative of H with respect to time
using (A.14). The rate of change of the electron energy is

dW

dt
=

∂H

∂t
= −e vx(z)Ex(z, t) = −e cK

γ
cos(kuz)E0 cos(k�z − ω�t + ψ0)

≡ −e cKE0

2γ
[cos ψ + cos χ] (A.31)

which is identical with (3.5). Here ψ = (k� + ku)z − ω�t + ψ0 is the pondero-
motive phase defined in Chap. 3, and χ = (k� − ku)z −ω�t + ψ0 is the rapidly
oscillating phase. Equation (A.31) is only valid in the low-gain regime because
we have treated the field amplitude E0 of the light wave as a constant when
computing the time derivative of the Hamiltonian.

It is very easy to understand that vertically polarized radiation cannot
couple to the electron: an electric field having only a y component yields a
vanishing scalar product with the velocity vector v = (vx, 0, vz) of the electron.

A.4.2 Helical Undulator

The helical undulator field (A.22) has a right-handed screw sense. Hence we
expect that the helical undulator radiation will be circularly polarized and
make the following ansatz for the light wave interacting with the electrons

E(z, t) = E0 [cos(k�z − ω�t)ex − sin(k�z − ω�t)ey] (A.32)

which derives from the vector potential

A�(z, t) =
E0

ω�
[sin(k�z − ω�t)ex + cos(k�z − ω�t)ey] . (A.33)

A possible constant phase shift ψ0 has been omitted here. In the language
of modern particle physics the photons described by (A.32) are called right-
handed and have positive helicity (a positive projection of angular momentum
onto the direction of motion). However, in the nomenclature of optics (A.32)
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describes a left circularly polarized wave1. The vector potential of the undu-
lator magnet is given by (A.21):

Au(z) =
B0

ku
[cos(kuz)ex + sin(kuz)ey] .

We can again use (A.14) to compute the time derivative of the electron energy.
The velocities are taken from (A.23).

dW

dt
=

∂H

∂t
= −e vx(z)Ex(z, t) − e vy(z)Ey(z, t)

= −e cK E0

γ
[cos(kuz) cos(k�z − ω�t) − sin(kuz) sin(k�z − ω�t)]

dW

dt
= −e cKE0

γ
cos ψ (A.34)

where ψ = (k� + ku)z − ω� t is the ponderomotive phase defined in Chap. 3.
Sustained energy transfer from the electron to the light wave is obtained
if the ponderomotive phase remains constant during the motion through the
undulator, the optimum value being ψ = 0. From the condition of a stationary
phase

ψ̇ = 0 ⇒ (k� + ku)vz − k�c = 0

and using (A.26) we compute the wavelength of helical undulator radiation:

λ� =
λu

2γ2

(
1 + K2

)
. (A.35)

What happens if we choose the wrong polarization, i.e. negative helicity
resp. right circular polarization? The field is

E(z, t) = E0 [cos(k�z − ω�t)ex + sin(k�z − ω�t)ey]

and one gets

dW

dt
= −e cK E0

γ
[cos(kuz) cos(k�z − ω�t) + sin(kuz) sin(k�z − ω�t)]

= −e cKE0

γ
cos χ (A.36)

where χ = (k�−ku)z−ω� t is the rapidly varying phase defined in Chap. 3. The
time derivative of the electron energy averages to zero over half an undulator

1 In particle physics one looks along the direction of motion of the photon. In that
case the electric vector at a fixed spatial position rotates in clockwise direction. In
optics the convention is such that the observer is facing into the oncoming wave,
and then the field vector at a fixed spatial position rotates counterclockwise, see
e.g. [4].
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period. This means that no energy transfer happens between electron and
light wave; in other words: radiation with the wrong circular polarization will
not be emitted. From this observation it is obvious that a helical undulator
cannot produce linearly polarized radiation either as this a superposition of
left-hand and right-hand circularly polarized waves with 90◦ relative phase
shift. Furthermore we see that it is possible to seed an FEL equipped with a
helical undulator with linearly polarized light: a linearly polarized wave can
be decomposed into two counter-rotating circularly polarized waves, but only
the wave with the correct sense of rotation will be amplified in the FEL. The
output light will of course be circularly polarized.

References

1. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, Volume 1: Mechan-
ics. Butterworth-Heinemann, Boston, MA (2003) 159

2. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading, MA (1959) 159
3. Murphy, J.B., Pellegrini, C.: Introduction to the Physics of the Free Electron

Laser. Laser Handbook, vol. 6, p. 11–67. North Holland, Amsterdam, Oxford,
New York, Tokyo (1990) 162

4. Jackson, J.D.: Classical Electrodynamics. 3rd ed. John Wiley, New York (1999)
167



B

Low-Gain Limit of the High-Gain FEL Theory

In this appendix we want to demonstrate that the low-gain FEL theory and the
Madey theorem are obtained from the high-gain FEL theory if the undulator
magnet is short enough. To this end we start from (4.45) in Chap. 4

dẼx

dz
= i ku

μ0K̂nee
2

2meγ2
r

∫ z

0

[. . .] (z − s) exp [−i 2kuη(z − s)] ds

with

[. . .] =

[
K̂

2γr
Ẽx + i

4γrc

ω�K̂

dẼx

dz

]

.

In a short undulator the square bracket can be simplified: the electric field
can be considered as roughly constant, Ẽx ≈ E0, and its derivative can be
neglected in the square bracket. We then get

dẼx

dz
= i ku

μ0K̂
2nee

2E0

4meγ3
r

∫ z

0

(z − s) exp [−i 2kuη(z − s)] ds

= i Γ 3E0

∫ z

0

(z − s) exp [−i 2kuη(z − s)] ds . (B.1)

The definite integral yields

I(z) ≡
∫ z

0

(z − s) exp [−i 2kuη(z − s)] ds =
(1 + i 2kuηz) exp(−i 2kuηz) − 1

(2kuη)2

The complex field at the end of an undulator of length Lu is

Ẽx(Lu) = E0 + i Γ 3E0

∫ Lu

0

I(z)dz ≡ E0(1 + A(Lu))

where A(Lu) is defined as

A(Lu) = − i Γ 3

(2kuη)2

{
Lu +

i

kuη
+
(

Lu − i

kuη

)
exp(−i 2kuηLu)

}
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The absolute square of the field at z = Lu is
∣∣
∣Ẽx(Lu)

∣∣
∣
2

= E2
0

(
1 + 2�[A(Lu)] + (�[A(Lu)])2 + (�[A(Lu)])2

)
.

The quadratic terms can be neglected in a short undulator hence the gain
function becomes

G =

∣∣∣∣
∣
Ẽx(Lu)

E0

∣∣∣∣
∣

2

− 1 ≈ 2�[A(Lu)]

=
2Γ 3

(2kuη)2

{
1

kuη
− cos(2kuηLu)

kuη
− Lu sin(2kuηLu)

}

Introducing the variable
ξ = kuηLu

the gain function can be written as

G(ξ) = −Γ 3L3
u

2
d

dξ

(
sin2 ξ

ξ2

)
(B.2)

which is the Madey theorem.



C

Non-Periodic First-Order Equations

Our goal is to generalize the first-order equations in such a way that
non-periodic processes in the FEL can be handled. Examples are the SASE
mechanism where the initial particle distribution is random, FEL seeding
with a superposition of harmonic waves of different frequencies, non-uniform
charge density profiles in the electron bunches, effects at the head or tail of
the electron bunch, slippage between the electrons and the light wave.

In the periodic model, that has been discussed at great length in Sect. 4.6,
the slowly varying amplitudes depend only on the position z in the undulator.
Field and current density have been written as

Ẽx(z, t) = Ẽx(z) exp[i k�z − i ω�t]
j̃z(ψ, z) = j0 + j̃1(z) exp [i (k� + ku)z − i ω�t] .

In the nonperiodic generalization the current density inside the electron bunch
depends in addition on our previously defined internal bunch coordinate

ζ = z − β̄ c t = z − v̄zt

and the electric field depends on a corresponding coordinate u inside the FEL
pulse

u = z − c t =
(

1 − c

v̄z

)
z +

c

v̄z
ζ .

Hence the ansatz is made

Ẽx(z, t) = Ê(z, u) exp[i k�z − i ω�t] (C.1)

j̃z(z, t) = j0(ζ) + ĵ1(z, ζ) exp[i (k� + ku)z − i ω�t] (C.2)

The complex field amplitude is now denoted with Ê(z, u), and the subscript
x is dropped for simplicity. These expressions are substituted into the wave
equation (4.8). [

∂2

∂z2
− 1

c2

∂2

∂t2

]
Ẽx(z, t) = μ0

∂j̃x

∂t
(C.3)
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Then we obtain

∂2Ẽx(z, t)
∂z2

=
[

∂2

∂z2
+ 2

∂2

∂z∂u
+

∂2

∂u2
+ 2ik�

(
∂

∂z
+

∂

∂u

)
− k2

�

]
Ê(z, u)

× exp[i k�z − i ω�t]

∂2Ẽx(z, t)
∂t2

= c2

[
∂2

∂u2
+ 2ik�

∂

∂u
− k2

�

]
Ê(z, u) exp[i k�z − i ω�t] .

In the slowly varying amplitude (SVA) approximation Ê(z, u) is assumed to be
a smooth and slowly varying function of z and u so that its second derivatives
can be neglected:

∣∣∣∣∣
∂2Ê

∂z2

∣∣∣∣∣
	 k�

∣∣∣∣∣
∂Ê

∂z

∣∣∣∣∣
,

∣∣∣∣∣
∂2Ê

∂z∂u

∣∣∣∣∣
	 k�

∣∣∣∣∣
∂Ê

∂z

∣∣∣∣∣
.

Then the left-hand side of the wave equation becomes
[

∂2

∂z2
− 1

c2

∂2

∂t2

]
Ẽx(z, t) = 2i k�

∂

∂z
Ê(z, u) exp[i k�z − i ω�t] . (C.4)

The current density j̃x appearing on the right-hand side of (4.8) is written in
the form (compare (4.14))

j̃x ≈ vx

c
j̃z =

[
j0(ζ) + ĵ1(z, ζ) exp[i (k� + ku)z − i ω�t]

] K

γ
cos(kuz) .

The stimulation by the shape term j0(ζ) is far away from the FEL resonance,
and hence this term can be dropped when computing the time derivative:

∂j̃x

∂t
= −

[

v̄z
∂ĵ1
∂ζ

+ i ω�ĵ1(z, ζ)

]

exp[i (k� + ku)z − i ω�t]
K

γ
cos(kuz) .

In the SVA approximation

v̄z

∣∣∣∣∣
∂ĵ1
∂ζ

∣∣∣∣∣
	
∣∣∣ω�ĵ1(z, ζ)

∣∣∣

so the wave equation (C.3) reduces to

∂

∂z
Ê(z, u) = −μ0cK

2γ
ĵ1(z, ζ) exp(i kuz) cos(kuz) .

The average value of exp(i kuz) cos(kuz) over one undulator period is 1/2.
Replacing K by K̂ to take the longitudinal oscillation into account we finally
obtain the generalization of (4.30d)
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∂

∂z
Ê(z, u) = −μ0cK̂

4γr
ĵ1(z, ζ) . (C.5)

The microscopic expression for the current density is

jz =
Qb v̄z

NtAb

Nt∑

n=1

δ(ζ − ζn(z))

where Qb = −Nt e is the charge of the bunch, Ab the cross section, and
Nt the total number of electrons in the bunch. Since the present FEL codes
work with a far smaller number N of test particles, jz must be approximated
by smooth functions j0(ζ) and ĵ1(z, ζ) that vary slowly in the z coordinate
(compared to the undulator period λu) and in the ζ coordinate (compared to
the FEL wavelength λ�). Indeed, the conversion of the particle positions ζn

to smooth functions is a delicate and sensitive part of FEL simulations using
macroparticle descriptions. Pseudo-random distributions can be used yielding
the same statistical fluctuations that are present in the real electron beam.

In most FEL codes locally periodic conditions are assumed. The bunch is
subdivided into slices of length λ� which are similar the FEL buckets. Within
each slice periodic conditions are assumed. The local amplitude of the first
harmonic is written as

ĵ1(z, cm) ≈ j0(cm)
2

Nm

∑

n∈Im

exp(−i k�ζn) (C.6)

where cm = mλ� is the center of slice m, Nm the number of particles in that
slice, and Im the index range.

We know from Sect. 5.6 that not all particles stay in their bucket during
the FEL gain process but many of them move into the next bucket. In the
simulation program this is accounted for by replacing particles leaving a slice
on one side by corresponding particles entering the slice from the other side.
Further details are beyond the scope of this book. The non-periodic form of
the coupled equations is

dψn

dz
= 2kuηn , n = 1...N (C.7a)

dηn

dz
=

−e

mec2γr
�
{(

K̂ Ê(z, un)
2γr

− iμ0c
2 ĵ1(z, ζn)

ω�

)

eiψn

}

(C.7b)

ĵ1(z, cm) = j0(cm)
2

Nm

∑

n∈Im

exp(−i k�ζn), cm = mλ� (C.7c)

∂Ê(z, u)
∂z

= −μ0cK̂

4γr
ĵ1(z, ζ) (C.7d)
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with
ζn = (ψn + π/2)λ�/(2π), un ≈ ζn − (1 − β̄)z .

In these equations N is the total number of test particles per bunch and not
the number of test particles per slice as in the periodic case.
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Gaussian Modes of Laser Beams

Gaussian beam modes are characteristic of the output of lasers. They are also
well suited to describe the beam in a free-electron laser. In this appendix we
follow essentially the treatments in [1] and [2].

D.1 Fundamental Gaussian Mode

Laser beams are coherent electromagnetic radiation and obey the Maxwell
equations. In a medium with refractive index n the electric field vector satisfies
the wave equation

∇2E − n2

c2

∂2E

∂t2
= 0 (D.1)

where E(x, y, z, t) can be any Cartesian component of E. We restrict ourselves
to homogeneous media (n = const) or vacuum (n = 1). In the laser literature
often quadratic index media are considered, see e.g. [1, 2]. We look for a
cylindrically symmetric solution of the wave equation which depends only on
r =
√

x2 + y2, z, and t, but not on the azimuthal angle. Writing

E(x, y, z, t) = f(r, z) exp(i kz − i ωt) with k = nω/c

we obtain the equation

∂2f

∂r2
+

1
r

∂f

∂r
+ 2 i k

∂f

∂z
= 0 (D.2)

In practice the field amplitude varies slowly with z hence the second derivative
∂2f/∂z2 has been neglected in comparison with 2 i k ∂f/∂z (SVA approxima-
tion).

The simplest solution has no zeros in radial direction. It is convention to
write it in the form

f(r, z) = exp
[
i P (z) +

i k r2

2q(z)

]

P. Schmüser, et al.: Gaussian Modes of Laser Beams, STMP 229, 175–180 (2008)
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with two complex functions P (z) and q(z). Substituting this into (D.2) we
obtain

−
(

k

q

)2

r2 + 2 i

(
k

q

)
− 2 k P ′ − k2r2

(
1
q

)′
= 0

where the prime indicates differentiation with respect to z. This equation
holds for all r so the coefficients of different powers of r must vanish:

(
1
q

)2

+
(

1
q

)′
= 0 , P ′ =

i

q
(D.3)

The solutions are

q(z) = z + q0, P (z) = i ln
(

1 +
z

q0

)
(D.4)

with a complex constant q0. The amplitude function becomes

f(r, z) = exp
[
− ln
(

1 +
z

q0

)
+

i k r2

2(q0 + z)

]
(D.5)

The amplitude must vanish in the limit r → ∞ for any value of z. At z = 0
this is realized if the constant q0 is purely imaginary. It is expressed in the
form

q0 = −i zR with zR =
k w2

0

2
=

πw2
0

λ/n
(D.6)

Here zR is the so-called Rayleigh length, a characteristic length for diffraction,
and λ = 2πc/ω is the vacuum wavelength. The laser beam is assumed to have
a waist of width w0 at z = 0.

Furthermore the following quantities are defined

w(z) = w0

√
1 + (z/zR)2 (D.7)

R(z) = z
(
1 + (zR/z)2

)
(D.8)

We will see below that the beam width at position z is described by w(z)
while R(z) is the radius of curvature of the wave front. Then

1
q(z)

=
1

R(z)
+ i

λ/n

πw2(z)
(D.9)

With these quantities the first exponential term in the amplitude function
(D.5) can be written in the form

exp [− ln (1 + i z/zR)] =
w0

w(z)
exp(−i χ(z))

with the so-called Gouy phase

χ(z) = arctan(z/zR) (D.10)
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We have used ln(a+ i b) = ln(
√

a2 + b2)+ i arctan(b/a). The second exponen-
tial term in (D.5) becomes after separating real and imaginary parts

exp
[

i k r2

2q(z)

]
= exp

[
− r2

w2(z)

]
exp
[

i k r2

2R(z)

]

The electric field of a horizontally polarized laser wave is thus

Ex(r, z, t) = E0
w0

w(z)
exp
[
− r2

w2(z)

]
exp [i k z − i χ(z) − i ωt] exp

[
i k r2

2R(z)

]

(D.11)
There are many differences to a plane wave:

• The field amplitude drops to 1/e of its peak value at a radius r = w(z).
The smallest width w0 is obtained at the waist at z = 0.

• The phase velocity is different from that of a plane wave, which is vph =
ω/k = c/n. The presence of the Gouy phase changes the phase velocity of
the Gaussian laser wave near a beam waist.

• The phase factor exp
[
i k r2/(2R(z))

]
implies that the wave fronts are

curved and of nearly spherical shape.

The beam is sketched in Fig. D.1. The radius of curvature becomes infinite
at the waste position z = 0 and assumes its minimum value of Rmin = 2zR

at z = zR. Due to the divergence of the beam the light rays are not exactly
parallel to the z axis. As a consequence the electric field has a small z com-
ponent. This follows also from the first Maxwell equation ∇ · E = 0: since
∂xEx �= 0, a field component Ez must be present.
The divergence angle of the beam emerging from the waist is

θdiv ≈ tan θdiv =
λ

nπ w0
(D.12)

The product of beam width and divergence is for a beam in vacuum

–3 –2 –1 1 2 3
–4

–2

0

2

4

z/LR

w
(z

)/
w

0 θdiv

2w0

0

Fig. D.1. The beam envelope ±w(z)/w0 in the vicinity of a waist. The dotted line
indicates the divergence angle θdiv
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w0 · θdiv =
λ

π
. (D.13)

The intensity of the laser beam is quadratic in the electric field and thus
proportional to exp

[
− 2r2

w2(z)

]
. In terms of Gaussian variances one has therefore

σx = w0/2, σθ = θdiv/2 .

From (D.13) follows then the fundamental relation between laser beam width
and beam divergence

σx · σθ =
λ

4π
. (D.14)

In accelerator terminology this product is called the beam emittance.

D.2 High-Order Gaussian Beam Modes

The fundamental Gaussian mode depends only the distance r from the axis
and the longitudinal coordinate z. If we do not impose cylindrical symmetry
the wave equation (D.1) has solutions of the form [2]

TEM00 TEM10

Fig. D.2. Top: Electric field distribution of the TEM00 and TEM10 Hermite-
Gaussian laser modes in a plane transverse to the axis of propagation. Bottom:
the field Ex(x, 0, 0) of the TEM00 and TEM10 modes as a function of the horizontal
coordinate x at y = z = 0
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Ex(x, y, z) = E0
w0

w(z)
Hm

(√
2 x

w(z)

)

Hn

(√
2 y

w(z)

)

exp
[
−x2 + y2

w2(z)

]

∗ exp [i k z − i (m + n + 1)χ(z)] exp
[
i k (x2 + y2)

2R(z)

]
. (D.15)

The Hm are the Hermite polynomials. The fundamental mode is the special
case m = n = 0. The TEM00 mode is identical with the fundamental Gaussian
mode discussed in the previous section. This mode has its highest intensity on
the axis. In an FEL there is optimum overlap between the TEM00 mode and
the electron beam, and for this reason this mode will be strongly amplified.
The higher modes with odd indices have vanishing intensity on the axis and
can generally be neglected in the high-gain FEL while the modes with even
indices have a finite size on the beam axis. In the TEM10 mode the electric
field Ex changes sign when going from positive to negative x. This is because
H1(x) is an odd function. Therefore this mode cannot couple to an electron
beam with a charge distribution that is symmetric in x. The electric field
pattern of the TEM00 and TEM10 Hermite-Gaussian laser modes is shown in
Fig. D.2.

In the TEM20 and TEM22 modes (see Fig. D.3) the electric field Ex is an
even function of x. These modes couple to a symmetric electron beam.

TEM20 TEM22

Fig. D.3. Electric field distribution of the TEM20 and TEM22 Hermite-Gaussian
laser modes and the field as a function of x at y = z = 0
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E

Eigenmode Approach

We have seen in Chap. 4 that the third-order equation for the slowly varying
field amplitude Ẽx(z) is solved by an exponential function exp(αz). For a
mono-energetic beam which is on resonance (η = (W − Wr)/Wr = 0) and
for negligible space charge (kp = 0), the three eigenvalues are solutions of the
simple cubic equation

α3
j = i Γ 3.

In this appendix we consider more general cases. For a beam energy different
from the resonance energy (η �= 0) and with space charge present (kp �= 0)
the third-order equation is still applicable, and for reasonable values of these
parameters there exists one eigenvalue α1 with positive real part leading to
exponential growth. The third-order equation is not applicable if beam en-
ergy spread is present (ση > 0), but then the linear integro-differential equa-
tion (4.44) can be used which will usually possess an eigenvalue with �(α1) > 0
if ση is small enough to preserve the main features of the solutions. The eigen-
value leading to exponential growth will be determined in the following sec-
tions. First the general procedure is described resulting in (E.13), and then it
is applied to the one-dimensional FEL and a simplified version of the three-
dimensional FEL. We will show that in the 1D case the two dimensionless
quantities ση/ρFEL and kp/Γ have a significant influence on the FEL gain. In
the 3D case the ratio of beam radius rb to the scale parameter w0 has to be
considered in addition (rb/w0 = rb/

√
λ�Lg0).

E.1 General Procedure

In this section we generalize the method for determining the eigenvalues αj

to the 3D case. To this end the full three-dimensional wave equation for the
electric field of a horizontally polarized light wave has to be considered
[
∇2 − 1

c2

∂2

∂t2

]
Ex(x, y, z, t) = μ0

∂jx

∂t
+

1
ε0

∂ρ

∂x
=

1
ε0

(
1
c2

∂jx

∂t
+

∂ρ

∂x

)
.

P. Schmüser, et al.: Eigenmode Approach, STMP 229, 181–190 (2008)
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The second term on the right-hand side can be neglected for two reasons. Its
magnitude is small compared to that of the first term:

T1 ≡ 1
c2

∣∣
∣∣
∂jx

∂t

∣∣
∣∣ ≈

ω�K̂

c2γ

∣
∣j̃1
∣
∣ =

2πK̂

γλ�
|ρ̃1| , T2 ≡

∣∣
∣∣
∂ρ

∂x

∣∣
∣∣ ≈

1
σx

|ρ̃1|

Typical numbers for FLASH are: Lorentz factor γ = 1000, wavelength λ� =
30 nm, horizontal beam width σx ≈ 0.1 mm. Then T2/T1 = γλ�/(2πK̂σx) ≈
0.05. More importantly, this term has a phase slippage exp(ikuz) against the
FEL wave and its contribution to the growth rate of the field averages out
over one undulator period. This can be seen from the equation

∂ρ

∂x
=

∂ρ̃1

∂x
exp(iψ) =

∂ρ̃1

∂x
exp(ik�z − iω�t) exp(ikuz) .

(In the SVA approximation the phase of ∂ρ̃1/∂x varies slowly and can be
taken as constant over one undulator period).

In the present eigenmode approach we neglect the transverse dynamics of
the particles (betatron oscillations). The transverse offset r⊥ = (x, y) appears
as an independent coordinate in the distribution function and the derivatives
with respect to x and y will be dropped in the Vlasov equation. For the
transverse electric field the ansatz is made

Ẽx(r⊥, z, t) = Ẽx(r⊥, z) exp[i(k�z − ω�t)] with r⊥ = (x, y) . (E.1)

Applying the slowly varying amplitude approximation and expressing jx in
terms of j̃1 this equation assumes the form
[
∇2

⊥ + 2 i k�
∂

∂z

]
Ẽx = − i k�μ0c K̂

2γr
j̃1(r⊥, z) with ∇2

⊥ =
∂2

∂x2
+

∂2

∂y2
.

(E.2)
This is the three-dimensional generalization of (4.20).

In the 3D case the distribution function acquires a dependency on the
transverse coordinates. To keep the relation to the 1D model an equivalent
beam cross section Ab is chosen which is used for normalization purposes but
has no influence on absolute (unnormalized) quantities. We set

Ab =
I0

max(|j0|)
(E.3)

where I0 is the magnitude of the dc beam current and max(|j0|) the maximum
value of the dc current density. For a round beam with constant charge density
we get

Ab = πr2
b

while for a Gaussian beam with σx = σy = σr

Ab = 2πσ2
r .
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The dc beam current is
I0 = neAb e c . (E.4)

Generalizing (4.34) the particle distribution function is written as

F (r⊥, ψ, η, z) = F0(r⊥, η) + �
{

F̃1(r⊥, η, z) · eiψ
}

. (E.5)

The dc current density and the modulated current density are (compare (4.37))

j0(r⊥) = −I0

∫ δ

−δ

F0(r⊥, η) dη, j̃1(r⊥, z) = −I0

∫ δ

−δ

F̃1(r⊥, η, z) dη (E.6)

(remember that I0 is the absolute magnitude of the dc current and thus posi-
tive, while j0 is negative since the electron charge is qe = −e). The modulated
distribution function obeys an equation similar to (4.40)

(∂z + i 2kuη)F̃1(r⊥, η, z) =
e

mec2γr

[
K̂

2γr
Ẽx(r⊥, z) + Ẽz(r⊥, z)

]
dF0

dη
. (E.7)

The longitudinal space charge field Ẽz can be computed from the modulated
charge density using the Maxwell equation ∇ · E = ρ/ε0. Neglecting the
derivatives with respect to the transverse coordinates x and y and using the
SVA approximation one finds as a generalization of (4.17)

Ẽz(r⊥, z) = − iμ0c

k�
j̃1(r⊥, z) =

iμ0c I0

k�

∫
F̃1(r⊥, η, z) dη . (E.8)

It is the spirit of the eigenmode analysis to assume that Ẽx and F̃1 depend
exponentially on z:

Ẽx(r⊥, z) = A(r⊥)eαz, F̃1(r⊥, η, z) = B(r⊥, η)eαz. (E.9)

Substitution in (E.2) and (E.7) yields the equations

[
∇2

⊥ + 2 i k�α
]
A =

i k�μ0c I0K̂

2γr

∫
B dη (E.10)

[α + 2 i kuη]B =
e

mec2γr

[
K̂

2γr
A +

iμ0c I0

k�

∫
B dη

]
dF0

dη
. (E.11)

The quantities to be determined are the eigenvalues αj and the coefficient
functions A(r⊥) and B(r⊥, η). Note that the integral

∫
B dη ≡

∫ δ

−δ

B(r⊥, η) dη

depends only on the transverse coordinates r⊥ but not on the fractional energy
deviation η. This allows us to divide (E.11) by [α + 2 i kuη] to obtain B, and
then to integrate over η:
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∫ δ

−δ

B dη =
e

mec2γr

[
K̂

2γr
A +

iμ0c I0

k�

∫
B dη

]∫ δ

−δ

1
[α + 2 i kuη]

dF0

dη
dη .

We make the assumption that the unmodulated part of the distribution func-
tion can be factorized

F0(r⊥, η) = G(r⊥)H(η) . (E.12)

Integrating by parts and using H(±δ) = 0 we obtain

∫
Bdη = i 2ku

e

mec2γr

[
K̂

2γr
A +

iμ0c I0

k�

∫
B dη

]

G(r⊥) C(α)

=

[
i kue K̂

mec2γ2
r

A − k2
p Ab

∫
B dη

]

G(r⊥) C(α)

with the abbreviations

C(α) =
∫

H(η)
(α + i 2kuη)2

dη , k2
p =

2kuμ0e

mec γrk�

I0

Ab
.

Then we can express
∫

Bdη in terms of A:

∫
Bdη =

i ku eK̂

mec2γ2
r

C Ab G

1 + k2
p C Ab G

· A

When this is substituted in (E.10) we get an implicit equation for the deter-
mination of the eigenvalues αj :

[
∇2

⊥ + 2 i k�α
]
A(r⊥) = (2 i k�) · i Γ 3 C(α) Ab G(r⊥)

1 + k2
p C(α) Ab G(r⊥)

· A(r⊥) (E.13)

Note that the gain parameter Γ and the space charge parameter kp are defined
in the same way as in the one-dimensional theory, see (4.47).

E.2 One-Dimensional Case

In the 1D case the function A(r⊥) ≡ A is a constant and the operator ∇2
⊥

can be omitted from (E.13). Moreover, we can replace H(η) by F0(η) and
Ab G(r⊥) by 1. Dividing (E.13) by A and ordering terms we obtain the fol-
lowing eigenvalue equation

α =
[
iΓ 3 − k2

pα
] ∫ δ

−δ

F0(η)
(α + i 2kuη)2

dη . (E.14)



E.2 One-Dimensional Case 185

Note that this eigenvalue equation is valid for an arbitrary initial energy dis-
tribution F0(η) in the beam. An alternative derivation of this result is possible
by inserting the eigenmode ansatz Ẽx = A exp(αz) into (4.44).

The power growth in the exponential regime is determined by the real part
of α1:

P (z) ∝ exp(2�(α1) z) .

The growth rate depends on the mean relative energy offset

〈η〉 =
∫ δ

−δ

η F0(η) dη .

The maximum value of the function 2�(α1(η)) yields the fastest power rise
and is thus directly related to the power gain length. It is therefore obvious
to define the power gain length by the equation

Lg = [max{2�(α1(η))}]−1
. (E.15)

We can convince ourselves that this expression reduces to the 1D power gain
length Lg0 for a beam with η = 0 and kp = 0: in that case we have

α1 = (i +
√

3)Γ/2 ⇒ [2�[α1]]
−1 =

1√
3Γ

= Lg0 .

The above discussion shows that it is useful to introduce a normalized growth
rate function

fgr(η) = 2�(α1(η))Lg0 .

The maximum value of this function is identical with the ratio Lg0/Lg.

E.2.1 Mono-Energetic Beam Without Space Charge Force

For the special case of a mono-energetic beam of energy W the equation (E.14)
becomes

α3 + i 4kuηα2 + (k2
p − 4k2

uη2)α − i Γ 3 = 0 . (E.16)

Alternatively, this result is obtained by inserting the eigenmode ansatz Ẽx =
A exp(αz) into (4.46). The three roots αj can in principle be computed ana-
lytically, although this may be cumbersome. Often a numerical computation
is easier.

An analytical approach is reasonably straightforward for the case kp = 0.
Equation (E.16) can be transformed into a normalized algebraic equation

a (a + i b)2 − i = 0 with a =
α

Γ
and b =

η

ρFEL

. (E.17)

The three solutions of this cubic equation are
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a1 =
1
6

(
u − 4b2

u
− i 4b

)
(E.18)

a2 =
1
6

(

−1 − i
√

3
2

u +
2

1 − i
√

3
4b2

u
− i 4b

)

a3 =
1
6

(

−1 + i
√

3
2

u +
2

1 + i
√

3
4b2

u
− i 4b

)

where the complex function u(b) is defined by

u = u(b) =
3
√

108 i − 8i b3 + 12
√

12b3 − 81 . (E.19)

The eigenvalues depend on the relative energy offset η = (W − Wr)/Wr

through the function u(b) = u(η/ρFEL).
As said above, the maximum value of 2�{α1(η)} is equal to the inverse

power gain length. The real parts of the eigenvalues α1 and α2, multiplied
with 2Lg0, are plotted in Fig. E.1 as a function of η/ρFEL , the energy de-
tuning η divided by the FEL parameter. The third eigenvalue α3 remains
purely imaginary even for η �= 0. The physical relevance of this figure
is discussed in Chap. 6. The maximum value of the growth rate function
fgr(η) = 2�(α1(η))Lg0 is unity which means that in this special case the
power gain length Lg is indeed identical with the 1D power gain length Lg0 of
a mono-energetic beam, as expected. In the vicinity of the maximum at η = 0

–4 –2 0 2 4
–1

0

1

η/ρFEL

 R
e(

2α
 j)

 L
g0

α1

α2

Fig. E.1. The real part of the first and second eigenvalue, multiplied with 2Lg0, as
a function of η/ρFEL , the relative energy deviation divided by the FEL parameter.
Note that �(α1) (continuous red curve) is positive, corresponding to exponential
growth of the eigensolution V1(z) = exp(α1z). However, the real part vanishes above
η;≈ 1.88ρFEL which means that the exponential growth stops if the electron energy
W exceeds the resonant energy Wr by more than ΔW = 1.88ρFELWr. The real part
of α2 (dashed blue curve) is always negative, hence the eigenfunction V2(z) drops
exponentially. Finally, �(α3) ≡ 0, so V3(z) oscillates along the undulator axis
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the growth rate function can be approximated by a parabola

2�(α1(η))Lg0 ≈
(

1 − η2

9 ρ2
FEL

)
. (E.20)

The imaginary part of α1 is needed when ones wants to compute the FEL
group velocity, which is done in Sect. 6.5. For this purpose the derivative
of �(α1) with respect to the light frequency ω has to be calculated. To do
this, we express the detuning parameter η in terms of the relative frequency
deviation, see (5.7):

η = η(ω) = −ω − ωr

2ωr
, b = b(ω) = − ω − ωr

2ωrρFEL

.

In the vicinity of ω = ωr resp. η = 0 the derivative of �(α1) is approximately
given by

d�(α1)
dω

≈
[
d�(α1)

db

db

dω

]

ω=ωr

=
Γ

3ωrρFEL
=

2ku

3ωr
. (E.21)

In order to prove this one takes the derivative of (E.17) with respect to b =
η/ρFEL , yielding (

da

db

)

b=0

= −2 i

3

and makes use of α1 = a1Γ and η = −(ω − ωr)/(2ωr).

E.2.2 Inclusion of Space Charge Force and Beam Energy Spread

If the electron beam has an energy spread ση and a non-negligible space
charge parameter kp the determination of the eigenvalue α1 is possible by
solving the integro-differential equation (4.44) with numerical procedures. We
call W0 the mean electron energy and η0 = (W0 − Wr)/Wr the mean value
of η. We show several examples of such numerical studies. In the left part of
Fig. E.2 the space charge parameter is raised from kp = 0 to kp = 0.5Γ and
to kp = 1.0Γ . The maximum of the growth rate function 2�(α1)Lg0 drops
from 1.0 to 0.93 resp. 0.78. Effectively this means that the power gain length
will grow by 7% if kp is equal to 0.5Γ , resp. by 28% if kp = 1.0Γ . Moreover,
the width of the FEL gain curve shrinks considerably with increasing space
charge. At FLASH kp ≤ 0.2Γ , so the increase in gain length due to space
charge is almost negligible. Beam energy spread is obviously more important.
For ση = 0.5 ρFEL the maximum of the growth rate function drops to 0.8
which implies that the corrected gain length is about 25% longer than the
ideal length, Lg ≈ 1.25Lg0. At ση = 1.0 ρFEL the gain length increases by
more than a factor of two.
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Fig. E.2. Left: the growth rate function fgr(η0) = 2�(α1(η0))Lg0 plotted versus
η0/ρFEL for different values of the space charge parameter kp. Continuous red curve:
kp = 0, dotted blue curve: kp = 0.5 Γ , dashed green curve: kp = 1.0 Γ . The energy
spread is put to zero. Right: the growth rate function fgr(η0) = 2�(α1(η0))Lg0

is plotted versus η0/ρFEL for different values of the relative beam energy spread
ση = σW /Wr. Continuous red curve: ση = 0, dotted blue curve: ση = 0.5 ρFEL ,
dashed green curve: ση = 1.0 ρFEL . Here the space charge parameter is set to zero

E.3 Cylindrical Beam with Constant Charge Density

For simplicity we restrict ourselves to the case of a cylindrical beam with
homogeneous charge density. More general beam cross sections are consid-
ered in [1]. Cylindrical coordinates (r, φ, z) with r =

√
x2 + y2 are used and

azimuthal symmetry is assumed. Then A = A(r) and

G(r) = 1/Ab for r ≤ rb, G = 0 for r > rb

where rb is the beam radius. Equation (E.13) reads now

A′′ +
A′

r
+ i 2k�αA =

−2 k�Γ
3C GAb

1 + k2
pC GAb

A (E.22)

Defining coefficients u = u(α) and v = v(α) by

u2 =
2 k�Γ

3C(α)
1 + k2

pC(α)
+ i 2k�α, v2 = −i 2k�α

the differential equation for A(r) can be written as

A′′ +
A′

r
+ u2A = 0 for r ≤ rb (E.23)

A′′ +
A′

r
− v2A = 0 for r > rb

The solutions which remain finite at r = 0 and tend to zero for r → ∞ are



E.4 When is the 1D Theory Applicable? 189

A(r) = c1J0(u r) for r ≤ rb (E.24)
A(r) = c2K0(v r) for r > rb

Here J0 and K0 are Bessel functions. The continuity of A and A′ at r = rb

leads to the system of equations

c1 · J0(u rb) = c2 · K0(v rb) (E.25)
c1 · u J ′

0(u rb) = c2 · v K ′
0(v rb)

In order to have a nontrivial solution for the coefficients c1 and c2 the deter-
minant must vanish

Det =
∣∣∣∣

J0(u rb) K0(v rb)
uJ ′

0(u rb) v K ′
0(v rb)

∣∣∣∣ = 0 (E.26)

The roots u = u(α), v = v(α) of the equation Det = 0 can be found numer-
ically. Note that a whole sequence of roots un, vn of the equation Det = 0
exists owing to the oscillatory nature of the Bessel function J0(x). The first
root u1, v1 yields an eigenvalue α1 with a larger positive real part than ob-
tained for the higher roots. This eigenvalue leads to the fastest growth rate
and is therefore the most relevant one for the FEL.

It is worthwhile mentioning that a sequence of eigenvalues with positive
real part is also obtained for realistic electron beam profiles. The FEL beam
can then be characterized in good approximation by the Gaussian modes
described in Appendix D. The fundamental TEM00 mode has the highest
growth rate and dominates in an FEL equipped with a long undulator while
higher modes such as TEM10, TEM20 etc have a lower growth rate.

E.4 When is the 1D Theory Applicable?

In order to investigate the range of validity of the 1D theory the simplified
model of a cylindrical electron beam with constant charge density is not ade-
quate. Instead we consider the most important practical case that the beam
has a Gaussian transverse charge distribution. So we assume an amplitude
depending on r =

√
x2 + y2 in the form

A(r) = A0 exp
(
− r2

2σ2
r

)

which has cylindrical symmetry, i.e. σx = σy = σr. The left-hand side of
(E.13) becomes [

∇2
⊥ + 2 i k�α

]
A(r⊥) (E.27)

The magnitude of the derivative is bounded

∣
∣∇2

⊥A(r)
∣
∣ =
∣∣
∣∣A

′′ +
A′

r

∣∣
∣∣ ≤

2
σ2

r

A0 .



190 E Eigenmode Approach

To find the magnitude of the second term in (E.27) we insert for α the eigen-
value α1 of the exponentially growing solution which is roughly given by (4.51):

α1 ≈ (i +
√

3)Γ/2 |α1| ≈ Γ = (
√

3Lg0)−1 .

The derivative term can be disregarded if

2
σ2

r

	 2k�Γ .

It follows that the rms width of the electron beam has to obey the inequality

σr � 0.52
√

Lg0λ� .

This is in accordance with our qualitative argumentation in Chap. 6 that the
influence of Rayleigh length should exceed twice the power gain length in
order to suppress the influence of optical diffraction:

zR =
4πσ2

r

λ�
> 2Lg0 ⇒ σ2

r >
Lg0λ�

2π
.

As a rule of thumb one can say that the 1D FEL theory is adequate if the
rms electron beam width is much larger than the geometric mean of FEL
wavelength and power gain length

σr �
√

λ�Lg0 . (E.28)

At FLASH and even more so at the XFEL this criterion cannot be fulfilled
if one aims for a short gain length. The obvious conclusion is that a realistic
description of UV and X-ray FELs must be based on a 3D theory.
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F

Periodic Current Modulation Resulting
from Shot Noise

The quantization of charge is the deeper reason why shot noise (in German
Schrotrauschen) is observed in electronic circuits. This type of noise occurs
also in the electron beam of an FEL. Our discussion of shot noise follows the
lucid presentation in [1].

F.1 Power in Time and Frequency Domain

Consider a real function A(t), for example the current through an ohmic
resistor of R = 1 Ω, and its Fourier transform a(ω). They are related by

A(t) =
1
2π

∫ ∞

−∞
a(ω) exp(−i ωt)dω (F.1)

a(ω) =
∫ ∞

−∞
A(t) exp(i ωt)dt. (F.2)

Since A(t) is real it follows

a(ω) = a∗(−ω) . (F.3)

In practice the measurement time is restricted to a finite duration T . If A(t)
is put to zero outside the range −T/2 ≤ t ≤ T/2 we can define

aT (ω) =
∫ T/2

−T/2

A(t) exp(i ωt)dt (F.4)

which will approach a(ω) for a sufficiently long time T .
The average power is

P = R
1
T

∫ T/2

−T/2

|A(t)|2 dt

= R
1

4π2T

∫ T/2

−T/2

[∫ ∞

−∞
aT (ω) exp(−i ωt)dω

∫ ∞

−∞
a∗

T (ω′) exp(i ω′t)dω′
]

dt.
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The factor R = 1 Ω will be dropped in the following. Interchanging the order
of integration and using

∫ T/2

−T/2

exp(i[ω′ − ω]t)dt ≈
∫ ∞

−∞
exp(i[ω′ − ω]t)dt = 2πδ(ω′ − ω)

which is valid for large T we obtain

P =
1

2πT

∫ ∞

−∞
|aT (ω)|2 dω.

This can be written as an integral over positive frequencies

P =
1

πT

∫ ∞

0

|aT (ω)|2 dω. (F.5)

If we define the spectral density function as

S(ω) = lim
T→∞

1
πT

|aT (ω)|2 (F.6)

then S(ω)dω is the average power within the frequency range [ω, ω +dω], and

P =
∫ ∞

0

S(ω)dω (F.7)

is the total power.

F.2 Shot Noise

We consider relativistic electrons (v → c ) that are randomly distributed along
the bunch and call N the number of electrons in the time interval T . Then
Ṅ = N/T is the average number of electrons per unit time. The absolute
magnitude of the dc beam current is

I0 = e Ṅ .

The current seen by a stationary observer has a time dependence

I(t) = e
N∑

j=1

δ(t − tj) (−T/2 ≤ t, tj ≤ T/2) (F.8)

where the delta functions account for the point-like nature of the electrons
in the beam. The average of I(t) over a large sample of identical systems is
equal to I0:

〈I(t)〉 = eN/T ≡ I0. (F.9)
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The Fourier transform of I(t) is

iT (ω) =
∫ T/2

−T/2

I(t) exp(iωt)dt = e

N∑

j=1

exp(iωtj). (F.10)

According to (F.6) the spectral density function is computed by forming the
expression

lim
T→∞

1
πT

|iT (ω)|2 = lim
T→∞

e2

πT

⎡

⎣N +
∑

j

∑

k 
=j

exp(iω[tj − tk])

⎤

⎦ . (F.11)

When we take the average over a large sample of identical systems the double
sum in this expression vanishes because the times tj and tk are random.
Moreover, N = ṄT . Hence we obtain for the ensemble-averaged spectral
density function

S(ω) =
e I0

π
(F.12)

corresponding to a current density J(ω) whose magnitude is

|J(ω)| =

√
S(ω)
Ab

=

√
e I0

π

1
Ab

. (F.13)

Owing to the delta-function like shape of the current pulse of a single electron
this spectral density is independent of frequency.

The modulated current density j̃1 that is needed in Sect. 7.1 can be com-
puted from the spectral energy contained in the FEL bandwidth of ω�±Δω/2
which we express in terms of an rms current

I2
rms = S(ω)Δω =

e I0

π
Δω. (F.14)

The important result is

j̃1 =

√
I2
rms

Ab
=

√
e I0Δω

π

1
Ab

. (F.15)

Here Ab is the cross sectional area of the electron beam.

Reference

1. Yariv, A.: Optical Electronics in Modern Communications. Oxford Universtity
Press, Oxford (1997) 191





G

The Gamma Distribution

In this appendix we study the statistical properties of FEL radiation and
demonstrate that the FEL pulse energy obeys the gamma distribution. The
one-dimensional approximation is applied, neglecting the dependencies on the
transverse coordinates and treating the electromagnetic waves as truncated
plane waves. The number of undulator periods Nu is considered as large so
that the frequency ω� of undulator radiation is restricted to a narrow range.
We consider two limiting cases:

• (1) The electron bunch is short compared to the length lcoh = c τcoh of the
optical wavetrains that are produced when the electrons emit undulator
radiation. Then the amplitudes of the wavetrains from different electrons
must be added and we obtain a single wave packet which is sometimes
called a longitudinal mode. In this case the statistical properties of the FEL
radiation energy are described by the negative exponential distribution.

• (2) The bunch length is large compared to the length lcoh of the optical
wavetrains. The wavetrains emitted by electrons of sufficient spatial sepa-
ration do not overlap. In that case several independent wave packets will
be excited, and the total FEL pulse energy obeys the gamma distribution.

G.1 A Single Wave Packet

We consider first an electron bunch which is shorter than the optical wave
trains. The electrons are randomly distributed along the bunch axis. Parti-
cle j emits a radiation field which we write approximately as a horizontally
polarized plane wave

Ej(t) = E0 exp(−iω�t) exp(iφj) . (G.1)

The total electric field generated by all electrons in the bunch is

E(t) = E0 exp(−iω�t)
∑

j

exp(iφj) . (G.2)

P. Schmüser, et al.: The Gamma Distribution, STMP 229, 195–199 (2008)
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The time-averaged field energy is

U ∝ E2
0

∣∣
∣∣∣∣

∑

j

exp(iφj)

∣∣
∣∣∣∣

2

. (G.3)

We are interested in the statistical fluctuations of the energy. To this end, it
is useful to realize that the sum of the phase factors

∑
j exp(iφj) with random

phases can be interpreted as a random walk in the complex (x+iy) plane with
unit step size, writing the phase factors in the form exp(iφj) = xj + iyj with
x2

j + y2
j = 1. Figure G.1 illustrates such random walks for two different sets of

random phases. After N steps, the end point of a random walk starting from
the origin will have a certain probability to be found in the intervals [x, x+dx]
and [y, y + dy]. According to the Central Limit Theorem, this probability is
given by the two-dimensional Gaussian (see e.g. [1, 2])

p(x, y)dxdy =
1

2πσ2
exp
(
−x2 + y2

2σ2

)
dxdy with 2σ2 = N . (G.4)

The distance r from the origin is r =
√

x2 + y2. Using dxdy = 2πrdr the
probability of finding the end point within a distance interval [r, r + dr] is

p(r)dr =
r

σ2
exp
(
− r2

2σ2

)
dr . (G.5)

The mean square radius is

〈
r2
〉

=
∫ ∞

0

r2p(r)dr = 2σ2 = N . (G.6)
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Fig. G.1. Two examples of random walks in the xy plane. The step size is 1, the
number of steps is N = 10. The start and end points of the walks are indicated by
blue boxes



G.2 Many Wave Packets 197

The dimensionless variable

ξ =
r2

〈r2〉
obeys the simple exponential probability distribution

p(ξ)dξ = exp (−ξ) dξ (G.7)

where we have used dξ = (2r/
〈
r2
〉
) dr = (r/σ2) dr. Since the radiated field

energy U is proportional to the square of the electric field we can conclude from
this equation that the probability distribution of the radiation field energy is
given by

p1(u)du = exp(−u)du with u =
U1

〈U1〉
. (G.8)

Here the index 1 indicates the presence of one wave packet. This is the negative
exponential distribution. The most probable value of the FEL pulse energy is
zero.

G.2 Many Wave Packets

When the bunch is far longer than the optical wave trains there will be more
than one, say M , wave packets. Each of them will obey the exponential distri-
bution (G.8). For sufficient spatial separation these M “modes” are uncorre-
lated and the respective probability distributions are statistically independent.
We want to prove that the probability distribution for the total energy of M
independent wave packets is given by the expression

pM (u)du =
uM−1

Γ (M)
exp(−u)du (G.9)

with the gamma function Γ (M). The proof is made by complete induction.
The statement is true for M = 1, then (G.9) is identical with (G.8). Now
assume that formula (G.9) has been proved up to some value of M . We make
the step from M to M + 1:

pM+1(u) =
∫ u

0

pM (v) · p1(u − v)dv

where we make explicit use of the statistical independence of the wave packets
by taking the product of the probability distributions pM and p1. Inserting
formula (G.9) we get

pM+1(u) =
∫ u

0

vM−1

Γ (M)
exp(−v) · exp(−(u − v))dv =

uM

Γ (M + 1)
exp(−u) .

This completes the proof.
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Formula (G.9) is the gamma distribution as defined in the mathematical
literature. It is not directly applicable at the SASE FEL but must be modified
slightly. From the above derivation it is obvious that the variable u is the ratio
of the total FEL pulse energy UM (summed over all M wave packets), divided
by the average energy of a single wave packet. However, the energy contained
in a single wave packet is difficult to measure, while its average value is just
the measurable total average energy, divided by the number of wave packets:

〈U1〉 = 〈UM 〉 /M.

Hence it is convenient to introduce a modified dimensionless variable ũ

ũ =
UM

〈UM 〉 =
u

M
.

Then the gamma distribution can be written in terms of measurable quanti-
ties:

pM (ũ)dũ =
MM ũM−1

Γ (M)
exp(−M ũ)dũ with ũ =

Urad

〈Urad〉
.

Here Urad ≡ UM is the energy of the entire radiation pulse.
To simplify notation we drop the “tilde” in the following and write the

gamma distribution in the form

p
M

(u)du =
MM uM−1

Γ (M)
exp(−M u)du with u =

Urad

〈Urad〉
. (G.10)

The gamma distribution for M = 1, 2, 4, 50 is plotted in Fig. G.2. For very
large M it approaches a Gaussian centered at u = 1. The distribution is
normalized to unity ∫ ∞

0

p
M

(u)du = 1 . (G.11)
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Fig. G.2. The gamma distribution for M = 1 (negative exponential distribution)
and M = 2, 4. For the large value M = 50 the distribution is scaled down with the
factor 0.35. The area under each of the curves is equal to 1, see (G.11)



References 199

The mean value and the variance of the normalized FEL pulse energy are

〈u〉 =
∫ ∞

0

u p
M

(u)du = 1 , σ2
u =
〈
(u − 〈u〉)2

〉
=

1
M

. (G.12)

It must be pointed out that only two limiting cases have been considered
here: (1) fully overlapping wave trains, yielding a single wave packet (or op-
tical mode), and (2) several perfectly separated modes. In reality partially
overlapping wave packets will exist too. One can approximate their probabil-
ity distribution by a gamma distribution with a non-integer index M . This is
done in Chap. 7.
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H

Conventions and Frequently Used Symbols

In this book we use the international system of units (SI). Specifically

• c = 2.9979 · 108 m/s speed of light in vacuum
• e = 1.60218 · 10−19 A s fundamental charge
• ε0 = 8.854 · 10−12 As/(V m) permittivity of free space
• μ0 = 4π · 10−7 V s/(A m) permeability of free space
• me = 9.109 · 10−31 kg rest mass of electron
• � = h/(2π) = 1.05 · 10−34 J s Planck’s constant

The charge of the electron is written as qe = −e. The electron energy in the
accelerator is quoted in MeV or GeV = 1000 MeV as usual (1MeV = 1.602 ·
10−13J). A right-handed Cartesian coordinate system (x, y, z) is used. The
electron beam moves along the z direction, x is the horizontal displacement of
an electron from the nominal orbit and y the vertical displacement. Following
the usage in many modern physics textbooks we call the field B the magnetic
field because it appears in the Lorentz force and is thus directly responsible for
the deflection and focusing of the electron beam (H is called the “magnetizing
field”). We will often call ω = 2πf the frequency although it is an angular
frequency.

In the following Table H.1 we summarize the designation of frequently
used quantities, their dimension in SI units, their meaning, and the equation
or the chapter where the quantity is introduced.
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Table H.1. List of frequently used symbols

symbol SI units meaning Eq./Chap.

A Vs/m magnetic vector potential App. A

Ab m2 electron beam cross section Chap. 5

α1, α2, α3 m−1 eigenvalues of third-order eq. Eq. (4.51)

B T magnetic field vector

B0 T peak magnetic field of undulator Chap. 2

β = v/c − normalized velocity of electron

β̄ − averaged normalized velocity Eq. (2.13)

βx(z), βy(z) m hor./vert. beta function Sect. 6.3.1

βav m average beta function Eq. (6.11)

βopt m optimum beta function Eq. (6.30)

εx, εy m emittance of electron beam Eq. (6.10)

εn m normalized emittance Eq. (6.12)

Ẽx V/m field of light wave Eqs. (4.1, 4.9)

Ẽz V/m space charge field Eq. (4.17)

η − fractional energy deviation Eq. (3.15)

F0(η), F̃1(η, z) − particle distribution function Eq. (4.34)

ϕE − phase of field Ẽx Eq. (5.20)

ϕj1 − phase of current j̃1 Eq. (5.21)

G − gain function of FEL Eqs. (3.26, 5.3)

γ − Lorentz factor of electron Eq. (1.2)

γr − resonant value of Lorentz factor Eq. (3.14)

Γ m−1 gain parameter Eq. (4.47)

I0 A dc electron beam current

Ipeak A peak electron beam current Chap. 5

j0 A/m2 dc electron beam current density Eq. (4.4)

j̃1 A/m2 modulated current density Eq. (4.4)

K − undulator parameter Eq. (2.8)

K̂ − modified undulator parameter Eq. (3.31)

k� m−1 wave number of FEL radiation Eq. (3.2)

kp m−1 space charge parameter Eq. (4.47)

ku m−1 undulator wave number Chap. 2
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Table H.1. List of frequently used symbols (continued)

symbol SI units meaning Eq./Chap.

λ� m wavelength of undulator/FEL radiation Eqs. (2.19, 3.9)

λu m undulator period Chap. 2

Lg0 m 1D power gain length Eq. (4.53)

Lg m 3D power gain length Chap. 6

Lsat m saturation length Eq. (7.5)

pM (u) − gamma distribution App. F

Psat W saturation power of FEL Eq. (6.31)

Pspont W power of undulator radiation Eq. (2.21)

Pbeam W electron beam power Eq. (5.15)

ψ − ponderomotive phase Eq. (3.6)

ψb − bucket center phase Eq. (5.22)

ψm − microbunch phase Eq. (5.23)

rb m radius of electron bunch Chap. 6

ρ C/m3 electron beam charge density Eq. (4.3)

ρ̃1 C/m3 modulated charge density Eq. (4.3)

ρFEL − FEL parameter Eq. (4.49)

ση − normalized rms energy spread Chap. 6

σr m rms radius of electron beam Chap. 6

v̄z m/s longitudinal speed Eq. (2.13)

W MeV relativistic electron energy Chap. 2

Wr MeV resonant value of electron energy Chap. 3

w(z) m radial width of photon beam App. D

Xd − diffraction parameter Eq. (6.21)

Xε − angular spread parameter Eq. (6.21)

Xγ − energy spread parameter Eq. (6.21)

ζ m internal bunch coordinate Eq. (3.12)

zR m Rayleigh length Eq. (6.15)





Index

Angular spread
parameter, 92

Bandwidth of FEL, 66
Beta function, 88
Betatron oscillation, 89
Bose-Einstein statistics, 5
Brilliance, 149
Bucket

FEL bucket, 32, 74, 78
RF bucket, 32

Bunch compression, 130

Canonical momentum, 161
Coherence

transverse, 117, 149
Coherence time, 113
Collective effects, 132
Correlation function, 113
Coupled first-order equations

non-periodic model, 171
periodic model, 48

Detuning, 64, 84
energy, 61
parameter, 64

Diffraction, 90
parameter, 92

Dirac ket vector, 5
Distribution function, 50
Doppler effect, 4, 16

Eigenfunctions, 56
Eigenvalues, 55, 181

Electro-optic effect, 140
Emittance, 88, 143, 178

criterion, 92
measurement, 144
normalized, 89, 153

Energy spread, 85, 90
parameter, 92

Exponential gain regime, 2, 69

FAST, 83
FEL

amplifier, 23
oscillator, 23
seeding, 23

FEL parameter, 54, 64
FEL radiation

wavelength, 26
Fixpoint, 31
Focusing

natural, 88
strong, 88
weak, 88

Gain function
high-gain FEL, 62
low-gain FEL, 33

Gain guiding, 90, 91
Gain length

1D case, 55
3D case, 92

Gain parameter, 54
Gamma distribution, 114, 195
Gaussian beam optics, 91, 175
GENESIS, 81, 83
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GINGER, 83
Group velocity, 96
Growth rate function, 85

Hamiltonian
low-gain FEL, 30
non-relativistic, 159
pendulum, 160
relativistic, 161

Helical undulator, 58, 164
Helicity, 58, 166
High-gain regime, 62
Higher harmonics, 20, 34, 110

Integro-differential equation, 53
Internal bunch coordinate, 27
Inverse FEL, 28

Larmor formula, 15
Laser

free-electron laser, 7
quantum laser, 5

Laser amplifier, 29
Lethargy regime, 58, 62
Linear regime, 2, 71
Lineshape, 18
Liouville theorem, 51
Lorentz factor, 3
Lorentz transformation, 15, 16, 124
Low-gain limit, 62, 169

Madey theorem, 33, 63, 170
Microbunch, 38, 73, 74, 110
Mode

Gaussian, 175
longitudinal, 114
transverse, 117

Mode competition, 117

Nonlinear regime, 72

Optical eigenmode, 5
Optical resonator, 5
Optical transition radiation, 109, 139

Pendulum equations, 30
Phase space

high-gain FEL, 73
longitudinal, 50
low-gain FEL, 31

pendulum, 160
Phase velocity, 95
Photo-cathode, 123
Photon quantum state, 5
Pierce parameter, 54
Plasma frequency, 54
Polarization

circular, 58, 166
linear, 17, 166

Ponderomotive phase, 26

Quality factor, 129
Quantum diffusion, 156

Rayleigh length, 90, 91, 176
Reference electron, 28
Reference energy, 29
Relative energy deviation, 29
Resonance energy, 29

SASE FEL, 65, 103
power, 105

Saturation, 68
FEL power, 70
length, 105

Seeding, 64
Separatrix, 31, 73, 161
Shot noise, 191
Slice emittance, 145
Slippage effects, 97
Space charge, 85, 124, 132

parameter, 54
Space charge field, 44
Spontaneous emission, 6, 7
Stimulated emission, 5, 6
Superconducting cavity, 128
Superposition principle, 71
Superradiance, 100
Surface resistance, 129
SVA approximation, 43
Synchrotron radiation, 3

coherent, 132
power, 3, 18

Transmission function, 106
Transverse deflecting structure, 139

Undulator
magnet, 3, 11, 122, 135
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period, 4, 11
tapering, 156

Undulator parameter, 4, 13
modified, 36, 45

Undulator radiation, 3
angular width, 19
higher harmonics, 20
lineshape, 18
power, 18

spectral energy, 21
wavelength, 17, 21

Vacuum fluctuations, 7
Vector potential, 161
Vlasov equation, 51

Wake fields, 136
Water window, 111


	Preface
	Contents
	Introduction
	Undulator Radiation
	Low-Gain FEL Theory
	Discussion of the High-Gain FEL Equations
	Refinements of the One-Dimensional FEL Theory
	Self-Amplified Spontaneous Emission
	The Ultraviolet and Soft X-Ray FEL in Hamburg
	Physical and Technological Challenges of an X-Ray FEL
	Hamiltonian Formalism
	Low-Gain Limit of the High-Gain FEL Theory
	Non-Periodic First-Order Equations
	Gaussian Modes of Laser Beams
	Eigenmode Approach
	Periodic Current Modulation Resulting from Shot Noise
	The Gamma Distribution
	Conventions and Frequently Used Symbols
	Index

