
 Curl Operator: 

∇⃗⃗ × 𝐹 = − lim
∆𝑉,∆𝑆→0

1

∆𝑉
∮ 𝐹 × 𝑑𝑠⃗⃗⃗⃗ ′
∆𝑆

                                                                                                  (1) 

For an arbitrary unit vector �̂� we have 

(∇⃗⃗ × 𝐹 ) ∙ �̂� = lim
∆𝑉,∆𝑆→0

1

∆𝑉
∮ 𝐹 ∙ (�̂� × 𝑑𝑠⃗⃗⃗⃗ ′)
∆𝑆

                                                                                    (2) 

The curl of a vector in an orthogonal coordinate system can be written as: 

∇⃗⃗ × 𝐹 =
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Using the forms of divergence and curl operators in an orthogonal coordinate system we can 

obtain: 

∇⃗⃗ × ∇⃗⃗ 𝜙 = 0                                                                                                                                   (4) 

∇⃗⃗ ∙ (∇⃗⃗ × 𝐹 ) = 0                                                                                                                             (5) 

Equations (1) and (2) in turns lead to the following expressions known as the curl theorem:  

∮ 𝐹 ∙ 𝑑𝑙⃗⃗  ⃗
𝑐

= ∫ (∇⃗⃗ × 𝐹 ) ∙ 𝑑𝑎⃗⃗ ⃗⃗  
𝐴

                                                                                                         (6) 

∮ 𝑓 × 𝑑𝑠⃗⃗⃗⃗ 
𝑆

= −∫ ∇⃗⃗ × 𝑓 𝑑𝑣
𝑉

                                                                                                          (7) 

Moreover, using the first form for the curl theorem one can easily prove the following integral 

result: 

∮ 𝜓𝑑𝑙⃗⃗  ⃗
𝑐

= −∫ ∇⃗⃗ 𝜓
𝐴

× 𝑑𝑎⃗⃗ ⃗⃗                                                                                                                (8) 

In a volume V with surrounding surface S, a field vector like 𝐹  can be identified uniquely if we 

know the divergence and curl of this vector everywhere within V and and its normal component 

on S.  

For electrostatic field �⃗�  everywhere in space one can show that 

∇⃗⃗ × �⃗� = 0                                                                                                                                      (9) 

∇⃗⃗ ∙ �⃗� =
𝜌

𝜀0
                                                                                                                                     (10) 

Therefore, we can define an electrostatic potential function 𝜙(𝑟 ) such that 

�⃗� = −∇⃗⃗ 𝜙                                                                                                                                     (11) 

𝜙(𝑟 ) =
1

4𝜋𝜀0
∫

𝜌(𝑟 ′)

|𝑟 −𝑟 ′|
𝑑3𝑟′                                                                                                             (12) 



∇2𝜙 = −
𝜌

𝜀0
                                                                                                                                  (13) 

Last equation known as the Poisson equation for electrostatic problems and one can prove that the 

solution for this equation in a volume V is unique if we know the 𝜙 or ∇⃗⃗ 𝜙 ∙ �̂� on the enclosure 

surface S. 

Moreover, equations (12) and (13) interestingly show that 

∇2 (
1

|𝑟 −𝑟 ′|
) = −4𝜋𝛿(𝑟 − 𝑟 ′)                                                                                                       (14) 

∇′2 (
1

|𝑟 −𝑟 ′|
) = −4𝜋𝛿(𝑟 − 𝑟 ′)                                                                                                      (15) 

HW: 

For a uniformly charged spheroidal bunch with total charge 𝑞𝑏, calculate the electrostatic 

potential function within the volume. 

 

HW: 

Prove the mean value theorem, for a charge-free space, the value of the electrostatic potential at 

any point is equal to the average of the potential over the surface of any sphere centered on that 

point. 

HW: 

With two different approaches, prove the following equation 

∇2 (
1

|𝑟 −𝑟 ′|
) = −4𝜋𝛿(𝑟 − 𝑟 ′)                                                                 

 


