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Preface

This text is based on a course I have taught for many years to first-year graduate
and senior-level undergraduate students at Caltech. One outcome of this expe-
rience has been the realization that although students typically decide to study
plasma physics as a means towards some specific goal, they often conclude that
the study of this subject has an attraction and charm of its own; in a sense the
journey becomes as enjoyable as the destination. This conclusion is shared by
me and I feel that a delightful aspect of plasma physics is the frequent trans-
ferability of ideas between extremely different applications so, for example, a
concept developed in the context of astrophysics might suddenly become relevant
to fusion or vice versa.
Applications of plasma physics are many and varied. Examples include

controlled thermonuclear fusion, ionospheric physics, magnetospheric physics,
solar physics, astrophysics, plasma propulsion, semiconductor processing, anti-
matter confinement, and metals processing. Furthermore, because plasma physics
is extremely rich in both concepts and regimes, it has often served as an incubator
for new ideas in applied mathematics. Concepts first developed in one of the
areas listed above frequently migrate rather quickly to one or more of the other
areas so it is very worthwhile to keep abreast of developments in areas of plasma
physics outside of one’s immediate field of interest. Dialog between plasma
researchers in seemingly disconnected areas has often proved quite profitable
for all concerned and it is my hope that this text will help to promote this
interdisciplinary aspect.
The prerequisites for this text are a reasonable familiarity with Maxwell’s equa-

tions, classical mechanics, vector algebra, vector calculus, differential equations,
and complex variables – i.e., the contents of a typical undergraduate physics or
engineering curriculum. Experience has shown that because of the many different
applications for plasma physics, students studying plasma physics have a diver-
sity of preparation and not all are proficient in all prerequisites. Brief derivations

xiii
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of many basic concepts are included to accommodate this range of preparation;
these derivations are intended to assist those students who may have had little
or no exposure to the concept in question and to refresh the memories of those
who have had ample exposure but have forgotten the details. For example, rather
than just invoke Hamilton–Lagrange methods or Laplace transforms, there is a
quick derivation and then a considerable discussion showing how these concepts
relate to plasma physics issues. These additional explanations make the book
more self-contained and also provide a close contact with first principles.
The order of presentation and level of rigor have been chosen to establish a

firm foundation and yet avoid unnecessary mathematical formalism or abstraction.
In particular, the various fluid equations are derived from first principles rather
than simply invoked and the consequences of the Hamiltonian nature of particle
motion are emphasized early on and shown to lead to the powerful concepts of
symmetry-induced constraint and adiabatic invariance. Symmetry turns out to be
an essential feature of magnetohydrodynamic plasma confinement and adiabatic
invariance turns out to be not only essential for understanding many types of
particle motion, but also vital to many aspects of wave behavior.
The mathematical derivations have been presented with intermediate steps

shown in as much detail as is reasonably possible. This occasionally leads to
daunting-looking expressions, but it is my belief that it is preferable to see all
the details rather than have them glossed over and then justified by an “it can be
shown” statement.
The book is organized as follows: Chapters 1 to 3 lay out the foundation of

the subject. Chapter 1 provides a brief introduction and overview of applications,
discusses the logical framework of plasma physics, and begins the presentation
by discussing Debye shielding and then showing that plasmas are quasi-neutral
and nearly collisionless. Chapter 2 introduces phase-space concepts and derives
the Vlasov equation and then, by taking moments of the Vlasov equation, derives
the two-fluid and magnetohydrodynamic systems of equations. Chapter 2 also
introduces the dichotomy between adiabatic and isothermal behavior, which is a
fundamental and recurrent theme in plasma physics. Chapter 3 considers plasmas
from the point of view of the behavior of a single particle and develops both
exact and approximate descriptions for particle motion. In particular, Chapter 3
includes a detailed discussion of the concept of adiabatic invariance with the
aim of demonstrating that this important concept is a fundamental property of
all nearly periodic Hamiltonian systems and so does not have to be explained
anew each time it is encountered in a different context. Chapter 3 also includes a
discussion of particle motion in fixed frequency oscillatory fields; this discussion
provides a foundation for later analysis of cold plasma waves and wave–particle
energy transfer in warm plasma waves.
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Chapters 4 to 8 discuss plasma waves; these are not only important in many
practical situations, but also provide an excellent way for developing insight and
intuition regarding plasma dynamics. Chapter 4 shows how linear wave dispersion
relations can be deduced from systems of partial differential equations character-
izing a physical system and then presents derivations for the elementary plasma
waves, namely Langmuir waves, electromagnetic plasma waves, ion acoustic
waves, and Alfvén waves. The beginning of Chapter 5 shows that when a plasma
contains groups of particles streaming at different velocities, free energy exists
that can drive an instability; the remainder of Chapter 5 then presents Landau
damping and instability theory, which reveals that surprisingly strong interactions
between waves and particles can lead to either wave damping or wave instability
depending on the shape of the velocity distribution of the particles. Chapter 6
describes cold plasma waves in a background magnetic field and discusses the
Clemmow–Mullaly–Allis diagram, an elegant categorization scheme for the large
number of qualitatively different types of cold plasma waves that exist in a magne-
tized plasma. Chapter 7 discusses certain additional subtle and practical aspects
of wave propagation including propagation in an inhomogeneous plasma and
how the energy content of a wave is related to its dispersion relation. Chapter 8
begins by showing that the combination of warm plasma effects and a background
magnetic field leads to the existence of the Bernstein wave, an altogether different
kind of wave that has an infinite number of branches, and shows how a cold
plasma wave can “mode convert” into a Bernstein wave in an inhomogeneous
plasma. Chapter 8 concludes with a discussion of drift waves; these are ubiquitous
low-frequency modes that have important deleterious consequences for magnetic
confinement.
Chapters 9 to 12 describe plasmas from the magnetohydrodynamic point

of view. Chapter 9 begins by presenting several basic magnetohydrodynamic
concepts (vacuum and force-free fields, magnetic pressure and tension, frozen-
in flux, and energy minimization) and then uses these concepts to develop an
intuitive understanding for dynamic behavior. Chapter 9 then discusses magneto-
hydrodynamic equilibria and derives the Grad–Shafranov equation, an equation
that depends on the existence of symmetry and characterizes three-dimensional
magnetohydrodynamic equilibria. Chapter 9 ends with a discussion on acceler-
ated magnetohydrodynamic flows such as occur in arcs, magnetoplasmadynamic
thrusters, and astrophysical jets. Chapter 10 examines the stability of perfectly
conducting (i.e., ideal) magnetohydrodynamic equilibria, derives the “energy
principle” method for analyzing stability, discusses sausage and kink instabilities,
and introduces the concepts of magnetic helicity and force-free equilibria. Chapter
11 examines magnetic helicity from a topological point of view and shows how
helicity conservation and energy minimization lead to the Woltjer–Taylor model
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for magnetohydrodynamic self-organization. Chapter 12 departs from the ideal
models presented earlier to discuss magnetic reconnection, a non-ideal behavior
that permits the magnetohydrodynamic plasma to alter its topology and relax to
a minimum-energy state.
Chapters 13 to 17 consist of various advanced topics. Chapter 13 considers

collisions from a Fokker–Planck point of view and is essentially a revisiting of the
issues in Chapter 1 using a more sophisticated analysis; the Fokker–Planck model
is used to derive a more accurate model for plasma electrical resistivity and also
to show the failure of Ohm’s law when the electric field exceeds a critical value
called the Dreicer limit. Chapter 14 considers two manifestations of wave–particle
nonlinearity: (i) quasi-linear velocity-space diffusion due to weak turbulence and
(ii) echoes. Quasi-linear diffusion is an extension of Landau damping to the
nonlinear regime and shows how wave turbulence interacts with equilibria, while
echoes validate in a dramatic fashion basic concepts underlying Landau damping
and also instigate some interesting thoughts about the meaning of entropy. Chapter
15 discusses how nonlinear interactions enable energy and momentum to be
transferred between waves, categorizes the large number of such wave–wave
nonlinear interactions, and shows how these various interactions are all based on
a few fundamental nonlinear coupling mechanisms. Chapter 16 discusses one-
component plasmas (pure electron or pure ion plasmas) and shows how these
plasmas have behaviors differing from conventional two-component, electron–
ion plasmas. Chapter 17 discusses dusty plasmas, which are three-component
plasmas (electrons, ions, and dust grains), and shows how the addition of a third
component also introduces new behaviors, including the possibility of the dusty
plasma condensing into a crystal. The analysis of condensation involves revisiting
the Debye shielding concept and so corresponds in a sense to having the book
end on the same note it started on.
Three appendices have been included: Appendix A describes an intuitive

method for deriving the standard vector calculus identities, Appendix B uses
vector calculus identities to provide a quick derivation of vector calculus operators
in curvilinear coordinates, and Appendix C provides both a short list of physical
constants and a summary of frequently used formulae with page references to the
locations where these formulae were discussed.
I would like to extend my grateful appreciation to Professor Michael Brown

at Swarthmore College for providing helpful feedback obtained from his using
a draft version in a seminar course at Swarthmore and to Professor Roy Gould
at Caltech for providing helpful insight into both the dynamics of non-neutral
plasmas and the energetics of Debye shielding. I would also like to thank graduate
students Deepak Kumar and Gunsu Yun for their careful scrutiny of the final
drafts of the manuscript and for pointing out both ambiguities in presentation and
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typographical errors. In addition, I would like to thank the many students who
provided useful feedback on earlier drafts of this work when it was in the form
of lecture notes. Finally, I would like to acknowledge and thank my own mentors
and colleagues who have introduced me to the many fascinating ideas constituting
the discipline of plasma physics and the many scientists whose hard work over
many decades has led to the development of this discipline.





1

Basic concepts

1.1 History of the term “plasma”

In the mid nineteenth century the Czech physiologist Jan Evangelista Purkinje
introduced use of the Greek word plasma (meaning “formed” or “molded”) to
denote the clear fluid that remains after removal of all the corpuscular material in
blood. About half a century later, the American scientist Irving Langmuir proposed
in 1922 that the electrons, ions, and neutrals in an ionized gas could similarly
be considered as corpuscular material entrained in some kind of fluid medium
and called this entraining medium plasma. However it turned out that, unlike
blood where there really is a fluid medium carrying the corpuscular material,
there actually is no “fluid medium” entraining the electrons, ions, and neutrals in
an ionized gas. Ever since, plasma scientists have had to explain to friends and
acquaintances that they were not studying blood!

1.2 Brief history of plasma physics

In the 1920s and 1930s a few isolated researchers, each motivated by a specific
practical problem, began the study of what is now called plasma physics. This work
was mainly directed towards understanding (i) the effect of ionospheric plasma
on long-distance short-wave radio propagation and (ii) gaseous electron tubes
used for rectification, switching, and voltage regulation in the pre-semiconductor
era of electronics. In the 1940s Hannes Alfvén developed a theory of hydromag-
netic waves (now called Alfvén waves) and proposed that these waves would be
important in astrophysical plasmas. In the early 1950s large-scale plasma physics
based magnetic fusion energy research started simultaneously in the USA, Britain,
and the then Soviet Union. Since this work was an offshoot of thermonuclear
weapon research, it was initially classified but, because of scant progress in each
country’s effort and the realization that controlled fusion research was unlikely
to be of military value, all three countries declassified their efforts in 1958 and

1



2 Basic concepts

have co-operated since. Many other countries now participate in fusion research
as well.
Fusion progress was slow through most of the 1960s, but by the end of that

decade the empirically developed Russian tokamak configuration began producing
plasmas with parameters far better than the lackluster results of the previous two
decades. By the 1970s and 1980s many tokamaks with progressively improved
performance were constructed and at the end of the twentieth century fusion
break-even had nearly been achieved in tokamaks. International agreement was
reached in the early twenty-first century to build the International Thermonuclear
Experimental Reactor (ITER), a break-even tokamak designed to produce 500
megawatts of fusion output power. Non-tokamak approaches to fusion have also
been pursued with varying degrees of success; many involve magnetic confine-
ment schemes related to that used in tokamaks. In contrast to fusion schemes based
on magnetic confinement, inertial confinement schemes were also developed in
which high-power lasers or similarly intense power sources bombard millimeter-
diameter pellets of thermonuclear fuel with ultra-short, extremely powerful pulses
of strongly focused directed energy. The intense incident power causes the pellet
surface to ablate and, in so doing, act like a rocket exhaust pointing radially
outwards from the pellet. The resulting radially inwards force compresses the
pellet adiabatically, making it both denser and hotter; with sufficient adiabatic
compression, fusion ignition conditions are predicted to be achieved.
Simultaneously with the fusion effort, there has been an equally important and

extensive study of space plasmas. Measurements of near-Earth space plasmas,
such as the aurora and the ionosphere, have been obtained by ground-based
instruments since the late nineteenth century. Space plasma research was greatly
stimulated when it became possible to use spacecraft to make routine in situ
plasma measurements of the Earth’s magnetosphere, the solar wind, and the
magnetospheres of other planets. Additional interest has resulted from ground-
based and spacecraft measurements of topologically complex, dramatic structures
sometimes having explosive dynamics in the solar corona. Using radio telescopes,
optical telescopes, Very Long Baseline Interferometry, and most recently the
Hubble and Spitzer spacecraft, large numbers of astrophysical jets shooting out
from magnetized objects such as stars, active galactic nuclei, and black holes have
been observed. Space plasmas often behave in a manner qualitatively similar to
laboratory plasmas, but have a much grander scale.
Since the 1960s an important effort has been directed towards using plasmas for

space propulsion. Plasma thrusters have been developed ranging from small ion
thrusters for spacecraft attitude correction to powerful magnetoplasmadynamic
thrusters that – given an adequate power supply – could be used for interplanetary
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missions. Plasma thrusters are now in use on some spacecraft and are under
serious consideration for new and more ambitious spacecraft designs.
Starting in the late 1980s a new application of plasma physics appeared –

plasma processing – a critical aspect of the fabrication of the tiny, complex
integrated circuits used in modern electronic devices. This application is now of
great economic importance.
In the 1980s investigations began on non-neutral plasmas; these mimic the

equations of incompressible hydrodynamics and so provide a compelling analog
computer for problems in incompressible hydrodynamics. Another application of
non-neutral plasmas is as a means to store large quantities of positrons. In the
1990s studies began on dusty plasmas. Dust grains immersed in a plasma can
become electrically charged and then act as an additional charged particle species.
Because dust grains are massive compared to electrons or ions and can be charged
to varying amounts, new physical behavior occurs that is sometimes an extension
of what happens in a regular plasma and sometimes altogether new. Both non-
neutral and dusty plasmas can also form bizarre, strongly coupled collective states
where the plasma resembles a solid (e.g., forms quasi-crystalline structures).
In addition to the above activities there have been continuing investigations of

industrially relevant plasmas such as arcs, plasma torches, and laser plasmas. In
particular, approximately 40% of the steel manufactured in the United States is
recycled in huge electric arc furnaces capable of melting over 100 tons of scrap
steel in a few minutes. Plasma displays are used for flat-panel televisions and of
course there are naturally occurring terrestrial plasmas such as lightning.

1.3 Plasma parameters

Three fundamental parameters1 characterize a plasma:

1. the particle density n (measured in particles per cubic meter),
2. the temperature T of each species (usually measured in eV, where 1 eV=11 605K),
3. the steady-state magnetic field B (measured in Tesla).

A host of subsidiary parameters (e.g., Debye length, Larmor radius, plasma
frequency, cyclotron frequency, thermal velocity) can be derived from these three
fundamental parameters. For partially ionized plasmas, the fractional ionization
and cross-sections of neutrals are also important.

1 In older plasma literature, density and magnetic fields are often expressed in cgs units, i.e., densities are given
in particles per cubic centimeter, and magnetic fields are given in Gauss. Since the 1990s there has been
general agreement to use SI units when possible. SI units have the distinct advantage that electrical units are
in terms of familiar quantities such as amps, volts, and ohms and so a model prediction in SI units can much
more easily be compared to the results of an experiment than a prediction given in cgs units.
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1.4 Examples of plasmas

1.4.1 Non-fusion terrestrial plasmas

It takes considerable resources and skill to make a hot, fully ionized plasma and
so, except for the specialized fusion plasmas, most terrestrial plasmas (e.g., arcs,
neon signs, fluorescent lamps, processing plasmas, welding arcs, and lightning)
have electron temperatures of a few eV and, for reasons given later, have ion
temperatures that are colder, often at room temperature. These “everyday” plasmas
usually have no imposed steady-state magnetic field and do not produce significant
self-magnetic fields. Typically, these plasmas are weakly ionized and dominated
by collisional and radiative processes. Densities in these plasmas range from 1014

to 1022 m−3 (for comparison, the density of air at STP is 2�7×1025 m−3).

1.4.2 Fusion-grade terrestrial plasmas

Using carefully designed, expensive, and often large plasma confinement systems
together with high heating power and obsessive attention to purity, fusion
researchers have succeeded in creating fully ionized hydrogen or deuterium
plasmas which attain temperatures ranging from tens of eV to tens of thousands
of eV. In typical magnetic confinement devices (e.g., tokamaks, stellarators,
reversed field pinches, mirror devices) an externally produced 1–10 T magnetic
field of carefully chosen geometry is imposed on the plasma. Magnetic confine-
ment devices generally have densities in the range 1019−1021 m−3. Plasmas used
in inertial fusion are much more dense; the goal is to attain for a brief instant
densities one or two orders of magnitude larger than solid density (∼1028 m−3).

1.4.3 Space plasmas

The parameters of these plasmas cover an enormous range. For example, the
density of space plasmas varies from 106 m−3 in interstellar space to 1020 m−3 in
the solar atmosphere. Most of the astrophysical plasmas that have been investi-
gated have temperatures in the range of 1–100 eV and these plasmas are usually
fully ionized.

1.5 Logical framework of plasma physics

Plasmas are complex and exist in a wide variety of situations differing by many
orders of magnitude. An important situation where plasmas do not normally
exist is ordinary human experience. Consequently, people do not have the sort
of intuition for plasma behavior that they have for solids, liquids, or gases.
Although plasma behavior seems non- or counter-intuitive at first, with suitable
effort a good intuition for plasma behavior can be developed. This intuition can
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be helpful for making initial predictions about plasma behavior in a new situation,
because plasmas have the remarkable property of being extremely scalable; i.e.,
the same qualitative phenomena often occur in plasmas differing by many orders
of magnitude. Plasma physics is usually not a precise science. It is rather a
web of overlapping points of view, each modeling a limited range of behavior.
Understanding of plasmas is developed by studying these various points of view,
all the while keeping in mind the linkages between the points of view.
Plasma dynamics is determined by the self-consistent interaction between

electromagnetic fields and statistically large numbers of charged particles as
shown schematically in Fig. 1.1. In principle, the time evolution of a plasma can
be calculated as follows:

1. given the trajectory xj�t� and velocity vj�t� of each and every particle j, the electric
field E�x�t� and magnetic field B�x�t� can be evaluated using Maxwell’s equations

and simultaneously;

2. given the instantaneous electric and magnetic fields E�x�t� and B�x�t�, the forces on
each and every particle j can be evaluated using the Lorentz equation and then used
to update the trajectory xj�t� and velocity vj�t� of each particle.

While this approach is conceptually easy to understand, it is normally impractical
to implement because of the extremely large number of particles and, to a lesser
extent, because of the complexity of the electromagnetic field. To gain a prac-
tical understanding, we therefore do not attempt to evaluate the entire complex
behavior all at once but, instead, study plasmas by considering specific phenom-
ena. For each phenomenon under immediate consideration, appropriate simplifying
approximations are made, leading to amore tractable problem and hopefully reveal-
ing the essence ofwhat is going on.A situationwhere a certain set of approximations
is valid and provides a self-consistent description is called a regime. There are a
number of general categories of simplifying approximations, namely:

1. Approximations involving the electromagnetic field:

(a) assuming the magnetic field is zero (unmagnetized plasma);
(b) assuming there are no inductive electric fields (electrostatic approximation);

Lorentz equation

(gives xj, vj for each particle from knowledge of E(x, t), B(x, t))

Maxwell equations

(gives E(x, t), B(x, t) from knowledge of xj, vj for each particle)

Fig. 1.1 Interrelation between Maxwell’s equations and the Lorentz equation.
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(c) neglecting the displacement current in Ampère’s law (suitable for phenomena
having characteristic velocities much slower than the speed of light);

(d) assuming that all magnetic fields are produced by conductors external to the plasma;
(e) various assumptions regarding geometric symmetry (e.g., spatially uniform,

uniform in a particular direction, azimuthally symmetric about an axis).

2. Approximations involving the particle description:

(a) Averaging of the Lorentz force over some sub-group of particles:

i. Vlasov theory: average over all particles of a given species (electrons or ions)
having the same velocity at a given location and characterize the plasma using
the distribution function f��x�v� t�, which gives the density of particles of
species � having velocity v at position x at time t;

ii. Two-fluid theory: average velocities over all particles of a given species at a
given location and characterize the plasma using the species density n��x� t�,
mean velocity u��x� t�, and pressure P��x� t� defined relative to the species
mean velocity.

iii. Magnetohydrodynamic theory: average momentum over all particles of all
species and characterize the plasma using the center-of-mass density ��x� t�,
center-of-mass velocity U�x� t�, and pressure P�x� t� defined relative to the
center-of-mass velocity.

(b) Assumptions about time (e.g., assume the phenomenon under consideration is fast
or slow compared to some characteristic frequency of the particles such as the
cyclotron frequency).

(c) Assumptions about space (e.g., assume the scale length of the phenomenon under
consideration is large or small compared to some characteristic plasma length such
as the cyclotron radius).

(d) Assumptions about velocity (e.g., assume the phenomenon under consideration is
fast or slow compared to the thermal velocity vT� of a particular species �).

The large number of possible permutations and combinations that can be
constructed from the above list means that there will be a large number of regimes.
Since developing an intuitive understanding requires making approximations of
the sort listed above and since these approximations lack an obvious hierarchy, it
is not clear where to begin. In fact, as sketched in Fig. 1.2, the models for particle
motion (Vlasov, two-fluid, MHD) involve a circular argument. Wherever we start
on this circle, we are always forced to take at least one new concept on trust and
hope that its validity will be established later. The reader is encouraged to refer
to Fig. 1.2 as its various components are examined so that the logic of this circle
will eventually become clear.
Because the argument is circular, the starting point is at the author’s discretion,

and for good (but not overwhelming) reasons, this author has decided that the
optimum starting point on Fig. 1.2 is the subject of Debye shielding. Debye
concepts, the Rutherford model for how charged particles scatter from each other,
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Debye shielding

nearly collisionless
nature of plasmas

Vlasov equation

Rutherford scattering

random walk statistics

slow phenomena fast phenomena

plasma oscillations

magnetohydrodynamics two-fluid equations

Fig. 1.2 Hierarchy of models of plasmas showing circular nature of logic.

and some elementary statistics will be combined to construct an argument showing
that plasmas are weakly collisional. We will then discuss phase-space concepts and
introduce the Vlasov equation for the phase-space density. Averages of the Vlasov
equation will provide two-fluid equations and also the magnetohydrodynamic
(MHD) equations. Having established this framework, we will then return to study
features of these points of view in more detail, often tying up loose ends that
occurred in our initial derivation of the framework. Somewhat separate from the
study of Vlasov, two-fluid, and MHD equations (which all attempt to give a self-
consistent picture of the plasma) is the study of single particle orbits in prescribed
fields. This provides useful intuition on the behavior of a typical particle in a
plasma, and can provide important inputs or constraints for the self-consistent
theories.

1.6 Debye shielding

We begin our study of plasmas by examining Debye shielding, a concept origi-
nating from the theory of liquid electrolytes (Debye and Hückel 1923). Consider
a finite-temperature plasma consisting of a statistically large number of electrons
and ions and assume that the ion and electron densities are initially equal and
spatially uniform. As will be seen later, the ions and electrons need not be in
thermal equilibrium with each other, and so the ions and electrons will be allowed
to have separate temperatures denoted by Ti, Te.
Since the ions and electrons have random thermal motion, thermally induced

perturbations about the equilibrium will cause small, transient spatial variations
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of the electrostatic potential �. In the spirit of circular argument the following
assumptions are now invoked without proof:

1. The plasma is assumed to be nearly collisionless so that collisions between particles
may be neglected to first approximation.

2. Each species, denoted as � , may be considered as a “fluid” having a density n� ,
a temperature T� , a pressure P� = n��T� (� is Boltzmann’s constant), and a mean
velocity u� so that the collisionless equation of motion for each fluid is

m�
du�
dt

= q�E− 1
n�
	P�� (1.1)

where m� is the particle mass, q� is the charge of a particle, and E is the electric field.

Now consider a perturbation with a sufficiently slow time dependence to allow
the following assumptions:

1. The inertial term ∼ d/dt on the left-hand side of Eq. (1.1) is negligible and may be
dropped.

2. Inductive electric fields are negligible so the electric field is almost entirely electro-
static, i.e., E ∼−	�.

3. All temperature gradients are smeared out by thermal particle motion so that the
temperature of each species is spatially uniform.

4. The plasma remains in thermal equilibrium throughout the perturbation (i.e., it can
always be characterized by a temperature).

Invoking these approximations, Eq. (1.1) reduces to

0 ≈ −n�qe	�−�T�	n�� (1.2)

a simple balance between the force due to the electrostatic electric field and the
force due to the isothermal pressure gradient. Equation (1.2) is readily solved to
give the Boltzmann relation

n� = n�0 exp �−q��/�T��� (1.3)

where n�0 is a constant. It is important to emphasize that the Boltzmann relation
results from the assumption that the perturbation is very slow; if this is not
the case, then inertial effects, inductive electric fields, or temperature gradient
effects will cause the plasma to have a completely different behavior from the
Boltzmann relation. Situations exist where this “slowness” assumption is valid
for electron dynamics but not for ion dynamics, in which case the Boltzmann
condition will apply only to the electrons but not to the ions (the converse situation
does not normally occur because ions, being heavier, are always more sluggish
than electrons and so it is only possible for a phenomenon to appear slow to
electrons but not to ions).
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Let us now imagine slowly inserting a single additional particle (so-called
“test” particle) with charge qT into an initially unperturbed, spatially uniform,
neutral plasma. To keep the algebra simple, we define the origin of our coordinate
system to be at the location of the test particle. Before insertion of the test
particle, the plasma potential was �= 0 everywhere because the ion and electron
densities were spatially uniform and equal, but now the ions and electrons will
be perturbed because of their interaction with the test particle. Particles having
the same polarity as qT will be slightly repelled whereas particles of opposite
polarity will be slightly attracted. The slight displacements resulting from these
repulsions and attractions will result in a small, but finite, potential in the plasma.
This potential will be the superposition of the test particle’s own potential and
the potential of the plasma particles that have moved slightly in response to the
test particle.
This slight displacement of plasma particles is called shielding or screening of

the test particle because the displacement tends to reduce the effectiveness of the
test particle field. To see this, suppose the test particle is a positively charged ion.
When immersed in the plasma it will attract nearby electrons and repel nearby
ions; the net result is an effectively negative charge cloud surrounding the test
particle. An observer located far from the test particle and its surrounding cloud
would see the combined potential of the test particle and its associated cloud.
Because the cloud has the opposite polarity to the test particle, the cloud potential
will partially cancel (i.e., shield or screen) the test particle potential.

Screening is calculated using Poisson’s equation with the source terms being
the test particle and its associated cloud. The cloud contribution is determined
using the Boltzmann relation for the particles that participate in the screening.
This is a “self-consistent” calculation for the potential because the shielding cloud
is affected by its self-potential.
Thus, Poisson’s equation becomes

	2�= − 1

0

[
qT��r�+

∑
�

n��r�q�

]
� (1.4)

where the term qT��r� on the right-hand side represents the charge density due
to the test particle and the term

∑
� n��r�q� represents the charge density of all

plasma particles that participate in the screening (i.e., everything except the test
particle). Before the test particle was inserted

∑
�=i�e n��r�q� vanished because

the plasma was assumed to be initially neutral.
Since the test particle was inserted slowly, the plasma response will be

Boltzmann-like and we may substitute for n��r� using Eq. (1.3). Furthermore,
because the perturbation due to a single test particle is infinitesimal, we can
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safely assume that �q��� � �T� , in which case Eq. (1.3) becomes simply
n�/n�0 ≈ 1−q��/�T� and so Eq. (1.4) becomes

	2�= − 1

0

[
qT��r�+

(
1− qe�

�Te

)
ne0qe+

(
1− qi�

�Ti

)
ni0qi

]
� (1.5)

The assumption of initial neutrality means that ne0qe+ni0qi = 0, in which case
Eq. (1.5) reduces to

	2�− 1

�2D
�= −qT


0
��r�� (1.6)

where the effective Debye length is defined by

1

�2D
=∑

�

1
�2�

(1.7)

and the species Debye length �� is

�2� = 
0�T�
n�0q

2
�

� (1.8)

The second term on the left-hand side of Eq. (1.6) is just the negative of the
shielding cloud charge density. The summation in Eq. (1.7) is over all species
that participate in the shielding. Since ions cannot move fast enough to keep up
with an electron test charge, which would be moving at the nominal electron
thermal velocity, the shielding of electrons is only by other electrons, whereas the
shielding of ions is by both ions and electrons.
Equation (1.6) can be solved using standard mathematical techniques (cf.

assignments) to give

��r�= qT
4
0r

e−r/�D� (1.9)

this is sometimes called the Yukawa potential. For r � �D the potential ��r� is
identical to the potential of a test particle in vacuum, whereas for r � �D the test
charge is completely screened by its surrounding shielding cloud. The nominal
radius of the shielding cloud is �D. Because the test particle is completely screened
for r � �D, the total shielding cloud charge is equal in magnitude to the charge
on the test particle and opposite in sign. This test-particle/shielding-cloud analysis
makes sense only if there is a macroscopically large number of plasma particles
in the shielding cloud; i.e., the analysis makes sense only if 4n0�

3
D/3 � 1. This

will be seen later to be the condition for the plasma to be nearly collisionless and
so validate assumption 1 at the top of p. 8.
In order for shielding to be a relevant issue, the Debye length must be small

compared to the overall dimensions of the plasma, because otherwise no point
in the plasma could be outside the shielding cloud. Finally, it should be realized
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that any particle could have been construed as being “the” test particle and so we
conclude that the time-averaged effective potential of any selected particle in the
plasma is given by Eq. (1.9). (From a statistical point of view, a selected particle is
no longer assumed to have a random thermal velocity, in which case its effective
potential results from the summation of the non-random, static potential associated
with its own charge and a screening potential, which is the time-average of a
rapidly changing potential associated with the fleeting, random thermal motions
of all other particles.)

1.7 Quasi-neutrality

The Debye shielding analysis assumed that the plasma was initially neutral, i.e.,
that the initial electron and ion densities were equal. We now demonstrate that if
the Debye length is a microscopic length, then it is indeed an excellent assumption
that plasmas remain extremely close to neutrality, while not being exactly neutral.
It is found that the electrostatic electric field associated with any reasonable
configuration is easily produced by having only a tiny deviation from perfect
neutrality. This tendency to be quasi-neutral occurs because a conventional plasma
does not have sufficient internal energy to become substantially non-neutral over
distances exceeding a Debye length (there do exist non-neutral plasmas that violate
this concept, but these involve rotation of plasma in a background magnetic field,
which effectively plays the neutralizing role of ions in a conventional plasma).
To prove the assertion that plasmas tend to be quasi-neutral, we consider

an initially neutral plasma with temperature T and calculate the largest radius
sphere that could spontaneously become depleted of electrons due to thermal
fluctuations. Let rmax be the radius of this presumed sphere. Complete depletion
(i.e., maximum non-neutrality) would occur if a random thermal fluctuation caused
all the electrons originally in the sphere to vacate the volume of the sphere and
move to its surface. The electrons would have to come to rest on the surface of the
presumed sphere because if they did not, they would still have available kinetic
energy, which could then be used to move out towards an even larger radius,
violating the assumption that the sphere was the largest radius sphere that could
become fully depleted of electrons. This situation is of course extremely artificial
and likely to be so rare as to be essentially negligible because it requires all the
electrons to be moving radially relative to some origin. In reality, the electrons
would be moving in random directions.
When the electrons exit the sphere they leave behind an equal number of ions.

The remnant ions produce a radial electric field, which pulls the electrons back
towards the center of the sphere. One way of calculating the energy stored in this
system is to calculate the work done by the electrons as they leave the sphere
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and collect on the surface, but a simpler way is to calculate the energy stored in
the electrostatic electric field produced by the ions remaining in the sphere. This
electrostatic energy did not exist when the electrons were initially in the sphere
and balanced the ion charge and so it must be equivalent to the work done by the
electrons on leaving the sphere.
The energy density of an electric field is 
0E

2/2 and, because of the spherical
symmetry assumed here, the electric field produced by the remnant ions must be
in the radial direction. The ion charge in a sphere of radius r is Q = 4ner3/3
and so, after all the electrons have vacated the sphere, the electric field at radius
r is therefore Er = Q/4
0r2 = ner/3
0. The electrostatic field energy in the
ion-filled, electron-depleted sphere of radius rmax is thus

W =
∫ rmax

0


0E
2
r

2
4r2dr = r5max

2n2ee
2

45
0
� (1.10)

Equating this potential energy to the initial electron thermal kinetic energy,
Wkinetic, gives

r5max
2n2ee

2

45
0
= 3

2
n�T × 4

3
r3max� (1.11)

which may be solved to give

r2max = 45

0�T

nee
2

(1.12)

so that rmax � 7�D.
Thus, the largest spherical volume that could spontaneously become depleted

of electrons has a radius of a few Debye lengths. Since the probability of all
electrons in a sphere simultaneously having radially outwards velocities at some
instant is essentially zero, this electron depletion of a sphere is extremely unlikely
and so regions of non-neutrality will be much smaller than given by Eq. (1.12).
We conclude that plasma is quasi-neutral over scale lengths much larger than
the Debye length. When a biased electrode such as a wire probe is inserted into
a plasma, the plasma screens the field due to the potential on the electrode in
the same way that the test charge potential was screened. The screening region
is called the sheath, which is a region of non-neutrality having an extent of the
order of a Debye length.

1.8 Small- vs. large-angle collisions in plasmas

We now consider what happens to the momentum and energy of a test particle
of charge qT and mass mT that is injected with velocity vT into a plasma. This
test particle will make a sequence of random collisions with the plasma particles
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(called “field” particles and denoted by subscript F ); these collisions will alter both
the momentum and the energy of the test particle. A collision is characterized by a
deflection (also called scattering) of the test particle by an angle � from its original
direction of motion. The scattering angle � depends on a number of parameters,
including the test and target particle masses, the speed of the test particle relative
to the target particle, and whether the collision is a bull’s-eye collision or merely a
grazing collision. Determining this functional dependence is called the Rutherford
scattering problem, a standard problem in classical mechanics.
Solution of the Rutherford scattering problem in the center-of-mass frame shows

(Assignment 1, this chapter) that the scattering angle � is given by

tan
(
�

2

)
= qTqF

4
0b�v
2
0

∼ Coulomb interaction energy
kinetic energy

� (1.13)

where �−1 = m−1
T +m−1

F is the reduced mass, b is the impact parameter shown
in Fig. 1.3, and v0 is the initial relative velocity. It is useful to separate scattering
events (i.e., collisions) into two approximate categories, namely (1) large-angle
collisions where /2 ≤ � ≤  and (2) small-angle (grazing) collisions where
�� /2.
Let us denote b/2 as the impact parameter for 90	 collisions; from Eq. (1.13)

this is

b/2 = qTqF

4
0�v
2
0

(1.14)

and corresponds to the radius of the inner (small) shaded circle in Fig. 1.3. Large-
angle scatterings will occur if the test particle is incident anywhere within this

bπ/2

small
angle
scattering

cross-section π bπ / 2
2

for large-angle scattering

π /2 scattering

b

θ

differential cross-section 2π b d b
for small-angle scattering

Fig. 1.3 Differential scattering cross-sections for large and small deflections.
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circle and so the total cross-section for all large-angle collisions is

�large ≈ b2/2

= 
(

qTqF

4
0�v
2
0

)2

� (1.15)

Grazing (small-angle) collisions occur when the test particle impinges outside
the shaded circle and so occur much more frequently than large-angle collisions.
Although each grazing collision does not deflect the test particle very much, there
are far more grazing collisions than large-angle collisions and so it is important
to compare the cumulative effect of grazing collisions with the cumulative effect
of large-angle collisions.
To make matters even more complicated, the effective cross-section of grazing

collisions depends on impact parameter, since the larger b is, the smaller the
deflection. To take this weighting of impact parameters into account, the area
outside the shaded circle is subdivided into a set of concentric annuli, called
differential cross-sections. If the test particle impinges on the differential cross-
section having radius between b and b+db, then the test particle will be deflected
by an angle lying between ��b� and ��b+db� as determined by Eq. (1.13). The
area of the differential cross-section is 2bdb , which is therefore the effective
cross-section for scattering between ��b� and ��b+ db�. Because the azimuthal
angle about the direction of incidence is random, the simple average of N small-
angle deflections vanishes, i.e., N−1∑N

i=1 �i = 0, where �i is the deflection due
to the ith collision and N is a large number.

Random walk statistics must therefore be used to describe the cumulative effect
of a large number of small-angle deflections and so we will use the square of
the deflection angle, i.e., �2i , as the quantity for comparing the cumulative effects
of small (grazing) and large-angle collisions. Thus, scattering (i.e., a sequence of
random deflections) is a diffusive process.
To compare the respective cumulative effects of grazing and large-angle colli-

sions, we calculate how many random small-angle deflections must occur to be
equivalent to a single large-angle deflection (i.e., �2larg e ≈ 1); here we pick the
nominal value of the large-angle deflection to be 1 radian. In other words, we
ask what must N be in order to have

∑N
i=1 �

2
i ≈ 1, where each �i represents an

individual small-angle deflection (sometimes called a “scattering event”). Equiv-
alently, we may ask what time t do we have to wait for the cumulative effect of
the grazing collisions on a test particle to give an effective deflection equivalent
to a single large-angle deflection.
To calculate this, let us imagine we are “sitting” on the test particle. In this

test particle frame the field particles approach the test particle with the velocity
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vrel, and so the apparent flux of field particles is � = nFvrel, where vrel is the
relative velocity between the test and field particles. The number of small-angle
scattering events in time t for impact parameters between b and b+db is �t2bdb
and so the time required for the cumulative effect of small-angle collisions to be
equivalent to a large-angle collision is given by

1 ≈
N∑
i=1

�2i = �t
∫

2bdb���b��2� (1.16)

The definitions of scattering theory show (see Assignment 9) that �� = t−1,
where � is the cross-section for an event and t is the time one has to wait for
the event to occur. Substituting for �t in Eq. (1.16) gives the cross-section �∗ for
the cumulative effect of grazing collisions to be equivalent to a single large-angle
scattering event,

�∗ =
∫

2bdb���b��2� (1.17)

The appropriate lower limit for the integral in Eq. (1.17) is b/2, since impact
parameters smaller than this value produce large-angle collisions. What should
the upper limit of the integral be? We recall from our Debye discussion that the
field of the scattering center is screened out for distances greater than �D. Hence,
small-angle collisions occur only for impact parameters in the range b/2<b<�D
because the scattering potential is non-existent for distances larger than �D.
For small-angle collisions, Eq. (1.13) gives

��b�= qTqF

2
0�v
2
0b

(1.18)

so Eq. (1.17) becomes

�∗ =
∫ �D
b/2

2bdb

(
qTqF

2
0�v
2
0b

)2

(1.19)

or

�∗ = 8 ln

(
�D
b/2

)
�large� (1.20)

Thus, the cross-section �∗ will significantly exceed �large if �D/b/2 � 1.
Since b/2 = 1/2n�2D, the condition �D � b/2 is equivalent to n�3D � 1, which
is just the criterion for there to be a large number of particles in a sphere having
a radius �D (a so-called Debye sphere). This was the condition for the Debye
shielding cloud argument to make sense. We conclude that the criterion for an
ionized gas to behave as a plasma (i.e., Debye shielding is important and grazing
collisions dominate large-angle collisions) is the condition n�3D � 1. For most
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plasmas n�3D is a large number with natural logarithm of order 10; typically, when
making rough estimates of �∗, one uses ln ��D/b/2�≈ 10. The reader may have
developed a concern about the seeming arbitrary nature of the choice of b/2 as
the “dividing line” between large-angle and grazing collisions. This arbitrariness
is of no consequence since the logarithmic dependence means that any other
choice having the same order of magnitude for the “dividing line” would give
essentially the same result.
By substituting for b/2, the cross-section can be rewritten as

�∗ = 1
2

(
qTqF


0�v
2
0

)2

ln

(
�D
b/2

)
� (1.21)

Thus, �∗ decreases approximately as the fourth power of the relative velocity. In a
hot plasma where v0 is large, �

∗ will be very small and so scattering by Coulomb
collisions is often much less important than other phenomena. A useful way
to decide whether Coulomb collisions are important is to compare the collision
frequency � = �∗nv with the frequency of other effects, or equivalently the mean
free path of collisions, lmfp= 1/�∗n, with the characteristic length of other effects.
If the collision frequency is small, or the mean free path is large (in comparison
to other effects), collisions may be neglected to first approximation, in which case
the plasma under consideration is called a collisionless or “ideal” plasma. The
effective Coulomb cross-section �∗ and its related parameters � and lmfp can be
used to evaluate transport properties such as electrical resistivity, mobility, and
diffusion.

1.9 Electron and ion collision frequencies

One of the fundamental physical constants influencing plasma behavior is the ion
to electron mass ratio. The large value of this ratio often causes electrons and
ions to experience qualitatively distinct dynamics. In some situations, one species
may determine the essential character of a particular plasma behavior while the
other species has little or no effect. Let us now examine how mass ratio affects:

1. momentum change (scattering) of a given incident particle due to collision between

(a) like particles (i.e., electron-electron or ion-ion collisions, denoted ee or ii),
(b) unlike particles (i.e., electrons scattering from ions denoted ei or ions scattering

from electrons denoted ie�;

2. kinetic energy change (scattering) of a given incident particle due to collisions between
like or unlike particles.

Momentum scattering is characterized by the time required for collisions to
deflect the incident particle by an angle /2 from its initial direction or, more
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commonly, by the inverse of this time, called the collision frequency. The momen-
tum scattering collision frequencies are denoted as �ee� �ii� �ei� �ie for the various
possible interactions between species and the corresponding times as �ee, etc.
Energy scattering is characterized by the time required for an incident particle
to transfer all its kinetic energy to the target particle. Energy transfer collision
frequencies are denoted respectively by �Eee� �E ii� �Eei� �E ie.

We now show that these frequencies separate into categories having three
distinct orders of magnitude with relative scalings 1 � �mi/me�

1/2 � mi/me. In
order to estimate the orders of magnitude of the collision frequencies we assume
the incident particle is “typical” for its species and so take its incident velocity
to be the species thermal velocity, vT� = �2�T�/m��1/2. While this is reasonable
for a rough estimate, it should be realized that, because of the v−4 dependence
in �∗, a more careful averaging over all particles in the thermal distribution will
differ. This careful averaging is quite intricate and will be deferred to Chapter 13.
We normalize all collision frequencies to �ee, and for further simplification

assume that the ion and electron temperatures are of the same order of magnitude.
First consider �ei: the reduced mass for ei collisions is the same as for ee collisions
(except for a factor of 2, which we neglect) and the relative velocity is the same –
hence, we conclude that �ei ∼ �ee. Now consider �ii: because the temperatures
were assumed equal, �∗

ii ≈ �∗
ee and so the collision frequencies will differ only

because of the different velocities in the expression � = n�v. The ion thermal
velocity is lower by an amount �me/mi�

1/2, giving �ii ≈ �me/mi�1/2�ee.
Care is required when calculating �ie. Strictly speaking, this calculation should

be done in the center-of-mass frame and then transformed back to the lab frame,
but an easy way to estimate �ie using lab-frame calculations is to note that
momentum is conserved in a collision so that in the lab frame mi�vi = −me�ve,
where � means the change in a quantity as a result of the collision. If the collision
of an ion head-on with a stationary electron is taken as an example, then the
electron bounces off forward with twice the ion’s velocity (corresponding to a
specular reflection of the electron in a frame where the ion is stationary); this
gives �ve = 2vi and ��vi�/ �vi� = 2me/mi. Thus, in order to have ��vi�/ �vi�
of order unity, it is necessary to have mi/me head-on collisions of an ion with
electrons, whereas in order to have ��ve�/ �ve� of order unity it is only necessary
to have one collision of an electron with an ion. Hence, �ie ∼ �me/mi��ee.

Now consider energy changes in collisions. If a moving electron makes a head-
on collision with an electron at rest, then the incident electron stops (loses all
its momentum and energy), while the originally stationary electron flies off with
the same momentum and energy that the incident electron had. A similar picture
holds for an ion hitting an ion. Thus, like-particle collisions transfer energy at the
same rate as momentum, so �Eee ∼ �ee and �Eii ∼ �ii.
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Table 1.1

∼ 1 ∼ �me/mi�1/2 ∼me/mi
�ee �ii �ie
�ei �Eii �Eei
�Eee �Eie

Interspecies collisions are more complicated. Consider an electron hitting a
stationary ion head-on. Because the ion is massive, it barely recoils and the electron
reflects with a velocity nearly equal in magnitude to its incident velocity. Thus,
the change in electron momentum is −2meve. From conservation of momentum,
the momentum of the recoiling ion must be mivi = 2meve. The energy transferred
to the ion in this collision is miv

2
i /2 = 4�me/mi�mev

2
e/2. Thus, an electron has to

make ∼ mi/me such collisions in order to transfer all its energy to ions. Hence,
�Eei = �me/mi��ee.

Similarly, if an incident ion hits an electron at rest the electron will fly off
with twice the incident ion velocity (in the center-of-mass frame, the electron is
reflecting from the ion). The electron gains energymev

2
i /2 so that, again, ∼mi/me

collisions are required for the ion to transfer all its energy to electrons. The orders
of magnitudes of collision frequencies are summarized in Table 1.1.
Although collisions are typically unimportant for fast, transient processes, they

may eventually determine many properties of a given plasma. The wide disparity
of collision frequencies shows that one has to be careful when determining which
collisional process is relevant to a given phenomenon. Perhaps the best way
to illustrate how collisions must be considered is by an example, such as the
following:
Suppose half the electrons in a plasma initially have a directed velocity v0

while the other half of the electrons and all the ions are initially at rest. This may
be thought of as a high-density beam of electrons passing through a cold plasma.
On the fast (i.e., �ee� time scale the beam electrons will:
(i) Collide with the stationary electrons and share their momentum and energy

so that after a time of order �−1
ee the beam will become indistinguishable from

the background electrons. Since momentum must be conserved, the combined
electrons will have a mean velocity v0/2.
(ii) Collide with the stationary ions, which will act as nearly fixed scatter-

ing centers so that the beam electrons will scatter in direction but not transfer
significant energy to the ions.
Both of the above processes will randomize the velocity distribution of the

electrons until this distribution becomes Maxwellian (the maximum entropy
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distribution); the Maxwellian will be centered about the average velocity discussed
in (i) above.
On the very slow �Eei time scale (down by a factor mi/me�, the electrons will

transfer momentum to the ions, so on this time scale the electrons will share
their momentum with the ions, in which case the electrons will slow down and
the ions will speed up until the average electron velocity and the average ion
velocity become identical. Similarly, the electrons will share energy with the ions,
in which case the ions will heat up while the electrons will cool.
If, instead, a beam of ions were injected into the plasma, the ion beam would

thermalize and share momentum with the background ions on the intermediate �ii
time scale, and then only share momentum and energy with the electrons on the
very slow �Eie time scale.
This collisional sharing of momentum and energy and thermalization of velocity

distribution functions to make Maxwellians is the process by which thermody-
namic equilibrium is achieved. Collision frequencies vary as T−3/2 and so, for
hot plasmas, collision processes are often slower than many other phenomena.
Since collisions are the means by which thermodynamic equilibrium is achieved,
plasmas are typically not in thermodynamic equilibrium, although some compo-
nents of the plasma may be in a partial equilibrium (for example, the electrons
may be in thermal equilibrium with each other but not with the ions). Hence, ther-
modynamically based descriptions of the plasma are often inappropriate. It is not
unusual, for example, to have a plasma where the electron and ion temperatures
differ by more than an order of magnitude. This can occur when one species or
the other has been subject to heating and the plasma lifetime is shorter than the
interspecies energy equilibration time, ∼ �−1

Eei.

1.10 Collisions with neutrals

If a plasma is weakly ionized then collisions with neutrals must be considered.
These collisions differ fundamentally from collisions between charged particles
because now the interaction forces are short-range (unlike the long-range Coulomb
interaction) and so the neutral can be considered simply as a hard body with
cross-section of the order of its actual geometrical size. All atoms have radii of
the order of 10−10 m so the typical neutral cross-section is �neut ∼ 3×10−20 m2.
When a particle hits a neutral it can simply scatter with no change in the internal
energy of the neutral; this is called elastic scattering. It can also transfer energy to
the structure of the neutral and so cause an internal change in the neutral; this is
called inelastic scattering. Inelastic scattering includes ionization and excitation
of atomic level transitions (with accompanying optical radiation).
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Another process can occur when ions collide with neutrals – the incident ion can
capture an electron from the neutral and become neutralized while simultaneously
ionizing the original neutral. This process, called charge exchange, is used for
producing energetic neutral beams. In this process a high-energy beam of ions
is injected into a gas of neutrals, captures electrons, and exits as a high-energy
beam of neutrals.
Because ions have approximately the same mass as neutrals, ions rapidly

exchange energy with neutrals and tend to be in thermal equilibrium with the
neutrals if the plasma is weakly ionized. As a consequence, ions are typically
cold in weakly ionized plasmas, because the neutrals are in thermal equilibrium
with the walls of the container.

1.11 Simple transport phenomena

1. Electrical resistivity. When a uniform electric field E exists in a plasma, the electrons
and ions are accelerated in opposite directions creating a difference between the average
velocities of the two species, i.e., a relative average velocity, urel = ue−ui, of electrons
relative to ions. The creation of this relative average velocity due to oppositely directed
E field acceleration of electrons and ions competes with the simultaneous dissipation
of the relative average velocity due to interspecies collisions (this dissipation of relative
average velocity is known as “drag”). Balancing these competing forces on an average
electron gives

0 = −eE−�eimeurel� (1.22)

since the drag force on the average electron is �eime �ue−ui�. However, since the
electric current is J = −neeurel, Eq. (1.22) can be rewritten as

E = �J� (1.23)

where

�= me�ei
nee

2
(1.24)

is the plasma electrical resistivity. Substituting �ei = �∗nivTe and noting from quasi-
neutrality that Zni = ne, the plasma electrical resistivity is

�= Ze2

2me

2
0v

3
Te

ln
(
�D
b/2

)
� (1.25)

from which we see that resistivity is independent of density, proportional to T−3/2
e ,

and also proportional to the ion charge Z. This expression for the resistivity is only
approximate since we did not properly average over the electron velocity distribution
(a more accurate expression, differing by a factor of order unity, will be derived in
Chapter 13). Resistivity resulting from grazing collisions between electrons and ions as
given by Eq. (1.25) is known as Spitzer resistivity (Spitzer and Harm 1953). It should
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be emphasized that although this discussion assumes existence of a uniform electric
field in the plasma, a uniform field will not exist in what naively appears to be the most
obvious geometry, namely a plasma between two parallel plates charged to different
potentials. This is because Debye shielding will concentrate virtually all the potential
drop into thin sheaths adjacent to the electrodes, resulting in near-zero electric field
inside the plasma. A practical way to obtain a uniform electric field is to create the
field by induction so that there are no electrodes that can be screened out.

2. Diffusion and ambipolar diffusion. Standard random walk arguments show that particle
diffusion coefficients scale as D ∼ ��x�2 /�, where �x is the characteristic step size
in the random walk and � is the time between steps. This can also be expressed as
D ∼ v2T /�, where � = �−1 is the collision frequency and vT = �x/� = ��x is the
thermal velocity. Since the random step size for particle collisions is the mean free
path and the time between steps is the inverse of the collision frequency, the electron
diffusion coefficient in an unmagnetized plasma scales as

De = �el2mfp�e = �Te
me�e

� (1.26)

where �e = �ee+�ei ∼ �ee is the 90	 scattering rate for electrons and lmfp�e =
√
�Te/me�

2
e

is the electron mean free path. Similarly, the ion diffusion coefficient in an unmagne-
tized plasma is

Di = �il2mfp�i =
�Ti
mi�i

� (1.27)

where �i = �ii+�ie ∼ �ii is the effective ion collision frequency. The electron diffusion
coefficient is typically much larger than the ion diffusion coefficient in an unmag-
netized plasma (it is the other way around for diffusion across a magnetic field in a
magnetized plasma where the step size is the Larmor radius). However, if the elec-
trons in an unmagnetized plasma did in fact diffuse across a density gradient at a rate
two orders of magnitude faster than the ions, the ions would be left behind and the
plasma would no longer be quasi-neutral. What actually happens is that the electrons
try to diffuse faster than the ions, but in so doing set up a slight charge separation.
This charge separation establishes a so-called “ambipolar” electrostatic electric field
oriented to retard the electrons and accelerate the ions, i.e., decrease the outward
electron flux and increase the outward ion flux. The amount of charge separation
self-regulates to produce an ambipolar electric field having just the right magnitude
to equalize the outward electron and ion fluxes. This results in an effective diffusion,
called the ambipolar diffusion, which is less than the electron rate, but greater than
the ion rate. Equation 1.22 shows that an electric field establishes an average electron
momentum meue = −eE/�e, where �e is the rate at which the average electron loses
momentum owing to collisions with ions or neutrals. Electron-electron collisions are
excluded from this calculation because an “average electron” cannot lose momentum
owing to collisions with all the other electrons, because the other electrons have on
average the same momentum as this average electron. Since the electric field cannot
impart momentum to the plasma as a whole, the momentum imparted to ions must be
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equal and opposite, so miui = eE/�e. Because diffusion in the presence of a density
gradient produces an electron flux, −De	ne� the net electron flux resulting from the
combination of an electric field and a diffusion across a density gradient is

� e = ne�eE−De	ne� (1.28)

where

�e = − e

me�e
(1.29)

is called the electron mobility. Similarly, the net ion flux is

� i = ni�iE−Di	ni� (1.30)

where

�i =
e

mi�i
(1.31)

is the ion mobility. In order to maintain quasi-neutrality, the electric field automatically
self-adjusts to give � e = � i = �ambipolar and ni = ne = n� this ambipolar electric field is

Eambipolar = �De−Di�
��e−�i�

	 lnn

� De
�e
	 lnn

= �Te
e
	 lnn� (1.32)

Substitution for E gives the ambipolar diffusion to be

�ambipolar = −
(
�eDi−De�i
�e−�i

)
	n� (1.33)

so the ambipolar diffusion coefficient is

Dambipolar = �eDi−De�i
�e−�i

=
Di
�i

− De
�e

1
�i

− 1
�e

=
Di
mi�i
e

+De
me�e
e

mi�i
e

+ me�e
e

� ��Ti+Te�
mi�i

� (1.34)

where Eqs. (1.26) and (1.27) have been used as well as the relation �i ∼ �me/mi�1/2�e.
If the electrons are much hotter than the ions, then for a given ion temperature, the



1.12 A quantitative perspective 23

ambipolar diffusion scales as Te/mi. Ambipolar diffusion is thus somewhat like the
situation of a small child tugging on his/her parent (the energy of the small child is
like the electron temperature, the parental mass is like the ion mass, and the tension
in the arm that accelerates the parent and decelerates the child is like the ambipolar
electric field); the resulting motion (parent and child move together faster than the
parent would like and slower than the child would like) is analogous to electrons being
retarded and ions being accelerated by the ambipolar electric field in such a way as to
maintain quasi-neutrality.

1.12 A quantitative perspective

Relevant physical constants are

e= 1�6×10−19 C

me = 9�1×10−31 kg

mp/me = 1836


0 = 8�85×10−12 Fm−1

The temperature is measured in units of electron volts, so that �=1�6×10−19 JV−1;
i.e., � = e. Thus, the Debye length is

�D =
√

0�T

ne2

=
√

0
e

√
TeV
n

= 7�4×103
√
TeV
n

m� (1.35)

We will assume that the typical velocity is related to the temperature by

1
2
mv2 = 3

2
�T� (1.36)

For electron-electron scattering �=me/2 so that the small-angle scattering cross-
section is

�∗ = 1
2

(
e2


0mv
2/2

)2

ln
(
�D/b/2

)
= 1

2

(
e2

3
0�T

)2

ln�� (1.37)
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Table 1.2 Comparison of parameters for a wide variety of plasmas.

n T �D n�D
3 ln� �ee lmfp L

units m−3 eV m s−1 m m

Solar corona (loops) 1015 100 10−3 107 19 102 105 108

Solar wind (near Earth) 107 10 10 109 25 10−5 1011 1011

Magnetosphere (tail lobe) 104 10 102 1011 28 10−8 1014 108

Ionosphere 1011 0.1 10−2 104 14 102 103 105

Mag. fusion (tokamak) 1020 104 10−4 107 20 104 104 10
Inertial fusion (imploded) 1031 104 10−10 102 8 1014 10−7 10−5

Lab plasma (dense) 1020 5 10−6 103 9 108 10−2 10−1

Lab plasma (diffuse) 1016 5 10−4 105 14 104 101 10−1

where

� = �D
b/2

=
√

0�T

ne2
4
0mv

2/2
e2

= 6n�3D (1.38)

is typically a very large number corresponding to there being a macroscopically
large number of particles in a sphere having a radius equal to a Debye length;
different authors will have slightly different numerical coefficients, depending on
how they identify velocity with temperature. This difference is of no significance
because of the logarithmic dependence.
The collision frequency is � = �∗nv, so

�ee = n

2

(
e2

3
0�T

)2
√
3�T
me

ln�

= e5/2

2×33/2
20m
1/2
e

n ln�

T
3/2
eV

= 4×10−12n ln�

T
3/2
eV

� (1.39)

For most plasmas ln� lies in the range 8–25; for situations where only a simple
order of magnitude estimate of the collision frequency is required it is usually
sufficient to assume ln�∼ 10.
Table 1.2 lists nominal parameters for several plasmas of interest and shows

these plasmas have an enormous range of densities, temperatures, scale lengths,
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mean free paths, and collision frequencies. The crucial issue is the ratio of the
mean free path to the characteristic scale length.
Arc plasmas and magnetoplasmadynamic thrusters are in the category of dense

lab plasmas; these plasmas are very collisional (the mean free path is much
smaller than the characteristic scale length). The plasmas used in semiconductor
processing and many research plasmas are in the diffuse lab plasma category; these
plasmas are collisionless. It is possible to make both collisional and collisionless
lab plasmas, and in fact if there are large temperature or density gradients it is
possible to have both collisional and collisionless behavior in the same device.

1.13 Assignments

1. Rutherford scattering. This assignment involves deriving the Rutherford scattering
formula using a geometrical analysis, which exploits the symmetry of the scattering
trajectory.

(a) Show that the equation of motion in the center-of-mass frame is

�r̈ = q1q2
4
0r2

r̂ �

By taking the time derivative of r× ṙ show that the angular momentum L=�r× ṙ
is a constant of the motion. The calculations will be done in the center-of-mass
frame using a cylindrical coordinate system r��� z with origin at the scattering
center and the z axis chosen to be parallel to L. Show that the particle does not
move in the z direction (hint: consider the dot product between ṙ and L) so the
particle is confined to the z= 0 plane. Let � be the scattering angle, and let b be
the impact parameter as indicated in Fig. 1.4. Also, define a Cartesian coordinate

θ

b

vi
vf

α

φ

r

y

trajectory

x

Fig. 1.4 Geometry of scattering in center-of-mass frame. Scattering center is
at the origin and � is the scattering angle. Note symmetries of velocities before
and after scattering.
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system x� y so that y = r sin�, etc.; these Cartesian coordinates are also shown in
Fig. 1.4.

(b) Show that �L� = �bv� = �r2�̇ so �̇= bv�/r2.
(c) Let vi and vf be the initial and final velocities as shown in Fig. 1.4. Since energy

is conserved during scattering, the magnitudes of these two velocities must be the
same, i.e., �vi� = �vf � = v�. From the symmetry of the figure it is seen that the x
component of velocity at infinity is the same before and after the collision, even
though it is altered during the collision. However, the y component of the velocity
reverses direction as a result of the collision. Let �vy be the net change in the y
velocity over the entire collision. Express �vy in terms of vyi� the y component of
vi.

(d) Using the y component of the equation of motion, obtain a relationship between
dvy and dcos�. (Hint: it is useful to use conservation of angular momentum to
eliminate dt in favor of d��� Let �i and �f be the initial and final values of �.
By integrating dvy� calculate �vy over the entire collision. How is �f related to �i
and to � (refer to figure)?

(e) How is vyi related to �i and v�? How is � related to �? Use the expressions for
�vy obtained in parts (c) and (d) above to obtain the Rutherford scattering formula

tan
(
�

2

)
= q1q2

4
0�bv2�
�

What is the scattering angle for grazing (small-angle collisions) and how does this
small-angle scattering relate to the initial center-of-mass kinetic energy and to the
potential energy at distance b? For grazing collisions how does b relate to the
distance of closest approach? What impact parameter gives 90	 scattering?

2. One-dimensional scattering relations. The separation of collision types according to
me/mi can also be understood by considering how the combination of conservation of
momentum and of energy constrain certain properties of collisions. Suppose a particle
with mass m1 and incident velocity v1 makes a head-on collision with a stationary
target particle having mass m2. The conservation equations for momentum and energy
can be written as

m1v1 = m1v
′
1 +m2v

′
2

1
2
m1v

2
1 = 1

2
m1v

′2
1 + 1

2
m2v

′2
2 �

where prime refers to the value after the collision. By eliminating v′
1 between these two

equations obtain v′
2 as a function of v1. Use this to construct an expression showing

the ratio m2v
′2
2 /m1v

2
1� i.e., the fraction of the incident particle energy transferred to the

target particle as a result of the collision. How does this fraction depend on m1/m2

when m1/m2 is equal to unity, very large, or very small? If m1/m2 is very large or very
small how many collisions are required to transfer approximately all of the incident
particle energy to target particles?
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3. Some basic facts you should know. Memorize the value of 
0 (or else arrange for
the value to be close at hand). What is the value of Boltzmann’s constant when
temperatures are measured in electron volts? What is the density of the air you are
breathing, measured in particles per cubic meter? What is the density of particles
in solid copper, measured in particles per cubic meter? What is room temperature,
expressed in electron volts? What is the ionization potential (in eV) of a hydrogen
atom? What is the mass of an electron and of an ion (in kilograms)? What is the
strength of the Earth’s magnetic field at your location, expressed in Tesla? What is
the strength of the magnetic field produced by a straight wire carrying 1 ampere as
measured by an observer located 1 meter from the wire and what is the direction of the
magnetic field? What is the relationship between Tesla and Gauss, between particles
per cubic centimeter and particles per cubic meter? What is magnetic flux? If a circular
loop of wire with a break in it links a magnetic flux of 29.83 Wb, which increases at
a constant rate to a flux of 30.83 Wb, in one second, what voltage appears across the
break?

4. Solve Eq. (1.6) the “easy” way using Gauss’ law to show that the solution of

	2�= − 1

0
��r�

is

�= 1
4
0r

�

Show that this implies

	2 1
4r

= −��r� (1.40)

is a representation for the delta function. Then, use spherical polar coordinates and
symmetry to show the Laplacian reduces to

	2�= 1
r2
�

�r

(
r2
��

�r

)
�

Explicitly calculate 	2�1/r� and then reconcile your result with Eq. (1.40). Using these
results guess that the solution to Eq. (1.6) has the form

�= g�r�

4
0r
�

Substitute this guess into Eq. (1.6) to obtain a differential equation for g that is trivial
to solve.

5. Solve Eq. (1.6) for ��r� using a more general method that illustrates several important
mathematical techniques and formalisms. Begin by defining the 3-D Fourier transform

�̃�k�=
∫

dr��r�e−ik·r� (1.41)
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in which case the inverse transform is

��r�= 1
�2�3

∫
dk�̃�k�eik·r (1.42)

and note that the Dirac delta function can be expressed as

��r�= 1
�2�3

∫
dkeik·r� (1.43)

Now multiply Eq. (1.6) by exp �−ik · r� and then integrate over all r, i.e., operate with∫
dr. The term involving 	2 is integrated by parts, which effectively replaces the 	

operator with ik.
Show that the Fourier transform of the potential is

�̃�k�= qT

0�k

2+�−2
D �

(1.44)

and use this in Eq. (1.42).
Because of spherical symmetry use spherical polar coordinates for the k-space integral.
The only fixed direction is the r direction so choose the polar axis of the k coordinate
system to be parallel to r. Thus k · r = kr�, where �= cos� and � is the polar angle.
Also, dk = −d�k2d�dk, where � is the azimuthal angle. What are the limits of the
respective �� �� and k integrals? In answering this, you should first obtain an integral
of the form

��r�∼
∫ ?

�=?
d�
∫ ?

�=?
d�
∫ ?

k=?
k2dk× �?� � (1.45)

where the limits and the integrand with appropriate coefficients are specified (i.e.,
replace all the question marks and ∼ by the correct quantities). Upon evaluation of
the � and � integrals Eq. (1.45) becomes an even function of k so that the range of
integration can be extended to −� providing the overall integral is multiplied by 1/2.
Realizing that sin kr = Im �eikr �, derive an expression of the general form

��r�∼ Im
∫ �

−�
kdk

eikr

f�k2�
(1.46)

but specify the coefficient and exact form of f�k2�. Explain why the integration contour
(which is along the real k axis) can be completed in the upper half complex k-plane.
Complete the contour in the upper half-plane and show that the integrand has a single
pole in the upper half-plane at k= ? Use the method of residues to obtain ��r�.

6. Make sure you know how to evaluate quickly A×�B×C� and (A × B� × C. A useful
mnemonic, which works for both forms, is: “both forms = middle times (other two
dotted together) – outer times (other two dotted together),” where outer refers to the
outer vector of the parentheses (furthest from the center of the triad) and middle refers
to the middle vector in the triad of vectors; see Appendix A.

7. Particle trajectory integration scheme (Birdsall and Langdon 1985). In this assignment
you will develop a simple, but powerful, “leap-frog” numerical integration scheme.
This is a type of “implicit” numerical integration scheme. This numerical scheme can



1.13 Assignments 29

later be used to evaluate particle orbits in time-dependent fields having complex topol-
ogy. These calculations can be considered as numerical experiments used in conjunc-
tion with the analytic theory we will develop. This combined analytical/numerical
approach provides a deeper insight into charged particle dynamics than analysis alone.
Brief note on Implicit vs. Explicit numerical integration schemes
Suppose it is desired to use numerical methods to integrate the equation

dy
dt

= f�y�t�� t��

Unfortunately, since y�t� is the sought-after quantity, we do not know what to use in
the right-hand side for y�t�. A naive choice would be to use the previous value of y
in the right-hand side to get a scheme of the form

ynew −yold
�t

= f�yold� t��

which may be solved to give

ynew = yold +�t f�yold� t��

Simple and appealing as this is, it does not work since it is numerically unstable.
However, if we use the following scheme we will get a stable result:

ynew −yold
�t

= f��ynew +yold�/2� t�� (1.47)

In other words, we have used the average of the new and the old values of y in the
right-hand side. This makes sense because the right-hand side is a function evaluated
at time t, whereas ynew = y�t+�t/2� and yold = y�t−�t/2�. If these last quantities are
Taylor expanded, it is seen that to lowest order y�t�= �y�t+�t/2�+y�t−�t/2��/2.
Since ynew occurs on both sides of the equation we will have to solve some sort of
equation, or invert some sort of matrix, to get ynew.
Start with

m
dv
dt

= q�E+v×B��

Define the angular cyclotron frequency vector � = qB/m and the normalized electric
field � = qE/m so that the above equation becomes

dv
dt

= �+v×�� (1.48)



30 Basic concepts

Using the implicit scheme of Eq. (1.47), show that Eq. (1.48) becomes

vnew +A×vnew=C�

whereA = ��t/2 andC = vold +�t ��+vold ×�/2�. By first dotting the above equa-
tion withA and then crossing it withA show that the new value of velocity is given by

vnew = C+AA ·C−A×C
1+A2

�

The new position is simply given by

xnew = xold +vnewdt�

The above two equations can be used to solve charged particle motion in compli-
cated, 3-D, time-dependent fields. Use this particle integrator to calculate and plot
the trajectory of an electron moving in crossed electric and magnetic fields where
the non-vanishing components are Ex = 1 Vm−1 and Bz = 1 T. Try varying the field
strengths and polarities, and also try ions instead of electrons.

8. Use the leap-frog numerical integration scheme to demonstrate the Rutherford scatter-
ing problem:

(i) Define a characteristic length for this problem to be the impact parameter for a 90	

degree scattering angle, b/2. A reasonable choice for the characteristic velocity is v�.
What is the characteristic time?
(ii) Define a Cartesian coordinate system such that the z axis is parallel to the incident
relative velocity vector v� and goes through the scattering center. Let the impact
parameter be in the y direction so that the incident particle is traveling in the y− z
plane. Establish a plotting frame spanning the region −50 ≤ z/b/2 ≤ 50 and −50 ≤
y/b/2 ≤ 50.
(iii) Set the magnetic field to be zero, and let the electric field be

E = −	��
where �= ? so Ex = ?, etc.
(iv) By using r2 = x2 +y2 +z2 calculate the electric field at each particle position, and
so determine the particle trajectory.
(v) Demonstrate that the scattering is indeed at 90	 when b = b/2. What happens
when b is much larger or much smaller than b/2? What happens when q1, q2 have
the same or opposite signs?
(vi) Have your code draw the relevant theoretical scattering angle �s and show that
the numerical result is in agreement with the theoretical prediction.

9. Collision relations. Show that �ntlmfp = 1, where � is the cross-section for a collision,
nt is the density of target particles, and lmfp is the mean free path. Show also that
the collision frequency is given by � = �ntv, where v is the velocity of the incident
particle. Calculate the electron–electron collision frequency for the following plasmas:
fusion (n∼ 1020 m−3� T ∼ 10 keV), partially ionized discharge plasma (n∼ 1016 m−3�

T ∼ 10 eV). At what temperature does the conductivity of plasma equal that of copper,
and of steel? Assume Z = 1.
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10. Cyclotron motion. Suppose that a particle is immersed in a uniform magnetic field
B = Bẑ and there is no electric field. Suppose that at t = 0 the particle’s initial
position is at x = 0 and its initial velocity is v = v0x̂. Using the Lorentz equation,
calculate the particle position and velocity as a function of time (be sure to take initial
conditions into account). What is the direction of rotation for ions and for electrons
(right handed or left handed with respect to the magnetic field)? If you had to make
up a mnemonic for the sense of ion rotation, would it be Lions or Rions? Now, repeat
the analysis but this time with an electric field E = x̂E0 cos��t�. What happens in
the limit where �→�, where �= qB/m is the cyclotron frequency? Assume that
the particle is a proton and that B = 1 T, v0 = 105 m s−1, and compare your results
with direct numerical solution of the Lorentz equation. Use E0 = 104V m−1 for the
electric field.

11. Space-charge-limited current. When a metal or metal oxide is heated to high temper-
atures it emits electrons from its surface. This process, called thermionic emission,
is the basis of vacuum tube technology and is also essential when high currents are
drawn from electrodes in a plasma. The electron-emitting electrode is called a cath-
ode, while the electrode to which the electrons flow is called an anode. An idealized
configuration is shown in Fig. 1.5. This configuration can operate in two regimes:
(i) the temperature-limited regime, where the current is determined by the thermionic
emission capability of the cathode, and (ii) the space-charge-limited regime, where
the current is determined by a buildup of electron density in the region between cath-
ode and anode (inter-electrode region). Let us now discuss this space-charge-limited
regime: if the current is small, then the number of electrons required to carry the
current is small and so the inter-electrode region is nearly a vacuum, in which case
the electric field in this region will be nearly uniform and be given by E= V/d, where
V is the anode–cathode potential difference and d is the anode–cathode separation.
This electric field will accelerate the electrons from anode to cathode. However, if
the current is large, there will be a significant electron density in the inter-electrode

cathode anode

space charge

d

V

– +

electrons emitted
from cathode surface

Fig. 1.5 Electron cloud accelerated from cathode to anode encounters space
charge of previously emitted electrons.
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region. This “space charge” will create a localized depression in the potential (since
electrons have negative charge).
The result is that the electric field will be reduced in the region near the cathode. If
the space charge is sufficiently large, the electric field at the cathode vanishes. In this
situation, attempting to increase the current by increasing the number of electrons
ejected by the cathode will not succeed because an increase in current (which will
give an increase in space charge) will produce a repulsive electric field that prevents
additional electrons from leaving the cathode. Let us now calculate the space-charge-
limited current and relate it to our discussion on Debye shielding. The current density
in this system is

J = −n�x�ev�x�= a negative constant�

Since potential is undefined with respect to a constant, let us choose this constant so
that the cathode potential is zero, in which case the anode potential is V0. Assuming
electrons leave the cathode with zero velocity, show that the dependence of electron
velocity on position is given by

v�x�=
√
2eV�x�
me

�

Show that the above two equations, plus Poisson’s equation, can be combined to give
the following differential equation for the potential:

d2V
dx2

−�V−1/2 = 0�

where �= 
−1
0 �J �√me/2e. By multiplying this equation with the integrating factor

dV/dx and using the space-charge-limited boundary condition E = 0 at x= 0, solve
for V�x�. By rearranging the expression for V�x� show that the space-charge-limited
current is

J = 4
9

0

√
2e
me

V 3/2

d2
�

This is called the Child–Langmuir space charge limited current. For reference the
temperature-limited current is given by the Richardson–Dushman law,

J = AT 2e−�0/�T �

where the coefficient A and the work function �0 are properties of the cathode
material, while T is the cathode temperature. Thus, the actual cathode current will
be whichever is the smaller of the above two expressions. Show there is a close
relationship between the physics underlying the Child–Langmuir law and Debye
shielding (hint: characterize the electron velocity as being a thermal velocity and
its energy as being a thermal energy and then show that the inter-electrode spacing
corresponds to ?). Suppose that a cathode was operating in the space-charge-limited
regime and that some positively charged ions were placed in the inter-electrode
region. What would happen to the space charge – would it be possible to draw
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more or less current from the cathode? Suppose the entire inter-electrode region were
filled with plasma with electron temperature Te. What would be the appropriate value
of d and how much current could be drawn from the cathode (assuming it were
sufficiently hot)? Does this give you any ideas on why high current switch tubes
(called ignitrons) use plasma to conduct the current?



2

The Vlasov, two-fluid, and MHD models of plasma
dynamics

2.1 Overview

We begin this chapter by developing the concept of conservation of particles
in phase-space and then use this concept as the basis for establishing the three
main models of plasma dynamics, namely Vlasov theory, two-fluid theory, and
magnetohydrodynamics (MHD). The Vlasov model is the most detailed and char-
acterizes plasma dynamics by following the temporal evolution of electron and ion
velocity distribution functions. The two-fluid model is intermediate in complex-
ity and approximates plasma as a system of mutually interacting, finite-pressure
electron and ion fluids. The MHD model is the least detailed and approximates
plasma as a single, finite-pressure, electrically conducting fluid. The question of
which of these models to use when analyzing a given situation is essentially a
matter of selecting the best tool for the task and furthermore, just as a mechanic
might alternate between using a screwdriver and a pair of pliers for a specific
task, it is often advantageous to alternate between these models when analyzing
a specific problem. As we develop these three models, we will also take the
opportunity to explore some immediate and important fundamental consequences
of these models, most notably the strong dependence of a collisionless plasma
on its past history (Vlasov model) and the freezing of magnetic flux into the
arbitrarily moving frame of a perfectly conducting plasma (MHD). The chapter
concludes with an examination of some applications having a close association
with the derivation of these models; these are classical transport of plasma across
a magnetic field, sheaths at the edge of a plasma bounded by a conducting wall,
and Langmuir probes, a simple method for diagnosing plasmas.

2.2 Phase-space

Consider a particle moving in a one-dimensional space and let the position of the
particle be x= x�t� and the velocity of the particle be v= v�t�. A way to visualize

34
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passing particle orbit
(positive velocity)

passing particle orbit
(negative velocity)

quasi-periodic orbit periodic orbit

particle phase-space position
at time t

x

v

Fig. 2.1 Phase-space showing different types of possible particle orbits.

the x and v trajectories simultaneously is to plot these trajectories parametrically
on a two-dimensional graph, where the horizontal coordinate is given by x�t� and
the vertical coordinate is given by v�t�. This x− v plane is called phase-space.
The trajectory (or orbit) of several particles can be represented as a set of curves
in phase-space as shown in Fig. 2.1. Examples of a few qualitatively different
phase-space orbits are shown in Fig. 2.1.
Particles in the upper half-plane always move to the right, since they have a

positive velocity, while those in the lower half-plane always move to the left.
Particles having exact periodic motion (e.g., x = A cos��t�, v = −�A sin��t�)
alternate between moving to the right and the left and so describe an ellipse
in phase-space. Particles with nearly periodic (quasi-periodic) motions will have
near-ellipses or spiral orbits. A particle that does not reverse direction is called a
passing particle, while a particle confined to a certain region of phase-space (e.g.,
a particle with periodic motion) is called a trapped particle.

2.3 Distribution function and Vlasov equation

At any given time, each particle has a specific position and velocity. We can
therefore characterize the instantaneous configuration of a large number of parti-
cles by specifying the density of particles at each point x� v in phase-space. The
function prescribing the instantaneous density of particles in phase-space is called
the distribution function and is denoted by f�x� v� t��Thus, f�x� v� t�dxdv is the
number of particles at time t having positions in the range between x and x+dx
and velocities in the range between v and v+dv� As time progresses, the particle
motion and acceleration causes the number of particles in these x and v ranges to
change and so f will change. This temporal evolution of f gives a description of
the system more detailed than a fluid description, but less detailed than following
the trajectory of each individual particle. Using the evolution of f to characterize
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x

v

dx

dv

Fig. 2.2 A box within phase-space having width dx and height dv�

the system does not keep track of the trajectories of individual particles, but rather
characterizes classes of particles having the same x� v�
Now consider the rate of change of the number of particles inside a small

box in phase-space, such as is shown in Fig. 2.2. Defining a�x� v� t� to be the
acceleration of a particle, it is seen that the particle flux in the horizontal direction
is fv and the particle flux in the vertical direction is fa� Thus, the particle fluxes
into the four sides of the box are:

1. flux into left side of box is f�x� v� t�vdv�
2. flux into right side of box is −f�x+dx� v� t�vdv�
3. flux into bottom of box is f�x� v� t�a�x� v� t�dx�
4. flux into top of box is −f�x� v+dv� t�a�x� v+dv� t�dx�

The number of particles in the box is f�x� v� t�dxdv so that the rate of change
of the number of particles in the box is

�f�x� v� t�

�t
dxdv = −f�x+dx� v� t�vdv+f�x� v� t�vdv

−f�x� v+dv� t�a�x� v+dv� t�dx

+f�x� v� t�a�x� v� t�dx (2.1)

or, on Taylor expanding the quantities on the right-hand side, we obtain the
one-dimensional Vlasov equation,

�f

�t
+v�f
�x

+ �

�v
�af�= 0� (2.2)

It is straightforward to generalize Eq. (2.2) to three dimensions and so obtain the
three-dimensional Vlasov equation,

�f

�t
+v·�f

�x
+ �

�v
· �af�= 0� (2.3)
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Because x�v are independent quantities in phase-space, the spatial derivative term
has the commutation property,

v·�f
�x

= �

�x
· �vf� � (2.4)

The particle acceleration is given by the Lorentz force

a = q

m
�E+v×B� � (2.5)

Because �v×B�i = vjBk − vkBj is independent of vi, the term ��v×B�i/�vi
vanishes so that even though the Lorentz acceleration a is velocity-dependent, it
nevertheless commutes with the vector velocity derivative as

a·�f
�v

= �

�v
· �af� � (2.6)

Because of this commutation property the Vlasov equation can also be written as

�f

�t
+v·�f

�x
+a·�f

�v
= 0� (2.7)

If we “sit on top of ” a particle that has a phase-space trajectory x = x�t��v = v�t�
and measure the distribution function as we move along with the particle, the
observed rate of change of the distribution function will be df�x�t��v�t�� t�/dt,
where the d/dt means that the derivative is measured in the moving frame�
Because dx/dt = v and dv/dt = a, this observed rate of change is(

df�x�t��v�t�� t�
dt

)
orbit

= �f

�t
+v·�f

�x
+a·�f

�v
= 0� (2.8)

Thus, the distribution function f as measured when moving along a particle
trajectory (orbit) is constant. This gives a powerful method for finding solutions
to the Vlasov equation. Since f is a constant when measured in a frame following
an orbit, we can choose f to depend on any quantity that is constant along the
orbit (Jeans 1915, Watson 1956).
For example, if the energy E of particles is constant along their orbits then

f = f�E� is a solution to the Vlasov equation. On the other hand, if both the
energy and the momentum p are constant along particle orbits, then any distri-
bution function with the functional dependence f = f�E�p� is a solution to the
Vlasov equation. Depending on the situation at hand, the energy and/or momen-
tum may or may not be constant along an orbit and so whether or not f = f�E�p�
is a solution to the Vlasov equation depends on the specific problem under consid-
eration. However, there always exists at least one constant of the motion for any
trajectory because, just like every human being has an invariant birthday, the
initial conditions of a particle trajectory are invariant along this trajectory. As
a simple example, consider a situation where there is no electromagnetic field
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so that a = 0, in which case the particle trajectories are simply x�t�= x0+v0t�
v�t�= v0 , where x0�v0 are the initial position and velocity. Let us check to see
whether f�x0� is a solution to the Vlasov equation. By writing x0 = x�t�−v0t so
f�x0�= f�x�t�−v0t� we observe that indeed f = f�x0� is a solution, since

�f

�t
+v·�f

�x
+a·�f

�v
= −v0 · �f

�x
+v·�f

�x
= 0� (2.9)

2.4 Moments of the distribution function

Let us count the particles in the shaded vertical strip in Fig. 2.3. The number
of particles in this strip is the number of particles lying between x and x+ dx,
where x is the location of the left-hand side of the strip and x+ dx is the
location of the right-hand side. The number of particles in the strip is equivalently
defined as n�x� t�dx, where n�x� is the density of particles at x� Thus we see that∫
f�x� v�dv = n�x�� the transition from a phase-space description (i.e., x� v are

independent variables) to a conventional description (i.e., only x is an independent
variable) involves “integrating out” the velocity dependence to obtain a quantity
(e.g., density) depending only on position. Since the number of particles is finite,
and since f is a positive quantity, f must vanish as v→ ±��

Another way of viewing f is to consider f�x� v� t�/n�x� t� as the probability
that a randomly selected particle at position x has the velocity v at time t. Using
this point of view, we see that averaging over the velocities of all particles at x
gives the mean velocity u�x� t� = ∫

dv vf�x� v� t�/n�x� t�� Similarly, multiplying
f�x� v� t�/n�x� t� by mv2/2 and integrating over velocity will give an expression
for the mean kinetic energy of all the particles. This procedure of multiplying f
by various powers of v and then integrating over velocity is called taking moments
of the distribution function.

x

v

Fig. 2.3 Moments give weighted averages of the particles in the shaded vertical strip.
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It is straightforward to generalize this “moment-taking” to three-dimensional
problems simply by taking integrals over three-dimensional velocity space. Thus,
in three dimensions the density becomes

n�x� t�=
∫
f�x�v� t�dv (2.10)

and the mean velocity becomes

u�x� t�=
∫
vf�x�v� t�dv
n�x� t�

� (2.11)

2.4.1 Treatment of collisions in the Vlasov equation

It was shown in Section 1.8 that the cumulative effect of grazing collisions
dominates the cumulative effect of the more infrequently occurring large-angle
collisions. In order to see how collisions affect the Vlasov equation, let us now
temporarily imagine that the grazing collisions are replaced by an equivalent
sequence of abrupt large scattering angle encounters as shown in Fig. 2.4. Two
particles involved in a collision do not significantly change their positions during
the course of a collision, but they do substantially change their velocities. For
example, a particle making a head-on collision with an equal mass stationary
particle will stop after the collision, while the target particle will assume the
velocity of the incident particle. If we draw the detailed phase-space trajectories
characterized by a collision between two particles we see that each particle has
a sudden change in its vertical coordinate (i.e., velocity) but no change in its
horizontal coordinate (i.e., position). The collision-induced velocity jump occurs
very fast so that if the phase-space trajectories were recorded with a “movie

x

v
initially fast particle
moving to right

initially slow particle
moving to right

apparent annihilation

sudden change in v
due to collision

apparent creation

Fig. 2.4 Detailed view of collisions causing “jumps” in phase-space.
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camera” having insufficient framing rate to catch the details of the jump, the
resulting movie would show particles being spontaneously created or annihilated
within given volumes of phase-space (e.g., within the boxes shown in Fig. 2.4).
The details of these individual jumps in phase-space are complicated and yet

of little interest since all we really want to know is the cumulative effect of many
collisions. It is therefore both efficient and sufficient to follow the trajectories on
the slow time scale while accounting for the apparent “creation” or “annihilation”
of particles by inserting a collision operator on the right-hand side of the Vlasov
equation. In the example shown here it is seen that when a particle is apparently
“created” in one box, another particle must be simultaneously “annihilated” in
another box at the same x coordinate but a different v coordinate (of course,
what is actually happening is that a single particle is suddenly moving from
one box to the other). This coupling of the annihilation and creation rates in
different boxes constrains the form of the collision operator. We will not attempt
to derive collision operators in this chapter but will simply discuss the constraints
on these operators. From a more formal point of view, collisions are characterized
by constrained sources and sinks for particles in phase-space and inclusion of
collisions in the Vlasov equation causes the Vlasov equation to assume the form

�f�
�t

+ �

�x
· �vf��+

�

�v
· �af��=∑

�

C���f��� (2.12)

where C���f�� is the rate of change of f� due to collisions of species � with
species ��
The constraints that must be satisfied by the collision operator C���f�� are as

follows:

• Conservation of particles – Collisions cannot change the total number of particles at a
particular location so ∫

dvC���f��= 0� (2.13)

• Conservation of momentum – Collisions between particles of the same species cannot
change the total momentum of that species so∫

dvm�vC���f��= 0 (2.14)

while collisions between different species must conserve the total momentum of both
species together so ∫

dvmivCie�fi�+
∫

dvmevCei�fe�= 0� (2.15)
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• Conservation of energy – Collisions between particles of the same species cannot
change the total energy of that species so∫

dvm�v
2C���f��= 0 (2.16)

while collisions between different species must conserve the total energy of both
species together so ∫

dvmiv
2Cie�fi�+

∫
dvmev

2Cei�fe�= 0� (2.17)

2.5 Two-fluid equations

Instead of just taking moments of the distribution function f itself, moments will
now be taken of the entire Vlasov equation to obtain a set of partial differential
equations relating the mean quantities n�x��u�x�� etc. We begin by integrating the
Vlasov equation, Eq. (2.12), over velocity for each species. This first and simplest
step in the procedure is called taking the “zeroth” moment, since the operation of
multiplying by unity can be considered as multiplying the entire Vlasov equation
by v raised to the power zero. Multiplying the Vlasov equation by unity and then
integrating over velocity gives∫ [�f�

�t
+ �

�x
· �vf��+

�

�v
· �af��

]
dv =∑

�

∫
C���f��dv� (2.18)

The velocity integral commutes with both the time and space derivatives on the
left-hand side because x�v� and t are independent variables, while the third term
on the left-hand side is the volume integral of a divergence in velocity space.
Gauss’ theorem (i.e.,

∫
vol dx	 ·Q = ∫sfc ds ·Q) gives f� evaluated on a surface at

v= �� However, because f� → 0 as v→ �, this surface integral in velocity space
vanishes. Using Eqs. (2.10), (2.11), and (2.13), we see that Eq. (2.18) becomes
the species continuity equation

�n�
�t

+	 · �n�u��= 0� (2.19)

Now let us multiply Eq. (2.12) by v and integrate over velocity to take the “first
moment,”∫

v
[
�f�
�t

+ �

�x
· �vf��+

�

�v
· �af��

]
dv =∑

�

∫
vC���f��dv� (2.20)
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This may be rearranged in a more tractable form by:

(i) “pulling” both the time and space derivatives out of the velocity integral,
(ii) writing v = v′�x� t�+u�x�t�, where v′�x�t� is the random part of a given velocity,

i.e., that part of the velocity that differs from the mean (note that v is independent
of both x and t but v′ is not; also dv = dv′��

(iii) integrating by parts in 3-D velocity space on the acceleration term and using(
�v
�v

)
ij

= �ij�

After performing these manipulations, the first moment of the Vlasov equation
becomes

� �n�u��
�t

+ �

�x
·
∫ (

v′v′ + v′u� + u�v
′ + u�u�

)
f�dv

′

− q�
m�

∫
�E+v×B� f�dv

′ = − 1
m�

R��� (2.21)

where R�� is the net frictional drag force due to collisions of species � with
species �� Note that R�� = 0, since a species cannot exert a net drag force on
itself. This is because, just like one cannot pull oneself up by one’s own bootstraps,
the totality of electrons cannot cause a force that changes the center-of-mass
velocity of the totality of electrons. The frictional terms have the form

Rei = �eimene�ue−ui�� (2.22)

Rie = �iemini�ui−ue�� (2.23)

so that in the ion frame the drag on electrons is simply the total electron momentum
meneue measured in this frame multiplied by the rate �ei at which this momentum
is destroyed by collisions with ions. This form for frictional drag force has the
following properties: (i) Rei+Rie = 0, showing that the plasma cannot exert a
frictional drag force on itself, (ii) friction causes the faster species to be slowed
down by the slower species, and (iii) there is no friction between species if both
have the same mean velocity.
Equation (2.21) can be further simplified by factoring u out of the velocity

integrals and recalling that by definition
∫
v′f�dv′ = 0. Thus, Eq. (2.21) reduces to

m�

[
� �n�u��
�t

+ �

�x
· �n�u�u��

]
= n�q� �E+u� ×B�− �

�x
·←→P � −R���

(2.24)

where the pressure tensor
←→
P is defined by

←→
P � =m�

∫
v′v′f�dv′�
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If f� is an isotropic function of v′� then the off-diagonal terms in
←→
P � vanish

and the three diagonal terms are identical. In this case, it is useful to define the
diagonal terms to be the scalar pressure P� , i.e.,

P� =m�
∫
v′xv

′
xf�dv

′ =m�
∫
v′yv

′
yf�dv

′ =m�
∫
v′zv

′
zf�dv

′

= m�
3

∫
v′ ·v′f�dv′�

(2.25)

Equation (2.25) defines pressure for a three-dimensional isotropic system.
However, we will often deal with systems of reduced dimensionality, i.e., systems
with just one or two dimensions. Equation (2.25) can therefore be generalized to
these other cases by introducing the general N -dimensional definition for scalar
pressure

P� = m�
N

∫
v′ ·v′f�dNv′ =m�

N

∫ N∑
j=1

v′ 2j f�d
Nv′� (2.26)

where v′ is the N -dimensional random velocity.
It is important to emphasize that assuming isotropy is done largely for math-

ematical convenience and that in real systems the distribution function is often
quite anisotropic. Collisions, being randomizing, drive the distribution function
towards isotropy, while competing processes simultaneously drive it towards
anisotropy. Thus, each situation must be considered individually in order to deter-
mine whether there is sufficient collisionality to make f isotropic. Because fully
ionized hot plasmas often have insufficient collisions to make f isotropic, the
oft-used assumption of isotropy is an oversimplification, which may or may not
be acceptable depending on the phenomenon under consideration.
On expanding the derivatives on the left-hand side of Eq. (2.24), it is seen

that two of the terms combine to give u times Eq. (2.19). After removing this
embedded continuity equation, Eq. (2.24) reduces to

n�m�
du�
dt

= n�q� �E+u� ×B�−	P� −R��� (2.27)

where the operator d/dt is defined to be the convective derivative

d
dt

= �

�t
+u� ·	� (2.28)

which characterizes the temporal rate of change seen by an observer moving with
the mean fluid velocity u� of species �� An everyday example of the convective
term would be the apparent temporal increase in density of automobiles seen by
a motorcyclist who enters a traffic jam of stationary vehicles and is not impeded
by the traffic jam.
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At this point in the procedure it becomes evident that a certain pattern recurs
for each successive moment of the Vlasov equation. When we took the zeroth
moment, an equation for the density

∫
f�dv resulted, but this also introduced a

term involving the next higher moment, namely the mean velocity ∼ ∫
vf�dv.

Then, when we took the first moment to get an equation for the velocity, an
equation was obtained containing a term involving the next higher moment,
namely the pressure ∼ ∫

vvf�dv. Thus, each time we take a moment of the
Vlasov equation, an equation for the moment we want is obtained, but because of
the v·	f term in the Vlasov equation, a next higher moment also appears. Thus,
moment-taking never leads to a closed system of equations; there will always
be a “loose end,” a highest moment for which there is no determining equation.
Some sort of ad hoc closure procedure must always be invoked to terminate this
chain (as seen below, typical closures involve invoking adiabatic or isothermal
assumptions). Another feature of taking moments is that each higher moment
embeds terms that contain complete lower moment equations multiplied by some
factor. Algebraic manipulation can identify these lower moment equations and
eliminate them to give a simplified higher moment equation.
Let us now take the second moment of the Vlasov equation. Unlike the zeroth

and first moments, the dimensionality of the system now enters explicitly so the
more general pressure definition given by Eq. (2.26) will be used. Multiplying
the Vlasov equation by m�v

2/2 and integrating over velocity gives⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�

�t

∫ m�v2
2
f�d

Nv

+ �

�x
·
∫ m�v2

2
vf�d

Nv

+q�
∫ v2

2
�

�v
· �E+v×B� f�d

Nv

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=∑

�

∫
m�
v2

2
C��f�d

Nv� (2.29)

We consider each term of this equation separately as follows:

1. The time derivative term becomes

�

�t

∫ m�v2
2
f�d

Nv = �

�t

∫ m��v′+u��
2

2
f�d

Nv′= �

�t

(
NP�
2

+ m�n�u
2
�

2

)
�

2. Again using v = v′ +u� the space derivative term becomes

�

�x
·
∫ m�v2

2
vf�d

Nv =	 ·
(
Q� + 2+N

2
P�u� + m�n�u

2
�

2
u�

)
�

where Q� =
∫ m�v′2

2
v′f�dNv is called the heat flux.
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3. On integrating by parts, the acceleration term becomes

q�

∫ v2
2
�

�v
· ��E+v×B� f��d

Nv = −q�
∫

v ·Ef�dv = −q�n�u� ·E�

4. The collision term becomes (using Eq. (2.16))∑
�

∫
m�
v2

2
C��f�dv =

∫
��=�

m�
v2

2
C��f�dv = −

(
�W

�t

)
E��

�

where ��W/�t�E�� is the rate at which species � collisionally transfers energy to
species �.

Combining the above four relations, Eq. (2.29) becomes

�

�t

(
NP�
2

+ m�n�u
2
�

2

)
+	 ·

(
Q� + 2+N

2
P�u� + m�n�u

2
�

2
u�

)
−q�n�u� ·E

= −
(
�W

�t

)
E��

� (2.30)

This equation can be simplified by invoking two mathematical identities, the
first being
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(2.31)
The second identity is obtained by dotting the equation of motion with u� and is

n�m�

[
�

�t

(
u2�
2

)
+u� ·

(
	

(
u2�
2

)
−u� ×	×u�

)]
= n�q�u� ·E−u� ·	P� −R�� ·u�

or

n�
d
dt

(
m�u

2
�

2

)
= n�q�u� ·E−u� ·	P� −R�� ·u�� (2.32)

Inserting Eqs. (2.31) and (2.32) in Eq. (2.30) gives the energy evolution equation

N

2
dP�
dt

+ 2+N
2
P	 ·u� = −	 ·Q� +R�� ·u�−

(
�W

�t

)
E��

� (2.33)

The first term on the right-hand side represents the heat flux, the second term gives
the frictional heating of species � due to frictional drag on species �, while the last
term on the right-hand side gives the rate at which species � collisionally transfers
energy to other species. Although Eq. (2.33) is complicated, two important limiting
situations become evident if we let tchar be the characteristic time scale for a given
phenomenon and lchar be its characteristic length scale. A characteristic velocity
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Vph ∼ lchar/tchar may then be defined for the phenomenon and so, replacing
temporal derivatives by t−1

char and spatial derivatives by l−1
char in Eq. (2.33), it is

seen that the two limiting situations are:

1. Isothermal limit – The heat flux term dominates all other terms, in which case the
temperature becomes spatially uniform. This occurs if (i) vT� � Vph since the ratio
of the left-hand side terms to the heat flux term is ∼ Vph/vT� and (ii) the collisional
terms are small enough to be ignored.

2. Adiabatic limit – The heat flux terms and the collisional terms are small enough to be
ignored compared to the left-hand side terms; this occurs when Vph � vT� . Adiabatic is
a Greek word meaning “impassable,” and is used here to denote that no heat is flowing,
i.e., the volume under consideration is thermally isolated from the outside world.

Both of these limits make it possible to avoid solving for Q� , which involves
the third moment, and so both the adiabatic and isothermal limit provide a closure
to the moment equations.
The energy equation may be greatly simplified in the adiabatic limit by rear-

ranging the continuity equation to give

	 ·u� = − 1
n�

dn�
dt

(2.34)

and then substituting this expression into the left-hand side of Eq. (2.33) to obtain

1
P�

dP�
dt

= �

n�

dn�
dt
� (2.35)

where

� = N +2
N

� (2.36)

Equation (2.35) implies

d
dt

(
P�

n
�
�

)
= 0 (2.37)

so
P�

n
�
�

= constant in the frame of the moving plasma. (2.38)

This constitutes a derivation of adiabaticity based on geometry and statistical
mechanics rather than on thermodynamic arguments.

2.5.1 Entropy of a distribution function

Collisions cause the distribution function to tend towards a simple final state
characterized by having the maximum entropy for the given constraints (e.g., fixed
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total energy). To see this, we provide a brief discussion of entropy and show how
it relates to a distribution function.
Suppose we throw two dice, labeled A and B, and let R denote the result of a

throw. Thus R ranges from 2 through 12. The complete set of �A�B � combinations
that gives these R’s is listed below:

R= 2 ⇐⇒(1,1)
R= 3 ⇐⇒(1,2),(2,1)
R= 4 ⇐⇒(1,3),(3,1),(2,2)
R= 5 ⇐⇒(1,4),(4,1),(2,3),(3,2)
R= 6 ⇐⇒(1,5),(5,1),(2,4),(4,2),(3,3)
R= 7 ⇐⇒(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)
R= 8 ⇐⇒(2,6),(6,2),(3,5),(5,3),(4,4)
R= 9 ⇐⇒(3,6),(6,3),(4,5),(5,4)
R= 10 ⇐⇒(4,6),(6,4),(5,5)
R= 11 ⇐⇒(5,6),(6,5)
R= 12 ⇐⇒(6,6)

There are six �A�B � pairs that give R = 7, but only one pair for R = 2 and
only one pair for R= 12. Thus, there are six microscopic states (distinct �A�B �
pairs) corresponding to R = 7 but only one microscopic state corresponding to
each of R = 2 or R = 12. Thus, we know more about the microscopic state of
the system if R = 2 or 12 than if R = 7. We define the entropy S to be the
natural logarithm of the number of microscopic states corresponding to a given
macroscopic state. Thus, for the dice, the entropy would be the natural logarithm
of the number of �A�B � pairs that correspond to a given R� The entropy for
R= 2 or R= 12 would be zero since S = ln �1�= 0, while the entropy for R= 7
would be S = ln �6� since there were six different ways of obtaining R= 7�
If the dice were to be thrown a statistically large number of times the most

likely result for any throw is R= 7� this is the macroscopic state with the largest
number of microscopic states. Since any of the possible microscopic states is an
equally likely outcome, the most likely macroscopic state after a large number of
dice throws is the macroscopic state with the highest entropy.
Now consider a situation more closely related to the concept of a distribution

function. In order to do this we first pose the following simple problem: suppose
we have a pegboard with � holes, labeled h1� h2� � � � � h� , and we also have
� pegs labeled by p1� p2� � � � � p� � What is the number of ways of putting all
the pegs in all the holes? Starting with hole h1� we have a choice of � different
pegs, but when we get to hole h2 there are now only � − 1 pegs remaining so
that there are now only � −1 choices. Using this argument for subsequent holes,
we see there are � ! ways of putting all the pegs in all the holes.
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Let us complicate things further. Suppose that we arrange the holes in �
groups. Say group G1 has the first 10 holes, group G2 has the next 19 holes, group
G3 has the next 4 holes and so on, up to group � . We will use f to denote the
number of holes in a group, thus f�1�= 10� f�2�= 19� f�3�= 4� etc. The number
of ways of arranging pegs within a group is just the factorial of the number of
pegs in the group, e.g., the number of ways of arranging the pegs within group 1
is just 10! and so in general the number of ways of arranging the pegs in the jth
group is �f�j��!�

Let us denote C as the number of ways of putting all the pegs in all the groups
without caring about the internal arrangement within groups. The number of ways
of putting the pegs in all the groups caring about the internal arrangements in all
the groups is C× f�1�!× f�2�!× � � � f���!� but this is just the number of ways
of putting all the pegs in all the holes, i.e.,

C×f�1�!×f�2�!× � � � f���! = � !
or

C = � !
f�1�!×f�2�!× � � � f���! �

Now C is just the number of microscopic states corresponding to the macroscopic
state of the prescribed grouping f�1� = 10� f�2� = 19� f�3� = 4� etc. so the
entropy is just S = ln C or

S = ln
(

� !
f�1�!×f�2�!× � � � f���!

)
= ln � !− ln f�1�!− ln f�2�!− � � �− ln f���!� (2.39)

Stirling’s formula shows that the large-argument asymptotic limit of the factorial
function is

lim
k→large

ln k! = k ln k−k� (2.40)

Noting that f�1�+f�2�+ � � � f���= N the entropy becomes

S = � ln � −f�1� ln f�1�−f�2� ln f�2�− � � �−f�M � ln f�M �

= � ln � −
�∑
j=1

f�j� ln f�j�� (2.41)

The constant � ln � is often dropped, giving

S = −
�∑
j=1

f�j� ln f�j�� (2.42)
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If j is made into a continuous variable, say j → v so that f�v�dv is the number
of items in the group labeled by v� then the entropy can be written as

S = −
∫
dvf�v� ln f�v�� (2.43)

By now, it is obvious that f could be the velocity distribution function, in
which case f�v�dv is just the number of particles in the group having velocity
between v and v+dv� Since the peg groups correspond to different velocity range
coordinates, having more dimensions just means having more groups and so for
three dimensions the entropy generalizes to

S = −
∫
dv f�v� ln f�v�� (2.44)

If the distribution function depends on position as well, this corresponds to still
more peg groups, and so a distribution function that depends on both velocity and
position will have the entropy

S = −
∫
dx
∫
dv f�x�v� ln f�x�v�� (2.45)

2.5.2 Effect of collisions on entropy

The highest entropy state is the most likely state of the system because the highest
entropy state has the highest number of microscopic states corresponding to the
macroscopic state. Collisions (or other forms of randomization) will take some
initial prescribed microscopic state and scramble the phase-space positions of the
particles, thereby transforming the system to a different microscopic state. This
new state could in principle be any microscopic state, but is most likely to be
a member of the class of microscopic states belonging to the highest entropy
macroscopic state. Thus, any randomization process such as collisions will cause
the system to evolve towards the macroscopic state having the maximum entropy.
An important shortcoming of this argument is that it neglects any conservation

relations that have to be satisfied. To see this, note that the expression for entropy
could be maximized if all the particles are put in one group, in which case
C = � !� which is the largest possible value for C� Thus, the maximum entropy
configuration of � plasma particles corresponds to all the particles having the
same velocity. However, this would assign a specific energy to the system, which
would in general differ from the energy of the initial microstate. This maximum
entropy state is therefore not accessible in isolated systems, because energy would
not be conserved if the system changed from its initial microstate to the maximum
entropy state.
Thus, a qualification must be added to the argument. Randomizing processes

will scramble the system to attain the state of maximum entropy consistent with
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any constraints placed on the system. Examples of such constraints would be the
requirements that the total system energy and the total number of particles must
be conserved. We therefore reformulate the problem as: given an isolated system
with � particles in a fixed volume V and initial average energy per particle �E� �
what is the maximum entropy state consistent with conservation of energy and
conservation of number of particles? This is a variational problem because the
goal is to maximize S subject to the constraint that both � and � �E� are fixed.
The method of Lagrange multipliers can then be used to take into account these
constraints (see Assignment 2 for a derivation of the Lagrange multiplier method).
Using this method the variational problem becomes

�S−�1�� −�2��� �E��= 0� (2.46)

where �1 and �2 are as-yet undetermined Lagrange multipliers. The number of
particles is

� = V
∫
fdv� (2.47)

The energy of an individual particle is E = mv2/2, where v is the velocity
measured in the rest frame of the center of mass of the entire collection of �
particles. Thus, the total kinetic energy of all the particles in this rest frame is

� �E� = V
∫ mv2

2
f�v�dv (2.48)

and so the variational problem becomes

�
∫

dv
(
f ln f −�1Vf −�2V

mv2

2
f

)
= 0� (2.49)

Incorporating the volume V into the Lagrange multipliers, and factoring out the
coefficient �f , this becomes∫

dv�f
(
1+ ln f −�1 −�2

mv2

2

)
= 0� (2.50)

Since �f is arbitrary, the integrand must vanish, giving

ln f = �2
mv2

2
−�1� (2.51)

where the “1” has been incorporated into �1�
The maximum entropy distribution function of an isolated, energy and particle

conserving system is therefore

f = �1 exp �−�2mv2/2�� (2.52)
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this is called a Maxwellian distribution function. We will often assume that the
plasma is locally Maxwellian so that �1 = �1�x� t� and �2 = ��x� t�� We define
the temperature to be

�T��x� t�= 1
�2�x� t�

� (2.53)

where Boltzmann’s factor � allows temperature to be measured in various units.
The normalization factor is set to be

�1�x� t�= n�x� t�
(

m�
2�T��x� t�

)N/2
� (2.54)

where N is the dimensionality (1�2� or 3) so that
∫
f��x�v� t�d

Nv = n��x� t��
Because the kinetic energy of individual particles was defined in terms of veloc-
ities measured in the rest frame of the center of mass of the complete system of
particles, if this center of mass is moving in the lab frame with a velocity u� ,
then in the lab frame the Maxwellian will have the form

f��x�v� t�= n�
(
m�

2�T�

)N/2
exp �−m��v−u��

2/2�T��� (2.55)

2.5.3 Relation between pressure and Maxwellian

The scalar pressure has a simple relation to the generalized Maxwellian as seen
by recasting Eq. (2.26) as

P� = m�
N

∫
v′ ·v′f�dNv′

= n�m�
N

(
m�

2�T�

)N/2 ∫ (
v′)2 exp �−m� (v′)2 /2�T��dNv′

= −n�m�
N

(�


)N/2 d
d�

∫
e−�v

′2
dNv′, defining �=m�/2�T�

= −n�m�
N

(�


)N/2 d
d�

(�


)−N/2

= n��T�� (2.56)

which is just the ideal gas law. Thus, the definitions that have been proposed for
pressure and temperature are consistent with everyday notions for these quantities.
Despite this correspondence to familiar concepts, we must be careful not to

become overconfident regarding the descriptive power of the fluid point of view
because weaknesses exist in this point of view. For example, as discussed on
p. 46 neither the adiabatic nor the isothermal approximation is appropriate when
Vph ∼ vT�� The fluid description breaks down in this situation and, as will be
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seen in a later chapter, the Vlasov description must be used in this situation.
Furthermore, the distribution function is Maxwellian only if there are sufficient
collisions or some other randomizing process. Because of the weak collisionality
of a plasma, this is very often not the case. In particular, since the collision
frequency scales as v−3� fast particles take much longer to become Maxwellian
than slow particles. It is not at all unusual for a real plasma to be in a state where
the low-velocity particles have reached a Maxwellian distribution whereas the
fast particles form a non-Maxwellian “tail.”
We now summarize the two-fluid equations:

• continuity equation for each species

�n�
�t

+	 · �n�u��= 0� (2.57)

• equation of motion for each species

n�m�
du�
dt

= n�q� �E+u� ×B�−	P� −R��� (2.58)

• equation of state for each species

Regime Equation of state Name

Vph � vT� P� ∼ n�� adiabatic
Vph � vT� P� = n��T� , T� = constant isothermal

• Maxwell’s equations

	×E = −�B
�t

(2.59)

	×B = �0

∑
�

n�q�u� +�0
0
�E
�t

(2.60)

	 ·B = 0 (2.61)

	 ·E = 1

0

∑
�

n�q�� (2.62)

2.6 Magnetohydrodynamic equations

Particle motion in the two-fluid system was described by the individual species’

mean velocities ue, ui and by the pressures
←→
P e�

←→
P i, which provide an account-

ing for the mean square of the random deviation of the velocity from its average
value. Magnetohydrodynamics is an alternate description of the plasma where,
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instead of using ue�ui to describe mean motion, two new velocity variables that
are a linear combination of ue�ui are used. As will be seen below, this means a
slightly different definition for pressure must also be used.
The new velocity-like variables are (i) the current density

J =∑
�

n�q�u�� (2.63)

which is essentially the relative velocity between ions and electrons, and (ii) the
center-of-mass velocity

U = 1
�

∑
�

m�n�u�� (2.64)

where

�=∑
�

m�n� (2.65)

is the total mass density. Magnetohydrodynamics is primarily concerned with
low-frequency, long-wavelength, magnetic behavior of the plasma.

2.6.1 MHD continuity equation

Multiplying Eq. (2.19) bym� and summing over species gives the MHD continuity
equation

��

�t
+	 · ��U�= 0� (2.66)

2.6.2 MHD equation of motion

To obtain an equation of motion we take the first moment of the Vlasov equation,
then multiply by m� and sum over species to obtain

�

�t

∑
�

m�

∫
vf�dv+ �

�x
·∑
�

∫
m�vvf�dv+∑

�

q�

∫
v
�

�v
· ��E+v×B� f��= 0�

(2.67)
the right-hand side is zero since Rei+Rie = 0� i.e., the total plasma cannot exert
drag on itself. We now define random velocities relative to U (rather than to u� as
was the case for the two-fluid equations) so that the second term can be written as∑
�

∫
m�vvf�dv =∑

�

∫
m��v

′ +U��v′ +U�f�dv =∑
�

∫
m�v

′v′f�dv+�UU�
(2.68)
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where
∑
�

∫
m�v

′f�dv = 0 has been used to eliminate terms linear in v′. The
MHD pressure tensor is now defined in terms of the random velocities relative to
U and is given by

←→
P MHD =∑

�

∫
m�v

′v′f�dv� (2.69)

We insert Eqs. (2.68) and (2.69) in Eq. (2.67), integrate by parts on the acceleration
term, and perform the summation over species to obtain the MHD equation of
motion

���U�
�t

+	 · ��UU�=
(∑
�

n�q�

)
E+J×B−	 ·←→P MHD� (2.70)

Magnetohydrodynamics is typically used to describe phenomena having spatial
scales large enough for the plasma to be essentially neutral, i.e.,

∑
� n�q� is

assumed to be so small that the �
∑
� n�q��E term can be dropped from Eq. (2.70).

Just as in the two-fluid situation, the left-hand side of Eq. (2.70) contains a factor
times the MHD continuity equation, since the left-hand side can be expanded as

���U�
�t

+	 · ��UU� =
[
��

�t
+	 · ��U�

]
︸ ︷︷ ︸

zero

U+��U
�t

+�U ·	U

= �
(
�U
�t

+U ·	U
)
� (2.71)

Using Eq. (2.71) in Eq. (2.70) leads to the standard form for the MHD equation
of motion,

�
DU
Dt

= J×B−	 ·←→P MHD� (2.72)

where
D
Dt

= �

�t
+U ·	 (2.73)

is the convective derivative defined using the center-of-mass velocity. Scalar
approximations of the MHD pressure tensor will be postponed until after
discussing the MHD Ohm’s law and its implications.

2.6.3 MHD Ohm’s law

Equation (2.72) provides one equation relating J and U; let us now find the other
one. In order to do this, consider the two-fluid electron equation of motion,

me
due
dt

= −e �E+ue×B�− 1
ne
	 �ne�Te�−�eime�ue−ui�� (2.74)
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In MHD we are interested in low-frequency phenomena with large spatial scales.
If the characteristic time scale of the phenomenon is long compared to the electron
cyclotron motion, then the electron inertia term medue/dt can be dropped since
it is small compared to the magnetic force term −e�ue×B�. This assumption is
reasonable for velocities perpendicular to B, but can be a poor approximation for
the velocity component parallel to B, since parallel velocities do not provide a
magnetic force. Since ue−ui = −J/nee and ui � U� Eq. (2.74) reduces to the
generalized Ohm’s law

E+U×B− 1
nee

J×B+ 1
nee
	 �ne�Te�= �J� (2.75)

The term −J×B/nee on the left-hand side of Eq. (2.75) is called the Hall term
and can be neglected in either of the following two cases:

1. The pressure term in the MHD equation of motion, Eq. (2.72) is negligible compared
to the other two terms, which therefore must balance, giving

�J� ∼���U�/�B��

here �∼D/Dt is the characteristic frequency of the phenomenon. In this case compar-
ison of the Hall term with the U×B term shows that the Hall term is small by a
factor ∼�/�ci, where �ci = qiB/mi is the ion cyclotron frequency. Thus dropping the
Hall term is justified for phenomena having characteristic frequencies small compared
to �ci�

2. The electron–ion collision frequency is large compared to the electron cyclotron
frequency �ce = qeB/me, in which case the Hall term may be dropped since it is small
by a factor �ce/�ei compared to the right-hand side resistive term �J = �me�ei/nee2�J�

From now on, when using MHD it will be assumed that one of these conditions
is true and Hall terms will be dropped (if Hall terms are retained, the system is
called Hall MHD). Typically, Eq. (2.75) will not be used directly; instead its curl
will be used to provide the induction equation

−�B
�t

+	× �U×B�− 1
nee
	ne×	�Te = 	×

(
�

�0
	×B

)
� (2.76)

Usually the density gradient is parallel to the temperature gradient so that the
thermal electromotive force term �nee�

−1 	ne×	�Te can be dropped, in which
case the induction equation reduces to

−�B
�t

+	× �U×B�= 	×
(
�

�0
	×B

)
� (2.77)
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The thermal term is often simply ignored in the MHD Ohm’s law, which is then
written as

E+U×B = �J� (2.78)

this is only acceptable providing we intend to take the curl and providing
	ne×	�Te � 0�

2.6.4 Ideal MHD and frozen-in flux

If the resistive term �J is so small as to be negligible compared to the other terms
in Eq. (2.78), then the plasma is said to be ideal or perfectly conducting. From
the Lorentz transformation of electromagnetic theory we realize that E+U×B=
E′, where E′ is the electric field observed in the frame moving with velocity
U� This implies that the magnetic flux in ideal plasmas is time-invariant in
the frame moving with velocity U, because otherwise Faraday’s law would imply
the existence of an electric field in the moving frame. The frozen-in flux concept
is the essential “bed-rock” concept underlying ideal MHD. While this concept is
often an excellent approximation, it must be kept in mind that the concept becomes
invalid in situations when any one of the electron inertia, electron pressure, or
Hall terms becomes important and leads to different, more complex behavior.
The frozen-in flux concept is frequently expressed in a slightly different form

as a frozen-in field concept, i.e., it is often said that magnetic field lines are frozen
into the plasma so that the plasma and magnetic field lines move together as an
ensemble. While this point of view can be quite intuitive and useful, it contains
some ambiguity because an ideal plasma can actually move across magnetic field
lines in certain situations. These situations are such that magnetic flux is preserved
within the plasma even though it is moving across field lines. Discussion of this
subtlety will be deferred to Section 3.5.5.
A formal proof of the frozen-in flux property will now be established by direct

calculation of the rate of change of the magnetic flux through a surface S�t�
bounded by a material line C�t�, i.e., a closed contour that moves with the plasma.
This magnetic flux is

 �t�=
∫
S�t�

B�x� t� ·ds (2.79)

and the flux changes with respect to time due to either (i) the explicit time
dependence of B�t� or (ii) changes in the surface S�t� resulting from plasma
motion. The rate of change of flux is thus

D 
Dt

= lim
�t→0

(∫
S�t+�t�B�x� t+�t� ·ds−

∫
S�t�B�x� t� ·ds

�t

)
� (2.80)
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The displacement of a segment dl of the bounding contour C is U�t, where
U is the velocity of this segment. The incremental change in surface area due
to this displacement is �S = U�t× dl. The rate of change of flux can thus be
expressed as

D 
Dt

= lim
�t→0

∫
S�t+�t�

(
B+�t �B

�t

)
·ds−

∫
S�t�

B ·ds
�t

= lim
�t→0

∫
S�t�

(
B+�t �B

�t

)
· ds+

∮
C
B ·U�t×dl−

∫
S�t�

B ·ds
�t

=
∫
S�t�

�B
�t

·ds+
∮
C
B ·U×dl

=
∫
S�t�

[
�B
�t

+	× �B×U�
]

·ds� (2.81)

Thus, if
�B
�t

= 	× �U×B� (2.82)

then
D 
Dt

= 0 (2.83)

so that the magnetic flux linked by any closed material line is constant. There-
fore, magnetic flux is frozen into an ideal plasma because Eq. (2.77) reduces to
Eq. (2.82) if �= 0� Equation (2.82) is called the ideal MHD induction equation.

2.6.5 MHD equations of state

Double adiabatic laws

A procedure analogous to that which led to Eq. (2.35) gives the MHD adiabatic
relation

PMHD

��
= const�� (2.84)

where again � = �N +2�/N and N is the number of dimensions of the system. It
was shown in the previous section that magnetic flux is conserved in the plasma
frame. This means that, as shown in Fig. 2.5, a tube of plasma initially occupying
the same volume as a magnetic flux tube is constrained to evolve in such a
way that

∫
B · ds stays constant over the plasma tube cross-section. For a flux

tube of infinitesimal cross-section, the magnetic field is approximately uniform
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B

LA

Fig. 2.5 Magnetic flux tube with flux  = BA�

over the cross-section and we may write this as BA = const�, where A is the
cross-sectional area.
Let us define two temperatures for this magnetized plasma, namely T⊥, the

temperature corresponding to motions perpendicular to the magnetic field, and
T�, the temperature corresponding to motions parallel to the magnetic field. If for
some reason (e.g., anisotropic heating or compression) the temperature develops
an anisotropy such that T⊥ �= T� and if collisions are infrequent, this anisotropy
will persist for a long time, since collisions are the means by which the two
temperatures equilibrate. Thus, rather than assuming that the MHD pressure is
fully isotropic, we consider the less restrictive situation where the MHD pressure
tensor is given by

←→
P MHD =

⎡⎢⎣P⊥ 0 0
0 P⊥ 0
0 0 P�

⎤⎥⎦= P⊥
←→
I + �P� −P⊥�B̂B̂� (2.85)

The first two coordinates (x� y-like) in the above matrix refer to the directions
perpendicular to the local magnetic field B and the third coordinate (z-like)
refers to the direction parallel to B. The tensor expression on the right-hand side

is equivalent (here
←→
I is the unit tensor) but allows for arbitrary, curvilinear

geometry. We now develop separate adiabatic relations for the perpendicular and
parallel directions:

• Parallel direction: here the number of dimensions is N = 1 so that � = 3 and so the
adiabatic law gives

P1D
�
�31D

= const�� (2.86)

where �1D is the one-dimensional mass density; i.e., �1D ∼ 1/L, where L is the
length along the one-dimension, e.g., along the length of the flux tube in Fig. 2.5.
The three-dimensional mass density �� which has been used implicitly until now, has
the proportionality �∼ 1/LA, where A is the cross-section of the flux tube; similarly
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the three-dimensional pressure has the proportionality P� ∼ �T�� However, we must be
careful to realize that P1D

� ∼ �1DT� so, using BA= const�� Eq. (2.86) can be recast as

const�= P1D
�
�31D

∼ �1DT�
�31D

∼ T�L
2 ∼

(
1
LA

)
T�︸ ︷︷ ︸

P�

�LA�3︸ ︷︷ ︸
�−3

B2 (2.87)

or
P�B2

�3
= const� (2.88)

• Perpendicular direction: here the number of dimensions is N = 2 so that � = 2 and the
adiabatic law gives

P2D
⊥
�22D

= const�� (2.89)

where P2D
⊥ is the 2-D perpendicular pressure, and has dimensions of energy per unit

area, while �2D is the 2-D mass density and has dimensions of mass per unit area.
Thus, �2D ∼ 1/A so P2D

⊥ ∼ �2DT⊥ ∼ T⊥/A, in which case Eq. (2.89) can be rewritten as

const�= P2D
⊥
�22D

∼ T⊥A∼
(

1
LA

)
T⊥
LA

B
(2.90)

or
P⊥
�B

= const� (2.91)

Equations (2.88) and (2.91) are called the double adiabatic or CGL laws after Chew,
Goldberger, and Low (1956) who first developed these laws.

Single adiabatic law

If collisions are sufficiently frequent to equilibrate the perpendicular and parallel
temperatures, then the pressure tensor becomes fully isotropic and the dimension-
ality of the system is N = 3 so that � = 5/3� There is now just one pressure and
one temperature and the adiabatic relation becomes

P

�5/3
= const� (2.92)

2.6.6 MHD approximations for Maxwell’s equations

The various assumptions contained in MHD lead to a simplifying approximation
of Maxwell’s equations. In particular, the assumption of charge neutrality in MHD
makes Poisson’s equation superfluous because Poisson’s equation prescribes the
relationship between non-neutrality and the electrostatic component of the electric
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field. The assumption of charge neutrality also has implications for the current
density. To see this, the two-fluid continuity equation is multiplied by q� and
then summed over species to obtain the charge conservation equation

�

�t

(∑
n�q�

)+	 ·J = 0� (2.93)

Thus, charge neutrality implies

	 ·J = 0� (2.94)

Let us now consider Ampère’s law

	×B = �0J+�0
0
�E
�t
� (2.95)

Taking the divergence gives

	 ·J+
0
�	 ·E
�t

= 0� (2.96)

which is equivalent to Eq. (2.93) if Poisson’s equation is invoked.
Finally, MHD is restricted to phenomena having characteristic velocities Vph

slow compared to the speed of light in vacuum, c = �
0�0�
−1/2� Again, tchar is

assumed to represent the characteristic time scale for a given phenomenon and
lchar is assumed to represent the corresponding characteristic length scale so that
Vph ∼ lchar/tchar . Faraday’s equation gives the scaling

	×E =− �B
�t

=⇒ E ∼ Blchar/tchar � (2.97)

On comparing the magnitude of the displacement current term in Eq. (2.95) to
the left-hand side it is seen that

�0
0

∣∣∣∣�E�t
∣∣∣∣

�	×B� ∼ c−2E/tchar
B/lchar

∼
(
Vph

c

)2

� (2.98)

Thus, if Vph � c the displacement current term can be dropped from Amperè’s
law resulting in the so-called “pre-Maxwell” form

	×B = �0J� (2.99)

The divergence of Eq. (2.99) gives Eq. (2.94) so it is unnecessary to specify
Eq. (2.94) separately.
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2.7 Summary of MHD equations

We may now summarize the MHD equations:

1. Mass conservation
��

�t
+	 · ��U�= 0� (2.100)

2. Equation of state and associated equation of motion

(a) Single adiabatic regime, collisions equilibrate perpendicular and parallel tempera-
tures so that pressure and temperature are both isotropic,

P

�5/3
= const�� (2.101)

and the equation of motion is

�
DU
Dt

= J×B−	P� (2.102)

(b) Double adiabatic regime, the collision frequency is insufficient to equilibrate
perpendicular and parallel temperatures so that

P�B2

�3
= const�� P⊥

�B
= const� (2.103)

and the equation of motion is

�
DU
Dt

= J×B − 	 ·
[
P⊥

←→
I + �P�−P⊥�B̂ B̂

]
� (2.104)

3. Faraday’s law

	×E =− �B
�t
� (2.105)

4. Amperè’s law

	×B = �0J� (2.106)

5. Ohm’s law

E+U×B = �J� (2.107)

These equations provide a self-consistent description of phenomena that satisfy all the
various assumptions we have made, namely:

(i) The plasma is charge-neutral since characteristic lengths are much longer than a
Debye length;

(ii) The characteristic velocity of the phenomenon under consideration is slow compared
to the speed of light;

(iii) The pressure and density gradients are parallel, so there is no electrothermal EMF;
(iv) The time scale is long compared to both the electron and ion cyclotron periods.
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Even though these assumptions are self-consistent, they may not accurately
portray a real plasma and so MHD models, while intuitively appealing, must be
used with caution.
Finally, it is worth mentioning that MHD plasmas can be categorized yet

another way, namely according to the relative importance of the magnetic force

J×B compared to the hydrodynamic force 	 · ←→P � If the magnetic force is
negligible compared to the hydrodynamic force, then there is not much point
in using MHD because in this case the system of equations is simply classical
hydrodynamics. Thus, the only non-trivial MHD situations are where the magnetic
and hydrodynamic forces are of comparable importance or where the magnetic
force is much more important than the hydrodynamic force. Using Amperè’s law,
Eq. (2.106), the nominal ratio of the hydrodynamic force to the magnetic force is
defined as

!= P

B2/2�0
∼ 	 ·←→P

J×B
∼ P/L

B2/2�0L
� (2.108)

the characteristic gradient scale length L is assumed to be comparable for both
types of forces and so cancels out in the comparison. Low-! plasmas are those
where B2/2�0 is much larger than P so the hydrodynamic force is negligible
compared to the magnetic force, whereas != ��1� plasmas are those where the
magnetic and hydrodynamic forces are comparable.

2.8 Classical transport

Consider a cylindrical coordinate system "r� �� z# with a uniform steady-state
magnetic field B=Bzẑ and suppose that an azimuthally symmetric, finite-pressure
plasma exists in the region r ≤ a and is surrounded by vacuum. Since the right-
hand side of Eq. (2.105) must vanish in steady state, if an equilibrium electric
field exists, it must be electrostatic, i.e., be of the form E = −	�� Because
of the assumed symmetry, this electrostatic electric field would also have to be
azimuthally symmetric. The last two considerations mean that the � component of
the electric field would have to be zero since E� = −r−1��/�� and � derivatives of
all physical quantities must vanish because of the assumed steady-state azimuthal
symmetry. Because E� = 0, the � component of the MHD Ohm’s law, Eq. (2.107),
is simply

−UrBz = �J�� (2.109)

This leads to the immediate and important conclusion that if the plasma is perfectly
conducting (i.e., �= 0) then Ur = 0 and so the plasma will not be able to move
across the magnetic field. In this case, one can say that the plasma is frozen to
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the field lines, but it should be noted that this behavior relies on the existence of
azimuthal symmetry.
We now consider the more general situation where the resistivity is finite, in

which case there will be a finite radial motion of the plasma across the magnetic
field, i.e., Ur = −�J�/Bz� The azimuthal current J� can be determined from the
steady-state r component of the MHD equation of motion, Eq. (2.104),

0 = J�Bz−
�P⊥
�r

(2.110)

so, combining Eqs. (2.109) and (2.110) gives

Ur = − �

B2
z

�P⊥
�r
� (2.111)

This gives an azimuthally symmetric, radially outward motion proportional to
resistivity (i.e., to electron–ion collisions) and the radial pressure gradient, but
inversely proportional to the square of the magnetic field strength. Hence, trans-
port of plasma across magnetic fields is driven by pressure gradients, is allowed
to happen if the plasma is not perfectly conducting, and is reduced if the magnetic
field is strong. This process is called “classical transport.” The concept of a plasma
being frozen to an azimuthally symmetric flux tube is thus valid if the magnetic
field is sufficiently strong and the plasma is a sufficiently good conductor for clas-
sical transport to be negligible. Using P⊥ = n��Te⊥ +�Ti⊥� and �=me�ei/ne2,
the classical transport flux � = nUr can be expressed as

�r = −Dclassical
�n

�r
� (2.112)

where

Dclassical =
me�ei��Te⊥ +�Ti⊥�

e2B2
z

(2.113)

is called the classical particle diffusion coefficient. This coefficient can equiva-
lently be written as

Dclassical =
(
1+ Ti⊥

Te⊥

)
r2Le
�ei
� (2.114)

where rLe = √
�Te/me�

2
ce is the nominal electron-cyclotron radius and

�ce = eB/me is the electron cyclotron frequency. Like any diffusion coefficient,
the classical diffusion coefficient has the dimensions of (step-size)2/(time-step).
It is intrinsically ambipolar because it has been derived in the context of MHD
where the plasma is intrinsically neutral. An examination of the individual ion
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and electron cross-field diffusions would show that the ion diffusion coefficient is
much larger than the electron diffusion coefficient, but then a resulting ambipolar
electric field would be established, which would increase the outward electron
flux and decrease the outward ion flux so as to produce the ambipolar result
given here. Since r2Le ∼ T/B and �ei ∼ T 3/2 it is seen that Dclassical ∼ 1/T 1/2B2

and so is very small for hot plasmas in strong magnetic fields.

2.9 Sheath physics and Langmuir probe theory

Let us now turn attention back to Vlasov theory and discuss an immediate practical
application of this theory. The properties of collisionless Vlasov equilibria can
be combined with Poisson’s equation to develop a model for the potential in
the steady-state transition region between a plasma and a conducting wall; this
region is known as a sheath and is important in many practical situations. The
sheath is non-neutral and its width is of the order of a Debye length. The exact
sheath potential profile must be solved numerically because of the transcendental
nature of the relevant equations, but a useful approximate solution can be obtained
by a simple analytic argument, which will now be presented. Sheath physics
is of particular importance for interpreting the current-voltage characteristics of
Langmuir probes, small metal wires inserted into low-temperature plasmas for
diagnostic purposes. Biasing a Langmuir probe at a sequence of voltages and then
measuring the resulting current provides a simple way to gauge both the plasma
density and the electron temperature.
The model presented here is the simplest possible model for sheaths and

Langmuir probes and so is one dimensional. The geometry, sketched in Fig. 2.6,
idealizes the Langmuir probe as a metal wall located at x = 0 and biased to a
potential �probe� this geometry could also be used to describe an actual biased
metal wall at x = 0 in a two-dimensional plasma. The plasma is assumed to
be collisionless and unmagnetized and to have an ambipolar potential �plasma
that differs from the laboratory reference potential (so-called ground potential)
because of a difference in the diffusion rates of electrons and ions out of the
plasma. The plasma is assumed to extend into the semi-infinite left-hand half-
plane, −� < x < 0� If �probe = �plasma, then neither electrons nor ions will be
accelerated or decelerated on leaving the plasma and so each species will strike the
probe (or wall) at a rate given by its respective thermal velocity. Since me �mi�

the electron thermal velocity greatly exceeds the ion thermal velocity. Thus, for
�probe = �plasma the electron flux to the probe (or wall) greatly exceeds the ion
flux and so the current collected by the probe (or wall) will be negative.
Now consider what happens to this electron flow if the probe (or wall) is

biased negative with respect to the plasma as shown in Fig. 2.6. To simplify the
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φ plasma

φ probe

Langmuir probe
(or metal wall)

potential with convex curvature

plasma sheath

–    < x < 0 x = 0

Fig. 2.6 Sketch of sheath. Top: ions are accelerated in the sheath towards the
probe (wall) at x = 0 whereas electrons are repelled. Bottom: convex curvature
of sheath requires ni�x� always to be greater than ne�x�.

notation, a bar will be used to denote a potential measured relative to the plasma
potential, i.e.,

�̄�x�= ��x�−�plasma� (2.115)

The bias potential imposed on the probe (or wall) will be shielded out by the
plasma within a distance of the order of the Debye length; this region is the sheath.
The relative potential �̄�x� varies within the sheath and has the two limiting
behaviors:

lim
x→0

�̄�x� = �probe−�plasma
lim

�x���D
�̄�x� = 0� (2.116)

Inside the plasma, i.e., for �x� � �D� it is assumed that the electron distribu-
tion function is Maxwellian with temperature Te� Since the distribution function
depends only on constants of the motion, the one-dimensional electron velocity
distribution function must depend only on the electron energy mv2/2+qe�̄�x�, a
constant of the motion, and so must be of the form

fe�v� x�= n0√
2�Te/me

exp

(
−
(
mv2/2+qe�̄�x�

�Te

))
(2.117)

in order to be Maxwellian when �x� � �D�
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The electron density is

ne�x�=
∫ �

−�
dvfe�v�0�= n0e−qe�̄�x�/�Te � (2.118)

When the probe is biased negative with respect to the plasma, only those electrons
with sufficient energy to overcome the negative potential barrier will be collected
by the probe.
The ion dynamics is not a mirror image of the electron dynamics. This is because

a repulsive potential prevents passage of particles having insufficient initial energy
to climb over a potential barrier whereas an attractive potential allows passage
of all particles entering a region of depressed potential. Particle density is thus
reduced compared to the inlet density for both repulsive and attractive potentials
but for different reasons. As shown in Eq. (2.118) a repulsive potential reduces
the electron density exponentially (this is essentially the Boltzmann analysis
developed in the theory of Debye shielding). Suppose the ions are cold and enter
a region of attractive potential with velocity u0� Flux conservation shows that
n0u0 = ni�x�ui�x� and since the ions accelerate to higher velocity when falling
down the attractive potential, the ion density must decrease. Thus the electron
density scales as exp �− ∣∣qe�̄∣∣/�Te� and so decreases upon approaching the wall
in response to what is a repulsive potential for electrons whereas the ion density
scales as 1/ui�x� and also decreases upon approaching the wall in response to
what is an attractive potential for ions.
It is now important to recall that the probe was assumed to be biased negatively

with respect to the plasma. Since quasi-neutrality within the plasma mandates
that the electric field must vanish inside the plasma, the potential must have a
downward slope on going from the plasma to the probe and the derivative of
this slope must also be downward. This means that the potential �̄ must have
a convex curvature, i.e., a negative second derivative as indicated in Fig. 2.6
(bottom). However, the one-dimensional Poisson’s equation

d2�̄
dx2

= − e


0
�ni�x�−ne�x�� (2.119)

shows that in order for �̄ to have a negative second derivative, it is necessary to
have ni�x� > ne�x� everywhere. This condition will now be used to estimate the
inflow velocity of the ions at the location where they enter the sheath from the
bulk plasma.
Ion energy conservation gives

1
2
miu

2�x�+ e�̄�x�= 1
2
miu

2
0� (2.120)
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which can be solved to give

u�x�=
√
u20 −2e�̄�x�/mi� (2.121)

Using the ion flux conservation relation n0u0 = ni�x�ui�x� the local ion density
is found to be

ni�x�= n0(
1−2e�̄�x�/mu20

)1/2 � (2.122)

The convexity requirement ni�x� > ne�x� implies(
1−2e�̄�x�/miu

2
0

)−1/2
> ee�̄�x�/�Te � (2.123)

Bearing in mind that �̄�x� is negative, this can be rearranged as

1+ 2e��̄�x��
miu

2
0

< e2e��̄�x��/�Te (2.124)

or

2e��̄�x��
miu

2
0

<
2e��̄�x��
�Te

+ 1
2

(
2e��̄�x��
�Te

)2

+ 1
3!

(
2e��̄�x��
�Te

)3

+· · · (2.125)

which can only be satisfied for arbitrary ��̄�x�� if
u20 > �Te/mi� (2.126)

Thus, in order to be consistent with the assumption that the probe is more negative
than the plasma to keep d2�̄/dx2 negative and hence �̄ convex, it is necessary
to have the ions enter the region of non-neutrality with a velocity slightly larger
than the so-called “ion acoustic” velocity cs =√

�Te/mi�

The ion current collected by the probe is given by the ion flux times the probe
area, i.e.,

Ii = n0u0qiA
= n0cseA� (2.127)

The electron current density incident on the probe is

Je�x� =
∫ �

0
dvqevfe�v�0�

= n0qee
−qe�̄�x�/�Te√

2�Te/me

∫ �

0
dv ve−mv2/2�Te

= n0qe
√
�Te
2me

e−e��̄�x��/�Te (2.128)
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and so the electron current collected at the probe is

Ie = −n0eA
√
�Te
2me

e−e��̄�x��/�Te � (2.129)

Thus, the combined electron and ion current collected by the probe is

I = Ii+ Ie (2.130)

= n0cseA−n0eA
√
�Te
2me

e−e��̄�x��/�Te �

The electron and ion currents cancel each other when√
2�Te
mi

=
√
�Te
2me

e−e��̄�x��/�Te (2.131)

i.e., when

e��̄probe�/�Te = ln
√

mi
4me

= 2�5 for hydrogen. (2.132)

This can be expressed as

�probe = �plasma− �Te
e

ln
√

mi
4me

(2.133)

and shows that when the probe potential is more negative than the plasma potential
by an amount Te ln

√
mi/4me, where Te is expressed in electron volts, then no

current flows to the probe. This potential is called the floating potential, because
an insulated object immersed in the plasma will always charge up to the floating
potential since this is the potential at which no current flows to the object.
These relationships can be used as a simple diagnostic for the plasma density

and electron temperature. If a probe is biased with a large negative potential, then
no electrons are collected but an ion flux is collected. The collected current is
called the ion saturation current and is given by Isat = n0cseA� The ion saturation
current is then subtracted from all subsequent measurements giving the electron
current Ie = I− Isat = n0eA��Te/2me�1/2 exp

(−e��̄�x��/�Te) � The slope of a
logarithmic plot of Ie versus � gives 1/�Te and so can be used to measure the
electron temperature. Once the electron temperature is known, cs can be calcu-
lated. The plasma density can then be calculated from the ion saturation current
measurement and knowledge of the probe area. Langmuir probe measurements
are simple to implement but are not very precise, typically having an uncertainty
of a factor of two or more.
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2.10 Assignments

1. Prove Stirling’s formula. To do this first show

lnN ! = ln 1+ ln 2+ ln 3+ � � � lnN

=
N∑
j=1

ln j�

Now assume N is large and, using a graphical argument, show that the above expression
can be expressed as an integral

lnN ! ≈
∫ ?

?
h�x�dx�

where the form of h�x� and the limits of integration are to be provided. Evaluate the
integral and obtain Stirling’s formula

lnN ! � N lnN −N for large N�

This is an effective way of calculating the values of factorials of large numbers.
Check the accuracy of Stirling’s formula by evaluating the left- and right-hand sides
of Stirling’s formula numerically and plot the results for N = 1�10�100�1000�104 and
higher if possible.

2. Variational calculus and Lagrange multipliers. Many physical problems involve finding
the function f�x� that maximizes or minimizes integrals of the form

I =
∫ x2

x1

w�f�x�� x�dx or (2.134a)

I =
∫ x2

x1

w�f�x��df/dx�x�dx (2.134b)

and there may or may not be restrictions on the value of f�x1� and f�x2�� Entropy is
of the form given in Eq. (2.134a), since we may identify w = −f ln f , x1 = −�, and
x2 = +� and replace the dummy variable x by the dummy variable v so

S = −
∫ �

−�
f�v� ln f�v�dv�

The total kinetic energy of a distribution of particles is also of the form given by
Eq. (2.134a), since we may again use v as the dummy variable and let w=mv2f�v�/2�
The Lagrange method for mechanics (to be discussed in Chapter 3) involves integrals
of the form given in Eq. (2.134b). For now, let us consider the specific problem of
determining the function f�x� that minimizes I as given in Eq. (2.134a). We assume
that such an f exists and call this minimizing function fmin� We then consider the
neighboring function

f�x�= fmin�x�+
��x�� (2.135)
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where 
 is much smaller than unity and ��x� is an arbitrary function of order unity.
We may then write Eq. (2.134a) as

I =
∫ x2

x1

w�fmin�x�+
��x�� x�dx� (2.136)

Because 
 is small, Taylor expansion of I to second order in 
 gives

I =
∫ x2

x1

{
w�fmin�x�� x�+
��x�

(
�w

�f

)
f=fmin

+ 1
2
�
��x��2

(
�2w

�f 2

)
f=fmin

}
dx�

(2.137)

(a) Define

Imin =
∫ x2

x1

w�fmin�x�� x�dx (2.138)

and consider I−Imin, where I is given by Eq. (2.136). If fmin is indeed the function
that minimizes I� explain that I− Imin must be positive if 
 is not zero.

(b) Let the term that is first order in 
 in Eq. (2.137) be called �I and the term that is
second order in 
 be called �2I so

�I = 

∫ x2

x1

��x�

(
�w

�f

)
f=fmin

dx (2.139a)

�2I = 
2

2

∫ x2

x1

���x��2
(
�2w

�f 2

)
f=fmin

dx� (2.139b)

Show that �I dominates �2I if 
 is made sufficiently small and then show that the
sign of 
 could then be chosen to make I− Imin negative unless we insist that �I = 0�
Since 
 is finite and ��x� is arbitrary, argue that insisting �I = 0 requires having(

�w

�f

)
f=fmin

= 0� (2.140)

in which case

I− Imin = �2I� (2.141)

Since I−Imin must be positive and ��x� is arbitrary what sign must �2w/�f 2 have?
How is the function that minimizes I determined (hint: consider Eq. (2.140))?

(c) Now suppose that some sort of integral constraint exists, so the problem becomes
one of finding the function f that minimizes I subject to the constraint

K =
∫ x2

x1

k�f�x�� x�dx = const� (2.142)

By inserting f = fmin +
��x� into the constraint equation, show that

�K = 

∫ x2

x1

��x�
�k

�f
dx = 0� (2.143)

where �k/�f is understood to be evaluated at f = fmin.
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(d) Since ��x� is arbitrary, choose it to be

��x�= 
��x−a�+�
��x−b�� (2.144)

where x1 < a < x2� x1 < b < x2� a �= b� � is an arbitrary constant of order unity,
and the delta function used here is defined specifically as

��x�=
⎧⎨⎩
∣∣∣∣∣∣
1



if �x�< 
/2
0 if �x� ≥ 
/2�

∣∣∣∣∣∣ (2.145)

Show that these definitions are consistent with the requirement that ��x� is of
order unity and arbitrary.

(e) By using Eq. (2.144) in Eqs. (2.139a) and (2.143) obtain the coupled equations(
�w

�f

)
x=a

+�
(
�w

�f

)
x=b

= 0(
�k

�f

)
x=a

+�
(
�k

�f

)
x=b

= 0� (2.146)

where f� if it appears explicitly, is understood to be fmin� i.e., the f that minimizes
I subject to the constraint K = const�

(f) Define the constant � to be

�=

(
�w

�f

)
x=a(

�k

�f

)
x=a

(2.147)

and use Eqs. (2.146) to prove that(
�w

�f

)
x=b(

�k

�f

)
x=b

= �� (2.148)

(g) Using the property that b is arbitrary show that

�w

�f
−� �k

�f
= 0 (2.149)

must be true for any x�
(h) Use the preceding results to explain why finding the f that minimizes I subject

to the constraint K = const� is equivalent to finding the f that minimizes I−�K
where � is a constant. The constant � is called a Lagrange multiplier.

(i) Show that if there are two constraints, say K = const� and L = const�, then
minimization of I subject to these two constraints is equivalent to minimizing
I−�1K−�2L, where �1 and �2 are two independent constants. (Hint: do this in
two stages).

( j) Show that maximizing S is equivalent to minimizing −S�
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3. Suppose that a group of N particles with charge q� and mass m� are located in an
electrostatic potential ��x�� What is the maximum entropy distribution function for
this situation (give a derivation)?

4. Prove that ∫ �

−�
dx e−ax2 =

√


a
� (2.150)

Hint: consider the integral∫ �

−�
dx e−x2

∫ �

−�
dy e−y2 =

∫ �

−�

∫ �

−�
dxdy e−�x2+y2��

and note that dxdy is an element of area. Then, instead of using Cartesian coordinates
for the integral over area, use cylindrical coordinates and express all quantities in the
double integral in cylindrical coordinates.

5. Evaluate the integrals ∫ �

−�
dxx2e−ax2�

∫ �

−�
dxx4e−ax2 �

Hint: take the derivative of both sides of Eq. (2.150) with respect to a�
6. Suppose that a particle starts at time t= t0 with velocity v0 at location x0 and is located

in a uniform, constant magnetic field B =B ẑ� There is no electric field. Calculate its
position and velocity as a function of time. Make sure your solution satisfies the initial
conditions on both velocity and position. Be careful to treat motion parallel to the
magnetic field as well as perpendicular. Express your answer in vector form as much
as possible; use the subscripts ��⊥ to denote directions parallel and perpendicular to
the magnetic field, and use �c = qB/m to denote the cyclotron frequency. Show that
f�x0� is a solution of the Vlasov equation.

7. Thermal force (Braginskii 1965). If there is a temperature gradient then because of
the temperature dependence of collisions, there turns out to be a subtle additional drag
force, which is proportional to 	T . To find this force, suppose a temperature gradient
exists in the x direction, and consider the frictional drag on electrons passing a point
x= x0� The electrons moving to the right (positive velocity) at x0 have traveled without
collision from the point x0 − lmfp, where the temperature was T�x0 − lmfp�, while those
moving to the left (negative velocity) will have come collisionlessly from the point
x0 + lmfp where the temperature is T�x0 + lmfp�. Suppose that both electrons and ions
have no mean velocity at x0� i.e., ue = ui = 0� Show that the total drag force on all
the electrons at x0 is

Rthermal = −2menelmfp
�

�x
��eivTe� �

Normalize the collision frequency, thermal velocity, and mean free paths to their values
at x= x0, where T = T0� e.g., vTe�T �= vTe0�T/T0�1/2� By writing �/�x= ��T/�x� �/�T
and using these normalized values show that

Rthermal = −2ne�	Te�
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A more accurate treatment that does a proper averaging over velocities gives

Rthermal = −0�71ne�	Te�

8. MHD with neutrals. Suppose a plasma is partially (perhaps weakly) ionized so that
besides moment equations for ions and electrons there will also be moment equations
for neutrals. Now the constraints will be different, since ionization and recombination
will genuinely create and annihilate both plasma particles and neutrals. Construct a
set of constraint equations on the collision operators, which now include ionization
and recombination as well as scattering. Take the zeroth and first moment of the
three Vlasov equations for ions, electrons, and neutrals and show that the continuity
equation is formally the same as before, i.e.,

��

�t
+	 · ��U�= 0�

providing � refers to the total mass density of the entire fluid (electrons, ions, and
neutrals) and U refers to the center-of-mass velocity of the entire fluid. Show also that
the equation of motion is formally the same as before, provided the pressure refers to
the pressure of the entire configuration:

�
DU
Dt

= −	P+J×B�

Show that Ohm’s law will be the same as before, providing the plasma is sufficiently
collisional so that the Hall term can be dropped, and so Ohm’s law is

E+U×B = �J
Explain how the neutral component of the plasma gets accelerated by the J×B force –
this must happen since the inertial part of the equation of motion (i.e., �DU/Dt�
includes the acceleration on neutrals. Assume electron temperature gradients are paral-
lel to electron density gradients so that the electrothermal force can be ignored.

9. MHD Heat Transport Equation. Define the MHD N -dimensional pressure

P = 1
N

∑
�

m�

∫
v′ ·v′f�d

Nv�

where v′ = v−U and N is the number of dimensions of motion (e.g., if motion in
only one dimension is considered, then N = 1� and v�U are one dimensional, etc.).
Also define the isotropic MHD heat flux

q =∑
�

m�

∫
v′ v

′2

2
fdNv�

(i) By taking the second moment of the Vlasov equation for each species (i.e., use
v2/2) and summing over species show

N

2
DP
Dt

+ N +2
2
P	 ·U = −	 ·q+J · �E+U×B��
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Table 2.1

a B n Te�Ti t ∼ a2

D

(m) (T) (m−3) (eV) (s)
solar corona loop 106 10−2 1015 100 ?
fusion-level tokamak 2 5 1020 104 ?
nominal lab discharge 0�05 0�1 1018 5−10 ?

Hints:

(a) Prove that U· (m�∑∫ v′v′f�dNv
)= PU assuming that f� is isotropic.

(b) What happens to
∑
� m�

∫
v2C��f�d

Nv?
(c) Using the momentum and continuity equations prove that

�

�t

(
�U 2

2

)
+	 ·

(
�U 2

2
U
)

= −U ·	P+U · �J×B� �

(ii) Using the continuity equation and Ohm’s law show that

N

2
DP
DT

− N +2
2

P

�

D�
Dt

= −	 ·q+�J 2�

Show that if both the heat flux term −	 ·q and the Ohmic heating term �J 2 can be
ignored, then the pressure and density are related by the adiabatic condition P ∼ �� ,
where � = �N +2�/N� By assuming D/Dt ∼� and 	 ∼ k show that the dropping of
these two right-hand terms is equivalent to assuming �� �ei and �/k� vT . Explain
why the phenomenon should be isothermal if �/k� vT�

10. Classical diffusion. Show by dimensional analysis that the nominal distance diffused
in a time t is given by x2 ∼Dt (do this by combining Fick’s law � = −D	n and the
continuity equation). Using the parameters given in Table 2.1 for a solar corona loop,
a tokamak with fusion-level parameters, and a nominal laboratory discharge, calculate
the time required for the plasma to diffuse out of the configuration if the diffusion
is classical. In other words, fill in the last column of the table using Eq. (2.114) to
calculate the nominal time (or range of times) to diffuse a distance a, where a is the
nominal radius of the configuration. Are these times long or short compared to what
is of interest?

11. Sketch the current collected by a Langmuir probe as a function of the bias voltage
and indicate the ion saturation current, the exponentially changing electron current,
the floating potential, and the plasma potential. Calculate the ion saturation current
collected by a 1 cm long, 0.25mm diameter probe immersed in a 5 eV argon plasma
that has a density n = 1016 m−3. Calculate the electron saturation current also (i.e.,
the current when the probe is at the plasma potential). What is the offset of the
floating potential relative to the plasma potential?
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Motion of a single plasma particle

3.1 Motivation

Single particle motion in neutral gases is trivial – particles move in straight lines
until they hit other particles or the wall. Because of this simplicity, there is no point
in keeping track of the details of single particle motion in a neutral gas and instead
a statistical averaging of this motion suffices; this averaging shows that neutral
gases have Maxwellian velocity distributions and are in a local thermodynamic
equilibrium. In contrast, plasma particles are nearly collisionless and typically
have complex trajectories that are strongly affected by both electric and magnetic
fields.
As discussed in the previous chapter, the velocity distribution in a plasma

will become Maxwellian when enough collisions have occurred to maximize the
entropy. However, since collisions occur infrequently in hot plasmas, many impor-
tant phenomena have time scales shorter than the time required for the plasma
velocity distribution to become Maxwellian. A collisionless model is thus required
to characterize these fast phenomena. In these situations randomization does not
occur, entropy is conserved, the distribution function need not be Maxwellian,
and the plasma is not in thermodynamic equilibrium. Thermodynamic concepts
therefore do not apply, and the plasma is instead characterized by concepts from
classical mechanics such as momentum or energy conservation of individual
particles. In these collisionless situations the complex details of single particle
dynamics are not washed out by collisions but instead persist and influence the
macroscopic scale. As an example, the cyclotron resonance of a single particle
can be important at the macroscopic scale in a collisionless plasma. This chapter
examines various aspects of single particle motion and shows how these aspects
can influence the macroscopic properties of a plasma.
Furthermore, study of single particle dynamics has a very direct relevance to

Vlasov theory because, as shown in Section 2.3, any function constructed from
constants of single particle motion is a valid solution of the collisionless Vlasov

75
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equation. Thus, knowledge of single particle dynamics provides a “repertoire” of
constants of the motion from which solutions to the Vlasov equation suitable for
various situations can be constructed.
Finally, the study of single particle motion develops valuable intuition regard-

ing wave–particle interactions and identifies certain unusual situations, such as
stochastic or non-adiabatic particle motion, that are beyond the descriptive capa-
bility of fluid models.

3.2 Hamilton–Lagrange formalism vs. Lorentz equation

Two mathematically equivalent formalisms describe charged particle dynamics,
namely (i) the Lorentz equation

m
dv
dt

= q�E+v×B� (3.1)

and (ii) Hamiltonian–Lagrangian dynamics.
The two formalisms are complementary: the Lorentz equation is intuitive

and suitable for approximate methods, whereas the more abstract Hamiltonian–
Lagrangian formalism exploits time and space symmetries. A brief review of
the Hamiltonian–Lagrangian formalism follows, emphasizing aspects relevant to
dynamics of charged particles.
The starting point is to postulate the existence of a function L, called the

Lagrangian, which:

1. contains all information about the particle dynamics for a given situation;
2. depends only on generalized coordinates Qi�t�� Q̇i�t� appropriate to the problem;
3. possibly has an explicit dependence on time t.

If such a function L�Qi�t�� Q̇i �t�� t� exists, then information on particle dynam-
ics is retrieved by manipulation of the action integral

S =
∫ t2
t1

L�Qi�t�� Q̇i �t�� t�dt� (3.2)

This manipulation is based on d’Alembert’s principle of least action. According
to this principle, one considers the infinity of possible trajectories a particle could
follow to get from its initial position Qi�t1� to its final position Qi�t2�, and
postulates that the trajectory actually followed is the one that results in the lowest
value of S. Thus, the value of S must be minimized (note that S here is action,
and not entropy as in the previous chapter). Minimizing S does not give the actual
trajectory directly, but rather gives equations of motion, which can be solved to
give the actual trajectory.



3.2 Hamilton–Lagrange formalism vs. Lorentz equation 77

Minimizing S is accomplished by considering an arbitrary nearby alternative
trajectory Qi�t�+�Qi�t� having the same beginning and end points as the actual
trajectory, i.e., �Qi�t1�= �Qi�t2�= 0� In order to make the variational argument
more precise, �Qi is expressed as

�Qi�t�= $�i�t�� (3.3)

where $ is an arbitrarily adjustable scalar assumed to be small so that $2 < $
and �i�t� is a function of t that vanishes when t = t1 or t = t2 but is otherwise
arbitrary. Calculating �S to second order in $ gives

�S =
∫ t2
t1

L�Qi+�Qi� Q̇i+�Q̇i� t�dt−
∫ t2
t1

L�Qi� Q̇i � t� dt

=
∫ t2
t1

L�Qi+ $�i� Q̇i+ $�̇i � t�dt−
∫ t2
t1

L�Qi� Q̇i � t� dt

=
∫ t2
t1

(
$�i

�L

�Qi
+ �$�i�

2

2
�2L

�Q2
i

+ $�̇i
�L

�Q̇i
+ �$�̇i�

2

2
�2L

�Q̇2
i

)
dt� (3.4)

Suppose the trajectory Qi�t� is the one that minimizes S� Any other trajectory
must lead to a higher value of S and so �S must be positive for any finite value
of $. If $ is chosen to be sufficiently small, then the absolute values of the terms
of order $2 in Eq. (3.4) will be smaller than the absolute values of the terms
linear in $� The sign of $ could then be chosen to make �S negative, but this
would violate the requirement that �S must be positive. The only way out of this
dilemma is to insist that the sum of the terms linear in $ in Eq. (3.4) vanishes
so �S ∼ $2 and is therefore always positive as required. Insisting that the sum of
terms linear in $ vanishes implies

0 =
∫ t2
t1

(
�i
�L

�Qi
+ �̇i

�L

�Q̇i

)
dt� (3.5)

Using �̇i = d�i/dt the above expression may be integrated by parts to obtain

0 =
∫ t2
t1

(
�i
�L

�Qi
+ d�i

dt
�L

�Q̇i

)
dt

=
[
�i
�L

�Q̇i

]t2
t1

+
∫ t2
t1

{
�i
�L

�Qi
−�i

d
dt

(
�L

�Q̇i

)}
dt� (3.6)

Since �i�t1�2�= 0� the integrated term vanishes and since �i was an arbitrary func-
tion of t, the coefficient of �i in the integrand must vanish, yielding Lagrange’s
equation

dPi
dt

= �L

�Qi
� (3.7)
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where the canonical momentum Pi is defined as

Pi =
�L

�Q̇i
� (3.8)

Equation (3.7) shows that if L does not depend on a particular generalized
coordinate Qj , then dPj/dt = 0, in which case the canonical momentum Pj
is a constant of the motion; the coordinate Qj is called a cyclic or ignorable
coordinate. This is a very powerful and profound result. Saying that the Lagrangian
function does not depend on a coordinate is equivalent to saying that the system
is symmetric in that coordinate or translationally invariant with respect to that
coordinate. The quantities Pj and Qj are called conjugate and action has the
dimensions of the product of these quantities.
Hamilton extended this formalism by introducing a new function related to the

Lagrangian. This new function, called the Hamiltonian, provides further useful
information and is defined as

H ≡
(∑

i

PiQ̇i

)
−L� (3.9)

Partial derivatives of H with respect to Pi and to Qi give Hamilton’s equations

Q̇i =
�H

�Pi
Ṗi = − �H

�Qi
� (3.10)

which are equations of motion having a close relation to phase-space concepts.
The time derivative of the Hamiltonian is

dH
dt

=∑
i

dPi
dt
Q̇i+

∑
i

Pi
dQ̇i
dt

−
(∑

i

�L

�Qi
Q̇i+

∑
i

�L

�Q̇i

dQ̇i
dt

+ �L
�t

)
= −�L

�t
� (3.11)

This shows that if Ldoes not explicitly depend on time, i.e., �L/�t = 0, the
Hamiltonian H is a constant of the motion. As will be shown later, H corresponds
to the energy of the system, so if �L/�t = 0� the energy is a constant of the
motion. Thus, energy is conjugate to time in analogy to canonical momentum
being conjugate to position (note that energy × time also has the units of action). If
the Lagrangian does not explicitly depend on time, then the system can be thought
of as being “symmetric” with respect to time, or “translationally” invariant with
respect to time.
The Lagrangian for a charged particle in an electromagnetic field is

L= mv2

2
+qv ·A�x� t�−q��x� t�� (3.12)

the validity of Eq. (3.12) will now be established by showing that it generates the
Lorentz equation when inserted into Lagrange’s equation. Since no symmetry is
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assumed, there is no reason to use any special coordinate system and so ordinary
Cartesian coordinates will be used as the canonical coordinates, in which case
Eq. (3.8) gives the canonical momentum as

P =mv+qA�x�t�� (3.13)

The left-hand side of Eq. (3.7) becomes

dP
dt

=mdv
dt

+q
(
�A
�t

+v·	A
)
� (3.14)

while the right-hand side of Eq. (3.7) becomes

�L

�x
= q	 �v ·A�−q	�= q �v·	A+v×	×A�−q	�
= q �v ·	A+v×B�−q	�� (3.15)

Equating the above two expressions gives the Lorentz equation, where the electric
field is defined as E = −�A/�t−	� in accordance with Faraday’s law. This
proves that Eq. (3.12) is mathematically equivalent to the Lorentz equation when
used with the principle of least action.
The Hamiltonian associated with this Lagrangian is, in Cartesian coordinates,

H = P ·v−L
= mv2

2
+q�

= �P−qA�x�t��2
2m

+q��x�t�� (3.16)

where the last line is the form more suitable for use with Hamilton’s equations,
i.e., H =H�x�P�t�. Equation (3.16) also shows that H is, as promised, the particle
energy. If generalized coordinates are used, the energy can be written in a general
form as E = H�Q�P� t�� Equation (3.11) showed that even though both Q and
P depend on time, the energy depends on time only if H explicitly depends on
time. Thus, in a situation where H does not explicitly depend on time, the energy
would have the form E =H�Q�t��P�t��= const�
It is important to realize that both canonical momentum and energy depend on

the reference frame. For example, a bullet fired in an airplane in the direction
opposite to the airplane motion, and with a speed equal to the airplane’s speed,
has a large energy as measured in the airplane frame, but zero energy as measured
by an observer on the ground. A more subtle example (of importance to later
analysis of waves and Landau damping) occurs when A and/or � have a wave-like
dependence, e.g., ��x�t� = ��x− vpht� � where vph is the wave phase velocity.
This potential is time-dependent in the lab frame and so the associated Lagrangian
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has an explicit dependence on time in the lab frame, which implies that energy is
not a constant of the motion in the lab frame. In contrast, � is time-independent
in the wave frame and so the energy is a constant of the motion in the wave
frame. Existence of a constant of the motion reduces the complexity of the system
of equations and typically makes it possible to integrate at least one equation in
closed form. Thus, it is advantageous to analyze the system in the frame having
the most constants of the motion.

3.3 Adiabatic invariant of a pendulum

Perfect symmetry is never attained in reality. This leads to the practical question
of how constants of the motion behave when space and/or time symmetries are
“good,” but not perfect. Does the utility of constants of the motion collapse
abruptly when the slightest non-symmetrical blemish rears its ugly head, does
the utility decay gracefully, or does something completely different happen? To
answer these questions, we begin by considering the problem of a small-amplitude
pendulum having a time-dependent, but slowly changing resonant frequency ��t��
Since �2 = g/l� the time-dependence of the frequency might result from either a
slow change in the gravitational acceleration g or else from a slow change in the
pendulum length l� In both cases the pendulum equation of motion will be

d2x
dt2

+�2�t�x = 0� (3.17)

This equation cannot be solved exactly for arbitrary ��t� but if a modest restriction
is put on ��t� the equation can be solved approximately using the WKB method
(Wentzel 1926, Kramers 1926, Brillouin 1926). This method is based on the
hypothesis that the solution for a time-dependent frequency is likely to be a
generalization of the constant-frequency solution

x = Re �A exp�i�t�� � (3.18)

where this generalization is postulated to be of the form

x�t�= Re
[
A�t�ei

∫ t
��t′�dt′

]
� (3.19)

Here A�t� is an amplitude function determined as follows: calculate the first
derivative of Eq. (3.19),

dx
dt

= Re
[
i�Aei

∫ t
��t′�dt′ + dA

dt
ei
∫ t
��t′�dt′

]
� (3.20)

then the second derivative

d2x
dt2

= Re
[(

i
d�
dt
A+2i�

dA
dt

−�2A+ d2A
dt2

)
ei
∫ t
��t′�dt′

]
� (3.21)
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and insert this last result into Eq. (3.17) which reduces to

i
d�
dt
A+2i�

dA
dt

+ d2A
dt2

= 0� (3.22)

since the terms involving �2 cancel exactly. To proceed further, we make an
assumption – the validity of which is to be checked later – that the time dependence
of dA/dt is sufficiently slow to allow dropping the last term in Eq. (3.22) relative to
the middle term. The two terms that remain in Eq. (3.22) can then be rearranged as

1
�

d�
dt

= − 2
A

dA
dt
� (3.23)

which has the exact solution

A�t�∼ 1√
��t�

� (3.24)

The assumption of slowness is thus at least self-consistent, for if ��t� is indeed
slowly changing, Eq. (3.24) shows that A�t� will also be slowly changing and the
dropping of the last term in Eq. (3.22) is justified. The slowness requirement can
be quantified by assuming that the frequency has an exponential dependence

��t�= �0e
�t� (3.25)

Thus,

�= 1
�

d�
dt

(3.26)

is a measure of how fast the frequency is changing compared to the frequency
itself. Hence, dropping the last term in Eq. (3.22) is legitimate if

�� 4�0 (3.27)

or
1
�

d�
dt

� 4�� (3.28)

In other words, if Eq. (3.28) is satisfied, then the fractional change of the pendulum
period per period is small.
Equation (3.24) indicates that when � is time-dependent, the pendulum ampli-

tude is not constant and so the pendulum energy is not conserved. It turns out
that what is conserved is the action integral

S =
∮
vdx� (3.29)
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where the integration is over one period of oscillation. This integral can also be
written in terms of time as

S =
∫ t0+�
t0

v
dx
dt

dt� (3.30)

where t0 is a time when x is at an instantaneous maximum and �� the period of
a complete cycle, is defined as the interval between two successive times when
dx/dt = 0 and d2x/dt2 has the same sign (e.g., for a pendulum, t0 would be a
time when the pendulum has swung all the way to the right and so is reversing
its velocity while � is the time one has to wait for this to happen again). To show
that action is conserved, Eq. (3.29) can be integrated by parts as

S =
∫ t0+�
t0

[
d
dt

(
x
dx
dt

)
−xd

2x

dt2

]
dt

=
[
x
dx
dt

]t0+�
t0

−
∫ t0+�
t0

x
d2x
dt2

dt

=
∫ t0+�
t0

�2x2dt� (3.31)

where (i) the integrated term has vanished by virtue of the definitions of t0 and
�� and (ii) Eq. (3.17) has been used to substitute for d2x/dt2. Equations (3.19)
and (3.24) can be combined to give

x�t�= x�t0�
√
��t0�

��t�
cos

(∫ t
t0

��t′�dt′
)

(3.32)

so Eq. (3.31) becomes

S =
∫ t0+�
t0

��t′�2
{
x�t0�

√
��t0�

��t′�
cos

(∫ t′
t0

��t
′′
�dt

′′
)}2

dt′

= �x�t0��2��t0�
∫ t0+�
t0

��t′� cos 2
(∫ t′
t0

��t
′′
�dt

′′
)
dt′ (3.33)

= �x�t0��2��t0�
∫ 2

0
d% cos 2% =  �x�t0��2��t0�= const��

where % = ∫ t′
t0
��t

′′
�dt

′′
and d% = ��t′�dt′� Equation (3.29) shows that S is the

area in phase-space enclosed by the trajectory "x�t�� v�t�# and Eq. (3.33) shows
that for a slowly changing pendulum frequency, this area is a constant of the
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motion. Since the average energy of the pendulum scales as ∼ ���t�x�t��2 � we
see from Eq. (3.24) that the ratio

energy
frequency

∼��t�x2�t�∼ S ∼ const� (3.34)

The ratio in Eq. (3.34) is the classical equivalent of the quantum number N of a
simple harmonic oscillator because in quantummechanics the energy E of a simple
harmonic oscillator is related to the frequency by the relation E/��= N +1/2.

This analysis clearly applies to any dynamical system having an equation of
motion of the form of Eq. (3.17). Hence, if the dynamics of plasma particles happens
to be of this form, then S can be added to our repertoire of constants of the motion.

3.4 Extension of WKB method to general adiabatic invariant

Action has the dimensions of (canonical momentum) × (canonical coordinate) so
we may anticipate that for general Hamiltonian systems, the action integral given
in Eq. (3.29) is not an invariant because v is not, in general, proportional to P.
We postulate that the general form for the action integral is

S =
∮
PdQ� (3.35)

where the integral is over one period of the periodic motion and P�Q are the
relevant canonical momentum–coordinate conjugate pair. The proof of adiabatic
invariance used for Eq. (3.29) does not work directly for Eq. (3.35); we now
present a slightly more involved proof to show that Eq. (3.35) is indeed the more
general form of adiabatic invariant.
Let us define the radius vector in theQ−P plane to be R = �Q�P� and define

unit vectors in the Q and P directions by Q̂ and P̂; these definitions are shown
in Fig. 3.1. Furthermore, we define the z direction as being normal to the Q−P

P

Q

R = (Q, P)

constant H
contour

P

Q

Fig. 3.1 Q – P plane.
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plane; thus, the unit vector ẑ is “out of the paper,” i.e., ẑ = Q̂× P̂� Hamilton’s
equations (i.e., Ṗ = −�H/�Q� Q̇= �H/�P) may be written in vector form as

dR
dt

= −ẑ×	H� (3.36)

where

	 = Q̂ �

�Q
+ P̂ �

�P
(3.37)

is the gradient operator in the Q−P plane. Equation (3.36) shows that the phase-
space “velocity” dR/dt is orthogonal to 	H� Hence, R stays on a level contour
of H� If H is constant, then, in order for the motion to be periodic, the path
along this level contour must circle around and join itself, like a road of constant
elevation around the rim of a mountain (or a crater). If H is not constant, but
slowly changing in time, the contour will circle around and nearly join itself.

Equation (3.36) can be inverted by crossing it with ẑ to give

	H = ẑ× dR
dt
� (3.38)

For periodic and near-periodic motions, dR/dt is always in the same sense (always
clockwise or always counterclockwise). Thus, Eq. (3.38) shows that an “observer”
following the path would always see that H is increasing on the left-hand side
of the path and decreasing on the right-hand side (or vice versa). For clarity, the
origin of the Q−P plane is redefined to be at a local maximum or minimum
of H . Hence, near the extremum H must have the Taylor expansion

H�P�Q�=Hextremum+ P
2

2

[
�2H

�P2

]
P=0�Q=0

+ Q
2

2

[
�2H

�Q2

]
P=0�Q=0

� (3.39)

where
[
�2H/�P2

]
P=0�Q=0 and

[
�2H/�Q2

]
P=0�Q=0 are either both positive (valley)

or both negative (hill). Since H is assumed to have a slow dependence on time,
these second derivatives will be time-dependent so that Eq. (3.39) has the form

H = ��t�P
2

2
+!�t�Q

2

2
� (3.40)

where ��t� and !�t� have the same sign. The term Hextremum in Eq. (3.39) has
been dropped because it is just an additive constant to the energy and does not
affect Hamilton’s equations. From Eq. (3.36) the direction of rotation of R is seen
to be counterclockwise if the extremum of H is a hill, and clockwise if a valley.
Hamilton’s equations operating on Eq. (3.40) give

dP
dt

= −!Q� dQ
dt

= �P� (3.41)
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These equations do not directly generate the simple harmonic oscillator equation
because of the time dependence of ��!� However, if we define the auxiliary
variable

� =
∫ t
!�t′�dt′ (3.42)

then
d
dt

= d�
dt

d
d�

= ! d
d�

so Eq. (3.41) becomes

dP
d�

= −Q� dQ
d�

= �

!
P� (3.43)

Substituting for Q in the right-hand equation using the left-hand equation gives

d2P
d�2

+ �
!
P = 0� (3.44)

which is a simple harmonic oscillator with �2���=����/!���� The action integral
may be rewritten as

S =
∫
P
dQ
d�

d�� (3.45)

where the integral is over one period of the motion. Using Eq. (3.43) and following
the same procedure as was used with Eq. (3.32) and Eq. (3.33), this becomes

S =
∫
P2�

!
d� = �2

∫ [(��� ′�
!�� ′�

)1/2

cos 2
(∫ � ′

��/!�1/2d�
′′
)]

d� ′� (3.46)

where � is a constant dependent on initial conditions. By introducing the orbit
phase �= ∫ �

��/!�1/2d�� Eq. (3.46) becomes

S = �2
∫ 2

0
d� cos 2�= const� (3.47)

Thus, the general action integral is indeed an adiabatic invariant. This proof is of
course only valid in the vicinity of an extremum of H� i.e., only where H can be
adequately represented by Eq. (3.40).

3.4.1 Proof for the general adiabatic invariant

We now develop a proof for the general adiabatic invariant. This proof is not
restricted to small oscillations (i.e., being near an extremum of H) as was the
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previous discussion. Let the Hamiltonian depend on time via a slowly changing
parameter ��t�, so that H =H�P�Q���t��. From Eq. (3.16) the energy is given by

E�t�=H�P�Q���t�� (3.48)

and, in principle, this relation can be inverted to give P = P�E�t��Q���t���

Suppose a particle is executing nearly periodic motion in the Q−P plane. We
define the turning point Qtp as a position where dQ/dt= 0� Since Q is oscillating,
there will be a turning point associated with Q having its maximum value and
a turning point associated with Q having its minimum value. From now on let
us only consider turning points where Q has its maximum value, that is, we
only consider the turning points on the right-hand side of the nearly periodic
trajectories in the Q−P plane shown in Fig. 3.2.
If the motion is periodic, then the turning point for the N +1th period will be

the same as the turning point for the N th period, but if the motion is only nearly
periodic, there will be a slight difference as shown in Fig. 3.2. This difference can
be characterized by making the turning point a function of time so Qtp =Qtp�t��
This function is only defined for the times when dQ/dt = 0� When the motion is
not exactly periodic, this turning point is such that Qtp�t+ �� �= Qtp�t�, where �
is the time interval required for the particle to go from the first turning point to
the next turning point. The action integral is over one entire period of oscillation
starting from a right-hand turning point and then going to the next right-hand
turning point (cf. Fig. 3.2) and so can be written as

S =
∮
PdQ

=
∫ Qtp�t+��
Qtp�t�

PdQ� (3.49)

Q

P

Qtp(t)

Fig. 3.2 Nearly periodic-phase space trajectory for slowly changing Hamilto-
nian. The turning point Qtp�t� is where Q is at its maximum.
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From Eq. (3.16) it is seen that P/m is not, in general, the velocity and so the
velocity dQ/dt is not, in general, proportional to P� Thus, the turning points are
not necessarily at the locations where P vanishes, and in fact P need not change
sign during a period. However, S still corresponds to the area of phase-space
enclosed by one period of the phase-space trajectory.
We can now calculate

dS
dt

= d
dt

∮
PdQ= d

dt

∫ Qtp�t+��
Qtp�t�

P�E�t��Q���t��dQ

=
[
P
dQ
dt

]Qtp�t+��
Qtp�t�

+
∫ Qtp�t+��
Qtp�t�

(
�P

�t

)
Q

dQ (3.50)

=
∫ Qtp�t+��
Qtp�t�

[(
�P

�E

)
Q��

dE
dt

+
(
�P

��

)
Q�E

d�
dt

]
dQ�

Because dQ/dt= 0 at the turning point, the integrated term vanishes and so there
is no contribution from motion of the turning point. From Eq. (3.48) we have

1 = �H

�P

(
�P

�E

)
Q��

(3.51)

and

0 = �H

�P

(
�P

��

)
Q�E

+ �H
��

(3.52)

so Eq. (3.50) becomes

dS
dt

=
∮ (�H

�P

)−1 [dE
dt

− �H
��

d�
dt

]
dQ� (3.53)

From Eq. (3.48) we have

dE
dt

= �H

�P

dP
dt

+ �H
�Q

dQ
dt

+ �H
��

d�
dt

= �H

��

d�
dt
� (3.54)

since the first two terms canceled due to Hamilton’s equations. Substitution of
Eq. (3.54) into Eq. (3.53) gives dS/dt = 0� completing the proof of adiabatic
invariance. No assumption has been made here that P�Q are close to the values
associated with an extremum of H�
This proof seems too neat, because it has established adiabatic invariance

simply by careful use of the chain rule, and by taking partial derivatives. However,
this observation reveals the underlying essence of adiabaticity, namely it is the
differentiability of H�P with respect to � from one period to the next and the
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Hamilton nature of the system, which together provide the conditions for the
adiabatic invariant to exist. If the motion had been such that after one cycle the
motion had changed so drastically that taking a derivative of H or P with respect
to � would not make sense, then the adiabatic invariant would not exist.

3.5 Drift equations

We show in this section that it is possible to deduce intuitive and quite accurate
analytic solutions for the velocity (drift) of charged particles in arbitrarily compli-
cated electric and magnetic fields provided the fields are slowly changing in
both space and time (this requirement is essentially the slowness requirement for
adiabatic invariance). Drift solutions are obtained by solving the Lorentz equation

m
dv
dt

= q �E+v×B� (3.55)

iteratively, taking advantage of the assumed separation of scales between fast and
slow motions.

3.5.1 Simple E×B and force drifts

Before developing the general method for analyzing drifts, a simple example
illustrating the basic idea will now be discussed. This example consists of an
ion starting at rest in a spatially uniform magnetic field B = Bẑ and a spatially
uniform electric field E = Eŷ. The origin is defined to be at the ion’s starting
position and both electric and magnetic fields are constant in time. The assumed
spatial uniformity and time-independence of the fields represent the extreme limit
of assuming that the fields are slowly changing in space and time.
Because the magnetic force qv×B is perpendicular to v, the magnetic force

does no work and so only the electric field can change the ion’s energy (this can be
seen by dotting Eq. (3.55) with v). Also, because all fields are uniform and static
the electric field can be expressed as E =−	�, where �= −Ey is an electrostatic
potential. Since the ion lowers its potential energy q� on moving to larger y�
motion in the positive y direction corresponds to the ion “falling downhill.” Since
the ion starts from rest at y = 0, where �= 0, its total energy W =mv2/2+q�
is initially zero. Furthermore, the time-independence of the fields implies that
W must remain zero for all time. Because the kinetic energy mv2/2 is positive-
definite, the ion can only attain finite kinetic energy if it falls downhill, i.e., moves
into regions of positive y� If for any reason the ion y-coordinate becomes zero
at some later time, then at such a time the ion would again have to have v = 0
because W =mv2 −qEy = 0�
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When the ion begins moving, it is acted on primarily by the electric force qEŷ
because the magnetic force qv×B is negligible at small velocities. The electric
force accelerates the ion in the y direction so the ion develops a positive vy and
also moves towards larger positive y as it “falls downhill” in the potential. As it
develops a positive vy, the ion starts to experience a magnetic force qvyŷ×Bẑ=
vyqBx̂, which accelerates the ion in the positive x direction causing the ion to
develop in addition a positive vx. The trajectory now becomes curved as the ion
veers in the x direction while moving towards larger y� The positive vx continues
to increase and as a consequence a new magnetic force qvxx̂×Bẑ = −vx qBŷ
develops and, being in the negative y direction, this increasing magnetic force
counteracts the steady electric force, eventually causing the ion to decelerate in the
y direction. The velocity vy now decreases and ultimately reverses so that the ion
starts to head in the negative y direction back towards y= 0. As a consequence of
the reversal of vy� the magnetic force qvyŷ×Bẑ will become negative and so the
ion will also decelerate in the x direction. Moving with negative vy means the ion
is going uphill in the electrostatic potential and when it reaches y= 0, its potential
energy must go back to zero. As noted above, the ion must come to rest at this
point, because its total energy is always zero. Because the x velocity was never
negative, the result of all this is that the ion makes a net positive displacement in
the x direction. The whole process then repeats with the result that the ion keeps
advancing in x while making a sequence of semi-circles in which vy oscillates in
polarity while vx is never negative. The ion consequently moves like a leap-frog,
which bounces up and down in the y direction while continuously advancing in
the x direction. If an electron had been used instead of an ion, the sign of both
the electric and magnetic forces would have reversed and the electron would have
been confined to regions where y ≤ 0. However, the net displacement would also
be in the positive x direction (this is easily seen by repeating the above argument
using an electron).
If an ion starts with a finite rather than a zero velocity, it will execute cyclotron

(also called Larmor) orbits, which take the ion into regions of both positive and
negative y� However, the ion will have a larger gyroradius in its y > 0 orbit
segment than in its y < 0 orbit segment, resulting again in an average drift to the
right as shown in Fig. 3.3. Electrons have larger gyroradii in the y < 0 portions
of their orbit, but have a counterclockwise rotation so electrons also drift to the
right. The magnitude of this steady drift is easily calculated by assuming the
existence of a constant perpendicular drift velocity in the Lorentz equation, and
then averaging out the cyclotron motion:

0 = E+�v�×B� (3.56)
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ion

electron

B = Bz

E = Ey

Fig. 3.3 E×B drifts for particles having finite initial energy.

This may be solved to give the average drift velocity

vE = �v� = E×B
B2

� (3.57)

This steady drift, called the E×B drift (pronounced “E cross B”), is independent
of both the particle’s polarity and its initial velocity. One way of interpreting this
behavior is to recall that according to the theory of special relativity the electric
field E′ observed in a frame moving with velocity u is E′ = E+u×B and so
Eq. (3.56) is simply a statement that a particle drifts in such a way to ensure
that the electric field seen in its own frame vanishes. The E×B drift analysis
can be easily generalized to describe the effect on a charged particle of any force
orthogonal to B by simply making the replacement E → F/q in the Lorentz
equation. Thus, any spatially uniform, temporally constant force orthogonal to B
will cause a drift

vF ≡ �v� = F×B
qB2

� (3.58)

Equations (3.57) and (3.58) lead to two counter-intuitive and important conclu-
sions:

1. A steady-state electric field perpendicular to a magnetic field does not drive currents
in a plasma, but instead causes a bulk motion of the entire plasma across the magnetic
field with the velocity vE .

2. A steady-state force (e.g., gravity, centrifugal force, etc.) perpendicular to the magnetic
field causes oppositely directed motions for electrons and ions and so drives a cross-
field current

JF =∑
�

n�
F×B
B2

� (3.59)
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3.5.2 Drifts in slowly changing arbitrary fields

We now consider charged particle motion in arbitrarily complicated but slowly
changing fields subject to the following restrictions:

1. The time variation is so slow that the fields can be considered as approximately
constant during each cyclotron period of the motion.

2. The fields vary so gradually in space that they are nearly uniform over the spatial
extent of any single complete cyclotron orbit.

3. The electric and magnetic fields are related by Faraday’s law 	×E = −�B/�t�
4. E/B � c so that relativistic effects are unimportant (otherwise there would be a

problem with vE becoming faster than c).

In this more general situation a charged particle will gyrate about B, stream
parallel to B� have E×B drifts across B, and may also have force-based drifts.
The analysis is based on the assumption that all these various motions are well
separated (i.e., easily distinguishable from each other); this assumption is closely
related to the requirement that the fields vary slowly and also to the concept of
adiabatic invariance.
The assumed separation of scales is expressed by decomposing the particle

motion into a fast, oscillatory component – the gyromotion – and a slow compo-
nent obtained by averaging out the gyromotion. As sketched in Fig. 3.4, the
particle’s position and velocity are each decomposed into two terms

x�t�= xgc�t�+ rL�t�� v�t�= dx
dt

= vgc�t�+vL�t�� (3.60)

rL(t)

xgc(t)

x(t)

B

guiding center trajectory

particle
actual
trajectory

Fig. 3.4 Drift in an arbitrarily complicated field.
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where rL�t� �vL�t� give the fast gyration of the particle in a cyclotron orbit and
xgc�t�� vgc�t� are the slowly changing motion of the guiding center obtained after
averaging out the cyclotron motion. Ignoring any time dependence of the fields
for now, the magnetic field seen by the particle can be written as

B�x�t�� = B�xgc�t�+ rL�t��

= B�xgc�t��+ �rL�t� ·	�B� (3.61)

Because B was assumed to be nearly uniform over the cyclotron orbit, it is
sufficient to keep only the first term in the Taylor expansion of the magnetic
field. The electric field may be expanded in a similar fashion.
After insertion of these Taylor expansions for the non-uniform electric and

magnetic fields, the Lorentz equation becomes

m
d
[
vgc�t�+vL�t�

]
dt

= q [E�xgc�t��+ �rL�t� ·	�E]
+q [vgc�t�+vL�t�

]× [B�xgc�t��+ �rL�t� ·	�B] � (3.62)

The gyromotion (i.e., the fast cyclotron motion) is defined to be the solution of
the equation

m
dvL�t�
dt

= qvL�t�×B�xgc�t��� (3.63)

subtracting this fast motion equation from Eq. (3.62) leaves

m
dvgc�t�

dt
= q [E�xgc�t��+ �rL�t� ·	�E]

+q {vgc�t�× [B�xgc�t��+ �rL�t� ·	�B]+vL�t�× �rL�t� ·	�B
}
�

(3.64)

Let us now average Eq. (3.64) over one gyroperiod in which case terms linear
in gyromotion average to zero. What remains is an equation describing the slow
quantities, namely

m
dvgc�t�

dt
= q {E�xgc�t��+vgc�t�×B�xgc�t��+�vL�t�× �rL�t� ·	�B�} � (3.65)

where �� means averaged over a cyclotron period. The guiding center velocity
can now be decomposed into components perpendicular and parallel to B,

vgc�t�= v⊥gc�t�+v�gc�t�B̂ (3.66)

so that

dvgc�t�

dt
= dv⊥gc�t�

dt
+

d
(
v�gc�t�B̂

)
dt

= dv⊥gc�t�
dt

+ dv�gc�t�
dt

B̂+v�gc�t�
dB̂
dt
� (3.67)
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Denoting the distance along the magnetic field by s, the derivative of the magnetic
field unit vector can be written, to lowest order, as

dB̂
dt

= �B̂

�s

ds
dt

= v�gcB̂ ·	B̂� (3.68)

so Eq. (3.65) becomes

m

[
dv⊥gc�t�

dt
+ dv�gc�t�

dt
B̂+v2�gcB̂ ·	B̂

]
= qE�xgc�t��

+qvgc�t�×B�xgc�t��

+q �vL�t�× �rL�t� ·	�B� � (3.69)

The component of this equation along B is

m
dv�gc�t�

dt
= q

[
E��xgc�t��+�vL�t�× �rL�t� ·	�B��

]
(3.70)

while the component perpendicular to B is

m

[
dv⊥gc�t�

dt
+v2�gcB̂ ·	B̂

]
= q

⎡⎢⎣E⊥�xgc�t��
+vgc�t�×B�xgc�t��
+ �vL�t�× �rL�t� ·	�B�⊥

⎤⎥⎦ � (3.71)

Equation (3.71) is of the generic form

m
dv⊥gc
dt

= F⊥ +qvgc×B� (3.72)

where

F⊥ = q [E⊥�xgc�t��+�vL�t�× �rL�t� ·	�B�⊥
]

−mv2�gcB̂ ·	B̂� (3.73)

Equation (3.72) is solved iteratively based on the assumption that v⊥gc has a slow
time dependence. In the first iteration, the time dependence is neglected altogether
so that the left-hand side of Eq. (3.72) is set to zero to obtain the “first guess” for
the perpendicular drift to be

v⊥gc � vF ≡ F⊥ ×B
qB2

�

Next, vp is defined to be a correction to this first guess, where vp is assumed
small and incorporates effects due to any time dependence of v⊥gc� To determine
vp, we write v⊥gc = vF +vp so, to second order Eq. (3.72) becomes

m
d�vF +vp�

dt
= F⊥ +q�vF +vp�×B� (3.74)
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In accordance with the slowness condition, it is assumed that �dvp/dt� � �dvF/dt�
so Eq. (3.74) becomes

0 = −mdvF
dt

+qvp×B� (3.75)

Crossing this equation with B gives the general polarization drift

vp = − m

qB2

dvF
dt

×B� (3.76)

The most important example of the polarization drift is when vF is the E×B drift
in a uniform, constant magnetic field so that

vp = − m

qB2

d
dt

(
E×B
B2

)
×B

= m

qB2

dE
dt
� (3.77)

We now evaluate the middle term in Eq. (3.73); this term is called the “grad B”
force and is

F	B = q �vL�t�× �rL�t� ·	�B� � (3.78)

To simplify the algebra for the averaging over cyclotron orbits, a local Cartesian
coordinate system is used with x axis in the direction of the gyrovelocity at t = 0
and z axis in the direction of the magnetic field at the gyrocenter. Thus, the
Larmor orbit velocity has the form

vL�t�= vL �x̂ cos�ct− ŷ sin�ct� � (3.79)

where

�c = qB

m
(3.80)

is the cyclotron frequency and the Larmor orbit position has the form

rL�t�= vL
�c
�x̂ sin�ct+ ŷ cos�ct� � (3.81)

Inserting the above two expressions in Eq. (3.78) gives

F	B = q v
2
L

�c
��x̂ cos�ct− ŷ sin�ct�× ��x̂ sin�ct+ ŷ cos�ct� ·	�B� � (3.82)
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Noting that
〈
sin 2�ct

〉 = 〈
cos 2�ct

〉 = 1/2 while �sin ��ct� cos ��ct�� = 0� this
reduces to

F	B = qv2L
2�c

[
x̂× �B

�y
− ŷ× �B

�x

]

= mv2L
2B

[
x̂× �

(
Byŷ+Bzẑ

)
�y

− ŷ× �
(
Bxx̂+Bzẑ

)
�x

]

= mv2L
2B

[
ẑ

(
�By

�y
+ �Bx
�x

)
− ŷ �Bz

�y
− x̂ �Bz

�x

]
� (3.83)

But from 	 ·B = 0, it is seen that
�By

�y
+ �Bx
�x

= −�Bz
�z

, so the “grad B ” force is

F	B = −mv
2
L

2B
	B� (3.84)

where the approximation Bz � B has been used, since the magnetic field direction
is mainly in the ẑ direction.
Let us now define

Fc = −mv2�gcB̂ ·	B̂ (3.85)

and consider this force. Suppose the magnetic field lines are curved and consider
a particular point on a specific field line. Define, as shown in Fig. 3.5, a two-
dimensional cylindrical coordinate system �R��� with origin at the field line

R
R

φ

φ

B

center of curvature

Fig. 3.5 Local cylindrical coordinate system defined by curved magnetic field,
�̂= B̂.
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center of curvature for this specific point and lying in the plane of the field line
at this point. The radial position of the chosen point in this cylindrical coordinate
system is the local radius of curvature of the field line and, since �̂= B̂, it is seen
that B̂ ·	B̂= �̂·	 �̂= −R̂/R. The force associated with curvature of a field line,

Fc =
mv2�gcR̂
R

� (3.86)

is therefore just the centrifugal force resulting from the motion along the curve
of the particle’s guiding center.
The drifts can be summarized as

v⊥gc = vE+v	B+vc+vp� (3.87)

where:

1. the “E cross B” drift is

vE = E×B
B2

� (3.88)

2. the “grad B ” drift is

v	B = − mv
2
L

2qB3
	B×B� (3.89)

3. the “curvature” drift is

vc = −mv
2
�gc

qB2
B̂ ·	B̂×B = 1

qB2

(
mv2�gcR̂

R

)
×B� (3.90)

4. the “polarization” drift is

vp = − m

qB2

[
d
dt
�vE +v	B+vc�

]
×B� (3.91)

3.5.3 � conservation

We now imagine being in a frame moving with the velocity v⊥gc; in this frame
the only perpendicular velocity is the cyclotron velocity (Larmor motion). Since
v⊥gc is orthogonal to B, the parallel equation of motion is not affected by this
change of frame and using Eqs. (3.70) and (3.84) can be written as

m
dv�
dt

= qE� − mv
2
L

2B
�B

�s
� (3.92)

where, as before, s is the distance along the magnetic field. Multiplication by v�
gives an energy relation

d
dt

(
mv2�
2

)
= qE�v� − mv

2
L

2B
v�
�B

�s
� (3.93)
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The perpendicular force defined in Eq. (3.73) does not exist in this moving frame
because it has been “transformed away” by the change of frames. Also, recall
that it was assumed that the characteristic scale lengths of E and B are large
compared to the gyroradius (Larmor radius). However, if the magnetic field has
an absolute time derivative, Faraday’s law dictates that there must be an inductive
electric field, i.e., an electric field where

∮
E · dl is finite. Because

∮
E · dl �= 0,

the force provided by an inductive field is non-conservative and so is intrinsically
different from the conservative force provided by the static electric field previously
discussed. The consequences of this inductive field and its non-conservative force
must therefore be taken into account explicitly.
To understand the effect of an inductive electric field on a specific particle, we

dot the Lorentz equation with v to obtain

d

dt

(
mv2�
2

+ mv
2
L

2

)
= qv�E� +qv⊥ ·E⊥� (3.94)

where v⊥ is the vector Larmor orbit velocity and vL = √
v⊥�v⊥ is its scalar

magnitude. Subtracting Eq. (3.93) from (3.94) gives

d
dt

(
mv2L
2

)
= qv⊥ ·E⊥ + mv

2
L

2B
v�
�B

�s
� (3.95)

Integration of Faraday’s law over the cross-section of the Larmor orbit gives

∫
ds ·	×E = −

∫
ds · �B

�t
(3.96)

or

∮
dl ·E = −r2L

�B

�t
� (3.97)

where it has been assumed that the magnetic field is changing sufficiently slowly
for the orbit radius to be approximately constant during each orbit.
Equation (3.95) involves the local electric field E⊥ but Eq. (3.97) only gives the

line integral of the electric field. This line integral can still be used if Eq. (3.95)
is averaged over a cyclotron period. The critical term is the time average over the



98 Motion of a single plasma particle

Larmor orbit of qv⊥ ·E⊥ (which gives the rate at which the perpendicular electric
field does work on the particle),

< qv⊥ ·E⊥ >orbit = �c
2

∫
dt qv⊥ ·E⊥

= −q�c
2

∮
dl ·E⊥ (3.98)

= q�c
2
r2L
�B

�t
�

The substitution v⊥dt= −dl has been used and the minus sign is invoked because
particle motion is diamagnetic (e.g., ions have a left-handed orbit, whereas in
Stokes’ theorem dl is assumed to be a right-handed line element). Averaging of
Eq. (3.95) gives〈

d
dt

(
mv2L
2

)〉
= mv2L

2B
�B

�t
+ mv

2
L

2B
v�
�B

�s
= mv2L

2B
dB
dt
� (3.99)

where dB/dt = �B/�t+ v��B/�s is the total derivative of the average magnetic
field experienced by the particle over a Larmor orbit. Defining the Larmor orbit
kinetic energy as W⊥ =mv2L/2� Eq. (3.99) can be rewritten as

1
W⊥

dW⊥
dt

= 1
B

dB
dt
� (3.100)

which has the solution
W⊥
B

≡ �= const� (3.101)

for magnetic fields that can be changing in both time and space. In plasma
physics terminology, � is called the “first adiabatic” invariant, and the invariance
of � shows that the ratio of the kinetic energy of gyromotion to gyrofrequency
is a conserved quantity. The derivation assumed the magnetic field changed
sufficiently slowly for the instantaneous field strength B�t� during an orbit to differ
only slightly from the orbit-averaged field strength �B�, i.e., �B�t�−�B� � � �B� �

3.5.4 Relation of � conservation to other conservation relations

� conservation is both of fundamental importance and a prime example of the
adiabatic invariance of the action integral associated with a periodic motion. The
� conservation concept unites several seemingly disparate points of view, namely:

1. Conservation of magnetic moment of a particle – According to electromagnetic theory1

the magnetic moment m of a current loop is m = IA, where I is the current flowing in

1 For example, see p. 186 of (Jackson 1998) .
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the loop and A is the area enclosed by the loop. Because a gyrating particle traces out
a circular orbit at the frequency �c/2 and has a charge q, it effectively constitutes a
current loop having I = q�c/2 and cross-sectional area A=r2L� Thus, the magnetic
moment of the gyrating particle is

m =
(q�c
2

)
r2L = mv2L

2B
= � (3.102)

and so the magnetic moment m is an adiabatically conserved quantity.
2. Conservation of magnetic flux enclosed by gyro-orbit – Because the magnetic flux  

enclosed by the gyro-orbit is

 = Br2L =
(
2m
q2

)
�� (3.103)

� conservation further implies conservation of the magnetic flux enclosed by a gyro-
orbit. This is consistent with the concept that magnetic flux is frozen into the plasma,
since if the field is made stronger, the field lines squeeze together in such a way that
the density of field lines per unit area increases in proportion to the field strength. As
shown in Fig. 3.6, the particle orbit area contracts in inverse proportion to the field
strength so after a compression of field, the particle orbit links the same number of
field lines as before the compression.

particle orbit area contracts
in inverse proportion
to the field strength

after compression of field,
particle orbit links same 
number of field lines as before

field lines of
time-dependent
magnetic field Bz(t)

Larmor orbittwo particles at same position,
but having different gyrocenters

increase magnetic field strength

EE

Fig. 3.6 Illustration showing how conservation of flux linked by an orbit is
equivalent to frozen-in field; also, increasing magnetic field results in magnetic
compression.



100 Motion of a single plasma particle

3. Hamiltonian point of view (cylindrical geometry with azimuthal symmetry) – Define
a cylindrical coordinate system �r� �� z� with z axis along the axis of rotation of the
gyrating particle. Since Bz = r−1��rA��/�r, the vector potential is A� = rBz/2� The
velocity vector is v = ṙ r̂+ r�̇�̂+ żẑ and the Lagrangian is

L= m

2

(
ṙ2 + r2�̇2 + ż2

)
+qr�̇A�−q� (3.104)

so the canonical angular momentum is

P� =mr2�̇+qrA� =mr2�̇+qr2Bz/2� (3.105)

Since particles are diamagnetic, �̇= −�c� Because of the azimuthal symmetry, P� will
be a constant of the motion and so

const�= P� = −mr2�c+qr2B/2 = −mv
2
�

2�c
= −m

q
�� (3.106)

This shows that constancy of canonical angular momentum is equivalent to � conser-
vation. It is important to realize that constancy of angular momentum due to perfect
axisymmetry is a much more restrictive assumption than the slowness assumption used
for adiabatic invariance.

4. Adiabatic gas law – The pressure associated with gyrating particles has dimensionality
N = 2, i.e., P = �m/2�

∫
v′ ·v′fd2v� where v′ = vxx̂+ vyŷ and the x− y plane is

the plane of the gyration. Also, the density for a two-dimensional system has units
of particles/area, i.e., n ∼ 1/A. Hence, the pressure will scale as P ∼ v2T⊥/A. Since
� = �N +2�/N = 2� the adiabatic law, Eq. (2.38), gives

const�∼ P

n2
∼ v2T⊥
A
A2� (3.107)

but from the flux conservation property of orbits, A∼ 1/B so Eq. (3.107) becomes

P

n2
∼ v2T⊥
B
� (3.108)

which is again proportional to �, since v2T⊥ is proportional to the mean perpendicular
thermal energy, i.e., the average of the gyrational energies of the individual particles
making up the fluid.

3.5.5 Drift equations, frozen-in flux, and frozen-in field lines

The E×B drift, Eq. (3.57), describes motion of bulk plasma across a magnetic
field and so shows that it is possible for plasma to move across magnetic field
lines. This means that field lines are not invariably frozen into the plasma as is
sometimes stated. Motion of plasma across the magnetic field can occur if no
constraint exists preventing establishment of an electric field E = −U×B� The
plasma can move in the direction perpendicular to the magnetic field provided
the motion is such as to preserve the magnetic flux linked by the plasma.
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If the magnetic field is static, then the electric field is constrained to be a poten-
tial electric field. As an example of a plasma moving across a static magnetic
field consider a cylindrical plasma immersed in a static magnetic field B = Bẑ
and a radial static electric field E = Er r̂� The plasma will rotate with a velocity
U = −�̂Er/B and so will be moving across the static magnetic field lines. This
motion violates the statement that plasma is frozen to magnetic field lines, but
is consistent with the statement that magnetic flux is frozen into the frame of
the plasma. This azimuthal rotation of a plasma across a static magnetic field
is quite common in laboratory plasmas and occurs spontaneously because of the
development of an ambipolar radial electric field established by the difference in
the outward radial diffusion rates of electrons and ions. Symmetry considerations
or boundary conditions can also constrain the electric field. For example, if the
configuration is azimuthally symmetric so �/�� = 0, then no azimuthal electro-
static electric field E� = −r−1��/�� is allowed, in which case an ideal plasma
cannot move in the radial direction across a constant magnetic field B =Bẑ�
If the magnetic field is time-dependent, then an inductive electric field will

exist. The magnetic field lines can now be construed as moving, and the drift
motion due to the inductive electric field will be such as to keep the plasma
attached to the moving field lines as illustrated in Fig. 3.6. This motion will also
be such as to preserve the flux linked by the plasma. Thus, a reasonable way
of stating the frozen-in field concept is to say that plasma is frozen to moving
magnetic field lines, but the converse is not necessarily true, i.e., field lines
are not necessarily frozen to a moving plasma. These latter situations involve
establishment of a static electric field, i.e., E = −U×B, where 	 ×E = 0� in
which case the plasma moves across the magnetic field but the magnetic field
does not change and so the magnetic field lines cannot be construed as moving.
If the motion of the plasma across the magnetic field is such that 	 × �U×B�
is not zero, then there will have to be a finite �B/�t, and so the field lines will
move. The motion of the field lines will be such as to preserve the flux linked by
any element of plasma.

3.5.6 Magnetic mirrors - a consequence of � conservation

Consider a charged particle moving in a static, but spatially non-uniform magnetic
field. The non-uniformity is such that the field strength varies in the direction of
the field line so �B/�s �= 0, where s is the distance along a field line. Such a field
cannot be straight because if it were and so had the form B = Bz�z�ẑ� it would
necessarily have a non-zero divergence, i.e., it would have 	 ·B = �Bz/�z �= 0�
Because magnetic fields must have zero divergence, the magnetic field vector
must have another component besides Bz and this other component must be
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spatially non-uniform in order to contribute to the divergence. Hence the field
must be curved if the field strength varies along the direction of the field.
This curvature is easy to see by sketching field lines, as shown in Fig. 3.7. The

density of field lines is proportional to the strength of the magnetic field and so a
gradient of field strength along the field means that the field lines squeeze together
as the field becomes stronger. Because magnetic field lines have zero divergence
they are endless and so must bend as they squeeze together. This means that if
�Bz/�z �= 0 there must also be a field transverse to the initial direction of the
magnetic field, i.e., a field in the x or y direction. In a cylindrically symmetric
system, this transverse field must be a radial field as indicated by the vector
decomposition B = Bzẑ+Br r̂ in Fig. 3.7.

The magnetic field is assumed to be static so that 	 ×E = 0, in which case
E =−	� and Eq. (3.92) can be written as

m
dv�
dt

= −q ��
�s

−��B
�s
� (3.109)

Multiplying Eq. (3.109) by v� gives

d
dt

[
mv2�
2

+q�+�B
]

= 0� (3.110)

assuming that the electrostatic potential is also constant in time. Time integration
gives

mv2�
2

+q��s�+�B�s�= const� (3.111)

B
Bz

Br

r

z

field lines squeezed
together

Fig. 3.7 Field lines squeezing together when B has a gradient. B field is stronger
on the right than on the left because density of field lines is larger on the right.
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“potential”
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z

Fig. 3.8 Magnetic mirror.

Thus, �B�s� acts as an effective potential energy since it adds to the electrostatic
potential energy q��s�� This property has the consequence that if B�s� has a
minimum with respect to s as shown in Fig. 3.8, then �B acts as an effective
potential well that can trap particles. A magnetic trap of this sort can be produced
by two axially separated coaxial coils. On each field line B�s� has maxima at the
locations s1 and s2 near the coils, a minimum at location s0 between the coils, and
B�s� tends to zero as s→ ±�� To focus attention on magnetic trapping, suppose
now no electrostatic potential exists so Eq. (3.111) reduces to

mv2�
2

+�B�s�= const� (3.112)

Now consider a particle with parallel velocity v�0 located at the well minimum
s0 at time t = 0. Evaluating Eq. (3.112) at s = 0� t = 0, and then again when the
particle is at some arbitrary position s gives

mv2��s�
2

+�B�s�=
mv2�0
2

+�B�s0�=
m
(
v2�0 +v2⊥0

)
2

=W0� (3.113)

where W0 is the particle’s total kinetic energy at t = 0. Solving Eq. (3.113) for
v��s� gives

v��s�= ±
√

2
m
�W0 −�B�s��� (3.114)

If �B�s� = W0 at some position s� then v��s� must vanish at this position, in
which case the particle must reverse its direction of motion just like a pendulum
reversing direction when its velocity goes through zero. This velocity reversal
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corresponds to a reflection of the particle and so this configuration is called a
magnetic mirror. A particle can be trapped between two magnetic mirrors; such
a configuration is called a magnetic trap or a magnetic well.
If W0 > �Bmax, where Bmax is the magnitude at s1�2 then the parallel velocity

does not go to zero at the maximum amplitude of the mirror field. In this case the
particle does not reflect, but instead escapes over the peak of the �B�s� potential
hill and travels out to infinity. Thus, there are two classes of particles:

1. trapped particles – these have W0 < �Bmax and bounce back and forth between the
mirrors of the magnetic well,

2. untrapped (or passing) particles – these have W0 > �Bmax and are retarded at the
potential hills but not reflected.

Since � = mv2⊥0/2Bmin and W0 = mv20/2, the criterion for trapping can be
written as

Bmin

Bmax
<
v2⊥0

v20
� (3.115)

Let us define � as the angle the velocity vector makes with respect to the magnetic
field at s0� i.e., sin � = v⊥0/v0, and also define

�trap = sin−1

√
Bmin

Bmax
� (3.116)

Thus, as shown in Fig. 3.9, all particles with � > �trap are trapped, while all
particles with � < �trap are untrapped. Suppose at t = 0 the particle velocity
distribution at s0 is isotropic. After a time interval long enough for all untrapped
particles to have escaped the trap, there will be no particles in the � < �trap region
of velocity space. The velocity distribution will thus be zero for � < �trap; such a
distribution function is called a loss-cone distribution function.

mirror
trapped

loss
cone

θ

V θtrap

B

Fig. 3.9 Loss-cone velocity distribution. Particles with velocity angle � > �trap
are mirror trapped, others are lost.
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3.5.7 � , the second adiabatic invariant

Trapped particles have periodic motion in the magnetic well. Thus, applying the
concept of adiabatic invariance presented in Section 3.4.1, the quantity

� =
∮
P�ds =

∮
�mv� +qA��ds (3.117)

will be an invariant if:

1. any time dependence of the well shape is slow compared to the bounce frequency of
the trapped particle,

2. any spatial inhomogeneities of the well magnetic field are so gradual that the particle’s
bounce trajectory changes by only a small amount from one bounce to the next.

To determine the circumstances where A� �= 0� we use Coulomb gauge (i.e.,
assume 	 ·A = 0� and at any given location define a local Cartesian coordinate
system with z axis parallel to the local field. From Ampère’s law it is seen that

�	× �	×A��z = −	2Az = �0Jz (3.118)

so Az is finite only if there is a current parallel to the magnetic field. Because Jz
acts as the source term in a Poisson-like partial differential equation for Az� the
parallel current need not be at the same location as Az. If there are no currents
parallel to the magnetic field anywhere then A� = 0� and in this case the second
adiabatic invariant reduces to

� =m
∮
v�ds� (3.119)

Having a current flow along the magnetic field corresponds to a more complicated
magnetic topology. The axial current produces an associated azimuthal magnetic
field, which links the axial magnetic field resulting in a helical twist. This more
complicated situation of finite magnetic helicity will be discussed in a later
chapter.

3.5.8 Consequences of � -invariance

Just as �-invariance was related to the perpendicular CGL adiabatic invariant
discussed in Section 2.6.5, � -invariance is closely related to the parallel CGL
adiabatic invariant also discussed in Section 2.6.5. To see this, recall that density
in a one-dimensional system has dimensions of particles per unit length, i.e.,
n1D ∼ 1/L, and pressure in a one-dimensional system has dimensions of kinetic
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energy per unit length, i.e., P1D ∼ v2�/L. For parallel motion the number of
dimensions is N = 1 so � = �N +2�/N = 3 and the fluid adiabatic relation is

const�∼ P1D

n31D
∼
v2�/L
L−3

∼ (
v�L

)2
� (3.120)

which is a simplified form of Eq. (3.119) since Eq. (3.119) has the scaling
� ∼ v�L= const�
� -invariance combined with mirror trapping/detrapping is the basis of an

acceleration mechanism proposed by Fermi (1954) as a means for accelerating
cosmic-ray particles to ultra-relativistic velocities. The Fermi mechanism works
as follows: consider a particle initially trapped in a magnetic mirror. This particle
has an initial angle in velocity space � > �trap� both � and �trap are measured
when the particle is at the mirror minimum. Now suppose the distance between
the magnetic mirrors is slowly reduced so that the bounce distance L of the
mirror-trapped particle slowly decreases. This would typically occur by reduc-
ing the axial separation between the coils producing the magnetic mirror field.
Because � ∼ v�L is invariant, the particle’s parallel velocity increases on each
successive bounce as L slowly decreases� This steady increase in v� means that
the velocity angle � decreases. Eventually, � becomes smaller than �trap where-
upon the particle becomes detrapped and escapes from one end of the mirror with
a large parallel velocity. This mechanism provides a slow pumping to very high
energy, followed by a sudden and automatic ejection of the energetic particle.

3.5.9 The third adiabatic invariant

Consider a particle bouncing back and forth in either of the two geometries
shown in Fig. (3.10). In Fig. 3.10(a), the magnetic field is produced by a single

(a) (b)

Fig. 3.10 Magnetic field lines relevant to discussion of third adiabatic invariant:
(a) field lines always have same curvature (dipole field), (b) field lines have both
concave and convex curvature (mirror field).
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magnetic dipole and the field lines always have convex curvature, i.e., the radius
of curvature is always on the inside of the field lines. The field decreases in
magnitude with increasing distance from the dipole.
In Fig. 3.10(b), the field is produced by two coils and has convex curvature

near the mirror minimum and concave curvature in the vicinity of the coils. On
defining a cylindrical coordinate system �r� �� z� with z axis coaxial with the
coils, it is seen that in the region between the two coils where the field bulges
out, the field strength is a decreasing function of r� i.e., �B/�r < 0, whereas in
the plane of each coil the opposite is true. Thus, in the mirror minimum, both the
centrifugal and grad B forces are radially outward, whereas the opposite is true
near the coils.
In both Figs. 3.10(a) and (b) a particle moving along the field line can be mirror-

trapped because in both cases the field has a minimum flanked by two maxima.
However, for Fig. 3.10(a), the particle will have grad B and curvature drifts always
in the same azimuthal sense, whereas for Fig. 3.10(b) the azimuthal direction
of these drifts will depend on whether the particle is in a region of concave or
convex curvature. Thus, in addition to the mirror bouncing motion, much slower
curvature and grad B drifts also exist, directed along the field binormal (i.e.,
the direction orthogonal to both the field and its radius of curvature). These
higher-order drifts may alternate sign during the mirror bouncing. The binormally
directed displacement made by a particle during its ith complete period � of mirror
bouncing is

�rj =
∫ �
0

vdt� (3.121)

where � is the mirror bounce period and v is the sum of the curvature and grad B
drifts experienced in the course of a mirror bounce. This displacement is due to
the cumulative effect of the curvature and grad B drifts experienced during one
complete period of bouncing between the magnetic mirrors. The average velocity
associated with this slow drifting may be defined as

�v�=1
�

∫ �
0

vdt� (3.122)

Let us calculate the action associated with a sequence of �rj . This action is

S =∑
j

�m �v�+qA�j ·�rj� (3.123)

where the quantity in square brackets is evaluated on the line segment �rj . If the
�rj are small then this can be converted into an action “integral” for the path
traced out by the �rj . If the �rj are sufficiently small to behave as differentials,
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then we may write them as drbounce and express the summation as an action
integral

S =
∫
�m �v�+qA� ·drbounce� (3.124)

where it must be remembered that �v� is the bounce-averaged velocity. The
quantity m �v�+qA is just the canonical momentum associated with the effective
motion along the sequence of line segments �rj . The vector rbounce is a vector
pointing from the origin to the particle’s location at successive bounces and so
is the generalized coordinate associated with the bounce-averaged velocity. If the
motion resulting from �v� is periodic, we expect S to be an adiabatic invariant.
The first term in Eq. (3.124) will be of the order of mvdrift2r, where r is the
radius of the trajectory described by the �rj� The second term is just q , where
 is the magnetic flux enclosed by the trajectory. We compare the ratio of these
two terms to obtain∫

m �v� ·dr∫
qA ·dr ∼ mvdrift2r

qBr2
∼ vdrift

�cr
∼ r2L
r2
� (3.125)

where we have used v	B ∼ vc ∼ v2⊥/�cr ∼ �cr
2
L/r . Thus, if the Larmor radius

is much smaller than the characteristic scale length of the field, the magnetic
flux term dominates the action integral and adiabatic invariance corresponds
to the particle staying on a constant flux surface as its orbit evolves follow-
ing the various curvature and grad B drifts. This third adiabatic invariant is
much more fragile than � , which in turn was more fragile than �, because
the analysis here is based on the rather strong assumption that the curvature
and grad B drifts are small enough for the �rj to trace out a nearly periodic orbit.

3.6 Relation of drift equations to the double adiabatic MHD equations

The derivation of the MHD Ohm’s law involved dropping the Hall term (see
p. 55) and the basis for dropping this term was assuming �� �ci, where �
is the characteristic rate of change of the electromagnetic field. The derivation of
the single particle drift equations involved essentially the same assumption (i.e.,
the motion was slow compared to �c��. Thus, if the characteristic rate of change
of the electromagnetic field is slow compared to �ci, both the MHD and the
single particle drift equations ought to be equally valid descriptions of the plasma
dynamics. If so, there should be some sort of a correspondence principle relating
these ostensibly different points of view. Preliminary evidence supporting this
hypothesis was the observation that the single particle adiabatic invariants � and �
were respectively related to the perpendicular and parallel double adiabatic MHD
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equations. It thus seems reasonable to expect additional connections between the
drift equations and the double adiabatic MHD equations.
In fact, an approximate derivation of the double adiabatic MHD equations

can be obtained by summing the currents associated with the various particle
drifts – providing one additional effect, diamagnetic current, is added to this
sum. Diamagnetic current is a peculiar concept because it is a consequence of
the macroscopic phenomenon of pressure gradients and so has no meaning in the
context of a single particle description.
In order to establish this microscopic–macroscopic relationship we begin by

recalling from electromagnetic theory2 that a magnetic material with density M
of magnetic dipole moments per unit volume has an associated magnetization
current

JM = 	×M� (3.126)

The magnitude of the magnetic moment of a charged particle in a magnetic field
was shown in Section 3.5.4 to be �. Since a magnetic dipole is represented by
a vector pointing in the direction of the magnetic field on the axis of the current
loop constituting the dipole, the vector magnetic moment of a charged particle
gyrating in a magnetic field will be m = −�B̂. The minus sign corresponds
to cyclotron motion being diamagnetic, i.e., the magnetic field resulting from
cyclotron rotation opposes the original field in which the particle is rotating.
For example, an individual ion placed in a magnetic field B = Bẑ rotates in the
negative � direction, and so the current associated with the ion motion creates a
magnetic field pointing in the −ẑ direction inside the ion orbit.
Suppose there exists a large number or ensemble of particles with density n� and

mean magnetic moment �̄� . The density of magnetic moments, or magnetization
density, of this ensemble is

M = −∑
�

n��̄�B̂ = −∑
�

n�

〈
m�v

2⊥
2B

〉
B̂ = −P⊥B̂

B
� (3.127)

where �� denotes averaging over the velocity distribution and Eq. (2.26) has been
used. Inserting Eq. (3.127) into Eq. (3.126) shows that this ensemble of charged
particles in a magnetic field has a diamagnetic current

JM = −	×
(
P⊥B̂
B

)
� (3.128)

2 For example, see p. 192 of (Jackson 1998).
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Fig. 3.11 Gradient of magnetized particles gives apparent current as observed
on dashed line.

Figure 3.11 shows the physical origin of JM . Here, a collection of ions all rotate
clockwise in a magnetic field pointing out of the page. The azimuthally directed
current on the dashed curve is the sum of contributions from (i) particles with
guiding centers located one Larmor radius inside the dashed curve and (ii) particles
with guiding centers located one Larmor radius outside the dashed curve. From
the point of view of an observer located on the dashed curve, the inside particles
(group (i)) constitute a clockwise current, whereas the outside (group (ii)) particles
constitute a counterclockwise current. If there are unequal numbers of inside and
outside particles (indicated here by concentric circles inside the dashed curve),
then the two opposing currents do not cancel and a net macroscopic current
appears to flow around the dashed curve, even though no actual particles flow
around the dashed curve. Inequality of the numbers of inside and outside particles
corresponds to a density gradient and so we see that a radial density gradient of
gyrating particles gives a net macroscopic azimuthal current. Similarly, if there is
a radial temperature gradient, the velocities of the inner and outer groups differ,
resulting again in an apparent macroscopic azimuthal current. The combination
of density and temperature gradients is such that the net macroscopic current
depends on the pressure gradient as given by Eq. (3.128).
Taking diamagnetic current into account is critical for establishing a corre-

spondence between the single particle drifts and the MHD equations, and having
recognized this, we are now in a position to derive this correspondence. In order
for the derivation to be tractable yet non-trivial, it will be assumed that the
magnetic field is time-independent, but the electric field will be allowed to depend
on time. It is also assumed that the dominant cross-field particle motion is the
vE = E×B/B2 drift; this assumption is consistent with the hierarchy of particle
drifts (i.e., polarization drift is a higher-order correction to vE).
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Because both species have the same vE, no macroscopic current results from
vE, and so all cross-field currents must result from the other, smaller drifts,
namely v	B� vc, and vp. Let us now add the magnetization current to the currents
associated with these other drifts to obtain the total macroscopic current

Jtotal = JM +J	B+Jc+Jp = JM +∑
�

n�q�
(
u	B�� +uc�� +up��

)
� (3.129)

where J	B�Jc, Jp are currents due to gradB, curvature, and polarization drifts
respectively and u	B�� , uc�� , and up�� are the mean (i.e., fluid) velocities associ-
ated with these drifts. These currents are explicitly:

1. grad B current

J	B =∑
�

n�q�u	B��

= −∑
�

m�n�q�
〈
v2⊥�

〉
2B

	B×B
q�B

2
= −P⊥

	B×B
B3

�

(3.130)

2. curvature current

Jc =∑
�

n�q�uc��

= −∑
�

n�q�m�
〈
v2��
〉 B̂ ·	B̂×B

q�B
2

= −P�
B̂ ·	B̂×B

B2
�

(3.131)

3. polarization current

Jp =∑
�

n�q�up�� =∑
�

n�q�

(
m�
q�B

2

dE⊥
dt

)
= �

B2

dE⊥
dt
� (3.132)

Because the magnetic field was assumed to be constant, the time derivative of vE
is the only contributor to the polarization drift current.
The total magnetic force is

Jtotal×B = (
JM +J	B+Jc+Jp

)×B

=

⎡⎢⎢⎢⎢⎣
−	×

(
P⊥B̂
B

)
−P⊥

	B×B
B3

−P�
B̂ ·	B̂×B

B2
+ �

B2

dE
dt

⎤⎥⎥⎥⎥⎦×B�
(3.133)
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The grad B current cancels part of the magnetization current as follows:

	×
(
P⊥B̂
B

)
+P⊥

	B×B
B3

=
[
	

(
1
B

)
×P⊥B̂+ 1

B
	×

(
P⊥B̂

)]

+P⊥
	B×B
B3

= 1
B
	×

(
P⊥B̂

)
= P⊥
B
	× B̂+ 	P⊥ × B̂

B
(3.134)

so

Jtotal×B = −
[
P⊥	× B̂+	P⊥ × B̂+P�B̂ ·	B̂× B̂− �

B

dE
dt

]
× B̂� (3.135)

The first term on the right-hand side of Eq. (3.135) can be recast using the vector
identity

	

(
B̂ · B̂
2

)
= 0 = B̂ ·	B̂+ B̂×	× B̂ (3.136)

and the electric field in the last term of Eq. (3.135) can be replaced using E =
−U×B to give

Jtotal×B = − (P⊥ −P�
)
B̂ ·	B̂+	⊥P⊥ − �

B

d �U×B�
dt

× B̂� (3.137)

The relation
[
B̂ ·	B̂

]
⊥

= B̂ ·	B̂ has been used here; this relation follows from

Eq. (3.136). Finally, it is observed that[
	 ·
(
B̂B̂
)]

⊥
=
[(
	 · B̂

)
B̂+ B̂ ·	B̂

]
⊥

= B̂ ·	B̂ (3.138)

so(
P⊥ −P�

)
B̂ ·	B̂ = (

P⊥ −P�
) [
	 ·
(
B̂B̂
)]

⊥
=
[
	 ·
{(
P⊥ −P�

)
B̂B̂
}]

⊥
� (3.139)

Furthermore,
�

B

d �U×B�
dt

× B̂ = −
[
�
dU
dt

]
⊥
� (3.140)

since it has been assumed the magnetic field is time-independent. Inserting these
last two results in Eq. (3.137) gives

Jtotal×B =
[
	 ·
{(
P� −P⊥

)
B̂B̂
}]

⊥
+	⊥P⊥ +

[
�
dU
dt

]
⊥

(3.141)

or [
�
dU
dt

]
⊥

=
[
Jtotal×B−	 ·

{
P⊥

←→
I + (P� −P⊥

)
B̂B̂
}]

⊥
� (3.142)



3.6 Double adiabatic MHD equations 113

which is just the perpendicular component of the double adiabatic MHD equation
of motion. This demonstrates that if diamagnetic current is taken into account,
the drift equations for phenomena with characteristic frequencies � much smaller
than �ci and the double adiabatic MHD equations are equivalent descriptions
of plasma dynamics. This analysis also shows one has to be extremely careful
when invoking single particle concepts to explain macroscopic behavior, because
if diamagnetic effects are omitted, erroneous conclusions can result.
The justification for the designation “polarization current” results from compar-

ing this current to the current flowing through a parallel plate capacitor with
dielectric 
. The capacitance of the parallel plate capacitor is C = 
A/d, where
A is the cross-sectional area of the capacitor plates and d is the gap between the
plates. The charge on the capacitor is Q= CV , where V is the voltage across the
capacitor plates. The current through the capacitor is I = dQ/dt so

I = C dV

dt
= 
A

d

dV
dt
� (3.143)

Because the electric field between the plates is E = V/d and the current density
is J = I/A, Eq. (3.143) can be expressed as

J = 
dE
dt
� (3.144)

which gives the alternating current density in a medium with dielectric 
. If this
is compared to the polarization current

Jp = �

B2

dE⊥
dt

(3.145)

it is seen that the plasma acts like a dielectric medium in the direction perpendic-
ular to the magnetic field and has an effective dielectric constant given by �/B2.
The polarization current is intimately related to the acceleration of macroscopic

volumes of plasma and also to the details of how an E×B drift becomes estab-
lished. This is shown schematically in Fig. 3.12(a), where a cube of perfectly
conducting plasma is placed at rest between two capacitor plates located in a
magnetic field B = Bẑ. When the capacitor plates are connected to a source of
EMF as in Fig. 3.12(b) so that the upper capacitor plate becomes negatively
charged and the lower capacitor plate becomes positively charged, a vertical elec-
tric field Ey is established. This causes the electrons and the ions to have an E×B
drift to the right as sketched in Fig. 3.12(b) and so the bulk plasma moves to
the right with the velocity U = E×B/B2 = x̂Ey/B. The slight upward motion of
the ions and the slight downward motion of the electrons polarizes the cube so a
positive surface charge develops on the upper surface of the cube and a negative
surface charge develops on the lower surface. The surface polarization creates
an electric field opposing the vacuum field due to the capacitor plates and so
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U = xEy/BEy
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Fig. 3.12 (a) A plasma cube is initially at rest between two capacitor plates
located in a magnetic field B=Bẑ. A source of EMF is connected to the capacitor
plates so as to establish a vertical electric field Ey. (b) The E×B motion of
ions causes a positive surface charge to develop on the top of the cube while the
corresponding electron E×B motion creates a negative surface charge on the
bottom of the cube. This surface charge is a polarization charge and reduces
the strength of the applied electric field. The polarization current establishes the
polarization charge.

the net electric field is reduced relative to the vacuum level, just as the electric
field inside a capacitor is reduced by the polarization of the dielectric in the
capacitor. The polarization current is the means by which these surface charges
are established. The polarization current Jp flows transiently in the y direction as
the cube is accelerated from rest to its steady-state velocity, and this acceleration
corresponds to the temporal increase of Ey. This entire process can be equivalently
characterized using the MHD point of view, in which case the acceleration of the
cube to the right is interpreted as resulting from the cross-product between the
polarization current Jp and the magnetic field B, since

�
dU
dt

= Jp×B = �

B2

dE⊥
dt

×B = � d
dt

(
E×B
B2

)
� (3.146)

The importance of symmetry becomes apparent if one changes the geometrical
arrangement to cylindrical geometry "r��� z# with B = Bẑ and attempts to have
radial acceleration of an annular shell of perfectly conducting plasma, i.e., a plasma
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shell defined by a < r < b, where a is the inner radius and b is the outer radius.
The annular shell corresponds to letting x→ r and y→ � when relating to the
situation sketched in Fig. 3.12. Let us imagine the annular shell is decomposed
into N equal angular sectors, so that the first sector lies between � = 0 and
� = 2/N , etc. Viewed individually, each annulus sector should behave in a
manner similar to the cube sketched in Fig. 3.12 and develop a surface polarization
charge on its � faces, corresponding to the development of an azimuthal electric
field E�. For example, radial motion of the first sector would cause negative
polarity to develop on the � = 0 surface and positive polarity to develop on
the � = 2/N surface. However, the next sector (i.e., the sector lying between
�= 2/N and �= 4/N ) would have a negative surface charge at �= 2/N ,
which would cancel the positive surface charge on the first sector. The azimuthal
symmetry essentially short-circuits the development of a finite electrostatic E� and
so prevents the plasma from moving in the radial direction. Thus, whether or not
a plasma can move across a magnetic field is intimately related to the symmetry
of the configuration. Moving across a magnetic field requires establishment of a
polarization surface charge and associated electrostatic field and this cannot occur
if prohibited by considerations of symmetry.

3.7 Non-adiabatic motion in symmetric geometry

Adiabatic behavior occurs when temporal or spatial changes in the electromagnetic
field from one cyclical orbit to the next are sufficiently gradual to be effectively
continuous and differentiable (i.e., analytic). Thus, adiabatic behavior corresponds
to situations where variations of the electromagnetic field are sufficiently gradual
to be characterized by the techniques of calculus (differentials, limits, Taylor
expansions, etc.).
Non-adiabatic particle motion occurs when this is not so. It is therefore no

surprise that it is usually not possible to construct analytic descriptions of non-
adiabatic particle motion. However, there exist certain special situations where
non-adiabatic motion can be described analytically. Using these special cases as
a guide, it is possible to develop an understanding for what happens when motion
is non-adiabatic.
One special situation is when the electromagnetic field is geometrically symmet-

ric with respect to some coordinate Qj , in which case the symmetry makes it
possible to develop analytic descriptions of non-adiabatic motion. This is because
symmetry in Qj causes the canonical momentum Pj to be an exact constant of the
motion. The critical feature is that Pj remains constant no matter how drastically
the field changes in time or space because Lagrange’s equation Ṗj = −�L/�Qj has
no limitations on the rate at which changes can occur. In effect, being symmetric
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trumps being non-analytic. The absolute invariance of Pj when �L/�Qj = 0
reduces the number of equations and allows a partial or sometimes even a complete
solution of the motion. Solutions to symmetric problems give valuable insight
regarding the more general situation of being both non-adiabatic and asymmetric.
Two closely related examples of non-adiabatic particle motion will now be

analyzed: (i) sudden temporal and (ii) sudden spatial reversal of the polarity of an
azimuthally symmetric magnetic field having no azimuthal component. The most
general form of such a field can be written in cylindrical coordinates �r� �� z� as

B = 1
2
	&�r� z� t�×	�� (3.147)

a field of this form is called poloidal. Rather than using �̂ explicitly, the form
	� has been used because 	� is better suited for use with the various identities
of vector calculus (e.g., 	 ×	� = 0) and leads to greater algebraic clarity. The
relationship between 	� and �̂ is seen by simply taking the gradient:

	� =
(
r̂
�

�r
+ �̂
r

�

��
+ ẑ �
�z

)
� = �̂

r
� (3.148)

Equation (3.147) automatically satisfies 	 ·B = 0 (by virtue of the vector
identity 	 ·�G×H�=H ·	×G−G ·	×H�� has no � component, and is otherwise
arbitrary, since & is arbitrary. As shown in Fig. 3.13, the magnetic flux linking a
circle of radius r with center at axial position z is

∫
B ·ds =

∫ r
0
2rdrẑ ·

[
1
2
	&�r� z� t�×	�

]
=
∫ r
0
dr
�&�r� z� t�

�r
= &�r� z� t�−&�0� z� t��

(3.149)

Bz

ψ (r, z) is flux
linked by this
circle

Fig. 3.13 Azimuthally symmetric flux surface.



3.7 Non-adiabatic motion in symmetric geometry 117

However,

Br�r� z� t�= − 1
2r

�&

�z
(3.150)

and since 	 ·B = 0�Br must vanish at r = 0� and so �&/�z= 0 on the symmetry
axis r = 0.
Thus & is constant along the symmetry axis r = 0; for convenience we choose

this constant to be zero. Hence, &�r� z� t� is precisely the magnetic flux enclosed
by a circle of radius r at axial location z. We can also use the vector potential A
to calculate the magnetic flux through the same circle and obtain∫

B ·ds =
∫
	×A ·ds =

∮
A ·dl =

∫ 2

0
A�rd� = 2rA�� (3.151)

This shows that the flux & and the vector potential A� are related by

&�r� z� t�= 2rA�� (3.152)

No other component of vector potential is required to determine the magnetic
field and so we may set A = A��r� z� t��̂ .
The current J =�−1

0 	×B producing this magnetic field is purely azimuthal as
can be seen by considering the r and z components of 	×B� The actual current
density is

J� = �−1
0 r	� ·	×B

= �−1
0 r	 · �B×	��

= − r

2�0
	 ·
(
1
r2
	&

)
= − r

2�0

[
�

�r

(
1
r2
�&

�r

)
+ 1
r2
�2&

�z2

]
� (3.153)

a Poisson-like equation. Since no current loops can exist at infinity, the field
prescribed by Eq. (3.147) must be produced by a set of coaxial coils having
various finite radii r and various finite axial positions z.
The axial magnetic field is

Bz = 1
2r

�&

�r
� (3.154)

Near r = 0, & can always be Taylor expanded as

&�r� z�= 0+ r �&�r = 0� z�
�r

+ r
2

2
�2&�r = 0� z�

�r2
+ ��� (3.155)

Suppose �&/�r is non-zero at r = 0, i.e., & ∼ r near r = 0. If this were the case,
then the first term in the right-hand side of the last line of Eq. (3.153) would
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become infinite and so lead to an infinite current density at r = 0. Such a result is
non-physical and so we require that the first non-zero term in the Taylor expansion
of & about r = 0 to be the r2 term.
Every field line looping through the inside of a current loop also loops back in

the reverse direction on the outside, so there is no net magnetic flux at infinity.
This means & must vanish at infinity and so as r increases, & increases from its
value of zero at r = 0 to some maximum value &max at r = rmax, and then slowly
decreases back to zero as r → �� As seen from Eq. (3.154) this corresponds to
Bz being positive for r < rmax and negative for r > rmax. A contour plot of the
&�r� z� flux surfaces and a plot of &�r� z= 0� versus r is shown in Fig. 3.14.
In this cylindrical coordinate system the Lagrangian, Eq. (3.12), has the form

L= m

2

(
ṙ2 + r2�̇2 + ż2

)
+qr�̇A�−q��r� z� t�� (3.156)

Since � is an ignorable coordinate, the canonical angular momentum is a constant
of the motion, i.e.,

P� = �L

��̇
=mr2�̇+qrA� = const� (3.157)

or, in terms of flux,

P� =mr2�̇+ q

2
&�r� z� t�= const� (3.158)

r

r
B

z

ψ(r,0)

ψ(r,z) = const.

Fig. 3.14 Contour plot of flux surfaces.



3.7 Non-adiabatic motion in symmetric geometry 119

Thus, the Hamiltonian is

H = m

2

(
ṙ2 + r2�̇2 + ż2

)
+��r� z� t�

= m

2

(
ṙ2 + ż2)+ �P�−q&�r� z� t�/2�2

2mr2
+��r� z� t�

= m

2

(
ṙ2 + ż2)+'�r� z� t��

(3.159)

where

'�r� z� t�= 1
2m

[
P�−q&�r� z� t�/2

r

]2
(3.160)

is an effective potential. For purposes of plotting, the effective potential can be
written in a dimensionless form as

'�r� z� t�

'0
=

⎛⎜⎜⎝
2P�
q&0

− &�r� z� t�
&0

r/L

⎞⎟⎟⎠
2

� (3.161)

where L is some reference scale length, &0 is some arbitrary reference value for
the flux, and '0 = q&2

0/8
2L2m. For simplicity we have set ��r� z� t�= 0� since

this term gives the motion of a particle in a readily understood, two-dimensional
electrostatic potential.
Suppose that for times t < t1 the coil currents are constant, in which case the

associated magnetic field and flux are also constant. Since the Lagrangian does
not explicitly depend on time, the energy H is a constant of the motion. Hence,
there are two constants of the motion, H and P�� Consider now a particle located
initially on the midplane z= 0 with r < rmax. The particle motion depends on the
sign of q&/P� and so we consider each polarity separately.

1. q&/P� is positive. If 2�P��< �q&max� there exists a location inside rmax where

P� = q

2
& (3.162)

and there exists a location outside rmax where this equality holds as well. ' vanishes
at these two points, which are also local minima of ' because ' is positive-definite.
The top plot in Fig. 3.15 shows a nominal &�r�/&0 flux profile and the middle plot
shows the corresponding '�r�/'0 � the z and t dependences are suppressed from the
arguments for clarity� There exists a maximum of ' between the two minima. We
consider a particle initially located in one of the two minima of '. If H < 'max the
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Fig. 3.15 Specific example (with z dependence suppressed) showing & and '
relationship: top is plot of function &�r�/&0 = �r/L�2 /�1+ �r/L�6�, middle and
bottom plots show corresponding normalized effective potential for 2P�/q&0 =
+0�2 and 2P�/q&0 = −0�2. Both middle and bottom plots have a minimum at
r/L� 0�45� middle plot also has a minimum at r/L� 1�4. The two minima in
the middle plot occur when '�r�/'0 = 0 but the single minimum in the bottom
plot occurs at a finite value of '�r�/'0, indicating that an axis-encircling particle
must have finite energy.

particle will be confined to an effective potential well centered about the flux surface
defined by Eq. (3.162). From Eq. (3.158) the angular velocity is

�̇ = 1
mr2

(
P�−

q&

2

)
� (3.163)

The sign of �̇ reverses periodically as the particle bounces back and forth in the '
potential well. This corresponds to localized gyromotion as shown in Fig. 3.16 (left).

2. q&/P� is negative. In this case ' can never vanish, because P�−q&/2 never vanishes.
Nevertheless, it is still possible for ' to have a minimum and, hence, a potential well.
This possibility can be seen by setting �'/�r = 0, which occurs when(

P�−
q

2
&
) �
�r

(
P�−q&/2

r

)
= 0� (3.164)
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non-axis-encircling axis-encircling

Fig. 3.16 Localized gyromotion associated with particle bouncing in effective
potential well.

Equation (3.164) can be satisfied by having

�

�r

⎛⎜⎝P�−
q

2
&

r

⎞⎟⎠= 0� (3.165)

which implies

P� = −qr
2

2
�

�r

(
&

r

)
� (3.166)

Recall that & had a maximum, & ∼ r2 near r = 0� and also &→ 0 as r → �. Thus
&/r ∼ r for small r and &/r→ 0 for r→ � so &/r also has a maximum; this maximum
is located at an r somewhat inside of the maximum of &. Equation (3.166) can only
be valid at points inside of this maximum; otherwise the assumption of opposite signs
for P� and & would be incorrect. Furthermore, Eq. (3.166) can only be satisfied if �P��
is not too large, because the right-hand side of Eq. (3.166) has a maximum value. If
all these conditions are satisfied, then ' will have a non-zero minimum as shown in
the bottom plot of Fig. 3.15.

A particularly simple example of this behavior occurs if Eq. (3.166) is satisfied
near the r = 0 axis (i.e., where & ∼ r2) so that this equation becomes simply

P� = − q

2
&� (3.167)

which is just the opposite of Eq. (3.162). Substituting in Eq. (3.163) we see that �̇
now never changes sign; i.e., the particle is axis-encircling as sketched in Fig. 3.16
(right). The Larmor radius of this axis-encircling particle is just the radius of the
minimum of the potential well, the radius where Eq. (3.166) holds. The azimuthal
kinetic energy of the particle corresponds to the height of the minimum of ' in
the bottom plot of Fig. 3.15.
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3.7.1 Temporal reversal of magnetic field-energy gain

Armed with this information about axis-encircling and non-axis-encircling parti-
cles, we now examine the strongly non-adiabatic situation where a coil current
starts at I = I0, is reduced to zero, and then becomes I = −I0, so that all fields and
fluxes reverse sign. The particle energy will not stay constant for this situation
because the Lagrangian depends explicitly on time. However, since symmetry is
maintained, P� must remain constant. Thus, a non-axis-encircling particle (with
radial location determined by Eq. (3.162)) will change to an axis-encircling parti-
cle if a minimum exists for ' when the sign of & is reversed. If such a minimum
does exist and if the initial radius was near the axis where & ∼ r2, then compari-
son of Eqs. (3.162) and (3.167) shows that the particle will have the same radius
after the change of sign as before. The particle will gain energy during the field
reversal by an amount corresponding to the finite value of the minimum of ' for
the axis-encircling case.
This process can also be considered from the point of view of particle drifts:

initially, the non-axis-encircling particle is frozen to a constant & surface (flux
surface). When the coil current starts to decrease, the maximum value of the flux
correspondingly decreases. The constant & contours on the inside of &max move
outwards towards the location of &max where they are annihilated. Likewise, the
contours outside of &max move inwards to &max where they are also annihilated.
To the extent that the E×B drift is a valid approximation, its effect is to keep

the particle attached to a surface of constant flux. This can be seen by integrating
Faraday’s law over the area of a circle of radius r to obtain

∫
ds · 	 ×E =

− ∫ ds · �B/�t and then invoking Stokes’ theorem to give

E�2r = −�&
�t
� (3.168)

The theta component of E+v×B = 0 is

E�+vzBr −vrBz = 0 (3.169)

and from (3.147), Br = − �2r�−1 �&/�z and Bz= − �2r�−1 �&/�r� Combination
of Eqs. (3.168) and (3.169) thus gives

�&

�t
+vr

�&

�r
+vz

�&

�z
= 0� (3.170)

Because &�r�t�� z�t�� t� is the flux measured in the frame of a particle moving
with trajectory r�t� and z�t�, Eq. (3.170) shows that the E× B drift main-
tains the particle on a surface of constant &, i.e., the E×B drift is such as to



3.7 Non-adiabatic motion in symmetric geometry 123

maintain d&/dt= 0, where d/dt means time derivative as measured in the particle
frame.
The implication of this attachment of the particle to a surface of constant & can

be appreciated by making an analogy to the motion of people initially located on
the beach of a volcanic island that is slowly sinking into the sea. In order to avoid
being drowned as the island sinks, the people will move towards the mountain top
to stay at a constant height above the sea. The location of &max here corresponds
to the mountain top and the particles trying to stay on surfaces of constant &
correspond to people trying to stay at constant altitude. A particle initially located
at some location away from the “mountain top” &max moves towards &max if the
overall level of all the & surfaces is sinking. The reduction of & as measured
at a fixed position will create the azimuthal electric field given by Eq. (3.168)
and this electric field will, as shown by Eqs. (3.169) and (3.170), cause an E×B
drift, which convects each particle in just such a way as to stay on a constant &
contour.
The E×B drift approximation breaks down when B becomes zero, i.e., when

& changes polarity. This breakdown corresponds to a breakdown of the adiabatic
approximation. If & changes polarity before a particle reaches &max, the particle
becomes axis-encircling. The extra energy associated with being axis-encircling
is obtained when & � 0 but �&/�t �= 0 so that there is an electric field E�, but no
magnetic field. Finite E� and no magnetic field results in a simple theta accel-
eration of the particle. Thus, when & reverses polarity the particle is accelerated
azimuthally and develops finite kinetic energy. After & has changed polarity the
magnitude of & increases and the adiabatic approximation again becomes valid.
Because the polarity is reversed, increase of the magnitude of & is now analogous
to creating an ever deepening crater. Particles again try to stay on constant flux
surfaces as dictated by Eq. (3.170) and as the crater deepens, the particles have to
move away from &min to stay at the same altitude. When the reversed flux attains
the same magnitude as the original flux, the flux surfaces have the same shape as
before. However, the particles are now axis-encircling and have the extra kinetic
energy obtained at field reversal.

3.7.2 Spatial reversal of field-cusps

Suppose two solenoids with constant currents are arranged coaxially with their
magnetic fields opposing each other as shown in Fig. 3.17(a). Since the solenoid
currents are constant, the Lagrangian does not depend explicitly on time, in which
case energy is a constant of the motion. Because of the geometrical arrangement,
the flux function is antisymmetric in z , where z= 0 defines the midplane between
the two solenoids.
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Consider a particle injected with initial velocity v = vz0ẑ at z = −L� r = a.
Since this particle has no initial v⊥, it simply streams along a magnetic field line.
However, when the particle approaches the cusp region, the magnetic field lines
start to curve causing the particle to develop both curvature and grad B drifts
perpendicular to the magnetic field. When the particle approaches the z= 0 plane,
the drift approximation breaks down because B→ 0 and so the particle’s motion
becomes non-adiabatic (cf. Fig. 3.17(a)).
Although the particle trajectory is very complex in the vicinity of the cusp, it

is still possible to determine whether the particle will cross into the positive z
half-plane, i.e., cross the cusp. Such an analysis is possible because two constants
of the motion exist, namely P� and H . The energy

H = P2
r

2m
+ P2

z

2m
+
(
P�− q

2
&�r� z�

)2
2mr2

= const� (3.171)

can be evaluated using

P� =
[
mr2�̇+ q

2
&
]
initial

= q

2
&0� (3.172)

since initially �̇ = 0. Here

&0 = &�r = a� z= −L� (3.173)

(a)

(b)

particle

B

adiabatic adiabaticnon-adiabatic
region

solenoid coils

flux surface

cusp-trapped particle cuspcusp

v = vz0z

Fig. 3.17 (a) Cusp field showing trajectory for particle with sufficient initial
energy to penetrate the cusp; (b) two cusps used as magnetic trap to confine
particles.
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is the flux at the particle’s initial position. Inserting initial values of all quantities
in Eq. (3.171) gives

H = mv2z0
2

(3.174)

and so Eq. (3.171) becomes

mv2z0
2

= mv2r
2

+ mv
2
z
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+
( q
2

)2
�&0 −&�r� z��2
2mr2

= mv2r
2

+ mv
2
z

2
+ mv

2
�

2
� (3.175)

The extent to which a particle penetrates the cusp can be easily determined if
the particle starts close enough to r = 0 so that the flux may be approximated
as & ∼ r2. Specifically, the flux will be & = Bz0r

2, where Bz0 is the on-
axis magnetic field in the z � 0 region. The canonical momentum is simply
P� = q&/2 = qBz0a2/2, since the particle started as non-axis-encircling.

Suppose the particle penetrates the cusp and arrives at some region where
again & ∼ r2. Since the particle is now axis-encircling, the relation between
canonical momentum and flux is P� = −q&/2 = −q�−Bz0r2�/2 = qBz0r2/2
from which it is concluded that r = a. Thus, if the particle is able to move across
the cusp, it becomes an axis-encircling particle with the same radius r = a it
originally had when it was non-axis-encircling. The minimum energy an axis-
encircling particle can have is when it is purely axis-encircling, i.e., has vr = 0
and vz = 0. Thus, in order for the particle to cross the cusp and reach a location
where it becomes purely axis-encircling, the particle’s initial energy must satisfy

mv2z0
2

≥ m��ca�
2

2
(3.176)

or simply

vz0 ≥ �ca� (3.177)

If vz0 is too small to satisfy this relation, the particle reflects from the cusp
and returns back to the negative z half-plane. Plasma confinement schemes have
been designed based on particles reflecting from cusps as shown in Fig. 3.17(b).
Here a particle is trapped between two cusps and, so long as its parallel
energy is insufficient to violate Eq. (3.177), the particle is confined between the
two cusps.
Cusps have also been used to trap relativistic electron beams in mirror fields

(Kribel et al. 1974, Hudgings et al. 1978). In this scheme an additional opposing
solenoid is added to one end of a magnetic mirror so as to form a cusp outside
the mirror region. A relativistic electron beam is injected through the cusp into
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the mirror. The beam changes from non-axis-encircling into axis-encircling on
passing through the cusp as in Fig. 3.17(a). If energy is conserved, the beam
is not trapped because the beam will reverse its trajectory and bounce back out
of the mirror. However, if axial energy is removed from the beam once it is in
the mirror, then the motion will not be reversible and the beam will be trapped.
Removal of beam axial energy has been achieved by having the beam collide
with neutral particles or by having the beam induce currents in a resistive wall.

3.7.3 Stochastic motion in large-amplitude, low-frequency waves

The particle drifts (E×B, polarization, etc.) were derived using an iteration
scheme based on the assumption that spatial changes in the electric and magnetic
fields are sufficiently gradual to allow Taylor expansions of the fields about their
values at the gyrocenter.
We now examine a situation where the fields change gradually in space relative

to the initial gyro-orbit dimensions, but the fields also pump energy into the
particle motion so the size of the gyro-orbit eventually increases to the point that
the smallness assumption fails. To see how this might occur, consider motion of
a particle in an electrostatic wave

E = ŷk� sin�ky−�t� (3.178)

propagating in a plasma immersed in a uniform magnetic field B =Bẑ. The wave
frequency is much lower than the cyclotron frequency of the particle in question.
This ���c condition indicates that, in principle, the drift equations can be used
and so according to these equations, the charged particle should have both an
E×B drift

vE = E×B
B2

= x̂ k�
B

sin�ky−�t� (3.179)

and a polarization drift

vp = m

qB2

dE⊥
dt

= ŷmk�
qB2

d
dt

sin�ky−�t�� (3.180)

If the wave amplitude is infinitesimal, the spatial displacements associated with
vE and vp are negligible and so the guiding center value of y may be used in the
right-hand side of Eq. (3.180) to obtain

vp = −ŷ�mk�
qB2

cos�ky−�t�� (3.181)

Equations (3.179) and (3.181) show that the combined vE and vp particle drift
motion results in an elliptical trajectory.
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Now suppose the wave amplitude becomes so large that the particle is displaced
significantly from its initial position. Since the polarization drift is in the y
direction, there will be a substantial displacement in the y direction. Thus, the
right side of Eq. (3.180) should be construed as sin�ky�t�−�t� so, taking into
account the time dependence of y on the right-hand side, Eq. (3.180) becomes

vp = ŷmk�
qB2

d
dt

sin�ky−�t�= ŷmk�
qB2

(
k
dy
dt

−�
)
cos�ky−�t�� (3.182)

However, dy/dt = vp, since vp is the motion in the y direction. Equation (3.182)
becomes an implicit equation for vp and may be solved to give

vp = −ŷ�mk�
qB2

cos�ky−�t�
�1−� cos�ky−�t��� (3.183)

where

�= mk2�

qB2
(3.184)

is a non-dimensional measure of the wave amplitude (McChesney, Stern, and
Bellan 1987, White, Chen and Lin 2002).
If � > 1, the denominator in Eq. (3.183) vanishes when ky−�t = cos−1�−1

and this vanishing denominator would result in an infinite polarization drift.
However, the derivation of the polarization drift was based on the assumption that
the time derivative of the polarization drift was negligible compared to the time
derivative of vE, i.e., it was explicitly assumed dvp/dt � dvE/dt. Clearly, this
assumption fails when vp becomes infinite and so the iteration scheme used to
derive the particle drifts fails. What is happening is that when �∼ 1, the particle
displacement due to polarization drift becomes ∼ k−1, i.e., the displacement of
the particle from its gyrocenter becomes of the order of a wavelength. In such a
situation it is incorrect to represent the particle’s actual location by its gyrocenter
because the particle experiences the wave field at its actual location, not at its
gyrocenter. Because the wave field is significantly different at two locations
separated by ∼k−1, it is essential to use the wave field evaluated at the actual
particle location rather than at the gyrocenter.
Direct numerical integration of the Lorentz equation in this large-amplitude

limit shows that when � exceeds unity, particle motion becomes chaotic and
cannot be described by analytic formulae. Onset of chaotic motion resembles heat-
ing of the particles since chaos and heating both broaden the velocity distribution
function. However, chaotic heating is not a true heating because entropy is not
increased – the motion is deterministic and not random. Nevertheless, this chaotic
(or stochastic) heating is indistinguishable for practical purposes from ordinary
collisional thermalization of directed motion.
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An alternate way of looking at this issue is to consider the Lorentz equations
for two initially adjacent particles, denoted by subscripts 1 and 2, that are in a
wave electric field and a uniform, steady-state magnetic field (Stasiewicz, Lundin
and Marklund 2000). The respective Lorentz equations of the two particles are

dv1
dt

= q

m
�E�x1� t�+v1 ×B�

dv2
dt

= q

m
�E�x2� t�+v1 ×B� � (3.185)

Subtracting these two equations gives an equation for the difference between the
velocities of the two particles, �v= v1−v2, in terms of the difference �x= x1−x2
in their positions, i.e.,

d�v
dt

= q

m
��x ·	E+�v×B� � (3.186)

The difference velocity is related to the difference in positions by d�x/dt = �v�
Let y be the direction in which the electric field is non-uniform, i.e., with this
choice of coordinate system E depends only on the y direction. To simplify the
algebra, define �x = qEx/m and �y = qEy/m so the components of Eq. (3.186)
transverse to the magnetic field are

�ẍ = �y��x
�y

+�c�ẏ

�ÿ = �y��y
�y

−�c�ẋ� (3.187)

Now take the time derivative of the lower equation to obtain

�
...
y = �ẏ ��y

�y
+�y �

�y

(
d�y
dt

)
−�c�ẍ (3.188)

and then substitute for �ẍ giving

�
...
y = �ẏ ��y

�y
+�y �

�y

(
d�y
dt

)
−�c

(
�y
��x
�y

+�c�ẏ
)
� (3.189)

This can be rearranged as

�
...
y +�2

c

(
1− 1

�c

��y
�y

)
�ẏ = �c�y

��x
�y

−�y �
�y

(
d�y
dt

)
� (3.190)

Consider the right-hand side of the equation as being a forcing term for the
left-hand side. If �−1

c ��y/�y < 1, then the left-hand side is a simple harmonic
oscillator equation in the variable �ẏ. However, if �−1

c ��y/�y exceeds unity, then
the left-hand side becomes an equation with solutions that grow exponentially in
time. Thus, if two particles are initially separated by the infinitesimal distance
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�y and if �−1
c ��y/�y < 1, the separation distance between the two particles will

undergo harmonic oscillations, but if �−1
c ��y/�y > 1 the separation distance will

exponentially diverge with time. It is seen that � corresponds to �−1
c ��y/�y for

a sinusoidal wave. Exponential growth of the separation distance between two
particles that are initially arbitrarily close together is called stochastic behavior.

3.8 Particle motion in small-amplitude oscillatory fields

Suppose a small-amplitude electromagnetic field exists in a plasma that in addition
has a large, uniform, steady-state magnetic field and no steady-state electric field.
The fields can thus be written as

E = E1�x� t�

B = B0 +B1�x� t�� (3.191)

where the subscript 1 denotes the small-amplitude oscillatory quantities and the
subscript 0 denotes large, uniform equilibrium quantities. A typical particle in this
plasma will develop an oscillatory motion

x�t�= �x�t��+�x�t�� (3.192)

where �x�t�� is the particle’s time-averaged position and �x�t� is the instantaneous
deviation from this average position. If the amplitudes of E1�x� t� and B1�x� t� are
sufficiently small, then the fields at the particle position can be approximated as

E��x�t��+�x�t�� t� � E1��x�t�� � t�
B��x�t��+�x�t�� t� � B0 +B1��x�t�� � t�� (3.193)

This is the opposite limit from what was considered in Section 3.7.3. The Lorentz
equation reduces in this small-amplitude limit to

m
dv
dt

= q �E1��x� � t�+v× �B0 +B1��x�t�� � t��� � (3.194)

Since the oscillatory fields are small, the resulting particle velocity will also
be small (unless there is a resonant response as would happen at the cyclotron
frequency). If the particle velocity is small, then the term v×B1�x�t� is of
second-order smallness, whereas E1 and v×B0 are of first-order smallness. The
v×B1�x� t� term is thus insignificant compared to the other two terms on the right-
hand side and therefore can be discarded so that the Lorentz equation reduces to

m
dv
dt

= q �E1��x� � t�+v×B0� � (3.195)
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a linear differential equation for v. Since �x is assumed to be so small that it can
be ignored, the average brackets will be omitted from now on and the first order
electric field will simply be written as E1�x� t�, where x can be interpreted as
being either the actual or the average position of the particle.
The oscillatory electric field can be decomposed into Fourier modes, each

having time dependence ∼ exp �−i�t� and, since Eq. (3.195) is linear, the particle
response to a field E1�x� t� is just the linear superposition of its response to each
Fourier mode. Thus, it is appropriate to consider motion in a single Fourier mode
of the electric field, say

E1�x� t�= Ẽ�x��� exp �−i�t�� (3.196)

If initial conditions are ignored for now, the particle motion can be found by simply
assuming that the particle velocity also has the time dependence exp �−i�t�, in
which case the Lorentz equation becomes

−i�mv = q [Ẽ�x�+v×B0

]
� (3.197)

where a factor exp �−i�t� is implicitly assumed for all terms and also an �
argument is implicitly assumed for Ẽ� Equation (3.197) is a vector equation of
the form

v+v×A = C� (3.198)

where

A = �c
i�
ẑ�

�c = qB0
m
�

C = iq
�m

Ẽ�x�� (3.199)

and the z axis has been chosen to be in the direction of B0. Equation (3.198) can
be solved for v by first dotting with A to obtain

A ·v = C ·A (3.200)

and then crossing with A to obtain

v×A+AA ·v−vA2 = C×A� (3.201)

Substituting for A ·v using Eq. (3.200) and for v×A using Eq. (3.198) gives

v = C+AA ·C−C×A
1+A2

= C�ẑ+
C⊥

1+A2
+ A×C

1+A2
� (3.202)
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where C has been split into parallel and perpendicular parts relative to B0 and
AA ·C = A2C�ẑ has been used. On substituting for A and C this becomes

v = iq
�m

[
Ẽ��x�ẑ+

Ẽ⊥�x�
1−�2

c/�
2
− i�c
�

ẑ× Ẽ�x�
1−�2

c/�
2

]
e−i�t� (3.203)

The third term on the right-hand side is a generalization of the E×B drift, since
for �� �c this term reduces to the E×B drift. Similarly, the middle term on
the right-hand side is a generalization of the polarization drift, since for �� �c
this term reduces to the polarization drift. The first term on the right-hand side,
the parallel quiver velocity, does not involve the magnetic field B0. This non-
dependence on magnetic field is to be expected because no magnetic force results
from motion parallel to a magnetic field. In fact, if the magnetic field were zero,
then the second term would add to the first and the third term would vanish,
giving a three-dimensional unmagnetized quiver velocity v = iqẼ�x�/�m.
If the electric field is in addition decomposed into spatial Fourier modes with

dependence ∼ exp �ik ·x�� then the velocity for a typical mode will be

v�x� t�= iq
�m

[
Ẽ�ẑ+

Ẽ⊥
1−�2

c/�
2
− i�c
�

ẑ× Ẽ
1−�2

c/�
2

]
eik·x−i�t� (3.204)

The convention of a negative coefficient for � and a positive coefficient for k
has been adopted to give waves propagating in the positive x direction. Equa-
tion (3.204) will later be used as the starting point for calculating wave-generated
plasma currents.

3.9 Wave–particle energy transfer

3.9.1 “Average velocity”

Anyone who has experienced delay in a traffic jam knows that it is usually
impossible to make up for the lost time by going faster after escaping from the
traffic jam. To see why, define � as the fraction of the total trip length in the traffic
jam, vs as the slow (traffic jam) speed, and vf as the fast speed (out of traffic
jam). It is tempting, but wrong, to say that the average velocity is �1−��vf +�vs
because

average velocity of a trip = total distance
total time

� (3.205)

Since the fast-portion duration is tf = �1−��L/vf while the the slow-portion
duration is ts = �L/vs� the average velocity of the complete trip is

vavg = L

�1−��L/vf +�L/vs
= 1
�1−��/vf +�/vs

� (3.206)
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Thus, if vs � vf then vavg � vs/�� The average velocity is almost entirely
determined by the slow-portion velocity and as verified by sad experience in
traffic jams, once vs becomes infinitesimal, it is impossible to boost vavg by
increasing vf �

3.9.2 Motion of particles in a sawtooth potential

The exact motion of a particle in a sinusoidal potential can be solved using
elliptic integrals, but the obtained solution is implicit, i.e., the solution is expressed
in the form of time as a function of position. While exact, the implicit nature
of this solution obscures the essential physics. In order to shed some light on
the underlying physics, we will first consider particle motion in the somewhat
artificial situation of the periodic sawtooth-shaped potential shown in Fig. 3.18
and then later will consider particle motion in a more realistic, but harder to
analyze, sinusoidal potential.
A particle in the downward-sloping portion of the sawtooth potential experi-

ences a constant acceleration +a and when in the upward portion experiences
a constant acceleration −a� The goal here is to determine the average velocity
of a group of particles injected with an initial velocity v0 into the system. Care
is required when using the word “average” because this word has two meanings
depending on whether one is referring to the average velocity of a single particle
or the average velocity of a group of particles. The average velocity of a single
particle is defined by Eq. (3.205) whereas the average velocity of a group of
particles is defined as the sum of the velocities of all the particles in the group
divided by the number of particles in the group.
The average velocity of any given individual particle depends on where the

particle was injected. Consider the four particles denoted as A�B�C� and D in
Fig. 3.18 as representatives of the various possibilities for injection location.
Particle A is injected at a potential maximum, particle C is injected at a potential
minimum, particle B is injected half-way on the downslope, and particle D is
injected half-way on the upslope.

B

A

C

D

Fig. 3.18 Initial positions of particles A�B�C, and D. All are injected with
same initial velocity v0 moving to the right.
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The average velocity for each of these four representative particles will now
be evaluated:
Particle A – Let the distance between maximum and minimum potential be d.

Let x = 0 be the location of the minimum so the injection point is at x = −d.
Thus, the trajectory on the downslope is

x�t�= −d+v0t+at2/2 (3.207)

and the time for particle A to go from its injection point to the potential minimum
is found by setting x�t�= 0 giving

tAdown = v0
a

(
−1+√

1+2�
)
� (3.208)

where �= ad/v20 is the normalized acceleration. When particle A reaches the next
potential peak, it again has velocity v0 and if the time and space origins are reset
to be at the new peak, the trajectory will be

x�t�= v0t−at2/2� (3.209)

The negative time when the particle is at the preceding potential minimum is
found from

−d = v0t−at2/2� (3.210)

Solving for this negative time and then calculating the time increment to go from
the minimum to the maximum shows that this time is the same as going from
the maximum to the minimum, i.e., tAdown = tAup. Thus, the average velocity for
particle A is

vAavg = da/v0

−1+√
1+2�

� (3.211)

The average velocity of particle A is thus always faster than its injection velocity.
Particle C – Now let x = 0 be the location of maximum potential and x = −d

be the point of injection so the particle trajectory is

x�t�= −d+v0t−at2/2 (3.212)

and the time to get to x = 0 is

tCup = v0
a

(
1−√

1−2�
)
� (3.213)
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From symmetry it is seen that the time to go from the maximum to the minimum
will be the same so the average velocity will be

vCavg = ad/v0

1−√
1−2�

� (3.214)

Because particle C is always on a potential hill relative to its injection position,
its average velocity is always slower than its injection velocity.
Particles B and D – Particle B can be considered as first traveling in a potential

well and then in a potential hill, while the reverse is the case for particle D.
For the potential well portion, the forces are the same as for particle A, but the
distances are half as much, so the time to traverse the potential well portion is

twell =
2v0
a

(
−1+√

1+�
)
� (3.215)

Similarly, the time required to traverse the potential hill portion will be

thill =
2v0
a

(
1−√

1−�
)

(3.216)

so the average velocity for particles B and D will be

vB�Davg = ad/v0√
1+�−√

1−�� (3.217)

These particles move slower than the injection velocity, but the effect is second
order in ��
The average velocity of the four particles will be

vavg = 1
4

(
vAavg+vBavg+vCavg+vDavg

)
(3.218)

= ad

4v0

[
1

−1+√
1+2�

+ 1

1−√
1−2�

+ 2√
1+�−√

1−�
]
�

If � is small this expression can be approximated as

vavg � ad

4�v0

[
1

1−�/2+�2/2 + 1
1+�/2+�2/2 + 2

1+�2/8
]

= ad

2�v0

[
1+�2/2
1+3�2/4

+ 1
1+�2/8

]
� v0

[
1−3�2/16

]
(3.219)

so that the average velocity of the four representative particles is smaller than
the injection velocity. This effect is second order in � and means that a group
of particles injected at random locations with identical velocities into a sawtooth
periodic potential will, on average, be slowed down.
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3.9.3 Slowing down, energy conservation, and average velocity

The sawtooth potential analysis above shows that it is necessary to be very careful
about what is meant by energy and average velocity. Each particle individually
conserves energy and regains its injection velocity when it returns to the phase at
which it was injected. However, the average velocities of the particles are not the
same as the injection velocities. Particle A has an average velocity higher than its
injection velocity whereas particles B�C, and D have average velocities smaller
than their respective injection velocities. The average velocity of all the particles
is less than the injection velocity so that the average kinetic energy of the particles
is reduced relative to the injection kinetic energy. Thus the average velocity of a
group of particles slows down in a periodic potential, yet paradoxically individual
particles do not lose energy. The energy that appears to be missing is contained
in the instantaneous potential energy of the individual particles.

3.9.4 Wave–particle energy transfer in a sinusoidal wave

The calculation will now be redone for the physically more relevant situation
where a group of particles interacts with a sinusoidal wave. As a prerequisite
for doing this calculation it must first be recognized that two distinct classes of
particles exist, namely those that are trapped in the wave and those that are not.
The trajectories of trapped particles differ in a substantive way from those of
untrapped particles, but for low-amplitude waves the number of trapped particles
is so small as to be of no consequence. It will therefore be assumed that the wave
amplitude is sufficiently small that the trapped particles can be ignored.
Particle energy is conserved in the wave frame but not in the lab frame because

the particle Hamiltonian is time-independent in the wave frame but not in the lab
frame. Since each additional conserved quantity reduces the number of equations
to be solved, it is advantageous to calculate the particle dynamics in the wave
frame, and then transform back to the lab frame.
The analysis in Section 3.9.2 of particle motion in a sawtooth potential showed

that randomly phased groups of particles have their average velocity slowed down,
i.e., the average velocity of the group tends towards zero as observed in the frame
of the sawtooth potential. If the sawtooth potential were moving with respect
to the lab frame, the sawtooth potential would appear as a propagating wave in
the lab frame. A lab-frame observer would see the particle velocities tending to
come to rest in the sawtooth frame, i.e., the lab-frame average of the particle
velocities would tend to converge towards the velocity with which the sawtooth
frame moves in the lab frame.
The quantitative motion of a particle in a one-dimensional wave potential

��x� t� = �0 cos�kx−�t� will now be analyzed in some detail. This situation
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corresponds to a particle being acted on by a wave traveling in the positive x
direction with phase velocity �/k. It is assumed that there is no magnetic field
so the equation of motion is simply

dv
dt

= qk�0

m
sin�kx−�t�� (3.220)

At t= 0 the particle’s position is x= x0 and its velocity is v= v0. The wave phase
at the particle location is defined to be & = kx−�t. This is a more convenient
variable than x and so the differential equation for x will be transformed into
a corresponding differential equation for &. Using & as the dependent variable
corresponds to transforming to the wave frame, i.e., the frame moving with the
phase velocity �/k, and makes it possible to take advantage of the wave-frame
energy being a constant of the motion. The equations are less cluttered with minus
signs if a slightly modified phase variable � = kx−�t− is used.
The respective first and second derivatives of � are

d�
dt

= kv−� (3.221)

and
d2�
dt2

= kdv
dt
� (3.222)

Substitution of Eq. (3.222) into Eq. (3.220) gives

d2�
dt2

+ k
2q�0

m
sin � = 0� (3.223)

By defining the bounce frequency

�2
b = k2q�0

m
(3.224)

and the dimensionless bounce-normalized time

� = �bt� (3.225)

Eq. (3.223) reduces to the pendulum-like equation

d2�
d�2

+ sin � = 0� (3.226)

Upon multiplying by the integrating factor 2d�/d�� Eq. (3.226) becomes

d
d�

[(
d�
d�

)2

−2 cos�

]
= 0� (3.227)
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This integrates to give (
d�
d�

)2

−2 cos� = �= const� (3.228)

which indicates the expected energy conservation in the wave frame. The value
of � is determined by two initial conditions, namely the wave-frame injection
velocity (

d�
d�

)
�=0

= 1
�b

(
d�
dt

)
t=0

= kv0 −�
�b

≡ � (3.229)

and the wave-frame injection phase

��=0 = kx0 − ≡ �0� (3.230)

Inserting these initial values in the left-hand side of Eq. (3.228) gives

�= �2 −2 cos�0� (3.231)

Except for a constant factor,

• � is the total wave-frame energy,
• �d�/d��2 is the wave-frame kinetic energy,
• −2 cos� is the wave-frame potential energy.

If −2 < � < 2, then the particle is trapped in a specific wave trough and
oscillates back and forth in this trough. However, if �> 2, the particle is untrapped
and travels continuously in the same direction, speeding up when traversing a
potential valley and slowing down when traversing a potential hill.
Attention will now be restricted to untrapped particles with kinetic energy

greatly exceeding potential energy. For these particles

�2 � 2� (3.232)

which corresponds to considering small-amplitude waves, since � ∼ �−1
b and

�b ∼√
�0�

We wish to determine how these untrapped particles exchange energy with
the wave. To accomplish this, the lab-frame kinetic energy must be expressed
in terms of wave-frame quantities. From Eqs. (3.221) and (3.225) the lab-frame
velocity is

v= 1
k

(
�+ d�

dt

)
= �b
k

(
�

�b
+ d�

d�

)
(3.233)

so that the lab-frame kinetic energy can be expressed as

W = 1
2
mv2 = m�2

b

2k2

[(
�

�b

)2

+2
�

�b

d�
d�

+
(
d�
d�

)2
]
� (3.234)
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Substituting for �d�/d��2 using Eq. (3.228) gives

W = m�2
b

2k2

[(
�

�b

)2

+2
�

�b

d�
d�

+�+2 cos�

]
� (3.235)

Since wave–particle energy transfer is of interest, attention is now focused on the
changes in the lab-frame particle kinetic energy and so we consider

dW
dt

= m�3
b

k2

[
�

�b

d2�
d�2

− d�
d�

sin �
]

= −m�
3
b

k2
sin �

[
�

�b
+ d�

d�

]
� (3.236)

where Eq. (3.226) has been used. To proceed further, it is necessary to obtain the
time dependence of both sin � and d�/dt�
Solving Eq. (3.228) for d�/d� and assuming �� 1 (corresponding to untrapped

particles) gives

d�
d�

= ±√
�+2 cos�

= ±
√
�2 +2�cos�− cos�0�

= �
(
1+ 2�cos�− cos�0�

�2

)1/2

� �+ cos�− cos�0
�

� (3.237)

This expression is valid for both positive and negative �, i.e., for particles going
in either direction in the wave frame. The first term in the last line of Eq. (3.237)
gives the velocity the particle would have if there were no wave (unperturbed
orbit) while the second term gives the perturbation due to the small-amplitude
wave. The particle orbit ���� is now solved iteratively. To lowest order (i.e.,
dropping terms of order �−2) the particle velocity is

d�
d�

= � (3.238)

and so the rate at which energy is transferred from the wave to the particles is

dW
dt

= −m�
3
b

k2
sin �

[
�

�b
+�

]
� −m�

2
bv0
k

sin �� (3.239)
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Integration of Eq. (3.238) gives the unperturbed orbit solution

����= �0 +��� (3.240)

This first approximation is then substituted back into Eq. (3.237) to get the
corrected form

d�
d�

= �+ cos��0 +���− cos�0
�

� (3.241)

which may be integrated to give the corrected phase

����= �0 +��+ sin��0 +���− sin �0
�2

− �

�
cos�0� (3.242)

From Eq. (3.242) we may write

sin � = sin���0 +���+������ (3.243)

where

����= sin��0 +���− sin �0
�2

− �

�
cos�0 (3.244)

is the “perturbed-orbit” correction to the phase. If consideration is restricted to
times where � � ���, the phase correction ���� will be small. This restriction
corresponds to

��bt�
2 � �kv0 −��t� (3.245)

which means that the number of wave peaks the particle passes greatly exceeds
the number of bounce times. Since bounce frequency is proportional to wave
amplitude, this condition will be satisfied for all finite times for an infinitesi-
mal amplitude wave. Because � is assumed to be small, Eq. (3.243) may be
expanded as

sin � = sin��0 +��� cos�+ sin� cos��0 +���� sin��0 +���+� cos��0 +���
(3.246)

so that Eq. (3.239) becomes

dW
dt

= −m�
2
bv0
k

�sin��0 +���+� cos��0 +���� � (3.247)

The wave-to-particle energy transfer rate depends on the particle initial position.
This is analogous to the earlier sawtooth potential analysis where it was shown
that whether a particle gains or loses average velocity depends on its injection
phase. It is now assumed that there exist many particles with evenly spaced initial
positions and then an averaging will be performed over all these particles, which
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corresponds to averaging over all initial injection phases. Denoting such averaging
by �� gives〈
dW
dt

〉
= −m�

2
bv0
k

�� cos��0 +����

= −m�
2
bv0
k

〈[
sin��0 +���− sin �0

�2
− �

�
cos�0

]
cos��0 +���

〉
� (3.248)

Using the identities

�sin��0 +��� cos��0 +���� = 0

�sin �0 cos��0 +���� = −1
2
sin��

�cos�0 cos��0 +���� = 1
2
cos�� (3.249)

the wave-to-particle energy transfer rate becomes〈
dW
dt

〉
= −m�

2
bv0

2k

(
sin��
�2

− �

�
cos��

)
= m�2

bv0
2k

d
d�

(
sin��
�

)
� (3.250)

At this point it is recalled that one representation for a delta function is

��z�= lim
N→�

sin�Nz�
z

(3.251)

so that for ���� � 1, Eq. (3.250) becomes〈
dW
dt

〉
= m�2

bv0
2k

d
d�
����� (3.252)

Since ��z�has an infinite positive slope just to the left of z = 0 and an infinite
negative slope just to the right of z= 0, the derivative of the delta function consists
of a positive spike just to the left of z= 0 and a negative spike just to the right of
z= 0� Furthermore, �= �kv0 −��/�b is slightly positive for particles moving a
little faster than the wave-phase velocity and slightly negative for particles moving
a little slower. Thus �dW/dt� is large and positive for particles moving slightly
slower than the wave, while it is large and negative for particles moving slightly
faster. If the number of particles moving slightly slower than the wave equals the
number moving slightly faster, the energy gained by the slightly slower particles
is equal and opposite to that gained by the slightly faster particles.
However, if the number of slightly slower particles differs from the number

of slightly faster particles, there will be a net transfer of energy from wave to
particles or vice versa. Specifically, if there are more slow particles than fast
particles, there will be a transfer of energy to the particles. This energy must come
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from the wave and a more complete analysis (cf. Section 5.3) will show that the
wave damps. The direction of energy transfer depends critically on the slope of
the distribution function in the vicinity of v = �/k� since this slope determines
the ratio of slightly faster to slightly slower particles.
We now consider a large number of particles with an initial one-dimensional

distribution function f�v0� and calculate the net wave-to-particle energy transfer
rate averaged over all particles. Since f�v0�dv0 is the probability that a particle
had its initial velocity between v0 and v0 +dv0, the energy transfer rate averaged
over all particles is〈

dWtotal

dt

〉
=
∫

dv0f�v0�
m�2

bv0
2k

d
d�
����

= m�3
b

2k2

∫
dv0f�v0�v0

d
dv0
�

(
kv0 −�
�b

)
= m�4

b

2k3

∫
dv0f�v0�v0

d
dv0
�
(
v0 − �

k

)
= −m�

4
b

2k3

[
d
dv0

�f�v0�v0�

]
v0=�/k

� (3.253)

If the distribution function has the Maxwellian form f ∼ exp �−v20/v2T � , where
vT is the thermal velocity, and if �/k� vT then[

d
dv0

�f�v0�v0�

]
v0=�/k

=
[
v0

d
dv0

�f�v0��+f�v0�
]
v0=�/k

=
[
−2
v20
v2T
f�v0�+f�v0�

]
v0=�/k

(3.254)

showing that the derivative of f is the dominant term. Hence, Eq. (3.253) becomes〈
dWtotal

dt

〉
= −m�

4
b�

2k4

[
d
dv0

�f�v0��

]
v0=�/k

� (3.255)

Substituting for the bounce frequency using Eq. (3.224) this becomes〈
dWtotal

dt

〉
= −m�

2k2

(
qk�0

m

)2 [ d
dv0

�f�v0��

]
v0=�/k

� (3.256)

Thus, particles gain kinetic energy at the expense of the wave if the distribution
function has negative slope in the range v ∼ �/k. This process is called Landau
damping and will be examined in Section 5.3 from the wave viewpoint.
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3.10 Assignments

1. A charged particle starts from rest in combined static fields E=Eŷ and B =Bẑ, where
E/B� c and c is the speed of light. Calculate and plot its exact trajectory (do this
both analytically and numerically).

2. Calculate (qualitatively and numerically) the trajectory of a particle starting from rest
at x= 0� y = 5a in combined E and B fields, where E =E0x̂ and B = ẑB0y/a� What
happens to � conservation on the line y = 0? Sketch the motion showing both the
Larmor motion and the guiding center motion. Explain the particle motion in terms of
E×B, 	B, and polarization drifts and note that the particle can never move into the
x < 0 region because of energy conservation considerations.

3. Calculate the motion of a particle in the steady-state electric field produced by a line
charge � along the z axis and a steady-state magnetic field B =B0ẑ�Obtain an approx-
imate solution using drift theory and also obtain a solution using Hamilton–Lagrange
theory. Hint: for the drift theory show that the electric field has the formE =r̂�/2r�
Assume that � is small for approximate solutions.

4. Consider the magnetic field produced by a toroidal coil system; this coil consists of
a single wire threading the hole of a torus (donut) N times with the N turns evenly
arranged around the circumference of the torus. Use Ampère’s law to show that the
magnetic field is in the toroidal direction and has the form B = �0NI/2r, where N
is the total number of turns in the coil and I is the current through the turn. What are
the drifts for a particle having finite initial velocities both parallel and perpendicular
to this toroidal field?

5. Show that of all the standard drifts (E×B, 	B, curvature, polarization) only the
polarization drift causes a change in the particle energy. Hint: consider what happens
when the following equation is dotted with v:

m
dv
dt

= F+v×B�

6. Use the numerical Lorentz solver to calculate the motion of a charged particle in a
uniform magnetic field B= Bẑ and an electric field given by Eq. (3.178). Compare the
motion to the predictions of drift theory (E×B� polarization). Describe the motion for
cases where �� 1, �� 1� and �� 1, where �=mk2�/qB2� Describe what happens
when � becomes of order unity.

7. A “magnetic mirror” field in cylindrical coordinates r� �� z can be expressed as B =
�2�−1	&×	�, where & = B0r

2�1+�z/L�2� and L is a characteristic length. Sketch
by hand the field line pattern in the r� z plane and write out the components of B.
What are appropriate characteristic lengths, times, and velocities for an electron in this
configuration? Use r = �x2 + y2�1/2 and numerically integrate the orbit of an electron
starting at x= 0� y= L� z= 0 with initial velocity vx = 0 and initial vy, vz of the order
of the characteristic velocity (try different values). Simultaneously plot the motion in
the z− y plane and in the x− y plane. What interesting phenomena can be observed
(e.g., reflection)? Does the electron stay on a constant & contour?
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8. Consider the motion of a charged particle in the magnetic field

B = 1
2
	&�r� z� t�×	��

where

&�r� z� t�= Bminr
2

[
1+2�

(2

(4 +1

]
and

( = z

L�t�
�

Show by explicit evaluation of the flux derivatives and also by plotting contours of
constant flux that this is an example of a magnetic mirror field with minimum axial
field Bmin when z = 0 and maximum axial field �Bmin at z = L�t�� By making L�t�
a slowly decreasing function of time show that the magnetic mirrors slowly move
together. Using numerical techniques to integrate the equation of motion, demonstrate
Fermi acceleration of a particle when the mirrors move slowly together. Do not forget
the electric field associated with the time-changing magnetic field (this electric field
is closely related to the time derivative of &�r� z� t�� use Faraday’s law). Plot the
velocity-space angle at z = 0 for each bounce between mirrors and show that the
particle becomes detrapped when this angle decreases below �trap = sin −1��−1��

9. Consider a point particle bouncing with nominal velocity v between a stationary wall
and a second wall that is approaching the first wall with speed u� Calculate the change
in speed of the particle after it bounces from the moving wall (hint: do this first in the
frame of the moving wall, and then translate back to the lab frame). Calculate �b, the
time for the particle to make one complete bounce between the walls if the nominal
distance between walls is L� Calculate �L� the change in L during one complete
bounce and show that if u� v� then Lv is a conserved quantity. By considering
collisionless particles bouncing in a cube that is slowly shrinking self-similarly in
three dimensions show that PV 5/3 is constant where P = n�T , n is the density of the
particles, and T is the average kinetic energy of the particles. What happens if the
shrinking is not self-similar (hint: consider the effect of collisions and see discussion
in Bellan (2004a)).

10. Using numerical techniques to integrate the equation of motion, illustrate how a
charged particle changes from being non-axis-encircling to axis-encircling when a
magnetic field B = �2�−1	&�r� z� t�×	� reverses polarity at t = 0�For simplicity
use & = B�t�r2, i.e., a uniform magnetic field. To make the solution as general
as possible, normalize time to the cyclotron frequency by defining � = �ct� and
set B��� = tanh � to represent a polarity-reversing field. Normalize lengths to some
reference length L and normalize velocities to �cL� Show that the canonical angular
momentum is conserved. Hint: do not forget to include the inductive electric field
associated with the time-dependent magnetic field.
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11. Consider a cusp magnetic field given by B = �2�−1	&�r� z�×	�, where the flux
function

&�r� z�= Br2 z√
1+ z2/a2

is antisymmetric in z� Plot the surfaces of constant flux. Using numerical techniques
to integrate the equation of motion, demonstrate that a particle incident at z� −a and
r = r0 with incident velocity v = vz0ẑ will reflect from the cusp if vz0 < r0�c , where
�c = qB/m�

12. Consider the motion of a charged particle starting from rest in a simple one-
dimensional electrostatic wave field,

m
d2x
dt2

= −q	��x� t��

where ��x� t� = �̄ cos�kx−�t�� How large does �̄ have to be to give trapping of
particles that start from rest? Demonstrate this trapping threshold numerically.

13. Prove Equation (3.219).
14. Prove that

��z�= lim
N→�

sin�Nz�
z

is a valid representation for the delta function.
15. As sketched in Fig. 3.19, a current loop (radius r� current I) is located in the x− y

plane; the loop’s axis defines the z axis of the coordinate system, so that the center
of the loop is at the origin. The loop is immersed in a non-uniform magnetic field
B produced by external coils and oriented so that the magnetic-field lines converge
symmetrically about the z axis. The current I is small and does not significantly
modify B� Consider the following three circles: the current loop, a circle of radius
b coaxial with the loop but with center at z = −L/2, and a circle of radius a with

circle
(edge view)

circle
z axis

y axis

current loop

B

Br a
b

L/2 L/2

magnetic
field
line

Fig. 3.19 Non-uniform magnetic field acting on a current loop.
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center at z= +L/2. The radii a and b are chosen so as to intercept the field lines that
intercept the current loop (see figure). Assume the figure is somewhat exaggerated
so that Bz is approximately uniform over each of the three circular surfaces and so
one may ignore the radial dependence of Bz and therefore express Bz = Bz�z�.
(a) Note that r = �a+ b�/2� What is the force (magnitude and direction) on the

current loop expressed in terms of I�Bz�0�� a, b, and L only? (Hint: use the field
line slope to give a relationship between Br and Bz at the loop radius.)

(b) For each of the circles and the current loop, express the magnetic flux enclosed
in terms of Bz at the respective entity and the radius of the entity. What is the
relationship between the Bz’s at these three entities?

(c) By combining the results of parts (a) and (b) above and taking the limit L→ 0,
show that the force on the loop can be expressed in terms of a derivative of Bz.
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Elementary plasma waves

4.1 General method for analyzing small-amplitude waves

All plasma phenomena can be described by combining Maxwell’s equations with
the Lorentz force equation where the latter is represented by the Vlasov, the two-
fluid, or the MHD approximation. The subject of linear plasma waves provides
a good introduction to the study of plasma phenomena because linear waves are
relatively simple to analyze and yet demonstrate many essential features of plasma
behavior.
Linear analysis, a straightforward method applicable to any set of partial

differential equations describing a physical system, reveals the physical system’s
simplest non-trivial, self-consistent dynamical behavior. In the context of plasma
dynamics, the method is as follows:

1. By making appropriate physical assumptions, the general Maxwell–Lorentz system of
equations is reduced to the simplest set of equations characterizing the phenomena
under consideration.

2. An equilibrium solution is determined for this set of equations. The equilibrium might
be trivial such that densities are uniform, the plasma is neutral, and all velocities are
zero. However, less trivial equilibria could also be invoked where there are density
gradients or flow velocities. Equilibrium quantities are designated by the subscript 0,
indicating “zero-order” in smallness.

3. If "f�x� t�� g�x� t�� h�x� t�� � � �# constitutes the set of dependent variables and a specific,
physically allowed perturbation is prescribed for one of these variables, then solving
the system of differential equations will give the responses of all the other dependent
variables to this prescribed perturbation. For example, suppose that a perturbation $f1
is prescribed for the dependent variable f where $� 1 so that f becomes

f = f0 + $f1 (4.1)

and $ �f1� � �f0� for all x and t� The system of differential equations gives the functional
dependence of the other variables on f and so, for example, would give g = g�f� =

146
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g�f0 +$f1�. Since the functional dependence of g on f is in general nonlinear, Taylor
expansion gives g = g0 +$g1 +$2g2 +$3g3 + � � � The $’s are, from now on, considered
implicit and so the variables are written as

f = f0 +f1
g = g0 +g1 +g2 + � � �
h = h0 +h1 +h2 + � � � (4.2)

and it is assumed that the order of magnitude of f1 is smaller than the order of
magnitude of f0 by a factor $, etc. The smallness of the perturbation is an assumption
that obviously must be satisfied in the real situation being modeled. Note that there
are no fj terms with j ≥ 2 because the perturbation to f was prescribed as being f1.

4. Each partial differential equation is rewritten with all dependent quantities expanded
to first order as in Eq. (4.2). For example, the two-fluid continuity equation becomes

��n0 +n1�
�t

+	 · ��n0 +n1��u0 +u1��= 0� (4.3)

By assumption, equilibrium quantities satisfy

�n0
�t

+	 · �n0u0�= 0� (4.4)

The essence of linearization consists of subtracting the equilibrium equation (e.g.,
Eq. (4.4)) from the expanded equation (e.g., Eq. (4.3)). For this example such a
subtraction yields

�n1
�t

+	 · �n1u0 +n0u1 +n1u1�= 0� (4.5)

The nonlinear term n1u1, which is a product of two first order quantities, is discarded
because it is of order $2 whereas all the other terms are of order $. What remains is
called the linearized equation, i.e., the equation that consists of only first-order terms.
For the example here, the linearized equation would be

�n1
�t

+	 · �n1u0 +n0u1�= 0� (4.6)

The linearized equation is in a sense the differential of the original equation.

Before engaging in a methodical study of the large variety of waves that can
propagate in a plasma, a few special cases of fundamental importance will first
be examined.

4.2 Two-fluid theory of unmagnetized plasma waves

The simplest plasma waves are those described by two-fluid theory in an
unmagnetized plasma, i.e., a plasma that has no equilibrium magnetic field. The
theory for these waves also applies to magnetized plasmas in the special situation
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where all fluid motions are strictly parallel to the equilibrium magnetic field
because fluid flowing along a magnetic field experiences no u×B force and so
behaves as if there were no magnetic field.
The two-fluid equation of motion relevant to an unmagnetized plasma is

m�n�
du�
dt

= q�n�E−	P� (4.7)

and these simple plasma waves are found by linearizing about an equilibrium
where u�0 = 0� E0 = 0, and 	P�0 = 0� The linearized form of Eq. (4.7) is then

m�n�0
�u�1
�t

= q�n�0E1 −	P�1� (4.8)

The electric field can be expressed as

E = −	�− �A
�t
� (4.9)

a form that automatically satisfies Faraday’s law. The vector potential A is
undefined with respect to a gauge since B = 	× �A+	&�= 	×A� It is conve-
nient to choose & so as to have 	 ·A= 0. This is called Coulomb gauge and causes
the divergence of Eq. (4.9) to give Poisson’s equation so that charge density
provides the only source term for the electrostatic potential �� Since Eq. (4.9) is
linear to begin with, its linearized form is just

E1 = −	�1 − �A1

�t
� (4.10)

4.2.1 Electrostatic (compressional) waves

These waves are characterized by having finite 	 · u1 and are variously called
compressional, electrostatic, or longitudinal waves. The first step in the analysis
is to take the divergence of Eq. (4.8) to obtain

m�n�0
�	 ·u�1
�t

= −q�n�0	2�1 −	2P�1� (4.11)

Because Eq. (4.11) involves three variables (i.e., u�1��1�P�1� two more equations
are required to provide a complete description. One of these additional equations
is the linearized continuity equation

�n�1
�t

+n0	 ·u�1 = 0� (4.12)

which, after substitution into Eq. (4.11), gives

m�
�2n�1
�t2

= q�n�0	2�1 +	2P�1� (4.13)
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For adiabatic processes the pressure and density are related by

P�

n
�
�

= const�� (4.14)

where � = �N + 2�/N and N is the dimensionality of the system, whereas for
isothermal processes

P�
n�

= const� (4.15)

The same formalism can therefore be used for both isothermal and adiabatic
processes by using Eq. (4.14) for both and then simply setting � = 1 if the process
is isothermal. Linearization of Eq. (4.14) gives

P�1
P�0

= �n�1
n�0

(4.16)

so Eq. (4.13) becomes

m�
�2n�1
�t2

= q�n�0	2�1 +��T�0	2n�1� (4.17)

where P�0 = n�0�T�0 has been used.
Although this system of linear equations could be solved by the formal method

of Fourier transforms, we instead take the shortcut of simply assuming that the
linear perturbation happens to be a single Fourier mode. Thus, it is assumed that
all linearized dependent variables have the wave-like dependence

n�1 ∼ exp �ik ·x− i�t�� �1 ∼ exp �ik ·x− i�t�� etc� (4.18)

so that 	→ ik and �/�t→ −i�� Equation (4.17) therefore reduces to the algebraic
equation

m��
2n�1 = q�n�0k2�1 +��T�0k2n�1� (4.19)

which may be solved for n�1 to give

n�1 = q�n�0
m�

k2�1

��2 −�k2�T�0/m��
� (4.20)

Poisson’s equation provides another relation between �1 and n�1, namely

k2�1 = 1

0

∑
�

n�1q�� (4.21)

Equation (4.20) is substituted into Poisson’s equation to give

k2�1 =∑
�

n�0q
2
�


0m�

k2�1

��2 −�k2�T�0/m��
� (4.22)
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which may be rearranged as[
1−∑

�

�2
p�

��2 −�k2�T�0/m��

]
�1 = 0� (4.23)

where

�2
p� ≡ n�0q

2
�


0m�
(4.24)

is the square of the plasma frequency of species �� A useful way to recast
Eq. (4.23) is

�1+'e+'i��1 = 0� (4.25)

where

'� = − �2
p�

��2 −�k2�T�0/m��
(4.26)

is called the susceptibility of species �� In Eq. (4.25) the “1” comes from the
“vacuum” part of Poisson’s equation (i.e., the left-hand side term 	2��while the
susceptibilities give the respective contributions of each species to the right-hand
side of Poisson’s equation. This formalism follows that of dielectrics where the
displacement vector is D = 
E and the dielectric constant is 
= 1+', where '
is a susceptibility.
Equation (4.25) shows that if �1 �= 0� the quantity 1+'e+'i must vanish. In

other words, in order to have a non-trivial normal mode it is necessary to have

1+'e+'i = 0� (4.27)

This is called a dispersion relation and prescribes a functional relation between �
and k. The dispersion relation can be considered as the determinant-like equation
for the eigenvalues ��k� of the system of equations.
The normal modes can be identified by noting that Eq. (4.26) has two limiting

behaviors depending on how the wave-phase velocity compares to
√
�T�0/m� , a

quantity that is of the order of the thermal velocity. These limiting behaviors are:

1. Adiabatic regime: �/k�√
�T�0/m� and � = �N + 2�/N . Because plane waves are

one-dimensional perturbations (i.e., the plasma is compressed in the k̂ direction only),
N = 1 so that � = 3� Hence the susceptibility has the limiting form

'� = − �2
p�

�2�1−�k2�T�0/m��2�

� −�
2
p�

�2

(
1+3

k2

�2

�T�0
m�

)
= − 1

k2�2D�

k2

�2

�T�
m�

(
1+3

k2

�2

�T�0
m�

)
� (4.28)
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2. Isothermal regime: �/k � √
�T�0/m� and � = 1. Here the susceptibility has the

limiting form

'� = �2
p�

k2�T�0/m�
= 1

k2�2D�
� (4.29)

Figure 4.1 shows a plot of '� versus �/k
√
�T�0/m� . The isothermal and adia-

batic susceptibilities are seen to be substantially different and, in particular, do not
coalesce when �/k

√
�T�0/m� → 1� This non-coalescence as �/k

√
�T�0/m� →

1 indicates that the fluid description, while valid in both the adiabatic and isother-
mal limits, fails in the vicinity of �/k ∼√

�T�0/m� . As will be seen later, the
more accurate Vlasov description must be used in the �/k∼√�T�0/m� regime.
Since the ion-to-electron mass ratio is large, ions and electrons typically have

thermal velocities differing by at least one and sometimes two orders of magni-
tude. Furthermore, ion and electron temperatures often differ, again allowing
substantially different electron and ion thermal velocities. Three different situa-
tions can occur in a typical plasma depending on how the wave-phase velocity
compares to thermal velocities. These situations are:

1. Case where �/k�√
�Te0/me�

√
�Ti0/mi.

Here both electrons and ions are adiabatic and the dispersion relation becomes

1− �
2
pe

�2

(
1+3

k2

�2

�Te0
me

)
− �

2
pi

�2

(
1+3

k2

�2

�Ti0
mi

)
= 0� (4.30)

1 2 3
ω /k κTσ 0 /mσ

χσ  ≈ 1
k2λ2
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√

χ
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ω 
2
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ω 
2
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Fig. 4.1 Susceptibility '� as a function of �/k
√
�T�0/m� .
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Since �2
pe/�

2
pi = mi/me the ion contribution can be dropped, and the dispersion

becomes

1− �
2
pe

�2

(
1+3

k2

�2

�Te0
me

)
= 0� (4.31)

To lowest order, the solution of this equation is simply �2 =�2
pe. An iterative solution

may be obtained by substituting this lowest order solution into the thermal term,
which, by assumption, is a small correction because �/k�√

�Te0/me� This gives the
standard form for the high-frequency, electrostatic, unmagnetized plasma wave

�2 = �2
pe+3k2

�Te0
me

� (4.32)

This most basic of plasma waves is called the electron plasma wave, the Langmuir
wave (Langmuir 1928), or the Bohm–Gross wave (Bohm and Gross 1949).

2. Case where �/k�√
�Te0/me�

√
�Ti0/mi.

Here both electrons and ions are isothermal and the dispersion becomes

1+∑
�

1

k2�2D�
= 0� (4.33)

This has no frequency dependence, and is just the Debye shielding derived in Chapter 1.
Thus, when �/k�√

�Te0/me�
√
�Ti0/mi the plasma approaches the steady-state limit

and screens out any applied perturbation. This limit shows why ions cannot provide
Debye shielding for electrons, because if the test particle were chosen to be an electron,
its nominal speed would be the electron thermal velocity. From the point of view of
ions, this fast-moving electron test particle would zoom through with a phase velocity
�/k ∼ vTe and so violate the requirement that �/k� √

�Ti0/mi for the ions to be
able to respond; the ions would not be able to move fast enough to do any shielding
(Wang, Joyce, and Nicholson 1981).

3. Case where
√
�Ti0/mi � �/k�√

�Te0/me.
Here the ions act adiabatically whereas the electrons act isothermally so that the
dispersion becomes

1+ 1

k2�2De
− �

2
pi

�2

(
1+3

k2

�2

�Ti0
mi

)
= 0� (4.34)

It is conventional to define the “ion acoustic” velocity

c2s = �2
pi�

2
De = �Te/mi (4.35)

so that Eq. (4.34) can be recast as

�2 = k2c2s
1+k2�2De

(
1+3

k2

�2

�Ti0
mi

)
� (4.36)

Since �/k�√
�Ti0/mi, this may be solved iteratively by first assuming Ti0 = 0 giving

�2 = k2c2s
1+k2�2De

� (4.37)
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This is the most basic form for the ion acoustic wave dispersion and in the limit
k2�2De � 1, becomes simply �2 = c2s /�2De = �2

pi. To obtain the next higher order of
precision for the ion acoustic dispersion, Eq. (4.37) may be used to eliminate k2/�2

from the ion thermal term of Eq. (4.36) giving

�2 = k2c2s
1+k2�2De

+3k2
�Ti0
mi
� (4.38)

For self-consistency, it is necessary to have c2s � �Ti0/mi� if this were not true, the ion
acoustic wave would become �2 = 3k2�Ti0/mi, which would violate the assumption
that �/k� √

�Ti0/mi. The condition c2s � �Ti0/mi is the same as Te � Ti so ion
acoustic waves can only propagate when the electrons are much hotter than the ions.
This issue will be explored in more depth later when ion acoustic waves are re-
examined from the Vlasov point of view.

4.2.2 Electromagnetic (incompressible) waves

The compressional waves discussed in the previous section were obtained by
taking the divergence of Eq. (4.8). An arbitrary vector field V can always be
decomposed into a gradient of a potential and a solenoidal part, i.e., it can always
be written as V= 	&+	×Q, where & and Q can be determined from V. The 	&
term has zero curl and so describes a conservative field, whereas the solenoidal
term 	×Q has zero divergence and describes a non-conservative field. Because
we have chosen to use Coulomb gauge in our analysis of waves, the −	� term on
the right-hand side of Eq. (4.9) is the only conservative field; the −�A/�t term
is the solenoidal or non-conservative field.
Waves involving finite A have coupled electric and magnetic fields and

are a generalization of vacuum electromagnetic waves such as light or radio
waves. These finite A waves are variously called electromagnetic, transverse, or
incompressible waves. Since no electrostatic potential is involved, 	 ·E = 0 and
the plasma remains neutral. Because A �= 0, these waves involve electric currents.
Since the electromagnetic waves are solenoidal, the −	� term in Eq. (4.8) is

superfluous and can be eliminated by taking the curl of Eq. (4.8) giving

�

�t
	× �m�n�u�1�= −q�n�

�B1

�t
� (4.39)

To obtain an equation involving currents, Eq. (4.39) is integrated with respect to
time, multiplied by q�/m� , and then summed over species to give

	×J1 = −
0�2
pB1� (4.40)

where

�2
p =∑

�

�2
p�� (4.41)
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However, Ampère’s law can be written in the form

J1 = 1
�0
	×B1 −
0

�E1

�t
� (4.42)

which, after substitution into Eq. (4.40), gives

	×
(
	×B1 − 1

c2
�E1

�t

)
= −�

2
p

c2
B1� (4.43)

Using the vector identity 	× �	×Q�= 	 �	 ·Q�−	2Q and Faraday’s law this
becomes

	2B1 = 1
c2
�2B1

�t2
+ �

2
p

c2
B1� (4.44)

In the limit of no plasma, �2
p → 0� so that Eq. (4.44) reduces to the stan-

dard vacuum electromagnetic wave. If it is assumed that B1 ∼ exp �ik ·x− i�t�,
Eq. (4.44) becomes the electromagnetic, unmagnetized plasma wave dispersion

�2 = �2
p+k2c2� (4.45)

Waves satisfying Eq. (4.45) are often used to measure plasma density. Such a
measurement can be accomplished two ways:

1. Cutoff method
If �2 <�2

p then k
2 becomes negative, the wave does not propagate, and only exponen-

tially growing or decaying spatial behavior occurs (such behavior is called evanescent).
If the wave is excited by an antenna driven by a fixed-frequency oscillator, the bound-
ary condition that the wave field does not diverge at infinity means that only waves that
decay away from the antenna exist. Thus, the field is localized near the antenna and
there is no wave-like behavior. This is called cutoff. When the oscillator frequency is
raised above �p, the wave starts to propagate so that a receiver located some distance
away will abruptly start to pick up the wave. By scanning the transmitter frequency
and noting the frequency at which the wave starts to propagate, �2

p is determined,
giving a direct, unambiguous measurement of the plasma density.

2. Phase shift method
Here the oscillator frequency is set to be well above cutoff so that the wave is always
propagating. The dispersion relation is solved for k and the phase delay �� of the
wave through the plasma is measured by interferometric fringe-counting. The total
phase delay through a length L of plasma is

�=
∫ L

0
kdx = 1

c

∫ L

0

[
�2 −�2

p

]1/2
dx � �

c

∫ L

0

[
1− �2

p

2�2

]
dx (4.46)

so that the phase delay due to the presence of plasma is

��= − 1
2�c

∫ L

0
�2
pe
dx = − e2

2�cme
0

∫ L

0
ndx� (4.47)
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Thus, measurement of the phase shift �� due to the presence of plasma can be used to
measure the average density along L; this density is called the line-averaged density.

4.3 Low-frequency magnetized plasma: Alfvén waves

4.3.1 Overview of Alfvén waves

We now consider low-frequency waves propagating in a magnetized plasma,
i.e., a plasma immersed in a uniform, constant magnetic field B = B0ẑ. By low
frequency, it is meant that the wave frequency � is much smaller than the ion
cyclotron frequency �ci. Several types of waves exist in this frequency range;
certain of these involve electric fields having a purely electrostatic character (i.e.,
	 ×E = 0�, whereas others involve electric fields having an inductive character
(i.e., 	×E �= 0�. Faraday’s law, 	×E = −�B/�t, shows that if the electric field
is electrostatic the magnetic field must be constant, whereas inductive electric
fields must have an associated time-dependent magnetic field.
We now further restrict attention to a specific category of these � � �ci

modes, namely the Alfvén waves. These waves are the normal modes of MHD,
involve magnetic perturbations, and have characteristic velocities of the order of
the Alfvén velocity vA = B/√�0�. The existence of such modes is not surprising
if one considers that ordinary neutral gas sound waves have a velocity csound =√
�P/� and the magnetic stress tensor scales as ∼ B2/�0� so that Alfvén-type

velocities will result if P is replaced by B2/2�0. Two distinct kinds of Alfvén
modes exist and to complicate matters these are called a variety of names by
different authors. One mode, variously called the fast mode, the compressional
mode, or the magnetosonic mode resembles a sound wave and involves compres-
sion and rarefaction of magnetic field lines; this mode has a finite Bz1. The other
mode, variously called the Alfvén mode, the shear mode, the torsional mode, or
the slow mode, involves twisting, shearing, or plucking motions; this mode has
Bz1 = 0. This latter mode appears in distinct !-dependent versions when modeled
using two-fluid or Vlasov theory; these are respectively called the inertial Alfvén
wave and the kinetic Alfvén wave.
Both Faraday’s law and the pre-Maxwell Ampère’s law are fundamental to

Alfvén wave dynamics. The system of linearized equations thus is

	×E1 = −�B1

�t
(4.48)

	×B1 = �0J1� (4.49)

If the dependence of J1 on E1 can be determined, then the combination of
Ampère’s law and Faraday’s law provides a complete self-consistent description
of the coupled fields E1�B1 and hence describes the normal modes. From a
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mathematical point of view, specifying J1�E1� means that there are as many equa-
tions as dependent variables in Eqs. (4.48) and (4.49). The relationship between
J1 and E1 is determined by the Lorentz equation or some generalization thereof
(e.g., drift equations, Vlasov equation, fluid equation of motion). The analysis
of solutions to Eqs. (4.48) and (4.49) will proceed in three steps. First, we will
consider the zero-pressure MHD approximation, next, the finite-pressure MHD
approximation, and finally, the finite-pressure two-fluid approximation. MHD
is a simpler description than two-fluid theory because MHD essentially ignores
parallel dynamics. Instead of attempting a description of the parallel dynamics,
the MHD approximation invokes what is in effect an ad hoc closure relation for
the parallel current density in order to maintain overall charge neutrality.

4.3.2 Zero-pressure MHD model

The zero-pressure MHD model reveals the fundamental nature of the Alfvén
modes and shows that the essence of these MHD modes comes from the polar-
ization drift associated with a time-dependent perpendicular electric field, namely

u��polarization = m�
q�B

2

dE⊥
dt
� (4.50)

this was discussed in the derivation of Eq. (3.77). The polarization drift results in
a polarization current

J⊥ = ∑
n�q�u��polarization

= �

B2

dE⊥
dt
� (4.51)

where �=∑
n�m� is the mass density. This can be recast as

dE⊥
dt

= B2

�0�
�0J⊥

= v2A �	×B1�⊥ � (4.52)

where

v2A = B2

�0�
(4.53)

is the Alfvén velocity. Equation (4.48) and the linearized version of Eq. (4.52)
give the two basic coupled equations governing these Alfvén modes, namely

�B1

�t
= −	×E1 (4.54a)

�E⊥1

�t
= v2A �	×B1�⊥ � (4.54b)
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The omission of an equation for the parallel component of Ampère’s law is an
essential property of the MHD model. Unlike all other dependent variables, which
appear in two equations and so have to be solved for self-consistently, the only
place where Jz appears in MHD is in the 	 ·J = 0 equation and so Jz is solved
for in MHD as a sort of “after-thought” using the relation Jz = − ∫ dz	⊥ ·J⊥.
A critical feature of MHD related to this omission of a dynamical prescription

for Jz results from dotting the linearized ideal Ohm’s law

E1 +U1 ×B = 0 (4.55)

with ẑ to obtain Ez1 = 0. Thus, in the MHD limit, it is assumed there is no parallel
electric field so there is no means for accelerating particles in the parallel direction
and thus no means for attaining the parallel particle velocities associated with the
existence of a parallel current. Even though MHD does not provide the dynamics
for establishing a parallel current, MHD nevertheless requires the existence of
a parallel current in order to satisfy 	 · J = 0� Thus, according to the MHD
approximation, a parallel current spontaneously comes into existence without any
parallel electric field to drive this current. Equation (4.55) also implies that the
plasma velocity for these modes is just the E×B drift, i.e., U1 = E1 ×B/B2.

We now proceed with the derivation of the two zero-pressure MHD modes.
Since Ez1 is zero, the electric field is only in the perpendicular direction. The
components of the electric field, the magnetic field, and the 	 operator can thus
be expressed as

E1 = E⊥1

B1 = B⊥1 +Bz1ẑ
	 = 	⊥ + ẑ �

�z
� (4.56)

where ⊥ refers to the x and y components of a vector or a vector operator so, for
example, 	⊥ = x̂�/�x+ ŷ�/�y. The curl operators appearing in Eqs. (4.54) can
therefore be expanded as

	×E1 =
(
	⊥ + ẑ �

�z

)
×E⊥1

= 	⊥ ×E⊥1 + ẑ× �E⊥1

�z
(4.57)

and

�	×B1�⊥ =
((
	⊥ + ẑ �

�z

)
× (B⊥1 +Bz1ẑ

))
⊥

= 	⊥Bz1 × ẑ+ ẑ× �B⊥1

�z
� (4.58)
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where it should be noted that both 	⊥ ×E⊥1 and 	⊥ ×B⊥1 are in the z direction.
Using Eqs. (4.57) and (4.58) in Eqs. (4.54) gives the basic pair of coupled
equations for MHD waves, namely

�B1

�t
= −	⊥ ×E⊥1 − ẑ× �E⊥1

�z
(4.59a)

�E⊥1

�t
= v2A

(
	⊥Bz1 × ẑ+ ẑ× �B⊥1

�z

)
� (4.59b)

Slow or Alfvén mode (mode where Bz1 = 0)

In this case B1 = B⊥1 and Eqs. (4.59) become

�B⊥1

�t
= −ẑ× �E⊥1

�z
(4.60a)

�E⊥1

�t
= v2Aẑ×

�B⊥1

�z
(4.60b)

with the condition

	⊥ ×E⊥1 = 0� (4.61)

which is obtained from the z component of Eq. (4.59a). Equations (4.60) can be
rewritten as

�B⊥1

�t
= �

�z
�ẑ×E⊥1� (4.62a)

�

�t
�ẑ×E⊥1� = −v2A

�B⊥1

�z
� (4.62b)

which leads to a wave equation in the coupled variables ẑ×E⊥1 and B⊥1� In
particular, taking a second time derivative of Eq. (4.62a) and then substituting
for �/�t �ẑ×E⊥1� using Eq. (4.62b), gives the wave equation for the slow mode
(Alfvén mode),

�2B⊥1

�t2
= v2A

�2B⊥1

�z2
� (4.63)

This is the mode originally derived by Alfvén (1943). The condition given by
Eq. (4.61) corresponds to setting Bz1 = 0 and implies that E⊥1 can be expressed as
the gradient of a potential. This further implies that the velocity U1 = E1 ×B/B2

is incompressible since 	 ·U1 = 	 · (E1 ×B/B2
)= B−2B ·	×E1 = B−2B ·	⊥ ×

E⊥1 = 0.
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4.3.3 Fast mode (mode where Bz1 �= 0)

In this case only the z component of Eq. (4.59a) is used and after crossing
Eq. (4.59b) with ẑ, Eqs. (4.59) become

�Bz1
�t

= −ẑ ·	⊥ ×E⊥1 = −	 · �E⊥1 × ẑ� (4.64a)

�

�t
E⊥1 × ẑ = v2A

(
	⊥Bz1 × ẑ+ ẑ× �B⊥1

�z

)
× ẑ= v2A

(
−	⊥Bz1 + �B⊥1

�z

)
�

(4.64b)

Taking a time derivative of Eq. (4.64a) and then using Eq. (4.64b) to substitute
for �/�t �E⊥1 × ẑ� gives

�2Bz1
�t2

= −v2A	 ·
(

−	⊥Bz1 + �B⊥1

�z

)
= v2A	2

⊥Bz1 −v2A
�

�z
�	 ·B⊥1�� (4.65)

However, using 	 ·B1 = 0 it is seen that

	 ·B⊥1 = −�Bz1
�z

(4.66)

and so the fast wave equation becomes

�2Bz1
�t2

= v2A	2Bz1� (4.67)

4.3.4 Comparison of the two modes

The slow mode Eq. (4.63) involves only z derivatives and so has a dispersion
relation

�2 = k2zv2A� (4.68)

whereas the fast mode involves the 	2 operator and so has the dispersion relation

�2 = k2v2A� (4.69)

The slow mode is incompressible and has Bz1 = 0 so its perturbed magnetic field
is entirely orthogonal to the equilibrium field. Thus, the slow mode magnetic
perturbation corresponds to a twisting or plucking of the equilibrium field. The
fast mode has Bz1 �= 0, which corresponds to a compression of the equilibrium
field as shown in Fig. 4.2; since the plasma is frozen to the magnetic field, the
plasma is also compressed.
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direction of propagation of
compressional Alfvén wave

compressed field lines

rarified field lines

Fig. 4.2 Compressional Alfvén waves.

4.3.5 Finite-pressure analysis of MHD waves

If the pressure is allowed to be finite, then the two modes become coupled and
an acoustic mode appears. Using the vector identity 	B2 = 2�B ·	B+B×	×B�
the J×B force in the MHD equation of motion can be written as

J×B = 1
�0
�	×B�×B−	

(
B2

2�0

)
+ 1
�0

B ·	B� (4.70)

The MHD equation of motion thus becomes

�
DU
Dt

= −	
(
P+ B2

2�0

)
+ 1
�0

B ·	B� (4.71)

Linearizing this equation about a stationary equilibrium, where the pressure and
the density are uniform and constant, gives

�
�U1

�t
= −	

(
P1 + B ·B1

�0

)
+ 1
�0

B ·	B1� (4.72)

where unsubscripted dependent variables are equilibrium (zero-order) quantities.
The curl of the linearized ideal MHD Ohm’s law,

E1 +U1 ×B = 0� (4.73)

gives the induction equation

�B1

�t
= 	× �U1 ×B�� (4.74)

while the linearized continuity equation

��1
�t

+�	 ·U1 = 0 (4.75)
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together with the equation of state

P1
P

= ��1
�

(4.76)

give
�P1
�t

= −�P	 ·U1� (4.77)

To obtain an equation involving U1 only, we take the time derivative of Eq. (4.72)
and use Eqs. (4.74) and (4.77) to eliminate the time derivatives of P1 and B1.
This gives

�
�2U1

�t2
= −	

(
−�P	 ·U1 + 1

�0
B ·	× �U1 ×B�

)
+ 1
�0
�B ·	�	× �U1 ×B� � (4.78)

This can be simplified using the identity 	 · �a×b�= b ·	×a−a ·	×b so that

B ·	× �U1 ×B�= 	 · ��U1 ×B�×B�= −B2	 ·U1⊥� (4.79)

Furthermore,

B ·	 = B �
�z

= ikzB� (4.80)

Using these relations Eq. (4.78) becomes

�2U1

�t2
= 	 (c2s 	 ·U1 +v2A	 ·U1⊥

)+ ikzv
2
A	× �U1 × ẑ�� (4.81)

where c2s = �P/� is the velocity of the conventional sound wave in a gas (this
wave is not to be confused with the ion acoustic wave, which is a result of
two-fluid analysis and which has a velocity c2s = �Te/mi). To proceed further we
take either the divergence or the curl of this equation to obtain expressions for
compressional or incompressible motions.

4.3.6 MHD compressional (fast) mode

Here we take the divergence of Eq. (4.81) to obtain

�2	 ·U1

�t2
= 	2 (c2s 	 ·U1 +v2A	 ·U1⊥

)
(4.82)

or

�2	 ·U1 = (
k2⊥ +k2z

) (
c2s 	 ·U1 +v2A	 ·U1⊥

)
� (4.83)
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On the other hand, if Eq. (4.81) is operated on with 	⊥ = 	− ikzẑ we obtain

�2	⊥ ·U1

�t2
= 	2

⊥
(
c2s 	 ·U1 +v2A	 ·U1⊥

)+k2zv2Aẑ ·	× �U1 × ẑ�� (4.84)

Using

ẑ ·	× �U1 × ẑ� = 	 · ��U1 × ẑ�× ẑ�
= −	 ·U1⊥ (4.85)

Eq. (4.84) becomes

�2	⊥ ·U1 = k2⊥
(
c2s 	 ·U1 +v2A	 ·U1⊥

)+k2zv2A	 ·U1⊥� (4.86)

Equations (4.83) and (4.86) constitute two coupled equations in the variables
	 ·U1 and 	 ·U1⊥, namely(

�2 −k2c2s
)
	 ·U1 −k2v2A	 ·U1⊥ = 0

k2⊥c
2
s 	 ·U1 + (k2v2A−�2)	 ·U1⊥ = 0� (4.87)

These coupled equations have the determinant(
�2 −k2c2s

) (
k2v2A−�2)+k2v2Ak2⊥c2s = 0� (4.88)

which can be rearranged as a fourth order polynomial in �,

�4 −�2k2
(
v2A+ c2s

)+k2k2zv2Ac2s = 0� (4.89)

having roots

�2 = k2
(
v2A+ c2s

)±√k4 (v2A+ c2s
)2 −4k2k2zv

2
Ac

2
s

2
� (4.90)

This dispersion relation has the following limiting forms

�2 = k2⊥
(
v2A+ c2s

)
or
�2 = 0

⎫⎪⎬⎪⎭ if kz = 0 (4.91)

and

�2 = k2zv2A
or
�2 = k2zc2s

⎫⎪⎬⎪⎭ if k2⊥ = 0� (4.92)

the �2 = k2⊥
(
v2A+ c2s

)
mode existing in the kz = 0 limit is called the magnetosonic

mode and corresponds to choosing the plus sign in Eq. (4.90).
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4.3.7 MHD shear (slow) mode

It is now assumed that 	 ·U1 = 0 and taking the curl of Eq. (4.81) gives

�2	×U1

�t2
= v2A	×	×

(
�U1

�z
× ẑ
)

= v2A	×

⎛⎜⎜⎝�U1

�z
	 · ẑ︸︷︷︸
zero

+ ẑ ·	 �U1

�z
− ẑ	 · �U1

�z︸ ︷︷ ︸
zero

− �U1

�z
· 	ẑ︸︷︷︸
zero

⎞⎟⎟⎠
= v2A

�2

�z2
	×U1� (4.93)

where the vector identity 	 × �F×G�= F	 ·G+G ·	F−G	 ·F−F ·	G has
been used to obtain the second line.
Equation (4.93) reduces to the slow wave dispersion relation Eq. (4.68). The

associated spatial behavior is such that 	 ×U1 �= 0� and the mode is unaffected
by existence of finite pressure. The perturbed magnetic field is orthogonal to the
equilibrium field, i.e., B1 ·B = 0, since it has been assumed that 	 ·U1 = 0 and
since finite B1 ·B corresponds to finite 	 ·U1. Since 	×U1 is the fluid vorticity,
the slow mode involves propagation of vorticity.

4.3.8 Limitations of the MHD model

The MHD model ignores parallel electron dynamics and so has a shear mode
dispersion �2 = k2zv2A that has no dependence on k⊥. Some authors interpret this
as a license to allow arbitrarily large k⊥, in which case a shear mode could be
localized to a single field line. However, the two-fluid model of the shear mode
does have a dependence on k⊥, which becomes important when k⊥ becomes large.
The nature of the two-fluid shear mode depends on how the parallel phase velocity
of the wave compares to the electron and ion thermal velocities, i.e., on how
�/kz ∼ vA compares to vTe and vTi. Since it is possible to have (i) vA � vTi� vTe,
(ii) vTi � vA � vTe, or (iii) vTi� vTe � vA, three distinct two-fluid regimes can
exist and, as will be shown below, the plasma ! determines which is the relevant
regime for a given plasma.
MHD also predicts a sound wave that is identical to the ordinary hydrodynamic

sound wave of an unmagnetized gas. The perpendicular behavior of this sound
wave is consistent with the two-fluid model because both two-fluid and MHD
perpendicular motions involve compressional behavior associated with having
finite Bz1. However, the parallel behavior of the MHD sound wave is problematic
because Ez1 is assumed to be identically zero in MHD. According to the two-fluid
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model, any parallel acceleration requires a parallel electric field. The two-fluid
Bz1 mode is decoupled from the two-fluid Ez1 mode so that the two-fluid Bz1
mode is both compressional and has no parallel motion associated with it.
The MHD analysis makes no restriction on the electron to ion temperature ratio

and predicts that a sound wave will exist when Te = Ti. In contrast, the two-fluid
model shows that sound waves can only exist when Te � Ti because only in this
regime is it possible to have �Ti/mi � �2/k2z � �Te/me and so have inertial
behavior for ions and kinetic behavior for electrons.
Various paradoxes develop in the MHD treatment of the shear mode but not in

the two-fluid description. These paradoxes illustrate the limitations of the MHD
description of a plasma and show that MHD results must be treated with caution
for the shear (slow) mode. MHD provides an adequate description for the fast
(compressional) mode.

4.4 Two-fluid model of Alfvén modes

We now examine these modes from a two-fluid point of view. An important
point that will be demonstrated is that the two-fluid point of view shows that the
shear mode has three distinct forms depending on how v2A compares to the ion
and electron thermal velocities. The Alfvén velocity could be slower than both
electron and ion thermal velocities, faster than the ion thermal velocity while
slower than the electron thermal velocity, or faster than both the electron and
ion thermal velocities. Which of these situations occurs depends upon the ratio
of hydrodynamic pressure to magnetic pressure. This ratio is defined for each
species � as

!� = n�T�
B2/�0

� (4.94)

the subscript � is not used if electrons and ions have the same temperature. !i
measures the ratio of ion thermal velocity to the Alfvén velocity since

v2Ti
v2A

= �Ti/mi
B2/nmi�0

= !i� (4.95)

Thus, vTi � vA corresponds to !i � 1. Magnetic forces dominate hydrodynamic
forces in a low-! plasma, whereas in a high-! plasma the opposite is true.

The ratio of electron thermal velocity to Alfvén velocity is

v2Te
v2A

= �Te/me
B2/nmi�0

= mi
me
!e� (4.96)

Thus, v2Te � v2A when !e �me/mi and v
2
Te � v2A when !e �me/mi. Shear Alfvén

wave physics is different in the !e � me/mi and !e � me/mi regimes, which
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therefore must be investigated separately. MHD ignores this !� dependence and
so oversimplifies these waves.
The MHD derivation used the polarization drift to give a relationship between

J⊥1 and E⊥1 but was ambiguous regarding the relationship between Jz1 and Ez1.
The two-fluid model is based on the linearized equation of motion

m�n
�u�1
�t

= nq� �E1 +u�1 ×B�−	 ·P�1� (4.97)

this equation gives essentially the same physics as MHD in the perpendicular
direction, but not in the parallel direction. As in MHD, charge neutrality is
assumed so that ni = ne = n� Also, to have increased generality, the pressure is
allowed to be anisotropic so

	 ·P�1 = 	 ·
⎡⎢⎣ P�⊥1 0 0

0 P�⊥1 0
0 0 P�z1

⎤⎥⎦= 	⊥P�⊥1 + ẑ �P�z1
�z

� (4.98)

Because quasi-neutrality is assumed, the perpendicular current given by two-
fluid theory is essentially identical to MHD and consists of ion polarization drift
and diamagnetic drift. The existence of these drifts can be seen by invoking the
�� �c� assumption so that the left-hand side of Eq. (4.97) can be neglected to
first approximation, in which case the perpendicular component of Eq. (4.97) can
be expressed as

u�1 ×B � −E⊥1 +	⊥P�⊥1/nq�� (4.99)

Crossing with B to solve for u�⊥1 gives

u�⊥1 = E1 ×B
B2

− 	P�⊥1 ×B
nq�B

2
� (4.100)

where the first term is the single-particle E×B drift and the second term is the
diamagnetic drift, a fluid effect. Because u�⊥1 is time-dependent the polarization
drift, given in Eq. (4.50), should also appear. Polarization drift results from
solving the perpendicular equation of motion to first order in �/�c� . Recalling
that the form of the single-particle polarization drift is vp = (

m�/q�B
2
)
dE⊥1/dt

and then using E⊥1 −	⊥P�⊥1/nq� for the fluid model being considered here
instead of just E⊥1 for single particles (cf. right-hand side of Eq. (4.99)), the fluid
polarization drift is obtained. With the inclusion of this higher order correction,
the perpendicular fluid motion becomes

u�⊥1 = E1 ×B
B2

− 	P�⊥1 ×B
nq�B

2
+ m�
q�B

2

dE⊥1

dt
− m�
nq2�B

2
	⊥

dP�⊥1

dt
� (4.101)

The dE⊥1/dt and dP�⊥1/dt terms are respectively smaller than the corresponding
E1 and P�⊥1 terms by the ratio �/�c� and so may be ignored when electron and
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ion fluid velocities are considered separately because �� �c� by assumption.
However, when calculating the perpendicular current, i.e., J⊥1 = ∑

nq�u�⊥1,
the electron and ion E×B drift terms cancel each other so that the polarization
terms become the leading terms involving the electric field. Because of the mass
in the numerator, the ion polarization drift is much larger than the electron
polarization drift. Thus, the perpendicular current comes from ion polarization
drift and diamagnetic current

�0J⊥1 = �0nmiĖ⊥1

B2
−∑

�

	P�⊥1 ×B
B2

= 1

v2A
Ė⊥1 − �0	P⊥1 ×B

B2
� (4.102)

where P⊥1 = ∑
P�⊥1 and the dot on top of E⊥1 denotes time derivative. The

term involving Ṗ⊥1 has been dropped because it is small by �/�c compared to
the P⊥1 term. Equation (4.102) is essentially the same as what one would obtain
by crossing the MHD equation of motion with B and assuming that the MHD
velocity U is given by the E×B drift. Thus, the two-fluid perpendicular dynamics
is essentially the same as MHD perpendicular dynamics.
We now reconsider equations of the form given by Eqs. (4.57) and (4.58), but

do so without assuming that Ez1 is zero. Thus, all vectors are decomposed into
components parallel and perpendicular to the equilibrium magnetic field, e.g.,
E1= E⊥1+Ez1ẑ. The 	 operator is similarly decomposed into components parallel
to and perpendicular to the equilibrium magnetic field, i.e., 	 = 	⊥ + ẑ�/�z, and
all quantities are assumed to be proportional to f�x� y� exp �ikzz− i�t�. Faraday’s
law can then be written as

	⊥ ×E⊥1 +	⊥ ×Ez1ẑ+ ẑ
�

�z
×E⊥1 = − �

�t

(
B⊥1 +Bz1ẑ

)
� (4.103)

which has a parallel component

ẑ ·	⊥ ×E⊥1 = i�Bz1 (4.104)

and a perpendicular component(
	⊥Ez1 − ikzE⊥1

)× ẑ= i�B⊥1� (4.105)

Similarly, Ampère’s law can be decomposed into a parallel component

ẑ ·	⊥ ×B⊥1 = �0Jz1 (4.106)

and a perpendicular component(
	⊥Bz1 − ikzB⊥1

)× ẑ= �0J⊥1� (4.107)
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Unlike the MHD model, here we have taken into account both finite Ez1 and the
parallel component of Ampère’s law. Substituting the perpendicular current given
by Eq. (4.102) into Eq. (4.107) gives

(
	⊥Bz1 − ikzB⊥1

)× ẑ= − i�

v2A
E⊥1 − �0	P1 × ẑ

B
(4.108)

or, after rearrangement,

	⊥
(
Bz1 + �0P⊥1

B

)
× ẑ− ikzB⊥1 × ẑ= − i�

v2A
E⊥1� (4.109)

Equations (4.105) and (4.109) can be considered as two coupled equations
involving E⊥1 and B⊥1. After crossing Eq. (4.105) with ẑ, they can also be written
as two coupled equations involving E⊥1 and B⊥1 × ẑ, namely

i�B⊥1 × ẑ− ikzE⊥1 = −	⊥Ez1 (4.110a)

−ikzB⊥1 × ẑ+ i�

v2A
E⊥1 = −	⊥

(
Bz1 + �0P⊥1

B

)
× ẑ� (4.110b)

These may now be solved algebraically for E⊥1 and B⊥1 × ẑ to obtain

E⊥1 = ikz	⊥Ez1 + i�	⊥
(
Bz1 +�0P⊥1/B

)× ẑ
�2/v2A−k2z

(4.111a)

B⊥1 × ẑ = i
(
�/v2A

)
	⊥Ez1 + ikz	⊥

(
Bz1 +�0P⊥1/B

)× ẑ
�2/v2A−k2z

� (4.111b)

Equations (4.104) and (4.106), the respective parallel components of Faraday’s
and Ampère’s laws, can be written as

	 · �E⊥1 × ẑ� = i�Bz1� (4.112a)

	 · �B⊥1 × ẑ� = �0Jz1� (4.112b)

so substituting for E⊥1 × ẑ and B⊥1 × ẑ gives

	 ·
(
ikz	⊥Ez1 × ẑ− i�	⊥

(
Bz1 +�0P⊥1/B

)
�2/v2A−k2z

)
= i�Bz1 (4.113a)

	 ·
(
i
(
�/v2A

)
	⊥Ez1 + ikz	⊥

(
Bz1 +�0P⊥1/B

)× ẑ
�2/v2A−k2z

)
= �0Jz1� (4.113b)
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Because 	 · (	⊥Ez1 × ẑ) = 0 and 	 · (	⊥
(
Bz1 +�0P⊥1/B

)× ẑ) = 0 by virtue of
the vector identity 	 · �	⊥&× ẑ�= 	 · �	&× ẑ�= ẑ ·	×	& = 0, these equations
simplify to

	 ·
(
	⊥
(
Bz1 +�0P⊥1/B

)
�2/v2A−k2z

)
= −Bz1 (4.114a)

	 ·
(

i�	⊥Ez1
�2/v2A−k2z

)
= v2A�0Jz1� (4.114b)

Equation (4.114a) is essentially the equation for the compressional mode, but
some further effort is required to relate P⊥1 to Bz1 in order to establish this.
Equation (4.114b) is essentially the equation for the shear mode, but here some
further effort is required to establish the relationship between Jz1 and Ez1.

An important property distinguishing these modes is whether or not the motion
in the perpendicular direction involves compression. To demonstrate this, we take
the divergence of Eq. (4.100) (the small polarization drift terms included in the
extended form given in Eq. (4.101) are ignored since these polarization terms
are higher order in �/�c� and are important only when calculating perpendicular
current). The result is

	 ·u�⊥1 = 1
B2

B ·	×E1 = − 1
B2

B · �B1

�t
= i�
B
Bz1� (4.115)

Thus, modes where Bz1 = 0 involve no compression in the perpendicular direction;
these are the shear modes. The modes where Bz1 is finite are the compressional
modes (finite Bz1 leads to finite 	 ·u�⊥1, which leads to finite P⊥1 as the plasma
is squeezed in the perpendicular direction).

4.4.1 Two-fluid slow (shear) modes

The two-fluid shear modes fall into three categories depending on how the Alfvén
velocity compares to the electron and ion thermal velocities. These three regimes
are shown schematically in Fig. 4.3. The shear modes have Bz1 = 0 so 	 ·u�⊥1 = 0.
The parallel component of the linearized equation of motion, Eq. (4.97), is

nm�
�u�z1
�t

= nq�Ez1 −���T��
�n�1
�z
� (4.116)

where P��1 = ��n�1�T�� has been used. We choose � = 1 if the motion is
isothermal and �� = 3 if the motion is adiabatic since the compression, being
parallel, is one-dimensional. The isothermal case corresponds to�2/k2z ��T�/m�
and vice versa for the adiabatic case.
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Fig. 4.3 The two-fluid shear mode dispersion relation depends on how v2A
compares to the electron and ion thermal velocities and this comparison depends
on the electron and ion !’s.

Because 	 ·u�⊥1 = 0 the continuity equation is

�n�1
�t

+ �

�z

(
nu�z1

)= 0� (4.117)

Taking the time derivative of Eq. (4.116) and invoking Eq. (4.117) gives

�2u�z1
�t2

−��
�T�
m�

�2u�z1
�z2

= q�
m�

�Ez1
�t
� (4.118)

which is similar to electron plasma wave and ion acoustic wave dynamics except
it has not been assumed that Ez1 is electrostatic.
Invoking the assumption that all quantities are of the form f�x� y� exp �ikzz−

i�t� Eq. (4.118) can be solved to give

u�z1 = i�q�
m�

Ez1
�2 −��k2z�T�/m�

(4.119)

and so the sought-after relation between parallel current and parallel electric
field is

�0Jz1 = i�
c2
Ez1

∑
�

�2
p�

�2 −��k2z�T�/m�
� (4.120)

This provides the prescription for Jz1 needed in the right-hand side of Eq. (4.114b)
and contains the parallel dynamics physics omitted from the MHD description.
Substitution of Eq. (4.120) into the right-hand side of Eq. (4.114b) gives the
differential equation for the shear wave

	 ·
(

	⊥Ez1
�2/v2A−k2z

)
− v

2
A

c2
Ez1

∑
�

�2
p�

�2 −��k2z�T�/m�
= 0� (4.121)
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On replacing 	⊥ → ik⊥, Eq. (4.121) becomes

k2⊥
�2 −k2zv2A

+ �
2
pe

c2
1

�2 −�ek2z�Te/me
+ �

2
pi

c2
1

�2 −�ik2z�Ti/mi
= 0� (4.122)

We are interested in the solution to Eq. (4.122) where �2/k2z ∼ v2A but need to
take into account three different possibilities for how v2A might compare to electron
and ion thermal velocities, namely (i) v2A � v2Te� v

2
Ti� (ii) v

2
Te � v2A � v2Ti, or (iii)

v2Te� v
2
Ti � v2A. These three possibilities correspond respectively to the following

! situations: (i) !e � me/mi� (ii) mi!e/me � 1 � !i, and (iii) !i � 1. These
three situations are shown schematically in Fig. 4.3 and will now be discussed in
detail.
In situation (i) where �2/k2z � �Te/me, the second term dominates the third

term since �2
pe � �2

pi and so Eq. (4.122) can be recast as

�2 = k2zv
2
A

1+k2⊥c2/�2
pe

� (4.123)

which is called the inertial Alfvén wave (IAW). The quantity c/�pe is called the
electron collisionless skin depth. If k2⊥c2/�2

pe is not too large, then �/kz is of
the order of the Alfvén velocity and the condition �2 � k2z�Te/me corresponds
to v2A � �Te/me or

!e = n�Te
B2/�0

� me
mi
� (4.124)

Thus, inertial Alfvén wave shear modes exist only in the ultra-low ! regime where
!e �me/mi. The inertial Alfvén wave is called a cold plasma wave because its
dispersion relation does not depend on temperature.
In situation (ii) where �Ti/mi � �2/k2z � �Te/me, Eq. (4.122) can be recast

as

k2⊥
�2 −k2zv2A

− �
2
pe

c2
1

k2z�Te/me
+ �

2
pi

c2
1
�2

= 0� (4.125)

Because �2 appears in the respective denominators of two distinct terms,
Eq. (4.125) is fourth order in �2 and so describes two distinct modes. Let us
suppose that the mode in question is much faster than the ion acoustic velocity,
i.e., �2/k2z � �Te/mi. In this case the last term can be dropped and the remaining
two terms can be rearranged to give

�2 = k2zv2A
(
1+ k

2⊥
v2A

�Te
me

c2

�2
pe

)
� (4.126)
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this is called the kinetic Alfvén wave (KAW). By defining

�2s = 1

v2A

�Te
me

c2

�2
pe

= �Te

mi�
2
ci

(4.127)

as a fictitious ion Larmor radius calculated using the electron temperature instead
of the ion temperature, the kinetic Alfvén wave (KAW) dispersion relation can
be expressed more succinctly as

�2 = k2zv2A
(
1+k2⊥�2s

)
� (4.128)

If k2⊥�2s is not too large, then �/kz is again of the order of vA and so the condition
�2 � k2z�Te/me corresponds to having !e � me/mi� The condition �2/k2z �
�Te/mi, which was also assumed, corresponds to assuming that !e � 1� Thus,
the KAW dispersion relation Eq. (4.128) is valid in the regime me/mi � !e � 1.

Let us now consider situation (iii) where �2/k2z � �Ti/mi� �Te/me� In this
case Eq. (4.122) again reduces to

�2 = k2zv2A
(
1+k2⊥�2s

)
(4.129)

but now �2s is defined as

�2s = �2
pi

�2
ci

(
1

�2De
+ 1

�2Di

)−1

= �Te

�1+Te/Ti�mi�2
ci

� (4.130)

This situation would describe shear modes in a high-! plasma (ion thermal
velocity faster than Alfvén velocity).
To summarize: the shear mode has Bz1 = 0� Ez1 �= 0� Jz1 �= 0� and exists as

a cold plasma inertial Alfvén wave for !e � me/mi and as one of two types of
warm plasma kinetic Alfvén waves for !e �me/mi� These are shown in Fig. 4.3.
The shear mode involves incompressible perpendicular motion, i.e., 	 ·u�⊥1 =
ik⊥ · u�⊥1 = 0, which means that k⊥ is orthogonal to u�⊥1� For example, in
Cartesian geometry, this means that if u�⊥1 is in the x direction, then k⊥ must
be in the y direction, while in cylindrical geometry, this means that if u�⊥1 is
in the � direction, then k⊥ must be in the r direction. The inertial Alfvén wave
is known as a cold plasma wave because its dispersion relation does not depend
on temperature (such a mode would exist even in the limit of a cold plasma).
The kinetic Alfvén wave depends on the plasma having finite temperature and
is therefore called a warm plasma wave. The shear mode parallel dynamics is
related to parallel propagating ion acoustic modes since both shear Alfvén waves
and parallel propagating ion acoustic modes involve parallel motion driven by
finite Ez1� this parallel physics is missing from the MHD description.
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4.4.2 Two-fluid compressional modes

The compressional mode has Bz1 �= 0 and Ez1 = 0. Having Ez1 = 0 means Jz1 = 0
and, since there is no parallel motion, the linearized continuity equation becomes

�n�1
�t

+n	 ·u�⊥1 = 0� (4.131)

Using Eq. (4.115) this may be expressed as

�n�1
�t

− n

B

�Bz1
�t

= 0� (4.132)

which may be integrated with respect to time to give

n�1
n

= Bz1
B
� (4.133)

Assuming an adiabatic response for this perpendicular compression gives

P⊥1

P
= �n1

n
= �Bz1

B
� (4.134)

Substitution for P⊥1 in Eq. (4.114a) gives

	⊥ ·
( (
v2A+ c2s

)
�2 −k2zv2A

	⊥Bz1

)
+Bz1 = 0� (4.135)

where

c2s = ��Te+Ti
mi

� (4.136)

On replacing 	⊥ → ik⊥, Eq. (4.135) becomes the compressional mode disper-
sion relation

−k2⊥
(
v2A+ c2s

)
�2 −k2zv2A

+1 = 0 (4.137)

or

�2 = k2v2A+k2⊥c2s � (4.138)

where k2 = k2z +k2⊥.

4.5 Assignments

1. Plot frequency versus wavenumber for both the electron plasma wave and the ion
acoustic wave in an unmagnetized argon plasma, which has n= 1018 m−3� Te = 10 eV,
and Ti = 1 eV.
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2. Let �� be the difference between the phase shift a 632.8 nm helium–neon laser beam
experiences on traversing a given length of vacuum and on traversing the same length
of plasma. What is �� when the laser beam passes through 10 cm of plasma having
a density of n= 1022 m3? How could this be used as a density diagnostic?

3. Prove that the electrostatic plasma wave �2 =�2
pe+3k2�Te/me can also be written as

�2 = �2
pe�1+3k2�2De�

and show over what range of k2�2De the dispersion is valid. Plot the dispersion
��k� versus k for both negative and positive k. Next, plot on the same graph the
electromagnetic dispersion �2 = �2

pe+ k2c2 and show the limits of validity. Plot the
ion acoustic dispersion �2 = k2c2s /�1+ k2�2De� on this graph showing its region of
validity. Finally, plot the ion acoustic dispersion with a finite ion temperature. Show
the limits of validity of the ion acoustic dispersion.

4. Physical picture of plasma oscillations. Suppose that a plasma is cold and initially
neutral. Consider a spherical volume of this plasma and imagine that a thin shell
of electrons at spherical radius r having thickness �r moves radially outward by a
distance equal to its thickness. Suppose further that the ions are infinitely massive
and cannot move. What is the total ion charge acting on the electrons (consider the
charge density and volume of the ions left behind when the electron shell is moved
out)? What is the electric field due to these ions? By considering the force due to this
electric field on an individual electron in the shell, show that the entire electron shell
will execute simple harmonic motion at the frequency �pe. If the ions had finite mass
how would you expect the problem to be modified (hint: consider the reduced mass)?

5. Suppose that an MHD plasma immersed in a uniform magnetic field B = B0ẑ has
an oscillating electric field Ẽ⊥, where ⊥ means in the direction perpendicular to ẑ�
What is the polarization current associated with Ẽ⊥? By substituting this polarization
current into the MHD approximation of Ampère’s law, find a relationship between
�Ẽ⊥/�t and a spatial operator on B̃� Use Faraday’s law to obtain a similar relationship
between �B̃⊥/�t and a spatial operator on Ẽ� Consider a mode where Ẽx�z� t� and
B̃y�z� t� are the only finite components and derive a wave equation. Do the same for
the pair Ẽy�x� t� and B̃z�x� t�� Which mode is the compressional mode and which is
the shear mode?
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Streaming instabilities and the Landau problem

5.1 Overview

The previous chapter demonstrated the existence of several types of plasma waves
while Section 3.9 showed that particles can interchange energy with waves.
The present chapter is devoted to establishing an important theory governing
collisionless plasma waves, namely the theory of Landau damping. This theory
characterizes the energy exchange that can occur between particles and waves
when the wave-phase velocity is of the order of the particle thermal velocity. The
Landau theory thus fills in the missing link between the adiabatic and isothermal
susceptibilities discussed on p. 151. The first part of this chapter develops some
preparatory ideas by showing that complex frequencies, i.e., wave instabilities,
can develop if there are suitably arranged particle beams in a plasma. If one then
considers a particle velocity distribution f�v� as a collection of particle beams
having different velocities, it should come as no surprise that waves with complex
frequencies can occur. The next and main part of the chapter develops the detailed
theory of Landau damping and summarizes the results in the form of a special
function, called the “plasma dispersion function”. The last part of the chapter
examines the Penrose criterion, a method for determining the stability properties
of a given velocity distribution function f�v�.

5.2 Streaming instabilities

The electrostatic dispersion relation for a zero-temperature plasma is simply

1−∑
�

�2
p�

�2
= 0� (5.1)

indicating that a spatially-independent oscillation at the plasma frequency

�p =
√
�2
pe+�2

pi (5.2)

174
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is a normal mode of a cold plasma. Once started, such an oscillation would
persist indefinitely because no dissipative mechanism exists to quench it. On the
other hand, the oscillation would have to be initiated by some source, because
no available free energy exists from which the oscillation could draw on to start
spontaneously.
We now consider a slightly different situation where cold electrons or ions

stream at some spatially uniform initial velocity instead of being at rest in equilib-
rium. In the special situation where electrons and ions stream at the same velocity,
the center of mass would also move at this velocity. One could then simply move
to the center-of-mass frame where both species would be stationary and so, as
argued in the previous paragraph, an oscillation would not start spontaneously.
However, in the more general situation where the electrons and ions stream at
different velocities, then both species have kinetic energy in the center-of-mass
frame. This free energy could drive an instability.
In order to determine how such an instability could occur, the situation where

each species has a specified equilibrium streaming velocity u�0 will now be
examined. The linearized equation of motion, continuity equation, and Poisson’s
equation respectively become

�u�1
�t

+u�0 ·	u�1 = − q�
m�
	�1� (5.3)

�n�1
�t

+u�0 ·	n�1 = −n�0	 ·u�1� (5.4)

and

	2�1 = − 1

0

∑
�

q�n�1� (5.5)

As before, all first-order dependent variables are assumed to vary as exp �ik ·x−
i�t�. Combining the equation of motion and the continuity equation gives

n�1 = n�0
k2

��−k ·u�0�2
q�
m�
�1� (5.6)

Substituting this into Eq. (5.5) gives the dispersion relation

1−∑
�

�2
p�

��−k ·u�0�2
= 0� (5.7)

which is just like the susceptibility for stationary cold species except that here �
is replaced by the Doppler-shifted frequency �Doppler = �−k ·u�0.
Two examples of streaming instability will now be considered: (i) equal densi-

ties of positrons and electrons streaming past each other with equal and opposite
velocities, and (ii) electrons streaming past stationary ions.
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Positron–electron streaming instability

The positron/electron example, while difficult to realize in practice, is worth
analyzing because it reveals essential features of the streaming instability with a
minimum of mathematical effort. The equilibrium positron and electron densities
are assumed equal so as to have charge neutrality. Since electrons and positrons
have identical mass, the positron plasma frequency �pp is the same as the elec-
tron plasma frequency �pe. Let u0 be the electron stream velocity and −u0 be
the positron stream velocity. Defining z = �/�pe and � = k ·u0/�pe, Eq. (5.7)
reduces to

1 = 1
�z−��2 + 1

�z+��2 � (5.8)

a quartic equation in z. Because of the symmetry, no odd powers of z appear and
Eq. (5.8) becomes

z4 −2z2��2 +1�+�4 −2�2 = 0� (5.9)

which may be solved for z2 to give

z2 = ��2 +1�±
√
4�2 +1� (5.10)

Each choice of the ± sign gives two roots for z. If z2 > 0, then the two roots
are real, equal in magnitude, and opposite in sign. On the other hand, if z2 < 0�
then the two roots are pure imaginary, equal in magnitude, and opposite in sign.
Recalling that � = �pez and that the perturbation varies as exp �ik · x− i�t�,
it is seen that the positive imaginary root corresponds to instability; i.e., to a
perturbation that grows exponentially in time.
Hence the condition for instability is z2 < 0. Because only the choice of minus

sign in Eq. (5.10) allows this possibility, we select the minus sign and determine
that the condition for instability is√

4�2 +1> �2 +1� (5.11)

which corresponds to

0< � <
√
2� (5.12)

The maximum growth rate is found by maximizing the right-hand side of
Eq. (5.10) with the minus sign chosen. Taking the derivative with respect to �
and setting dz/d�= 0 to find the maximum, gives

2z
dz
d�

= 2�− 4�√
4�2 +1

= 0 (5.13)

or � = √
3/2. Substituting this most unstable � back into Eq. (5.10) (with the

minus sign selected, since this choice gives the potentially unstable root) gives
the maximum growth rate to be y = 1/2, where z= x+ iy.
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Changing back to physical variables, it is seen that onset of instability occurs
when

ku0 <
√
2�pe� (5.14)

and the maximum growth rate occurs when

ku0 =
√
3
2
�pe� (5.15)

in which case

�= i
�pe

2
� (5.16)

Figure 5.1 plots the normalized instability growth rate Im z as a function of ��
both onset and maximum growth rate are indicated. Since the instability has a
pure imaginary frequency it is called a purely growing mode. Because the growth
rate is of the order of magnitude of the plasma frequency, the instability grows
extremely quickly.

Electron–ion streaming instability

Now consider the more realistic situation where electrons stream with velocity v0
through a background of stationary neutralizing ions. The dispersion relation in
this case is

1− �
2
pi

�2
− �2

pe

��−k ·u0�2
= 0� (5.17)

which can be recast in non-dimensional form by defining z=�/�pe� $=me/mi�
and �= k ·u0/�pe, giving

1 = $

z2
+ 1
�z−��2 � (5.18)

λ
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1.0 2.02

y

ymax = 0.5

3
2

Fig. 5.1 Normalized growth rate vs. normalized wavenumber.
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The value of � at which onset of instability occurs is found by plotting the
right-hand side (RHS) of Eq. (5.18) versus z and comparing this to the left-hand
side, which always has the value of unity. This plot is shown in the sequence
Fig. 5.2(a)–(c). The first term $/z2 diverges at z = 0, while the second term
diverges at z= �. Between z= 0 and z= �, the right-hand side of Eq. (5.18) has
a minimum. If the value of the right-hand side at this minimum is below unity,
as in Fig. 5.2(a), there will be two places between z = 0 and z = � where the
right-hand side of Eq. (5.18) equals unity. For z > �, there is always one and only
one place where the right-hand side equals unity and similarly for z < 0 there is
one and only one place where the right-hand side equals unity. Thus, when the
minimum of the right-hand side is below unity, Eq. (5.18) has four real roots. If
� is decreased to some critical value, then, as shown in Fig. 5.2(b), the two roots
located between 0 and � coalesce. If � is decreased still more, then, as shown in
Fig. 5.2(c), the minimum of the right-hand side is above unity so there are only
two real roots (those in the regions z > � and z < 0). In this latter case the other
two roots of this quartic equation must be complex.
Because a quartic equation must be expressible in the form

�z− z1��z− z2��z− z3��z− z4�= 0� (5.19)

and because the coefficients of Eq. (5.18) are real, the two complex roots must
be complex conjugates of each other. To see this, suppose the complex roots are

(a)

(b)

(c)

RHS

RHS

RHS

1

1

1

z

z

z

0

0

0

λ

λ

λ

Fig. 5.2 Plot of right-hand side (RHS) and left-hand side (unity) of Eq. (5.18)
for sequence of � values. (a) Four real roots, (b) middle two roots coalesce,
(c) two real roots only.
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z1 and z2 and the real roots are z3 and z4. The product of the first two factors
in Eq. (5.19) is z2 − �z1 + z2�z+ z1z2; if the complex roots are not complex
conjugates of each other then this product will contain complex coefficients and,
when multiplied with the product of the terms involving the real roots, will result
in an equation that contains complex coefficients. However, Eq. (5.18) has only
real coefficients so the two complex roots must be complex conjugates of each
other. The complex root with positive imaginary part will give rise to instability.
Thus, when the minimum of the right-hand side of Eq. (5.18) is greater than

unity, two of the roots become complex, and one of these complex roots gives
instability. The onset of instability occurs when the minimum of the right-hand
side of Eq. (5.18) equals unity. Straightforward analysis (cf. assignments) shows
this occurs when

�= �1+ $1/3�3/2� (5.20)

i.e., instability starts when

k ·u0 = �pe
[
1+

(
me
mi

)1/3
]3/2

� (5.21)

The maximum growth rate of the instability may be found by solving Eq. (5.18)
for � and then simplifying the resulting expression using $ as a small parameter.
The details of this are worked out in the assignments, where it is demonstrated
that the maximum growth rate is

max�i �
√
3
2

(
me
2mi

)1/3

�pe� (5.22)

which occurs when

k ·u0 � �pe� (5.23)

As before, this is a very fast-growing instability, about one order of magnitude
smaller than the electron plasma frequency.
Streaming instabilities are a reason why certain simple proposed methods for

attaining thermonuclear fusion will not work. These methods involve shooting
an energetic deuterium beam at an oppositely directed energetic tritium beam
with the expectation that collisions between the two beams would produce fusion
reactions. However, such a system is extremely unstable with respect to the two-
stream instability. This instability typically has a growth rate much faster than
the fusion reaction rate and so will destroy the beams before significant fusion
reactions can occur.
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5.3 The Landau problem

A plasma wave behavior of great philosophical interest and of great practical
importance can now be investigated. Before doing so, we recall three seemingly
disconnected results obtained thus far, namely:

1. When the exchange of energy between charged particles and a simple one-dimensional
electrostatic wave with dependence ∼ exp �ikx− i�t� was considered, the particles
were categorized into two general classes, trapped and untrapped, and it was found
that untrapped particles tended to be dragged towards the wave phase velocity.
Thus, untrapped particles moving slower than the wave gain kinetic energy, whereas
untrapped particles moving faster lose kinetic energy. This has the consequence that
if there are more slow than fast particles, the particles gain net kinetic energy overall
and this gain presumably comes at the expense of the wave. Conversely, if there are
more fast than slow particles, net energy flows from the particles to the wave.

2. When electrostatic plasma waves in an unmagnetized, uniform, stationary plasma
were considered, it was found that wave behavior was characterized by a dispersion
relation 1+'e���k�+'i���k�= 0, where '����k� is the susceptibility of each species
� . As sketched in Fig. 4.1 these susceptibilities had simple limiting forms when
�/k�√

�T�0/m� (isothermal limit) and when �/k�√
�T�0/m� (adiabatic limit),

but the fluid analysis failed when �/k ∼√
�T�0/m� and the susceptibilities became

undefined.
3. When the behavior of interacting beams of particles was considered, it was found that

under certain conditions a fast-growing instability would develop.

The analysis of the Landau problem, to be presented in the remainder of this
chapter, will show that these three results are both interrelated and part of a larger
picture.

5.3.1 Attempt to solve the linearized Vlasov–Poisson system of equations
using Fourier analysis

The method for manipulating fluid equations to find wave solutions was as
follows: (i) the relevant fluid equations were linearized, (ii) a perturbation ∼
exp �ik ·x− i�t� was assumed, (iii) the system of partial differential equations was
transformed into a system of algebraic equations, and then finally (iv) the roots
of the determinant of the system of algebraic equations provided the dispersion
relations that characterized the various wave solutions.
It seems reasonable to use this method again in order to investigate waves

from the Vlasov point of view. However, it will be seen that this approach
fails and that, instead, a more complicated Laplace transform technique must be
used. However, once the underlying difference between the Laplace and Fourier
transform techniques has been identified, it is possible to go back and “patch
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up” the Fourier technique. Although perhaps not entirely elegant, this patching
approach turns out to be a reasonable compromise in that it incorporates both
the simplicity of the Fourier method and the correct mathematics/physics of the
Laplace method.
The Fourier method will now be presented and, to highlight how this method

fails, the simplest relevant example will be considered, namely a one-dimensional,
unmagnetized plasma with a stationary Maxwellian equilibrium. The ions are
assumed to be so massive as to be immobile and the ion density is assumed
to equal the electron equilibrium density. The electrostatic electric field E =
−��/�x is therefore zero in equilibrium because there is charge neutrality in
equilibrium. Since ions do not move there is no need to track ion dynamics. Thus,
all perturbed quantities refer to electrons and so it is redundant to label these with
a subscript “e.” In order to have a well-defined, physically meaningful problem,
the equilibrium electron velocity distribution is assumed to be Maxwellian, i.e.,

f0�v�= n0
1

1/2vT
e−v2/v2T � (5.24)

where vT ≡ √
2�T/m.

The one-dimensional, unmagnetized Vlasov equation is

�f

�t
+v�f
�x

− q

m

��

�x

�f

�v
= 0 (5.25)

and linearization of this equation gives

�f1
�t

+v�f1
�x

− q

m

��1

�x

�f0
�v

= 0� (5.26)

Because theVlasov equation describes evolution in phase-space, v is an independent
variable just like x and t. Assuming a normal mode dependence ∼ exp �ikx− i�t��
Eq. (5.26) becomes

−i��−kv�f1 − ik�1
q

m

�f0
�v

= 0� (5.27)

which gives

f1 = − k

��−kv�
q

m

�f0
�v
�1� (5.28)

The electron density perturbation is

n1 =
∫ �

−�
f1dv= − q

m
�1

∫ �

−�
k

��−kv�
�f0
�v

dv� (5.29)
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a relationship between n1 and �1. Another relationship between n1 and �1 is
Poisson’s equation

�2�1

�x2
= −n1q


0
� (5.30)

Replacing �/�x by ik� Eq. (5.30) becomes

k2�1 = n1q


0
� (5.31)

Combining Eqs. (5.29) and (5.31) gives the dispersion relation

1+ q2

k2m
0

∫ �

−�
k

��−kv�
�f0
�v

dv= 0� (5.32)

This can be written more elegantly by substituting for f0 using Eq. (5.24), defining
the non-dimensional particle velocity % = v/vT , and the non-dimensional phase
velocity �= �/kvT to give

1− 1

2k2�2D

1
1/2

∫ �

−�
d%

1
�%−��

�

�%
e−%2 = 0 (5.33)

or

1+' = 0� (5.34)

where the electron susceptibility is

' = − 1

2k2�2D

1
1/2

∫ �

−�
d%

1
�%−��

�

�%
e−%2 � (5.35)

In contrast to the earlier two-fluid wave analysis, where in effect the zeroth, first,
and second moments of the Vlasov equation were combined (continuity equation,
equation of motion, and equation of state), here only the Vlasov equation is
involved. Thus the Vlasov equation contains all the information of the moment
equations and more. The Vlasov method therefore seems a simpler and more
direct way for calculating the susceptibilities than the fluid method, except for a
serious difficulty: the integral in Eq. (5.35) is mathematically ill-defined because
the denominator vanishes when % = � (i.e., when � = kvT ). Because it is not
clear how to deal with this singularity, the % integral cannot be evaluated and the
Fourier method fails. This is essentially the same as the problem encountered in
fluid analysis when �/k became comparable to

√
�T/m.

5.3.2 Landau method: Laplace transforms

Landau (1946) argued that the Fourier problem presented above is ill-posed and
showed that the linearized Vlasov–Poisson problem should be treated as an initial-
value problem, rather than as a normal mode problem. The initial-value point of
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view is conceptually related to the analysis of single particle motion in sawtooth
or sine waves. Before presenting the Landau analysis of the linearized Vlasov–
Poisson problem, certain important features of Laplace transforms will now be
reviewed.
The Laplace transform of a function &�t� is defined as

&̃�p�=
∫ �

0
&�t�e−ptdt (5.36)

and can be considered as a “half of a Fourier transform” since the time integration
starts at t = 0 rather than t = −�. Caution is required regarding the convergence
of this integral for situations where &�t� contains exponentially growing terms.

Suppose such exponentially growing terms exist. As t→ �, the fastest growing
term, say exp ��t�� will dominate all other terms contributing to &�t�. The integral
in Eq. (5.36) will then diverge as t→ �, unless a restriction is imposed on the real
part of p. In particular, if it is required that Re p> �, then the decaying exp �−pt�
factor will always overwhelm the growing exp ��t� factor so that the integral
in Eq. (5.36) will converge. These issues of convergence are ignored in Fourier
transforms where it is implicitly assumed that the function being transformed has
neither exponentially growing terms (which diverge at t = �) nor exponentially
decaying terms (which diverge at t = −��.
Thus, the integral transform in Eq. (5.36) is defined only for Re p > �. To

emphasize this restriction, Eq. (5.36) is rewritten as

&̃�p�=
∫ �

0
&�t�e−ptdt� Re p > �� (5.37)

where � is the fastest growing exponential term contained in &�t�. Since p is
typically complex, Eq. (5.37) means that &̃�p� is only defined in that part of the
complex p-plane lying to the right of � as sketched in Fig. 5.3(a). Whenever &̃�p�
is used, one must be very careful to avoid venturing outside the region in p-space
where &̃�p� is defined (this restriction will later become an important issue).
To construct an inverse transform, consider the integral

g�t�=
∫
C
dp &̃�p�ept� (5.38)

This integral is ambiguously defined for now because the integration contour C is
unspecified. However, whatever integration contour is ultimately selected must not
venture into regions where &̃�p� is undefined. Thus, an allowed integration path
must have Re p > �. Substitution of Eq. (5.37) into Eq. (5.38) and interchanging
the order of integration gives

g�t�=
∫ �

0
dt′
∫
C
dp&�t′�ep�t−t

′�� Re p > �� (5.39)
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Fig. 5.3 Contours in complex p-plane.

A useful integration path C for the p integral will now be determined. Recall
from the theory of Fourier transforms that the Dirac delta function can be
expressed as

��t�= 1
2

∫ �

−�
d� ei�t� (5.40)

which is an integral along the real � axis so that � is always real. The integration
path for Eq. (5.39) will now be chosen such that the real part of p stays constant,
say at a value ! that is larger than �, while the imaginary part of p goes from
−� to �. This path is shown in Fig. 5.3(b), and is called the Bromwich contour.
For this choice of path, Eq. (5.39) becomes

g�t� =
∫ �

0
dt′
∫ !+i�

!−i�
d�pr + ipi�&�t

′�e�pr+ipi��t−t′�

= i
∫ �

0
dt′e!�t−t

′�&�t′�
∫ �

−�
dpi e

ipi�t−t′�
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= 2i
∫ �

0
dt′e!�t−t

′�&�t′���t− t′�
= 2i&�t�� (5.41)

where Eq. (5.40) has been used. Thus, &�t�= �2i�−1g�t� and so the inverse of
the Laplace transform is

&�t�= 1
2i

∫ !+i�

!−i�
dp&�p�ept� ! > �� (5.42)

Before returning to physics, recall another peculiarity of Laplace transforms,
namely the transformation procedure for derivatives. The Laplace transform of
d&/dt may be simplified by integrating by parts to give∫ �

0
dt

d&
dt

e−pt = [
&�t�e−pt]�

0 +p
∫ �

0
dt &�t�e−pt = p&̃�p�−&�0�� (5.43)

Unlike Fourier transforms, here the initial value forms part of the transform. Thus,
Laplace transforms contain information about the initial value and so should be
better suited than Fourier transforms for investigating initial value problems. The
importance of the initial value was also evident in the Chapter 3 analysis of
particle motion in sawtooth or sine wave potentials.
The requisite mathematical tools are now in hand for investigating the Vlasov–

Poisson system and its dependence on initial value. To obtain extra insights with
little additional effort, the analysis is extended to the more general situation of
a three-dimensional plasma where ions are allowed to move. Again, electrostatic
waves are considered, and it is assumed that the equilibrium plasma is stationary,
spatially uniform, neutral, and unmagnetized.
The equilibrium velocity distribution of each species is assumed to be a three-

dimensional Maxwellian distribution function

f�0�v�= n�0
(
m�

2�T�

)3/2

exp �−m�v2/2�T��� (5.44)

The equilibrium electric field is assumed to be zero so that the equilibrium
potential is a constant chosen to be zero. It is further assumed that at t = 0 there
exists a small perturbation of the distribution function and that this perturbation
evolves in time so that at later times

f��x�v�t�= f�0�v�+f�1�x�v� t�� (5.45)

The linearized Vlasov equation for each species is therefore

�f�1
�t

+v ·	f�1 − q�
m�
	�1 · �f�0

�v
= 0� (5.46)
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All perturbed quantities are assumed to have the spatial dependence ∼ exp �ik ·x�;
this is equivalent to Fourier transforming in space. Equation (5.46) becomes

�f�1
�t

+ ik ·vf�1 − q�
m�
�1ik · �f�0

�v
= 0� (5.47)

Laplace transforming in time gives

�p+ ik ·v�f̃�1�v� p�−f�1�v�0�−
q�
m�
�̃1�p�ik · �f�0

�v
= 0� (5.48)

which may be solved for f̃�1�v� p� to give

f̃�1�v� p�= 1
�p+ ik ·v�

[
f�1�v�0�+

q�
m�
�̃1�p�ik · �f�0

�v

]
� (5.49)

This is similar to Eq. (5.28), except that now the Laplace variable p occurs instead
of the Fourier variable −i� and also the initial value f�1�v�0� appears. As before,
Poisson’s equation can be written as

	2�1 = − 1

0

∑
�

q�n�1 = − 1

0

∑
�

q�

∫
d3vf�1�x�v� t�� (5.50)

Replacing 	 → ik and Laplace transforming with respect to time, Poisson’s
equation becomes

k2�̃1�p�= 1

0

∑
�

q�

∫
d3vf̃�1�v� p�� (5.51)

Substitution of Eq. (5.49) into the right-hand side of Eq. (5.51) gives

k2�̃1�p�= 1

0

∑
�

q�

∫
d3v

⎧⎪⎪⎨⎪⎪⎩
f�1�v�0�+

q�
m�
�̃1�p�ik · �f�0

�v
�p+ ik ·v�

⎫⎪⎪⎬⎪⎪⎭ � (5.52)

which is similar to Eq. (5.32) except that −i�→ p and the initial value appears.
Equation (5.52) may be solved for �̃1�p� to give

�̃1�p�= N�p�

D�p�
� (5.53)

where the numerator is

N�p�= 1
k2
0

∑
�

q�

∫
d3v

f�1�v�0�
�p+ ik ·v� (5.54)

and the denominator is

D�p�= 1− 1
k2

∑
�

q2�

0m�

∫
d3v

ik · �f�0
�v

�p+ ik ·v� � (5.55)
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Note that the denominator is similar to Eq. (5.32). All that has to be done now is
take the inverse Laplace transform of Eq. (5.53) to obtain

�1�t�= 1
2i

∫ !+i�

!−i�
dp
N�p�

D�p�
ept� (5.56)

where ! is chosen to be larger than the fastest growing exponential term in
N�p�/D�p�.
This is an exact formal solution to the problem. However, because of the

complexity of N�p� and D�p� it is impossible to evaluate the integral in Eq. (5.56).
Nevertheless, it turns out to be feasible to evaluate the long-time asymptotic
limit of this integral and, for practical purposes, this is a sufficient answer to the
problem.

5.3.3 The relationship between poles, exponential functions, and analytic
continuation

Before evaluating Eq. (5.56), it is useful to examine the relationship between
exponentially growing/decaying functions, Laplace transforms, poles, residues,
and analytic continuation. This relationship is demonstrated by considering the
exponential function

f�t�= eqt� (5.57)

where q is a complex constant. If the real part of q is positive, then the amplitude
of f�t� is exponentially growing, whereas if the real part of q is negative, the
amplitude of f�t� is exponentially decaying. Now, calculate the Laplace transform
of f�t�� it is

f̃ �p�=
∫ �

0
e�q−p�tdt = 1

p−q � defined only for Re p > Re q� (5.58)

Let us examine the Bromwich contour integral for f̃ �p� and temporarily call
this integral F�t�; evaluation of F�t� ought to yield F�t�= f�t�. Thus, we define

F�t�= 1
2i

∫ !+i�

!−i�
dpf̃ �p�ept� ! > Re q� (5.59)

If the Bromwich contour could be closed in the left-hand p-plane, the integral
could easily be evaluated using the method of residues but closure of the contour
to the left is forbidden because of the restriction that ! > Re q. This annoyance
may be overcome by constructing a new function f̂ �p� that:

1. equals f̃ �p� in the region ! > Re q,
2. is also defined in the region ! < Re q, and
3. is analytic.
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Integration of f̂ �p� along the Bromwich contour gives the same result as does
integration of f̃ �p� along the same contour because the two functions are identical
along this contour (cf. stipulation (1) above). Thus, it is seen that

F�t�= 1
2i

∫ !+i�

!−i�
dpf̂ �p�ept� (5.60)

but now there is no restriction on which part of the p-plane may be used. So
long as the end points are kept fixed and no poles are crossed, the path of
integration of an analytic function can be arbitrarily deformed. This is because
the difference between the original path and a deformed path is a closed contour,
which integrates to zero if it does not enclose any poles. Because f̂ �p�→ 0 at the
endpoints !±�� the integration path of f̂ �p� can be deformed into the left-hand
plane as long as f̂ �p� remains analytic (i.e., does not jump over any poles or
branch cuts). How can this magic function f̂ �p� be constructed?
The answer is simple: we define a function f̂ �p� having the identical functional

form as f̃ �p�, but without the restriction that Re p > Re q. Thus, the analytic
continuation of

f̃ �p�= 1
p−q � defined only for Rep > Req� (5.61)

is simply

f̂ �p�= 1

p−q � defined for all p� provided f̂ �p� remains analytic. (5.62)

The Bromwich contour can now be deformed into the left-hand plane as shown
in Fig. 5.4. Because exp �pt�→ 0 for positive t and negative Re p, the integration
contour can be closed by an arc that goes to the left (cf. Fig. 5.4) into the region
where Re p→ −�. The resulting contour encircles the pole at p= q and so the
integral can be evaluated using the method of residues as follows:

F�t�= 1
2i

∮ 1
p−q e

ptdp= lim
p→q

2i�p−q�
[

1
2i�p−q�e

pt

]
= eqt� (5.63)

This simple example shows that while the Bromwich contour formally gives the
inverse Laplace transform of f̃ �p�, the Bromwich contour by itself does not allow
use of the method of residues, since the poles of interest are located in the left-hand
complex p-plane where f̃ �p� is undefined. However, analytic continuation of
f�p� allows deformation of the Bromwich contour into the formerly forbidden
area, and then the inverse transform may be easily evaluated using the method of
residues.
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Fig. 5.4 Bromwich contour.

5.3.4 Asymptotic long-time behavior of the potential oscillation

We now return to the more daunting problem of evaluating Eq. (5.56). As in the
simple example above, the goal is to close the contour to the left but, because the
functions N�p� and D�p� are not defined for Re p < �, this is not immediately
possible. It is first necessary to construct analytic continuations of N�p� and D�p�
that extend the definition of these functions into regions of negative Re p. As
in the simple example, the desired analytic continuations may be constructed by
taking the same formal expressions as obtained before, but now extending the
definition to the entire p-plane with the proviso that the functions remain analytic
as the region of definition is pushed leftwards in the p-plane.
Consider first construction of an analytic continuation for the function N�p�.

This function can be written as

N�p�= 1
k2
0

∑
�

q�

∫ �

−�
dv�
F�1�v��0�
�p+ ikv��

= 1
ik3
0

∑
�

q�

∫ �

−�
dv�

F�1�v��0�
�v�−ip/k�

� (5.64)

Here, � means in the k direction, and the parallel component of the initial value
of the perturbed distribution function has been defined as

F�1�v��0�=
∫

d2v⊥f�1�v�0�� (5.65)

The integrand in Eq. (5.54) has a pole at v� = ip/k. Let us assume that k > 0 (the
coordinate system can always be defined so that this is so). Before we construct
an analytic continuation, Re p is restricted to be greater than � so that the pole
v� = ip/k is in the upper half of the complex v�-plane as shown in Fig. 5.5(a).
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Fig. 5.5 Complex v�-plane.

When N�p� is analytically continued to the left-hand region, the definition of N�p�
is extended to allow Re p to become less than � and even negative. As shown
in Fig. 5.5(b), decreasing Re p means that the pole at v� = ip/k in Eq. (5.54)
drops from its initial location in the upper half v�-plane towards the lower half
v�-plane. A critical question now arises: how should we arrange this construction
when Re p passes through zero? If the pole is allowed to jump from being above
the path of v� integration (which is along the real v� axis) to being below, the
function N�p� will not be analytic because it will have a discontinuous jump of
2i times the residue associated with the pole. Since it was stipulated that N�p�
must be analytic, the pole cannot be allowed to jump over the v� contour of
integration. Instead, the prescription proposed by Landau will be used, which is
to deform the v� contour as Re p becomes negative so that the contour always
lies below the pole; this deformation is shown in Fig. 5.5(c).
D�p� involves a similar integration along the real v� axis. It also has a pole that

is initially in the upper half-plane when Rep > 0, but then drops to being below
the axis as Rep is allowed to become negative. Thus, analytic continuation of
D�p� is also constructed by deforming the path of the v� integration so that the
contour always lies below the pole.
Equipped with these suitably constructed analytic continuations of N�p� and

D�p� into the left-hand p-plane, evaluation of Eq. (5.56) can now be undertaken.
As shown in the simple example, it is computationally advantageous to deform
the Bromwich contour into the left-hand p-plane. The deformed contour evaluates



5.3 The Landau problem 191

to the same result as the original Bromwich contour (provided the deformation
does not jump over any poles) and this evaluation may be accomplished via the
method of residues. In the general case where N�p�/D�p� has several poles in the
left-hand p-plane, then, as shown in Fig. 5.3(c), the contour may be deformed so
that the vertical portion is pushed to the far left, except where there is a pole pj; the
contour “snags” around each pole pj as shown in Fig. 5.3(c). For Rep→ −�, the
numerator N�p�→ 0� while the denominator D�p�→ 1. Since exp �pt�→ 0 for
Re p → −� and positive t� the left-hand vertical line does not contribute to the
integral and Eq. (5.56) simply consists of the sum of the residues of all the poles, i.e.,

�1�t�=∑
j

lim
p→pj

[
�p−pj�

N�p�

D�p�
ept
]
� (5.66)

Where do the poles pj come from? Upon examining Eq. (5.66), it is clear that
poles could come either from (i) N�p� having an explicit pole, i.e., N�p� contains
a term ∼ 1/�p−pj�, or (ii) from D�p� containing a factor ∼ �p−pj�, i.e., pj is
a root of the equation D�p� = 0. The integrand in Eq. (5.64) has a pole in the
v�-plane; this pole is “used up” as a residue upon performing the v� integration,
and so does not contribute a pole to N�p�. The only other possibility is that the
initial value F�1�v��0� somehow provides a pole, but F�1�v��0� is a physical
quantity with a bounded integral i.e.,

∫
F�1�v��0�dv� is finite and so cannot

contribute a pole in N�p�. It is therefore concluded that all poles in N�p�/D�p�
must come from the roots (also called zeros) of D�p�.
The problem can be simplified by deciding to be content with a less than

complete solution. Instead of attempting to calculate �1�t� for all positive times
(i.e., all the poles pj contribute to the solution), we restrict ourselves to the
less burdensome problem of finding the long-time asymptotic behavior of �1�t�.
Because each term in Eq. (5.66) has a factor exp�ipjt�, the least damped term
(i.e., the term with pole furthest to the right in Fig. 5.3(c)) will dominate all the
other terms at large t. Hence, in order to find the long-time asymptotic behavior,
all that is required is to find the root pj having the largest real part.
The problem is thus reduced to finding the roots of D�p�; this requires perform-

ing the v� integration sketched in Fig. 5.5(c). Before doing this, it is convenient
to integrate out the perpendicular velocity dependence from D�p� so that

D�p� = 1− 1
k2

∑
�

q2�

0m�

∫
d3v

ik · �f�0
�v

�p+ ik ·v�

= 1− 1
k2

∑
�

q2�

0m�

∫ �

−�
dv�

�F�0
�v�

�v� − ip/k�
� (5.67)
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Thus, the relation D�p�= 0 can be written in terms of susceptibilities as

D�p�= 1+'i+'e = 0� (5.68)

since the quantities being summed in Eq. (5.67) are essentially the electron and ion
perturbations associated with the oscillation, and D�p� is the Laplace transform
analog of the Fourier transform of Poisson’s equation. In the special case where
the equilibrium distribution function is Maxwellian, the susceptibilities can be
written in a standardized form as

'� = − 1

2k2�2D�

1
1/2

∫ �

−�
d%

1
�%− ip/kvT��

�

�%
exp �−%2�

= 1

k2�2D�

[
1
1/2

∫ �

−�
d%
�%− ip/kvT� + ip/kvT��

�%− ip/kvT��
exp �−%2�

]

= 1

k2�2D�

[
1+ 1

1/2
�
∫ �

−�
d%

exp �−%2�
�%−��

]
= 1

k2�2D�
�1+�Z���� � (5.69)

where � = ip/kvT� , and the last line introduces the plasma dispersion function
Z��� defined as

Z���≡ 1
1/2

∫ �

−�
d%

exp �−%2�
�%−�� � (5.70)

where the % integration path is under the dropped pole.

5.3.5 Evaluation of the plasma dispersion function

If the pole corresponding to the fastest growing (i.e., least damped) mode turns out
to have dropped well below the real axis (corresponding to Re p being large and
negative), the fastest growing mode would be highly damped. We argue that this
does not happen because there ought to be a correspondence between the Vlasov
and fluid models in regimes where both are valid. Since the fluid model indicated
the existence of undamped plasma waves when �/k was much larger than the
thermal velocity, the Vlasov model should predict nearly the same wave in this
regime. The fluid wave model had no damping and so any damping introduced
by the Vlasov model should be weak in order to maintain an approximate corre-
spondence between fluid and Vlasov models. The Vlasov solution corresponding
to the fluid mode can therefore have a pole only slightly below the real axis, i.e.,
only slightly negative. In this case, it is only necessary to analytically continue
the definition of N�p�/D�p� slightly into the negative p-plane. Thus, the pole in
Eq. (5.70) drops only slightly below the real axis as shown in Fig. 5.6.
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Fig. 5.6 Contour for evaluating plasma dispersion function.

The % integration contour can therefore be divided into three portions, namely
(i) from % = −� to % = �−�, just to the left of the pole; (ii) a counterclockwise
semi-circle of radius � half-way around and under the pole (cf. Fig. 5.6); and (iii)
a straight line from �+� to +�. The sum of the straight line segments (i) and
(iii) in the limit �→ 0 is called the principle part of the integral and is denoted
by a “P” in front of the integral sign. The semi-circle portion is half a residue and
so makes a contribution that is just i times the residue (rather than the standard
2i for a complete residue). Hence, the plasma dispersion function for a pole
slightly below the real axis is

Z���= 1
1/2

[
P
∫ �

−�
d%

exp �−%2�
�%−��

]
+ i1/2 exp �−�2�� (5.71)

where P means principle part of the integral. Equation (5.71) prescribes how to
evaluate ill-defined integrals of the type we first noted in Eq. (5.32).
There are two important limiting situations for Z���, namely ��� � 1 (corre-

sponding to the adiabatic fluid limit since �/k� vT�� and ��� � 1 (corresponding
to the isothermal fluid limit since �/k� vT��. Asymptotic evaluations of Z���
are possible in both cases and are found as follows:

1. �� 1 case.
Here, it is noted that the factor exp �−%2� contributes significantly to the integral only
when % is of order unity or smaller. In the important part of the integral where this
exponential term is finite, ��� � %� In this region of % the other factor in the integrand
can be expanded as

1
�%−�� = − 1

�

(
1− %

�

)−1

= − 1
�

[
1+ %

�
+
(
%

�

)2

+
(
%

�

)3

+
(
%

�

)4

+ � � �
]
� (5.72)

The expansion is carried to fourth order because of numerous cancelations that elim-
inate several of the lower order terms. Substitution of Eq. (5.72) into the integral in
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Eq. (5.71) and noting that all odd terms in Eq. (5.72) do not contribute to the integral
because the rest of the integrand is even gives

P
1
1/2

∫ �

−�
d%

exp �−%2�
�%−�� = − 1

�

1
1/2

∫ �

−�
d% exp �−%2�

×
[
1+

(
%

�

)2

+
(
%

�

)4

+ � � �
]
� (5.73)

The “P” has been dropped from the right-hand side of Eq. (5.73) because there is no
longer any problem with a singularity. These Gaussian-type integrals may be evaluated
by taking successive derivatives with respect to a of the Gaussian

1
1/2

∫
d% exp �−a%2�= 1

a1/2
(5.74)

and then setting a= 1. Thus,

1
1/2

∫
d% %2 exp �−%2�= 1

2
�

1
1/2

∫
d% %4 exp �−%2�= 3

4
(5.75)

so Eq. (5.73) becomes

P
1
1/2

∫ �

−�
d%

exp �−%2�
�%−�� = − 1

�

[
1+ 1

2�2
+ 3

4�4
+ � � �

]
� (5.76)

In summary, for ��� � 1, the plasma dispersion function has the asymptotic form

Z���= − 1
�

[
1+ 1

2�2
+ 3

4�4
+ � � �

]
+ i1/2 exp �−�2�� (5.77)

2. ��� � 1 case.
In order to evaluate the principle part integral in this regime, the variable � = %−�
is introduced so that d�= d%. The integral may be evaluated as follows:

P
1
1/2

∫ �

−�
d%

exp �−%2�
�%−�� = 1

1/2

∫ �

−�
d�

e−�2−2��−�2

�

= e−�2

1/2

∫ �

−�
d�

e−�2

�

×
[
1−2��+ �−2��2

2! + �−2��3

3! + � � �
]

= −2�
e−�2

1/2

∫ �

−�
d� e−�2

[
1+ 2�2�2

3
+ ���

]
= −2�

(
1−�2 + ���)(1+ �

2

3
+ � � �

)
= −2�

(
1− 2�2

3
+ � � �

)
� (5.78)
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where in the third line all odd terms from the second line integrated to zero due to
their symmetry. Thus, for �� 1, the plasma dispersion function has the asymptotic
limit

Z���= −2�
(
1− 2�2

3
+ � � �

)
+ i1/2 exp �−�2�� (5.79)

5.3.6 Landau damping of electron plasma waves

The plasma susceptibilities given by Eq. (5.69) can now be evaluated. For ��� � 1,
using Eq. (5.77), and introducing the “frequency” �= ip so that �=�/kvT� and
�i = �i/kvT� the susceptibility is seen to be

'� = 1

k2�2D�

{
1+�

[
− 1
�

(
1+ 1

2�2
+ 3

4�4
+ � � �

)
+ i1/2 exp �−�2�

]}
= 1

k2�2D�

{
−
(

1
2�2

+ 3
4�4

+ � � �
)

+ i�1/2 exp �−�2�
}

= −�
2
p�

�2

(
1+3

k2

�2

�T�
m�

+ � � �
)

+ i
�

kvT�

1/2

k2�2D�
exp �−�2/k2v2T��� (5.80)

Thus, if the root is such that ��� � 1� the equation for the poles D�p� = 1+'i
+'e = 0 becomes

1 − �2
pe

�2

(
1+3

k2

�2

�Te
me

+ � � �
)

+ i
�

kvTe

1/2

k2�2De
exp �−�2/k2v2Te�

− �2
pi

�2

(
1+3

k2

�2

�Ti
mi

+ ���
)

+ i
�

kvTi

1/2

k2�2Di
exp �−�2/k2v2Ti�= 0� (5.81)

This expression is similar to the previously obtained fluid dispersion relation,
Eq. (4.32), but contains additional imaginary terms that did not exist in the fluid
dispersion. Furthermore, Eq. (5.81) is not actually a dispersion relation. Instead,
it is to be understood as the equation for the roots of D�p�. These roots determine
the poles in N�p�/D�p� producing the least damped oscillations resulting from
some prescribed initial perturbation of the distribution function. Since �2

pe/�
2
pi =

mi/me, and in general vTi � vTe, both the real and imaginary parts of the ion
terms are much smaller than the corresponding electron terms. On dropping the
ion terms, the expression becomes

1− �
2
pe

�2

(
1+3

k2

�2

�Te
me

+ � � �
)

+ i
�

kvTe

1/2

k2�2De
exp �−�2/k2v2Te�= 0� (5.82)

Recalling that �= ip is complex, we write �=�r+ i�i and then proceed to find
the complex � that is the root of Eq. (5.82). Although it would not be particularly
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difficult to substitute �=�r+ i�i into Eq. (5.82) and then manipulate the coupled
real and imaginary parts of this equation to solve for �r and �i, it is better to
take this analysis as an opportunity to introduce a more general way for solving
equations of this sort.
Equation (5.82) can be written as

D��r + i�i�=Dr��r + i�i�+ iDi��r + i�i�= 0� (5.83)

where Dr is the part of D that does not explicitly contain i and Di is the part that
does explicitly contain i. Thus,

Dr = 1− �
2
pe

�2

(
1+3

k2

�2

�Te
me

+ � � �
)
� Di =

�

kvTe

1/2

k2�2De
exp �−�2/k2v2Te��

(5.84)
Since the oscillation has been assumed to be weakly damped, �i � �r and so
Eq. (5.83) can be Taylor expanded in the small quantity �i,

Dr��r�+ i�i

(
dDr
d�

)
�=�r

+ i

[
Di��r�+ i�i

(
dDi
d�

)
�=�r

]
= 0� (5.85)

Since �i � �r , the real part of Eq. (5.85) is

Dr��r�� 0� (5.86)

Balancing the two imaginary terms in Eq. (5.85) gives

�i = −Di��r�
dDr
d�

� (5.87)

Thus, Eqs. (5.86) and (5.84) give the real part of the frequency as

�2
r = �2

pe

(
1+3

k2

�2
r

�Te
me

)
� �2

pe

(
1+3k2�2De

)
� (5.88)

while Eqs. (5.87) and (5.84) give the imaginary part of the frequency, called the
Landau damping, as

�i = −
√


8

�pe

k3�3De
exp

(−�2/k2v2T�
)

= −
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8

�pe

k3�3De
exp

[− (1+3k2�2De
)
/2k2�2De

]
�

(5.89)

Since the least damped oscillation goes as exp �pt�= exp �−i�t�= exp �−i��r +
i�i�t� = exp �−i�rt+�it� and Eq. (5.89) gives a negative �i, this is indeed
a damping. It is interesting to note that while Landau damping was proposed
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theoretically by Landau in 1949, it took sixteen years before Landau damping
was verified experimentally (Malmberg and Wharton 1964).
What is meant by weak damping vs. strong damping? In order to calculate �i

it was assumed that �i is small compared to �r suggesting perhaps that �i is
unimportant. However, even though small, �i can be important, because the factor
2 affects the real and imaginary parts of the wave phase differently. Suppose for
example that the imaginary part of the frequency is 1/2 ∼ 1/6 the magnitude of
the real part. This ratio is surely small enough to justify the Taylor expansion used
in Eq. (5.85) and also to justify the assumption that the pole pj corresponding to
this mode is only slightly to the left of the imaginary p axis. Let us calculate how
much the wave is attenuated in one period � = 2/�r . This attenuation will be
exp �−��i���= exp �−2/6�∼ exp �−1�∼ 0�3. Thus, the wave amplitude decays
to one third of its original value in just one period, which is certainly important.

5.3.7 Power relationships

It is premature to calculate the power associated with wave damping, because
we do not yet know how to add up all the energy in the wave. Nevertheless, if
we are willing to assume temporarily that the wave energy is entirely in the wave
electric field (it turns out there is also energy in coherent particle motion – to
be discussed in Chapter 14), it is seen that the power being lost from the wave
electric field is

Pwavelost ∼
d
dt

〈
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2
wave

2

〉
∼ d
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[
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wave�
4
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8
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)

0E

2
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where
〈
E2
wave

〉= �Ewave�2 �cos�kx−�t�� = �Ewave�2/2 has been used. However, in
Section 3.8, it was shown that the energy gained by untrapped resonant particles
in a wave is

Ppartgain = −m�
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� (5.91)

using � ∼ �pe this is seen to be the same as Eq. (5.90) except for a factor of
two. We shall see later that this factor of two comes from the fact that the wave
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electric field actually contains half the energy of the electron plasma wave, with
the other half in coherent particle motion, so the true power loss rate is really
twice that given in Eq. (5.90).

5.3.8 Landau damping for ion acoustic waves

Ion acoustic waves resulted from a two-fluid analysis in the regime where the
wave-phase velocity was intermediate between the electron and ion thermal veloc-
ities. In this situation the electrons behave isothermally and the ions behave
adiabatically. This suggests there might be another root of D�p� if ��e� � 1
and ��i� � 1 or equivalently vTi � �/k� vTe� From Eqs. (5.69) and (5.79), the
susceptibility for ��� � 1 is found to be

'� = 1

k2�2D�
�1+�Z����

= 1

k2�2D�

{
1−2�2

(
1− 2�2

3
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)
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(5.92)
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Using Eq. (5.92) for the electron susceptibility and Eq. (5.80) for the ion suscep-
tibility gives
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On applying the Taylor expansion technique discussed in conjunction with
Eqs. (5.86) and (5.87) we find that �r is the root of

Dr��r�= 1+ 1
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2
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= 0� (5.94)

i.e.,
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� (5.95)
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Here, as in the two-fluid analysis of ion acoustic waves, c2s = �2
pi�

2
De = �Te/mi

has been defined. The imaginary part of the frequency is found to be

�i � − Di��r�

dDr/d�

= −�
1/2

k3

⎡⎢⎢⎣
1

�2DevTe
exp �−�2/k2v2Te�+

1

�2DivTi
exp �−�2/k2v2Ti�

2�2
pi/�

3

⎤⎥⎥⎦
= − �4

k3c3s

√


8

[√
me
mi

+
(
Te
Ti

)3/2

exp �−�2/k2v2Ti�

]

= − ��r �(
1+k2�2De

)3/2
√


8

[√
me
mi

+
(
Te
Ti

)3/2

exp
(

− Te/2Ti
1+k2�2De

− 3
2

)]
� (5.96)

The dominant Landau damping comes from the ions, since the electron Landau
damping term has the small factor

√
me/mi. If Te � Ti the ion term also becomes

small because x3/2 exp �−x�→ 0 as x becomes large. Hence, strong ion Landau
damping occurs when Ti approaches Te and so ion acoustic waves can only
propagate without extreme attenuation if the plasma has Te � Ti� Landau damping
of ion acoustic waves was first observed experimentally by Wong, Motley and
D’Angelo (1964).

5.3.9 The Plemelj formula

The Landau method showed that the correct way to analyze problems that lead to
ill-defined integrals such as Eq. (5.35) is to pose the problem as an initial value
problem rather than as a steady-state situation. The essential result of the Landau
method can be summarized by the Plemelj formula

lim

→0

1
%−a∓ i�
� = P

1
%−a ± i��%−a�� (5.97)

which is a prescription showing how to deal with singular integrands of the form
appearing in the plasma dispersion function. From now on, instead of repeating
the lengthy Laplace transform analysis, we instead will use the less cumbersome,
but formally incorrect, Fourier method and then invoke Eq. (5.97) as a “patch” to
resolve any ambiguities regarding integration contours.
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5.4 The Penrose criterion

The analysis so far showed that electrostatic plasma waves are subject to Landau
damping, a collisionless attenuation proportional to ��f/�v�v=�/k, and that this
damping is consistent with the calculation of power input to particles by an
electrostatic wave. Since a Maxwellian distribution function has a negative slope,
its associated Landau damping is always a true wave damping. This is consistent
with the physical picture developed in the single particle analysis, which showed
that energy is transferred from wave to particles if there are more slow than fast
particles in the vicinity of the wave phase velocity. What happens if there is
a non-Maxwellian distribution function, in particular one where there are more
fast particles than slow particles in the vicinity of the wave-phase velocity, i.e.,
��f/�v�v=�/k > 0? Because f�v�→ 0 as �v� → �� f can only have a positive slope
for a finite range of positive velocity and can only have a negative slope for a
finite range of negative velocity; in particular, positive slopes of the distribution
function must always be located to the left of a localized maximum in f�v� in
the v > 0 velocity-space region. A localized maximum in f�v� corresponds to
a beam of fast particles superimposed on a (possible) background of particles
having a monotonically decreasing f�v�. Can the Landau damping process be run
in reverse and so provide Landau growth, i.e., wave instability? The answer is
yes. We will now discuss a criterion due to Penrose (1960) that shows how strong
a beam must be to give Landau instability.
The procedure used to derive Eq. (5.32) is repeated, giving

1+ q2

k2m
0

∫ �

−�
k

��−kv�
�f0
�v

dv= 0� (5.98)

which may be recast as

k2 =Q�z�� (5.99)

where

Q�z�= q2

m
0

∫ �

−�
1

�v− z�
�f0
�v

dv (5.100)

is a complex function of the complex variable z = �/k. The wavenumber k is
assumed to be a positive real quantity and the Plemelj formula will be used to
resolve the ambiguity due to the singularity in the integrand.
The left-hand side of Eq. (5.99) is, by assumption, always real and positive

for any choice of k. A solution of this equation can therefore always be found if
Q�z� is simultaneously pure real and positive. The actual magnitude of Q�z� does
not matter, since the magnitude of k2 can be adjusted to match the magnitude
of Q�z�.
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Fig. 5.7 Penrose criterion: (a)–(d) mappings, (e) instability criterion.

The function Q�z� may be interpreted as a mapping from the complex z-plane
to the complex Q-plane. Because solutions of Eq. (5.99) giving instability are
those for which Im� > 0, the upper half of the complex z-plane corresponds to
instability and the real z axis represents the dividing line between stability and
instability. Let us consider a straight-line contour Cz parallel to the real z axis,
and slightly above. As shown in Fig. 5.7(a) this contour can be prescribed as
z= zr + i�, where � is a small constant and zr ranges from −� to +�.

The function Q�z�→ 0 when z→ ±� and so, as z is moved along the Cz
contour, the corresponding path CQ traced in the Q-plane must start at the origin
and end at the origin. Furthermore, since Q can be evaluated using the Plemelj
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formula, it is seen that Q is finite for all z on the path Cz. Thus, CQ is a continuous
finite curve starting at the Q-plane origin and ending at this same origin as shown
by the various possible mappings sketched in Figs. 5.7(b), (c), and (d).
The upper half z-plane maps to the area inside the curve CQ. If CQ is of the

form shown in Fig. 5.7(b), then Q�z� never takes on a positive real value for z
being in the upper half z-plane; thus a curve of this form cannot give a solution to
Eq. (5.99) corresponding to an instability. However, curves of the form sketched
in Figs. 5.7 (c) and (d) do have Q�z� taking on positive real values and so do
correspond to unstable solutions. Marginally unstable situations correspond to
where CQ crosses the positive real Q axis, since CQ is a mapping of Cz which
was the set of marginally unstable frequencies.
Let us therefore focus attention on what happens when CQ crosses the positive

real Q axis. Using the Plemelj formula on Eq. (5.100) it is seen that

ImQ= q2

m
0


[
�f0
�v

]
v=�r/k

(5.101)

and, on moving along CQ from a point just below the real Q axis to just above
the real Q axis, ImQ goes from being negative to positive. Thus, ��f0/�v�v=�r/k
changes from being negative to positive, so that on the positive real Q axis f0
is a minimum at some value v = vmin (here the subscript “min” means the value
of v for which f0 is at a minimum and not v itself is at a minimum). A Taylor
expansion about this minimum gives

f�v�= f �vmin + �v−vmin��= f�vmin�+0+ �v−vmin�
2

2
f ′′�vmin�+ ��� (5.102)

Since f�vmin� is a constant, it is permissible to write

�f0
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= �

�v
�f0�v�−f0�vmin�� � (5.103)

This innocuous insertion of f�vmin� makes it easy to integrate Eq. (5.100) by parts
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(5.104)
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in the second line, advantage has been taken of the imaginary part being zero
by assumption, and in the third line the “P” for principle part has been dropped
because there is no longer a singularity at v= vmin. In fact, since the leading term
of f�v�− f�vmin� is proportional to �v− vmin�

2, this qualifying “P” can also be
dropped from the second line. The requirement for marginal instability can be
summarized as: f�v� has a minimum at v= vmin, and the value ofQ is positive, i.e.,

Q�vmin�= q2

m
0

∫ �

−�
dv
[
f�v�−f�vmin�

�v−vmin�
2

]
> 0� (5.105)

This is just a weighted measure of the strength of the bump in f located to the
right of the minimum as shown in Fig. 5.7(e). The hatched areas with horizontal
lines make positive contributions to Q, while the hatched areas with vertical lines
make negative contributions. These contributions are weighted according to how
far they are from vmin by the factor �v−vmin�

−2.
The Penrose criterion extends the two-stream instability analysis to an arbitrary

distribution function containing finite temperature beams.

5.5 Assignments

1. Show that the electrostatic dispersion relation for electrons streaming with velocity v0
through stationary ions is

1− �
2
pi

�2
− �2

pe

��−k ·v0�2
= 0�

(a) Show that instability begins when(
k ·v0
�pe

)2

<

[
1+

(
me
mi

)1/3
]3

�

(b) Split the frequency into its real and imaginary parts so that � = �r + i�i. Show
that the instability has maximum growth rate

�i
�pe

=
√
3
2

(
me
2mi

)1/3

�

What is the value of kv0/�pe when the instability has maximum growth rate? Sketch
the dependence of �i/�pe on kv0/�pe. (Hint: define non-dimensional variables
$=me/mi� z=�/�pe� and �= kv0/�pe. Let z= x+ iy and look for the maximum
y satisfying the dispersion. A particularly neat way to solve the dispersion is to
solve the dispersion for the imaginary part of �, which of course is zero, since by
assumption k is real. Take advantage of the assumption $� 1 to find a relatively
simple expression involving y. Maximize y with respect to x and then find the
respective values of x� y� and � at this point of maximum y.)
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2. Prove the Plemelj formula.
3. Suppose

E�x� t�=
∫

Ẽ�k�eik·x−i��k�tdk� (5.106)

where

�= �r�k�+ i�i�k�

is determined by an appropriate dispersion relation. Assuming E�x�t� is a real quantity,
show, by comparing Eq. (5.106) to its complex conjugate, that �r�k� must always
be an odd function of k, while �i must always be an even function of k. (Hint: note
that the left-hand side of Eq. (5.106) is real by assumption, and so the right-hand side
must also be real. Take the complex conjugate of both sides and replace the dummy
variable of integration k by −k so that dk → −dk and the ±� limits of integration
are also interchanged.)

4. Plot the real and imaginary parts of the plasma dispersion function. Plot the real and
imaginary parts of the susceptibilities.

5. Is it possible to have a propagating electrostatic plasma wave that has k�De � 1. Hint:
consider Landau damping.

6. Plot the potential versus time in units of the real period of an electron plasma wave
for various values of �/k

√
�Te/me showing the onset of Landau damping.

7. Plot �i/�r for ion acoustic waves for various values of Te/Ti and show that these
waves have strong ion Landau damping when the ion temperature approaches the
electron temperature.

8. Landau instability for ion acoustic waves. Plasmas with Te > Ti support propagation
of ion acoustic waves; these waves are Landau damped by both electrons and ions.
However, if there is a sufficiently strong current J flowing in the plasma giving a
relative streaming velocity u0 = J/ne between the ions and electrons, the Landau
damping can operate in reverse, and give a Landau growth. This can be seen by
moving to the ion frame, in which case the electrons appear as an offset Gaussian.
If the offset is large enough it will be possible to have ��fe/�v�v∼cs > 0, giving more
fast than slow particles at the wave-phase velocity. Now, since fe is a Gaussian with
its center shifted to be at u0� show that if u0 > �/k the portion of fe immediately
to the left of u0will have positive slope and so lead to instability. These qualitative
ideas can easily be made quantitative, by considering a 1-D equilibrium where the ion
distribution is

fi0 = n0
1/2vTi

e−v2/v2Ti

and the drifting electron distribution is

fe0 = n0
1/2vTe

e−�v−u0�2/v2Te �
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The ion susceptibility will be the same as before, but to determine the electron
susceptibility we must reconsider the linearized Vlasov equation

�fe1
�t

+v�fe1
x

− qe
me

��1

�x

�

�v

[
n0

1/2vTe
e−�v−u0�2/v2Te

]
= 0�

This equation can be simplified by defining v′ = v−u0. Show that the electron suscep-
tibility becomes

'e = 1

k2�2De
�1+�Z���� �

where now �= ��−ku0�/kvTe. Suppose Te � Ti so that the electron Landau damping
term dominates. Show that if u0 >�r/k the electron imaginary term will reverse sign
and give instability.

9. Suppose a current I flows in a long cylindrical plasma of radius a, density n� ion
mass mi for which Te � Ti� Write a criterion for ion acoustic instability in terms
of an appropriate subset of these parameters. Suppose a cylindrical mercury plasma
with Te = 1−2 eV, Ti = 0�1 eV, diameter 2.5 cm, carries a current of I = 0�35 amps.
At what density would an ion acoustic instability be expected to develop? Does this
configuration remind you of an everyday object? Hint: there are several hanging from
the ceiling of virtually every classroom.
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Cold plasma waves in a magnetized plasma

6.1 Overview

Chapter 4 showed that finite temperature is responsible for the lowest order
dispersive terms in both electron plasma waves (dispersion �2 =�2

p+3k2�Te/me)
and ion acoustic waves (dispersion �2 = k2c2s /�1+ k2�2De�). Furthermore, finite
temperature was shown in Chapter 5 to be essential to Landau damping and
instability.
Chapter 4 also contained a derivation of the electromagnetic plasma wave

(dispersion �2 = �2
pe+ k2c2) and of the inertial Alfvén wave (dispersion �2 =

k2zv
2
A/�1+ k2xc2/�2

pe�), both of which had no dependence on temperature. To
distinguish waves that depend on temperature from waves that do not, the termi-
nology “cold plasma wave” and “hot plasma wave” is used. A cold plasma
wave is a wave having a temperature-independent dispersion relation so that
the temperature could be set to zero without changing the wave, whereas a hot
plasma wave has a temperature-dependent dispersion relation. Thus, hot and cold
do not refer to a “temperature” of the wave, but rather to the wave’s depen-
dence or lack thereof on plasma temperature. Generally speaking, cold plasma
waves are just the consequence of a large number of particles having identical
Hamiltonian–Lagrangian dynamics whereas hot plasma waves involve different
groups of particles having different dynamics because they have different initial
velocities. Thus, hot plasma waves involve statistical mechanical or thermody-
namic considerations. The general theory of cold plasma waves in a uniform
magnetized plasma is presented in this chapter and hot plasma waves will be
discussed in later chapters.

6.2 Redundancy of Poisson’s equation in electromagnetic mode analysis

When electrostatic waves were examined in Chapter 4 it was seen that the plasma
response to the wave electric field could be expressed as a sum of susceptibilities,

206
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where the susceptibility of each species was proportional to the density pertur-
bation of that species. Combining the susceptibilities with Poisson’s equation
gave a dispersion relation. However, because electric fields can also be generated
inductively, electrostatic waves are not the only type of wave. Inductive electric
fields result from time-dependent currents, i.e., from charged particle acceleration,
and do not involve density perturbations. As an example, the electromagnetic
plasma wave involved inductive rather than electrostatic electric fields. The iner-
tial Alfvén wave involved inductive electric fields in the parallel direction and
electrostatic electric fields in the perpendicular direction.
One might expect that a procedure analogous to the previous derivation of

electrostatic susceptibilities could be used to derive inductive “susceptibilities,”
which would then be used to construct dispersion relations for inductive modes.
It turns out that such a procedure not only gives dispersion relations for induc-
tive modes, but also includes the electrostatic modes. Thus, it turns out to
be unnecessary to analyze electrostatic modes separately. The main reason for
investigating electrostatic modes separately as done earlier is pedagogical – it is
easier to understand a simpler system. To see why electrostatic modes are auto-
matically included in an electromagnetic analysis, consider the interrelationship
between Poisson’s equation, Ampère’s law, and a charge-weighted summation of
the two-fluid continuity equation,

	 ·E = − 1

0

∑
�

n�q�� (6.1)

	×B = �0J+
0�0
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�t
� (6.2)
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The divergence of Eq. (6.2) gives

	 ·J+
0
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�t
	 ·E = 0 (6.4)

and substituting Eq. (6.3) gives
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�t
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�

n�q� +
0	 ·E
]

= 0� (6.5)

which is just the time derivative of Poisson’s equation. Integrating Eq. (6.5) shows

−∑
�

n�q� +
0	 ·E = const� (6.6)
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Poisson’s equation, Eq. (6.1), thus provides an initial condition, which fixes the
value of the constant in Eq. (6.6). Since all small-amplitude perturbations are
assumed to have the phase dependence exp �ik ·x− i�t� and therefore behave as
a single Fourier mode, the �/�t operator in Eq. (6.5) is replaced by −i�, in which
case the constant in Eq. (6.6) is automatically set to zero, making a separate consid-
eration of Poisson’s equation redundant. In summary, the Fourier-transformed
Ampère’s law effectively embeds Poisson’s equation and so a discussion of waves
based solely on currents describes inductive and electrostatic modes as well as
modes, such as the inertial Alfvén wave, that involve a mixture of inductive and
electrostatic electric fields.

6.3 Dielectric tensor

Section 3.8 showed that a single particle immersed in a constant, uniform equilib-
rium magnetic field B = B0ẑ and subject to a small-amplitude wave with electric
field ∼ exp �ik ·x− i�t� has the velocity

ṽ� = iq�
�m�

[
Ẽzẑ+

Ẽ⊥
1−�2

c�/�
2
− i�c�

�

ẑ× Ẽ
1−�2

c�/�
2

]
eik·x−i�t� (6.7)

The tilde ˜ denotes a small-amplitude oscillatory quantity with space-time depen-
dence exp �ik · x− i�t�; this phase factor may or may not be explicitly written,
but should always be understood to exist for a tilde-denoted quantity.
The three terms in Eq. (6.7) are respectively:

1. The parallel quiver velocity. This quiver velocity is the same as the quiver velocity
of an unmagnetized particle, but is restricted to parallel motion. Because the magnetic
force q�v×B� vanishes for motion along the magnetic field, motion parallel to B in
a magnetized plasma is identical to motion in an unmagnetized plasma.

2. The generalized polarization drift. This motion has a resonance at the cyclotron
frequency but at low frequencies such that ���c� , it reduces to the polarization drift
vp� =m� Ė⊥/q�B2 derived in Chapter 3.

3. The generalized E×B drift. This also has a resonance at the cyclotron frequency and
for �� �c� reduces to the drift vE = E×B/B2 derived in Chapter 3.

The particle velocities given by Eq. (6.7) produce a plasma current density

J̃ =∑
�

n0�q� ṽ�

= i
0
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�

�2
p�

�

[
Ẽzẑ+

Ẽ⊥
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2
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�

ẑ× Ẽ
1−�2

c�/�
2

]
eik·x−i�t�

(6.8)
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If these plasma currents are written out explicitly, then Ampère’s law has the
form

	× B̃ = �0J̃+�0
0
�Ẽ
�t

= �0

(
i
0
∑
�

�2
p�

�

[
Ẽzẑ+

Ẽ⊥
1−�2

c�/�
2
− i�c�

�

ẑ× Ẽ
1−�2

c�/�
2

]
− i�
0Ẽ

)
�

(6.9)

where a factor exp �ik ·x− i�t� is implicit.
The cold plasma wave equation is established by combining Ampère’s and

Faraday’s laws in a manner similar to the method used for vacuum electromagnetic

waves. However, before doing so, it is useful to define the dielectric tensor
←→
K .

This tensor contains the information in the right-hand side of Eq. (6.9) so that
this equation is written as

	× B̃ = �0
0
�

�t

(←→
K · Ẽ

)
� (6.10)

where

←→
K · Ẽ = Ẽ− �

2
p�

�2

[
Ẽzẑ+

Ẽ⊥
1−�2

c�/�
2
− i�c�

�

ẑ× Ẽ
1−�2

c�/�
2

]

=
⎡⎢⎣ S −iD 0

iD S 0
0 0 P

⎤⎥⎦ · Ẽ (6.11)

and the elements of the dielectric tensor are

S = 1− ∑
�=i�e

�2
p�

�2 −�2
c�

� D = ∑
�=i�e

�c�
�

�2
p�

�2 −�2
c�

� P = 1− ∑
�=i�e

�2
p�

�2
�

(6.12)

The nomenclature S�D�P for the matrix elements was introduced by Stix (1962)
and is a mnemonic for “Sum,” “Difference,” and “Parallel.” The reasoning behind
“Sum” and “Difference” will become apparent later, but for now it is clear that
the P element corresponds to the cold plasma limit of the parallel dielectric, i.e.,
P = 1+'i+'e, where '� = −�2

p�/�
2. This is the cold limit of the unmagnetized

dielectric because behavior involving parallel motions in a magnetized plasma

is identical to that in an unmagnetized plasma. In the limit of no plasma,
←→
K

becomes the unit tensor and describes the effect of the vacuum displacement
current only.
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This definition of the dielectric tensor means that Maxwell’s equations, the
Lorentz equation, and the plasma currents can now be summarized in just two
coupled equations, namely

	×B = 1
c2
�

�t

(←→
K ·E

)
(6.13)

	×E = −�B
�t
� (6.14)

where, for clarity, the tildes have now been omitted and it is to be understood that
E and B refer to the wave fields. The cold plasma wave equation is obtained by
taking the curl of Eq. (6.14) and then substituting for 	×B using (6.13) to obtain

	× �	×E�= − 1
c2
�2

�t2

(←→
K ·E

)
� (6.15)

Since a phase dependence exp �ik · x− i�t� is assumed, this can be written in
algebraic form as

k× �k×E�= −�
2

c2
←→
K ·E� (6.16)

It is now convenient to define the refractive index n = ck/�, a renormalization
of the wavevector k arranged so that light waves have a refractive index of unity.
Using this definition Eq. (6.16) becomes

nn ·E−n2E+←→
K ·E = 0� (6.17)

which is essentially a set of three homogeneous equations in the three components
of E.
The refractive index n = ck/� can be decomposed into parallel and perpendic-

ular components relative to the equilibrium magnetic field B = B0ẑ. For conve-
nience, the x axis of the coordinate system is defined to lie along the perpendicular
component of n so that ny = 0 by assumption. This simplification is possible for
a spatially uniform equilibrium only; if the plasma is non-uniform in the x− y
plane, there can be a real distinction between x and y direction propagation and
the refractive index in the y direction cannot be simply defined away by choice
of coordinate system.
To set the stage for obtaining a dispersion relation, Eq. (6.17) is written in

matrix form as ⎡⎢⎣ S−n2z −iD nxnz
iD S−n2 0
nxnz 0 P−n2x

⎤⎥⎦ ·
⎡⎢⎣ExEy
Ez

⎤⎥⎦= 0� (6.18)

It is now useful to introduce a spherical coordinate system in k-space (or equiv-
alently refractive index space) with ẑ defining the axis and � the polar angle.



6.3 Dielectric tensor 211

Thus, the Cartesian components of the refractive index are related to the spherical
components by

nx = n sin �
nz = n cos�
n2 = n2x+n2z (6.19)

and so Eq. (6.18) becomes⎡⎢⎣ S−n2 cos2 � −iD n2 sin � cos�
iD S−n2 0
n2 sin � cos� 0 P−n2 sin2 �

⎤⎥⎦ ·
⎡⎢⎣ExEy
Ez

⎤⎥⎦= 0� (6.20)

6.3.1 Mode behavior at � = 0

Non-trivial solutions to the set of three coupled equations for Ex�Ey�Ez prescribed
by Eq. (6.20) exist only if the determinant of the matrix vanishes. For arbitrary
values of �, this determinant is complicated. Rather than examining the arbitrary-
� determinant immediately, two simpler limiting cases will first be considered,
namely the situations where �= 0 (i.e., k � B0) and �= /2 (i.e., k ⊥ B0). These
special cases are simpler than the general case because the off-diagonal matrix
elements n2 sin � cos� vanish for both � = 0 and � = /2.

When � = 0 Eq. (6.20) becomes⎡⎢⎣ S−n2 −iD 0
iD S−n2 0
0 0 P

⎤⎥⎦ ·
⎡⎢⎣ExEy
Ez

⎤⎥⎦= 0� (6.21)

The determinant of this system is[(
S−n2)2 −D2

]
P = 0� (6.22)

which has roots

P = 0 (6.23)

and

n2 −S = ±D� (6.24)

Equation (6.24) may be rearranged in the form

n2 = R� n2 = L� (6.25)

where

R= S+D� L= S−D (6.26)
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have the mnemonics “right” and “left.” The rationale behind the nomenclature
“S(um)” and “D(ifference)” now becomes apparent since

S = R+L
2
� D = R−L

2
� (6.27)

What does all this algebra mean? Equation (6.25) states that for � = 0 the
dispersion relation has two distinct roots, each corresponding to a natural mode (or
characteristic wave) constituting a self-consistent solution to the Maxwell–Lorentz
system. The definitions in Eqs. (6.12) and (6.26) show that

R= 1−∑
�

�2
p�

���+�c��
� L= 1−∑

�

�2
p�

���−�c��
(6.28)

so that R diverges when � = −�c� whereas L diverges when � = �c� . Since
�c� = q�B/m� , the ion cyclotron frequency is positive and the electron cyclotron
frequency is negative. Hence, R diverges at the electron cyclotron frequency,
whereas L diverges at the ion cyclotron frequency. When �→ �, both R� L→ 1.
In the limit �→ 0, evaluation of R� L must be done very carefully, since

�2
p�

�c�
= n�q

2
�


0m�

m�
q�B

= n�q�

0B

(6.29)

so
�2
pi

�ci
= −�

2
pe

�ce
� (6.30)

Thus

lim
�→0

R�L = 1− 1
�

[
�2
pi

��±�ci�
+ �2

pe

��±�ce�

]

= 1− �
2
pi+�2

pe

�ci�ce

� 1− neq
2
e


0me

mi
qiB

me
qeB

= 1+ �
2
pi

�2
ci

= 1+ c2

v2A
� (6.31)

where v2A = B2/�0� is the Alfvén velocity. Thus, at low frequency, both R and
L are related to Alfvén modes. The n2 = L mode is the slow mode (larger k) and
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1 + c2

v2
A

1

ωci

ω

| ωce |

n2

n2 = L

n2 = R

Fig. 6.1 Propagation parallel to the magnetic field.

the n2 = R mode is the fast mode (smaller k). Figure 6.1 shows the frequency
dependence of the n2 = R�L modes.

Having determined the eigenvalues for � = 0, the associated eigenvectors can
now be found. These are obtained by substituting the eigenvalue back into the
original set of equations; for example, substitution of n2 =R into Eq. (6.21) gives⎡⎢⎣ −D −iD 0

iD −D 0
0 0 P

⎤⎥⎦ ·
⎡⎢⎣ExEy
Ez

⎤⎥⎦= 0� (6.32)

so that the eigenvector associated with n2 = R is

Ex
Ey

= −i� for eigenvalue n2 = R� (6.33)

The implication of this eigenvector can be seen by considering the root n= +√
R

so that the electric field in the plane orthogonal to ẑ has the form

E⊥ = Re
{
E⊥ �x̂+ iŷ� exp �ikzz− i�t�

}
= �E⊥�{x̂ cos�kzz−�t+��− ŷ sin�kzz−�t+��} � (6.34)

where E⊥ = �E⊥�ei�. This is a right-hand circularly polarized wave propagating
in the positive z direction; hence the nomenclature R. Similarly, the n2 = L root
gives a left-hand circularly polarized wave. Linearly polarized waves may be
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constructed from appropriate sums and differences of these left- and right-hand
circularly polarized waves.
In summary, two distinct modes exist when the wavevector happens to be

exactly parallel to the magnetic field (� = 0): a right-hand circularly polarized
wave with dispersion n2 =R with n→ � at the electron cyclotron resonance and
a left-hand circularly polarized mode with dispersion n2 = L with n→ � at the
ion cyclotron resonance. Since ion cyclotron motion is left-handed (mnemonic
“Lion”) it is reasonable that a left-hand circularly polarized wave resonates with
ions, and vice versa for electrons. At low frequencies, these modes become Alfvén
modes with dispersion n2z = 1+ c2/v2A for � = 0. In the Chapter 4 discussion
of Alfvén modes the dispersions of both compressional and shear modes were
found to reduce to c2k2z/�

2 = n2z = c2/v2A for � = 0. One may ask why a “1”
term did not appear in the Chapter 4 dispersion relations. The answer is that the
“1” term comes from displacement current, a quantity neglected in the Chapter 4
derivations. The displacement current term shows that if the plasma density is so
low (or the magnetic field is so high) that vA becomes larger than c, then Alfvén
modes become ordinary vacuum electromagnetic waves propagating at nearly the
speed of light. In order for a plasma to demonstrate significant Alfvénic (i.e.,
MHD) behavior it must satisfy B/

√
�0�� c or equivalently have �ci � �pi.

6.3.2 Cutoffs and resonances

The general situation where n2 → � is called a resonance and corresponds to the
wavelength going to zero. Any slight dissipative effect in this situation will cause
large wave damping. This is because if the wavelength becomes infinitesimal and
the fractional attenuation per wavelength is constant, there will be a near-infinite
number of wavelengths and the wave amplitude is reduced by the same fraction for
each of these. Figure 6.1 also shows it is possible to have a situation where n2 = 0.
The general situation where n2 = 0 is called a cutoff and corresponds to wave
reflection, since n changes from being pure real to pure imaginary. If the plasma is
non-uniform, it is possible for layers to exist in the plasma where either n2 → � or
n2 = 0; these are called resonance or cutoff layers. Typically, if a wave intercepts a
resonance layer it is absorbed, whereas if it intercepts a cutoff layer it is reflected.

6.3.3 Mode behavior at � = /2
When � = /2 Eq. (6.20) becomes⎡⎢⎣ S −iD 0

iD S−n2 0
0 0 P−n2

⎤⎥⎦ ·
⎡⎢⎣ExEy
Ez

⎤⎥⎦= 0 (6.35)
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and again two distinct modes appear. The first mode has as its eigenvector the
condition Ez �= 0. The associated eigenvalue equation is P−n2 = 0 or

�2 = k2c2 +∑
�

�2
p�� (6.36)

which is just the dispersion for an electromagnetic plasma wave in an unmag-
netized plasma. This is in accordance with the prediction that modes involving
particle motion strictly parallel to the magnetic field are unaffected by the magnetic
field. This mode is called the ordinary mode because it is unaffected by the
magnetic field.
The second mode involves both Ex and Ey and has the eigenvalue equation

S�S−n2�−D2 = 0, which gives the dispersion relation

n2 = S2 −D2

S
= 2

RL

R+L� (6.37)

Cutoffs occur here when either R= 0 or L= 0 and a resonance occurs when S= 0.
Since this mode depends on the magnetic field, it is called the extraordinarymode.
The S = 0 resonance is called a hybrid resonance because it depends on a hybrid
of �2

c� and �2
p� terms (the �2

c� terms depend on single-particle physics, whereas
the �2

p� terms depend on collective motion physics). Because S is quadratic in �2,
the equation S = 0 has two distinct roots and these are found by explicitly writing

S = 1− �2
pi

�2 −�2
ci

− �2
pe

�2 −�2
ce

= 0� (6.38)

A plot of this expression shows the two roots are well separated. The large root
may be found by assuming � ∼ ���ce�, in which case the ion term becomes
insignificant. Dropping the ion term shows the large root of S is simply

�2
uh = �2

pe+�2
ce� (6.39)

which is called the upper hybrid frequency. The small root may be found by
assuming that �2 � �2

ce, which gives the lower hybrid frequency

�2
lh = �2

ci+
�2
pi

1+ �
2
pe

�2
ce

� (6.40)

6.3.4 Very-low-frequency modes where � is arbitrary

Equation (6.31) shows that for �� �ci

S � R� L� 1+ c2/v2A
D � 0 (6.41)



216 Cold plasma waves in a magnetized plasma

so the cold plasma dispersion simplifies to⎡⎢⎣ S−n2z 0 nxnz
0 S−n2 0
nxnz 0 P−n2x

⎤⎥⎦ ·
⎡⎢⎣ExEy
Ez

⎤⎥⎦= 0� (6.42)

Because D = 0 the determinant factors into two modes, one where(
S−n2)Ey = 0 (6.43)

and the other where [
S−n2z nxnz
nxnz P−n2x

]
·
[
Ex
Ez

]
= 0� (6.44)

The former gives the dispersion relation

n2 = S (6.45)

with Ey �= 0 as the eigenvector. This mode is the fast or compressional mode since,
in the limit where the displacement current can be neglected, Eq. (6.45) becomes
�2 = k2v2A. The latter mode involves finite Ex and Ez and has the dispersion

n2x = P

S

(
S−n2z

)
� (6.46)

which is the inertial Alfvén wave �2 = k2zv2A/
(
1+k2xc2/�2

pe

)
in the limit where

the displacement current can be neglected.

6.3.5 Modes where � and � are arbitrary

The � = 0, /2 limiting behaviors and the low-frequency Alfvén modes gave
a useful introduction to the cold plasma modes and, in particular, showed how
modes can be subject to cutoffs or resonances. We now evaluate the determinant
of the matrix in Eq. (6.20) for arbitrary � and arbitrary �� after some algebra this
determinant can be written as

An4 −Bn2 +C = 0� (6.47)

where

A = S sin2 �+P cos2 �
B = �S2 −D2� sin2 �+PS�1+ cos2 �� (6.48)

C = P�S2 −D2�= PRL�
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Equation (6.47) is quadratic in n2 and has the two roots

n2 = B±√
B2 −4AC
2A

� (6.49)

Thus, the two distinct modes in the special cases of (i) �= 0�/2 or (ii) ���ci
were just particular examples of the more general property that a cold plasma
supports two distinct types of modes. Using a modest amount of algebraic manip-
ulation (cf. assignments) it is straightforward to show that the quantity B2 −4AC
is positive definite for real �, since

B2 −4AC = (
S2 −D2 −SP)2 sin4 �+4P2D2 cos2 �� (6.50)

Thus, n is either pure real (corresponding to a propagating wave) or pure imaginary
(corresponding to an evanescent wave).
From Eqs. (6.47) and (6.48) it is seen that cutoffs occur when C = 0, which

happens if P = 0�L= 0, or R= 0. Also, resonances correspond to having A→ 0,
in which case

S sin2 �+P cos2 � � 0� (6.51)

6.3.6 Wave normal surfaces

The information contained in a dispersion relation can be summarized in a quali-
tative, visual manner by a wave normal surface, which is a polar plot of the phase
velocity of the wave normalized to c. Since n= ck/�, a wave normal surface is
just a plot of 1/n��� vs. �. The most basic wave normal surface is obtained by
considering the equation for a light wave in vacuum,(

�2

�t2
− c2	2

)
E = 0� (6.52)

which has the simple dispersion relation

1
n2

= �2

k2c2
= 1� (6.53)

Thus, the wave normal surface of a light wave in vacuum is just a sphere of radius
unity because �/k = c/n is independent of direction. Wave normal surfaces of
plasma waves are typically more complicated because n usually depends on �.
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The radius of the wave normal surface goes to zero at a resonance and goes to
infinity at a cutoff (since 1/n→ 0 at a resonance, 1/n→ � at a cutoff).

6.3.7 Taxonomy of modes – the CMA diagram

Equation (6.49) gives the general dispersion relation for arbitrary �. While
formally correct, this expression is of little practical value because of the
complicated chain of dependence of n2 on several variables. The CMA diagram
(Clemmow and Mullaly (1955), Allis (1955)) provides an elegant method for
revealing and classifying the large number of qualitatively different modes
embedded in Eq. (6.49).
In principle, Eq. (6.49) gives the dependence of n2 on the six parameters �, �,

�pe, �pi, �ce, and �ci. However, �pi and �pe are not really independent param-

eters and neither are �ci and �ce because �2
ce/�

2
ci = �mi/me�2 and �2

pe/�
2
pi =

mi/me for singly charged ions. Thus, once the ion species has been specified, the
only free parameters are the density and the magnetic field. Once these have been
specified, the plasma frequencies and the cyclotron frequencies are determined.
It is reasonable to normalize these frequencies to the wave frequency in question
since the quantities S�P�D depend only on the normalized frequencies. Thus, n2

is effectively just a function of �, �2
pe/�

2, and �2
ce/�

2. Pushing this simplification
even further, we can say that for fixed �2

pe/�
2 and �2

ce/�
2, the refractive index

n is just a function of �. Then, once n= n��� is known, it can be used to plot a
wave normal surface, i.e., �/kc plotted vs. �.

The CMA diagram is developed by first constructing a chart where the horizon-

tal axis is ln
(
�2
pe/�

2 +�2
pi/�

2
)
and the vertical axis is ln

(
�2
ce/�

2
)
. For a given

�, any point on this chart corresponds to a unique density and a unique magnetic
field. If we were ambitious, we could plot the wave normal surfaces 1/n vs. �
for a very large number of points on this chart, and so have plots of dispersions
for a large set of cold plasmas. While conceivable, such a thorough examination
of all possible combinations of density and magnetic field would require plotting
an inconveniently large number of wave normal surfaces.
It is actually unnecessary to plot this very large set of wave normal surfaces

because it turns out that the qualitative shape (i.e., topology) of the wave normal
surfaces changes only at specific boundaries in parameter space. Away from these
boundaries the wave normal surface deforms, but does not change its topology.
The CMA diagram, shown in Fig. 6.2, charts these parameter space boundaries
and so provides a powerful method for classifying cold plasma modes. Parameter
space is divided up into a finite number of regions, called bounded volumes,
separated by curves in parameter space, called bounding surfaces, across which
the modes change qualitatively. Thus, within a bounded volume, modes change
quantitatively but not qualitatively. For example, if Alfvén waves exist at one
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Fig. 6.2 CMA diagram.

point in a particular bounded volume, they must exist everywhere in that bounded
volume, although the dispersion may not be quantitatively the same at different
locations in the volume.
The appropriate choice of bounding surfaces consists of:

1. The principle resonances, which are the curves in parameter space where n2 has a
resonance at either � = 0 or � = /2. Thus, the principal resonances are the curves
R= � (i.e., electron cyclotron resonance), L= � (i.e., ion cyclotron resonance), and
S = 0 (i.e., the upper and lower hybrid resonances).

2. The cutoffs R= 0, L= 0, and P = 0.
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The behavior of wave normal surfaces inside a bounded volume and when
crossing a bounded surface can be deduced using a set of five simple theorems
(Stix 1962), each a consequence of the results derived so far:

1. Inside a bounded volume n cannot vanish. Proof: by setting n= 0 in Eq. (6.47) and
using Eq. (6.48) it is seen that n vanishes only when PRL= 0, but P = 0, R= 0, and
L= 0 have been defined to be bounding surfaces.

2. If n2 has a resonance (i.e., goes to infinity) at any point in a bounded volume, then for
every other point in the same bounded volume, there exists a resonance at some unique
angle �res and its associated mirror angles, namely −�res, − �res, and − �−�res�,
but at no other angles. Proof: if n2 → � then A→ 0, in which case tan2 �res = −P/S
determines the unique �res. Now tan2�−�res�= tan2 �res so there is also a resonance
at the supplement � = −�res. Also, since the square of the tangent is involved, both
�res and − �res may be replaced by their negatives. Neither P nor S can change
sign inside a bounded volume and both are single valued functions of their location in
parameter space. Thus, −P/S can only change sign at a bounding surface. In summary,
if a resonance occurs at any point in a bounding surface, then a resonance exists at
some unique angle �res and its associated mirror angles at every point in the bounding
surface. Resonances only occur when P and S have opposite signs. Since 1/n goes to
zero at a resonance, the radius of a wave normal surface goes to zero at a resonance.

3. At any point in parameter space and for a given interval in � in which n is finite,
n is either pure real or pure imaginary throughout that interval. Proof: n2 is always
real and is a continuous function of �. The only situation where n can change from
being pure real to being pure imaginary is when n2 changes sign. This occurs when n2

passes through zero but, because of the definition for bounding surfaces, n2 does not
vanish inside a bounded volume. Although n2 may change sign when going through
infinity this situation is not relevant because the theorem was restricted to finite n.

4. n is symmetric about �= 0 and �= /2. Proof: n is a function of sin2 � and of cos2 �,
both of which are symmetric about � = 0 and � = /2.

5. Except for the special case where the surfaces PD= 0 and RL= PS intersect, the two
modes may coincide only at � = 0 or at � = /2. Proof: for 0 < � < /2 the square
root in Eq. (6.49) is

√
B2 −4AC =

√
�RL−SP�2 sin4 �+4P2D2 cos2 � (6.54)

and can only vanish if PD = 0 and RL= PS simultaneously.

These theorems provide sufficient information to characterize the morphology
of wave normal surfaces throughout all of parameter space. In particular, the
theorems show that only three types of wave normal surfaces exist. These are
ellipsoid, dumbbell, and wheel as shown in Fig. 6.3(a)–(c) and each is a three-
dimensional surface symmetric about the z axis.

We now discuss the features and interrelationships of these three types of
wave normal surfaces. In this discussion, each of the two modes in Eq. (6.49)
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(a) (b) (c)

(d) (e)

z z z

z z

ellipsoid dumbbell wheel

Fig. 6.3 (a), (b), (c) show types of wave normal surfaces; (d) and (e) show
permissible overlays of wave normal surfaces.

is considered separately; i.e., either the plus or the minus sign is chosen. The
convention is used that a mode is considered to exist (i.e., has a wave normal
surface) only if n2 > 0 for at least some range of �� if n2 < 0 for all angles, then
the mode is evanescent (i.e., non-propagating) for all angles and is not plotted.
The three types of wave normal surfaces are:

1. Bounded volume with no resonance and n2 > 0 at some point in the bounded volume.
Since n2 = 0 occurs only at the bounding surfaces and n2 → � only at resonances, n2

must be positive and finite at every � for each location in the bounded volume. The
wave normal surface is thus ellipsoidal with symmetry about both �= 0 and �= /2.
The ellipse may deform as one moves inside the bounded volume, but will always have
the morphology of an ellipse. This type of wave normal surface is shown in Fig. 6.3(a).
The wave normal surface is three dimensional and is azimuthally symmetric about the
z axis.

2. Bounded volume having a resonance at some angle �res, where 0 < �res < /2 and
n2��� positive for � < �res. At �res, n→ � so the radius of the wave normal surface
goes to zero. For � < �res, the wave normal surface exists (n is pure real since n2 > 0)
and is plotted. At resonances n2��� passes from −� to +� or vice versa. This type
of wave normal surface is a dumbbell type as shown in Fig. 6.3(b).

3. Bounded volume having a resonance at some angle �res, where 0 < �res < /2 and
n2��� positive for � > �res. This is similar to case 2 above, except the wave normal
surface now only exists for angles greater than �res and so has the wheel-type shape
shown in Fig. 6.3(c).



222 Cold plasma waves in a magnetized plasma

Consider now the relationship between the two modes (plus and minus sign)
given by Eq. (6.49). Because the two modes cannot intersect (cf. theorem 5 on
p. 220) at angles other than � = 0�/2, and mirror angles, if one mode is an
ellipsoid and the other has a resonance (i.e., is a dumbbell or wheel), the ellipsoid
must be outside the other dumbbell or wheel; for if not, the two modes would
intersect at an angle other than � = 0 or � = /2. This is shown in Figs. 6.3(d)
and (e).
Also, only one of the modes can have a resonance, so at most one mode in a

bounded volume can be a dumbbell or wheel. This can be seen by noting that a
resonance occurs when A→ 0. In this case B2 � �4AC� in Eq. (6.49) and the two
roots are well separated. This means the binomial expansion can be used on the
square root in Eq. (6.49) to obtain

n2 � B± �B−2AC/B�
2A

n2+ � B

A
� n2− � C

B
� (6.55)

where �n2+� � �n2−� since B2 � �4AC�. The root n2+ has the resonance and the
root n2− has no resonance. Since the wave normal surface of the minus root has
no resonance, its wave normal surface must be ellipsoidal (if it exists). Because
the ellipsoidal surface must always lie outside the wheel or dumbbell surface, the
ellipsoidal surface will have a larger value of �/kc than the dumbbell or wheel
at every � and so the ellipsoidal mode will always be the fast mode. The mode
with the resonance will be a dumbbell or wheel, will lie inside the ellipsoidal
surface, and so will always be the slow mode. This concept of well-separated
roots is quite useful and, if the roots are well separated, then Eq. (6.47) can be
solved approximately for the large root (slow mode) by balancing the first two
terms with each other, and for the small root (fast mode) by balancing the last
two terms with each other.
Parameter space is subdivided into thirteen bounded volumes, each potentially

containing two normal modes corresponding to two qualitatively distinct propa-
gating waves. However, since two modes do not exist in all bounded volumes, the
actual number of modes is smaller than 26. As an example of a bounded volume
with two waves, the wave normal surfaces of the fast and slow Alfvén waves are
in the upper right-hand corner of the CMA diagram, since this bounded volume
corresponds to ���ci and ���pe, i.e., above L= 0 and to the right of P = 0.

6.3.8 Use of the CMA diagram

The CMA diagram can be used in several ways. For example, it can be used to
(i) identify all allowed cold plasma modes in a given plasma for various values
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of � or (ii) investigate how a given mode evolves as it propagates through a
spatially inhomogeneous plasma and possibly intersects resonances or cutoffs due
to spatial variation of density or magnetic field.
Let us consider the first example. Suppose the plasma is uniform and

has a prescribed density and magnetic field. Since ln
[(
�2
pe+�2

pi

)
/�2

]
and

ln
[
�2
ce/�

2
]
are the coordinates of the CMA diagram, varying � corresponds to

tracing out a line having a slope of 45	 and an offset determined by the prescribed
density and magnetic field. High frequencies correspond to the lower left portion
of this line and low frequencies to the upper right. Since the allowed modes lie
along this line, if the line does not pass through a given bounded volume, then
modes inside that bounded volume do not exist in the specified plasma.
Now consider the second example. Suppose the plasma is spatially non-uniform

in such a way that both density and magnetic field are a function of position. To be
specific, suppose density increases as one moves in the x direction while magnetic
field increases as one moves in the y direction. Thus, the CMA diagram becomes
a map of the actual plasma. A wave with prescribed frequency � is launched
at some position x� y and then propagates along some trajectory in parameter
space as determined by its local dispersion relation. The wave will continuously
change its character as determined by the local wave normal surface. Thus, a
wave launched as a fast Alfvén mode from the upper-right bounded volume and
propagating in the downward direction will only deform somewhat on traversing
the L = � bounding surface. In contrast, a wave launched as a slow Alfvén
mode (dumbbell shape) from the same position will disappear when it reaches
the L= � bounding surface, because the slow mode does not exist on the lower
side (high-frequency side) of the L= � bounding surface. The slow Alfvén wave
undergoes ion cyclotron resonance at the L = � bounding surface and will be
absorbed there.

6.4 Dispersion relation expressed as a relation between n2x and n2z

The CMA diagram is very useful for classifying waves, but is often not so useful
in practical situations where it is not obvious how to specify the angle �. In a
practical situation a wave is typically excited by an antenna that lies in a plane
and the geometry of the antenna imposes the component of the wavevector in the
antenna plane. The transmitter frequency determines �.
For example, consider an antenna located in the x = 0 plane and having some

specified z dependence. When Fourier analyzed in z, such an antenna would excite
a characteristic kz spectrum. In the extreme situation of the antenna extending
to infinity in the x = 0 plane and having the periodic dependence exp �ikzz�, the
antenna would excite just a single kz. Thus, the antenna–transmitter combination
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in this situation would impose kz and � but leave kx undetermined. The job of
the dispersion relation would then be to determine kx. It should be noted that
antennas that are not both infinite and perfectly periodic will excite a spectrum
of kz modes rather than just a single kz mode.

By writing n2x = n2 sin2 � and n2z = n2 cos2 �, Eqs. (6.47) and (6.48) can be
expressed as a quadratic equation for n2x, namely

Sn4x− �S̄�S+P�−D2�n2x+P�S̄2 −D2�= 0� (6.56)

where

S̄ = S−n2z� (6.57)

If the two roots of Eq. (6.56) are well separated, the large root is found by
balancing the first two terms to obtain

n2x � S̄�S+P�−D2

S
� (large root) (6.58)

or in the limit of large P (i.e., low frequencies)

n2x � S̄P

S
� (large root)� (6.59)

The small root is found by balancing the last two terms of Eq. (6.56) to obtain

n2x � P�S̄2 −D2�

�S̄�S+P�−D2�
� �small root� (6.60)

or in the limit of large P

n2x � �n2z −R��n2z −L�
S−n2z

� �small root�� (6.61)

Thus, any given n2z always has an associated large n
2
x mode and an associated small

n2x mode. Because the phase velocity is inversely proportional to the refractive
index, the root with large n2x is called the slow mode and the root with small n2x
is called the fast mode.
Using the quadratic formula it is seen that the exact form of these two roots of

Eq. (6.56) is given by

n2x = S�S+P�−D2 ±
√[
S�S−P�−D2

]2 +4PD2n2z

2S
� (6.62)

It is clear that n2x can become infinite only when S = 0. Situations where n2x is
complex (i.e., neither pure real or pure imaginary) can occur when P is large and
negative, in which case the argument of the square root can become negative. In
these cases, � also becomes complex and is no longer a physical angle. This shows
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that considering real angles between 0< �< 2 does not account for all possible
types of wave behavior. The regions where n2x becomes complex is called a region
of inaccessibility and is a region where Eq. (6.56) does not have real roots. If a
plasma is non-uniform in the x direction so that S�P, and D are functions of x and
�2 <�2

pe+�2
pi so that P is negative, the boundaries of a region of inaccessibility

(if such a region exists) are the locations where the square root in Eq. (6.62)

vanishes, i.e., where there is a solution for S�S−P�−D2 = ±
√

−4PD2n2z .

6.5 A journey through parameter space

Imagine an enormous plasma where the density increases in the x direction and the
magnetic field points in the z direction but increases in the y direction. Suppose
further that a radio transmitter operating at a frequency � is connected to a
hypothetical antenna that emits plane waves, i.e., waves with spatial dependence
exp �ik ·x�. These assumptions are somewhat self-contradictory because, in order
to excite plane waves, an antenna must be infinitely long in the direction normal
to k and if the antenna is infinitely long it cannot be localized. To circumvent this
objection, it is assumed the plasma is so enormous that the antenna at any location
is sufficiently large compared to the wavelength in question to emit waves that
are nearly plane waves.
The antenna is located at some point x� y in the plasma and the emitted plane

waves are detected by a phase-sensitive receiver. The position x� y corresponds to
a point in CMA space. The antenna is rotated through a sequence of angles � and,
as the antenna is rotated, an observer walks in front of the antenna staying exactly
one wavelength � = 2/k from the face of the antenna. Since � is proportional
to 1/n= �/kc at fixed frequency, the locus of the observer’s path will have the
shape of a wave normal surface, i.e., a plot of 1/n versus �.
Because of the way the CMA diagram was constructed, the topology of one of

the two cold plasma modes always changes when a bounding surface is traversed.
Which mode is affected and how its topology changes on crossing a bounding
surface can be determined by monitoring the polarities of the four quantities
S�P�R�L within each bounded volume. P changes polarity only at the P = 0
bounding surface, but R and L change polarity when they go through zero and
also when they go through infinity. Furthermore, S = �R+L�/2 changes sign not
only when S = 0 but also at R= � and at L= �.
A straightforward way to establish how the polarities of S�P�R�L change as

bounding surfaces are crossed is to start in the extreme lower left corner of
parameter space, corresponding to �2 � �2

pe��
2
ce. This is the limit of having

no plasma and no magnetic field and so corresponds to unmagnetized vacuum.
The cold plasma dispersion relation in this limit is simply n2 = 1� i.e., vacuum
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electromagnetic waves such as ordinary light waves or radio waves. Here S= P =
R= L= 1 because there are no plasma currents. Thus S�P�R�L are all positive
in this bounded volume, denoted as Region 1 in Fig. 6.2 (regions are labeled
by boxed numbers). To keep track of the respective polarities, a small cross is
sketched in each of the 13 bounded volumes. The signs of L and R are noted on
the left and right of the cross respectively, while the sign of S is shown at the top
and the sign of P is shown at the bottom.
In traversing from Region 1 to Region 2, R passes through zero and so reverses

polarity but the polarities of L�S�P are unaffected. Going from Region 2 to
Region 3, S passes through zero so the sign of S reverses. By continuing from
region to region in this manner, the plus or minus signs on the crosses in each
bounded volume are established. It is important to remember that S changes sign
at both S = 0 and the cyclotron resonances L = � and R = �, but at all other
bounding surfaces, only one quantity reverses sign.
Modes with resonances (i.e., dumbbells or wheels) only occur if S and P have

opposite sign, which occurs in Regions 3, 7, 8, 10, and 13. The ordinary mode
(i.e., �=/2, n2 = P) exists only if P> 0 and so exists only in regions to the left
of the P = 0 bounding surface. Thus, to the right of the P = 0 bounding surface
only extraordinary modes exist (i.e., only modes where n2 = RL/S at � = /2).
Extraordinary modes exist only if RL/S > 0, which cannot occur if an odd subset
of the three quantities R�L, and S is negative. For example, in Region 5 all three
quantities are negative so extraordinary modes do not exist in Region 5. The
parallel modes n2 = R�L do not exist in Region 5 because R and L are negative
there. Thus, no modes exist in Region 5 because if a mode were to exist there,
it would need to have a limiting behavior of either ordinary or extraordinary at
� = /2 and of either right or left circularly polarized at � = 0.
When crossing a cutoff bounding surface (R = 0�L = 0, or P = 0), the outer

(i.e., fast) mode has its wave normal surface become infinitely large, �2/k2c2 =
1/n2 → �. Thus, immediately to the left of the P = 0 bounding surface, the
fast mode (outer mode) is always the ordinary mode, because by definition this
mode has the dispersion n2 = P at � = /2 and so has a cutoff at P = 0. As
one approaches the P = 0 bounding surface from the left, all the outer modes are
ordinary modes and all disappear on crossing the P = 0 line so that to the right
of the P = 0 line there are no ordinary modes.
In Region 13 where the modes are Alfvén waves, the slow mode is the n2 = L

mode, since this is the mode that has the resonance at L = �. The slow Alfvén
mode is the inertial Alfvén mode while the fast Alfvén mode is the compressional
Alfvén mode. Going downwards from Region 13 to Region 11, the slow Alfvén
wave undergoes ion cyclotron resonance and disappears, but the fast Alfvén wave
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remains. Similar arguments can be made to explain other boundary crossings in
parameter space.
A subtle aspect of this taxonomy is the division of Region 6 into two sub-

regions 6a, and 6b. This subtlety arises because the dispersion at �= /2 has the
form

n2 = RL+PS±�RL−PS�
2S

= P�RL/S� (6.63)

In Region 6, both S and P are positive. If RL−PS is also positive, then the plus
sign gives the extraordinary mode, which is the slow mode (bigger n, inner of
the two wave normal surfaces). On the other hand, if RL−PS is negative, then
the absolute value operator inverts the sign of RL−PS and the minus sign now
gives the extraordinary mode, which will be the fast mode (smaller n, outer of
the two wave normal surfaces). Region 8 can also be divided into two regions
(omitted here for clarity) separated by the RL= PS line. In Region 8 the ordinary
mode does not exist, but the extraordinary mode will be given by either the plus
or minus sign in Eq. (6.63) depending on which side of the RL= PS line one is
considering.
For a given plasma density and magnetic field, varying the frequency corre-

sponds to moving along a “mode” line that has a 45	 slope on the log–log CMA
diagram (see Fig. 6.2). If the plasma density is increased, the mode line moves
to the right, whereas if the magnetic field is increased, the mode line moves up.
Since any single mode line cannot pass through all 13 regions of parameter space,
only a limited subset of the 13 regions of parameter space can be accessed for
any given plasma density and magnetic field. Plasmas with �2

pe > �
2
ce are often

labeled “overdense” and plasmas with �2
pe < �

2
ce are correspondingly labeled

“underdense.” For overdense plasmas, the mode line passes to the right of the
intersection of the P = 0, R= � bounding surfaces while for underdense plasmas
the mode line passes to the left of this intersection. Two different plasmas will be
self-similar if they have similar mode lines. For example, if a lab plasma has the
same mode line as a space plasma it will support the same kind of modes, but do
so in a scaled fashion. Because the CMA diagram is log–log the bounding surface
curves extend infinitely to the left and right of the figure and also infinitely above
and below it; however, no new regions exist outside of what is sketched in Fig. 6.2.
The weakly magnetized case corresponds to the lower parts of Regions 1–5,

while the low-density case corresponds to the left parts of Regions 1, 2, 3, 6, 9, 10,
and 12. The CMA diagram provides a visual way for categorizing a great deal of
useful information. In particular, it allows identification of isomorphisms between
modes in different regions of parameter space so that understanding developed
about the behavior for one kind of mode can be exploited to explain the behavior
of a different, but isomorphic, mode located in another region of parameter space.
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6.6 High-frequency waves: Altar–Appleton–Hartree dispersion relation

Examination of the dielectric tensor elements S�P, and D shows that while both
ion and electron terms are of importance for low-frequency waves, for high-
frequency waves (� � �ci, �pi) the ion terms are unimportant and may be
dropped. Thus, for high-frequency waves the dielectric tensor elements simplify to

S = 1− �2
pe

�2 −�2
ce

P = 1− �
2
pe

�2
(6.64)

D = �ce
�

�2
pe(

�2 −�2
ce

)
and the corresponding R and L terms are

R= 1− �2
pe

���+�ce�

L= 1− �2
pe

���−�ce�
�

(6.65)

The development of long-distance short-wave radio communication in the 1930s
motivated investigations into how radio waves bounce from the ionosphere.
Because the bouncing involves a P = 0 cutoff and because the ionosphere has �2

pe

of order �2
ce but usually larger, the relevant frequencies must be of the order of

the electron plasma frequency and so are much higher than both the ion cyclotron
and ion plasma frequencies. Thus, ion effects are unimportant and so all ion terms
may be dropped in order to simplify the analysis.
Perhaps the most important result of this era was a peculiar, but useful, refor-

mulation by Appleton, Hartree, and Altar1 (Appleton 1932) of the �� �pi��ci
limit of Eq. (6.49). The intent of this reformulation was to express n2 in terms
of its deviation from the vacuum limit, n2 = 1. An obvious way to do this is to
define % = n2 −1 and then rewrite Eq. (6.47) as an equation for %, namely

A�%2 +2%+1�−B�%+1�+C = 0 (6.66)

or, after regrouping,

A%2 +%�2A−B�+A−B+C = 0� (6.67)

1 See discussion by Swanson (1989) regarding the recent addition of Altar to this citation.
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Unfortunately, when this expression is solved for %, the leading term is −1 and
so this attempt to find the deviation of n2 from its vacuum limit fails. However,
a slight rewriting of Eq. (6.67) as

A−B+C
%2

+ 2A−B
%

+A= 0 (6.68)

and then solving for 1/%, gives

% = 2�A−B+C�
B−2A±√

B2 −4AC
� (6.69)

This expression does not have a leading term of −1 and so allows the solution of
Eq. (6.49) to be expressed as

n2 = 1+ 2�A−B+C�
B−2A±√

B2 −4AC
� (6.70)

In the ���ci��pi limit where S�P�D are given by Eq. (6.64), algebraic manip-
ulation of Eq. (6.70) (cf. assignments) shows the numerator and denominator
of the second term have a common factor. After canceling this common factor,
Eq. (6.70) reduces to

n2 = 1−

⎡⎢⎢⎢⎢⎣
2
�2
pe

�2

(
1− �

2
pe

�2

)

2

(
1− �

2
pe

�2

)
− �

2
ce

�2
sin2 �±�

⎤⎥⎥⎥⎥⎦ � (6.71)

where

� =
√√√√�4

ce

�4
sin4 �+4

�2
ce

�2

(
1− �

2
pe

�2

)2

cos2 �� (6.72)

Equation (6.71) is called the Altar–Appleton–Hartree dispersion relation
(Appleton 1932) and has the desired property of showing the deviation of n2

from the vacuum dispersion n2 = 1.
We recall that the cold plasma dispersion relation simplified considerably when

either �= 0 or �=/2. A glance at Eq. (6.71) shows that this expression reduces
indeed to n2 = R�L for �= 0. Somewhat more involved manipulation shows that
Eq. (6.71) also reduces to n2+ = P and n2− = RL/S for � = /2.

Equation (6.71) can be Taylor expanded in the vicinity of the principle angles
� = 0 and � = /2 to give dispersion relations for quasi-parallel or quasi-
perpendicular propagation. The terms quasi-longitudinal and quasi-transverse
are commonly used to denote these situations. The nomenclature is somewhat
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unfortunate because of the possible confusion with the traditional convention
that longitudinal and transverse refer to the orientation of k relative to the wave
electric field. Here, longitudinal means k is nearly parallel to the static magnetic
field while transverse means k is nearly perpendicular to the static magnetic field.

6.6.1 Quasi-transverse modes (� � 	/2)

For quasi-transverse propagation, the first term in � dominates, that is,

�4
ce

�4
sin4 �� 4

�2
ce

�2

(
1− �

2
pe

�2

)2

cos2 �� (6.73)

In this case a binomial expansion of � gives

� = �2
ce

�2
sin2 �

⎡⎣1+4
�2

�2
ce

(
1− �

2
pe

�2

)2
cos2 �

sin4 �

⎤⎦1/2

� �2
ce

�2
sin2 �+2

(
1− �

2
pe

�2

)2

cot2 �� (6.74)

Substitution of � into Eq. (6.71) shows the generalization of the ordinary mode
dispersion to angles in the vicinity of /2 is

n2+ =
1− �

2
pe

�2

1− �
2
pe

�2
cos2 �

� (6.75)

The subscript + here means that the positive sign has been used in Eq. (6.71). This
mode is called the QTO mode as an acronym for “quasi-transverse-ordinary.”
Choosing the − sign in Eq. (6.71) gives the quasi-transverse-extraordinary

mode or QTX mode. After a modest amount of algebra (cf. assignments) the QTX
dispersion is found to be

n2− =

(
1− �

2
pe

�2

)2

− �
2
ce

�2
sin2 �

1− �
2
pe

�2
− �

2
ce

�2
sin2 �

� (6.76)

Note that the QTX mode has a resonance near the upper hybrid frequency.
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6.6.2 Quasi-longitudinal dispersion (� � 0)

Here, the term containing cos2 � dominates in Eq. (6.72). Because there are no
cancelations of the leading terms in � with any remaining terms in the denominator
of Eq. (6.71), it suffices to keep only the leading term of � . Thus, in this limit

� � 2

∣∣∣∣∣�ce�
(
1− �

2
pe

�2

)
cos�

∣∣∣∣∣= −2

(
1− �

2
pe

�2

)∣∣∣�ce
�

cos�
∣∣∣ � (6.77)

since P = 1−�2
pe/�

2 is assumed to be negative. Upon substitution for � in
Eq. (6.71) and then simplifying, one obtains

n2+ = 1− �2
pe/�

2

1−
∣∣∣�ce
�

cos�
∣∣∣ � QLR mode (6.78)

and

n2− = 1− �2
pe/�

2

1+
∣∣∣�ce
�

cos�
∣∣∣ � QLL mode� (6.79)

These simplified dispersions are based on the implicit assumption that �P� is
large, because if P→ 0 the presumption that Eq. (6.77) gives the leading term in �
would be inappropriate. When �< ��ce cos�� the QLR mode (quasi-longitudinal,
right-hand circularly polarized) is called the whistler or helicon wave. This wave
is distinguished by having a descending whistling tone, which shows up at audio
frequencies on sensitive amplifiers connected to long wire antennas. Whistlers
may have been heard as early as the late nineteenth century by telephone linesmen
installing long telephone lines. They became a subject of some interest in the
trenches of the First World War when German scientist H. Barkhausen heard
whistlers on a sensitive audio receiver while trying to eavesdrop on British military
communications; the origin of these waves was a mystery at that time. After
the war Barkhausen (1930) and Eckersley (1935) proposed that the descending
tone was due to a dispersive propagation such that lower frequencies traveled
more slowly, but did not explain the source location or propagation trajectory.
The explanation had to wait over two more decades until Storey (1953) finally
solved the mystery by showing that whistlers were caused by lightning bolts and
identified two main types of propagation. The first type, called a short whistler,
resulted from a lightning bolt in the opposite hemisphere exciting a wave that
propagated dispersively along the Earth’s magnetic field to the observer. The
second type, called a long whistler, resulted from a lightning bolt in the vicinity
of the observer exciting a wave that propagated dispersively along field lines to
the opposite hemisphere, then reflected, and traveled back along the same path to
the observer. The dispersion would be greater in this round-trip situation and also
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there would be a correlation with a click from the local lightning bolt. Whistlers
are routinely observed by spacecraft flying through the Earth’s magnetosphere
and the magnetospheres of other planets.
The reason for the whistler’s descending tone can be seen by representing each

lightning bolt as a delta function in time

��t�= 1
2

∫
e−i�td�� (6.80)

A lightning bolt therefore launches a very broad frequency spectrum. Because
the ionospheric electron plasma frequency is in the range 10–30 MHz, audio
frequencies are much lower than the electron plasma frequency, i.e., �pe �� and
so �P� � 1. The electron cyclotron frequency in the ionosphere is of the order of
1 MHz so �ce � � also. Thus, the whistler dispersion for acoustic (a few kHz)
waves in the ionosphere is

n2− = �2
pe∣∣∣�ce

�
cos�

∣∣∣ (6.81)

or

k= �pe

c

√
�

��ce cos��
� (6.82)

Each frequency � in Eq. (6.80) has a corresponding k given by Eq. (6.82) so that
the disturbance g�x� t� excited by a lightning bolt has the form

g�x� t�= 1
2

∫
eik���x−i�td�� (6.83)

where x= 0 is the location of the lightning bolt. Because of the strong dependence
of k on �, contributions to the phase integral in Eq. (6.83) at adjacent frequencies
will in general have substantially different phases. The integral can then be
considered as the sum of contributions having all possible phases. Since there
will be approximately equal amounts of positive and negative contributions, the
contributions will cancel each other out when summed; this canceling is called
phase mixing.
Suppose there exists some frequency � at which the phase k���x−�t has a

local maximum or minimum with respect to variation of �. In the vicinity of this
extremum, the phase is independent of frequency and so the contributions from
adjacent frequencies constructively interfere and produce a finite signal. Thus,
an observer located at some position x �= 0 will hear a signal only at the time
when the phase in Eq. (6.83) is at an extremum. The phase extremum is found by
setting to zero the derivative of the phase with respect to frequency, i.e., setting

�k

��
x− t = 0� (6.84)
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From Eq. (6.82) it is seen that

�k

��
= �pe

2c
1√

���ce cos��
(6.85)

so the time at which a frequency � is heard by an observer at location x is

t = �pe

2c
x√

���ce cos��
� (6.86)

This shows that lower frequencies are heard at later times, resulting in the descend-
ing tone characteristic of whistlers.

6.7 Group velocity

Suppose that at time t = 0 the electric field of a particular fast or slow mode
is decomposed into spatial Fourier modes, each varying as exp �ik ·x�. The total
wave field can then be written as

E�x�=
∫

dkẼ�k� exp �ik ·x�� (6.87)

where Ẽ�k� is the amplitude of the mode with wavevector k. The dispersion
relation assigns an � to each k, so that at later times the field evolves as

E�x� t�=
∫

dkẼ�k� exp �ik ·x− i��k�t�� (6.88)

where ��k� is given by the dispersion relation. The integration over k may be
viewed as a summation of rapidly oscillating waves, each having different rates of
phase variation. In general, this sum vanishes because the waves add destructively
or “phase mix.” However, if the waves add constructively, a finite E�x� t� will
result. Denoting the phase by

��k�= k ·x−��k�t (6.89)

it is seen that the Fourier components add constructively at extrema (minima or
maxima) of ��k� because, in the vicinity of an extremum, the phase is stationary
with respect to k, that is, the phase does not vary with k. Thus, the trajectory
x = x�t�, along which E�x� t� is finite, is the trajectory along which the phase is
stationary. At time t the stationary phase is the place where ���k�/�k vanishes,
which is where

��

�k
= x−��

�k
t = 0� (6.90)



234 Cold plasma waves in a magnetized plasma

The trajectory of the points of stationary phase is therefore

x�t�= vgt� (6.91)

where vg = ��/�k is called the group velocity. The group velocity is the velocity
at which a pulse propagates in a dispersive medium and is also the velocity at
which energy propagates.
The phase velocity for a one-dimensional system is defined as vph = �/k. In

three dimensions this definition can be extended to be vph = k̂�/k, i.e., a vector
in the direction of k but with the magnitude �/k.
Group and phase velocities are the same only for the special case where �

is linearly proportional to k, a situation that occurs only if there is no plasma.
For example, the phase velocity of electromagnetic plasma waves (dispersion
�2 = �2

pe+k2c2) is

vph = k̂
√
�2
pe+k2c2
k

� (6.92)

which is faster than the speed of light. However, no paradox results because
information and energy travel at the group velocity, not the phase velocity. The
group velocity for this wave is evaluated by taking the derivative of the dispersion
with respect to k giving

2�
��

�k
= 2kc� (6.93)

or
��

�k
= kc√

�2
pe+k2c2

� (6.94)

which is less than the speed of light.
This illustrates an important property of the wave normal surface concept –

a wave normal surface is a polar plot of the phase velocity and should not be
confused with the group velocity.

6.8 Quasi-electrostatic cold plasma waves

Another useful way of categorizing waves is according to whether the wave
electric field is:

1. electrostatic so that 	×E = 0 and E = −	�
or

2. inductive so that 	 ·E = 0 and in Coulomb gauge, E = −�A/�t, where A is the vector
potential.



6.8 Quasi-electrostatic cold plasma waves 235

An electrostatic electric field is produced by net charge density whereas an
inductive field is produced by time-dependent currents. Inductive electric fields
are always associated with time-dependent magnetic fields via Faraday’s law.
Waves involving purely electrostatic electric fields are called electrostatic

waves, whereas waves involving inductive electric fields are called electromag-
netic waves because these waves involve both electric and magnetic wave fields.
In actuality, electrostatic waves must always have some slight inductive compo-
nent, because there must always be a small current that establishes the net charge
density. Thus, strictly speaking, the condition for electrostatic modes is 	×E� 0
rather than 	×E = 0.

In terms of Fourier modes where 	 is replaced by ik, electrostatic modes are
those for which k×E = 0 so that E is parallel to k; this means that electrostatic
waves are longitudinal waves. Electromagnetic waves have k ·E = 0 and so
are transverse waves. Here, we are using the usual wave terminology where
longitudinal and transverse refer to whether k is parallel or perpendicular to E.
The electron plasma waves and ion acoustic waves discussed in the previous

chapter were electrostatic, the compressional Alfvén wave was inductive, and the
inertial Alfvén wave was both electrostatic and inductive. We now wish to show
that in a magnetized plasma, the wheel and dumbbell modes in the CMA diagram
always have electrostatic behavior in the region where the wave normal surface
comes close to the origin, i.e., near the cross-over in the figure-eight pattern of
these wave normal surfaces. For these waves, when n becomes large (i.e., near
the cross-over of the figure-eight pattern of the wheel or dumbbell), n becomes
nearly parallel to E and the magnetic part of the wave becomes infinitesimal.
We now prove this assertion and also take care to distinguish this situation from
another situation where n becomes infinite, namely at cyclotron resonances.
When the two roots of the dispersion An4 −Bn2 +C = 0 are well separated

(i.e., B2 � 4AC) the slow mode is found by assuming that n2 is large. In this
case the dispersion can be approximated as An4 −Bn2 � 0, which gives the slow
mode as n2 � B/A. Resonance (i.e., n2 → �) can thus occur either from

1. A= S sin2 �+P cos2 � vanishing, or
2. B = RL sin2 �+PS�1+ cos2 �� becoming infinite.

These two cases are different. In the first case S and P remain finite and
the vanishing of A determines a critical angle �res = tan−1 √−P/S; this angle is
the cross-over angle of the figure-eight pattern of the wheel or dumbbell. In the
second case either R or L must become infinite, a situation occurring only at the
R or L bounding surfaces, i.e., only at the electron or ion cyclotron resonances.
The first case results in quasi-electrostatic cold plasma waves, whereas the

second case does not. To see this, the electric field is first decomposed into its
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longitudinal and transverse parts

El = n̂n̂ ·E
Et = E−El� (6.95)

where n̂= k̂= n/n is a unit vector in the direction of n. The cold plasma wave
equation, Eq. (6.17), can thus be written as

nn · (Et+El
)−n2 (Et+El

)+←→
K · (Et+El

)= 0� (6.96)

Since n ·Et = 0 and nn ·El = n2El, this expression can be recast as(←→
K −n2←→I

)
·Et+←→

K ·El = 0� (6.97)

where
←→
I is the unit tensor. If the resonance is such that

n2 � Kij� (6.98)

where Kij are the elements of the dielectric tensor, then Eq. (6.97) may be
approximated as

−n2Et+←→
K ·El � 0� (6.99)

This shows that the transverse electric field is

Et = 1
n2

←→
K ·El� (6.100)

which is much smaller in magnitude than the longitudinal electric field by virtue
of Eq. (6.98).
An easy way to obtain the dispersion relation (determinant of this system) is

to dot Eq. (6.100) with n to obtain

n ·←→K ·n = n2�S sin2 �+P cos2 ��� 0� (6.101)

which is just the first case discussed above. This argument is self-consistent
because for the first case (i.e., A→ 0) the quantities S�P�D remain finite so the
condition given by Eq. (6.98) is satisfied.
The second case, B→ �, occurs at the cyclotron resonances where S and D

diverge so the condition given by Eq. (6.98) is not satisfied. Thus, for the second
case the electric field is not quasi-electrostatic.

6.9 Resonance cones

The situation A→ 0 corresponds to Eq. (6.101) which is a dispersion relation
having the surprising property of depending on �, but not on the magnitude of n.
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This limiting form of dispersion has some bizarre aspects, which will now be
examined.
The group velocity in this situation can be evaluated by writing Eq. (6.101) as

k2xS+k2zP = 0 (6.102)

and then taking the vector derivative with respect to k to obtain

2kxx̂S+2kzẑP+
(
k2x
�S

��
+k2z

�P

��

)
��

�k
= 0� (6.103)

which may be solved to give

��

�k
= −2

⎛⎜⎝ kxx̂S+kzẑP
k2x
�S

��
+k2z

�P

��

⎞⎟⎠ � (6.104)

If Eq. (6.104) is dotted with k the surprising result

k · ��
�k

= 0 (6.105)

is obtained, which means that the group velocity is orthogonal to the phase
velocity. The same result may also be obtained in a quicker but more abstract
way by using spherical coordinates in k-space, in which case the group velocity
is just

��

�k
= k̂

��

�k
+ �̂
k

��

��
� (6.106)

Applying this to Eq. (6.101), it is seen that the first term on the right-hand side
vanishes because the dispersion relation is independent of the magnitude of k.
Thus, the group velocity is in the �̂ direction, so the group and phase velocities
are again orthogonal, since k is orthogonal to �̂. Thus, energy and information
propagate at right angles to the phase velocity.
A more physically intuitive interpretation of this phenomenon may be developed

by “un-Fourier” analyzing the cold plasma wave equation, Eq. (6.17), giving

	×	×E− �
2

c2
←→
K ·E =0� (6.107)

The modes corresponding to A → 0 were obtained by dotting the dispersion
relation with n, an operation equivalent to taking the divergence in real space,
and then arguing that the wave is mainly longitudinal. Let us therefore assume
that E � −	� and take the divergence of Eq. (6.107) to obtain

	 ·
(←→
K ·	�

)
= 0� (6.108)
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which is essentially Poisson’s equation for a medium having dielectric tensor
←→
K .

Equation (6.108) can be expanded to give

S
�2�

�x2
+P �

2�

�z2
= 0� (6.109)

If S and P have the same sign, Eq. (6.109) is an elliptic partial differential equation
and so is just a distorted form of Poisson’s equation. In fact, by defining the
stretched coordinates %= x/√�S� and �= z/√�P�, Eq. (6.109) becomes Poisson’s
equation in %−� space.

Suppose now that waves are being excited by a line source q��x���z� exp �−i�t�,
i.e., a wire antenna lying along the y axis oscillating at the frequency �. In this
case Eq. (6.109) becomes

�2�

�%2
+ �

2�

��2
= q

�SP�3/2
0
��%����� (6.110)

so that the equipotential contours excited by the line source are just static concen-
tric circles in %�� or, equivalently, static concentric ellipses in x� z.
However, if S and P have opposite signs, the situation is entirely different,

because now the equation is hyperbolic and has the form

�2�

�x2
=
∣∣∣∣PS
∣∣∣∣ �2��z2 � (6.111)

Equation (6.111) is formally analogous to the standard hyperbolic wave equation

�2&

�t2
= c2 �

2&

�z2
� (6.112)

which has solutions propagating along the characteristics &= &�z±ct�. Thus, the
solutions of Eq. (6.111) also propagate along characteristics, i.e.,

�= �
(
z±√−P/Sx

)
� (6.113)

which are characteristics in the x− z plane rather than the x− t plane. For a line
source, the potential is infinite at the line, and this infinite potential propagates
from the source following the characteristics

z= ±
√

−P
S
x� (6.114)

If the source is a point source, then the potential has the form

��r� z�∼ q

4
0

(
r2

S
+ z

2

P

)1/2 � (6.115)
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Fig. 6.4 Resonance cone excited by oscillating point source in magnetized plasma.

which diverges on the conical surface having cone angle tan �cone = r/z =
±√−S/P, as shown in Fig. 6.4. These singular surfaces are called resonance
cones and were first observed by Fisher and Gould (1969). The singularity results
because the cold plasma approximation allows k to be arbitrarily large (i.e., allows
infinitesimally short wavelengths). However, when k is made larger than �/vT ,
the cold plasma assumption �/k� vT becomes violated and warm plasma effects
need to be taken into account. Thus, instead of becoming infinite on the resonance
cone, the potential is large and finite and has a fine structure determined by
thermal effects (Fisher and Gould 1971).
Resonance cones exist in the following regions of parameter space:

(i) Region 3, where they are called upper hybrid resonance cones; here S < 0�P > 0.
(ii) Regions 7 and 8, where they are a limiting form of the whistler wave and are also

called lower hybrid resonance cones, since they are affected by the lower hybrid
resonance (Briggs and Parker 1972, Bellan and Porkolab 1975). For �ci � ��
�pe��ce the P and S dielectric tensor elements become

P � −�
2
pe

�2
� S � 1− �

2
pi

�2
+ �

2
pe

�2
ce

� (6.116)

so the cone angle �cone = tan−1 r/z is

�cone = tan−1

√
− S
P

= tan−1
√(
�2 −�2

lh

) (
�−2
pe +�−2

ce

)
� (6.117)

If �� �lh, the cone depends mainly on the smaller of �pe��ce. For example, if
�ce � �pe then the cone angle is simply

�cone � tan−1�/�ce� (6.118)

whereas if �ce � �pe then

�cone � tan−1�/�pe� (6.119)

For low-density plasmas this last expression can be used as the basis for a simple,
accurate plasma density diagnostic.
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(iii) Regions 10 and 13. The Alfvén resonance cones in Region 13 have a cone angle
�cone =�/√��ce�ci� and are associated with the electrostatic limit of inertial Alfvén
waves (Stasiewicz et al. 2000). To the best of the author’s knowledge, cones have not
been investigated in Region 10, which corresponds to an unusual mix of parameters,
namely �pe is the same order of magnitude as �ci.

6.10 Assignments

1. Prove that the cold plasma dispersion relation can be written as

An4 −Bn2 +C = 0�

where

A = S sin2 �+P cos2 �
B = �S2 −D2 � sin2 �+SP�1+ cos2 ��

C = P�S2 −D2�

so that the dispersion is

n2 = B±√
B2 −4AC
2A

�

Prove that

RL= S2 −D2�

2. Prove that n2 is always real if � is real, by showing

B2 −4AC = [
S2 −D2 −SP]2 sin4 �+4P2D2 cos2 ��

3. Plot the bounding surfaces of the CMA diagram, by defining me/mi = �, x =(
�2
pe+�2

pi

)
/�2, and y = �2

ce/�
2. Show that

�2
pe

�2
= x

1+�
so

P = 1−x
and S�R�L are functions of x and y with � as a parameter. Hint: it is easier to plot x
versus y for some of the functions.

4. Plot n2 versus � for � = /2, showing the hybrid resonances.
5. Starting in Region 1 of the CMA diagram, establish the signs of S�P�R�L in all the

regions.
6. Plot the CMA mode lines for plasmas having �2

pe � �2
ce and vice versa.
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7. Consider a plasma with two ion species. By plotting S versus � show there is an
ion–ion hybrid resonance between the two ion cyclotron frequencies (Buchsbaum
1960, Ono 1979). Give an approximate expression for the frequency of this resonance
in terms of the ratios of the densities of the two ion species. Hint: compare the
magnitude of the electron term to that of the two ion terms. Using quasi-neutrality,
obtain an expression depending only on the fractional density of each ion species.

8. Consider a two-dimensional plasma with an oscillatory delta function source at the
origin. Suppose that slow waves are being excited, which satisfy the electrostatic
dispersion

k2xS+k2zP = 0�

where SP < 0. By writing the source on the z axis as

f�z�= 1
2

∫
eikzz−i�tdkz

and by solving the dispersion to give kx = kx�kz� show the potential excited in the
plasma is singular along the resonance cone surfaces. Explain why this happens.
Draw the group and phase velocity directions.

9. What is the polarization (i.e., relative magnitude of Ex�Ey�Ez ) of the QTO, QTX,
and the two QL modes? How should a microwave horn be oriented (i.e., in which way
should the E field of the horn point) when being used for (i) a QTO experiment, (ii)
a QTX experiment? Which experiment would be best suited for heating the plasma
and which best suited for measuring the density of the plasma?

10. Show there is a simple factoring of the cold plasma dispersion relation in the low
frequency limit �� �ci. Hint: first find approximate forms of S�P, and D in this
limit and then show that the cold plasma dielectric tensor becomes diagonal. Consider
a mode that has only Ey finite and a mode that only has Ex and Ez finite. What are
the dispersion relations for these two modes, expressed in terms of � as a function
of k? Assume the Alfvén velocity is much smaller than the speed of light.
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Waves in inhomogeneous plasmas and wave-energy
relations

7.1 Wave propagation in inhomogeneous plasmas

Thus far in our discussion of wave propagation it has been assumed that the plasma
is spatially uniform. While this assumption simplifies analysis, the real world is
usually not so accommodating and it is plausible that spatial non-uniformity might
modify wave propagation. The modification could be just a minor adjustment or
it could be profound. Spatial non-uniformity might even produce entirely new
kinds of waves. As will be seen, all these possibilities can occur.
To determine the effects of spatial non-uniformity, it is necessary to re-examine

the original system of partial differential equations from which the wave dispersion
relation was obtained. This is because the technique of substituting ik for 	 is,
in essence, a shortcut for spatial Fourier analysis, and so is mathematically valid
only if the equilibrium is spatially uniform. The criteria for whether or not 	
can be replaced by ik can be understood by considering the simple example of
a high-frequency electromagnetic plasma wave propagating in an unmagnetized
three-dimensional plasma having a gentle density gradient. The plasma frequency
will be a function of position for this situation. To keep matters simple, the density
non-uniformity is assumed to be in one direction only, which will be labeled the
x direction. The plasma is thus uniform in the y and z directions, but non-uniform
in the x direction. Because the frequency is high, ion motion may be neglected
and the electron motion is just the quiver velocity

v1 = − qe
i�me

E1� (7.1)

The current density associated with electron motion is therefore

J1 = −ne�x�q
2
e

i�me
E1 = −
0

�2
pe�x�

i�
E1� (7.2)

242
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Inserting this current density into Ampère’s law gives

	×B1 = −�
2
pe�x�

i�c2
E1 − i�

c2
E1 = − i�

c2

(
1− �

2
pe�x�

�2

)
E1� (7.3)

Substituting Ampère’s law into the curl of Faraday’s law gives

	×	×E1 = �2

c2

(
1− �

2
pe�x�

�2

)
E1� (7.4)

Attention is now restricted to waves for which 	 ·E1 = 0; this is a generalization of
the assumption that the waves are transverse (i.e., have ik ·E = 0) or equivalently
are electromagnetic, and so involve no density perturbation. In this case, expansion
of the left-hand side of Eq. (7.4) yields(

�2

�x2
+ �2

�y2
+ �2

�z2

)
E1 + �

2

c2

(
1− �

2
pe�x�

�2

)
E1 = 0� (7.5)

It should be recalled that Fourier analysis is restricted to equations with constant
coefficients, so Eq. (7.5) can only be Fourier transformed in the y and z directions.
It cannot be Fourier transformed in the x direction because the coefficient �2

pe�x�

depends on x. Thus, after performing only the allowed Fourier transforms, the
wave equation becomes(

�2

�x2
−k2y−k2z

)
Ẽ1�x� ky� kz�+

�2

c2

(
1− �

2
pe�x�

�2

)
Ẽ1�x� ky� kz�= 0� (7.6)

where Ẽ1�x� ky� kz� is the Fourier transform in the y and z directions. This may
be rewritten as (

�2

�x2
+�2�x�

)
Ẽ1�x� ky� kz�= 0� (7.7)

where

�2�x�= �2

c2

(
1− �

2
pe�x�

�2

)
−k2y−k2z� (7.8)

We now realize that Eq. (7.7) is just the spatial analog of the WKB equation for a
pendulum with slowly varying frequency, namely Eq. (3.17); the only difference
is that the independent variable t has been replaced by the independent variable
x. Since changing the name of the independent variable is of no consequence,
the solution here is formally the same as the previously derived WKB solution,
Eq. (3.24). Thus the approximate solution to Eq. (7.8) is

Ẽ1�x� ky� kz�∼ 1√
��x�

exp
(
i
∫ x
��x′�dx′

)
� (7.9)



244 Waves in inhomogeneous plasmas

Equation (7.9) shows that both the wave amplitude and effective wavenumber
vary as the wave propagates in the x direction, i.e., in the direction of the
inhomogeneity. It is clear that if the inhomogeneity is in the x direction, the
wavenumbers ky and kz do not change as the wave propagates. This is because,
unlike for the x direction, it was possible to Fourier transform in the y and z
directions and so ky and kz are just coordinates in Fourier space. The effective
wavenumber in the direction of the inhomogeneity, i.e., ��x�, is not a coordinate in
Fourier space because Fourier transformation was not allowed in the x direction.
The spatial dependence of the effective wavenumber ��x� defined by Eq. (7.8)
and the spatial dependence of the WKB amplitude together provide the means by
which the system accommodates the spatial inhomogeneity. The invariance of the
wavenumbers in the homogeneous directions is called Snell’s law. An elementary
example of Snell’s law is the situation where light crosses an interface between
two media having different dielectric constants and the refractive index parallel
to the interface remains invariant.
One way of interpreting this result is to state that the WKB method gives

qualified permission to Fourier analyze in the x direction. To the extent that such
an x-direction Fourier analysis is allowed, ��x� can be considered as the effective
wavenumber in the x direction, i.e., ��x�= kx�x�. The results in Chapter 3 imply
that the WKB approximate solution, Eq. (7.9), is valid only when the criterion

1
kx

dkx
dx

� kx (7.10)

is satisfied. Inequality (7.10) is thus not satisfied when kx → 0, i.e., at a cutoff.
At a resonance the situation is somewhat more complicated. According to cold
plasma theory, kx simply diverges at a resonance; however, when hot plasma
effects are taken into account, it is found that instead of having kx going to
infinity, the resonant cold plasma mode coalesces with a hot plasma mode as
shown in Fig. 7.1. At the point of coalescence dkx/dx→ � while all the other

kx

S = 0
x

cold plasma wave

hot plasma
wave

cold plasma
wave resonance

Fig. 7.1 Example of coalescence of a cold plasma wave and a hot plasma wave
near the resonance of the cold plasma wave. Here a hybrid resonance causes the
cold resonance.
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terms in Eq. (7.9) remain finite, and so the WKB method also breaks down at a
resonance.
An interesting and important consequence of this discussion is the very real

possibility that inequality (7.10) could be violated in a plasma having only the
mildest of inhomogeneities. This breakdown of WKB in an apparently benign
situation occurs because the critical issue is how kx�x� changes and not how
plasma parameters change. For example, kx could go through zero at some critical
plasma density and, no matter how gentle the density gradient is, there will
invariably be a cutoff at the critical density.

7.2 Geometric optics

The WKB method can be generalized to a plasma that is inhomogeneous in more
than one dimension. In the general case of inhomogeneity in all three dimensions,
the three components of the wavenumber will be functions of position, i.e.,
k = k�x�. How is the functional dependence determined? The answer is to write
the dispersion relation as

D�k�x�= 0� (7.11)

The x-dependence of D denotes an explicit spatial dependence of the dispersion
relation due to density or magnetic field gradients. This dispersion relation is now
presumed to be satisfied at some initial point x and then it is further assumed
that all quantities evolve in such a way as to keep the dispersion relation satisfied
at other positions. Thus, at some arbitrary nearby position x+�x, the dispersion
relation is also satisfied so

D�k+�k�x+�x�= 0 (7.12)

or, on Taylor expanding,

�k · �D
�k

+�x · �D
�x

= 0� (7.13)

The general condition for satisfying Eq. (7.13) can be established by assuming
that both k and x depend on some parameter that increases monotonically along
the trajectory of the wave, for example the distance s along the wave trajectory.
The wave trajectory itself can also be parametrized as a function of s. Then using
both k = k�s� and x = x�s�, it is seen that moving a distance �s corresponds to
respective increments �k =�s dk/ds and �x =�s dx/ds. This means that Eq. (7.13)
can be expressed as [

dk
ds

· �D
�k

+dx
ds

· �D
�x

]
�s = 0� (7.14)
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The general solutions to this equation are the two coupled equations

dk
ds

= −�D
�x
� (7.15)

dx
ds

= �D

�k
� (7.16)

These are just Hamilton’s equations with the dispersion relation D acting as the
Hamiltonian, the path length s acting like the time, x acting as the position,
and k acting as the momentum. Thus, given the initial momentum at an initial
position, the wavenumber evolution and wave trajectory can be calculated using
Eqs. (7.15) and (7.16) respectively. The close relationship between wavenumber
and momentum fundamental to quantum mechanics is plainly evident here. Snell’s
law states that the wavenumber in a particular direction remains invariant if the
medium is uniform in that direction; this is clearly equivalent (cf. Eq. (7.15))
to the Hamilton–Lagrange result that the canonical momentum in a particular
direction is invariant if the system is uniform in that direction.
This Hamiltonian point of view provides a useful way for interpreting cutoffs

and resonances. Suppose that D is the dispersion relation for a particular mode
and suppose that D can be written in the form

D�k�x�=∑
ij

�ijkikj+g���n�x��B�x��= 0� (7.17)

If D is construed to be the Hamiltonian, then the first term in Eq. (7.17) can be
identified as the “kinetic energy” while the second term can be identified as the
“potential energy.” As an example, consider the simple case of an electromagnetic
mode in an unmagnetized plasma that has non-uniform density, so that

D�k�x�= c2k2

�2
−1+ �

2
pe�x�

�2
= 0� (7.18)

The wave propagation can be analyzed in analogy to the problem of a particle
in a potential well. Here the kinetic energy is c2k2/�2, the potential energy is
−1+�2

pe�x�/�
2, and the total energy is zero. This is a “wave–particle” duality

formally like that of quantum mechanics, since there is a correspondence between
wavenumber and momentum and between energy and frequency. Cutoffs give
wave reflection in analogy to the reflection of a particle in a potential well at
points where the potential energy equals the total energy. As shown in Fig. 7.2(a),
when the potential energy has a local minimum, waves will be trapped in the
potential well associated with this minimum. Electrostatic plasma waves can also
exhibit wave trapping between two reflection points; these trapped waves are
called cavitons (the analysis is essentially the same; one simply replaces c2 by
3�2

pe�
2
De�. The bouncing of short-wave radio waves from the ionospheric plasma
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(a) (b)

total energy
total energy

“potential energy”

“potential energy”

wave
resonance

“kinetic energy” “kinetic energy”

Fig. 7.2 (a) Effective potential energy for trapped wave; (b) for wave resonance.

can be analyzed using Eq. (7.18) together with Eqs. (7.15) and (7.16). As shown
in Fig. 7.2(b) a wave resonance (i.e., k2 → �) would correspond to a deep crevice
in the potential energy. One must be careful to use geometric optics only when the
plasma is weakly inhomogeneous, so that the waves change sufficiently gradually
to satisfy the WKB criterion.

7.3 Surface waves – the plasma-filled waveguide

An extreme form of plasma inhomogeneity occurs when there is an abrupt transi-
tion from plasma to vacuum – in other words, the plasma has an edge or surface.
A qualitatively new mode, called a surface wave, appears in this circumstance.
The physical basis of surface waves is closely related to the mechanism by which
light waves propagate in an optical fiber.
Using the same analysis that led to Eq. (7.3), Maxwell’s equations in an

unmagnetized plasma may be expressed as

	×B = − i�

c2
PE� 	×E = i�B� (7.19)

where P is the unmagnetized plasma dielectric function

P = 1− �
2
pe

�2
� (7.20)

We consider a plasma that is uniform in the z direction but non-uniform in the
directions perpendicular to z. The electromagnetic fields and gradient operator can
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be separated into axial components (i.e., z direction) and transverse components
(i.e., perpendicular to z� as follows:

B = Bt+Bzẑ� E = Et+Ezẑ� 	 = 	t+ ẑ
�

�z
� (7.21)

Using these definitions Eqs. (7.19) become(
	t+ ẑ

�

�z

)
× (Bt+Bzẑ) = − i�

c2
P
(
Et+Ezẑ

)
�(

	t+ ẑ
�

�z

)
× (Et+Ezẑ) = i�

(
Bt+Bzẑ

)
� (7.22)

Since the curl of a transverse vector is in the z direction, these equations can be
separated into axial and transverse components,

ẑ ·	t×Bt = − i�
c2
PEz� (7.23)

ẑ ·	t×Et = i�Bz� (7.24)

ẑ× �Bt
�z

+	tBz× ẑ = − i�
c2
PEt� (7.25)

ẑ× �Et
�z

+	tEz× ẑ = i�Bt� (7.26)

The transverse electric field on the left-hand side of Eq. (7.26) can be replaced
using Eq. (7.25) to give

i�Bt = ẑ×
�

�z

⎡⎢⎢⎣ ẑ×
�Bt
�z

+	tBz× ẑ

− i�
c2
P

⎤⎥⎥⎦+	tEz× ẑ� (7.27)

It is now assumed that all quantities have axial dependence ∼ exp �ikz� so
Eq. (7.27) can be solved to give Bt solely in terms of Ez and Bz, i.e.,

Bt =
(
�2

c2
P−k2

)−1 [
	t
�Bz
�z

− i�
c2
P	tEz× ẑ

]
� (7.28)

This result can also be used to solve for the transverse electric field by inter-
changing −i�P/c2 ←→ i� and E ←→ B to obtain

Et =
(
�2

c2
P−k2

)−1 [
	t
�Ez
�z

+ i�	tBz× ẑ
]
� (7.29)

Except for the plasma-dependent factor P, these are the standard waveguide
equations. An important feature of these equations is that the transverse fields
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Et�Bt are functions of the axial fields Ez�Bz only and so all that is required is
to construct wave equations characterizing the axial fields. This is an enormous
simplification because, instead of having to derive and solve six wave equations
in the six components of E�B as might be expected, it suffices to derive and solve
wave equations for just Ez and Bz.

The sought-after wave equations are determined by eliminating Et and Bt from
Eqs. (7.23) and (7.24) to obtain

ẑ ·	t×
{(
�2

c2
P−k2

)−1 [
ik	tBz−

i�
c2
P	tEz× ẑ

]}
= − i�

c2
PEz� (7.30)

ẑ ·	t×
{(
�2

c2
P−k2

)−1 [
ik	tEz+ i�	tBz× ẑ

]} = i�Bz� (7.31)

In the special situation where 	tP×	tBz = 	tP×	tEz = 0, the first terms
in the square brackets of the above equations vanish. This simplification would
occur, for example, in an azimuthally symmetric plasma having an azimuthally
symmetric perturbation so that 	tP, 	tEz, and 	tBz are all in the r direction. It is
now assumed that both the plasma and the mode have this azimuthal symmetry
so Eqs. (7.30) and (7.31) reduce to

ẑ ·	t×
{(
�2

c2
P−k2

)−1 (
P	tEz× ẑ

)} = PEz� (7.32)

ẑ ·	t×
{(
�2

c2
P−k2

)−1 (
	tBz× ẑ

)} = Bz (7.33)

or, equivalently,

	t ·
{

P

P−k2c2/�2
	tEz

}
+ �

2

c2
PEz = 0� (7.34)

	t ·
{

1
P−k2c2/�2

	tBz

}
+ �

2

c2
Bz = 0� (7.35)

The assumption that both the plasma and the modes are azimuthally symmetric
has the important consequence of decoupling the Ez and Bz modes so there are
two distinct polarizations. These are (i) a mode where Bz is finite but Ez = 0 and
(ii) the reverse. Case (i) is called a transverse electric (TE) mode while case (ii) is
called a transverse magnetic mode (TM), since in the first case the electric field is
purely transverse while in the second case the magnetic field is purely transverse.
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We now consider an azimuthally symmetric TM mode propagating in a uniform
cylindrical plasma of radius a surrounded by vacuum. Since Bz = 0 for a TM
mode, the transverse fields are the following functions of Ez:

Bt =
(
�2

c2
P−k2

)−1 [
− i�
c2
P	tEz× ẑ

]
� (7.36)

Et =
(
�2

c2
P−k2

)−1

	t
�Ez
�z
� (7.37)

Additionally, because of the assumed symmetry, the TM mode Eq. (7.34) simpli-
fies to

1
r

�

�r

(
rP

P−k2c2/�2

�Ez
�r

)
+ �

2

c2
PEz = 0� (7.38)

Since P is uniform within the plasma region and within the vacuum region, but
has different values in these two regions, separate solutions to Eq. (7.38) must
be obtained in the plasma and vacuum regions respectively and then matched at
the interface. The jump in P is accommodated by defining distinct radial wave
numbers

�2p = k2 − �
2

c2
P� (7.39)

�2v = k2 − �
2

c2
(7.40)

for the respective plasma and vacuum regions. The solutions to Eq. (7.38) in the
respective plasma and vacuum regions are linear combinations of Bessel functions
of order zero. If both of �2p and �

2
v are positive then the TM mode has the peculiar

property of being radially evanescent in both the plasma and vacuum regions. In
this case both the vacuum and plasma region solutions consist of modified Bessel
functions I0�K0. These solutions are constrained by physical considerations as
follows:

1. Because the parallel electric field is a physical quantity it must be finite. In particular,
Ez must be finite at r = 0, in which case only the I0��pr� solution is allowed in the
plasma region (the K0 solution diverges at r = 0). Similarly, because Ez must be finite
as r → �, only the K0��vr� solution is allowed in the vacuum region (the I0��vr�
solution diverges at r = �).

2. The parallel electric field Ez must be continuous across the vacuum–plasma interface.
This constraint is imposed by Faraday’s law and can be seen by integrating Faraday’s
law over an area in the r− z plane of axial length L and infinitesimal radial width.
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The inner radius of this area is at r− and the outer radius is at r+, where r− < a < r+.
Integrating Faraday’s law over this area gives

lim
r−→r+

∫
ds ·	×E =

∮
E ·dl = − lim

r−→r+

∫
ds · �B

�t

or

Evacz L−Eplasmaz L= 0

showing Ez must be continuous at the plasma–vacuum interface.
3. Integration of Eq. (7.38) across the interface shows that the Quantity

P
(
P−k2c2/�2

)−1
�Ez/�r

must be continuous across the interface.

In order to satisfy Constraint #1 the parallel electric field in the plasma must be

Ez�r�= Ez�a�
I0��pr�

I0��pa�
(7.41)

and the parallel electric field in the vacuum must be

Ez�r�= Ez�a�
K0��vr�

K0��va�
� (7.42)

The normalization has been set so that Ez is continuous across the interface as
required by Constraint #2.
Constraint #3 gives[(

�2

c2
P−k2

)−1

P
�Ez
�r

]
r=a−

=
[(
�2

c2
−k2

)−1
�Ez
�r

]
r=a+

� (7.43)

Inserting Eqs. (7.41) and (7.42) into the respective left- and right-hand sides of
the above expression gives(

�2

c2
P−k2

)−1

P
�pI

′
0��pa�

I0��pa�
=
(
�2

c2
−k2

)−1
�vK

′
0��va�

K0��va�
� (7.44)

where a prime means a derivative with respect to the argument of the function.
This expression is effectively a dispersion relation, since it prescribes a functional
relationship between � and k. It is qualitatively different from the previously
discussed uniform plasma dispersion relations because it depends on a specific
physical dimension, namely the plasma radius a. This dependence indicates that a
plasma–vacuum interface is a necessary condition for the mode to exist. The mode
amplitude is strongest in the vicinity of the interface because both the plasma and
vacuum fields decay exponentially with increasing distance from the interface.
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This surface wave dispersion depends on a combination of Bessel functions
and the parallel dielectric P. However, a limit exists where the dispersion relation
reduces to a simpler form, and this limit illustrates important features of these
surface waves. Specifically, if the axial wavelength is sufficiently short for k2 to be
much larger than both �2P/c2 and �2/c2, one can then approximate k2 � �2v � �2p,
in which case the dispersion simplifies to

P
I ′0�ka�
I0�ka�

� K′
0�ka�

K0�ka�
� (7.45)

If, in addition, the axial wavelength is sufficiently long to satisfy ka� 1, then
the small-argument limits of the modified Bessel functions can be used, namely

lim
%�1

I0�%� = 1+ %
2

4
� (7.46)

lim
%�1

K0�%� = − ln %� (7.47)

Thus, in the limit �2P/c2, �2/c2 � k2 � 1/a2, Eq. (7.45) simplifies to(
1− �

2
pe

�2

)
ka

2
� − 1

ka ln
(

1
ka

) � (7.48)

Because ka � 1, the logarithmic term is negative. Hence, to satisfy Eq. (7.48) it
is necessary to have �� �pe so that the dispersion further becomes

�

�pe
= ka

√
1
2
ln
(

1
ka

)
� (7.49)

On the other hand, if ka � 1� then the large-argument limit of the Bessel
functions can be used, namely

lim
%�1

I0�%�= 1√
2%

e%� lim
%�1

K0�%�=
√


2%
e−% (7.50)

so that the dispersion relation becomes

1− �
2
pe

�2
= −1 (7.51)

or
�= �pe√

2
� (7.52)

This provides the curious result that a finite-radius plasma cylinder resonates at
a lower frequency than a uniform plasma if the axial wavelength is much shorter
than the cylinder radius.
These surface waves are slow waves since �/k� c has been assumed. They

were first studied by Trivelpiece and Gould (1959) and are seen in cylindrical
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plasmas surrounded by vacuum. For ka� 1 the phase velocity is �/k∼ ���pea�
and for ka� 1 the phase velocity goes to zero since � is a constant at large
ka. More complicated variations of the surface wave dispersion are obtained if
the vacuum region is of finite extent and is surrounded by a conducting wall,
i.e., if there is plasma for r < a, vacuum for a < r < b, and a conducting wall at
r = b. In this case the vacuum region solution consists of a linear combination of
I0��vr� and K0��vr� terms with coefficients chosen to satisfy Constraints #2 and
#3 discussed earlier and also a new, additional constraint that Ez must vanish at
the wall, i.e., at r = b.

7.4 Plasma wave-energy equation

The energy associated with a plasma wave is related in a subtle way to the
dispersive properties of the wave. Quantifying this relation requires starting from
first principles regarding the electromagnetic field energy density and taking into
account specific features of dispersive waves. The basic equation characteriz-
ing electromagnetic energy density, called Poynting’s theorem, is obtained by
subtracting B dotted with Faraday’s law from E dotted with Ampère’s law,

E ·	×B−B ·	×E = 
0�0E · �E
�t

+B · �B
�t

+�0E ·J�
and expressing this result as a conservation equation,

�w

�t
+	 ·P = 0� (7.53)

The quantity

P = E×B
�0

(7.54)

is called the Poynting flux and is the electromagnetic energy flux into the system
while

�w

�t
= 
0E · �E

�t
+ 1
�0

B · �B
�t

+E ·J (7.55)

is the rate of change of energy density in the system. The energy density is
obtained by time integration and is

w�t� = w�t0�+
∫ t
t0

dt
{

0E · �E

�t
+ 1
�0

B · �B
�t

+E ·J
}

= w�t0�+
[

0
2
E2 + B2

2�0

]t
t0

+
∫ t
t0

dtE ·J� (7.56)

where w�t0� is the energy density at some reference time t0.
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The quantity E ·J is the rate of change of kinetic energy density of the particles.
This can be seen by first dotting the Lorentz equation with v to obtain

mv · dv
dt

= qv · �E+v×B� (7.57)

or

d
dt

(
1
2
mv2

)
= qE ·v� (7.58)

Since this is the rate of change of kinetic energy of a single particle, the rate of
change of the kinetic energy density of all the particles, found by summing over
all the particles, is

d
dt
�kinetic energy density� = ∑

�

∫
dvf�q�E ·v

= ∑
�

n�q�E ·u�
= E ·J� (7.59)

This shows that positive E · J corresponds to work going into the particles
(increase of particle kinetic energy) whereas negative E · J corresponds to work
coming out of the particles (decrease of the particle kinetic energy). The latter
situation is obviously possible only if the particles start with a finite initial kinetic
energy. Since E · J accounts for changes in the particle kinetic energy density,
w must be the sum of the electromagnetic field density and the particle kinetic
energy density.
The time integration of Eq. (7.55) must be done with great care when E and J

are wave fields. This is because it must always be kept in mind that writing a wave
field as & = &̃ exp �ik · x− i�t� is simply a notational convenience and should
never be taken to mean that the actual physical wave field is complex. The phys-

ically meaningful variable is, of course, & = Re
[
&̃ exp �ik ·x− i�t�

]
. Explicitly

taking the real part is critical when evaluating nonlinear relationships because,
unlike for linear relationships, omission of this step would lead to a nonsensical
result. When dealing with a product of two oscillating physical quantities, say

&�t�= Re
[
&̃e−i�t

]
and '�t�= Re

[
'̃e−i�t

]
, it is therefore essential to extract the

real part before calculating the product and so the product must be written as

&�t�'�t�= Re
[
&̃e−i�t

]
×Re

[
'̃e−i�t

]
� (7.60)
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In particular, if �=�r+ i�i is a complex frequency, then the product in Eq. (7.60)
assumes the form

&�t�'�t� =
(
&̃e−i�t+ &̃∗ei�∗t

2

)(
'̃e−i�t+ '̃∗ei�∗t

2

)

= 1
4

[
&̃'̃e−2i�t+ &̃∗'̃∗e2i�∗t

+&̃'̃∗e−i��−�∗�t+ &̃∗'̃e−i��−�∗�t

]
� (7.61)

When considering the energy density of a wave, we are typically interested in
time-averaged quantities, not rapidly fluctuating quantities. Thus the time average
of the product &�t�'�t� over one wave period will be considered. The &̃'̃ and
&̃∗'̃∗ terms oscillate at the fast second harmonic of the frequency and vanish
upon time-averaging. In contrast, the &̃'̃∗ and &̃∗'̃ terms survive time-averaging
because these terms have no oscillatory factor since �−�∗ = 2i�i. Thus, the
time average, denoted by ��, of the product is

�&�t�'�t�� = 1
4
�&̃'̃∗ + &̃ ∗

'̃�e2�it�

= 1
2
Re
(
&̃ '̃∗

)
e2�it� (7.62)

this is the correct rule for time-averaging products of oscillating physical quanti-
ties, which have been represented using complex notation.

7.5 Cold plasma wave-energy equation

The current density J in Ampère’s law consists of the explicit plasma currents.
The frequency dependence of these currents means that care is required when
integrating E ·J. In order to prepare for this integration we express Eq. (6.9) and
Eq. (6.10) as

1
�0
	× B̃ = 
0

�

�t

(←→
K ��� · Ẽe−i�t

)
= J̃e−i�t+
0

�

�t

(
Ẽe−i�t

)
� (7.63)

where the time dependence is shown explicitly and J̃ refers to the explicit plasma
currents as distinct from the displacement current.



256 Waves in inhomogeneous plasmas

Integration of Eq. (7.55) taking into account the prescription given by Eq. (7.60)
has the form

w�t� = w�−��+
∫ t
−�

dt

〈E�x� t� ·(J�x�t�+
0 �E�x�t��t

)
+ 1
�0

B�x� t� · �B�x� t�
�t

〉

= w�−��+ 1
4

∫ t
−�

dt

〈
Ẽe−i�t ·
0

�

�t

(←→
K ��� · Ẽe−i�t

)∗

+ 1
�0

B̃e−i�t · �
�t

(
B̃e−i�t

)∗ + c.c�

〉
� (7.64)

where c.c. means complex conjugate of all preceding terms in the expression. The
term containing the rates of change of the electric field and the particle kinetic
energy can be written using Eq. (7.63) as〈

E ·
(
J+
0

�E
�t

)〉
= 
0

4

{
Ẽe−i�t ·

(
i�∗←→K ∗ · Ẽ∗ei�

∗t
)

+ c�c�
}

= 
0
4

{
Ẽ · i�∗←→K ∗ · Ẽ∗ − Ẽ∗ · i�←→

K · Ẽ
}
e2�it

= 
0
4

⎧⎨⎩ i�r
[
Ẽ ·←→K ∗ · Ẽ∗ − Ẽ∗ ·←→K · Ẽ

]
+�i

[
Ẽ ·←→K ∗ · Ẽ∗ + Ẽ∗ ·←→K · Ẽ

]
⎫⎬⎭ e2�it� (7.65)

To proceed further, it is noted that

Ẽ ·←→K ∗Ẽ∗ =∑
pq

Ẽ pK
∗
pqẼ

∗
q =∑

pq

Ẽ pK
∗t
qpẼ

∗
q = Ẽ∗ ·←→K † · Ẽ� (7.66)

where the superscript t means transpose and the superscript † means Hermitian
conjugate, i.e., the complex conjugate of the transpose. Thus, Eq. (7.65) can be
rewritten as〈
E ·
(
J+
0

�E
�t

)〉
= 
0

4

[
i�r Ẽ

∗ ·
(←→
K †−←→

K
)

· Ẽ+�iẼ∗ ·
(←→
K †+←→

K
)

· Ẽ
]
e2�it�

(7.67)
Both the Hermitian part of the dielectric tensor,

←→
K h = 1

2

(←→
K +←→

K †
)
� (7.68)

and the anti-Hermitian part,

←→
K ah = 1

2

(←→
K −←→

K †
)
� (7.69)
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occur in Eq. (7.67). The cold plasma dielectric tensor is a function of � via the
functions S�P, and D,

←→
K ���=

⎡⎢⎣ S��� −iD��� 0
iD��� S��� 0
0 0 P���

⎤⎥⎦ � (7.70)

If �i = 0 then S, P, and D are all pure real. In this case
←→
K ��� is Hermitian so

that
←→
K h = ←→

K and
←→
K ah = 0. However, if �i is finite but small, then

←→
K ���

will have a small non-Hermitian part. This non-Hermitian part is extracted using
a Taylor expansion in terms of �i, i.e.,

←→
K ��r + i�i�= ←→

K ��r�+ i�i

[
�

��

←→
K ���

]
�=�r

� (7.71)

The transpose of the complex conjugate of this expansion is[←→
K ��r + i�i�

]† = ←→
K ��r�− i�i

[
�

��

←→
K ���

]
�=�r

� (7.72)

since
←→
K is non-Hermitian only to the extent that �i is finite. Substituting

Eqs. (7.71) and (7.72) into Eqs. (7.68) and (7.69) and assuming small �i gives

←→
K h = ←→

K ��r� (7.73)

and

←→
K ah = i�i

[
�

��

←→
K ���

]
�=�r

� (7.74)

Inserting Eqs. (7.73) and (7.74) in Eq. (7.67) yields〈
E ·
(
J+
0

�E
�t

)〉
= 2
0�i

4

[
�r Ẽ

∗·
[
�

��

←→
K ���

]
�=�r

· Ẽ+ Ẽ∗·←→K ��r� · Ẽ
]
e2�it

= 2
0�i
4

Ẽ∗·
[
�

��
�

←→
K ���

]
�=�r

· Ẽe2�it� (7.75)

Similarly, the rate of change of the magnetic energy density is〈
1
�0

B · �B
�t

〉
= 1

4�0

[
2�iB̃

∗ · B̃] e2�it� (7.76)
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Using Eqs. (7.75) and (7.76) in Eq. (7.64) gives

w = w�−��+
{

0
4
Ẽ∗ ·

[
�

��

(
�

←→
K ���

)]
�=�r

· Ẽ

+ 1
4�0

[
B̃∗ · B̃]}∫ t

−�
dt2�ie

2�it� (7.77)

which now may be integrated in time to give the total energy density associated
with bringing the wave into existence

w̄ = w−w�−��

=
{

0
4
Ẽ∗·

[
�

��

(
�

←→
K ���

)]
�=�r

· Ẽ+ 1
4�0

[
B̃∗ · B̃]} e2�it� (7.78)

In the limit �i → 0 this reduces to

w̄ = 
0
4
Ẽ∗ · �

��

[
�

←→
K ���

]
· Ẽ+ �B̃�2

4�0
� (7.79)

Since the time-average of the energy density stored in the oscillating vacuum
electric field is

wE = 
0�Ẽ �2
4

(7.80)

and the time-average of the energy density stored in the oscillating vacuum
magnetic field is

wB = �B̃�2
4�0

� (7.81)

the change in the time-average of the particle kinetic energy density associated
with bringing the wave into existence is

w̄part =

0
4
Ẽ∗·

[
�

��

(
�

←→
K ���

)
−←→

I
]

· Ẽ� (7.82)

This result has been established for the general case of the dielectric tensor←→
K ��� of a cold magnetized plasma. In order to illustrate the application of
Eq. (7.79), we consider the simple example of high-frequency electrostatic oscilla-
tions in an unmagnetized plasma. In this situation S = P = 1−�2

pe/�
2 and D= 0
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so
←→
K ��� = (

1−�2
pe/�

2
)←→

I . Since the oscillations are electrostatic, wB = 0.
The energy density of the particles is therefore

w̄part = 
0�Ẽ �2
4

[
�

��

{
�

(
1− �

2
pe

�2

)}
−1

]

= 
0�Ẽ �2
4

[
2
�2
pe

�2
−1

]
(7.83)

= 
0�Ẽ �2
4

�

where the dispersion relation 1−�2
pe/�

2 = 0 has been used. Thus, in this simple
example half of the average wave-energy density is contained in the electric field
while the other half is contained in the coherent particle motion associated with
the wave.

7.6 Finite-temperature plasma wave-energy equation

The dielectric tensor has no dependence on the wavevector k in a cold plasma,
but does have such a dependence in a finite-temperature plasma. For example, the
electrostatic unmagnetized cold plasma dielectric P��� = 1−�2

pe/�
2 becomes

P���k�= 1−�1+3k2�2De��
2
pe/�

2 in a warm plasma. The analysis of the previous
section will now be extended to allow for the possibility that the dielectric tensor
depends on k as well as on �. In analogy to the method used in the previous
section for treating complex �, here k will also be assumed to have a small
imaginary part. In this case, Taylor expansion of the dielectric tensor followed by
extraction of the anti-Hermitian part shows that the anti-Hermitian part is

←→
K ah = i�i

[
�

��

←→
K ���k�

]
�=�r�k=kr

+ iki ·
[
�

�k
←→
K ���k�

]
�=�r�k=kr

(7.84)

while the Hermitian part remains as before. There is now a term involving ki.
With the incorporation of this new term, Eq. (7.75) becomes

〈
E ·
(
J+
0

�E
�t

)〉
=

⎡⎢⎢⎢⎣
2
0�i
4

Ẽ∗ ·
[
�

��
�

←→
K ���

]
�=�r

· Ẽ

+
0
4
Ẽ∗ ·

[
2�ki ·

�

�k
←→
K ���k�

]
�=�r�
k=kr

· Ẽ

⎤⎥⎥⎥⎦ e−2ki·x+2�it�

(7.85)
where we have explicitly written the exponential space-dependent factor
exp �−2ki ·x�.
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What is the meaning of this new term involving ki? The answer to this question
may be found by examining the Poynting flux for the situation where ki is finite.
Using the product rule and allowing for finite ki shows

�	 ·P� = �	 · �E×H��
= 1

4
	 · [(Ẽ∗ × H̃+ Ẽ× H̃∗) e−2ki·x+2�it

]
= 1

4

(−2ki ·
(
Ẽ∗ × H̃+ Ẽ× H̃∗)) e−2ki·x+2�it� (7.86)

Comparison of Eqs. (7.85) and (7.86) shows that the factor −2ki corresponds to
the divergence operator acting on the product of two oscillating quantities and so
the second term in Eq. (7.85) represents an energy flux. Since the Poynting vector
P is the energy flux associated with the electromagnetic field, this additional
energy flux must be identified as the energy flux associated with particle motion.
Defining this flux as T it is seen that

Tj= −�
0
4

Ẽ∗ ·
[
�

�kj

←→
K ���k�

]
· Ẽ (7.87)

in the limit ki → 0. For small but finite ki��i the generalized Poynting theorem
can be written as

−2ki · �P+T�+2�i�wE+wB+ w̄part�= 0� (7.88)

We now define the generalized group velocity vg to be the velocity with which
wave energy is transported. This velocity is the total energy flux divided by the
total energy density, i.e.,

vg = P+T
wE+wB+ w̄part

� (7.89)

The bar in w̄part indicates that this term is the difference between the particle
energy with the wave and the particle energy without the wave and so could, in
principle, be negative.

7.7 Negative energy waves

A curious consequence of this analysis is that a wave can have a negative energy
density. The field energy densities wE and wB are positive-definite, but the parti-
cle energy density w̄part can have either sign and in certain circumstances can be
sufficiently negative to make the total wave-energy density negative. This surpris-
ing possibility can occur because the wave-energy density defined in Eq. (7.78) is
actually the change in the total system energy density on going from a situation
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where there is no wave to a situation where there is a wave. Typically, negative
energy waves occur when the equilibrium has a steady-state flow velocity and
there exists a mode that reduces the average kinetic energy of the particles to a
value below the initial equilibrium value. The growth of this type of mode taps
the free energy in the flow.
As an example of a negative energy wave, we consider the situation where

unmagnetized cold electrons stream with velocity v0 through a background of
infinitely massive ions. As shown in Section 5.2 the electrostatic dispersion for
this simple 1-D situation with flow involves a parallel dielectric having a Doppler-
shifted frequency, i.e., the dispersion relation is

P���k�= 1− �2
pe

��−kv0�2
= 0� (7.90)

here it has been assumed that there exists a neutralizing background of infinitely
massive ions. Since the plasma is unmagnetized, its dielectric tensor is simply←→
K ���k�= P���k�←→I . Using Eq. (7.79), the wave-energy density is

w = 
0�Ẽ�2
4

�

��
��P���k��= 
0�Ẽ�2

2

��2
pe

��−kv0�3
� (7.91)

However, the dispersion relation, Eq. (7.90), shows that

�= kv0 ±�pe (7.92)

so Eq. (7.91) can be recast as

w = 
0�Ẽ�2
2

(
1± kv0

�pe

)
� (7.93)

Thus, if kv0 > �pe and the minus sign is selected, the wave has negative energy
density.
This result can be verified by direct calculation of the change in system energy

density due to growth of the wave. When there is no wave, the electric field is
zero and the system energy density wsys is simply the beam kinetic energy density

w
sys
0 = 1

2
n0mev

2
0� (7.94)

Now consider a one-dimensional electrostatic wave with electric field E =
Re
(
Ẽeikx−i�t

)
. The average energy density of the system with this wave is

wsyswave = 
0�Ẽ �2
4

+
〈
1
2
n�x� t�mev�x� t�

2
〉

(7.95)
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so the change in system energy density due to the wave is

w̄sys =wsyswave−wsys0 = 
0�Ẽ �2
4

+
〈
1
2
�n0 +n1�x� t��me �v0 +v1�x� t��2

〉
− 1
2
n0mev

2
0�

(7.96)
where

n1�x� t�= Re
(
ñeikx−i�t

)
� v1�x� t�= Re

(
ṽeikx−i�t

)
� (7.97)

Since odd powers of oscillating quantities vanish upon time averaging, Eq. (7.96)
reduces to

w̄sys = 
0�Ẽ�2
4

+n0me
〈
1
2
v21 + n1

n0
v1v0

〉
= 
0�Ẽ�2

4
+ 1

2
n0me

〈
v21
〉+mev0 �n1v1� � (7.98)

The linearized continuity equation gives

−i��−kv0�ñ+n0ikṽ= 0 (7.99)

or
ñ

n0
= kṽ

�−kv0
� (7.100)

The electron quiver velocity in the wave is

ṽ= qẼ

−i��−kv0�me
(7.101)

so 〈
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〉= 1

2
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e

(7.102)

and

�n1v1� = k
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e

� (7.103)

We may now evaluate Eq. (7.98) to obtain

w̄sys = 
0�Ẽ�2
4

+n0me
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q2�Ẽ�2
4��−kv0�2m2

e

+ kv0
2

q2�Ẽ�2
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where Eq. (7.92) has been repeatedly invoked. This is the same as Eq. (7.93). The
energy flux associated with this wave is also negative (cf. assignments). However,
the group velocity is positive (cf. assignments) because the group velocity is the
ratio of a negative energy flux to a negative energy density.
Dissipation affects negative energy waves in a manner opposite to its effect

on positive energy waves. This can be seen by Taylor expanding the dispersion
relation P���k�= 0 as done in Eq. (5.87) to obtain

�i = − Pi
��Pr/����=�r

� (7.105)

Expanding Eq. (7.91) gives

w̄ = 
0��E�2
4

�P

��
(7.106)

so a negative energy wave has ��P/�� < 0. If the dissipative term Pi is the
same for both positive and negative waves, then, for a given sign of �, the
critical difference between positive and negative waves lies in the sign of �P/��.
Equation (7.105) shows that �i has opposite signs for positive and negative
energy waves. This means that, in contrast to positive energy waves, dissipation
destabilizes negative energy waves. This is because dissipation enables the tapping
of available free energy by the negative energy wave. Since any real system
generally has some dissipation, if a negative energy wave is an allowed mode in
a given real system, the negative energy wave will spontaneously develop and
grow at the expense of the free energy in the system (e.g., the free energy in the
streaming particles).

7.8 Assignments

1. Consider the problem of short-wave radio transmission. Let x be the horizontal direc-
tion and z be the vertical direction. A short-wave radio antenna is designed to radiate
most of the transmitter power into a specified kx and kz by careful control over the
Fourier transform of the antenna geometry.
(i) What is the frequency range of short-wave radio communications?
(ii) For ionospheric parameters and the majority of the short-wave band, should iono-
spheric plasma be considered as magnetized or unmagnetized?
(iii) What is the appropriate dispersion for short-wave radio waves (hint: it is very
simple)?
(iv) Using Snell’s law and geometric optics, sketch the trajectory of a radio wave
propagating from a terrestrial antenna (hint: consider kx and kz radiated by the antenna
and consider the group velocity trajectory and also what happens when �= �pe�z�).

2. Using geometric optics discuss qualitatively with sketches how a low-frequency wave
could act as a lens for a high-frequency wave.
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3. Using the example of an electrostatic electron plasma wave (dispersion �2 = �2
pe�1+

3k2�2de�� show that the generalized group velocity as defined in Eq. (7.89) gives the
same group velocity as found by direct evaluation of ��/�k�

4. Calculate the wave-energy density, wave-energy flux, and group velocity for the
electrostatic wave that can occur when a beam of cold electrons streams with velocity
v0 through a neutralizing background of infinitely massive ions. Discuss the signs of
these three quantities.



8

Vlasov theory of warm electrostatic waves
in a magnetized plasma

8.1 Solving the Vlasov equation by tracking each particle’s history

It has been tacitly assumed until now that the wave phase experienced by a particle
is the phase the particle would have experienced if it had not deviated from its
initial position x0. This means that the particle trajectory used when determining
the wave phase experienced by the particle is effectively assumed to be x = x0
instead of the actual trajectory x = x�t�. Thus, the wave phase seen by the particle
was approximated as

k ·x�t�−�t � k ·x0 −�t� (8.1)

This approximation is fine provided the deviation of the actual trajectory from
the assumed trajectory satisfies the condition

�k· �x�t�−x0� � � /2� (8.2)

in which case phase error due to the deviation would be insignificant. Two
situations can occur where this condition is not satisfied, namely:

1. the wave amplitude is so large that the particle displacement due to the wave is
significant compared to a wavelength,

2. the wave amplitude is small, but the particle has a large initial velocity so it moves
substantially during a wave period.

The first case results in chaotic particle motion as discussed in Section 3.7.3
while the second case, the subject of this chapter, occurs when particles have
significant thermal motion. If the motion is parallel to the magnetic field, signifi-
cant thermal motion means that vT is non-negligible compared to �/k�, a regime
already discussed in Section 5.3 for unmagnetized plasmas. The subscript � is
used here to denote the direction along the magnetic field. If the magnetic field
is straight and given by B = Bẑ, � would simply be the z direction, but in a more
general situation the � component of a vector would be obtained by dotting the

265
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vector with B̂. If the motion is perpendicular to the magnetic field (this direction
is denoted as ⊥�, then significant thermal motion means that k⊥rL becomes large,
i.e., the Larmor orbit rL becomes comparable to the wavelength. In the situation
where k⊥rL is not infinitesimal, the particle samples a continuum of wave phases
as it traces out its Larmor orbit and these sampled wave phases are considerably
different from the wave phase at the particle’s gyrocenter.
Consider an electrostatic wave with potential

�1�x� t�= �̃1 exp �ik ·x− i�t�� (8.3)

As before, the convention will be used that a tilde refers to the amplitude of
a perturbed quantity; if there is no tilde, then the exponential phase factor is
understood to be included. Because the wave is electrostatic, Poisson’s equation
is the relevant equation relating particle motion to the electric field and is

k2�1 = 1

0

∑
�

n�1q�� (8.4)

where n�1 is the density perturbation for each species � . Since the density
perturbation is just the zeroth moment of the perturbed distribution function,

n�1 =
∫
f�1d

3v� (8.5)

the problem reduces to determining the perturbed distribution function f�1.
In the presence of a uniform magnetic field the linearized Vlasov equation is

�f�1
�t

+v · �f�1
�x

+ q�
m�

�v×B� · �f�1
�v

= q�
m�
	�1 · �f�0

�v
� (8.6)

where the subscript 0 refers to equilibrium quantities and the subscript 1 to first-
order perturbations (no 0 subscript has been used to distinguish the equilibrium
magnetic field B from a perturbed magnetic field because, being electrostatic, the
assumed wave has no associated perturbed magnetic field).
Consider all particles of species � located at an arbitrary point x�v in phase-

space at the present time t. These particles must all have identical phase-space
trajectories in both the future and the past because they are all acted on by the
same Lorentz force q� �E �x� t�+v×B �x� t�� and they all have the same initial
condition at time t since, by assumption, they have the same x and v at time t.
By integrating the equation of motion starting from this point in phase-space, the
phase-space trajectory x�t′��v�t′� of this set of particles can be determined. The
boundary conditions on such a phase-space trajectory are simply

x�t�= x� v�t�= v� (8.7)

Instead of treating x�v as independent variables denoting a point in phase-space,
let us think of these quantities as temporal boundary conditions for particles with
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phase-space trajectories x�t�, v�t� that happen to be at location x�v at time t. Thus,
the velocity distribution function for all particles that happen to be at phase-space
location x�v at time t is f�1 = f�1�x�t��v�t�� t� and since x and v were arbitrary,
this expression is valid at any point in phase-space. The time derivative of this
function is

d
dt
f�1�x�t��v�t�� t�= �f�1

�t
+ �f�1
�x

· dx
dt

+ �f�1
�v

· dv
dt
� (8.8)

In principle, the wave force acting on the particles ought to be taken into account
when calculating their trajectories. However, if the wave amplitude is sufficiently
small, the particle trajectory will not be significantly affected by the wave and so
will be essentially the same as the unperturbed trajectory, namely the trajectory
the particle would have had if there were no wave. Since the unperturbed particle
trajectory equations are

dx
dt

= v�
dv
dt

= q�
m�

v×B� (8.9)

it is seen that Eq. (8.8) is identical to the left-hand side of Eq. (8.6). Equation (8.6)
can thus be rewritten as(

d
dt
f�1�x�t��v�t�� t�

)
unperturbed
trajectory

= q�
m�
	�1 · �f�0

�v
� (8.10)

where the left-hand side is the derivative of the distribution function that would be
measured by an observer sitting on a particle having the unperturbed phase-space
trajectory x�t��v�t�. Equation (8.10) may be integrated to give

f�1�x�v� t�= q�
m�

∫ t
−�

dt′
[
	�1 · �f�0

�v

]
x=x�t′��v=v�t′�

� (8.11)

If the right-hand side of Eq. (8.10) is considered as a “force” acting to change
the perturbed distribution function, then Eq. (8.11) is effectively a statement that
the perturbed distribution function at x�v for time t is a result of the sum of all
the “forces” acting over times prior to t evaluated along the unperturbed trajec-
tory of the particle. In effect, Eq. (8.11) states that, just as the present state of a
person is in a sense the consequence of the cumulative effect of all the various
influences experienced by the person at different times and places during his/her
entire previous life, the present status of the particles, denoted by f�1�x�v� t�,
is the consequence of the cumulative effect of all the various influences (i.e.,
forces) experienced at different times and places by the particles during their
entire past history. “Unperturbed trajectories” refers to the solution to Eqs. (8.9);
these equations neglect any wave-induced changes to the particle trajectory and
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simply give the trajectory of a thermal particle. The “force” in Eq. (8.11) must
be evaluated along the past phase-space trajectory because that is where the
particles at x�v were located at previous times and so that is where the particles
“felt” the “force.” This is called “integrating along the unperturbed orbits” and
is valid only when the unperturbed orbits (trajectories) are a good approximation
to the particles’ actual orbits. Mathematically speaking, these unperturbed orbits
are the characteristics of the left-hand side of Eq. (8.6), a homogeneous hyper-
bolic partial differential equation. The solutions of this homogeneous equation
are constant along the characteristics. The right-hand side is the inhomogeneous
or forcing term and acts to modify the homogeneous solution; the cumula-
tive effect of this force is found by integrating along the characteristics of the
homogeneous part.
The problem is now formally solved; all that is required is an explicit evaluation

of the integrals. The functional form of the equilibrium distribution function is
determined by the specific physical problem under consideration. Often the plasma
has a uniform Maxwellian distribution

f�0�v�= n�0

3/2v3T�
e−v2/v2T� � (8.12)

where

vT� =√
2�T�/m�� (8.13)

It must be understood that Eq. (8.12) represents one of an infinite number of
possible choices for the equilibrium distribution function – any other function of
the constants of the motion would also be valid. In fact, functions differing from
Eq. (8.12) will later be used to model drifting plasmas and plasmas with density
gradients.
Substitution of Eq. (8.12) into the orbit integral Eq. (8.11) gives

f�1�x�v� t� = − 2n�0q��̃1

3/2m�v
3
T�

exp
[−v2/v2T�]

×
∫ t
−�

dt′
{
ik ·v�t′�
v2T�

exp
[
ik ·x�t′�− i�t′

]}
� (8.14)

Since the kinetic energy mv2/2 of the unperturbed orbits is a constant of the
motion, the quantity exp

[−v2/v2T�] has been factored out of the time integral.
This orbit integral may be simplified by noting

d
dt′

exp
[
ik ·x�t′�]= ik ·v�t′� exp [ik ·x�t′�] (8.15)
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so Eq. (8.14) becomes

f�1�x�v� t� = − q�
�T�

�̃1f�0

∫ t
−�

dt′
{
exp

[−i�t′
] d
dt′

exp
[
ik ·x�t′�]}

= − q�
�T�

�̃1f�0

{[
exp

(
ik ·x�t′�− i�t′

)]t
−� + i�Iphase�x� t�

}
� (8.16)

where the phase-history integral Iphase is defined as

Iphase�x� t�=
∫ t
−�

dt′ exp
(
ik ·x�t′�− i�t′

)
�

Evaluation of Iphase requires knowledge of the unperturbed orbit trajectory x�t′�.
This trajectory, determined by solving Eqs. (8.9) with boundary conditions spec-
ified by Eq. (8.7), has the velocity time-dependence

v�t′�= v�B̂+v⊥ cos
[
�c��t

′ − t�]− B̂×v⊥ sin
[
�c��t

′ − t�] � (8.17)

Equation (8.17) satisfies both the dynamics and the boundary condition v�t�= v
and so gives the correct helical “unwinding” into the past for a particle at its
present position in phase-space. The position trajectory, found by integrating
Eq. (8.17), is

x�t′� = x+v�
(
t′ − t) B̂

+ 1
�c�

{
v⊥ sin

[
�c��t

′ − t�]+ B̂×v⊥
(
cos

[
�c��t

′ − t�]−1
)}
� (8.18)

which satisfies the related boundary condition x�t�= x.
To proceed further, we define ) to be the velocity-space angle between the

fixed quantity k⊥ and the dummy variable v⊥ so that k⊥ ·v⊥ = k⊥v⊥ cos), and
k⊥ · B̂×v⊥ = k⊥v⊥ sin). Using this definition, the time history of the spatial part
of the phase can be written as

k ·x�t′�= k ·x+k�v�
(
t′ − t)+ k⊥v⊥

�c�

{
sin
[
�c��t

′ − t�+)]− sin)
}
� (8.19)

The phase integral can now be expanded

Iphase�x�t� = e−i�t
∫ t
−�

dt′eik·x�t′�−i��t′−t�

= eik·x−i�t
∫ 0

−�
d� exp

⎧⎨⎩i
⎡⎣ (

k�v� −�) � +
k⊥v⊥
�c�

"sin ��c��+)�− sin)#

⎤⎦⎫⎬⎭ �
(8.20)
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where � = t′ − t. Certain Bessel function relations are now of use. The first of
these is the integral representation of the Jn Bessel function, namely

Jn�z�= 1
2

∫ 2

0
eiz sin �−in�d�� (8.21)

The inverse of this relation is

eiz sin � =
�∑

n=−�
Jn�z�e

in�� (8.22)

which may be validated by taking the � Fourier transform of both sides over the
interval from 0 to 2.
The phase integral can be evaluated using Eq. (8.22) in Eq. (8.20) to obtain

Iphase�x� t� = eik·x−i�t
�∑

n=−�
Jn

(
k⊥v⊥
�c�

)
e
− ik⊥v⊥ sin)

�c�

∫ 0
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d�ei�k�v�−���+ in��c��+)�

= eik·x−i�te
− ik⊥v⊥ sin)

�c�

�∑
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Jn

(
k⊥v⊥
�c�

) [ei�k�v�−���+ in��c��+)�
]0
−�

−i
(
�−k�v� −n�c�

) �

(8.23)

In Eqs. (8.16) and (8.23) there is a lower limit at t= −�� this limit corresponds to
the phase in the distant past and is essentially the information regarding the initial
condition of the system in the distant past. We saw in our previous discussion
of the Landau problem that initial value problems ought to be analyzed using
Laplace transforms, not Fourier transforms. However, if we ignore the initial
conditions and use the Plemelj formula with Fourier transforms, the same result as
the Laplace method is obtained. This shortcut procedure will now be followed and
so any reference to the initial conditions will be dropped and Fourier transforms
will be used with invocation of the Plemelj formula whenever it is necessary to
resolve any singularities in the integrations. Hence, terms evaluated at t = −�
in Eqs. (8.16) and (8.23) are dropped since these are initial values. After making
these simplifications, the perturbed distribution function becomes

f�1�x�v� t�= −q��̃1f�0e
ik·x−i�t

�T�

⎧⎪⎪⎨⎪⎪⎩1− e
− ik⊥v⊥ sin)

�c�
∑
n

Jn�
k⊥v⊥
�c�

��ein)(
�−k�v� −n�c�

)
⎫⎪⎪⎬⎪⎪⎭ �
(8.24)
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The next step is to evaluate the density perturbation Eq. (8.5), an operation that
involves integrating the perturbed distribution function over velocity; the velocity
integrals are evaluated using the Bessel identity (Watson 1922)∫ �

0
zJ2n�!z�e

−�2z2dz= 1
2�2

e−!2/2�2In
(
!2

2�2

)
� (8.25)

Using this identity, substitution of Eq. (8.24) into Eq. (8.5) gives
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� (8.26)

where

�n� = �−n�c�
k�vT�

� (8.27)

the Larmor radius is defined to be

rL� =
√
�T�/m�
�c�

� (8.28)

and Z is the plasma dispersion function defined in Eq. (5.70). Finally, Eq. (8.26)
is substituted into Eq. (8.4) to obtain the warm magnetized plasma electrostatic
dispersion relation

����k�= 1+∑
�

1

k2�2D�

[
1+�0�e−k2⊥r2L�

�∑
n=−�

In
(
k2⊥r

2
L�

)
Z��n��

]
= 0�

(8.29)
Note that ����k� refers to the dispersion relation and should not be confused
with D, the off-diagonal term of the cold plasma dielectric tensor, nor with D, the
displacement vector. A similar, but more involved calculation using unperturbed
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orbit phase integrals for the perturbed current density gives the hot plasma version
of the full electromagnetic dispersion, i.e., the finite temperature generalization

of the cold plasma dielectric tensor
←→
K . Although the calculation is essentially

similar, it is considerably more tedious, and the interested reader is referred to
specialized texts on plasma waves such as those by Stix (1992) or Swanson
(2003).

8.2 Analysis of the warm plasma electrostatic dispersion relation

Equation (8.29) generalizes the unmagnetized warm plasma electrostatic disper-
sion relation Eq. (5.55) to the situation of a magnetized warm plasma. Thus,
Eq. (8.29) ought to revert to Eq. (5.55) in the B→ 0 limit. The Bessel identity

�∑
n=−�

In���= e� (8.30)

together with the condition �n → �0 if B→ 0 show that this is indeed the case.
Furthermore, Eq. (8.29) should also be the warm plasma generalization of the

cold, magnetized plasma, electrostatic dispersion

k2xS+k2zP = 0� (8.31)

demonstration of this correspondence will be presented later. Equation (8.30) can
be used to recast Eq. (8.29) as

����k�= 1+∑
�

e−k2⊥r2L�
k2�2D�

�∑
n=−�

In
(
k2⊥r

2
L�

)
�1+�0�Z��n���= 0� (8.32)

Using I−n�z�= In�z�, the summation over n can be rearranged to give

����k�= 1+∑
�

e−k2⊥r2L�
k2�2D�
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I0
(
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In
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�2+�0� "Z��n��+Z��−n��#�
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(8.33)

In order to obtain the lowest order thermal correction, it is assumed �0 =
�/k�vT� � 1, in which case the large argument expansion Eq. (5.77) can be used
to evaluate Z��0�. Invoking this expansion, and keeping only lowest order terms,
shows that

1+�0Z��0� = 1+�0
{

− 1
�0

[
1+ 1

2�20
+ ���

]
+ i1/2 exp �−�20�

}

= − 1

2�20
+ i�0

1/2 exp �−�20�� (8.34)
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It is additionally assumed that ��n� = ���− n�c��/k�vT� � � 1 for n �= 0; this
corresponds to assuming that the wave frequency is not too close to a cyclotron
resonance. Because of this assumption, the large argument expansion of the plasma
dispersion function is also appropriate for the n �= 0 terms, and so we can write

2+�0 �Z��n�+Z��−n�� = 2+�0

[
− 1
�n

− 1
�−n

+ i
√

(
e−�2n + e−�2−n
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√
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)

= − 2n2�2
c�

��2 −n2�2
c��

+ i�0

√

(
e−�2n + e−�2−n

)
�

(8.35)

where the subscript � has been omitted from the �n to keep the algebra unclut-
tered. Substitution of these expansions back into the dispersion relation gives
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= 0� (8.36)

Equation (8.36) generalizes the magnetized cold plasma electrostatic dispersion
to finite temperature and shows how Landau damping appears both at the wave
frequency � and also at cyclotron harmonics, i.e., in the vicinity of n�c� . Two
important limits of Eq. (8.36) are discussed in the following sections.

8.3 Bernstein waves

Suppose the wave phase is uniform in the direction along the magnetic field.
Such a situation would occur if the antenna exciting the wave were an infinitely
long wire aligned parallel to a magnetic field line (in reality, the antenna would
have to be sufficiently long to behave as if infinite). This situation corresponds
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to having k� → 0, in which case the Landau damping terms and the 1/2�20� term
vanish. The dispersion relation Eq. (8.36) consequently reduces to

1 =∑
�

e−��
��

�∑
n=1

2n2�2
p�

�2 −n2�2
c�

In ���� � (8.37)

where

�� = k2⊥r2L� (8.38)

and

r2L� = �2
p��

2
D�

�2
c�

= �T�
m��

2
c�

(8.39)

is the Larmor radius. The waves resulting from this dispersion were first derived by
Bernstein (1958) and are called Bernstein or cyclotron harmonic waves; they are
also sometimes referred to as hot plasma waves because their existence depends
on the plasma having a finite temperature. Bernstein waves have been observed in
both laboratory experiments and in spacecraft measurements of magnetospheric
plasmas. Early measurements of electron Bernstein waves in laboratory experi-
ments were reported by Crawford (1965) and by Leuterer (1969); measurements
of ion Bernstein waves were reported by Schmitt (1973). An example of a space-
craft measurement was reported by Moncuquet, Meyervernet, and Hoang (1995)
who used a fit of data to the Bernstein dispersion relation to infer the electron
temperature in the magnetized plasma of Jupiter’s moon, Io. Electron Bernstein
waves involve � being in the vicinity of an electron cyclotron harmonic, i.e.,
�2 ∼ ��n2�2

ce�, whereas for ion Bernstein waves, � is in the vicinity of an ion
cyclotron harmonic.
The Bernstein wave dispersion relation, Eq. (8.37), provides a transcendental

relation between � and k⊥. For any given k⊥ the dispersion relation has an infi-
nite number of roots �, each associated with a different cyclotron harmonic. This
is because as � is increased from small values to infinity, the

(
�2 −n2�2

c�

)−1

term on the right-hand side of Eq. (8.37) will cause the entire right-hand side to
oscillate between minus and plus infinity at each successive cyclotron harmonic.
In particular, the right-hand side will assume a value of +� when �2 is infinites-
imally larger than n2�2

c� and a value of −� when �2 is infinitesimally smaller
than n2�2

c� . Thus, as � increases from the nth cyclotron harmonic to the �n+1�th
cyclotron harmonic, the right-hand side of Eq. (8.37) will take on all values
between minus and plus infinity and so will always equal the left-hand side at
some value of � in this range.
We now consider electron Bernstein waves and so drop the ion terms from

the summation (the analysis for ion Bernstein waves is similar). The subscript �
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will be dropped and it will be understood that all quantities refer to electrons. On
keeping the electron terms only, Eq. (8.37) reduces to

1 = 2
e−�

�

�∑
n=1

n2�2
p

�2 −n2�2
c

In ��� � (8.40)

which has the following limiting forms depending on the ratio of �2
p to �2

c:

1. �2
p � �2

c case:

Here each 2n2�2
p/��

2 − n2�2
c� factor is negligible compared to unity except when

�2 ∼ ��n2�2
ce�. Thus, for a given � only one term in the summation is near resonance

and the dispersion relation is satisfied by this one term on the right-hand side of
Eq. (8.40) balancing the left-hand side. This results in an infinite set of modes, each
slightly above a cyclotron harmonic, i.e.,

�2 = n2�2
c +2

e−�

�
n2�2

pIn ��� � for n= 1�2� ������ (8.41)

The small and large � limits of this expression are determined using the asymptotic
values of the In Bessel function, namely for n≥ 1

lim
��1
In��� = 1

n!
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)n
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��1
In��� = 1√

2�
e� (8.42)

to give

�2 = n2�2
c + �1−��n2�2

p

1
n!
(
�

2

)n−1

for �� 1�

�2 = n2�2
c for �� 1� (8.43)

The n= 1 mode differs slightly from the n≥ 2 modes because the n= 1 mode has
the small � dispersion

�2 = �2
uh−��2

p (8.44)

showing this mode is the warm plasma generalization of the upper hybrid resonance.
The frequency of the n ≥ 2 modes starts at �2 = n2�2

c when � = 0, takes on a
maximum value at some finite �, and then reverts to �2 = n2�2

c as �→ �. To the
left of the frequency maximum the group velocity ��/�k⊥ is positive and to the right
of the maximum the group velocity is negative. This system of modes is sketched in
Fig. 8.1(a).

2. �2
p � �2

c case:

For large �, the product of the exponential factor and the modified Bessel function in
Eq. (8.40) is unity, leaving a �3/2 factor in the denominator, so again the dispersion
reduces to cyclotron harmonics, �2 = n2�2

c as �→ �. For small �, the situation is
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Fig. 8.1 Electron Bernstein wave dispersion relations.

more involved, because the n= 1 term is independent of � to lowest order and so the
n = 1 term must always be retained when approximating Eq. (8.40). Let us suppose
some other term, say the �n+ 1�th term, is near resonance, i.e., �2 ∼ �n+ 1�2�2

c .
Then, keeping the left-hand side, the n= 1 term, and the �n+1�th term, expansion of
Eq. (8.40) results in

1 � �2
p[

�n+1�2 −1
]
�2
c

+ �n+1��2
p[

�2 − �n+1�2�2
c

]
n!

(
�

2

)n
� (8.45)

which may be solved for � to give

�= �n+1��c

⎧⎨⎩1−
�2
p

[
�n+1�2 −1

]
(
�2
p−

[
�n+1�2 −1

]
�2
c

) �n

2n+1 �n+1�!

⎫⎬⎭ � (8.46)

Thus, the nth mode starts at � � �n+1��c for small � and then the frequency
decreases towards the asymptotic limit n�c as �→ � . This dispersion is sketched in
Fig. 8.1(b).

Excitation of Bernstein waves requires setting k� = 0, which turns out to be
a quite stringent requirement. The antenna must be absolutely uniform in the
direction along the magnetic field because otherwise a finite k� will be excited,
which would result in finite instead of infinite �/k� and so cause the waves to be
subject to strong Landau damping.

8.4 Finite k� dispersion: linear mode conversion

An alternate limit for Eq. (8.36) would be to allow k� to be finite but also have
k2⊥r2L� 1 so only the lowest-order finite Larmor radius terms are retained. To keep
matters simple, and also to relate to cold plasma theory, k� will be assumed to be
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sufficiently small to make the wave-phase velocity much faster than the particle
thermal velocities, i.e., �/k� � vTe� vTi. Since r

2
L�/�

2
D� = �2

p�/�
2
c� , the lowest-

order perpendicular thermal terms will be ��k4⊥� and so perpendicular quantities
up to fourth order must be retained. This means that both the n= 1 and the n= 2
terms must be retained in the summation over n. With these approximations, and
using 1/2�2D��

2
0 = �2

p/�
2, Eq. (8.36) becomes
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(8.47)
The Landau damping terms will be assumed to be negligible to keep matters
simple and the equation will now be grouped according to powers of k2⊥. Retaining
only the lowest-order, finite-temperature perpendicular terms gives
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(8.48)
This is of the form

−k4⊥$th+k2⊥S+k2�P = 0� (8.49)

where the perpendicular fourth-order thermal coefficient is

$th =∑
�

(
3�4

p��
2
D�(

�2 −�2
c�

) (
�2 −4�2

c�

)) � (8.50)

Equation (8.49) is a quadratic equation in k2⊥. The cold plasma model used earlier
in effect set $th = 0, in which case a wave propagating through an inhomogeneous
plasma towards an S = 0 hybrid resonance would have k2⊥ → �. This non-
physical prediction is resolved by the warm plasma theory because $th, while
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small, is finite and prevents k2⊥ → � from occurring. What happens instead is
that Eq. (8.49) has two qualitatively distinct roots, namely

k2⊥ =
S±

√
S2 +4$thk

2
�P

2$th
� (8.51)

At locations far from the hybrid resonance, S is large, in which case the two
modes are well separated and given by

k2⊥ = −P
S
k2�� cold plasma wave�

k2⊥ = S

$th
� hot plasma wave� (8.52)

but at locations near the hybrid resonance S approaches zero and the two modes
coalesce. The hot plasma wave results from balancing the first and middle terms
in Eq. (8.49) while the cold plasma wave results from balancing the middle and
last terms. The actual mode coalescence occurs where the square root term in
Eq. (8.51) vanishes, i.e., where

S2 = −4$thk
2
�P� (8.53)

At the location of mode coalescence dk⊥/dx is infinite, violating the dk⊥/dx� k2x
requirement for the WKB approximation to be valid. Thus, a more sophisti-
cated analysis than WKB is required. Such an analysis is presented in the next
section where hot and cold waves are shown to become strongly coupled in the
coalescence region. This strong coupling between the two modes should not be
surprising because the two modes are essentially indistinguishable at this location.
It will be demonstrated in particular that a cold wave propagating towards the
hybrid resonance (e.g., see Fig. 8.2) can be linearly converted into a hot wave,
which then propagates back outwards from the resonance.

hot wave
going out

cold wave
going in

mode
coalescence

S = 0
x

kx
2

Fig. 8.2 Linear mode conversion of cold mode into hot mode near hybrid resonance.
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8.5 Analysis of linear mode conversion

8.5.1 Airy equation

The procedure for analyzing linear mode conversion was developed by Stix (1965)
and is an extension of the standard method for connecting solutions of the Airy
equation

y′′ +xy = 0 (8.54)

from the x < 0 region to the x > 0 region. The Airy problem involves a second-
order ordinary differential equation with a term containing a factor that vanishes
at some location, namely the term xy vanishes at x = 0. The mode conversion
problem involves a fourth-order equation, which also contains a term with a factor
that vanishes at some location, namely S vanishes at a hybrid resonance. The
Airy connection method will first be examined in order to introduce the relevant
concepts and then these concepts will be applied to the actual mode conversion
problem.
The sequence of steps for developing the solution to the Airy problem are as

follows:

1. Laplace transform the equation. Equation (8.54) cannot be Fourier transformed because
of the non-constant coefficient x in the second term; however, it can be Laplace
transformed by taking advantage of the relation that the Laplace transform of xy�x� is
−dỹ�p�/dp. Thus, the Laplace transform of Eq. (8.54) is

p2ỹ�p�− dỹ�p�
dp

= 0� (8.55)

Strictly speaking, Laplace transforming y′′ will also introduce terms involving initial
conditions, but these additional terms will be ignored for now and this issue will be
addressed later. Equation (8.55) is easily solved to give

ỹ�p�= A exp �p3/3�� (8.56)

where A is a constant. The formal solution to Eq. (8.54) is the inverse transform

y�x�= �2i�−1
∫
C
ỹ�p�epxdp= a

∫
C
ef�p�dp� (8.57)

where a = A/2i� f�p� = p3/3+px, and C is some contour in the complex plane.
By appropriate choice of this contour Eq. (8.57) is shown to be a valid solution to the
original differential equation. In particular, if the endpoints p1 and p2 of the contour
C are chosen to satisfy [

ef�p�
]p2
p1

= 0� (8.58)
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then Eq. (8.57) turns out to be a valid solution to Eq. (8.54). The reason for this may
be seen by explicitly calculating y′′ and xy using Eq. (8.57) to obtain

y′′ = d2

dx2
a
∫
C
ep

3/3+pxdp= a
∫
C
p2ep

3/3+pxdp (8.59)

and

xy = a
∫
C
ep

3/3

(
d
dp

epx
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dp

= a
[
ep
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]p2
p1

−a
∫
C

d
dp

(
ep

3/3
)
epxdp

= −a
∫
C
p2ep

3/3+pxdp� (8.60)

Addition of these results corresponds to Eq. (8.54) if the end-point boundary conditions
specified by Eq. (8.58) are satisfied.

2. Suppose the integrand is analytic in some region and consider two different contours
in this region having the same pair of endpoints. We can take one of these contours and
deform it into the other. Thus, the two contours give the same result and so correspond
to the same solution.

3. Independence of contours. Since Eq. (8.54) is a second-order ordinary differential
equation it must have two linearly independent solutions. This means there must be
two linearly independent contours since a choice of contour corresponds to a solution.
Linear independence of the contours means one contour cannot be deformed into the
other. One possible way for the two contours to be linearly independent is for them
to have different pairs of endpoints. In this case, one contour can only be deformed
into the other if the endpoints can be moved without changing the integral. If moving
the endpoints changes the integral, then the two contours are independent. Another
possibility is the situation where the two contours have the same pairs of endpoints,
but the integrand is not analytic in the region between the two contours. For example,
there could be a pole or branch cut between the two contours. Then, one contour could
not be deformed into the other because of the non-analytic region separating the two
contours. The two contours would then be linearly independent.

8.5.2 Steepest descent contour

The solution to the Airy equation is thus

y�x�=
∫
C
ef�p�x�dp� (8.61)

where C satisfies the conditions listed above and the solution can be multiplied by
an arbitrary constant. In order to evaluate the integral, it is useful to first separate
the complex function f�p�x� into its real and imaginary parts,

f�p�x�= fr�p�x�+ ifi�p� x�� (8.62)
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Also, it should be remembered that, for the purposes of the p integration, x can
be considered as a fixed parameter. Thus, when performing the p integration, x
need not be written explicitly and so we may simply write f�p�= fr�p�+ ifi�p�,
where p = u+ iv and u� v are the coordinates in the complex p-plane. For an
arbitrary contour in the p-plane, both fr and fi will vary. The variation of the
phase factor fi means there will be alternating positive and negative contributions
to the integral in Eq. (8.61), making evaluation of this integral very delicate.
However, evaluation of the integral can be made almost trivial if the contour is
deformed to follow a certain optimum path.
To see this, it should first be recalled from the theory of complex variables that

any function of a complex variable must satisfy the Cauchy–Riemann conditions;
this means fr and fi must satisfy

�fr
�u

= �fi
�v
�

�fr
�v

= −�fi
�u
� (8.63)

Also, on defining the u−v plane gradient operator 	 = û�/�u+ v̂�/�v it is seen
that

	fr ·	fi =
�fr
�u

�fi
�u

+ �fr
�v

�fi
�v

= 0� (8.64)

This means that contours of constant fr are everywhere orthogonal to contours of
constant fi.

Since fi corresponds to the phase of exp �fr�p�+ ifi�p�� and fr corresponds
to the amplitude, Eq. (8.64) shows that a path in the complex p-plane, which is
arranged to follow the gradient of fr , will automatically be a contour of constant
fi, i.e., a contour of constant phase. Thus, the path that is optimum for purposes
of evaluation is the path obtained by following 	fr because on this path fi will be
constant and so there will not be any alternating positive and negative oscillating
contributions to the integral resulting from variation in fi. In fact, because fi is
constant on this special path, it can be factored from the integral, giving

y�x�= eifi
∫
C�	fr

efr �p�dp� (8.65)

Clearly, the maximum contribution to this integral comes from the vicinity
of where fr assumes its maximum value. Since this maximum occurs where
	fr = 0, most of the contribution to the integral comes from the vicinity of where
	fr = 0. The extrema of f are always saddle points because the Cauchy–Reimann
conditions imply �2fr�i/�u

2 + �2fr�i/�v2 = 0. Thus, the vicinity of 	fr = 0 must
be a saddle point.
The discussion in the previous paragraph implies that once the endpoints of the

contour have been chosen, for purposes of evaluation it is advantageous to deform
the contour to follow the gradient of fr ; this is called the steepest ascent/descent
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path (usually just called steepest descent). This optimum choice of path ensures
that (i) there is a localized region where fr assumes a maximum value and (ii)
the phase does not vary along the path. The main contribution to the integral is
concentrated into a small region of the complex p-plane in the vicinity of where
fr has its maximum value. Simple integration techniques may be used to evaluate
the integral in this vicinity, and the contribution from this region dominates other
contributions because exp �fr�p�� is exponentially larger at the maximum of fr
than at other locations. Furthermore, if the contour is chosen so that fr → −� at
the endpoints then Eq. (8.58) will be satisfied and the chosen contour will be a
solution of the original differential equation.
The saddle points are located where f ′�p� = 0. For the Airy function, the

function f�p� and its first and second derivatives are

f�p� = p3/3+px
f ′�p� = p2 +x
f ′′�p� = 2p� (8.66)

so the saddle points, found by setting f ′�p� = 0 and denoted by the subscript s,
are located at ps = ±�−x�1/2. In the vicinity of a saddle point, f can be Taylor
expanded as

f�p�� f�ps�+
�p−ps�2

2
f ′′�ps�� (8.67)

It is now convenient to define the origin of the coordinate system to be at the
saddle point and also use cylindrical coordinates, r� �, so p−ps = r exp �i�� and
dp= drei� for fixed �. Also, phasor notation is used for f ′′ so f ′′ = �f ′′� exp �i&�,
where & is the phase of f ′′. Thus, in the vicinity of a saddle point we write

f�p�� f�ps�+ r2
�f ′′�ps��

2
exp �2i�+ i&�� (8.68)

Choosing the contour to follow the path of steepest descent corresponds to
choosing � such that 2�+& = ±, in which case

f�p�� f�ps�− r2
�f ′′�ps��

2
(8.69)

and so Eq. (8.61) becomes

y�x��
∫ �

−�
ef�ps�−

1
2 r

2�f ′′�ps��drei�� (8.70)

where the approximation has been made that nearly all the contribution to the
integral comes from small r. Inaccuracy of the Taylor expansion at large r is of
no consequence, since the contributions to the integral from large r are negligible
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because of the exponentially decaying behavior of the integrand at large r. Thus,
fr is maximum at the saddle point r = 0 and the main contribution to the integral
comes from the contour going over the ridge of the saddle. The r integral is a
Gaussian integral

∫
exp �−ar2�dr = √

/a so

y�x� �
∫ �

−�
ef�ps�−

1
2 r

2�f ′′�ps��drei�

= ef�ps�+i�
∫ �

−�
e− 1

2 r
2�f ′′�ps��dr

= ef�ps�+i�

√
2

�f ′′�ps��

= ef�ps�

√
2ei2�

�f ′′�ps��

= ef�ps�

√
ei�±−&�

�f ′′�ps��

= ef�ps�
√

− 2
f ′′�ps�

� (8.71)

Since f�ps� = p
(
p2/3+x) = ±√−x �2x/3� = ∓2�−x�3/2/3 and f ′′�ps� =

±2
√−x, it is seen that∫

vicinity
of saddle

ef�p�dp�
√ ∓
�−x�1/2 e

∓2�−x�3/2/3� (8.72)

Providing x is not too close to zero, the two saddle points determined by the ±
signs are well separated and do not perturb each other; the integral will then be a
summation over whichever saddle points the contour happens to pass over. The
polarity of a saddle point is determined by the sense in which the contour passes
through the saddle point.

8.5.3 Relationship between saddle-point solutions and WKB modes

When �x� is large, Eq. (8.54) can be solved approximately using the WKB method,
in which case it is assumed that y�x� = A�x� exp �i ∫ x k�x′�dx′�. The wavenum-
ber k�x� is determined from the dispersion relation associated with the original
differential equation and A�x� is a function of k�x�. At large �x� the dispersion
relation associated with Eq. (8.54) is obtained by assuming d/dx→ ik and has
the form

k2 = x (8.73)
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so k�x�= ±x1/2 and A�x�∼ �±x�−1/4. The WKB solution is thus

yWKB ∼ 1
�±x�1/4 e

±i
∫ x
x′1/2dx′ = 1

�±x�1/4 e
±i2x3/2/3� (8.74)

which is the same as the saddle-point solution. Thus, each saddle-point solution
corresponds to a WKB mode, and in particular to a propagating wave if x > 0
and to an evanescent mode if x < 0.

8.5.4 Using boundary conditions to choose contours

The choice of contour is determined by the boundary conditions, which in turn
are determined by the physical considerations. In this Airy equation problem, the
boundary condition would typically be the physical constraint that no exponen-
tially growing solutions are allowed for x < 0. This forces choice of a contour
that does not pass through the saddle point having the plus sign in Eq. (8.74)
when x < 0. This condition together with Eq. (8.58) uniquely determines the
contour. Choosing a contour C is equivalent to specifying a particular solution
to Eq. (8.57); this chosen solution can then be evaluated for x > 0. For x > 0
the saddle points are at different locations and so the steepest descent path (i.e.,
the path where evaluation is easiest) will be different, since it will have to pass
through the saddle points as they exist for x > 0. The sum of the contributions of
these saddle points gives the form of the solution for x> 0. The important point to
realize here is that the same contour is used for both x > 0 and x < 0 because the
linearly independent solution is determined by the contour. The contour is deter-
mined by its endpoints, but may be deformed provided analyticity is preserved.
Thus, the endpoints are the same for both the x > 0 and x < 0 evaluations, but the
deformations of the contour differ in order to pass through the respective x > 0 or
x < 0 saddle points. The sign of x determines the character of the saddle points
and so for purposes of evaluation the contour is deformed differently for x > 0
and x < 0.
This completes the discussion of the Airy problem and we now return to the

linear mode conversion problem (Stix 1965). A comparison of Eqs. (6.108) and
(8.49) shows that if Eq. (8.49) is “un-Fourier” analyzed in the x direction, it
becomes

d
dx

(
$th

d3

dx3
+S d

dx

)
�−k2�P�= 0� (8.75)

where it is assumed that $th is approximately constant. To prove this is the correct
form, consider the following two statements: (i) if $th → 0, Eq. (8.75) reverts to
Eq. (6.108) (Fourier-analyzed in the z direction, but not the x direction), (ii) if
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$th is finite and S and P are assumed uniform, then Fourier analysis in x restores
Eq. (8.49).
We now suppose the plasma is non-uniform in a manner such that S�x� = 0

at some particular value of x. The x origin is defined to be at this location and
so corresponds to the location of the hybrid resonance. In order to be specific,
we assume that we are dealing with a mode where S > 0 and P < 0, since S and
P must have opposite signs for the cold plasma wave to propagate. Then, in the
vicinity of x= 0, Taylor expansion of S gives S = S′x so that Eq. (8.75) becomes

$th
d4�
dx4

+S′ d�
dx

+S′x
d2�
dx2

−k2�P�= 0� (8.76)

which has a coefficient that vanishes at x= 0 just like the Airy equation. Although
Eq. (8.76) could be analyzed as it stands, it is better to tidy its format by changing
to a suitably chosen dimensionless coordinate. This is done by first defining

% = x

�
� (8.77)

where � is an as-yet undetermined characteristic length that will be chosen to
provide maximum simplification of the coefficients. Replacing x by % in Eq. (8.76)
gives

$th
�4

d4�
d%4

+ S
′

�

d�
d%

+ S
′

�
%
d2�
d%2

−k2�P�= 0� (8.78)

This becomes
d4�
d%4

+ d�
d%

+% d
2�

d%2
+��= 0 (8.79)

by choosing the scaling constants � and � to satisfy $th/S
′�3 = 1 and � =

−k2��P/S′. These choices imply

�=
($th
S′
)1/3

� �= −
k2�P$

1/3
th

�S′�4/3
� (8.80)

Equation (8.79) describes a boundary layer problem having complicated behavior
in the inner �%�< 1 region in the immediate vicinity of the hybrid resonance and,
presumably, simple WKB-like behavior in the outer �%� � 1 region far from the
hybrid resonance. To solve this problem the technique discussed for the Airy
equation will now be applied and generalized:

1. Laplace transform: While Eq. (8.79) cannot be Fourier analyzed in the % direction, it
can be Laplace transformed giving

p4�̃�p�+p�̃�p�− d
dp

[
p2�̃�p�

]
+��̃�p�= 0 (8.81)
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or equivalently
1[

p2�̃�p�
] d
dp

[
p2�̃�p�

]
= p2 + 1

p
+ �

p2
� (8.82)

This has the solution

�̃�p�= A exp �p3/3−�/p− lnp�� (8.83)

where A is a constant. The inverse transform is

��%�= A
∫
C
ef�p�dp� (8.84)

where

f�p�= p3

3
− �
p

− ln �p�+p%� (8.85)

2. Boundary conditions: Since Eq. (8.79) is a fourth-order ordinary differential equation,
four independent solutions must exist with four associated independent choices for
the contour C in Eq. (8.84). The appropriate contour is determined by the imposed
physical boundary conditions, which must be equal in number to the order of the
equation. We consider a specific physical problem where an external antenna located at
%� 0 generates a cold plasma wave propagating to the left. This physical prescription
imposes the following four boundary conditions:

(a) To the right of % = 0 there is a cold plasma wave with energy propagating to the
left (i.e., towards the hybrid layer). It is important to recall that, as demonstrated in
Eq. (6.105), the group velocity for these waves is orthogonal to the phase velocity
so the wave is backwards in either the x or the z direction. The dispersion of
these waves is given in Eq. (6.102) and the group velocity is given in Eq. (6.104).
A plot of S��� and P��� shows that �S/�� > 0 and �P/�� > 0. Thus, for the
situation where S > 0 and P < 0, the x components of the wave phase and group
velocities have opposite signs. Hence, the cold wave phase velocity must propagate
to the right to be consistent with the boundary condition that cold wave energy is
propagating to the left.

(b) To the right of % = 0 there is no warm plasma wave propagating to the left (for
the hot wave, energy and phase propagate in the same direction).

(c) To the left of % = 0 the cold plasma evanescent mode vanishes as %→ −�.
(d) To the left of % = 0 the hot plasma evanescent mode vanishes as %→ −�.

The question is: what happens at the hybrid layer? Possibilities include absorption of
the incoming cold plasma wave (unlikely since there is no dissipation in this problem),
reflection of the incoming cold plasma wave at the hybrid layer, or mode conversion.

3. Calculation of saddle points: The saddle points are the roots of

f ′�p�= p2 +%+ �

p2
− 1
p

= 0� (8.86)

For large %, these roots separate into two large roots (hot mode), which are obtained
when the first two terms in Eq. (8.86) balance each other and two small roots (cold
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mode), which are obtained when the second and third terms balance each other. The
large roots satisfy p2 = −% and the small roots satisfy p2 = −�/%. For large %, the
fourth term is small compared to the dominant terms for both large and small roots.
The quantity f can be approximated for large p as

f�p� � p3

3
+p%− lnp

= p

(
p2

3
+%

)
− lnp

= 2
3
p%− lnp (8.87)

while for small p it can be approximated as

f�p� � p%− �
p

− lnp

= p

(
%− �

p2

)
− lnp

= 2p%− lnp� (8.88)

For % > 0 and large roots, the quantities pl� f�pl�, and f
′′�pl� are

pl = ±�−%�1/2� f�pl�= ∓2
3
�−%�3/2 − lnpl� f ′′�pl�= ±2�−%�1/2� (8.89)

For % > 0 the corresponding quantities for the small roots are

ps = ±�−�/%�1/2� f�ps�= ±2�−%��1/2 − lnps� f ′′�ps�= ∓2
�−%�3/2
�1/2

� (8.90)

The Gaussian integrals corresponding to steepest descent paths over these % > 0 saddle
points are

large roots�
∫
vicinity
of saddle

ef�p�dp=
√ ∓
�−%�3/2 e

∓ 2
3 �−%�3/2 (8.91)

small roots �
∫
vicinity
of saddle

ef�p�dp=
√

±
�−�%�1/2 e

±2�−%��1/2� (8.92)

where the logarithmic term in f�p� has been taken into account. For % < 0, the large
root quantities are

pl = ±�%�1/2� f�pl�= ∓2
3
�%�3/2 − lnpl� f ′′�pl�= ±2�%�1/2 (8.93)
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and the small root quantities are

ps = ±��/�%��1/2� f�ps�= ∓2��%���1/2 − lnps� f ′′�ps�= ∓2
�%�3/2
�1/2

� (8.94)

4. Choice of contour path: For % < 0 and assuming � > 0, the saddle points giving
solutions that vanish when %→ −� are the saddle points with the upper (i.e., minus)
sign chosen in the argument of the exponential. Hence, for % < 0 a contour must be
chosen that passes through one or both of these saddle points. For % > 0 the upper sign
corresponds to waves propagating to the left (i.e., towards the hybrid layer). Hence, we
allow the upper sign (minus) for the small root (i.e., cold mode), but not for the large
root since one of the boundary conditions was that there is no inward propagating hot
plasma wave. To proceed further, it is necessary to look at the topography of the real
part of f�p� for both signs of %� a method for plotting this topography is the subject
of Assignment 2.

From these plots it is seen that the correct joining is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i
exp �− 2

3 �%�3/2�
�%�3/4 +

exp �−2��%�1/2�
��%���1/4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp � 23 �i%�

3/2�

i1/2%3/4
+

i1/2
exp �2i��%�1/2�
�%��1/4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ � (8.95)

evanescent side� % < 0 propagating side� % > 0

which shows that a cold wave with energy propagating into the S= 0 layer is converted
into a hot wave that propagates back out.

5. WKB connection: The quantities in Eq. (8.95) can be expressed as integrals having
the same form as WKB solutions. For example, the cold propagating term can be
written as

exp �2i��%�1/2�
�%��1/4

= √
2
exp �i

∫ %
0 ��/%

′�1/2d%′�√∫ %
0 ��/%

′�1/2d%′

= √
2
exp �i

∫ x
0 �−k2zP/S�1/2dx′�√∫ x

0 �−k2zP/S�1/2dx′�
�

(8.96)

where the last form is clearly the WKB solution. A similar identification exists for the
hot plasma mode, so that Eq. (8.95) can also be written in terms of the WKB solutions.

This is just one example of mode conversion; other forms occur in different
contexts but a similar analysis may be used and similar joining conditions are
obtained. A curious feature of the mode conversion analysis is that the differential
equation is never explicitly solved near % = 0; all that is done is match asymptotic
solutions for the region where % is large and positive to the solutions for the
region where % is large and negative.
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8.6 Drift waves

Only textbook plasmas are uniform – real plasmas have both finite extent and
gradients in various parameters such as pressure, magnetic field, etc. A finite-
extent, magnetically confined warm plasma necessarily has a pressure gradient
perpendicular to the magnetic field. For example, consider an azimuthally symmet-
ric cylindrical plasma immersed in a strong axial magnetic field as sketched in
Fig. 8.3; the pressure is assumed to be peaked on the z axis and to fall off radially.
Particles stream freely in the axial direction but are constrained to make Larmor
orbits in the perpendicular direction. Since the concept of pressure gradient has
no meaning for an individual particle, consideration of the effect of pressure
gradients requires a fluid or Vlasov point of view. This will be done first using a
two-fluid analysis, then using a Vlasov analysis.
From the two-fluid point of view, the radial pressure gradient implies an equi-

librium force balance

0 = q�u� ×B−n−1
� 	 �n��T�� � (8.97)

Solving Eq. (8.97) for u� shows that each species has a steady-state perpendicular
motion at the diamagnetic drift velocity

ud� = −	 �n��T��×B
q�n�B

2
� (8.98)

which is in the azimuthal direction. The corresponding diamagnetic drift current is

Jd = ∑
�

n�q�ud�

= − 1
B2

∑
�

	 �n��T��×B

= − 1
B2
	P×B� (8.99)
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Fig. 8.3 Cylindrical magnetized plasma with radial density gradient.
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which is just the azimuthal current associated with the MHD equilibrium equation
J×B = 	P, where P = Pi+Pe.
The electron and ion diamagnetic drift velocities thus provide the current neces-

sary to establish the magnetic force that balances the MHD pressure gradient.
It turns out that magnetized plasmas with pressure gradients are unstable to a
class of electrostatic modes called “drift” waves. These modes exist in the same
frequency regime as MHD but do not appear in standard MHD models, since
standard MHD models do not provide a sufficiently detailed characterization of
the differences between electron and ion dynamics.
From the particle point of view, the diamagnetic velocity is entirely fictitious

because no particle actually moves at this velocity. The diamagnetic drift velocity
is nevertheless quite genuine from the fluid point of view and so a fluid-based
wave analysis must linearize about an equilibrium that includes this equilibrium
drift. As will be seen later, the Vlasov point of view confirms and extends the
conclusions of the fluid theory, providing care is taken to use an equilibrium
velocity distribution function that is both valid and consistent with existence of a
pressure gradient.
Drift waves will be examined using three progressively more realistic points of

view. These are:

1. A collisionless two-fluid model where ions are assumed to be cold and electrons
are assumed to be hot. This model establishes existence of the mode and provides
a derivation for the intrinsic frequency, but provides no information regarding
stability.

2. A collisional two-fluid model, which shows that collisions destabilize drift waves.
3. A Vlasov model including both finite ion temperature and net axial current. This model

shows that both Landau damping and axial currents destabilize drift waves.

Drift waves involve physically distinct ion and electron motions, three-
dimensional geometry, magnetized warm plasma effects, pressure gradients,
collisionality, and Landau damping/instability. These waves are often of practical
importance because they are so easily driven unstable. While real plasmas have
geometry resembling Fig. 8.3, the cylindrical geometry will now be replaced by
Cartesian geometry to simplify the analysis.
Using Cartesian geometry, the equilibrium magnetic field is assumed to be

in the z direction and the pressure gradient is accounted for by assuming an
exponential density gradient in the x direction. The x direction thus corresponds
to the r direction of cylindrical geometry, and the y direction corresponds to
the � direction. The y and z directions, but not the x direction, are ignorable
coordinates, and so the governing equations may be Fourier-transformed in the y
and z directions, but not in the x direction.
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8.6.1 Simple two-fluid model of drift waves

The plasma is assumed to have the exponential density gradient

n∼ exp �−x/L�� (8.100)

where L is called the density-gradient scale length. We consider electrostatic,
extremely low-frequency (�� �ci) waves having the potential perturbation

�1 = �̃ exp �ikyy+ ikzz− i�t�� (8.101)

The parallel phase velocity is assumed to lie in the range vTi � �/kz � vTe so
that ions are adiabatic and electrons are isothermal (this is the same regime as ion
acoustic waves). The parallel and perpendicular wavelengths are both assumed to
be much longer than the electron Debye length, so the plasma may be considered
quasi-neutral and have ni � ne. Since �/kz � vTe, the parallel component of the
electron equation of motion is simply

0 � −qe
��1

�z
− 1
ne

�

�z
�ne�Te� � (8.102)

which leads to a Boltzmann electron density,

ne = ne0 exp �−qe�1/�Te�� (8.103)

Assuming �1 is small, linearization of this Boltzmann electron density gives the
first-order electron density

ne1
ne0

= −qe�1

�Te
� (8.104)

Since �/kz � vTi, ions may be considered cold to first approximation and the
zero-pressure limit of the ion equation of motion characterizes ion dynamics.
Furthermore, since �� �ci the lowest-order perpendicular ion motion is just the
E×B drift so

ui1 = −	�1 ×B
B2

= − iky�1

B
x̂� (8.105)

Since the E×B drift is in the x direction, this drift is in the direction of the
density gradient and leads to an ion density perturbation because of a convective
interaction with the equilibrium density gradient. The ion density perturbation is
found by linearizing the ion continuity equation

�ni1
�t

+ui1 ·	ni0 +ni1	 ·ui1 = 0� (8.106)

After noting that 	 ·ui1 = 0, substitution for ui1 in the convective term gives

ni1
ni0

= ky�1

�LB
� (8.107)
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The density perturbation results from the ion E×B drift causing the ions with
their density gradient to slosh back and forth in the x direction so that a stationary
observer at a fixed point x sees oscillations of the ion density.
Quasi-neutrality means that the electron and ion density perturbations must be

almost exactly equal although electrons and ions are governed by entirely different
physics. Equating the electron and ion perturbation densities, respectively given
by Eqs. (8.104) and (8.107), provides the most basic form of the drift wave
dispersion relation,

�= −ky�Te
qeLB

= kyude� (8.108)

where

ude = −�Te/qeLB (8.109)

is the electron diamagnetic drift velocity given by Eq. (8.98). Equation (8.108)
describes a normal mode where Boltzmann electron density perturbations caused
by isothermal electron motion along field lines neutralize ion density perturbations
caused by ion E×B motion sloshing the x-dependent equilibrium density profile
in the x direction. This basic dispersion relation provides no information about
the mode stability because collisions and Landau damping have not yet been
considered. The wave phase velocity �/ky is equal to the electron diamagnetic
drift velocity given by Eq. (8.98). The basic drift wave dispersion relation has
the interesting feature that it does not depend on the mass of either species; this
is because neither the electron Boltzmann dependence nor the ion E×B drift
depend on mass. This basic dispersion relation provides a foundation for the
more complicated models to be considered in the next two sections, and it is
conventional to define the “drift frequency”

�∗ = kyude� (8.110)

which will appear repeatedly in the more complicated models. The basic dispersion
is therefore simply � = �∗ (the asterisk should not be confused with complex
conjugate).

8.6.2 Two-fluid drift wave model with collisions

The next level of sophistication involves assuming the plasma is mildly collisional
so that the electron equation of motion is now

me
due
dt

= qe �−	�+ue×B�− 1
ne
	 �ne�Te�−�eime�ue−ui�� (8.111)

The collision frequency �ei is assumed to be small compared to the electron
cyclotron frequency �ce = qeB/me. Because �/kz � vTe, the electron inertia term
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on the left-hand side is negligible compared to the electron pressure gradient term
on the right-hand side and so the parallel component of the electron equation
reduces to

0 = −qe
��

�z
− �Te
ne

�ne
�z

−�eimeuez� (8.112)

the ion parallel velocity has been dropped since it is negligible compared to the
electron parallel velocity. After linearization and assuming perturbed quantities
have a space-time dependence given by Eq. (8.101), Eq. (8.112) can be solved to
give the parallel electron velocity

uez = − ikz�Te
�eime

(
qe�1

�Te
+ ne1
ne0

)
� (8.113)

It is seen that in the limit of no collisions, this reverts to the Boltzmann result,
Eq. (8.104).
As in the previous section, quasi-neutrality is invoked so the dispersion relation

is obtained by equating the perturbed electron and ion densities. Equation (8.113)
together with the continuity equation gives the perturbed electron density, provided
the electron perpendicular velocity is also known. Since it has been assumed
that ��ce� � �ei, the magnetic force term in Eq. (8.111) is much greater than the
perpendicular component of the collision term. The perpendicular component of
the electron equation of motion is therefore

0 = qe �−	⊥�+ue×B�− 1
ne
	⊥ �ne�Te� � (8.114)

In previous derivations the continuity equation was typically linearized right
away, but here it turns out to be computationally advantageous to postpone
linearization and instead solve Eq. (8.114) as it stands for the perpendicular
electron flux to obtain

�e⊥ = neue⊥ = −ne	�×B
B2

− 1
qeB

2
	 �ne�Te�×B� (8.115)

Using the vector identities 	 · �	�×B�= 0 and 	 · �	 �ne�Te�×B�= 0 it is seen
that the divergence of the perpendicular electron flux is

	 ·�e⊥ = −	ne ·
	�×B
B2

� (8.116)

The electron continuity equation can be expressed as

�ne
�t

+ �

�z

(
neuez

)+	 ·�e⊥ = 0� (8.117)
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and, after substitution for the perpendicular electron flux, this becomes

�ne
�t

+ �

�z

(
neuez

)−	ne · 	�×B
B2

= 0� (8.118)

At this stage of the derivation it is now appropriate to linearize the continuity
equation, which becomes

�ne
�t

+ne0
�uez1
�z

− dne0
dx
x̂ · 	�1 ×B

B2
= 0� (8.119)

Substituting for �1 using Eq. (8.101), and using Eq. (8.113) for uz1 gives

ne1
ne0

(
−i�+ k

2
z�Te
�eime

)
+ qe�1

�Te

(
k2z�Te
�eime

+ iky�Te
qeBL

)
= 0� (8.120)

which may be solved to give the sought-after electron density perturbation

ne1
ne0

= −qe�1

�Te

(
−i�∗ + 1

��

)
(

−i�+ 1
��

) � (8.121)

Here

�� = �eime/k2z�Te (8.122)

is the nominal time required for electrons to diffuse a distance of the order of a
parallel wavelength. This is because the parallel collisional diffusion coefficient
scales as D� ∼ �random step�2/�collision period�∼ �Te/me�ei and, according to
the diffusion equation, the distance diffused in time t is given by z2 ∼ 4D�t.
Equation (8.121) shows that in the limit �� → 0, the electron density perturbation
reverts to being Boltzmann but, for finite ��, a phase lag occurs between ne1
and �1.
The next step is to calculate the ion density perturbation. The ion equation of

motion is

mi
dui
dt

= qi �−	�+ui×B�−�iemi�ui−ue�� (8.123)

because the ions are heavy, the left-hand side inertial term must now be retained.
The ions are assumed to be cold and the ion inertial term is assumed to be
much larger than the collisional term so the parallel component of the linearized
Eq. (8.123) is

uiz1 = kzqi�1

�mi
= kzc

2
s

�

qi�1

�Te
� (8.124)
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where c2s = �Te/mi is the ion acoustic velocity. The appearance of the ion acoustic
velocity comes from normalizing the potential perturbation to �Te; this normaliza-
tion is used in order to be consistent with the normalization used for the electron
dynamics. Noting again that the inertial term is assumed to be much larger than
the collisional term, the linearized perpendicular ion equation becomes

mi
dui1
dt

= qi
(−	�1 +ui1 ×B

)
� (8.125)

which can be solved to give the perpendicular velocity as a sum of an E×B drift
and a polarization drift, i.e.,

ui⊥ = −	�×B
B2

+ mi
qiB

2

d
dt
�−	�� � (8.126)

The polarization drift is retained in the ion but not the electron equation, because
polarization drift is proportional to mass. The perpendicular ion flux is

�i⊥ = −ni	�×B
B2

+ nimi
qiB

2

d
dt
�−	⊥�� � (8.127)

which has a divergence

	 ·�i⊥ = −	ni ·
	�×B
B2

−	 ·
(
nimi
qiB

2

d
dt
�	⊥��

)
� (8.128)

Substitution of Eqs. (8.128) and (8.124) into the ion continuity equation, lineariz-
ing, and solving for the ion density perturbation gives

ni1
ni0

=
[
k2zc

2
s

�2
+ qe
qi

ky�Te

�qeLB
− mi�Te
q2i B

2
k2y

]
qi�1

�Te

=
[
k2zc

2
s

�2
− qe
qi

�∗

�
−k2y�2s

]
qi�1

�Te
� (8.129)

where �2s ≡ �Te/mi�2
ci is a fictitious ion Larmor orbit defined using the electron

temperature instead of the ion temperature. The fictitious length �2s is analogous to
the fictitious velocity c2s = �Te/mi, which appeared in the analysis of ion acoustic
waves.
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Since the plasma is quasi-neutral, the normalized electron and ion density
perturbations must be the same. Equating the normalized density perturbations
obtained from Eq. (8.121) and (8.129) gives(

−i�∗ + 1
��

)
(

−i�+ 1
��

) = �∗

�
+ k

2
zc

2
s

�2
−k2y�2s � (8.130)

For simplicity it is assumed here that qi/qe = −1, which is the situation for
low-temperature plasmas where the ions are too cold to be multiply ionized
(qi/qe = −1 is, of course, always true for hydrogen plasmas). It is also assumed
that the collision frequency is sufficiently small to have ��� = ��eime/k2zTe � 1
and that � is of the order of �∗; the self-consistency of these assumptions will
be checked later. The left-hand side of Eq. (8.130) can now be expanded using
the binomial theorem to obtain the collisional drift wave dispersion relation

D���ky� kz�= 1− �
∗

�
+k2y�2s −

k2zc
2
s

�2
+ i��−�∗��� = 0� (8.131)

This dispersion relation shows drift waves have an association with ion acoustic
waves since in the limit k2y�

2
s → 0, the real part of the dispersion becomes

1− �
∗

�
− k

2
zc

2
s

�2
= 0� (8.132)

this dispersion relation reduces to an ion acoustic wave dispersion relation in the
limit of there being no equilibrium pressure gradient (i.e., when �∗ vanishes).
Equation (8.132) has two roots

�=
�∗ ±

√
��∗�2 +4k2zc2s

2
� (8.133)

which for small kzcs are

1. �= �∗ and �= −�kzcs� if �∗ > 0
2. �= �∗ and �= �kzcs� if �∗ < 0.

Thus, the drift mode is a distinct mode compared to the ion acoustic wave and its
parallel phase velocity is much faster than the ion acoustic wave since the drift
wave occurs in the limit �/kz � cs.
We now address the important question of the stability properties of Eq. (8.131).

To do this, kz is assumed to be sufficiently small to have kzcs � � so the
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dispersion describes the drift mode and not the ion acoustic mode. The real part
of the dispersion is then set to zero to obtain the real part of the frequency

�r = �∗

1+k2y�2s
(8.134)

showing that the actual frequency of the collisional drift wave is smaller than
�∗, but is of the same order, provided k2y�

2
s is not larger than order unity. The

k2y�
2
s dependence results from ion polarization drift, an effect that was neglected

in the initial simple model. The assumption ��� = ��eime/k
2
zTe � 1 implies

ky�ei/k
2
zL�ce � 1, which is true provided the ratio �ei/�ce is sufficiently small for

a given geometric factor ky/k
2
zL. Using the Taylor expansion technique discussed

in the treatment of Eqs. (5.85)–(5.87), the imaginary part of the frequency is
found to be

�i = − Di
��Dr/����=�r

= −��−�∗���
�∗/�2

r

= �∗ k
2
y�

2
s�

∗��(
1+k2y�2s

)3 � (8.135)

Equation (8.135) shows �i has several important features:

1. �i is positive so collisional drift waves are always unstable.
2. �i is proportional to �� so modes with the smallest kz and hence the fastest parallel

phase velocities are the most unstable, subject to the proviso that��� � 1 is maintained.
This increase of growth rate with k−1

z (i.e., increase with parallel wavelength) means
drift waves typically have the longest possible parallel wavelength allowed by the
boundary conditions. For example, a linear plasma of finite axial extent with grounded
conducting end walls has the boundary condition �1 = 0 at both end walls; the longest
allowed parallel wavenumber is /h, where h is the axial length of the plasma (i.e.,
half a wavelength is the minimum number of waves that can be fitted subject to the
boundary condition).

3. Collisions make the wave unstable since �� ∼ �ei.
4. �i is proportional to the factor k2y�

2
s /�1+k2y�2s �3, which has a maximum when ky�s is

of order unity.
5. �i is proportional to L

−2; for a realistic cylindrical plasma (cf. Fig. 8.3) the density is
uniform near the axis and has a gradient near the edge (e.g., a Gaussian density profile
where n�r� ∼ exp �−r2/L2�). The density gradient is localized near the edge of the
plasma and so drift waves will have the largest growth rate near the edge. Drift waves
in real plasmas are typically observed to have maximum amplitude in the region of
maximum density gradient.

The free energy driving drift waves is the pressure gradient and so the drift
waves might be expected to deplete their energy source eventually by flattening
out the pressure gradient. This indeed happens and, in particular, it is the nonlinear
behavior of drift waves that reduces the pressure gradient. This flattening is
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accomplished by the drift waves pumping plasma from regions of high pressure to
regions of low pressure. The pumping can be calculated by considering the time-
averaged, nonlinear, x-directed particle flux associated with drift waves, namely

�x = �Ren1Reu1x� = 1
2
Re �n1u

∗
1x�� (8.136)

The species subscript � has been omitted here, because to lowest order both
species have the same u1x given by the E×B drift, i.e.,

u1x = x̂ · −	�1 ×B
B2

= −iky�1/B� (8.137)

Being careful to remember that �∗ is a real quantity (this is a conventional, but
confusing, notation), Eqs. (8.121) and (8.137) are substituted into Eq. (8.136) to
obtain the wave-induced particle flux

�x = 1
2
Re

[
−n0qe
�Te

(
1− i��∗ −����

) iky��1�2
B

]

= −1
2
Re

[
n0qe
�Te

��∗ −����
ky��1�2
B

]

=
(

k2y�
2
s

1+k2y�2s

)
k2y��1�2
2LB2

�ein0me
k2z�Te

= −Dnl
dn0
dx
� (8.138)

Thus, it is seen that collisional drift waves cause an outward diffusion of plasma
characterized by the nonlinear wave-induced diffusion coefficient

Dnl =
(

k2y�
2
s

1+k2y�2s

)
k2y��1�2
2B2

�eime
k2z�Te

� (8.139)

This diffusion coefficient has a proportionality similar to �i. The drift wave thus
has the following properties: (i) the pressure gradient provides free energy and
also an equilibrium where drift waves are a normal mode, (ii) collisions allow the
drift wave to feed on the available free energy and grow, (iii) nonlinear diffusion
flattens the pressure gradient thereby depleting the free energy and also under-
mining the confining effect of the magnetic field. A nonlinear saturated amplitude
can result if some external source continuously replenishes the pressure gradient.
It was shown earlier that the most unstable drift waves are those having ky�s of

order unity. This property can be adapted to the more physically realistic situation
of a cylindrical plasma by realizing that in a cylindrical plasma ky is replaced
by m/r, where m is the azimuthal mode number. Periodicity in � forces m to be
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an integer. If the most unstable m is a small integer, then the drift waves tend
to be coherent, but if m is a large integer, many azimuthal wavelengths fit into
the circumference of the cylinder. In this case, the periodicity condition is only a
weak constraint and the waves typically become turbulent. Large m corresponds
to small �s, which occurs when the magnetic field is strong. Thus, plasmas with
strong magnetic fields tend to have turbulent, short perpendicular wavelength
drift waves, whereas plasmas with weak magnetic fields have coherent, long
perpendicular wavelength drift waves.
Drift wave turbulence has been found to be the main reason why the radial

diffusion in tokamak magnetic plasma confinement devices is much worse than
can be explained by simple random walks due to particle collisions. The impor-
tance of drift wave turbulence can be estimated by assuming k2y�

2
s ∼ 1 and then

taking the ratio of Dnl to the classical diffusion given by Eq. (2.114) to obtain

Dnl
Dclassical

∼ 1
k2z�

2
s

(
e��1�
�Te

)2

� (8.140)

In the situation where the magnetic field is strong so �s is a microscopic length
(this length is ∼ rLi if Te ∼ Ti) then kz�s will be very small since k−1

z is of
the order of the axial extent of the configuration. Thus, if the turbulence level
is sufficiently strong to satisfy the very modest requirement e��1�/�Te > kz�s,
plasma transport across the magnetic field will be mainly from diffusion caused
by drift wave turbulence, not classical diffusion.

8.6.3 Vlasov theory of drift waves: collisionless drift waves

Drift waves also exist when the plasma is so hot that the collision frequency
becomes insignificant and the plasma can be considered collisionless. The previous
section showed that a collision-induced phase lag between the density and potential
fluctuations produces a destabilizing imaginary term in the dispersion relation.
The analysis of collisionless plasma waves showed that Landau damping also
causes a phase shift between the density and potential fluctuations resulting in an
imaginary term in the dispersion relation. The Vlasov analysis in Assignment 8
of Chapter 5 showed that a relative motion between electrons and ions (i.e., a net
current) destabilizes ion acoustic waves, and so it is reasonable to expect that a
similar current-driven destabilization might also occur for drift waves.
The Vlasov analysis of drift waves is less intuitive than the fluid analysis, but

the reward for abstraction is a more profound model. As in the fluid analysis,
the plasma is assumed to have a uniform equilibrium magnetic field B = Bẑ,
an x-directed density gradient given by Eq. (8.100), and a perturbed potential
given by Eq. (8.101). The Vlasov analysis is in a sense simpler than the fluid
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analysis, because the Vlasov analysis involves a modest extension of the warm
plasma electrostatic Vlasov model discussed in Section 8.1. As was discussed in
Section 8.1 the perturbed distribution function is evaluated by integrating along
the unperturbed orbits, i.e.,

f�1�x�v� t�=
∫ t
−�

dt′
[
q�
m�
	�1 · �f�0

�v

]
x=x�t′��v=v�t′�

� (8.141)

The new feature here is that the equilibrium distribution function must incorporate
the assumed density gradient.
A first instinct would be to accomplish this by simply multiplying the

Maxwellian distribution function of Section 8.1 by the factor exp �−x/L�
so that the assumed equilibrium distribution function would be f�0�x�v� =
�v���

−3/2 exp �−v2/v2T� − x/L�. This approach turns out to be wrong because
f�0�x�v�= �v���−3/2 exp �−v2/v2T� −x/L� is not a function of the constants of
the motion and so is not a solution of the equilibrium Vlasov equation.
What is needed is some constant of the motion that includes the parameter x.

The equilibrium distribution function could then be constructed from this constant
of the motion and arranged to have the desired x-dependence. The appropriate
constant of the motion is the canonical momentum in the y direction, namely

Py =m�vy+q�Ay =m�vy+q�Bzx =
(
vy

�c�
+x
)
q�Bz (8.142)

since Bz = �Ay/�x. Multiplying the original Maxwellian by the factor
exp �−�vy/�c� + x�/L� produces the desired spatial dependence while simulta-
neously satisfying the requirement that the distribution function depends only on
constants of the motion. Note that Py is a constant of the motion because y is an
ignorable coordinate.
As suggested above, it turns out that z-directed currents can also destabilize

collisionless drift waves, much like the situation where currents provide free
energy that destabilizes ion acoustic waves. Since it takes little additional effort to
include this possibility, a z-directed current will also be assumed so that electrons
and ions are assumed to have unequal mean velocities u�z. In a frame moving
with velocity u�z the species � is thus assumed to have a distribution function
∼ exp �−mv′2/2− �v′y/�c� + x�/L�, where v′ = v− u�zẑ is the velocity in the
moving frame. This is a valid solution to the equilibrium Vlasov equation, since
both the energy mv′2/2 and the y-direction canonical momentum �v′y/�c� +x�/L
are constants of the motion. The appropriately normalized lab-frame distribution
function is

f�0�x�v�= n0�

3/2v3T�
exp

[
− (v−u�zẑ

)2
/v2T� − �vy/�c� +x�/L−

(
vT

2�cL

)2
]
�

(8.143)
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where the normalization factor exp
(
− �vT/2�cL�2

)
has been inserted so that the

zeroth moment of f�0 gives the density. The necessity of this factor is made
evident by completing the squares for the velocities and writing Eq. (8.143) in
the equivalent form

f�x�v�= n0

3/2v3T
exp

⎛⎜⎜⎜⎝−

⎡⎢⎢⎢⎣
v2x+

(
vy+

v2T
2�cL

)2

+ (vz−u�z)2
v2T

⎤⎥⎥⎥⎦− x

L

⎞⎟⎟⎟⎠ � (8.144)
The term vy/�c� , which crept into Eq. (8.143) because of the seemingly abstract
requirement of having the distribution function depend on the constant of the
motion Py, corresponds to the fluid theory equilibrium diamagnetic drift. This
correspondence is easily seen by calculating the mean y-direction velocity (i.e.,
first moment of Eq. (8.143)) and finding that the existence of the vy/�c� term
results in a fluid velocity uy, which is precisely the diamagnetic velocity given
by Eq. (8.98).
We now insert Eq. (8.143) in Eq. (8.141) to calculate the perturbed distribution

function. The unperturbed particle orbits are the same as in Section 8.1 because
the concepts of both density gradient and axial current result from averaging over
a distribution of many particles and so have no meaning for an individual particle.
The integration over unperturbed orbits is thus identical to that of Section 8.1,
except that a different equilibrium distribution function is used.
The essence of the calculation is in the term

	�1 · �f�0
�v

= i�1k · �f�0
�v

= −i�̃eik·x�t�−i�t
[
2k ·v
v2T�

− 2kzu�z
v2T�

+ ky

�c�L

]
f�0�

(8.145)

which causes Eq. (8.141) to become

f�1�x�v� t� = −q��̃f�0
m�

∫ t
−�

dt′eik·x�t′�−i�t′
[
2ik ·v
v2T�

− 2ikzu�z
v2T�

+ iky
�c�L

]

= −q��̃f�0
m�

∫ t
−�

dt′

⎧⎪⎪⎨⎪⎪⎩
2e−i�t′

v2T�

[
d
dt′

eik·x�t′�
]

−(
2ikzu�z
v2T�

− iky
�c�L

)
eik·x�t′�−i�t′

⎫⎪⎪⎬⎪⎪⎭
= −2q��̃f�0

m�v
2
T�

[
eik·x�t�−i�t+ i

(
�−kzu�z−�∗

�

) ∫ t
−�

dt′eik·x�t′�−i�t′
]
�

(8.146)
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here

kyv
2
T�

2�c�L
= ky�T

qBL
= −�∗

�� (8.147)

has been used as a generalization of Eq. (8.110). The rest of the analysis is as
before and gives the dispersion relation

1+∑
�

1

k2�2D�

[
1+

(
�−kzu�z−�∗

�

)
kzvT�

�∑
n=−�

In����e
−��Z��n��

]
= 0� (8.148)

where, as before, �� = k2⊥r2L� and �n� = ��−n�c��/kzvT� . It is seen that the
density gradient and the axial current both provide a Doppler shift in the �0� term.
In both cases the Doppler shift is given by the wavenumber in the appropriate
direction times the mean fluid velocity in that direction.
Because Eq. (8.148) contains so much detailed physics in addition to the sought-

after collisionless drift wave,1 some effort and guidance is required to flush out
the drift wave information from all the other information. This is done by taking
appropriate asymptotic limits of Eq. (8.148) and guidance is obtained using the
results from the two-fluid analysis. These results showed that drift waves exist in
the regime where:

1. vTi � �/kz � vTe so that the ions are adiabatic and the electrons are isothermal,
2. �∼ �∗

e � �ci��ce,
3. k2⊥r

2
Le ∼ 0 because the extremely small electron mass means that the electron Larmor

orbit radius is negligible compared to the perpendicular wavelength even though the
electrons are warm,

4. k2⊥r
2
Li < 1, since the ions were assumed cold,

5. k2⊥�
2
s ∼ 1,

6. k2�2De � 1 so that the waves are quasi-neutral,
7. �uzi� � �uze�, since the parallel equilibrium velocities satisfy meuez+miuiz = 0; there

is no parallel flow, just a parallel current.

Because �e ∼ 0, all electron terms in the summation over n vanish except
for the n = 0 term. Since �/kz � vTe, the small-argument limit of the plasma
dispersion function is used for electrons and it is seen that the imaginary term is the
dominant term for the electrons. In contrast, since vTi ��/kz, the large-argument
limit of the plasma dispersion function is used for the ions and also equilibrium
parallel motion is neglected for ions because of the large ion mass. For the n �= 0
harmonics the terms Z��n�+Z��−n�→ −kzvTi�1/��− n�ci�+ 1/��+ n�ci��

1 Eq. (8.148) also describes Bernstein waves, the electrostatic limit of magnetized cold plasma waves, and
mode conversion.
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and hence cancel each other since �� �ci. On making these approximations,
Eq. (8.148) reduces to

1+ Te
Ti

[
1− e−�iI0��i�

]
− �

∗
e

�
e−�iI0��i�+ i1/2

(
�−kzuze−�∗

e

)
kzvTe

= 0� (8.149)

The real part of this dispersion gives

�r = �∗
e

⎧⎪⎪⎨⎪⎪⎩
e−�iI0��i�

1+ Te
Ti

[
1− e−�iI0��i�

]
⎫⎪⎪⎬⎪⎪⎭ (8.150)

or in the limit of small �i

�r = �∗
e

{
1−�i

1+k2⊥�2s

}
� (8.151)

this corresponds to the fluid dispersion and moreover shows how finite ion temper-
ature affects the dispersion. Using the method of Eq. (8.135), the imaginary part
of the frequency is obtained from Eq. (8.149) as

�i = − �21/2

�∗
ee−�iI0��i�

(
�r −kzuze0 −�∗

e

)
kzvTe

= 1/2 ��∗
e�

2

kzvTe

{
�1−*��1+Te/Ti�+kzuze0*/�r

�1+ �1−*�Te/Ti�3
}
� (8.152)

where * = e−�iI0��i�. In the limit �i → 0, it is seen that * → 1−�i so the
imaginary part of the frequency becomes

�i =
1/2 ��∗

e�
2

kzvTe
[
1+k2⊥�2s

]3 {k2⊥��2s + r2Li�+kzuze0/�r} � (8.153)

The imaginary part of the frequency is therefore always positive so there is
always instability. Two collisionless destabilization mechanisms are seen to exist,
normal Landau damping, represented by the term involving k2⊥��2s + r2Li� in the
curly brackets, and current, represented by kzuz0/�r . Since collisions can also
destabilize drift waves, there are at least three mechanisms by which drift waves
can be destabilized. Comparison of Eq. (8.153) with Eq. (8.135) shows which of
these mechanisms will be dominant in a given plasma. Modes with long parallel
wavelengths are the most unstable for drift waves driven unstable by Landau
damping, just as for collisional drift waves.
There are many more varieties of drift waves besides the basic versions

discussed here. The common feature is that the gradient of pressure perpendicular
to the magnetic field provides a new mode and free energy from the pressure
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gradient or from parallel current can be tapped by this mode so the mode is
spontaneously unstable.

8.7 Assignments

1. Electrostatic ion cyclotron waves. Using the electrostatic hot plasma dispersion relation
show that there exists a mode in the vicinity of the ion cyclotron frequency having the
dispersion

�2 = �2
ci+k2⊥c2s � (8.154)

Show this mode can be driven unstable by an axial current.
2. Mode conversion. Work through the algebra of the linear mode conversion problem

and plot the contours of Re f�p� for both positive and negative %. Hint: it is easier
to plot the contours of f�p� if one uses polar coordinates in the complex p-plane so
p = rei�. Then the real part of the term p3 is just Re �r3e3i�� = r3 cos�3��. Choose a
set of contour paths for % < 0 that satisfy the boundary condition that there are no
modes growing exponentially with increasing distance from % = 0. Then, determine
which combination of these contours does not give an inward propagating hot plasma
wave when % > 0 (this was another boundary condition).

3. Prove that the distribution function

f�0�x�v�= n0�
3/2v3T�

exp

[
− �v−u�zẑ�2 /v2T� − �vy/�c� +x�/L−

(
vT

2�cL

)2
]

provides a mean y-direction drift, which corresponds to the diamagnetic drift of fluid
theory.
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MHD equilibria

9.1 Why use MHD?

Of the three levels of plasma description – Vlasov, two-fluid, and MHD – Vlasov
is the most accurate and MHD is the least accurate. So, why use MHD? The
answer is that, because MHD is a more macroscopic point of view, it is more
efficient to use MHD in situations where the greater detail and accuracy of the
Vlasov or two-fluid models are unnecessary. MHD is particularly suitable for
situations having complex geometry because it is very difficult to model such
situations using the microscopically oriented Vlasov or two-fluid approaches and
because geometrical complexities are often most important at the MHD level
of description. The equilibrium and gross stability of three-dimensional, finite-
extent plasma configurations are typically analyzed using MHD. Issues requiring
a two-fluid or a Vlasov point of view can exist and be important, but these more
subtle questions can be addressed after an approximate understanding has first
been achieved using MHD. The MHD point of view is especially relevant to
situations where magnetic forces are used to confine or accelerate plasmas or
liquid conductors such as molten metals. Examples of such situations include
magnetic fusion confinement plasmas, solar and astrophysical plasmas, planetary
and stellar dynamos, arcs, and magnetoplasmadynamic thrusters. Although molten
metals are not plasmas, they are described by MHD and, in fact, the MHD
description is actually more appropriate and more accurate for molten metals than
it is for plasmas.
We begin our discussion by examining certain general properties of magnetic

fields in order to develop an intuitive understanding of the various stresses govern-
ing MHD equilibrium and stability. The MHD equation of motion,

�

[
�U
�t

+U ·	U
]

= J×B−	P� (9.1)
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is a generalization of the equation of motion for an ordinary fluid because it
includes the J×B magnetic force. Plasma viscosity is normally very small and is
usually omitted from the MHD equation of motion. However, when torques exist,
a viscous damping term needs to be included if one wishes to consider equilibria.
This is because viscous damping is required to balance any torque in equilibrium;
otherwise the plasma will spin up without limit. Such situations will be discussed
in Section 9.9; until then, viscosity will be assumed to be negligible and will be
omitted from Eq. (9.1).

9.2 Vacuum magnetic fields

The simplest non-trivial magnetic field results when the entire magnetic field is
produced by electric currents located outside the volume of interest so there are
no currents in the volume of interest. This type of magnetic field is called a
vacuum field since it could exist in a vacuum. Because there are no local currents,
a vacuum field satisfies

	×Bvac = 0� (9.2)

Since the curl of a gradient is always zero, a vacuum field must be the gradient
of some scalar potential ', i.e., the vacuum field can always be expressed as
Bvac = 	'. For this reason vacuum magnetic fields are also called potential
magnetic fields. Because all magnetic fields must satisfy 	 ·B = 0, the potential
' satisfies Laplace’s equation,

	2' = 0� (9.3)

Hence the entire mathematical theory of vacuum electrostatic fields can be brought
into play when studying vacuum magnetic fields. Vacuum electrostatic theory
shows that if either ' or its normal derivative is specified on the surface S
bounding a volume V , then ' is uniquely determined in V . Also, if an equilib-
rium configuration has symmetry in some direction so that the coefficients of the
relevant linearized partial differential equations do not depend on this direction,
the linearized equations may be Fourier transformed in this “ignorable” direc-
tion. Vacuum is automatically symmetric in all directions and Poisson’s equation
reduces to Laplace’s equation, which is intrinsically linear. The linearity of the
equation and the symmetry of the physical medium cause Laplace’s equation to
reduce to one of the standard equations of mathematical physics. For example,
consider a cylindrical configuration with coordinates r� �, and z and suppose this
configuration is axially and azimuthally uniform so that both � and z are ignorable
coordinates; i.e., the coefficients of the partial differential equation do not depend
on � or on z. Fourier analysis of Eq. (9.3) implies ' can be expressed as the linear
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superposition of modes varying as exp �im�+ ikz�. For each choice of m and k,
Eq. (9.3) becomes

�2'

�r2
+ 1
r

�'

�r
−
(
m2

r2
+k2

)
' = 0� (9.4)

Defining s = kr, this can be recast as

�2'

�s2
+ 1
s

�'

�s
−
(
1+ m

2

s2

)
' = 0� (9.5)

a modified Bessel’s equation. The solutions of Eq. (9.5) are the modified Bessel
functions Im�kr� and Km�kr�. Thus, the general solution of Laplace’s equation
here is

'�r� �� z�=
�∑

m=−�

∫
�am�k�Im�kr�+bm�k�Km�kr�� eim�+ikzdk� (9.6)

where the coefficients am�k�� bm�k� are determined by specifying either ' or its
normal derivative on the bounding surface. Analogous solutions can be found in
geometries having other symmetries.
This behavior can be viewed in a more general way. Equation (9.3) states that

the sum of partial second derivatives in two or three different directions is zero,
so at least one of these terms must be negative and at least one term must be
positive. Since negative ' ′′/' corresponds to oscillatory (harmonic) behavior and
positive ' ′′/' corresponds to exponential (non-harmonic) behavior, any solution
of Laplace’s equation must be oscillatory in one or two directions (the � and
z directions for the cylindrical example here), and exponentially growing or
decaying in the remaining direction or directions (the r direction for the cylindrical
example here).
Non-vacuum magnetic fields are more complicated than vacuum fields and,

unlike vacuum fields, are not uniquely determined by the surface boundary condi-
tions. This is because non-vacuum fields are determined by both the current
distribution within the volume and the surface boundary conditions. Vacuum
fields are distinguished from non-vacuum fields because vacuum fields are the
lowest energy fields satisfying given boundary conditions on the surface S of a
volume V . Let us now prove this statement.
Consider a volume V bounded by a surface S over which boundary conditions

are specified. Let Bmin�r� be the magnetic field having the lowest stored magnetic
energy of all possible magnetic fields satisfying the prescribed boundary condi-
tions. We use methods of variational calculus to prove this lowest energy field is
the vacuum field.
Consider some slightly different field, denoted as B�r�, that satisfies the same

boundary conditions as Bmin. This slightly different field can be expressed as
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Bmin

W

δ B

B(r)

Fig. 9.1 Magnetic field energy for different configurations. Bmin is the
configuration with minimum magnetic energy for a given boundary condition.

B�r� = Bmin�r�+�B�r�, where �B�r� is a small arbitrary variation about Bmin.
This situation is sketched in a qualitative fashion in Fig. 9.1, where the horizontal
axis represents a continuum of different allowed choices for the vector function
B�r�. Since B�r� satisfies the same boundary conditions as Bmin� �B�r� must
vanish on S. The magnetic energy W associated with B�r� can be evaluated as

2�0W =
∫
V
�Bmin +�B�2 d3r

=
∫
V
B2
mind

3r+2
∫
V
�B ·Bmind

3r+
∫
V
��B�2 d3r� (9.7)

If the middle term does not vanish, �B could always be chosen to be antiparallel
to Bmin inside V , in which case �B ·Bmin would be negative. Since �B is assumed
small, �B ·Bmin would be larger in magnitude than ��B�2. Such a choice for �B
would make W lower than the energy of the assumed lowest energy field, thus
contradicting the assumption that Bmin is the lowest energy field. Thus, the only
way to ensure that Bmin is indeed the true minimum is to require∫

v
�B ·Bmind

3r = 0 (9.8)

no matter how �B is chosen. Using �B = 	 × �A and the vector identity 	 ·
�A×B�= B ·	×A−A ·	×B, Eq. (9.8) can be integrated by parts to obtain∫

V
�	 · ��A×Bmin�+�A ·	×Bmin�d

3r = 0� (9.9)

The first term can be transformed into a surface integral over S using Gauss’
theorem. This surface integral vanishes because �A must vanish on the bounding
surface (recall that the variation satisfies the same boundary condition as the
minimum energy field). Because �B is arbitrary within V , �A must also be
arbitrary within V and so the only way for the second term in Eq. (9.9) to vanish
is to have 	×Bmin = 0. Thus, Bmin must be a vacuum field.
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An important corollary is as follows: suppose boundary conditions are speci-
fied on the surface enclosing some volume. These boundary conditions can be
considered as “rules” that must be satisfied by any solution to the equations. All
configurations satisfying the imposed boundary condition and having finite current
within the volume are not in the lowest energy state. Thus, non-vacuum fields can,
in principle, have free energy available for driving boundary-condition-preserving
instabilities.

9.3 Force-free fields

Although the vacuum field is the lowest energy configuration satisfying prescribed
boundary conditions, non-vacuum configurations do not always “decay” to this
lowest energy state. This is because there also exists a family of higher energy
configurations to which the system may decay; these are the so-called force-free
states. The current is not zero in a force-free state but the magnetic force is zero
because the current density is everywhere parallel to the magnetic field. Thus
J×B vanishes even though both J and B are finite. If a plasma not initially
in a force-free state somehow evolves towards a force-free state, it will become
“stuck” in the force-free state because, by definition, no forces can act on the
plasma to move it out of the force-free state. The magnetic energy of a force-free
field is not the absolute minimum energy for the specified boundary conditions,
but it is a local minimum in configuration space as sketched in Fig. 9.2. This
hierarchy of states is somewhat analogous to the states of a quantum system –
the vacuum field is the analog of the ground state and the force-free states are the
analogs of higher energy quantum states.

magnetic
energy

vacuum field

force-free field (typical)

configuration

Fig. 9.2 Sketch of magnetic energy dependence on configuration of a system
with fixed, specified boundary conditions. The variation of the configuration
would correspond to different internal current profiles. The force-free configura-
tions are local energy minima while the vacuum configuration has the absolute
lowest minimum.
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9.4 Magnetic pressure and tension

Much useful insight can be obtained by considering the force between two parallel
current-carrying wires as shown in Fig. 9.3. Calculation of the field B observed
at one wire due to the current in the other shows that the J×B force is such as
to push the wires together; i.e., parallel currents attract each other. Conversely,
antiparallel currents repel each other.
A bundle of parallel wires as shown in Fig. 9.4 will therefore mutually attract

each other resulting in an effective net force that acts to reduce the diameter of the
bundle. The bundle could be replaced by a distributed current such as the current
carried by a finite-radius, cylindrical plasma. This contracting, inward-directed
force is called the pinch force or the pinch effect.

magnetic field
due to first wire

first wire

second wire

force

force

1

force due to magnetic field
of second wire acting on
current of first wire

force due to magnetic field
of first wire acting on
current of second wire

B

1

Fig. 9.3 Parallel currents attract each other.

bundle of parallel wires
coming out of paper

radial inward
“pinch” force

B

Fig. 9.4 Bundle of currents attract each other giving effective radial inward
pinch force.
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The pinch force may be imagined as being due to a “tension” in the azimuthal
magnetic field that wraps around the distributed current. Extending this metaphor,
the azimuthal magnetic field is visualized as acting like an “elastic band” which
encircles the distributed current and squeezes or pinches the current to a smaller
diameter. This concept is consistent with the situation of two permanent magnets
attracting each other when the respective north and south poles face each other.
The magnetic field lines go from the north pole of one magnet to the south pole
of the other and so one can imagine that the attraction of the two magnets is due
to tension in the field lines spanning the gap between the two magnets.
Now consider a current-carrying loop such as is shown in Fig. 9.5. Because

the currents on opposite sides of the loop flow in opposing directions, there will
be a repulsive force between the current element at each point and the current
element on the opposite side of the loop. The net result is a force directed to
expand the diameter of the loop. This force is called the hoop force or hoop stress.
Hoop force may also be interpreted metaphorically by introducing the concept
of magnetic pressure. As shown in Fig. 9.5, the magnetic field lines linking the
current are more dense inside the loop than outside, a purely geometrical effect
resulting from the curvature of the current path. Since magnetic field strength is
proportional to field line density, the magnetic field is stronger on the inside of
the loop than on the outside, i.e., B2 is stronger on the inside than on the outside.
The magnetic field in the plane of the loop is normal to the plane and so one
can explain the hoop force by assigning a magnetic “pressure” proportional to B2

acting in the direction perpendicular to B. Because B2 is stronger on the inside of
the loop than on the outside, there is a larger magnetic pressure on the inside. The
outward force due to this pressure imbalance is consistent with the hoop force.
The combined effects of magnetic pressure and tension can be visualized by

imagining a current-carrying loop where the conductor has a finite diameter.
Suppose this loop initially has the relative proportions of an automobile tire, as
shown in Fig. 9.6. The hoop force will cause the diameter of the loop to increase,
while the pinch force will cause the diameter of the conductor to decrease. The net

perspective view
of current loop

top view
of current loop

B
I

I
B

Fig. 9.5 Perspective and top view of magnetic fields generated by a current loop.
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“bicycle tire”

“auto tire”

Fig. 9.6 Magnetic forces act to transform a fat, small current loop (auto tire)
into a large, skinny loop (bicycle tire).

result is that these combined forces will cause the automobile tire to evolve
towards the relative proportions of a bicycle tire (large major radius, small minor
radius).

9.5 Magnetic stress tensor

The existence of magnetic pressure and tension shows that the magnetic force is
different in different directions, and so the magnetic force ought to be character-
ized by an anisotropic stress tensor. To establish this mathematically, the vector
identity 	B2/2 = B ·	B+B×	 ×B is invoked so that the magnetic force can
be expressed as

J×B = 1
�0
�	×B�×B

= 1
�0

[
−	

(
B2

2

)
+B ·	B

]
= − 1

�0
	 ·
[
B2

2
I−BB

]
� (9.10)

where I is the unit tensor and the relation 	 · �BB�= �	 ·B�B+B ·	B = B ·	B
has been used. At any point r a local Cartesian coordinate system can be defined
with z axis parallel to the local value of B so that Eq. (9.1) can be written as

�

[
�U
�t

+U ·	U
]

= −	 ·

⎡⎢⎢⎢⎢⎢⎢⎣
P+ B2

2�0

P+ B2

2�0

P− B2

2�0

⎤⎥⎥⎥⎥⎥⎥⎦ (9.11)
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showing again that the magnetic field acts like a pressure in the directions trans-
verse to B (i.e., x� y directions in the local Cartesian system) and like a tension
in the direction parallel to B.
While the above interpretation is certainly useful, it can be somewhat mislead-

ing because it might be interpreted as implying the existence of a force in the
direction of B when in fact no such force exists because J×B clearly does not
have a component in the B direction. A more accurate way to visualize the rela-
tion between magnetic pressure and tension is to rearrange the second line of
Eq. (9.10) as

J×B = 1
�0

[
−	

(
B2

2

)
+B2B̂ ·	B̂+ B̂B̂ ·	

(
B2

2

)]
= 1
�0

[
−	⊥

(
B2

2

)
+B2


]
(9.12)

or

J×B = 1
�0

[
−	⊥

(
B2

2

)
+B2


]
� (9.13)

Here


 = B̂ ·	B̂ = − R̂
R

(9.14)

is a measure of the curvature of the magnetic field at a selected point on a field
line and, in particular, R is the local radius of curvature vector. The vector R
goes from the center of curvature to the selected point on the field line. The 


term in Eq. (9.13) describes a force that tends to straighten out magnetic curvature
and is a more precise way for characterizing field line tension (recall that tension
similarly acts to straighten out curvature). The term involving 	⊥B2 portrays a
magnetic force due to pressure gradients perpendicular to the magnetic field and
is a more precise expression of the hoop force.
In our earlier discussion it was shown that the vacuum magnetic field is the

lowest energy state of all fields satisfying prescribed boundary conditions. A
vacuum field might be curved for certain boundary conditions (e.g., a permanent
magnet with finite dimensions) and, in such a case, the two terms in Eq. (9.13) are
both finite but exactly cancel each other. We can think of the minimum-energy
state for given boundary conditions as being analogous to the equilibrium state of
a system of stiff rubber hoses that have been pre-formed into shapes having the
morphology of the vacuum magnetic field and that have their ends fixed at the
bounding surface. Currents will cause the morphology of this system to deviate
from the equilibrium state. However, since any deformation requires work to
be done on the system, currents invariably cause the system to be in a higher
energy state.
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9.6 Flux preservation, energy minimization, and inductance

Another useful way of understanding magnetic field behavior relates to the concept
of electric circuit inductance. The self-inductance L of a circuit component is
defined as the magnetic flux  linking the component divided by the current I
flowing through the component, i.e.,

L=  

I
� (9.15)

Consider an arbitrary short-circuited coil with current I located in an infinite
volume V and let C denote the three-dimensional spatial contour traced out by
the wire constituting the coil. The total magnetic flux linked by the turns of the
coil can be expressed as

 =
∫

B ·ds =
∫
	×A ·ds =

∮
C
A ·dl� (9.16)

where the surface integral is over the area elements linked by the coil turns. The
energy contained in the magnetic field produced by the coil is

W =
∫
V

B2

2�0
d3r

= 1
2�0

∫
V
B ·	×Ad3r� (9.17)

However, using the vector identity 	 ·�A×B�=B ·	×A−A ·	×B this magnetic
energy can be expressed as

W = 1
2�0

∫
V
A ·	×Bd3r+ 1

2�0

∫
S�

ds ·A×B� (9.18)

where Gauss’ law has been invoked to obtain the second term, an integral over
the surface at infinity, S�. This surface integral vanishes because (i) at infinity
the magnetic field must fall off at least as fast as a dipole, i.e., B ∼ R−3, where
R is the distance to the origin, (ii) the vector potential magnitude A scales as the
integral of B so A∼ R−2, and (iii) the surface at infinity scales as R2.

Using Ampère’s law, Eq. (9.18) can thus be rewritten as

W = 1
2

∫
V
A ·Jd3r� (9.19)

However, J is only finite in the coil wire and so the integral reduces to an integral
over the volume of the wire. A volume element of wire can be expressed as
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d3r = ds ·dl, where dl is an element of length along the wire, and ds is the cross-
sectional area of the wire. Since J and dl are parallel, they can be interchanged
in Eq. (9.19) which becomes

W = 1
2

∫
Vcoil

A ·dl J ·ds

= I

2

∮
A ·dl

= I 

2

=  2

2L

= 1
2
LI2� (9.20)

where J ·ds = I is the current flowing through the wire. Thus, the energy stored
in the magnetic field produced by a coil is just the inductive energy of the coil.
If the coil is perfectly short-circuited, then it must be flux conserving, for if

there were a change in flux, a voltage would appear across the ends of the coil.
A closed current flowing in a perfectly conducting plasma is thus equivalent to
a short-circuited current-carrying coil and so the perfectly conducting plasma can
be considered as a flux-conserver. If flux is conserved, i.e., = const., the second
from last line in Eq. (9.20) shows that the magnetic energy of the system will be
lowered by any rearrangement of circuit topology that increases self-inductance.
Hot plasmas are reasonably good flux conservers because of their high electrical

conductivity. Thus, any inductance-increasing change in the topology of plasma
currents will release free energy, which could be used to drive an instability. Since
forces act so as to reduce the potential energy of a system, magnetic forces due to
current flowing in a plasma will always act so as to increase the self-inductance
of the configuration. One can therefore write the force F due to a flux-conserving
change in inductance L as

F = − 
2

2
	

(
1
L

)
� (9.21)

The pinch force is consistent with this interpretation since the inductance of a
conductor depends inversely on its radius. The hoop force is also consistent with
this interpretation since inductance of a current loop increases with the major
radius of the loop. More complicated behavior can also be explained, especially
the kink instability to be discussed later. In the kink instability, current initially
flowing in a straight line develops an instability that causes the current path to
become helical. Since a coil (helix) has more inductance than a straight length
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of the same wire, the effect of the kink instability also acts so as to increase the
circuit self-inductance.

9.7 Static versus dynamic equilibria

We define (i) a static equilibrium to be a time-independent solution to Eq. (9.1)
having no flow velocity and (ii) a dynamic equilibrium as a solution with steady-
state flow velocities. Thus, U = 0 for a static equilibrium whereas U is finite
and steady-state for a dynamic equilibrium. For a static equilibrium the MHD
equation of motion reduces to

	P = J×B� (9.22)

For a dynamic equilibrium the MHD equation of motion reduces to

�U ·	U+	P = J×B+��	2U� (9.23)

where the last term represents a viscous damping and � is the kinematic viscosity.
By taking the curl of these last two equations we see that for static equilibria the
magnetic force must be conservative, i.e., 	× �J×B�= 0, whereas for dynamic
equilibria the magnetic force is typically not conservative since in general 	 ×
�J×B� �= 0. Thus, the character of the magnetic field is quite different for the
two cases. Static equilibria are relevant to plasma confinement devices such as
tokamaks, stellarators, reversed field pinches, and spheromaks, while dynamic
equilibria are mainly relevant to arcs, jets, and magnetoplasmadynamic thrusters,
but can also be relevant to tokamaks, etc., if there are flows. Both static and
dynamic equilibria occur in space plasmas.

9.8 Static equilibria

9.8.1 Static equilibria in two dimensions: the Bennett pinch

The simplest static equilibrium was first investigated by Bennett (1934) and is
called the Bennett pinch or z-pinch (here z refers to the direction of the current).
This configuration, sketched in Fig. 9.7, consists of an infinitely long axisymmetric
cylindrical plasma with axial current density Jz = Jz�r� and no other currents.
The axial current flowing within a circle of radius r is

I�r�=
∫ r
0
2r ′Jz�r ′�dr ′ (9.24)

and the axial current density is related to this integrated current by

Jz�r�= 1
2r

�I

�r
� (9.25)
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z

r

finite pressure
in cylinder

hydrodynamic pressure pushes out

cylindrical plasma with
axial current density Jz(r)

magnetic force pinches in

Fig. 9.7 Geometry of Bennett pinch.

Since Ampère’s law gives

B��r�= �0I�r�

2r
� (9.26)

Eq. (9.22) can be written

r2
�P

�r
= − �0

82

�I2

�r
� (9.27)

Integrating Eq. (9.27) from r = 0 to r = a, where a is the outer radius of the
cylindrical plasma, gives the relation∫ a

0
r2
�P

�r
dr = [

r2P�r�
]a
0 −2

∫ a
0
rP�r�dr = −�0I

2�a�

82
� (9.28)

The integrated term vanishes at both r = 0 and r = a since P�a�= 0 by definition.
If the temperature is uniform, the pressure can be expressed as P�r� = n�r��T
and so Eq. (9.28) can be expressed as

I2 = 8N�T
�0

� (9.29)

where N = ∫ a
0 n�r�2rdr is the number of particles per axial length. Equa-

tion (9.29), called the Bennett relation, shows that the current required to confine
a given N and T is independent of the details of the internal density profile. This
relation describes the simplest non-trivial MHD equilibrium and suggests that
quite modest currents could contain substantial plasma pressures. This relation
motivated the design of early magnetic fusion confinement devices but, as will
be seen, it is overly optimistic because simple z-pinch equilibria turn out to be
highly unstable.
Confinement using currents flowing in the azimuthal direction is also possi-

ble, but this configuration, known as a �-pinch, is fundamentally transient. In a
�-pinch, a rapidly changing azimuthal current in a coil surrounding a cylindrical
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plasma

coil current

plasma surface current
Bz

Bz

Bz

Bz

Bz Bz

Bz

Bz

Bz

Bz

Fig. 9.8 Theta pinch configuration. Rapidly changing azimuthal coil current
induces equal and opposite azimuthal current in plasma surface. Pressure of Bz
between these two currents pushes in on plasma and provides confinement.

plasma creates a transient Bz field as shown in Fig. 9.8. Because the conducting
plasma conserves magnetic flux, the transient Bz field cannot penetrate the plasma
and so is confined to the vacuum region between the plasma and the coil. This
exclusion of the Bz field by the plasma requires the existence in the plasma surface
of an induced azimuthal current that creates in the plasma interior a magnetic field,
which exactly cancels the coil-produced transient Bz field. The radial confining
force results from a radially inward force J×B = J��̂×Bzẑ, where Bz is the
magnetic field associated with the current in the coil and J� is the plasma surface
current. An alternative but equivalent point of view is to invoke the concept that
opposite currents repel and argue that the azimuthal current in the coil repels the
oppositely directed azimuthal current in the plasma surface, thereby pushing the
plasma inwards and so balancing the outwards force due to plasma pressure. The
�-pinch configuration is necessarily transient, because the induced azimuthally
directed surface current cannot be sustained in steady state.

9.8.2 Impossibility of self-confinement of current-carrying plasma in three
dimensions: the virial theorem

The Bennett analysis showed that axial currents flowing in an infinitely long
cylindrical plasma generate a pinch force, which confines a finite pressure plasma.
The inward pinch force balances the outward force associated with the pressure
gradient. The question now is whether this two-dimensional result can be extended
to three dimensions; i.e., is it possible to have a finite-pressure three-dimensional
plasma, as shown in Fig. 9.9, that is confined entirely by currents circulating
within the plasma? To be more specific, is it possible to have a finite-radius
plasma sphere surrounded by vacuum where the confinement of the finite plasma
pressure is entirely provided by the magnetic force of currents circulating in the
plasma; i.e., can the plasma hold itself together by its own “bootstraps?” The
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Fig. 9.9 Plasma sphere with finite pressure surrounded by vacuum.

answer, a resounding “no,” is provided by a virial theorem due to Shafranov
(1966). A virial is a suitably weighted integral over the entirety of a system and
contains information about how an extensive property such as energy is partitioned
in the system. For example, in mechanics the virial can be the time average of
the potential or of the kinetic energy.
The MHD virial theorem is obtained by supposing a self-confining configura-

tion exists and then showing this supposition leads to a contradiction.
We therefore postulate the existence of a spherical plasma with the following

properties:

1. the plasma has finite radius a and is surrounded by vacuum,
2. the plasma is in static MHD equilibrium,
3. the plasma has finite internal pressure and the pressure gradient is entirely balanced

by magnetic forces due to currents circulating in the plasma; i.e., there are no currents
in the surrounding vacuum region.

Using Eqs. (9.10) and (9.11) the static MHD equilibrium can be expressed as

	 ·T = 0� (9.30)

where the tensor T is defined as

T =
(
P+ B2

2�0

)
I− 1

�0
BB� (9.31)

Let r = xx̂+ yŷ+ zẑ be the vector from the center of the plasma to the point of
observation and consider the virial expression

	 · �T · r� = ∑
jk

�

�xj

(
Tjkxk

)
= �	 ·T� · r+∑

jk

Tjk
�

�xj
xk

= Trace T� (9.32)
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where Trace T =∑
jk Tjk�jk. From Eq. (9.31) (or, equivalently from the matrix

form in Eq. (9.11)) it is seen that

Trace T = 3P+B2/2�0

is positive-definite.
We now integrate both sides of Eq. (9.32) over all space. Since the right-hand

side of Eq. (9.32) is positive definite, the integral of the right-hand side over all
space is finite and positive. The integral of the left-hand side can be transformed
to a surface integral at infinity using Gauss’ theorem∫

d3r	 · �T · r�=
∫
S�
ds ·T · r

=
∫
S�
ds ·

[(
P+ B2

2�0

)
I− 1

�0
BB
]

· r�
(9.33)

Since the plasma is assumed to have finite extent, P is zero on the surface at
infinity. The magnetic field can be expanded in multipoles with the lowest order
multipole being a dipole. The magnetic field of a dipole scales as r−3 for large r
while the surface area

∫
ds scales as r2. Thus the left-hand side term scales as∫

dsB2r∼r−3 and so vanishes as r→�. This is in contradiction to the right-hand
side being positive definite and so the set of initial assumptions must be erroneous.
Thus, any finite extent, three-dimensional, static plasma equilibrium must involve
at least some currents external to the plasma. A finite extent, three-dimensional
static plasma can therefore only be in equilibrium if at least some of the magnetic
field is produced by currents in coils that are both external to the plasma and
held in place by some mechanical structure. If the coils were not supported by
a mechanical structure, then the current in the coils could be considered as part
of the MHD plasma and the virial theorem would be violated. In summary, a
finite extent three-dimensional plasma in static equilibrium with a finite internal
hydrodynamic pressure P must ultimately have some tangible exterior object to
“push against.” The buttressing is provided by magnetic forces acting between
currents in external coils and currents in the plasma.

9.8.3 Three-dimensional static equilibria: the Grad–Shafranov equation

Despite the simple appearance of Eq. (9.22), its three-dimensional solution is far
from trivial. Before even attempting to find a solution, it is important to decide
the appropriate way to pose the problem, i.e., it must be decided which quantities
are prescribed and which are to be solved for. For example, one might imagine
prescribing a pressure profile P�r� and then using Eq. (9.22) to determine a
corresponding B�r� with associated current J�r�; alternatively one could imagine
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prescribing B�r� and then using Eq. (9.22) to determine P�r�. Unfortunately,
neither of these approaches work in general because solutions to Eq. (9.22) exist
for only a very limited set of functions.
The reason why an arbitrary magnetic field cannot be specified is that

	×	P = 0 is always true by virtue of a mathematical identity whereas
	×�J×B�= 0 is true only for certain types of B�r�. It is also true that an arbitrary
equilibrium pressure profile P�r� cannot be prescribed (for example, see Assign-
ment 2 where it is demonstrated that no J×B force exists that can confine a plasma
with a spherically symmetric pressure profile). Equilibria thus exist only for
certain specific situations, and these situations typically require symmetry in some
direction. We shall now examine a very important example, namely static equilib-
ria that are azimuthally symmetric about an axis (typically defined as the z axis).
This symmetry applies to a wide variety of magnetic confinement devices used
in magnetic fusion research, for example tokamaks, reversed field pinches,
spheromaks, and field reversed theta pinches.
We start the analysis by assuming azimuthal symmetry about the z axis of a

cylindrical coordinate system "r��� z# so any physical quantity f has the property
�f/��= 0. Because of the identity 	×	�= 0, algebraic manipulations become
considerably simplified if vectors in the � direction are expressed in terms of
	� = �̂/r rather than in terms of �̂. As sketched in Fig. 9.10 the term toroidal
denotes vectors in the � direction (long way around a torus) and the term poloidal
denotes vectors in the r− z plane.

The most general form for an axisymmetric magnetic field is

B = 1
2
�	&×	�+�0I	�� � (9.34)

&�r� z� is called the poloidal flux and I�r� z� is the current linked by a circle of
radius r with center on the axis at axial location z. The toroidal magnetic field
then is

Btor = B��̂= �0I

2
	�= �0I

2r
�̂ (9.35)

z

toroidal
vector

poloidal
vector

Fig. 9.10 Toroidal vectors and poloidal vectors.



322 MHD equilibria

showing that the functional form of Eq. (9.34) is consistent with Ampère’s law∮
B ·dl = �0I . The poloidal magnetic field is

Bpol =
1
2
�	&×	�� � (9.36)

Integration of the poloidal magnetic field over the area of a circle of radius r with
center at axial location z gives∫ r

0
Bpol ·ds =

∫ r
0

1
2
	&×	� · ẑ2r ′dr ′ = &�r� z�� (9.37)

thus &�r� z� is the poloidal flux at location r� z. The concept of poloidal flux
depends on the existence of axisymmetry, which makes it always possible to
associate any location r� z with a circular area of radius r centered at z= 0.

Axisymmetry also provides a useful relationship between toroidal and poloidal
vectors. In particular, the curl of a toroidal vector is poloidal since

	×Btor = �0

2
	I×	� (9.38)

and similarly the curl of a poloidal vector is toroidal since

	×Bpol = 	× (Br r̂+Bzẑ)= �̂
(
�Br
�z

− �Bz
�r

)
� (9.39)

The curl of the poloidal magnetic field is a Laplacian-like operator on & since

	�·	×Bpol=	 ·(Bpol×	�)=	 ·
(

1
2
�	&×	��×	�

)
= − 1

2
	 ·
(
1
r2
	&

)
�

(9.40)
a relationship established using the vector identity 	 · �F×G� = G ·	 ×F−F ·
	×G. Because 	×Bpol is purely toroidal and �̂= r	�, one can write

	×Bpol = − r2

2
	 ·
(
1
r2
	&

)
	�� (9.41)

Ampère’s law states 	 ×B = �0J. Thus, from Eqs. (9.38) and (9.41) the
respective toroidal and poloidal currents are

Jtor = − r2

2�0
	 ·
(
1
r2
	&

)
	� (9.42)

and

Jpol =
1
2
	I×	�� (9.43)
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We are now in a position to evaluate the magnetic force in Eq. (9.22). After
decomposing the magnet field and current into toroidal and poloidal components,
Eq. (9.22) becomes

	P = Jpol×Btor +Jtor ×Bpol+Jpol×Bpol� (9.44)

The Jpol×Bpol term is in the toroidal direction and is the only toroidally directed
term on the right-hand side of the equation. However, �P/�� = 0 because all
physical quantities are independent of � and so Jpol×Bpol must vanish. This
implies

�	I×	��× �	&×	��= 0� (9.45)

which further implies that 	I must be parallel to 	&. An arbitrary displacement
dr results in respective changes in current and poloidal flux dI = dr ·	I and
d& = dr ·	& so

dI
d&

= dr ·	I
dr ·	& � (9.46)

Since 	I is parallel to 	&, the derivative dI/d& is always defined and so, in
principle, may always be integrated. Thus, I must be a function of & and it is
therefore always possible to write

	I�&�= I ′�&�	&� (9.47)

where prime means derivative with respect to the argument. The poloidal current
can thus be expressed in terms of the poloidal flux function as

Jpol =
I ′

2
	&×	�� (9.48)

Substitution for the currents and magnetic fields in Eq. (9.44) gives the expression

	P = I ′

2
�	&×	��× �0I

2
	�−	� r2

2�0
	 ·
(
1
r2
	&

)
× 1

2
�	&×	��

= −
[
�0II

′

�2r�2
+ 1
�2�2�0

	 ·
(
1
r2
	&

)]
	&� (9.49)

This gives the important result that 	P must also be parallel to 	&, which in
turn implies P = P�&� so 	P = P′	&. Equation (9.49) now has a common vector
factor 	&, which may be divided out, in which case the original vector equation
reduces to the scalar equation

	 ·
(
1
r2
	&

)
+42�0P

′ + �
2
0

r2
II ′ = 0� (9.50)

This equation, known as the Grad–Shafranov equation (Grad and Rubin 1958,
Shafranov 1966), has the peculiarity that & shows up as both an independent
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variable and as a dependent variable, i.e., there are both derivatives of & and
derivatives with respect to &. Axisymmetry has made it possible to transform a
three-dimensional vector equation into a one-dimensional scalar equation. It is
not surprising that axisymmetry would transform a three-dimensional system into
a two-dimensional system, but the transformation of a three-dimensional system
into a one-dimensional system suggests more profound physics is involved than
just geometrical simplification.
The Grad–Shafranov equation can be substituted back into Eq. (9.42) to give

Jtor =
(
2r2P′ + �0

2
II ′
)
	� (9.51)

so the total current can be expressed as

J = Jpol+Jtor = I ′

2
	&×	�+

(
2r2P′ + �0

2
II ′
)
	�= 2r2P′	�+ I ′B�

(9.52)
The last term is called the “force-free” current because it is parallel to the magnetic
field and so provides no force. The first term on the right-hand side is the
diamagnetic current.
The Grad–Shafranov equation is a nonlinear equation in & and, in general,

cannot be solved analytically. It does not in itself determine the equilibrium
because it involves three independent quantities, &�P�&�, and I�&�. Thus, use of
the Grad–Shafranov equation involves specifying two of these functions and then
solving for the third. Typically P�&� and I�&� are specified (either determined
from other equations or from experimental data) and then the Grad–Shafranov
equation is used to determine &.
Although the Grad–Shafranov equation must in general be solved numerically,

there exists a limited number of analytic solutions. These can be used as idealized
examples that demonstrate typical properties of axisymmetric equilibria. We shall
now examine one such analytic solution, the Solov’ev solution (Solov’ev 1976).
The Solov’ev solution is obtained by invoking two assumptions: first, the

pressure is assumed to be a linear function of &,

P = P0 +�& (9.53)

and second, I is assumed to be constant within the plasma so

I ′ = 0� (9.54)

The second assumption corresponds to having all the z-directed current flowing
on the z axis, so that away from the z axis, the toroidal field is a vacuum field
(cf. Eq. (9.35)). This arrangement is equivalent to having a zero-radius current-
carrying wire going up the z axis acting as the sole source for the toroidal magnetic
field. The region over which the Solev’ev solution applies excludes the z axis
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and so the problem is analogous to a central force problem where the source of
the central force is a singularity at the origin. The excluded region of the z axis
corresponds to the “hole in the doughnut” of a tokamak. In the more general case
where I ′ is finite, the plasma is either diamagnetic (toroidal field is weaker than
the vacuum field) or paramagnetic (toroidal field is stronger than the vacuum
field).
Using the two simplifying assumptions provided by Eqs. (9.53) and (9.54), the

Grad–Shafranov equation reduces to

r
�

�r

(
1
r

�&

�r

)
+ �

2&

�z2
+42r2�0�= 0� (9.55)

which has the exact solution

&�r� z�= &0
r2

r40

(
2r20 − r2 −4�2z2

)
� (9.56)

where &0� r0� and � are constants; Eq. (9.56) is called the Solov’ev solution.
Figure 9.11 shows a contour plot of & as a function of r/r0 and z/z0 for the
case �= 1. Note that there are three distinct types of curves in Fig. 9.11, namely
(i) open curves going to z= ±�, (ii) concentric closed curves, and (iii) a single
curve, called the separatrix, that separates the first two types of curves.

flux contours
2

1

0

–1

–2
0.0 0.5 1.0

r/r0

z/z0

1.5 2.0

Fig. 9.11 Contours of constant flux of Solov’ev solution to Grad–Shafranov equation.
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Even though it is an idealization, the Solov’ev solution illustrates many
important features of three-dimensional, static MHD equilibria. Let us now
examine some of these features. The constants in Eq. (9.56) have been chosen
so that & = &0 at r = r0� z= 0. The location r = r0� z= 0 is called the magnetic
axis because it is the axis linked by the closed contours of poloidal flux.
Let us temporarily assume &0 is positive. Examination of Eq. (9.56) shows that

if & is positive, then the quantity 2r20 − r2 −4�2z2 is positive and vice versa. For
any negative value of &, Eq. (9.56) can be satisfied by making r very small and
z very large. In particular, if r is infinitesimal then z must become infinite. Thus,
all contours for which & is negative go to z= ±�� these contours are the open
or type (i) contours.
On the other hand, if & is positive then it has a maximum value of &0, which

occurs on the magnetic axis and if 0 < & < &0 then & must be located at some
point outside the magnetic axis, but inside the curve 2r20 − r2−4�2z2 = 0. Hence
all contours of positive & must lie inside the curve 2r20 − r2 − 4�2z2 = 0 and
correspond to field lines that do not go to infinity. These contours are the closed
or type (ii) contours, since they form closed curves in the r� z plane.
The contour separating the closed contours from the contours going to infinity

is the separatrix and is given by the ellipse

r2 +4�2z2 = 2r20 � (9.57)

The magnetic axis is a local maximum of & if &0 is positive or a local minimum
if &0 is negative (the sign depends on the sense of the toroidal current). Thus, one
can imagine that a hill (or valley) of poloidal flux exists with apex (or bottom) at
the magnetic axis and in the vicinity of the apex (bottom) the contours of constant
& are circles or ellipses enclosing the magnetic axis. The degree of ellipticity of
these surfaces is determined by the value of �. These closed flux surfaces are a
set of nested toroidal surfaces sharing the same magnetic axis. The projection of
the total magnetic field lies in a flux surface since Eq. (9.34) shows

B ·	& = 0�

i.e., the magnetic field has no component in the direction normal to the flux
surface.
Direct substitution of Eq. (9.56) into Eq. (9.55) gives

�= 2&0
2r40�0

(
1+�2) (9.58)

so the pressure is

P�&�= P0 + 2&0
2r40�0

(
1+�2)&� (9.59)
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Pressure vanishes at the plasma edge so if &edge is the poloidal flux at the edge,
then the constant P0 is determined and Eq. (9.59) becomes

P�&�= 2&0
2r40�0

(
1+�2) [&−&edge

]
� (9.60)

In the earlier discussion of single particle motion it was shown that particles
were attached to flux surfaces. Particles starting on a particular flux surface remain
on that flux surface, although they may travel to any part of that flux surface.
The equilibrium prescribed by Eq. (9.56) is essentially a three-dimensional vortex
with pressure peaking on the magnetic axis and then falling monotonically to zero
at the edge.
This is a particularly simple solution to the Grad–Shafranov equation, but

nevertheless demonstrates several important features, namely:

1. Three-dimensional equilibria can incorporate closed nested poloidal flux surfaces that
are concentric about a magnetic axis. The magnetic axis is the local maximum or
minimum of the poloidal flux &.

2. There can also be open flux surfaces; i.e., flux surfaces that go to infinity.
3. The flux surface separating closed and open flux surfaces is called a separatrix.
4. The total magnetic field projects into the flux surfaces since B ·	& = 0.
5. Finite pressure corresponds to a depression (or elevation) of the poloidal flux. The

pressure maximum and flux extrema are located at the magnetic axis.
6. The poloidal magnetic field and associated poloidal flux & are responsible for plasma

confinement and result from the toroidal current. Thus toroidal current is essential for
confinement in an axisymmetric geometry. For a given P�&� the toroidal magnetic
field does not contribute to confinement if I ′ = 0. If I ′ is finite, plasma diamagnetism
or paramagnetism will affect P�&�. Although a vacuum toroidal field cannot directly
provide confinement, it can affect the rate of cross-field particle and energy diffusion
and hence the functional form of P�&�. For example, the frequency of drift waves will
be a function of the toroidal field and drift waves can cause an outward diffusion of
plasma across flux surfaces, thereby affecting P�&�.

7. The poloidal flux surfaces are related to the surfaces of constant canonical angular

momentum since Bpol = 	 × �&	�/2�= 	 ×
(
&�̂/2r

)
= 	 ×A��̂ implies A� =

&/2r. Thus, the canonical angular momentum can be expressed as

p� =mr2�̇+qrA�
=mrv�+ q&

2
� (9.61)

Surfaces of constant canonical angular momentum correspond to surfaces of constant
poloidal flux in the limit m→ 0. Because the system is toroidally symmetric (axisym-
metric) the canonical angular momentum of each particle is a constant of the motion
and so, to the extent that the particles can be approximated as having zero mass,
particle trajectories are constrained to lie on surfaces of constant &. Since p� is a
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conserved quantity, the maximum excursion a finite-mass particle can make from a
poloidal flux surface can be estimated by writing

�p� = � (mrv�+qrA�
)= 0� (9.62)

Thus,
v�

r
�r+�v�+ q

m
�r

1
r

�

�r

(
rA�

)= 0 (9.63)

or

�r = − r�v�

v�+ r�c�pol
� (9.64)

where �c�pol = qBpol/m is the cyclotron frequency measured using the poloidal
magnetic field. Since v� is of the order of the thermal velocity vT or smaller, if the
poloidal field is sufficiently strong to make the poloidal Larmor radius rlpol = vT/�c�pol
much smaller than the nominal configuration radius r, then the first term in the
denominator may be dropped. Since �v� is also of the order of the thermal velocity or
smaller, this gives the important result that a particle cannot deviate from its initial
flux surface by more than a poloidal Larmor radius. Since poloidal field is produced
by toroidal current, it is clear that particle confinement to axisymmetric flux surfaces
requires the existence of toroidal current.

Tokamaks, reverse field pinches, spheromaks, and field reversed configurations
are all magnetic confinement configurations having three-dimensional axisym-
metric equilibria similar to this Solov’ev solution and all have a toroidal current
producing a set of nested, closed poloidal flux surfaces that link a magnetic axis.
Stellarators are non-axisymmetric configurations that have poloidal flux surfaces
without toroidal currents; the advantage of current-free operation is offset by the
complexity of non-axisymmetry.

9.9 Dynamic equilibria: flows

MHD-driven flows are relevant to arcs, magnetoplasmadynamic thrusters, electric
currents in molten metals, structures on the solar corona, and astrophysical jets.
The basic mechanism driving MHD flows will be discussed in Section 9.9.1 using
the simplified assumptions of incompressibility and self-field only. The more
general situation where the plasma is compressible and where there are external,
applied magnetic fields in addition to the self-field will then be addressed in
Section 9.9.2.

9.9.1 Incompressible plasma with self-field only

MHD-driven flows involve situations where 	× �J×B� is finite. This means the
MHD force J×B is non-conservative, in which case its finite curl acts as a torque
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or equivalently as a source for hydrodynamic vorticity. When the MHD force
is non-conservative a closed line integral

∮
dl ·J×B will be finite, whereas in

contrast a closed line integral of a pressure gradient
∮
dl ·	P is always zero. Since

a pressure gradient cannot balance the torque produced by a non-conservative
J×B, it is necessary to include a vorticity-damping term (viscosity term) to allow
for the possibility of balancing this torque. Plasma viscosity is mainly due to
ion–ion collisions and is typically very small. With the addition of viscosity, the
MHD equation of motion becomes

�

(
�U
�t

+U ·	U
)

= J×B−	P+��	2U� (9.65)

where � is the kinematic viscosity. To focus attention on the generation, transport,
and decay of vorticity, the following simplifying assumptions are made:

1. The motion is incompressible so that �= const.
This is an excellent assumption for a molten metal, but questionable for a plasma.
However, the assumption could be at least locally reasonable for a plasma if the region
of vorticity generation is smaller in scale than regions of compression or rarefaction
or is spatially distinct from these regions. The consequences of compressibility will
be discussed later.

2. The system is cylindrically symmetric.
A cylindrical coordinate system r��� z can then be used and � is ignorable. This
geometry corresponds to magnetohydrodynamic thrusters and arcs.

3. The flow velocities U and the current density J are in the poloidal direction (i.e., r
and z directions). Restricting the current to be poloidal means that the magnetic field
is purely toroidal (see Fig. 9.10).

The most general poloidal velocity for a constant-density, incompressible fluid
has the form

U = 1
2
	� ×	�� (9.66)

where � �r� z� is the flux of fluid through a circle of radius r at location z. Note
the analogy to the poloidal magnetic flux function &�r� z� used in Eqs. (3.147)
and (9.34). Since U lies entirely in the r − z plane and since the system is
axisymmetric, the curl of U will be in the � direction. It is thus useful to define
a scalar cylindrical “vorticity” ' = r�̂ · 	 ×U; this definition differs slightly
from the conventional definition of vorticity (curl of velocity) because it includes
an extra factor of r. This slight change of definition is essentially a matter of
semantics, but makes the algebra more transparent.
Since 	�= �̂/r it is seen that

	×U = �̂

r
r�̂ ·	×U = '	� (9.67)
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and so

	×
(

1
2
	� ×	�

)
= '	�� (9.68)

Dotting Eq. (9.68) with 	� and using the vector identity 	� ·	×Q= 	 ·�Q×	��
gives

	 ·
(

1
2
�	� ×	��×	�

)
= '

r2
(9.69)

or

r2	 ·
(
1
r2
	�

)
= −2'� (9.70)

which is a Poisson-like relation between the vorticity and the stream function.
The vorticity plays the role of the source (charge-density) and the stream function
plays the role of the potential function (electrostatic potential). However, the
elliptic operator is not exactly a Laplacian and when expanded has the form

r2	 ·
(
1
r2
	�

)
= r �

�r

(
1
r

��

�r

)
+ �

2�

�z2
� (9.71)

which is just the operator in the Grad–Shafranov equation.
Since the current was assumed to be purely poloidal, the magnetic field must

be purely toroidal and so can be written as

B = �0

2
I	�� (9.72)

where I is the current through a circle of radius r at location z. This is consistent
with the integral form of Ampère’s law,

∮
B ·dl=�0I . The curl of Eq. (9.72) gives

	×B = �0

2
	I×	� (9.73)

showing that I acts like a stream-function for the magnetic field.
The magnetic force is therefore

J×B = 1
2
�	I×	��× �0

2
I	�= − �0

�2r�2
	

(
I2

2

)
� (9.74)

It is seen that there is an axial force if I2 depends on z� this is the essential
condition that produces axial flows in MHD arcs (Maecker 1955) and plasma
guns (Marshall 1960).
Using the identities 	U 2/2 = U ·	U+U×	 ×U and 	 ×	 ×U = −	2U =

	'×	� the equation of motion Eq. (9.65) becomes

�

(
�U
�t

+	 U
2

2
−U×'	�

)
= − �0

�2r�2
	

(
I2

2

)
−	P−��	'×	� (9.75)
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or

�

(
�U
�t

+	 U
2

2
−U×'	�

)
= − �0

�2�2
	

(
I2

2r2

)
+ �0I

2

�2�2
	

(
1
2r2

)
− 	P−��	'×	�� (9.76)

Every term in this equation is either a gradient of a scalar or else can be expressed
as a cross-product involving 	�. The equation can thus be regrouped as

	

(
�U 2

2
+ �0

�2�2
I2

2r2
+P

)
+
(
�

2
	
��

�t
−�U'− �0I

2

�2r�2
ẑ+��	'

)
×	�= 0�

(9.77)
Similarly, the MHD Ohm’s law E+U×B = �J can be written as

−�A
�t

−	V +U× �0

2
I	�= �

2
	I×	�� (9.78)

where V is the electrostatic potential. Since B is purely toroidal, A is poloidal
and so is orthogonal to 	�. Thus, both the equation of motion and Ohm’s law
are equations of the form

	g+Q×	�= 0� (9.79)

which is the most general form of an axisymmetric partial differential equation
involving a potential. Two distinct scalar partial differential equations can be
extracted from Eq. (9.79) by (i) operating with 	� · 	× and (ii) taking the
divergence. Doing the former it is seen that Eq. (9.79) becomes

	� ·	× �Q×	��= 0 (9.80)

or

	 ·
(
1
r2
Qpol

)
= 0� (9.81)

Applying this procedure to Eq. (9.77) gives

�

2
�

�t

(
	 · 1
r2
	�

)
−�	 ·
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1
r2
U'
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−	 ·
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2r2
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+��	 ·
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1
r2
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= 0

(9.82)
or

�

�t

( '
r2

)
+	 ·

(
U
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r2

)
= − �0

42�r4
�I2

�z
+�	 ·

(
1
r2
	'

)
� (9.83)
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Since 	 ·U = 0, this can also be written as

�

�t

( '
r2

)
+U ·	

( '
r2

)
= − �0

42�r4
�I2

�z
+�	 · 1

r2
	'� (9.84)

which shows that if there is no viscosity and if �I2/�z= 0, then the scaled vorticity
'/r2 convects with the fluid; i.e., is frozen into the fluid. The viscous term on the
right-hand side describes a diffusive-like dissipation of vorticity. The remaining
term r−4�I2/�z acts as a vorticity source and is finite only if I2 is non-uniform
in the z direction. The vorticity source has a strong r−4 weighting factor so axial
non-uniformities of I near r = 0 dominate. Positive ' corresponds to a clockwise
rotation in the r − z plane. If I2 is an increasing function of z then the source
term is negative, implying that a counterclockwise vortex is generated and vice
versa. Suppose as shown in Fig. 9.12 that the current channel becomes wider with
increasing z, corresponding to a fanning out of the current with increasing z. In
this case �I2/�z will be negative and a clockwise vortex will be generated. Fluid
will flow radially inwards at small z, then flow vertically upwards, and finally
radially outwards at large z. The fluid flow produced by the vorticity source will
convect the vorticity along with the flow until it is dissipated by viscosity.
Operating on Ohm’s law, Eq. (9.78), with 	� ·	×, gives

�

�t

(
I

r2

)
+U ·	

(
I

r2

)
= �

�0
	 ·
(
1
r2
	I

)
(9.85)

showing that I/r2 is similarly convected with the fluid and also has a diffusive-like
term, this time with coefficient �/�0.

Thus, the system of equations can be summarized as (Bellan 1992)

�

�t

( '
r2

)
+U ·	

( '
r2

)
= �	 · 1

r2
	'− �0

42�r4
�I2

�z
(9.86)
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= �

�0
	 ·
(
1
r2
	I

)
(9.87)

z

I(r, z) = const.

Fig. 9.12 Current channel I�r� z�.
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r2	 ·
(
1
r2
	�

)
= −2' (9.88)

U = 1
2
	� ×	�� (9.89)

This system cannot be solved analytically, but its general behavior can be
described in a qualitative manner. The system involves three scalar variables,
'�� , and I , all of which are functions of r and z. Boundary conditions must
be specified in order to have a well-posed problem. If a recirculating flow is
driven, the fluid flux � will be zero on the boundary whereas I will be finite on
electrodes at the boundary. In particular, the current I will typically flow from the
anode into the plasma and then from the plasma into the cathode. The vorticity '
will usually have the boundary condition of vanishing on the bounding surface.
Initially, there is no flow so � is zero everywhere. An initial solution of

Eq. (9.87) in this no-flow situation will establish a current profile between the two
electrodes. For any reasonable situation, this I�r� z� profile will have �I2/�z �= 0
so that a vorticity source will be created. The source will be quite localized
because of the r−4 coefficient. Once some vorticity ' is created as determined by
Eq. (9.86), this vorticity acts as a source term for the fluid flux � in Eq. (9.88),
and so a finite � will be developed. Thus a flow U�r� z� will be created as
specified by Eq. (9.89), and this flow will convect both '/r2 and I/r2.

A good analogy is to think of the r−4�I2/�z term as constituting a toroidally
symmetric centrifugal pump, which accelerates fluid radially from large to small
r. This radial acceleration takes place at z locations where the current channel
radius is constricted. The pump then accelerates the ingested fluid up or down the
z axis, in a direction away from the current constriction. This vortex generation
can also be seen by drawing vectors showing the magnitude and orientation of
the J×B force in the vicinity of a current constriction. It is seen that the J×B
force is non-conservative and provides a centrifugal pumping as described above.
An arc or magnetoplasmadynamic thruster can thus be construed as a pump that

draws fluid radially inward towards the smaller radius electrode, accelerates this
fluid to high velocity, and then expels the accelerated fluid in the axial direction in
a manner whereby the accelerated fluid shoots axially from the smaller electrode
towards the larger radius electrode. The sign of the current does not matter, since
the pumping action depends only on the z derivative of I2. If the equations are
put in dimensionless form, it is seen that the characteristic flow velocity is of the
order of the Alfvén velocity.
Once '�� , and I have been determined, it is possible to determine the pressure

and electrostatic potential profiles. This is done by taking the divergence of
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Eq. (9.79) to obtain

	2g = −	� ·	×Q� (9.90)

The pressure and electrostatic potential are contained within the g term, whereas
theQ term involves only '�� , and I or functions of '�� , and I (e.g., the velocity).
Thus, the right-hand side of Eq. (9.90) is known and so can be considered as
the source for a Poisson-like equation for the left-hand side. For the equation of
motion

gmotion = �U 2

2
+ �0

�2�2
I2

2r2
+P (9.91)

so that

P = gmotion− �U
2

2
− �0

�2�2
I2

2r2
� (9.92)

Regions where gmotion is constant satisfy an extended form of the Bernoulli
theorem, namely

�U 2

2
+ B2

2�0
+P = const� (9.93)

Similarly, taking the divergence of Eq. (9.78) gives an equation for the elec-
trostatic potential (using Coulomb gauge so that 	 ·A = 0). Thus, a complete
solution for incompressible flow is obtained by first solving for '�� , and I using
prescribed boundary conditions, and then solving for the pressure and electrostatic
potential.

9.9.2 Compressible plasma and applied poloidal field

The previous discussion assumed that the plasma was incompressible and that
the magnetic field was purely toroidal (i.e., generated by the prescribed poloidal
current). The more general situation involves having a pre-existing poloidal
magnetic field such as would be generated by external coils and also allowing
for plasma compressibility. This situation will now be discussed qualitatively
making reference to the sketch provided in Fig. 9.13 (a more thorough discussion
is provided in Bellan (2003).
Consider the initial situation shown in Fig. 9.13(a) in which a plasma is

immersed in an axisymmetric vacuum poloidal field &�r� z� with a poloidal current
I�r� z�. Because & is assumed to correspond to a vacuum field, it is produced by
external coils with toroidal currents. There are thus no toroidal currents in the
plasma volume under consideration (i.e., in the region described by Fig. 9.13(a))
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(a) (b)

J × B J × B
J × B J × B

J × BJ × B
J × BJ × B

I(r, z) = const.
ψ (r, z)= const.

I(r, z) = const.
ψ (r, z) = const.

I(r, z) = const.
ψ (r, z) = const.

Fig. 9.13 (a) Current channel I�r� z�, which has same contours as poloidal
flux surfaces &�r� z� so that 	I is parallel to 	& in order to have no toroidal
acceleration. The J×B force (shown by thick arrows) is larger at the bottom
and canted giving both a higher on-axis pressure at the bottom and an axial
upwards flow. (b) If the flow stagnates (slows down) for some reason, then mass
accumulates at the top. The frozen-in convected toroidal flux also accumulates,
which thus increases B� and so forces r to decrease since Ampère’s law gives
2B�r = I�r� z�, which is constant on a surface of constant I�r� z�. The upward-
moving, stagnating plasma flow with embedded toroidal flux acts somewhat like
a zipper for the surfaces of constant I�r� z� and &�r� z�.

and so using Eq. (9.42) it is seen that &�r� z� satisfies 	 · (r−2	&
) = 0. The

poloidal current I�r� z� has an associated poloidal current density

Jpol =
1
2
	I×	� (9.94)

and an associated toroidal magnetic field

B� = �0I�r� z�

2r
� (9.95)

The poloidal flux &�r� z� has an associated poloidal magnetic field

Bpol =
1
2
	&×	�� (9.96)

If Jpol is parallel to Bpol then 	I would be parallel to 	& so that constant I�r� z�
surfaces coincide with constant &�r� z� surfaces as indicated in the figure. On the
other hand, if Jpol were not parallel to Bpol, these surfaces would not be coincident
and there would be a force Jpol×Bpol in the toroidal direction, which would tend
to cause a change in the toroidal velocity, i.e., an acceleration or deceleration of
U�. We argue that Jpol×Bpol must be a transient force with zero time average
because any current that flows perpendicular to the poloidal flux surfaces must be
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the polarization current as given by Eq. (3.145). This polarization current results
from the time derivative of the electric field perpendicular to the poloidal flux
surfaces and this electric field in turn is proportional to the time rate of change
of the poloidal current as determined from Faraday’s law. Thus, once the current
is in steady state, it is necessary to have I = I�&� and so the surfaces of constant
I�r� z� in Fig. 9.12 can also be considered as surfaces of constant &�r� z�. Another
way to see this is to realize that a steady current perpendicular to flux surfaces
would cause a continuous electrostatic charging of the flux surfaces, which would
then violate the stipulation that the plasma is quasi-neutral.
The initial magnetic force is thus the same as for the situation of a purely

toroidal magnetic field since

J×B = Jtor︸︷︷︸
zero

×Bpol+Jpol×Btor � (9.97)

The remaining force Jpol × Btor = (
Jr r̂+ Jzẑ

)× B��̂ = JrB�ẑ− JzB�r̂ has
components in both the r and z directions. If the plasma axial length is much
larger than its radius (i.e., it is long and skinny) then the plasma will develop a
local radial pressure balance(−	P+Jpol×Btor

) · r̂ = 0� (9.98)

However, this local radial pressure balance precludes the possibility of an axial
pressure balance if �&/�z �= 0 because, as discussed earlier, 	P cannot balance
J×B if the latter has a finite curl. Suppose that the radius of the current channel
and the poloidal flux are both given by a= a�z� and, furthermore, since I = I�&�
let us assume a simple linear dependence where �0I�r� z�= �&�r� z�. Thus, 	I is
parallel to 	& and I is just the current per flux. We assume a parabolic poloidal
flux for r ≤ a�z�, namely

&�r� z�

&0
=
(
r

a�z�

)2

� (9.99)

where &0 is the flux at r = a� this is the simplest allowed form for the flux (if
& depended linearly on r, then, as noted in the discussion of Eq.(3.155), there
would be infinite fields at r = 0). The local radial pressure balance is essentially
a local version of the Bennett pinch relation

�P

�r
= −JzB�

= − �2

82�0r
2

�&2

�r
� (9.100)
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On substitution of Eq. (9.99) this becomes
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2&2
0
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�

�r

(
r

a�z�

)4

= − �2&2
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22�0a
4
� (9.101)

Integrating and using the boundary condition that P = 0 at r = a gives

P�r�= �2&2
0

42�0a
2

(
1− r2

a2

)
� (9.102)

which shows that the on-axis pressure is larger where a�z� is smaller as indicated
in Fig. 9.13(a). The axial component of the equation of motion is thus

Fz = ẑ · (−	P+Jpol×Btor
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� (9.103)

which shows there is an axial force that is maximum on the z axis. This force
is proportional to the current flowing along the flux tube and to the axial non-
uniformity of the flux tube, i.e., to �a/�z. The axial force accelerates plasma away
from regions where a is small to regions where a is large.
If the flow stagnates, i.e., is such that the axial velocity is non-uniform so that

	 ·U is negative, then there will be a net inflow of matter into the stagnation region
and hence an increase of mass density at the locations where 	 ·U is negative.
Because magnetic flux is frozen to the plasma, there will be a corresponding
accumulation of toroidal magnetic flux at the locations where 	 ·U is negative. If
U� is zero (as assumed on the basis of there being no steady toroidal acceleration
and zero initial toroidal velocity), then the accumulation of toroidal flux will
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increase the toroidal field. This can be seen by considering the toroidal component
of the induction equation

�B�

�t
= rBpol ·	

(
U�

r

)
− rUpol ·	

(
B�

r

)
−B�	 ·Upol (9.104)

or
DB�

Dt
= −B�	 ·Upol� (9.105)

where D/DT = �/�t+U ·	 and U� = 0 has been assumed. Thus, it is seen that
B� will increase in the frame of the plasma at locations where 	 ·Upol is negative.
However, Ampère’s law gives �0I = 2rB� and since I = I0 at the outer radius
of the current channel, it is seen that if B� increases, then the current channel
radius has to decrease in order to keep rB� fixed. The result is that stagnation of
the flow tends to collimate the flux tube, i.e., make it axially uniform as shown
in Fig. 9.13(b). The plasma accelerated upwards in Fig. 9.12 will then squeeze
together the & and thus I surfaces so that these surfaces will become vertical
lines; very roughly, stagnation of an upward moving plasma in Fig. 9.12 can be
imagined as a sort of “zipper,” which collimates the flux surfaces. Collimation is
often seen in current-carrying magnetic flux tubes in laboratory experiments (e.g.,
see Hansen and Bellan (2001)) and is an important property of solar coronal loops
(Klimchuk 2000) and of astrophysical jets (Livio 1999). The MHD pumping
prescribed by Eq. (9.103) and its association with flux tube collimation has
recently been observed in laboratory experiments (You, Yun, and Bellan 2005).

9.10 Assignments

1. Show that if a Bennett pinch equilibrium has Jz independent of r, then the azimuthal
magnetic field is of the form B��r�= B��a�r/a. Then show that if the temperature is
uniform, the pressure will be of the form P = P0�1− r2/a2�, where P0 = �0I

2/42a2.
Show that this result is consistent with Eq. (9.29).

2. Show it is impossible to confine a spherically symmetric pressure profile using
magnetic forces alone and therefore show that three-dimensional magnetostatic
equilibria cannot be found for arbitrarily specified pressure profiles. To do this,
suppose there exists a magnetic field satisfying J×B = 	P, where P = P�r� and r is
the radius in spherical coordinates "r� ���#. Then make the following analysis:

(a) Show that neither J nor B can have a component in the r̂ direction. Hint: assume Br
is finite and write out the three components of J×B= 	P in spherical coordinates.
By eliminating either Jr or Br from the equations resulting from the � and �
components, obtain equations of the form Jr�P/�r = 0 and Br�P/�r = 0. Then
use the fact that �P/�r is finite to develop a contradiction regarding the original
assumption regarding Jr or Br .
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(b) By calculating J� and J� from Ampère’s law (use the curl in spherical coordinates
as given on p. 592), show that J×B = 	P implies B2

� +B2
� = B2�r�. Argue that

this means that the magnitude of B = B��̂+B��̂ must be independent of � and
� and therefore B� and B� must be of the form B� = B�r� sin ������� r�� and
B� = B�r� cos ������� r��, where � is some arbitrary function.

(c) Using Jr = 0�Br = 0, and 	 ·B = 0 (see p. 591 for the divergence in spherical
polar coordinates) derive a pair of coupled equations for ��/�� and ��/��. Solve
these coupled equations for ��/�� and ��/�� using the method of determinants
(the solutions for ��/�� and ��/�� should be very simple). Integrate the ��/��
equation to obtain � and show that this solution for � is inconsistent with the
requirements of the solution for ��/��, thereby demonstrating that the original
assumption of existence of a spherically symmetric equilibrium must be incorrect.

3. Using numerical methods solve for the motion of charged particles in the Solov’ev
field, B = 	&×	�, where & = B0r

2�2a2 − r2 − 4��z�2�/a4 and B0, a, and � are
constants. Plot the surfaces of constant & and show there are open and closed surfaces.
Select appropriate characteristic times, lengths, and velocities and choose appropriate
time steps, initial conditions, and graph windows. Plot the x� y plane and the x� z plane.
What interesting features are observed in the orbits? How do they relate to the flux
surfaces & = constant? What can be said about flux conservation?

4. Grad–Shafranov equation for an axisymmetric current-carrying magnetic flux tube.
Because the Grad–Shafranov equation describes axisymmetric equilibria, in addition
to describing axisymmetric configurations with closed flux surfaces (e.g., tokamaks), it
can also be used to characterize an axisymmetric magnetic flux tube, i.e., a configura-
tion with axisymmetric open flux surfaces that may or may not have an axially uniform
cross-sectional area. Suppose that &= &�r� z� and that & is a monotonically increasing
function of r. The poloidal flux function thus defines the shape of an axisymmetric
flux tube; in particular, the flux tube will be axially uniform only in the special case
where & does not depend on z.

Assume both the current I and pressure P are linear functions of & so

�0I = �&

P = P0�1−&/&0��

where &0 is the flux surface on which P vanishes and P0 is the pressure on the z axis.
Show that the Grad–Shafranov equation can then be written in the form

r2	 ·
(
1
r2
	&̄

)
+�2

0�
2&̄ = 42r2�0P0

&2
0

�

where &̄ = &�r� z�/&0. Show that if

P0 = �2
0�

2&2
0

42�0a
2
�

where a is the radius at which the pressure vanishes at z = 0, the flux tube must be
axially uniform, i.e., & cannot have any z dependence. Express this condition in terms
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of the pitch angle of the magnetic field B�/Bz measured at r = a. Hint: note that the
Grad–Shafranov equation has both a homogeneous part (left-hand side) and an inhomo-
geneous part (right-hand side). Show that &̄ = r2/a2 is a particular solution and then
consider the form of the general solution (homogenous plus inhomogeneous solution).

5. Lawson Criterion. Of the many possible thermonuclear reactions, the deuterium-tritium
(DT) reaction stands out as being the most feasible because it has the largest reaction
cross-section at accessible temperatures. The DT reaction has the form

D+T −→ n+He4 +17�6MeV�

The output energy consists of 3.5MeV neutron kinetic energy and 14.1MeV alpha
particle kinetic energy. Fusion reaction cross-sections have an extreme dependence on
the impact energy of reacting ions because Coulomb repulsion makes it energetically
very difficult for two ions to approach one another. In order for a controlled fusion
reaction to be economically useful, more energy must be generated than invested.
The break-even condition is determined by equating the energy invested to the energy
harvested from the fusion reaction. If the reaction dies prematurely then there is
insufficient return on the investment. Thus, the lifetime of the fusion-producing plasma
is a critical parameter and is characterized by the so-called energy confinement time �E
of the configuration, a measure of the insulating capability of the plasma confinement
device. Let all temperatures and energies be measured in kilovolts (keV) so the
Boltzmann constant becomes � = 1�6× 10−16 and consider a volume V of reacting
deuterium, tritium, and associated neutralizing electrons (the plasma needs to be overall
neutral, otherwise there would be enormous electrostatic forces).

(a) Show that if the electrons and ions have the same temperature T , the energy
required to heat this volume is Ein ∼ 3neV�T , where ne is the electron density
and equal densities of deuterium and tritium are assumed so that nD = nT = ne/2.
(Hint: the mean energy per degree of freedom is �T/2 so the mean energy of a
particle moving in three-dimensional space is 3�T/2).

(b) What is the fusion reaction rate R for a single incident ion of velocity v passing
through stationary target ions where ��v� is the fusion reaction rate cross-section
and nt is the density of the target ions (assumed stationary). If ���v�v� denotes
the velocity average of ��v�v, what is the velocity-averaged reaction rate?

(c) Assume that the reaction of hot tritium with hot deuterium can be approximated as
the sum of hot deuterium interacting with stationary tritium and hot tritium interact-
ing with stationary deuterium. Show that the fusion output power in the volume is

P = nDnT ���v�v�V Ereaction�
where Ereaction = 17�6×103 keV.

(d) Show that the ratio Q of the fusion output energy to the input energy satisfies the
relation

ne�E ∼ 6�8×10−4TkeV
���v�v� Q�

At break-even Q= 1.
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(e) For a thermal ion distribution and the experimentally measured reaction cross-
section ��v�, the velocity-averaged rate integral has the values tabulated below:

Temperature in keV ���v�v� in m3/s ne�E

1 5�5×10−27

2 2�6×10−25

5 1�3×10−23

10 1�1×10−22

20 4�2×10−22

50 8�7×10−22

100 8�5×10−22

Calculate the ne�E required for break-even at the listed temperatures (i.e., fill in
the last column).

(f) The Joint European Tokamak (JET) located in Culham, UK, (in operation during
the latter twentieth and early twenty first century) has a plasma volume of approxi-
mately 80 cubic meters. Suppose JET has an energy confinement time of �E ∼ 0�3 s
at ne ∼ 1020 m−3 and T ∼ 10 keV. If the plasma is a 50%–50% mixture of D–T,
how much fusion power would be produced in JET and what is Q? What is the
weight of the plasma? How much does the confinement time have to be scaled
up to achieve break-even? How much does the volume have to be scaled up to
achieve 2000 MW thermal power output at break-even? In order to achieve this
volume scale-up, how much does the linear dimension have to be scaled up?
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Stability of static MHD equilibria

10.1 Introduction

Solutions to Eq. (9.50), the Grad–Shafranov equation, (or to some more
complicated counterpart in the case of non-axisymmetric geometry) provide a
static MHD equilibrium. The question now arises whether the equilibrium is
stable. This issue was forced upon early magnetic fusion researchers who found
that plasma that was expected to be well confined in a static MHD equilibrium
configuration would instead became violently unstable and crash destructively
into the wall in a few microseconds.
The difference between stable and unstable equilibria is shown schematically in

Fig. 10.1. Here a ball, representing the plasma, is located at either the bottom of a
valley or the top of a hill. If the ball is at the bottom of a valley, i.e., a minimum
in the potential energy, then a slight lateral displacement results in a restoring
force, which pushes the ball back. The ball then overshoots and oscillates about
the minimum with a constant amplitude because energy is conserved. On the
other hand, if the ball is initially located at the top of a hill, then a slight lateral
displacement results in a force that pushes the ball further to the side so that there
is an increase in the velocity. The perturbed force is not restoring, but rather the
opposite. The velocity is always in the direction of the original displacement; i.e.,
there is no oscillation in velocity.
The equation of motion for this system is

m
d2x
dt2

= ±�x� (10.1)

where � is assumed positive; the plus sign is chosen for the ball on hill case, and
the minus sign is chosen for the ball in valley case. This equation has a solution
x∼ exp �−i�t�, where �= ±√

�/m for the valley case and �= ±i
√
�/m for the

hill case. The hill �= +i
√
�/m solution is unstable and corresponds to the ball

accelerating down the hill when perturbed from its initial equilibrium position.

342
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stable
equilibrium

unstable
equilibrium

Fig. 10.1 Stable and unstable equilibria.

If this configuration is extended to two dimensions, then stability would require
an absolute minimum in both directions. However, a saddle point potential would
suffice for instability, since the ball could always roll down from the saddle
point. Thus, a multi-dimensional system can only be stable if the equilibrium
potential energy corresponds to an absolute minimum with respect to all possible
displacements.
The problem of determining MHD stability is analogous to having a ball on

a multi-dimensional hill. If the potential energy of the system increases for any
allowed perturbation of the system, then the system is stable. However, if there
exists even a single allowed perturbation that decreases the system’s potential
energy, then the system is unstable.

10.2 The Rayleigh–Taylor instability of hydrodynamics

An important subset of MHD instabilities is formally similar to the Rayleigh–
Taylor instability of hydrodynamics; it is therefore useful to put aside MHD
for the moment and examine this classical problem. As any toddler learns from
stacking building blocks, it is possible to construct an equilibrium whereby a
heavy object is supported by a light object, but such an equilibrium is unstable.
The corresponding hydrodynamic situation has a heavy fluid supported by a
light fluid as shown in Fig. 10.2(a); this situation is unstable with respect to the
rippling shown in Fig. 10.2(b). The ripples are unstable because they effectively
interchange volume elements of heavy fluid with equivalent volume elements of

light fluid light fluid 

heavy fluid heavy fluid 

perturbation equilibrium 

(a) (b)

wavenumber
of perturbation

ky = 0

y = h

Fig. 10.2 (a) Top-heavy fluid equilibrium, (b) rippling instability.
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light fluid. Each volume element of interchanged heavy fluid originally had its
center of mass a distance � above the interface while each volume element of
interchanged light fluid originally had its center of mass a distance � below the
interface. Since the potential energy of a mass m at height h in a gravitational
field g is mgh, the respective changes in potential energy of the heavy and light
fluids are

�Wh = −2�hV�g� �Wl = +2�lV�g� (10.2)

where V is the volume of the interchanged fluid elements and �h and �l are the
mass densities of the heavy and light fluids. The net change in the total system
potential energy is

�W = −2 ��h−�l�V�g� (10.3)

which is negative so the system lowers its potential energy by forming ripples.
This is analogous to the ball falling off the top of the hill.
A well-known example of this instability is the situation of an inverted glass

of water. The heavy fluid in this case is the water and the light fluid is the air.
The system is stable when a piece of cardboard is located at the interface between
the water and the air, but when the cardboard is removed the system becomes
unstable and the water falls out. The function of the cardboard is to prevent ripple
interchange from occurring. The system is in stable equilibrium when ripples
are prevented because atmospheric pressure is adequate to support the inverted
water. From a mathematical point of view, the cardboard places a constraint on
the system by imposing a boundary condition that prevents ripple formation.
When the cardboard is removed so that there is no longer a constraint against

ripple formation, the ripples grow from noise to large amplitude, and the water
falls out. This is an example of an unstable equilibrium.
The geometry shown in Fig. 10.2 is now used to analyze the stability of a

heavy fluid such as water supported by a light fluid such as air in the situation
where no constraint exists at the interface. Here y corresponds to the vertical
direction so that gravity is in the negative y direction. To simplify the analysis,
it is assumed that �l � �h, in which case the mass of the light fluid can be
ignored. The water and air are assumed to be incompressible, i.e., �= const�, so
the continuity equation

��

�t
+v ·	�+�	 ·v = 0 (10.4)

reduces to

	 ·v = 0� (10.5)
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The linearized continuity equation in the water therefore reduces to

��1
�t

+v1 ·	�0 = 0 (10.6)

and the linearized equation of motion in the water is

�0
�v1
�t

= −	P1 −�1gŷ� (10.7)

The location y = 0 is defined to be at the unperturbed air–water interface and
the top of the glass is at y = h. The water fills the glass to the top and thus is
constrained from moving at the top, giving the top boundary condition

vy = 0 at y = h� (10.8)

The perturbation is assumed to have the form

v1 = v1�y�e
�t+ik·x� (10.9)

where k lies in the x−z plane and positive � implies instability. The incompress-
ibility condition, Eq. (10.5), can thus be written as

�v1y

�y
+ ik ·v1⊥ = 0� (10.10)

where ⊥ means perpendicular to the y direction. The y and ⊥ components of
Eq. (10.7) become respectively

��0v1y = −�P1
�y

−�1g (10.11)

��0v1⊥ = −ikP1� (10.12)

The system is solved by dotting Eq. (10.12) with ik and then using Eq. (10.10)
to eliminate k ·v1⊥and so obtain

−��0
�v1y

�y
= k2P1� (10.13)

The perturbed density, as given by Eq. (10.6), is

��1 = −v1y
��0
�y
� (10.14)

Next, �1 and P1 are substituted for in Eq. (10.11) to obtain the eigenvalue equation

�

�y

[
�2�0

�v1y

�y

]
=
[
�2�0 −g ��0

�y

]
k2v1y� (10.15)
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This equation is solved by considering the interior and the interface separately:

1. Interior: here ��0/�y = 0 and �0 = const�, in which case Eq. (10.15) becomes

�2v1y

�y2
= k2v1y. (10.16)

The solution satisfying the boundary condition given by Eq. (10.8) is

v1y = A sinh�k�y−h��� (10.17)

2. Interface: to find the properties of this region, Eq. (10.15) is integrated across the
interface from y = 0− to y = 0+ to obtain[

�2�0
�v1y

�y

]0+

0−
= − [g�0k2v1y]0+0−

(10.18)

or

�2 �v1y

�y
= −gk2v1y� (10.19)

where all quantities refer to the upper (water) side of the interface, since by assumption
�0�y = 0−�� 0.

Substitution of Eq. (10.17) into Eq. (10.19) gives the dispersion relation

�2 = kg tanh�k⊥h�� (10.20)

which shows that the configuration is always unstable since �2 > 0.
Equation (10.20) furthermore shows that short wavelengths are most unstable, but
a more detailed analysis taking into account surface tension (which is stronger for
shorter wavelengths) would show �2 has a maximum at some wavelength. Above
this most unstable wavelength, surface tension would decrease the growth rate.

10.3 MHD Rayleigh–Taylor instability

We define a “magnetofluid” as a fluid that satisfies the MHD equations. A given
plasma may or may not behave as a magnetofluid, depending on the validity of the
MHD approximation for the circumstances of the given plasma. The magnetofluid
concept provides a legalism that allows consideration of the implications of MHD
without necessarily accepting that these implications are relevant to a specific
actual plasma. In effect, the magnetofluid concept can be considered as a tentative
model of plasma.
Let us now replace the water in the Rayleigh–Taylor instability by magnetofluid.

We further suppose that instead of atmospheric pressure supporting the
magnetofluid, a vertical magnetic field gradient balances the downwards grav-
itational force, i.e., at each y the upward force of −	B2/2�0 supports the
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downward force of the weight of the plasma above. Although gravity is normally
unimportant in actual plasmas, the gravitational model is nevertheless quite
useful for characterizing situations of practical interest, because gravity can be
considered as a proxy for the actual forces that typically have a more complex
structure. An important example is centrifugal force associated with thermal
particle motion along curved magnetic field lines acting like a gravitational force
in the direction of the radius of curvature of these field lines. The curved field
with associated centrifugal force due to parallel thermal motion is replaced by
a Cartesian geometry model having straight field lines and, perpendicular to
the field lines, a gravitational force is invoked to represent the effect of the
centrifugal force. The y direction corresponds to the direction of the radius of
curvature.
In order for −	B2 to point upwards in the y direction, the magnetic field must

depend on y such that its magnitude decreases with increasing y. Furthermore, it
is required that By = 0 so 	B2 is perpendicular to the magnetic field and the field
can be considered as locally straight (field line curvature has already been taken
into account by introducing the fictitious gravity). Thus, the equilibrium magnetic
field is assumed to be of the general form

B0 = Bx0�y�x̂+Bz0�y�ẑ� (10.21)

The unit vector associated with the equilibrium field is

B̂0 = Bx0�y�x̂+Bz0�y�ẑ√
Bx0�y�

2 +Bz0�y�2
� (10.22)

For the special case where Bx0�y� and Bz0�y� are proportional to each other, the
field line direction is independent of y, but in the more general case where this is
not so, B̂0 depends on y and thus rotates as a function of y. In this latter case, the
magnetic field lines are said to be sheared, since adjacent y-layers of field lines
are not parallel to each other.
The magnetofluid is assumed incompressible and, using Eq. (9.10), the

linearized equation of motion becomes

�0
�v1
�t

= −	P̄1 + B0 ·	B1 +B1 ·	B0

�0
−�1gŷ� (10.23)

where

P̄1 = P1 + B0 ·B1

�0
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is the perturbation of the combined hydrodynamic and magnetic pressure, i.e.,
the perturbation of P+B2/2�0. It is again assumed that all quantities vary in the
manner of Eq. (10.9) so Eq. (10.23) has the respective y and ⊥ components

��0v1y = −�P̄1
�y

+ i �k ·B0�B1y

�0
−�1g (10.24)

��0v1⊥ = −ikP̄1 + 1
�0

[
i �k ·B0�B1⊥ +B1y

�B0

�y

]
� (10.25)

In analogy to the glass of water problem, Eq. (10.25) is dotted with ik and
Eq. (10.10) is invoked to obtain

−��0
�v1y

�y
= k2P̄1 + 1

�0

[
− �k ·B0�k ·B1⊥ + iB1y

� �k ·B0�

�y

]
� (10.26)

Because 	 ·B1 = 0, the perturbed perpendicular field is

ik ·B1⊥ = −�B1y
�y

(10.27)

and so Eq. (10.26) can be recast as

k2P̄1 = −��0
�v1y

�y
− 1
�0

[
−i �k ·B0�

�B1y

�y
+ iB1y

� �k ·B0�

�y

]
� (10.28)

Following a procedure analogous to that used in the inverted glass of water
problem, P̄1 is eliminated in Eq. (10.24) by substitution of Eq. (10.28) to obtain

��0v1y = − 1
k2
�

�y

{
−��0

�v1y

�y
− 1
�0

[
− �ik ·B0�

�B1y

�y
+B1y

� �ik ·B0�

�y

]}
+ i �k ·B0�B1y

�0
−�1g� (10.29)

To proceed further, it is necessary to know B1y. The complete vector B1 is
found by first linearizing the MHD Ohm’s law to obtain

E1 +v1 ×B0 = 0� (10.30)

then taking the curl, and finally using Faraday’s law to obtain

�B1 = 	× �v1 ×B0� � (10.31)

The y component is found by dotting with ŷ and then using the vector identity
	 · �F×G�= G ·	×F−F ·	×G to obtain

�B1y = ŷ ·	× �v1 ×B0�= 	 · ��v1 ×B0�× ŷ�= 	 · [v1yB0

]= ik ·B0v1y� (10.32)
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Substituting into Eq. (10.29) using Eq. (10.32) and Eq. (10.14) and rearranging
the order gives

�

�y

{[
�2�0 + 1

�0
�k ·B0�

2
]
�v1y

�y

}
= k2

{
�2�0 −g ��0

�y
+ �k ·B0�

2

�0

}
v1y� (10.33)

which is identical to the inverted glass of water problem if k ·B0 = 0.
Rather than have an abrupt interface between a heavy and light fluid as in the

glass of water problem, it is assumed that the magnetofluid fills the container
between y = 0 and y = h and that there is a density gradient in the y direction.
This situation is more appropriate for a plasma, which would typically have a
continuous density gradient. It is assumed that rigid boundaries exist at both y= 0
and y = h so that v1y = 0 at both y = 0 and y = h. These boundary conditions
mean that rippling is not allowed at y = 0� h but could occur in the interior,
0 < y < h. Equation (10.33) is now impossible to solve analytically because all
the coefficients are functions of y. However, an approximate understanding for
the behavior predicted by this equation can be found by multiplying the equation
by v1y and integrating from y = 0 to y = h to obtain[{

�2�0 + 1
�0
�k ·B0�

2
}
v1y
�v1y

�y

]h
0
−
∫ h
0

[
�2�0 + 1

�0
�k ·B0�

2
](
�v1y

�y

)2

dy

= k2
∫ h
0

{
�2�0 −g ��0

�y
+ �k ·B0�

2

�0

}
v21ydy�

(10.34)
The integrated term vanishes because of the boundary conditions (which could
also have been �v1y/�y = 0). Solving for �2 gives

�2 =

∫ h
0
dy

[
k2g
��0
�y
v21y−

�k ·B0�
2

�0

(
k2v21y+

(
�v1y

�y

)2
)]

∫ h
0
dy �0

[
k2v21y+

(
�v1y

�y

)2
] � (10.35)

If k ·B0 = 0 and the density gradient is positive everywhere then �2 > 0 so
there is instability. If the density gradient is negative everywhere except at one
stratum with thickness �y, then the system will be unstable with respect to an
interchange at that one “top-heavy” stratum. The velocity will be concentrated at
this unstable stratum and so the integrands will vanish everywhere except at the
unstable stratum giving a growth rate �2 ∼ g�y �−1

0 ��0/�y, where ��0/�y is the
value in the unstable region. This MHD version of the Rayleigh–Taylor instability
is called the Kruskal–Schwarzschild instability (Kruskal and Schwarzschild 1954).
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Finite k ·B0 opposes the effect of the destabilizing positive density gradient,
reducing the growth rate to �2 ∼ g�y �−1

0 ��0/�y− �k ·B0�
2 /�0. A sufficiently

strong field will stabilize the system. However, thermally excited noise excites
modes with all possible values of k and those modes aligned such that k ·B0 = 0
will not be stabilized. A shear in the magnetic field has the effect of making it
possible to have k ·B0�y�= 0 at only a single value of y. The lack of any spatial
dependence of k results from the translational invariance of the plasma with
respect to both x and z implying that k = kxx̂+ kzẑ is independent of position.
Thus, magnetic shear constrains the instability to a narrow y stratum.
The stabilizing effect of finite k · B0 can be understood by considering

Eq. (10.32) which shows that the amount of B1y associated with a given v1y
is proportional to k ·B0. Since the original equilibrium field had no y compo-
nent, introducing a finite B1y corresponds to “plucking” the equilibrium field.
The plucking varies sinusoidally along the equilibrium field and stretches the
equilibrium field like a plucked violin string. The plucked field has a restoring
force, which pulls the field back to its equilibrium position. If the energy
associated with plucking the magnetic field exceeds the energy liberated by the
interchange of heavy upper magnetofluid with light lower magnetofluid, the
mode is stable.
As discussed earlier, the gravitational force in the magnetofluid model repre-

sents the centrifugal force resulting from guiding center motion along curved
field lines. This leads to the concept of “good” and “bad” curvature illustrated
in Fig. 10.3. A plasma has bad curvature if the field lines at the plasma–vacuum
boundary have a convex shape as seen by an observer outside the plasma, since
in this case the centrifugal force is outwards from the plasma. Bad curvature
gives a centrifugal force that can drive interchange instabilities whereas good
curvature corresponds to a concave shape so that the centrifugal force is always
inwards. Mirror magnetic fields as sketched in Fig. 10.4 have good curvature
in the vicinity of the mirrors and bad curvature in the vicinity of the mirror
minimum so that a detailed analysis of interchange instabilities requires averaging
the “goodness/badness” along the portion of the flux tube experienced by the
particle. Cusp magnetic fields (cf. Fig. 10.4) have good curvature everywhere,

last
flux
surface

last
flux
surface plasma

vacuum vacuum

plasma

“bad” curvature“good” curvature

Fig. 10.3 Good and bad curvature of the plasma–vacuum interface.
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good curvaturegood curvature
bad curvature

mirror field cusp field

Fig. 10.4 Mirror fields have bad curvature at the mirror minimum, good curva-
ture near the maximum; cusp fields have good curvature everywhere.

but have singular behavior at the cusps. Plasmas with internal currents such as
tokamaks have significant shear everywhere, since �Bx/�y∼ Jz and �Bz/�y∼ Jx�
this shear inhibits interchange instabilities. However, as will be shown later these
currents can be the source for another class of instability called a current-driven
instability.

10.4 The MHD energy principle

Suppose a system initially in equilibrium is subject to a small perturbation insti-
gated by random thermal noise. The perturbation will affect all the various depen-
dent variables in a way that must be consistent with all the relevant equations
and boundary conditions. Thus, the perturbation may be considered as a low-level
excitation of some allowed normal mode of the system. The mode will be unstable
if it reduces the potential energy of the system and the growth rate of the instabil-
ity will be proportional to the amount by which the potential energy is reduced.
In order to investigate whether a given system is stable, it suffices to show that
no modes exist that reduce the system’s potential energy. Demonstrating MHD
stability this way was first done by Bernstein et al. (1958) and the method is
called the MHD energy principle.
Each mode has its own specific pattern for displacing the magnetofluid volume

elements from their equilibrium positions. The pattern of displacements can be
represented by a vector function of position ��x�, which prescribes how a fluid
volume element originally at location x is displaced. Thus, the mode involves
moving a fluid element initially at x to the position x+��x�. The displacement of
a magnetofluid element initially at the surface is shown in Fig. 10.5, a sketch of a
two-dimensional cut of a three-dimensional magnetofluid (plasma) surrounded by
a vacuum region in turn bounded by a conducting wall. The wall could be brought
right up to the magnetofluid to eliminate the vacuum region or, alternatively,
the wall could be placed at infinity to represent a system having no wall and
surrounded by vacuum.
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perfectly
conducting
wall

Gaussian
pillbox

equilibrium
surface

x

perturbed
surface

vacuum

origin

ds

ξ(x)
magnetofluid

vacuum

Fig. 10.5 Two-dimensional cut of three-dimensional plasma equilibrium and
perturbation; Gaussian pillbox is used to relate quantities in vacuum to quantities
in plasma. Each volume element at a position x is displaced by an amount ��x�.
The displacement of a volume element at the surface is illustrated.

10.4.1 Energy equation for a magnetofluid

The energy content of a magnetofluid can be obtained from the ideal MHD
equations if it is assumed that all motions are sufficiently fast to be adiabatic
but slow enough for collisions to keep the pressure isotropic. The ideal MHD
equations are

�

(
�U
�t

+U ·	U
)

= J×B−	P (10.36)

E+U×B = 0 (10.37)

	×E = −�B
�t

(10.38)

	×B = �oJ (10.39)

��

�t
+	 · ��U�= 0 (10.40)

P ∼ ��� (10.41)
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Ohm’s law, Eq. (10.37), and Faraday’s law, Eq. (10.38), are combined to give
the induction equation

�B
�t

= 	× �U×B� � (10.42)

which prescribes the magnetic field evolution and, as discussed in the context
of Eq. (2.83), shows that the magnetic flux is frozen into the magnetofluid.
Equation (10.41), the adiabatic relation, implies the following relationships for
spatial and temporal derivatives of density and pressure

	P

P
= �	�

�
�

1
P

�P

�t
= �

�

��

�t
� (10.43)

Combining these relationships with the continuity equation, Eq. (10.40), gives the
pressure evolution equation

�P

�t
+U ·	P+�P	 ·U = 0� (10.44)

which can also be written as

�P

�t
+	 · �PU�+ ��−1�P	 ·U = 0� (10.45)

An expression for the overall energy can be derived by first writing the equation
of motion, Eq. (10.36), as

�
�U
�t

+�	
(
U 2

2

)
−�U×	×U = J×B−	P (10.46)

and then dotting Eq. (10.46) with U to obtain

�
�

�t

(
U 2

2

)
+�U ·	

(
U 2

2

)
= J×B ·U−U ·	P� (10.47)

Multiplying the entire continuity equation by U 2/2 and adding the result gives

�

�t

(
�U 2

2

)
+	 ·

(
�U 2

2
U
)

= −J ·U×B−	 · �PU�+P	 ·U� (10.48)

Using Ampère’s law, Eq. (10.39), to eliminate J, then Ohm’s law, Eq. (10.37),
to eliminate U×B� and the pressure evolution equation, Eq. (10.45), to eliminate
P	 ·U� this energy equation becomes

�

�t

(
�U 2

2

)
+	 ·

(
�U 2

2
U
)

= �	×B�
�0

·E−	 ·�PU�− 1
��−1�

(
�P

�t
+	 · �PU�

)
�

(10.49)
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Finally, using the vector identity

	 · �E×B� = B ·	×E−E ·	×B

= −B · �B
�t

−E ·	×B (10.50)

Eq. (10.49) can be written as

�

�t

(
�U 2

2
+ P

�−1
+ B2

2�0

)
+	 ·

(
�
U 2

2
U+ E×B

�0
+ �

�−1
PU
)

= 0� (10.51)

This is a conservation equation relating energy density and energy flux. The time
derivative operates on the magnetofluid energy density and the divergence oper-
ates on the energy flux. The energy density is comprised of kinetic energy density
�U 2/2, thermal energy density P/��− 1�, and magnetic energy B2/2�0. The
energy flux is comprised of convection of kinetic energy �U 2U/2, the Poynting
vector E×B/�0, and convection of thermal energy density �PU/��−1�.

The pressure and density both vanish at the magnetofluid surface, but the
Poynting flux E×B can be finite. However, if the tangential electric field vanishes
at the surface, then the Poynting flux normal to the surface will be zero. This
situation occurs if the magnetofluid is bounded by a perfectly conducting wall
with no vacuum region between the magnetofluid and the wall. On the other hand,
if a vacuum region bounds the magnetofluid, then a tangential electric field can
exist at the vacuum–magnetofluid interface and allow a Poynting flux normal to
the surface. Energy could then flow back and forth between the magnetofluid and
the vacuum region. For example, if the magnetofluid were to move towards the
wall thereby reducing the volume of the vacuum region, magnetic field in the
vacuum region would be compressed and so the vacuum magnetic field energy
would increase. This flow of energy into the vacuum region would require a
Poynting flux from the magnetofluid into the vacuum region.
Let us now consider the energy properties of the vacuum region between the

magnetofluid and a perfectly conducting wall. The equations characterizing the
vacuum region are Faraday’s law

	×E = −�B
�t

(10.52)

and Ampère’s law

	×B = 0� (10.53)

Dotting Faraday’s law with B, Ampère’s law with E, and subtracting gives

�

�t

(
B2

2�0

)
+	 ·

(
E×B
�0

)
= 0� (10.54)
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which is just the limit of Eq. (10.51) for zero density and zero pressure. Thus,
Eq. (10.51) characterizes not only the magnetofluid, but also the surrounding
vacuum region. As mentioned earlier, the Poynting flux is the means by which
electromagnetic energy flows between the magnetofluid and the vacuum region.
If the vacuum region is bounded by a conducting wall, then the tangential electric

field must vanish on the wall. The integral of the energy equation over the volume
of both the magnetofluid and the surrounding vacuum region then becomes

�

�t

∫
d3r

(
�U 2

2
+ P

�−1
+ B2

2�0

)
= 0� (10.55)

since on the wall ds ·E×B = 0, where ds is a surface element of the wall. If
the wall is brought right up to the magnetofluid so there is no vacuum region,
then Eq. (10.55) will also result, with the additional stipulation that the normal
component of the velocity vanishes at the wall (i.e., the wall is impermeable).
A system consisting of a magnetofluid surrounded by a vacuum region enclosed

by an impermeable perfectly conducting wall will therefore have its total internal
energy conserved, that is∫

Vmf

d3r
(
�U 2

2
+ P

�−1
+ B2

2�0

)
+
∫
Vvac

d3r
B2

2�0
= const�� (10.56)

where Vmf is the volume of the magnetofluid and Vvac is the volume of the
vacuum region between the magnetofluid and the wall.
This total system energy can be split into a kinetic energy term

T =
∫

d3r
�U 2

2
(10.57)

and a potential energy term

W =
∫
V
d3r

(
P

�−1
+ B2

2�0

)
(10.58)

so that

T +W = �� (10.59)

where the total energy � is a constant. Here V includes the volume of both the
magnetofluid and any vacuum region between the magnetofluid and the wall.
We will now consider a static equilibrium (i.e., an equilibrium with U0 = 0)

so that

0 = J0 ×B0 −	P0� (10.60)

Thus 	P0 is normal to the surface defined by the J0 and B0 vectors. Furthermore,
dotting Eq. (10.60) with B0 and then with J0 gives the two relations

B0 ·	P0 = 0� J0 ·	P0 = 0� (10.61)
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which indicate that the pressure is constant along both a magnetic field line and
a line defined by the current density vector J0. Since the analysis of the Grad–
Shafranov equation in Section 9.8.3 showed that B0 and J0 typically lie in a
magnetic surface, the pressure is uniform on the magnetic surface, and the pressure
gradient is normal to the magnetic surface.

10.4.2 Self-adjointness of potential energy as a consequence of
energy integral

Static equilibrium means U0 = 0 and so Equation (10.57) indicates T0 = 0 in
static equilibrium. Thus, all internal energy in equilibrium must exist in the form
of stored potential energy, i.e.,

W0 = �� (10.62)

It is now supposed that random thermal noise causes small motions of order
$ to develop at each point in the magnetofluid, i.e., at each point there exists a
first-order velocity

U1 ∼ $� (10.63)

The displacement of a fluid element is obtained by time integration to be

� =
∫ t
0
U1dt

′ (10.64)

and so � is also of order $. Because $ is small, any spatial dependence of U1 can
be ignored when evaluating the time integral, i.e., terms of order � ·	U1 can be
ignored since these are of order $2.
The kinetic energy associated with the mode is

�T =
∫

d3r
�0U

2
1

2
� (10.65)

which clearly is of order $2. Since total energy is conserved it is necessary to
have

�T +�W = 0 (10.66)

leading to the important conclusion that the perturbed potential energy �W must
also be of order $2.
The perturbed magnetic field and pressure can be found to first-order in $ by

integrating Eqs. (10.42) and (10.44) respectively to obtain

B1 = 	× ��×B0� (10.67)

and

P1 = −� ·	P0 −�P0	 ·�� (10.68)
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these relations show that both B1 and P1 are linear functions of �. However,
since it was just shown that �W scales as $2, only terms that are second-order in
� can contribute to �W , and so all first-order terms must average to zero when
performing the volume integration required to evaluate �W . To specify that �W
depends only to second-order on �, we write

�W = �W������ (10.69)

where the double argument means that �W is a bilinear function� i.e.,
�W�a��b��= ab�W����� for arbitrary ���� The time derivative of �W is thus

�Ẇ = �W��̇���+�W��� �̇�� (10.70)

Since �̇ is algebraically independent of �, Eq. (10.70) implies �Ẇ is self-adjoint
(i.e., �Ẇ is invariant when its two arguments are interchanged). Self-adjointness
is a direct consequence of the existence of an energy integral.

10.4.3 Formal solution for perturbed potential energy

The self-adjointness property can be exploited by explicitly calculating the time
derivative of the perturbed potential energy. This is done using the linearized
equation of motion

�0
�2�

�t2
= F1� (10.71)

where

F1 = J0 ×B1 +J1 ×B0 −	P1 (10.72)

results from linear operations on �, since B1, �0J1 = 	 ×B1, and P1 all result
from linear operations on �.
Multiplying Eq. (10.71) by the perturbed velocity �̇ and integrating over the

volume of the magnetofluid and vacuum region gives∫
d3r�0

�

�t

(
%̇2

2

)
=
∫

d3r�̇ ·F1���� (10.73)

Although the integration includes the vacuum region, both the right- and left-hand
sides of this equation vanish in the vacuum region because no density, current,
or pressure exist there.
The left-hand side of Eq. (10.73) is just the time derivative of the kinetic energy

�Ṫ . Since �Ṫ +�Ẇ = 0, it is seen that

�Ẇ = −
∫

d3r�̇ ·F1���� (10.74)
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However, because �Ẇ was shown to be self-adjoint, Eq. (10.74) can also be
written in an alternative form as �Ẇ = − ∫ d3r� ·F1��̇�. Combining Eq. (10.74)
and its alternative form provides an integrable form for �Ẇ , namely

�Ẇ = −1
2

(∫
d3r� ·F1��̇�+

∫
d3r�̇ ·F1���

)
= −1

2
�

�t

(∫
d3r� ·F1���

)
� (10.75)

Integrating the above equation with respect to time gives the change in system
potential energy associated with an arbitrary fluid displacement, namely

�W = −1
2

∫
d3r� ·F1���� (10.76)

Standard techniques of normal mode analysis can now be invoked and used to
provide some restrictions on the form of any dynamical behavior. In particular,
by assuming that the displacement has the form

� = Re
(
�̄e−i�t

)
� (10.77)

the equation of motion can be written as

−�2��̄ = F1��̄�� (10.78)

Then, multiplication by �̄∗ and integrating over volume gives

−�2
∫

d3r��%̄�2 =
∫

d3r�̄∗ ·F1��̄�� (10.79)

The discussion of Eq. (10.70) showed that
∫
d3r� ·F1��� is self-adjoint when

� and � are arbitrary real variables. However, the linearity of F1 means that∫
d3r� ·F1��� is self-adjoint even if � and � are complex since

∫
d3r ��r + i�i�.

F1��r+ i�i�=
∫
d3r ��r+ i�i� ·�F1��r�+ iF1��r��=

∫
d3r ��r+ i�i� ·�F1��r+

i�i���. Equation (10.79) can therefore be recast as

−�2
∫

d3r��%̄�2 = 1
2

[∫
d3r�̄∗ ·F1��̄�+

∫
d3r�̄ ·F1��̄

∗�
]
� (10.80)

which shows that �2 must be pure real. Negative �2 corresponds to instability.
Equation (10.78) can be considered as an eigenvalue problem where �2 is

the eigenvalue and � is the eigenvector. As in the usual linear algebra sense,
eigenvectors having different eigenvalues are orthogonal and so, in principle, a
basis set of normalized orthogonal eigenvectors "m# can be constructed where

F1�m�= −�2
m�m� (10.81)
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Thus, any arbitrary displacement can be expressed as a suitably weighted sum of
eigenvectors,

� =∑
m

�mm� (10.82)

The orthogonality of the basis set gives the relation∫
d3rm ·F�n�= −�2

m

∫
d3r�m ·n = 0 if m �= n� (10.83)

Instability will result if there exists some perturbation that makes �W nega-
tive. Conversely, if all possible perturbations result in positive �W for a given
equilibrium, then the equilibrium is MHD stable.

10.4.4 Evaluation of �W

Since F1 consists of three terms involving J0�B1, and P1 respectively, �W can be
decomposed into three terms,

�W = �WJ0 +�WB1 +�WP1 � (10.84)

Using Eqs. (10.67), (10.68), and (10.72) in Eq. (10.76) shows that these terms are

�WJ0 = −1
2

∫
d3r� ·J0 ×B1� (10.85)

�WB1 = − 1
2�0

∫
d3r� · �	×B1�×B0� (10.86)

�WP1 = 1
2

∫
d3r� ·	P1� (10.87)

Although the above three right-hand sides are in principle integrated over the
volumes of both the magnetofluid and the vacuum regions, in fact, the integrands
vanish in the vacuum region for all three cases and so the integration is effectively
over the magnetofluid volume only. The second two integrals can be simplified
using the vector identities 	 · �C×D� = D ·	 ×C−C ·	 ×D and 	 · �fa� =
a ·	f +f	 ·a to obtain

�WB1 = 1
2�0

∫
Vmf

d3r ��×B0� ·	×B1

= 1
2�0

∫
Vmf

d3rB2
1 + 1

2�0

∫
Smf

ds ·B1 × ��×B0� (10.88)
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and

�WP1 = −1
2

∫
Vmf

d3r� ·	 �� ·	P0 +�P0	 ·��

= 1
2

∫
Vmf

d3r
[
−� ·	 �� ·	P0�+�P0 �	 ·��2

]
− 1

2

∫
Smf

ds ·��P0	 ·��

(10.89)

Since both J×B and 	P are perpendicular to B at the surface of the magnetofluid,
the force acting on the magnetofluid at the surface is perpendicular to B and so
the displacement � of the magnetofluid at the surface is perpendicular to B, i.e.,
at the surface � = �⊥. The surface integral in Eq. (10.88) can be expanded

1
2�0

∫
Smf

ds ·B1 × ��×B0�= 1
2�0

∫
Smf

ds ·�⊥B0 ·B1� (10.90)

since ds ·B0 = 0 on the magnetofluid surface. This latter condition is true because
the magnetic field was initially tangential to the magnetofluid surface (i.e., J0 ×
B0 = 	P0 implies 	P0 is perpendicular to B0) and must remain so since the field
is frozen into the magnetofluid.
Recombining and reordering these separate contributions gives

�W = 1
2

∫
Vmf

d3r

{
�P0 �	 ·��2 + B

2
1

�0
−� · �J0 ×B1 +	 �� ·	P0��

}

+ 1
2�0

∫
Smf

ds ·�⊥ �B0 ·B1 −�0�P0	 ·�� � (10.91)

The substitution ds ·� = ds ·�⊥ has been made for the pressure contribution to
the surface term on the grounds that ds must be perpendicular to B0. Further
simplification is obtained by considering the dot product with B0 of the term in
square brackets in Eq. (10.91), namely

B0 · �J0 ×B1 +	 �� ·	P0�� = −	P0 ·B1 +B0 ·	 �� ·	P0�
= −	P0 ·	× ��×B0�+B0 ·	 �� ·	P0�
= 	 · "	P0 × ��×B0�+ �� ·	P0�B0#

= 	 · ��B0 ·	P0�
= 0� (10.92)

where Eq. (10.61) has been invoked to obtain the last line. Thus,
� · �J0 ×B1 +	 �� ·	P0�� = �⊥ · �J0 ×B1 +	 �� ·	P0�� since Eq. (10.92) shows
that the factor in square brackets has no component parallel to the equilibrium
magnetic field.
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The potential energy variation �W is now decomposed into its magnetofluid
volume and surface components,

�WF ′ = 1
2

∫
Vmf

d3r

⎧⎪⎨⎪⎩�P0 �	 ·��2 + B
2
1⊥
�0

+
B2
1�
�0

−
�⊥ ·J0 ×B1 −�⊥ ·	⊥ ��⊥·	P0�

⎫⎪⎬⎪⎭ (10.93)

and

�WS′ = 1
2�0

∫
Smf

ds ·�⊥ �B0 ·B1 −�0�P0	 ·�� � (10.94)

At this point it is useful to examine the parallel and perpendicular components
of B1. Finite B1⊥ corresponds to changing the curvature of field lines (twanging or
plucking) whereas finite B1� corresponds to compressing or rarefying the density
of field lines. The equilibrium force balance can be written as

�0	P0 = −	⊥
B2
0

2
+�B2

0� (10.95)

where � = B̂0 · 	B̂0 is a measure of the local curvature of the equilibrium
magnetic field (see discussion regarding Eq. (9.14)). Applying the vector identity
	 �C ·D�= C ·	D+D ·	C+D×	×C+C×	×D provides an alternate form
for �, namely

� =− B̂0 ×	× B̂0� (10.96)

which will now be used in the evaluation of B1�, the parallel component of the
perturbed magnetic field. From Eq. (10.67) it is seen that

B1� = B̂0 ·	× ��⊥ ×B0�

= ��⊥ ×B0� ·	× B̂0 +	 ·
[
��⊥ ×B0�× B̂0

]
= −B0�⊥ ·�−	 · �B0�⊥�

= −B0�⊥ ·�−B0 �	 ·�⊥�−
�⊥
B0

·	 B
2
0

2

= −B0 �2�⊥ ·�+	 ·�⊥�+
�0

B0
�⊥ ·	P0� (10.97)

The term involving J0 in Eq. (10.93) can be expanded to give

�⊥ ·J0 ×B1 = �⊥ ·J0⊥ × B̂0B1� +�⊥ · J0�B̂0 ×B1⊥

= ��⊥ ·	P0�
B1�
B0

+�⊥ · J0�B̂0 ×B1⊥� (10.98)
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Substituting for this term in Eq. (10.93), factoring out one power of B1�, and
then substituting Eq. (10.97) gives

�WF ′ = 1
2

∫
Vmf

d3r

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�P0 �	 ·��2 + B
2
1⊥
�0

+
B2
1�
�0

− ��⊥ ·	P0�
B1�
B0

−

�⊥ · J0�B̂0 ×B1⊥ −�⊥ ·	⊥ ��⊥·	P0�

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= 1
2

∫
Vmf

d3r

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�P0 �	 ·��2 + B
2
1⊥
�0

+
B1�
�0

(
B1� − �0�⊥ ·	P0

B0

)
−

�⊥ · J0�B̂0 ×B1⊥ −�⊥ ·	⊥ ��⊥·	P0�

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= 1
2

∫
Vmf

d3r

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�P0 �	 ·��2 + B
2
1⊥
�0

+(
B2
0

�0
�2�⊥ ·�+	 ·�⊥�−�⊥·	P0

)
�2�⊥ ·�+	 ·�⊥�−

�⊥ · J0�B̂0 ×B1⊥ + ��⊥·	P0�	 ·�⊥−
	 · ��⊥ ��⊥·	P0��

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1
2

∫
Vmf

d3r

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�P0 �	 ·��2 + B

2
1⊥
�0

+ B
2
0

�0
�2�⊥ ·�+	 ·�⊥�2 −

��⊥·	P0� �2�⊥ ·��−�⊥ · J0�B̂0 ×B1⊥−
	 · ��⊥ ��⊥ ·	P0��

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 1

2�0

∫
Vmf

d3r

{
��0P0 �	 ·��2 +B2

1⊥ +B2
0 �2�⊥ ·�+	 ·�⊥�2 −

2�0 ��⊥ ·	P0� ��⊥ ·��+�⊥ ×B1⊥ ·
(
�0J0�B̂0

)}

−1
2

∫
Smf

ds ·�⊥ ��⊥ ·	P0� � (10.99)

A new surface term has appeared because of an integration by parts; this new
term is absorbed into the previous surface term and the fluid and surface terms
are redefined by removing the primes; thus,

�WF = 1
2�0

∫
Vmf

d3r

{
��0P0 �	 ·��2 +B2

1⊥ +B2
0 �2�⊥ ·�+ �	 ·�⊥��

2 −
2�0 ��⊥ ·	P0� ��⊥ ·��+�⊥ ×B1⊥ ·

(
�0J0�B̂0

) }
(10.100)
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and

�WS = 1
2�0

∫
Smf

ds ·�⊥ "B0 ·B1 −�0 ��P0	 ·�+�⊥ ·	P0�#

= 1
2�0

∫
Smf

ds ·�⊥ "B0 ·B1 +�0P1# � (10.101)

where B0 ·ds = 0 and Eq. (10.68) have been used to simplify the surface integral.
The surface integral can be further rearranged by considering the relationship
between the vacuum and magnetofluid fields at the perturbed surface. If the
equilibrium force balance is integrated over the volume of the small Gaussian
pillbox located at the perturbed magnetofluid surface in Fig. 10.5, it is seen that

0 =
∫
Vpillbox�ps

d3r	 ·
[(
P+ B2

2�0

)
I− 1

�0
BB
]

=
∫
S�ps

ds
[
P+ B2

2�0

]vac
magnetofluid

(10.102)

since ds ·B= 0 at the perturbed surface. The subscripts ps indicate that the volume
and surface integrals are at the perturbed surface.
Quantities evaluated at the perturbed surface are of the form

fpert sfc = f0 +f1 +� ·	f0� (10.103)

i.e., both absolute and convective first-order terms must be included. Since the pill-
box extent was arbitrary in Eq. (10.102), the integrand

[
P+B2/2�0

]vac
magnetofluid

must vanish at each point on the perturbed surface, giving the relation(
P1 + B0 ·B1

�0

)
magneto
fluid

+� ·	
(
P0 + B2

0

2�0

)
magneto
fluid

=
(
B0 ·B1

�0

)
vac

+� ·	
(
B2
0

2�0

)
vac

�

(10.104)
which can be rewritten as(

P1 + B0 ·B1

�0

)
magnetofluid

= � ·	
[
P0 + B2

0

2�0

]vac
magnetofluid

+
(
B0 ·B1

�0

)
vac

�

(10.105)

Thus, the surface integral Eq. (10.101) can be rewritten as

�WS = 1
2

∫
Smf

ds ·�⊥�⊥ ·	
[
P0 + B2

0

2�0

]vac
magnetofluid

+ 1
2�0

∫
Smf

ds ·�⊥ �B0 ·B1�vac �

(10.106)

The volume integral in Eq. (10.100) is over the magnetofluid volume and the direc-
tion of ds in Eq. (10.106) is outwards from the magnetofluid volume. The energy
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stored in the vacuum region between the magnetofluid and wall is

�Wvac = 1
2�0

∫
Vvac

d3rB2
1v

= 1
2�0

∫
Vvac

d3rB1v ·	×A1v

= 1
2�0

∫
Vvac

d3r	 · �A1v×B1v�

= 1
2�0

∫
Svac

ds · �A1v×B1v� � (10.107)

where ds points out from the vacuum region and 	 ×B1v = 0 has been used
when integrating by parts. At the conducting wall (which might be at infinity) the
integrand vanishes, since it contains the factor ds×A1v, which is proportional to
the tangential electric field, a quantity that vanishes at a conductor. Thus, only
the surface integral over the magnetofluid–vacuum interface remains. Since an
element of surface ds pointing out of the vacuum points into the magnetofluid,
on using ds to mean out of the magnetofluid (as before), Eq. (10.107) becomes

�Wvac = − 1
2�0

∫
Smf

ds · �A1v×B1v� � (10.108)

where Smf has been used instead of Svac to indicate that ds points out of the
magnetofluid.
The tangential component of the electric field must be continuous at the

magnetofluid–vacuum interface. This field is not necessarily zero. The electric
field inside the magnetofluid is determined by Ohm’s law, Eq. (10.37). Thus, the
electric field on the magnetofluid side of the magnetofluid–vacuum interface is

E1p = −v1 ×B0 (10.109)

while on the vacuum side of this interface the electric field is simply

E1v = −�A1v

�t
� (10.110)

where A1v is the vacuum vector potential. Defining the surface normal unit vector
n̂ and integrating both electric fields with respect to time, the condition that the
tangential electric field is continuous is seen to be

n̂×A1v = n̂× ��×B0�= −n̂ ·�B0� (10.111)

where n̂ ·B0 = 0 has been used. Thus, the second surface integral in Eq. (10.106)
can be written as

1
2�0

∫
S
dsn̂ ·�⊥B0 ·B1v = − 1

2�0

∫
S
dsn̂×A1v ·B1v = �Wvac� (10.112)
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These results are now summarized. The perturbed potential energy can be
expressed as

�W = �WF +�Wint+�Wvac� (10.113)

where the contribution from the fluid volume interior is

�WF = 1
2�0

∫
Vmf

d3r

{
��0P0 �	 ·��2 +B2

1⊥ +B2
0 �2�⊥ ·�+ �	 ·�⊥��

2

+�⊥ ×B1⊥ · B̂0�0J0� −2�0 ��⊥ ·�� ��⊥ ·	P0�

}
�

(10.114)

the contribution from the vacuum–magnetofluid interface is

�Wint =
1

2�0

∫
Smf

ds ·�⊥�⊥ ·	
[
�0P0 + B

2
0

2

]vac
magnetofluid

� (10.115)

and the contribution from the vacuum region is

�Wvac = 1
2�0

∫
vac

d3r B2
1v� (10.116)

10.5 Discussion of the energy principle

The terms in the integrands of �WF��Wint, and �Wvac are of two types: those
that are positive-definite and those that are not. Positive-definite terms always
increase �W and are therefore stabilizing whereas terms that could be negative are
potentially destabilizing. Consideration of �WF in particular shows that magnetic
perturbations interior to the magnetofluid and perpendicular to the equilibrium
field are always stabilizing, since these perturbations appear in the form B2

1⊥ .

It is also seen that a positive-definite term ∼ �	 ·��2 exists indicating that a
compressible magnetofluid is always more stable than an otherwise identical
incompressible magnetofluid. Hence, incompressible instabilities are more violent
than compressible ones. It is also seen that two types of destabilizing terms exist.
One gives instability if

�� ·�⊥� ��⊥·	P0� > 0� (10.117)

this is a generalization of the good curvature/bad curvature result obtained in the
earlier Rayleigh–Taylor analysis. In the vicinity of the magnetofluid surface all
quantities in Eq. (10.117) point in the same direction and so Eq. (10.117) can be
written as

� ·	P0 > 0 =⇒ instability� (10.118)

which gives instability for bad curvature (� parallel to 	P0) and stability for
good curvature (� antiparallel to 	P0). A Bennett pinch has bad curvature and
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is therefore grossly unstable to Rayleigh–Taylor interchange modes. Instabili-
ties associated with Eq. (10.117) are called pressure-driven instabilities, and are
important in plasmas where there is significant energy stored in the pressure (high
! where != 2�0P0/B

2
0).

The other type of destabilizing term depends on the existence of a force-
free current (i.e., J0� �= 0) and leads to internal kink instabilities. These sorts of
instabilities are called current-driven instabilities (although strictly speaking, only
the parallel component of the current is involved).
There also exist instabilities associated with the magnetofluid–vacuum inter-

face. The energy �Wint can be thought of as the change in potential energy of a
stretched membrane at the magnetofluid–vacuum interface where the stretching
force is given by the difference between the vacuum and magnetofluid forces
pushing on the membrane surface; instability will occur if �Wint < 0. When
investigating these surface instabilities it is convenient to set �WF to zero by
idealizing the plasma to being incompressible, having uniform internal pressure,
and no internal currents. Surface instabilities can exist only if the surface can
move, and so require a vacuum region between the wall and the plasma. Thus,
moving a conducting wall right up to the surface of a conducting plasma prevents
surface instabilities. These surface instabilities will be investigated in detail later
in this chapter.

10.6 Current-driven instabilities and helicity

We shall now discuss current driven instabilities and show that these are helical
in nature and are driven by gradients in J0�/B0. To simplify the analysis P → 0
is assumed so that pressure-driven instabilities can be neglected, since they have
already been discussed. On making this simplification, Eq. (10.97) shows that the
parallel component of the perturbed magnetic field reduces to

B1� = −B0 �2�⊥ ·�+	 ·�⊥� � (10.119)

Thus, we may identify

B2
1 = B2

1⊥ +B2
1� = B2

1⊥ +B2
0 �2�⊥ ·�+	 ·�⊥�2 (10.120)

and so the perturbed potential energy of the magnetofluid volume reduces to

�WF = 1
2�0

∫
d3r

{
B2
1 +�⊥ ×B1⊥ ·B0

�0J0�
B0

}
� (10.121)

Equation (10.67) shows that the perturbed vector potential can be identified as

A1 = �×B0 (10.122)
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so Eq. (10.121) can be recast as

�WF = 1
2�0

∫
d3r

{
B2
1 −A1 ·B1

�0J0�
B0

}
� (10.123)

We now show that finite A1 ·B1 corresponds to a helical perturbation. Consider the
simplest situation where A1 ·B1 is simply a constant and define a local Cartesian
coordinate system with z axis parallel to the local B0. Equation (10.122) shows
that A1 = A1xx̂+A1yŷ so

A1 ·B1 = −A1x
�A1y

�z
+A1y

�A1x

�z
� (10.124)

Suppose both components of A1 are non-trivial functions of z and, in particular,
assume A1x = Re �1x exp �ikz� and A1y = Re �1y exp �ikz�. In this case

A1 ·B1 = 1
2
Re
[
−�∗

1x

��1y

�z
+�∗

1y
��1x

�z

]
= −k

2
Re
[
i
(
�∗

1x�1y−�∗
1y�1x

)]
�

(10.125)
which can be finite only if �∗

1x�1y is not pure real. The simplest such case is
where �1y = i�1x so

A1 ·B1 = k��1x�2 (10.126)

and

A1 = Re ��1x �x̂+ iŷ� exp �ikz�� � (10.127)

which is a helically polarized field since A1x ∼ coskz and A1y ∼ sin kz.

10.7 Magnetic helicity

Since finite A1 ·B1 corresponds to the local helical polarization of the perturbed
fields, it is reasonable to define A ·B as the density of magnetic helicity and to
define the total magnetic helicity in a volume as

K =
∫
V
d3rA ·B� (10.128)

The question immediately arises whether this definition makes sense, i.e., is it
reasonable to define A ·B as an intensive property and K as an extensive property?
An obvious problem is that A is undefined with respect to a gauge: A can be
redefined to be A′ = A+	f , where f is an arbitrary scalar function since B =
	 ×A = 	 × �A+	f� is unaffected by the choice of gauge. The definition for
magnetic helicity would be of little use if K were gauge-dependent because gauge
has no physical significance. However, if no magnetic field penetrates the surface
S enclosing the volume V , the proposed definition ofK is gauge-independent. This
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is because if no magnetic field penetrates the surface then B ·ds = 0 everywhere
on the surface. If this is true, then∫

V
d3r �A+	f� ·B =

∫
V
d3rA ·B+

∫
V
d3r	 · �fB�

=
∫
V
d3rA ·B+

∫
S
ds · �fB�

=
∫
V
d3rA ·B (10.129)

and so the total helicity defined by Eq. (10.128) is gauge-independent even though
the helicity density A ·B is gauge-dependent.
Let us consider the situation where there is no vacuum region between the

plasma and an impermeable wall. Thus the normal fluid velocity u1⊥ must vanish
at the wall. From Ohm’s law the component of the perturbed electric field tangen-
tial to the wall E1t must vanish since

E1t = −u1⊥ ×B0 = 0 (10.130)

and B0 lies in the plane of the wall. Thus, an impermeable wall is equivalent to a
conducting wall if B0 lies in the plane of the wall. If the magnetic field initially
does not penetrate the wall, i.e., B · ds = 0 initially, then the field will always
remain tangential to the wall and the total helicity K in the volume bounded by the
wall will always be a well-defined quantity (i.e., will always be gauge-invariant).
A conservation equation for helicity density can be obtained by combining the

time derivative of the magnetic helicity density with Faraday’s law. This is seen
by direct calculation:

− �
�t
�A ·B�= −�A

�t
·B−A · �B

�t

= �E+	)� ·B+A ·	×E

= 2E ·B+	 · �)B+E×A� �

(10.131)

where ) is the electrostatic potential. Since the ideal MHDOhm’s law, Eq. (10.37),
implies E ·B = 0, Eq. (10.131) can be rearranged in the form of a conservation
equation,

�

�t
�A ·B�+	 · �)B+E×A�= 0� (10.132)

Integration of Eq. (10.132) over the entire magnetofluid volume gives the conser-
vation relation for the total helicity to be

�

�t

[∫
d3rA ·B

]
+
∫

dsn̂ · �)B+E×A�= 0� (10.133)
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Since both B · n̂= 0 and Et = 0 at the wall, this reduces to

K =
∫

d3rA ·B = const�� (10.134)

i.e., the total helicity is conserved for an ideal plasma surrounded by a rigid or
conducting wall that is not penetrated by any magnetic field lines.
We now recall that A1 is a linear function of � prescribed by Eq. (10.122) and

that � is assumed to be of order $. Furthermore, we note that the energy principle
derivation is unaffected by making the additional assumption that the variation
�A = A1 is exact to all orders in $, i.e., the energy principle is unaffected if we
assume no terms An ∼ $n exist for n≥ 2. Let us use these properties to consider
the implications of Eq. (10.134) when the magnetic field is perturbed. On writing
B = B0 +B1 and A = A0 +A1, helicity conservation as given by Eq. (10.134)
implies

K =
∫

d3rA0 ·	×A0

=
∫

d3r �A0 +A1� ·	× �A0 +A1�

=
∫

d3rA0 ·	×A0 +
∫

d3rA1 ·	×A0

+
∫

d3rA0 ·	×A1 +
∫

d3rA1 ·	×A1� (10.135)

Thus, to first-order in the perturbation (i.e., to order $),∫
d3rA1 ·	×A0 +

∫
d3rA0 ·	×A1 = 0 (10.136)

and to second-order (i.e., to order $2, the order relevant to the energy principle),∫
d3rA1 ·	×A1 =

∫
d3rA1 ·B1 = 0� (10.137)

This can be compared to Eq. (10.123), the second term of which is the same as
Eq. (10.137) except for a factor −�0J0�/B0. In general, this factor can be some
complicated function of position. However, in the special case where �0J0�/B0
does not depend on position, �0J0�/B0 may be factored out of the second term
in Eq. (10.123) so as to obtain, using Eq. (10.137),

�WF = 1
2�0

∫
d3r B2

1� (10.138)

which is positive-definite and therefore gives absolute stability. Thus, equilibria
having spatially uniform � = �0J0�/B0 are stable against current-driven modes.
Since these equilibria are helical or kinked, they may be considered as being the
final relaxed state associated with a kink instability – once a system attains this
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final state no free energy remains to drive further instability. Since pressure has
been assumed to be negligible, Eq. (10.60) implies that the equilibrium current
must be parallel to the equilibrium magnetic field, but does not specify the
proportionality factor. Thus, if a configuration satisfies

�0J0 = �B0� (10.139)

where � is spatially uniform, the configuration is stable against any further helical
perturbations. This gives rise to the relation

	×B0 = �B0� (10.140)

where � is spatially uniform. This equation is called a force-free equilibrium and
its solutions are helical vector fields, namely fields where the curl of the field is
parallel to the field itself. If a field is confined to a plane, then its curl will be
normal to the plane and so a field confined to a plane cannot be a solution to
Eq. (10.140). The field must be three-dimensional.
To summarize, it has been shown that current-driven instabilities are helical and

drive the plasma towards a force-free equilibrium as prescribed by Eq. (10.140).
Current-driven instabilities are energized by gradients in J0�/B0 and become stabi-
lized when J0�/B0 becomes spatially uniform. Gradients in J0�/B0 can therefore
be considered as free energy available for driving helical modes. When this free
energy is depleted, the helical modes are stabilized and the plasma assumes a
force-free equilibrium with spatially uniform J0�/B0.
This tendency to coil up or kink is a means by which the plasma increases its

inductance. However, when the plasma coils up into a state satisfying Eq. (10.140)
it is in a stable equilibrium. This stable equilibrium represents a local minimum
in potential energy. There might be several such local minima, each of which has
a different energy level as sketched in Fig. 9.2. As mentioned earlier, this set of
discrete energy levels is somewhat analogous to the ground and excited states of
a quantum system. Here, the vacuum magnetic field is analogous to the ground
state, while the various force-free equilibria (i.e., solutions of Eq. (10.140)) are
analogous to the higher energy states.

10.8 Characterization of free-boundary instabilities

The previous section considered internal instabilities of a magnetofluid bounded
by a rigid wall with no vacuum region between the magnetofluid and the wall.
Let us now consider the other extreme, namely a situation where not only does a
vacuum region exist and bound the magnetofluid but, in addition, the location of
the vacuum–magnetofluid interface can move. To focus attention on the motion of
the magnetofluid–vacuum boundary, the simplest non-trivial configuration will be
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considered, namely a configuration where the interior pressure is both uniform and
finite. This means 	P vanishes in the magnetofluid interior so the entire pressure
gradient and therefore the entire J×B force is concentrated in an infinitesimally
thin layer at the magnetofluid surface.
Compressibility, i.e., finite 	 ·�, was shown by the MHD energy principle to

be stabilizing. Therefore, if a given system is stable with respect to incompress-
ible modes, it will be even more stable with respect to compressible modes, or
equivalently, with respect to modes having finite 	 ·�. By assuming 	 ·� = 0
the worst-case instability scenario is therefore considered and, furthermore, the
analysis is simplified. Thus, in order to consider the simplest non-trivial insta-
bility resulting from motion of the magnetofluid–vacuum boundary, we assume
	 ·� = 0, cylindrical geometry, and axial uniformity. For example, the Bennett
pinch would satisfy these assumptions if all the current were concentrated at the
plasma surface. The physical basis of the two main types of current-driven insta-
bility, sausage and kink, will first be discussed qualitatively before proceeding
with a detailed mathematical discussion.

10.8.1 Qualitative examination of the sausage instability

Consider a Bennett pinch (z-pinch) that is an axially uniform cylindrical plasma
with an axial current and an associated azimuthal magnetic field. As discussed
above, the pressure is assumed to be (i) uniform in the interior region r < a, where
a is the plasma radius, and (ii) zero in the exterior region r > a. In equilibrium, the
radially inward J×B pinch force balances the radially outward force associated
with the pressure gradient. Thus −Jz0B�0 = �P0/�r and both sides of this equation
are finite only in an infinitesimal surface layer at r = a. We now suppose that
random thermal noise causes the incompressible plasma to develop small axially
periodic constrictions and bulges shown in an exaggerated fashion in Fig. 10.6.
The azimuthal magnetic field B� = �0I/2r at the constrictions is larger than
its equilibrium value because r < a at a constriction whereas I is fixed. Thus, at
a constriction the pinch force ∼ B2

�/r is greater than its equilibrium value and
so is stronger than the outward force from the internally uniform pressure. The
resulting net force is therefore inwards and so will cause an inwards radial motion,
thereby enhancing the constriction. Because the configuration was assumed to be
incompressible, the plasma squeezed inwards at constrictions must flow into the
interspersed bulges shown in Fig. 10.6. The azimuthal magnetic field at a bulge
is weaker than its equilibrium value because r > a at a bulge. Thus, at a bulge the
tables are now turned in the competition between outward pressure and inward
pinch force. At a bulge the pressure exceeds the weakened pinch force and this
force imbalance causes the bulge to increase. Hence, any combination of initial



372 Stability of static MHD equilibria

surface 
current

bulge

constriction

Fig. 10.6 Sausage instability: current is axial, magnetic field is azimuthal.

infinitesimal constrictions and bulges will spontaneously grow in amplitude and
so the system is unstable. This behavior is called the “sausage” instability because
the end result is a plasma resembling a string of sausages.
Sausage instability can be prevented by either surrounding the plasma with a

perfectly conducting wall or by immersing the plasma in a strong axial vacuum
magnetic field (i.e., an axial field generated by currents flowing in external
solenoid coils that are coaxial with the plasma). If a plasma with embedded
axial field attempts to sausage, the axial rippling of the plasma would have to
bend the embedded axial field since this axial field is frozen into the plasma. As
was shown in Section 9.2 any deformation of a vacuum magnetic field requires
work and so the free energy available to drive the sausage instability would have
to do work to bend the axial field. If bending the axial magnetic field absorbs
more energy than is liberated by the sausaging motion, the plasma is stabilized.
The vacuum axial field stabilizes the plasma in a manner analogous to a steel
reinforcing rod embedded in concrete. The other method for stabilization, a close-
fitting conducting wall, works because image currents induced in the wall by the
sausage motion produce a magnetic field that interacts with the plasma current in
such a way as to repel the plasma from the wall.

10.8.2 Qualitative examination of the kink instability

The combination of the axial magnetic field Bz proposed in the previous paragraph
and the azimuthal magnetic field B� produced by the plasma current results in
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Fig. 10.7 Kink instability can occur when the equilibrium magnetic field is helical.

a helical magnetic field. This helical magnetic field is susceptible to the helical
kink instability sketched in Fig. 10.7. At the concave parts of the plasma surface
there is a concentration of the azimuthal field resulting in a magnetic pressure
that increases the concavity (see lower left of Fig. 10.7). Similarly, at the convex
portions of the surface, the azimuthal field is weaker so that the convex bulge
will tend to increase (see lower right of Fig. 10.7). This tendency can also be
viewed as an example of the hoop force trying to increase the major radius of a
segment of curved current. If the externally imposed axial vacuum magnetic field
is sufficiently strong, the energy required to deform this vacuum field will exceed
the free energy available from the kinking and the instability will be prevented.

10.8.3 Qualitative examination of wall stabilization

Now consider a plasma with no externally produced Bz field but surrounded by
a close-fitting perfectly conducting wall. The plasma axial current generates an
azimuthal field in the vacuum region between the plasma and the wall. If an
instability causes the plasma to move towards the wall, then the vacuum region
becomes thinner and the magnetic field in the vacuum region becomes compressed
since it cannot penetrate the wall or the plasma. The increased magnetic pressure
acts as a restoring force, pushing the plasma back away from the wall. Thus, a
close-fitting perfectly conducting wall stabilizes both kinks and sausages.
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10.9 Analysis of free-boundary instabilities

Consider the azimuthally symmetric, axially uniform cylindrical plasma with
nominal radius a shown in Fig. 10.8. The plasma is subdivided into two concentric
regions consisting of (i) an interior region 0< r < a− and (ii) a thin surface layer
a− < r < a+. In the limit of infinitesimal surface thickness, a− approaches a+.
The interior pressure P0 is uniform and the interior current density is zero so both
J×B and 	P are zero in the interior. Thus, finite current density exists only in
the surface layer and everywhere else the magnetic field is a vacuum field. The
plasma is also assumed to be surrounded by a perfectly conducting wall located
at a radius b where b > a. MHD equilibrium, i.e., Eq. (10.60), can be written as

0 = −�0	P0 −	
(
B2
0

2

)
+B0 ·	B0� (10.141)

Because 	 ·B0 = r−1�/�r �rB0r� = 0 for an azimuthally symmetric, axially
uniform field and because Br cannot be singular, B0r must vanish everywhere.
Since all equilibrium quantities depend on r only, the third term in Eq. (10.141)
can be expanded

B0 ·	B0 =
(
B0��r��̂+B0z�r�ẑ

)
·	
(
B0��r��̂+B0z�r�ẑ

)
= B2

0��̂ ·	�̂ = −B
2
0�

r
r̂�

(10.142)

Thus, Eq. (10.141) only has r components and so reduces to

0 = −�0
�P0
�r

− �

�r

(
B2
0

2

)
− B

2
0�

r
� (10.143)

surface current
at r = a
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a– a+ b
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uniform
pressure
plasma
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Pressure

surface
current
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r

wall

perfectly conducting
wall at r = b

uniform
pressure
plasma

Fig. 10.8 Equilibrium for free-boundary stability analysis: assumed cross-
section (left) and assumed pressure profile (right).
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On integrating across the surface layer, this gives the pressure balance relation

P0 + B
2
0pz

2�0
= B2

0v�+B2
0vz

2�0
� (10.144)

where the subscript p refers to the inner side (i.e., plasma side) of the surface
layer and the subscript v refers to the outer side (i.e., vacuum side). The reason
no B2

0p� term appears on the left-hand side of Eq. (10.144) is that there are no
interior plasma currents (from Ampère’s law 2aB0p� = �0I = 0).
The location of the equilibrium surface can be described in a formal mathe-

matical fashion by the function r = a or, equivalently, by the surface-defining
equation

S0�r�= r−a= 0� (10.145)

Using this formalism, an incompressible perturbation can be characterized as a
harmonic deformation of the plasma surface such that r = a+ %reim�+ikz. The
equation describing the perturbed surface is thus

S�r� �� z�= r−a−%reim�+ikz = 0� (10.146)

where, without loss of generality, %r > 0 is assumed. The equilibrium magnetic
field has B0r = 0 so no equilibrium magnetic field lines penetrate the surface.
This property can be stated equivalently as the equilibrium magnetic field being
tangential to the surface or, in a more abstract mathematical way, as B0 ·	S0 = 0.
Since the magnetic field is assumed frozen into the plasma, the magnetic field
must continue to be tangential to the surface even when the surface becomes
deformed from its equilibrium shape. Thus, the condition

B ·	S = 0 (10.147)

must be satisfied at all times where 	S is in the direction normal to the surface;
this is essentially a statement that no magnetic field line penetrates the surface
even when the surface becomes deformed by the instability.
A quantity f at the perturbed surface (denoted by the subscript ps) can be

expressed as

fps = f0 +f1 +� ·	f0� (10.148)

where the the middle term is the absolute first-order change and the last term is
the convective term due to the motion of the surface.
In order for the configuration to be stable, any perturbation must generate

a restoring force, which pushes the perturbed surface back to its equilibrium
location. The competition between destabilizing and restoring forces is found
by integrating Eq. (10.141) across the perturbed surface. This integration gives
Eq. (10.144) evaluated at the perturbed surface, i.e., using Eq. (10.148) to take
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into account the effect of the perturbation of the surface. Since %r was assumed
positive (outward bulge at �= 0, z= 0) the perturbed configuration will be stable
if the effective pressure on the perturbed surface exterior exceeds the effective
pressure on the perturbed surface interior, i.e., if[

B2
v�+B2

vz

2�0

]
perturbed sfc

>

[
P+ B2

pz

2�0

]
perturbed sfc

=⇒ stable� (10.149)

In this case, the restoring force pushes back the bulge and makes the system revert
to its equilibrium condition. Subtracting the equilibrium pressure balance relation
Eq. (10.144) from Eq. (10.149) gives

B0v�B1v�+B0vzB1vz
�0

+%r
�

�r

[
B2
0v�+B2

0vz

2�0

]
> P1 + B0pzB1pz

�0
+%r

�

�r

[
P0 + B

2
0pz

2�0

]
�

(10.150)

where all quantities are evaluated at r = a.
Equation (10.150) can be simplified considerably because of the following

relationships:

1. There are no currents in either the plasma interior or the external vacuum so

�B0pz

�r
= �B0vz

�r
= 0� (10.151)

2. The adiabatic pressure equation gives

P1 +� ·	P0 +�P0	 ·� = 0� (10.152)

Since 	 ·� = 0 has been assumed (i.e., incompressibility), the adiabatic relation reduces
to

P1 +%r�P0/�r = 0� (10.153)

3. From Ampère’s law it is seen that B2
0v� ∼ r−2 so

[
�B2

0v�/�r
]
r=a = −2B2

0v�/a� thus
Eq. (10.150) simplifies to

B0v�B1v�+B0vzB1vz−
%r
a
B2
0v� > B0pzB1pz =⇒ stable� (10.154)

where again all fields are evaluated at r = a.
To simplify the algebra all fields are now normalized to B0v��a�. The normalized

fields are denoted by a bar on top and are

B̄0vz = B0vz
B0v��a�

� B̄0pz = B0pz

B0v��a�
�

B̄1vz = B1vz
B0v��a�

� B̄1v� = B1v�
B0v��a�

� B̄1pz = B1pz

B0v��a�
(10.155)
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so, when expressed as a relationship between normalized fields, Eq. (10.154)
becomes

B̄1v�+ B̄0vzB̄1vz−
%r
a
> B̄0pzB̄1pz =⇒ stable� (10.156)

What remains to be done is express all first-order magnetic fields in terms of %r .
This is relatively easy because the current is confined to the surface layer so
the magnetic field is a vacuum magnetic field everywhere except exactly on the
surface.
Since the magnetic field is a vacuum field for both 0< r< a and a< r < b, the

normalized fields under consideration here must be of the form B̄ = 	', where
	2' = 0. This is true in both the plasma and vacuum regions but, due to the surface
current at the vacuum–plasma interface, a jump discontinuity between the vacuum
and plasma tangential magnetic fields occurs at r = a. Because the perturbed fields
were assumed to have an exp �im�+ ikz� dependence, the Laplacian becomes

	2' = d2'�r�
dr2

+ 1
r

d'�r�
dr

−
(
m2

r2
+k2

)
'�r�= 0� (10.157)

which has solutions consisting of the modified Bessel functions, I�m���k�r� and
K�m���k�r�. Absolute value signs have been used here to avoid possible confusion
for situations to be encountered later wherem or k could be negative. The I�m���k�r�
function is finite at r = 0 but diverges at r = �, while the opposite is true for
K�m���k�r�.

The surface current causes a discontinuity in the tangential components of the
perturbed magnetic field. Hence, different solutions must be used in the respective
plasma and vacuum regions and then these solutions must be related to each other
in such a way as to satisfy the requirements of this discontinuity. The forms of
the plasma and vacuum solutions are also constrained by the respective boundary
conditions at r = 0 and at r = b. In particular, the K�m���k�r� solution is not
allowed in the plasma because of the constraint that the magnetic field must be
finite at r = 0; inside the plasma the solution must therefore be of the form

' = �I�m���k�r� in plasma region 0 ≤ r ≤ a−� (10.158)

On the other hand, both the I�m���k�r� and K�m���k�r� solutions are permissible in
the vacuum region and so the vacuum region solution is of the general form

' = !1I�m���k�r�+!2K�m���k�r� in vacuum region a+ ≤ r ≤ b� (10.159)

The objective now is to express the coefficients �, !1, and !2 in terms of %r so
all components of the perturbed magnetic field can be expressed as a function of
%r , both in the plasma and in the vacuum.
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The functional dependence of these coefficients is determined by considering
boundary conditions at the wall and then at the plasma–vacuum interface:

1. Wall: since the wall is perfectly conducting it is a flux conserver. There is no radial
magnetic field initially and so there is no flux linking each small patch of the wall.
Thus B̄1vr�b� must vanish at the wall in order to maintain zero flux at each patch of the
wall. Using Eq. (10.159) to calculate the perturbed radial magnetic field B̄1vr = �'/�r
at the wall, setting B̄1vr�b�= 0 implies

!1I
′
�m���k�b�+!2K

′
�m���k�b�= 0� (10.160)

which may be solved for !2 to obtain

!2 = −!1

Î ′�m�
K̂′

�m�
� (10.161)

here the circumflex means the modified Bessel function is evaluated at the wall, i.e.,
with its argument set to �k�b. Equation (10.159) can then be recast as

' = !
[
I�m���k�r�K̂′

�m� − Î ′�m�K�m���k�r�
]
� (10.162)

where != !1/K̂
′
�m�. The wall boundary condition has reduced the number of indepen-

dent coefficients by one.
2. Vacuum side of plasma–vacuum interface: here Eq. (10.147) is linearized to obtain

B1 ·	S0 +B0 ·	S1 = 0 (10.163)

or using Eqs. (10.145) and (10.146)

B̄1vr − i
(m
a

+kB̄0vz

)
%r = 0� (10.164)

On the vacuum side Eq. (10.162) gives

B̄1vr = �k�!
[
I ′�m�K̂

′
�m� − Î ′�m�K

′
�m�
]
� (10.165)

where omission of the argument means the modified Bessel function is evaluated at
r = a. Substitution of Eq. (10.165) into Eq. (10.164) gives

!=
i
(m
a

+kB̄0z

)
�k�
[
I ′�m�K̂

′
�m� − Î ′�m�K

′
�m�
]%r (10.166)

so the complete vacuum field can now be expressed in terms of %r .
3. Plasma side of plasma–vacuum interface: the plasma-side version of Eq. (10.163)

gives

B̄1pr − ikB̄0pz%r = 0 (10.167)
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since B0p� vanishes inside the plasma. From Eq. (10.158) the perturbed radial magnetic
field on the plasma side of the interface is

B̄1pr = �k��I ′�m�� (10.168)

The plasma-side version of Eq. (10.164) is thus

�= ikB̄0pz

�k�I ′�m�
%r (10.169)

and so the plasma fields can now also be expressed in terms of %r .

The stability condition, Eq. (10.156), can be written in terms of � and ! to
obtain

!

(
im
a

+ ikB̄0vz

)(
I�m�K̂′

�m� − Î ′�m�K�m�
)

− %r
a
> �B̄0pzikI�m�� (10.170)

Substituting for � and ! and rearranging the order gives

�k�aB̄2
0pz

[
I�m�
I ′�m�

]
− �m+kaB̄0vz�2

�k�a

[
I�m�K̂′

�m� − Î ′�m�K�m�
I ′�m�K̂

′
�m� − Î ′�m�K

′
�m�

]
> 1 =⇒ stable�

(10.171)
If we introduce the normalized pressure

P̄0 = 2�0P0

B2
0v��a�

� (10.172)

the MHD equilibrium, Eq. (10.144), can be written in normalized form as

P̄0 + B̄2
0pz = 1+ B̄2

0vz� (10.173)

Substitution for B̄2
0pz into Eq. (10.171) and rearranging the order of the second

term gives

�k�a [1+ B̄2
0vz− P̄0

][I�m�
I ′�m�

]
+ �m+kaB̄0vz�2

�k�a

[−I�m�K̂′
�m� + Î ′�m�K�m�

I ′�m�K̂
′
�m� − Î ′�m�K

′
�m�

]
> 1�

(10.174)
which is the general requirement for stability of a configuration having a specified
internal pressure, vacuum axial field, plasma radius, and wall radius.
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Conditions for sausage and kink instability

Let us now examine the effect of the various factors in Eq. (10.174). For large
argument, the modified Bessel functions have the asymptotic form

lim
s→� I�m��s�→ 1√

2s
es� lim

s→� K�m��s�→
√


2s
e−s (10.175)

so if the wall radius goes to infinity, the factor[−I�m�K̂′
�m� + Î ′�m�K�m�

I ′�m�K̂
′
�m� − Î ′�m�K

′
�m�

]
→ −K�m�

K′
�m�

= positive-definite. (10.176)

Since bringing the wall closer is stabilizing, the factor

−I�m�K̂′
�m� + Î ′�m�K�m�

I ′�m�K̂
′
�m� − Î ′�m�K

′
�m�

will always be positive-definite. In particular, if b→ a then I ′�m�K̂
′
�m� → Î ′�m�K

′
�m�,

in which case the wall stabilization becomes arbitrarily large.
As �k�a→ � the left-hand side of Eq. (10.174) becomes infinite. Thus, the

configuration is stable with respect to modes having short axial wavelengths. This
is because short wavelength perturbations cause more bending of the magnetic
field than a long wavelength perturbation and so require more energy.
We therefore focus attention on modes with a long axial wavelength (i.e.,

modes with a small k) since these offer the only possibility of instability. The
analysis can be subdivided into specific cases, such as m = 0, �m� = 1, �m� > 1,
close-fitting wall, no wall, low pressure, high pressure, etc. Before getting into the
details, let us take a broader look at the effect of the various terms in Eq. (10.174).
Since I�m�/I ′�m� > 0, we see that increasing P̄0 is destabilizing, whereas increasing

B̄2
0vz is stabilizing. Also, if m+kaB̄0vz = 0 the second term vanishes, leading to

reduced stability; by defining the wavevector as k = �m/a��̂+kẑ it is seen that
m+kaB̄0vz = 0 corresponds to having k ·B0 = 0 on the surface.

Sausage modes

The m= 0 modes are the sausage instabilities and here Eq. (10.174) reduces to

[
1+ B̄2

0vz− P̄0
][I0
I ′0

]
+ B̄2

0vz

[
−I0K̂′

0 + Î ′0K0

I ′0K̂
′
0 − Î ′0K′

0

]
>

1
�k�a =⇒ stable� (10.177)

For a given normalized plasma pressure and normalized wall radius b/a, this
expression can be used to make a stability plot of B̄2

0vz versus �k�a. Since the
wall always provides stabilization if brought in close enough, let us consider
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situations where there is no wall (i.e., b→ �), in which case the stability condition
reduces to[

1+ B̄2
0vz− P̄0

][I0
I ′0

]
+ B̄2

0vz

[−K0

K′
0

]
>

1
�k�a =⇒ stable� (10.178)

For small arguments, the modified Bessel functions of order zero have the asymp-
totic values

I0�s�� 1+ s
2

4
� K0�s�� − ln s (10.179)

so the stability criterion becomes

B̄2
0vz

[
1−k2a2ln ��k�a�]> P̄0 =⇒ stable� (10.180)

This gives a simple criterion for how much B̄2
0vz is required to stabilize a given

plasma pressure against sausage instabilities. The logarithmic term is stabilizing
for �k�a < 1 but is destabilizing for �k�a > 1� however, this region of instability
is limited because we showed that very large �k�a is stable.

Kink modes

The finite m modes are the kink modes. It was shown earlier that large �k�a is
stable so again we confine attention to small �k�a. In addition, we again let the
wall location go to infinity to simplify the analysis. The stability condition now
reduces to

�k�a [1+ B̄2
0vz− P̄0

][I�m�
I ′�m�

]
+ �m+kaB̄0vz�2

�k�a

[−K�m�
K′

�m�

]
> 1=⇒ stable� (10.181)

For m �= 0 the small argument asymptotic limits of the modified Bessel functions
are

I�m��s�� 1
�m�!

( s
2

)�m�
� K�m��s�� �m−1�!

2

( s
2

)−�m�
(10.182)

so the stability condition becomes

k2a2
[
1+ B̄2

0vz− P̄0
]+ �m+kaB̄0vz�2 > �m� =⇒ stable� (10.183)

which is a quadratic equation in ka. Let us consider plasmas where B̄2
0vz � 1 and

B̄2
0vz � P̄0� this corresponds to a low-beta plasma where the externally imposed

axial field is much stronger than the field generated by the internal plasma currents
(tokamaks are in this category). Let us define

x = kaB̄0vz (10.184)

so the stability condition becomes

x2 + �m+x�2 > �m� =⇒ stable� (10.185)
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Without loss of generality x can be assumed to be positive, in which case
instability occurs only when m is negative. Thus, Eq. (10.185) can be written as

2x2 −2�m�x+m2 −�m�> 0 =⇒ stable� (10.186)

The threshold for instability occurs when the left-hand side of Eq. (10.186)
vanishes, i.e., at the roots of the left-hand side. These roots are

x = �m�±√2�m�−m2

2
� (10.187)

Since the left-hand side of Eq. (10.186) goes to positive infinity for �x� → �,
the left-hand side is negative only in the region between the two roots. Thus, the
plasma is unstable only if �x� lies between the two roots. The stability condition
is that �x� must lie outside the region between the two roots, i.e., for stability we
must have

x >
�m�+√2�m�−m2

2
or

x <
�m�−√2�m�−m2

2
� (10.188)

For m= −1 modes this gives the stability condition

x > 1� (10.189)

In un-normalized quantities and using k = 2/L, where L is the axial length of
the system, the stability condition is

2a
L

B0z
B0�

> 1� (10.190)

this is known as the Kruskal–Shafranov kink stability criterion (Kruskal et al.
1958, Shafranov 1958).
For m = −2 modes, the two roots coalesce at x = 1 and so Eq. (10.189) also

gives stability. For m ≥ 3, the argument of the square root in Eq. (10.187) is
negative so there is no region of instability.
In toroidal devices such as tokamaks, the axial wavenumber corresponds to

the toroidal wavenumber since the dominant magnetic field is in the toroidal
direction, i.e., B0z → B0�, where � is the toroidal angle. The axial wavenumber k
becomes n/R, where n is the toroidal mode number. Since long axial wavelengths
are the most unstable we assume n = 1 to have the worst-case scenario. The
Kruskal–Shafranov kink stability condition then becomes

q = aB0�

RB0�
> 1� (10.191)
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where q is called the safety factor. In order to avoid kink instability, tokamaks
typically operate with q ∼ 3− 4 at the wall and q slightly above unity at the
magnetic axis; this q condition is one of the most important design criteria
for tokamaks since it dictates the size of the large and expensive toroidal field
system.

10.10 Assignments

1. Interchange instabilities and volume per unit flux. Another way to consider pressure-
driven instabilities is to calculate the consequence of interchanging two flux tubes
having the same magnetic flux. The plasma moves across the magnetic field in such a
way that the frozen-in flux condition is maintained. This interchange will not change
the magnetic energy since the magnetic field is unaffected. However, if the flux tubes
contain finite-pressure plasma and the volumes of the two flux tubes differ, then the
interchange will result in compression of the plasma in the flux tube that initially
had the larger volume and expansion of plasma in the flux tube that initially had the
smaller volume. The former requires work on the plasma and the latter involves work
by the plasma. If net work must be done on the plasma to effect the interchange,
then the interchange is stable and vice versa. In a magnetic confinement configuration,
the interior region has higher pressure than the exterior region. Thus, the question is
whether interchanging a high pressure, interior region flux tube with a low pressure,
exterior region flux tube requires positive or negative work.

(a) Show that the volume per unit flux in a flux tube is given by

V ′ =
∮ dl
B
�

where the contour is over the length of the flux tube. Hint: use BA= const. on a
flux tube.

(b) Show that instability corresponds to V ′ increasing on going from interior to exterior.
(c) Consider the magnetic field external to a current-carrying straight wire. How does
V ′ scale with distance from the wire? Would a plasma confined by such a magnetic
field be stable or unstable to interchanges? Is this result consistent with the concepts
of good and bad curvature?

2. Work through the algebra of the magnetic energy principle and verify Eqs. (10.113),
(10.114), (10.115), and (10.116).

3. Show that the force on a plasma in an arched magnetic field with fixed ends tends to
push the plasma towards the shape of a vacuum magnetic field arch having the same
boundary conditions. Under what circumstances will the force (i) increase the major
radius of an arched magnetic field, (ii) decrease the major radius, (iii) leave the major
radius unchanged? Show that, in contrast, the force on a plasma containing an arched
current always tends to increase the major radius of the arched current.
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4. Show that if the wall radius b→ �, then Eq. (10.174) reduces to the condition

F�x� B̄0vz� P̄0�= xB̄2
pvz

[
Im�x�

I ′m�x�

]
− �m+xB̄0vz�

2

x

Km�x�

K′
m�x�

−1> 0 for stability�

where x= ka. By assuming B̄pvz = B̄0vz and evaluating the modified Bessel functions
numerically, plot this expression in a parameter space where the vertical axis is x and
the horizontal axis is B0v�/B0vz = 1/B̄0vz. In particular, shade the regions where F < 0
to indicate the regions of instability. Do this for both m= 0 and for m= −1 to show
the regions of parameter space where kinks and sausages are unstable. For a given k
show how raising the axial current would lead to kink or sausage instability. Which
instability happens first (kink or sausage)?

5. Are kink instabilities diamagnetic or paramagnetic with respect to the axial field?
To find this, consider the kinked current as a solenoid and determine whether the
orientation of the solenoid is such as to increase or decrease the initial Bz field.

6. According to Eq. (10.139), current driven instabilities cause the plasma to relax to a
situation where �0J = �B.
(a) Show that a class of solutions to �0J = �B can be found if

B = �	&× ẑ+	× �	&× ẑ� �
where 	2&+�2& = 0.

(b) Suppose &�x� z� = f�z� cos�kx�. What is the form of f�z�? Show that solutions
that decay in z are only possible for a certain range of �2.

(c) Consider a two-dimensional force-free solar coronal loop. Let the z = 0 plane
denote the solar surface. Calculate the functional form of Bx and Bz using the
solution in part (a) above.

(d) Sketch the shape of the field line going from x= −/k to x= +/k in the z= 0
plane. Do this for a sequence of increasing values of �2. What happens to the
shape of the field line as �2 is increased? How is current related to �?
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Magnetic helicity interpreted and Woltjer–Taylor
relaxation

11.1 Introduction

The previous chapter introduced the concept of magnetic helicity via the energy
principle and showed that total helicity K = ∫

d3rA ·B is a conserved quantity
in an ideal plasma. This chapter shows that helicity can be interpreted in a
topological sense as a count of the linkages of magnetic flux tubes with each
other. Furthermore, it will be shown that when the plasma is not ideal so energy
is not conserved, helicity conservation remains a rather good approximation.
The greater robustness of magnetic helicity compared to magnetic energy in

the presence of dissipation leads to the Woltjer–Taylor relaxation theory, which
shows that a dissipative plasma will spontaneously relax from an arbitrary initial
state to a specific final state. Relaxation theory has two remarkable features,
namely (i) it sidesteps describing the actual MHD dynamics and simply predicts
the end state after all dynamics is over, and (ii) it thrives on complexity so the
more complicated the dynamics, the more applicable is the theory. The second
feature results because increased complication simply provides more channels
whereby the plasma can relax to the specific final state. Relaxation theory has
been very successful at predicting the approximate behavior of many laboratory,
space, and astrophysical plasmas.
This chapter concludes by showing that magnetic helicity can be manifested in

different forms. In particular, the kink instability will be shown to be a mechanism
that converts helicity from one of these forms (twist) to another (writhe).

11.2 Topological interpretation of magnetic helicity

11.2.1 Linkage helicity

Consider the two thin linked untwisted flux tubes sketched in Fig. 11.1. The
respective fluxes of these two tubes are  1 and  2, the flux tube axes follow the

385
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flux Φ1
contour C1
volume V1

flux Φ2
contour C2
volume V2

B B

Fig. 11.1 Two linked thin untwisted flux tubes. Magnetic field is zero outside
the flux tubes.

contours C1 and C2, and the flux tube volumes are V1 and V2. The magnetic field
is assumed to vanish outside of the flux tubes.
The helicity of the volume V containing the two linked flux tubes is

K =
∫
V
A ·Bd3r� (11.1)

Because B vanishes outside of the two flux tubes, the helicity integral is finite
only inside V1 and V2 so Eq. (11.1) reduces to (Moffatt 1978)

K =
∫
V1

A ·Bd3r+
∫
V2

A ·Bd3r� (11.2)

The contribution to the helicity from integrating over the volume of flux tube #1 is

K1 =
∫
V1

A ·Bd3r� (11.3)

In order to evaluate this integral it is recalled that the magnetic flux through a
surface S with perimeter C can be expressed as

 =
∫
S
B ·ds =

∮
C
A ·dl� (11.4)

In flux tube #1, d3r = dl · B̂�S, where �S is the cross-sectional area of flux tube
#1 and dl is an element of length along C1. The integrand in Eq. (11.3) can thus
be arranged as

A ·Bd3r = A ·Bdl · B̂�S
= A ·dl 1 (11.5)
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since dl is parallel to B and B�S =  1. Because  1 is by definition constant
along the length of flux tube #1,  1 may be factored from the K1 integral, giving

K1 = 1

∫
C1

A ·dl� (11.6)

However, the flux linked by contour C1 is precisely the flux in tube #2, i.e.,∫
C1
A ·dl = 2 and so

K1 = 1 2� (11.7)

Application of the same analysis to flux tube #2 gives K2 =  1 2 and so the
total helicity of the two linked flux tubes is

K = K1 +K2 = 2 1 2� (11.8)

The flux tubes did not actually have to be thin: a fat flux tube #2 could be
decomposed into a number of adjacent thin flux tubes, in which case K1 would
be  1 times the sum of the flux in all of the thin #2 flux tubes. The helicity is
thus just the sum of flux tube linkages since if the two flux tubes each had unit
flux, there would be one linkage of flux tube #1 with flux tube #2 and one linkage
of flux tube #2 with flux tube #1. If flux tube #2 wrapped around flux tube #1
twice, then the contributions would be K1 = 2 1 2 and K2 = 2 1 2, in which
case the helicity would be K = 4 1 2. This would correspond to two linkages
of flux tube #2 on flux tube #1 and two linkages of flux tube #1 on flux tube #2.

11.2.2 Twist helicity

Now suppose the major radius of flux tube #2 is reduced until flux tube #2 tightly
encircles flux tube #1. Then, further suppose, as sketched in Fig. 11.2, that the
cross-section of flux tube #2 is both squeezed and stretched until its field lines

flux tube #1

B of flux tube #2

θ

flux tube #2

φ
B of flux tube #1

Fig. 11.2 Flux tube #2 deformed so that it tightly encircles flux tube #1 and
its cross-section is squeezed and stretched so as to uniformly cover flux tube #1
like a coat of paint (shaded area). Flux in flux tube #1 is  , flux in flux tube #2
is d&.
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are uniformly distributed over the length of flux tube #1; the field lines of flux
tube #2 are normal to the shaded area in Fig. 11.2. Thus, the volume of flux tube
#2 is like a thin coat of paint (shaded region in figure) applied to flux tube #1.
Let  denote the flux in flux tube #1 and d& denote the flux in flux tube #2 so,
using Eq. (11.8), the helicity of this configuration is seen to be

dK = 2 d&� (11.9)

We next add another layer of “paint” with more embedded & flux, and also with
embedded  flux so both & and  increase. The value of  can be used to
label the layers of “paint” so  is the amount of flux in flux tube #1 up to the
layer of “paint” labeled by  . Furthermore, since & increases with added layers
of “paint,” & must be a function of the layer of “paint” and so & = &� �. It is
therefore possible to write d& = &′d , where &′ = d&/d . Thus, the amount of
helicity added with each layer of “paint” is

dK = 2 &′d (11.10)

and so the sum of the helicity contributions from all the layers of “paint” is

K = 2
∫  
0
 &′d � (11.11)

We now show that &′ represents the twist of the embedded magnetic field. Let
� be the angle the long way around flux tube #1 and � be the angle the long way
around flux tube #2 as shown in Fig. 11.2. Thus, increasing � is in the direction
of contour C1 and increasing � is in the direction of contour C2. The perimeter
of a cross-section of flux tube #1 is in the � direction and the perimeter of a
cross-section of flux tube #2 is in the � direction. The magnetic field in flux tube
#1 can be written as

B1 = 1
2
	 ×	� = 1

2
	× 	�� (11.12)

which is in the � direction since 	 is orthogonal to 	�. Here  is the flux
linked by a contour going in the direction of 	�. To verify that this is the
appropriate expression for B1, the flux through the cross-section S1 of flux tube
#1 is calculated as follows:

flux through S1 =
∫
S1

ds ·B1

= 1
2

∫
S1

ds ·	× 	�

= 1
2

∫
C2

dl · 	�
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=  

2

∫
C2

dl ·	�

=  

2

∮
d�

=  � (11.13)

The flux  can be factored from the integral in the third line above, because  
is the flux linked by contour C2, which goes in the direction of 	�. Similarly, it
is possible to write

B2 = 1
2
	&×	�= 1

2
	×&	�� (11.14)

which is in the � direction since 	& is orthogonal to 	�. Since B1 is in the �
direction and B2 is in the � direction, the total magnetic field can be written as
B = B1�̂+B2�̂, which is helical.
The twist of the magnetic field is defined as the number of times a field line

goes around in the � direction for one circuit in the � direction. If dl� is a
displacement in the � direction then

d�= �	��dl� (11.15)

and similarly

d� = �	��dl�� (11.16)

The trajectory of a magnetic field line is parallel to the magnetic field so if dl is
an increment along a magnetic field line then B×dl = 0 or

dl�
B�

= dl�
B�
� (11.17)

Substituting for dl� and dl� using Eqs. (11.15) and (11.16) gives

d�

�	��B�
= d�

�	��B�
� (11.18)

However, B� = �	&� �	��/2 and B� = �	 � �	��/2 so

d�
d�

= �	��B�
�	��B�

= �	�� �	&� �	��/2
�	�� �	 � �	��/2

= �	&�
�	 � � (11.19)
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Finally, if & = &� � then 	& = &′	 , where &′ = d&/d and so

d�
d�

= &′� (11.20)

Thus, � increases &′ times faster than does � and so if � makes one complete
circuit (i.e., goes from 0 to 2), then � makes &′ circuits (i.e., � goes from 0 to
2&′). The number of times the field line goes around in the � direction for each
time it goes around in the � direction is called the twist

T� �= &′� (11.21)

Hence Eq. (11.11), which gave the helicity when the & flux is embedded in the
 flux, can be expressed in terms of the twist as

K = 2
∫
 T� �d (11.22)

and if the twist is a constant (i.e., T ′ = 0) then

K = T 2� (11.23)

11.2.3 Conservation of magnetic helicity during magnetic reconnection

Ideal MHD constrains magnetic flux to be frozen into the frame of the plasma.
This means that the topology (connectedness) of magnetic field lines in a perfectly
conducting plasma cannot change. As will be shown in Chapter 12, introduction
of a small amount of resistivity allows the frozen-in condition to be violated at
certain special locations where considerations of geometrical symmetry require the
velocity to vanish. At these special locations, the approximation that the �J term
in the resistive MHD Ohm’s law E+U×B= �J can be neglected so as to obtain
the ideal Ohm’s law E+U×B = 0 necessarily fails because if U is zero, the
left-hand side has only one term and there is no possibility of balancing this term
unless finite resistivity is taken into account. Thus, at these special locations Ohm’s
law has the form E = �J, in which case magnetic field lines can diffuse across
the plasma and reconnect with each other. Although localized to the immediate
vicinity of where U vanishes, magnetic reconnection changes the overall topology
of the magnetic field, much like switching railroad tracks at a single crossroads
in the middle of a country alters the routing of trains across the entire country.
Magnetic reconnection can both destroy and create linkages between flux tubes
but, as will be shown, does so in a fashion whereby a replacement linkage is
created for every destroyed linkage so that the total number of linkages, and
hence the total helicity, is conserved. The ideal MHD constraint of perfect flux
conservation is consequently replaced by the somewhat weaker constraint of
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having conservation of total magnetic helicity. Reconnection necessarily involves
energy dissipation since reconnection requires finite resistivity. Thus, reconnection
dissipates magnetic field energy while conserving total magnetic helicity.
Conservation of helicity during reconnection is demonstrated using the sequence

shown in Fig. 11.3(a)–(f). An initial state consisting of two linked, untwisted
ribbons of magnetic flux is shown in Fig. 11.3(a). If each ribbon is imagined
to be a magnetic field line bundle having nominal flux  , then according to
Eq. (11.8) this initial configuration has helicity K = 2 2. The ribbons are then
cut at their line of overlap as in Fig. 11.3(b) and reconnected as in Fig. 11.3(c)
to form one long ribbon. This long ribbon in Fig. 11.3(c) is then continuously
deformed until in the shape shown in Fig. 11.3(f), a long ribbon having two
twists. The twist parameter for Fig. 11.3(f) is therefore T = 2 and so according
to Eq. (11.23) this two-twist ribbon has a helicity K = T 2 = 2 2. Since the
initial and final helicities are both K = 2 2, this demonstrates that reconnection
conserves magnetic helicity. Since the magnetic equivalent of cutting ribbons
with scissors involves the dissipative process of resistive diffusion of magnetic
field across the plasma, it can be concluded that magnetic reconnection conserves
helicity, but dissipates magnetic energy.

(a) (b) (c)

(d) (e) (f)

Fig. 11.3 (a) Two linked, untwisted flux tubes squeezed to be ribbons, magnetic
field directions shown by arrows; (b) cut at overlay of two ribbons; (c) reconnec-
tion at cut; (d) deformation; (e) more deformation; (f) more deformation showing
there are two complete twists of magnetic field.
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11.3 Woltjer–Taylor relaxation

Woltjer (1958) presented a mathematical proof showing that the lowest energy
state of an isolated zero-pressure (i.e., zero !) plasma with a fixed amount of
magnetic helicity is a certain kind of force-free state, but did not provide any
detailed explanation on how the system might attain this state. Taylor (1974)
argued that because reconnection conserves helicity while dissipating magnetic
energy, reconnection events ought to provide the operative mechanism whereby
an isolated zero ! plasma would relax towards a state having the lowest magnetic
energy consistent with conservation of helicity. The discussion of Eq. (10.133), the
helicity conservation equation, showed that the isolation requirement corresponds
to having no field lines penetrate the surface bounding the plasma and also
arranging for this surface to be an electrostatic equipotential. In order to investigate
the relaxation process, we therefore consider an isolated zero ! plasma bounded
by a perfectly conducting wall where the normal component of the magnetic field
is zero at the wall. Because the wall is a perfect conductor, the tangential electric
field and hence the tangential component of the vector potential vanish at the
wall. The zero ! assumption is an extreme limit of the low-! situation, which
corresponds to a plasma where magnetic forces dominate hydrodynamic forces,
i.e., the J×B term is much larger than the 	P term in the MHD equation of
motion.
The relaxation process involves minimizing the magnetic energy

W = 1
2�0

∫
B2d3r (11.24)

subject to the constraint that the total magnetic helicity

K =
∫

A ·Bd3r (11.25)

is conserved (Woltjer 1958, Taylor 1974). The minimum-energy magnetic field
for the given helicity is called BME and its associated magnetic energy is

WME = 1
2�0

∫
B2
MEd

3r� (11.26)

In order to determine BME, consider an arbitrary variation B = BME+�B satis-
fying the same boundary conditions as BME. By assumption, B has a higher
associated magnetic energy than BME since the latter is the minimum energy
field. The field B has an associated vector potential A = AME+�A. Because the
tangential electric field must vanish at the wall in accordance with the assumption
of helicity conservation, the tangential component of �A must vanish at the wall.
A naive attempt at minimizing WME would involve setting BME to zero, but such
an approach is forbidden because it would make K vanish and violate the helicity



11.3 Woltjer–Taylor relaxation 393

conservation requirement. What must be done then is minimize W subject to the
constraint that K remains constant. The variation of the magnetic energy relative
to the minimum energy state is

�W = 1
2�0

∫ [
�BME+�B�2 −B2

ME

]
d3r

= 1
�0

∫
BME ·�Bd3r

= 1
�0

∫
BME ·	×�Ad3r

= 1
�0

∫
�	 · �BME×�A�+�A ·	×BME�d

3r

= 1
�0

∫
ds ·BME×�A+

∫
�A ·	×BMEd

3r

=
∫
�A ·	×BMEd

3r� (11.27)

since ds ·BME×�A = 0 on the wall. On the other hand, the variation of the total
helicity is

�K =
∫
��A ·BME+AME ·�B�d3r

=
∫
��A ·BME+AME ·	×�A�d3r

=
∫
��A ·BME+�A ·	×AME�+	 · ��A×AME�d

3r

= 2
∫
�A ·BMEd3r� (11.28)

Minimization of �W subject to the constraint that K remains constant is charac-
terized using a Lagrange multiplier � so the constrained variational equation is

�W = ��K� (11.29)

Substitution for �W and �K gives∫
�A ·	×BMEd

3r = 2�
∫
�A ·BME d3r (11.30)

or, after redefining the arbitrary parameter �,∫
�A · �	×BME−�BME�d3r = 0� (11.31)
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Since the variation �A is arbitrary within the volume, the quantity in parentheses
must vanish and so

	×BME = �BME� (11.32)

The coefficient � is necessarily constant (i.e., spatially uniform) because the
Lagrange multiplier is a constant (see Assignment 2 of Chapter 2, p. 69). Thus,
relaxation leads to the same force-free state predicted by Eq. (10.140). These
states are a good approximation to many solar and astrophysical plasmas as well
as certain laboratory plasmas such as spheromaks and reversed field pinches.
The energy per helicity of a minimum energy state can be written as

W

K
=

∫
B2
MEd

3r

2�0

∫
AME ·BMEd3r

=
∫
BME ·	×AMEd

3r

2�0

∫
AME ·BMEd3r

=
∫
�AME ·	×BME+	 · �AME×BME��d

3r

2�0

∫
AME ·BMEd3r

� (11.33)

However, Eq. (11.32) can be integrated to give

BME = �AME+	f� (11.34)

where f is some arbitrary scalar function. This can be used to show

	 · �AME×BME�= 	 · �AME×	f�= 	f ·	×AME = BME ·	f = 	 · �fBME�
(11.35)

so ∫
	 · �AME×BME�d

3r =
∫

ds · �fBME�= 0� (11.36)

since BME ·ds = 0 by assumption. Thus, Eq. (11.33) reduces to

W

K
= �

2�0
(11.37)

indicating that the minimum energy state must have the smallest � consistent with
the prescribed boundary conditions.

11.4 Kinking and magnetic helicity

Magnetic helicity can be manifested in various forms and plasma dynamics can
cause transformation from one form to another. We now discuss an important
example of helicity-conserving, morphology-altering dynamics, namely the situ-
ation where kink instability causes the twist of a straight-axis flux tube to be
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transformed into the writhe of the axis of an untwisted flux tube (Berger and
Field 1984, Moffatt and Ricca 1992).
Consider an ideal plasma with volume V bounded by a surface S and suppose

no magnetic field lines penetrate S so B ·ds= 0 over all of S. The volume V could
extend to infinity or be finite; all that is required is B · ds = 0 on the bounding
surface. The helicity contained in V is

KV =
∫
V
A ·Bd3r� (11.38)

Equation (10.129) showed KV is gauge-independent because no field lines pene-
trate S and Eq. (10.134) showed KV is a conserved quantity, i.e., the total helicity
in the volume V is constant.
The volume V is now decomposed into two sub-volumes where B · ds = 0

everywhere on the surface separating these sub-volumes. Thus, any specific field
line in V is entirely in one or the other of the two sub-volumes because if a field
line did travel from one sub-volume to the other it would have to penetrate the
surface separating these sub-volumes and so violate the assumption B ·ds = 0 on
this surface.

1 The first sub-volume, called Vtube, is a closed flux tube of minor radius a with a
possibly helical axis as shown in Fig. 11.4. The axis of this flux tube is concealed in
Fig. 11.4, but can be seen in Fig. 11.5 where it is labeled as “helical axis of flux tube.”
The length of this flux tube axis is denoted laxis and the variable % denotes the distance
along this axis from some fixed reference point x0 on the axis. Incrementing % from
0 to laxis thus corresponds to going once around the flux tube axis. A pseudo-angular
coordinate � is defined as

�= 2
%

laxis
(11.39)

so that going once around the flux tube axis corresponds to incrementing � from 0
to 2. The unit vector �̂ can then be used to define the local direction of the axis.
Because the flux tube axis is helical, there exists at each point along the axis a radius
of curvature vector � = �̂ ·	�̂, which is at right angles to �̂. The local radius of

curvature of the axis is rcurve = 1/
∣∣∣�̂ ·	�̂

∣∣∣ (see discussion of Eq. (3.85)). From the

point of view of an observer inside the flux tube, the flux tube appears as a long
curved tunnel, which eventually closes upon itself. The flux tube minor radius a must
always be smaller than rcurve; this restriction corresponds locally to the condition that
the major radius of a torus must, by definition, exceed the minor radius. The flux tube
interior volume is now imagined to be filled with fiduciary lines aligned parallel to the
flux tube axis; the lengths of these fiduciary lines will vary according to their location
relative to the axis. We define %′ as the distance along a fiduciary line of length l′

from a plane perpendicular to the flux tube axis at the reference point x0. The meaning
of � can then be extended to indicate the distance along any fiduciary line using the
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axis of helix

helical flux tube,
volume Vtube

linked external flux ψext

Fig. 11.4 Sub-volume #1 has a volume Vtube and is a flux tube with a possibly
helical axis. Sub-volume #2 is all space external to sub-volume #1. All field lines
in sub-volume #2 linking sub-volume #1 are represented by the thin vertical flux
tube labeled &ext.

axial segment of helical
flux tube surface

helical axis
of flux tube

cut ribbon surface
from helical axis
to flux tube surface 

axis of helix

linked external flux ψext

φ = 2π

φ = 0

φ

Fig. 11.5 Ribbon surface extending from helical axis of helical flux tube to
surface of flux tube with ribbon surface normal to �̂× �̂.
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relation %′ = �l′/2. Incrementing � from 0 to 2 thus corresponds to going once
around any or all of these fiduciary lines and so � provides an unambiguous measure
of fractional distance along the flux tube for any point within the flux tube even though
the flux tube may be curved, twisted, or helical.

2. The second sub-volume in this decomposition is the remaining volume of V and is
labeled as Vext. This second sub-volume may have field lines linking flux tube Vtube and
the flux due to these linkages is labeled &ext. This external flux linkage is represented
by the vertical flux tube labeled &ext in Fig. 11.4.

If the dynamics within the volume V is governed by ideal MHD then, as
mentioned above, the helicity KV in V must be conserved. Since KV is a volume
integral, the volume of integration can be separated into the flux tube volume and
the volume external to the flux tube, i.e., the total helicity can be expressed as
the sum

KV = KVtube +KVext � (11.40)

11.4.1 KVtube
, helicity content of the flux tube

We now consider the helicity content of the possibly helical flux tube,

KVtube =
∫
Vtube

A ·Bd3r� (11.41)

The magnetic field in the flux tube is decomposed into a component Baxis parallel
to the flux tube axis and an orthogonal component Bazimuthal, which goes the
short way around the axis; thus the magnetic field inside the flux tube is

B = Baxis+Bazimuthal� (11.42)

The field lines in the flux tube are assumed to lie in successive layers (magnetic
surfaces) wrapped around the flux tube axis. The axial and azimuthal magnetic
fields are derived from respective vector potentials Aaxis and Aazimuthal so

Baxis = 	×Aaxis

Bazimuthal = 	×Aazimuthal� (11.43)

These definitions say nothing about the direction of Aaxis or Aazimuthal and so,
unlike the axisymmetric situation considered when analyzing the Grad–Shafranov
equation in Section 9.8.3, here neither Aaxis nor Aazimuthal should be construed to
be in any particular direction. All that can be said is that the curl of Aaxis gives the
flux tube axial magnetic field and the curl of Aazimuthal gives the azimuthal field.
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The helicity content of the flux tube is thus

KVtube =
∫
Vtube

(
Aaxis+Aazimuthal

) · (Baxis+Bazimuthal
)
d3r (11.44)

and this is true even though the axis of the flux tube could be helical.
By definition, each layer of field lines constituting a magnetic surface encloses

a flux  . An equivalent definition is to state that  is the magnetic flux linked by
a contour in the magnetic surface going the short way around the flux tube axis.
The magnetic surface is labeled by  and so  can be considered as a coordinate
having its gradient always normal to the flux surface. In effect  is a rescaled
minor radius, since  increases monotonically with minor radius.

These definitions are sufficiently general to allow for the axis of the flux tube
to be a helix, a knot, or a simple closed curve lying in a plane. If the flux tube axis
is just a simple closed curve lying in a plane, then 	 × �̂ is normal to the plane
and therefore normal to �̂. In the slightly more general case where the axis is not
in a plane but �̂ ·	 × �̂ = 0, the path traced out by �̂ can be considered to be
the perimeter of some bumpy surface. However, in the most general case where
�̂ ·	 × �̂ is finite, no surface exists for which the path traced out by �̂ is the
perimeter (Barnes 1977). There might also be situations where �̂ ·	× �̂ �= 0 but
the sign of �̂ ·	× �̂ alternates. If the average of �̂ ·	× �̂ over the length of the
axis is zero, then the situation would be similar to the case where �̂ ·	 × �̂= 0
everywhere, because twists in the axis could be squeezed together axially until
mutually canceling out.
Because any magnetic field line in the flux tube lies in some magnetic surface

labeled by  , any field line in the flux tube has a component parallel to the flux
tube axis and possibly also a component perpendicular to the flux tube axis, but
never a component in the 	 direction. This suggests introduction of an azimuthal
coordinate �, which is defined as the angular distance around the flux tube axis
in the 	�×	 direction, i.e., � is defined such that

	�

�	�� = 	�×	 
�	�×	 � � (11.45)

The local direction of 	� depends on both � and �� furthermore, for � to denote
some definite position, � must be measured with respect to some unambiguous
origin. An unambiguous � origin can be established by using as a reference the
direction of the local radius of curvature vector of the flux tube axis, i.e., the
direction of −� = −B̂ ·	B̂ evaluated on the flux tube axis (see discussion of
Eq. (9.14) on p. 313). The � = 0 surface is then a ribbon surface, as shown in
Fig. 11.5, that extends from the flux tube axis to the flux tube outer surface and
oriented so �̂×� is normal to the ribbon surface. The ribbon is considered to
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axis of flux tube

flux tube
surface ribbon

surface

θ

magnetic surface,
constant Φ

axis of helix

2a

2b

R

Fig. 11.6 Cross-section showing flux tube of minor radius a, with its axis
tracing out a helix with radius b about the “axis of helix.” Interior flux surfaces
with  = const. are shown as dashed lines. The ribbon surface defining � = 0
is also indicated.

have a cut at �= 0 in order to distinguish the ribbon ends at �= 0 and �= 2
from each other.
Figure 11.6 shows a cross-section of this system. The flux tube has minor

radius a and the helical axis of the flux tube traces out a trajectory with minor
radius b about an axis that has major radius R. Representative magnetic surfaces
(surfaces of constant  ), the ribbon surface, and the angle � are also shown in
this figure.
The flux  was a generalization of the toroidal flux of an axisymmetric system.

We now define the corresponding generalization of the poloidal flux &� � to
be the magnetic flux penetrating a sub-ribbon extending inwards from the outer
surface of the possibly helical flux tube to some given interior magnetic surface
 . This sub-ribbon is shown in Fig. 11.7 and the definition is such that

& =
∫
sub-ribbon

ds ·B

=
∫
sub-ribbon

ds ·	×A

=
∮
C
dl ·A� (11.46)

where the contour C follows the perimeter of the sub-ribbon and specifically
follows the two ends at �= 0 and �= 2. This definition implies & = 0 on the
outer surface of the flux tube because the sub-ribbon area is zero at this location.
We now define the vector potential

Aazimuthal =
&� �

2
	� (11.47)
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sub-ribbon lying between
flux tube outer surface
and magnetic surface Φ.
ψ is flux through
this sub-ribbon

location of magnetic
surface Φ

Fig. 11.7 & is flux through cut sub-ribbon located between magnetic surface
 and outer surface of flux tube.

and note that this definition is valid only in the range 0 ≤ � < 2. The validity
of this definition is established by calculating the line integral of the presumed
vector potential following the contour C around the perimeter of the sub-ribbon
to obtain

∮
C
dl ·Aazimuthal =

∮
C
dl · &� �

2
	�

= &� �

2

∫
c 

dl ·	�
= &� �� (11.48)

where dl ·	� = d�. The justification for the steps in Eq. (11.48) is as follows:
Figure 11.7 shows that the contour C around the perimeter of the sub-ribbon
consists of four segments, namely a segment following the outside edge of the
sub-ribbon (this segment lies in the outer surface of the flux tube where & = 0),
the segment labeled C on the inside edge of the sub-ribbon, a segment at the
�= 0 end, and an oppositely directed segment at the �= 2− end. Only the C 
segment contributes to the integral because (i) dl ·	�= 0 on the ends �= 0 and
� = 2− since � is constant on both these ends and (ii) & = 0 on the outside
edge of the sub-ribbon.
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The magnetic field inside the flux tube can thus be written as

B = Baxis+	× &� �
2

	�� (11.49)

where Baxis is the magnetic field component parallel to the flux tube axis. This
decomposition of the magnetic field is valid even for a twisted or knotted axis
provided it is used only for situations where 0 ≤ �< 2.
The vector potential for the entire field can be written as

A = Aaxis+
&� �

2
	�� (11.50)

These results can be used in Eq. (11.44) to give the helicity content of the flux
tube as

KVtube =
∫
Vtube

d3r
(
Aaxis+

&� �

2
	�

)
·
(
Baxis+

1
2
	&×	�

)
=
∫
Vtube

d3r
(
Aaxis ·Baxis+

&� �

2
	� ·Baxis+Aaxis ·

1
2
	&×	�

)
�

(11.51)

This expression may now be decomposed into writhe and twist terms,

KVtube = Kwrithe+Ktwist
respectively defined as

Kwrithe =
∫
Vtube

d3rAaxis ·Baxis (11.52)

and

Ktwist =
∫
Vtube

d3r
(
&� �

2
	� ·Baxis+Aaxis ·

1
2
	&×	�

)
� (11.53)

As will be shown below, Ktwist depends on & being finite whereas Kwrithe depends
on the extent to which the flux tube axis is helical. The flux tube helicity can thus
be entirely due to Kwrithe, entirely due to Ktwist, or due to some combination of
these two types of helicity.

11.4.2 Evaluation of Ktwist

Since the Ktwist integral is a volume integral, the flux tube may be cut at � = 0
without affecting this integral. Making such a cut means that � is restricted to the
range 0 ≤�< 2 and therefore does not make a complete circuit around the axis
of the flux tube. The evaluation of this integral is insensitive to the connectivity
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of the axis because connectivity is a concept that makes sense only after making a
complete circuit of the axis. The axial magnetic field within the cut volume may
be expressed as

Baxis = 1
2
	× 	�� (11.54)

where � is the angular distance on a contour C� encircling the flux tube axis
and lies in a magnetic surface. This representation for the axial magnetic field is
appropriate here since at each � for 0 ≤ �< 2 we may write

 =
∫

ds ·Baxis

= 1
2

∫
ds ·	× 	�

= 1
2

∮
C�

dl · 	�

=  

2

∮
C�

dl ·	�

=  

2

∮
C�

d�� (11.55)

By uncurling Eq. (11.54) it is seen that vector potential associated with the axial
magnetic field may be represented in the cut flux tube as

Aaxis =  

2
	�� 0 ≤ �< 2 (11.56)

so

Ktwist = 1
42

∫
Vtube

d3r �&	� ·	 ×	�+ 	� ·	&×	��

= 1
42

∫
Vtube

d3r
(
&	� ·	 ×	�+ &′	� ·	 ×	�)

= 1
42

∫
Vtube

d3r
(−&+ &′)	� ·	 ×	�� (11.57)

The three direction gradients 	��	 , and 	� form an orthonormal coordinate
system and an element of volume in this system is given by

d3r = dl dl�dl� = d d�d�
	� ·	 ×	� (11.58)
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since d� = dl� �	��, d�= dl� �	��, and d = dl �	 �. Thus,

Ktwist = 1
42

∫  
0

d 
∫ 2

�=0
d�
∫ �2�−
�=0

d�
(−&+ &′)

= −
∫  
0
&d +

∫  
0
&′ d 

= −
∫  
0
&d +

∫ &
0
 d&

= 2
∫  
0
 
d&
d 

d (11.59)

where the integration limit �2�− corresponds to being infinitesimally less than
2. The last line has been obtained using the relationship

∫
d�& �= �& �surfaceaxis =∫

 d&+ ∫ &d and noting that the integrated term vanishes since & = 0 on the
flux tube surface and  = 0 on the flux tube axis. Since Eq. (11.59) is consistent
with the definition of twist discussed in reference to Eqs. (11.21) and (11.22),
the decision to use the name Ktwist for the helicity term defined in Eq. (11.53) is
validated.

11.4.3 Evaluation of Kwrithe

Connectivity of the flux tube is the important issue here. In order to evaluate
Kwrithe the volume element is now expressed as

d3r = dl ·ds� (11.60)

where dl is an increment of length along the axis and ds is an element of surface
in the plane perpendicular to the axis so Baxis ·ds = d . Because the line integral
involves a complete circuit of the flux tube axis, in contrast to the earlier evaluation
of Ktwist, we now avoid using the gradient of a scalar to denote distance along
the axis. Using Eq. (11.60) in Eq. (11.52) the writhe helicity may be expressed as

Kwrithe =
∫
Caxis

Aaxis ·dlaxis
∫

d 

=  
∫
Caxis

Aaxis ·dlaxis� (11.61)

This integral differs topologically from the integrals of the previous section,
because here the contour is a complete circuit, i.e., � varies from 0 to 2 and
not from 0 to 2−.
A contour path C of an integral

∫
C A · dl may be continuously deformed into

a new contour path C′ without changing the value of the integral, provided no
magnetic flux is linked by the surface S bounded by C and C′. This property is
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a three-dimensional analog to the concept of analyticity for a contour integral in
the complex plane and its validity is established as follows: since no magnetic
flux is assumed to link the surface S bounded by C and C′ we may write

0 =
∫
S
B ·ds

=
∮

A ·dl

=
∫
C
A ·dl−

∫
C′
A ·dl� (11.62)

The presumption that it is possible to continuously deform C into C′ imposes the
requirement that a surface S exists between C and C′� this is only true if C does
not link C′.
We now consider some limiting cases for Kwrithe and to aid in visualization it

should be recalled that the flux tube axis is assumed to have a helical trajectory
with helix major radius R and helix minor radius b as shown in Fig. 11.6.

Limiting case where flux tube axis is not helical
This situation corresponds to having b = 0, in which case the flux tube axis lies
in a plane. The contour Caxis in Eq. (11.61) can thus be slipped from its original
position through the Baxis field lines to the surface of the flux tube without
crossing any Baxis field lines. This is topologically possible because, by definition,
all Baxis field lines in the flux tube are parallel to the flux tube axis. Thus, here

Kwrithe = 
∫
C′
Aaxis ·dlaxis� (11.63)

where C′ lies on the flux tube surface. The line integral C′ encircles the external
flux linked by the flux tube and so

Kwrithe = &ext� (11.64)

when the flux tube axis is not helical.
When the flux tube axis is helical, two possibilities exist, namely a < b and

a > b. The distinction between the a< b and a> b cases is sketched in Fig. 11.8.
The parameter b characterizes the amplitude of the kink so infinitesimal b corre-
sponds to a very weak kinking of the flux tube.

Strong kink case: axis is helical and b > a
Because the helix minor radius b exceeds the flux tube minor radius a here,
the entire flux tube revolves around the axis of the helix as shown in Fig. 11.9.
Because the helical axis closes upon itself, it must have an integral number of
periods and we let N be the number of helix periods. However, because Baxis is
everywhere parallel to the flux tube axis, the flux tube axis may again be slipped
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a < b

a > b

flux tube
surface

flux tube
surface

a

b

b
a

axis of helix

core region 0 ≤ r < b

outer region b ≤ r ≤ a

Fig. 11.8 Top: case where flux tube radius a is less than radius b of helix
traced out by flux tube axis. Bottom: case where a> b; the core region 0≤ r < b
rotates around the axis of the helix whereas the outer region with b < r < a
wobbles about the axis of the helix.

helical axis
of flux tube

slit cut in flux tube
parallel to flux tube
axis faces helical axis
of flux tube

axis of helix

Fig. 11.9 Helical axis of flux tube may be slipped through Baxis field lines of
flux tube to coincide with axis of helix (note that open slit in flux tube always
faces axis of helix).
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through the Baxis field lines and in this case moved towards the helix axis until it
coincides with the helix axis Chelix. The writhe helicity can thus be expressed as

Kwrithe = 
∫
Chelix

Aaxis ·dlaxis� (11.65)

However, the flux tube links the helix axis N times and so∫
Chelix

Aaxis ·dlaxis = N +&ext� (11.66)

Thus,

Kwrithe = N 2 + &ext if b > a� (11.67)

Hence, the helicity of the flux tube is

KVtube = Ktwist+Kwrithe
= 2

∫
 
d&
d 

d +N 2 + &ext if b > a� (11.68)

Weak kink case: flux tube axis is helical but a > b
In this situation the flux tube may be subdivided into an inner core with minor
radius r< b and associated flux b2/a2 and an outer annular region with b< r<a
with the remainder of  (to keep matters simple, we are assuming that  is
evenly distributed over the minor cross-section of the flux tube and so the flux in
the inner core is proportional to the normalized cross-sectional area of the inner
core). We again slip the flux tube axis through the parallel Baxis field lines to
be coincident with the helix axis. However, now only the inner core of the flux
tube (r < baxis) rotates around the helix axis. The outer annular region of the
flux tube merely wobbles around the helix axis and does not link the helix axis.
Thus, the linked flux is∫

Chelix

Aaxis ·dlaxis = N b2/a2 +&ext (11.69)

and so the writhe helicity is

Kwrithe = N 2b2/a2 + &ext if a > b� (11.70)

Hence, the helicity of the flux tube is

KVtube = Ktwist+Kwrithe
= 2

∫
 
d&
d 

d +N 2b2/a2 + &ext if a > b� (11.71)
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11.4.4 Twist and writhe exchange in a kink instability

A kink instability is governed by ideal MHD and so must be helicity-conserving.
The number of turns of the kink is defined by the initial twist condition k ·B =
k�B�+k�B� = 0 so if k� = 1/a and k� = n/R then the kink will result in a helix
with N = n. Since helicity is conserved, it is seen that as the amplitude of the
kink increases (i.e., b increases), the flux tube twist d&/d will have to decrease.
In particular if the twist is uniform so that & = T , where twist T is independent
of  , then as in Section 11.2.2 we may write

2
∫
 
d&
d 

d = T 2 (11.72)

and so from conservation of helicity we conclude

T +Nb2/a2 = const� for b < a� (11.73)

this is an example of the Calugareanu theorem (Calugareanu 1959).
A kink instability that starts with b = 0 and an initial twist Tinitial = n will

grow until at b = a the twist vanishes and all helicity is contained by an N -turn
writhe where N = Tinitial. Thus, a kink will convert twist into writhe so in the
strong kink case (i.e., b > a) the result is T = 0 and N = Tinitial. This property
can be confirmed by taking a length of garden hose with a stripe running along
the length and connecting the two ends together to form a closed flux tube with
a stripe running along the axis. Initially, N + T = 0 because the stripe is not
twisted and the hose axis is not helical. If the hose is deformed into a right-handed
helix, then the stripe will make a left-handed helix about the hose axis to keep
N +T = 0. If the stripe is initially a right-handed helix when the hose is not a
helix, then deformation of the hose into a right-handed helix will result in the
stripe becoming parallel to the hose axis.

11.5 Assignments

1. Derive the helicity conservation equation for a resistive plasma

dK
dt

+
∫
S
ds · �)B+E×A�= −2

∫
d3r �J ·B (11.74)

and express it in the form

dK
dt

+
∫
S
ds ·

(
2)B+A× �A

�t

)
= −2

∫
d3r �J ·B� (11.75)

where ) is the electrostatic potential. What happens to the surface integral when the
surface is a perfectly conducting wall? Hint: start by evaluating −� �A ·B� �t and make
repeated use of Faraday’s law 	×E= −�B/�t. The electric field should be expressed
as E = −	)− �B/�t and use the resistive MHD Ohm’s law E+U×B = �J.
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2. Alternative explanation for why helicity is conserved better than magnetic energy:

(a) By subtracting E dotted with Ampère’s law from B dotted with Faraday’s law
derive the MHD limit of Poynting’s theorem:

�

�t

(
B2

2�0

)
+	 ·

(
E×B
�0

)
= −E ·J� (11.76)

(b) Consider a plasma in a perfectly conducting chamber with no vacuum gap between
the plasma and the chamber wall. Show that integration of Eq. (11.74) and
Eq. (11.76) over the entire volume respectively give

dK
dt

= −2
∫

d3r�J ·B (11.77)

and
dW
dt

= −
∫

d3r�J 2� (11.78)

where W = ∫
d3rB2/2�0 is the magnetic energy.

(c) Show that the right-hand side of Eq. (11.78) is proportional to higher order spatial
derivatives of B than is the right-hand side of Eq. (11.77). Use this property
to argue that the rate of dissipation of magnetic energy greatly exceeds that of
magnetic helicity when the dynamics is spatially complex so that most of the
spectral power is in short characteristic scale lengths.

(d) Explain why this difference in dissipation rates could be approximated by assuming
that magnetic helicity remains constant during magnetic energy decay via dynamics
having fine scales (e.g., localized reconnection). Argue that the decay of magnetic
energy is thereby constrained by the requirement that helicity is conserved.

3. Show that the minimum-energy state given by Eq. (11.32) is a force-free configuration.
Is � spatially uniform? Is this the same result as given in Eqs. (10.139) and (10.140)?
Take the curl again to obtain

	2B+�2B = 0�

What are the components of this equation in axisymmetric cylindrical geometry?
Be careful when evaluating the components of 	2B to take into account derivatives

operating on unit vectors (e.g., 	2
(
B��̂

)
�= �̂	2B�, see Appendix B).

(a) Show that for axisymmetric cylindrical geometry the minimum-energy states have
the magnetic field components

Bz�r� = B̄J0��r�

B��r� = B̄J1��r��

Sketch Bz�r� and B��r�. This is called the Bessel function model or Lundquist
solution (Lundquist 1950) to the force-free equation and is often an excellent
representation for nearly force-free equilibria such as spheromaks, reversed field
pinches, and solar coronal loops.
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4. For a cylindrical system with coordinates {r��� z# show that if ' satisfies the Helmholtz
equation

	2'+�2' = 0

then

B = �	'×	z+	× �	'×	z�
is a solution of the force-free equation �0J = �B. By assuming ' is independent of
� and is of the form ' ∼ f�r� coskz, find f�r� and then determine the components
of B. Show that if � satisfies an eigenvalue condition, it is possible to have a finite
force-free field having no normal component on the walls of a cylinder of length h and
radius a. Give the magnetic field components for this situation (spheromak model).
Calculate the poloidal flux &�r� z� by direct integration of Bz�r� z� and plot surfaces
of constant poloidal flux. Hint: the answers will be in terms of Bessel functions J0
and J1.

5. Obtain a ribbon such as is used in gift-wrapping, make one complete twist in this
ribbon and tape the ends together. By manipulating the twisted ribbon (Pfister and
Gekelman 1991, Bellan 2000) show the following:

(a) If the ribbon is manipulated to have no twists, then it has a figure-eight pattern
with a cross-over. If the flux through the ribbon is  , show that the helicity of
one full twist is  2. Then argue that the helicity of one cross-over must also be
 2 and by drawing arrows on the ribbons show that there are two distinct types
of cross-over corresponding to left- and right-handed helicity respectively.

(b) Cut the ribbon all the way along its length so it becomes two interlinked ribbons
of unequal width. Assuming the original ribbon had a flux  , calculate the helicity
of the new configuration taking into account the helicity due to both twists and
linkages and show that helicity is conserved.

6. Demonstrate that the sum of twist plus writhe is conserved using two ropes with
radius of approximately 1 cm having distinct colors and a broomstick with a radius
of approximately 2 cm. Wrap one rope around the other four times in a left-handed
sense to form a simple braid of the two ropes. The wrapping should have a long
pitch so that the distance between turns is 10–20 cm. Then take this braid and wrap
it in a left-handed sense around the broomstick. What happens to the wrapping of
the one rope around the other? Explain this in terms of twist and writhe helicity and
conservation of helicity. Next start with the two ropes parallel to each other and wrap
them four times in a left-handed sense around the broomstick. Check to see if the
ropes become wrapped around each other and, if so, in what sense are they wrapped
around each other and how many times? Explain your results in terms of twist, writhe,
and cross-over helicity.
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Magnetic reconnection

12.1 Introduction

Section 2.6.4 established the fundamental concept underlying ideal MHD, namely
that magnetic flux is frozen into the plasma. This concept means that the magnetic
topology of an ideal MHD plasma cannot change because a change in magnetic
topology would require a change of magnetic flux within the frame of the plasma.
Chapter 10 showed that ideal MHD plasmas are susceptible to two distinct types
of instabilities, pressure-driven and current-driven. Pressure-driven modes draw
on free energy associated with heavy fluids stacked on top of light fluids in
an effective gravitational field whereas current-driven instabilities draw on free
magnetic energy and involve the plasma attempting to increase its inductance in
a flux-conserving manner. Both of these instabilities occur on the Alfvén time
scale defined as some characteristic distance divided by vA.
It is possible for an MHD equilibrium to be stable to all ideal MHD modes

and yet not be in a lowest energy state. Because ideal MHD does not allow the
topology to change, a plasma that is not initially in the lowest energy state will not
be able to access this lowest energy state if the lowest energy state is topologically
different from the initial state. However, the lowest energy state could be accessed
by non-ideal modes, i.e., modes that violate the frozen-in flux condition, and so the
available free energy could drive an instability involving these non-ideal modes.
Magnetic reconnection is a non-ideal instability where the plasma is effectively
ideal everywhere except at a very thin boundary layer where the ideal MHD
frozen-in assumption fails so magnetic fields can leak across the plasma and
change their topology. Even though this boundary layer is microscopically thin,
the reconnection and associated change in magnetic topology at the boundary layer
allow the configuration to relax to a lower energy state. Magnetic reconnection
thus describes how a very slight departure from ideal MHD leads to important
new behavior.

410



12.1 Introduction 411

The simplest reconnection model is obtained by including finite resistivity in
the MHD description, but more elaborate non-ideal physics is also possible due to
two-fluid or Vlasov effects omitted from MHD (e.g., finite electron mass, Landau
damping). Resistive reconnection is much slower than ideal MHD modes because
it involves the diffusion (i.e., leakage) of magnetic field across the plasma in some
very limited spatial region where ideal MHD breaks down. Although including
finite resistivity in an MHD description is the simplest way to invoke non-
ideal physics enabling magnetic diffusion, the actual resistivity of most relevant
laboratory and space plasmas is inadequate by orders of magnitude for observed
reconnection rates to be explained by resistive MHD. Observations and computer
models show that the observed rapid reconnection rates are due to complicated
two-fluid and Vlasov effects, typically involving wave excitation and acceleration
of particles to very high energies.
Nevertheless, analysis of resistive MHD provides a good introductory overview

of the main issues involved in magnetic reconnection. In fact, even though it is
known that two-fluid and Vlasov models would be more appropriate, resistive
MHD is often used as a convenient approximate description for actual situations by
invoking a suitably large ad hoc “anomalous” resistivity. This is a hybrid approach
that essentially separates the reconnection physics (e.g., location, rate, topology)
from the question of what causes the dissipation enabling the reconnection. The
anomalous resistivity approach simply assumes there exists some complicated
collisionless mechanism (e.g., some form of wave turbulence) for slowing down
electrons relative to ions and leaves the issue of determining this mechanism as a
separate problem. Investigation of collisionless reconnection is an active research
area at the time of writing and a single straightforward theory does not exist.
Resistive MHD analysis should therefore be considered as a first step in attacking
the problem and a means for identifying relevant issues, but not as a quantitatively
accurate model for most real situations where complicated collisionless physics
seems to be much more important than the effect of finite resistivity.
Magnetic reconnection (also known as tearing) is an intrinsically complicated

boundary layer phenomenon because two very different length scales mutually
interact. This imposes a strong burden on the mathematical description because
the mathematics has to simultaneously characterize two different kinds of physics,
namely (i) the diffusive physics of the non-ideal, microscopically thin reconnection
layer and (ii) the ideal behavior of the macroscopic regions on either side of this
thin layer. We shall begin the discussion with an analogy drawn from everyday
experience and then use this analogy to argue why it is energetically favorable
for a sheet current to break up into filaments. The time scale for the resistive
MHD reconnection process will be estimated and shown to be much slower than
ideal MHD physics. It will then be shown that the existence of current sheets
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corresponds to having ! of order unity and so the current sheet model is not
directly relevant to low-! plasmas. However, it will be shown that a modest
generalization of the current sheet analysis to the situation of sheared magnetic
fields provides a model for low-! situations.

12.2 Water-beading: an analogy to magnetic reconnection

Since magnetic reconnection is not a simple process, it is helpful to start by consid-
ering the dynamics of a somewhat analogous instability known from everyday
experience, namely the process of water beading. The initial condition in water
beading is shown in Fig. 12.1(a) and consists of a long, thin, two-dimensional,
incompressible drop of water (approximate analog to the magnetic field) friction-
ally attached to a substrate (approximate analog to the plasma). The long, thin
drop has surface tension “trying” to reduce the perimeter of the drop (this is
analogous to the pinch force being interpreted as field line “tension” squeezing
on a current channel). If the drop were not attached to the substrate then, as
shown in Fig. 12.1(b), the surface tension would simply collapse the long, thin
incompressible drop into a circular drop having an area equal to that of the initial
long thin drop. Because of the frictional work involved in dragging the water over
the substrate, this wholesale collapse is not energetically favorable and does not
occur. On the other hand, if as shown in Fig. 12.1(c) the long, thin drop breaks up
into a line of discrete segments (which does not involve significant dragging of

long,
thin
drop

(a) (b) (c)

contraction to
single large drop
of same area
(energetically
unfavorable)

beading
(energetically
favorable)

substrate

Fig. 12.1 (a) Initial long, thin drop, (b) contraction into big, round drop (too
much scraping on substrate), (c) beading into chain of little drops.



12.3 Qualitative description of sheet current instability 413

water across the substrate), the surface tension of each line segment causes each
discrete segment to contract in length and bulge in width until circular. Because
only modest frictional dragging of water across the substrate is required to do
this, the process can be energetically favorable, and so result in water beading.

12.3 Qualitative description of sheet current instability

Suppose an infinite-extent plasma has, as shown in Fig. 12.2(a), a thin sheet of
current flowing in the z direction (out of the page). The sheet current is centered
horizontally at x= 0 and extends vertically from y= −� to y= +�. The current
is uniform in both the y and the z directions and roughly corresponds to the initial
long, thin water drop. This somewhat artificial situation can be considered as the
Cartesian analog of a cylindrical shell current flowing in the z direction, localized
at some radius r = r0 and azimuthally symmetric. Thus, we identify r with x and
y with �.
Since all quantities depend on x only, Ampère’s law reduces to

�0Jz�x�= �By

�x
� (12.1)

(a) (b) (c)

sheet
current

By0

y

gap

typical bar
self-field

filamentation
of current
into bar
cross-sections

detail of bars
showing fluid 
flow patterns

center of
typical
fluid
vortex

fluid
flow
vector

Fig. 12.2 (a) Initial sheet current (x axis is in horizontal direction, y axis is
vertical, z axis is out of page); (b) breaking up into bar cross-section filaments;
(c) detail showing fluid flow consists of set of small vortices that are antisym-
metric in x.
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which integrates to give

By�x�= By�0�+
∫ x
0
�0Jz�x

′�dx′� (12.2)

On the basis of symmetry the sheet current cannot generate a magnetic field at
x= 0 so the field By�0� must be entirely due to external currents. Let us assume
for now that no external currents exist and set By�0� = 0; the situation of finite
By�0� will be treated later in Section 12.5. Thus By�x� is a sheared magnetic field
that is positive for x > 0 and negative for x < 0. The magnitude of By�x� changes
rapidly inside the current layer and becomes constant for �x� → �.

This situation can be characterized analytically by using a magnetic field

By�x�= B tanh�x/L�� (12.3)

where L is the scale width of the current layer. Substituting in Eq. (12.1) gives

Jz�x�= B

�0L
cosh−2�x/L�� (12.4)

which is sharply peaked in the neighborhood of x = 0.
Suppose, as shown in Fig. 12.2(b), a perturbation is introduced whereby the

current sheet cross-section breaks up into a number of bar-shaped structures each
with current Ibar separated by small gaps in the y direction. These bars of current
(i.e., filaments) are the analog of the water beads discussed in Section 12.2. The
pinch force due to the self-magnetic field of each bar acts like an elastic band
wrapped around the bar (analogous to the surface tension of a drop). This tension
contracts the y dimension of the bar and, if the bar is incompressible, the x
dimension will then have to grow, as shown in Fig. 12.2(c). As the bar deforms
from a rectangle into a circle having the same area, its perimeter becomes shorter
giving rise to a stronger field (and effective surface tension) since∫

perimeter
B ·dl = �0Ibar = const� (12.5)

Hence, this deformation feeds upon itself and is unstable. Note that the inductance
of the system increases as the current sheet breaks up into current filaments,
consistent with the discussion on p. 315 showing that a plasma lowers its poten-
tial energy by increasing its inductance. Instability is thus possible in principle,
because the potential energy of the configuration would be lowered if the fila-
mentation were to occur.
Before the gaps between the bars form, all magnetic field lines are open

and straight, stretching from y = −� to y = +�, whereas after the gaps form,
some field lines circle the current filaments and so are closed. In order for the
configuration to transform itself from the initial state to the filamented state, some
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magnetic field lines must move across plasma and thereby change the flux linked
by plasma (this change in topology is approximately analogous to dragging the
water drops across the substrate in the water-beading problem). This motion of
field lines across the plasma is forbidden by ideal MHD because it would violate
the frozen-in flux constraint of ideal MHD. Thus, even though this filamentation
instability is energetically feasible, it is forbidden in an ideal plasma, i.e., in a
plasma governed by ideal MHD.
The field lines have an “X” shape at the center of the gaps and the change in

topology occurs at these X-points. The center of the bar is called an O-point since
the field around this point has an O-shape. If some non-MHD mechanism exists
that allows these X-points to develop, an instability involving this mechanism
becomes possible because of the available free energy. Since finite resistivity
allows magnetic field to diffuse across plasma, a resistive plasma ought to be
susceptible to this instability and the instability should occur at locations where
the magnetic field attachment to the plasma is weakest. The location of the weak
spot can be deduced by examining Ohm’s law for a nearly ideal plasma (i.e.,
small but finite resistivity),

E+U×B = �J� (12.6)

At most locations in the plasma, the two left-hand side terms are both much larger
than the right-hand side resistive term and so plasma behavior is determined by
these two left-hand terms balancing each other. This balancing causes the electric
field in the plasma frame to be zero, which corresponds to the magnetic field
being frozen into the plasma. However, if there exists a point, line, or plane of
symmetry where either U or B vanishes, then in the vicinity of this special region,
Eq. (12.6) reduces to

E ≈ �J� (12.7)

The curl of Eq. (12.7) gives

�B
�t

= �

�0
	2B� (12.8)

a diffusion equation for the magnetic field. Thus, in this special region the
magnetic field is not frozen to the plasma and diffuses across the plasma.
Let us now examine the fluid flow pattern associated with the bars sketched in

Fig. 12.2(b) as these bars contract in the y direction and expand in the x direction.
As shown in Fig. 12.2(c), each bar has y-directed velocities pointing from the
gap towards the bar center and x-directed velocities pointing out from the center
of the bar. To complete the incompressible flow there must also be oppositely
directed x and y velocities just outside the bar with the net result that there is
a set of small fluid vortices that are antisymmetric in x and, in addition, have a
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y-dependence 90	 out of phase with respect to the y-direction periodicity of the
bars. In particular, there is an outward x-directed velocity at the y location of
the O-points and an inward x-directed velocity at the y location of the X-points.
The fluid motion thus consists of a spatially periodic set of vortices that are
antisymmetric with respect to x = 0. Each bar has a pair of opposite vortices for
positive x and a mirror image pair of vortices for negative x, so there are four
vortices for each bar.

12.4 Semi-quantitative estimate of the tearing process

An exact, self-consistent description of tearing and reconnection is beyond the
capability of standard analytic methods because of the multi-scale nature of this
process. However, the essential features (geometry, critical parameters, growth
rate) and a reasonable physical understanding can be deduced using a semi-
quantitative analysis, which outlines the basic physics and determines the relevant
orders of magnitude. The starting point for this analysis involves solving for the
vector potential associated with the magnetic field in Eq. (12.3), obtaining

Az�x�= −
∫ x
By�x

′�dx′ = −BL ln �cosh�x/L��+ const� (12.9)

The constant is chosen to give Az = 0 at x = 0 so

Az�x�= −BL ln �cosh�x/L�� � (12.10)

For �x� �L� cosh�x/L�� 1+x2/L2 while for �x� �L� cosh�x/L�� exp ��x�/L�/2.
Thus, the limiting forms of the vector potential are

lim
�x��L

Az�x�= −Bx
2

L
(12.11)

and

lim
�x��L

Az�x�= −BL
( �x�
L

− ln 2
)
� (12.12)

Near x = 0�Az is an inverted parabola with a maximum value of zero,
while far from x = 0�Az is linear and becomes more negative with increasing
displacement from x = 0. This behavior of the vector potential is consistent
with the field being uniform far from x = 0, but reversing sign on going across
x = 0. The behavior is also consistent with the relationship between the current
density and the second derivative of the vector potential,

�0Jz = �By

�x
= −�

2Az
�x2

� (12.13)
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Current density is therefore associated with curvature in Az�x� or, in a more
extreme form, with a discontinuity in the first derivative of Az�x�. Specifying
the vector potential is sufficient to characterize the problem since the magnetic
field and currents are the first and second derivatives of Az�x� respectively. This
general idea can be extended to more complicated geometries if there is sufficient
symmetry so that specification of an equilibrium flux profile uniquely gives both
the equilibrium field and the current distribution.
The reconnection process is characterized by the MHD equation of motion

�
dU
dt

= J×B−	P� (12.14)

Faraday’s law expressed as

E = −�A
�t
� (12.15)

Ampère’s law

	×B = �0J� (12.16)

and the resistive Ohm’s law

E+U×B = �J� (12.17)

The analysis involves relating the velocity vortices to the linearized Ohm’s law,
and in particular to its z component

Ez1 +Ux1By0 = �Jz1� (12.18)

The sense of the vortices sketched in Fig. 12.2(c) indicate that the velocity
perturbation is uniform in the z direction and Ux1 is antisymmetric with respect
to x. Also, since the motion consists of vortices, there is no net divergence of
the fluid velocity and so it is reasonable and appropriate to stipulate that the flow
is incompressible with 	 ·U = 0. Since the perturbed current density is in the
z direction, and since for straight geometries the vector potential is parallel to
the current density, the perturbed vector potential may also be assumed to be in
the z direction. Hence, both equilibrium and perturbed vector potentials are in the
z direction and so the total magnetic field is related to the total vector potential by

B = 	×Azẑ= 	Az× ẑ� (12.19)

Equation (12.18) can be recast using Eqs. (12.15) and (12.19) as an induction
equation,

−�Az1
�t

−Ux1
�Az0
�x

= �Jz1� (12.20)
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The current has the form

�0Jz = ẑ ·	×B = ẑ ·	× (	×Azẑ
)= ẑ ·	× (	Az× ẑ)= −	2

⊥Az� (12.21)

where the subscript ⊥ means perpendicular to ẑ. Thus, the induction equation
becomes

�Az1
�t

+Ux1
�Az0
�x

= �

�0
	2

⊥Az1� (12.22)

To proceed, it is necessary to express the perturbed velocity Ux1 in terms of Az1;
this relation is obtained from the equation of motion.
While we could just plow ahead and manipulate the equation of motion to

obtain Ux1 in terms of Az1, it is more efficient to exploit the incompressibility
relation. In two-dimensional hydrodynamics, incompressibility simplifies flow
dynamics so that flow is described by two related scalars, the stream-function f
and the vorticity �. For two-dimensional motion in the x− y plane of interest
here, the general incompressible velocity can be expressed as

U = 	f × ẑ� (12.23)

since

	 ·U = 	 · �	f × ẑ�= ẑ ·	×	f = 0� (12.24)

The vorticity is the curl of the velocity and because the velocity lies in the x−y
plane, the vorticity vector is in the z direction. The vorticity magnitude � is
given by

�= ẑ ·	×U = ẑ ·	× �	f × ẑ�= 	 · ��	f × ẑ�× ẑ�= −	2
⊥f� (12.25)

where ⊥ means perpendicular with respect to z. Given the vorticity, f can be
found by solving the Poisson-like Eq. (12.25), and then, knowing f , the velocity
can be evaluated using Eq. (12.23). Appropriate boundary conditions must be
specified for both f and �� these boundary conditions are that the vorticity is
antisymmetric in x and is only large in the vicinity of x = 0 as indicated in
Fig. 12.2(c).
The curl of the equation of motion provides the vorticity evolution and also

annihilates 	P� this elimination of P from consideration is why the vorticity/
stream-line method is a more efficient approach than direct solution of the equation
of motion.
Let us now solve for U1x following this procedure. The linearized equation of

motion is

�0
�U1

�t
= �J×B�1 −	P1� (12.26)
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taking the curl and dotting with ẑ gives

�0
��1

�t
= ẑ ·	× �J×B�1

= ẑ ·	× [Jzẑ× (	Az× ẑ)]1
= ẑ ·	× (Jz	Az)1
= ẑ · (	Jz×	Az)1 � (12.27)

Using Eq. (12.21) this can be written as

��1

�t
= 1
�0�0

ẑ · [	Az×	 (	2
⊥Az

)]
1 � (12.28)

From Fig. 12.2(c) it is expected that the vortices have significant amplitude only in
the vicinity of where the current bars are deforming and that at large �x� there will
be negligible vorticity. Thus, it is assumed that the vorticity evolution equation
has the following behavior:

1. Inner (tearing/reconnection) region: here it is assumed that the perturbation has much
steeper gradients than the equilibrium so

�	 (	2
⊥Az0

) �
�	Az0�

� �	 (	2
⊥Az1

) �
�	Az1�

� (12.29)

This allows Eq. (12.28) to be approximated as

��1

�t
� 1
�0�0

ẑ · [	Az0 ×	 (	2
⊥Az1

)]
= 1
�0�0

dAz0
dx

�

�y

(
	2

⊥Az1
)
� (12.30)

which shows that Jz1 crossed with By0 generates vorticity. Since By0 is antisymmetric
with respect to x, the vortices have the assumed antisymmetry. Furthermore, because
Jz1 is symmetric with respect to x and localized in the vicinity of x = 0 the vortices
are localized to the vicinity of x = 0.

2. Outer (ideal) region: here �1 � 0 is assumed so Eq. (12.28) becomes

dAz0
dx

�

�y

(
	2

⊥Az1
)− �Az1

�y

d3Az0
dx3

= 0� (12.31)

which is a specification for Az1 in the outer region for a given Az0. Thus, it is effectively
assumed that the outer perturbed field is force-free, i.e., �J×B�1 = 0. This is consistent
with there being no generation of vorticity in the outer region.
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The perturbed quantities will now be assumed to have the space-time depen-
dence

Az1 = Az1�x�eiky+�t

�1 =�1�x�e
iky+�t (12.32)

so Eq. (12.30) gives the inner region vorticity as

�1 = 1
�0��0

dAz0
dx

ik
(
	2

⊥Az1
)= − 1

��0

dAz0
dx

ikJz1� (12.33)

This satisfies all the geometric conditions noted earlier, namely the antisymmetric
dependence on x, the localization near x= 0, and, consistent with Fig. 12.2(c), a
y-periodicity 90	 out of phase with the periodicity of Jz1.
Using Eq. (12.23), it is seen that

Ux1 = �f1
�y

= ikf1� (12.34)

The stream-function f1 is a solution of the Poisson-like system Eq. (12.25) and
Eq. (12.33),

�2f1
�x2

−k2f1 = 1
��0

dAz0
dx

ikJz1� (12.35)

Since the perturbed current peaks at x = 0 and has a width of the order of $, it
may be characterized by the Gaussian profile

Jz1 � �

$
√

e−x2/$2� (12.36)

where

�=
∫
layer

Jz1dx (12.37)

is the total perturbed current in the tearing layer. The gradient of the vector
potential can be written as

dAz0
dx

= −By0�x�� − x
L
B′
y0� (12.38)

Assuming that the tearing layer is very narrow gives

�2f1
�x2

� k2f1 (12.39)

so Eq. (12.35) becomes

�2f1
�x2

= − B′
y0

�L�0
ik

�

$
√

xe−x2/$2 = ikB′

y0

2�L�0

�$√


d
dx

e−x2/$2 � (12.40)
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Jz1

x

B′ xy0

product Jz1B′ x
= vorticity source

y0

Fig. 12.3 Product of symmetric perturbed current with antisymmetric equilib-
rium field results in antisymmetric vorticity source localized near x = 0.

The profiles of Jz1, By0�x�, and their product (right-hand side of Eq. (12.40)) are
shown in Fig. 12.3.
Integrating Eq. (12.40) with respect to x gives

�f1
�x

= ikB′
y0

2�L�0

�$√

e−x2/$2� (12.41)

which incidentally gives U1y = −�f1/�x. Since it is desired to find the magnitude
of U1x in the region x∼ $, a rough “order of magnitude” integration of Eq. (12.41)
in this region gives

f1 ∼ ikB′
yo�$

2

2�L
√
�0

sign�x� for x ∼ $ (12.42)

and so

Ux1 ∼ − k2B�$2

2�L
√
�0

sign�x� for x ∼ $� (12.43)

The amplitude factor � can be expressed using Eq. (12.21) as

� = − 1
�0

∫
layer

	2
⊥Az1dx

� − 1
�0

∫
layer

�2Az1
�x2

dx

= − 1
�0

[(
�Az1
�x

)
+

−
(
�Az1
�x

)
−

]
� (12.44)
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where the subscripts ± mean evaluated at x= ±$. For purposes of joining to the
outer ideal solution, the normalized jump derivative is defined as

�′ =

(
�Az1
�x

)
+

−
(
�Az1
�x

)
−

Az1�0�
(12.45)

so

�= −�
′

�0
Az1�0�� (12.46)

The velocity becomes

Ux1 ∼ k2B�′$2

2�L
√
�0�0

Az1�0�sign�x� (12.47)

and using Eq. (12.36), the current density becomes

Jz1 ∼ − �′

$�0
√

Az1�0�� (12.48)

We now repeat the induction equation, Eq. (12.20),

−�Az1
�t

−Ux1
�Az0
�x

= �Jz1 (12.49)

and substitute for Ux1� Jz1 and assume that �Az0/�x = −By0 � −B$/L in the
tearing layer. This gives

� − k2B2�′$3

2�L2
√
�0�0

= ��′

$�0
√

�

#1 #2 #3
(12.50)

where the terms have been numbered for reference in the following discussion.
In the ideal plasma limit, terms #1 and #2 balance each other while term #3 is

small; this gives the frozen-in condition. At exactly x = 0, term #2 vanishes and
so terms #1 and #3 must balance each other, resulting in diffusion of the magnetic
field. At the edge of the tearing layer, i.e., at the transition from the ideal limit
to the diffusive limit, all three terms are of the same size. Thus, the three terms
may be equated; this gives two equations that may be solved for � and $ with
�′ as a parameter (Furth, Killeen, and Rosenbluth 1963). Equating terms #1 and
#3 gives

� = ��′

$�0
√


(12.51)
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while equating terms #2 and #3 gives

� = �kB′�2 $4

2��0
� (12.52)

where B′ = B/L is the derivative of the equilibrium field at x= 0. Equating these
last two equations to eliminate � gives the width of the tearing layer to be

$�
[

2�2�0�
′

�0
√
 �kB′�2

]1/5
� (12.53)

Substituting $ back into Eq. (12.51) gives

� = 0�55
(
�′)4/5 [ �

�0

]3/5[�kB′�2

�0�0

]1/5
� (12.54)

This result can be put in a more physically intuitive form by defining characteristic
times for ideal processes and for resistive processes. The characteristic time for
ideal processes is the Alfvén time �A, defined as the time to move the characteristic
length L when traveling at the Alfvén velocity, i.e.,

�−1
A = vA

L
=
√
B2/�0�0

L
=
√
�B′�2

�0�0
� (12.55)

The Alfvén time is the characteristic time of ideal MHD and is typically a very
fast time. The characteristic time for resistive processes �R is defined as the time
to diffuse resistively a distance L, so

�−1
R = �

L2�0
� (12.56)

For nearly ideal plasmas the resistive time scale is very slow. Using these defini-
tions, Eq. (12.54) can be written as (Furth, Killeen and Rosenbluth 1963)

� = 0�55
(
�′L

)4/5
�kL�2/5 �

−3/5
R �

−2/5
A � (12.57)

All that is needed now is �′. This jump condition is found from Eq. (12.31) which
gives the form of Az1 in the ideal region outside the tearing layer. This can be
expressed as

	2
⊥Az1 +

[
B−1
y0

d2By0
dx2

]
Az1 = 0� (12.58)

which shows that the equilibrium magnetic field acts like a “potential” for the
perturbed vector potential “wavefunction.” If boundary conditions are specified
at large �x� for the perturbed vector potential, then there will typically be a
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discontinuity in the first derivative of Az1 at x = 0; this discontinuity gives �′.
The jump depends on the existence of a localized equilibrium current since

d2By0
dx2

= �0
dJz0
dx
� (12.59)

Equation (12.58) must in general be solved numerically.
The main result, as given by Eq. (12.57), is that if �′ > 0 an instability develops

having a growth rate intermediate between the fast Alfvén time scale and the
slow resistive time scale. Since a nearly ideal plasma is being considered, � is
extremely small. The width of the tearing layer is therefore very narrow, since,
as shown by Eq. (12.53), this width is proportional to �2/5.

12.5 Generalization of tearing to sheared magnetic fields

The sheet current discussed above can occur in real situations but is a special case
of the more general situation where the equilibrium magnetic field does not have
a null, but instead is simply sheared. This means that the equilibrium magnetic
field is straight, has components in both the y and z directions, and has a direction
that is a varying function of x. The sheared situation thus has a uniform magnetic
field in the z direction and, instead of the current being concentrated in a sheet,
there is simply a non-uniform By0�x�.
There is a non-trivial difference between the special field-null equilibria and

the more general types of equilibria where there is no field null. This differ-
ence occurs because equilibria involve balancing the magnetic and hydrodynamic
pressures in such a way that P+B2/2�0 is continuous within the plasma and
also across the plasma boundary. If a field null exists, then equilibrium consists
of magnetic pressure B2/2�0 exterior to the null balancing hydrodynamic pres-
sure P at the null and so a reconnection region involving a field null must have
!� 1. This situation occurs in the reconnection region associated with the Earth’s
magnetotail and has also been studied in certain laboratory plasma experiments
(Trintchouk et al. 2003). However, in the more general case where there is no
field null, B2 is nearly continuous across the reconnection layer. This means that
P will be small, in which case !� 1. Thus, the assumption of low ! precludes
the possibility of a field null and so precludes the possibility of the simple current
sheet discussed in the previous section.
The more general situation where the equilibrium magnetic field has the form

B0 = By0�x�ŷ+Bz0ẑ (12.60)

would thus be appropriate for low-! plasmas such as tokamaks, spheromaks,
and the solar corona. A non-trivial feature of this situation is that, unlike the
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previously considered sheet current equilibrium, here By0�x� does not vanish at
any particular x. Instead, as will be seen later, what matters is the vanishing
of k ·B0. Equation (12.60) can be used as a slab representation of the straight
cylindrical geometry equilibrium field

B0 = 	&0�r�×	z+Bz0ẑ� (12.61)

Equation (12.61) in turn can be thought of as the straight cylindrical approximation
of a toroid with z corresponding to the toroidal angle (see Eq. (9.34)).
Figure 12.4 shows the magnetic field given by Eq. (12.60) as viewed in the x= 0

plane. In the sheet current analysis discussed in the previous section, the perturbed
vector potential pointed in the z direction and was periodic in the y direction.
This corresponded to having k ·A1 = 0 so that the wavevector was orthogonal
to the vector potential and both were orthogonal to x. Other important properties
were that k ·B vanished at the reconnection layer, the fluid vorticity vector was
pointed in the z direction, the perturbed currents and perturbed magnetic fields
were such that J1/J0 � B1/B0 in the reconnection layer, and J1/J0 ∼ B1/B0 in
the exterior region.
These relationships and approximations are generalized here and, in particular, it

is assumed all perturbed quantities have functional dependence ∼ g�x� exp �ikyy+
ikzz+�t�. As before, the vorticity equation is the curl of the linearized equation
of motion, i.e.,

�0
��1

�t
= 	× �J1 ×B0 +J0 ×B1� (12.62)

and in the reconnection layer where J1/J0 � B1/B0 this becomes

�0
��1

�t
= 	× �J1 ×B0�

= B0 ·	J1 −J1 ·	B0 (12.63)

since 	 ·B0 = 0 and 	 ·J1 = 0.

k

x = 0 plane only

B ζ

z

y

Fig. 12.4 Tilted coordinate system for general sheared field.



426 Magnetic reconnection

An essential feature of the reconnection topology is that the vorticity must be
antisymmetric about the reconnection layer, as can be seen from examination of
the fluid flow vectors in Fig. 12.2(c). Since the vorticity is created by the torque
(i.e., the curl of the force), it is clear that the torque must be antisymmetric about
the reconnection layer. As will be seen in the next paragraphs, the condition that
the torque is antisymmetric does not imply that either B0 or J1 are antisymmetric,
but rather implies some more subtle conditions.
Thus, if x = 0 is defined to be the location of the reconnection layer, then �1

must be an odd function of x and therefore must vanish at x = 0. Hence, the
right-hand side of Eq. (12.63) must vanish at x = 0 and, since there need be no
particular functional relationship between B0 and its gradient, the two terms on
the right-hand side of Eq. (12.63) must separately vanish. Therefore, one of the
requirements is to choose the origin of the x axis such that B0 ·	J1 = 0 at x = 0
or, equivalently,

k ·B0 = 0 at x = 0 (12.64)

so that

kyBy0�0�+kzBz0 = 0� (12.65)

Having k ·B vanish at the reconnection layer is physically reasonable, since
finite k ·B implies a periodic bending of the equilibrium field; such a bending
absorbs energy and so is stabilizing. Having k ·B vanish is like letting the insta-
bility cleave the system at a weak point so the instability can develop without
requiring much free energy.
The second requirement for the right-hand side of Eq. (12.63) to vanish is to

have J1 ·	B0 = 0. If the flow is incompressible, then the perturbed magnetic
field must be orthogonal to the equilibrium magnetic field and since the perturbed
current is the curl of the perturbed magnetic field, the perturbed current must be
parallel to the equilibrium magnetic field (this is essentially shear Alfvén wave
physics). Since B0 is assumed straight, B0 ·	B0 = 0 and, since J1 is parallel to
B0, it is seen that J1 ·	B0 = �J1/B0�B0 ·	B0 = 0. Because J1 is parallel to B0,
J1 must also be straight and so a Coulomb gauge vector potential will be parallel
to J1, since

�0J1 = 	×	×A1

= 		 ·A1 −	2A1

= −	2A1

= −(̂	2A1 (12.66)

can be satisfied by having both J1 and A1 in the direction of (̂ , where
(̂ = B0�0�/B0�0� does not depend on position.
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It is therefore assumed that A1 is parallel to B0�0� and so

A1�x� y� z� t�= A1(�x�(̂e
ikyy+ikzz+�t� (12.67)

Thus, k ·A1 = 0 in this tilted coordinate system since k · (̂ = k ·B0�0�/ �B0�0��.
Also 	 ·A1 = 0 so the Coulomb gauge assumption is satisfied.
Reconsideration of the right-hand side of Eq. (12.63) shows that although the

two terms both vanish at x= 0 there is a difference in the geometrical dependence
of these terms. In particular, since J1 is in the (̂ direction, it has no x component,
whereas B0 depends only on x so

J1 ·	B0 =
(
Jy1

�

�y
+ Jz1

�

�z

)
B0�x�= 0� (12.68)

Thus, Eq. (12.63) reduces to

�
��1

�t
= B0 ·	J1
= i �k ·B0�J1� (12.69)

where, by assumption, k ·B0 vanishes at x = 0.
Continuing this discussion of the ramifications of the antisymmetry of k ·B0

about x= 0, we now define an artificial reference magnetic field B̄ that is parallel
to the real field at x = 0, but has no shear (i.e., has no x dependence). The
reference field therefore has the form

B̄ = By0�0�ŷ+Bz0ẑ= B0�0�(̂ for all values of x� (12.70)

We now define b0�x� as the difference between the real field and B̄ so that

B0�x�= B̄+b0�x�� (12.71)

Thus b0�x� has the same x dependence as the By0 field used for the sheet current
instability in the previous section in that (i) it is antisymmetric about x and
(ii) it is in the y direction. One way of thinking about this is to realize that b0�x�
is the component of B0�x� that is antisymmetric about x= 0. With this definition

k ·B0 = k ·b0�x�= kyb0 (12.72)

and so Eq. (12.69) becomes

��0�(1 = ikyb0J(1� (12.73)

This equation provides the essence of the dynamics. It shows how the component
of the magnetic field that is antisymmetric about x= 0 creates fluid vortices that
are antisymmetric with respect to x. In particular, since b0�x� is an odd function
of x and J(1 is an even function of x��(1 is an odd function of x.
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The complete self-consistent description is obtained by, in addition, taking into
account the induction equation, which shows how fluid motion acts to create
perturbations of the electromagnetic field.
In the sheet current case the component of Ohm’s law in the direction of

symmetry of the perturbation was considered, i.e., the component in the z direction.
Here, the corresponding symmetry direction for the perturbation is the ( direction
and so the relevant component of Ohm’s law is the ( component,

(̂ · �E1 +U1 ×B0�x��= (̂ ·�J1� (12.74)

which becomes

−�A(1
�t

+
(
ŷ× (̂ ·U1

)
b0�x�= �J(1� (12.75)

Since the vorticity vector lies along (̂ , the incompressible velocity must be orthog-
onal to (̂ and so has the form

U1 = 	f1 × (̂ � (12.76)

Thus,

ŷ× (̂ ·U1 =
(
ŷ× (̂

)
·
(
	f1 × (̂

)
= ikyf1� (12.77)

Taking into account the ( direction of the vorticity once again, it is seen that
�1 =�(1(̂ , where

�(1 = (̂ ·	×U1 = −	2
⊥f1 (12.78)

and now ⊥ means perpendicular to (̂ .
Substituting for �(1 in Eq. (12.73) using Eq. (12.78) gives

	2
⊥f1 = − ikyb0�x�J(1

��0
� (12.79)

this equation provides the essential dynamics of fluid vortices that are antisymmet-
ric with respect to x and driven by the torque associated with the non-conservative
J×B force. This is essentially the same as Eq. (12.35) and the rest of the analysis
is the same as for the sheet current problem except that now ky is used instead of
k and b′

0 is used instead of B′
y0 since b0�x� only differs from By0�x� by a constant,

b′
0 = B′

y0. Thus, using Eq. (12.54) the growth rate will be

� = 0�55
(
�′)4/5 [ �

�0

]3/5⎡⎢⎣
(
kyB

′
y0

)2
�0�0

⎤⎥⎦
1/5

� (12.80)

The global system has to be periodic in both the y and z direction in order
for well-defined ky and kz to exist. In particular, the physical arrangement and
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dimensions of the global system determine the quantized spectra of ky and kz and
so determine the allowed planes where k ·B0 can vanish. As suggested earlier,
the allowed planes can be considered as “cleavage” planes where the magnetic
field can most easily become unglued from the plasma.
Let us express this result in the context of toroidal geometry such as that of a

tokamak. This is done by letting Bz0 correspond to the toroidal field B� and By
correspond to B� the poloidal field. The Alfvén time is now defined in terms of
B� as

�−1
A = B�

a
√
�0�0

� (12.81)

where a is the minor radius. The safety factor, a measure of the twist, is defined as

q = aB�

RB�
(12.82)

so

B� = aB�

Rq
(12.83)

and

B′
y0 → −aB�

Rq2
q′� (12.84)

Thus, it is possible to replace ky →m/a and(
kyB

′
y0

)2
�0�0

→
(
ma

Rq2
q′
)2 1
�A
� (12.85)

At the tearing layer k ·B = 0 or

m

a
B�+ n

R
B� = 0 (12.86)

so

q = −m
n

(12.87)

and Eq. (12.85) becomes (
kyB

′
y0

)2
�0�0

→
(
na

R

q′

q

)2 1
�A
� (12.88)

Thus, Eq. (12.80) becomes

� = 0�55
(
�′a

)4/5
�

−3/5
R �

−2/5
A

(
na2

R

q′

q

)2/5

� (12.89)
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where

�−1
R = �

a2�0
� (12.90)

Equation (12.89) shows that the essential source for the tearing instability is q′.
From this point of view, the “free energy” is in the gradient of q and so, as
the tearing mode uses up this free energy, the q profile will be flattened. The
concept that gradients in q drive reconnection is closely related to the concept
that relaxation is driven by gradients in the force-free parameter � discussed with
regards to Eq. (10.140). This is because � is essentially the axial current I flowing
through a flux tube with flux  . This can be seen by integrating Eq. (10.140)
over the cross-section of a current-carrying flux tube to obtain

�0I

 
=
∫
	×B ·ds∫
B ·ds = �� (12.91)

If the torus is approximated as a straight cylinder so B� is the axial field and
B� = �0I/2a is the azimuthal field then the axial flux is  = a2B� and

q = aB�

RB�
= 2a2B�

R�0I
= 2 
R�0I

� (12.92)

We see that

q = 2
�R

(12.93)

so

q′ = − 2
�2R

�′� (12.94)

Thus, q and � are inversely related and the concept that gradients in � drive insta-
bility is essentially equivalent to the concept that gradients in q drive instability.

12.6 Magnetic islands

The tearing instability changes the topology of the magnetic field and causes the
formation of magnetic “islands” (Rutherford 1973, Bateman 1978). The equilib-
rium magnetic field has the form

B = B̄+b0�x�ŷ = B̄+xB′
y0ŷ = B̄+ ẑ×	Az0�x�� (12.95)

where

Az0�x�= x2B′
y0

2
� (12.96)

It is seen that

B⊥ ·	Az0 = 0� (12.97)
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where B⊥ is the component perpendicular to z. Thus, the surfaces Az= const. give
the projection of the field lines in the plane perpendicular to z; these projections
are the Cartesian geometry equivalents to the poloidal flux surfaces of toroidal
geometry.
If it is assumed that kz � ky, so ( is very nearly parallel to z, then it is seen

that the tearing instability adds a perturbation to Az giving

Az�x� y�= x2B′
y0

2
+Az1 coskyy� (12.98)

A sketch of a set of surfaces of constant Az�x� y� is shown in Fig. 12.5. These
surfaces consist of (i) closed curves called islands, (ii) a separatrix that passes
through the X-point, and (iii) open outer surfaces. On the x = 0 line an O-point
corresponds to a maximum in coskyy (e.g., kyy = 0) and an X-point corresponds
to a minimum (e.g., kyy = ±). The maximum width w of the separatrix can be
calculated by noting that at the X-point (i.e., where cos�kyy�= 1 and x = 0)

Az = 0+Az1 (12.99)

while at the point of maximum width on the separatrix (i.e., where cos�kyy�= −1
and x = w/2)

Az = �w/2�2B′
y0

2
−Az1� (12.100)

x

y

w

separatrix

Fig. 12.5 Surfaces of constant Az showing magnetic islands and separatrix with
width w.
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Since both these points are on the separatrix, they must have the same value of
Az, and so equating the last two equations gives the island width

w = 4

√
Az1
B′
y0

= 4

√√√√∣∣∣∣∣ Bx1kyB
′
y0

∣∣∣∣∣ (12.101)

using Bx1 = ikyAz. In tokamak terminology we identify Bx1 → Br1, where r is
the minor radius, and using Eq. (12.84), Eq. (12.87), and ky →m/a this becomes

w = 4

√∣∣∣∣Rqnq′
Br1
B�

∣∣∣∣� (12.102)

It is important to realize that the width of the island is much larger than the
width of the tearing layer. Since particles tend to be attached to magnetic flux
surfaces, the formation of islands means that particles can circulate around the
island, thereby causing a flattening of the pressure gradient because the pressure
is constant along a magnetic field line.

12.7 Assignments

1. Sweet–Parker type reconnection (Sweet 1958, Parker 1957, Trintchouk, Yamada, Ji,
Kulsrud and Carter 2003). Consider the two identical flux-conserving current loops
shown in Fig. 12.6(a). Because the system is axisymmetric, the magnetic field can be
expressed as

B = 1
2
	&×	��

where & is the poloidal flux.

(a) Explain why there is an attractive force between the current loops (hint: consider
the force between parallel currents or between north and south poles of two
magnets).

(b) Define private flux to be a poloidal flux surface that links only one of the current
loops (examples are the flux surfaces labeled 1 and 2 in Fig. 12.6(a)). Define
public flux to be a flux surface that links both of the current loops (examples
are flux surfaces 3, 4, 5 in Fig. 12.6(a)). Define the X-point to be the location in
the z = 0 plane where there is a field null as shown in Fig. 12.6(a); let r0 be the
radius of the X-point. Show by sketching that as the two current loops approach
each other in vacuum, a private flux surface above the midplane will merge with
a private flux surface below to form a public flux surface.

(c) Show that the flux linked by a circle in the z = 0 plane with radius r0 (i.e., the
circle follows the locus of the X-point) is the public flux. Argue that if the current
loops approach each other, this public flux will increase at the rate that private
flux is converted into public flux. By integrating Faraday’s law over the surface of
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(a) (b)

(c)

z
z

poloidal
flux surface

current
loop

1 2
3

4
5

1 2 3 4
5

Uin

Uin

Uout Uout
δL

X-point X-point

current sheet

Fig. 12.6 (a) Two identical coaxial current loops with associated poloidal
magnetic flux surfaces; (b) current loops approaching each other; (c) detail of
X-point region of (b) showing inflows/outflows and current sheet (shaded region)
having nominal length L and thickness �.

this circle in the z-plane with radius r0, show there exists a toroidal electric field
at the X-point given by

E� = − 1
2r0

�&public

�t
�

where �&public/�t is the rate of increase of public flux.
(d) Now suppose that the vacuum is replaced by perfectly conducting plasma so that

plasma is frozen to flux surfaces. Show from symmetry that the plasma velocity
at the X-point must vanish. What is E� at the X-point if the two current loops are
immersed in a plasma that satisfies the ideal Ohm’s law,

E+U×B = 0?

Can there be any conversion of private flux into public flux in an ideal plasma?
Sketch contours of private and public flux when two current loops approach each
other in an ideal plasma.

(e) Now suppose the two current loops are immersed in a non-ideal plasma that
satisfies the resistive Ohm’s law

E+U×B = �J�
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Can private flux be converted into public flux in this situation, and if so, what is
the relationship between the rate of increase of public flux and the resistivity?

(f) By writing E��Br�Bz, and J� in terms of the poloidal flux function show that the
toroidal component of the resistive Ohm’s law can be expressed as

�&

�t
+U ·	& = r2	 ·

(
�

�0r
2
	&

)
�

Show that this equation implies that flux convects with the plasma if � = 0,
but diffuses across the plasma if U = 0. Show that the diffusion increases if
& develops a steep gradient at the location where U = 0. By considering your
response to (d) above, discuss how the flux gradient in the z direction might steepen
in the vicinity of the X-point. Taking into account the relationship between J and
&, show that this corresponds to developing a thin sheet of current in the midplane
(current sheet) as shown in Fig. 12.6(c). Show that in order to have an X-point
geometry and also satisfy Faraday’s law, the flux function must have the form

&�r� z� t�=
(
1+ z2

2�2
− �r− r0�

2

2L2

)
&0 −2rE�t

in the vicinity of the X-point; here &0 is the flux at the X-point at t = 0 and r0
is the radial location of the X-point. What is the relationship between � and L in
vacuum and in a resistive plasma? Is � larger or smaller than L if the two current
loops are approaching each other? If � < L is there a current in the vicinity of
the X-point? What is the direction of this current with respect to the currents in
the two current loops? Will the force on the current loops from the current in the
current sheet accelerate or retard the motion of the two current loops towards each
other? What is the direction of E�? Is & increasing or decreasing at the X-point?

(g) Suppose that the current sheet has a nominal thickness of � in the z direction and
a nominal width of L in the r direction as shown in Fig. 12.6(c). Let Uin be the
nominal vertical velocity with which the plasma approaches the X-point and let
Uout be the nominal horizontal velocity with which the plasma leaves the X-point
region as shown in Fig. 12.6(c). If the plasma motion is incompressible show that

UinL� Uout�� (12.103)

(h) Consider the transition from the ideal MHD form of Ohm’s law to the form at the
X-point. Argue that in the region of this transition the terms U×B and �J should
have the same order of magnitude (this is essentially the same argument used
to analyze Eq. (12.49)). Use this result and Ampère’s law to find a relationship
between �J�Bin, and �. Use this to show

Uin ∼ �/�0� (12.104)

and explain this result in terms of the convective velocity for motion of flux
surfaces outside the current sheet and the “diffusive velocity” for motion of flux
surfaces inside the current sheet.
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(i) Using Eq. (9.42) show that the MHD force acting on the plasma is

FMHD = − 	&

�2�2�0

	 ·
(
1
r2
	&

)
�

Sketch the direction of this force and indicate where this force is finite (hint:
consider where J is finite). Estimate the work

∫
F ·dl done on plasma accelerated

through the current sheet by using relationships involving Bin�Bout� �, and L. Use
this estimate to show that

Uout � vA�in� (12.105)

where vA�in = Bin/√�0� is the Alfvén velocity at the input. (Hint: let �& be the
jump in flux experienced by a fluid element as it moves across the current sheet.
Note that Bout ∼ �&/2rL and Bin ∼ �&/2r�, also note that 	 · (r−2	&

)
can be

expressed in terms of Bin and �).
( j) By eliminating Uin and Uout between Eqs. (12.103), (12.104), and (12.105) show

that
�

L
= Uin
va�in

= 1√
Sin
�

where the inflow region Lundquist number Sin is defined as

Sin = �0va�inL

�
�

(k) If the initial separation between the two current loops is also of the order of L, how
much time is required for the two loops to merge, thus completing the reconnection
process? Structures in the solar corona have scale lengths L∼ 106–108 m and it is
observed that Alfvén wave disturbances propagate with velocities vA ∼ 106 ms−1.
The temperature of these structures is 10–100 eV. Assuming a nominal temperature
of 50 eV, use Spitzer resistivity to calculate the nominal value of Sin. How long
would it take for two solar current loops to merge if they are governed by the
mechanism discussed here (what is the appropriate time unit to use: seconds, days,
weeks, years, …?). Actual current loops change topology on time scales ranging
from minutes to hours – how does the observed time scale compare with the
predictions of the resistive reconnection model?
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Fokker–Planck theory of collisions

13.1 Introduction

Logically, this chapter ought to be located at the beginning of Chapter 2, just after
the discussion of phase-space concepts. This chapter is not located there because
the theory in this chapter is too advanced to be so close to the beginning of the
book and its location near the beginning would have delayed the introduction of
other important topics that do not need the detail of this chapter.
The discussion of collisions in Chapter 1 was very approximate. Collisions

were shown to scale as an inverse power of temperature, but this was based on
a “one size fits all” analysis since it was assumed that collision frequencies of
slow and fast particles were nominally the same as that of a particle moving at
the thermal velocity. Because the collision frequency scales as v−3, it is quite
dubious to assume that the collision rates of both super-thermal and sub-thermal
particles can be well represented by a single collision frequency and a more careful
averaging over velocities is clearly warranted. This careful averaging is provided
by a Fokker–Planck analysis due to Rosenbluth, Macdonald, and Judd (1957). If
this much more detailed analysis simply provided more accuracy, it would not
be worth the considerable effort it requires except for occasional situations where
high accuracy is important. However, the Fokker–Planck theory not only provides
more accuracy, but also reveals new and important phenomena and, in particular,
indicates when resistive MHD fails.
We begin by reviewing collisions between two particles. Suppose a test particle

having mass mT and charge qT collides with a field particle having mass mF and
charge qF � Since the electric field associated with a charge q is E = r̂q/4
0r2,
where r is the distance from the charge, the respective test and field particle
equations of motion are

mT r̈T = qTqF
4
0�rT − rF �3

�rT − rF � (13.1a)

mF r̈F = qTqF
4
0�rT − rF �3

�rF − rT � � (13.1b)
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The center-of-mass vector is defined to be

R = mT rT +mFrF
mT +mF

� (13.2)

Adding Eqs. (13.1a) and (13.1b) gives

�mT +mF�R̈ =mT r̈T +mF r̈F = 0 (13.3)

showing that the center-of-mass velocity Ṙ does not change as a result of the
collision. If �ṙT and �ṙF are defined as the change in respective velocities of
the two particles as result of a collision, then integration of Eq. (13.3) over the
duration of the collision shows �ṙT and �ṙF are related by

�mT +mF��Ṙ = 0 =mT�ṙT +mF�ṙF � (13.4)

It is useful to define the relative position vector

r = rT − rF (13.5)

and the reduced mass

1
�

= 1
mT

+ 1
mF
� (13.6)

Then, dividing Eqs. (13.1a) and (13.1b) by their respective masses and taking the
difference between the resulting equations gives an equation of motion for the
relative velocity

�r̈ = qTqF
4
0r2

r̂ � (13.7)

Solving Eqs. (13.2) and (13.5) for rT and rF gives

rF = R− �

mF
r (13.8)

rT = R+ �

mT
r

so the respective test and field velocities are

ṙF = Ṙ− �

mF
ṙ (13.9)

ṙT = Ṙ+ �

mT
ṙ� (13.10)



438 Fokker–Planck theory of collisions

Since �Ṙ = 0� the change of the test and field particle velocities as measured in
the lab frame can be related to the change in the relative velocity by

�ṙF = − �

mF
�ṙ (13.11)

�ṙT = + �

mT
�ṙ� (13.12)

The collision problem is first solved in the center-of-mass frame to find the change
in the relative velocity and then the center-of-mass result is transformed to the
lab frame to determine the change in the lab-frame velocity of the particles.
Let us now consider a many-particle point of view. Suppose a mono-energetic

beam of particles impinges upon a background plasma. Several effects are
expected to occur due to collisions between this beam and the background
plasma. First, there will be a slowing down of the beam as it loses momentum due
to collisions with the particles in the background plasma. Second, there should
be a broadening of the beam particle velocity distribution since the collisions
will also tend to randomize the velocity of the beam particles. Meanwhile, the
background plasma should be heated and also should gain momentum due to the
collisions. Eventually, the beam should be so slowed down and so spread out that
it becomes indistinguishable from the background plasma, which will be warmer
because of the energy transferred from the beam.

13.2 Statistical argument for the development of the
Fokker–Planck equation

The Fokker–Planck theory (Rosenbluth, Macdonald and Judd 1957) is based on
a logical argument describing how a distribution function attains its present form
as a result of collisions that occurred at some earlier time. Consider a particle
subject to random collisions that change its velocity. We define F�v��v� as the
conditional probability that if this particle has a velocity v at time t� then at some
later time t+�t, collisions will have caused its velocity to become v+�v�

Clearly at time t+�t the particle must have some velocity, so the sum of all
the conditional probabilities must be unity, i.e., F must have the normalization∫

F�v��v�d�v = 1� (13.13)

This definition of conditional probability can be used to show how a present
distribution function f�v� t� comes to be the way it is because of the way it was
at time t−�t� To see how this works, consider all particles that have velocity v
at the present time t. At some previous time t−�t these particles would have
had velocities v−�v, where �v would have had a range of values. A particle
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with some specific v−�v at the previous time would need to have undergone
a collision that increased its velocity by �v in order to get to its present state.
In order to get to the present number of particles having velocity v one has
to take into account how many particles had the previous velocity v−�v and
then multiply this number by the probability that a v−�v particle undergoes a
collision that transforms it into a particle with velocity v� This can be expressed
mathematically as

f�v� t�=
∫
f�v−�v� t−�t�F�v−�v��v�d�v� (13.14)

which sums up all the possible ways for obtaining a given present velocity
weighted by the probability of each of these ways occurring. This analysis
presumes the present status depends only on what happened during the previous
collision and so is independent of all events prior to the previous collision. A
partial differential equation for f can be constructed by Taylor expanding the
integrand as follows:

f�v−�v� t−�t�F�v−�v��v� = f�v� t�F�v��v�−�t�f
�t
F�v��v�

−�v · �
�v
�f�v� t�F�v��v��

+1
2
�v�v �

�

�v
�

�v
�f�v� t�F�v��v�� � (13.15)

Substitution of Eq. (13.15) into Eq. (13.14) gives

f�v� t� = f�v� t�
∫
F�v��v�d�v−�t�f

�t

∫
F�v��v�d�v

−
∫
�v · �

�v
�f�v� t�F�v��v��d�v

+1
2

∫
�v�v �

�

�v
�

�v
�f�v� t�F�v��v��d�v� (13.16)

where in the top line advantage has been taken of f�v� t� not depending on �v.
Upon invoking Eq. (13.13) this can be recast as

�f

�t
=

⎡⎢⎢⎣− �

�v
·
(∫

�vF�v��v�d�v
�t

f�v� t�
)

+
1
2
�

�v
�

�v
�

(∫
�v�vF�v��v�d�v

�t
f�v� t�

)
⎤⎥⎥⎦ � (13.17)
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By defining

〈
�v
�t

〉
=
∫
�vF�v��v�d�v

�t
(13.18)

and

〈
�v�v
�t

〉
=
∫
�v�vF�v��v�d�v

�t
(13.19)

the standard form of the Fokker–Planck equation is obtained,

�f

�t
= − �

�v
·
(〈
�v
�t

〉
f�v� t�

)
+ 1

2
�

�v
�

�v
�

(〈
�v�v
�t

〉
f�v� t�

)
� (13.20)

The first term gives the slowing down of a beam and is called the frictional term
while the second term gives the spreading out of a beam and is called the diffusive
term.
The goal now is to compute ��v/�t� and ��v�v/�t�.To do this, it is necessary

to consider all the ways collisions can cause the velocity of a specific test particle
to change in a time �t and then average all these possible values of �v and
�v�v weighted according to their respective probability of occurrence. We will
first evaluate ��v/�t� and then do ��v�v/�t�. The problem will first be solved
in the center-of-mass frame and then transformed back to the lab frame later.
The center-of-mass frame analysis assumes that a particle with reduced mass �,
speed vrel = �vT −vF �, and impact parameter b collides with a stationary scattering
center located at the origin. This was discussed in Chapter 1 and the geometry
was sketched in Fig. (1.3). The deflection angle � for small-angle scattering was
shown to be

� = qTqF

2
0b�v
2
rel

� (13.21)

The averaging procedure is done in two stages:

1. The effect of collisions on a test particle in time �t is calculated for a specific
field particle velocity. The functional dependence of �v on the scattering angle � is
determined and then used to calculate the weighted average �v for all possible impact
parameters and all possible azimuthal angles of incidence. This result is then used to
calculate the weighted average change in test particle velocity in the lab frame.

2. An averaging is then performed over all possible field particle velocities weighted
according to their probability, i.e., weighted according to the field particle distribution
function fF �vF ��
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Energy is conserved in the center-of-mass frame and since the energy before
and after the collision is composed entirely of kinetic energy, the magnitude of
v2rel must be the same before and after the collision. The collision therefore simply
rotates the relative velocity vector by the angle �� Let z be the direction of the
relative velocity before the collision and let b̂ be the direction of the impact
parameter. If vrel1�vrel2 are the respective relative velocities before and after the
collision, then

vrel1 = vrelẑ
vrel2 = vrelẑ cos�+vrelb̂ sin �� (13.22)

Thus,

�vrel = vrel2 −vrel1

= vrelẑ �cos�−1�+vrelb̂ sin �

� −vrel�
2

2
ẑ+vrel��x̂ cos�+ ŷ sin��� (13.23)

where the scattering angle � is assumed to be small and � is the angle between b̂
and the x axis. The negative sign for the z component of �vrel is the fundamental
reason for the drag-producing nature of collisions and is simply a consequence of
the relative velocity vector rotating during the course of the collision.
The cross-section associated with impact parameter b and the range of azimuthal

impact angle d� is bd�db� In time �t the incident particle moves a distance
v�t and so the volume swept out for this cross-section is bd�dbv�t� The
number of field particles with velocity vF encountered in time �t will be
the density fF �vF �dvF of these field particles multiplied by this volume, i.e.,
fF �vF �dvFbd�dbv�t, and so the change in relative velocity for all possible impact
parameters and all possible azimuthal angles for a given vF will be

�v�all b� all � = v�tfF �vF �dvF
∫

d�
∫
�vbdb� (13.24)

The limits of integration for the azimuthal angle are from 0 to 2 and the limits
of integration of the impact parameter are from the 90	 impact parameter to the
Debye length. On writing �v in component form, this becomes

�vrel�all b� all � = vrel�tfF �vF �dvF
∫ 2

0
d�
∫ �D
b/2

vrel
(
� cos��� sin��−�2/2)bdb�

(13.25)
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The x and y integrals vanish upon integration over � so

�vrel�all b� all � = −ẑv2rel�tfF �vF �dvF
∫ �D
b/2

�2bdb

= −ẑv2rel�tfF �vF �dvF
∫ �D
b/2

(
qTqF

2
0b�v
2
rel

)2

bdb

= −ẑ�tfF �vF �dvF
q2Tq

2
F

4
20�
2v2rel

ln�� (13.26)

where �= �D/b/2�
The above expression can be transformed using Eq. (13.12) to give the lab-

frame change in test particle velocity averaged over all impact parameters and
resulting from collisions with field particles having velocity vF ,

�vT �all b� all � = −ẑ�tfF �vF �dvF
q2Tq

2
F

4
20�mTv
2
rel

ln�

= −�t q
2
Tq

2
F ln�

4
20�mT

�vT −vF �
�vT −vF �3

fF �vF �dvF � (13.27)

Next, summing over all field particle velocities gives the fully averaged change
in lab-frame test particle velocity

�vT �all b� all �� all vF = −�t q
2
Tq

2
F ln�

4
20�mT

∫ vrel
v3rel
fF �vF �dvF � (13.28)

The integrand on the right-hand side of Eq. (13.28) can be simplified using the
relations

�v

�v
=
(
x̂
�

�vx
+ ŷ �
�vy

+ ẑ �
�vz

)√
v2x+v2y+v2z = v

v
(13.29)

and �/�vT = �/�vrel to write

�vrel
�vT

= vrel
vrel

(13.30)

and
�

�vT

1
vrel

= − 1

v2rel

vrel
vrel
� (13.31)

Equation (13.28) can therefore be written as

�vT �all b� all �� all vF = �t q
2
Tq

2
F ln�

4
20�mT

�

�vT

∫ 1
vrel
fF �vF �dvF � (13.32)
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The �/�vT has been factored out of the integral because vT is independent of vF ,
the variable of integration. Since vF is a dummy variable, it can be renamed v′
and, since vT is the velocity of the given incident particle, the subscript T can be
dropped. After making these rearrangements we obtain the desired result,〈

�v
�t

〉
= q2Tq

2
F ln�

4
20�mT

�

�v

∫ fF �v′�
�v−v′�dv

′� (13.33)

The averaging procedure for �v�v is performed in a similar manner, but instead
starting with

�v�v = (� cos��� sin��−�2/2) (� cos��� sin��−�2/2) � (13.34)

in which case Eq. (13.25) is replaced by

�vrel�vrel�all b� all � = vrel�tfF �vF �dvF
∫ 2

0
d�
∫ �D
b/2

bdb

×v2rel
(
� cos��� sin��−�2/2) (� cos��� sin��−�2/2) �

(13.35)

The terms that are linear in sin� or cos� vanish upon performing the � integra-
tion. Also, the ẑẑ term scales as �4 and so may be neglected relative to the x̂x̂
and ŷŷ terms, which scale as �2� Thus, we obtain

�vrel�vrel�all b�� = v3rel�tfF �vF �dvF
∫ 2

0
d�
∫ �D
b/2

�2
(
x̂x̂ cos2�+ ŷŷ sin2�)bdb

= v3rel�tfF �vF �dvF �x̂x̂+ ŷŷ�
∫ �D
b/2

�2bdb

= �tfF �vF �dvF �x̂x̂+ ŷŷ� q
2
Tq

2
F ln�

4
20�
2vrel

� (13.36)

Since vrel defines the z direction, we may write

x̂x̂+ ŷŷ = I− vrelvrel
v2rel

(13.37)

where I is the unit tensor. Thus,

�vrel�vrel�all b� all � = �tq
2
Tq

2
F ln�

4
20�
2
fF �vF �dvF

(
v2relI−vrelvrel

v3rel

)
� (13.38)

This can be transformed using Eq. (13.12) to give

�vT�vT �all b� all � = �tq
2
Tq

2
F ln�

4
20m
2
T

fF �vF �dvF

(
v2relI−vrelvrel

v3rel

)
� (13.39)
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The tensor may be expressed in a simpler form by noting

�

�vT

�vrel
�vT

= �

�vT

vrel
vrel

= I
vrel

− vrel
v2rel

vrel
vrel

= v2relI−vrelvrel
v3rel

� (13.40)

Inserting Eq. (13.40) in Eq. (13.39) and then integrating over all the field particles
gives 〈

�vT�vT
�t

〉
= q2Tq

2
F ln�

4
20m
2
T

∫
fF �vF �dvF

�

�vT

�

�vT
�vT −vF �� (13.41)

However, as before, vT is constant in the integrand and so �/�vT may be factored
from the integral. Dropping the subscript T from the velocity and renaming vF
to be the integration variable v′� this can be rewritten as〈

�v�v
�t

〉
= q2Tq

2
F ln�

4
20m
2
T

�

�v
�

�v

∫
�v−v′�fF �v′�dv′� (13.42)

It is convenient to define the Rosenbluth potentials

gF �v� =
∫

�v−v′�fF �v′�dv′ (13.43)

hF�v� = mT
�

∫ fF �v
′�

�v−v′�dv
′� (13.44)

in which case 〈
�v
�t

〉
= q2Tq

2
F ln�

4
20m
2
T

�hF
�v〈

�v�v
�t

〉
= q2Tq

2
F ln�

4
20m
2
T

�2gF
�v�v

� (13.45)

The Fokker–Planck equation, Eq. (13.20), thus becomes

�fT
�t

= ∑
F=i�e

q2Tq
2
F ln�

4
20m
2
T

[
− �

�v
·
(
fT
�hF
�v

)
+ 1

2
�

�v
�

�v
�

(
fT
�2gF
�v�v

)]
� (13.46)

The first term on the right-hand side is a friction term, which describes the
slowing down of the mean velocity associated with fT while the second term is an
isotropization term, which describes the spreading out (i.e., diffusive broadening)
of the velocity distribution described by fT � The right-hand side of Eq. (13.46)
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thus gives the rate of change of the distribution function due to collisions and so
is the correct quantity to put on the right-hand side of Eq. (2.12).

13.2.1 Slowing down

Mean velocity is defined by

u =
∫
vfdv
n

� (13.47)

where n = ∫
fdv� The rate of change of the mean velocity of species T is thus

found by taking the first velocity moment of Eq. (13.46). Integration by parts on
the right hand side terms respectively gives

−
∫

v
�

�v
·
(
fT
�hF
�v

)
dv =

∫
fT
�hF
�v

dv (13.48)

and ∫
v
�

�v
�

�v
�

(
fT
�2gF
�v�v

)
dv = −

∫ �

�v
·
(
fT
�2gF
�v�v

)
dv = 0� (13.49)

where Gauss’ theorem has been used in Eq. (13.49). The first velocity moment
of Eq. (13.46) is therefore

�uT
�t

= ∑
F=i�e

q2Tq
2
F ln�

4
20nTm
2
T

∫
fT
�hF
�v

dv� (13.50)

Let us now suppose that the test particles consist of a mono-energetic beam so that

fT �v�= nT��v−u0�� (13.51)

In this case Eq. (13.50) becomes

�uT
�t

= ∑
F=i�e

q2Tq
2
F ln�

4
20m
2
T

(
�hF
�v

)
v=u0

� (13.52)

Let us further suppose that the field particles have a Maxwellian distribution
so that

fF �v�= nF
(
mF

2�TF

)3/2

exp
(−mFv2/2�TF ) (13.53)

and so, using Eq. (13.44),

hF�v�= nFmT
�

(
mF

2�TF

)3/2 ∫ exp
(−mFv′2/2�TF )

�v−v′� dv′� (13.54)
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The velocity integral in Eq. (13.54) can be evaluated using standard means (see
assignments) to obtain

hF�v�= nFmT
�v

erf
(√

mF
2�TF

v

)
� (13.55)

where

erf �x�= 2√


∫ x
0

exp �−w2�dw (13.56)

is the error function.
Thus, Eq. (13.52) becomes

�uT
�t

= niq
2
Tq

2
i ln�

4
20m
2
T

mT
�i

{
�

�v

[
v−1 erf

(√
mi
2�Ti

v

)]}
v=u0

+ neq
2
Tq

2
e ln�

4
20m
2
T

mT
�e

{
�

�v

[
v−1 erf

(√
me
2�Te

v

)]}
v=u0

� (13.57)

where �−1
i�e =m−1

i�e +m−1
T �

This can be further simplified by noting (i) quasi-neutrality implies

niZqi+neqe = 0� (13.58)

where Z is the charge of the ions, (ii) the masses are related by

mT
�i�e

= 1+ mT
mi�e

� (13.59)

and (iii) the velocity gradient of the error function must be in the direction of u0
using Eq. (13.29). Using these relationships and realizing that both the left and
right sides are in the direction of u� Eq. (13.57) becomes

�u

�t
= nee

2 ln�

4
20

q2T
m2
T

⎡⎢⎢⎢⎣Z
(
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)
d
du

⎛⎜⎜⎜⎝
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2�Ti
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⎞⎟⎟⎟⎠

+
(
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me

)
d
du

⎛⎜⎜⎜⎝
erf
(√

me
2�Te

u

)
u

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ � (13.60)

Let us define

%i�e =
√
mi�e
2�Ti�e

u� (13.61)
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which is the ratio of the beam velocity to the thermal velocity of the ions or
electrons. The slowing down relationship can then be expressed as

�u

�t
= nee

2 ln�

4
20

q2T
m2
T

[
Z

(
1+ mT

mi

)
mi
2�Ti

d
d%i

(
erf �%i�

%i

)
+
(
1+ mT

me

)
me
2�Te

d
d%e

(
erf �%e�

%e

)]
� (13.62)

the above expression describes the slowing down of a beam of mono-energetic
test particles due to collisions with the electrons and ions in a background plasma.
The derivative �erf�x�/x�′ in Eq. (13.62) is always negative so the right-hand

side of Eq. (13.62) describes a frictional drag on the test particle beam. Figure 13.1
plots − �erf�x�/x�′ as a function of x; this quantity has a maximum at x = 0�9
indicating that frictional drag is an increasing function of x when x< 0�9 but when
x > 0�9 the drag is a decreasing function of x. The x < 0�9 situation is consistent
with ordinary notions of friction, but the x > 0�9 situation is like being on a
“slippery slope” since the faster the particle goes, the less friction it encounters.
Examination of this figure suggests − �erf�x�/x�′ depends linearly on x well to
the left of the maximum but varies as an inverse power of x well to the right of
the maximum.
This conjecture is verified by noting that Eq. (13.56) has the limiting values

lim
x�1

erf�x� � 2√


∫ x
0
�1−w2�dw = 2√



(
x− x

3

3

)
lim
x�1

erf�x� � 1 (13.63)
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Fig. 13.1 Plot of −�x−1 erf�x��′ vs. x�
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and so, as indicated in the figure,

lim
x�1

(
− d
dx

erf�x�
x

)
= 4x

3
√


(13.64a)

lim
x�1

(
− d
dx

erf�x�
x

)
= 1
x2
� (13.64b)

The existence of these two different asymptotic limits and their dependence on
the ratio of the test particle velocity (i.e., beam velocity) to the thermal velocity
of the particles in the background plasma indicates the existence of three distinct
regimes, namely:

1. Test particle is much faster than both ion and electron thermal velocities, i.e., %i� %e � 1�
2. Test particle is much slower than both ion and electron thermal velocities, i.e.,
%i� %e � 1�

3. Test particle is much faster than the ion thermal velocity, but much slower than the
electron thermal velocity, i.e., %i � 1 and %e � 1�

A nominal slowing-down time can be defined by writing the generic slowing
down equation

�u

�t
= − u

�s
(13.65)

so

�s = − u

�u/�t
� (13.66)

This can be used to compare slowing down of test particles in the three situations
listed above.

Test particle faster than both electrons, ions

Here the limit given by Eq. (13.64b) is used for both electrons and ions so that
the slowing down becomes

�u

�t
= −nee

2 ln�

4
20

q2T
m2
T

Z

(
1+ mT

mi

)
+
(
1+ mT

me

)
u2

(13.67)

and so

�s � 4
20
nee

2 ln�

m2
T

q2T

u3

Z+1+ mT
me

(13.68)

since 1/me � 1/mi� The slowing-down time is insensitive to the plasma temper-
ature in this case except for the weak dependence of ln� on temperature. Equa-
tion (13.67) shows that if the test particle beam is composed of electrons, the ion
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friction scales as Z/�Z+2� of the total friction while the electron friction scales
as 2/�2+Z� of the total friction. In contrast, if the test particle is an ion, the
friction is almost entirely from collisions with electrons. The slowing down time
for ions is of the order of mi/me times longer than the slowing down time for
electrons having the same velocity.

Test particle slower than both electrons, ions

Here the limit given by Eq. (13.64a) is used for both electrons and ions so that
the slowing-down equation becomes

�u

�t
= − u

3
√


nee
2 ln�
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m2
T

(
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(
1+ mT

mi

)(
mi
2�Ti
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(
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me
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me
2�Te

)3/2
)

(13.69)

and the slowing-down time becomes

�s = 3
√

20

nee
2 ln�
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mi
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me

)(
me
2�Te

)3/2
) �
(13.70)

The temperature terms scale as the inverse cube of the thermal velocity and so
if the ion and electron temperatures are the same order of magnitude, then the
ion contribution dominates. Thus, the slowing down is mainly done by collisions
with ions and the slowing-down time is

�s � 3
√

20

nee
2 ln�

m2
T

q2T

�2�Ti/mi�
3/2

Z

(
1+ mT

mi

) � (13.71)

The slowing down of a very slow beam is thus temperature-sensitive and, in
particular, this sort of beam takes a long time to slow down in hot plasmas.

Intermediate case: beam faster than ions, slower than electrons

In this case, the slowing-down equation becomes

�u

�t
= −nee

2 ln�

4
20

q2T
m2
T

(
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(
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)
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)3/2 4u
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√


)
(13.72)
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and the slowing-down time is

�s = 4
20m
2
T

neq
2
T e

2 ln�

((
1+ mT

mi

)
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u3
+ 4
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√


(
1+ mT

me
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me
2�Te
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) � (13.73)

13.3 Electrical resistivity

A uniform steady electric field imposed on a plasma accelerates ions and electrons
in opposite directions. The accelerated particles will collide with other parti-
cles and this frictional drag will oppose the acceleration. A steady state might
be achieved where the accelerating force due to the electric field balances the
drag force due to collisions. Because the electric field causes equal and opposite
momentum gains by the electrons and ions it does not alter the center-of-mass
momentum of the entire plasma. Furthermore, electron–electron collisions cannot
change the average momentum of the electrons nor can ion–ion collisions change
the average momentum of the ions. The only way for the average electron momen-
tum to change is by collisions with ions and vice versa. Thus, electrical resistivity
must only depend on collisions between electrons and ions because electrical
resistivity is a relation involving current, which is a function that depends on
average electron momentum and average ion momentum.
We postulate that this balance between acceleration and drag results in an

equilibrium where the electrons and ions have shifted Maxwellian distribution
functions

fi�v� = ni
3/2�2�Ti/mi�3/2

exp
(
−mi �v−ui�

2 /2�Ti
)

fe�v� = ne
3/2�2�Te/me�3/2

exp
(
−me �v−ue�

2 /2�Te
)
� (13.74)

Since ui and ue are the respective average ion and electron velocities, the current
density is

J = niqiui+neqeue� (13.75)

It is convenient to transform to a frame moving with the electrons, i.e., with the
velocity ue. In this frame the electron mean velocity will be zero and the ion mean
velocity will be urel = ui−ue� The current density remains the same because it
is proportional to urel, which is frame-independent. The distribution functions in
this frame will be

fi�v� = ni
3/2�2�Ti/mi�3/2

exp
(
−mi �v−urel�

2 /2�Ti
)
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fe�v� = ne
3/2�2�Te/me�3/2

exp
(−mev2/2�Te) � (13.76)

Since the ion thermal velocity is much smaller than the electron thermal velocity,
the ion distribution function is much narrower than the electron distribution
function and the ions can be considered as constituting a mono-energetic beam
impinging upon the electrons. Using Eq. (13.57), the net force on this ion beam
due to the combination of frictional drag on electrons and acceleration due to the
electric field is

mi
�urel
�t

= neq
2
i q

2
e ln�

4
20�e
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�v

[
v−1 erf

(√
me
2�Te

v

)]}
v=urel

+qiE� (13.77)

In steady state the two terms on the right-hand side balance each other, in
which case

E = −neqie
2 ln�

4
20�e
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�v

[
v−1 erf

(√
me
2�Te

v

)]}
v=urel

� (13.78)

If urel is much smaller than the electron thermal velocity, then Eq. (13.64a) can
be used to obtain

E = neqie
2 ln�

3
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20me
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�2�Te/me�

3/2 = Ze2m
1/2
e ln�

3
√

20

J

�2�Te�
3/2 � (13.79)

where urel = J/nee and �−1
e = 1/mi + 1/me � 1/me have been used. Equa-

tion (13.79) can be used to define the electrical resistivity

�= Ze2m
1/2
e

3
√

20

ln�

�2�Te�
3/2 (13.80)

so that

E = �J� (13.81)

If the temperature is expressed in terms of electron volts then � = e and the
resistivity is

�= 1�03×10−4Z ln�

T
3/2
e

Ohmm� (13.82)

This resistivity is more accurate than the rough calculation given by Eq. (1.25);
the numerical coefficient here is smaller by about a factor of three.

13.4 Runaway electric field

The evaluation of the error function in Eq. (13.78) involved the assumption that
urel� the relative drift between the electron and ion mean velocities, is much
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smaller than the electron thermal velocity. This assumption implies −�x−1 erf�x��′
� 4x/3

√
, so x must lie well to the left of 0.9 in the curve plotted in Fig. 13.1.

Consideration of Fig. 13.1 shows that −�x−1 erf�x��′ has a maximum value of
0�43, which occurs when x = 0�9 so that Eq. (13.78) cannot be satisfied if

E >max

{
−neqie

2 ln�

4
20me

�

�v

[
v−1 erf

(√
me
2�Te

v

)]}
= 0�43

neZe
3 ln�

8
20�Te
� (13.83)

When the electric field is large enough to satisfy this inequality, the entire concept
of electrical resistivity fails (Dreicer 1959) because the underlying presumption of
the resistivity calculation, namely a steady-state balance between drag and electric
field acceleration, becomes false. If the electron temperature is expressed in terms
of electron volts, attaining a balance between the acceleration due to the electric
field and the deceleration due to frictional drag thus becomes impossible if

E > EDreicer � (13.84)

where the Dreicer electric field is defined by

EDreicer = 0�43
neZe

3 ln�

8
20�Te

= 5�6×10−18neZ
ln�
Te

V/m � (13.85)

If the electric field exceeds EDreicer then the frictional drag lies to the right
of the maximum in Fig. 13.1. No equilibrium is possible in this case as can
be seen by considering the sequence of collisions of a nominal particle. The
acceleration due to E between collisions causes the particle to go faster, but since
it is to the right of the maximum, the particle has less drag when it goes faster.
If the particle has less drag, then it will have a longer mean free path between
collisions and so be accelerated to an even higher velocity. The particle velocity
will therefore increase without bound if the system is infinite and uniform. In
reality, the particle might exit the system if the system is finite or it might radiate
energy. Very high, even relativistic velocities can easily develop in these runaway
situations.
This runaway analysis is important to the characterization of magnetic recon-

nection. In particular, if the electric field in a reconnecting plasma satisfies
Eq. (13.84), then the equation E = �J cannot be used, in which case resis-
tive models of reconnection become inappropriate and collisionless models must
be used.
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13.5 Assignments

1. Evaluate the integral in Eq. (13.54) and show that it leads to Eq. (13.55). Hint: since v
is a fixed parameter in the integral, let the direction of v define the axis of a spherical
polar coordinate system. Let � = v′ − v and let � be the angle between � and v�
Then note that �v′�2 = %2 + 2� ·v+ v2 and dv′ = d�� Express d� in spherical polar
coordinates and let x = cos�.

2. Interaction of a low-density, fast electron beam with a cold background plasma.
Assume that the velocity of a beam of electrons impinging on a plasma is much faster
than the velocities of the background electrons and ions. The ions have charge Z so
that, ignoring the beam density, the quasi-neutrality condition is Zni = ne�
(a) Show that the Rosenbluth h potential can be approximated as

hF�v� = mT
�

∫ fF �v
′�

�v−v′�dv
′

� menF
v�

�

where

1
�

= 1
me

+ 1
mF
�

What is the form of hF�v� for beam electrons interacting with background plasma
(i) electrons and (ii) ions?

(b) By approximating

(
v2 −2v ·v′ +v′2)1/2 = v

(
1− v ·v′

v2
+ v′2

2v2

)
�

where the beam velocity v is much larger than the background species velocity v′,
show that the Rosenbluth g potential can be approximated as

gF �v� =
∫

�v−v′�fF �v′�dv′

�
(
v+ 1

v

3�TF
2mF

)
nF �

Hint: use symmetry arguments when considering the term involving v ·v′�
(c) Assume the beam velocity is z-directed and let FT = ∫ d2v⊥fT so FT describes the

projection of the 3-D beam distribution onto the z axis of velocity space. Since
v= vz and vy = vx ≈ 0 show it is possible to write

hF�v� � menF
vz�

gF �v� �
(
vz+

1
vz

3�TF
2mF

)
nF �
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Show that the Fokker–Planck equation can be written as
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(d) Taking into account charge neutrality and vz � vTi show this can be recast as
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� nee
4 ln�

4
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(e) Show that a steady-state equilibrium can develop where, because of collisions with
background electrons and ions, the fast beam distribution has the form

FT ∼ exp
(

− �2+Z�mev2z
3�Te

)
�

Is this consistent with the original assumption that the beam is fast compared to
the background plasma?

3. An axisymmetric plasma has a magnetic field that can be expressed as

B = 1
2
�	&×	�+�0I	�� �

where � is the toroidal angle, &�r� z� is the poloidal flux, and I is the current flowing
through a circle of radius r at axial position z�

(a) Show that the toroidal component of the vector potential is

A��r� z� t�= 1
2r

&�r� z� t��

(b) Assume that the plasma obeys the resistive Ohm’s law

E+U×B = �J
and assume that the plasma is stationary so that the toroidal component is simply

E� = �J�
and use Eq. (9.42) to show that

J� = − r

2�0

	 ·
(
1
r2
	&

)
so that the toroidal component of Ohm’s law is

E� = − r�

2�0

	 ·
(
1
r2
	&

)
�
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(c) Assuming classical resistivity �∼ T−3/2
e sketch the temperature dependence of

∣∣E�∣∣
as given above and also sketch the temperature dependence of EDreicer as given by
Eq. (13.85). For a plasma with given & and physical dimensions, at what electron
temperature limit do runaway electrons develop (high or low temperature)? For
a given temperature, do runaways develop with high & or low &? For a given
temperature and flux, do runaways develop in a large device or in a small device?
If the plasma density decays, will runaways develop?

4. Discuss qualitatively (no mathematics) what would happen if the electric field at the
X-point of the Sweet–Parker reconnection configuration discussed in Assignment 1 of
Chapter 12 exceeded EDreicer � By taking into account azimuthal symmetry discuss what
constraints exist for the canonical angular momentum of a particle in the vicinity of
the X-point. Discuss the particle orbits taking into account the results of Assignment 2
of Chapter 3. How might the particle motion relate to the excitation of waves and what
sort of waves might be excited? How might this constitute an anomalous resistivity?
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Wave–particle nonlinearities

14.1 Introduction

As seen in Chapters 4 through 7, linear models of plasma wave dynamics are
straightforward and rich in descriptive power. The principle of superposition
constitutes the very essence of linearity and underlies all concepts and methods
inherent to linear models. In particular, the concepts of eigenmodes, eigenvalues,
eigenvectors, orthogonality, and the method of integral transforms all ultimately
depend on the validity of the principle of superposition.
While many important phenomena are adequately characterized by linear

models, there nevertheless exist many other important phenomena where this
is not so because the principle of superposition breaks down either partially or
completely. Typically the phenomenon in question becomes amplitude-dependent
above some critical amplitude threshold and then nonlinearity becomes impor-
tant. Breakdown of the superposition principle means that modes with different
eigenvalues (to the extent eigenvalues still exist) are no longer independent
and start to interact with each other. These nonlinear interactions result when
products of dependent variables become important in the system of equations.
As an example, consider the product of two modes having respective frequencies
�1 and �2. This product can be decomposed into sum and difference frequencies
according to standard trigonometric identities, e.g.,

cos��1t� cos��2t�= cos ���1 +�2�t�+ cos ���1 −�2�t�

2
� (14.1)

The beat waves at frequencies �1±�2 can act as source terms driving oscillations
at �1 ±�2. In the special case where �1 = �2, the difference frequency is zero
and the nonlinear product can act as a source term that modulates equilibrium
parameters and thereby changes the mode dynamics. In particular, feedback loops
can develop where modes affect their own stability properties. Another possibility
occurs when the nonlinear product is very small, but happens to resonantly drive

456
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a linear mode. In this case even a weak nonlinear coupling between two modes
can resonantly drive another linear mode to large amplitude. Similar beating can
occur with spatial factors ∼ exp �ik ·x� so that the nonlinear product of modes
with wavevectors k1 and k2 drives spatial oscillations with wavevectors k1 ±k2.
In analogy to quantum mechanics the momentum associated with a wave is
found to be proportional to k and the energy proportional to �. The beating
together of two waves with respective space-time dependence exp �ik1 ·x− i�1t�

and exp �ik2 ·x− i�2t� can then be interpreted in terms of conservation of wave
energy and momentum,

�3 = �1 +�2

k3 = k1 +k2� (14.2)

where wave 3 is what results from beating together waves 1 and 2.
Because of the large variety of possible nonlinear effects, there are many ways

to categorize nonlinear behavior. For example, one categorization is according to
whether the nonlinearity involves velocity space (Vlasov nonlinearity) or posi-
tion space (fluid nonlinearity). Vlasov nonlinearities are characterized by energy
exchange between wave electric fields, resonant particles, and non-resonant parti-
cles. Fluid instabilities involve nonlinear mixing of two or more fluid modes
and can be interpreted as one wave modulating the equilibrium seen by another
wave. Another categorization is according to whether the nonlinearity is weak
or strong. In situations where the nonlinear coupling is weak, linear theory may
be invoked as a reasonable first approximation and then used as a basis for
developing the nonlinear model. In situations where the nonlinear coupling is
strong, linear assumptions fail completely and the nonlinear behavior must be
addressed directly without any help from linear theory. Weak nonlinear theories
can be further categorized into (i) mode-coupling models, where a small number
of modes mutually interact in a coherent manner and (ii) weak turbulence models,
where a statistically large number of modes mutually interact with random phase
so some sort of averaging is required.
An important feature of nonlinear theory concerns energy. Because energy

is a quadratic function of amplitude, energy does not satisfy the principle of
superposition and so energy cannot be properly accounted for in linear models.
Thus, nonlinear models are essential for tracking the flow of energy between
modes and also between modes and the equilibrium.
This chapter will consider nonlinearities involving velocity space so a Vlasov

description is required and wave–particle interactions are important. The follow-
ing chapter will consider wave–wave nonlinearities and so will involve a fluid
description of the plasma.
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14.2 Vlasov nonlinearity and quasi-linear velocity space diffusion

14.2.1 Derivation of the quasi-linear diffusion equation

Quasi-linear theory (Vedenov, Velikhov, and Sagdeev 1962, Drummond and
Pines 1962, Bernstein and Engelmann 1966), a surprisingly complete extension
to the Landau model of plasma waves, shows how plasma waves can alter the
equilibrium velocity distribution. In order to focus attention on the most essential
features of this theory, a simplified situation will be considered where the plasma
is assumed to be one dimensional, uniform, and unmagnetized. Furthermore, only
electrostatic modes will be considered and, by assuming the ions are infinitely
massive, ion motion will be neglected. Thus, the plasma is characterized by
the coupled Vlasov and Poisson equations for electrons and the ions simply
provide a static, uniform neutralizing background. It is assumed that the electron
velocity distribution function can be decomposed into (i) a spatially independent
equilibrium term, which is allowed to have a slow temporal variation, and (ii)
a small, high-frequency perturbation having a space-time dependence resulting
from a spectrum of linear plasma waves of the sort discussed in Section 5.3. Thus,
it is assumed that the electron velocity distribution has the form

f�x� v� t�= f0�v� t�+f1�x� v� t�+f2�x� v� t�+ � � � � (14.3)

where it is implicit that the magnitude of terms with subscript n is of order
$n, where $� 1. At t = 0, the terms fn, where n ≥ 2, all vanish because the
perturbation was prescribed to be f1 at t = 0. Other variables such as the electric
field will have some kind of nonlinear dependence on the distribution function
and so, for example, the electric field will have the form

E = E0 +E1 +E2 +E3 + � � � � (14.4)

where it is again implicit that the nth term is of order $n.
Since by assumption, f0�v� t� does not depend on position, it is convenient to

define a velocity-normalized order zero distribution function

f0�v� t�= n0f̄0�v� t� (14.5)

so ∫
f̄0�v� t�dv= 1� (14.6)

This definition causes n0 to show up explicitly so terms such as
(
e2/m
0

)
�f0/�v

can be written as �2
p�f̄0/�v. A possible initial condition for f0�v� t�� namely a

monotonically decreasing velocity distribution, is shown in Fig. 14.1(a).
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Fig. 14.1 (a) At t = 0 the equilibrium distribution function f0�v� is
monotonically decreasing resulting in Landau damping of any waves and there is
a wave spectrum (insert) with wave energy in the spectral range kmin < k< kmax.
Resonant particles are shown as shaded in distribution function and lie in veloc-
ity range vmin

res < v < v
max
res . (b) As t→ � the resonant particles develop a plateau

(corresponding to absorbing energy from the wave), the wave spectrum goes to
zero, and the non-resonant particles appear to become colder.

Spatial averaging will be used in the mathematical procedure to filter out some
types of terms while retaining others. This averaging will be denoted by �� so,
for example, the average of f1 is

�f1�x� v� t�� = 1
L

∫
dx f1�x� t�� (14.7)

where L is the length of the one-dimensional system and the integration is over
this length. The spatial average of a quantity is independent of x and so, since
f0 is assumed to be independent of position, �f0� = f0. (In an alternate version
of the theory, the averaging is instead understood to be over a statistically large
ensemble of systems containing turbulent waves and, in this version, the averaged
quantity can be position-dependent.)
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The 1-D electron Vlasov equation is

�

�t
�f0 +f1 +f2 + � � ��+v �

�x
�f1 +f2 + � � ��

− e

m
�E1 +E2 + � � �� �

�v
�f0 +f1 +f2 + � � �� = 0� (14.8)

there is no �f0/�x term because f0 is assumed to be spatially independent and also
there is no E0 term because the system is assumed to be neutral in equilibrium.
The linear portion of this equation,

�f1
�t

+v�f1
�x

− e

m
E1
�f0
�v

= 0� (14.9)

forms the basis for the linear Landau theory of plasma waves discussed in
Section 4.5. Subtracting Eq. (14.9) from Eq. (14.8) leaves the remainder equation

�

�t
�f0 +f2 + � � ��+v �

�x
�f2 + � � ��− e

m
�E2 + � � �� �

�v
�f0 +f1 +f2 + � � ��

− e

m
E1
�

�v
�f1 +f2 + � � �� = 0�

(14.10)

We assume quantities with subscripts n≥ 1 are waves and therefore have spatial
averages that vanish, i.e., �f1� = 0, �E1� = 0, etc. Also, since f0 is independent
of position, �E2f0� = f0 �E2� = 0, etc. Spatial averaging of Eq. (14.10) thus
annihilates many terms, leaving

�f0
�t

− e

m

�

�v
��E1f1�+�E2f1�+ � � �� � (14.11)

where �/�v has been factored out of the spatial averaging because v is an inde-
pendent variable in phase-space. The term �E1f1� is of order $2 whereas �E2f1�
is of order $3 and the terms represented by the + � � � are of still higher order. The
essential postulate of quasi-linear theory is that all terms of order $3 and higher
may be neglected because $ is small. On applying this postulate, Eq. (14.11)
reduces to the quasi-linear velocity-space diffusion equation

�f0
�t

= e

m

�

�v
�E1f1� � (14.12)

This implies that even though f0 is of order $0� the time derivative of f0 is of
order $2 so f0 is a very slowly changing equilibrium.
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The nonlinear term �E1f1� can be explicitly calculated by first expressing the
perturbations as a sum (i.e., integral) over spatial Fourier modes, for example the
first-order electric field can be expressed as

E1�x� t�= 1
2

∫
dk Ẽ1�k� t�e

ikx� (14.13)

This allows the product on the right-hand side of Eq. (14.12) to be evaluated as

�E1f1� = 1
L

∫
dx
[(

1
2

∫
dk Ẽ1�k� t�e

ikx
)(

1
2

∫
dk′ f̃1�k′� v� t�eik

′x
)]

= 1
2L

∫
dk
∫

dk′Ẽ1�k� t� f̃1�k
′� v� t�

1
2

∫
dxei�k+k

′�x� (14.14)

where the order of integration has been changed in the second line. Then, invoking
the representation of the Dirac delta function

��k�= 1
2

∫
dx eikx� (14.15)

Eq. (14.14) reduces to

�E1f1� = 1
2L

∫
dk Ẽ1�−k� t� f̃1�k� v� t�� (14.16)

The linear perturbations E1 and f1 are governed by the system of linear equations
discussed in Section 4.5. This means that associated with each wavevector k there
is a complex frequency ��k�, which is determined by the linear dispersion relation
����k�� k�= 0. This gives the explicit time dependence of the modes,

Ẽ1�k� t� = Ẽ1�k�e
−i��k�t (14.17a)

f̃1�k� v� t� = f̃1�k� v�e−i��k�t� (14.17b)

Furthermore, Eq. (14.9) provides a relationship between Ẽ1�k� and f̃1�k� v� since
the spatial Fourier transform of this equation is

−i�f1 + ikvf1 − e

m
E1
�f0
�v

= 0� (14.18)

which leads to the familiar linear relationship

f̃1�k� v�= i
e

m
Ẽ1�k�

�f0/�v

�−kv� (14.19)

Inserting Eqs. (14.19) and (14.17a) into Eq. (14.16) gives

�E1f1� = i
2L

e

m

∫
dk Ẽ1�−k�Ẽ1�k�

�f0/�v

�−kve
−i���−k�+��k��t� (14.20)
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This expression can be further evaluated by invoking the parity properties of
Ẽ1�k� and ��k�. These parity properties are established by writing

E1�x� t�= 1
2

∫
dk Ẽ1�k�e

ikx−i��k�t (14.21)

and noting that the left-hand side is real because it describes a physical quantity.
Taking the complex conjugate of Eq. (14.21) gives

E1�x� t�= 1
2

∫
dk Ẽ∗

1�k�e
−ikx+i�∗�k�t� (14.22)

The parity properties are determined by defining a temporary new integration
variable k′ = −k and noting that

∫ �
−� dk corresponds to

∫ �
−� dk′ since dk′ = −dk

and the k limits �−���� correspond to the k′ limits ���−��. Thus Eq. (14.22)
can be recast as

E1�x� t� = 1
2

∫
dk′ Ẽ∗

1�−k′�eik
′x+i�∗�−k′�t

= 1
2

∫
dk Ẽ∗

1�−k�eikx+i�∗�−k�t� (14.23)

where the primes have now been removed in the second line. Since Eq. (14.21)
and (14.23) have the same left-hand sides, the right-hand sides must also be the
same. Because Ẽ1�k� and ��k� are arbitrary, they must individually satisfy the
respective parity conditions

Ẽ1�k� = Ẽ∗
1�−k�

��k� = −�∗�−k� (14.24)

or equivalently

Ẽ1�−k� = Ẽ∗
1�k�

��−k� = −�∗�k�� (14.25)

If the complex frequency is written in terms of explicit real and imaginary parts
��k�= �r�k�+ i�i�k� then the frequency parity condition becomes

�r�−k�+ i�i�−k� = − ��r�k�+ i�i�k��
∗

= −�r�k�+ i�i�k� (14.26)

from which it can be concluded

�r�−k� = −�r�k�
�i�−k� = �i�k�� (14.27)
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The real part of � is therefore an odd function of k whereas the imaginary part is
an even function of k.
Application of the parity conditions gives

Ẽ1�−k�Ẽ1�k�= Ẽ∗
1�k�Ẽ1�k�= ∣∣Ẽ1�k�

∣∣2 (14.28)

and

��−k�+��k�= 2i�i�k�� (14.29)

in which case Eq. (14.20) reduces to

�E1f1� = i
2L

e

m

∫
dk

∣∣Ẽ1�k�
∣∣2 e2�i�k�t

�−kv
�f0
�v
� (14.30)

Substitution of �E1f1� into Eq. (14.11) gives the time evolution of the equilibrium
distribution function,

�f0
�t

= i
2L

e2

m2

�

�v

∫
dk

∣∣Ẽ1�k�
∣∣2 e2�i�k�t

�−kv
�f0
�v
� (14.31)

The physical meaning of the quantity
∣∣Ẽ1�k�

∣∣2 can be understood by considering
the volume average of the electric field energy

�WE� =
〈

0E

2
1

2

〉

= 
0
2L

∫
dx
(

1
2

∫
dk Ẽ1�k�e

ikx−i��k�t
)(

1
2

∫
dk′ Ẽ1�k

′�eik
′x−i��k′�t

)
= 
0

4L

∫
dk
∫

dk′ Ẽ1�k�Ẽ1�k
′�e−i���k�+��k′��t 1

2

∫
dx ei�k+k

′�x� (14.32)

However, using Eq. (14.15) this can be written as

�WE� = 
0
4L

∫
dk Ẽ1�k�Ẽ1�−k�e−i���k�+��−k��t

=
∫

dk��k�t�� (14.33)

where

��k�t�= 
0
4L

∣∣Ẽ1�k�
∣∣2 e2�i�k�t (14.34)

is the time-dependent electric field energy density associatedwith thewavevector k.
A possible initial condition for the distribution function and wave-energy spectrum
is shown in Fig. 14.1(a); the wave-energy spectrum is shown in the insert and
is finite in the range kmin < k < kmax. The distribution function is monotonically
decreasing so as to cause Landau damping of the waves.
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Combination of Eqs. (14.31) and (14.34) shows the evolution of the equilibrium
distribution function is given by

�f0
�t

= 2i

0

e2

m2

�

�v

∫
dk

��k�t�

�−kv
�f0
�v
� (14.35)

This can be summarized as a velocity-space diffusion equation

�f0
�t

= �

�v

(
DQL

�f0
�v

)
� (14.36)

where the quasi-linear velocity-space diffusion coefficient is

DQL = 2ie2


0m
2

∫
dk

��k�t�

�−kv� (14.37)

The factor i in the velocity diffusion tensor seems surprising because f0 is a real
quantity. However, the i factor is entirely appropriate and is intimately related to
the parity properties of ��k� since

i
��k�−kv = i ��r�k�−kv�+�i�k�

��r�k�−kv�2 +�2
i �k�

� (14.38)

The denominator in this expression is an even function of k, the term ��r�k�−kv�
in the numerator is an odd function of k, and �i�k� is an even function of k� Since
��k�t� is an even function of k, integration over k in Eq. (14.37) annihilates the
imaginary component (this component is an odd function of k� and so

DQL = e2


0m
2

∫
dk

2�i�k���k�t�

��r�k�−kv�2 +�2
i �k�

� (14.39)

In summary, the self-consistent coupled system of equations for the nonlinear
evolution of the equilibrium consists of Eq. (14.36), (14.39), and

�

�t
��k�t�= 2�i�k���k�t�� (14.40)

which is obtained from Eq. (14.34). The real and imaginary parts of the frequency
�r�k�� �i�k� appear as parameters in these equations and are determined from
the linear wave dispersion relation, which in turn depends on f0. This linear wave
dispersion relation is obtained as in Section 4.5 by writing E1 = −��1/�x and
then combining Eq. (14.19) with Poisson’s equation

k2�̃1�k�= − e


0

∫
dvf̃1 (14.41)

to obtain

k2�̃1�k�= − e2


0m

∫
dv
�f0
�v

k�̃1�k�

�−kv � (14.42)
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which can be expressed, using Eq. (14.5), as

1+ �
2
p

k

∫
dv
�f̄0/�v

�−kv = 0� (14.43)

Thus, given the instantaneous value of f0�v� t� = n0f̄0�v� t�� the complex
frequency is determined from Eq. (14.43) and then, given the instantaneous value
of the wave spectral energy, both the evolution of f0 and the wave spectral
energy are determined from Eqs. (14.36) and (14.40).

14.2.2 Conservation properties of the quasi-linear diffusion equation

Conservation of particles

Conservation of particles occurs automatically because Eq. (14.36) has the form
of a derivative in velocity space. Thus, the zeroth moment of Eq. (14.36) is simply

�

�t

∫
dvf0 =

∫
dv
�

�v

(
DQL

�f0
�v

)
=
[
DQL

�f0
�v

]v=�

v=−�
= 0 (14.44)

and so the quasi-linear diffusion equation conserves the density n= ∫
dvf0.

Conservation of momentum

Examination of momentum conservation requires taking the first moment of
Eq. (14.36),

�

�t
�nmu�=m

∫
dv v

�

�v

(
DQL

�f0
�v

)
= −m

∫
dvDQL

�f0
�v
� (14.45)

Using Eq. (14.37) this becomes

�

�t
�nmu� = −m

∫
dv

2ie2


0m
2

∫
dk

��k�t�

�−kv
�f0
�v

= −2i�2
p

∫
dk��k�t�

∫
dv

1
�−kv

�f̄0
�v
� (14.46)

However, the linear dispersion relation Eq. (14.42) implies

�2
p

∫
dv

1
�−kv

�f̄0
�v

= −k (14.47)

and so
�

�t
�nmu�= 2i

∫
dk��k�t�k= 0� (14.48)
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which vanishes because the integrand is an odd function of k. Thus, the constraint
provided by the linear dispersion relation shows that the quasi-linear velocity
diffusion equation also conserves momentum.

Conservation of energy

Consideration of energy conservation starts out in a similar manner but leads to
some interesting, non-trivial results. The mean particle kinetic energy is defined
to be

WP =
∫

dv
mv2

2
f0� (14.49)

The time evolution of WP is obtained by taking the second moment of the quasi-
linear diffusion equation, Eq. (14.36),

�WP
�t

=
∫

dv
mv2

2
�

�v
DQL

�f0
�v

= −
∫

dvmvDQL
�f0
�v
� (14.50)

Using Eq. (14.37) gives

�WP
�t

= −
∫

dvmv
2ie2


0m
2

∫
dk

��k�t�

�−kv
�f0
�v

= 2i�2
p

∫
dk

��k�t�

k

∫
dv
�−kv−�
�−kv

�f̄0
�v

= −�2
p

∫
dk

2i��k���k�t�
k

∫
dv

1
�−kv

�f̄0
�v
� (14.51)

Invoking Eq. (14.43) to substitute for the velocity integral results in

�WP
�t

=
∫

dk2i ��r�k�+ i�i�k����k�t�� (14.52)

Since �r�k� is an odd function of k and �i�k� is an even function of k, only the
term involving �i survives the k integration and so

�WP
�t

+
∫

dk2�i�k���k�t�= 0� (14.53)

Using Eq. (14.40) this becomes

�

�t

[
WP +

∫
dk��k�t�

]
= 0� (14.54)
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which can now be integrated to give

WP +
∫

dk��k�t�=WP +WE = const�

showing that the sum of the particle and electric field energies is conserved. The
particle energy and the electric field energy therefore need not be individually
conserved – only the sum of these two types of energy is conserved. This result
allows for energy exchange between the particles and the electric field.

14.2.3 Energy exchange with resonant particles

More detailed insight is obtained by considering the role of resonant particles,
i.e., those particles having velocity v≈ �/k as indicated by the shaded region in
Fig. 14.1. This is done by using Eq. (14.38) to rewrite the top line of Eq. (14.51) as

�WP
�t

= − 2e2


0m

∫
dk��k�t�

∫
dv v

i ��r�k�−kv�+�i�k�
��r�k�−kv�2 +�2

i �k�

�f0
�v

= −2�2
p

∫
dk��k�t�

∫
dv

v�i�k�

��r�k�−kv�2 +�2
i �k�

�f̄0
�v
� (14.55)

where, because �r�k�− kv is an odd function of k, only the �i�k� numerator
term survives the k integration. The velocity integral can be decomposed into a
resonant portion, which is the velocity range where �r � kv, and the remaining
or non-resonant portion. In the resonant portion, it is possible to approximate

�i

��r −kv�2 +�2
i

� ���r −kv�= 

k
��v− �r

k
� (14.56)

while the non-resonant portion can be written as a principle-part integral. Thus,
Eq. (14.55) becomes

�WP
�t

= −�2
p

∫
dk2��k�t�

⎡⎣P ∫ dv
v�i�k�

��r −kv�2
�f̄0
�v

+�r
k2

(
�f̄0
�v

)
v=�r/k

⎤⎦ �
(14.57)

A relationship between the principle part and resonant terms in this expression
can be constructed by similarly decomposing Eq. (14.43) into a resonant portion
and a non-resonant or principle part. The principle part is Taylor expanded as
a function of �r + i�i, where �i is assumed to be much smaller than �r . This
procedure is essentially the scheme discussed in the development of Eq. (5.85),
except that here the expansion of the principle part is written explicitly in order
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to emphasize certain details. Thus, the linear dispersion relation Eq. (14.43) can
be expanded as

0 = 1− �
2
p

k2

∫
dv

�f̄0/�v

v− �r
k

− i�i
k
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(14.58)

The imaginary part of the last line must vanish and so

�i
k
P
∫

dv
�f̄0/�v

�v−�r/k�2
+

(
�f̄0
�v

)
v=�r/k

= 0� (14.59)

which leads to the usual expression for Landau damping.
If it is assumed that �r/k� vT then the principle-part integral in Eq. (14.57)

can be approximated as

P
∫

dv
v

��r −kv�2
�f̄0
�v

� 1
�2
r

∫
dv v

�f̄0
�v

= − 1
�2
r

∫
dvf̄0 = − 1

�2
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(14.60)

and the principle-part integral in Eq. (14.59) can similarly be approximated as

P
∫

dv
�f̄0/�v

�v−�r/k�2
= −

∫
dvf̄0

�

�v

1
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= 2
∫
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� −2
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� (14.61)
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Using Eq. (14.60), Eq. (14.57) becomes

�WP
�t

= −�2
p

∫
dk2��k�t�

⎡⎣−�i�k�
�2
r

+ �r
k2


(
�f̄0
�v

)
v=�r/k

⎤⎦ (14.62)

and using Eq. (14.61), Eq. (14.59) becomes

−2�i
k2

�3
r

+
(
�f̄0
�v

)
v=�r/k

= 0� (14.63)

Comparison of the above two expressions shows that the second term in the
square brackets of Eq. (14.62) has twice the magnitude of the first term and is of
the opposite sign. Since �2

r � �2
p� this means Eq. (14.62) is of the form

�WP
�t

= �

�t
WP�non-resonant+

�

�t
WP�resonant =

∫
dk��k�t� �2�i−4�i� � (14.64)

where the 2�i term prescribes the rate of change of the kinetic energy of the non-
resonant particles and the −4�i term prescribes the rate of change of the kinetic
energy of the resonant particles. On the other hand, Eq. (14.53) showed that
the rate of change of the total particle kinetic energy was equal and opposite to
the total rate of change of the electric field energy. These two statements can
be reconciled by asserting that the wave energy consists of equal parts of non-
resonant particle kinetic energy and electric field energy and that the resonant
particles act as a source or sink for this wave energy. This energy budgeting is
shown schematically as∫

dk2�i�k���k�t�︸ ︷︷ ︸
kinetic energy

of non-resonant particles

+
∫

dk2�i�k���k�t�︸ ︷︷ ︸
energy stored in
electric field︸ ︷︷ ︸

wave
energy

⇐⇒
∫

dk4�i�k���k�t�︸ ︷︷ ︸
kinetic energy

of resonant particles

�

(14.65)

Behavior of the resonant particles

We define fres as the velocity distribution of the resonant particles, i.e., the
particles with velocities v � �/k for which ��k�t� is finite. Since the velocity
range v=��k�/k of the resonant particles maps to the spectrum ��k� t�� the upper
and lower bounds of the resonant particle velocity range respectively map to the
lower and upper bounds of the values of k for which ��k� t� is finite. For these
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particles, the delta function approximation, Eq. (14.56), can be used to evaluate
the quasi-linear diffusion coefficient given by Eq. (14.39) and obtain

DQL�res�v� � 2e2


0m
2

∫
dk���r −kv���k�t�

= 2e2


0m
2

∫
dk���r/v−k���k�t�

v

= 2e2


0m
2

���r/v�t�

v
� (14.66)

Using this coefficient the quasi-linear velocity diffusion for the resonant
particles is

�f0�res
�t

= 2e2


0m
2

�

�v

(
���r/v� t�

v

�f0�res
�v

)
� (14.67)

It is seen from Eq. (14.63), the generalized formula for Landau damping, that
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and so Eq. (14.67) becomes
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where �r � �p =√
n0e

2/
0m has been used and also, because the particles are
resonant, v� �r/k. This can be integrated with respect to time to obtain

f0�res�v� t�−f0�res�v�0�= 2�p
m

�

�v

(
���r/v�t�−���r/v�0�

v3

)
� (14.70)

By definition ���r/v�t� vanishes for v lying outside the resonant particle veloc-
ity range vmin

res < v < v
max
res because outside this range there is no wave energy with

which the particles can resonate (see Fig. 14.1). Hence, integration of Eq. (14.70)
over the velocity range vmin

res < v < v
max
res of the resonant particles gives∫ vmax

res

vmin
res

dv f0�res�v� t�=
∫ vmax

res

vmin
res

dv f0�res�v�0�� (14.71)

which demonstrates that the number of resonant particles is conserved.
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Equation (14.65) showed that the resonant particle energy is not conserved and
can be exchanged with the wave energy. Thus, the zeroth moment of the resonant
particles is conserved, but the second moment is not. Change of the resonant
particle energy while conserving the total number of resonant particles is achieved
by simultaneously adjusting the number of resonant particles that are slightly
slower than �/k and the number of resonant particles that are slightly faster.
For example, if there is a decrease in the number of resonant particles having
v � ��/k�− there must be a corresponding increase in the number of resonant
particles having v� ��/k�+. This process provides a net transfer of energy from
the wave to the resonant particles, involves wave Landau damping, and requires
having �f0�res/�v < 0. The result, increasing the number of resonant particles
having v � ��/k�+ while decreasing the number having v � ��/k�−, flattens
f0�res�v� and so makes it plateau-like as indicated in Fig. 14.1(b).

Behavior of the non-resonant particles

The quasi-linear diffusion coefficient for the non-resonant particles comes from
the principle part of the integral in Eq. (14.39), i.e.,

DQL�non-res = e2
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2
P
∫
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2�i�k���k�t�

��r�k�−kv�2 +�2
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� (14.72)

The vast majority of the non-resonant particles have velocities much slower than the
wave, so for the non-resonant particles it can be assumed v� �r/k, in which case

DQL�non-res � e2


0m
2

∫
dk

2�i�k���k�t�
�2
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� 1
mn0

∫
dk2�i�k���k�t�� (14.73)

Since this non-resonant particle velocity-space diffusion coefficient is velocity-
independent, it can be factored from velocity integrals or derivatives. Equa-
tion (14.12) showed that the change in f0 is order $

2, where $� 1. This means that
changes in f0 are small compared to f0. On the other hand, there is no zero-order
wave energy since the wave energy scales as E2

1 and so is entirely constituted of
terms that are order $2. Thus, the wave-energy spectrum can change substantially
(for example, disappear altogether) whereas there is a only slight corresponding
change to f0. Thus, Eq. (14.36), becomes
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= 1
mn0
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(
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)
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�v2
� (14.74)
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which can be integrated to give

f0�non-res�v� t�−f0�non-res�v�0�= 1
mn0

(∫
dk ���k�t�−��k�0��

) �2f0�non-res
�v2

�

(14.75)

Since the number of resonant particles is conserved, the number of non-resonant
particles must also be conserved.
If an initial wave spectrum becomes damped at t= � then it is possible to write

f0�non-res�v���= f0�non-res�v�0�−
1
mn0

[∫
dk��k�0�

] �2f0�non-res�v�0�
�v2

�

(14.76)

In the range of velocities where �2f0�non-res/�v
2 > 0 there will be a decrease

in the number of non-resonant particles and vice versa in the range where
�2f0�non-res/�v

2 < 0. An initially Maxwellian distribution (which has
�2f0�non-res/�v

2 < 0 for very small velocities and vice versa for very large
velocities) will develop a double-plateau shape (high plateau at low velocities and
low plateau at high velocities) with a sharp gradient between the two plateaus.
The lower plateau will merge smoothly with the plateau of the resonant particles.
The non-resonant portion of the velocity distribution will appear to become
colder as the waves damp as indicated in Fig. 14.1(b).
This apparent cooling can be quantified by introducing an effective temperature,

Teff , which is defined to have the time derivative

d
dt

(
�Teff

)= 2
n0

d
dt

∫
dk��k�t�� (14.77)

This expression can be integrated to obtain

�Teff �t�= �T0 + 2
n0

∫
dk��k�t�� (14.78)

where T0 is the temperature for the situation where there are no waves.
Using Eq. (14.77), Eq. (14.74) can be written as

�

�t
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)
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� (14.79)
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If f0�non-res is considered a function of �Teff instead of t� Eq. (14.79) can be
written as

�

���Teff �
f0�non-res = 1

2m

�2f0�non-res
�v2

� (14.80)

which has the appropriately normalized solution

f0�non-res = n0
√

m

2�Teff �t�
exp

(
− mv2

2�Teff �t�

)

= n0
√√√√√ m/2

�T0 + 2
n0

∫
dk��k�t�

exp

⎛⎜⎜⎝− mv2/2

�T0 + 2
n0

∫
dk��k�t�

⎞⎟⎟⎠ �
(14.81)

Thus, wave damping (i.e., the reduction of ��k�t�) corresponds to an effective
cooling of the non-resonant particles. As shown in Eq. (14.65) this kinetic energy
reduction is accompanied by an equal reduction in the electric field energy and
all this energy is transferred to the resonant particles.

14.3 Echoes

Plasma wave echoes (Gould, O’Neil, and Malmberg 1967, Malmberg et al. 1968)
are a nonlinear effect whereby (i) a first wave is excited and then dies out from
Landau damping, (ii) a second wave is excited and similarly dies out, and then
finally (iii) at a much later time (or much more distant location), long after the
first two waves have disappeared, a ghost-like third wave appears, seemingly from
nowhere but with properties depending on the first two waves. Echoes provide
useful insights into the Landau damping mechanism and also raise interesting
questions about how Landau damping relates to entropy. These questions arise
from consideration of the following apparently conflicting observations:

1. Wave damping should destroy the information content of the wave by converting
ordered motion into heat. Thus, wave damping should increase the entropy of the
system.

2. The collisionless Vlasov equation conserves entropy. This is because collisions are
the agent that increases randomness and hence entropy. A collisionless system is in
principle completely deterministic, so the future of the system can be predicted with
complete precision simply by integrating the system of equations forward in time. The
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entropy-conserving property of the collisionless Vlasov equation can be verified by
direct calculation of the rate of change of the entropy,

dS
dt

= d
dt

∫
dx
∫

dv f�x� v� t� ln f�x� v� t�

=
∫

dx
∫

dv �ln f +1�
�f

�t

= −
∫

dx
∫

dv �ln f +1�
(
v
�f

�x
+ q

m
E
�f

�v

)
= −

∫
dx
∫

dv ln f
(
v
�f

�x
+ q

m
E
�f

�v

)
= −

∫
dx
∫

dv
(
v
�

�x
+ q

m
E
�

�v

)
�f ln f −f�

= 0 (14.82)

since ∫
dv
�f

�v
= 0�

∫
dx
�f

�x
= 0�∫

dv
�

�v
�f ln f −f� = 0�

∫
dx
�

�x
�f ln f −f�= 0� (14.83)

So, what really happens – does Landau damping increase entropy or not? The
answer goes right to the heart of what is meant by entropy. In particular, it should
be recalled that entropy is defined as the natural logarithm of the number of
microscopic states corresponding to a given macroscopic state (see Section. 2.5.1).
The concept “macroscopic state” implies the existence of a statistically large
number of microscopic states that are indistinguishable from each other for all
intents and purposes using all available means of observation. Collisions would
cause the system to continuously evolve through all the various microscopic states
and an observer of the system would not be able to distinguish one microscopic
state from another, even if equipped with the best available measuring equipment.
The system could then evolve through the various microscopic states that map to
a specific macroscopic state and the observer would not notice.
The paradox of whether Landau damping increases entropy or not is resolved

because the concept of many microscopic states mapping to a single macroscopic
state is invalid for Landau damping. In actual fact, the physical system for the
Landau damping problem is in just one well-defined, calculable state. The macro-
scopic state therefore maps to just one microscopic state and so the system does
not continuously and randomly evolve through a sequence of microscopic states.
Landau damping does not involve turning ordered information into heat.

Instead, macroscopically ordered information is turned into microscopically
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ordered information. The information still exists, but is encoded in a macroscop-
ically invisible form. A good analogy is the process of making a holographic
image of an object. The hologram looks blank unless illuminated in a special
way that provides the proper decoding. If an observer does not know how to do
the decoding, the information is lost to the observer, and the entropy content of
the hologram appears high compared to a regular photograph. However, if the
observer knows how to decode the microscopically stored information, then no
information is lost.
The Landau damping process scrambles the phase of the macroscopic informa-

tion and encodes this as microscopic information, which is normally irretrievable.
If one does not know the appropriate trick for unscrambling the microscopically
encoded information, it would be tempting to state that entropy has increased.
However, the appropriate trick exists and has been demonstrated in laboratory
experiments. Information that appeared to have been lost is retrieved and so
entropy is not increased.
To get an idea for the issues involved, we first consider the simple problem

of a one-dimensional beam of electrons having initial velocity v0. The beam is
transiently accelerated by an externally generated, spatially periodic electric field
pulse E = Ē cos�kx���t�, where Ē is considered to be infinitesimal. The equation
of motion for the electron beam is

m

(
�v

�t
+v�v
�x

)
= −eĒ cos�kx���t� (14.84)

and linearization of this equation gives

m

(
�v1
�t

+v0
�v1
�x

)
= −eĒ cos�kx���t�� (14.85)

It is convenient to use complex notation so that coskx→ eikx and it is understood
that, eventually, the real part of a complex solution will be used to give the
physical solution. It is therefore assumed that v1 ∼ eikx and so the linearized
equation becomes

m

(
�v1
�t

+ ikv0v1

)
= −eĒ��t�� (14.86)

Next it is argued that since the delta function can be considered as the superposition
of an infinite spectrum of harmonic oscillations, i.e.,

��t�= 1
2

∫
e−i�td�� (14.87)
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the response of the beam to each frequency component can be considered. Thus,
we consider the equation

�ṽ1
�t

+ ikv0ṽ1 = −eĒ
m

e−i�t� (14.88)

so the net velocity is

v1�t�= 1
2

∫
ṽ1��� t�d�� (14.89)

Note that ṽ1��� t� is not a Fourier transform because it contains the explicit time
dependence.
Since v0 is the initial beam velocity, v1�t� must vanish at t = 0 providing

a boundary condition for Eq. (14.88) at t = 0. One way to solve this equation
is first to assume that ṽ1��� t� consists of a particular solution satisfying the
inhomogeneous part of the equation (i.e., balances the driving term on the right-
hand side) and a homogeneous solution (i.e., a solution of the homogeneous
equation [left-hand side of Eq. (14.88)]). The coefficient of the homogeneous
solution is chosen to satisfy the boundary condition at t = 0. The particular
solution is assumed to vary as eikx−i�t and so is the solution of the equation

�−i�+ ikv0� ṽ1 = −eĒ
m

e−i�t� (14.90)

The homogenous solution is the solution of

�ṽ1
�t

+ ikv0ṽ1 = 0 (14.91)

and has the form ṽh1 = � exp �−ikv0t�, where � is a constant to be determined.
Adding the particular and homogeneous solutions together gives the general
solution

ṽ1 = −eĒ
m

ie−i�t

��−kv0�
+�e−ikv0t� (14.92)

where � is chosen to satisfy the initial condition. The initial condition v1 = 0 at
t = 0 determines � and gives

ṽ1��� t�= − ieĒ
m

(
e−i�t− e−ikv0t

)
��−kv0�

(14.93)

as the solution that satisfies both Eq. (14.88) and the initial condition. The term
involving e−ikv0t is called the ballistic term. This term contains information about
the initial conditions, is a solution of the homogeneous equation, is missed by
Fourier treatments, is incorporated by Laplace transform treatments, and keeps v1
from diverging when �−kv0 → 0.
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If we wished to revert to the time domain, then the contributions of all the
harmonics would have to be summed, giving

v1�t�= − ieĒ
2m

∫
d�

(
e−i�t− e−ikv0t

)
��−kv0�

� (14.94)

14.3.1 Ballistic terms and Laplace transforms

The discussion above used an approach related to Fourier transforms, but added
additional structure to account for the initial condition v1 = 0 at t = 0. This
suggests Laplace transforms ought to be used, since Laplace transforms auto-
matically take into account initial conditions. Let us therefore Laplace transform
Eq. (14.88) to see if indeed the particular and ballistic terms are appropriately
characterized. The Laplace transform of Eq. (14.88) gives

pṽ1 + ikv0ṽ1 = −eĒ
m

∫ �

0
dt e−i�t−pt

= −eĒ
m

1
i�+p (14.95)

so

ṽ1 = − eĒ/m

�p+ i���p+ ikv0�
� (14.96)

The inverse Laplace transform gives

ṽ1 = − 1
2i

eĒ

m

∫ b+i�

b−i�
ept

�p+ i���p+ ikv0�
dp� (14.97)

Analytic continuation allows the contour to be completed on the left-hand side
and it is seen that there are two poles, one at p= −i� and the other at p= −ikv.
Evaluation of the residues for the two poles gives

ṽ1 = − 1
2i

eĒ

m

⎧⎪⎪⎨⎪⎪⎩
2i lim

p→−i�
�p+ i��

[
ept

�p+ i���p+ ikv0�

]
+

2i lim
p→−ikv

�p+ ikv�
[

ept

�p+ i���p+ ikv0�

]
⎫⎪⎪⎬⎪⎪⎭

= −eĒ
m

{
e−i�t

�−i�+ ikv0�
+ e−ikv0t

�−ikv0 + i��

}
� (14.98)

which is the same as Eq. (14.93). The ballistic term ∼ e−ikv0t thus results from
a pole originating from the Laplace transform of the source term, whereas the
homogeneous term ∼ e−i�t results from the pole originating from the factor
�p+ ikv0� appearing on the left-hand side of Eq. (14.95).
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14.3.2 Phase mixing of the ballistic term for multiple beams

Now suppose that instead of just one electron beam, there are multiple beams
where the density of each beam is proportional to exp �−v20/v2T �; this would be
one way of characterizing a Maxwellian velocity distribution. Superposition of the
ballistic terms from all these beams leads to a vanishing sum, because the ballistic
terms each have a velocity-dependent phase and so the superposition would give
destructive interference due to phase mixing. In particular, the superposition would
involve integrals of the form∫

dv0e
−v20/v2T+ikv0t = e−k2v2T t2/4

∫
dv0e

−�v0/vT+ikvT t/2�
2 = √

vT e
−k2v2T t2/4�

(14.99)
which would quickly become extremely small. This suggests the ballistic term has
no enduring macroscopic physical importance and, in fact, this is true for linear
problems where the ballistic term is typically ignored. However, the ballistic term
can assume importance when nonlinearities are considered.

14.3.3 Beam echoes

The linearized continuity equation corresponding to Eq. (14.85) is

�n1
�t

+v0
�n1
�x

+n0
�v1
�x

= 0 (14.100)

and so, invoking the assumed eikx dependence, this becomes

�n1
�t

+ ikv0n1 + ikn0v1 = 0� (14.101)

In analogy to Eq. (14.89) the linearized density can be expressed as

n1�t�= 1
2

∫
ñ1��� t�d�� (14.102)

where again ñ1��� t� is not a Fourier transform because ñ1��� t� contains a
ballistic term incorporating information about initial conditions. The equation for
each frequency component thus is

�ñ1
�t

+ ikv0ñ1 + ikn0ṽ1 = 0� (14.103)

which may be Laplace transformed to give

�p+ ikv0� ñ1 + ikn0ṽ1 = 0 (14.104)

or, using Eq. (14.96),

ñ1�p���= ikn0eĒ/m

�p+ i���p+ ikv0�
2 � (14.105)
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There is now a second-order pole at p= ikv0 and so there will be a ballistic term
∼ exp �ikv0t� associated with the density perturbation. This ballistic term will also
phase mix away if there is a Gaussian velocity distribution of beams.
In order to consider nonlinear consequences, we consider the second-order

continuity equation

�n2
�t

+v0
�n2
�t

+v1
�n1
�x

+ �

�x
�n1v1�= 0� (14.106)

which has inhomogeneous (forcing) terms such as n1v1 involving products of
linear quantities. Suppose that in addition to the original pulse with spatial
wavenumber k at time t= 0 an additional pulse is also imposed with wavenumber
k′ at time t = �. This additional pulse would introduce ballistic terms having a
time dependence ∼ exp �ik′v0 �t− ���. Thus, the nonlinear product n1v1 includes
a dependence

n1v1 ∼ Re �exp �ikv0t��×Re
[
exp �ik′v0 �t− ���

]
� (14.107)

which contains terms of the form exp �ikv0t−k′v0 �t− ���. In general, this product
of ballistic terms would phase mix away if there were a Gaussian distribution of
beams, just as for the linear ballistic term. However, at the special time given by

kt−k′ �t− ��= 0� (14.108)

the phase of the nonlinear ballistic term vanishes for all velocities, and so no
phase mixing occurs when the velocity contributions are summed. Thus, at the
special time

t = k′�
k′ −k� (14.109)

the nonlinear product is immune to phase mixing and the superposition of the
nonlinear ballistic terms of a Gaussian distribution of beams gives a macroscopic
signal. The time at which the phase of the nonlinear ballistic term becomes
stationary can greatly exceed � and so a macroscopic nonlinear signal appears
long after both initial pulses have gone. This ghost-like nonlinear signal is called
the fluid echo.

14.3.4 The self-consistent nonlinear Vlasov–Poisson problem

These ideas carry over into the Vlasov–Poisson analysis of plasma waves, but
several additional issues occur that complicate and obscure matters. First, the
problem takes place in phase-space so, instead of having a pair of coupled equa-
tions for velocity and density, there is only the Vlasov equation. The Vlasov
equation not only contains a convective term analogous to the fluid convec-
tive terms but also incorporates an acceleration term, which describes how the
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velocity distribution function is modified when particles undergo acceleration
and change their velocity. As in the fluid equations, there is a coupling with
Poisson’s equation. This coupling not only provides the self-consistent interac-
tion giving plasma waves, but also provides Landau damping. Landau damping
is essentially a phase mixing of the Fourier-like driven terms, each of which
scales as

∫
dv��−kv�−1 exp �−i�t��f0/�v. However, linear ballistic terms must

also be excited in order to satisfy initial conditions. These ballistic terms scale
as
∫
dv��− kv�−1 exp �−ikvt��f0/�v and also phase mix away because of the

exp �−ikvt� factor.
If there are two successive pulses, then the nonlinear ballistic term will again

have a stationary phase (i.e., phase independent of velocity) at the special time
given by Eq. (14.109). This time could be arranged to be long after the linear
plasma responses to the two pulses have Landau-damped away so the echo
would seem to appear from nowhere. Thus, the Vlasov–Poisson analysis contains
essentially similar echo physics, but in addition has a self-consistent treatment of
the plasma waves and their associated Landau damping.
To proceed with the Vlasov–Poisson analysis, we begin by considering

Eq. (14.8) again, which is rewritten below for convenience

�

�t
�f0 +f1 +f2 + � � ��+v �

�x
�f0 +f1 +f2 + � � ��

− e

m
�E0 +E1 +E2 + � � �� �

�v
�f0 +f1 +f2 + � � �� = 0� (14.110)

Equilibrium is defined as being the solution obtained by balancing all the zeroth
order terms, i.e.,

�f0
�t

+v�f0
�x

− e

m
E0
�f0
�v

= 0� (14.111)

This is trivially satisfied by having E0 = 0� �f0/�t = 0� �f0/�x = 0, and f0�v�
arbitrary; we will make these assumptions here. This equilibrium solution is then
subtracted from Eq. (14.110) leaving

�

�t
�f1 +f2 + � � �� + v �

�x
�f1 +f2 + � � ��− e

m
E1
�

�v
�f0 +f1 +f2 + � � ��

− e

m
�E2 + � � �� �

�v
�f0 +f1 + � � ��= 0� (14.112)

The first-order solution is defined as the solution to

�

�t
f1 +v�f1

�x
− e

m
E1
�f0
�v

= 0� (14.113)
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the equation obtained by retaining all the first-order terms. The first-order solution
is then subtracted from Eq. (14.112) and what remains are second and higher order
terms. Dropping terms higher than second-order gives the second-order equation

�f2
�t

+v�f2
�x

− eE2

m

�f0
�v

− e

m
E1
�f1
�v

= 0� (14.114)

The special case where E1f1 has a zero frequency component was discussed in
the previous section on quasi-linear diffusion and so here only the situation where
E1f1 has a finite frequency will be considered. Since the first-order system has
been solved, the last term in Eq. (14.114) can be considered as a source term and
so we rearrange the equation to be

�f2
�t

+v�f2
�x

− eE2

m

�f0
�v

= e

m

�

�v
�E1f1� � (14.115)

where E1 and f1 are known and f2 is to be determined. The specification that
f = f0+f1 at t= 0 provides the boundary condition f2 = 0 at time t= 0. Because
Eq. (14.115) has both a self-consistent electric field contribution (E2 term on the
left-hand side) and a prescribed electric field term (E1 term on the right-hand
side), it has aspects of both the self-consistent problem and of the problem where
the electric field is prescribed.

The linear problem

Suppose periodic grids are inserted into a plasma and the grids are transiently
pulsed thereby creating the potential �ext�x� t�. The charged particles will move
in response to this applied potential and the resulting displacement produces a
perturbation of the plasma charge density. Poisson’s equation must therefore take
into account both the charge density on the grid and the resulting plasma charge
density and so has the form

	2�1 = − 1

0
�grid charge density + plasma charge density� � (14.116)

Since the grid charge density is related to the grid potential by

	2�ext = − 1

0
�grid charge density� (14.117)

Poisson’s equation can be recast as

	2�1 = 	2�ext+
e


0

∫
f1dv� (14.118)

A Fourier–Laplace transform operation is then applied to Eq. (14.118) to obtain

−k2�̃1 = −k2�̃ext+
e


0

∫
f̃1dv� (14.119)
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However, using E1 = −	�1, the Fourier–Laplace transform of Eq. (14.113) gives

f̃1 = −i
e

m

k�̃1

�p+ ikv�
�f0
�v

(14.120)

so Eq. (14.119) becomes

�̃1�p� k�= �̃ext�p� k�

��p� k�
� (14.121)

where

��p� k�= 1− i
e2

k2m
0

∫ k

p+ ikv
�f0
�v

dv (14.122)

is the usual self-consistent linear dielectric response function. Thus, the driven
first-order velocity distribution function can be written as

f̃1 = −i
e

m

k

�p+ ikv�
�̃ext�p� k�

��p� k�

�f0
�v
� (14.123)

If an inverse transform were to be performed on f̃1, then three types of contri-
bution to the final result need to be taken into account. These contributions are
(i) a ballistic term ∼ exp �ikvt� associated with the pole due to p+ ikv in the
denominator, (ii) a Landau-damped plasma oscillation due to the pole resulting
from the root of ��p� k� in the denominator, and (iii) the direct inverse transform
of the numerator �̃ext�p� k� modified by the presence of the other factors.

Fourier–Laplace transform of the non-linear equation

As discussed in Eq. (14.1), nonlinear quantities provide sum and difference
frequencies. For example, an oscillation at frequency � would result from the
nonlinear product of a term oscillating at �−�′ and a term oscillating at �′ since
��−�′�+�′ = �. This can be written in a more formal and more general way
using convolution integrals for both Fourier and Laplace transforms.
Since Laplace transforms will be used for the temporal dependence and since

the right-hand side of Eq. (14.115) involves a product term, it is necessary to
consider the Laplace transform of a product,

	 �g�t�h�t�� =
∫ �

0
g�t�h�t�e−ptdt

=
∫ �

0

[
1

2i

∫ b+i�

b−i�
g̃�p′�ep

′tdp′
]
h�t�e−ptdt

= 1
2i

∫ b+i�

b−i�
g̃�p′�

(∫ �

0
h�t�e�p

′−p�tdt
)
dp′

= 1
2i

∫ b+i�

b−i�
g̃�p′�h̃�p−p′�dp′� (14.124)



14.3 Echoes 483

This means that the Laplace transform with argument p results from all possible
products of g̃�p′�with h̃�p−p′�. If exp ��1t� is the fastest-growing term in g�t� and
exp ��2t� is the fastest growing term in h�t�, then b > �1 is required in order for
the Laplace transform of g�t� to be defined. Furthermore, in order for the Laplace
transform of h�t� to be defined, it is necessary to have Re �p�−Re �p′� > �2 or
Re �p� > �2 +Re �p′�, which implies Re �p� > b+�2. These requirements can be
summarized as Re �p�−�2 > b > �1.
Using

g̃�k� =
∫ �

−�
g�x�e−ikxdx (14.125a)

g�x� = 1
2

∫ �

−�
g̃�k�e+ikxdk� (14.125b)

a similar procedure for Fourier transforms gives

� �g�x�h�x�� =
∫ �

−�
g�x�h�x�eikxdx

=
∫ �

−�

[
1
2

∫ �

−�
g̃�k′�e−ik′x dk′

]
h�x�eikxdx

= 1
2

∫ �

−�
dk′g̃�k′�

∫ �

−�
h�x�ei�k−k

′�xdx

= 1
2

∫ �

−�
dk′g̃�k′�h̃�k−k′�� (14.126)

Thus, the Fourier–Laplace transform of Eq. (14.115) gives

�p+ ikv� f̃2�p� k�+ ik
e

m

�f0
�v
�̃2�p� k�

= − e
m

�

�v

[∫ �

−�
dk′

2

∫ b+i�

b−i�
dp′

2
k′�̃1�p

′� k′�f̃1�p−p′� k−k′�
]
�(14.127)

The convolution integrals are notationally unwieldy and so to simplify the
notation we define the new dummy variables

k̄′ = k−k′

p̄′ = p−p′� (14.128)

in which case Eq. (14.127) becomes

�p+ ikv� f̃2�p� k�+ ik
e

m

�f0
�v
�̃2�p� k�

= − e
m

�

�v

[∫ �

−�
dk′

2

∫ b+i�

b−i�
dp′

2
k′�̃1�p

′� k′�f̃1�p̄′� k̄′�
]
� (14.129)
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The factors in the convolution integral can be expressed in terms of the original
driving potential using Eqs. (14.121) and (14.123) to obtain

�p+ ikv� f̃2�p� k�+ ik
e

m

�f0
�v
�̃2�p� k�= �

�v
'�p�k� v�� (14.130)

where the nonlinear convolution term is

'�p�k� v� =
( e
m

)2 ∫ �

−�
dk′

2

∫ b+i�

b−i�
dp′

2

{
k′ �̃ext�p′� k′�

��p′� k′�

× ik̄′

p̄′ + ik̄′v
�̃ext�p̄

′� k̄′�
��p̄′� k̄′�

�f0
�v

}
� (14.131)

Equation (14.130) may be solved for f̃2�p� k� to give

f̃2�p� k�= −i
e

m

k

�p+ ikv�
�f0
�v
�̃2�p� k�+

1
�p+ ikv�

�

�v
'�p�k� v�� (14.132)

However, the Fourier–Laplace transform of the second-order Poisson’s equation
gives

−k2�̃2�p� k�= e


0

∫
f̃2�p� k�dv (14.133)

and so substituting for f̃2�p� k� gives

−k2�̃2�p� k�= e


0

∫ [
−i
e

m

k

�p+ ikv�
�f0
�v
�̃2�p� k�+

1
�p+ ikv�

�'

�v

]
dv (14.134)

or

�̃2�p� k� = − e

k2
0��p� k�

∫ 1
�p+ ikv�

�'

�v
dv

= e

k2
0��p� k�

∫ ik'

�p+ ikv�2
dv� (14.135)

Substitution for ' and using the velocity-normalized distribution function
f̄0 = f0/n0 discussed in Eq. (14.5) gives

�̃2�p� k� = �2
p

k2��p� k�

e

m

∫
dv
∫ �

−�
dk′

2

∫ b+i�

b−i�
dp′

2{
ik

�p+ ikv�2
k′�̃ext�p′� k′�
��p′� k′�

ik̄′

p̄′ + ik̄′v
�̃ext�p̄

′� k̄′�
��p̄′� k̄′�

�f̄0
�v

}
�

(14.136)
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Double-impulse source function and its transform

In order to proceed further, the form of the external source must be specified.
We assume the external source consists of two sets of periodic grids, which are
pulsed sequentially. The first set of grids has wavenumber ka and is pulsed at
t = 0 whereas the second set of grids has wavenumber kb and is pulsed after a
delay �. Thus, the external source has the form

�ext�x� t�= �a cos �kax����pt�+�b cos �kbx����p�t− ���� (14.137)

The Fourier–Laplace transform of this source function gives

�̃ext�p� k� =
∫ �

−�

∫ �

0
�ext�x� t� e

−ikx−ptdxdt

= 

�p

∑
±
"�a��k±ka�+�b��k±kb� e−p�# � (14.138)

Since we are interested in the nonlinear interaction between the a and b pulses,
only the contribution from the a pulse in the first �̃ext factor in Eq. (14.136) and
the contribution from the b pulse in the second �̃ext factor in Eq. (14.136) will
be considered. We therefore substitute the a contribution in Eq. (14.138) for the
first �̃ext factor in Eq. (14.136) to obtain

�̃2�p� k� = �p�a

k2��p� k�

e

m

∫
dv
∫ �

−�
dk′

2

∫ b+i�

b−i�
dp′

2
ikk′��k′ ±ka�

�p+ ikv�2��p′� k′�

× ik̄′

�p−p′�+ ik̄′v
�̃ext��p−p′� � k̄′�
��p−p′� k̄′�

�f̄0
�v
� (14.139)

The effect of the ��k′ ± ka� factor when evaluating the k′ integral is to force
k′ → ±ka and also k̄′ → k∓ka so

�̃2�p� k� = �p

k2��p� k�

e�a
2m

∑
±

∫
dv
∫ b+i�

b−i�
dp′

2

�∓ikka�

�p+ ikv�2��p′�∓ka�

× i �k∓ka�
p̄′ + i �k∓ka� v

�̃ext�p̄
′� �k∓ka��

��p̄′� k∓ka�
�f̄0
�v
� (14.140)

Now let us substitute for the second �̃ext factor using the contribution from the b
pulse to obtain

�̃2�p� k� = 

2k2��p� k�
e

m
�a�b

∑
±

∑
±

∫
dv
∫ b+i�

b−i�
dp′

2

�∓ikka�

�p+ ikv�2��p′�∓ka�

× i �k∓ka�
p̄′ + i �k∓ka� v

��k∓ka±kb�e−p̄′�

��p̄′� k∓ka�
�f̄0
�v
� (14.141)
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The upper choice of the ± and ∓ signs is selected and the inverse Fourier
transform performed to obtain

�̃
upper
2 �p�x� = �a�b

4k2��p� k�
e

m

∫ �

−�
dk
∫
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2
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�p+ ikv�2��p′�−ka�

× i �k−ka�
p̄′ + i �k−ka� v

��k−ka+kb�e−p̄′�+ikx

��p̄′� k−ka�
�f̄0
�v

= �a�b

4 �ka−kb�2��p� ka−kb�
e

m

∫
dv
∫ b+i�

b−i�
dp′

2

× i �ka−kb�
�p+ i �ka−kb� v�2

ka
��p′�−ka�

ikb
�p̄′ − ikbv�

e−p̄′�+i�ka−kb�x

��p̄′�−kb�
�f̄0
�v
�

(14.142)

The lower choice of the ± and ∓ signs means that ka → −ka and kb → −kb and
so at the end of the calculation �̃lower2 �p�x� can also be determined by simply
letting ka → −ka and kb → −kb. The inverse Laplace transform gives

�̃
upper
2 �t� x� = �a�b

4 �ka−kb�2
e

m

∫ b+i�

b−i�
dp
2i

1
��p� ka−kb�

∫
dv
∫ b+i�

b−i�
dp′

2

× ka

�p+ i �ka−kb� v�2��p′�−ka�
ikb

�p−p′ − ikbv�

×e�pt−�p−p′��+i�ka−kb�x�

��p−p′�−kb�
�f̄0
�v
� (14.143)

We first consider the p′ integral and only retain the ballistic term due to the
pole �p−p′�− ikbv. Evaluating the residue associated with this pole gives p′ =
p− ikbv so

�̃
upper
2 �t� x� = − �a�b

4 �ka−kb�2
e

m

∫ b+i�

b−i�
dp

1
��p� ka−kb�

∫
dv

× i �ka−kb�
�p+ i �ka−kb� v�2

ikakb
��p− ikbv�−ka�

ept−ikbv�+i�ka−kb�x

��ikbv�−kb�
�f̄0
�v
�

(14.144)

The pole at �p+ i �ka−kb� v�2 is second order, in which case the rule for a
second-order residue must be used, i.e.,∮

dp
1

�p−p0�2
g�p�= i lim

p→p0

d
dp
g�p�� (14.145)
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Thus, we obtain

�2�t� x� = − �a�bi

4 �ka−kb�2
e

m

∫
dv lim

p→i�kb−ka�v

d
dp

(
i �ka−kb�

��p� ka−kb�
ikakb

��p− ikbv�−ka�
ept−ikbv�+i�ka−kb�x

��ikbv�−kb�
�f̄0
�v

)
� (14.146)

The strongest dependence on p is in the exponential ept, and so retaining only
the contribution of this term to the d/dp operator gives

�̃
upper
2 �t� x� = − i�a�b

4 �ka−kb�2
e

m

∫
dv lim
p→i�kb−ka�v(

ti �ka−kb�
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ikakb
��p− ikbv�−ka�

ept−ikbv�+i�ka−kb�x

��ikbv�−kb�
�f̄0
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)
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4
kakb

�ka−kb�2
e�a�b
m

ei�ka−kb�x
∫

dv

i �ka−kb� t
��i�kb−ka�v� ka−kb���−ikav�−ka�

×ei�kb−ka�vt−ikbv�

��ikbv�−kb�
�f̄0
�v
� (14.147)

The �̃lower2 �t� x� term is obtained by letting ka−kb → −�ka−kb� and so

�̃2�t� x�= �̃upper2 �t� x�+ �̃lower2 �t� x�� (14.148)

If it is assumed that f̄0 = �vT �−1/2 exp �−v2/v2T � then the velocity integrals in
the upper and lower terms will be

1√


∫
dve−v2/v2T±i��kb−ka�t−kb��v = exp

(
− ��kb−ka�t−kb��2 v2T /4

)
= exp

(
−
[
t− kb
kb−ka

�

]2 �kb−ka�2v2T
4

)
�

(14.149)

Phase mixing due to the extreme velocity dependence of the exp �i�kb−ka�vt−
ikbv�� factor will cause the velocity integral to vanish except at the special time

techo = kb
kb−ka

� (14.150)
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when there is no phase mixing and so a finite �̃2�t� x� signal results. This is the
echo. The half-width of the echo can be determined by writing Eq. (14.149) as

1√


∫
dve−v2/v2T±i��kb−ka�t−kb��v = e−�t−techo�2/��t�2� (14.151)

where

�t = 2
�kb−ka�vT

(14.152)

is the width of the echo.

14.3.5 Spatial echoes

Creating spatially periodic sources with temporal delta functions is experimentally
more difficult than creating temporally periodic sources with spatial delta func-
tions. In the latter arrangement, two spatially separated grids are placed in a plasma
and each grid is excited at a different frequency. This system is then characterized
by a Fourier transform in time and a Laplace transform in space so the convective
derivative in the linearized Vlasov equation has the form −i�f1 +v�f1�x giving
ballistic terms proportional to exp �i�x/v� instead of proportional to exp �−ikvt�.
Thus, if two grids separated by a distance L are excited at respective frequencies
�1 and �2, one grid will excite a ballistic term ∼ exp �i�1�x−L�/v� while the
other will excite a ballistic term ∼ exp �i�2x/v�, and so the nonlinear product
of these two ballistic terms will include a factor ∼ exp �i�1�x−L�/v− i�2x/v�,
which will phase mix to zero except at the spatial location

xecho = �1L

�1 −�2
� (14.153)

If the spatial Landau damping length of the two linear modes is much less than
xecho, then the linear modes will appear to damp away spatially and then the
echo will appear at x = xecho, which will be much further away. This sort of
arrangement was used to demonstrate echoes in lab experiments by Malmberg,
Wharton, Gould and O’Neil (1968)

14.3.6 Higher order echoes

If one expands the Vlasov equation to higher than second order, then higher order
products of ballistic terms can result. For spatial echoes, high order products of
the form [

ei�1�x−L�/v
]N ×

[
e−i�2x/v

]M
(14.154)
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will appear and will phase mix away except at locations where

N�1�x−L�=M�2x (14.155)

so there will be a higher order echo at the location

xecho = M�2L

N�1 −M�2
� (14.156)

14.4 Assignments

1. Competition between collisions and quasi-linear diffusion.

(a) Let vTe =√
2�Te/me and w = vz/vTe and show that the Fokker–Planck equation

in Assignment 1 of Chapter 13 can be written in dimensionless form as

�FT
��

� �

�w

(
FT

2+Z
w2

+ 3
4w3

�FT
�w

)
�

where � = �t and
� = nee

4 ln�

4
20m2
ev

3
Te

is an effective collision frequency.
Now show that the quasi-linear diffusion equation can similarly be written in
dimensionless form as

�FT
��

= �

�w

(
D̄QL

�FT
�w

)
�

where

D̄QL�w�= DQL

Dcol

and

Dcol =
2��Te
me

is an effective collisional velocity-space diffusion coefficient.
(b) Suppose both collisions and quasi-linear diffusion are operative so

�FT
��

= �

�w

(
D̄QL

�FT
�w

+FT
2+Z
w2

+ 3
4w3

�FT
�w

)
�

Show that the steady-state solution to this equation has the form (Fisch 1978)

FT ∼ exp

⎛⎜⎜⎝−
∫ w

dw
�2+Z�w(
w3D̄QL+ 3

4

)
⎞⎟⎟⎠ �

Sketch FT for the cases where (i) D̄QL � 1 over a certain range of velocities (i.e.,
where wave spectrum is resonant with particles) and (ii) D̄QL � 1. How could this
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be used to drive a toroidal current in a tokamak? Using the appropriate form of
DQL show that the normalized quasi-linear diffusion for resonant particles is

D̄QL�w�= 82���r/v�t�

wme�
2
pe
ln�

�

If the wave is electrostatic then show

���r/v�t�∼ k���2�
where k is the wavenumber of the waves resonantly interacting with the particles so

D̄QL�w�∼ 82k���2
mew�

2
pe
ln�

�

What sort of waves would be most efficient at driving current, large or small k?
Would this current drive work best in high- or low-density plasmas?
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Wave–wave nonlinearities

15.1 Introduction

Wave nonlinearity is a vast subject and is not specific to plasma physics because
nonlinear wave behavior occurs in virtually any physical medium where waves
can propagate. However, because of the enormous variety of plasma waves, there
is usually at least one plasma context where any given type of wave nonlinearity
is an important issue. Three general types of nonlinear wave behavior will be
discussed in this chapter: mode–mode coupling instabilities, self-modulation, and
solitons. Before discussing these phenomena in detail, we first present a qualitative
overview showing how certain basic wave nonlinearities are manifested.

Mode–mode coupling instabilities

Suppose a linear wave is excited in a plasma by an antenna driven by an appro-
priately tuned sine wave generator. In particular, suppose the plasma frequency
is �pe/2 = 100MHz and the sine wave generator is tuned to a frequency well
above the plasma frequency, say �/2 = 500MHz, so as to cause the antenna to
radiate an electromagnetic plasma wave with dispersion relation �2 =�2

pe+k2c2.
This wave propagates through the plasma and is picked up by a distant receiving
probe connected to a spectrum analyzer, a device that provides a graphic display
of signal amplitude versus frequency. The received signal shows up on the spec-
trum analyzer display as a sharp peak at 500MHz, as shown in Fig. 15.1(a). If
the amplitude of the sine wave generator is increased or decreased, the peak on
the spectrum analyzer display moves up or down proportionately, indicating the
strength of the received signal.
An odd behavior is observed when the generator amplitude is increased above

some critical threshold. At generator amplitudes below this threshold, the spectrum
analyzer displays just the single peak at 500MHz, but above this threshold, two
additional peaks abruptly appear at two different frequencies and these new peaks
have amplitudes considerably lower than the 500MHz peak. These two additional

491



492 Wave–wave nonlinearities

(a) (b) (c)

amplitude amplitude amplitude
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Fig. 15.1 Frequency spectra showing onset of decay instability at high power
when a 500MHz sine wave generator excites a wave in plasma. Low and inter-
mediate generator power as in (a), (b) provides linear response, but high generator
power as in (c) results in decay instability with daughter modes appearing at
1MHz and 499MHz.

peaks are typically at frequencies that sum to 500MHz and the frequencies
of the two additional peaks are typically very different from each other. For
example, one of the two additional peaks might be at 1MHz and the other
at 499MHz. These two peaks are called daughter waves and their spectrum is
usually broader and their amplitude “springier” than the 500MHz “pump” wave.
If the generator amplitude is increased further, the pump wave amplitude no
longer increases in proportion to the generator amplitude, and instead the daughter
wave amplitudes increase. One gets the impression that the plasma does not
like to have too much power in the pump wave and when the above-mentioned
threshold is exceeded, excess power spills into the daughter waves at the expense
of the pump wave. If the power is increased further, the daughters become
quite large, and then at another threshold, the upper daughter might suddenly
spawn its own pair of low- and high-frequency daughters. The spectrum becomes
quite complicated and the amplitudes of the various spectral components depend
sensitively on both the generator amplitude and on the plasma parameters. One
gets the impression that energy is sloshing around between the pump wave and the
daughter waves.
This behavior can occur at surprisingly modest generator power levels where it

might have reasonably been expected that nonlinear behavior would be negligible.
The springiness of the daughter wave amplitudes suggests some kind of resonant
effect makes the nonlinearities more important than would be expected. The
behavior sketched here is sometimes called a parametric decay instability (Silin
1965) because the pump wave is considered as decaying into the daughter waves.
It has analogies to photon decay and in a sense can be considered as the classical
limit of photon decay. Whether this sort of instability is good or bad depends
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on the context. If the goal is to propagate a large amplitude wave through a
plasma and the wave decays into daughters, then the instability would be bad and
efforts would be required to avoid it. On the other hand, if one of the daughter
waves is normally difficult to excite and has some beneficial aspects, then the
decay instability provides a means to access the desired daughter wave. Another
possibility is that the onset of the decay could be used as a diagnostic to provide
information about the plasma.

Self-modulation

A closely related situation is where the low-frequency daughter wave is at zero
frequency. In this case the pump wave beats with itself and so modulates the equi-
librium via a so-called “ponderomotive” nonlinear pressure, which acts to expel
plasma. If this happens, increasing the generator amplitude above the nonlinear
threshold causes the pump wave to dig a hole in the plasma density. The pump
wave can dig itself a channel in the plasma and then this channel can guide, focus,
and even trap the pump wave.

Solitons

Plasma waves are typically dispersive so, after propagating some distance, an
initially sharp pulse will become less sharp because the various components of
the Fourier spectrum constituting the pulse propagate at different phase velocities.
In certain situations, however, pulses with an amplitude exceeding some critical
value will propagate indefinitely without broadening, even though the medium is
nominally dispersive. This high-amplitude non-dispersive pulse is called a soliton
and its existence results from nonlinearities competing against dispersion in a way
such that the two effects cancel each other.

15.2 Manley–Rowe relations

Before investigating wave–wave nonlinearities, it is instructive to examine a
closely related, but simpler, system consisting of three nonlinearly coupled
harmonic oscillators (Manley and Rowe 1956). This simple system consists of a
particle of mass m moving in a three-dimensional space with dynamics governed
by the Hamiltonian

H = 1

2m

(
P2
1 +P2

2 +P2
3

)+ 1
2

(
�1Q

2
1 +�2Q2

2 +�3Q2
3

)+�Q1Q2Q3� (15.1)

In the �→ 0 limit this Hamiltonian describes three independent harmonic oscilla-
tors having respective frequencies �1 =√�1/m, �2 =√�2/m, and �3 =√�3/m.
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In the more general case of finite �, Hamilton’s equations for the P1�Q1 conjugate
coordinates are

Ṗ1 = − �H
�Q1

= −�1Q1 −�Q2Q3� (15.2a)

Q̇1 = �H

�P1
= P1/m (15.2b)

with similar equations for the P2�Q2 and P3�Q3 conjugates. Using relationships
such as Q̈1 = Ṗ1/m, three coupled oscillator equations result, namely

Q̈1 +�2
1Q1 = − �

m
Q2Q3

Q̈2 +�2
2Q2 = − �

m
Q1Q3

Q̈3 +�2
3Q3 = − �

m
Q1Q2� (15.3)

For small �, each oscillator may be assumed to oscillate nearly independently so
that during each cycle of a given oscillator, the oscillator experiences only slight
amplitude and phase changes due to the nonlinear coupling with the other two
oscillators. Thus, approximate solutions for the oscillators can be written as

Q1�t� = A1�t� cos ��1t+�1�t��
Q2�t� = A2�t� cos ��2t+�2�t��
Q3�t� = A3�t� cos ��3t+�3�t�� � (15.4)

where it is assumed

Ȧj

Aj
� �j and �̇j � �j� (15.5)

Each oscillator is considered as a linear mode of the system and, from now on,
the term mode will be used interchangeably with oscillator. The energy associated
with each mode is

Wj = 1
2m
P2
j + 1

2
�jQ

2
j = m

2
Q̇2
j +

1
2
�jQ

2
j = m

2
�2
jA

2
j (15.6)

and the associated action is

S =
∮
PjdQj =m

∮
Q̇jdQj = −m�jA2

j

∫ 2

0
sin&jd cos&j

= m�jA2
j

∫ 2

0
sin2&j d&j = m

2
�jA

2
j � (15.7)
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where

&j = �jt+�j�t� (15.8)

is the phase of the mode.
Let us now use Eq. (15.8) to calculate the first and second derivatives of

Qj =Aj cos&j . Temporarily omitting the j subscript for clarity, the first derivative
is seen to be Q̇= Ȧ cos&−A&̇ sin& and the second derivative is

Q̈ =Ä cos&−2Ȧ&̇ sin&−A&̈ sin&−A&̇2 cos&

=Ä cos&−2Ȧ
(
�+ �̇

)
sin&−A�̈ sin&−A

(
�+ �̇

)2
cos&� (15.9)

Since the amplitude A and phase � are assumed to change only slightly during a
wave period, � is very large compared to time derivatives of both the amplitude
and the phase, i.e.,

dȦ

dt
� �Ȧ

d�̇

dt
� ��̇� (15.10)

Thus, any term in Eq. (15.9) involving two derivatives of slowly varying quantities
will be negligible compared to the corresponding term containing � and one
derivative of the slowly varying quantity. In particular, we may drop Ä compared
to �Ȧ, �̈ compared to ��̇, and �̇2 compared to ��̇. On making these WKB-like
approximations, Eq. (15.9) becomes

Q̈j = −�2
jAj cos��jt + �j�−2�jȦj sin��jt + �j�−2�jAj�̇j cos��jt + �j��

(15.11)
where the j subscript has now been restored. When the above expression is
inserted into Eqs. (15.3), the terms involving �2

j cancel and what remains is[
2�jȦj sin��jt+�j�
+2�jAj�̇j cos��jt+�j�

]
= �

m
AkAl cos��kt+�k� cos��lt+�l�

= �

2m
AkAl

[
cos���k+�l� t+�k+�l�
+ cos���k−�l� t+�k−�l�

]
�

(15.12)

It is necessary to write out the three coupled equations explicitly because the
coupling terms on the right-hand side are not fully symmetric. To identify resonant
interactions it is assumed

�3 = �1 +�2 (15.13)

��t� = �1 +�2 −�3� (15.14)
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in which case the coupled mode equations can be written[
Ȧ1 sin��1t+�1�
+A1�̇1 cos��1t+�1�

]
= �A2A3

4m�1

⎡⎢⎣ cos���2 +�3� t+�2 +�3�
+cos���2 −�3� t+�2 −�3�︸ ︷︷ ︸

resonant at −�1

⎤⎥⎦
[
Ȧ2 sin��2t+�2�
+A2�̇2 cos��2t+�2�

]
= �A1A3

4m�2

⎡⎢⎣ cos���1 +�3� t+�1 +�3�
+cos���1 −�3� t+�1 −�3�︸ ︷︷ ︸

resonant at −�2

⎤⎥⎦
[
Ȧ3 sin��3t+�3�
+A3�̇3 cos��3t+�3�

]
= �A1A2

4m�3

⎡⎢⎣ resonant at +�3︷ ︸︸ ︷
cos���1 +�2� t+�1 +�2�
+ cos���1 −�2� t+�1 −�2�

⎤⎥⎦ � (15.15)
Using �2 −�3 = −�1, �2 − �3 = �− �1, �1 −�3 = −�2, �1 − �3 = �− �2,

and discarding non-resonant terms, Eq. (15.15) becomes

Ȧ1 sin��1t+�1�+A1�̇1 cos��1t+�1� = �A2A3

4m�1
cos��−�1t−�1�

Ȧ2 sin��2t+�2�+A2�̇2 cos��2t+�2� = �A1A3

4m�2
cos��−�2t−�2�

Ȧ3 sin��3t+�3�+A3�̇3 cos��3t+�3� = �A1A2

4m�3
cos��+�3t+�3� (15.16)

or [
Ȧ1 sin��1t+�1�
+A1�̇1 cos��1t+�1�

]
= �A2A3

4m�1

[
cos� cos��1t+�1�
+ sin � sin��1t+�1�

]
[
Ȧ2 sin��2t+�2�
+A2�̇2 cos��2t+�2�

]
= �A1A3

4m�2

[
cos� cos��2t+�2�
+ sin � sin��2t+�2�

]
[
Ȧ3 sin��3t+�3�
+A3�̇3 cos��3t+�3�

]
= �A1A2

4m�3

[
cos� cos��3t+�3�
− sin � sin��3t+�3�

]
� (15.17)

Matching the time-dependent sine and cosine terms on both sides gives

Ȧ1 = �A2A3

4m�1
sin � (15.18a)

Ȧ2 = �A1A3

4m�2
sin � (15.18b)

Ȧ3 = −�A1A2

4m�3
sin � (15.18c)
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and

A1�̇1 = �A2A3

4m�1
cos�

A2�̇2 = �A1A3

4m�2
cos�

A3�̇3 = �A1A2

4m�3
cos�� (15.19)

These equations can be used to establish various conservation relations. Multi-
plying Eqs. (15.18) by �2

jAj and summing gives

1
2
d
dt

(
�2
1A

2
1 +�2

2A
2
2 +�2

3A
2
3

)= ��1 +�2 −�3��A1A2A3

4m
sin � = 0

so

�2
1A

2
1 +�2

2A
2
2 +�2

3A
2
3 = const� (15.20)

This shows that the total energy in the three modes is constant, yet allows portions
of this energy to slosh back and forth between modes.
A corresponding set of relations for the action can be obtained by multiplying

pairs of equations in Eq. (15.18) by �jAj and then either adding or subtracting.
For example, multiplying the first pair by �jAj and subtracting gives

1
2
d
dt

(
�1A

2
1 −�2A

2
2

)= 0� (15.21)

Appropriate adding and subtracting in this manner gives

�1A
2
1 −�2A

2
2 = const�

�1A
2
1 +�3A

2
3 = const�

�2A
2
2 +�3A

2
3 = const� (15.22)

These relationships can be expressed in a manner analogous to quantum principles
by defining the effective “quantum number” of a mode as its ratio of energy to
frequency,

Nj = Wj

�j
= m

2
�jA

2
j � (15.23)

It is clear that Nj is the same as the action except for an unimportant constant
factor. Thus, the action conservation rules can be recast as

N1 −N2 = const�
N1 +N3 = const�
N2 +N3 = const� (15.24)
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or if changes in action are considered

�N1 = +�N2

�N1 = −�N3

�N2 = −�N3� (15.25)

This provides an action accounting scheme such that a change �N3 = −1 can be
considered as a mode 3 “photon” decaying (or equivalently disintegrating) into
a mode 1 photon (�N1 = +1) and a mode 2 photon (�N2 = +1), all the while
satisfying conservation of energy; this is sketched in Fig. 15.2.
An additional conservation equation can be obtained by subtracting the last of

Eqs. (15.19) from the sum of the first two to obtain

�̇ = �̇1 + �̇2 − �̇3
=
(
�A2A3

4mA1�1
+ �A1A3

4mA2�2
− �A1A2

4mA3�3

)
cos�

=
(
Ȧ1

A1
+ Ȧ2

A2
+ Ȧ3

A3

)
cos�
sin �

(15.26)

and then integrating to find

A1A2A3 cos� = const� (15.27)

We now consider some solutions to the system of equations given by
Eqs. (15.18a)–(15.18c). Suppose that initially A3 � A2�A1. In this case
Eq.(15.18c) gives A3 � const. Solving Eq. (15.18b) for A1 and substituting the

ω 3 photon

ω 1 photon ω 2 photon

decay

energy conservation condition: ω 3 = ω 1 + ω 2

Fig. 15.2 Photon at frequency �3 decaying into a photon at frequency �1 and
a photon at frequency �2.
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result in Eq. (15.18a) gives

1
sin �

d
dt

(
1

sin �
dA2

dt

)
= �2A2

3

16m2�1�2
A2� (15.28)

which has exponentially growing solutions if �1�2 > 0. By defining

� =
∫ t
0
dt′ sin ��t′� (15.29)

it is seen that
dA2

dt
= d�

dt
dA2

d�
= sin �

dA2

d�
(15.30)

and so
d2A2

d�2
= �2A2

3

16m2�1�2
A2� (15.31)

Since �1�2 > 0 and �1 +�2 = �3, if �3 is chosen to be positive then both �1

and �2 must both be positive and so �3 >�1��2. If A2 grows, then, because of
the action rules, A1 must grow in the same proportion. Furthermore, as A1 and A2

grow, A3 must decrease until the approximation A3 � A1�A3 fails. This process
can be considered as a high-energy “photon” with frequency �3 decaying into an
�1 photon and an �2 photon where the last two photons have lower energy than
�1. Equation (15.31) shows that the decay of the mode 3 photon into mode 1,2
photons can be characterized by an exponential growth of the mode 2 amplitude,

A2 ∼ e��� (15.32)

where

� = �A3

4m
√
�1�2

(15.33)

is the instability growth rate. Mode 3 is called the pump mode since it supplies
the energy for the instability. Modes 1 and 2 are called the daughter modes.

15.3 Application to waves

Nonlinearities in wave equations give rise to coupled systems of equations similar
to Eqs. (15.3). Suppose Q now refers to a plasma parameter, say density, and
that the plasma can support three distinct waves (modes) having respective linear
density fluctuations

Q1�x� t� = A1�t� cos�k1 ·x−�1t−�1�t��
Q2�x� t� = A2�t� cos�k2 ·x−�2t−�2�t��
Q3�x� t� = A3�t� cos�k3 ·x−�3t−�3�t��� (15.34)
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the density Q therefore has the functional form

Q�x� t�=Q1�x� t�+Q2�x� t�+Q3�x� t�� (15.35)

This situation is mathematically analogous to the coupled oscillator system
discussed in Section 15.2 if the amplitude Qj of each of the three waves is
considered to be an effective canonical coordinate. Each wave satisfies a linear
dispersion relation �j = �j�k� and nonlinearities in the wave equations provide
a mutual coupling between the modes analogous to the coupling between the
different directions of motion for the oscillating mass discussed in Section 15.2.
The exp �ik ·x� dependence of the waves suggests the need for a wavenumber
selection rule

k3 = k1 +k2 (15.36)

analogous to the frequency selection rule Eq. (15.13). Using the wavenumber
selection rule and generalizing the phase offset definition to be �′

j�t� = �j�t�−
kj ·x, it is seen that the coupled wave equations become identical to the coupled
oscillator equations with �′

j replacing �j . Hence, so long as the selection rules
�3 = �1 +�2 and k3 = k1 +k2 are satisfied, a high-frequency wave �3 should
decay spontaneously into two low-frequency waves �1��2, providing a suitable
coupling coefficient exists.

15.3.1 Examples of nonlinearities

Nonlinearities can be divided into two general types: (1) two high-frequency
waves beating together to give a low-frequency driving term and (2) a high-
frequency wave beating with a low-frequency wave to give a high-frequency
driving term. As shown below, the first type of nonlinearity has the form of a
radiation pressure (also known as a ponderomotive force) while the second type
of nonlinearity has the form of a density modulation.

1. Beat of two high-frequency waves driving a low-frequency wave (ponderomotive force).
Since ion motion is negligible in a high-frequency wave, all that is required when
considering nonlinearities is the electron equation of motion,

�ue
�t

= −ue ·	ue+
qe
me
�E+ue×B�− 1

mene
	Pe� (15.37)

For simplicity, it is assumed that no equilibrium magnetic field exists, so the only
magnetic field is the wave magnetic field. Tildes are used to denote linear quantities to
avoid confusion with the subscripts 1�2�3, which denote the low-frequency daughter,
high-frequency daughter, and pump wave respectively. If the high-frequency wave is
electromagnetic, then the mode is transverse, i.e., the wavevector k is perpendicular to
the mode electric field Ẽ and so there is no coupling to pressure oscillations because
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	P̃e is in the direction of k. If the high-frequency mode is electrostatic, i.e., is a
Langmuir wave, then there is a finite 	P̃e contribution, but this term is small because
of the adiabatic assumption �/k� vTe for a Langmuir wave (see Eq. (4.28)) and so
can be ignored to first approximation. Thus, when calculating the linear motion for
purposes of determining nonlinear coupling coefficients, the 	P̃e term resulting from
linearizing Eq. (15.37) may be dropped and so we simply have

�ũe
�t

= qe
me

Ẽ� (15.38)

This is exactly true for an electromagnetic wave and true to lowest order in the
adiabatic assumption for an electrostatic wave. The electron quiver velocity is defined
to be

ũhe = qe
me

∫ t

Ẽdt′� (15.39)

which is the solution to Eq. (15.38) for both electron plasma waves and electromagnetic
waves. The main nonlinear terms in Eq. (15.37) are −ũe · 	 ũe + qe

(
ũe× B̃

)
/me;

nonlinearity in the pressure gradient is ignored because, by assumption, this term is
already small. In order to obtain B̃� Faraday’s law is integrated with respect to time
giving

B̃ = −	×
∫ t

Ẽdt′ = −me
qe
	× ũhe � (15.40)

The two nonlinear terms can be combined using Eq. (15.40) to form what is called
the ponderomotive force or radiation pressure,

−ũe ·	 ũe+
qe
me

(
ũe× B̃

) = −ũhe ·	 ũhe − (ũhe ×	× ũhe
)

= −1
2
	
(
ũhe
)2
� (15.41)

If only one high-frequency mode exists and beats with itself, then the ponderomotive
force −	 (ũhe)2 /2 is at zero frequency but if the beating is between two distinct high-
frequency modes, then the ponderomotive force contains a term at the difference (i.e.,
beat) frequency between the frequencies of the two modes. Thus, at low frequencies
the electron equation of motion, Eq. (15.37) becomes

�ũe
�t

= qe
me

Ẽ− 1
men

	P̃e−
1
2
	
(
ũhe
)2
� (15.42)

where only the beat frequency component in
(
ũhe
)2

is used. The ponderomotive force
provides a mechanism for high-frequency waves to couple to low-frequency waves.
It acts as an effective pressure scaling as men

(
ũhe
)2
/2 and so, in a sense, the quiver

velocity ũhe acts as a thermal velocity. The ratio of ion radiation pressure to the ion
pressure is smaller than the corresponding ratio for electrons by a factor of me/mi
because the ion quiver velocity is smaller by this factor. Thus, ion ponderomotive
force is ignored since it is so small.
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2. Beating of a low-frequency wave with a high-frequency wave to drive another high-
frequency wave (modulation). By writing Ampère’s law as

	× B̃ = �0

∑
�

�ñ�q� ũ� +n0q� ũ��+�0
0
�Ẽ
�t

(15.43)

it is seen that density fluctuations provide a nonlinear component to the current density.
The nonlinear term can be put on the right-hand side to emphasize its role as a
nonlinear driving term so that Ampère’s law becomes

	× B̃−�0
0
�Ẽ
�t

−�0

∑
�

n0q� ũ� = −�0

∑
�

ñ�q� ũ� � (15.44)

The nonlinear term is assumed to be a product of a high-frequency wave and a
low-frequency wave. The linearized continuity equation gives

�ñ�
�t

= −n�	 · ũ� (15.45)

showing that ñ�/n� = k·ũ�/�. The low-frequency wave typically has a smaller phase
velocity than the high-frequency wave so, in terms of magnitudes,

ñl�
ñh�

∼ ũl�
ũh�

��/k�h
��/k�l

� ũl�
ũh�
� (15.46)

Thus, the product ñl� ũ
h
� is much larger than the product ñh� ũ

l
� , where l and h refer to

low- and high-frequency waves. Thus, the dominant effect of a low-frequency wave
is to modulate the density profile seen by a high-frequency wave.

15.3.2 Possible types of wave interaction

As discussed in Section 4.2, three distinct types of waves can propagate in an
unmagnetized uniform plasma and these waves have the dispersion relations:

�2 = �2
pe+k2c2� electromagnetic wave

�2 = �2
pe

(
1+3k2�2de

)
� electron plasma wave

�2 = k2c2s
1+k2�2De

� ion acoustic wave. (15.47)

If three waves satisfy the selection rules

�3 = �1 +�2 (15.48)

k3 = k1 +k2� (15.49)

they can only have the same dispersion relation if �2 depends linearly on k2 so
that the magnitude of k is linearly proportional to the magnitude of �. This is not
so for the modes listed in Eq. (15.47) except for the k2�2De � 1 limit of the ion
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Table 15.1

Pump Hf daughter Lf daughter Common name

�3 �2 �1

em em Langmuir stimulated Raman backscatter
em em acoustic stimulated Brillouin backscatter
em em zero frequency self-focusing
em Langmuir Langmuir two-plasmon decay
em Langmuir acoustic parametric decay instability
Langmuir Langmuir acoustic electron decay instability
Langmuir Langmuir zero frequency caviton

acoustic wave; applying the selection rules to this �2 = k2c2s limit of ion acoustic
waves gives nonlinear interactions between various sound wave harmonics, e.g.,
the first and second harmonic can interact with the third harmonic. Since this limit
corresponds to the well-known nonlinear steepening of ordinary sound waves it
will not be discussed further.
The situations that are of particular relevance to plasmas are where modes

satisfying different types of dispersion relations interact with each other, for
example an electromagnetic wave interacting with an electron plasma wave and
an ion acoustic wave. The various possibilities for nonlinear interactions of the
three types of plasma waves are shown in Table 15.1.
Here the abbreviations em, Langmuir, and acoustic stand for electromagnetic

wave, electron plasma wave, and ion acoustic wave respectively and the ordering
is by progressively lower frequency, column by column, taking into account
(i) �3 > �2 > �1 and (ii) electromagnetic waves have higher frequencies than
Langmuir waves, which in turn have higher frequencies than ion acoustic waves.
In each case the low-frequency daughter modulates the density and beats with

either the pump or the high-frequency daughter to provide a high-frequency
nonlinear current as given by Eq. (15.44) while the pump and the high-frequency
daughter beat together to provide a ponderomotive force that couples to the low-
frequency wave. Consider a coordinate system where the x axis is in the direction
of k3 and ⊥ refers to the direction perpendicular to k3. Thus, �k1 +k2�⊥ = 0 so
any daughter wavevector components in the direction perpendicular to the pump
wave must be equal in magnitude and opposite in direction.
The high-frequency wave has a faster phase velocity than the daughter waves so

�2
3

k33
>
�2
2

k22
and

�2
3

k33
>
�2
1

k21
� (15.50)
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Let us suppose that all waves are in the same direction so we may assume k1� k2
and k3, are all positive. Then taking the square root of all quantities in Eq. (15.50)
and using �3 = �1 +�2, k3 = k1 +k2 gives

�1 +�2

k1 +k2
>
�2

k2
and

�1 +�2

k1 +k2
>
�1

k1
� (15.51)

However, rearranging these two expressions leads to the contradictory relation-
ships

�1

�2
>
k1
k2

and
�1

�2
<
k1
k2
� (15.52)

This means it is impossible to have all waves in the same direction and satisfy
the selection rules when the pump wave is faster then the daughter waves. Thus,
the frequency and wavenumber selection rules can only be satisfied if k1, k2, and
k3 are not all in the same direction.
If the daughter waves have no wavevector components perpendicular to the

pump wave, then one of the daughter waves must have a wavevector antiparallel
to the pump while the other is parallel to the pump. This is shown schematically in
Fig. 15.3 for the parametric decay instability where it is seen that the ion acoustic
daughter wave propagates backwards relative to the em and Langmuir waves.
Since vTe � c, the phase velocity of the electromagnetic wave is actually much
faster than suggested by the figure, i.e., the speed of light is shown artificially
slowed down in the figure to make the vector relationships more obvious. In
actual parametric decay situations the approximation k1 + k2 � 0 may be used
since �k3� � �k1� � �k2�.

k

ω

 em wave
{k3, ω 3}

    Langmuir wave
{k2, ω 2}

ion acoustic wave
{k1, ω1}

Fig. 15.3 Electromagnetic wave � =
√
�2
pe+k2c2 decaying into a Langmuir

wave �= �pe
√
1+3k2�2de and an ion acoustic wave �= kcs/

√
1+k2�2De. The

ion acoustic wave propagates backwards in order to have �3�k1+k2�=�1�k1�+
�2�k2� as can be seen from the addition of the "k��# vectors in the diagram.
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The electromagnetic wave in a given plasma always has a higher frequency than
the electron plasma or ion acoustic waves. As a consequence, the low-frequency
daughter cannot be an electromagnetic wave because then all three waves would
have to be electromagnetic waves, which would then violate the requirement that
the dispersion relations cannot all be the same. The low-frequency daughter must
therefore be either an ion acoustic wave or an electron plasma wave. Similarly,
the high-frequency wave (pump or high-frequency daughter) cannot be an ion
acoustic wave and so must be either an electromagnetic wave or an electron
plasma wave. Thus, the various interactions tabulated above can be accounted
for by establishing the appropriate coupling equations for the following four
possibilities: high-frequency wave is an electromagnetic wave or a Langmuir
wave, low-frequency wave is a Langmuir wave or an ion acoustic wave.

Low-frequency wave is an ion acoustic wave

On assuming quasi-neutrality, which corresponds to assuming k2�2De � 1, the low
frequency electron and ion equations of motion may be approximated as

�ũe
�t

= qe
me

Ẽ− �Te
men

	ñ− 1
2
	
(
ũhe
)2

(15.53)

�ũi
�t

= qi
mi

Ẽ� (15.54)

here only the low-frequency beat component of
(
ũhe
)2

is used. Also, as shown
earlier, the ion ponderomotive force is negligible and therefore ignored. Because
the electron mass is very small, the left-hand side of the electron equation of
motion is dropped, in which case this equation reduces to the simple force balance
relation

qe
me

Ẽ− �Te
men

	ñ− 1
2
	
(
ũhe
)2 � 0� (15.55)

Using Eq. (15.55) to eliminate Ẽ from the ion equation gives

�ũi
�t

= −�Te
min

	ñ− 1
2
me
mi
	
(
ũhe
)2
� (15.56)

Because quasi-neutrality is assumed, ñi = ñe = n, and so the time derivative of
the ion continuity equation can be written as

�2ñ

�t2
+n	 · �ũi

�t
= 0� (15.57)

On substituting for �ũi/�t, the above equation becomes

�2ñ

�t2
−n	 ·

(
�Te
min

	ñ+ 1
2
me
mi
	
(
ũhe
)2)= 0� (15.58)
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which can be written as an ion acoustic wave equation with a nonlinear coupling
term due to the electron ponderomotive force,

�2ñ

�t2
− c2s 	2ñ= n

2
me
mi
	2 (ũhe)2 � (15.59)

If the electron quiver velocity is considered to behave as an effective thermal
velocity, then the low-frequency beat component of

(
ũhe
)2

can be considered as
modulating the effective electron temperature. Specifically,

ñe�Te+n�T̃e = ñe�Te+n
me
(
ũhe
)2

2
(15.60)

and so

ñc2s → ñc2s +n(̃c2s )= ñc2s +n�T̃e
mi

= ñc2s +nme
(
ũhe
)2

2mi
� (15.61)

which is consistent with Eq. (15.59).

Low-frequency wave is an electron plasma wave

In this case the low-frequency wave frequency is above �pe so the ions cannot
respond and therefore can be considered to be a stationary, neutralizing back-
ground. Now only the electron dynamic response matters and the density pertur-
bation is not quasi-neutral. The electron equation of motion for the low-frequency
wave is

�ũe
�t

= qe
me

Ẽ− 3�Te
men

	ñe−
1
2
	
(
ũhe
)2
� (15.62)

where the 3 comes from the adiabatic pressure perturbation. Combining this with
the time derivative of the electron continuity equation,

�2ñe
�t2

+n	 ·
(
�ũe
�t

)
= 0� (15.63)

gives

�2ñe
�t2

+n	 ·
(
qe
me

Ẽ− 3�Te
men

	ñe−
1
2
	
(
ũhe
)2)= 0� (15.64)

This may be simplified by invoking Poisson’s equation

	 · Ẽ = 1

0
ñeqe (15.65)
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to obtain

�2ñe
�t2

+�2
peñe−

3�Te
me

	2ñe = n

2
	2 (ũhe)2 � (15.66)

The left-hand side is the electron plasma wave equation (Langmuir wave) and the
right-hand side provides the nonlinear drive (or coupling) due to ponderomotive
force. Again, using Eq. (15.60) it is seen that the ponderomotive force term acts
like a modulation of the electron temperature such that ñ�Te → ñ�Te+ n�T̃e,
where T̃e is due to the high-frequency electron quiver velocity.

High-frequency wave is an electron plasma wave

In this case the wave is electrostatic and so there is no high-frequency oscillating
magnetic field. The nonlinear continuity equation is

�ñe
�t

+n	 · ũe = −	 · �ñeũe� (15.67)

and taking a time derivative this becomes

�2ñe
�t2

+n	 · �ũe
�t

= − �
�t
	 · �ñeũe� � (15.68)

However, the high-frequency linear electron equation of motion is

�ũe
�t

= qe
me

Ẽ− 3�Te
men

	ñe (15.69)

so Eq. (15.68) becomes

�2ñe
�t2

+�2
peñe−

3�Te
me

	2ñe = − �
�t
	 · �ñeũe� � (15.70)

In principle, there are two possible components in the right-hand side nonlinear
term since ñeũe = ñleũhe + ñhe ũle, where l and h refer to low- and high-frequency
waves. However, as was shown by Eq. (15.46), the ñleũ

h
e term is the dominant

term and so the ñhe ũ
l
e term can be discarded. If the high-frequency wave associated

with ũhe is an electromagnetic wave, then the electric field is transverse so 	 · ũhe ∼
	 · Ẽh = 0 and, in this case, ñhe ũ

l
e is not just small, but in fact is exactly zero since

ñhe = 0. Hence, the high-frequency wave equation becomes

�2ñe
�t2

+�2
peñe−

3�Te
me

	2ñe = − �
�t
	 · (ñleũhe ) � (15.71)

If the high-frequency wave is electromagnetic, then 	 ·(ñleũhe )= ũhe ·	ñle showing
that the nonlinearity consists of a density modulation due to the high-frequency
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motion across the density ripples of the low-frequency mode. For purposes of
consistency, it is worthwhile to express Eq. (15.71) in terms of electric field using

	 · Ẽ = 1

0
ñeqe (15.72)

so

	 ·
(
�2Ẽ
�t2

+�2
peẼ − 3�Te

me
	2Ẽ

)
= − �

�t

1

0
	 · (ñleqeũhe ) � (15.73)

which can be integrated in space to give the general expression for a high-
frequency electron plasma wave with nonlinear coupling term,

�2Ẽ
�t2

+�2
peẼ− 3�Te

me
	2Ẽ = − 1


0

�

�t

(
ñleqeũ

h
e

)
� (15.74)

High-frequency wave is an electromagnetic wave

Here the wave is transverse so 	 · Ẽ = 0 and the curl of Faraday’s law becomes

	2Ẽ = �	× B̃
�t

� (15.75)

Substituting Eq. (15.44) and using the linear equation of motion gives the
general expression for a high-frequency electromagnetic wave with nonlinear
coupling term,

�2Ẽ
�t2

+�2
peẼ− c2	2Ẽ = − 1


0

�

�t

(
ñleqeũ

h
e

)
� (15.76)

the term ñheqeũ
l
e has been dropped for the reasons given in the previous paragraph.

Summary of mode interactions

Examination of the various combinations considered above shows that the nonlin-
ear coupling acting on high-frequency modes (either pump or high-frequency
daughter) is an effective modulation of the density experienced by the high-
frequency wave, i.e., �2

pe → �2
pe+�2

peñ
l/n. On the other hand, the nonlinear

coupling acting on the low-frequency daughter comes from the electron pondero-
motive force, which effectively modulates the electron temperature experienced
by the low-frequency mode, i.e., ñ�Te → ñ�Te+n�m

(
ũhe
)2
/2.

Coupled oscillator formulation

To see how the coupled wave equations can be expressed in terms of coupled
oscillators, the specific situation of an electromagnetic wave interacting with a
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Langmuir wave and an ion acoustic wave is now considered. In this case, the
three coupled equations are

�2Ẽ3

�t2
+�2

peẼ3 − c2	2Ẽ3 = −qe

0

�

�t
�ñ1ũ2�

�2Ẽ2

�t2
+�2

peẼ2 − 3�Te
me

	2Ẽ2 = −qe

0

�

�t
�ñ1ũ3�

�2ñ1
�t2

− c2s 	2ñ1 = nme
mi
	2 �ũ2 · ũ3� � (15.77)

where the relation(
1
2

(
ũhe
)2)

�1�k1

= 1
2

��ũ2 + ũ3� · �ũ2 + ũ3�� = �ũ2 · ũ3� (15.78)

has been used and the angle brackets refer to the component oscillating at the
beat frequency �1 = �3 −�2 and having the beat wavevector k1 = k3 −k2.
The subscript e has been dropped from all dependent variables because they all

refer to electrons. Since the acoustic wave frequency is much smaller than �pe,
it is possible to approximate

�

�t
�ñ1ũ2�� ñ1

�ũ2
�t

= ñ1
qe
me

Ẽ2� (15.79)

Using the quiver relation Eq. (15.39), the product of the high-frequency velocities
can be expressed as

�ũ2 · ũ3� = q2e
m2
e�2�3

〈
Ẽ2 · Ẽ3

〉
� (15.80)

Although the two velocities are oscillating 90	 out of phase relative to their
respective electric fields, the nonlinear product of the velocities has the same
phase behavior as the corresponding electric fields. This is because the nonlinear
product of the velocities scales as �cos�2t cos�3t� and the nonlinear product of
the electric fields scales as �sin�2t sin�3t� so that the difference between these
scalings is �cos�2t cos�3t− sin�2t sin�3t� = �cos��2 +�3�t�, which vanishes
because �2 +�3 is non-resonant. The system of equations thus becomes(

�2

�t2
+�2

pe− c2	2
)
Ẽ3 = −�2

pe

ñ1
n
Ẽ2(

�2

�t2
+�2

pe−
3�Te
me

	2
)
Ẽ2 = −�2

pe

ñ1
n
Ẽ3(

�2

�t2
− c2s 	2

)
ñ1
n

= q2e
mime�2�3

	2 〈Ẽ2 · Ẽ3

〉
� (15.81)
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If different modes are used, e.g., a Langmuir mode decaying into another Langmuir
mode, or if the low-frequency mode is a Langmuir wave, the left-hand side wave
terms will be changed accordingly, but the right-hand coupling terms will stay
the same except if the low-frequency wave is a Langmuir wave, in which case
the product mime must be replaced by m2

e in the denominator of the right-hand
side of the third equation.
The right-hand coupling terms can be made identical by defining a renormalized

density perturbation

&̃ = �ñ1
n

(15.82)

so the equations become(
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)
Ẽ3 = −�2

pe

&̃

�
Ẽ2(
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me

	2
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Ẽ2 = −�2

pe

&̃

�
Ẽ3(
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− c2s 	2

)
&̃ = − �q2ek

2
1

mime�2�3

〈
Ẽ2 · Ẽ3

〉
� (15.83)

The replacement 	2
〈
Ẽ2 · Ẽ3

〉 → − k21
〈
Ẽ2 · Ẽ3

〉
has been made in the third line

because, as stipulated in the discussion of Eq. (15.78),
〈
Ẽ2 · Ẽ3

〉
refers to the

component of the product oscillating at the beat frequency �1 = �3 −�2 and
having the beat wavevector k1 = k3−k2. Equating the coefficients of the nonlinear
coupling terms in the second and third lines of Eq. (15.83) gives

�= �pe
√
mime�2�3

qek1
(15.84)

so the equations become(
�2

�t2
+�2

pe− c2	2
)
Ẽ3 = −�&̃ Ẽ2(

�2

�t2
+�2

pe−
3�Te
me

	2
)
Ẽ2 = −�&̃ Ẽ3(

�2

�t2
− c2s 	2

)
&̃ = −�Ẽ2 · Ẽ3� (15.85)

where

�= �peqek1√
mime�2�3

(15.86)

and the angle brackets have now been omitted for clarity.
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Defining the mode frequencies as

�2
3 = �2

pe+k23c2

�2
2 = �2

pe+3k22�Te/me

�2
1 = k21c2s (15.87)

the coupled equations become(
�2

�t2
+�2

3

)
Ẽ3 = −�&̃Ẽ2(

�2

�t2
+�2

2

)
Ẽ2 = −�&̃Ẽ3(

�2

�t2
+�2

1

)
&̃ = −�Ẽ2 · Ẽ3� (15.88)

which is identical to the coupled oscillator system described by Eq. (15.3) if m is
set to unity in Eq. (15.3) and Ẽ2 is parallel to Ẽ3. Using Eq. (15.33), the nonlinear
growth rate is found to be

� = �E3

4
√
�1�2

= 1
4

�pi

�2

√
�3

�1
k1
qeE3

me�3
� (15.89)

15.4 Instability onset via nonlinear dispersion method

An equivalent way of considering the effect of nonlinearity is to derive a so-called
nonlinear dispersion relation (Nishikawa 1968a, Nishikawa 1968b). This method
has the virtue that both wave damping and frequency mismatches can easily
be incorporated. To see how damping can be introduced, consider an electrical
circuit consisting of an inductor, capacitor, and resistor all in series. The circuit
equation is

L
d2Q
dt2

+RdQ
dt

+ Q
C

= 0� (15.90)

where Q is the charge stored in the capacitor and the current is I = dQ/dt. The
general solution is Q∼ e−i�t, where � satisfies

�2 + i�
R

L
− 1
LC

= 0� (15.91)
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Solving for � gives the usual damped harmonic oscillator solution

�= − iR
2L

±
√

1
LC

− R2

4L2
� (15.92)

Thus, if 1/LC�R/L the imaginary part of the frequency is �i = −R/2L and the
real part of the frequency is �r = ±1/

√
LC. This means that the resistor can be

identified with damping by the relation R→ −2�iL. Interpreting Qj now as the
dependent variable for oscillation mode j, the appropriate differential equation
for the damped mode can be written as

d2Qj
dt2

+2�j
dQj
dt

+�2
jQj = 0� (15.93)

where �j =
∣∣Im�j∣∣ is the linear damping rate for mode j. Mode j therefore has the

time dependence exp �±i�jt−�jt�, where both �j and �j are positive quantities.
Thus, when dissipation is included, the typical system given by Eq. (15.88)

generalizes to (
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)
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Ẽ2 = −�&̃Ẽ3(
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)
&̃ = −�Ẽ2 · Ẽ3� (15.94)

Let us consider once again the situation where the pump wave Ẽ3 is very large
and so may be considered as having approximately constant amplitude. The decay
waves then do not grow to sufficient amplitude to deplete the pump energy and
so only the last two of the three coupled equations have to be considered. We
define ŝ2 as a unit vector in the direction of Ẽ2 so that

Ẽ2 = ŝ2 · Ẽ2 (15.95)

and the last two of the three coupled equations become(
�2
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+2�2
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+�2

2

)
Ẽ2 = −�&̃ŝ2 · Ẽ3(

�2

�t2
+2�1

�

�t
+�2

1

)
&̃ = −�Ẽ2ŝ2 · Ẽ3� (15.96)
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The wavevector selection rules are assumed to be satisfied but a slight mismatch-
ing in the frequency selection rules will be allowed. The pump wave is now
written as

ŝ2 · Ẽ3 = Z3 cos�3t� (15.97)

where Z3 is the effective pump wave amplitude. The coupled daughter equations
then become (
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�t2
+2�2
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+�2
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)
Ẽ2 = −�Z3

2

(
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1

)
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2
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)
Ẽ2� (15.98)

The Fourier transform of a quantity f�t� is defined as

f���=
∫

dtf�t�ei�t� (15.99)

where the sign of the exponent is chosen to be consistent with the convention
that a single Fourier mode has the form exp �−i�t). The Fourier transform of
f�t�e±i�3t will therefore be∫

dt
(
f�t�e±i�3t

)
ei�t = f��±�3� (15.100)

and the Fourier transform of �f/�t will be∫
dt
(
�

�t
f�t�

)
ei�t = −i�

∫
dtf�t�ei�t = −i�f���� (15.101)

Application of Eqs. (15.100) and (15.101) to Eqs. (15.98) gives(−�2 −2i��2 +�2
2

)
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2

[
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]
� (15.102)

By defining a generic linear dispersion relation


j���= −�2 −2i��j+�2
j � (15.103)

these equations can be written as


2���Ẽ2��� = −�Z3
2

[
&̃ ��+�3�+ &̃ ��−�3�

]
(15.104)


1���&̃��� = −�Z3
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[
Ẽ2 ��+�3�+ Ẽ2 ��−�3�

]
� (15.105)
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The frequency � in Eq. (15.105) can be replaced by �±�3 to give

&̃��±�3�= − �Z3
2
1��±�3�

[
Ẽ2 ���+ Ẽ2 ��±2�3�

]
� (15.106)

which is then substituted into Eq. (15.104) to obtain


2���Ẽ2���=
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�Z3
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)2
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1��+�3�
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]
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(15.107)
The terms Ẽ2 ��±2�3� can be discarded because, being non-resonant, they have
insignificant amplitude. What remains is


2���=
(
�Z3
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)2 [ 1

1��+�3�

+ 1

1��−�3�

]
� (15.108)

which is called the nonlinear dispersion relation (Nishikawa 1968a, Nishikawa
1968b).
The nonlinear dispersion relation is investigated by first writing

�= x+ iy� (15.109)

where it is assumed

x � �2 (15.110)

and also

�−�3 = x+ iy−�3 � −�1� (15.111)

These assumptions and definitions have been made so that 
1��−�3� is close
to zero, 
1��+�3� is not close to zero, and positive y corresponds to instability.
The term 1/
1��+�3� can therefore be discarded as being non-resonant and the
nonlinear dispersion relation simplifies to


2���
1��−�3�=
(
�Z3
2

)2
� (15.112)

The linear dispersion relations 
2 and 
1 on the left-hand side are each Taylor-
expanded to give


2��� = 
2��2 +x−�2 + iy�

� 
2��2�+ �x−�2 + iy�
d
2
d�

∣∣∣∣
�=�2

= −2i�2�2 −2�2 �x−�2 + iy� (15.113)
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and


1��−�3� = 
1�−�1 +x+ iy+�1 −�3�

� 
2�−�1�+ �x+ iy+�1 −�3�
d
1
d�

∣∣∣∣
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= 2i�1�1 +2�1 �x+ iy+�1 −�3� � (15.114)

Using these expansions, the nonlinear dispersion relation becomes

"−i ��2 +y�− �x−�2�# "i ��1 +y�+ �x+�1 −�3�#= 1
�1�2

(
�Z3
4
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(15.115)
or, in more compact form,

�x̄+ i ��2 +y�� �x̄−�+ i ��1 +y��= − 1
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(
�Z3
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)2

� (15.116)

where

x̄ = x−�2 (15.117)

and

�= �3 − ��1 +�2� (15.118)

is the frequency mismatch.
The real and imaginary parts of Eq. (15.116) are

�x̄−�� x̄− ��2 +y� ��1 +y� = − 1
�1�2

(
�Z3
4

)2

(15.119)

x̄ ��1 +y�+ �x̄−����2 +y� = 0� (15.120)

Solving Eq. (15.120) gives

x̄ = ��2 +y�
�2y+�1 +�2�

�� x̄−�= − ��1 +y�
�2y+�1 +�2�

� (15.121)
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and substitution for x̃ and x̃−� in Eq. (15.119) results in the expression for the
growth rate

��2 +y� ��1 +y�
(
1+ �2

�2y+�1 +�2�2
)

= 1
�1�2

(
�Z3
4

)2

� (15.122)

Onset of instability corresponds to y being close to zero and at marginal stability
Eq. (15.122) becomes

��2 +�1� y+�1�2 = �2Z2
3

16�1�2

(
1+ �2

��2 +�1�2
) � (15.123)

The growth rate near threshold thus is

y = 1
��2 +�1�
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This shows that the pump amplitude threshold for instability is

Z3 = 4
√
�1�2�1�2
�

√
1+ �2

��2 +�1�2
� (15.125)

this threshold is proportional to the geometric mean of the linear damping rates
of the two modes. If the pump amplitude is below threshold then the nonlinear
instability does not occur. The lowest threshold occurs when �= 0, i.e., when the
frequency selection rule is exactly satisfied. Instability when the pump amplitude
exceeds a threshold is routinely observed in actual experimental situations as was
discussed earlier, i.e., decay instability of a pump wave is observed to begin
only when the pump wave amplitude exceeds threshold (for example, see Stenzel
and Wong (1972)) . For a pump amplitude well above threshold, Eq. (15.122)
becomes

y =
√

1
�1�2

(
�Z3
4

)2

− �
2

4
� (15.126)

which shows that frequency mismatch reduces the growth rate. The situation
reduces to Eqs. (15.33) and (15.89) when � = 0. Thus the nonlinear dispersion
relation formalism extends the Manley–Rowe coupled oscillator model to include
the effects of both dissipation and frequency mismatch.
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15.5 Digging a density hole via ponderomotive force

If the low-frequency daughter mode is at zero frequency, then the ion acoustic
mode ceases to be a wave. Instead, it becomes a density depletion caused by the
ponderomotive force and so Eq. (15.56) reduces to

1
n
	ñ= −1

2
me
�Te

	
(
ũhe
)2
� (15.127)

which can be integrated to give a Boltzmann-like relation

ñ

n
= −1

2

me

〈(
ũhe
)2〉

�Te
� (15.128)

Since the high-frequency daughter wave is the same as the pump wave there is
now only one high-frequency wave and so there is no need to have subscripts
distinguishing the modes. The consequence is that the high-frequency wave
propagates in a plasma having a density depletion dug out by the ponderomotive
force associated with the wave. For example, the Langmuir wave equation in this
case would become⎛⎝ �2

�t2
+2�
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�t
+�2

pe

⎛⎝1− 1
2

me
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ũhe
)2〉
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⎞⎠− 3�Te
me

	2

⎞⎠ ũhe = 0� (15.129)

where ũhe has been used as the linear variable instead of Ẽ and a linear damping
term involving the linear damping rate � has been introduced.
An undamped linear Langmuir wave in a uniform plasma satisfies the dispersion

relation �2 =�2
pe�1+3k2�2De�, where k�De� 1 so that the wave frequency is very

close to �pe. It is reasonable to presume that the nonlinear wave also oscillates
at a frequency very close to �pe and so what is important is the deviation of the
frequency from �pe. To investigate this, the electron fluid velocity is assumed to
be of the form

ũhe �x� t� = Re
[
A�x� t�e−i�pet

]
= 1

2

{
A�x� t�e−i�pet+A∗�x� t�ei�pet

}
� (15.130)

in which case 〈(
ũhe
)2〉= 1

2
�A�2 (15.131)
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and the time dependence of A�x� t� characterizes the extent to which the wave
frequency deviates from �pe. Because this deviation is small, A changes slowly
compared to �pe, and so in analogy to Eq. (3.22) it is possible to approximate

�2

�t2

[
A�x� t�e−i�pet

]
� −�2

peA�x� t�e
−i�pet−2i�pe

�A
�t

e−i�pet (15.132)

and
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]
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−i�pet�

Substitution of Eq. (15.132) into Eq. (15.129) gives

2i�pe
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2
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4
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�Te

A+ c2	2A = 0� (15.133)

By defining the normalized variables

� = �pet/2

' = A

2
√
�Te/me

% = x�pe/c

� = 2�/�pe (15.134)

Eq. (15.133) can be put in the standardized form

i
�'

��
+ i�'+�'�2 '+	2

% ' = 0� (15.135)

this is called a nonlinear Schrödinger equation since, if � = 0, this equation
resembles a Schrödinger equation where �'�2 plays the role of a potential energy.

In order to exploit this analogy, we recall the relationship between the
Schrödinger equation and the classical conservation of energy relation for a
particle in a potential well V�x�. According to classical mechanics, the sum of
the kinetic and potential energies gives the total energy, i.e.,

p2

2m
+V�x�= E� (15.136)

However, in quantum mechanics, the momentum and the energy are expressed as
spatial and temporal operators, p = −i�	 and E = i��/�t, which act on a wave
function & so that Eq. (15.136) becomes

− �2

2m
	2&+V& = i�

�&

�t
(15.137)
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or, after rearrangement,

i�
�&

�t
−V&+ �2

2m
	2& = 0� (15.138)

Equation (15.136) shows that a particle will be trapped in a potential well if
V�±�� > E > Vmin, where Vmin is the minimum value of V . From the quantum
mechanical point of view, �&�2 is the probability of finding the particle at position
x. Thus, existence of solutions to Eq. (15.138) localized to the vicinity of Vmin

is the quantum mechanical way of stating that a particle can be trapped in a
potential well. Comparison of Eqs. (15.135) and (15.138) shows that − ∣∣Ā∣∣2 plays
the role of V and so a local maximum of

∣∣Ā∣∣2 should act as an effective potential
well. This makes physical sense because Langmuir waves reflect from regions of
high density and the amplitude-dependent ponderomotive force digs a hole in the
plasma. Thus, regions of high wave amplitude create a density depression and the
Langmuir wave reflects from the high-density regions surrounding this density
depression. The Langmuir wave then becomes trapped in a depression of its own
making. Formation of this depression can be an unstable process because if a
wave is initially trapped in a shallow well, its energy �'�2 will concentrate at the
bottom of this well, but this concentration of �'�2 will make the well deeper and
so concentrate the wave energy into a smaller region, making �'�2 even larger,
and so on.

Caviton instability

The instability outlined above can be described in a quantitative manner using the
1-D version of Eq. (15.135), namely

i
�'

��
+ i�'+�'�2 '+ �

2'

�%2
= 0� (15.139)

It is assumed that a stable solution '0�x� t� exists initially and satisfies

i
�'0
��

+ i�'0 +�'0�2 '0 + �
2'0
�%2

= 0� (15.140)

where �'0�x� t�� is bounded in both time and space. Next, a slightly different
solution is considered,

'�x� t�= '0�x� t�+ '̃�x� t�� (15.141)

where the perturbation '̃�x� t� is assumed to be small compared to '0�x� t�. The
equation for '�x� t� is thus

i
�

��
�'0 + '̃�+ i��'0 + '̃�+�'0 + '̃�2 �'0 + '̃�+ �2

�%2
�'0 + '̃�= 0� (15.142)
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Subtracting Eq. (15.140) from (15.142) yields

i
�'̃

��
+ i�'̃+�'0 + '̃�2 �'0 + '̃�−�'0�2 '0 + �

2'̃

�%2
= 0� (15.143)

Expansion of the potential-energy-like terms while keeping only terms linear
in the perturbation gives

�'0 + '̃�2 �'0 + '̃�−�'0�2 '0 ≈ '20 '̃∗ +2 �'0�2 '̃ (15.144)

so Eq. (15.143) becomes
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2'̃

�%2
= 0� (15.145)

It is now assumed that the perturbation is unstable and has the space-time
dependence

'̃ ∼ eik%+�t� (15.146)

in which case Eq. (15.145) becomes(
i�+ i�+2 �'0�2 −k2

)
'̃ = −'20 '̃∗� (15.147)

which has the complex conjugate(
−i�− i�+2 �'0�2 −k2

)
'̃∗ = −'∗2

0 '̃� (15.148)

Combining the above two equations gives a dispersion relation for the growth
rate

��+��2 = −k4 +4k2 �'0�2 −3 �'0�4 � (15.149)

The maximum � is found by taking the derivative of both sides with respect to
k2 and setting this derivative to zero, obtaining

k2max = 2 �'0�2 (15.150)

as the value of k2 giving the maximum for �. Substitution of k2max into Eq. (15.149)
gives

�max = −�+�'0�2 � (15.151)

Thus, the configuration is unstable when �'0�2 > � or, in terms of the original
variables, when

me

〈(
ũhe
)2〉

4�Te
>
�

�pe
� (15.152)

This is called a caviton instability and it tends to dig a sharp hole in the plasma
density. This is because each successive stage of growth can be considered a
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quasi-equilibrium, which is destabilized, and from Eq. (15.150) it is seen that
the most unstable k becomes progressively larger as the amplitude increases.
Another way of seeing this hole-digging tendency is to note that Eqs. (15.147)
and (15.148) are coupled by their respective right-hand terms and these terms are
proportional to the amplitude of the original wave. It is this coupling that leads
to instability of the perturbation and so the perturbation is most unstable where
the amplitude of the original wave was largest. The digging of a density cavity
in a plasma by a Langmuir wave was observed experimentally by Kim, Stenzel
and Wong (1974); the density cavity was called a caviton.

Stationary Envelope Soliton

A special, fully nonlinear solution of Eq. (15.139) can be found in the limit where
damping is sufficiently small to be neglected so that the nonlinear Schrödinger
equation reduces to

i
�'

��
+�'�2 '+ �

2'

�%2
= 0� (15.153)

We now search for a solution that vanishes at infinity, propagates at some fixed
velocity, and oscillates so that

' = g�%�ei��� (15.154)

With this assumption, Eq. (15.153) becomes

−�g+g3+g′′ = 0� (15.155)

After multiplying by the integrating factor g′, this becomes
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(
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2
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4
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2

(
g′)2)= 0� (15.156)

Since the solution is assumed to vanish at infinity, integration with respect to %
from % = −� gives (

g′)2 =�g2 − 1
2
g4 (15.157)

or
dg

g
√
�− 1

2g
2

= d%� (15.158)

By letting

g =
√
2�

cosh �
(15.159)
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it is seen that

dg = −
√
2�

cosh2 �
sinh �d�� (15.160)

in which case

� = −√
�%+�� (15.161)

where � is an arbitrary constant. Thus, the solution is

'�%� ��=
√
2�ei��

cosh
(√
�%−�

) � (15.162)

which is localized in space. For large �, the oscillation frequency and amplitude
both increase, and the localization is more pronounced.

Propagating envelope soliton

One may ask whether the above solution can be generalized to a propagating
solution, i.e., can % be replaced by %− vt, where v is a velocity? Making only
this replacement is clearly inadequate and so a solution of the form

' = g�%−vt�ei��+ih�%��� (15.163)

is assumed, where h�%� �� is an unknown function to be determined. Substitution
of this assumed solution into Eq. (15.153) gives

−ivg′ −�g−g �h
��

+g3 +g′′ +2i
�h

�%
g′ −

(
�h

�%

)2

g = 0� (15.164)

Setting the imaginary part to zero gives

v= 2
�h

�%
� (15.165)

which can be integrated to give

h= v%

2
+f���� (15.166)

where f��� is to be determined. The real part of the equation becomes

−�g−g �h
��

+g3 +g′′ − v
2

4
g = 0� (15.167)

If we set

�h

��
= −v

2

4
(15.168)
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then the second and last terms in Eq. (15.167) cancel each other. Equation (15.168)
implies f���= −v2�/4 so

h�%� ��= v%

2
− v

2

4
�� (15.169)

Thus, Eq. (15.167) reverts to Eq. (15.155) which is solved as in Eqs. (15.156)–
(15.162) to give the propagating envelope soliton

'�%� ��=
√
2� exp

(
i��+ iv%/2− iv2�/4

)
cosh

(√
��%−vt�−�

) � (15.170)

15.6 Ion acoustic wave soliton

The ion acoustic wave dispersion relation is

�2 = k2c2s
1+k2�2D

� (15.171)

which has the forward propagating solution

�= kcs
(
1+k2�2D

)−1/2
(15.172)

or, for small k�D,

�= kcs−k3�2Dcs/2� (15.173)

where the last term is small. Since �/�x → ik and �/�t → −i� the inverse
substitution is k→ −i�/�x and �→ i�/�t. Applying this inverse substitution to
Eq. (15.173) shows that the forward propagating ion acoustic wave implies that
the partial differential equation for, say, ion velocity would be

i
�ui
�t

= −i
�ui
�x
cs− �−i�3

�3ui
�x3

�2Dcs
2
� (15.174)

After multiplying by −i� this gives the dispersive forward propagating wave
equation

�ui
�t

= −cs
�ui
�x

− �
2
Dcs
2
�3ui
�x3

� (15.175)

This wave equation was derived using a linearized version of the ion fluid
equation of motion, namely

mi
�ui
�t

= qiE� (15.176)
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If, instead, the complete nonlinear ion equation had been used, the ion fluid
equation of motion would contain a convective nonlinear term and be

mi

(
�ui
�t

+ui
�ui
�x

)
= qiE� (15.177)

This suggests that inclusion of convective ion nonlinearity corresponds to making
the generalization

�ui
�t

→ �ui
�t

+ui
�ui
�x

(15.178)

and so the forward propagating ion acoustic wave equation with inclusion of ion
convective nonlinearity is

�ui
�t

+ �ui+ cs�
�ui
�x

+ �
2
Dcs
2
�3ui
�x3

= 0� (15.179)

This suggests defining a new variable

U = ui+ cs� (15.180)

which differs only by a constant from the ion fluid velocity. The forward
propagating nonlinear ion acoustic wave equation can thus be rewritten as

�U

�t
+U �U

�x
+ �

2
Dcs
2
�3U

�x3
= 0� (15.181)

We now introduce dimensionless variables by normalizing lengths to the Debye
length, velocities to cs, and time to �pi = cs/�de. The dimensionless variables
are thus

' = U

cs
� % = x

�D
� � = �pit� (15.182)

and the dimensionless wave equation becomes

�'

��
+' �'

�%
+ 1

2
�3'

�%3
= 0� (15.183)

this is called the Korteweg–de Vries (KdV) equation (Korteweg and de Vries
1895). Modern interest in this equation was stimulated with the discovery of a
general solution to the soliton problem by Gardner et al. (1967).
Because the linear wave is forward traveling with unity velocity in these

dimensionless variables, it is reasonable to postulate that the nonlinear solution
has the forward propagating form

' = '�%−V��� (15.184)
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where V is of order unity. A special solution can be found by introducing the
wave-frame position variable

�= %−V� (15.185)

so the lab-frame space and time derivatives can be written as

�

�%
= �

��

�

��
= −V �

��
� (15.186)

Substitution of these into the wave equation gives an ordinary differential equation
in the wave-frame,

−V d'
d�

+ 1
2
d'2

d�
+ 1

2
d3'
d�3

= 0� (15.187)

where d has been used instead of � because the equation is now an ordinary
differential equation. A solution is sought that vanishes at both plus and minus
infinity; such a solution is called a solitary wave. To find this solution, Eq. (15.187)
is integrated using the boundary condition that ' vanishes at infinity to obtain

−V'+ '
2

2
+ 1

2
d2'
d�2

= 0� (15.188)

Multiplying by the integration factor d'/d� allows this to be recast as

d
d�

(
−V'

2

2
+ '

3

6
+ 1

4

(
d'
d�

)2
)

= 0 (15.189)

and then integrating gives

d'
d�

= '
√
2V − 2

3
' � (15.190)

where the boundary condition at infinity has been used again. This can be written
as

d �'/3�

21/2
'

3

√
V − '

3

= d�� (15.191)

The substitution
'

3
= V

cosh2 �
(15.192)
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allows simplification of Eq. (15.191) to

d
('
3

)
= −2V sinh �

cosh3 �
d�� (15.193)

Thus, Eq. (15.191) becomes

−2V sinh �

cosh3 �
d�

21/2
V

cosh2 �

√
V − V

cosh2 �

= d� (15.194)

or

−
√

2
V
d� = d��

which can be integrated to give

� =
√
V

2
�%0 −�� � (15.195)

where %0 is a constant. The propagating solitary wave solution to Eq. (15.183) is
therefore

'���= 3V

cosh2
(√

V

2
�%0 −��

) (15.196)

or

'�%� ��= 3V

cosh2
(√

V

2
�%0 − �%−V���

) � (15.197)

This solution, called a soliton, has the following properties:

1. As required, the solution vanishes when �%� → �.
2. The spatial profile consists of a solitary pulse centered around the position %= %0+V�.
3. The pulse width scales as V−1/2 and the pulse height scales as V , so larger amplitude

solitons are sharper and propagate faster.

An important property of solitons is that they obey a form of superposition
principle even though they are essentially nonlinear. In particular, when a fast
soliton overtakes a slow soliton, it is seen that after the collision or interaction,
both the fast and slow solitons retain their identity. The underlying mathematical
theory explaining this surprising behavior is complex and beyond the scope of this
text (the interested reader should consult Drazin and Johns (1989)). This theory
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is called inverse scattering (Gardner et al. 1967) and involves mapping the non-
linear equation to a special linear equation, which is then solved and then mapped
back again to give the time evolution of the nonlinear solution. The special linear
equation describes a quantum mechanical particle trapped in a potential well,
where '�%� t� plays the role of the potential. In particular, the linear equation is
of the form �2&/�%2 + ��−'�%� t��& = 0, where � is an eigenvalue and time t
is treated as a parameter. When this linear equation is solved for '�%� t� and the
solution is inserted in the KdV equation it is found that ��/�t= 0. This invariance
of the eigenvalues is a key feature, which makes possible the {nonlinear →linear}
and then {linear→nonlinear} mappings required to construct the solution.

15.7 Assignments

1. Pump depletion for the system of three coupled oscillators discussed in Section 15.2.

(a) Suppose A1 = 0 at t= 0 but A2 and A3 are finite. What is the value of the constant
in Eq. (15.27)?

(b) Suppose that sin � is not zero. Will A1 become finite at times t > 0? If A1 becomes
finite, what constraint does Eq. (15.27) put on the value of cos � and hence on
sin �?

(c) Use Eqs. (15.24) to write A2
1�t� and A

2
2�t� in terms of A2

3�t� and the initial conditions
A2

0�0�, A
2
1�0�, and A

2
3�0�.

(d) Square both sides of Eq. (15.18c) and use the results in (b) and (c) above to obtain
an equation of the form

1
2

(
dA3

dt

)2

+U�A3�= E� (15.198)

where E is a constant. Sketch the dependence of U�A3� on A3 indicating the
locations of maxima and minima.

(e) Consider Eq. (15.198) as the energy equation for a pseudo-particle with velocity
dA3/dt in a potential well U�A3�. What is the total energy of this pseudo-particle in
terms of A2

0�0��A
2
1�0�, and A

2
3�0�? To what does the position of the pseudo-particle

in the potential well correspond?
(f) Considering the initial conditions given in (a), where is the pseudo-particle initially

located in its potential well? Sketch the qualitative time dependence of A3 and
indicate how features of this time dependence correspond to the location of the
pseudo-particle in its potential well.

(g) Give an integral expression for the time required for A3 to go to its first zero.
(h) Solve Eqs. (15.18a)–(15.18c) numerically for the initial conditions given in (a) and

use the numerical results to show that the time dependence of A3 can be interpreted
as the position of a pseudo-particle in a potential well prescribed by Eq. (15.198).
Note: the reduction of the pump wave amplitude as it transfers energy to the
daughter waves is called pump depletion; the mathematical behavior discussed in
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this problem can be expressed in terms of Jacobi elliptic functions (Sagdeev and
Galeev 1969).

2. Stimulated Raman scattering in laser fusion. Laser fusion is a proposed method for
attaining a controlled fusion reaction. This method involves illuminating a millimeter
radius pellet with intense laser light so as to ablate the outer layer of the pellet. The
radial outflow of the ablating material constitutes a radial outflow of momentum and
so, in order to conserve radial momentum, the rest of the pellet accelerates inwards
in rocket-like fashion. An important issue is the decay of the incident laser light into
other waves because such a decay would reduce the power available to drive the
ablation process. For example, there could be stimulated Raman scattering where the
incident laser light decays into an outward propagating electromagnetic wave (often
called backscattered light) and an inward propagating Langmuir wave.

(a) Let the incident laser beam be denoted by subscript 3, the outward propagating
electromagnetic wave be denoted by subscript 2, and the inward propagating
Langmuir wave be denoted by subscript 1. Assume the laser wavelength is much
shorter than the characteristic density scale length. Show that if the backward
scattered electromagnetic wave has a frequency only slightly above �pe then it is
possible to satisfy the frequency and wavenumber matching conditions at a location
where the density is approximately 1/4 of the density at which the incident wave
would reflect.

(b) Draw a sketch of � versus k for the incident em wave, the backscattered em wave,
and the Langmuir wave. Note that vTe � c so if this plot is scaled to show the
dispersion of the electromagnetic waves, the Langmuir wave dispersion is almost
a horizontal line.

(c) Draw vectors on the sketch in (a) with coordinates "k��# so the incident elec-
tromagnetic wave is a vector v3 = "k3��3#, the backscattered wave is a vector
v2 = "k2��2#, and the Langmuir wave is a vector v1 = "k1��1#. Show on the
sketch how the vectors can add up in a manner consistent with the selection rules
v3 = v1 +v2.

3. Parametric decay instability. The minimum pump amplitude for the parametric decay
instability (electromagnetic wave decays into a Langmuir wave and an ion acoustic
wave) is given by Eq. (15.125) to be

E3 = 4

√
�1�2�1�2
�

�

where the coupling parameter was defined in Eq. (15.86) to be

�= �peqk1√
mime�2�3

�

(a) How do the Langmuir wave frequency �2 and the ion acoustic wave frequency �1

compare to �pe (nearly same, much larger, or much smaller)?
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(b) Taking into account the selection rules, how does the pump frequency �3 compare
to �pe? What does this imply for k3 and hence k1 and k2?

(c) Using the results from (a) express the instability threshold in a form where

0E

2/n�Te is a function of �1/�1 and �2/�2.
(d) Suppose a pump wave with frequency �3 propagates into a plasma with a mono-

tonically increasing density. Show the relative locations of stimulated Brillouin
and stimulated Raman backscattering in terms of a criterion for the local density.
Assume the wavelengths of all modes are much shorter than the density gradient
scale length.

(e) The National Ignition Facility at the Lawrence Livermore National Lab in the USA
has an array of 351 nm wavelength lasers designed to apply 5×1014 W over the
surface of a target having an initial radius of 1 mm. If these lasers are considered
to pump electromagnetic waves with frequency �3, at what density does �3 =�pe
occur? Assuming Te = 300 eV, what is the value of 
0E

2/n�Te at the location
where �3 = �pe? If �1/�1 = �2/�2 = 0�1 will this plasma be susceptible to the
parametric decay instability?
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Non-neutral plasmas

16.1 Introduction

Conventional plasmas, the main topic of this book, consist of a quasi-neutral
collection of mutually interacting ions and electrons. This description applies to
the vast majority of entities called plasma (e.g., fusion, industrial, propulsion,
ionospheric, magnetospheric, interplanetary, solar, and astrophysical plasmas).
Non-neutral plasmas are an exception to this taxonomy and, not surprisingly,
have certain behaviors that differ from conventional plasmas (Malmberg 1992,
Davidson 2001). Applications of non-neutral plasmas include microwave oscil-
lators and amplifiers, simulating the vortex dynamics of ideal two-dimensional
hydrodynamics, testing basic nonlinear concepts, and confining anti-particles.

16.2 Brillouin flow

Using a cylindrical coordinate system {r� �� z} we first consider the forces acting
on an infinitely long, azimuthally symmetric cylindrical cloud of cold charged
particles all having the same polarity. Because of the mutual electrostatic repulsion
of the same-sign charged particles, the cloud of particles will expand continuously
in the r direction and so will not be in radial equilibrium. The cloud would be even
further from equilibrium if, in addition, it were to rotate with azimuthal velocity
u = u��̂, because rotation would provide a centrifugal force mu2�/r , which would
add to the radially outwards electrostatic force and so increase the rate of radially
outward expansion.
However, if this rotating cloud of same-sign charged particles were immersed

in a uniform axial magnetic field B=Bẑ, then the magnetic force ∼ qu×B would
push the charged particles radially inwards, counteracting both the electrostatic
repulsion and the centrifugal force. This situation is shown in Fig. 16.1 for the
situation where the cloud consists of electrons (Malmberg and de Grassie 1975).
Negatively biased electrodes are used at the ends to prevent cloud expansion in

530
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cylindrical electron cloud

coils to make axial field B

perfectly conducting wall
negatively 
biased
electrode

negatively 
biased
electrode

z

r

Fig. 16.1 Pure electron plasma configuration. Magnetic field B = Bẑ produced
by coils, negatively biased electrodes on ends prevent axial expansion. Plasma
radius is rp, wall radius is a.

the z direction; if the cloud were made of ions, then the end electrodes would be
biased positively.
Because there is only one charge species, there is no frictional drag due to

collisions with a species of opposite polarity and, because the plasma is cold, the
pressure is zero. The radial component of the fluid equation of motion Eq. (2.27)
thus reduces to a simple competition between the electrostatic, magnetic, and
centrifugal forces, namely

0 = q (Er +u�Bz)+ mu2�r � (16.1)

Because of the assumed cylindrical and azimuthal symmetry, Poisson’s equation
reduces to

1
r

�

�r
�rEr�= n�r�q


0
� (16.2)

which can be integrated to give

Er = q


0

1
r

∫ r
0
n�r ′�r ′dr ′� (16.3)

We will assume that the radius of the non-neutral plasma is rp and that the non-
neutral plasma is surrounded by a perfectly conducting wall of radius a, where a
is larger than rp so there is a vacuum region between the plasma and the wall. In
the special case of uniform density up to the plasma radius rp, Eq. (16.3) may be
evaluated to give

Er =

⎧⎪⎪⎨⎪⎪⎩
nq

2
0
r for r ≤ rp, plasma region

nq

2
0

r2p

r
for rp ≤ r ≤ a, vacuum region.

(16.4)
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Thus, in the plasma Eq. (16.1) becomes

u2�+u�r�c+�2
pr

2/2 = 0� (16.5)

a quadratic equation for u�. It is convenient to express the two roots of this
equation in terms of angular velocities �0 = u�/r so

�0 =
−�c±

√
�2
c−2�2

p

2
� (16.6)

Since �0 is independent of r, the non-neutral plasma rotates as a rigid body.
This is a special case resulting from the assumption of a uniform density profile.
In the more general case of a non-uniform density profile (to be discussed later),
the rotation velocity is sheared so �0 varies with r. The two roots in Eq. (16.6)
coalesce at �2

p =�2
c/2. This point of coalescence is called the Brillouin limit and

it is seen that real roots �0 exist only if the density is sufficiently low for �2
p to

be below this limit.
We will consider the situation typical for non-neutral plasma experiments where

the density is well below the Brillouin limit so the two roots are well separated
and given by

�0− � −�c
(
1+�2

p/2�
2
c

)
(16.7)

�0+ � �2
p/2�c� (16.8)

the plus and minus signs refer to the choice of signs in Eq. (16.6). The large
root �0− is near the cyclotron frequency and the small root �0+ is much smaller
than the plasma frequency since �p � �c. The small root is called the diocotron
frequency.
The rotation of the non-neutral plasma in the magnetic field provides an inward

force balancing the radially outward electrostatic force. There also exist axial
electrostatic forces due to the mutual electrostatic repulsion between the same-
sign charges and these forces would cause the plasma to expand axially. Since
these axial forces cannot be balanced magnetically, the axial forces are balanced
by biased electrodes at the ends of the plasma. The electrodes have the same
polarity as the plasma, thereby providing a potential well in the axial direction.
Any particle attempting to escape axially is repelled by forces due to the repulsive
bias on an end electrode and is reflected back into the main plasma cloud before
it can reach the end electrode.
The fast motion of the charged particles in the axial direction smears out axial

structure so, to first approximation, the non-neutral plasma can be considered
axially uniform. The system then depends only on r and � and a pair of deceptively
simple-looking coupled equations relates the electrostatic potential � and the
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density n. These two coupled equations govern not only the equilibrium but also
the surprisingly rich low-frequency dynamics of a non-neutral plasma. Because
the electric field is electrostatic and the magnetic field is a uniform vacuum field,
the E × B drift

u = −	�×B
B2

(16.9)

is incompressible, i.e., 	 · u = 0. Because of this, the continuity equation,
Eq. (2.19), reduces to a simple convection of density with flow, namely

�n

�t
+u ·	n= 0� (16.10)

Using Eq. (16.9) to substitute for u, this can be written as

�n

�t
= 	�×B

B2
·	n� (16.11)

Equation (16.11) and Poisson’s equation

	2�= −nq

0

(16.12)

provide two coupled equations in n and � and are the governing equations for
the configuration. Although Eqs. (16.11) and (16.12) appear simple, they actually
allow quite complex behavior, which will be discussed in the remainder of this
chapter. An interesting feature of these equations is that they have no mass
dependence, a consequence of ignoring the centrifugal force term, which affects
only the high-frequency branch, Eq. (16.7). Thus, the low-frequency dynamics
described by Eqs. (16.11) and (16.12) can be thought of as the dynamics of a
massless, incompressible fluid governed by a combination of E×B drifts and
Poisson’s equation.

16.3 Isomorphism to incompressible 2-D hydrodynamics

Let us put plasma physics aside for a moment and consider the equations governing
an incompressible two-dimensional fluid. Incompressibility means that the mass
density � is constant and uniform so the continuity equation reduces to

	 ·u = 0� (16.13)

Using the vector identity u ·	u= 	u2/2−u×	×u, the fluid equation of motion
can be written as

�

(
�u
�t

+ 1
2
	u2 −u×	×u

)
= −	P� (16.14)
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Taking the curl of this equation and defining the vorticity vector � = 	×u gives

��

�t
= 	× �u×�� � (16.15)

which has the same form as the ideal MHD induction equation, Eq. (2.82), and so
can be interpreted as indicating that the vorticity is frozen into the convecting fluid
(Kelvin vorticity theorem). Using cylindrical coordinates to express the velocity
as u = ur�r� ��r̂+u��r� ���̂ it is seen that

	×u = ẑ
(
1
r

�

�r
�ru��−

1
r

�ur
��

)
� (16.16)

The vorticity vector therefore lies in the z direction and may be written as

� =�ẑ� (16.17)

The z component of Eq. (16.15) is

��

�t
= ẑ ·	× �u×�ẑ�
= 	 · ��u×�ẑ�× ẑ�
= −	 · �u��
= −u ·	�� (16.18)

The incompressibility condition prescribed by Eq. (16.13) allows the velocity to
be written in terms of a stream-function &,

u = −	&× ẑ� (16.19)

in which case Eq. (16.18) becomes

��

�t
= 	&× ẑ ·	�� (16.20)

However, the z component of the curl of Eq. (16.19) can also be expressed in
terms of & since

� = ẑ ·	×u

= −ẑ ·	× �	&× ẑ�
= −	 · ��	&× ẑ�× ẑ�
= 	2&� (16.21)
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Table 16.1

Non-neutral plasma Incompressible 2-D fluid

�n

�t
= 	�× ẑ

B
·	n ��

�t
= 	&× ẑ ·	�

	2�= −nq

0

	2& =�

There is thus an exact isomorphism between the non-neutral plasma equations and
the equations describing a 2-D incompressible fluid; this isomorphism is given in
Table 16.1
These sets of equations can be made identical by setting

& = �

B
� �= − nq


0B
� (16.22)

Thus, density corresponds to vorticity and electrostatic potential corresponds to
stream-function.
A non-neutral plasma can therefore be used as an analog computer for inves-

tigating the behavior of an inviscid incompressible 2-D fluid (Driscoll and
Fine 1990). This is quite useful because it is difficult to make a real fluid act in a
truly two-dimensional inviscid fashion whereas it is relatively easy to make a non-
neutral plasma do so. While real fluids are three dimensional, it is nevertheless
very useful to develop an understanding for two-dimensional dynamics since this
understanding can be of considerable help for understanding three-dimensional
dynamics. The plasma analog contains all the nonlinear vortex interactions intrin-
sic to the 2-D fluid problem. Besides serving as an analog computer for investi-
gations of 2-D fluid dynamics, non-neutral plasmas have also been successfully
used as a method for trapping antimatter (Surko, Leventhal, and Passner 1989).

16.4 Near-perfect confinement

A curious feature of non-neutral plasmas is that collisions do not degrade confine-
ment so long as axisymmetry is maintained (O’Neil 1995). Thus, in a pure electron
plasma, electron–electron collisions do not cause leakage of the plasma out of
the trap (loss of confinement comes only from collisions with neutrals and this
can be minimized by using good vacuum techniques). To see this, consider the
canonical angular momentum of the ith particle

P�i =mriv�i+qriA�i� (16.23)
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A collision between two identical charged particles will conserve the total angular
momentum of the two particles and so the total angular momentum of all the
particles is

N∑
i=1

P�i =
N∑
i=1

(
mriv�i +qriA�i

)= const� (16.24)

even when there are electron–electron collisions. The vector potential for the
magnetic field B = Bẑ is A = �̂Br/2, and if the magnetic field is sufficiently
strong, the inertial term in Eq. (16.24) can be dropped, so that conservation of
total canonical angular momentum reduces to the simple relationship

P� =
N∑
i=1

P�i �
qeB

2

N∑
i=1

r2i = const� (16.25)

Equation (16.25) constrains the plasma from moving radially outwards in an
axisymmetric fashion. Thus, interparticle collisions cannot make the plasma
diffuse to the wall and so a collisional plasma is perfectly confined so long as
axisymmetry is maintained.
An alternative interpretation can be developed by considering how colli-

sions cause axisymmetric outward diffusion in a conventional (i.e., electron–ion)
plasma. This was discussed in Section 2.8 and will be briefly reviewed here
emphasizing the difference between a conventional plasma and a non-neutral
plasma. The effect of collisions in a conventional plasma can be seen by consider-
ing the steady-state azimuthal component of the resistive MHD Ohm’s law. This
azimuthal component is

−UrB = �J� =
(me�ei
ne2

)
ne�ui�−ue��= me�ei

e
�ui�−ue�� (16.26)

and shows that axisymmetric radial flow to the wall results from collisions between
unlike particles since

Ur = −me�ei
eB

�ui�−ue��� (16.27)

Thus, radial transport requires momentum exchange between unlike species and
this exchange occurs at a rate dictated by the collision frequency �ei and by the
difference between electron and ion azimuthal velocities. If only one species exists,
it is clearly impossible for momentum to be exchanged between unlike species
and so there cannot be a net radial motion. A practical consequence of this result
is that particle confinement in single species plasmas is orders of magnitude better
than confinement in conventional quasi-neutral plasmas (hours/weeks compared
to microseconds/seconds).
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16.5 Diocotron modes

Non-neutral plasmas support waves that differ significantly from the waves in a
conventional, quasi-neutral plasma (Gould 1995). The theory of low-frequency
linear waves in a cylindrical non-neutral plasma can be developed by linearizing
the continuity equation Eq. (16.10) to obtain

�n1
�t

+u0 ·	n1 +u1 ·	n0 = 0� (16.28)

Using Eq. (16.9) to give u0�u1, and using Poisson’s equation, Eq. (16.12), to give
n0, n1, results in the linear wave equation

�	2�1

�t
− 	�0 ×B

B2
·	 	2�1 − 	�1 ×B

B2
·	 	2�0 = 0� (16.29)

Because of the cylindrical geometry, it is convenient to decompose the potential
perturbation �1 into azimuthal Fourier modes so

�1�r� �� t�=
�∑

l=−�
�̃l�r� t�e

il�� (16.30)

where

�̃l�r� t�= 1
2

∫ 2

0
d��1�r� �� t�e

−il�� (16.31)

The lth azimuthal mode is assumed to have a time dependence exp �−i�lt� so

�1�r� �� t�=∑
l

�̃l�r�e
il�−i�lt (16.32)

and the Fourier coefficient is given by

�̃l�r�= 1
2

∫ 2

0
d��1�r� �� t�e

−il�+i�lt� (16.33)

Using the equilibrium azimuthal velocity

u�0�r�= −	�0 ×B
B2

· �̂ (16.34)

the temporal-azimuthal Fourier transform of Eq. (16.29) can be written as(
�l−

lu�0�r�

r

)
	2�̃l+

l�̃l
rB

d

dr
	2�0 = 0� (16.35)
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Using the relations

	2�̃l = 1
r

d
dr

(
r
d�̃l
dr

)
− l2

r2
�̃l� (16.36)

	2�0 = 1
r

d
dr

(
r
d�0

dr

)
� (16.37)

this temporal-azimuthal Fourier transform of Eq. (16.29) can be expanded as(
�l−

lu�0�r�

r

)(
1
r

d
dr

(
r
d�̃l
dr

)
− l2

r2
�̃l

)
+ l�̃l
rB

d
dr

(
1
r

d
dr

(
r
d�0

dr

))
= 0�

(16.38)
The equilibrium angular velocity is

�0�r�= u�0�r�

r
= 1
rB

d�0

dr
(16.39)

and so Eq. (16.38) can be expressed as

��− l�0�r��

(
1
r

d
dr

(
r
d�̃l
dr

)
− l2

r2
�̃l

)
+ l�̃l
r

d
dr

(
1
r

d
dr

(
r2�0�r�

))= 0� (16.40)

where the l subscript has been dropped from �.
Since Eq. (16.37) gives

d�0

dr
= − q


0r

∫ r
0
n0�r

′�r ′dr ′� (16.41)

the equilibrium angular velocity can be evaluated in terms of the equilibrium
density to obtain

�0�r�= − q


0Br
2

∫ r
0
n0�r

′�r ′dr ′� (16.42)

Equation (16.42) reduces to the special case of rigid body rotation when the
density is uniform, but in the more general case there is a shear in the angular
velocity. Combining Eq. (16.39) and Poisson’s equation shows that

1
r

d
dr

(
r2�0�r�

)= 1
Br

d
dr

(
r
d�0

dr

)
= − nq


0B
= −�

2
p�r�

�c
� (16.43)

Furthermore, since

d
dr

(
1
r

dr2

dr

)
= 0� (16.44)
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an arbitrary constant can be added to �0�r� in the last term in Eq. (16.40), which
consequently can be written as

��− l�0�r��

(
d
dr

(
r
d�̃l
dr

)
− l

2

r
�̃l

)
− �̃l

d
dr

(
1
r

d
dr

[
r2 ��− l�0�

])= 0�

(16.45)
this is called the diocotron wave equation.
The diocotron wave equation can be written in a more symmetric form by

defining

 = r�̃l�
G = r2 ��− l�0�r�� � (16.46)

and using

d
dr

(
r
d�̃l
dr

)
= r d

dr

(
1
r

d 
dr

)
+  

r2
(16.47)

to obtain

r
d
dr

(
1
r

d 
dr

)
+ (1− l2) − r

G

d
dr

(
1
r

dG
dr

)
= 0� (16.48)

16.5.1 Wall boundary condition

Although the wall boundary condition does not affect the equilibrium of a non-
neutral plasma, it plays a critical role for the diocotron modes because these modes
are non-axisymmetric. Because the wall is perfectly conducting, the azimuthal
electric field must vanish at the wall, i.e., E��a�= 0. This boundary condition is
trivially satisfied for the equilibrium because the equilibrium is axisymmetric and
E� = −r−1��/�� vanishes everywhere for an axisymmetric field. However, for
a non-axisymmetric perturbation, the azimuthal electric field is Ẽ��l = −il�̃l/r
and so could, in principle, be finite. In order to have the azimuthal electric field
vanish at the wall, each finite l mode must therefore satisfy the wall boundary
condition �̃l�a�= 0.

16.5.2 The l = 1 diocotron mode: a special case

The l= 1 mode is a special case because the 1− l2 term in Eq. (16.48) vanishes
and the remaining terms have an extremely simple relationship. Specifically, when
l= 1 Eq. (16.48) reduces to

r

 

d
dr

(
1
r

d 
dr

)
= r

G

d
dr

(
1
r

dG
dr

)
� (16.49)



540 Non-neutral plasmas

which has the exact solution

 = �G� (16.50)

where � is an arbitrary constant. Using Eq. (16.46), this solution can be expressed
in terms of the original variables as (White, Malmberg, and Driscoll 1982)

�̃l=1�r�= �−�0�r�

2�
Sr� (16.51)

where S is a constant. Since Eq. (16.48) is a second-order ordinary differential
equation, it must have two independent solutions and Eq. (16.51) must be one
of these. The other solution has a singularity at r = 0 and is discarded as non-
physical (this other solution can be found by assuming it is of the form  = FG
and substituting this assumed  into Eq. (16.49) to find F ). It is now evident that
rigid body rotation corresponds to having G= 0 for all r since �0�r� is a constant
and � = �0�a� for a rigid body. If G = 0 then Eq. (16.48) shows that the form
of  is unrestricted and so rigid body rotation can have any perturbation profile.
On the other hand, if the rotation has even the slightest amount of shear, then
G must be non-zero and the solution is restricted to be of the form specified by
Eq. (16.51).
The perfectly conducting wall boundary condition E� = 0 implies �̃l=1�a�= 0

and so Eq. (16.51) gives the l= 1 mode frequency to be

� = �0�a�

= − q


0Ba
2

∫ rp
0
n0�r

′�r ′dr ′

= −Er�a�
Ba

� (16.52)

this has the interesting feature of depending only on Er�a�, the equilibrium radial
field at the wall. Since Er�a� depends only on the total charge per length, the l= 1
mode frequency depends only on the total charge per length and so is independent
of the radial profile of the charge density. The coefficient S has been chosen so
that the perturbed radial electric field at the wall is

Ẽr�a�= − Sa
2�

(
d�0�r�

dr

)
r=a
� (16.53)

Since n0�a�= 0 by assumption, Eq. (16.42) shows(
d�0�r�

dr

)
r=a

=
(

−2
r
�0�r�

)
r=a

= −2�
a

(16.54)
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and so

S = Ẽr�a�� (16.55)

16.5.3 Energy analysis of diocotron modes

The linearized current density of a diocotron mode is

J1 = n1qu0 +n0qu1
= n1qr�0�r��̂+n0q

E1 ×B
B2

(16.56)

and the n1qr�0�r��̂ equilibrium flow term enables the wave energy to become
negative. The wave is electrostatic so Eq. (7.56) gives the wave-energy density
to be (Briggs, Daugherty, and Levy 1970)

w̄ =
∫ t
−�

dt
〈
E1 ·

(
J1 +
0

�E1

�t

)〉
= 
0

2
E2
1 +

∫ t
−�

dt �E1 ·J1� � (16.57)

Unlike the uniform plasma analysis in Section 7.4, here both plasma non-
uniformity and wall boundary conditions must be taken into account. The change
in system energy W̄ due to establishment of the diocotron wave is found by
integrating w̄ over volume and is

W̄ =
∫

d3r
(

0
2

(
	 ·�1	�1 −�1	

2�1

)+ ∫ t
−�

dt n1qr�0�r�E1�

)
= q

∫
d3r

(
1
2
n1�1 + r�0�r�

∫ t
−�

dt n1E1�

)
� (16.58)

where Eq. (16.56) and the perfectly conducting wall boundary condition �1�a�= 0
have been used. Using Eq. (7.62) and (16.32), the energy for a given l mode can
be written as

Wl =
q

2
Re
∫

d3r
(
1
2
ñl�̃

∗
l e

2�it+ r�0�r�
∫ t
−�

dtñlẼ
∗
l�e

2�it
)
� (16.59)

In order to evaluate this expression, it is necessary to express all fluctuating
quantities in terms of the oscillating potential �̃l. Using Poisson’s equation in
Eq. (16.35) it is seen that

ñl = − l�̃l
rB��− l�0�r��

dn0
dr

(16.60)



542 Non-neutral plasmas

and the complex conjugate of the linearized azimuthal electric field is

Ẽ∗
1� =

(
−i
l�̃l
r

)∗
= i
l�̃∗

1

r
� (16.61)

The wave energy is thus

�Wl = − ql
2B
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(16.62)

where L is the axial length of the plasma. The second term above can be directly
evaluated as

Re
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Thus, in the limit �i → 0,
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For the l= 1 mode this can be evaluated using Eq. (16.51) to give

�Wl=1 = −qL
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∫ rp
0
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where n0�r� = 0 for rp < r ≤ a has been used. Finally, using the middle line of
Eq. (16.52) this becomes

�Wl=1 = −
0La
2S2

4
(16.66)

and so the l= 1 diocotron mode is seen to be a negative energy mode. This result
can also be derived by considering the change in system energy that results when
the non-neutral plasma is attracted to a fictitious image charge chosen to maintain
the wall as an equipotential when the plasma moves off axis (see Assignments 3
and 4).
For l≥ 2, the negative energy nature of the diocotron mode can be understood

by considering the change in electrostatic energy stored in an isolated parallel
plate capacitor when the distance between the parallel plates is varied. The stored
energy isW =CV 2/2=Q2/2C andQ is constant because the capacitor is isolated.
Because increasing the capacitance at constant Q reduces W , bringing the plates
together makes available free energy, which can then be used to bring the plates
even closer together. The system is therefore unstable with respect to perturbations
that tend to increase the capacitance. This is the electrostatic analog of the ideal
magnetohydrodynamic flux-conserving situation discussed on p. 315 where the
magnetic energy was shown to beW = 2/2L and was the magnetic flux linked
by an isolated inductor L; it was shown that any flux-conserving perturbation that
increases inductance makes available free energy for driving an instability.
If all the charge of a non-neutral plasma is assumed to be located at the radius rp,

then the combination of the non-neutral plasma and the wall at radius a effectively
constitutes a coaxial capacitor. Gauss’ law shows that the radial electric field is
2r
0Er = �, where � is the charge per length. The voltage difference between
the plasma and the wall is therefore V = − ∫ arp Erdr = ��2
0�−1 ln�a/rp� and the

capacitance per length is C′ = 2
0
[
ln�a/rp�

]−1
. Thus, increasing rp increases

the capacitance and decreases the electrostatic energy associated with the fixed
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amount of charge. However, such an azimuthally symmetric increase of rp is
forbidden because it would rarefy the plasma, an impossibility since the only
allowed motion is an E×B drift, which is incompressible for an electrostatic
electric field.
The plasma can circumvent this constraint by undergoing an azimuthally

periodic incompressible motion that, on average, increases the capacitance. This
could be arranged by splitting the system into an even number of equally spaced
azimuthally periodic segments and arranging for an incompressible motion where
even-numbered segments move towards the wall and odd-numbered segments
move away from the wall. The volume between the wall and the plasma would
thus be conserved so the motion would be incompressible but, because capacitance
scales as the inverse of the distance between a segment and the wall, the increase
in capacitance due to the segments moving towards the wall would exceed the
decrease in capacitance due to the segments moving away from the wall. Thus,
the electrostatic energy of the system would decrease and free energy would be
available to drive an instability.

16.5.4 Resistive wall

Let us now assume that the conducting wall has an insulated segment of length
Ls with angular extent � and that this insulated segment is connected to ground
via a small resistor R. The remainder of the wall is directly connected to ground;
this is sketched in Fig. 16.2. The wall is thus at or near ground potential and so
there are no electric fields exterior to the wall, and in particular there is no radial
electric field just outside the wall.

R

perfectly
conducting
wall

wall
segment

pure
electron
plasma

Fig. 16.2 Arrangement for resistive wall instability of a non-neutral plasma.
A small resistor R is connected between ground and an isolated wall segment of
azimuthal extent � and axial extent Ls. The remainder of the perfectly conducting
wall is connected directly to ground.
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In order for the radial electric field to vanish outside the wall, the wall must
have a surface charge density that establishes a radial electric field equal and
opposite to the wall radial electric field S produced by the plasma so

−S = �̃l

0
� (16.67)

The surface charge flows back and forth between the wall segments and ground.
The charge on the segment extending from � = −�/2 to �/2 is

Qs = Ls
∫ �/2
−�/2

ad��̃le
il�

= Lsa�̃l
eil�/2 − e−il�/2

il

= −2
l
Lsa
0S sin

�

2
� (16.68)

The electric current I flowing through the resistor is the rate of change of this
surface charge, i.e., for the l= 1 mode this current is

I = 2i�Lsa
0S sin
�

2
� (16.69)

The rate at which energy is dissipated in the resistor is〈
I2R

〉= 1
2

(
2�Lsa
0S sin

�

2

)2

R� (16.70)

If the mode frequency is allowed to have a small imaginary part then the rate of
change of electrostatic energy will be

P = 2�i�W� (16.71)

Since the sum of the thermal energy in the resistor and the electrostatic energy
in the plasma constitutes the total energy in the system, conservation of this sum
gives

2�i�W + 〈I2R〉= 0� (16.72)

or

�i = −
〈
I2R

〉
2�W

� (16.73)

Because the mode has negative energy, �i is positive, i.e., the system is unstable.
Substitution into the right-hand side gives

�i =
4�2RL2s 
0 sin

2 �

2
L

� (16.74)



546 Non-neutral plasmas

where L is the axial length of the wall and Ls ≤L is the axial length of the segment.
This dependence of the growth rate on resistance has been observed in experiments
(White et al. 1982). If the resistor R is replaced by a parallel resonant circuit,
then the instability will occur at the resonant frequency of this circuit because
the effective resistance seen by the non-neutral plasma wall segment will be at a
maximum at the resonant frequency. This is essentially the basis for the magnetron
tube used in radar transmitters and microwave ovens (see Assignments 5 and 6).

16.5.5 Diocotron modes with l ≥ 2

The analysis of l≥ 2 diocotron modes resembles the Landau analysis of electron
plasma waves but is not exactly the same. In general, l ≥ 2 diocotron modes
must be considered using numerical methods because their behavior depends on
the equilibrium density profile via coefficients of both the first and last terms in
Eq. (16.38). However, some indication of the general behavior can be obtained
analytically. An important condition can be obtained (Davidson 2001) by express-
ing the mode frequency as �= �r + i�i so Eq. (16.38) can be written as

1
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0q


0
�̃l = 0� (16.75)

After multiplying through by r�̃∗
l , integrating from r = 0 to r = a, and using

the perfectly conducting boundary condition �̃l�a�= 0 when integrating the first
term by parts, the following integral relation is found:
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The imaginary part of this expression is

−�i
lq


0rB

∫ rp
0

dr
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∣∣∣�̃l∣∣∣2

��r − l�0�r��
2 +�2

i

dn0
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⎫⎪⎬⎪⎭= 0� (16.77)

the upper limit has been changed to rp because n0�r� and dn0/dr are by assumption
zero in the region rp < r ≤ a. If dn0/dr has the same sign throughout the radial
interval 0≤ r ≤ rp, then the integral would have to be non-zero since the integrand
always has the same sign, and so �i would have to be zero. Thus, a necessary
condition for �i to be finite is for dn0/dr to change signs in the interval 0≤ r ≤ rp.
This necessary condition corresponds to n0�r� having a maximum in the interval
0 ≤ r ≤ rp. This sort of profile is commonly called hollow, because n0�r� starts
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at some finite value at r = 0, increases to a maximum at some finite r < rp, and
then decreases to zero at r = rp.

Further progress can be made by expressing the diocotron equations as a pair
of coupled equations for the density and potential perturbations, i.e.,

ñl = − l�̃l
rB��− l�0�r��

dn0
dr

(16.78)
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0
� (16.79)

Rather than substitute for ñl in order to obtain Eq. (16.38), instead Eq. (16.79)
is solved for �̃l using a Green’s function method (Schecter et al. 2000). This
approach has the virtue of imposing the perfectly conducting wall boundary
condition on �̃l at an earlier stage of the analysis before the entire wave equation
is developed. The set of solutions to Eq. (16.79) is then effectively restricted to
those satisfying the wall boundary condition, and only this restricted set is used
when later combining Eqs. (16.79) and (16.78) to form a wave equation.
The Green’s function solution to Eq. (16.79) is obtained by first recasting

Eq. (16.79) as
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Thus, if &�s� r� is the solution of

1
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dr

(
r
d
dr
&�r� s�

)
− l2

r2
&�r� s�= −��r− s�� (16.81)

where 0 ≤ s ≤ a, then
�̃l�r�= q


0

∫ a
0

ds&�r� s�ñl�s� (16.82)

is the solution of Eq. (16.79). The spatial boundary conditions are accounted for
when solving Eq. (16.81) for the Green’s function &�r� s� and so are independent
of the form of ñl.
Equation (16.81) is solved by finding separate solutions to its homogeneous

counterpart

1
r

d
dr

(
r
d&
dr

)
− l2

r2
& = 0 (16.83)

for the inner interval 0 ≤ r < s and for the outer interval s < r ≤ a and then
appropriately matching these two distinct homogeneous solutions at r = s where
they meet. The inner solution must satisfy the regularity condition &�0�= 0 and
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the outer solution must satisfy the wall boundary condition &�a� = 0. Since the
solutions of Eq. (16.83) are & ∼ r±l, the inner solution must be

& = �
( r
a

)l
for 0 ≤ r < s (16.84)

and the outer solution must be

& = !
(( r
a

)l−( r
a

)−l)
for s < r ≤ a� (16.85)

where the coefficients � and ! are to be determined.
Integration of Eq. (16.81) across the delta function from r = s− to r = s+ gives

the jump condition [
d
dr
&�r� s�

]s+
s−

= −1 (16.86)

and integrating a second time shows that & must be continuous at r = s. These
jump and continuity conditions give two coupled equations in � and !,
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Solving for � and ! gives the Green’s function,
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this satisfies Eq. (16.81) and also the boundary conditions at r = 0 and r = a.
Using the Green’s function in Eq. (16.82) gives
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Finally, using Eq. (16.78) to substitute for ñl�s� gives

�̃l�r�= q
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0
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+
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(
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al
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l

sl

)
�̃l�s�

�− l�0�s�

dn0
ds

⎞⎟⎟⎠ � (16.91)

This integral equation for �̃l�r� not only prescribes the mode dynamics, but also
explicitly incorporates the spatial boundary conditions. The resonant denomina-
tors �− l�0�s� in the s integrals are reminiscent of the resonant denominators
occurring in the velocity-space integrals of the Landau problem. Stability depends
on the sign of dn0/ds at the location where �= l�0�s� in analogy to the depen-
dence of Landau stability on the sign of df0/dv where v = �/k. Because these
equations are isomorphic to the 2-D incompressible hydrodynamic equations, it
is seen that phenomena similar to Landau damping or instability can occur in 2-D
incompressible hydrodynamics.

16.5.6 Phase mixing and relation to Landau damping

The dynamical evolution of an initially off-axis localized infinitesimal bump or
patch of increased density provides insight into the vortex dynamics of a two-
dimensional inviscid fluid since, as indicated by Eq. (16.22), a region of increased
non-neutral plasma density is mathematically equivalent to a region of increased
vorticity in a two-dimensional fluid.
If the non-neutral plasma equilibrium angular velocity is sheared, then the off-

axis density patch will become sheared because the inner and outer portions of the
patch will rotate at different angular velocities. Thus, the angular position of differ-
ent radial positions of the patch will have trajectories scaling as ��r�= t�0�r�. The
angular separation between two points in the patch starting at respective radii r
and r+�r will scale as ��= t�rd�0/dr and this separation will eventually exceed
2 at sufficiently large t. This gives a sort of spatial phase mixing (Gould 1995)
because a localized patch of increased density will eventually be stretched out to
become a multi-turn thin spiral of increased density. The number of turns in the
spiral increases linearly with time. The patch is thus smeared out over all angles
and so is no longer azimuthally localized. Since the patch is stretched azimuthally
and yet is incompressible, the thickness of each turn in the spiral must decrease
as the number of turns in the spiral increases. Specifically, the length of the spiral
increases with t and the radial thickness of each turn decreases as 1/t so that the
area remains constant. A graphic demonstration of this stretching and thinning has
been obtained by Bachman and Gould (1996) using direct numerical integration of
the dynamical equations with an initial condition consisting of a prescribed density
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patch. Since the decay and eventual disappearance of the patch as it deforms into
a nearly infinitely long and nearly infinitely thin spiral is a spatial analog to the
velocity-space phase mixing underlying Landau damping, it might be expected that
the nonlinear mixing of two such patches initiated at two successive times might
give rise to a spatial echo effect (Gould 1995). This spatial echo effect involving
the nonlinear beating of two spatial spirals has been seen experimentally (Yu and
Driscoll 2002). In this experiment an l= 2 perturbation is applied and then decays
as it is stretched into a nearly infinitely long, nearly infinitely thin spiral. Then
an l= 4 perturbation is applied, which similarly decays. Finally, after both of the
perturbations have decayed, a nonlinear l= 2 echo is observed because of nonlin-
ear mixing of the two spirals associated with the respective initial perturbations.
If the patch has a finite amplitude, then its self-electric field will affect the

dynamics. This is the nonlinear regime and will cause a sigmoidal curling of the
patch since azimuthal electric fields associated with the patch will give radial
motions in addition to the azimuthal motions.

16.6 Assignments

1. Relationship between non-neutral and conventional plasma equilibria. Compare the
following two plasmas, both of which have cylindrical symmetry, axial uniformity,
the same radial electron density profile ne�r�, and are in equilibrium:

(a) a cylindrical pure electron plasma immersed in a strong magnetic field B = Bẑ,
where �2

pe � �2
ce;

(b) an unmagnetized quasi-neutral electron–ion plasma, which has infinitely massive
ions.

What is the ion density in the quasi-neutral plasma and what electric field is produced
by this ion density? How does the force associated with the electric field produced
by the ions in the quasi-neutral plasma compare to the magnetic force associated with
electron rotation (finite ue�) in the pure electron plasma? What is the net equilibrium
force on the electrons in the two cases? Assuming that the electrons have zero mass,
which plasma has more free energy?

2. Free energy associated with sheared velocity profile in slab approximation. Suppose a
non-neutral plasma does not rotate as a rigid body and instead has a sheared angular
velocity. An observer rotating with the plasma at some radius robs would conclude that
the plasma has positive angular velocity for r > robs and a negative angular velocity
for r < robs. Since the rotational velocity is due to an E×B drift, this means that the
effective radial electric fieldmeasured in the observer framemust change sign at r = robs.
(a) Show that this means that there is an effective charge sheet at r = robs.
(b) Consider the limiting situation where the above situation is modeled using slab

geometry so that r → x and �→ y, B = Bẑ, and the non-neutral plasma initially
centered about x = 0 has width w and a uniform density n for �x� < w/2. This
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equilibrium is sketched in Fig. 16.3. There is vacuum in the region between the
plasma and perfectly conducting walls at x = ±a, where a > w/2. What are the
electric field and the plasma flow velocity for x > 0 and for x < 0?

(c) Now suppose that the location of the non-neutral plasma charge sheet is perturbed
so that, instead of being centered at x = 0, the location of the center becomes
a function of y and is given by x = ��y� = �̄ cosky, where kd� 1 so that the
wavelength in the y direction is very long. What is the boundary condition on Ey
and hence on � at the walls?

(d) Since there is vacuum between the plasma and the wall and kd � 1, what is
the limiting form of Poisson’s equation in the regions between the plasma and
the walls?

(e) Assume that w is small, so that the non-neutral plasma can be approximated
as being a thin sheet of charge. Being perfectly conducting, the walls must be
equipotentials and so, without loss of generality, this potential can be defined to be
zero. Show that the potential to the right of the charge sheet must be of the form

�r = ��a−x� (16.92)

and the potential to the left of the charge sheet must be of the form

�l = !�a+x�� (16.93)

non-neutral
plasma

equilibrium
configuration

perturbed
configuration

x

y

z

–a –a+a
x x

perfectly
conducting

wall

0 +a0

Fig. 16.3 Left: equilibrium configuration for non-neutral plasma of width w,
centered between pair of perfectly conducting walls at x= ±a. Right: perturbed
configuration where position of x-midpoint of plasma is located at �= �̄ cosky.
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where � and ! are coefficients to be determined by considering the jump in electric
field at the charge sheet.

(f) Taking into account the jump in the potential at the charge sheet and the continuity
in the potential at the charge sheet, solve for � and !. Assume that w� a consistent
with the assumption that the non-neutral plasma can be considered as a thin charge
sheet. Which of E2

y , E
2
x is larger?

(g) Suppose that the length of the plasma in the y direction is L, where L is an integral
multiple of 2/k, the wavelength in the y direction. By calculating Ex to the right
of the charge sheet and also to the left of the charge sheet, show that the energy
stored in the electrostatic electric field is approximately

W = 
0
2
h
∫ L/2

−L/2
dy
∫ a

−a
dxE2

x�

where h is the length in the z direction. How does W change when �̄ is increased?
What does this suggest about the stability of sheared velocity profiles with respect
to perturbations as prescribed in (c)?

3. Image charge in cylindrical geometry. Two line charges �1 and �2 are aligned along
the z axis and located at r1 = x1x̂ and r2 = x2x̂ as shown in Fig. 16.4. What values
of x2 and �2 are required in order for the cylindrical surface

√
x2 +y2 = a to be an

equipotential as would be required in order to have a perfectly conducting wall at
r = a? The following hints should be useful:

(a) Define a cylindrical coordinate system r� �� z so that the cylindrical surface is given
by r = ar̂. Determine the potential on the cylindrical surface r = a.

(b) Show that �r̂− x̂x1/a� = �r̂a/x2 − x̂� if a/x2 = x1/a.
(c) Show that �2 = −�1 is required in order for the cylindrical surface r = a to be an

equipotential.

perfectly
conducting
wall

x1

λ1 λ 2

x2

a

Fig. 16.4 Line charge �1 is displaced a distance x1 from axis of perfectly
conducting cylindrical wall of radius a. An image charge �2 is located at x2.
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4. Diocotron mode energy using image charge method. A cylindrical non-neutral plasma
is translationally invariant in the z direction and is bounded by a perfectly conducting
wall at r = a. The plasma has an equilibrium density profile n = n�r� for 0 ≤ r < rp
and n = 0 for rp < r ≤ a so there is a finite-size vacuum region between the edge
of the plasma rp and the wall radius a. Calculate the change in system energy if the
plasma axis is shifted off the axis and compare this result to Eq. (16.66). Hints are
given below:

(a) Show that the electric field outside the plasma is the same as the electric field of
a line charge located on the plasma axis.

(b) Suppose that x denotes the distance the plasma is shifted off the wall axis. What
is the location and strength of the image charge required for the wall to be an
equipotential? Is the force between the plasma and the image charge attractive or
repulsive? How does the image charge move as x increases from zero to some
finite value?

(c) Calculate the force on the image charge. What is the force on the plasma? What
work is done by the plasma in order to be displaced by a finite amount x? Express
this work in terms of the radial electric field perturbation at the wall.

5. Negative energy in terms of two capacitors with fixed charge. Consider the situation
where a charge Q is stored on two series-connected parallel plate capacitors that are
deformed in such a way as to conserve the total volume of the regions between the
plates. This situation is shown in Fig. 16.5(a) top and bottom, and in an electrically
equivalent, but geometrically slightly different, way in Fig. 16.5(b) top and bottom.

d+x d–x

Q

Q

Q

Q

(a) (b) (c)

capacitor platesd d d

d

d+x

d–x

Fig. 16.5 (a) Two capacitors in series with moveable middle plate, (b) geometric
rearrangement, (c) straightened-out model of azimuthal periodic incompressible
perturbation.
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(a) In Fig. 16.5(a) the center plate is displaced off center by an amount x so that the
volume occupied by the two capacitors is conserved. What is the change in the
system energy when the center plate is displaced? Assume that the value of each
capacitor is C1�2 = 
0A/d1�2, where d1�2 are the distances between the parallel plates
and initially (top of figure) d1 = d2 = d but later (bottom of figure) d1 = d+ x
and d2 = d−x.

(b) Show that the configuration in Fig. 16.5 (b) is electrically equivalent to the config-
uration in Fig. 16.5(a). Discuss how the system shown in Fig. 16.5(c) would relate
to an l = 4 diocotron mode (recall that any perturbations to the plasma must be
incompressible).

6. Magnetrons as a generalization of non-neutral plasmas undergoing a resistive wall
instability. The magnetron vacuum tube used in radar transmitters and in microwave
ovens can be considered as a non-neutral plasma undergoing a negative energy
diocotron instability. These tubes are simple, rugged, and efficient. The relation
between the non-neutral plasma resistive wall instability and the magnetron is shown
in the sequence of sketches Figs. 16.6(a)–(d). The magnetron has a cylindrical geome-
try with an electron emitting filament (cathode) on the z axis, a segmented cylindrical

perfectly
conducting
wall

perfectly
conducting
wall

(a) (b)

(c)
(d)

pure
electron
plasma

pure
electron
plasma

pure
electron
plasma

segment segment

R

R

LC

anode

cathode

inductance

capacitance

electron cloud

Fig. 16.6 (a) Pure electron plasma with one wall segment connected to ground
via a resistor R, (b) same, but now connected to ground via a resonant circuit
consisting of a capacitor C in parallel with a coil L and a resistor R, (c) same,
but now a set of ten resonant circuits connected across ten gaps, (d) same, but
now the coil is a single turn and the capacitance is in the leads connecting to
the coil (the resistor is the loading of the coupler to the output circuit, typically
a loop inserted into a coil).
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wall (anode) and a z-directed magnetic field produced by permanent magnets. Instead
of having a resistor R connected across the gap of a segmented wall as in Fig. 16.6(a),
the magnetron has a set of cavities connected across the gap as in Fig. 16.6(d). The
cavities function as a resonant circuit and the output circuit loading provides an effec-
tive resistance at the cavity resonant frequency. From the point of view of the plasma,
the power appears to be dissipated in a resistor across the wall gap. However, since
the cavity is coupled to an output waveguide, the power is actually transported away
from the magnetron via a waveguide to some external location where the power is
used to transmit a radar pulse or cook a meal. If the cavities in Fig. 16.6(d) are phased
0� then the ten cavities provide five complete azimuthal wave periods or l = 5. If
the electrons have near Brillouin flow, and l= 5, what axial magnetic field should be
used in order to have an output frequency f = 2450 MHz, the frequency used in a
home microwave oven? Why would the electron density increase to the point that the
flow is nearly Brillouin, and why is the electron density not higher than this value?
If the voltage drop between anode and cathode is 4 kV and the electron density is
uniform, what nominal wall radius (distance between cathode and anode) should be
used? Show that a parallel resonant circuit with a small resistance in series with the
coil as in Fig. 16.6(b) has an effective resistance that peaks at the resonant frequency;
why does one want the effective resistance to peak at the resonant frequency?

7. Spiral due to sheared rotation. Suppose that a non-neutral plasma has a sheared angular
velocity so that �0 = �0�r�. Suppose that a radial line is painted onto the plasma at
t= 0 extending from x= rp/4, y= 0 to x= rp/2, y= 0, where rp is the plasma radius.
Suppose that �0 = �̄0r/rp. Calculate the trajectory of points on the painted line and
plot this for successive times using a computer. If the initial line had finite thickness
and hence finite area, what would happen to the thickness of the line with increasing
time?
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Dusty plasmas

17.1 Introduction

Non-neutral plasmas had one less species than a conventional plasma (one species
instead of two); dusty plasmas have one more species (three species instead of
two). Not surprisingly, the addition of another species provides new freedoms,
which give rise to new behaviors.
The third species in a dusty plasma, electrically charged dust grains, typically

have a charge to mass ratio quite different from that of electrons or ions. Several
methods for charging dust grains are possible. Electron bombardment is the usual
means for charging laboratory dusty plasmas, but photoionization or radioactive
decay could also be operative mechanisms and may be important for certain space
and astrophysical situations. Photoionization would make dust grains positive
because photoionization causes electrons to leave dust grains. Radioactive decay
of dust grains would make the dust grains develop a polarity opposite to that of
the particle emitted in the decay process, e.g., alpha particle emission by dust
grains would make the dust grains negative.
We shall consider here only the typical laboratory dusty plasma situation where

the plasma is weakly ionized and dust grain charging is due to electron bombard-
ment. Negative charging occurs because the electrons, being much lighter than
the ions and usually much hotter, have a much larger thermal velocity than the
ions. As a result, when a dust grain is inserted into the plasma it is initially subject
to a greater flux of impacting electrons than impacting ions, thereby causing the
dust grain to become negatively charged. The negative charge deposited on the
dust grain eventually becomes sufficiently large to repel incident electrons and
thus attenuate the incoming electron flux. On the other hand, the negative charge
on the dust grain accelerates incident ions thereby increasing the ion flux to the
dust grain. The net charge on the dust grain reaches equilibrium when the elec-
tron and ion fluxes intercepting the dust grain become equal. This is a dynamic
equilibrium because it involves a continuous flow of plasma to the dust grain.

556
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Some kind of external source is thus required to replenish the plasma electrons
and ions continuously, because otherwise all the plasma electrons and ions would
eventually accumulate on the dust grain. The dust grain charging process is quite
similar to the development of a floating potential on an insulated probe immersed
in a plasma (see discussion of Eq. (2.133)).

17.2 Electron and ion current flow to a dust grain

Because a dust grain is much heavier than an electron or an ion, a dust grain
acts as an effectively infinitely massive scattering center for electrons and ions
colliding with it. In typical dusty plasma laboratory experiments the collisional
mean free path lmfp greatly exceeds the Debye length. This situation is sketched
in Fig. 17.1 where a dust grain with radius rd is surrounded by an imaginary
sphere with diameter lmfp and the Debye radius is much smaller than lmfp. The
nominal distance from the dust grain to the location of the incident electron’s
or ion’s previous collision is �mfp, the collision mean free path. Thus, incident
electrons and ions can be considered collisionless inside a sphere of radius �mfp
centered about the dust grain. Since electrons and ions are collisionless inside the
lmfp sphere they have Keplerian orbits associated with the electrostatic central
force produced by the charge on the dust grain. Because the dust grain is shielded
by other particles at distances greater than a Debye length, the electrons and ions
experience this central force only when inside a sphere having the nominal Debye
radius.
In order to develop a model for dust grain charging, it is first necessary to

determine the effective collision cross-sections for electrons and ions colliding
with the dust grain. A useful benchmark reference for this calculation is the

Debye
radius

b rd

dust
grain

lmfp

ion trajectory

Fig. 17.1 Electrons and ions may be considered as being collisionless inside a
sphere of diameter lmfp surrounding a dust grain. The trajectory of an ion making
a grazing collision is shown here; this ion has an impact parameter b.



558 Dusty plasmas

cross-section of charged particles colliding with a neutral dust grain. Because
charged particles incident on a neutral dust grain have straight line trajectories,
the cross-section of a neutral dust grain is just the geometrical area it projects onto
a plane, i.e., �geometric = r2d. The cross-section of a charged dust grain differs
from �geometric because incident electrons and ions are deflected from straight-line
trajectories by the electrostatic central force produced by the charge on the dust
grain. The respective cross-sections for ions and electrons will now be calculated
and related to �geometric.
Figure 17.1 shows the impact parameter b and trajectory of an ion colliding

with a negatively charged dust grain; the corresponding trajectory of an electron
would curl outwards instead of inwards and so the electron would require a much
smaller impact parameter b in order to hit the dust grain. We define v to be the
initial velocity of an incident particle having mass m and charge q� and define
vimpact as the velocity of this particle at the instant it makes a grazing impact
with the dust grain. Using these definitions it is seen that conservation of angular
momentum imposes the requirement

vb = vimpactrd (17.1)

and conservation of energy imposes the requirement

1
2
mv2 = 1

2
mv2impact+q�d� (17.2)

where �d is the potential on the surface of the dust grain. Figure 17.1 shows that
b is larger than rd for an ion. Because the repulsive force between the negatively
charged dust grain and an electron causes the trajectory of an electron to swerve
in the opposite sense from an ion, b is smaller than rd for an electron; that is, the
electron has to be more “on-target” than a neutral particle to hit the dust grain,
whereas an ion can be less “on-target” than a neutral particle to hit the dust grain.
Eliminating vimpact between Eqs. (17.1) and (17.2) gives

1
2
mv2 = 1

2
mv2

b2

r2d
+q�d (17.3)

so the effective scattering cross-section is (Allen, Boyd, and Reynolds 1957)

��v�= b2 =
(
1− 2q�d

mv2

)
�geometric� (17.4)

For q�d > 0 the interaction is repulsive and the cross-section is smaller than
�geometric, whereas for q�d < 0 the interaction is attractive and the cross-section
is larger than �geometric. The former case applies to electrons and the latter case
applies to ions.
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The total current flowing to the dust grain for attractive interactions is

Iattractive = q
∫ �

0
��v�vf�v�4v2dv� (17.5)

However, because in the repulsive situation incident particles having v <√
2q�d/m are reflected and do not hit the dust grain, the repulsive situation

cross-section is zero for all particles having v <
√
2q�d/m. Thus, the total current

for repulsive interactions is

Irepulsive = q
∫ �
√

2q�d/m
��v�vf�v�4v2dv� (17.6)

Since the region outside the lmfp sphere sketched in Fig. 17.1 extends to infinity,
particles can be considered to have made many collisions before entering the lmfp
sphere, and so the velocity distribution of particles incident upon the lmfp sphere
will be Maxwellian, i.e.,

f�v�= n0

3/2v3T
e−v2/v2T � (17.7)

where vT = √
2�T/m is the thermal velocity. The incident particles will be

collisionless as they travel inside the lmfp sphere. Integration of Eqs. (17.5) and
(17.6) gives

Iattractive = q
∫ �

0
r2d

(
1− 2q�d

mv2

)
vf�v�4v2dv

= 21/2r2dn0qvT

∫ �

0

(
1− 2q�d

mv2Tx

)
e−xxdx

= 2
1/2

(
1− q�d

�T

)
n0qvT�geometric (17.8)

and

Irepulsive = 21/2r2dn0qvT

∫ �

q�d/�T

(
1− q�d

�Tx

)
e−xxdx

= 2
1/2

e−q�d/�Tn0qvT�geometric� (17.9)

17.3 Dust charge

As discussed above, a neutral dust grain inserted into a plasma will become
negatively charged because vTe � vTi. The electron current Ie is thus a repulsive-
type current and the ion current Ii is an attractive-type current. As the dust grain
becomes more negatively charged, �Ie� decreases and �Ii� increases until Ii+Ie= 0,
at which time dust grain charging ceases.
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The presence of negatively charged dust grains affects the quasi-neutrality
condition. Assuming singly charged ions and a charge of Zd on the negatively
charged dust grains, the quasi-neutrality condition generalizes to

ni0 = ne0 +Zdnd0� (17.10)

Since the ion density is unaffected by the charging process, it is convenient to
normalize all densities to the ion density and define

�= Zdnd0
ni0

(17.11)

so that
ne0
ni0

= 1−�� (17.12)

where ne0� ni0� and nd0 are the volume-averaged electron, ion, and dust grain
densities. Furthermore, if rd is small compared to the effective shielding length
�d, then the dust grain charge Zd is related to the dust grain surface potential and
the dust grain radius rd via the vacuum Coulomb relationship, i.e.,

�d = −Zde exp �−rd/�d�
4
0rd

� − Zde

4
0rd
if rd � �d� (17.13)

Using Eq. (17.13) to give Zd� Eq. (17.11) can then be written in terms of the dust
grain surface potential as

�= −4
0rdnd0
ni0e

�d� (17.14)

It is now convenient to introduce the dimensionless variable

& = − e�
�Ti

(17.15)

so that � becomes

�= 4nd0rd�
2
di&d� (17.16)

where

�di =
√

0�Ti
ni0e

2
(17.17)

is the ion Debye length. Large &d means that ions fall into a potential energy well
much deeper than their thermal energy.
It is also useful to introduce the Wigner–Seitz radius a, a measure of the

nominal spacing between adjacent dust grains. This spacing is defined by dividing



17.3 Dust charge 561

the total volume of the system V by the total number of dust grains N to find a
nominal volume surrounding each dust grain. It is then imagined that this nominal
volume is spherical with radius a so that

N
4a3

3
= V� (17.18)

in which case

nd0 = 3
4a3

(17.19)

and

�= 3rd�
2
di

a3
&d� (17.20)

It is also convenient to normalize lengths to the ion Debye length so

�= P&d� (17.21)

where

P = 3
r̄d
ā3

(17.22)

and the bar means normalized to an ion Debye length.
The dust charge can similarly be expressed in a non-dimensional fashion using

Eq. (17.13) to give
Zd

4ni0�
3
di

= r̄d&d� (17.23)

The floating condition Ii+Ie = 0 shows that the equilibrium dust potential must
satisfy

0 = ni0vTi
(
1− e�d

�Ti

)
−ne0vTe exp �e�d/�Te�� (17.24)

which can be rearranged as

�1+&d�
√
meTi
miTe

exp �&dTi/Te�= 1−�� (17.25)

However, using Eq. (17.21) this becomes

�1+&d�
√
meTi
miTe

exp �&dTi/Te�= 1−P&d� (17.26)

a transcendental equation relating &d and P�
Equation (17.26) shows that, for a given temperature ratio Ti/Te and a given

mass ratio me/mi� the normalized dust grain surface potential &d is a function of
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P� a dimensionless parameter incorporating the geometrical information charac-
terizing the dust grains in the dusty plasma. Because &d appears non-algebraically
in Eq. (17.26), it is not possible to solve for &d�P� without resorting to numerical
methods. However, solving the inverse relation, namely P�&d�� is straightfor-
ward because P occurs only once in Eq. (17.26). Solving for P gives (Havnes
et al. 1987)

P = 1
&d

−
(
1+ 1

&d

)√
meTi
miTe

exp �&dTi/Te�� (17.27)

The upper plot in Fig. 17.2 shows logP plotted versus log &d for two cases
corresponding to typical laboratory configurations where dusty plasma experi-
ments have been conducted; the lower plot shows the corresponding dependence
of � on &d� The Te = Ti configuration corresponds to a potassium Q-machine
plasma while the Te = 100Ti configuration corresponds to an argon rf discharge�
An ion of 40 atomic mass units has been assumed for both cases. Figure 17.2
shows that P varies inversely with &d up to some critical value and then, for
&d above this critical value, P heads sharply to zero for modest increases in &d�
The lower plot shows that � is near unity to the left of the knee and then drops
sharply to zero to the right of the knee. Comparison of the solid and dashed
curves shows that the saturated value of &d is an increasing function of Te/Ti� The
saturation value of &d is 2.5 for the Q-machine parameters whereas the saturated
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Fig. 17.2 Plots of logP and � vs. log&d for Te = 100Ti and Te = Ti. Logarithms
are base 10 and ion mass is 40 amu. Because P is proportional to the dust grain
density, the right-hand side of these curves, i.e., small P� corresponds to the
limit of low dust grain density.
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value of &d for the rf discharge is ∼ 2×102� Since P is proportional to ā−3 and
hence to the dust grain density, the right-hand side of these plots (i.e., where P
is small) corresponds to the limit of small dust grain density. Since Eq. (17.23)
shows that Zd is proportional to &d� it is seen that Zd also saturates on moving
to the right in the plots and largest Zd occurs at high Te/Ti and small dust grain
density.
The downward sloping segment on the left of Fig. 17.2 corresponds to the �� 1

regime, which is the situation where the dust grain density is large and nearly
all the electrons are attached to the dust grains so the plasma has almost no free
electrons. On the other hand, the saturated limit of &d on the right of Fig. 17.2
corresponds to the �� 1 regime, which is where there is minimal depletion of
free electrons, the dust grain density is low, and there is a very high charge on
each of the relatively small number of dust grains.
There are thus three regimes:

1. The regime well to the left of the knee in the curves. Here �� 1 and nearly all electrons
are attached to the dust grains. To the extent that � approaches unity, the dust grains
replace the electrons as the negative charge carriers.

2. The regime to the right of the knee in the curves. Here �� 1� most electrons are free,
and the potential of an individual dust grain is very high and near its saturation value
(right-hand side of plots). This regime corresponds to small P and a very small dust
grain density.

3. The regime in the vicinity of the knee in the curves. If Te � Ti then it is possible to
have � of order unity and &d large, but not quite at its saturation value. In this regime
the majority of electrons reside on the dust grains, the dust grains are highly charged,
and the dust grain density is appreciable. Crystallization of the dust grains can occur
in this regime, since crystallization requires a combination of high dust grain charge
and small separation between dust grains.

17.4 Dusty plasma parameter space

A dusty plasma is characterized by the normalized dust radius r̄d and the normal-
ized dust interparticle spacing ā. These quantities determine P and, given P� the
normalized dust surface potential &d is found by solving Eq. (17.27). Knowing P
and &d then gives � using Eq. (17.21). The consequence of this chain of argument
is that � can be considered to be a function of r̄d and ā�
A dusty plasma parameter space can thus be constructed where ā is the hori-

zontal component and r̄d is the vertical component so that a given dusty plasma
would correspond to a point in this parameter space. The quantities &d� �� and
Zd/4ni0�

3
di are all functions of ā and r̄d and so contours of these three quan-

tities can be drawn in the ā� r̄d parameter space for specified me/mi and Te/Ti.
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Fig. 17.3 Dusty plasma parameter space showing contours of constant &d� ��
and Zd/4ni0�

3
Di for an argon plasma with Te/Ti = 100� The experimental line

corresponds to the density range of the Chu and I experiment (Chu and I 1994);
these plots are from Bellan (2004b).

Examples of these contours are shown in Fig. 17.3 for an argon plasma with
Te = 100Ti� An actual experiment would have specific values of ā and r̄d and
so would be represented as a point in this parameter space. Variation of the ion
density in the experiment would change the value of �di while keeping the ratio
r̄d/ā fixed and so would correspond to moving along a sloped line in parameter
space. The short sloped line in Fig. 17.3 represents the density in the dusty plasma
experiment by Chu and I (1994) to be discussed later (the finite length of this line
corresponds to the error bars for the density measurement).

17.5 Large P limit: dust acoustic waves

The large P limit (i.e., Regime 1 discussed above) has nearly all the electrons
attached to the dust grains so that the plasma effectively consists of negatively
charged dust grains and positive ions. A wave similar to the conventional ion
acoustic wave can propagate in this regime, but the role played by positive and
negative particles is reversed: here the ions are the light species and the dust
grains are the heavy species. In order to appreciate the consequence of this role
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reversal, consider the conventional ion acoustic wave from the most simplistic
point of view. The wave phase velocity �/k is assumed to be much faster than
the ion thermal velocity vTi (i.e., cold ion regime) but much slower than the
electron thermal velocity vTe (i.e., isothermal electron regime) so the respective
approximations for the electron and ion equations of motion are

0 = −neeE−	 �ne�Te� (17.28)

nimi
dui
dt

= niZeE� (17.29)

Adding the electron and ion equations and assuming quasi-neutrality ne � niZ�
gives

nimi
dui
dt

= −	 �ne�Te� (17.30)

showing that the effective force acting on the ions is the electron pressure gradient.
This force is coupled to the ions via the electric field. In effect, the electron
pressure gradient pushes against the electric field, which in turn pushes the ions.
Linearizing Eq. (17.30) gives a result similar to a conventional sound wave, except
that the system is isothermal with respect to the electron temperature (in a normal
neutral gas sound wave, the gas temperature would appear in the right-hand side,
the gas would be adiabatic, and so a � would appear upon linearizing the gas
pressure). Linearization of Eq. (17.30) and invoking the linearized quasi-neutrality
relation ne1 � ni1Z, gives

ni0mi
�ui1
�t

= −Z�Te	ni1� (17.31)

The linearized ion equation of continuity is

�ni1
�t

+ni0	 ·ui1 = 0� (17.32)

The equations are combined by taking the divergence of Eq. (17.31) and then
substituting Eq. (17.32) to obtain

�2ni1
�t2

= Z�Te
mi

	2ni1� (17.33)

which describes a wave with phase velocity c2s = Z�Te/mi�
This method can now be generalized to a plasma consisting of ions with

charge +e, free electrons with charge −e, and dust grains with charge −Zde�
The free electron density is assumed to be small so that P � 1, in which case
the configuration is on the left of Fig. 17.2. The wave phase velocity is assumed
to be much faster than the dust grain thermal velocity, but much slower than
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the ion/electron thermal velocities so the respective electron, ion, and dust grain
equations of motion are

0 = −neeE−	 �ne�Te� (17.34)

0 = +nieE−	 �ni�Ti� (17.35)

ndmd
dud
dt

= −ndZdeE� (17.36)

Adding the above three equations and invoking quasi-neutrality (i.e., ni = ndZd+
ne) results in

ndmd
dud
dt

= −	 �ni�Ti+ne�Te� � (17.37)

In analogy to the conventional ion acoustic wave, here the ion and electron
pressures couple to the dust via the electric field. Linearization of Eq. (17.37)
gives

nd0md
�ud1
�t

= −�Ti	ni1 −�Te	ne1� (17.38)

while linearization of Eqs. (17.34) and (17.35) gives

0 = −ne0eE1 −�Te	ne1 (17.39)

0 = +ni0eE1 −�Ti	ni1� (17.40)

Eliminating E1 between these last two equations shows that

�Te	ne1 = −ne0
ni0
�Ti	ni1� (17.41)

which can be integrated to give

ne1 = −ne0Ti
ni0Te

ni1� (17.42)

Inserting Eq. (17.42) into the linearized quasi-neutrality expression ni1 = nd1Zd+
ne1 gives

ni1 = 1

1+ ne0Ti
ni0Te

Zdnd1 (17.43)

and hence

ne1 = −ne0Ti/ni0Te
1+ ne0Ti

ni0Te

Zdnd1� (17.44)
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Substitution for ni1 and ne1 in Eq. (17.38) gives

nd0md
�ud1
�t

= −�Ti
1−ne0/ni0
1+ ne0Ti

ni0Te

Zd	nd1

� −�TiZd	nd1 (17.45)

since ne0 � ni0 and typically Ti/Te � ni0/ne0�

The linearized dust continuity equation is

�nd1
�t

+nd0	 ·ud1 = 0 (17.46)

so taking the divergence of Eq. (17.45) and substituting Eq. (17.46) gives

�2nd1
�t2

= Zd�Ti
md

	2nd1� (17.47)

which describes a wave with phase velocity

c2da = Zd�Ti
md

� (17.48)

This wave is called the dust acoustic wave and its phase velocity is extremely
low because of the large dust grain mass.
This analysis could be extended to include finite k�D terms as obtained by using

the full Poisson’s equation instead of making the simplifying assumption of perfect
neutrality. A Vlasov approach could also be invoked to demonstrate the effect of
Landau damping. Rather than work through the details of these extensions, one
can argue that the � � 1 dusty plasma is effectively a two-component plasma
where the heavy particles are the negatively charged dust grains and the light
particles are the positively charged ions. The previously derived results from both
two-fluid theory and Vlasov theory could then be invoked by simply identifying
the heavy and light particles in the manner stated above. Thus by making the
identification shown in Table 17.1, taking into account finite k2�2D terms will
result in a dispersive dust acoustic wave

�2 = k2c2da
1+k2�2Di

� (17.49)

Similarly, just as an electron flow velocity faster than the ion acoustic phase
velocity would destabilize ion acoustic waves via inverse Landau damping, a
Landau analysis would show that an ion flow velocity faster than the dust acoustic
phase velocity would destabilize dust acoustic waves.
Destabilized dust acoustic waves have been observed in an experiment by

Barkan, Merlino, and D’Angelo (1995) . The phase velocity of these waves was of
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Table 17.1

ion acoustic wave dust acoustic wave

inertia provided by ions dust grains
restoring force provided by electron pressure ion pressure

the order of 10 cm s−1, which is an order of magnitude less than a typical human
walking speed.

17.6 Dust ion acoustic waves

The presence of dust grains can also substantially modify the propagation prop-
erties of conventional ion acoustic waves. In a conventional electron–ion plasma,
ion acoustic waves can propagate only if Te � Ti. This is because strong ion
Landau damping occurs when the wave phase velocity is of the order of the ion
thermal velocity. This damping is impossible to avoid unless Te � Ti, since the
conventional ion acoustic phase velocity scales as c2s = ���Ti+�Te�/mi�

As in the conventional ion acoustic wave, the derivation of dust ion acoustic
waves involves the linearized electron and ion equations

0 = −ne0eE1 −�Te	ne1 (17.50)

ni0mi
�ui
�t

= +ni0eE1 −��Ti	ni1� (17.51)

the possibility of finite Ti has been retained in order to allow consideration of
the Te ∼ Ti regime. The wave frequency is assumed to be sufficiently high so
that the dust grains are unable to respond to the wave. The dust grains can
thus be considered as being infinitely massive and therefore stationary. In this
limit the dust grains contribute to the equilibrium quasi-neutrality condition ni0 =
ne0+Zdnd0 but, since the dust grains are assumed stationary, their density cannot
change and so the linearized quasi-neutrality condition is ni1 = ne1� Thus, infinitely
massive dust grains affect the equilibrium electron density, but not the perturbed
electron density.
Eliminating E1 between Eqs. (17.50) and (17.51) gives

ni0mi
�ui
�t

= − ni0
ne0
�Te	ne1 −��Ti	ni1� (17.52)

Since ni1 = ne1 and ni0/ne0 = ni0/�ni0 −Zdnd0�, Eq. (17.52) becomes

nimi
�ui
�t

= − 1
1−Zdnd0/ni0

�Te	ni−��Ti	ni� (17.53)
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Taking the divergence and using Eqs. (17.11) and (17.32) gives

mi
�2ni1
�t2

=
(

1
1−��Te+��Ti

)
	2ni1� (17.54)

which gives the dust ion acoustic wave (Shukla and Silin 1992), a wave with
phase velocity

c2DIA = 1
1−�

�Te
mi

+��Ti
mi
� (17.55)

As � approaches unity, the dust ion acoustic wave phase velocity becomes much
greater than the ion thermal velocity even in a plasma having Ti = Te. The dust ion
acoustic wave thus propagates without being attenuated by ion Landau damping
in a Ti = Te plasma having �� 1, which corresponds to the left side of Fig. 17.2.
Thus, the presence of a large dust grain density enables the propagation of ion
acoustic waves that normally would be damped in a Te = Ti plasma; this has been
observed in experiments by Barkan, D’Angelo, and Merlino (1996).

17.7 The strongly coupled regime: crystallization of a dusty plasma

The mutual repulsive force between two negatively charged dust grains scales
as Z2

d and so will be very large for highly charged dust grains. In the extreme
limit, the electrostatic potential energy between dust grains might exceed their
kinetic energy so that the grains would tend to form an ordered, crystallized
state. The possibility that dust grains might crystallize was first suggested by
Ikezi (1986) and has since been demonstrated in a number of experiments
(Chu and I 1994, Melzer, Trottenberg, and Piel 1994, Thomas et al. 1994, Hayashi
and Tachibana 1994, Nefedov et al. 2003, Morfill et al. 2002). The threshold
criterion for crystallization will be discussed in this section following a model by
Bellan (2004b). The threshold is determined by considering certain issues relating
to the validity of the conventional Debye shielding model and the Boltzmann
relation.
Large Zd corresponds to large &d, which in turn corresponds to operating

towards the right of Fig. 17.2. Since the location of the saturation value of &d
increases with Te/Ti, very large &d can occur if Te � Ti� In addition to the scaling
with Z2

d the repulsive force also scales inversely with the square of the distance

separating the two dust grains, i.e., the repulsive force also scales as n2/3d0 � Since
P is proportional to nd0, the maximum repulsive force would be obtained around
the knee in the Te � Ti curves in Fig. 17.2 since at this location it is possible to
have large &d without nd0 becoming infinitesimal.

The repulsive electrostatic force between two dust grains is attenuated by Debye
shielding. This shielding can be calculated by considering a single dust grain to
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be a test particle immersed in a plasma consisting of electrons, ions, and other
dust grains (these other dust grains will be referred to as “field” dust grains).
The test particle will be completely shielded beyond some critical radius. A field
dust grain located beyond this critical radius will experience no interaction with
the test particle dust grain whereas if the field dust grain is located within the
shielding radius, it will experience an enormous repulsive force. The test particle
dust grain thus acts like a finite-radius hard sphere in its interactions with field
particle dust grains.
A quantitative model for these interactions between dust grains can be devel-

oped by considering Poisson’s equation for a dusty plasma,

	2�= − 1

0
�nie−nee−Zdnde� � (17.56)

The usual test-particle argument (see p. 10) involves linearization of the Boltzmann
relation for each species to obtain a linearized density for each species. These
linearized densities are then substituted into Poisson’s equation resulting in the
Yukawa-type solution,

�= qt
4
0r

exp �−r/�D�� (17.57)

where �−2
D = ∑

�−2
D�� However, this linearization is based on the assumption

�qt�/�T� � � 1, which is clearly not true in the vicinity of a highly charged dust
grain. This inconsistency cannot be resolved in fluid theory and it is necessary to
revert to the more fundamental Vlasov description.
According to the Vlasov description, the phase-space density of particles is

characterized using a velocity distribution function f��r�v� t� for each species
and the time evolution of f� is prescribed by the Vlasov equation. In order to
determine the time-averaged potential in the vicinity of a test particle, a steady-
state solution to the Vlasov equation must be found. To do this, we begin by letting
the test particle location define the origin of a spherical coordinate system and
then assume that all time-averaged quantities are spherically symmetric about this
origin so �=��r� and f� = f��r� v�� Since an incident particle can be considered
as colliding with the test particle, the nominal distance from the test particle to the
location of the incident particle’s previous collision is �mfp, the collision mean
free path. Thus, so far as collisions with particles other than the test particle are
concerned, an incident particle can be considered as being collisionless inside
a sphere of radius �mfp centered about the test particle, i.e., centered about the
origin. Because a typical particle incident upon the test particle will have traveled
many mean free paths, the velocity distribution of incident particles will be
Maxwellian when these particles enter a sphere with radius of order lmfp centered
on the test particle. Since the incident particles are collisionless within the �mfp
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sphere, their velocity distribution function must be a solution to the collisionless
Vlasov equation inside this sphere. The boundary condition this inside solution
must satisfy is that its large r limit should correspond to the collisional (i.e.,
Maxwellian) distribution outside the �mfp sphere.
Solutions to the collisionless Vlasov equation are functions of constants of the

motion as shown in Section. 2.3 and the appropriate constant of the motion here
is the particle energy W =m�v2/2+q���r�. Hence, the distribution function in
the collisionless region near the test particle must be

f� �r�v�= n�0
(
m�

2�T�

)3/2

exp
(

−m�v
2/2+q���r�
�T�

)
� (17.58)

since this maps to a Maxwellian distribution at large distances r, where ��r�→ 0�
A negatively charged particle such as a dust grain or an electron experiences

a repulsive force upon approaching the dust grain test particle and so slows
down. Some approaching negatively charged particles reflect and so the minimum
velocity of electrons or dust grains approaching the dust grain test particle is zero.
The density of these particles will thus be

n� =
∫ �

0
f� �r�v�d

3v

= n�0 exp
(

−q���r�
�T�

)
� (17.59)

which is the same as the fluid theory Boltzmann relation. It is useful at this point
to change over to the non-dimensional scalar & defined in Eq. (17.15). Since the
dust grains are negatively charged, & is large and positive in the vicinity of a dust
grain. The respective normalized electron and field dust grain densities are thus

ne
ne0

= exp �−&Ti/Te� (17.60)

nd
nd0

= exp
(−Z̄&) � (17.61)

where

Z̄ = ZdTi/Td� (17.62)

Both the electron and field dust grain densities decrease in the vicinity of the
dust grain test particle. However, because Z̄ is typically very large and Ti/Te is
assumed to be very small, the field dust density scale length is much shorter than
the electron density scale length.
Ion dynamics are qualitatively different because all ions approaching the dust

grain are accelerated, leading to the situation that no zero velocity ions exist near
the dust grain. In particular, an ion starting with infinitesimal inward velocity at
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infinity where &= 0 has nearly zero energy, i.e., W � 0� The energy conservation
equation for this slowest ion is

miv
2/2+ e��r�= 0 (17.63)

and so the velocity for this slowest ion has the spatial dependence

vmin =
√

−2e��r�
mi

� (17.64)

The ion density is thus

ni�r� =
∫ �

vmin

fi �r�v�d
3v

= ni0
(
mi

2�Ti

)3/2

exp
(

−qi��r�
�Ti

)∫ �

vmin

exp
(

−mv
2/2
�Ti

)
d3v

= ni0
4√

exp �&�

∫ �
√
&
exp

(−%2)%2d%� (17.65)

This can be expressed in terms of the error function

erf z= 2√


∫ z
0
exp �−%2�d% (17.66)

and, in particular, using the identity

4√


∫ �

z
exp

(−%2)%2d% = 2√


∫ �

z
d% exp �−%2�− 2√



∫ �

z
d%

d
d%

(
% exp �−%2�)

(17.67)
it is seen that (Laframboise and Parker 1973)

ni
ni0

= exp �&�
(
1− erf

√
&
)

+ 2√


√
&� (17.68)

The error function has the small-argument limit

lim
z→0

erf z� 2z√


(17.69)

and so for &� 1
ni
ni0

= 1+&� (17.70)

which is identical to the Boltzmann result given by fluid theory.
However, because

lim
z→� e−z2 �1− erf z�= 0� (17.71)
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Table 17.2

Region 1 Region 2 Region 3

Definition &d > & > 1 1> &> 1/Z̄ 1/Z̄ > &
Location adjacent to dust grain middle spherical layer outer layer
Ions non-Boltzmann, fast Boltzmann Boltzmann
Electrons Boltzmann Boltzmann Boltzmann
Dust zero density zero density Boltzmann
Dependence vacuum-like w/const. growing/decaying Yukawa decaying Yukawa

when &� 1 the ion density has a non-Boltzmann dependence

ni
ni0

= 2√


√
&� (17.72)

which is much smaller than the exp �&� dependence predicted by the Boltzmann
relation.
Poisson’s equation, Eq. (17.56), can be written non-dimensionally as

1
r̄2
�

�r̄

(
r̄2
�&

�r̄

)
= ni
ni0

− ne
ni0

− Zdnd
ni0

= ni
ni0

− �1−�� ne
ne0

−� nd
nd0
� (17.73)

where, following the normalization convention introduced earlier, r̄ = r/�di� Upon
substituting for the normalized densities, Poisson’s equation becomes

1
r̄2
�

�r̄

(
r̄2
�&

�r̄

)
︸ ︷︷ ︸

vacuum

= e&
(
1− erf

(√
&
))

+ 2√


√
&︸ ︷︷ ︸

ions

−�1−�� exp
(

−&Ti
Te

)
︸ ︷︷ ︸

electrons

−� exp (−Z̄&)︸ ︷︷ ︸
dust

� (17.74)

Because & becomes large near the dust grain, this equation is highly nonlinear and
so the linearization technique used on p. 10 for the conventional Debye shield-
ing derivation cannot be invoked. Instead, an approximate solution to Poisson’s
equation is obtained by separating the collisionless region around the dust grain
test particle into three concentric layers (regions) according to the magnitude of
& as shown in Table 17.2.
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Poisson’s equation has the following approximations in the three regions,

Region 1 �
1
r̄2
�

�r̄

(
r̄2
�&

�r̄

)
= 0 (17.75)

Region 2 �
1
r̄2
�

�r̄

(
r̄2
�&

�r̄

)
= &+� (17.76)

Region 3 �
1
r̄2
�

�r̄

(
r̄2
�&

�r̄

)
= �1+�Z̄�&� (17.77)

The reasons for these approximations are as follows:
In Region 1, &� 1 so that the ion density is given in principle by Eq. (17.72)

which would give a right-hand side scaling as
√
&� This ion term would dominate

the electron and dust terms, since the latter are always less than unity in this
region. Thus, keeping just the ion term on the right-hand side, Poisson’s equation
in Region 1 reduces to

1
r̄2
�

�r̄

(
r̄2
�&

�r̄

)
︸ ︷︷ ︸

vacuum

� 2√
&
&︸ ︷︷ ︸

ion

� (17.78)

however, the ion term above can be neglected compared to the vacuum term
because

√
& � 1 since & � 1� Thus Poisson’s equation can be approximated

in Region 1 by just the vacuum term. This assumption is quite good near the
dust grain surface where & is indeed very large compared to unity, but becomes
marginal when & approaches unity at the outer limit of Region 1.
In Region 2, defined by 1> & > 1/Z̄, the ions have a Boltzmann distribution

so ni/ne0 = 1+&� The normalized electron density is ne/ne0 = exp �−&Ti/Te�
and, since Ti/Te � 1, this simplifies to ne/ne0 � 1. Also, because Z̄& � 1 the
dust density is nearly zero in this region.
In Region 3, defined by 1/Z̄ > &, Eq. (17.74) approximates to

1
r̄2
�

�r̄

(
r̄2
�&

�r̄

)
︸ ︷︷ ︸

vacuum

� 1+&︸ ︷︷ ︸
ions

− �1−��
(
1− &Ti

Te

)
︸ ︷︷ ︸

electrons

− (1− Z̄&)�︸ ︷︷ ︸
dust

� �1+�Z̄�&� (17.79)

where Ti/Te � 1 has been used. For finite �, the dust term dominates because
�Z̄� 1�
The system has two boundary conditions, one at the dust grain surface and the

other at infinity. The former occurs in Region 1 and is set by the radial electric
field at the dust grain surface. This boundary condition is obtained from Gauss’
law, which relates �&/�r̄ at the dust grain surface to the dust grain charge and
radius. The boundary condition at infinity can be considered as the large r̄ limit
for Region 3 and requires & to vanish as r̄ goes to infinity.
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If the same form of Poisson’s equation were to characterize Regions 1, 2,
and 3, then the system would be governed by a single second-order ordinary
differential equation and the two boundary conditions described in the previous
paragraph would suffice to give a unique solution. However, the equations in
Regions 1, 2, and 3 differ from each other and so must be solved separately with
appropriate matching at the two interfaces between the three regions. The criteria
for matching at the interfaces, determined by integrating Poisson’s equation twice
across each interface, are that both & and its radial derivative must be continuous
at each interface. An important feature of this analysis is that the locations of
the two interfaces are unknowns, which are to be determined by solving the
matching problem. Since Regions 1 and 2 are of finite extent, both decaying and
non-decaying & solutions are allowed in these regions. However, only a decaying
solution is allowed in Region 3.
Region 1, which is governed by Eq. (17.75), has vacuum-like solutions of the

form & ∼ cr̄−1+d, where c and d are constants. The constant c is chosen to give
the correct radial electric field at the surface of the dust grain test charge and
d is chosen to set & = 1 at r̄i, which is the as yet undetermined location of the
interface between Regions 1 and 2. Thus, using Gauss’ law to prescribe the radial
electric field at the dust grain surface and choosing d to set & = 1 at r̄ = r̄i gives

&1�r̄�=
�ā3

3
+
(
1− 1

r̄i

�ā3

3

)
r̄

r̄
� (17.80)

In Region 2, which is governed by Eq. (17.76), the effective dependent variable
is &+�, which has growing and decaying Yukawa-like solutions ∼ exp �±r̄�/r̄�
It is convenient to write the Region 2 solution as

&2�r̄�=
r̄o

(
1

Z̄
+�

)
cosh �r̄− r̄o�+B sinh �r̄− r̄o�−�r̄

r̄
� (17.81)

where the coefficients have been chosen so that &= 1/Z̄ at r̄o� the as yet undeter-
mined location of the interface between Regions 2 and 3. The coefficient B in this
expression is undetermined for now, and it should be noted that & is independent
of B at r̄ = r̄o.

Region 3, governed by Eq. (17.77), has a solution that can be expressed as

&3�r̄�= r̄0

Z̄r̄
exp

(
−
√
�Z̄+1 �r̄− r̄o�

)
(17.82)

where the coefficients have been chosen to give & = 1/Z̄ at r̄o� the interface
between Regions 2 and 3.
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The condition that �&/�r̄ is continuous at r̄o gives

B = �− r̄o
Z̄

√
�Z̄+1 (17.83)

and this result completes the matching process at r̄o since both & and �&/�r̄ have
now been arranged to be continuous at r̄o. Since &1 = 1 has already been arranged
at r̄i, all that is required to have continuity of & at r̄i is to set &2 = 1 at r̄i, i.e., set

r̄i = r̄o
(
1

Z̄
+�

)
cosh �r̄i− r̄o�+B sinh �r̄i− r̄o�−�r̄i� (17.84)

What remains to be done is arrange for continuity of �&/�r̄ at r̄ = r̄i� Since &
has already been arranged to be continuous at r̄ = r̄i� continuity of � �r̄&� /�r̄ at
r̄ = r̄i implies continuity of �&/�r̄� This means that continuity of �&/�r̄ at r̄ = r̄i
is attained by equating the derivatives of the numerators of the right-hand sides
of Eqs. (17.80) and (17.81) at r̄i, i.e., continuity of �&/�r̄ at r̄ = r̄i is attained by
setting

1− 1
r̄i

�ā3

3
= r̄o

(
1

Z̄
+�

)
sinh �r̄i− r̄o�+B cosh �r̄i− r̄o�−�� (17.85)

Since Z̄� 1 and � is of order unity, Eqs. (17.84) and (17.85) can be approxi-
mated as

�1+�� r̄i = �r̄o cosh �r̄i− r̄o�+� sinh �r̄i− r̄o� (17.86)

1+�− 1
r̄i

�ā3

3
= �r̄o sinh �r̄i− r̄o�+� cosh �r̄i− r̄o� � (17.87)

These constitute two coupled nonlinear equations in the unknowns r̄i and r̄o and
can be solved numerically. Since the parameters � and ā in these equations are
functions of position in dusty plasma parameter space, Eqs. (17.86) and (17.87)
can be solved for r̄i and r̄o at any point ā� r̄d in dusty plasma parameter space.
Because a different solution set "r̄i� r̄o# exists at each point in dusty plasma
parameter space, r̄i and r̄o may be considered as functions of position in dusty
plasma parameter space, i.e., r̄i = r̄i�ā� r̄d� and r̄o = r̄o�ā� r̄d�.
Now consider the density of the field dust grains in the vicinity of r̄ = r̄o� For

r̄ > r̄o the normalized potential is prescribed by Eq. (17.82) and decays at the dust
Debye length, which is an extremely short length because Z̄� 1. This precipitous
spatial attenuation of & for r̄ > r̄o means that dust grains are completely shielded
from each other when their separation distance slightly exceeds r̄o. If this is the
case, then the dust grains will not interact with each other; i.e., they can be
considered as a gas of non-interacting particles. On the other hand, if r̄ < r̄o� the
normalized potential & then exceeds 1/Z̄ and the dust grains will experience a
strong mutual repulsion. This abrupt change-over is implicit in Eq. (17.61) which
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indicates that nd/nd0 is near unity when &� 1/Z̄ (i.e., just outside r̄ = r̄o) but
nd/nd0 is near zero when & becomes significantly larger than 1/Z̄ (i.e., just inside
r̄ = r̄o). Hence, a dust grain test particle can be considered as a hard sphere of
radius r̄o when interacting with field dust grains.

Since the nominal separation between dust grains is ā, if ā > r̄o then each dust
grain is completely shielded from its neighbors, in which case the dust grains
behave as an ideal gas of non-interacting particles. However, if ā < r̄o is attempted,
each dust grain experiences the full, unshielded repulsive force of its neighbors.
This extreme repulsive force means that it is not possible for ā to become less
than r̄o. In effect, each dust grain sees its neighbor as a hard sphere of radius r̄o�
Thus, when ā = r̄o the collection of pressed-together dust grains should form a
regularly spaced lattice structure with lattice spacing of order ā = r̄o� The dusty
plasma has thus crystallized.
The condition for crystallization of a dusty plasma is thus

ā≤ r̄o�ā� r̄d�� (17.88)

which defines a curve in dusty plasma parameter space. Figure 17.4 shows a plot
of contours of r̄o/ā in dusty plasma parameter space; for reference, the region
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in parameter space associated with the Chu and I dusty plasma crystallization
experiment is indicated as a bold line (as mentioned before, the finite length
of this line corresponds to the density measurement error bars). The contour
r̄o�ā� r̄d�/ā = 1 gives the crystallization condition; above this contour the dust
grains are crystallized. It is also necessary to have r̄d small as was specified in
Eq. (17.13) so that &d is not attenuated from its vacuum value by the effect of
the shielding cloud.
Figure 17.5 shows plots of log10&, &� 10

4&� ne/ne0� ni/ni0� and nd/nd0 as
functions of r̄ for a dusty plasma on the verge of condensation. The functional
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Region 1, parameters are from Bellan (2004b).
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form of & is obtained from the r̄i and r̄o values determined by solving Eqs. (17.86)
and (17.87). The extremely rapid cutoff of the potential at r̄o� the interface between
Regions 2 and 3, is evident and the characteristic scale of this cutoff is the dust
Debye length. The normalized densities are plotted using Eqs. (17.60), (17.68),
and (17.61). The field dust grain density vanishes for r̄ inside r̄o, consistent with
the hard-sphere behavior of the dust grain test particle. Although & is tiny at the
interface between Regions 2 and 3, it nevertheless affects the average dust grain
density profile at this location because of the extremely large charge on the dust
grains.

17.8 Assignments

1. Assuming Te = 3 eV, Ti = 0�03 eV, and ni = 109 cm−3� estimate to within an order
of magnitude how long it would take for r = 5+m dust grains with density nd = 105

cm−3 to become fully charged. Hint: estimate the initial electron current impinging on
a dust grain and compare this to the final charge on the dust grain. Use Fig. 17.3 to
estimate Zd�

2. Orbital motion limit and angular momentum. The OML approximation ignores the
effective potential resulting from centrifugal force. The validity of this approximation
is examined here for the cases of an algebraically decaying central force and an
exponentially decaying central force.

(a) Show that when centrifugal force is taken into account, the radial equation of
motion for a particle in a spherically symmetric electrostatic potential ��r� is

mr̈ = −�'
�r
�

where the effective potential ' is given by

' = q��r�+ mb
2v2

2r2

and m�b� and v are defined as in Section 17.2.
(b) Show that if q� is negative, a local minimum of the effective potential exists at

some radial position r1� compare this situation to planetary motion in the solar
system.

(c) Show that if q�∼ −r−p there can also be a local maximum at a radius r2, where
r2 > r1, providing p satisfies a certain condition. What is this condition for p? Plot
'�r� for the situation where there is a local maximum. Can a particle incident from
infinity reach r1 if its energy is less than '�r2�? What sort of condition does this
place on m�v� and b? Under what circumstances is the OML approximation valid?
Plot trajectories for the situations where the OML approximation is valid and
situations where it fails. Comment on whether OML is a reasonable approximation
for dust charging.

(d) Repeat (c) above for the situation where q�∼ − exp �−r/���
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3. Assume the OML approximation is valid so that the effective potential can be consid-
ered to have a minimum in the vicinity of a negatively charged dust particle. Show
that, if an incident ion does not hit the dust grain, it will reflect back to infinity. Show
that a collision could cause an incident ion to be trapped in the effective potential well
at r1 as discussed in Assignment 1(b). Once an ion becomes trapped how long would
it stay trapped (see Goree 1992)?

4. Dust Alfvén waves. Show that for waves with frequency below the dust grain cyclotron
frequency, a dusty plasma will support MHD Alfvén waves with dispersion �2 = k2zv2A,
where v2A = B2/ndmd�

5. Dust whistler waves. Show that a dusty plasma with �� 1 will support whistler-like
waves with dispersion �� �ci cos�, where �cd � �� �ci�

6. Make a plot like Fig. 17.3 for a dusty plasma with Te = Ti and discuss whether such
a plasma could condense and form crystals.

7. Consider a methane plasma consisting of CH4 ions and electrons. Assume that there
exist some infinitesimal dust nuclei at t = 0 and that these become negatively charged
as discussed in Section 17.2. Further assume that any methane ion hitting the dust grain
sticks to the dust grain so that the mass of the dust grain increases with time. Plot the
dust grain radius as a function of time. How long would it take for the dust grains to
become sufficiently large to form a crystal (assume that nd = 105 cm−3� Te/Ti = 100�
�di = 100+m)?

8. Consider a weakly ionized dusty plasma with 5+m diameter dust grains, 3 eV electrons
and room temperature (0.025 eV) argon ions. The dusty plasma is located above a
horizontal metal plate lying in the z= 0 plane. Because electrons move faster than ions
and dust grains, the electron flux to the metal plate is initially much larger than the
ion or dust grain flux. The faster rate of loss for electrons causes the dusty plasma to
become positively charged so that an electric field develops, which tends to retard the
electrons and accelerate the ions towards the metal plate. Thus, the plasma potential
is positive with respect to the metal plate and if the plasma potential is defined to be
zero, then the metal plate has a negative potential, say �plate� The electron flux to the
plate will thus be

�e = nvTe exp �−qe�plate/�Te�
and, using a sheath analysis as in Section 2.9, the ion flux to the plate is

�i = ncs�
where cs =

√
�Te/mi is the ion acoustic velocity. In equilibrium, the electron and ion

fluxes will balance so that

exp �−qe�plate/�Te�=
√
me
mi

or

�plate = −Te
2
ln
mi
me
�
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where the temperature is expressed in electron volts. The change in potential will
occur over a distance of the order of the electron Debye length going from the plate
to the bulk plasma so that

��z�= −Te
2
exp �−z/�De� ln

mi
me
�

where z is the distance above the metal plate. By considering the combined effect of
(i) the vertical electric field associated with this potential and (ii) gravity acting on a
dust grain, show that dust grains will tend to levitate above the metal plate. Plot the
potential energy of dust grains in the combination of the electrostatic and gravitational
potential fields. Assume that Zd = 104 and that the dust grains are made of a material
that has a mass density of 1 gm cc−1.

9. Suppose a negatively charged dust grain has a charge Zd and a radius rd� Show that
the potential on the surface of the dust grain is much less than Zd/4
0rd if rd � �D,
where �D is the nominal shielding length for the shielding cloud around the dust grain.
What implication does this have for dust charging theory and why do interesting dusty
plasmas typically have rd � �D?



Appendix A

Intuitive method for vector calculus identities

Instead of providing the traditional “back of the book” list of vector calculus
identities, an intuitive method1 for deriving these identities will now be presented.

This method is based on combining the product rule of calculus with the vector
algebra triple product and dot-cross product rules. The two vector rules will first
be reviewed and then the method for combining these vector rules with the product
rule of calculus will be presented.

Vector algebra triple product

There are two forms for the vector triple product, depending on the location of
the parenthesis on the left-hand side, namely:

A×
⎛⎝ B︸︷︷︸

middle

× C︸︷︷︸
outer

⎞⎠ = B︸︷︷︸
middle

⎛⎜⎜⎜⎜⎜⎜⎝ A ·C︸︷︷︸
other two

dotted together

⎞⎟⎟⎟⎟⎟⎟⎠− C︸︷︷︸
outer

⎛⎜⎜⎜⎜⎜⎜⎝ A ·B︸︷︷︸
other two

dotted together

⎞⎟⎟⎟⎟⎟⎟⎠
(A.1)

⎛⎝ A︸︷︷︸
outer

× B︸︷︷︸
middle

⎞⎠×C = B︸︷︷︸
middle

⎛⎜⎜⎜⎜⎜⎜⎝ A ·C︸︷︷︸
other two

dotted together

⎞⎟⎟⎟⎟⎟⎟⎠− A︸︷︷︸
outer

⎛⎜⎜⎜⎜⎜⎜⎝ B ·C︸︷︷︸
other two

dotted together

⎞⎟⎟⎟⎟⎟⎟⎠�

(A.2)

1 This method was explained to the author by the late C. Oberman.
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Both of these distinct forms can be remembered by the two-word mnemonic
“middle-outer.” The words middle and outer are defined with reference to the
left-hand side of both equations; middle refers to the middle vector in the group
of three and outer refers to the outer vector in the parentheses. The first term
on the right-hand side is in the vector direction of the “middle” vector with the
other two vectors dotted together; the second term on the right-hand side is in the
direction of the “outer” vector with the other two vectors dotted together.

Dot-Cross product

Now consider the combination of dot and cross, A ·B×C. Here the rules are that
the dot and cross can be interchanged without changing the result and the order
can be cyclically permuted without changing the result, but if the cyclic order is
changed then the sign changes. Thus,

A ·B×C = A×B· C interchange dot and cross, (A.3)

A ·B×C = B×C· A permutation maintaining cyclic order, (A.4)

A ·B×C = −A ·C× B permutation changing cyclic order. (A.5)

Derivation of the vector calculus identities

The basic idea is to replace one of the vectors by the 	 operator and then rearrange
terms and if necessary add terms. The criterion for these maneuvers is that, just
like getting the right piece placed in a jigsaw puzzle, here all applicable rules
of vector algebra and of calculus must be satisfied simultaneously. The simple
example

	 · �&A�= &	 ·A+A·	& (A.6)

illustrates this principle of satisfying the vector algebra and the calculus rules
simultaneously. Here the dot always goes between the 	 and A in order to satisfy
the rules of vector algebra and the 	 operates once on A and once on & in order
to satisfy the product rule �ab�′ = ab′ +a′b of calculus.
A less trivial example is 	 · �B×C�. Here the 	 must operate on both B and

C according to the calculus product rule so, neglecting vector issues for now, the
result must be of the form B	C+C	B. This basic product rule result is then
adjusted to satisfy the vector dot-cross rules. In particular, the dots and crosses
may be interchanged at will and the sign is plus if the cyclic order is 	BC�BC	 ,
or C	B and the sign is minus if the cyclic order is 	CB� CB	 , or B	C. Since the
	 is supposed to operate on only one vector at a time, we pick the arrangement
where the 	 is in the middle and either B or C is to its right so that each of B or
C has a turn at being operated on by the 	 . The arrangements of interest are thus
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C ·	×B and −B ·	×C, where the minus sign has been inserted to account for
the change in cyclic order. The result is

	 · �B×C�= C ·	×B−B ·	×C� (A.7)

which satisfies both the vector algebra dot-cross rule and the product rule of
calculus.
Next consider the triple product A× �	×C�. Here the 	 operates only on the

C and the vector triple product generates two terms as indicated by Eq. (A.1).
Expanding the triple product according to Eq. (A.1) while arranging an ordering
of terms where the 	 operates only on C gives

A×
⎛⎝ 	︸︷︷︸

middle

× C︸︷︷︸
outer

⎞⎠=
⎛⎝ 	︸︷︷︸

middle

C︸︷︷︸
outer

⎞⎠ ·A−
⎛⎝A · 	︸︷︷︸

middle

⎞⎠ C︸︷︷︸
outer

� (A.8)

Thus, the first term on the right-hand side has its vector direction determined
by 	 with the other two terms dotted together, and the parenthesis indicates that
the 	 operates only on C. The second term on the right-hand side has its vector
direction determined by C with the other two terms dotted together and again the
	 operates only on C.
This can be rearranged as

�	C� ·A = A× �	×C�+A ·	C� (A.9)

Interchanging A and C gives

�	A� ·C = C× �	×A�+C ·	A� (A.10)

Adding these last two expressions gives

�	C� ·A+ �	A� ·C = A× �	×C�+A ·	C+C× �	×A�+C ·	A� (A.11)

However, using the same arguments about maintaining the dot and satisfying
the product rule shows that

	 �A ·C� = 	 �C ·A�
= �	A� ·C+ �	C� ·A� (A.12)

Here the 	 operates once on the A and once on the C according to the product
rule and the dot is always between the A and the C. Combining Eqs. (A.11) and
(A.12) gives the standard vector identity

	 �A ·C�= A× �	×C�+A ·	C+C× �	×A�+C ·	A� (A.13)
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Finally, the triple product with two 	’s can be expressed as

	×
⎛⎝ 	︸︷︷︸

middle

× A︸︷︷︸
outer

⎞⎠= 	︸︷︷︸
middle

⎛⎜⎜⎜⎜⎜⎜⎝ 	 ·A︸︷︷︸
other two

dotted together

⎞⎟⎟⎟⎟⎟⎟⎠− 	2︸︷︷︸
other two

dotted together

A︸︷︷︸
outer

(A.14)

or, without the labeling, as

	×	×A = 		 ·A−	2A� (A.15)

The relationships 	 ·	×A= 0 and 	×	&= 0 can be proved by direct evaluation
using Cartesian coordinates.

Summary of vector identities

A× �B×C� = B �A ·C�C− �A ·B�
�A×B�×C = B �A ·C�A− �B ·C�

A ·B×C = A×B ·C� interchange dot and cross

A ·B×C = B×C ·A� cyclic permutation, cyclic order maintained

A ·B×C = −A ·C×B� cyclic permutation, cyclic order changed

	 · �&A� = &	 ·A+A ·	&
	 · �A×B� = B ·	×A−A ·	×B

�	B� ·A = A× �	×B�+A ·	B
	 �A ·B� = A× �	×B�+A ·	B+B× �	×A�+B ·	A
	×	×A = 	 �	 ·A�−	2A

	 ·	×A = 0

	×	& = 0
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Vector calculus in orthogonal curvilinear coordinates

Derivation of generalized relations

Let x1� x2� x3 be a right-handed set of orthogonal coordinates. Let hi be the scale
factor relating an increment in the ith coordinate to an increment in length in that
direction so

dli = hidxi� (B.1)

an example is the � direction of cylindrical coordinates where dl� = rd�. Since
the coordinates are assumed to be orthogonal, the increment in distance along a
curve in three-dimensional space is

�ds�2 = h21 �dx1�2 +h22 �dx2�2 +h23 �dx3�2 � (B.2)

The "x1� x2� x3# coordinates and corresponding "h1� h2� h3# scale factors for Carte-
sian, cylindrical, and spherical coordinate systems are listed in Table B.1.
The differential of the scalar & for a displacement by dl1 of the coordinate

x1 is

d& = dl1x̂1 ·	& (B.3)

so the component of the gradient operator in the direction of x̂1 is

x̂1 ·	& = d&

dl1
= 1
h1

�&

�x1
� (B.4)

Equation (B.1) has been used to obtain the right-most expression and partial
derivative notation is invoked for this expression because the displacement is just
in the direction of x1.

Generalized gradient operator

Because the coordinates are independent, a displacement in the direction of one
coordinate does not affect the dependence on the other coordinates and so the

586
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Table B.1 Coordinate systems and their scale factors.

Coordinate system Distance along a curve "x1� x2� x3# "h1� h2� h3#

Cartesian �dx�2 + �dy�2 + �dz�2 "x� y� z# "1�1�1#
cylindrical �dr�2 + �rd��2 + �dz�2 "r��� z# "1� r�1#
spherical �dr�2 + �rd��2 + �r sin �d��2 "r� ���# "1� r� r sin �#

gradient operator is just the sum of its components in the three orthogonal direc-
tions, i.e.,

	 = x̂1
h1

�

�x1
+ x̂2
h2

�

�x2
+ x̂3
h3

�

�x3
� (B.5)

Since 	x1 = x̂1/h1, the unit vector in the x1 direction is

x̂1 = h1	x1� (B.6)

Also, because the coordinates form a right-handed orthogonal system the unit
vectors are related by

x̂1 × x̂2 = x̂3� x̂2 × x̂3 = x̂1, x̂3 × x̂1 = x̂2� (B.7)

Generalized divergence and curl

Let V be an arbitrary vector

V = V1x̂1 +V2x̂2 +V3x̂3 (B.8)

and consider the divergence of the first term,

	 · �V1x̂1� = 	 · �V1x̂2 × x̂3�
= 	 · �V1h2	x2 ×h3	x3�
= 	 �h2h3V1� ·	x2 ×	x3
= 	 �h2h3V1� ·

x̂2 × x̂3
h2h3

= x̂1
h2h3

·	 �h2h3V1�

= 1
h1h2h3

�

�x1
�h2h3V1� � (B.9)

Extending this to all three terms gives the general form for the divergence to be

	 ·V = 1
h1h2h3

(
�

�x1
�h2h3V1�+

�

�x2
�h1h3V2�+

�

�x3
�h1h2V3�

)
� (B.10)
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Now consider the curl of the first term of the arbitrary vector, namely

	× �V1x̂1� = 	× �V1h1	x1�
= 	 �V1h1�×	x1
= 1
h1
	 �V1h1�× x̂1 (B.11)

and so

	×V = 1
h1
	 �V1h1�× x̂1 + 1

h2
	 �V2h2�× x̂2 + 1

h3
	 �V3h3�× x̂3� (B.12)

The component in the direction of x̂1 is

x̂1 ·	×V = 1
h2
	 �V2h2�× x̂2 · x̂1 + 1

h3
	 �V3h3�× x̂3 · x̂1

= 1
h2
	 �V2h2� · x̂2 × x̂1 + 1

h3
	 �V3h3� · x̂3 × x̂1

= 1
h3
x̂2 ·	 �V3h3�−

1
h2
x̂3 ·	 �V2h2�

= 1
h2h3

�

�x2
�V3h3�−

1
h2h3

�

�x3
�V2h2� � (B.13)

Thus, the general form of the curl of the arbitrary vector is

	×V = 1
h2h3

(
�

�x2
�V3h3�−

�

�x3
�V2h2�

)
x̂1

+ 1
h1h3

(
�

�x3
�V1h1�−

�

�x1
�V3h3�

)
x̂2

+ 1
h1h2

(
�

�x1
�V2h2�−

�

�x2
�V1h1�

)
x̂3

= 1
h1h2h3

∣∣∣∣∣∣∣
h1x̂1 h2x̂2 h3x̂3
�/�x1 �/�x2 �/�x3
h1V1 h2V2 h3V3

∣∣∣∣∣∣∣ � (B.14)

Generalized Laplacian of a scalar

The Laplacian of a scalar is

	2& = 	 ·
(
x̂1
h1

�&

�x1
+ x̂2
h2

�&

�x2
+ x̂3
h3

�&

�x3

)
� (B.15)
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Using Eq. (B.10) this becomes

	2& = 1
h1h2h3

(
�

�x1

(
h2h3
h1

�&

�x1

)
+ �

�x2

(
h3h1
h2

�&

�x2

)
+ �

�x3

(
h1h2
h3

�&

�x3

))
�

(B.16)
The Laplacian of a vector in general differs from the Laplacian of a scalar

because the Laplacian of a vector can contain derivatives of unit vectors. However,
the general formula is overly complex and so the Laplacian of a vector will only
be calculated for cylindrical coordinates since these are of most interest here.

Application to Cartesian coordinates

"x1� x2� x3#= "x� y� z#� "h1� h2� h3#= "1�1�1#
	& = x̂

�&

�x
+ ŷ �&

�y
+ ẑ �&

�z
(B.17)

	 ·V = �Vx
�x

+ �Vy
�y

+ �Vz
�z

(B.18)

	×V =
(
�Vz
�y

− �Vy
�z

)
x̂+

(
�Vx
�z

− �Vz
�x

)
ŷ

+
(
�Vy

�x
− �Vx
�y

)
ẑ (B.19)

	2& = �2&

�x2
+ �

2&

�y2
+ �

2&

�z2
(B.20)

	2V = �2V
�x2

+ �
2V
�y2

+ �
2V
�z2

(B.21)

Application to cylindrical coordinates

"x1�x2� x3#= "r��� z#� "h1� h2� h3#= "1� r�1#

	& = r̂
�&

�r
+ �̂
r

�&

��
+ ẑ �&

�z
(B.22)

	 ·V = 1
r

�

�r
�rVr�+

1
r

�V�

��
+ �Vz
�z

(B.23)

	×V =
(
1
r

�Vz
��

− �V�
�z

)
r̂+

(
�Vr
�z

− �Vz
�r

)
�̂

+1
r

(
�

�r

(
rV�

)− �Vr
��

)
ẑ (B.24)

	2& = 1
r

�

�r

(
r
�&

�r

)
+ 1
r2
�2&

��2
+ �

2&

�z2
(B.25)
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Laplacian of a vector in cylindrical coordinates

Before proceeding, note that the cylindrical coordinate unit vectors can be
expressed in terms of Cartesian unit vectors as

r̂ = x̂ cos�+ ŷ sin� (B.26)

�̂ = −x̂ sin�+ ŷ cos� (B.27)

so

�

��
r̂ = �̂� �

��
�̂= −r̂ � (B.28)

Thus,

	r̂ =
(
r̂
�

�r
+ �̂
r

�

��
+ ẑ �
�z

)
r̂ = �̂�̂

r
(B.29)

	�̂ =
(
r̂
�

�r
+ �̂
r

�

��
+ ẑ �
�z

)
�̂= − �̂r̂

r
(B.30)

and

	2r̂ = − 1
r2
r̂ (B.31)

	2�̂ = − 1
r2
�̂� (B.32)

These results can now be used to calculate 	2 �Vr r̂� and 	
2
(
V��̂

)
, which can

then be used to construct the full Laplacian. The first calculation gives

	2 �Vr r̂� = 	 ·	 �Vr r̂�
= 	 · ��	Vr� r̂+Vr	r̂�
= r̂	2Vr + �	Vr� ·	r̂+	 · �Vr	r̂�
= r̂	2Vr +2	Vr ·	r̂+Vr	2r̂

= r̂	2Vr +
2�̂�̂
r

·	Vr +
Vr
r2
�2

��2
r̂

= r̂	2Vr +
2�̂
r2
�Vr
��

− Vr
r2
r̂ (B.33)
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while the second calculation gives

	2
(
V��̂

)
= 	 ·	

(
V��̂

)
= 	 ·

((
	V�

)
�̂+V�	�̂

)
= �̂	2V�+2	V� ·	�̂+V�	2�̂

= �̂	2V�− 2r̂
r2
�V�

��
− V�
r2
�̂� (B.34)

Since 	2
(
Vzẑ
)= ẑ	2Vz, it is seen that the Laplacian of a vector in cylindrical

coordinates is

	2V = r̂

(
	2Vr −

2
r2
�V�

��
− Vr
r2

)
+�̂

(
	2V�+ 2

r2
�Vr
��

− V�
r2

)
+ẑ	2Vz� (B.35)

Equation (B.28) can also be used to calculate V ·	V giving

V ·	V =
(
Vr
�

�r
+ V�
r

�

��
+Vz

�

�z

)(
Vr r̂+V��̂+Vzẑ

)
= r̂

(
Vr
�Vr
�r

+ V�
r

�Vr
��

+Vz
�Vr
�z

− V
2
�

r

)

+�̂
(
Vr
�V�

�r
+ V�
r

�V�

��
+Vz

�V�

�z
+ V�Vr

r

)
+ẑ
(
Vr
�Vz
�r

+ V�
r

�Vz
��

+Vz
�Vz
�z

)
� (B.36)

Application to spherical coordinates

"x1�x2� x3#= "r� ���#� "h1� h2� h3#= "1� r� r sin �#

	& = r̂ �&
�r

+ �̂
r

�&

��
+ �̂

r sin �
�&

��
(B.37)

	 ·V = 1
r2
�

�r

(
r2Vr

)+ 1
r sin �

�

��
�sin �V��+

1
r sin �

�

��

(
V�
)

(B.38)
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	×V = 1
r sin �

(
�

��

(
V� sin �

)− �V�
��

)
r̂

+ 1
r sin �

(
�Vr
��

− �

�r

(
V�r sin �

))
�̂

+ 1
r

(
�

�r
�V�r�−

�Vr
��

)
�̂ (B.39)

	2& = 1
r2
�

�r

(
r2
�&

�r

)
+ 1
r2 sin �

�

��

(
sin �

�&

��

)
+ 1

r2 sin2 �

�2&

��2
(B.40)
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Frequently used physical constants and formulae

Physical constants (to 3 significant figures)

symbol value unit
electron mass me 9�11×10−31 kg
proton mass mp 1�67×10−27 kg
vacuum permeability �0 4×10−7 N A−2

vacuum permittivity 
0 8�85×10−12 F m−1

speed of light c 3�00×108 m s−1

electron charge e 1�60×10−19 C
Avogadro’s number NA 6�02×1023 mol−1

Boltzmann constant � 1�60×10−19 J eV−1

Formulae (all quantities in SI units, temperatures in eV, A is ion atomic mass
number)

Lengths

Debye length (p. 10)
1

�2D
=∑

�

1
�2�
�

where � is over all species participating in shielding and

�� =
√

0�T�
n0�q

2
�

= 7�4×103
√
T�
n0�

m�

Electron Larmor radius (p. 271)

rLe =
√
�Te/me
��ce�

= 2�4×10−6
√
Te
B

m�
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Ion Larmor radius (p. 271)

rLi =
√
�Ti/mi
��ci�

= 1�0×10−4

√
ATi

B
√
Z

m�

where A is atomic mass and Z is ion charge.
Electron collisionless skin depth (p. 170)

c

�pe
= 5�3×106√

ne
m�

Ion collisionless skin depth (assuming quasi-neutral plasma so niZ = ne)
c

�pi
= 2�3×108

√
A

Zne
m�

Frequencies

Electron plasma frequency (p. 150)

fpe = �pe

2
= 1

2

√
nee

2


0me
= 9

√
ne Hz�

Ion plasma frequency (p. 150)

fpi = �pi =
1
2

√
niq

2
i


0mi
= 0�21

√
Zne
A

Hz�

Electron cyclotron frequency (p. 94)

fce = 1
2

��ce� = eB

2me
= 2�8×1010B Hz�

Ion cyclotron frequency (p. 94)

fci =
1
2

��ci� = ZeB

2mi
= 1�52×107

ZB

A
Hz�

Upper hybrid frequency (p. 215)

fuh =
√
f 2pe+f 2ce�

Lower hybrid frequency (p. 215)

flh =
√√√√√√f 2ci+ f 2pi

1+ f
2
pe

f 2ce

�
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Diocotron frequency (pure electron plasma, p. 532)

fdioc � f 2pe/2fce�
Velocities

Electron thermal velocity (p. 181)

vTe =
√
2�Te
me

= 5�9×105
√
Te m s−1�

Ion thermal velocity (p. 181)

vTi =
√
2�Ti
mi

= 1�4×104
√
Ti
A

m s−1�

Ion acoustic velocity (p. 152)

cs =
√
�Te
mi

= 9�8×103
√
Te
A

m s−1�

Electron diamagnetic drift velocity (p. 289)

ud�e = �Te
eB

∣∣∣∣1n	n
∣∣∣∣= Te

B

∣∣∣∣1n	n
∣∣∣∣m s−1�

Ion diamagnetic drift velocity (flow in opposite direction from electrons, p. 289)

ud�i =
�Ti
qiB

∣∣∣∣1n	n
∣∣∣∣= Ti

ZB

∣∣∣∣1n	n
∣∣∣∣m s−1�

Alfvén velocity (p. 156)

vA = B√
�0nimi

= B√
�0neAmp/Z

= 2�2×1016B

√
Z

neA
m s−1�

Wave phase velocity (p. 234)

vph = �

k
= f��

Dimensionless

Plasma beta (p. 62, p. 366)

!= 2�0n�T

B2
= 4�03×10−25

B2
nT�

Lundquist number (p. 435)

S = �0vAL

�
�



596 Appendix C

Collisions, resistivity, and runaways

Electron–electron collision rate (p. 24)

�ee = 4×10−12n ln�

T
3/2
eV

s−1�

where ln�∼ 10, electron–ion rate same magnitude, ion–ion slower by
√
me/mi.

Spitzer resistivity (p. 451)

�= 1�03×10−4Z ln�

T
3/2
e

Ohm m�

Dreicer runaway electric field (p. 452)

EDreicer = 5�6×10−18neZ
ln�
Te

V m−1�

Typical neutral cross-section (p. 19)

�neut ∼ 3×10−20 m2�

Warm plasma waves

Electrostatic susceptibility (p. 192)

'� = 1

k2�2D�
�1+�Z���� �

where �= �/kvT� .
Plasma dispersion function (p. 192)

Z��� = 1
1/2

∫ �

−�
d%

exp �−%2�
�%−��

lim
�<<1

Z��� = −2�
(
1− 2�2

3
+ � � �

)
+ i1/2 exp �−�2�

lim
�>>1

Z��� = − 1
�

[
1+ 1

2�2
+ 3

4�4
+ � � �

]
+ i1/2 exp �−�2��
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action
integral in Lagrangian formalism, 76
in wave–wave coupling, 497
relation to quantum number, 497

action integral, 81
adiabatic invariance
breakdown of, 115
pendulum, 80

adiabatic invariant
general proof for Hamiltonian system, 85
� , second adiabatic invariant, 105
� conservation, 96
relation to quantum number, 83
third adiabatic invariant, 106

adiabatic limit of energy equation, 46
Airy equation, 279
Alfvén time, 423
Alfvén velocity, 212
Alfvén wave, 155
compressional (fast), 159, 161
in parameter space, 227
inertial Alfvén wave, 216, 240
shear (slow), 163
two-fluid model, 164
compressional mode, 172
inertial Alfvén wave, 170
kinetic Alfvén wave, 171

alpha particle, 340
Altar–Appleton–Hartree dispersion relation, 228
ambipolar diffusion, 21
analytic continuation, 187
antenna, 223
Appleton–Hartree dispersion relation, 228
arc, 333
astrophysical jet, 338
axisymmetry, 322

bad curvature, 350
ballistic term, 476
beam echo, 478
beat waves, 456
Bennett pinch, 316, 338
Bernstein waves, 273

Bessel function model, 408
Bessel relationships, 270
beta, 62, 365
bilinear function, 356
Bohm–Gross wave, 152
Boltzmann relation
difficulties with, 573
in Debye shielding, 8
limitations of, 570

bounce frequency, 136
bounded volume, 219
bounding surface, 219
break-even, fusion, 340
Brillouin backscatter, 503
Brillouin flow, 530
Brillouin limit, 532
Bromwich contour, 184

Calugareanu theorem, 407
canonical angular momentum, 118
in non-neutral plasma, 535
toroidal confinement, 327

canonical momentum, 300
definition of, 78

cathode emission, 31
caviton, 246, 519
center-of-mass frame dynamics, 436
Child–Langmuir space-charge-limited emission, 32
CMA diagram, 218
coalescence, mode, 245, 278
cold plasma wave-energy equation, 255
collimation, 338
collision
frequencies, 16
relations between cross-section, mean free path, 30

collisionless plasma, 16
collisions
and quasi-linear diffusion, 489
coulomb, 12
Fokker–Planck model, 445
qualitative treatment in Vlasov equation, 39
with neutrals, 19
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condensation
of dusty plasma, 569

confinement time, 340
constant of the motion
definition of, 78

constraints, 69
convective derivative
definition of, 43

coronal loop, 338
correspondence of drift equations with MHD, 108
Coulomb gauge, 148
coupled oscillator, 508
cross-section
effective, for dust grain charging, 558
fusion, 340
neutral, 19
small-angle scattering, 15

crystallization, 569
crystallization criterion, dusty plasma, 577
current
curvature, 111
diamagnetic, 109, 289
force-free in Grad–Shafranov equation, 324
grad B, 111
polarization, 111
poloidal, 322
sheet, 413
sheet, in Sweet–Parker reconnection, 434
toroidal, 322

curvature
good vs. bad, 350, 365
magnetic field, 313

curvature current, 111
curvature drift, 96
curved magnetic field, 96
cusp field, 123
cutoff, 154, 214, 220
cyclotron frequency, 94
cyclotron motion
sense of rotation, 32

d’Alembert’s principle of least action, 76
daughter wave, 492
Debye shielding, 152
derivation of, 7
in dusty plasma, 573
solution of pde for, 27

decay instability, 491, 503
delta W
in MHD energy principle, 359

destructive interference, 233
deuterium, 340
diamagnetic, 325
current, 109
drift velocity, 289

dielectric constant, 113
dielectric tensor, 208
dielectric tensor elements, 209
right-, left-hand polarization, 212

diffusion
ambipolar, 21
magnetic, 415

quasi-linear velocity space, 464
diocotron mode, 537
resistive wall, image charge method, 553

distribution function
definition of, 35
for collisionless drift wave, 301
moments of, 38

Doppler-shifted frequency, 175
double adiabatic laws
derivation of, 57

Dreicer electric field, 451
drift equations, 88
curvature drift, 96
derivation of, 91
drift in arbitrary force field, 93
grad B drift, 96
grad B force, 94
polarization drift, 94

drift wave, 289
collisional, 292
collisionless, 299
destabilization of, 297, 303
features, 297
nonlinear pumping of plasma, 298

drifts
curvature, 96
E×B, 88, 90
force, 90
generalization to arbitrary frequency, 131
grad B, 96
polarization, 94, 96

dumbbell wave normal surface, 220
dust
charge on grain, 559
charging of grains, 559
levitation, 580

dust acoustic waves, 564
dust charging, 579
dust ion acoustic waves, 568
dusty plasma, 556
crystallization (condensation), 569
crystallization criterion, 577
parameter space, 563

dynamic equilibria, 316, 328

E×B drift, 88, 96
echoes, 473

higher order, 488
spatial, 488

effective potential, 119
electric field

runaway (Dreicer), 451
electromagnetic plasma wave

in inhomogeneous plasma, 243
electromagnetic wave

derivation of, 153
in decay instability, 508

electron plasma wave, 152
in decay instability, 506

electrostatic ion cyclotron wave, 304
ellipsoid wave normal surface, 220
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energy
inductive, 315
per helicity, 393
wave, 253

energy conservation
in nonlinear waves, 457

energy equation
adiabatic limit, 46
isothermal limit, 46
wave, 253

energy equation, two-fluid, 45
energy principle, 351
energy transfer between waves and particles, 135
entropy
collisions, 49
conservation of, 474
of a distribution function, 46

equilibrium
impossibility of spherically symmetric MHD, 338
stable vs. unstable, 342

extraordinary wave, 215

fast mode, 159, 222
Fermi acceleration, 106
first adiabatic invariant, 98
floating potential, 68
flow (MHD accelerated), 328
compressible, 334
incompressible, 328
stagnation of, 338

flux
accumulation of toroidal flux in flow, 337
frozen-in, inductance, 314
poloidal, 117
private and public, 432
relation to vector potential, 117
volume per unit, 383

flux linkage, 397
flux preservation, 314
flux surface, 116
in mirror, 108

flux tube
Grad–Shafranov solution for, 339

Fokker–Planck theory, 436
force
axial MHD, 330
between parallel currents, 310
centrifugal, 96
flux-conserving, 315
grad B, 95
hoop, 311
non-conservative, 328
pinch, 310

force-free magnetic field, 394
force-free equilibrium, 370, 384
Bessel function model, 408
Lundquist solution, 408

force-free magnetic field, 309
free energy in sheared non-neutral plasma, 550
frequency
bounce, 136
cyclotron, 94

Doppler shifted, 175
frequently used formulae, 593
frictional drag, 447
qualitative derivation of, 42

frozen-in flux
proof of, 56

fusion
break-even, 340
criteria for, 340

gauge
Coulomb, 148

Gaussian integrals, 72
geometric optics, 245
good curvature, 350
grad B
current, 111
drift, 96
force, 94

Grad–Shafranov equation, 320
Green’s function in diocotron mode, 547
group velocity, 233
guiding center, definition of, 91

Hall term, 55
Hamilton–Lagrange formalism, 76
Hamiltonian, 78, 79
coupled harmonic oscillator, 493
geometric optics, 246

Helmholtz equation, 409
Hermitian part, 257
hollow profile, 547
hoop force, 311

ideal plasma, 16
ignitron, 33
ignorable coordinate, 78
image charge, line, 552
inductance, 314
induction equation, 57
in magnetic reconnection, 417

inhomogeneous plasmas, 242
initial condition, Poisson’s equation as, 208
initial value, 185
instability
caviton, 519
decay, 491
free-boundary, 370, 374
kink, 372, 380
parametric, 491
positron–electron streaming, 176
Rayleigh–Taylor, 343
resistive wall, 544
sausage, 371, 380
streaming, 174

ion acoustic velocity, in sheath, 67
ion acoustic wave, 152
in decay instability, 505
Landau damping of, 198
Landau instability, 204

ion saturation current, 67
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ion–ion resonance, 241
isothermal limit of energy equation, 46

� , second adiabatic invariant, 105
jet, astrophysical, 338
joining, in mode conversion, 288

kappa, magnetic curvature, 313
Kelvin vorticity theorem, 534
kink, 370
kink instability, 372, 380
diamagnetic or paramagnetic?, 384

Korteweg–de Vries equation, 524
Kruskal–Shafranov stability criterion, 382

Lagrange multipliers, 69
Lagrange’s equation, 77
Lagrangian, electromagnetic, 78
Landau damping, 196
and entropy, 474

Landau problem, 180
Langmuir probe, 67
Langmuir wave, 152
Laplace transform, 182
and ballistic term, 477

Laplace’s equation, 307
Larmor orbit, 94
Larmor radius, 94
poloidal, 328

laser fusion, 528
Lawson criterion, 340
leap-frog numerical integration, 28
lightning bolt, 232
line-averaged density, 155
linear mode conversion, 279
linearization, general method, 146
loss-cone, 104
lower hybrid frequency, 215
Lundquist number, 435
Lundquist solution, 408

magnetic
axis, 326
diffusion, 415
islands, 430
reconnection, 410
shear, 350

magnetic field
force-free, 309
minimum energy, 392
most general axisymmetric, 321
pressure, 310
reconnection in sheared field, 424
Solov’ev solution, 324
tension, 310
vacuum, 306

magnetic field curvature, 313
magnetic helicity, 367, 385, 394
association with current-driven instability, 366
conservation equation, 368, 407
conservation of, 390
global, 369

linkage, 385
linked ribbons, 409
twist, 387

magnetic mirror, 101
magnetic moments
density of, 109

magnetic pressure, 310
magnetic stress tensor, 312
magnetic tension, 310
magnetization, 109
magnetofluid, definition of, 351
magnetoplasmadynamic thruster, 333
magnetron, 554
Manley–Rowe relations, 493
Maxwellian distribution
definition of, 51

MHD equations
derivation of, 52
Ohm’s law, derivation of, 54

MHD with neutrals, 73
minimum energy
frozen-in flux, 314

minimum energy magnetic field, 392
moments of distribution function, 38
momentum conservation
in nonlinear waves, 457

� conservation, 96
�, definition of, 98

National Ignition Facility, 529
negative energy wave, 260
neutron, 340
nominal plasma parameters, 25
non-adiabatic motion, 115
nonlinear dispersion relation, 511
non-neutral plasma, 530
relation to Landau damping, 549

non-resonant particles
in quasi-linear velocity-space diffusion, 471

numerical integration of particle trajectory, 28

O-point, 415
orbital motion limited model, 558, 579
ordinary wave, 215
orthogonal curvilinear coordinates, 586
overdense, 227

parallel current, 310
paramagnetic, 325
parameter space, 225
parametric decay instability, 491, 528
Parker reconnection model, 432
Penrose criterion, 200
phase integral, 269
phase mixing, 233
and echoes, 478

phase-space, 34
physical constants, 593
pinch
Bennett, 338

pinch force, 310
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plasma dispersion function
definition of, 192
large argument limit of, 194
small argument limit of, 194

plasma frequency
definition of, 150

plateau velocity distribution, 472
Plemelj formula, 199
polarization current, 111
relation to capacitance, 113

polarization drift, 94, 96
change in particle energy, 142
in Alfvén wave, 156
relation to MHD equation of motion, 111
stochastic motion, 126

poles, 187
poloidal, definition of, 321
poloidal flux, 321
poloidal Larmor radius, 328
poloidal magnetic field, 322
ponderomotive force, 500, 517
Poynting flux, 253, 354
Poynting theorem, 408
pressure, magnetic, 310
pressure tensor, definition of, 42
principal resonances, 219
private flux, 432
product rule for oscillating physical quantities, 254
public flux, 432
pump, MHD acceleration of fluid, 333
pump depletion, 527
pump wave, 492
pure electron plasma, 530

QL modes, 231
QT modes, 230
quantum mechanics, 370
quantum mechanics, correspondence to, 246
quasi-linear velocity-space diffusion, 458
quasi-linear diffusion and collisions, 489
quasi-neutrality, 11
quiver velocity, 501

radiation pressure, 501
radius of curvature, 96
Raman backscatter, 503
random velocity, 42
reduced mass, 437
redundancy of Poisson’s equation, 206
refractive index, definition of, 210
relaxation, 392
relaxed state, 394
residues, 187
resistive mode, 411
resistive time, 423
resistive wall instability, 544, 553
resistivity
Fokker–Planck model, 450
simple derivation of, 20

resonance, 214, 220
ion cyclotron, 223
ion–ion, 241

resonance cones, 236
resonant particles
in quasi-linear velocity-space diffusion, 467, 469

reversal of magnetic field
spatial (cusp), 123
temporal, 122

reversed field pinch, 328, 394
ribbon, gift-wrapping, 409
Richardson–Dushman temperature-limited

emission, 32
Rosenbluth potentials, 444, 453
runaway electric field, 451, 455
Rutherford scattering, derivation, 25

saddle point, 281
safety factor, 383
tokamak, 429

sausage instability, 371, 380
scale factor, 586
scattering
energy transfer, 26
large-angle, 14
Rutherford, 12, 25
small-angle, 15

second adiabatic invariant, 105
self-adjointness, 356
self-confinement
impossibility of, 318

self-focusing, 503
separatrix, 326
sheath physics, 64
sheet current, 413
short-wave radio transmission, 263
slow mode, 222
slow wave, 158
Snell’s law, 244
solar corona loop, 338, 435
soliton
interaction, 526
ion acoustic wave, 523
propagating envelope, 522
stationary envelope, 521

Solov’ev solution, 324
orbits in, 339

space-charge-limited current, 31
spheromak, 328, 394, 409
stagnation of flow, 338
static equilibria, 316
steepest-descent contour, 281
stellarator, 328
stimulated Raman scattering, 528
Stirling’s formula, 69
stochastic motion, 126
streaming instability, 174
stress tensor
magnetic, 312

strongly coupled plasma, 569
surface wave, 247
susceptibility
definition of, 150

Sweet–Parker reconnection, 432
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symmetry
assumption in MHD jet, 329
canonical angular momentum and toroidal

confinement, 327
in Grad–Shafranov equation, 322
in Lagrangian formalism, 78
in solution of Grad–Shafranov equation, 323

taxonomy of cold plasma waves, 218
Taylor relaxation, 392
TE mode, 249
tearing, 416
temperature-limited current, 31
tension
magnetic, 310

thermal force, 72
third adiabatic invariant, 106
thruster, 333
TM mode, 249
tokamak, 328, 382
topology, minimum energy, 315
torque, 328
trapped particle in mirror, 104
tritium, 340
twist and writhe, 401, 407
two-fluid equations, derivation of, 41

underdense, 227
unperturbed orbit, 269
untrapped particle in mirror, 104
upper hybrid frequency, 215

vacuum magnetic field, 306
variational calculus, 69
vector calculus identities, 582
vector potential, 366
relation to flux, 117

velocity
Alfvén, 156, 212
bounce-averaged, 108
definitions of “average” velocity, 131
diamagnetic drift, 289
group, 233
in sawtooth wave, 132
in small-amplitude oscillatory field, 129
quiver, 501

virial theorem, 318
viscosity, 316, 329
Vlasov equation
derivation of, 35
moments of, 38
treatment of collisions, 39

volume per unit flux, 383

vortices
magnetic reconnection, 416

vorticity, 328
source for, 332

wall stabilization, 373
warm plasma dispersion relation (electrostatic), 271
water beading, 413
wave
Alfvén, 155
beating, 456
Bernstein, 273
definition of cold plasma, 206
drift, 289
dust acoustic, 564
dust Alfvén, 580
dust ion acoustic, 568
dust whistler, 580
electron plasma, 152
electrostatic ion cyclotron, 304
energy equation, 253, 255
energy, finite temperature wave, 259
extraordinary, 215
frequency dispersion, 233
ion acoustic, 152
magnetized cold plasma dispersion, 210
negative energy, 260
ordinary, 215
quasi-electrostatic cold plasma, 234
surface, 247
whistler, 231

wave energy
in diocotron mode, 541
in terms of dispersion relation, 253

wave normal surface, 217, 221
wave–wave nonlinearity, 491
waveguide, plasma, 247
wheel wave normal surface, 220
whistler wave, 231, 239
Wigner–Seitz radius, 560
WKB approximation, 81
WKB criterion, 244
WKB mode, correspondence to saddle point, 284
WKB solution, 243
of mode conversion problem, 288

Woltjer–Taylor relaxation, 392
work function, 32
writhe and twist, 401, 407

X-point, 432

Yukawa solution, 10, 27, 570, 573
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