> A Two-Dimensional Potential Problem; Summation of Fourier Series:

To solve this problem since the set of me( ) withn = 1,2,3,---in the interval [0, a] for all functions

with vanishing values at the boundaries, provide a complete set for expansion then we can write
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On the other hand, according to the Laplace equation we should have
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with ¢(x,y - o) = 0, we obtain
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On the other hand, we since ¢ (x,0) = V, then

V=Y 4, \f sin (=) (4)

leads to
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Clearly the above equation would converge very fast for y > a/m = a/3 since all higher order terms are
at least e=2 = 0.13 times smaller.

However, to have more simplified expersion for the potential function, from the last equation we can write
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If we define a complex variable z = ea™*™) then we can write
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= %/im{Tanh_l(z)} (8)
Moreover, if we define a complex varable w = Tanh™1(z) then
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Therfore,
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And so
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Which leads to,
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using (12) for (9) yeals
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On the other hand, since z = eF(x“y), we obtain
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Then by substituting (14) into (8) we obtain
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In the above expression, the dashed line represents the first term in the series expansion (7) but the solid
line shows the exact solution (15).



