> Green’s Function:

If 7 shows the position vector for the observation point in volume V, then we can write
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Now if we define a two vector variable function like G (#|7") (known as the Green function) such
that
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We can write
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Which in turn leads to
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The equation (2) for the Green function is a kind of Poisson equation which can have a unique
solution provided we know [G (7|7)]° (Dirichlet) or [V'G (#|7") - ’]]S (Neumman).

With Dirichlet’s boundary condition we have:
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And for Neumman’s boundary condition we have
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Regardless of the governed boundary condition on Green’s Function, since we can always write
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Where F(7|7") is a solution for the Laplace equation in such away that it helps - q,l to satisfy the
7|7

required boundary equation in problem. Then % can be consider as the potential function at
0

observation point 7 due to a unit charge located at a point 7’ plus all related image charges with
respect to the surface S which can help us to satisfy the required boundary conditions on S.



HW:

The Green function is in general a symmetric function with respect to interchange between 7 and
7'. Prove this symmetry in Dirichlet’s boundary condition and find an additional constraint which
has to be imposed to the Neumman boundary condition for obtaining this symmetry.
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