» Curl Operator:
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For an arbitrary unit vector @ we have
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The curl of a vector in an orthogonal coordinate system can be written as:
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Using the forms of divergence and curl operators in an orthogonal coordinate system we can
obtain:
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Equations (1) and (2) in turns lead to the following expressions known as the curl theorem:
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Moreover, using the first form for the curl theorem one can easily prove the following integral
result:

$ wdl=-[, Vxda (8)

In a volume V with surrounding surface S, a field vector like F can be identified uniquely if we
know the divergence and curl of this vector everywhere within V and and its normal component
onS.

For electrostatic field £ everywhere in space one can show that
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Vip=-—2 (13)
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Last equation known as the Poisson equation for electrostatic problems and one can prove that the

solution for this equation in a volume V is unique if we know the ¢ or qu -7 on the enclosure
surface S.

Moreover, equations (12) and (13) interestingly show that
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HW:

For a uniformly charged spheroidal bunch with total charge g, calculate the electrostatic
potential function within the volume.
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HW:

Prove the mean value theorem, for a charge-free space, the value of the electrostatic potential at
any point is equal to the average of the potential over the surface of any sphere centered on that
point.

HW:

With two different approaches, prove the following equation
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