Beam Driven Experiments

CERN Accelerator School High Gradient Wakefield Accelerator 11 – 22 March 2019, Sesimbra, Portugal

Edda Gschwendtner, CERN

Many thanks for valuable input from:

Massimo Ferrario, Spencer Gessner, Bernhard Hidding, Patric Muggli, Jens Osterhoff, Guoxing Xia

Outline

- Introduction
 - Motivation and basic numbers for PWFA

• Facilities and Experimental Results of Key Challenges for PWFA

• Future Facilities and Experiments

Note that I show a personal selection of experiments!

Motivation for PWFA

- Short term perspective of PWFA (< 10 years):
 - Compact FEL based: 5 10 GeV energy range
 - Compact X-ray sources: electron accelerated in strong transverse field of plasma emit betatron radiation

→ applications in medicine, radiobiology, material science

- Long term perspective of PWFA (>20 years):
 - High energy physics applications: Plasma-based high energy linear collider
 depends strongly on progress in many fields.

The most demanding application of plasma wakefield acceleration is to build a **compact, efficient, Plasma-Based Linear Collider**.

Discover New Physics

Accelerate particles to even higher energies \rightarrow Bigger accelerators

Future Circular Collider FCC

Hadrons: 16T magnets to reach 100TeV Electrons: synchrotron radiation limits – 350GeV **CLIC,** electron-positron collider with 3 TeV energy

Gradient: < 100MV/m Linear collider: single pass

Plasma Based Linear Colliders

C. B. Schroeder et. al. Phys. Rev. ST Accel. Beams 13, 101301

E. Adli et. al., arXiv:1308.1145 [physics.acc-ph]

In 2011 and 2013, the plasma acceleration groups from Berkeley and SLAC put forward white papers for laser and beam-driven plasma-based linear colliders. \rightarrow 3 TeV in ~5km.

Plasma Wakefield Acceleration

Different ways to excite the wakes - most commonly used:

- Laser bunches, Electron beams, Protons bunches

A plasma of density $n_{\mbox{\tiny pe}}$ is characterized by the plasma frequency

$$\omega_{pe} = \sqrt{\frac{n_{pe} e^2}{m_e \epsilon_0}} \rightarrow \frac{c}{\omega_{pe}} \dots \text{ unit of plasma [m]} \quad k_{pe} = \frac{\omega_{pe}}{c}$$

Example: $n_{pe} = 7x10^{14} \text{ cm}^{-3}$ (AWAKE) $\rightarrow \omega_{pe} = 1.25x10^{12} \text{ rad/s}$

$$\frac{c}{\omega_{pe}} = 0.2mm \rightarrow k_{pe} = 5 mm^{-1}$$

This translates into a wavelength of the plasma oscillation

$$\lambda_{pe} = 2\pi \frac{c}{\omega_{pe}} \rightarrow \lambda_{pe} \approx 1 \text{ mm} \sqrt{\frac{10^{15} \text{ cm}^{-3}}{n_{pe}}}$$
$$\lambda_{pe} = 1.2 \text{ mm} \rightarrow \text{Cavities with mm size!}$$

Wakefields

How strong can the fields be?

 The plasma oscillation leads to a longitudinal accelerating field. The maximum accelerating field (wave-breaking field) is:

$$e E_{WB} = 96 \frac{V}{m} \sqrt{\frac{n_{pe}}{cm^{-3}}}$$

• The ion channel left on-axis, where the beam passes, induces an **ultra-strong focusing field**:

$$g = 960 \pi \frac{n_{pe}}{10^{14} \text{ cm}^{-3}} \frac{\text{T}}{\text{m}}$$

Example: $n_{pe} = 7x10^{14} \text{ cm}^{-3}$ (AWAKE) $\rightarrow eE_{WB} = 2.5 \text{ GV/m} \rightarrow g = 21\text{kT/m}$ Example: $n_{pe} = 7x10^{17} \text{ cm}^{-3} \rightarrow eE_{WB} = 80 \text{ GV/m} \rightarrow g = 21\text{MT/m}$

Linear Theory

E_{z max}

When drive beam density is smaller than plasma density $(n_b << n_p) \rightarrow$ linear theory.

• Peak accelerating field in plasma resulting from drive beam with Gaussian distribution:

$$eE_{z} = \sqrt{n_{p}} \frac{n_{b}}{n_{p}} \frac{\sqrt{2\pi}k_{p}\sigma_{z}e^{-k_{p}^{2}\sigma_{z}^{2}/2}}{1 + \frac{1}{k_{p}^{2}\sigma_{r}^{2}}} \sin k_{p}(z - ct) \quad (eV/cm)$$

Blue 2003

→
$$eE_z \approx N/\sigma_z^2$$

B.E.

- Wakefield excited by bunch oscillates **sinusoidally** with frequency determined by plasma density
- Accelerating gradient increases linearly with N/σ_z
- Fields excited by electrons and protons/positrons are equal in magnitude but opposite in phase
- The accelerating field is maximized for a value of

$$k_{pe} \sigma_z ≈ √2$$

 $k_{pe} \sigma_r ≤ 1$

Example: $n_{pe} = 7 \times 10^{14} \text{ cm}^{-3}$ (AWAKE), $k_{pe} = 5 \text{ mm}^{-1} \rightarrow \text{drive beam: } \sigma_z = 300 \mu\text{m}, \sigma_r = 200 \mu\text{m}$

Accelerating

Focusing

π

Decelerating

Defocusing

Linear Theory

Linear Theory: Maximum accelerating electric field reached with drive beam of N and σ_z :

$$E_{acc} = 110 \frac{MV}{m} \frac{N/(2 \times 10^{10})}{(\sigma_{7} / 0.6 \text{mm})^2}$$

← Driver must be short compared to plasma wavelength, easy for laser and electron bunches.

Examples of accelerating fields for different beam parameters and plasma parameters fields:

N = 3x10¹⁰, σ_z = 300µm, n_{pe} = 7x10¹⁴ cm⁻³ → E_{acc} = 600 MV/m N = 3x10¹⁰, σ_z = 20µm, n_{pe} = 2x10¹⁷ cm⁻³ → E_{acc} = 15 GV/m

From Linear to Non-Linear

Blow-out Regime

- Space-charge force of the driver blows away all the plasma electrons in its path, leaving a uniform layer of ions behind (ions move on a slower time scale).
- Plasma electrons form a narrow sheath around the evacuated area, and are pulled back by the ion-channel after the drive beam has passed
- An accelerating cavity is formed in the plasma
- The back of the blown-out region: ideal for electron acceleration

 \rightarrow High charge witness acceleration possible \rightarrow charge ratio to witness of same order

- \rightarrow Linear focusing in r, for electrons; very strong quadrupole (MT/m)
- → High transformer ratios (>2) can be achieved by shaping the drive bunch
- → E_r independent of x, can preserve incoming emittance of witness beam

Challenges to Build Plasma Wakefield Accelerators

Typically in plasma wakefield accelerators we have

- gradient of several GV/m
- strong focusing fields of several 100 kT/m
- the matched beam size of the witness beam is small , $\sigma_{w}\approx \mu m$
- optical beta function of witness beam is small, e.g. $\beta \approx \mu m$
- tolerances for emittance growth is small! (100% growth for 1σ offset)
- Energy spread $\leftarrow \rightarrow$ uniformity of the accelerating fields (in r, z)
 - Control charge and beam loading to compensate energy spread
 - Use short bunches to minimize energy spread
- Emittance preservation $\leftarrow \rightarrow$ focusing field (in r,z)
- Alignment control between wakefield driver and witness electron bunch at 1 μm level.
- Many more!....

Beam-Driven Wakefield Acceleration: Landscape Today

Facility	Where	Drive (D) beam	Witness (W) beam	Start	End	Goal
AWAKE	CERN, Geneva, Switzerland	400 GeV protons	Externally injected electron beam (PHIN 15 MeV)	2016	2020+	 Use for future high energy e-/e+ collider. Study Self-Modulation Instability (SMI). Accelerate externally injected electrons. Demonstrate scalability of acceleration scheme.
SLAC-FACET	SLAC, Stanford, USA	20 GeV electrons and positrons	Two-bunch formed with mask (e ⁻ /e ⁺ and e ⁻ -e ⁺ bunches)	2012	Sept 2016	 Acceleration of witness bunch with high quality and efficiency Acceleration of positrons FACET II preparation, starting 2018
DESY-Zeuthen	PITZ, DESY, Zeuthen, Germany	20 MeV electron beam	No witness (W) beam, only D beam from RF-gun.	2015	~2017	- Study Self-Modulation Instability (SMI)
DESY-FLASH Forward	DESY, Hamburg, Germany	X-ray FEL type electron beam 1 GeV	D + W in FEL bunch. Or independent W-bunch (LWFA).	2016	2020+	 Application (mostly) for x-ray FEL Energy-doubling of Flash-beam energy Upgrade-stage: use 2 GeV FEL D beam
Brookhaven ATF	BNL, Brookhaven, USA	60 MeV electrons	Several bunches, D+W formed with mask.	On going		 Study quasi-nonlinear PWFA regime. Study PWFA driven by multiple bunches Visualisation with optical techniques
SPARC Lab	Frascati, Italy	150 MeV	Several bunches	On going		 Multi-purpose user facility: includes laser- and beam-driven plasma wakefield experiments

Key Challenges for PWFA

- Accelerating gradient
- Beam quality
- Transformer Ratio
- Positron acceleration
- Protons as drive beam

Facilities and Experimental Results of Key Challenges for PWFA

- Accelerating gradient
- Beam quality
- Transformer Ratio
- Positron acceleration
- Protons as drive beam

First Beam Driven Acceleration 1988

VOLUME 61, NUMBER 1

PHYSICAL REVIEW LETTERS

4 JULY 1988

Experimental Observation of Plasma Wake-Field Acceleration

J. B. Rosenzweig, D. B. Cline, ^(a) B. Cole, ^(b) H. Figueroa, ^(c) W. Gai, R. Konecny, J. Norem, P. Schoessow, and J. Simpson *High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439* (Received 21 March 1988)

We report the first experimental test of the physics of plasma wake-field acceleration performed at the Argonne National Laboratory Advanced Accelerator Test Facility. Megavolt-per-meter plasma wake fields are excited by a intense 21-MeV, multipiscosecond bunch of electrons in a plasma of density $n_e \simeq 10^{13}$ cm⁻³, and probed by a low-intensity 15-MeV witness pulse with a variable delay time behind the intense bunch. Accelerating and deflecting wake-field measurements are presented, and the results compared to theoretical predictions.

Argonne National Lab

Theoretical paper for beam driven PWFA 1985

VOLUME 54, NUMBER 7

PHYSICAL REVIEW LETTERS

18 February 1985

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma

Pisin Chen^(a) Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

J. M. Dawson, Robert W. Huff, and T. Katsouleas Department of Physics, University of California, Los Angeles, California 90024 (Received 20 December 1984)

A new scheme for accelerating electrons, employing a bunched relativistic electron beam in a cold plasma, is analyzed. We show that energy gradients can exceed 1 GeV/m and that the driven electrons can be accelerated from γ_0mc^2 to $3\gamma_0mc^2$ before the driving beam slows down enough to degrade the plasma wave. If the driving electrons are removed before they cause the collapse of the plasma wave, energies up to $4\gamma_0^8mc^2$ are possible. A noncollinear injection scheme is suggested in order that the driving electrons can be removed.

FIG. 1. Schematic of Argonne National Laboratory AATF layout.

- Drive beam: 21 MeV, witness beam: 15 MeV $\sigma_7 = \sigma_r = 2.4$ mm, charge: 2-3nC
- DC plasma source, Argon, $n_e = 0.7-7 \times 10^{13} \text{ cm}^{-3}$

Linear theory: $n_e = 8 \times 10^{12} \text{ cm}^{-3}$

→ Result: Wakefields of order 1 MV/m

FIG. 2. Scan 1: Witness-beam energy-centroid change δE vs time delay behind driver. Total driver-beam charge Q = 2.1 nC; plasma parameters L = 28 cm and $n_e = 8.6 \times 10^{12}$ cm⁻³. Theoretical predictions are given by the dashed line.

Record Acceleration, at SLAC: 42 GeV

Final Focus Test Beam Facility, **FFTB** at SLAC

I. Blumenfeld et al, Nature 455, p 741 (2007)

Gaussian electron beam with 42 GeV, 3nC @ 10 Hz, σ_x = 10µm, 50 fs

85cm Lithium vapour source, 2.7x10¹⁷cm⁻³

➔ Accelerated electrons from 42 GeV to 85 GeV in 85 cm.

➔ Reached accelerating gradient of 52 GeV/m

Facilities and Experimental Results of Key Challenges for PWFA

- Accelerating gradient
- Beam quality
- Transformer Ratio
- Positron acceleration
- Protons as drive beam

Metre-Scale Plasma Wakefield Accelerator Driven by a Matched Electron Beam, 2004 Muggli et al., PRL 93.014802, (2004)

Beam envelope dynamics described by an envelope model for the transverse beam size.

Match beam and plasma: if focusing force on the beam by the plasma compensates divergence coming from the beam emittance, then \rightarrow beam focused at plasma entrance propagates along the plasma with a constant transverse size.

$$0 = \frac{d^2\sigma_r}{dz^2} = -K\sigma_r + \frac{\epsilon^2}{\sigma_r^3} \quad \text{K}=\omega_p^2/2\gamma c^2 \dots \text{ plasma focusing strength}$$

Experiment

- 28.5 GeV, N= = 1.9×10^{10} electrons, $\sigma_z = 700 \mu m$, $\sigma_{zr0} = ~30 \mu m$
- Lithium vapour source, 1.4m,
- Matching conditions (blow-out regime) correspond to: $n_e = (1.2-2.5)x10^{14} cm^{-3}$

FIG. 2 (color). Transverse size σ_x of the beam (red points) in the x plane measured on the downstream OTR foil (see illustration inset) as a function of plasma density. The green line is the best fit to the data using a beam envelope model in which $\sigma_{x0} = 30 \ \mu m$, $\epsilon_x = 9 \times 10^{-9} \ m rad$, and $\beta_0 = 0.11 \ m$.

SLAC FACET

- Beam Parameters:
 - 20 GeV
 - 3 nC
 - σ_z = 17 μm (57 ps)
- Produce Drive beam and Witness Beam:
 - Notch collimator
 - → Bunches are separated by 160 µm

e+ Source

Sector 10 Compressor Chicane

Damping Rings

FACET

Sector 20 Experimental <u>Area</u>

Facility for Advanced Accelerator Experimental Tests

- Demonstrate single-stage high-energy plasma accelerator for electrons
- Commissioning 2011, Experimental Program 2012-2016:
- National User Facility: > 200 Users, 25 experiments, 8 months/yr operation
- First experiments with compressed positrons

Results from FACET

-

1113

Electrons/Positrons

Laser

Plasma

023

SLAC – FACET

High-Efficiency acceleration of an electron beam in a plasmas wakefield accelerator, 2014

M. Litos et al., doi, Nature, 6 Nov 2014, 10.1038/nature 13882

- Laser ionized Lithium vapour plasma cell:
 - 36 cm long, Density: 5 10¹⁶ cm⁻³, λ_{π} = 200 μ m
- Drive and witness beam:
 - $\,$ 20.35 GeV, D and W separated by 160 μm
 - 1.02nC (D), 0.78nC (W)

First demonstration of a high-efficiency, low energyspread plasma wakefield acceleration experiment:

- 70 pC of charge accelerated
- 2 GeV energy gain
- 5 GeV/m gradient
- Up to 30% transfer efficiency
- ~2% energy spread

nature

SLAC – FACET

High-Efficiency acceleration of an electron beam in a plasmas wakefield accelerator, 2014

M. Litos et al., doi, Nature, 6 Nov 2014, 10.1038/nature 13882

- Laser ionized Lithium vapour plasma cell:
 - 36 cm long, Density: 5 10^{16} cm $^{-3}$, λ_{π} = 200 μm
- Drive and witness beam:
 - $\,$ 20.35 GeV, D and W separated by 160 μm
 - 1.02nC (D), 0.78nC (W)

- → Electric field in plasma wake is **loaded** by presence of trailing bunch
- \rightarrow Allows efficient energy extraction from the plasma wake

SLAC – FACET

High-Efficiency acceleration of an electron beam in a plasmas wakefield accelerator, 2014

M. Litos et al., doi, Nature, 6 Nov **2014**, 10.1038/nature 13882

- Laser ionized Lithium vapour plasma cell:
 - 36 cm long, Density: 5 10¹⁶ cm⁻³, λ_{π} = 200 μm
- Drive and witness beam: •
 - 20.35 GeV, D and W separated by 160 µm _
 - 1.02nC (D), 0.78nC (W) _

The accelerated beam had a spectral peak at **9 GeV energy** gain.

ڌ ے

FLASH: Free Electron Laser and Accelerator Research

→ FLASH is an FEL user facility

- 10% of beam time dedicated to generic accelerator research and development
- → **FLASH**Forward → is a beam line for PWFA research
- → Both share the same superconducting accelerator based on ILC/XFEL technology. Typical electron beam parameters:
 - \lesssim 1.25 GeV energy with a few 100 pC at ~100 fs rms bunch duration
 - ~2 µm trans. norm. emittance

FLASHForward

Future-Oriented Wakefield Accelerator Research and Development at FLASH >>

- → unique FLASH facility features for PWFA
 - FEL-quality drive and witness beams
 - up to 1 MHz repetition rate
- Nov 3rd harmonic cavity for phase-space linearization \rightarrow tailoring of beam current profile
 - differentially pumped, windowless plasma sources
- X-band deflector with 1 fs resolution post-plasma 2019
- 2020 up to 10 kW average power
- 2021 15 m of FLASH 1 type undulators

CENTRAL INTERACTION AREA

1.2 GEV BEAMS FROM FLASH

DISPERSIVE SECTION

SYNCHRONIZED 25 TW LASER

DIFFERENTIAL PUMPING

 \rightarrow A. Aschikhin *et al.*, NIM A **806**, 175 (2016)

FINAL FOCUSSING SECTION

FLASHForward

Future-Oriented Wakefield Accelerator Research and Development at FLASH >>

Overview of Recent FLASHForward >> Results

R. D'Arcy et al., PRL 122, 034801 (2019)

SPARCLAB, Frascati, Italy

- Resonant PWFA
- External injection on LWFA
- 150 MeV drive/witness beam

Plasma Lens Experiments:

Acceleration of high brightness beams and transport to the final application, while preserving the high quality of the 6D phase space

→ Want radially symmetric focusing gradient > kT/m, focusing field varying linearly with the radius

SPARCLAB, Plasma Lens Experiment

Plasma Lens

Beam focusing by azimuthal magnetic field generated by the discharge current density

$$B_{\phi}(r) = \frac{\mu_0}{r} \int_0^r J(r') r' dr$$

Experiment:

127MeV, 50pC, σt =1.3ps, $\epsilon_{\rm N}$ = ~1 mm mrad, $\sigma_{\rm x}$ = 110 $\mu m.$

Capillary discharge plasma cell, 3cm, $R_0=500\mu m$, I=100A, V=20kV, H₂ gas, n_e = $9x10^{16}cm^{-3}$,

→ Focusing is non-linear due to non-uniformity of the discharged current → large growth of beam emittance

R. Pompili et al., Applied Physics Letters 110.10 (2017):104101 A. Marocchino et al., Applied Physics Letters 111.18(2017):184101

Demonstration of emittance preservation Experimental (X) Experimental (Y) Without APL 2018 (mm) Se 18 µm spot size Exit 90 110 130 150 Input spot size (um) 20 • YSICAL REVIEW LETTERS

Enhancing linearity of the focusing field.

Change plasma discharge

 \rightarrow

 \rightarrow

R. Pompili et al., PRL 121, 174801 (2018)

C. Lindstroem et al., Emittance Preservation in Aberration-Free Active Plasma Lens, PRL 121, 194801 (2018)

Facilities and Experimental Results of Key Challenges for PWFA

- Accelerating gradient
- Beam quality
- Transformer Ratio
- Positron acceleration
- Protons as drive beam

Transformer Ratio

Would be fantastic to take a 1 GeV electron drive beam with 10¹¹ electrons to accelerate 10⁹ electrons by 100 GeV. Energy conservation is fulfilled.

BUT: not possible in reality

Limited by the **Transformer Ratio** $R \le 2$: R =

 Peak accelerating field behind the drive bunch
 Peak decelerating field within the drive bunch (Short symmetric bunches)

Example:

Assume that $E_{-} = 10 \text{ GV/m}$ With R = 2 \rightarrow $E_{+} = 20 \text{ GV/m}$

Drive beam (e⁻) with **30 GeV** \rightarrow decelerates 10GeV/m \rightarrow 3m total **Witness beam**: gains 20 GeV/m \rightarrow gets **60 GeV** in 3m Of course energy conservation must be fulfilled: N_D = 3N_W.

Increasing the Transformer Ratio $R = \frac{E_{+}}{E_{-}}$

Figure 9. The voltage induced by three different asymmetric current distributions interacting with a single mode. • Multiple drive beam bunches

Tzoufras, PRL 101, 145002 (2008)

DESY PITZ, 2018

- Photoinjector Test facility at DESY, Zeuthen (PITZ)
- 1.3GHz, 0.01-5nC, 25 MeV, $\varepsilon_{norm} = 0.1$ mmm rad
- Drive beam: 508 pC, 20ps

Tail

15

ξ [ps]

20

10

45

30

15

-15

Witness

5

Bunch current [A]

• Witness beam: 10 pC, 0.7ps, delay 10ps.

G. Loisch et al., Observation of High Transformer Ratio Plasma Wakefield Acceleration, PRL **121**, 064801 (2018).

25

→ Transformer Ratio:4.6 + 2.2/- 0.7

Facilities and Experimental Results of Key Challenges for PWFA

- Accelerating gradient
- Beam quality
- Transformer Ratio
- Positron acceleration
- Protons as drive beam
Positron Acceleration

- Interested in using positrons for high energy linear colliders:
 - Parameters for positrons: high energy, high charge, low emittance.

Electron-driven blowout wakes:

But the field is **defocusing** in this region.

Positron Beam at FFTB, 2003

e

- High-energy positron beam: E = 28.5 GeV
- Long positron bunch: $\sigma_7 = 700 \,\mu m$ ٠
- Lithium heat pipe oven ionized by UV laser to produce plasma ٠ electron densities from $0-2 \times 10^{14}$ cm⁻³

The E162 experiment operated in the linear regime and a streak camera was used to measure the time-resolved energy spectrum.

→ First demonstration of positron acceleration in plasma!

 \rightarrow A large, non-gaussian, beam halo is observed \rightarrow large emittance. Simulations show that the emittance grows rapidly along all longitudinal slices of the beam.

B.E. Blue et al., Phys. Rev. Lett. 90, 214801 (2003) M. J. Hogan et. al. Phys. Rev. Lett. 90 205002 (2003). P. Muggli et. al. Phys. Rev. Lett. 101 055001 (2008).

Positron Beam at FACET, 2015

High-density, compressed positron beam for non-linear PWFA experiments.

1.3m plasma cell, 20 MeV beam.

New observations:

- Accelerated positrons form a spectrally-distinct peak with an energy gain of 5 GeV.
- Energy **spread can be as low as 1.8%** (r.m.s.).

But emittance blow-up!

S. Corde et al., Nature 524, 442 (2015)

S. Doche et al., Nat. Sci. Rep. 7, 14180 (2017)

Two-bunch positron beam: First demonstration of controlled beam in positron-driven wake³⁹

Positron Acceleration in Hollow Channel at FACET

- There is no plasma on-axis, and therefore no complicated forces from plasma electrons streaming through the beam.
- Treat the plasma as dielectric

Positron Acceleration in Hollow Channel at FACET, 2016, 2018

First Demonstration of Acceleration in Hollow channel

Witness beam gains energy from the wake.

Mean $\langle \Delta E \rangle$ = -11.0 MeV

Drive beam transfers energy to witness beam.

Measurement of transverse wakefields in hollow channel

 → the result agrees with theoretical calculation: 10⁶ V/(pC m mm)
Or about 10,000 times stronger than the wakefields
in CLIC!

C. A. Lindstrøm et. al. Phys. Rev. Lett. 120 124802 (2018).

Facilities and Experimental Results of Key Challenges for PWFA

- Accelerating gradient
- Beam quality
- Transformer Ratio
- Positron acceleration

• Protons as drive beam

Energy Budget for High Energy Plasma Wakefield Accelerators

Drive beams:

Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch Proton drive beam: SPS 19kJ/pulse, LHC 300kJ/bunch

To reach TeV scale:

Witness beams: Electrons: 10¹⁰ particles @ 1 TeV ~few kJ

- Electron/laser driven PWA: need several stages, and challenging wrt to relative timing, tolerances, matching, etc...
 - effective gradient reduced because of long sections between accelerating elements....

E. Adli et. al., arXiv:1308.1145 [physics.acc-ph]

Energy Budget for High Energy Plasma Wakefield Accelerators

Drive beams:

Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch Proton drive beam: SPS 19kJ/pulse, LHC 300kJ/bunch Witness beams: Electrons: 10¹⁰ particles @ 1 TeV ~few kJ

- **Proton drivers**: large energy content in proton bunches \rightarrow allows to consider single stage acceleration:
 - A single SPS/LHC bunch could produce an ILC bunch in a single PDWA stage.

Seeded Self-Modulation of the Proton Beam

In order to create plasma wakefields efficiently, the drive bunch length has to be in the order of the plasma wavelength.

CERN SPS proton bunch: very long! ($\sigma_z = 12 \text{ cm}$) \rightarrow much longer than plasma wavelength ($\lambda = 1 \text{ mm}$)

N. Kumar, A. Pukhov, K. Lotov, PRL 104, 255003 (2010)

Self-Modulation:

- a) Bunch drives wakefields at the initial seed value when entering plasma.
 - Initial wakefields act back on the proton bunch itself. → On-axis dens is modulated. → Contribution to the wakefields is ∝ n_b.
- b) Density modulation on-axis \rightarrow micro-bunches.
 - Micro-bunches separated by plasma wavelength λ_{pe} .
 - drive wakefields resonantly.

AWAKE: Seeding of the instability by

- Placing a laser close to the center of the proton bunch
- Laser ionizes vapour to produce plasma
- Sharp start of beam/plasma interaction
- \rightarrow Seeding with ionization front

AWAKE at CERN

Advanced WAKEfield Experiment

- Proof-of-Principle Accelerator R&D experiment at CERN to study proton driven plasma wakefield acceleration.
- Final Goal: Design high quality & high energy electron accelerator based on acquired knowledge.
- Approved in August 2013
- First beam end 2016

AWAKE Experiment

AWAKE Proton and Laser Beam Line

The AWAKE beamline is designed to deliver **a high-quality beam** to the experiment.

The proton beam must be steered around a mirror which **couples a terawatt class laser (Ti:Saph, 500mJ, 120fs)** into the beamline.

Further downstream, a **trailing electron beam** will injected into the same beamline.

AWAKE Plasma Cell

- **10 m long**, 4 cm diameter
- Rubidium vapor, field ionization threshold ~10¹² W/cm² ٠
- Density adjustable from $10^{14} 10^{15}$ cm⁻³ \rightarrow 7x 10¹⁴ cm⁻³ ٠
- **Requirements:** ٠

density uniformity better than 0.2%

- Fluid-heated system (~220 deg)
- Complex control system: 79 Temperature probes, valves
- Transition between plasma and vacuum as sharp as possible ٠

Downstream Expansion Chamber

few cm

F. Batsch et al., NIM A, 909, 359 (2018)

Plasma density profile

10 m

few cm

AWAKE Plasma Cell

Electron Beam System

e-source laser

Laser beam

Electron source system

A Photo-injector originally built for a CLIC test facility is now used as electron source for AWAKE producing **short electron bunches at an energy of ~20 MeV/c.** A **completely new 12 m long electron beam line** was designed and built to connect the electrons from the e-source with the plasma cell.

Challenge: cross the electron beam with the proton beam inside the plasma at a precision of ~100 μ m.

Results: Direct Seeded Self-Modulation Measurement, 2018

- Effect starts at laser timing \rightarrow SM seeding
- Density modulation at the ps-scale visible
- Micro-bunches present over long time scale from seed point
- **Reproducibility** of the μ-bunch process against bunch parameters variation
- **Phase stability** essential for e⁻ external injection.

AWAKE Collaboration, 'Experimental observation of proton bunch modulation in a plasma, at varying plasma densities'. **Phys. Rev. Lett. 122, 054802 (2019).**

M. Turner et al. (AWAKE Collaboration), 'Experimental observation of plasma wakefield growth by the seeded self-modulation of a proton bunch', **PRL, 122, 054801 (2019).** 52

Electron Acceleration Diagnostics

Electrons will be accelerated in the plasma. To measure the energy the electrons pass through a **dipole spectrometer and the dispersed electron impact on the scintillator screen.** The resulting light is collected with an intensified CCD camera.

Electron Acceleration Results, 2018

Results from May 2018 Run

Event **at n_{pe} =1.8 x 10¹⁴ cm⁻³ with 5%/10m** density gradient.

→ Acceleration up to 2 GeV has been achieved.

Status of Today and Goals for Collider Application

	Current	Goal
Charge (nC)	0.1	1
Energy (GeV)	9	10
Energy spread (%)	2	0.1
Emittance (um)	>50-100	<10-1
Staging	single	single/multiple
Efficiency (%)	20	40
Rep Rate (Hz)	1-10	10 ³⁻⁴
Acc. Distance (m)	1	1-5

- + Positron acceleration: first limits, but no clear process for Collider Applications
- + Use of Proton Drive Beam to reach GeV electrons, beam quality not yet shown.

Challenges not yet Demonstrated

- Acceleration with GV/m average gradient
- Generation/acceleration of nC charge, ultra-low emittance beams
- Emittance preservation
- Stability and reproducibility of the accelerated beam
- Independently shaped drive and witness beam
- Beam matching in and out of a plasma stage
- Positron acceleration
- Staging
- Technology readiness
- Plasma sources
- New diagnostics
-

Future Facilities

	AWAKE	CLEAR	FACET-II	FF>>	SparcLAB	EuPR@Sparc	CLARA	MAX IV
operation start	2016	2017	2019	2018	2017	2022	2020	tbd
					PWFA, LWFA			
current status	running	running	construction	commissioning	commissioning	CDR ready??	construction	design
unique		rapid access and	high energy peak-current	MHz rep rate 100kW average power	PWFA with COMB beam,	PWFA with COMB beam,	ultrashort	low emittance, short pulse,
contribution	protons	cycle	positrons,	bunch diagn. FEL gain tests	injection, test FEL	LWFA ext. inj. test FEL	e bunches	e ⁻ beam
research topic	HEP	instrumentation irradiation AA technology	high intensity e ⁻ , e ⁺ beam driven exp.	high average power e [—] beam driven exp.	PWFA LWFA FEL	PWFA, LWFA, FEL, other applications	FEL	PWFA, Soft X-FELs
user facility	no	yes	yes	no	no	yes	partially	no
drive beam	p+ 400 GeV	e ⁻ 200 MeV	e ⁻	e^{-15} GeV	e	е [—] 600 МеУ	e ⁻ 240 MeV	e ⁻ 3 GeV
ext. inject.	ves	no	no/ves	ves??	no	no	no	no
witness energy	20 MeV	na	tb ugraded	0.4–1.5 GeV	150 MeV	600 MeV	na	3 GeV
plasma	Rb vapour	Ar, He capillary	Li oven	H, N, noble gases	H, capillary	H, capillary	He, capillary	H, gases
lenoth	10 m	5-20 cm	10-100 cm	1-30 cm	3 cm	$> 30 \mathrm{cm}$	10-30 cm	10-50cm
plasma tapering	yes	na	yes	yes	yes	yes	10 20 011	yes
acc. gradient exp. E gain	1 GeV/m average 1+ GeV	na na	10+ GeV/m peak ≈10 GeV	10+ GeV/m peak ≈1.5 GeV	>1 GeV/m?? 40 MeV ??	>1 GeV/m?? > 500 MeV	na na	10+ GeV/m peak 3 GeV

FACET-II, SLAC

A National User Facility Based on High Energy Beams and Their Interaction with Plasmas and Lasers

Advance the energy frontier for future colliders

Develop brighter X-rays for photon science

- Start of RF Gun: 2018
- Commissioning: 2019
- User programs: 2019 2026

FACET-II: Stage 1 (2019-2022)

Electron Beam Parameter	Baseline Design	Operational Ranges
Final Energy [GeV]	10	4.0-13.5
Charge per pulse [nC]	2	0.7-5
Repetition Rate [Hz]	30	1-30
Norm. Emittance γε _{x,y} at S19 [μm]	4.4, 3.2	3-6
Spot Size at IP σ _{x,y} [μm]	18, 12	5-20
Min. Bunch Length σ _z (rms) [μm]	1.8	0.7-20
Max. Peak current lpk [kA]	72	10-200

Key upgrades:

- Photoinjector beam
- Plasma source with matching ramps
- Differential pumping
- Single shot emittance diagnostics

FACET-II Program

Emittance Preservation with Efficient Acceleration FY19-21

- High-gradient high-efficiency (instantaneous) acceleration has been demonstrated @ FACET
- Full pump-depletion and Emittance preservation at µm level planned as first experiment

Stage 1

High Brightness Beam Generation & Characterization FY20-22

- 10's nm emittance preservation is necessary for collider apps
- Ultra-high brightness plasma injectors may lead to first apps

- Energy doubling of the witness beam.
- Minimize energy spread of the witness bunch.
- High energy extraction efficiency with minimum energy spread \rightarrow requires optimized beam loading
- Emittance preservation of the witness beam and determine factors causing emittance growth.
- Alignment tolerance between drive and witness beam. ٠
- Beam matching in and out of the plasma \rightarrow critical to staging.

FACET-II: Stage 2, 3 (2021-2025)

Positron Beam Parameter	Baseline Design	Operational Ranges
Final Energy [GeV]	10	4.0-13.5
Charge per pulse [nC]	1	0.7-2
Repetition Rate [Hz]	5	1-5
Norm. Emittance γε _{x,y} at S19	10, 10	6-20
Spot Size at IP σ _{x,y} [μm]	16, 16	5-20
Min. Bunch Length σ_z (rms)	16	8
Max. Peak current Ipk [kA]	6	12

FACET-II Program

Emittance Preservation with Efficient Acceleration FY19-21

- High-gradient high-efficiency (instantaneous) acceleration has been demonstrated @ FACET
- Full pump-depletion and Emittance preservation at µm level planned as first experiment

High Brightness Beam Generation & Characterization FY20-22

- 10's nm emittance preservation is necessary for collider apps
- Ultra-high brightness plasma injectors may lead to first apps

Positron Acceleration FY21-24

- Only high-current positron capability in the world for PWFA research will be enabled by Phase II Stage 2
 - Develop techniques for
 - positron acceleration in PWFA stages

Simultaneous Deliver of Electrons & Positrons FY22-25

Positron Acceleration on Electron Beam Driven Wakefields

Example of FACET-II Experiment 'Trojan Horse': High Brightness Beam

Plasma photocathode: Tunable production of electron bunches of ultrahigh quality by laser release from higher ionization threshold inside the electron-driven plasma wave

Two plasma components:

- Beam-driven plasma wakefield using low-ionization-٠ threshold gas such as Li
- Laser-controlled electron injection via ionization of high-٠ ionization threshold gas such as He

Ultra-high brightness beams:

- Sub-um spot size
- fs pulses
- Small emittance (nm mrad)

Trojan Horse at FACET, 2016

Laser-based plasma cathodes in 90° geometry

Challenges during FACET run:

- Pre-ionized plasma channel width
- Jitter of incoming laser and e-beam

Trojan Horse at FACET-II, 2019+

FACET

FACET-II

Program:

- 1. Re-establish 90 deg Trojan Horse with more stable beams, jitter and larger blowouts
- 2. Realize at different angles, e.g. 45 deg
- 3. Realize in collinear geometry for nm rad emittance values, test different gases, tune beams

AWAKE Run 2

Proposing Run 2 for 2021 after CERN Long Shutdown 2

 \diamond Acceleration of an externally injected e⁻ bunch with small final ϵ and Δ E/E @ GeV

PHYS. REV. ACCEL. BEAMS 21, 011301 (2018)

r = 0 m

=4 m z =40 m

z =100 m

สารสารสารสา

1.65

1.7

E

з 🖑

OLSEN, ADLI, and MUGGLI

 \diamond Challenging parameters to produce with low energy particles (σ_r, σ_z) \diamond Challenging to measure (σ_r)

AWAKE Run 1: Proof-of-Concept ۲

AWAKE Run 2: Accelerate electron beam to high energy while preserving beam quality so that it can be used for first physics application.

AWAKE Run 2

Proposing Run 2 for 2021 after CERN Long Shutdown 2

Goals:

- Accelerate an electron beam to high energy (gradient of 0.5-1GV/m)
- Preserve electron beam quality as well as possible (emittance preservation at 10 mm mrad level)
- Demonstrate scalability of the AWAKE concept (R&D plasma sources)

E. Adli (AWAKE Collaboration), IPAC 2016 proceedings, p.2557 (WEPMY008)

EuPRAXIA@SPARC_LAB

- EuPRAXIA:
 - EuPRAXIA Design Study started in November 2015, 4 years, 3MEuros
 - Goal: Engineering of a high quality, compact plasma accelerator, 5 GeV electron beam for 2020's, demonstrate user readiness, Pilot users from FEL, HEP, medicine
- SPARC_LAB: EuPRAXIA Site for beam driven plasma accelerator

LNF-18/03 May 7, 2018

Istituto Nazionale di Fisica Nuclea

EuPRAXIA@SPARC_LAB

	Units	Full RF case	LWFA case	PWFA case
Electron Energy	GeV	1	1	1
RMS Energy Spread	%	0.05	2.3	1.1
Peak Current	kA	1.79	2.26	2.0
Bunch Charge	pC	200	30	30
RMS Bunch Length	μm (fs)	16.7 (55.6)	2.14 (7.1)	3.82 (12.7)
RMS normalized	mm mrad	0.5	0.47	1.1
Emittance				
Slice Length	μm	1.66	0.5	1.2
Slice Charge	pC	6.67	18.7	8
Slice Energy Spread	%	0.02	0.03	0.034
Slice normalized	mm mrad	0.35/0.24	0.45/0.465	0.57/0.615
Emittance (x/y)				
Undulator Period	mm	15	15	15
Undulator Strength $K(a_w)$		0.978 (0.7)	1.13 (0.8)	1.13 (0.8)
Undulator Length	m	30	30	30
Pierce parameter ρ	$\times 10^{-3}$	1.55/1.38	2/1.68	2.5/1.8
(1D/3D)				
Radiation Wavelength	nm (keV)	2.87 (0.43)	2.8 (0.44)	2.98 (0.42)
Photon Energy	μJ	177	40	6.5
Photon per pulse	×10 ¹⁰	255	43	10
Photon Bandwidth	%	0.46	0.4	0.9
Photon RMS Transverse	μm	200	145	10
Size				
Photon Brilliance per shot	$(s mm^2 mrad^2 bw(0.1\%))^{-1}$	1.4 ×10 ²⁷	1.7 ×10 ²⁷	0.8 ×10 ²⁷

Table 4.1: Beam parameters from start-to-end simulations for full RF and for plasma wakefield acceleration cases with electron (PWFA) or laser (LWFA) driver beam

Start to end simulations of the witness beam

Figure 4.5: Start to end simulation results for the trailing bunch for the PWFA case: evolution along the injector of the energy (E red line) and energy spread ($\Delta E/E$ red dotted-line) and longitudinal bunch length (σ_z blue line).

CLARA

Compact Linear Accelerator for Research and Applications

→upgrade of existing VELA Photoinjector Facility at Daresbury Laboratory to a 250 MeV Free-Electron Laser Test Facility.

- proof of principle demonstration of novel FEL concepts with emphasis on Ultra-Short Pulse Generation.
- \rightarrow Propose a Plasma Accelerator Research Station, PARS

Status:

- VELA and CLARA frontend (50 MEV): exists since 2015
- CLARA 150MeV: approved, under construction
- CLARA 250MeV: needs approval

PWFA at CLARA

CLARA Front-end beam available

Phase 1 parameters:					
Max Energy	~50 MeV				
Max Charge	250 pC				
Norm. Emitt.	<1 mm mrad				
Min Bunch Length	50fs (rms), (10 MeV)				
Max Peak Current	2kA				
Bunches/RF pulse	1				
Pulse Rep Rate	10 Hz (400Hz later)				

Existing VELA RF photoinjector facility

Proposed program for Plasma Accelerator Research Station:

- Two bunch experiment
- Beam quality preservation
- Plasma lens focusing effect (first experiment done in 2015)
- Beam loading effect for PWFA
- Hybrid wakefield acceleration/plasma photocathode injector
- High transformer ratio
- Plasma beam dump experiment

CLARA operation modes

Operating modes	Long Pulse	Short Pulse	Ultra-Short Pulse
Beam energy (MeV)	250	250	250
Charge/Bunch Q (pC)	250	250	20-100
Electron/Bunch N_b (×10 ⁹)	1.56	1.56	0.125-0625
Bunch length rms (fs)	250-800 (flat top)	100-250	≤ 30
Bunch length (μm)	75-240	30 - 75	9
Bunch radius (μm)	20-100	20-100	20-100
Normalised emittance (mm mrad)	≤ 1	≤ 1	≤ 1
Energy spread (%)	1	1	1

• Remarkable progress in the last decades in beam driven plasma wakefield acceleration.

- Much progress needs to be made to reach realistic collider beam parameters.
 - Many facilities will offer new potential for meeting the challenges.

Lots of opportunities for young students and scientists!!