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Abstract-An overview is given of the physics issues relevant to 
the plasma wakefield accelerator, the plasma beat-wave accelera- 
tor, the laser wakefield accelerator, including the self-modulated 
regime, and wakefield accelerators driven by multiple electron 
or laser pulses. Basic properties of linear and nonlinear plasma 
waves are discussed, as well as the trapping and acceleration of 
electrons in the plasma wave. Formulas are presented for the 
accelerating field and the energy gain in the various accelerator 
configurations. The propagation of the drive electron or laser 
beams is discussed, including limitations imposed by key insta- 
bilities and methods for optically guiding laser pulses. Recent 
experimental results are summarized. 

I. INTRODUCTION 
T HAS BEEN over 16 years since Tajima and Dawson I [ l ]  proposed using laser beams to excite plasma waves 

for electron acceleration. Since that time there have been 
numerous workshops on plasma-based accelerators [2]-[9]: the 
first was in Los Alamos in 1982 and the most recent was in 
Kardamyli, Greece, in June 1995. There has been tremendous 
progress in recent years, both theoretically and experimentally. 
This is partly due to advances in technology, particularly 
the development of compact terawatt laser systems based 
on the technique of chirped-pulse amplification [lo]-[ 171. 
Electron acceleration has been observed in several experiments 
world-wide [ 181-[35], demonstrating the basic mechanisms 
of the plasma wakefield accelerator, the plasma beat-wave 
accelerator, and the laser wakefield accelerator. Accelerated 
electrons with energy gains as high as 44 MeV have been 
detected [33]. 

Plasma-based accelerators are of great interest because of 
their ability to sustain extremely large acceleration gradients. 
The accelerating gradients in conventional radio frequency 
linear accelerators (RF linacs) are presently limited to roughly 
100 MV/m, partly due to breakdown which occurs on the 
walls of the structure. Ionized plasmas, however, can sustain 
electron plasma waves with electric fields on the order of the 
nonrelativistic wavebreaking field 1361, [371, EO = cm,w,/e, 
or 

EO [ ~ / c m ]  0.9~n;'~[cm-'] (1) 

where up = ( 4 7 r n 0 e ~ / m , ) ~ / ~  is the electron plasma frequency 
and no is the ambient electron density. For example, no = 
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Fig. 1. Schematic of the plasma-based accelerators: (a) LWFA (or PWFA), 
in which a short L c" A, laser pulse (or electron beam) drives a plasma wave 
(dashed curve), (b) PBWA, in which two long pulse ( L  > A,) lasers with 
frequencies w'1 - ~2 IV LJ~ ,  resonantly drive a plasma wave, (c) RLPA, in 
which a train of short laser pulses resonantly drives a plasma wave, and (d) 
self-modulated LWFA, in which an initially long pulse (dashed curve) breaks 
up into a series of short pulses and resonantly drives a plasma wave. The 
laser pulses are moving to the right. 

10" cmP3 gives Eo ru 100 GV/m, which is approximately 
three orders of magnitude greater than that obtained in con- 
ventional RF linacs. Accelerating gradients on the order of 100 
GV/m have been inferred in recent experiments [33]. 

This paper is intended to give an overview of some of the 
concepts and issues relevant to plasma-based accelerators. This 
discussion will be limited to only the most widely investi- 
gated plasma-based accelerators, namely the plasma wakefield 
accelerator (PWFA) [ 191-[24], [38]-[51], the plasma beat- 
wave accelerator (PBWA) [I], [25]-[29], [521-[79], the laser 
wakefield accelerator (LWA) [ I], [30], [SO]-[ 1071, including 
the self-modulated regime [31]-[351, 1961, [97l, [1081-[1171, 
and wakefield accelerators driven by multiple electron or laser 
pulses [22]-[24], [38]-[40], [91], [118]-[122]. These config- 
urations are shown schematically in Fig. 1. The remainder 
of this Introduction gives a brief overview of each of these 
accelerator configurations. Some of the more relevant theo- 
retical and experimental results will be highlighted. Tables I 
and I1 summarize the parameters of plasma-based accelera- 
tor experiments which have observed accelerated electrons. 
Section I1 discusses the basic models used to describe plasma 
wave generation in the cold fluid limit. Included is a discussion 
of the ponderomotive force and the quasi-static approximation. 
Section I11 describes the properties of nonlinear plasma waves 
(wavebreaking, period lengthening, and phase velocity) as well 
as the trapping and acceleration of electrons and photons 
by the plasma wave. The basic properties of the PWFA are 
described in Section IV, including a discussion of the stability 
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TABLE I 
ELECTRON BEAM DRIVEN ACCEL~RATION 

vdciuc (MeV) Qdrtue (nC) Ldrrve ("1 Tdrive (mm) n, (cmd3) AE (MeV) E,,, (MV/m) 

USA (ANL)[20] 21 4.0 2.1 1.5 10'2 0.2 5.0 
Japan (KEK)[23] 500 10 3.0 1.5 10'2 30 30(") 
Ukraine (KhFTI)[24] 2 0.4 17 10 10'1 0.5 0.25 

(a )  result from the third of six bunches in a resonant pulse train 

TABLE 11 
LASER-DRIVEN ACCELERATION OF ELECTROl'lS 

P (TW)(") I (W/cm2)(.) TL (ps) XI (pm) A2 (pm) np ( ~ m - ~ )  A E  (MeV) E,,, (GV/m) 

PB WA 
Japan (ILE)[25] 
USA (UCLA)[27] 
Canada (CRL)[28] 
France (LULI) [29] 

LWFA 
Japan (KEK)[30] 

SM-LWFA 
USA (LANL)[18] 
Japan (KEK)[31] 
USA (LLNL)[32] 
UK (RAL)[33] 
USA (CUOS)[34] 
USA (NRL)[35] 

0.3 
0 .2(4 

0.2(4 
0.1 

8 

0.4 
3 
5 
25 
2.5 
2.5 

1013 
1014 
1014 
1017(d) 

1017 

1015 
1017 
101s 
1019 
1019 
1019 

1000 
300 
500 
90(d) 

1.0 

700 
1.0 
0.6 
0.8 
0.4 
0.5 

9.6 10.6 
10.3 10.6 
10.3 10.6 
1.05 1.06 

1.05 ~ 

10.6 - 

1.05 - 

1.05 - 

1.05 
1.05 - 

1.05 

~ 

~ 

1016 
1016 
1017 

1015 

- 

1019 
1019 
1019 
1019 
1019 

1.5 
2.8 
1.7 
0.6 

0.7 

- 

30 
- 

100 
- 

- 

( a )  for PBWA P 5 PI rr Pz and I 5 I I  
( b )  accelerated electrons come from the background plasma 

( d )  P2 rr 0.02 TW, Iz rr 1OI6 W/cm2, TL = 160 ps 

I2 

(c) P 2  E 0.05 T W  

and propagation of the primary electron beam. Section V 
describes the various laser-driven plasma-based acceleration 
configurations, specifically, the LWFA, the PBWA, the self- 
modulated LWFA, and wakefields driven by multiple pulses. 
Included is a brief discussion of diffraction, detuning, and 
pump depletion, which can limit the single-stage energy gain. 
Methods for optically guiding laser pulses in plasmas are 
discussed in Section VI, including relativistic self-focusing, 
preformed density channels, ponderomotive self-channeling, 
plasma wave effects, and self-modulation. Recent experimental 
results on optical guiding are mentioned. Section VI1 describes 
a few of the more relevant laser-plasma instabilities, including 
backward and forward Raman scattering, self-modulation, and 
laser-hosing. A conclusion is presented in Section VIII. This 
paper also includes an Appendix which briefly discusses 
compact terawatt lasers. 

A. Plasma Wakefield Accelerator 

Plasma-based accelerators in which the plasma wave is 
driven by one or more electron beams are referred to as plasma 
wakefield accelerators (PWFA's) [19]-[24], [38]-[51]. In the 
PWFA, plasma wakefields can be excited by a relativistic 

electron beam provided that the electron beam terminates in 
a time shorter than the plasma period, U;'. The concept of 
using electron beam driven plasma waves to accelerate charge 
particles was apparently first proposed by Fainberg in 1956 
[38]. More recently, the basic mechanism of the PWFA in the 
linear regime was proposed and analyzed by Chen et al. in 
1985 [39]. Ruth et al. [40] showed that the transformer ratio 
R, (the ratio of energy gain to the drive beam energy) is limited 
to Rt 5 2 for ii symmetric driving beam in the linear regime. 
Chen et al. [41] showed that the transformer ratio could be 
increased by using an asymmetric drive beam, e.g., a triangular 
drive beam (a long linear rise followed by a rapid termination) 
of length Lb gives Rt E T&/A,,  where A, = 2nc/w, is the 
plasma wavelength and Lb > A, is assumed. Rosenzweig [46] 
proposed operation in the nonlinear regime and showed that a 
long symmetric drive beam can produce R, > 2. Rosenzweig 
et al. [48] later described beneficial features of operating in 
a two-dimensional (2-D) nonlinear "blowout" regime of the 
PWFA. Various authors have examined other aspects of the 
PWFA [42]-[:ill. For example, the idea of enhancing the 
wakefield amplitude by using multiple electron drive bunches 
spaced at the plasma period was noted in the original work 
on the PWFA [381-[40]. 
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Experiments on the PWFA process were apparently first 
carried out by Berezin and co-workers [24] in the early 1970’s. 
More recently, the PWFA mechanism was demonstrated in a 
set of experiments by Rosenzweig et al. [19]-[21]. In these 
experiments, the wakefield amplitude was mapped out by 
measuring the energy of a “witness” electron beam which 
trailed the drive beam by an adjustable delay. Wakefields were 
driven by a single electron bunch with an energy of 21 MeV, 
a duration of 7 ps, and a total charge of 4 nC, in a plasma of 
density (0.4-7) x lo1’ cmp3 and of length 33 cm. Linear [19] 
and nonlinear [20] wakefields were observed, with a maximum 
energy gain of 0.2 MeV, and a maximum accelerating gradient 
of 5 MV/m. In Japan [22j, [23], PWFA experiments were 
carried out using a train of electron bunches from a high- 
energy RF accelerator (electron bunch parameters: energy 500 
MeV, length 10 ps, charge 10 nC) in a plasma of density (2-8) 
x 10l2 cmP3 and of length 1 m. A maximum energy gain of 
30 MeV (30 MV/m) was observed. Experiments in the Ukraine 
[24j were carried out using multiple bunches, each of energy 
2 MeV, duration 60 ps, and total charge 0.4 nC, in a plasma 
of density lo1’ cm-3 and of length 20-100 cm. A maximum 
energy gain of 0.5 MeV and a maximum accelerating gradient 
of 0.25 MVIm were observed. 

B. Plasma Beat-Wave Accelerator 

In the PBWA [1], [25]-[29], [52]-[79], two long pulse laser 
beams of frequencies w1 and w2 are used to resonantly excite 
a plasma wave. This is done by appropriately adjusting the 
laser frequencies and plasma density such that the resonance 
condition w1 - w2 2 wp is satisfied. The PBWA was first 
proposed by Tajima and Dawson [l] as an alternative to the 
laser wakefield accelerator, since compact ultrashort pulse, 
ultrahigh power laser technology (see Appendix) was not 
available in 1979. The PBWA was subsequently analyzed by 
various researchers [52]-[69]. (Resonant excitation of a plasma 
wave using two laser beams had been previously analyzed 
by Rosenbluth and Liu [53] for plasma heating applications.) 
To overcome the problem of phase detuning between the 
accelerated electrons and the plasma wave, Katsouleas and 
Dawson [54] proposed the use of a transverse magnetic field. 
Tang et al. [55] described how the plasma wave amplitude 
could be increased by operating at an optimal frequency 
mismatch 6wOpt, such that w1 - wz = wp - Swept. Since this 
early work, various aspects of the PBWA have been analyzed 
and simulated, such as the self-focusing of the laser beams by 
relativistic, plasma wave, and cascading effects [65]-[69]. 

The observation of plasma wave generation in the PBWA 
via Thomson scattering was first demonstrated by Clayton 
et al. [70] and later observed by several groups [25]-[29], 
[7 11-[74]. Acceleration of background plasma electrons in 
the PBWA was first observed by Kitagawa et al. [25j us- 
ing two lines of a CO2 laser in a plasma of density 
cmP3. Plasma electrons were trapped and accelerated to an 
energy in excess of 10 MeV. A plasma wave amplitude of 
h / n o  = 5 %  was observed and an acceleration gradient of 
1.5 GV/m was estimated. Clayton et al. [26], [27] observed 
electron acceleration in a series of PBWA experiments using 

two lines of a CO2 laser in a plasma of density 9 x 1015 
~ m - ~ .  A 28 MeV energy gain was observed using a 2 MeV 
injected electron beam, corresponding to a gradient of 2.8 
GV/m and a plasma wave amplitude of &/no = 28%. 
The UCLA experiments were particularly well diagnosed and 
various laser-plasma interaction phenomena and instabilities 
have been observed [75]-[79j. Electron acceleration was also 
observed in the PBWA experiments of Ebrahim [28] using 
two CO2 laser lines in a plasma of density 10l6 ~ m - ~ .  A 
12.5 MeV injected electron beam was accelerated to 29 MeV 
over a plasma length of approximately 1 cm (211.7 GV/m). 
More recently, Amiranoff et al. [29] observed acceleration in 
a PBWA experiment using two Nd laser lines in a plasma 
of density ~ m - ~ .  A 3.4 MeV injected electron beam was 
observed to increase by 1.4 MeV. A plasma wave amplitude of 
2% and a gradient of 0.6 GV/m were observed. Plasma wave 
saturation and and parametric coupling to ion waves were also 
observed in these experiments [73], [74]. 

C. Laser Wukejield Accelerator 

In the laser wakefield accelerator (LWFA) [I], [30], 
[80]-[107], a single short (‘1 ps) ultrahigh intensity (>lo1’ 
W/cm2) laser pulse drives a plasma wave. The wakefield is 
driven most efficiently when the laser pulse length L = CTL 

is approximately the plasma wavelength A, = 2?rc/wp, i.e., 
L = A,. The L W A  was first proposed by Tajima and Dawson 
[ 1 j and simulated (one-dimensional (1-D) particle-in-cell) by 
Sullivan and Godfrey [80] and by Mori [81]. Prior to 1988, the 
technology for generating ultra-intense picosecond laser pulses 
did not exist and only the PBWA concept appeared feasible 
(which relied on long pulses of modest intensity). The LWFA 
was later reinvented independently by Gorbunov and Kirsanov 
[82] and by Sprangle et al. [83], [84j. This roughly coincides 
with the time when chirped-pulse amplification was applied 
to compact solid-state lasers and a table-top terawatt laser 
system was first demonstrated by Mourou and co-workers 
[ l l ]  (see Appendix). The nonlinear theory of the LWFA in 
one dimension was developed by Bulanov et al. [87], Sprangle 
et al. [88], [89], and Berezhiani and Murusidze [90]. The 
nonlinear theory of the LWFA in two dimensions, including 
the self-consistent evolution of the laser pulse, was analyzed 
by Sprangle et al. [96], [97]. 

Perhaps the first experimental evidence for plasma wave 
generation by the LWFA mechanism was obtained by Hamster 
et al. [105]. In these experiments, the emission of terahertz 
radiation at the plasma frequency was observed when the 
plasma was driven by a laser pulse of length L N A,. 
Specifically, wp/2?r = 4.6 THz radiation was observed for 
a 0.1 ps laser pulse propagating in a plasma of density 2 
x cmP3. This radiation is emitted by the 2-D electron 
plasma currents of the laser-induced wakefield. Recently, the 
measurement of plasma wave generation in the LWFA has 
been reported by researchers at Ecole Polytechnique [ 1061 
and at the University of Texas at Austin (UTA) [lo71 by 
using probe pulses and optical interferometry techniques. In 
the French experiments 11061, a 120 fs duration, 800 nm 
wavelength laser pulse with a maximum energy of 40 mJ 
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was focused to a maximum intensity of 3 x 1017 W/cm2 in a 
plasma of density 1017 ~ m - ~ .  A pair of probe pulses, separated 
from each other by 1.5 times the plasma wavelength, were 
used to map out the wakefield by adjusting the delay between 
the pump and probe pulses. A plasma wave with a perturbed 
density of 30% to 100% was measured over several plasma 
periods behind the probe pulse. At UTA [107], three probe 
pulses were used to measure the density perturbation at a fixed 
delay behind the pump pulse. By varying the ambient plasma 
density, the plasma wave amplitude was observed to vary in 
good agreement with theory. 

Nakajima et al. [30] have reported electron acceleration in 
LFWA experiments. Electrons from a synchronous laser-solid 
interaction were injected with energies near 1 MeV and 
accelerated to energies >5 MeV by an 8-TW 1-ps laser pulse 
in a plasma of density 3.5 x ~ m - ~ .  Estimates based on 
simulations imply an acceleration gradient of 0.7 GV/m. 

D. Self-Modulated LWFA 

The self-modulated LWFA [3 11-[351, 1961, [971, 
[108]-[117] uses a single short (21 ps) ultrahigh intensity 
(ZlO" W/cm2) laser pulse, as in the standard LWFA. The 
self-modulated LWFA, however, operates at higher densities 
than the standard LWFA, such that the laser pulse length 
is long compared to the plasma wavelength, L > A,, and 
the laser power P is somewhat larger than the critical 
power P, for relativistic guiding, P 2 P,. In this high- 
density regime, the laser pulse undergoes a self-modulation 
instability [ 1081-[113] which causes the pulse to become 
axially modulated at the plasma period. Associated with the 
modulated pulse structure is a large amplitude, resonantly 
driven plasma wave. The self-modulation instability resembles 
a highly 2-D version of a forward Raman instability. Forward 
Raman scattering occurs simultaneously, adding to the 
modulation, and in the 1-D limit, pulse modulation can occur 
via forward Raman scattering alone [ 1141. 

The process by which a plasma wave can modulate a laser 
pulse by producing periodic regions of enhanced focusing 
and diffraction was first described and analyzed by Esarey 
et al. [69]. The self-modulation of relativistically guided 
laser pulses was observed in the simulations of Andreev 
et al. [log], Sprangle et al. [96], and Antonsen and Mora 
[109]. Krall et al. [llO] simulated a self-modulated LWFA, 
including the acceleration of an injected electron beam, and 
showed that this configuration can have certain advantages 
over the standard LWFA. The self-modulation instability was 
subsequently analyzed by Esarey et al. [ l l l ]  and Andreev 
et al. [112], [113], and, in the 1-D limit, forward Raman 
scattering (FRS) was analyzed by Mori et al. [ 1141. Extensive 
particle-in-cell simulations of short intense pulses propagating 
in the high-density regime have been carried out by Decker et 
al. 11151 and Bulanov et al. [116]. 

Evidence for plasma wave generation in the high-density 
self-modulated regime was first detected by Coverdale et al. 
[32]. The presence of a plasma wave leads to the generation of 
Stokes and anti-Stokes lines in the frequency spectrum of the 
pump laser pulse. The first two anti-Stokes lines were observed 

by Coverdale et al., the appearance of which were correlated 
with production of fast electrons, as discussed below. Subse- 
quently, multiple anti-Stokes lines in the forward spectrum 
of the pump laser have been observed by several other 
groups [33]-[35], [117]. At the Naval Research Laboratory 
(NRL) [ 1171, plasma wave generation in the self-modulated 
regime was measured via coherent Thomson scattering with a 
frequency-doublied probe pulse. The evolution of the plasma 
wave was observed by varying the time delay between the 
pump and probe pulses. 

Joshi et al. [18] detected fast electrons in an early ex- 
periment via forward Raman scattering. A single long pulse 
(700 ps) CO2 laser pulse of modest intensity (1015 W/cm2) 
interacting with a thin Carbon foil was observed to produce 
1.4 MeV electrons. Electron acceleration in the high-density 
self-modulated regime has been observed recently using ultra- 
short pulses ( 5 1  ps). Nakajima et al. [31] observed electron 
acceleration to energies 217 MeV using a 3-TW 1-ps 
W/cm2 laser pulse in a plasma of density near lo1' ~ m - ~ .  A 
laser-solid interaction was used to produce a source of injected 
electrons with energies near 1 MeV. Particle simulations in 1- 
D suggest acceleration gradients on the order of 30 GV/m. 
Coverdale et al. [32] observed 2 MeV electrons, which were 
trapped and accelerated from the background plasma, when 
a 600-fs 5-TW 8 x 1017 W/cm2 laser pulse propagated in a 
plasma of density 2 x 10'' cmP3. The generation of electrons 
was also correlated with the occurrence of anti-Stokes lines 
in the laser pulse spectrum, which indicates the presence of a 
plasma wave. Modena et al. [33] demonstrated the acceleration 
of self-trapped electrons to energies 244 MeV (limit of the 
detector) using a 1-ps 25-TW 5 x 10l8 W/cm2 laser pulse in 
a plasma of density 1.5 x lo1' cmP3. A large flux of electrons 
was observed (]lo6 electrons/MeV at 44 MeV) and the electron 
signal was correlated to the appearance of up to five anti- 
Stokes lines in the laser spectrum. Estimates based on the 
electron phase detuning length imply an acceleration gradient 
> 100 GV/m. Acceleration of self-trapped electrons has also 
been observed by Wagner et al. [34]. The electrons were 
emitted in a well-collimated beam in the forward direction 
(a divergence angle -8') and the cross section of the beam 
resembled the shape of the cross section of the laser at focus. 
By varying the laser pulse energy, a threshold for electron 
acceleration was observed near P N P,. More recently, 
accelerated plasma electrons were observed at NFU [35] using 
a 2.5-TW 0.5-ps 6 x 10'' W/cm2 laser pulse in a plasma of 
density lo1' ~ m - ~ .  

E. Multiple Pulses 

By using multiple laser pulses (in the LWFA) or electron 
bunches (in the PWFA), the wakefield amplitude can be 
enhanced [22]--[24], [38]-[40], [91], [118]-[122]. In the linear 
regime, N identical pulses will increase the wakefield by a 
factor of N when the front of the pulses are separated by 
an integer number of plasma wavelengths. In the nonlinear 
regime, greater enhancements may be possible. The idea of 
using multiple electron pulses in the PWFA was put forth in 
the first papers, on the PWFA [38]-[40]. In fact, experiments 
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on the PWFA in Ukraine [24] and in Japan [22], [23] utilized 
multiple bunches. Several groups have suggested and analyzed 
the possibility of using multiple laser pulses to enhance the 
wakefield in the LWFA [91], [118]-[122]. Recently, Umstadter 
et al. [119], [120] calculated the conditions for an optimized 
laser pulse train which corresponds to maximizing the plasma 
wave amplitude in the I-D nonlinear regime. In particular, 
they showed that for realistic laser pulse profiles, the spacing 
between pulses increases whereas the width of each subsequent 
pulse decreases as the plasma wave becomes more nonlinear. 
Preliminary experiments on the production of multiple pulse 
trains using chirped-pulse amplification (CPA) laser systems 
have been reported [ 1231. 

11. PLASMA WAVE GENERATION 

Calculation of the plasma wakefields generated by 
nonevolving drive beams is straightforward. Analytical 
solutions exist in the three-dimensional (3-D) linear regime 
and in the 1-D nonlinear regime. In the 3-D nonlinear regime, 
the use of numerical codes is usually required. The full 
problem, which includes the self-consistent evolution of the 
drive beams, is sufficiently complicated to require simulation. 
Various aspects of the propagation and transport of the drive 
beams will be discussed in subsequent sections. Before 
discussing specific plasma-based accelerator configurations 
(e.g., PWFA, PBWA, LWFA, etc.), the physical forces which 
drive wakefields (i.e., space-charge and ponderomotive 
forces) and the mathematical models used to describe 
wakefield generation will be briefly discussed. In the 
following, it is convenient to use the normalized electrostatic 
q5 = e@/m,c2 and vector a = eA/m,c2 potentials. 

An important parameter in the discussion of ultra-intense 
laser-plasma interactions is the laser strength parameter ao, 
defined as the peak amplitude of the normalized vector poten- 
tial of the laser field. The laser strength parameter is related 
to the peak intensity I and power P of a linearly polarized 
Gaussian laser pulse by 

uo = ( 2 e 2 ~ 2 ~ / n m : c 5 ) 1 / 2  

rv 8.6 x l O P l o X  [pm] 11/2[W/cm2] (2) 

and P[GW] r" 21.5(~oro /A)~,  where ro is the laser spot 
size at focus, X = 2 ~ / k  is the laser wavelength, w = ck 
is the laser frequency, I = 2P/nri,  and a vector potential 
of the form a = a0 exp( - r2 / r i )  cos(kz - w t ) e ,  is assumed. 
Furthermore, the peak laser electric field amplitude EI, is given 
by EL [TV/m] rv 3.2ao/X [pm]. Physically, a = pL/m,c is 
the normalized transverse "quiver" momentum of the electrons 
in the laser field, as indicated by conservation of transverse 
canonical momentum in the I-D limit (ro >> A).  Highly 
relativistic electron motion (a0 2 1) requires laser intensities 
I 2 10" W/cm2 for wavelengths of X 5: 1 pm. Such 
intensities are now available from compact CPA laser systems 
[151, ~161. 

A. Space-Charge and Ponderomotive Forces 

The physical origin of the plasma wave in the PWFA is the 
space-charge force associated with the drive electron beam. 

When the electron beam propagates into a uniform plasma, 
R = no, where n is the plasma electron density, the beam 
density nb generates a space-charge potential via Poisson's 
equation, V2$ = k:(n/no + nb/nO - I), where k,  = wp/c. 
The resulting space-charge force F,, = -m,c2Qq5 can drive a 
plasma wakefield. Consider a long uniform relativistic electron 
beam of density n b  << no and radius rb >> A,. The space- 
charge potential within the beam, r < rb, is & = r2k2/4,  
where k i  = 4ne2nb/m,c2. The plasma electrons will respond 
so as to cancel the space-charge potential of the beam, i.e., 
the perturbed plasma density is Sn = -nb. If the electron 
beam terminates in a time short compared to up', a plasma 
wakefield of the form Sn = n b  sin k P ( z  - e t )  is generated. 
The axial electric field of the wake behind the beam is given 
by d E , / d z  = -47reS72, i.e., E, = 47re(nb/kp) cosk,(z - e t ) .  
The peak amplitude of the wake is E,,, = (nb/no)Eo. 

In laser-driven plasma-based accelerators, wakefields are 
driven via the ponderomotive force. The ponderomotive force 
[124] can be derived by considering the electron momentum 
equation in the cold fluid limit, d p / d t  = -e[E + (v x B)/c], 
where d / d t  = d / d t  + v . V. The electric and magnetic 
fields of the laser can be written as E = - d A / d c t  and 
B = V x A, where the vector potential of the laser is 
polarized predominately in the transverse direction, e.g., A = 
A0 cos(kz  - & ) e l .  In the linear limit la1 = e/Al/m,c2 << 1, 
the leading order electron motion is the quiver velocity vq = 
ea, as indicated by m,dvq/d t  = -eE. Letting v = vq + 6v, 
the second-order motion is given by 

d S p / d t  = -me[(vq . V)v, + cvp x (V x a)] 

= - m,,c2v ( a2 / 2). ( 3 )  

Hence, F, = -m,c2V(u2/2)  is the 3-D ponderomotive force 
in the linear limit (u2  << 1). The ponderomotive force can 
also be viewed as the gradient of the radiation pressure. 

In the I-D nonlinear regime, conservation of canonical 
momentum implies u l  = al, where u 1  = pl/m,c,  i.e., 
a1 is the normalized quiver momentum. Hence, in one di- 
mension, the nonlinear ponderomotive force is given by Fpz = 
-(m,c2/2y)3a~/dz. In the 3-D nonlinear regime, the leading 
order transverse motion of the electron is still the quiver 
motion, UL = a l ,  provided that the laser pulse has a 
sufficiently broad spot size, ro > A, >> A. Assuming that the 
laser pulse is a function of only the variables r and ( = z - et ,  
as in the quasi-static approximation [ S I ,  [89], it can be shown 
[96], [97] that the momentum equation can be written as 

(4) 

Here, Vq5 is the space-charge force and Vy represents an 
effective nonlinear ponderomotive force, F,N = -mec2Vy. 
Since the axial component of (4) implies y - U ,  = 1 + 4 - a,, 
it can be shown that [961, [971 

a(u - a)/aC = V(y - 4). 

where QS = 4s - urs and the subscript s denotes the slow 
component, which is obtained by averaging over the fast laser 
period. 
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B. Linear Regime 

In the linear 3-D regime, wakefield generation can be ex- 
amined using the cold fluid equations, i.e., Poisson’s equation, 
the continuity equation, and the momentum equation. For 
example, the plasma wave generated in an initially uniform 
plasma, by either a laser or electron beam, is described by 
[391, [401, r.581, [821-[841 

where nb/no << 1 is the normalized density of the driving 
electron beam, u2 << 1 is the normalized intensity of the 
driving laser beam, and Sn/no << 1 is the perturbed density 
of the plasma wave. The solution to (6) is 

Sn/no = w i 1  i ’ d t ’ s i n w p ( t  - t / )F ( t ’ )  (7) 

where F ( t )  is the right side of (6). Equations (6) and (7)  
describe plasma waves generated at the frequency wp and 
are valid far from wavebreaking, E << Eo. Solutions to 
(7) indicate that wakefields will be generated most efficiently 
when the envelope scale length, which characterizes the axial 
gradient in the profile of the beam density n b  or the normalized 
laser intensity u2, is on the order of the plasma wavelength 

For the plasma wakefield accelerator [a2 = 0 in (6)], the 
electric field of the wake can be calculated from 02q5 = 
kz(6n+nb)/no. For a highly relativistic, V b  N c, axisymmetric 
drive beam, the axial electric field of the wake behind the beam 
is given by 1431, [44], [125], [126] 

A, = 2’irc/wp. 

x 10 ( ?“ < )KO ( k p  ‘T‘ > ) % (c’, T’ ) (8) 
where < = x - et;  10 and KO are zeroth-order modified Bessel 
functions, and r< and T> denote the smaller and larger of T 

and T’, respectively. 
For laser-driven accelerators, nb = 0, and (6) implies 

(a2/&’ + w;)d = wiu2/2 .  Hence 

E(r,t) = -(m,c2w,/e) dt’sinw,(t - t’)Va2(r,t’)/2.  

(9) 
For laser-driven wakefields, (9) implies that the radial extent 
of the wake is on the order of the laser spot size T , ~ .  For 
electron beam-driven wakefields, however, the radial extent 
of the wake is given approximately by the larger of the beam 
radius T b  and the plasma skin depth k;’ = c /wp ,  due to the 
factor 1o(k,r<)Ko(k,r>) in (8). 

As an example, consider an LWFA driven by a circularly 
polarized laser pulse with a normalized intensity profile given 
by u2 = U; exp(-2r2/r:) sin2(7r</L) for 0 < < < L,  where 
5 = z - et. Solutions to (9) indicate that the wakefield 
amplitude is maximum for pulse lengths L Y A,. Behind the 
pulse, < < 0, the axial electric field and density perturbation 
of the wake are given by [83], [84] 

lil’ 

for the case L = A,. For linear polarization, replace a; with 
.;/a. 

In addition to the axial wakefield E,, transverse wakefields 
E, and Be will be generated. The transverse wakefields are 
related to the axial wakefield by the Panofsky-Wenzel theorem 

relativistic particle with ii, Y c which is being accelerated 
by a wakefield with up N c will experience a radial force 
proportional to E, - Bo. Notice that if E,  N exp(-2r2/r:), 
then E, - 138 -2 (47-/k,~:) exp(-2r2/r:) and the radial force 
is zero along the axis. Typically, for an electron displaced 
from the axis, there is a phase region of the wake with an 
axial length of = ‘ir/4kP within which a relativistic 
electron will experience simultaneous axial accelerating and 
radial focusing forces [40]. 

[401, [431, [U], [1251-[127], dE,/& a(E,  - Be)/dC. A 

C. Nonlinear Regime 

Wakefield generation in the nonlinear 1-D regime can be 
examined by assuming that the drive beam is nonevolving, i.e., 
the drive beam is a function of only the coordinate < = z -up& 
where vp 5 c is the phase velocity of the plasma wave. For 
electron beam drivers, U, r” ?& is the drive beam velocity, and 
for laser drivers, U, N vg is the laser pulse group velocity. 
The 1-D limit applies to broad drivers, k,ri >> 1, where T L  

is the characteristic radial dimension of the drive beam. Using 
the momentum and continuity equations, Poisson’s equation, 
a24/8C2 = k i ( n / q  + nb/no - l ) ,  can be written as [91], 
[loll,  [119]-[L21], [128], [I291 

where T~ = ( 3  - /?g)-1/2 and p, = up/c .  The axial electric 
field of the wake is given by E, = -Eoa$/a{. In the limit 
7,” >> 1, (12) simplifies to [46], [87]-[90] 

(Similar expressions were used by Noble [57] to study the 
PBWA.) Solutions can be found analytically for square elec- 
tron beam [46] or laser pulse profiles [87]-[90]. Numerical 
solutions to (112) and (13) indicate that the general features 
of the wakefield generated by a more realistically shaped 
pulse, e.g., Gaussian, do not differ dramatically from those 
of a square pulse. As the plasma wave amplitude becomes 
nonlinear, (1211 and (13) indicate that the plasma wave steepens 
and its period lengthens, as is discussed in Section 111-B. 
Notice that in the linear limit, 141 << 1, (13) reduces to 

(a”/a(z + k ; )4  = k;(nb/no + u”2) (14) 

which is implied by the 1-D limit of (6). 
In the 2-D nonlinear regime, simulations are usually re- 

quired. One possible approach is to use a nonlinear quasi-static 
fluid model 1961, [97], which is briefly discussed in the 
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following section. An alternative approach is to use 2-D 
particle-in-cell simulations [ 1 151, [ 1 161. 

D. Quasi-Static Approximation 

A useful approximation in the study of short pulse inter- 
actions with plasmas is the quasi-static approximation (QSA), 
which was first applied to nonlinear laser-plasma interactions 
by Sprangle et al. [88], [89]. In the QSA, the plasma fluid 
equations are written in terms of the independent variables 
5 = z - v,t and r = t ,  where vug is the velocity of the driver 
(e.g., laser pulse). The QSA assumes that in the time it takes 
the laser pulse to transit a plasma electron, the laser pulse 
does not significantly evolve. In other words, TL << TE,  where 
T~ = L / c  is the laser pulse duration and TE is the laser pulse 
evolution time, which is typically on the order of a Rayleigh 
(diffraction) time. Thus, the plasma electrons experience a 
static (independent of r )  laser field. In the QSA, the d / d ~  
derivatives are neglected in the plasma fluid equations which 
determine the plasma response to the laser pulse. The 8/87 
derivatives, however, are retained in the wave equation which 
describes the evolution of the laser pulse. The QSA allows 
the laser-plasma interaction to be calculated in an iterative 
fashion. For a fixed r ,  the plasma response to the laser field 
is determined as a function of ( by solving the QSA fluid 
equations (e.g., (12) in the l-D limit). Using this fluid response, 
the wave equation is then solved to update the laser pulse in r .  

For example, the wave equation describing the evolution of 
the laser field can be written as [96], [97], 11281 

where p = n/yno, n is the electron plasma density, and y is 
the relativistic factor associated with the electron fluid velocity, 
e.g., (5). Typically, the third and fourth terms on the left side 
of (15) can be neglected. In addition, if the approximation 
a2/d<dr  N i k d l d r  is made to the second term of the left 
side of (15), then the resulting equation is referred to as the 
paraxial wave equation. The paraxial approximation assumes 
that the laser field can be written as a = &(r ,  <. r )  e x p ( i k ( ) ,  
where laii/a<I << \ I C & \ ,  i.e., the laser envelope ti is slowly 
varying compared to the laser wavelength. The fluid quantity 
p = n/yno  is determined from the quasi-static fluid equations. 
For example, in the l-D limit, it can be shown [128] that 
p = ( l + ~ ) - 1 ( 1 + ~ ~ 2 y , 2 3 2 4 / d < 2 ) ,  where a24/aC2 satisfies 
(12). In 2-D and assuming v, N e, it can be shown [96], 1971, 
[130] that p = (1 + '@-'(PO + kg2V?T!), where po  is the 
intial value of p (prior to the laser pulse) and the quantity 
Q = 4 - a, satisfies a quasi-static equation of the form 
d 2 9 / 8 c 2  = G f ( 9 ,  u 2 )  with G f  an involved function 11301. 

111. NONLINEAR PLASMA WAVES AND ACCELERATION 

A. Wavebreaking 

Plasmas are capable of supporting large amplitude electro- 
static waves with phase velocities near the speed of light. 
Such waves can be used to accelerate electrons. In the linear 
regime, the electric field of a plasma wave in a plasma-based 

accelerator has the form E, = Emaxsinw,(z/vp - t), where 
v, Y c is the phase velocity. The peak field amplitude E,,, 
of the plasma wave can be very high and can be estimated 
can from Poisson's equation, V . E = 47re(no - ne).  A 
simple estimate for the maximum field amplitude is given by 
assuming all of the plasma electrons are oscillating with a 
wavenumber k,  = wp/c.  This gives (wp/c)E,,, = 47ren0, 
or E,,, = Eo, where Eo is the nonrelativistic wavebreaking 
field [36] given by (1). 

It is possible for the maximum amplitude of a nonlinear 
plasma wave to exceed the value Eo. Using the nonlinear 
relativistic cold fluid equations in l-D, it is possible to show 
that the maximum amplitude of a plasma wave is given by 

E ~ B  = &(yp - 1)1'2Eo (16) 

where y, = (1 - V ; / C ~ ) - ' / ~  is the relativistic factor associated 
with the phase velocity of the plasma wave, assuming vp < e. 
The quantity Ews is often referred to as the relativistic wave- 
breaking field and was first derived by Akhiezer and Polovin 
[37]. As an example, consider a laser-driven accelerator with 
a plasma density of no N 1016 cmP3. The plasma wave 
phase velocity is approximately the group velocity of the laser, 
y, r" w / w p ,  where w is the frequency of the laser. For a laser 
wavelength of 1 pm, yp E 330 and EWB N 26Eo 21 250 GV. 

Fluid equations can be used to describe a coherent plasma 
wave as long as the electron fluid velocity we is less than the 
phase velocity of the wave, v, < vp. In the 1-D cold fluid limit, 
the nonlinear plasma wave is described by (12). As the wave 
amplitude increases, v, increases. The wave is said to "break" 
when ve + U,, at which point the plasma density becomes 
singular, n - x. Mathematically, wavebreaking occurs in a 
cold l-D plasma when E,,, + EWB, where E ~ B  is given 

The above value for the wavebreaking field was based on 
cold fluid theory. Thermal electron effects, however, can lead 
to a reduction in the wavebreaking field. In a warm plasma, the 
electron distribution has a thermal spread about its mean fluid 
velocity U,. Roughly speaking, a large fraction of the electron 
distribution will become trapped in the plasma wave when 
lv,+vttl e ~ l  + l ip,  where vth,eff is an effective thermal velocity 
spread. This leads to wavebreaking. Using warm relativistic 
fluid theories, expressions for the thermal wavebreaking field 
amplitude E t h  have been derived [47], [131] of the form 

(17) 

where f t h ( Y p ,  T )  is a slowly varying function of rp and the 
electron temperature T with a typical magnitude on the order 
of unity, . f th(yP,T)  - 1. Katsouleas and Mori [131] give 

Thermal effects will limit the wave amplitude if the warm 
wavebreaking field is less than the cold wavebreaking field, 
E t h  < E ~ B .  As an example, yp 'v 330 and T = 10 eV 
give a thermal wavebreaking limit of Eth N 12 Eo, which is 
approximately one-half that of the cold wavebreaking result, 
&vB. 

The above expressions for the wavebreaking field were 
based on l-D theories. Wavebreaking in 3-D has not been thor- 
oughly investigated and general expressions for the maximum 

by (16). 

E t h  = ( m e  c2 /3T)1'4 f t h  ( T p ,  T)EO 

fth = ln(2y, 112 Pth 114 ) for yp/3t12 >> 1, where &I, = 3T/m,c2. 
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cell simulations 11151, [116] have demonstrated the generation 
of plasma waves with amplitudes on the order of Eo. Simu- 

(a) 

where Errlax is the peak electric field of the plasma wave and 

As an example of nonlinear plasma wave behavior, (13) 
has been solved numerically [88], [89] for a linearly polarized 
laser of the form u2 = U! sin2(7r(/L) cos2 k( for 0 < < L,  
where L = A,, as in the LWFA. A mildly relativistic case 
uo = 0.5 is shown in Fig. 2(a) and a highly relativistic case 
uo = 2 is shown in Fig. 2(b). Here, E, is given by the solid 
curve, &/no is given by the dashed curve, the density is 
no Y 10l6 ~ m - ~ ,  and the laser pulse exists in the region 
-0.03 cm = -L 5 5 5 0. Note that the rapid oscillations 
in the plasma density at one-half the laser wavelength are 
due to a fast component of the ponderomotive force, i.e., 
a2 N 1 + cos2k<. The nonlinear effects of wave steepening 
and period lengthening are clearly evident in Fig. 2(b). 

The lengthening of the plasma wave period can have an 
important role in plasma-based accelerators. For example, in 
the PBWA, the plasma wave is driven at a constant beat 
frequency Aw = w1- wp N wp. As the wave grows, however, 
the effective plasma frequency decreases, w p + ~  = 27rc/X,~. 

A, = 27l/k, = 271c/wp. 

the plasma wave becomes highly nonlinear. In the 1-D cold 
fluid limit, the nonlinear plasma wave is described by (12). In 
the region behind the drive beam, n b  = up = 0, an analysis of 

DISTANCE .$ 

(b) 

Fig. 2. Density variation Sn/no = n / n o  - 1 and axial electric field E,  in 
an LWFA driven by a laser pulse located in the region -L 5 C 5 0 (the 
pulse is moving to the right), where L = A ,  = 0.03 cm, for (a) 00 = 0.5 
and (b) no = 2.0 (from [88]). 

-2  I I I I 

Hence, the driver (i.e., the laser beat wave) becomes out of 
phase with the nonlinear plasma wave. This leads to saturation 
of the plasma wave amplitude in the PBWA 1531, [55], [621, 
[63]. Alternatively, if the plasma wave is to be driven to 
large amplitudes a series of individual pulses (laser pulses or 
electron bunches), the change in the nonlinear plasma period 
can affect the optimal spacing between pulses as well as the 
optimal duration of the pulses [119], [120]. 

The increase in the plasma wavelength with increasing wave 
amplitude has an additional effect on nonlinear plasma waves 
in two dimensions. Consider a plasma wave which is driven 
more strongly on axis than it is off axis. This would be the 
case in a laser-driven accelerator, where the laser intensity 
peaks on axis and typically has a Gaussian radial profile. On 
axis, the plasnaa wave amplitude is maximum and, in the 

-1.0 
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than it is off-axis. Thus, the plasma wavelength vanes as a 
function of radius XN,(T) .  This causes the wavefronts of the 10 _ _  

C. Electron Acceleration and Detuning 

An electron can be accelerated along the z-axis by an elec- 
trostatic plasma wave of the form E, = E,,,,, sin wp (./U, - t ) .  
As the electron is accelerated, its velocity U, will increase and 
approach the speed of light, 71, - c. If the phase velocity of 
the plasma wave is constant with up < c, the electrons will 
eventually outrun the plasma wave and move into a phase 
region of the plasma wave which is decelerating. This limits 
the energy gain of the electron in the plasma wave and is 
commonly referred to as electron phase detuning. The detuning 
length L d  is defined as the length the electron must travel 
before it phase slips by one-half of a period with respect to 
the plasma wave. For a highly relativistic electron, ae Y e, the 
detuning time t d  is given by w p ( c / v p  - l ) t d  = T ,  i.e., Ld = 
ctd N yiXp, assuming y, >> 1. The maximum energy gain 
after a detuning length [l], [52], [58]  is given approximately 
by Wmax E eEmaxLd 2 2 ~ y ~ ( E m a X / E o h ~ * .  

In a 1-D plasma wave, electron trapping, acceleration, and 
detuning can be studied by examining the electron orbits in 
phase space (7, TI)), where y = (1 - u:/~’)~/’ is the electron 
energy. In the linear regime, the plasma wave is described 
by a sinusoidal electrostatic potential 4 = 4 0  cos$, where 
$0 = Eima,/lCp is the amplitude and $ = k , ( z  - v,t) is the 
phase. The phase region -7r < $ < 0 is accelerating. Consider 
an electron injected into the plasma wave with w, < U, at q5 = 
0. Initially, the electron is slipping backward with respect to 
the plasma wave. If the initial electron velocity is too low, 
the electron does not gain sufficient energy and i iZ < up 
at li/ = -7r. Hence, the electron would be untrapped and 
would continue to slip backward through the plasma wave. If, 
however, the electron has a sufficiently high initial velocity 
such that vr > v, as the electron approaches $ + -7r, 

the electron will be trapped and execute closed orbits in the 
-7r < $ < ?r phase region. 

An important characteristic of phase space is the separatrix, 
which is the orbit that separates the region of trapped and 
untrapped electrons in phase space, as shown schematically 
in Fig. 3 for a small amplitude, sinusoidal plasma wave. The 
separatrix corresponds to the orbit of an electron injected at 
$ = 0 with the precise initial velocity v, = vmin < up to give 
?I, = up at $ = -7r. The minimum energy necessary to trap an 
electron (sometimes referred to as the minimum injection 
energy) and the maximum energy of a trapped electron ymax 

-8 T * 
Fig. 3. Single particle orbits in phase space (7, @) for an electron in a 
small amplitude. sinusoidal plasma wave with a normalized potential given 
by o = 00 COS 2 ’  with Within the separatrix (solid 
curve) the orbits are closed and the particles trapped. 

= 20 and 4,) = 

occur at the phase 11 = 0 for an electron which lies on a 
trapped orbit just inside the separatrix. 

The motion of a test electron in a I-D nonlinear plasma 
wave can be studied by solving the equations d y l d i  = d$/d$  
and d $ / d i  = 1 - P,/p along with the nonlinear Poisson 
equation, (12). Here, y = (1 - P2)- ’ I2 is the relativistic 
factor of the electron, = vz/c, 0, = vp/c, S = k,z, and 
$ = kp< = k , ( x  - w p t )  is the phase of the electron relative 
to that of the plasma wave. The test electron motion in the 
plasma wave is described by the Hamiltonian [129] 

(20) 

where H ( y . 4 )  = constant along a given electron orbit and 
q!I = c $ ( d ~ )  is the solution to (12), which oscillates between 
q!Imin 5 4 5 c$max. In particular, the separatrix rs($) 
characterizing the test electron orbits in (?,$) phase space 
is given by H(r.9; 4) = H ( y p ,  $min), where $($min) = $min. 

Fig. 4 shows several separatrices for yp = 20 and for 
different values of the plasma wave amplitude, characterized 
by the parameter 6 ,  where &ax = (2y; - 1)~/7?, - 1, 
for t = 0.03, 0.04, 0.1, 0.3, and 0.9 ( E  = 1 corresponds 
to wavebreaking). This corresponds to values of the peak 
electric field E,,, given by EmaX/E0 = 0.18, 0.47, 1.5, 
3.2, and 5.8, respectively (at wavebreaking, E w ~ l E o  = 6.2). 
The value E = 0.03 corresponds to the innermost curve and 
E = 0.9 corresponds to the outermost curve. These curves 
were obtained [1291 by plotting H(y9, $) = H ( 5 ,  g m i n )  

after numerically solving (12) for q5 = +($) with the initial 
conditions &$/a< = 0 and (p = q5,nax at 4 = 0. The width 
of the separatrix corresponds to the nonlinear plasma 
wavelength, AN, = given by (19). As the plasma 
wave amplitude increases, the nonlinear wavelength increases. 

For small wave amplitudes, e.g., E = 0.03, the separatrix is 
nearly symmetric (as would be the case for a linear sinusoidal 
plasma wave). Notice that for E = 0.03, ymin > 1, indicating 
that an electron injected with ‘U = vmin > 0 at $ = 0 would be 
trapped, where vmin = c( 1 - As the wave amplitude 

H ( Y , 4 )  = Y ( 1  - PP,) - 4(4) 
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Fig. 4. The separatrix n I S ( t b )  plotted for several values of the plasma 
wave amplitude, E = 0.03, 0.04, 0.1, 0.3, and 0.9 (e = 1 corresponds to 
wavebreaking), where &,rtx = e(2$ - l ) / l p  - 1, with yp = 20. The value 
E = 0.03 corresponds to the innermost curve and F = 0.9 corresponds to the 
outermost curve (from [129]). 

increases, ymin decreases to the point ymin = 1, corresponding 
approximately to the curve E = 0.04 in Fig. 4. Hence, a test 
electron which is at rest at + = 0 would be trapped. This does 
not mean that the background plasma electrons will be trapped. 
The background electrons are undergoing a plasma wave fluid 
oscillation and, at the phase $J = 0, are flowing backward 
(opposite to u p )  with the maximum fluid velocity. Increasing 
E further causes 7,in (at $J = 0) to increase. This implies that 
a test electron at II, = 0 with w = -lvminl would be trapped. 
Further increasing E causes wmin to become more negative. 
Wavebreaking occurs when t = 1, at which point "imin = y p ,  
wmin = -up and, hence, all of the plasma electrons become 
trapped in the wave. 

The maximum energy ymax and minimum energy 7mln, 
denoted by T ~ ,  for an electron on the separatrix are given 
by U291 

"im = Y,(l + 7PA4) 7 p P , [ ( 1 +  7 p W 2  - w2 (21) 

where A$ = $max - $min, i.e., A$ = 2,4[(1 + k iax /2 )2  - 
1I1l2, as indicated by (18). In the limits rpA$ >> 1 and 7; >> 
1, ymax N 2A$$ and ymin N_ A4/2 + 1/2A4. In particular, 
the maximum energy of a trapped electron is given by [129] 

where k,, = E,,,/Eo. The limit Ekax << 2 corresponds to 
the well-known limit for linear sinusoidal plasma waves [l], 
[52], [58], [132]-[134]. When ELax >> 2, however, N 

27,E;,,, which implies that higher electron energies can be 
obtained for electrons trappedA in nonlinear plasma waves. 
The nonlinear regime where E,,, > 1 has been observed 
in simulations of the nonlinear plasma wakefield accelerator 

26 1 

[46]-[49], the self-modulated LWFA [110], [115], [116], and 
laser wakefields driven by multiple pulses [118]-11221. At 
wavebreaking ( E  = 1, Emax = E\.ITB), (21) indicates that 

A rough estimate for the detuning length is given by 
[I291 Ymax = 4 ~ :  - 3yp. 

W,,, = m,c 2 71nax = eEmaxLd. This gives 

where  AN^ is given by (19). Determination of the actual 
detuning length 11321 requires a simultaneous solution of the 
equations of motion and (12). 

As an example, consider an LWFA with no = 2.8 x 10" 
cmP3, 7g N 20, and Eo N 160 GV/m. In the limit Eiax >> 2, 
(22) gives ymax cx 800E~,,. At wavebreaking, EWB N 6.2Eo 
and W,,, N 16 GeV. Furthermore, notice that (16) and 
(22) imply 7max N 47,"(E,,,/Ew~)~, where 72 >> 1 and 
7p(E,,x/Ew~)'2 >> 1 have been assumed. Hence, for a fixed 

energy gain can be enhanced by operating at lower densities. 
It should be noted that the above results are obtained from 

1 -D theory and assume a constant amplitude plasma wave. 
An evolving plasma wave amplitude and 2-D effects could 
alter these results [133], [134]. For example, Mora [134] has 
shown that the effects of laser diffraction can lead to a more 
restrictive trapping condition for linear plasma waves. 

value of Emax/Ews,  ymax N 7, 3 N no - 3 P  and the single-stage 

D. Plasma Wave Phase Velocity 

The phase velocity of the plasma wave is important for 
determining the minimum injection energy, the maximum 
energy gain, and the detuning length. Neglecting the evolution 
of the drive beam as it propagates, the phase velocity of the 
plasma wave is equal to the phase velocity of the drive beam. 
For the plasma wakefield accelerator, the phase velocity is 
equal to the velocity of the drive electron beam, up = v b .  

For laser-driven wakefields, the phase velocity is equal to the 
group velocity of the laser, vp = w g .  

In the linear regime, the group velocity of a laser pulse in a 
plasma can be determined from the l-D dispersion relation, 
w2 = c2k2 + hiE. This gives wg == c ( l  - wE/w2)1/2 and 
y 9 -  - (1 - v ; / c " ) - ~ / ~  = w / w p .  Nonlinear corrections to the 
group velocity in l-D have recently been analyzed by Decker 
and Mori [135]. In the limit w,/w << 1, the leading order 
correction is found by replacing w; with its relativistic value, 
w;/rl, where 7/1 = (1 + ag/2)'12 is the relativistic factor 
associated with the quiver motion of the electrons in the laser 
field. 

The group velocity of a laser pulse is also reduced by 3- 
D effects. For example, consider a laser pulse in vacuum 
undergoing Rayleigh diffraction. The evolution of the spot size 
(or radius) of a Gaussian laser beam evolves according to r, = 
ro(1 + X ~ / Z ; ) ~ / ~ ,  where TO is the rninimum spot size at the 
focal point z = IO and ZR = krg/2 is the Rayleigh length. In 
effect, the photons are traveling at approximately a diffraction 
angle Bd = T O / Z R  with respect to the z-axis. Hence, the axial 
group velocity i!; reduced by vg N ccos8d N c( l  - 8212). A 
more detailed calculation indicates tlhat, in the linear regime, 
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the 3-D group velocity is given by [136] PLASMA WAVE 6 n ( O  
/ 

(24) yg r” (wp2/w2 + 2c2/w 2 T o )  2 -112 . 

In effect, the linear 3-D dispersion relation is given by w2 - 
c2F2 = w: + 2c2/ri .  For tightly focused laser pulses, this 3- 
D correction can significantly limit the group velocity. As an 
example, consider a laser pulse with a X = 1 pm wavelength, 
a TO = 10 pm spot size, propagating in a plasma of density 
71 = cmP3. In 1-D, ys Y 330, however, the finite spot 
size reduces the group velocity such that yg 

Distortions of the pulse driving the plasma wave can also 
affect the plasma wave phase velocity. In the LWFA in the 
1-D limit, it has been shown that the wake phase velocity 
is approximately equal to the group velocity associated with 
the position of the peak of intensity profile [135], [137]. 
Furthermore, the plasma wave can lead to locally enhanced 
diffraction and focusing, which distorts the pulse profile and 
reduces the plasma wave phase velocity [138], 11391. 

44. 

E. Photon Acceleration 

In addition to accelerating electrons, a plasma wave can 
be used to upshift the frequency of a properly phased low- 
intensity short laser pulse (often referred to as photon acceler- 
ation) [140]-[142], as shown schematically in Fig. 5. Consider 
a plasma wave with an electron density perturbation of the 
form Sn = -SnosinFpp5, where p5 = z - ct,  and a low 
intensity, “witness” laser pulse centered about 5 = 0 with 
a pulse length L << A,. The local density at the front of the 
pulse, n(< = L/2), will be less than that at the back of the 
pulse, n(< = -L/2). Since the local phase velocity is given 
by /3, = V, /C E 1 + wg(C)/2w2, where wg(C) - n(C), the 
phase velocity at the pulse front is less than that at the back 
of the pulse, i.e., u,(L/2) < v,(-L/2). Hence, the phase 
peaks at the back move faster than those at the front and the 
pulse wavelength decreases (the pulse frequency increases). 
For small shifts, the laser wavelength will evolve according 
to X N A0 + ZAP,, where AD, = Xod,B,/d< < 0 is the 
difference in phase velocity between adjacent phase peaks, z is 
the propagation distance, and XO = ~ T C / W O  is the initial laser 
wavelength. Hence, the frequency shift is given by w/wo ‘v 

1 - zd/?,/d(, where d p p / d <  Y (w,”/2w:)d(6n/no)/d<. A 
more detailed calculation indicates that the frequency will be 
upshifted according to [141] 

where nonlinear effects and phase slippage between the laser 
pulse and plasma wave (i.e., detuning) [142] have been ne- 
glected. 

Typically, the plasma wave induced frequency shifts are 
small. For example, consider a laser with X = 1 pm and 
TO = 30 pm, propagating in a plasma of density no = 10” 
cmP3 (A, = 30 pm). After propagating one Rayleigh length, 
z = ZR,  w/wo ’v 1 + Sno/Sno. Small frequency shifts, 
however, can be detected and this process can be useful for 
diagnosing the wakefield [106], [107], [143]. Large frequency 

Fig. 5. Schematic of laser pulse frequency upshifting by a plasma wave with 
rP N rg N c (the pulse is moving to the right). Positive shifts require the 
laser pulse to be centered about regions of the wave with a decreasing density 
(from [141]). 

shifts require long propagation distances and large plasma 
wave amplitudes. For example, after one electron detuning 
length Ld = X,w2/w,2, w/wo = (1 + 2~Sno/no)l/~. 

IV. PLASMA WAKEFIELD ACCELERATOR 
In the plasma wakefield accelerator (PWFA), plasma waves 

are excited by the space-charge force of the drive electron 
beam [19]-[24], [38]-[51]. An electron beam propagating into 
a plasma will displace plasma electrons. Provided that the 
electron beam terminates in a time 7f short compared to the 
plasma period, 7fwp < 1, the electron beam will excite a 
plasma wave. Electron acceleration in the PWFA has been 
observed in several experiments [19]-[24], as mentioned in 
Section I. In addition, PWFA experiments are being pursued 
at several laboratories [ 1441-[ 1461. 

A. Linear Regime 

In the linear regime, the amplitude of the plasma wave can 
be estimated from Poisson’s equation V . E = - 4 e ~ n b ,  along 
with the assumptions that the electron beam radius r b  is large 
compared to a plasma wavelength r b k p  >> 1, the beam is 
relativistic vz F e, and E, N expik,(z - et) .  This gives a 
maximum wakefield amplitude of kpEmax = 4 ~ e n b ,  or 

Emax/Eo = nb/nn. (26) 

More rigorously, this result can be derived from 3-D linear 
fluid theory ( n b / n o  << 1)  via (8) assuming r f w ,  < 1 and 
k p T b  >> 1. The transverse profile of the wake can be calculated 
for various transverse beam profiles. For a flat transverse beam 
profile out to a radius T b ,  the amplitude of the axial wakefield 
is given by EZ/Eo = ( n b / r L o ) F R ( T ) ,  where the radial profile 
function is given by [43], [44], [125], [126] 

(27) 

where Ko,l and  IO,^ are modified Bessel functions. Along the 
axis, FR(O) F 1 for kprb >> 1, which is the l-D limit. For a 
narrow beam, kprb << 1, the the axial electric field at r = 0 
will be reduced by the amount FR(O) N k~r~[ye+ln(kprb /2) ] ,  
where ye F 0.577 is Euler’s constant. 

1 - k p ? - b K I ( k p T b ) l O ( k p T ) ,  for T < r b  

for r > r b  { k p n J 1  ( kprb ) Ko (kpp.) ,  
FR(T) = 
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Fig. 6. Electron beam density nb (dotted line), plasma electron density 
response 6n (dashed line), and electric field E, (solid line) plotted versus 
(, from numerical solution of (13). In the plot, the beam is moving to the 
left and E, > 0 is accelerating. The plot shows R = 9.7 in good agreement 
with linear theory: R = "Nb N 9.4. 
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Fig. 7. Beam density on axis nb (dashed line), beam radius T b  (dotted line), 
and electric field on axis E, (solid line) plotted versus C at cr = 5 cm. The 
portion of the beam where nb > no is in an equilibrium state with T b  = 41 
pm, in agreement with (29). The plot shows R = 5.8 (from [51]). 

One limitation to the wakefield amplitude is the density of 
the drive beam. Qpically, nb < 1014 ~ m - ~ .  For example, an 
electron beam with a peak current Ib = 100 A and a radius 
of T b  = 100 pm has a density nb N 7 x cmP3. Hence, 
assuming nb = 1014 cmP3 and nb 5 no implies E, 5 1 
GV/m. 

The energy gain in the PWFA is also limited by the 
transformer ratio Rt ,  which is the ratio of the electron energy 
gained in the wakefield to the initial drive beam energy, 
Rt = Ay/yb.  As the drive beam propagates through the 
plasma, it will experience a decelerating electric field E- due 
to the wake induced within the drive beam. This implies that 
the drive beam will lose all of its energy after propagating a 
depletion length given roughly by Ldp 11 ybmec2/eE-. After 
propagating a distance Ldp, the energy gain of an electron 
in the wakefield is given by Aymec2 N eE+Ld,, where E+ 
denotes the accelerating field of the wake behind the drive 
beam. Hence, the transformer ratio is defined as Rt = E + / E - .  
For an axially symmetric drive beam, Ruth et al. [40] have 
shown that Rt 5 2, i.e., the maximum energy gain for a 
symmetric drive beam is twice the energy of the drive beam. 

One possible method for increasing the wakefield amplitude 
is to use multiple electron bunches to drive the wake [22]-[24], 
[38]-[40]. For a series of Mb short bunches separated by a 
distance A,, linear theory predicts that wakefield amplitude 
will be enhanced by the factor Mb, i.e., E,/Eo = Mbnb/no, 
assuming E,/EO << 1. Ruth et al. [40], however, have shown 

Fig. 8. (a) Beam density nb and (h) plasma electron density np,  plotted at 
cr = 5 cm for the simulation of Fig. 7. In (b) the radial direction is reversed 
relative to (a). The plot shows a region of complete evacuation (blowout) of 
the plasma electrons (from [51]). 

that, under idealized conditions, the transformer ratio is at best 
enhanced by the square root of this factor, Rt 5 2m. 

The transformer ratio can also be increased by properly 
tailoring the axial profile of a single driving electron beam, 
as suggested by Chen et al. [41]. For example, consider a 
triangular-shaped beam which has a linear rise over a length 
Lb = NbAp with Nb > 1 followed by a rapid termination 
over a length L f  << A,. In this case the transformer ratio is 
Rt N TNb. An example is shown in Fig. 6, where the beam 
density, plasma density, and electric field are plotted for a 1- 
D triangular-shaped electron beam with nb,peak = O.lno and 
Nb = 3. Fig. 6 was obtained by numerically solving (13) (with 
u2 = 0) and indicates a transformer ratio Rt = 9.7, in good 
agreement with linear theory. 

Recently, 2-D axisymmetric particle simulations were used 
[51] to demonstrate that Rt N nNb can hold in a regime where 
nb > no (but with E,/EO << 1), as shown in Figs. 7 and 8. In 
this example, a triangular-shaped electron beam was injected 
into a plasma of density no = 2.0 x 1014 cm-3 (A, = 0.24 
cm). Initially, the beam has energy 20 MeV (Yb = 40), charge 

peak density nb,peak/nO = 5. 
Fig. 7 shows the beam density on axis nb and electric field 

on axis E, plotted versus after CT = 5 cm of propagation. 
A transformer ratio Rt = 5.8 < TNb II 7.2 is observable. The 
reduced value of Rt can be attributed to the fact that, after 5 
cm of propagation, the beam no longer has a precise triangular 
shape (details of the propagation in this case will be discussed 
below). Fig. 8 shows surface plots of nb and plasma electron 
density ne at CT = 5 cm (as in Fig. 7). In this nonlinear case, 
generation of the wakefield is dominated by the radial motion 
of the plasma electrons, which are completely evacuated from 
the axis within the beam. 

Q = 3.0 nC (peak current Ibo = 2QPC/Lb = 250 A), and 



264 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 24, NO. 2, APRIL 1996 

Fig. 9. Beam density n b  (dotted line), plasma electron density response 
Sn (dashed line), and electric field E ,  (solid line) plotted versus C. from 
a numerical solution of (13). The plot shows R = 4.0 in excellent agreement 
with nonlinear theory (see [46, Fig. 11) and 1-D simulation (see [49, Fig. 61). 

Note that, with a more precisely chosen pulse shape, such 
as the “door-step’’ pulse of [41], the transformer ratio can be 
increased to Rt N 27rNb. In either case, large energy gains 
can be achieved when Nb >> 1. Specifically, in the absence of 
electron detuning, the energy gain is ay = &Yb.  Katsouleas 
[42] showed that detuning can reduce the energy gain, i.e., 
Ay/yb 5 R t / ( l  + RtnO/Tybnb). In practice, the energy gain 
can also be limited by electron beam-plasma instabilities, such 
as the two-stream and electron-hose instabilities [ 1471-[ 1501. 

B. Nonlinear Regime 

The wakefield amplitude and transformer ratio in the PWFA 
can be enhanced by operating in the nonlinear regime n b  - no. 
In the 1-D nonlinear regime, analytical solutions exist to 
(12) for drive beams with square axial profiles. Rosenzweig 
[46] described an “optimal” 1-D nonlinear PWFA in which 
nb = no/2. For this case, a square drive beam of length 
Nb = & / A p  would generate a nonlinear plasma wave of 
amplitude E+ = =Eo with a corresponding transform 
ratio Rt ? m, assuming 2TNb >> 1. An example is 
shown in Fig. 9, where a 1-D square pulse with nb = no12 
and length L b  = 2.79AP produces a wake with Rt = 4. This is 
in agreement with theory [46] and 1-D simulations [49]. In the 
simulation, however, the wave breaks after the first oscillation. 

Rosenzweig et al. [48] also described a 2-D nonlinear 
“blowout” or “ion-focused” regime [151] of the PWFA. In this 
regime Tbkp < 1, nb/no > 1, and the wakefield is dominated 
by highly nonlinear transverse plasma motion. Since nb/no > 
1, essentially all of the plasma electrons can be blown out 
of the region of the drive beam. (A similar regime can be 
obtained in the LWFA by using a tightly focused ultra-intense 
laser pulse [96], [115].) Immediately behind the drive beam, 
the wake is characterized by an accelerating field which is 
constant as a function of radius and varies linearly as a function 
of <, and an electrostatic focusing field which is linear as a 
function of radius. Because the focusing forces in the wakefield 
are linear, the emittance of a short electron bunch will be 
preserved as it is transported and accelerated by the wakefield. 
Due to the highly nonlinear nature of the wake, however, the 
wake may be destroyed (i.e., break) after a single oscillation. 
An example [511 of this regime is provided by Figs. 7 and 8. 
In Fig. 7, the linear variation in E,(()  is observable at -( = 

0.72 cm. In this example, ion focusing is also used to focus 
and transport the primary beam, as discussed in the following 
section. 

C. Primary Beam Propagation 

Issues of particular importance in the PWFA are the equilib- 
rium state and the stability of the primary beam as it propagates 
through the plasma. Typically, the secondary beam has lower 
current and higher energy, relative to the primary beam, 
resulting in lower growth for most beam-plasma instabilities. 
In addition, the secondary beam is strongly focused by the 
plasma wave. The primary beam, however, is subject to 
a number of instabilities, particularly the Weibel instability 
[ 1471, the transverse two-stream (TTS) instability [42], [ 1481, 
and the electron-hose (EH) instability [ 1491. The longitudinal 
two-stream instability has also been considered [41], [42], [451, 
but is of less interest because it grows more slowly than TTS. 

The equilibrium state of the driving beam is characterized 
by a balance between the spreading of the beam due to its 
emittance (transverse temperature) and the focusing of the 
beam by the plasma. Without the plasma, the beam self-electric 
and magnetic fields cancel for ~b >> 1, and the emittance of the 
beam causes it to spread. For nb < no, the plasma electrons 
neutralize the spacexharge field of the beam. In this case, the 
focusing force is provided by the self-magnetic field of the 
beam. For Tb < c /wp,  the equilibrium radius Re, is given 
implicitly by [5l] 

where I, is the beam current, /3 is the normalized beam 
velocity, and E,,,,, is the normalized rms emittance [152]. For 
nb > no. the plasma electrons are expelled from the region 
of the beam and the focusing force is provided by the plasma 
ions. For T b  < c / w p  and yb >> 1 [51] 

A number of simulations, each of which were initialized 
with a cold beam (emittance = 0) in a nonequilibrium state 
with nb < no and Tb < c / w p ,  showed pinching of the beam 
and evolution toward an equilibrium as the beam emittance 
grew via phase-mixing [42], [44], [45]. More recently [51], 
(28) and (29) were verified in 2-D axisymmetric particle 
simulations, including the example given in Figs. 7 and 8 
above. In that case, the beam is radially matched with initial 
radius Tb = Re, = 41 pm, as determined from (29). Fig. 7 
shows the beam radius TI., plotted versus ( after er = 5 cm of 
propagation. The beam remains in an equilibrium state with 
r b  = Re, over most of the beam, where n b  > n o .  The head 
of the beam, where nb < no, is not focused. 

The Weibel instability [ 1471, which causes filamentation of 
the beam in the regime where nb < no and Tb > c / w p ,  has 
been observed in simulations by Keinigs and Jones [44] and 
Su et al. [45]. Operating in the Weibel-unstable regime has 
the advantage that, by having a very broad pulse, it may be 
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possible to obtain a wakefield with linear transverse focusing, 
which preserves the emittance of the accelerated electron beam 
[45]. In this regime, it may also be possible to maintain 
stability in the primary beam with a sufficiently large emittance 
1451. 

The TTS and EH instabilities can occur for Lb > A,, where 
Lb is the beam length. In the PWFA, a typical case where 
L b  > A, is a triangular-shaped electron beam with N b  > 1, 
as discussed in Section 111-A. Theoretical estimates for TTS 
suggest that it may be a severe limitation on the propagation 
distance 1411, 1421, [148]. Because the TTS wavelength is a 
function of the beam density, however, it can be stabilized by a 
sufficiently strong ramp-up in the beam density. Based on this 
approach, limits on the useful beam length and transformer 
ratio can be estimated 1421. 

Simulations using 2-D Cartesian geometry 1421 did not 
clearly show TTS. These simulations, however, were initial- 
ized with a cold beam, which developed emittance and evolved 
toward an equilibrium state throughout the simulation. In a 
later study, using a 3-D particle code, the beam was initialized 
in an approximate equilibrium state and the growth of TTS was 
observed, with results that were consistent with theory 1511. 

The EH instability [149] occurs in the regime where the 
plasma electrons have been expelled from the region of the 
beam by the beam space charge, leaving a bare ion column. 
In this equilibrium state, the ion column is surrounded by a 
"wall" of plasma at the charge-neutralization radius T, = 
(7Lb/7LO)'/'Tb. When the beam suffers a small transverse 
displacement, the plasma electrons at T = T, are also displaced 
in such a way that the interaction is unstable. Note that the 
PWFA corresponds to the "short pulse limit" of [149], where 
asymptotic expressions are given for the growth of the EH 
instability for several plasma density profiles versus radius. For 
the PWFA, where the plasma density is uniform, the number 
of e-foldings at a position -5 = ct - z within the beam and 
as a function of the propagation distance x is given by [149] 

where 7 b  >> 1 was assumed. As discussed in Section 111-B 
above, the ??,b > n o  regime has the advantage of linearly 
focusing transverse wakefields [48]. 

It is important to note that the EH growth rate and frequen- 
cies are independent of the beam density such that the variation 
in beam density along the length of the beam does not affect 
the growth of the instability. Also, the instability is absolute, 
with exponential growth within the beam at any fixed position 
relative to the head of the beam. This is a result of the linear 
focusing force of the ion channel, which does not allow phase 
mixing of the beam electron trajectories. Thus, EH imposes a 
more severe restriction on beam propagation than TTS. The 
growth of the EH instability is illustrated in Fig. IO, which 
shows the results of a 3-D simulation [Sl]  with parameters 
identical to those of Figs. 7 and 8. In Fig. 10, the simulation 
particles are projected onto the (ic, 5) plane at CT = 0, 5, and 
10 cm. The variation in the density of beam particles versus 
5 reflects the linearly ramped beam current. At CT = 5 cm, 
a small deflection at the tail of the beam is apparent. The 
axisymmetric expansion of the beam head (see Fig. 7) is also 
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Fig. 10. Simulation particles, projected onto the (z, C) plane at T = 0, cr = 
S cm, and CT E 10 cm, show the severity of the electron-hose instability in 
this case. The initial beam radius is Q ( T  = 0) = 41 p m  (from [SI]). 

apparent. At CT = 10 cm, the beam is severely disrupted. Plots 
of the beam centroid versus 5 (not shown) indicate that the 
instability grows from the initial centroid perturbation rather 
than from particle noise. 

Additional simulations [5 11 showed that, by adjusting the 
beam emittance to obtain a sufficienlly large equilibrium beam 
radius, the EH regime can be avoided and the lower growth- 
rate associated with the TTS instability can be obtained. For 
these parameters, however, the TTS instability is also severely 
restrictive. Alternatively, 3-D simulaitions have shown that EH 
and TTS can be avoided entirely b y  abandoning the shaped- 
pulse approach and using a sufficiently short pulse [ 1501. Beam 
equilibrium andl dynamics in this limit have also been studied 
by Barov and IRosenzweig [50]. 

V. LASER-PLASMA ACCELERATORS 

A. Laser Wakejield Accelerator 

As an intense laser pulse propagates through an underdense 
plasma, X2/Xg << 1,  the ponderomotive force associated with 
the laser pulse envelope, Fp N Va2, expels electrons from 
the region of the laser pulse. If the length scale L, of the 
axial gradient i~n the pulse profile is approximately equal to 
the plasma wavelength, Lz N A,, the ponderomotive force 
excites a large amplitude plasma wave (wakefield) with a 
phase velocity approximately equal1 to the laser pulse group 
velocity (see Fig. 1) [l], 1301, [80]-l.107]. For a typical axially 
symmetric laseir pulse (e.g., a Gaussian profile), the wakefield 
amplitude will be maximum when 15 N Ap/2,  where L = CTL 

is laser pulse length. The precise value of L which maximizes 
the wake amplitude will depend on the shape of the axial pulse 
profile. For example, consider a circularly polarized laser pulse 
with a square axial profile in the 1-D limit T;  >> A:. The 
wakefield amplitude is maximum when L N XN,/~, where 

is the nonlinear plasma wavelength, (19), and is given 
by t871-[901 

(31) 2 -112 
&"/I30 = a; (1 -t a,) 
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where U; = 3.6 x 10-19A2[pm]I[W/cm2] (for linear polariza- 
tion, replace ai with a i /2 ) .  Notice that E,,, N A;' N L-l .  
Hence, the wakefield amplitude can be increased by operating 
at high densities and shorter pulse lengths. At high densities, 
however, the laser pulse group velocity is reduced and electron 
phase detuning can limit the energy gain, as discussed in 
Section V-E. 

Numerical examples [88], [89] of wakefield generation in 
an LWFA are shown in Fig. 2(a) and (b), where the axial 
electric field E, (solid curve) and perturbed plasma density Sn 
(dashed curve) are plotted versus 5. These plots are obtained 
by solving the 1-D nonlinear Poisson equation, (13), with 
71b = 0. The laser is linearly polarized with X = 1 pm and 
a normalized intensity profile a2 = U; sin'(.ir</L) sin'(k<) 
for -L < < < 0 and zero otherwise (referred to as a sine 
pulse profile). The ambient plasma density is no = 1.2 x 
cm-3 and the pulse length is set to L = A, = 300 pm 
( 7 ~  = L / c  = 1 ps). In Fig. 2(a), a0 = 0.5 ( I  = 3.5 x lo1' 
W/cm2) and the maximum accelerating gradient is E,,, N 1 
GV/m; whereas in Fig. 2(b), a0 = 2 ( I  = 5.6 x 10" W/cm') 
and E,,, N 10 GV/m. The high-frequency density fluctuation 
inside the laser pulse envelope is due to the fast component 
of the ponderomotive force at twice the laser frequency, i.e., 
a' N sin' k< = (1 - cos2k<)/2. In the limit u2 << 1, the 
radial profile of the wake is determined by the radial profile 
of the intensity [82]-[84], as indicated by (9)-(11), e.g., if 
a2 - cxp(-2r2/ri) ,  then E, N exp(-2r2/rg). 

Because the plasma wave is driven by a single laser pulse 
with L E A,, the wakefield amplitude is relatively insensitive 
to uncertainties in the pulse duration and/or the plasma uni- 
formity. This is shown in Fig. 11, where the peak wakefield 
amplitude E,,, is shown as a function of the pulse length L 
at a fixed density and intensity. The parameters are identical 
to the sine profile laser pulse examples shown in Fig. 2(a) and 
(b), only now the pulse length L is varied. The solid curve is 
for ao = 0.5, the dashed curve is for a0 = 2, and the field 
amplitude is normalized to EN = Eo(a;/2)(1 + a;/2)-l/', 
which is the maximum wakefield amplitude for a square pulse 
profile. Notice that the electric field amplitude is maximum for 
L N O.75Ap and is fairly insensitive to changes in the pulse 
length. Also, the curve for the a. = 2 case is broader due 
to an increase in the nonlinear plasma wavelength. Similarly, 
for the case of a circularly polarized Gaussian pulse profile, 
u2 = a;exp(-<'/L2), the wakefield amplitude behind the 
pulse (C2 >> L') is given by [821 

E,,, /EO = (&ai /Z) k, L exp ( - kg L2 /4) (32) 

assuming U; << 1. Equation (32) explicitly shows the de- 
pendence of the wake amplitude on the pulse length L. In 
particular, the wake amplitude achieves a maximum value of 
Emax/Eo = ~ : ( 7 r / 2 e ) ~ / ~  N 0.76~;  when L = A , / T ~ .  

To summarize the optimal pulse length conditions for the 
square, sine, and Gaussian pulse profiles discussed above, 
it is convenient to express the pulse length in terms of the 
full-width-half-maximum length, LFWHM, and the root-mean- 
square length, L,,,, of the pulse intensity profile [153]. For the 
square pulse, the wakefield is maximum E,,, = a;Eo when 
LF\~VHM = OSA, (k,,L,,, = 0.91). For the sine pulse, the 
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Fig. 11. Amplitude of the axial electric field E, plotted as a function of laser 
pulse length, L, for the LWFA examples shown in Fig. 2. The solid curve is 
for a0 = 0.5, the dashed curve is for a0 = 2.0, the laser pulse envelope is 
given by a = a0 sin(r(C(/L) for -L 5 C 5 0, and plasma density is held 
constant at no = 1.2 x 1OI6 (A, = 0.03 cm). 

wakefield is maximum E,, = 0.82aiEo when LFWHM = 
0.37X, (kpLrms = 0.85). For the Gaussian pulse, the wakefield 
is maximum E,,, = 0.76a;Eo when LFWHM = 0.37A, 
(kpLrms = 1). These results assume U; << 1 and circular 
polarization. 

Furthermore, since the laser pulse in the LWFA is of 
short duration, L c" A,, various instabilities which can be 
detrimental to the propagation of long pulses can be reduced. 
Schemes which utilize long laser pulses, L >> A,, such as the 
PBWA and the self-modulated LWFA, are subject to various 
instabilities, some of which are discussed in Section VII. 
Electron acceleration in LWFA experiments has been reported 
by Nakajima et al. [30], as discussed in the Introduction. In 
addition, optical interferometry techniques have been used to 
measure the plasma waves generated in LWFA experiments 
[106]. [107]. 

B. Plasma Beat- Wave Accelerator 

In the PBWA, a large amplitude plasma wave is resonantly 
driven by the beating of two long pulse lasers [1], [25]-[29], 
[52]-[79]. The resonance condition on the frequencies of the 
two lasers is Aw w,. When this is satisfied, 
large amplitude plasma waves can be generated. Consider 
two lasers with a combined normalized vector potential given 
by a = al cos(k1z - w l t )  + a2 cos(k2z - wzt ) ,  where kl,' 
are the wavenumbers. The ponderomotive force, Oa2/2, will 
have a resonant beat term (u'),,~ = ala2 cos(Akz  - A w t ) ,  
where Ak = k1 - k2. In the linear regime, plasma wave 
generation is described by ( d 2 / d t 2  + w,")$ = w~(a2/2) , , , ,  
and the ponderomotive beat term can resonantly drive a plasma 
wave when A w  N w,. When the resonance condition is exactly 
satisfied, A w  = w,, secular growth of the plasma wave results, 
4 = -&sin(Akz - Awt), where qhP = ala2k,151/4 and 
IC1 = Iz - ctl is the distance behind the front of the laser 
beams. Hence, the amplitude of the plasma wave within the 
laser pulse is [58] 

w1 - w2 

EmaxlEo = ala&,l<l/4. (33) 

Furthermore, notice that the phase velocity of the plasma 
wave, U ,  = A w / A k ,  is given by v p / c  N 1 - wi/2wf in 
the limit wZ/w; << 1, i.e., the plasma wave phase velocity is 
approximately equal to the group velocity of the driving lasers. 
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In effect, the laser beat-wave acts as a series of laser 
pulses, each of normalized amplitude ala2 and of duration 
Ar = 2n/Aw. Each of these pulses generates a wake of 
amplitude E,,,/Eo = 7rala2/2. The total plasma wave 
amplitude generated by a laser beat-wave of length L = NAP 
is E,,,/Eo = Nnala2/2, where N is the number of laser 
beat periods within the pulse. 

The result given by (33) was based on linear plasma 
theory, 141 << 1. Various nonlinear effects were neglected. In 
particular, as discussed in Section 111-B, as the plasma wave 
amplitude increases the plasma wave period increases. Since 
the period of the beat wave is fixed, whereas the period of the 
plasma wave is increasing, the plasma wave will eventually 
become out of phase with the laser beat wave. This resonant 
detuning of the plasma wave from the beat wave will limit the 
amplitude of the plasma wave [53]. 

The nonlinear dynamics of the beat-wave generation in 1- 
D with w:2/w2 << 1 can be examined using the nonlinear 
Poisson equation, (13), with n b  = 0. Analysis of (1.3) indicates 
that the nonlinear plasma wavelength is given by X N ~  = 
(4/kp)(1 +$p)1/2E2(b), where $ p  is the maximum amplitude 
of the plasma wave, b = 1 - (1 + $ p ) - 2 ,  and E2 is the 
complete elliptic integral of the second kind. In the limit 4; << 
1,  X N ~  E A, ( 1 + 34; / 16), which indicates that the nonlinear 
plasma wavelength increases as the plasma wave amplitude 
increases. Hence, in the limit 4; << 1, the nonlinear plasma 
wavenumber I C N ,  = 2 n / A ~ ,  is given by 

kniP N k p ( l  - 34:/16). (34) 

The detuning and saturation of the plasma wave can 
be estimated as follows [58]. The growth of the plasma 
wave will stop when the phase difference between the laser 
beat-wave and the plasma wave is n/2, i.e., J d ( ( k P  - 
I C N ~ )  N n/2. Using the linear result for the plasma wave 
amplitude, 4p = ala2kpIC(/4, gives a detuning distance 
Lt = (2~ /a?a ; ) l /~4 /k , .  Hence, the plasma wave growth 
will saturate after a distance Lt behind the front of the 
laser beam, at which point the plasma wave amplitude is 
$t = (27ra1a2)'/~ = Emax/Eo. A more careful derivation 
[53] of resonant detuning gives a maximum value of the 
electric field at saturation of 

Emax/Eo = ( 1 6 ~ 1 ~ 2 / 3 ) ~ / ~  (35) 

which assumes that the laser beat frequency is exactly equal 
to the ambient plasma frequency Aw = wp. 

Saturation occurs because the plasma wave period increases 
as the wave grows. Hence, to partially compensate for the 
increasing nonlinear plasma period, the plasma wave can be 
driven to higher amplitudes by using a laser beat period which 
is slightly longer [55].  In other words, the beat frequency is 
slightly detuned such that Aw < wp. Tang et al. [55] showed 
that the optimum detuning, which maximizes the plasma wave 
amplitude at saturation, is given by 

(36) AwOpt = wp[l  - ( 9 a 1 ~ 2 ) ~ / ~ / 8 ] .  

This gives a maximum saturation amplitude of 
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Fig. 12. Examples of a PBWA consisting of four beat pulses with a" = 1.2 
in a plasma of densi1.y no = 10l6 cmP3: (a) without optimization, Aw = wT,, 
showing the effects of detuning, and (b) with optimization, Aw < wp. The 
solid curve shows the normalized intensity profile a', the dotted curve the 
potential @, and the dashed line the axial field E, /Eo. The pulses are linearly 
polarized and move to the left (from [120]). 

The above results are valid in the limit of weak pump 
amplitudes ala2 << 1 for which the plasma wave is driven 
to saturation over a large number of beat periods. In the 
highly nonlinear regime, ala2 2 1,  however, the same gen- 
eral concepts apply to beat-wave generation, i.e., the plasma 
wave amplitude is limited by the increasing nonlinear plasma 
wavelength and the plasma wave amplitude can be optimized 
by increasing the beat-wave period such that Aw < wp. To 
illustrate this, (1 3) is solved numerically [ 1201 for a laser beat 
wave consisting of four beat periods, as shown in Fig. 12. 
The amplitude of the lasers is a1 = a2 = ao, with a0 = 1.2, 
and linear polarization is assumed, such that (alal), = ai/2, 
where the subscript s refers to an averaging over the fast 
laser period. The ambient plasma density is no = 10l6 
cmP3 (A, = 330 pm). The case Aw = wp is shown in 
Fig. 12(a), and it is clear that the plasma wave amplitude 
saturates (reaches maximum amplitude) after just the second 
beat pulse. In fact, the effect of the third and fourth beat pulses 
is to drive the plasma wave down to a very low amplitude. 
In Fig. 12(b) the beat period has been optimized numerically 
such that the pla.sma wave amplitude after the fourth beat pulse 
is maximized, i.e., the beat period is decreased Aw < w, 
such that the length of the beat pulse is closer to the final 
nonlinear plasma wavelength  AN^. 'This results in a dramatic 
increase in the final amplitude of the plasma wave electric 
field, E,,, 11 1.4En = 13 G V h ,  in comparison to the 

Emax/Eo = 4 ( a 1 ~ ~ 2 / 3 ) ~ / ~ .  (37) Aw = wp case. 
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In addition to resonant detuning, the plasma wave amplitude 
in the PBWA can be limited by laser-plasma instabilities. 
Experiments at Ecole Polytechnique observed saturation of the 
beat-generated plasma wave by a parametric coupling to ion 
waves [73], [74]. In general, since the laser pulse lengths in 
the PBWA are long, L > A,, the beams are subject to various 
instabilities, some of which are discussed in Section VII. 
Several experiments have observed acceleration in the PB WA 
[25]-[29], as discussed in the Introduction. 

1 10 100 
aTZ = naOZ C. Multiple Laser Pulses 

In the previous section discussing the PBWA, it was pointed 
out that 1) the laser beat wave acted in effect as a series of 
short laser pulses; 2) as the plasma wave grew the plasma 
period increased which led to a loss of resonance with respect 
to the laser beat pulses; and 3) the beat period, i.e., the 
width of the beat pulses, could be adjusted and optimized to 
maximize the plasma wave amplitude. These general principles 
can be extended to describe plasma wave generation by a 
series of short laser pulses [91], [118]-[122]. For example, the 
resonant laser-plasma accelerator (RLPA) [ 1191, [120] uses an 
optimized train of short laser pulses to drive a plasma wave, 
in which the width of each pulse and the spacing between 
pulses is independently controlled. By optimizing the pulse 
widths and interpulse spacings, resonance with the plasma 
wave can be maintained and saturation of the plasma wave by 
resonant detuning can be eliminated. A sequence of n pulses 
is optimized when the pulse widths and spacings are chosen 
to maximize the plasma wave amplitude. 

For square pulses in the linear regime (u2,Em,,/E0 << 
l) ,  the optimum pulse train consists of n identical pulses, 
each of width L = X,/2 and separated by a distance (21 + 
1)X,/2, where 1 is an integer. The plasma wave amplitude 
will be n times the single pulse value, Emax/& = nu;. 
This result neglects nonlinear effects. In particular, as the 
nonlinear plasma wavelength increases, resonant detuning will 
eventually saturate the plasma wave amplitude. 

In the nonlinear regime, however, resonance can only be 
maintained by optimizing both the pulse widths and spacings 
of each individual pulse. In the 1-D limit with wg/w2 << 1, this 
can be examined by solving (13). For square pulse profiles, 
analytic solutions can be obtained. It can be shown [119], 
[120] that the optimal width of the nth pulse L,, the nonlinear 
wavelength  AN^, and the electric field amplitude E,, of the 
wake behind the nth pulse are given by 

Ln = ( z / k p ) ~ ; ’ ~ ~ ( ~ n )  (381 

X N n  = ( 4 / k p ) ~ k ’ ~ E 2 ( i j n )  (39) 
E,,/EO = xA’~ - xL1I2 (40) 

where X, = 711712‘..71n, y:, = l + a i ,  a, is the amplitude 
of the nth pulse, E2 is the complete elliptic integral of the 
second kind, p i  = 1 - y:,z,112 and j?: = 1 - z;’’~. The 
optimal spacing between the end of the nth pulse and the 
beginning of the nth + 1 pulse is given by (21 + 1 ) X ~ ~ / 2  
(e = integer). The maximum normalized electric field of the 
wake, Emax/EO, for an optimized train of n square pulses 
of equal amplitudes a,  = ao, is plotted in Fig. 13 versus 

2 2  2 

Fig. 13. The maximum electric field amplitude, Ez / EO, versus the quantity 
a; = n a i ,  for 72 = 1, 3, 5 ,  10, and 100 optimized square laser pulses with 
ao = 1 (from [119]). 

the quantity U$ = nag [119], [120]. The curves show the 
results for 1, 3, 5 ,  10, and 100 pulses. In the linear regime, 
E,, = nE,1 = naiE0, i.e., these curves are just straight lines. 
Fig. 13, however, shows that in the nonlinear regime, n pulses 
are more efficient than the linear result, i.e., E,, > nE,1. 
In the highly nonlinear regime, this enhancement can be 
quite dramatic. Furthermore, Fig. 13 indicates that just a few 
optimized square pulses are far more efficient than a single 
pulse. 

For square pulse profiles, both the width of the pulse and 
the spacing between pulses increase for subsequent pulses 
in the train, since the nonlinear wavelength of the plasma 
wave is increasing. For more realistic pulse profiles, the 
pulse length does not necessarily increase as X N ~  increases. 
Consider the case in which the electric field envelope of each 
pulse is modeled by a half period of a sine function, e.g., 
a = a1 sinn</L1 (0 < < < L I )  for the first pulse. The 
result from a numerical optimization [119], [120] of (13) for 
a train of four sine pulses is shown in Fig. 14. Here, the 
plasma density is no = 1OI6 and the pulses are linearly 
polarized with equal amplitudes a, = a0 = 1.2. Notice that 
the width of the pulses is decreasing, i.e., the width of the 
first pulse is 940 fs, whereas the width of the fourth laser 
pulse is 200 fs. From Fig. 14, it can be seen that the pulses 
are optimized when they reside in the region of the plasma 
wave for which qh < 0 and dqh/d< < 0, where < = x - et. 
This is the phase region of the plasma wave within which the 
laser pulse drives the plasma wave most efficiently. As in the 
square wave case,  AN^, and thus the spacing between pulses, 
increases with each succeeding pulse. For this example, the 
total laser fluence for the pulse train is lrtot = 2.2 MJ/cm2 
and the final accelerating field is E,,, E 1.9Eo = 18 GV/m. 

Several techniques may be used to generate a train of short 
intense pulses using CPA laser systems [120]. One possible 
method is to divide the amplified stretched pulse by use 
of beam splitters, then send the separate pulses to separate 
compressors with adjustable lengths and delays. Alternatively, 
Fourier filtering can be used by placing a mask in the pulse 
stretcher to modify the phase andor amplitude of the fre- 
quency components of the pulse in such a way that, when 
it is recompressed, a series of pulses with arbitrary spacings 
and widths will be produced. Preliminary experiments using 
similar methods have been reported [ 1231, [ 1541, [ 1551. 
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Fig. 14. An RLPA consisting of four optimized sine-shaped laser pulses 
with uo = 1.2 and no = 1OI6 cmP3. The solid curve shows the normalized 
intensity profile U’, the dotted curve the potential 4, and the dashed line the 
axial field E,/Eo. The pulses are linearly polarized and move to the left 
(from [120]). 

D. Sew-Modulated LWFA 

In the previous section it was described how a train of laser 
pulses can be used to generate a large amplitude wakefield. 
Under appropriate conditions, however, it is possible for a 
single long laser pulse to break up into a train of short pulses, 
each of these short pulses having a width on the order of 
A,. Associated with the break-up of the long pulse is a large 
amplitude plasma wave. This process is referred to as self- 
modulation [31]-[35], [96], [97], [log]-[117] and was first 
observed in fluid simulations [96], [log], [lo91 of relativisti- 
cally guided laser pulses. The break-up of a long pulse can 
occur via forward Raman scattering in the 1-D limit [114], 
[115] or via an envelope self-modulation instability in the 2-D 
limit [ 11 114 1131. Physically, envelope self-modulation occurs 
from the plasma wave producing periodic regions of enhanced 
focusing and diffraction [69]. This process is discussed in more 
detail in Sections VI-F and VII-B. 

To operate in the self-modulated regime [96], [97], 
[108]-[113], it is desirable that 1) the pulse length be long 
compared to the plasma wavelength, L > A,, and 2) the pulse 
power be larger than the power required to guide a long laser 
beam, P > Pc(l - An/An,). Here, P, = 17w2/w,2 GW 
is the critical power required for relativistic optical guiding, 
An is the depth of a preformed parabolic density channel 
(if present), An, = l/.irr,ri is the critical channel depth, 
and T,  is the classical electron radius. The optical guiding of 
laser pulses by relativistic effects and density channels will 
be discussed more completely in Section VI. In the remainder 
of this section, it will be assumed that the laser pulse is 
propagating in an initially uniform plasma (An = 0). Since 
A, N no1’’ and P, N ni l ,  then for fixed laser parameters 
the conditions L > A, and P > P, can usually be satisfied 
by operating at a sufficiently high plasma density. 

Consider the possibility of generating wakefields with a 
300 fs ( L  = 90 pm) laser pulse of wavelength X = 1 pm 
and power P = 10 TW. To operate in the standard LWFA 
configuration, L N A, implies a density of no N 1.4 x 1017 
cmP3. At this density P << P, 21 140 TW and the effects 
of relativistic guiding are unimportant. To operate in the self- 
modulated regime, it is desirable that L > A, and P > P,. 
Choosing a plasma density such that P = l.SPc implies 

no N 2.8 x lo1’’ cmP3 and L 2: 4.51XP. Hence, for this laser 
pulse, the self-m,odulated regime can be reached by increasing 
the plasma density by a factor of 20 compared to standard 
LWFA configuration. Furthermore, the corresponding energy 
gain can be enhanced by nearly a factor of 10 compared to the 
standard LWFA configuration, as is indicated by simulations 
discussed below [ 1 IO]. 

The advantages of the self-modulated LWFA over the stan- 
dard LWFA are simplicity and enhanced acceleration. Sim- 
plicity in that a matching condition of L N A,, a preformed 
density channel and/or special pulse tailoring are not required. 
Enhanced acceleration is achieved for several reasons: 1) 
the self-modulated LWFA operates at higher density, hence 
a larger wakefield will be generated, since E, - Jno, as 
indicated by (31); 2) since P > P,, the laser pulse will tend 
to focus to a higher intensity, thus iincreasing a0 and E,; 3) 
the wakefield is, resonantly excited, i.e., excited by a series 
of beamlets as opposed to a single pulse as in the standard 
LWFA; and 4) relativistic optical guiding allows the modulated 
pulse structure to propagate for several Rayleigh lengths, 
thus extending the acceleration distance. The disadvantages 
of the self-modulated LWFA are: 1) at higher densities the 
laser pulse group velocity (N the plasma wakefield phase 
velocity) decreases and, hence, electron dephasing from the 
plasma wakefield can limit the acceleration distance, and 2) 
the modulated pulse structure eventually diffracts. 

The properties of the self-modulated LWFA are illustrated 
by the following simulations [110]. Two cases will be consid- 
ered: 1) a standnd LWFA in which L N A, and P < P,, and 
2)  a self-modulated LWFA, in which L > A, and P > P,. 
The laser parameters for both cases are identical: a Gaussian 
axial intensity profile with a pulse length L = 90 pm (300 
fs), X = 1 pm, a0 = 0.7, TO = 31 pm (in vacuum), which 
corresponds to ZR = 3 mm, P = 10 TW, and a pulse energy 
of W = 1.5 J. The simulation begins at T = 0 as the laser pulse 
enters the plasma, initially converging such that in vacuum 
it would focus to a minimum spot size of TO = 31 pm at 
CT = 3 2 ~ .  The plasma density is initially increasing, reaching 
full density at er  = 2 2 ~ .  The simulation continues until 
CT = 1 0 2 ~  = 3 cm. In both cases, the acceleration and 
trapping of a continuous electron beam with initial energy 
of 3 MeV and normalized emittance cm = 130 mm-mrad is 
considered. The electron beam is initially converging such 
that in vacuum it would focus to a minimum rms radius 
~6 = 200 pm at CT = 3 2 ~ .  With such a large initial emittance, 
only a small fraction (-1%) of the particles will be trapped 
and accelerated. 

For the standard LWFA, Case I, the requirement L = A, = 
90 pm implies a density of no = 11.4 x 1017 ~ m - ~ .  At this 
density, P << P, = 140 TW, such that relativistic guiding 
effects are unimportant. In fact, the presence of the plasma has 
little effect on the evolution of the laser pulse, which reaches 
a peak intensity of l iLf I2  = 0.56 at CT = 3 2 ~ .  The evolution 
of the spot size, Fig. 15, is very close to vacuum diffraction. 
This is also evident in Fig. 16(a) (dashed line), where the peak 
accelerating field, plotted versus time, is symmetric about the 
focus, CT = 3 2 ~ .  After CT = 1 0 2 ~  = 3 cm, a small fraction 
(-0.1%) of the test electron beam particles has been trapped 
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Fig. 15. Ambient plasma density nP/no (solid line) and spot size r 8 / &  
(dashed line) versus propagation distance CT for a self-modulated LWFA 
with no = 2.8 x 10" cmP3. The laser is initially converging such that 
the minimum spot size in vacuum is reached at CT = 3 2 ~ .  Here, rS is the 
spot size of the leading beamlet and is defined to be the radius enclosing 
86.5% of the laser power (from [ I lO] ) .  
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Fig. 16. (a) Peak accelerating field and (b) peak energy of the injected 
particles versus propagation distance cr for the standard LWFA case (dashed 
line) with no = 1.4 x 1017 cmV3 and the self-modulated LWFA case (solid 
line) with RO = 2.8 x 10" cmP3 (from [llo]). 

and accelerated. At CT = 2 cm, the peak particle energy is 48 
MeV, which implies an average acceleration of 2.4 GeV/m, as 
shown in Fig. 16(b) (dashed line). 

For the self-modulated L W A ,  Case 11, the density is 
increased such that P = 1.5Pc = 10 TW, which implies 

(b) 

Fig. 17. Normalized laser intensity 16f12 for the self-modulated LWFA case, 
sampled over a coarse grid (the numerical grid is much finer), at (a) CT = 2 2 R  
and (b) cr = 3 . 2 2 ~ .  The laser pulse is moving to the right (from [l IO]). 

no = 2.8 x 10l8 cmP3, which is 20 times higher than in 
Case I. At this density L > A, = 20 pm, i.e., the laser pulse 
now extends over ~ 4 . 5 4 , .  Fig. 17 shows the laser intensity at 
(a) CT = 2 2 ~  and (b) CT = 3 . 2 2 ~ .  The axial electric field and 
the plasma density response on axis at CT = 3 . 2 2 ~  are shown 
in Fig. 18(a) and (b), respectively. The laser pulse has become 
modulated (three peaks are observable, separated by A,) and 
the plasma wave is highly nonlinear. In addition, relativistic 
optical guiding effects have focused the laser to a much higher 
intensity than was observed in Case I. The evolution of the 
laser spot size is shown in Fig. 15, indicating that the pulse 
has focused to a smaller spot size and remains guided over 
~ 5 . 5 2 ~ .  A plot of the peak accelerating field versus time, 
Fig. 16(a) (solid line), shows that the highly nonlinear fields 
persist as the laser pulse is optically guided. A maximum 
accelerating field of ~ 1 3 0  GV/m was obtained. Because of 
the larger fields, a greater fraction (2%) of the test electron 
beam particles was trapped and accelerated. The peak particle 
energy of 430 MeV is observed at CT = 6 2 ~  = 1.8 cm. At 
CT = 102, = 3 cm, however, the peak particle energy has 
dropped to 290 MeV due to the reduced group velocity of the 
laser pulse, which causes the electrons to slip out of phase with 
the wakefield and become decelerated. Fig. 16(b) (solid line) 
shows acceleration to 430 MeV over 1.8 cm which gives an 
average gradient of 24 GeV/m. This is an order of magnitude 
increase compared to the standard L W A  of Case I. 

As discussed in the Introduction, electron acceleration in 
the self-modulated regime has been observed in several exper- 
iments [31]-[35]. In addition, observation of the plasma wave 
in the self-modulated regime by coherent Thomson scattering 
of a frequency double probe pulse has been reported [ 1171. 

E. Limits on Laser-Driven Acceleration 
Several mechanisms can limit the energy gain in a laser- 

driven accelerator: laser diffraction, electron detuning, pump 
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For the parameters a0 = 0.5, X =: 1 pm, and TO = A, = 
33 pm (P = 12 TW, no = 10'' ~ m - ~ ) ,  the relevant 
propagation lengths are ZR = 0.34 cm, L d  N 3.6 cm, and 
Lpd N 14 cm, i.e., ZR << Ld < Lpd. Furthermore, since 
Ld, Lpd N no , the detuning length and pump depletion 
lengths can be increased by operating at lower densities. Since 
L - A, in the ,standard LWFA, lower densities correspond to 
longer laser pulse durations L - no-1'2. In principle, a static 
magnetic field can be introduced to reduce detuning, as in the 
surfatron configuration [54]. Use of an active medium has also 
been proposed as a method to reduce pump depletion [ 1041. 

-3 /2  

3F- 
AW, [MeV] 21 580(X/X,)P [TW]. (43) 

To increase thle energy gain beyond this value in a single 
stage, some form of optical guiding is necessary to prevent 
diffraction. Various methods for optical guiding are discussed 
in Section VI. If diffraction is overcome, detuning will limit 
the energy gain. In the standard LWFA, the single-stage energy 
gain after a detuning length Awd == eLdE, can be written in 
the limit U! <i: 1 as 

AlVd [GeV] E I [W/cm2]/no[ ~ m - ~ ] .  (44) 
J 

For example, P = 100 TW, ro = 100 pm, I = 6.4 x 
W/cm2, 7~ = 1 ps, no = 10l6 ~ m - ~ ,  A, = 330 ,um, and 
X = 1 pm imply AW, = 180 MeV and AWd = 64 GeV. 
These estimates assume that laser-plasma instabilities do not 

instabilities are discussed in Section VII. 
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Fig. 18. Axial electric field E, (a) and plasma electron density on axis n/na 
(b) versus < plotted at CT = 3 . 2 2 ~  for the self-modulated LWFA case (from 
H l O l ) .  

degrade the laser pulse. The effects Of 

depletion, and laser-plasma instabilities. In vacuum a laser 
pulse undergoes Rayleigh diffraction, i.e., the laser spot size 
evolves according to T,  = T O (  1 + where ro is the 
minimum spot size at the focal point z = 0 and ZR = kr;/2 
is the Rayleigh length. Without some form of optical guiding, 
the laser-plasma interaction distance will be limited to a few 
2,. Electron detuning, wherein a highly relativistic electron 
outruns the plasma wave, can limit the energy gain to a 
detuning length L d  as discussed in Section 111-C. As the laser 
driver excites a plasma wave, it loses energy, ]i.e., it pump 
depletes [58], [61], [89], [92], [102]. The pump depletion 
length Lpd can be estimated by equating the laser pulse energy 
to the energy left behind in the wakefield, EzL,d N E i L ,  
where E L  is the laser field. 

As an illustration, consider an LWFA in the standard con- 
figuration driven by a circularly polarized square profile laser 
pulse with L N XN,/~. The detuning and pump depletion 
lengths are given by 1891, 1921, 11021 

VI. OPTICAL GUIDING IN PLASMAS 

The optical guiding mechanisms discussed below are based 
on the principle of refractive guiding. Refractive guiding 
becomes possible when the radial profile of the index of 
refraction, qR ( r ) ,  exhibits a maximum on axis, i.e., dq,  / d r  < 
0. Since qR c t  c k / w ,  dq,/dr < 0 implies that the phase 
velocity along the propagation axis is less than it is off-axis. 
This causes the laser phase fronts to curve such that the beam 
focuses toward the axis. 

The index of refraction for a small amplitude electromag- 
netic wave propagating in a plasma of uniform density n = no, 
in the I-D limit, is given by q~ = ck /w = (1 - W ; / W ~ ) ~ / ' .  

For large amplitude waves, however, variations in the electron 
density and mass will occur, i.e., wi + (wg/y)n/no. Hence, 
a general expression for the index of refraction for a large 
amplitude electromagnetic wave in a plasma is 

(45) 

assuming w z / w 2  << 1. The q,(r) profile can be modified 
through the relativistic factor y(r) or the density n ( ~ ) .  The 
leading order motion of the electrons in the laser field is the 
quiver motion p l  = mca and, hence, y N 71 = (1 + a2) ' / ' .  
A laser intensity profile peaked on axis d u 2 / d r  < 0 leads 

(41) 

(42) 
for 
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to aqR/dr  < 0 and the possibility of guiding (i.e., relativistic 
self-focusing). The density profile can have contributions from 
a preformed density channel An, - Anr2/r$ or a plasma 
wave Sn - Sno(r) cos kp<, i.e., n = no + An, + Sn. A radial 
density profile which has a minimum on axis (i.e., a channel) 
implies < 0. In the limits u2 << 1, )An,/noi << 1 
and ISnlnol << 1, the refractive index can be written as 

In the above expression, the u2 /2  term is responsible for rela- 
tivistic optical guiding [65]-[69], [88], [89], [95]-[97], [ 1301, 
[156]-[174], the Anp/no term is responsible for preformed 
density channel guiding [641, [69], [951-[loo], [1751-[1781, 
and the &/no term is responsible for self-channeling [96], 
[160], [161], [164]-[174], plasma wave guiding [69], [88], 
[89], and self-modulation of long laser pulses [96], [97], 
[ 1081-[ 1171. 

A. Relativistic Optical Guiding 

The self-focusing of laser beams by relativistic effects was 
first considered by Litvak [156] and Max et al. [157]. In the 
standard theory of relativistic optical guiding [ 1561-[159], only 
the effects of the transverse quiver motion of the electrons are 
included in the expression for q ~ ,  i.e., n = no, y = y l ( r ) ,  and 

Analysis of the paraxial wave equation with an index of 
refraction of this form indicates that when the laser pulse 
power exceeds a critical power, P 2 Pc, relativistic ef- 
fects can prevent the diffraction of the laser pulse. For a 
circularly polarized Gaussian laser pulse of the form a : 
uo cxp(-r2/r~)(coskCe,$sink('e,), P/Pc = k:uir,2/16. In 
practical units the critical power can be written as [156]-[171] 

Pc[GW] c-' 17(w/w,)'. (48) 

An equation for the laser spot size can be derived by 
analyzing the paraxial wave equation with an index of re- 
fraction of the form given by (47). In the limit u2 << 1, 
(1 + a2)-1/2 c-' 1 - a2/2 ,  and the laser spot size evolves 
according to [65], [83], [84], [159] 

d2R 1 
dz2 Z i R 3  (49) 

where R = r5/ro is the normalized spot size, r o  is the 
minimum spot size in vacuum, and ZR = kr,2/2 is the vacuum 
Rayleigh length. The first term on the right of (49) represents 
vacuum diffraction, whereas the second term represents rela- 
tivistic self-focusing. The solution to (49) is r,"/ri = 1 + (1 - 
P / P c ) z 2 / Z i ,  which indicates that the spot size will focus 
when P > P,. In fact, (49) predicts "catastrophic" focusing. 
This is due to the approximation (1 + u ~ ) ~ ' / '  e 1 - u2 /2  in 
the u2 << 1 limit. If the full relativistic factor (1 + a2)-1/2 
is kept in the wave equation [159], however, it can be shown 
that a laser beam can be guided when P > Pc, i.e., the laser 
spot size will remain constant or oscillate about its matched 
beam radius. 

The self-consistent nonlinear theory developed by Sprangle 
et al. [88], [89], [96] showed, however, that relativistic optical 
guiding is ineffective in preventing the diffraction of suffi- 
ciently short pulses, L 5 A,/yl. This is due to the fact that 
the index of refraction becomes modified by the laser pulse on 
the plasma frequency time scale, not the laser frequency time 
scale. Typically, relativistic guiding only effects the body of 
long pulses, L > A,. 

In the 1-D limit, ~ z k , "  >> I ,  nonlinear quasi-static the- 
ory [MI, [89] indicates that the self-consistent electron fluid 
response satisfies n/yno  = (1 + $)-', hence 

qR c-' 1 - (w,"/2w2)(1+ 4)-1 (50) 

where q5 is the normalized electrostatic potential which satisfies 
the nonlinear Poisson equation, (13), assuming w i / w 2  << 
1. For long laser pulses with sufficiently smooth envelopes, 
lda2/d<I << kpa2,  a2q5/d<2 can be neglected in (13) which 
implies 1 +q5 = (1 + a2)lI2. The index of refraction has 
the form given by (47) and, hence, the standard theory of 
relativistic focusing [ 1561-[ 1591 can be applied to the body of 
long pulses. Although long pulses can be guided by relativistic 
effects, they can also be subject to various instabilities (e.g., 
Raman, self-modulation, and laser-hose instabilities), which 
are discussed in more detail in the subsequent sections. 

Short laser pulses with pulse lengths L c-' A, can generate 
plasma waves (as in the standard LWFA). A linear plasma 
wave has the form 4 = $0 sin k,<. At the front of the pulse 
(< = 0) 4 = 0 and, hence, (50) indicates that the front of the 
pulse will not be guided. Since the plasma wave takes a finite 
time to be excited, on the order of w;', the relativistic guiding 
effect described by (50) also takes a finite time (- wp') to 
take effect. Hence, relativistic guiding will not be efficient in 
guiding short pulses and the leading portion ( I (  < k;') of a 
long pulse will erode by diffraction. 

Simulations [96] confirm the inability of relativistic guiding 
to prevent the diffraction of short laser pulses. The results 
are shown in Fig. 19 for the parameters A, = 0.03 cm 
(no E 1.2 x 10 ~ m - ~ ) ,  T~ = A, (Gaussian radial profile), 
A = 1 pm ( Z R  = 28 cm), and P = P,. The initial axial 
laser profile is given by l&f((')l = aosin(-.ir</L) for 0 
< -< < L = cq, ,  where a0 = 0.9 for the above parameters. 
Simulations are performed for two laser pulse lengths, L = A, 
( r L  = 1 ps) and L = A,/4 ( r L  = 0.25 ps). The spot size at 
the pulse center versus propagation distance cr is shown in 
Fig. 19 for (a) the vacuum diffraction case, (b) the L = A,/4 
pulse, and (c) the L = A, pulse. The L = A,/4 pulse diffracts 
almost as if in vacuum. The L = A, pulse experiences a 
small amount of initial guiding before diffracting. A preformed 
parabolic plasma density channel can guide the L = A, pulse, 
as shown in Fig. 19(d), where the channel depth is given by 
An = l/7i-rer," = 1.3 x 1015 cmP3 (re  3 e 2 / m e c 2 )  and the 
density on axis is no = 1.2 x 10l6 cm- . 

16 

B. Tailored Pulse Propagation 

A laser pulse with an appropriately tailored envelope can 
propagate many Rayleigh lengths without significantly altering 
its original profile [96], [97], [130]. Consider a long laser 
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Fig. 19. Laser spot size rS  versus propagation distance CT for (a) vacuum 
diffraction, (b) an ultrashort pulse with L = A,/4, and (c) a short pulse 

An = l / r e r p  is shown by (d) (from [96]). 

s= 
>e 

0 5  
with L = A,. Here, P = P,, a0 = 0.9, and A, = 0.03 cm. Guiding of 
the L = A, pulse in a preformed parabolic plasma density channel with 

0 
8 

L- - .-. 
3 E / - -  

pulse, L > A,, in which the spot size is tapered from a large 
value at the front to a small value at the back, so that the 
laser power, P - rZ(6fl2, is constant throughout the pulse 
and equal to P,. The leading portion (<A,) of the pulse 
will diffract as if in vacuum, as discussed in the previous 
section. Since r ,  is large at the front of the pulse, however, the 
Rayleigh length is also large. Hence, the locally large spot size 
allows the pulse front to propagate a long distance, whereas 
the body of the pulse will be relativistically guided. Also, 
since Ihf l2 increases slowly throughout the pulse, detrimental 
wakefield effects (e.g., self-modulation) are reduced. 

The effectiveness of pulse tailoring has been observed in 
simulations [96], [97], 11301. The results of such a simulation 
[97] are shown in Figs. 20-22. The initial normalized intensity 
profile, I;LfI2, is shown in Fig. 20(a). The local spot size at 
the front (5 = 0) of the pulse is large, rL  N 8A,, and tapers 
down over 5 = -2A, to rL = Ap (a Gaussian radial profile 
assumed throughout). The initial axial laser envelope is given 
by I&f(S)l  = a~sin(-n(/4A,) for 0 < -C < 2A, such 
that P = P, at each 5 slice, i.e., r~(()uo(C) = 0.9A,. Also, 
A = 1 pm and A, = 30 pm (no = 1.2 x 10'' ~ m - ~ ,  initially 
a uniform plasma), such that P = P, = 16 TW. This gives 
a peak value of a0 = 0.9 at the back of the pulse where 
rL = Ap, which corresponds to a Rayleigh length of 2, = 
0.28 cm. The pulse intensity then terminates over a distance 
of = A,/2. The pulse energy is approximately 3 J and 
the pulse length is approximately L = 2A, = 60 pm (200 
fs). Because Lfall < A,, a large amplitude wakefiield will be 
excited behind the pulse. 

Fig. 20(b) shows the normalized intensity profile: after prop- 
agating cr = 102, = 2.8 cm. The pulse is somewhat 
distorted, but largely intact. The evolution of the pulse spot 
size at the position of peak intensity verses ]propagation 
distance is shown in Fig. 21(b), indicating that guiding has 
been achieved over the 1 0 2 ~  simulation region. The axial 
electric field of the wake on axis after CT =I 1 0 2 ~  is 
shown in Fin. 22. The evolution of a continuous electron - 
beam with an initial normalized emittance E ,  = 1.0 mm- 
mrad, rms radius r b  = 5 pm, and energy Eb = 2 MeV was 

(h) 

Fig. 20. 
and at (h) CT = 1 0 . 2 ~  for a tailored-pulse LWFA (from [97]). 

Surface plot of the normalized laser intensity, 16,;1, at (a) T = 0 

0 2 4 6 8 10 
C T / Z R  

Fig. 21. Laser spot size r, at the position of peak intensity versus propaga- 
tion distance CT for (a) a channel-guided LWFA, (b) a tailored-pulse LWFA, 
(c) vacuum diffraction, and (d) the self-modulated LWFA of Figs. 16-18 (from 
W1). 

simulated using the self-consistent wakefields. After CT = 2.8 
cm, approximately 60% of the beam electrons were trapped 
and accelerated. The peak energy of the beam electrons 
experienced an average gradient of 27 GeV/m (750 MeV in 
2.8 cm). Additilonal simulations [ 1301 indicate that a tailored 
pulse can be constructed, in effect, by overlapping as few as 
five Gaussian pulses, each with a different spot size. 

C. Plasma Density Channel Guidimg 

A preformed plasma density channel can guide short intense 
laser pulses 1641, [691, [951-[100], [175]-[1781. Consider a 
parabolic density channel of the form n = no + An(r2/r;),  
where An 2 0. For a low power, P .(< P,, low intensity u2 << 
1 laser pulse, thle index of refraction is given approximately by 
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Analysis of the paraxial wave equation with an index of 
refraction of this form indicates that the spot size rs of a 

evolve according to [69] and [ l  1 I] 
Gaussian laser beam of the form u2 = U; exp(-2r2/7-:) will - 

E 
\ 

d2R 1 An v 5 01 
dz2 Z&R3 w -2- 

(52) 

where R = r,/ro. This indicates that a parabolic channel can 
guide a Gaussian beam with r ,  = rg provided that the density 

- 
~ - -(I - %R49 

-4 - 

L = 120 pm (400 fs). Also, A 1 1 pm and TO = 60 pm 
(Gaussian radial profile), which implies ZR = 1.1 cm and 
P = 40 TW. The density on axis is chosen such that L = A, 
(no = 7.8 x 10l6 ~ m - ~ )  and a preformed density channel 
with a parabolic profile is assumed with An = l/7rreri = 
3.2 x 1016 ~ m - ~ .  

Fig. 21(a) shows the evolution of the laser spot size versus 
propagation distance, cr. The laser pulse remains well guided 
by the density channel, with the laser spot size exhibiting small 
oscillations about its initial value over the full 2 0 Z ~  = 23 cm 
simulation length. After = 20zR ,  the pulse profile shows 
very little distortion from its initial profile. A surface plot of 
the electron density profile at cr  = 202R is shown in Fig. 23. 
The initial unperturbed parabolic profile can be seen at the 
right (5 = 0), and the distortion of the channel by the laser 

cm). 
The above discussion applies to essentially parabolic chan- 

nel profiles. Other channel profiles, however, may offer dif- 
ferent advantages. Durfee et al. [176] discuss the formation 
of "leaky" channels, in which the channel is approximately 
parabolic out to some radius, after which the density falls off 
to zero, as shown in Fig. 25. Higher order transverse modes 
may not be guided by such a channel, and Antonsen and Mora 
[ 1791 have described how leaky channels can stabilize certain 
instabilities, such as small angle forward Raman scattering 
[ 1091, [ 1141, self-modulation [ 11 I]-[ 1131, and laser-hosing 
[180], [181]. Hollow channels (e.g., a square channel with 
density zero on axis out to the channel radius) may also have 
some beneficial properties with regard to acceleration [64], 
[98]-[loo]. Within the channel, where the plasma density is 
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P -+ P,, guiding is achieved predominantly by relativistic 
self-focusing. Ponderomotive self-channeling can enhance this 
effect, but does not dramatically alter the power threshold for 
guiding. More detailed studies [160], [165] that include the 
effects of relativistic self-focusing and ponderomotive self- 
channeling conclude that the threshold power for guiding is 
P 2 16.2(u2/b~;) GW. 

E. Plasma Wave Guiding 

- - - - - -  

In Section 111-E, it was discussed how an ultrashort ( L  < ‘7 1 “Finite“ 
Channel 

- 
“Leaky“ 
Channel 

D. Ponderomotive Self-channeling 

The radial ponderomotive force of a long laser pulse propa- 
gating in an initially uniform plasma can expel electrons from 
the axis thus creating a density channel (i.e., self-channeling) 
[96], [160], [161], [164]-[174]. This can enhance the effects of 
relativistic self-focusing. Consider a long axially uniform laser 
pulse propagating in an initially uniform plasma. ‘The steady- 
state radial force balances indicates that the space-charge force 
is equal to the ponderomotive force, i.e., V i $  = V l y ~ ,  
where yl = (1 + a2)’I2 (circular polarization). This implies a 
density perturbation via Poisson’s equation, V t $  == ,k;Sn/no, 
given by 1961, 11601, [1611, 11641, 11651 

(55)  &/no = ki2v2,(1 + a 2 ) 112 

assuming (6n/n0( 5 1. In the limit u2 << 1, a Gaussian 
laser pulse u2 = a$ exp(-2r2/ri) creates a Gaussian density 
channel Sn = -Sn(O)(l - 2r2/ri)exp(-2r2/rg). Along the 
axis, the depth of the ponderomotive channel is given by 

6n(0) = uian, (56) 

where An, is given by (53). Analysis of the paraxial wave 
equation with a density perturbation given by Sn/no = 
k;2V21a2/2 indicates that the normalized spol size of a 
Gaussian laser pulse evolves according to [164] 

where &(O) is given by (56) and u2 << 1 was assumed. 
Hence, in the limit P/P, << 1, the ponderomotive channel 
depth required to guide a laser pulse is Sn(0) 2 2An,. 
Clearly, when a0 < 1, ponderomotive self-channeling alone 
will not guide the laser pulse. Furthermore, ISn/nol < 1 
implies CL; < 2(P/P,)lI2 and Sn(0) < 2(P/Pc)1/2An,. 
Hence, P/P, 5 1 implies Sn(0) < 2An,, which again 
indicates that the ponderomotive channel alone will not guide 
the laser pulse. For laser powers approaching the critical power 

where Sn is the density oscillation of the plasma wave and 
it is assumed that the plasma wave remains unaffected by 
the laser pulse. Consider a 3-D plasma wave of the form 
Sn = S f i ( ~ )  sin k,(z - ct) ,  i.e., where dSfi/dr < 0 and Sf i  > 
0. In regions where sink,< < 0, the plasma wave acts as a 
local density channel and enhances focusing, in regions where 
sink,< > 0, the plasma wave enhances diffraction. 

The evolution of a “test” laser pulse in an externally 
generated plasma wave can be analyzed using the paraxial 
wave equation. Consider a 3-D nonevolving plasma wave of 
the form Sn =: SnosinkP(z - ct)exp(-2r2/r,), i.e., the 
plasma wave h,as a Gaussian radial profile with a radius rp 
and a phase velocity w, c. It can be shown that the spot size 
T, of a Gaussian laser pulse evolves according to [69] 

where An, = 1/7rr,rg is the critical channel depth, R, = 
r,/rO, and P / P ,  << 1 and a2 << 1 have been assumed. 
Consider an ultrashort pulse L A, centered about k,< = 
--7r/2 such that sinkpc N - 1. Equation (59) indicates that 
this pulse will be guided by the plasma wave, r, = TO,  

provided [69] 

Sno 2 Anc(l t RE)2/2R;. (60) 

For r, = TO,  this gives Sno 2 2An.,. Notice that a test laser 
pulse experiences maximum focusing at the minimum of Sn 
(e.g., k,< = --:~/2); whereas maximum frequency upshifting 
occurs at the rnaximum of -dSn/d< (e.g., k,( = -T). In 
general, for a sinusoidal plasma wave, a test laser pulse will 
experience both enhanced focusing and frequency upshifting 
over a ikpA(l = 7r/4 phase region of the plasma wave. 
Furthermore, (59) describes how a plasma wave can lead to the 
modulation of a long ( L  > A,) laser pulse [69], as illustrated 
schematically in Fig. 26, 
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Fig. 26. Schematic of the focusing effects of an externally generated plasma 
wave on an initially uniform, low intensity radiation beam. This illustrates the 
tendency for the radiation to form beamlets which are optically guided in the 
regions of minimum density (from [69]). 

F. Self-Modulation of Guided Laser Pulses 

In the absence of instabilities, a long laser pulse, L > A,, 
with a power above the guiding threshold, P > P,(1 - 
An/&,), can be, in principle, optically guided. Since the 
pulse is long, however, it is subject to various instabili- 
ties, e.g., stimulated Raman scattering and hose-modulation 
instabilities, as are discussed in Section VII. One optical 
guiding phenomena which can affect a long pulse is envelope 
self-modulation [96], [97], [ 1081-[117], wherein the laser 
pulse intensity becomes severely modulated at the plasma 
wavelength A,. Specifically, a plasma wave, excited initially 
by the ponderomotive force associated the finite rise of the 
laser pulse, can strongly affect the focusing properties of 
the pulse body by introducing periodic regions of enhanced 
focusing and diffraction [69]. 

The process of envelope self-modulation can be understood 
by considering a long laser pulse, L >> A,, with P = 
P,(1 - An/An,) on which a finite wakefield exists. The 
plasma density modulation of the wake is of the form Sn = 
Sno(r) cos( kp<),  which modifies the plasma refractive index, 
as indicated by (46) and (58). This density oscillation acts 
on the laser pulse as an axially periodic density channel. In 

This process forms the basis of the self-modulated LWFA 
discussed in Section V-D. 

It should be noted that self-modulation, as described above, 
is an inherently 2-D effect, i.e., the plasma wave leads to 
enhanced focusingldiffraction and modulation results from 
a radial transport of laser pulse energy. In the 1-D limit, 
however, modulation can result via forward Raman scattering 
and an axial transport of laser pulse energy. The remainder 
of this section is concerned primarily with self-modulation in 
the 2-0 limit. Forward Raman scattering is discussed further 
in Section VII-A. 

An equation for the evolution of the laser spot size can be 
derived by analyzing the paraxial wave equation with an index 
of refraction of the form given by (46), assuming an initial 
density profile which is parabolic, n(O) = no + Anr2/r i ,  
and the self-consistent plasma response, (d2//a<2 + kg)$ = 
kgu2/2.  In the limits u2 << 1 and rikg >> 1, the spot size 
evolves according to [1 1 11 

d2R 1 
d,i2 R3 

where R = r,/ro, < = x - et,  and .f = cr/ZR. The 
second, third, and fourth terms on the left in (61) represent 
the effects of vacuum diffraction, relativistic focusing, and 
channel focusing, respectively, whereas the term on the right 
side represents the nonlinear coupling of the envelope to the 
plasma wave. Equation (61) correctly describes well-known 
laser pulse evolution, such as the inability of relativistic 
guiding to prevent the diffraction of short pulses L < A, 
[W, [W, [%I. 

The evolution of a long axially uniform laser beam can be 
examined in the limit where the effects of the plasma wave 
are neglected, i.e., the nonlinear coupling term on the right 
side of (61) is set equal to zero. Matched beam propagation 
(T,  = T O  = constant) requires that the power satisfy [ill], 
[I691 1 -PIPc - An/An, = 0. In general, it can be shown 
that the spot size will remain guided (oscillate about its 
matched beam value) when 1 -PIPc - An/An, 5 0. 

The effects of the plasma wave on the spot size evolution 
can be examined by including the right side of (61). The initial 
effects of the plasma wave on the spot size can be estimated 
by approximating I?(<’) = R(<) within the integral in (61), 
i.e., initially the spot size is uniform throughout the pulse. 
Equation (61) takes on the form 

d 2 R  1 P Sn -R4) An (62) regions of a local density channel, i.e., where dbnldr  > 
0, the radiation focuses. In regions where dSn/dr  < 0, d,i2 R3 P, 2An, An, 
diffraction is enhanced. This causes the laser pulse envelope 
to become modulated at A,, which subsequently enhances 
the growth of the plasma wave, and the process proceeds 
in a highly nonlinear manner. The end result can be a fully 
self-modulated laser pulse, composed of a series of laser 
“beamlets” of length =A,/2, which can remain optically 
guided over several Rayleigh lengths. Associated with the 
periodic beamlet structure are large amplitude wakefields 
which can trap and accelerate a trailing electron beam [110]. 

where Sn is the density perturbation given by 

no 
The rise associated with the front of the pulse gives a nonzero 
value of d a 2 / d <  which generates a finite amplitude density 
wake. Throughout the body of a long flat-top pulse, this density 
wake has the form Sn = Sno cos k,<. Clearly, the effect of 
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(a) Fig. 28. Numerical solution of (61) showing the normalized modulation 
amplitude 6R/(R)  versus CT for a flat-top pulse with L,;,, = 0.1X, and 
P/Pc = 0.25, 0.5, and 0.75 (from [lll]). 

of the self-modulated LWFA, including the effects of forward 
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Several rece:nt experiments have observed some form of 
optical guiding [172]-[178], [183], [184]. Multifoci have been 
observed for :short pulses propagating in a gas at powers 
well below the critical power for relativistic self-focusing 
in a plasma [I 831. In the neutral gas, the pulse self-focuses 
due to nonlinear effects associated with the refractive index. 
As the pulse focuses, the intensity exceeds the ionization 
threshold, thus forming a plasma. Within the plasma, the pulse 
diffracts. In such a way multiple ionization "sparks" were 

observed to propagate over 20 m in air with a significant 

radius TO = 401 km with an intensity near 1014 W/cm2 [184]. 

0 
-15 -10 -5 0 

</Ap 

0 , 0 0 4 L J  
(b) 

Fig. 27. Numerical solution of (61) showing self-modulation: (a) the nor- 
malized spot size R = T ~ / T O  and (b) the normalized envelope profile u2 
versus C at cr = 1 . 4 2 ~ .  Initially, the spot size is uniform and the intensity 
has a slow rise followed by a long flat-top region (C 5 -5X,) with P = P,. 

observed [183]. More recently, short (100 fs) pulses were 

Portion of the initial pulse energy trapped in a filament of 

the Sn(() term in (62) is to produce (-periodic regions of 
enhanced focusing and diffraction [69]. This leads to self- 
modulation. 

Pulse modulation is illustrated by a simulation of a long 
pulse (a long rise, L i s ,  = 5X,, followed by a long flat-top 
region, Lgat = 191,)  with An = 0 and P == P, (UO = 
0.09, T, = lox,), as obtained by numerically solving (61). 
Fig. 27 shows the evolution of 1) the normalin,ed spot size 
R (initially, R = 1), and 2) the normalized intensity on axis 
l6fl2 = ai(. = O)/R2, plotted versus ( at CT = 1 . 4 2 ~ .  Note 
that the front portion of the pulse with P < P, is diffracting. 
Clearly, the modulation is growing as a function of both the 
propagation distance and the distance behind the: pulse front. 
Simulations [ 1 1 11 indicate that strong self-modulation occurs 
when P 2 PM, where PM = Pc(l-An/An,) is the threshold 
power for guiding. For P < P M / 2  modulation is reduced, 
since the pulse envelope is everywhere (at all (> diffracting. 
This is illustrated in Fig. 28, where the normalized modulation 
amplitude 8R/(R) is plotted versus CT/ZR, where (R)  is the 
<-averaged value of R, as obtained from (61) lfor a flat-top 
pulse profile with L,i5e = O.lX,, An = 0, and PIPc = 0.25, 
0.5, and 0.75. The specific growth rates for the self-modulation 
instability are discussed in Section VII-B. A fluid simulation 

This mode of propagation may result from a balance between 
self-focusing in the neutral gas and diffraction due to plasma 
formation [184], [185]. It is not clear that this is the case in the 
experiment, however, since some fraction of the initial laser 
pulse energy exists out to a large radius ( ~ 1  cm). At higher 
intensities, short pulses propagating in gas were observed to 
diffract more (quickly than they would in vacuum, since the 
ionization taking place at the front of the pulse can create a 
plasma density profile which is peaked on axis thus causing 
ionization induced refraction [79]. 

W/cm2) laser 
pulses by preformed plasma density channels has been ex- 
perimentally diemonstrated by Durfee et al. [175], [176]. In 
these experiments, a pump laser pulse was passed through 
an axicon lens to create a long ( 5 2  cm) focus in a gas. The 
pump pulse ionized and heated the gas, creating a long plasma 
channel by hydrodynamic expansion. A second probe pulse 
was propagated along the axis of the channel. Up to 75% of the 
probe pulse energy was guided in the channel over a distance 
up to 7 0 2 ~  (2.2 cm). These experiments were well diagnosed 
and simulated, and single mode, multimode, and "leaky" mode 
propagation of the channeled beam were observed. 

Density channels have also been formed by other methods 
[177], [178]. In a laser preionized high-density (25% critical) 

The guiding of modest intensity (up to 
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plasma, channels were formed 11771 by a relatively long pulse 
(500 ps) laser with intensities near 10l6 W/cm2. A channel was 
formed, 800 pm long by 100 pm wide, extending the entire 
length of the initial plasma, with a depth near 50% of the initial 
density. Capillary discharges [178] have been used to create 
long (1 cm), axially uniform channels in high density (lo2’ 
~ m - ~ )  plasma with radii on the order of 25-50 pm. Initial 
experiments [ 1781 have demonstrated that such a channel is 
capable of guiding of short (100 fs), intense W/cm2) 
laser pulses in one and two dimensions. 

Experiments on relativistic guiding and ponderomotive self- 
channeling have also been performed [ 1721-1 1741. Borisov et 
al. report the propagation of a 270-fs KrF laser (248 nm) 
pulse over a distance of 3-4 mm (>1002,) through a noble 
gas at a pressure of 1-5 atm 11731. The channel radius was 
approximately 1.5 pm, the laser intensity was near 5 x 10l8 
W/cm2, and the plasma density was on the order of lo2’ cmP3. 
Since the laser power was somewhat above the relativistic 
guiding threshold, the long propagation distance was attributed 
to a combination of relativistic guiding and ponderomotive 
self-channeling. Monot et al. 11741 report the propagation of a 
1-pm 15-TW 400-fs laser pulse through a pulsed hydrogen gas 
jet (ne 2: 10’’ ~ m - ~ ) .  For powers above the critical power 
for relativistic guiding, the laser pulse, with an intensity near 
lo1’ W/cm2, was observed to propagate through the entire 3 
mm length ( ~ 1 0 2 ~ )  of the gas jet. 

VII. LASER-PLASMA INSTABILITIES 

Laser-plasma instabilities can limit the laser propagation 
distance and degrade the performance of a laser-driven accel- 
erator. This section will provide a brief overview of a few 
instabilities which are relevant to laser-driven accelerators: 
stimulated forward and backward Raman scattering [ 1241, 
[ 1861-[203], self-modulation [ 1081-[114], and laser-hose in- 
stabilities [ 1 SO], [ 18 11. Other instabilities, such as parametric 
coupling to ion modes, which have been observed in PBWA 
experiments [73], [74], will not be discussed. 

A. Stimulated Raman Scattering 

Stimulated Raman scattering involves the interaction of a 
light wave with an electron plasma wave 11241, [186]-[188]. 
In its most basic form, it consists of the decay of the pump 
laser field, of frequency and wave vector (WO, ko), into an 
electron plasma wave (w ,  k )  and two daughter light waves, 
namely a Stokes wave (wo - w, k,-, - k) and an anti-Stokes 
wave (wo+w, ko+k).  Typically, w = w P + C  where the growth 
rate r is usually obtained through a standard linear instability 
analysis. In such an analysis, the pump laser field is assumed 
to be a 1-D plane wave of the form up - ao exp i (koz  - wot) .  
Perturbations are introduced, Sa - expi(k . r - w t )  and 
the linearized equations are then solved to determined the 
behavior of the instability. Since the pump laser is assumed 
to be a 1-D plane wave, the 3-D evolution of the pump laser 
is not taken into consideration. In particular, the effects of 
diffraction and self-focusing are neglected. Strictly speaking, 
the resulting analysis is only valid for times short compared 
to the characteristic evolution time TE of the pump laser, e.g., 

t < TE - ZR/C.  In practice, however, the growth rates 
obtained from such an analysis can be adequate estimates 
provided that the mode frequency and growth rate are large 
compared to Tgl. 

For an infinite 1-D plane wave pump field, the purely 
temporal growth rates, i.e., 6a - exp(rt) with r‘ indepen- 
dent of t ,  can be obtained in a straightforward manner. The 
basic treatment of forward and backward Raman scattering 
is presented by Kruer [124]. Temporal growth rates for the 
various Raman modes in various regimes have been recently 
summarized by Antonsen and Mora 11091. For short laser 
pulses, however, the growth and propagation of the instability 
with respect to the laser pulse front must be correctly taken 
into consideration. Antonsen and Mora [lo91 first applied 
convective instability analysis, or a spatial-temporal analysis, 
to Raman instabilities to account for the short-pulse nature of 
the instability. Such an analysis, in effect, yields growth rates 
which are a function of both space and time. 

1 )  Backward Raman Scattering: In backward Raman scat- 
tering (BRS), the pump wave ( W O ,  k ~ )  decays into a plasma 
wave (w. k )  and a backward going scattered wave (WO-w, ko- 
k ) ,  where w wp and k E 2ko. The standard temporal growth 
rate 11241, in the limits U; << 1 and wp << W O ,  i.e., the 
weakly coupled regime, is I? = ( Q / ~ ) ( W , W O ) ~ / ~ .  In general, 
the scattered mode can propagate at some angle 0 with respect 
to the pump wave (sidescatter), and the growth rate is given 
by sin 8/2 times the BRS result. The spatial-temporal analysis 
indicates that the number of e-folds of the BRS instability, 
Ne = rt, is given by [lo91 

In effect, since the scattered wave is moving opposite to the 
pump, the temporal growth is modified by et 4 I<l/2, where 
< = z - ct is a measure of the distance back from the front 
of the laser pulse. 

Typically, BRS is the fastest growing of the SRS insta- 
bilities. In laser-plasma accelerators, BRS is significant for a 
number of reasons. At low pump laser intensities, the spectrum 
of the backscattered radiation can be used to determine w - wp 
and, hence, the plasma density can be determined experimen- 
tally. For high pump intensities, however, it has been observed 
that the backscattered spectrum broadens [196] and, in some 
cases, becomes extremely broad [203], so that the w - wp 
peak can no longer be distinguished. Raman sidescatter and 
backscatter can erode the back of a long pulse, L > A,, since 
energy is being transported out of the pulse. This has been 
observed in fluid 11091, [113] and particle simulations 11151, 
[116]. At very high intensities, simulations [115] indicate that 
BRS erodes the front portion of a long pulse in the high- 
density self-modulated regime. In the body of the pulse, BRS 
is suppressed, possibly due to plasma heating. 

As the BRS mode grows to large amplitude, it can trap 
the background plasma electrons, thus heating the plasma and 
creating a fast tail on the electron distribution. The phase 
velocity of the BRS plasma wave is vp = w/lC = wp/2k0 <( c. 
Since v p / c  << 1, the plasma wave can trap the background 
thermal electrons. The resulting fast electrons can be sub- 
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sequently trapped by Raman scattered modes propagating at 
smaller angles 0, which will accelerate the electroiis to higher 
energies [ 181, [ 1891, [ 1991. Eventually, these background 
electrons can be trapped and accelerated to very high energies 
by the plasma wave associated with the forward Raman 
instability or the self-modulation instability, which has up N 

c. This mechanism may explain how background plasma 
electrons can be trapped and accelerated to high energies, as is 
observed in recent experiments [3 11-1351 on and simulations 
[115], 11161 of the self-modulated LWFA (i.e., a laser pulse 
in the high-density self-modulatedforward Raman scattering 
regime). Direct wavebreaking of a relativistic plasma wave can 
also result in the acceleration of background plasma electrons 
W l .  

For high pump intensities, theory predicts that stimulated 
backscattering occurs in the strongly coupled or Compton 
regime 11091, [186]-[188] for which Iw - woI m~ r >> wp. 
In addition, 1-D nonlinear theory predicts that for a linearly 
polarized pump laser field, stimulated backscattered harmonic 
(SBH) radiation can be generated [192], [193] at frequencies 
given approximately by w = Nwo, where N = 21+ 1 and 1 
is an integer, i.e., odd harmonics. The temporal growth rate of 
the SBH radiation is given by 

where 710 = ( 1  + a 0 / 2 ) l / ~ ,  Fe = b[Je(b)  - Je+ l (b ) ]2  is 
the harmonic coupling function, and b = (21 + l)a$/4yzo. 
Equation (65) is valid for arbitrary laser intensities ao. For 
aO << 1, the growth rate of the fundamental (w = W O )  

backscattered mode is given by r / w o  = & ( W ~ ~ O / ~ W O ) ~ / ~ .  
The function F j / 3 ,  proportional to the growth rate, is plotted 
in Fig. 29 [192], [I931 versus a ~ / 4 7 ~ ,  for various harmonics 
N = (U + 1). It is clear that the generation of higher 
harmonics requires a0 2 1. Thermal effects, i.e., trapping 
of the background plasma electrons, can severely limit the 
generation of higher harmonics [192], [193]. For example, to 
observe the third (fifth) harmonic using a A0 = 1 pm, a0 = 2.6 
laser in a plasma of density no = lo1’ ~ m - ~ ,  the longitudinal 
energy spread on the plasma electrons must satisfy Eth < 77 
eV (22 eV). 

2 )  Forward Raman Scattering: In forward Raman scatter- 
ing (FRS) [ 1241, [ 1861-[188], the scattered waves propagate 
parallel (or nearly parallel) to the pump wave, and the asso- 
ciated plasma wave has a phase velocity up cv c. Hence, the 
plasma wave can be used to accelerate electrons to ultrahigh 
energies. The FRS instability can serve as the basis for an 
LWFA [l], [18], [114], in which a single long ( L  > A,) 
laser pulse becomes modulated via FRS and drives a large 
amplitude plasma wave. As with the envelope self-modulation 
instability described below, FRS can be used to drive a the 
self-modulated LWFA [108]-[1161. 

The physical mechanism of FRS can be understood by the 
following I-D description [114]. Consider a long uniform 
laser pulse propagating in the presence of an initially small 
amplitude plasma wave of the form Sn = Snot;inkp< with 

0 0.1 0.2 0.3 0.4 0.5 

(a6/4)/(1+ d / Z )  

Fig. 29. 
radiation, versus the parameter (u2/4)/(1 + 4 / 2 )  (from [192]). 

The function Fh’3, proportional to the growth rate of the SBH 

Sno > 0. Since the local group velocity vg is given by 
U,/. N 1 - w,2(<)/2wi, the local group velocity decreases 
in regions where Sn > 0 and increases in regions where 
Sn < 0. This tends to modulate the laser pulse such that the 
intensity modulations are 90 degrees out of phase with the 
density wave, i.e., a N a0 + Sa, where Sa = 6aocoskp< 
and Suo > 0. This intensity modulation feeds back via 
(/a2//a<2 + k ; ) & / n ~  = (a2//a<2)u2/2 and drives the plasma 
wave to larger amplitudes, thus resulting in the FRS instability. 

Several regirnes of the FRS can be identified 11091, 11141, 
[194], such as a four-wave regime, in which both W O  * up 
modes are resonant, and a three-wave regime, in which only 
W O  - wp is resonant with the pump laser and the plasma wave. 
The temporal growth rate in the four-wave resonant regime 
is l7R = w ~ a O / 2 f i w o ,  the temporal growth rate in the four- 
wave nonresonant regime is PN = ~ w ~ ( ~ O W ~ / ~ W ~ ) ~ / ~ / ~ ,  

and the temporal growth rate in the three-wave regime is 
r3 = W ~ U ~ ( W , / W ~ ) . ~ / ~ / ~ .  The spatial-temporal analysis [109], 
[l lo], [114], [198] indicates, however, that as the FRS instabil- 
ity grows, it passes through these various regimes, depending 
on the relative value of 1<1/c7-, where ( = z - ct and 7- = t 
are the independent coordinates. The number of e-foldings for 
these three FRS: modes and the corresponding spatial-temporal 
regimes are roughly given by [1091, []lo], [114] 

where ai << 1, w;/wi << 1 are assumed. Decker et aZ. [114] 
describe that, for a fixed ( within the pulse, the FRS instability 
transitions through the various regimes as a function of time. 

The above results, (66)-(68), describe direct FRS for which 
B = 0, where k, . ko = k,ko cos 8, i.e., 0 is the angle between 
the pump ko and scattered k, wave vectors. Similar analyses 
11091, [I141 can be applied to describe near FRS and Raman 



IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 24, NO. 2, APRIL 1996 

IO , , IO , I 

250 X 600 5w X 850 

I 1.5 I I 

-0.2 ’ ’ I 
250 X 6cm 

Id 

102 

1 0‘ 

-1.5 - 
500 X 850 

Fig. 30. Results of a 1-D particle simulation of forward Raman scattering 
with a0 = 0.8, u/wp = 10.0, and L = 150c/wp: (a) laser field EL/Eo, (b) 
plasma wave field E,/Eo, and (c) Fourier spectrum  EL(^) at upt = 250, 
(d) laser field, (e) plasma wave field, and (f) Fourier spectrum at wpt  = 500. 
The z axis is in units of c / w p  (from [115]). 

sidescatter, in which the scattered wave propagates at a finite 
angle 6’ (i.e., k s l  # 0), assuming a plane wave pump field. 
For example, Antonsen and Mora [109] describe small angle 
FRS and find a growth rate is similar to (68) (proportional 
to rs). Decker et aZ. [ 1141 describe a four-wave nonresonant 
regime of near FRS, the growth rate of which depends on k s l .  
Furthermore, when k , ~  = l / r ~ ,  the growth rate of the four- 
wave nonresonant regime of near FRS has an identical scaling 
to that of the envelope self-modulation instability [ 11 11 in the 
long-pulse regime, as discussed in the following section. 

As a side note, the paraxial approximation to the wave 
operator, (O? +2ikod /dc~)  is not sufficient to describe direct 
(e = 0) FRS. Direct FRS requires an axial transport of laser 
energy (within the ( = z - et frame) and an axial modulation 
of the laser power. In the paraxial approximation, however, 
the laser group velocity is effectively c and an axial transport 
of energy from one C location to another is not possible. 
Retention of the term (0% + 2d2/d<3c7)  is necessary to 
describe on-axis FRS. This was done in the fluid simulation 
of the self-modulated LWFA presented in Section V-D, i.e., 
the effects of both the FRS and self-modulation instabilities 
are included. 

The growth rates presented for both the BRS mode, (64), 
and the FRS modes, (66)-(68), assumed a plane wave pump 
field with U; << 1 (low intensity limit). For a circularly polar- 
ized plane wave pump field, these results can be generalized 
[114], [198] to describe the regime a0 2 1 by substituting 
a0 4 ao/~i and wi + w,”/yl into the expressions for the 
growth rates, where 71 = (1 + 

In addition, it is also possible for an FRS mode to undergo 
multiple scattering, sometimes referred to as cascading [18], 
[67], [115], [186]-[188], resulting in multiple waves with 
frequencies wg * !wp (4  = integer). It is possible to interpret 
this as photon acceleration, or phase-modulation by the plasma 
wave, of the scattered wave [114]. Numerous high-order 
Stokes and anti-Stokes lines have been observed in simula- 
tions of FRS [115]. The larger the plasma wave amplitude, 
the larger the number of high-order Stokedanti-Stokes lines 
present. Multiple [32]-[35], [117] (up to the fifth [33]) anti- 
Stokes lines have been observed in FRS/self-modulated LWFA 
experiments. 

A 1-D particle simulation [115] of FRS is presented in 
Fig. 30 for a 1 pm laser pulse with a 600 fs rise time and an 
intensity I = 8.9 x 1017 W/cm2 propagation through a plasma 
of density no = lo1’ cm-3 (approximately corresponding 
to the experiments of [196]), i.e., a0 = 0.8, wo/wp = 10, 
and L = 150c/w,. Fig. 30 shows the electric field of the 
laser pulse, the electric field of the plasma wave, and Fourier 
spectrum of the laser field at wpt = 250 (1.4 ps) and wpt = 500 
(2.8 ps). At w,t = 250, BRS is dominant and FRS is beginning 
to occur at the pulse head. BRS depletes the laser energy at 
the pulse head, creating a steepened front. The ponderomotive 
force of the steepened front generates a plasma wake which 
apparently acts as a seed for FRS. This is evident in Fig. 30(a) 
and (b), where the location of the onset of FRS corresponds to 
the location of local laser pulse depletion. At wpt = 500, the 
laser pulse has become strongly modulated due to FRS and a 
large amplitude plasma wave is present. The nonlinear state 
of the modulation leads to spectral cascading, i.e., W O  5 !wp, 
as is clearly evident in Fig. 30(f). 

B. Selj-Modulation and Laser-Hose Instabilities 

Recently, a formalism has been developed [ l l l ] ,  [181] to 
describe the 3-D evolution laser pulses in plasmas, including 
the effects of diffraction, relativistic and channel guiding, finite 
pulse duration, and coupling to the self-consistent plasma wave 
generated by the pulse structure. This formalism has been 
used to describe a class of “whole-beam” instabilities, which 
includes self-modulation [96], [ 1081-[113] and laser-hose 
[ 1801, [ 18 11 instabilities. In this formalism, equations are 
derived to describe the evolution of the local laser pulse 
spot size zs(c,t) and the local laser pulse centroid x c ( ( , t ) ,  
where the transverse profile of the laser field is assumed 
to be a Gaussian of the form a N exp[-(z - zC)’/z2] 
(the y profile can be similarly defined). The self-modulation 
instability consists of a periodic “sausaging” of the laser spot 
size xs and the laser-hose consists of a periodic “kinking” 
of the laser centroid xc, as shown schematically in Fig. 31. 
In their most basic forms, the hose/modulation instabilities 
are described by spot size and centroid perturbations of the 
forms Sz,,, - exp(r,,,t + ik,,C), i.e., they have a period 
equal to the plasma wavelength A, = 27r/kp and a growth rate 
which is a function of both space and time, r,,, = I?,,,((, t ) .  
Intrinsically, these instabilities involve a coupling to a plasma 
wave, and the dynamics of the instabilities is determined by 
the enhanced diffraction and focusing properties of the plasma 
wave on the laser pulse. 
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Fig. 31. Schematic of the hose-modulation instability showing the laser pulse 
centroid z, = zc and envelope zs = z~ in the C = 2 - ct frame (from 
[1811). 

The physical mechanism underlying self-modulation has 
been described previously in Section VI-F. The physical mech- 
anism for laser hosing [ 1801, [ 18 11 is somewhat siimilar. Con- 
sider a long, L > A,, guided laser pulse, P/P, = l-An/An,, 
with a centroid which is initially perturbed at the plasma 
wavelength, 2, 21 Z,O sin k,<, where x , ~  > 0. This periodic 
centroid displacement will drive an asymmetric plasma wave. 
Notice that for xz/zz << 1, the intensity profile is approx- 
imately u2 11 a$(l + 4zz,/zz) exp(-2x2/zz). At a fixed x 
position above the axis, x = 20, the laser intensity modulation 
has the form u2(x0)/u$ - 1 + 4(xox,o/x2)sinkpF,, which 
drives a plasma wave. At a fixed x position below the axis, 
2 = -xo, the laser intensity is similarly modulated, but 180 
degrees out of phase with respect to the x = xo modulation. 
Hence, the plasma wave driven below the axis is 180 degrees 
out of phase with respect to the plasma wave driven above 
the axis, which results in an asymmetric (with respect to x) 
plasma wave. Roughly speaking, the plasma wave has the form 
Sn N -Sno(x/x,) cos kpC, where bno > 0. The laser pulse 
will tend to focus into the regions of reduced plasma density. 
For the asymmetric plasma wave, the laser pulse evolves in 
such a way as to enhance the initial centroid pertiirbation and 
the process proceeds in an unstable manner. 

Equations describing the behavior of the spot size 2, (C, T )  

and centroid x,(<, 7) can be derived by analyzing the paraxial 
wave equation including the effects of a performled parabolic 
density channel and the self-consistent plasma response given 
by (63). In the limits u2 (< 1 and kzr$ >> 1, z, ,and x, obey 
equations of the form [181] 

Also, 6, obeys an equation similar to (70). In the above, 
2 ,  = x,/ro, P, = x,/ro, jj, = y,/ro, .F = cT/zR,  ZR  = 
kr i /2 ,  An, = (meri)- ’  is the critical channel depth, and 

P(<)/Pc = u2:c,ysk~/16 is the laser power over the critical 
power. The functions F,,,(<’, c), which depend on x,, y,, and 
x,, couple the spot size dynamics to the centroid dynamics. 
In the absence of a centroid perturbation (x, = 0), Fs,, = 
1, the laser pulse remains axisymmetric (z, = y, = r,), and 
(70) reduces to the spot size equation [l 111, (61), discussed 
in Section VI+. 

The right side of (69) indicates that if z,(<) = x,.(</) 
initially, zc(<) will not increase. Hence, the laser-hose insta- 
bility requires a nonuniform head-to-tail centroid displacement 
[181] dz,/d[ # 0. The right side of (70) indicates that 
axial gradients in the laser power aP/dC # 0 will lead 
to modulations in the laser envelopes zs , y,, as discussed 
in Section VI-IF. Both the self-modulation and laser-hose 
instabilities can occur in either a uniform plasma (An = 0) or 
in a preformed density channel. 

For sufficiently small perturbations, z,/rg << 1 and 
z,/rO << 1, (69) and (70) decouple and self-modulation 
and the laser-hose instability can be analyzed independently. 
Asymptotic growth rates can be obtained in various regimes 
using standard methods [111], [180], [181] by perturbing 
about the matched beam equilibrium. The number of e-folds 
Ne = rc,,7 in the various regimes is given by [ l l l ] ,  I1811 

Long pulse regime: k p l C I Z ~ / c ~  >> alPc/P 

Intermediate regime: a3P/P, << kpGpl(IZR/cr << alP,/P 

Short pulse regime: kpl(lzR/CT << a3P/P, 

For the laser-hose, a1 = cy2 = a3 = 1. For self-modulation, 
a1 = a(2 -- P/Pc)3/2 (a 5 a1 5 4), a2 = 2, and 
a3 = 4 ( 2  - /7/Pc)-1/2 (1 5 a3 5 4). Hence, the number 
of e-folds is a function of the dimensionless parameters P/P,, 
kpl<l, and CT/ZR.  

Some insight can be gained by comparing Ne for self- 
modulation in the long-pulse regime to that of FRS in the four- 
wave nonresonant regime. Equations (67) and (71) indicate 
that self-modulation is dominant provided kgr$ << k; /kg.  
This supports lhe assertion that self-modulation dominates in 
the 2-D limit, whereas FRS dominates in the 1-D limit. These 
two growth rates, however, occur in different spatial-temporal 
regimes, hence, comparison of the growth of self-modulation 
and FRS is more complicated. As mentioned in the previous 
section, it is interesting to note that the growth rate of 
four-wave nonresonant near FRS [114], as obtained from an 
instability analysis for a plane wave pump field, gives a growth 
rate similar to that for self-modulation in the long pulse regime, 
(71), when the transverse wavenumber for the scattered wave 
is given by k , l  = l / r o .  
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Fig, 32. = 0 (dashed line) 
and at er = 3 . 2 2 ~  (solid line). The laser, which is moving to the right, is 
modulated at wavelength A, = 30 pm = r 0 / 2  (from [ISl]) .  

Normalized laser intensity 1812 c at Fig. 34. Transverse profiles of the axial wakefield E, (solid h e )  and the 
transverse wakefield E, (dashed line) at er = 1 . 8 2 ~  and 5 = -18X, for a 
hose-dominated case with an initial perturbation of 10% in zc (from [181]). 

To illustrate the behavior of the coupled self-modulation and 
laser-hose instabilities, (69) and (70) are solved numerically 
[181]. Consider an initially uniform plasma of density no = 
1.2 x 10" cm-3 (A, = 30 pm) and a 16-TW 1-ps laser pulse 
with wavelength A = 1 pm and initial spot size TO = 60 pm 
(2, = 1.1 cm). For these parameters, P(5)  = P, at the center 
of the pulse. Initially, 3, = ?js = 1 and the centroid has a 1% 
random perturbation such that Id In xc/acl << 1 / X .  

As the laser propagates, the high-intensity center of the pulse 
remains guided (2s N 1). The front and back portions of the 
pulse with P < E',, however, diffract, and the coupled hose- 
modulation instabilities grow within the guided portion of the 
pulse as illustrated in Figs. 32 and 33. Fig. 32 shows the nor- 
malized laser intensity on axis ] & I 2  = l 6P(C) / (Pc3 ,y ,k~r~)  
at .i = 0 (dashed curve) and at .i = 3.2. Fig. 33 shows 2 s ( c )  
and 2r(C) at .i = 3.2 and indicates a significant level of hosing, 
with as large as 0.5. Coupling between the hose and the 
modulation instabilities is clearly evident, i.e., in addition to 
the modulation of the envelope at A,, the second harmonic at 
X,/2 is present. The spatial modulation of the laser envelope 
at X,/2 is due to the dependence of the driving terms on the 
centroid motion. The second harmonic is not observed when 
the initial centroid perturbation is sufficiently small, 0.1% for 
the present parameters. 

The presence of the laser-hose instability can strongly 
modify the structure of the wakefield generated by the laser 
pulse. To illustrate this point, consider the case when the 
initial centroid perturbation is 10% [181]. Here, the centroid 

motion dominates both the development of the wakefield and 
the evolution of the envelope. The spot size modulations are 
dominated by the second harmonic component. Fig. 34 shows 
the transverse profiles of both the longitudinal and transverse 
wakefields, at 7 = 1.8, near the back of the pulse. The 
transverse field, E,, is nearly symmetric and peaked on axis 
while the longitudinal field, E,, is nearly antisymmetric and 
vanishes on axis. This wakefield symmetry is opposite that 
which occurs without hosing, i.e., in the absence of the hose 
instability, E, is antisymmetric and vanishes on axis, while 
E,  is symmetric and peaked on axis. 

While the modulation instability can enhance the wake- 
field amplitude and acceleration in the LWFA, the laser-hose 
instability should generally be avoided. To avoid significant 
levels of hosing, the initial laser centroid must be sufficiently 
smooth. Equations (71)-(73) indicate that the growth of the 
hose instability can be reduced by decreasing the pulse length 
(k,l(l), the laser power (P/Pc) ,  and/or the interaction distance 
( CT/ZR). Further simulations [ 18 I] indicate that by appropri- 
ately varying (i.e., detuning) either the plasma density andor 
the depth of the preformed plasma channel as a function of 
z in the laboratory frame, the hose and modulation instability 
can be substantially reduced. 

VIII. CONCLUSION 

Theoretical studies of plasma-based accelerators, for the 
most part, can be divided into three main categories: 1) the 
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calculation of the wakefields (i.e., the plasma response) for a 
nonevolving drive beam; 2) the evolution of the drive beam; 
and 3) the evolution of the accelerated electron beam. Plasma 
wave generation by a nonevolving beam is well understood 
(i.e., analytical solutions or simple numerical models exist) in 
the 3-D linear regime and in the 1-D nonlinear regime. Issues 
pertaining to the evolution of the drive beam are guiding and 
stability. Theoretical studies indicate that a laser pulse can be 
guided over an extended distance (many Rayleigh lengths) in 
a preformed density channel. At high powers and intensities, 
relativistic self-focusing, ponderomotive self-channeling, and 
plasma wave effects are also important. Numerous instabilities 
can affect drive beam propagation. Of these, Raman scattering, 
self-modulation, and electron and laser hosing are the most 
significant and have been discussed in some detail. Analytic 
studies of drive beam evolution, for the most part, are limited 
to the linear regime in which, for example, analytic expressions 
for instability growth rates are readily obtained. The self- 
consistent problem of plasma wave generation by an evolving 
drive beam is typically of sufficient complexity as to require 
numerical simulation. Self-consistent simulation’s of plasma- 
based accelerators have been performed in the 2-D nonlinear 
regime using both fluid and particle-in-cell codes. 

A practical concern of plasma-based accelerators, which 
has not been addressed in this paper, is the evolution of 
the accelerated electron beam. This includes beam loading 
and efficiency considerations [43], as well as thle the quality 
(i.e., emittance and energy spread) of the accelerated beam. 
Since the longitudinal and transverse dimensions of the plasma 
wave are typically small, e.g., wavelengths on the order of 
300 pm, the dimensions of the injected electron beam must 
also be small. To maintain low emittance and energy spread, 
the injected beam must be of subpicosecond duration, tightly 
focused, and synchronized to the plasma wave. This problem is 
currently being investigated and is the subject of other papers 
in this special issue. 

Perhaps the two most fundamental question!; concerning 
plasma-based accelerators are 1) can an ultrahigh acceler- 
ating field be generated and 2) can this accelerating field 
be sustained over a sufficiently long propagation distance so 
as to provide a substantial single-stage electron energy gain. 
Theory and simulation indicate that these requireiments can be 
met. Experimentally, several groups [ 181-[35] haive measured 
ultrahigh accelerating fields and accelerated electrons, as is 
summarized in Tables I and 11. Acceleration gradients and 
energy gains as high as 100 GV/m and 44 MeV, respectively, 
have been obtained by the experiments at Rutlherford [33]. 
Much of the recent experimental success can be attributed to 
the development of chirped-pulse amplification [ 111, which 
has revolutionized laser technology by providing compact 
sources of multiterawatt subpicosecond laser pulses. Except for 
relativistic self-focusing and ponderomotive self-channeling 
effects, none of these accelerator experiments has utilized 
an external method for beam guiding. Recent experiments 
at the University of Maryland [176] have deinonstrated a 
viable method for the production of a plasma deinsity channel 
and the subsequent propagation of a guided laser pulse over 
many Rayleigh lengths, however, at a relatively low laser 

intensity. Preliiminary experimental results on plasma channels 
formed by capillary discharges [178] indicate the guiding of 
higher intensity W/cm2) laser pulses. If a plasma 
channel is used in conjunction with an ultrahigh intensity laser 
pulse in the standard LWFA configuration, then linear theory 
predicts a maximum single-stage energy gain of AW [GeV] N 

I [W/cm2]/no [cmP3]. Hence, a picosecond laser pulse with an 
intensity of 10l8 W/cm2 in a plasma of density 10l6 cm-3 may 
provide a single-stage energy gain as high as 100 GeV over 
a distance on the order of 10 m. 

APPENDIX: COMPACT TERAWATT LASERS 

A compact terawatt laser system, based on the technique 
of CPA, was first demonstrated in 1988 by Mourou and co- 
workers [ l l]. The CPA technique allows for ultrashort (TL 5 l 
ps) pulses to bie efficiently amplified in solid-state media (e.g., 
Nd:glass, Ti:sapphire, and Cr:LiSAF), and has enabled the 
power of a compact system (per cm2 of amplifying medium) 
to rise from the GW to the TW level [lo]-[ 171. In CPA, a low 
energy pulse from an ultrashort pulse mode-locked oscillator 
is temporally stretched by a pair of gratings. The chirped long 
duration pulse avoids undesirable high field effects, such as 
self-focusing in the amplifying medium, and can reach much 
higher energies in the solid-state regenerative and single pass 
amplifiers. The amplified pulse is then compressed by a second 
matched pair of gratings. The CPA method is schematically 
shown in Fig. 35. This method has been applied to compact 
systems to produce subpicosecond pulses in the 1-20 TW 
range [lo]-[13]. The average power of table-top CPA systems 
is currently limited to 510  W [15], [16]. Efforts are also 
underway to apply the CPA method to large scale systems with 
the goal of producing laser pulses with extremely high power 
(100 TW-1 PW) [14]-[17]. In fact, 125 TW has recently been 
achieved at Lawrence Livermore National Laboratory [ 171. 
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