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Preface

The motivation for this book on space charge in particle accelerators has emerged
from the continuing interest in the understanding and controlling of space charge
effects in operating high-intensity particle accelerators and the numerous projects
still under construction or in development, many of which are the world’s largest
instruments at the frontier of scientific and technical development.

This book focuses to a large extent on the author’s angle on theoretical concepts
of resonances and instabilities, in particular their coherent expressions, and attempts
to connect them with simulation results and – in a limited number of cases – with
experiments. Although these topics are well known in the accelerator community
in the broad context of impedances or wake fields, their application to direct space
charge is not yet equally well established. Utilizing terms like coherent space charge
resonances or coherent parametric instabilities may be sometimes challenging; it
is hoped that they will be useful to create a more systematic and differentiating
picture of space charge effects, which is the primary scope of this book. It is thus
complementary to existing textbooks on accelerators and beam dynamics with their
much broader scope, which are needed for understanding themes that could not be
adequately addressed in the format of this book.

The application of the material presented here is seen in the field of linear hadron
accelerators at non-relativistic energies, but also in space charge issues in circular
accelerators, like injector synchrotrons, all at basically non-relativistic energies,
where direct space charge issues are of concern.

A personal remark: In preparing this manuscript, I have found time and again
how challenging it is to map theoretical concepts of space charge effects to
the boundary conditions of real accelerators. This is particularly true for linear
accelerators, where a high level of space charge is embedded in often quite complex
and transient acceleration structures.

Nonetheless it is hoped that the material presented here may be useful to all those
who find that running a computer simulation code is not enough and who believe that
trying to understand the gap between analytical concepts, multiparticle simulations
and experiments is the best way to advance.
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Chapter 1
Introduction

No one believes the simulation results except the one who
performed the calculation, and everyone believes the
experimental results except the one who performed the
experiment.

[Quote from: Martin Greenwald, Massachusetts Institute of
Technology, in [1]]

Abstract A short historical account of the early development on space charge in
accelerators since the 1960s is followed by a list of books of reference on the wider
field of accelerator physics. A proper distinction of incoherent and coherent in the
context of resonant effects in space charge dominated beams is crucial. An equally
important distinction is that between externally excited resonances – for example by
error fields – and parametrically driven resonant instabilities, furthermore between
isotropic and anisotropic beams. A conceptualization of these terms – by presenting
a kind of guideline for the following chapters – is presented in the introduction and
intended as a hopefully useful framework for interpretation of theory, simulation
and experiments.

Modern particle accelerators are not thinkable without the tremendous progress
in computer simulation for beam dynamics since the 1970s. Narrowing the gap
between simulation models and observation of beams in real accelerators has
remained a challenging task. The above quote from the context of hydrodynamic
and plasma simulations, which have also prepared the ground for a great deal of
accelerator beam dynamics simulation, has remained valid until today.

This is particularly true for the large-scale accelerators at high intensities, which
are in operation or in planning/construction phases in a number of places in
Europe, America and Asia – most of them linear accelerators. They enable many
developments at the forefront of basic or applied sciences, from neutron scattering
to energy, industry and environment, including future nuclear waste management by
accelerator driven transmutation (see Fig. 1.1).

© The Author(s) 2017
I. Hofmann, Space Charge Physics for Particle Accelerators,
Particle Acceleration and Detection, DOI 10.1007/978-3-319-62157-9_1
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2 1 Introduction

Fig. 1.1 Worldwide locations of major high intensity and high power accelerators in operation,
planning or construction

For contrast, the first room-size particle accelerators from before World War
II were practically hand-calculated – and yet they led to the discovery of new
particles. Today’s accelerators are not only designed by computers; operation at high
beam power requires the use of computers to model and optimize beam behaviour.
Predicting and controlling beam loss at high intensity, with space charge as major
source of loss, is crucial for minimizing radioactivity in such facilities. This is a
must for optimizing their performance and carrying forward the intensity frontier.

Hence, an in-depth understanding of the physics behind space charge – using
analytical theory, simulation as well as experiments – is essential and the primary
motivation behind this book.

1.1 Historical Remarks

A brief historical account may be in place here. In the early time of accelerators
– the 1950s and 1960s – it was understood that the demand for higher intensity
would soon be increasing, and understanding and controlling of beam space charge
would become more and more important. Steady improvements in intensity were
made, but this was primarily a technical challenge at the accelerator “front end”, for
example how to improve the performance of proton or ion sources and of low beta
acceleration. Gradually, first analytical-numerical concepts on space charge were
developed in the 1960s: Significant contributions were the exploration of gradient
errors with space charge by Smith in [2]; the rms envelope equations by his student
Sacherer in [3]; and the first analysis of 2D oscillation modes by Gluckstern in [4]
– just to mention some of them.

The field of space charge and its limiting effects on beam intensity received an
important boost with the proposal in the mid-1970s to use heavy ion accelerators
as drivers for inertial fusion energy production, which required pushing intensity
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several orders of magnitude beyond state-of-the-art.1 The first self-consistent Vlasov
analysis of “space-charge induced transverse instabilities” in 2D beams in periodic
focusing in [6] emerged from this project.

Since the late 1990s linear accelerator based high intensity spallation neutron
sources triggered enhanced interest in space charge problems, also for rings, and
efforts were increased towards a better understanding of the issues as well as
laying a safe ground for the control of space charge effects. At the Shelter Island
Workshop (Shelter Island, New York, 1998) Baartman in [7] justified that space
charge deserves its own language: “Forces arising from the beam itself are not the
same as external forces . . . any theory which treats the two types of forces in the
same way is incorrect and will make incorrect predictions.”

1.2 Important Other Sources of Reading

The scope of this book is not to enter into details of the numerous fundamental
concepts of accelerators and the large diversity of important facets of particle motion
or collective beam interaction beyond direct space charge, which is the focus. Many
other sources of reading exist for the field at large.

One of the early and remarkable books on space charge, among the very few
in this direction that existed over three decades ago, was written by Lawson [8].
Computer simulation played no role at all, but Lawson helped understanding many
questions in his own stimulating language. His book and ideas inspired Martin
Reiser at Maryland University to build – from the 1990s onwards – several very
compact electron devices. They helped addressing experimentally many questions
about space charge up to the present day. Many of these findings, along with
theoretical models and computer simulation examples, went into the book by Reiser
[9], which become one of the indispensable sources of beam physics with space
charge in a broader context.

In the field of rf linear accelerators, the book by Wangler [10] grants insight into
beam dynamics and the role of space charge as well as design issues of high current
linear accelerators.

Readers interested in nonlinear beam dynamics in storage rings will find a
profound treatment of this subject in the book by Forest [11].

A broader selection of topics, also including the vast fields of collective effects,
with selected topics on space charge, is found in the books by Chao et al. [12],
Wiedemann [13], Lee [14] and others.

Students in particular may find it useful to use the published lectures from the
CERN Accelerator School in [15] and the U.S. Particle Accelerator School in [16].

1A recent review of this project is found in [5], where also other energy related accelerator
applications are reviewed.



4 1 Introduction

1.3 What Are Space Charge Dominated Beams?

The notion of space charge dominated beams is not sharply defined and differs
between linear and circular accelerators. In this book only “direct” space charge is
considered assuming only electrostatic interaction of the charged particles within a
bunch, or between line charges in a coasting beam model. Bunch-to-bunch, image,
impedance or wake field effects would go beyond the scope of this book.

In synchrotrons an intensity limiting criterion used in the early days was guided
by the idea not to have space charge tune shifts exceed the 1

4
tune separation between

fourth order resonances. It was learnt later that such a definition is not well-justified
and often too conservative. In view of the diversity of space charge effects more
specific criteria needed to be defined, including the role of coherent space charge
effects.

In linear accelerators an early hand-waving argument, without real justification,
was to let space charge – in the average – cancel about half of the external focusing
force. This amounts to �30% reduction of the zero-current tune by space charge. In
modern high current accelerators, though, much higher peak values are achieved on
the basis of criteria, which consider the diverse relevant space charge effects.

1.4 Incoherent and Coherent Effects

Incoherent and coherent space charge effects are a central issue in the following
chapters. These terms are not used in an unambiguous way in beam dynamics
literature, however. Here they are understood as characterising the difference
between single particle and collective response behaviour.

In circular accelerators coherent mode is frequently understood as dipole mode
of oscillation causing a displacement of the beam as a whole, and incoherent
as betatron oscillations of single particles. We ignore dipole mode instabilities
here – they are not governed by direct space charge only – and focus on second
order and even higher order modes, which may be resonantly driven by the lattice
in combination with space charge and possibly beam anisotropy. The distinctive
feature of coherent is a clear, observable frequency associated with the specific
kind of mode. This leads to a coherent frequency shift entering into its condition of
resonance. Incoherent motion is much more difficult to measure – often impossible
– as it is part of the equilibrium beam; this is understood as a modulation following
the periodic pattern of the focusing lattice.

In principle, this is not very different in high intensity linear accelerators, where
the strength of space charge forces – relative focusing forces – is even more
pronounced. Coherent motion of the beam core may result from lattice transitions or
focussing discontinuities, but also from the resonant action of the lattice including
space charge. As in circular accelerators, coherent space charge modes introduce
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new frequencies, which are not present in the matched beam and can be observed –
at least in simulations.

1.5 Terminology of Resonance, Coherence and Instability

The terms of resonance, coherence, instability and parametric play a key role in this
book. Generally speaking, they are not always used in an unambiguous way in the
available literature. The following nomenclature is intended to be a consistent guide
through the various chapters of this book hoping that it may also be useful beyond
it.

Instabilities are understood as feedback processes growing exponentially from
the noise level. Resonances require periodic action on single particles or eigenmodes
– usually due to an external driving force, which can be also the space charge self-
field of the beam.

We distinguish between a number of cases. First, note that a coherent resonance
condition expresses the appearance of a coherent space charge shift in the resonance
condition, in addition to the space charge shifted rms tunes of single particles;
second, space charge structure resonances are driven by the periodic matched beam
space charge force, which by itself is not a coherent feature.

• Incoherent, also called single particle resonances: they can be

(1) error resonances due to error magnet multipoles;
(2) structure resonances due to a magnet multipole with lattice structure period-

icity; but also due to a space charge pseudo-multipole with lattice structure
periodicity, in which case they are called space charge structure resonances;
both cases are described as incoherent or – as alternative nomenclature –
single particle resonance based on the space charge shifted tune of single
particles (but not a coherent frequency shift as in the subsequent item).

• Coherent resonances:

(1) coherent eigenmodes of oscillation – not just oscillating single particles
– can be driven by error magnet multipoles2; described by a coherent
resonance condition, which includes a coherent frequency shift (otherwise
an incoherent resonance).

(2) alternatively, coherent eigenmodes in beams with more than one dimension
can be driven by anisotropy, e.g. different emittances and/or average focusing
constants; described by coherent difference resonance conditions.

2For example a gradient error driving an envelope mode in a circular accelerator; this can also occur
with the structure gradient, in which case the condition would correspond to the first “Mathieu”
stopband – see Sect. 7.1.1.
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• Coherent parametric instabilities3:
coherent eigenmodes of oscillation are resonantly growing due to the parametric
action of a system parameter – here the periodic modulation of the focusing force;
they are called here parametric instabilities if they are associated with a half-
integer (1:2) frequency relationship4; described, accordingly, by coherent half-
integer resonance conditions.

In beam dynamics literature such coherent parametric instabilities are also called
structure space charge instabilities; the more accurate term parametric is preferable
as it also helps to adequately describe the phenomenon of sum coherent parametric
instabilities in Chap. 7. Sum parametric resonances/instabilities are well-known in
parametric resonance theory in theoretical mechanics; in beam dynamics, and as a
coherent phenomenon, they have only been recently considered.

In circular accelerator literature the emphasis is primarily on magnet error
driven resonances. In linear accelerators, however, coherent instabilities, to some
extent also incoherent structure resonances by space charge, are a major source of
beam degradation. The lower degree of periodicity in linear accelerators is easily
outweighed by the higher level of space charge and its intrinsic strong nonlinearity.

Note that the direct space charge driven instabilities discussed here are practically
always subject to resonance conditions. Non-resonant instabilities can be driven by
dissipative mechanisms, like the resistive wall instability, which are not considered
here.

1.6 Analytical and Simulation Approaches

Progress in the control of space charge in design, optimization and operation of high
intensity and high power accelerators is owed to both, analytical studies as well as
advanced particle-in-cell computer simulations. An in-depth understanding of the
diverse effects of space charge is the basis for the interpretation of simulation and
experiments.

Beam dynamics at high intensity is an interplay of single-particle nonlinear
dynamics with various coherent and parametric resonance effects. The goal of
comparisons between analytical results, simulation and experiments must be to
clarify the importance of this interplay under realistic conditions.

Several important topics cannot be adequately covered here, although they are
interwoven with space charge: among them the role of errors in linear accelerators,
which are a driving source for emittance growth and halo; out of the broad field
of magnet error driven resonance effects in circular accelerators only selected

3To be distinguished from single particle parametric instabilities, see Sects. 7.1 and 6.1.
4Where the eigenmode oscillates at half the lattice periodicity. Note that these modes have been
addressed under the name “space-charge induced transverse instabilities” in [6], where also other
(not necessarily practically significant) frequency relationships were considered, like 1:1 etc.
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examples are presented; and the wide area of impedance driven collective effects
in circular accelerators, where space charge also plays a role, is beyond the scope of
this book.

1.7 Overview

The material is presented in the following way:
Chapters 2 and 3 review basic concepts on phase space dynamics leading to

Vlasov’s equation as important analytical tool needed further on; the concept of
matched equilibrium beams is outlined in Chap. 4.

Chapter 5 exposes the nature of different modes of interaction when dealing with
space charge on a general level; this includes the role of resonance vs. instability and
of incoherent vs. coherent oscillations. Followed by a review of the Vlasov theory
of anisotropic coherent eigenmodes and a discussion of the role of negative energy
waves and of Landau damping, this chapter lays the ground for the later Chaps. 7, 8
and 9. Chapter 6 applies part of this to analyse space charge in mismatched beams.

A central theme of space charge interaction in this book is that of coherent para-
metric instabilities dealt with in Chap. 7; it is followed in Chap. 8 by a discussion of
selected coherent and incoherent resonance effects in circular machines driven by
magnet errors; and by Chap. 9 on anisotropic beams in linear or circular accelerators,
where the role of coherent effects on emittance exchange between planes due to
different emittances and/or focusing strengths is discussed in some detail.

Chapter 10 summarizes the relevance of the discussed space charge effects in the
design of circular and linear accelerators, and an Epilogue offers a brief outlook.

Literature is found sorted by chapter. No claim of completeness is made, and I
therefore apologize for having omitted relevant and important contributions to the
field.
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Chapter 2
Phase Space Dynamics in Theory
and Simulation

Abstract Particle motion in accelerators is usually assumed in 6D phase space,
under the action of external forces for acceleration and focusing, and with space
charge interaction resulting from the Coulomb interaction between particles. The
by far dominating contribution to direct Coulomb interaction in accelerator beams
is via the so-called mean field or self-consistent space charge potential, which is
calculated from an assumed smoothed charge density n.x; y; z; t/, and ignoring the
discreteness of charges. Assuming that collisional effects can be neglected, this
chapter introduces the Vlasov-Poisson equations and the important concepts of
emittance, rms equivalence as well as beam anisotropy. In the context of computer
simulation, however, some aspects of artificial collision and noise effects due to
numerical discretisation are an important subject, which is also briefly discussed.

2.1 Basics of Kinetic Theory

In this section the Vlasov-Poisson equations suggested by Vlasov in [1] are
introduced as collision-less limit of the Fokker-Planck-equation.1 They are the main
tool for a self-consistent analytical modelling of space charge effects in 4D and 6D
phase space, while the Fokker-Planck approach is used here only for the discussion
of numerical collision effects in particle-in-cell simulation.

The importance of the dynamics in 4D or 6D phase space – understood as kinetic
approach – is illustrated in Sects. 2.1.4 and 5.6 by an example of non-kinetic so-
called “fluid models”, which reduce the problem to a simplified flow in real space.

2.1.1 Single Particle Motion in a Smooth Field

Ignoring collisional or dissipative effects we first consider here equations of
motion in x; y; z with linear, time-dependent external focusing forces and – in

1Collision effects by elastic small angle scattering are ignorable in linear accelerators, but not
always in circular accelerators. In the latter the “intrabeam scattering” is an important subject on
long time scales as in storage rings or colliders, but it has no direct influence on space charge
effects and is thus beyond the scope of this book.

© The Author(s) 2017
I. Hofmann, Space Charge Physics for Particle Accelerators,
Particle Acceleration and Detection, DOI 10.1007/978-3-319-62157-9_2

9



10 2 Phase Space Dynamics in Theory and Simulation

general nonlinear – electrical forces generated by a time-dependent space charge
distribution2:

Rx D �Kx.t/ x C q

m�3
Ex.x; y; z; t/

Ry D �Ky.t/ y C q

m�3
Ey.x; y; z; t/

Rz D �Kz.t/ z C q

m�3
Ez.x; y; z; t/; (2.1)

with q the ion charge, m the ion rest mass, � the relativistic factor and Kx;y �
˙B0=ŒB��. ŒB�� is the magnetic rigidity (D m�ˇc=q, with ˇc the particle velocity),
B0 the quadrupole gradient and Kz.t/ the equivalent longitudinal focusing in case of
a bunched beam. Next we assume that the electric field in the moving frame can be
calculated from Poisson’s equation

r x � E.x; y; z; t/ D q

"0

n.x; y; z; t/: (2.2)

Here n.x; y; z; t/ is the particle density determined from an assumed distribution f
of particles in 6D phase space, such that the number density in a small phase space
volume is given by

dN D f .x; y; z; px; py; pz; t/ dx dy dz dpx dpy dpz (2.3)

and the particle density in real space by

n.x; y; z; t/ D
Z Z Z

f dpx dpy dpz: (2.4)

2.1.2 Fokker-Planck Equation

Liouville’s theorem for systems described by a Hamiltonian says that the volume
of a phase space element occupied by particles remains invariant in time along its
trajectory. For charged particles Coulomb interaction must be included and, strictly
speaking, Liouville is only valid in the 6N-dimensional � -space. In this hyper phase
space the invariance of density is described by a vanishing total derivative of the
corresponding distribution function, df =dt D 0.

The relatively weak collisional effects in charged particle beams can be taken
into account in the reduced 6D phase space by assuming a splitting of the Coulomb

2Here and in the following it is assumed that the motion in the external focusing optics is first-order
and in paraxial ray approximation (see also in [2])
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interaction into a time-dependent self-consistent (mean field) space charge potential
plus a part due to collisions. The collisional part leads to the Boltzmann-type
collision term on the r.h.s. of the total derivative of a distribution function in 6D
phase space, e.g. df =dt D Œ@f =@t�coll.

Under certain conditions the latter can be written as sum of a diffusion and a
friction term (see, for example, [2–4], or [5]),

df

dt
D @f

@t
C .Px�r x/ f C � Pp�rp

�
f D Œ

@f

@dt
�coll D

�
X

i

@

@pi
fFi.p; t/ f g C m2�2

X
i;j

@2

@pi@pj
fDij.p; t/ f g; (2.5)

where the Fi stand for the friction vector, and the Dij for the diffusion tensor. With
Pp D m� Rx and the equations of motion Eqs. 2.1 for an externally provided – in
general time-varying – linear focusing force plus the self-consistent space charge
force from Eq. 2.2 a closed system of equations is obtained.

In Sect. 2.3 the r.h.s. collision term is the starting point for a discussion of the un-
physical noise in PIC-simulation caused by finite grid and particle number effects.
Besides this it is not further considered.

2.1.3 Liouville and Vlasov-Poisson Equations

Beam evolution with space charge can be described in the collisonless limit, with
Œ@f =@t�coll D 0, by Vlasov’s equation

df

dt
D @f

@t
C .Px�r x/ f C � Pp�rp

�
f D 0 (2.6)

to be solved jointly with Poisson’s equation Eq. 2.2. Liouville’s theorem applies in
6D phase space as a result of the canonical equations of motion, hence the volume
of a phase space element occupied by particles remains invariant in time – however
distorted it gets under the effect of nonlinear forces as is shown schematically in the
reduced 2D phase space example of Fig. 2.1.

In such a system there is no growth of the exactly determined phase space
volume, if “infinite phase space resolution”3 is assumed. With finite resolution
growth of the effectively determined phase space volume can result from distortion
and progressive filamentation processes in phase space – even though the phase

3The assumption of “infinite phase space resolution” is a hypothetical one; phase space resolution
is always limited – ultimately by quantum mechanics –, which is the basis of entropy growth in a
real system in the absence of collisions – see also [6].
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Fig. 2.1 Principle of the area
invariance of a phase space
element in 2D phase space
along a trajectory

space flow as such is collisionless. This requires, however, nonlinear forces and
mixing of void regions with regions occupied by particles. Growth of the rms
emittances (see Sect. 2.2.2) as a very coarse measure of a phase space volume is
then also inevitable.

Progressive filamentation of phase space can be also limited by physical pro-
cesses, besides finite phase space resolution. An example is the space charge
induced multi-stream instability, which eventually destroys a regular filamentary
structure as is shown in Sect. 5.4.2.

Whenever coupling forces from external sources or from space charge are absent
or small, reduced Vlasov-Poisson equations, for example in the transverse or longi-
tudinal phase space alone, are obtained by integration. Transverse Vlasov-Poisson
equations in 4D phase space are strictly valid in coasting beam approximation,
where no dependence on the longitudinal coordinate exists (see Sect. 5.3).

2.1.4 Fluid Models

While the Vlasov-Poisson formalism in phase space is a fully kinetic theory,
attempts have been made to approximate the problem in a non-kinetic fluid-type
model by integrating over momentum space. The loss of the full information on the
velocity space, with only a “temperature” left, is a severe simplification; nonetheless
the model is helpful for a distinction between kinetic and non-kinetic modes. As an
example we refer to Lund and Davidson in [7], which will be discussed further in
Sect. 5.6.
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2.2 Emittance and Anisotropy

A beam is defined as ensemble of particles moving in a given direction, with small
deviations of individual particles in positions and times or energies from a so-called
reference particle. Maintaining high beam quality implies keeping these deviations,
respectively their rms values as small for as high a fraction of particles as possible.
The concept of beam emittance has been developed to quantify the occupied phase
space volume in measurable quantities. While the complete information is only
given by the full distribution in 6D phase space, projections onto separate 2D phase
planes related to x, y or z are more accessible to measurements and therefore the
usually preferred quantities.

Here it must be kept in mind that nonlinear forces from external sources or
space charge may lead to coupling between different phase planes. Also, the 6D
distribution may reveal correlations between mixed phase planes, which are not
described by separate projections in x, y or z. Such correlations may be given
initially, or as a result of coupling forces. In this context the characterization of beam
“anisotropy” between degrees of freedom by introducing a suitable rms anisotropy
factor is helpful; it should be used instead of the occasionally used – but not
appropriate – idea of “temperature ratios”.

Further details on this topic are found, for example, in [2] or [3].

2.2.1 Trace Space Emittances

For convenience and comparison with measurements based on the directions of
particles, the 6D phase space is usually replaced by the so-called trace space.
Using the distance s D v t of a reference particle moving with velocity v D ˇc,
the divergences x0 � dx=.ˇcdt/ (and similar in y or z) are suitable quantities to
define trace space emittances as areas in the transverse planes x � x0, y � y0 and the
longitudinal plane �� � �W or z � z0.

In general terms, beams do not necessarily have properly defined boundaries in
2D phase planes. The definition of an emittance as area (divided by �) within an
elliptical boundary in 2D trace space is commonly adopted as shown in Fig. 2.2. It
is based on the idea that particles have elliptical trajectories in 2D phase planes in
the ideal case of linear forces and time-independent focusing with no acceleration.

2.2.2 Rms Emittances and Rms Equivalent Beams

The quality of beams is expressed in an rms sense by making use of the rms size and

divergence of a beam in trace space. The rms size Qx �
p

x2, for example, results
from the second order moment of x2 of the distribution function f in 4D trace space:
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Fig. 2.2 Emittance ellipse of
a uniform beam distribution
in x � x0 phase space

Qx2 � x2 �
R R R R

x2f dx dx0 dy dy0R R R R
f dx dx0 dy dy0 : (2.7)

Likewise rms moments are defined in x02 and x x0, and the rms emittance in the
x-plane results as4

"x;rms D 4

q
x2 x02 � xx02; (2.8)

with analogous expressions applying to the other phase planes.5 For an upright

ellipse the term xx02 is zero. It stands for the correlation between x and x0 in a
converging or diverging beam.

Practically important is the concept of “rms equivalence”: beams with different
distribution functions, but identical intensities and rms moments in all directions
of phase space are called “rms equivalent”. This concept is based on the validity
of the rms envelope equations independent of the shape of a distribution functions.
Although this relies on the assumption of constant (normalized) rms emittances (see
Sect. 3.2.1), it is a highly useful tool for comparing beams with different distribution
functions, which are normally required to be rms equivalent. Examples of rms
equivalent waterbag and Gaussian distributions in 4D phase space projected on the
x � x0-plane are shown in Fig. 2.3.

4Note that the factor 4, which is used to make this definition stand for the full area (divided by �)
of a uniformly populated ellipse, is dropped in some purely rms based conventions.
5In the remainder of this book the suffix “rms” is omitted, and " is understood as rms emittance,
unless otherwise explained.
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Fig. 2.3 Rms equivalent 4D
water bag (top) and Gaussian
(bottom) phase space
distributions in x � x0, with
ellipses showing equivalent
KV-boundary as in Fig. 2.2

2.2.3 Anisotropy Factor

Beam anisotropy as a measure for the internal energy balance needs a quantification.
A practically useful quantitative measure “T” for the anisotropy between different
degrees of freedom can be defined – in non-relativistic approximation and for
upright phase space ellipses – as ratio of the rms averaged squared velocity
deviations (see Sect. 2.3 as well as Chap. 9):

T � Tx.s/

Ty.s/
� x02

y02
; (2.9)

and similar for the remaining ratios. Here it is assumed that individual particles are
harmonic oscillators, and in this case the ensemble averaged kinetic energy equals
the total energy as a special case of the virial theorem.
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Note that occasionally “temperature ratios” are proposed, which is misleading.
Temperatures cannot be defined properly for beams, which are not in a thermal
equilibrium state due to lack of collisions.

2.3 Multiparticle Simulation Effects

Leaving aside the physical intrabeam scattering or various dissipative effects, com-
puter simulation of space charge dominated beams aims at a modelling consistent
with the collision-less Vlasov approach. In multi-particle simulation codes this
is, however, not rigorously possible. Controlling and minimizing the non-physical
effects of numerical discretization becomes an important task. While this is a large
field of its own,6 only a few specific aspects can be discussed here, along with
examples from the TRACEWIN code.

2.3.1 Rms Entropy and Simulation Noise

Collision or noise effects can, in principle, be associated with entropy growth. The
concept of a probability based entropy in accelerator beams was first discussed in
general terms by Lawson et al. in [9]. They introduced it for a time-independent KV-
distribution in 4D phase space as

S D k ln "; (2.10)

where k is the Boltzmann constant and " the emittance, which is interpreted here as
probability to find particles in a certain volume of phase space.

A significant further step in this direction has been the noise and entropy growth
model by Struckmeier in [10, 11]. Starting from Eq. 2.5, Struckmeier kept the
Fokker-Planck terms and derived rms equations by calculating the second order
moments of the Fokker-Planck equation.7

The key point is that a 6D rms emittance can be introduced as product of
emittances according to "6D � "x"y"z, which depends on beam anisotropy (defined
in Sect. 2.2.3) and is a growing quantity under the influence of collisions and
anisotropy. In analogy to Eq. 2.10 its logarithm can be used to define an entropy
“S”, and its growth results as:

6See, for example, the work by Birdsall and Langdon in [8].
7Therein Struckmeier extends significantly the second order procedure by Sacherer in [12], which
is limited to the collision-less Vlasov equation.
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1

k

dS

ds
D d

ds
ln "6D.s/ D kf

3
IA � 0:

where s D ˇct measures the distance and kf � ˇf =ˇc� , with ˇf the dynamical
friction coefficient, which is proportional to the Coulomb logarithm.8 The total
anisotropy factor IA measures the deviation from an isotropic beam. It is a positive
quantity, which can vary locally in periodic focusing:

IA � .1 � rxy/
2

rxy
C .1 � rxz/

2

rxz
C .1 � ryz/

2

ryz
: (2.11)

The rnm are based on the anisotropy factors defined in Sect. 2.2.3, hence rxy.s/ �
Ty.s/=Tx.s/, and similar for the remaining ratios.

Recently, this collision based noise model has been extended in [6] on a
phenomenological basis to also include a “grid noise” induced contribution to
entropy growth for 3D bunched beams, and in an analogous manner by Boine-
Frankenheim et al. in [13] for 2D coasting beams. For the 3D case the respective
entropy growth expression is:

�"6D

"6D
D �s

k
?

f

3
.IA C IGN/ : (2.12)

Here, k
?

f is phenomenologically modified to take into account the additional grid
noise effects generated in the simulation. This effect also enters into the offset term
IGN , which takes care of the entropy growth found in simulations of isotropic beams,
where IA D 0.

2.3.2 Application to TRACEWIN Code

We present examples of noise calculation based on the above theoretical framework
from [6], which are obtained with the TRACEWIN code [14]. It is a widely used
PIC-code developed primarily for linear accelerators and employed here for most of
the simulation examples in periodic focusing lattices in the subsequent chapters.
Note that the numerical values of the parameters k

?

f and IGN are specific to the
code under consideration, but the general structure of Eq. 2.12 is applicable to other
codes.

The PICNIC space charge routine of TRACEWIN is used with its rz and xyz
Poisson solver options for 3D bunched beams, in later chapters also the 2D xy
version for coasting beams. PICNIC assumes a grid over the core region of the beam

8ˇf follows from the friction term in Eq. 2.5; note that in or near equilibrium the friction and
diffusion terms in this equation are related to each other via the Einstein relations.
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– for example defined up to 3:5	 – and an analytical expression beyond. For our
discussion the total number N of simulation particles matters, likewise the number
nc of grid cells, which is counted in each direction from the bunch centre to the core
region edge.

Examples from [6] for collision and grid effects for a space charge dominated
beam in a periodic focusing symmetrical FODO lattice over 1000 cells, with an
rf gap in the centre of each drift space (details see Sect. 7.4.1) are shown in
Fig. 2.4. The l.h.s. graph shows the predominantly collisional entropy growth due

Fig. 2.4 Rms entropy growth over 1000 cells from noise in TRACEWIN computer simulation for
a symmetrical FODO lattice. Top graph: Relative growth of "6D with rz Poisson solver in periodic
solenoid lattice as function of initial temperature anisotropy in simulation, and comparison with
Eq. 2.12; Bottom graph: Relative growth of "6D in FODO lattice for N=16.000/32.000/128.000, as
function of the number of grid cells in x; y; z (Source: [6])
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to anisotropy for a near spherical bunch with equal zero-current focusing strengths
in all directions and anisotropy realized by different emittances. Relatively high
grid resolution, nc D 16, is assumed for this case. The collision effect is enhanced
independent of anisotropy by choosing a small number of simulation particles,
N D 4000, hence highly charged simulation macro-particles. These simulation
results are compared with the theoretical dependence on anisotropy through IA in
Eq. 2.12, and fitted values of k

?

f as well as IGN . Good agreement between simulation
and theory is obtained.

The r.h.s. graph for isotropic beams, IA D 0, but with variable grid resolution
and for different N, demonstrates the existence of two regimes: For small nc the
noise is dominated by the poor grid, and increasing N is not helpful; increasing nc

at small values of N resolves well the collisions of the highly charged simulation
macro-particles, and the noise is collision dominated. Increasing N to a sufficiently
large value – like the case N D 128;000 – reduces the charge per macro-particle
correspondingly, and collision effects are weakened.

Thus, nc D 8 : : : 10 and N > 105 lead to an acceptably low noise level for 3D
bunches in high-current linac applications. It should be noted that in the 2D noise
simulation study of Ref. [13] the collisional growth of "6D is found to be significantly
more pronounced for high grid resolution – apparently due to the longer range of
the Coulomb force in case of interacting charged “rods” in 2D.

A low level of noise is desirable from the point of view of confidence in
simulation results. On the other hand, noise plays a role as initial seeding mechanism
– besides density or rms mismatch – in unstable situations with exponential growth,
like the coherent parametric instabilities in Chap. 7.
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Chapter 3
Vlasov and Envelope Analysis

Abstract Self-consistent analytical studies based on the Vlasov-Poisson equations
play an important role for analysing space charge phenomena and interpreting
computer simulation, in spite of the practical limitation to linearised perturbation
theory and to special distribution functions – primarily the so-called distribution
by Kapchinskij and Vladimirskij. This chapter introduces the required linearization
– with emphasis on 2D beams. The role of rms envelope models as second order
approximations, often sufficient for layout and first order design of accelerator
lattices, but insufficient in the presence of nonlinear forces, is also discussed.

Rms envelope models, which are only second order approximations, are often
sufficient for layout and first order design of accelerator lattices. Due to the
presence of nonlinear terms in space charge forces as well as in focusing and
accelerating fields, self-consistent methods are required on the analytical as well
as the simulation side.

The bulk of analytical work on space charge effects is based on the delta-
function distribution by Kapchinskij and Vladimirskij in [1], abbreviated as “KV-
distribution”, but also other distributions have been studied analytically – to a much
lesser extent though.

Besides the theoretical insight into the modes of space charge interaction
gained by these analytical methods, they are also indispensable for validation
and benchmarking of simulation codes. In addition, analytical methods, combined
with simulation, are helpful in developing road-maps in parameter space on
possible locations of resonances and instabilities and other sources of beam quality
degradation.

3.1 Vlasov Techniques

Analytical solution of the Vlasov-Poisson equations in Chap. 2 requires a number
of approximations, which limit their applicability to realistic beams. General
overviews, also on the field of applications to accelerators, are found, for example,
in [2–4].
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An almost inevitable approximation is the linearised perturbation treatment,
which has been the basis of practically all self-consistent analytical modelling
efforts so far. The restriction to special distribution functions to obtain explicit
solutions is another important limitation.

The Vlasov-Poisson equations are nonlinear, since Eqs. 2.1 lead to products of
Ex;y;z and f in Eq. 2.6. A perturbation ansatz requires an unperturbed equilibrium
solution, f0, and a small perturbation f1 about it. Practically solving the perturbation
problem becomes increasingly complex from 1D to 2D. This is particularly true,
if anisotropy is included in the problem, like unequal tunes or emittances in the
different planes in 2D.

3.1.1 Linearized 1D Vlasov-Poisson Equations

Historically, the first study of 1D eigenmodes of collective oscillations of a sheet
of electrons in a harmonic potential goes back to dePackh in [5] and Ehrman
in [6]. They assumed a uniform phase space density, with only surface waves
of the incompressible phase space fluid, which was therefore called “waterbag”.
Subsequently, Sacherer in [7] analysed the transverse collective resonances of
a 1D model under the influence of external multipole errors, and in smooth
approximation.

In the longitudinal phase space for long bunches, which is not further pursued
here, a self-consistent 1D Vlasov analysis was carried out by Neuffer in [8].

3.1.2 Linearized 2D Vlasov-Poisson Equations

Due to its relevance in Chaps. 7 and 9, this case is exemplified here for a 2D coasting
beam approximation in constant focusing.

For a time-independent potential a practical equilibrium solution is any function
of the unperturbed Hamiltonian (see also Sect. 4.1),

H0 D 1

2m�

�
p2

x C p2
y

�C 1

2

�
Kx x2 C Ky y2

�C q

m�3
˚0.x; y/; (3.1)

with ˚0.x; y/ the unperturbed space charge potential. H0 is a constant of motion,
and thus f0.H0/ solves Eq. 2.6. With a small perturbation ansatz we assume f D
f0.H0/ C f1.x; y; px; py; t/ and H D H0 C H1.x; y; px; py; t/ as well as Pp D Pp.0/ C Pp.1/,
with Pp.1/ depending on the perturbed electric field according to Eq. 2.1. The first
order perturbation is a solution of the linearised equation

df1
dt

D @f1
@t

C 1

m�
.p�r x/ f1 C � Pp.0/�rp

�
f1 D � � Pp.1/ � rp

�
f0; (3.2)
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where Pp.0/ follows from Eqs. 2.1 for the equilibrium solution. Note that the l.h.s.
of Eq. 3.2 is the total derivative of f1 along the unperturbed trajectories. Hence f1
can be calculated by integrating the r.h.s. along these trajectories, thus following
the method of solving a partial differential equation by integration along its
characteristics.

A crucial point here is the nature of the unperturbed particle trajectories. In
practical terms, the assumption of a KV-distribution f0.H0/ / ı .H0 � E0/ has two
main advantages, which allow explicit solutions:

• It leads to uniform real space density with linear space charge forces in x; y
(see Sect. 4.1). Hence, unperturbed trajectories are harmonic oscillators with
frequencies independent of amplitude, which makes the integration process of
f1 feasible.

• Eigenmodes of perturbations can be expanded as finite order polynomials in x
and y.

The same arguments apply, if the 2D Hamiltonian in Eq. 3.1 can be split into two
1D Hamiltonians, and f0 is a function of both, which is applied to the case of the
anisotropic beam stability in Chap. 9.

Non-KV-distributions, instead, lead to anharmonic oscillators, moreover to the
additional complexity of an infinite series expansion in x; y for the eigenmodes of
the electric field perturbations.1

3.1.3 Application to Periodic Focusing

In periodic focusing the Courant-Snyder formalism can be applied, which uses a
linear canonical transformation generating a more general invariant to replace the
Hamiltonian [9]. Any function f0 of this invariant is again an equilibrium solution,
and linearisation of the problem with a KV-distribution follows a similar procedure
as discussed above for constant focusing. An example of this procedure leading to
eigenfrequencies for parametric resonances in periodic focusing is given in [10].

3.1.4 Further Comments

These linearised approaches have been – with few exceptions – limited to KV-
distributions for 2D beams, or its longitudinal analogue in 1D long bunches as in [8].

Nonetheless, the value of these perturbation models as guidance for computer
simulation under more realistic conditions should not be underestimated. Compari-
son between theory and simulation shows that in many cases resonance conditions

1An example of such an expansion in terms of Legendre polynomials is found in Sect. 5.4.3.
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obtained under idealistic KV and small perturbation conditions, like stopband
locations and widths, provide useful information to interpret full-scale multi-particle
simulation.

3.2 Envelope Equations

The idea of Kapchinskij and Vladimirskij in [1] to describe the envelopes of their
distribution function by ordinary differential equations was generalized by Sacherer
in [7] to the concept of rms envelope equations, which are applicable to more general
distribution functions, and in all three spatial dimensions.

3.2.1 Rms Envelope Equations

The basic idea is to form second order moments from Vlasov’s equation, Eq. 2.6,
including all possible combinations of x; x0 and Ex, and similar in the other planes.
Using the definitions in Sect. 2.2.2 and following the procedure by Sacherer one
obtains, after eliminating moments with x0 and using the definition of the rms
emittance, a second order rms envelope equation

d2 Qx
ds2

C 
x.s/ Qx � �2
x .s/

16Qx3
� q

m�3v2

xEx

Qx D 0; (3.3)

and similar in y. However, these equation are not a closed set. The time dependence
of �x.s/ is an unknown quantity at this level, and xEx is correlated with higher order
moments of Vlasov’s equation, if Ex is a nonlinear force. For 2D beams xEx is,
however, independent of the actual density as long as it has elliptical symmetry
defined as n.x; y; s/ D n

�
x2=Qx2 C y2=Qy2; s

�
. Taking the 2D uniform beam limit for

xEx results in

d2 Qx
ds2

C 
x.s/ Qx � �2
x .s/

16Qx3
� K

2

1

Qx C Qy D 0

d2 Qy
ds2

C 
y.s/ Qy � �2
y .s/

16Qy3
� K

2

1

Qx C Qy D 0; (3.4)

where the generalized perveance is given by K � Nq2

2��0m�3v2 . For elliptical symmetry
Eqs. 3.4 are exact, but they require a priori knowledge of the rms emittances. To what
extent this is justified must be verified by multi-particle simulation.2

2For 3D bunched beams similar equations hold, with a suitably modified definition of perveance
in [2], which are sufficiently accurate for practical applications.
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3.2.2 Smooth Approximation

Periodic focusing in space charge dominated beam dynamics enhances complexity
in analytical approaches. For many applications it is useful to approximate the
periodical focusing by an assumed constant focusing of the same average strength
per meter, hence also phase advance per meter.

Smooth focusing has been used by many authors, for example by Reiser in [2], to
derive scaling laws connecting different beam and structure parameters. In Vlasov
stability or resonance studies it is used – where acceptable – to approximate the
more demanding periodic focusing.

3.2.3 Chernin’s Equations

An extension of the second order rms envelope approach to include the linear
coupling from skew quadrupole components, combined with space charge, has been
derived by Chernin in [11]. The resulting equations are considerably more complex
due to the additional coupled moments.

This may at least in part explain why these important equations have found
relatively little attention so far, and space charge is hardly considered in linear
coupling.3 An example demonstrating the importance of this interplay is discussed
in Sect. 8.2.2.

In the language of the eigenmodes discussed in Chap. 5, this introduces the possi-
bility of “odd” modes with perturbing linear coupling or skew space charge potential
terms / xy. They stand in contrast with the so far discussed “even” envelope modes,
where the perturbing space charge potential only has terms x2 and y2.

3.2.4 Core-Test-Particle Model

In the context of studies on beam halo formation numerous authors have used a
model, where the beam core is approximated by a rigid density profile. Allowing
for mismatch of this core by varying rms sizes according to specific envelope
eigenmodes, and with an assumed strictly periodical motion, it is a useful tool to
explore and visualize resonant effects on test particles seeded in the outside region
(for an example see Chap. 6).

One of the drawbacks of using a rigid core model is the lack of self-consistency.
It can be serious if non-uniform density profiles and high levels of space charge are
used, when self-consistent treatment leads to density profile flattening (see Chap. 4).

3More recently, similar equations with linear coupling and skewed space charge terms have been
derived in [12, 13] and, with application to a twisted quadrupole channel, in [14].
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Chapter 4
Matched Beams

Abstract The basis for applying resonance and instability theory to beams, in
particular with perturbation approaches, is the existence of a sufficiently well-
defined initial “matched beam” solution. In constant focusing this could be a wide
class of time-independent distribution functions of the Hamiltonian, which has to
include the self-consistent space charge potential with its shielding properties. In
periodic focusing a matched beam is ideally a solution that follows exactly the
focusing periodicity. With nonlinear space charge forces – for non-KV-distributions
– this is, however, not rigorously possible. This chapter introduces specific beam
distribution functions, their nonlinear space charge forces and “shielding effects”.
Examples of “incoherent resonance” effects in matched beams are presented.

4.1 Distribution Functions and Their Properties

For a given beam dynamics study an adequate choice of initial distributions in 4D or
6D phase space is an non-trivial task. For analytical studies on space charge the KV-
distribution in 4D phase space is frequently used as a starting point, in particular
for circulating beams or long bunches in circular accelerators. It has played an
important role in laying the ground for analytical perturbation theory. Comparison
with waterbag and Gaussian or other models as a next step is largely left to computer
simulation – see Chap. 7 for examples on this subject.

For constant focusing, and in 2D, the KV-distribution is written as delta-function

f0.H0/ / ı .H0 � E0/ : (4.1)

The Hamiltonian H0 describes harmonic oscillators in a quadratic total potential
including external focusing and space charge defocusing, where particles only
populate the surface of a hyper-ellipsoid in 4D phase space given by a specific
value of the total energy, H0 D E0. Projections onto 2D sub-spaces, obtained by
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integration over momentum space, are uniform inside an elliptical boundary (for
details on orbits etc. see Sect. 5.3.2; also, for example, in [1]):

� x

a

�2 C
� y

b

�2 � 1; (4.2)

with semiaxes a and b. This results in electric fields linear inside the boundary

Ex D � qNx

"0�a.a C b/

Ey D � qNy

"0�b.a C b/
; (4.3)

with N the number of particles per unit length, and a quadratic space charge
potential, which is part of the total harmonic oscillator potential in H0.

Analytical studies using KV-distributions as starting point benefit from the
fact that initially all particles are harmonic oscillators with the same oscillation
frequency. It is not surprising that the absence of mixing by different particle
frequencies leads to a significantly more coherent picture of response whenever
perturbations of the initial beam are introduced. This is a well-known result from a
wealth of computer simulation studies, where KV-distributions are compared with
non-KV distributions.

Alternatively to the KV-distribution we focus on waterbag and Gaussian distri-
butions in simulations of the subsequent chapters. Accelerator theorists that come
from a “low-current culture” have a particular affection for a Gaussian distribution
because in equilibrium – contrary to the KV-distribution – it is uncorrelated in the
various dimensions; however, high levels of space charge potential or instabilities
eventually establish correlations and change the nature of the distribution.

For the Gaussian it is assumed that

f0.H0/ / exp

�
�H0

E0

�
; (4.4)

where E0 is chosen such that the rms radius of the beam is matched. Also truncated
Gaussian distributions will be used, where tails are cut off some rms radii away from
the centre.

The waterbag distribution is defined by the Heaviside stepfunction,

f0.H0/ / � .E0 � H0/ ; (4.5)
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hence f0.H/ D const: for 0 � H0 � E0, and f0.H/ D 0 for E0 < H0. Particles
populate the interior of the 4D hyper-surface given by H0 D E0 uniformly, which
is also generalized to the 6D waterbag distributions used in some of our simulation
examples.1

4.2 Linear and Nonlinear Space Charge Forces

For an axisymmetric coasting beam KV-distribution the space charge force is linear
inside, and falls off / 1=r in the outside region. In Fig. 4.1 we compare the KV-
beam with rms equivalent (see Sect. 2.2.2) axisymmetric waterbag and Gaussian
distributions beams. The corresponding densities are shown in the top graph; the
bottom graph presents electric fields, which are calculated under the assumption
of small space charge effects, otherwise the space charge shielding effect must be
taken into account (see Sect. 4.3). On axis the rms equivalent Gaussian beam density

Fig. 4.1 Charge density
profiles (top graph) and radial
electric fields (bottom graph)
(both in units of maximum
values of KV-beam), versus
distance from axis (in units of
KV-beam radius) for rms
equivalent axi-symmetric
coasting beams with KV
(continuous lines), waterbag
(dashed lines) and Gaussian
(dotted lines) distributions

1In TRACEWIN this energy surface is approximated by ignoring the nonlinear part of the space
charge potential, see also Sect. 4.3.2.
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is twice that of the uniform KV-beam, which explains the also doubled gradient of
the electric field.2

Different methods have been proposed to compensate the nonlinear part of the
space charge force to reduce its degrading effect on beam quality, which cannot
be discussed in detail here. Batygin et al., for example, have demonstrated in [2]
by simulation that adding compensating external multipoles (duodecapoles) for
this purpose helps reducing rms emittance growth and halo formation in straight
transport systems with strong tune depression as in high intensity linacs. Their role
is to weaken the nonlinear component of the space charge force, which in practice
is not matched and may lead to the emittance growth described in Sect. 6.3.

For circular high intensity proton accelerators or colliders electron lenses for
compensation of space charge effects have been successfully considered – for a
review see Shiltsev in [3].

4.3 Selfconsistent Non-KV Equilibria

For coasting beams in constant focusing any particle distribution f .H/ of the
Hamiltonian H in the 4D phase space is a matched, stationary equilibrium solution
if H, including the self-consistent and in general nonlinear potential from space
charge, is time-independent. The resulting beam models are “equipartitioned” in
the sense that ensemble averages of oscillation energies in the different degrees
of freedom are identical. This also means T D 1 in the rms condition of
Eq. 2.9. Formally speaking, an infinite variety of such “equipartitioned” and exactly
stationary solutions exists in constant focusing.

4.3.1 Anisotropic Beams

Real beams in circular accelerators are practically always anisotropic or non-
equipartitioned – with T ¤ 1 following the definition in Sect. 2.2.3 – in the
transverse plane due to either different emittances or focusing strengths in the
horizontal or vertical direction. In linear accelerators the two transverse directions
are usually assumed isotropic – T D 1 – due to equal production emittances and
symmetric focusing strengths. This is normally not the case for the longitudinal and
transverse degrees of freedom, except for particular “equipartitioned designs” (see
also Chap. 9).

Exact equilibria for non-equipartitioned or anisotropic beams – with T ¤ 1 –
would require knowledge of an additional constant of motion, which can only exist
under very exceptional assumptions. A special and practically useful case is a 2D

2See also the doubling of the single particle tune shift of small amplitude particles compared with
the rms or KV-beam tune shift for example in Fig. 5.15 in Chap. 5.
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continuous and uniformly charged beam, where the individual Hamiltonians in x
and y are decoupled, and anisotropy is easily realized by means of the parameter
T . Such an anisotropic KV-distribution is defined in Sect. 5.3.2 of the next chapter
as starting point for theoretical studies of anisotropic beams. In the special case of
T D 1 the standard KV-distribution is retrieved.

For relatively weak space charge – compared with the focusing strength – as
in circular accelerators the matter of self-consistent distributions is not a critical
subject. In most cases it is sufficient to define separate, uncorrelated distributions
and ignore the coupling terms in the space charge potential. On a much longer
time scale – compared with space charge effects – intrabeam scattering can be an
issue influencing correlations and anisotropy, which is beyond the framework of this
book.

4.3.2 Shielding by Space Charge

Another aspect of self-consistency is “space charge shielding”, which is primarily
of interest whenever the space charge defocusing forces are not small compared
with the average focusing force as in high intensity linear accelerators. For non-
KV distributions, like waterbag or Gaussian, a reduction of the emittance to zero
– by 
=
0 ! 0 while maintaining rms equivalence – would lead to a complete
cancellation – shielding – of the external focusing force by the space charge force.
The density profiles of Fig. 4.1 – calculated ignoring this shielding – become
increasingly flatter for lower values of 
=
0 due to this shielding, until they reach
the shape of the uniform KV-beam at the absolute space charge limit 
=
0 D 0.
This phenomenon is the same as the well-known Debye-shielding of a test charge
in a neutral plasma, see also in [1]. To give an example, following [1], the peak
density in Fig. 4.1 is reduced from 2 to 1.89 for 
=
0 D 0:93, and from 2 to 1.04 for

=
0 D 0:2, which is almost flat.

For 2D and 3D Gaussian beams in constant focusing, approximate analytical
expressions for this shielding have been obtained in [4] in the limit of 
=
0 � 1

by a series expansion in the total potential – noting that the total potential vanishes
for 
=
0 ! 0 – and keeping the first order term. The resulting shielded density
profiles are shown in Fig. 4.2 for 
=
0 D 0:1=0:25, with radii normalized to the
beam edge radius a. The profiles are uniform everywhere, except for a boundary
sheath3 of a thickness given by the “Debye shielding length” �D, which is defined
here in analogy with the well-known definition in plasmas:

�2
D � x02

!2
p

: (4.6)

3Note that the sharp boundary edge of the density profile in Fig. 4.2 for r=a D 1 is incorrect as the
series expansion of the total potential fails at the edge.
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Fig. 4.2 Self-consistent radial density profiles for a spherical bunch with Gaussian distribution
function and approximated “Debye shielding lengths” �D for 
=
0 D 0:1=0:25

The squared plasma frequency – here in the beam centre and in units of m�2 –
follows the definition:

!2
p � q2n.0/

"0m�3ˇ2c2
; (4.7)

where n.0/ is the density on axis. This results – with details in [4] – in a normalized
Debye shielding length

�D

a
D 1p

n





0

; (4.8)

with n D 8 in 2D and n D 15 in 3D.
Hence, this shielding effect is significant for strong tune depression as in very

high intensity linear accelerators; in circular accelerators, where 
 � 
0, Eq. 4.8
is invalid. The then appropriate series expansion shows that �D=a 	 1, hence the
shielding effect is negligible.

Thus, for significant tune depression, a fully self-consistent solution requires
including the density flattening effect of space charge in the initial distribution. In
many computer simulation codes, as in TRACEWIN, this is ignored, and the phase
space distribution is set up with the low-intensity space charge potential profile. The
lack of this self-consistency is the origin of the “density mismatch” or “nonlinear
field energy” emittance growth discussed in Sect. 6.3.
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4.3.3 Periodic Focusing

In periodic focusing the situation is more complex. It is accepted – for which
no proof exists – that a rigorously periodic equilibrium solution can be realized
only with a continuous 2D KV-beam, including the generalization with anisotropy.
Depending on intensity, KV-beams are, however, not stable over extended distances
as will be discussed in Sect. 7.3.2.

Struckmeier et al. in [5] have suggested that non-KV distributions matched in
constant focusing can be transformed “locally” into a quasi-periodic stationary equi-
librium of a periodic focusing lattice. “Locally” implies an infinitesimal canonical
transformation transforming the constant focusing solution into a periodic focus-
ing one. According to transport simulations, the thus obtained “quasi-matched”
equilibria are highly emittance conserving for weak space charge as in circular
accelerators. For stronger tune depression as in high current linear accelerators, there
is still excellent emittance conservation in periodic solenoid focusing; in alternating
gradient focusing a small, but continuing emittance growth is found.

4.4 Incoherent Space Charge Effects on Resonances

The notion of “incoherent” space charge effects assumes a matched equilibrium
beam, which is time-independent in constant focusing; or, in periodic focusing, a
“quasi-matched” beam should follow to high accuracy the lattice periodicity.

4.4.1 Incoherent Space Charge Tune Shifts

The effect of uniform density – as in a 2D KV-beam – is to shift the oscillation
frequencies4 of individual particles independent of their amplitude, which causes an
“incoherent tune shift”.5 Nonuniform density leads to nonlinear space charge forces,
and the resulting amplitude dependence causes a “tune spread”.6

4In the following also called “tunes” as number of oscillation periods per circumference in circular
accelerators; in linear accelerators also called “phase advance” in degrees per lattice period.
5To be distinguished from the “coherent tune shift” discussed in the following chapters.
6This spread is also called “incoherent tune shift” in literature, but we prefer referring to it as tune
spread.
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With the linear space charge forces of Eqs. 4.3 and Eqs. 2.1 we write the space
charge shifted tunes for the resulting single particle harmonic oscillators in 2D as:


2
x D 
2

0x � q2N

"0�m�3a.a C b/


2
y D 
2

0y � q2N

"0�m�3b.a C b/
; (4.9)

with 
2
0x � Kx, 
2

0y � Ky the (squared) zero current single particle frequencies. Note
that the incoherent tune shift drops with higher energy and increasing relativistic
� -factor.7

For a discussion of further types of density distribution and related electric field
distributions see, for example, in [1]. For the analogous tune shift expressions in 3D
short bunches relevant to linear accelerators see also in [6].

4.4.2 Structural Incoherent Space Charge Resonances

Both, the incoherent space charge tune shifts as well as spreads, are an important
ingredient for nonlinear dynamics studies of beams in circular accelerators, where
magnet nonlinearities are the primary driving source of resonances.

However, also space charge itself can be the driving force of resonances. A well-
matched (or quasi-matched) equilibrium beam generates a space charge potential
modulated according to the lattice structure. For a symmetrical Gaussian beam,
for example, the space charge potential in the beam core can be expanded in a
power series, which includes all terms of even order – frequently called space charge
“pseudo-multipoles” in analogy with the multipole terms from magnets.

Such “structural” space charge driven resonances follow formally the same
resonance condition as commonly used in the presence of magnetic field multipoles
in circular accelerators8:

l
x C m
y D Nh; (4.10)

where l C m determines the order of the resonance, N stands for the number of
lattice periods, respectively super periods, and h > 1 describes higher harmonics
of the fundamental lattice period. Assuming that coherent effects are absent it is
appropriate to call it incoherent or single particle resonance – driven by the structural
space charge effects due to the matched equilibrium beam.

7The reduction is / 1=�2, if the reduction of the beam cross section / 1=� is taken into account.
8Note that nonlinear fields from magnets grow with the distance from axis; whereas the space
charge field drops outside the beam core, which requires different expansions.
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In linear accelerator notation the equivalent expression is

lk0x C mk0y D 360ıh; (4.11)

with h > 1 describing higher harmonics of the focussing cell. As an example, for
l D m D 2 as well as h D 1, this 4kx;y D 360ı resonance is discussed in linear
accelerators as “fourth order space charge resonance” – also called 90ı resonance.
It is often assumed to be an incoherent – or single particle – resonance phenomenon
assuming that coherent effects are absent.9 However, a strict separation of space
charge incoherent and coherent resonance effects is often not possible. It depends
on the type of distribution function and is more likely to be justified for Gaussian
than for waterbag distributions.

4.4.3 Simulation Examples

We first present an example of the fourth order structural incoherent space charge
resonance obtained with a TRACEWIN simulation of a 3D near-spherical bunch in a
periodic FODO lattice as described in Sect. 7.4.1. A Gaussian distribution (truncated
at 3	 , with 128,000 simulation particles) is used. In this example it is assumed that
the zero current transverse phase advance, k0;x;y, is slowly changed from 100ı to 90ı
by a tune ramp linear in time over 500 cells.10 The initial space charge depressed
rms values of tunes are kx;y D 92:2ı (assuming equal emittances in x and y), hence
still above the resonance condition.

Phase space plots in Fig. 4.3 taken at different cells show the progressive effect
of the resonance. The frame at 500 cells indicates trapping of particles in the four
islands of the resonance while the islands are pushed far away from the centre.
It should be noted that the broad spectrum of single particle phase advances for
a Gaussian is such that smaller amplitude particles are on resonance from the
beginning, while other particles with large amplitude reach the resonance only
towards the end of the tune ramp.

Emittance and rms envelope results of the approach to the space charge structure
resonance are shown in Fig. 4.4. The dynamical tune change is slow enough to
maintain good matching of the beam to the lattice at every instant as is evidenced by
the smoothly (adiabatically) changing envelope. At the same time the – also smooth

9As shown in [7], early particle-in-cell simulations already gave evidence that this fourth order
space charge resonance may occur in company with the so-called envelope instability; for a more
recent discussion of such combined effects see also [8] and Sect. 7.5.
10Note that this particular resonance phenomenon would be also observable in the transverse phase
space in a circular accelerator – apart from a possibly different influence of synchrotron motion
– if the 90ı were approached from above. This could be achieved, for example, by a fast bunch
rotation and an associated reduction in 
x;y.
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Fig. 4.3 Fourth order
structural incoherent space
charge resonance for
dynamical tune ramp of
k0;x;y D 100ı ! 90ı over
500 cells. Shown are phase
space plots in x � x0 for cell
numbers 250 (top frame) and
500 (bottom frame)

– growth of transverse rms emittances – identical in x and y – indicates the effect of
the approach to the resonance.

The finding of trapped particles in the resonance islands is also reflected by the
evolution of phase advance as shown in Fig. 4.5. In the absence of the resonant
effect the phase advance would be space charge depressed to approximately 83ı
at the end of the ramp, but the presence of the resonance blocks it at about 89ı,
while the trapped particles gain in amplitude. This is a typical self-consistent space
charge phenomenon, where decreasing charge density compensates for the enforced
reduction of the zero-intensity phase advance. Note that at all phases of this tune
ramp the beam remains well-matched with the lattice and follows its periodicity,
which justifies the notion of incoherent resonance.

Also higher harmonics h > 1 of the fundamental lattice period need to be
considered. An example of such a case for a 3D Gaussian bunched beam simulation
in a FODO lattice is found in [9] and shown in Fig. 4.6: With a slow dynamical tune
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Fig. 4.4 Tune ramp of k0;x;y D 100ı ! 90ı over 500 cells as in case of Fig. 4.3. Shown are
transverse rms emittances (top frame) and beam envelopes in x (bottom frame), both as function of
cells

ramp for k0;x;y from 150ı ! 130ı a sequence of structure resonances of the type
mkx;y D 360ıh was found: a 10th order for kx;y D 144ı and h D 4; an 8th order for
kx;y D 135ı and h D 3; and a 6th order for kx;y D 120ı and h D 2. With the space
charge pseudo-multipoles as driving terms it must be kept in mind that – in contrast
with magnet multipoles – they are strong in the beam core, but their strength drops
with increasing distance from the beam, which limits their effect.
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Fig. 4.5 Phase advance
(including space charge) for
the case of Fig. 4.4

Fig. 4.6 Structural incoherent resonances driven by higher order harmonics of the lattice period
for a dynamical tune ramp of k0;x;y D 150ı ! 130ı over 500 cells. Shown are transverse rms
emittances and inserts with phase space plots at different cells
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Chapter 5
Modes of Space Charge Interaction

Abstract The incoherent space charge effects discussed in the previous chapter are
connected with matched beams, e.g. beams in – or nearly in – “equilibrium” with the
focusing lattice. Beams deviating from such a matched state – for various reasons –
are a source of coherent space charge effects. This chapter is dedicated to the diverse
causes of coherent motion – from mismatch to instability – and a discussion of
their characteristic properties. The linearised analytical Vlasov approach in constant
focusing approximation is used to derive eigenmodes of coherent motion in different
orders and including anisotropy, which are helpful to gain theoretical insight into
the modes of space charge interaction. The concept of “negative energy modes”
– analogous to the well-known “negative energy waves” of plasma streams – is
introduced to characterize unstable behaviour, and the relevance of Landau damping
of these modes examined by using simulation examples.

5.1 Characteristics of Space Charge Interaction

There are several mechanisms by which space direct space charge interaction may
lead to beam degradation and emittance growth, and a variety of characteristic
features is associated with them. Besides their spatial configuration, they can be
distinguished by the nature of the mechanism, which leads to growth, and by the
source of energy driving it.

5.1.1 Mechanisms of Growth

It is helpful to distinguish between three principal processes leading to changing
amplitudes and emittances, which are shown symbolically in Fig. 5.1. The idea
of this chart is to characterize types of interaction with the total potential, which
consists of the applied one from constant or periodic focusing and the space charge
potential.

Thus, the “potential well” stands symbolically for the total potential in a matched
“equilibrium” state, while the sphere represents the beam with its space charge mode
of perturbation. We distinguish between:
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Fig. 5.1 Symbolic representation of mismatch (left), resonance (center) and instability (right) as
principal processes responsible for emittance growth. The potential well stands for the combined
potential from external forces and internal space charge forces; the sphere symbolizes a space
charge mode of perturbation

• Mismatch (left graph): Here it is assumed that a stable periodic (or nearly
periodic) equilibrium solution exists; perturbing it by either a focusing or
defocusing kick, or by a not well-matched density profile, results in oscillations
around the initial state or a new density profile. Such oscillations are usually
damped – depending on the distribution function – and lead to “heating” or
emittance growth of the equilibrium (see Chap. 6).

• Resonance (centre graph): Single particles or a coherent mode of an otherwise
matched and stable equilibrium beam experience a periodic kick from an external
magnetic field multipole, or from the periodically modulated space charge
(structure resonances). Growing amplitudes result, but de-tuning effects limit the
growth.

• Instability (right graph): A periodic (or nearly periodic) equilibrium solution
exists in principle, but it is not stable: a small deviation – even by an infinitesimal
presence of a space charge eigenmode in the initial beam – results in an
exponential runaway situation due to a feedback of the perturbed charge density
on the motion.

In the context of beams controlled by direct space charge – ignoring here impedance
effects due to the surrounding media – instabilities are practically always tied
to resonance conditions. In periodic focusing they are driven as coherent para-
metric resonances (Chap. 7), but also anisotropy driven resonant instabilities exist
(Chap. 9). One example of non-resonant instabilities of mainly academic interest
are the “Gluckstern-modes” called intrinsic instabilities of KV-distributions (see
Sect. 7.3.2.3).

There are situations, where the above listed mechanisms are mixed or overlap
with single particle phenomena. For example, mismatch may result in a periodic (or
nearly periodic) coherent space charge force; as a result, single particles are driven
resonantly to larger amplitudes and contribute to the beam halo (Sect. 6.1.1).

5.1.2 Sources of Driving Energy

Amplitude and emittance growth processes can also be characterized by the driving
energy sources. Under the assumption of perfectly conducting boundaries, or open
space boundaries conditions, the following sources are available:
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• The electrostatic field energy connected with the charge density: forming a beam
of a given profile needs energy to overcome Coulomb repulsion; changing the
density profile may release part of this energy and drive emittance growth as well
as change anisotropy, which is a fast and non-resonant process (see Sects. 6.1.1
and 6.3).

• The resonant amplitude growth of particles driven by a magnetic field multipole,
or the force from the periodically modulated beam space charge (a space charge
structure resonance): directional energy from the forward (or circulating) beam
motion is coupled into the transverse direction; and in case of a longitudinal
resonance into the longitudinal motion.

• For parametric resonances in periodic focusing systems – normally also structure
resonances – a similar transfer from the forward (or circulating) motion occurs.

• Anisotropy, where different rms emittances and/or focusing strengths can give
rise to a resonant transfer of oscillation energy from one plane to another.

5.2 Incoherent vs. Coherent Oscillations

A subject of central importance in the theory of space charge – more elaborated in
Chap. 7 and following chapters – is the distinction between incoherent and coherent
space charge effects. What is the meaning of coherent modes of oscillation or
resonances in the context of space charge dominated beams, and what is their effect
compared with incoherent space charge effects?

The difference between an incoherent and a coherent gradient error resonance
was first recognized by Smith in [1]. Smith had pointed out that what matters for the
resonance behaviour is the combined force from the external gradient error and the
extra space charge force due to the coherent response. The latter shifts the condition
of resonance – in favour of a higher intensity threshold (see Sect. 8).

5.2.1 Characteristics of Coherent Oscillations

Incoherent oscillations are understood as features of single particles in a matched
equilibrium distribution, which may change slowly in case of a single particle
resonance. Coherent oscillations are usually rapidly evolving changes of density.
As such they are related to specific frequencies, which are not present in the
matched equilibrium solution; this includes, for example, betatron frequencies,
lattice periodicities and their harmonics or sub-harmonics, as well as the internal
“beam plasma frequency”, or combinations of some of them.

A sharp distinction coherent-incoherent is not always possible and depends on
the actual distribution function, the type of resonance and other factors. The coasting
beam KV-distribution, for example, always responds in a clearly coherent fashion to
any kind of perturbation or resonance of arbitrary order. This is due to the fact that
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Fig. 5.2 Incoherent and coherent patterns of y-density evolution of a nearly spherical bunch within
the 90ı stopband. The bunch is exposed to a space charge driven structure resonance (incoherent)
on the one hand, and an envelope instability (coherent) on the other hand. Shown are density
levels graphically enhanced by contour lines over 40 periodic lattice cells (TRACEWIN 3D PIC
simulation)

no frequency spread exists in the equilibrium beam, which will be discussed further
in Sect. 7.2. Gaussian distributions have a tendency to wash out coherent density
modulations due to their intrinsic frequency spread from the nonlinear space charge
potential – but not always.

5.2.2 Simulation Example

To illustrate the significance of coherent and incoherent we show in Fig. 5.2 a real
space density plot of an initially well-matched nearly spherical bunched beam. It
is located inside the 90ı stopband of a periodic lattice and modelled by a 3D
TRACEWIN simulation (for details see Chap. 7). The plot shows the transverse
density integrated over z and x for an initial waterbag distribution. The initial
pattern up to about 10 cells reflects the equilibrium density modulation matched
to the periodical lattice. Although there is already a gentle effect from a fourth
order space charge driven structure resonance (Sects. 4.4.2 and 7.5) the resonant
response remains incoherent and conserves the matched beam density pattern.
Beyond cell 10, however, an envelope instability develops within few cells and
results in a strongly coherent density modulation. Rather than following the initial
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lattice periodicity, the coherent pattern requires two cells to perform one period.1

Beyond cell 25 the intrinsic mixing effects turn the coherent pattern gradually back
into an incoherent pattern of the beam density, which is again well-matched to the
lattice.

5.3 Vlasov Theory of Coherent Eigenmodes in Anisotropic
2D Beams

Coherent eigenmodes play an important role in the description of parametric
instabilities, which are introduced in Chap. 7; they also occur – at least in second
order – in the context of the magnet error driven resonances of Chap. 8. We therefore
outline here their derivation from Vlasov’s equation, under the assumption of
anisotropic beams in two dimensions, and of constant focusing.2

Although the analytical method employed here is specific to KV-distributions,
it provides useful insight into the structure of these coherent modes and forms
the basis of further discussions and applications. Furthermore, the two dimensions
are normally understood as the two transverse dimensions x and y of an infinitely
long beam. For certain applications, like transverse-longitudinal anisotropy of short
linac bunches in Chap. 9, it is useful to interpret one of the two dimensions as
longitudinal coordinate, and the other one as transverse. Taking the remaining
transverse dimension infinite is an approximation, which needs to be kept in mind,
however.

5.3.1 Modes of Different Order

The envelope mode encountered in Fig. 5.2 is a second order mode of coherent
oscillation. For the more general mode picture we assume a uniform density
elliptical cross section and consider small deformations of the boundary with
azimuthal harmonics l D 2; 3; 4 as shown in Fig. 5.3, where l D 2 relates to second
order and so forth.3 The distinction between even and odd, where “odd” stands for
rotation or “tilting” in real space, and “even” for the absence of it is only meaningful
in a non-rotationally symmetric beam situation. The second order even modes are
solutions of the envelope equations, which cannot describe spatially tilted modes.

1This is an example of 1:2 coherent parametric instability discussed in more detail in Chap. 7.
2A generalization to periodic focusing for 2D beams with anisotropic effects is not available in the
literature.
3In our space charge context we disregard l D 1 as usual dipole or displacement mode as it does
not lead to a change of space charge density (ignoring image effects).
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Fig. 5.3 Different orders of
coherent mode perturbations
of an initially uniformly
populated elliptical cross
section density, with l
representing the azimuthal
harmonic, and a distinction
between even or odd (skew or
tilted) mode symmetry
(schematic)

As will be shown in more detail in Sect. 5.3.3 these schematic pictures can be
used to characterize the actual eigenmodes of perturbation in beams. There, the
picture is more complicated, however: spatial overlap of different modes of a certain
order makes it more difficult to identify real space projections with certain modes,
and it is easier to use the symmetry in phase planes, which is also described by l.

The eigenmodes also involve volume density inhomogeneities – except for the
l D 2 modes of a 2d KV-distribution – and l also stands for the leading power in the
space charge potential perturbation. Note that the l D 2 odd modes associated with
skew rotation or tilting lead to a linear coupling force, which is caused by space
charge (see Sect. 8.2.2).

The l D 3 “third order” modes are associated with pseudo-sextupolar4 terms in
the space charge potential. The l D 4 “fourth order” modes with pseudo-octupolar
terms may appear as a result of resonance, but also due to mismatch of the density
profile (see also Chap. 6).

Whether or not such modes really exist in concrete beams, and at the various
orders, cannot be answered in a straightforward way. For 2D KV-distributions, for
example, they can be shown to exist in all orders, but for more realistic beams with
frequency spreads questions like phase mixing or Landau damping matter. Coherent
modes oscillate with a frequency that is shifted away from multiples of the single
particle frequencies by a so-called “coherent shift”, which is of the order of the
incoherent tune shift, but dependent on the type of mode. This shift is caused by the

4Here “pseudo-multipoles” refers to the leading term in the space charge potential, which is
assumed to have the same power in x; y as the multipole term of a real magnet.
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direct space charge and its deformation and should not be confused with the better
known coherent shift of dipole oscillations, where only the beam centre oscillates
without deforming the beam.

5.3.2 Basic Equations

We outline here the method presented in [2], where more details can be found. It is
based on a perturbation theory using the linearized Vlasov equation of Eq. 3.2. For
this derivation the following assumptions are made:

• 2D coasting beam approximation,
• constant, but not necessarily equal focusing strengths in x; y,
• a “generalized” anisotropic KV-distribution as unperturbed equilibrium with

uniform density,
• different emittances.

While the limitation to constant focusing seems restrictive, we find that the
resulting eigenmode frequencies can still be applied to describe the resonance
conditions in periodic focusing by using them in “smooth approximation” coherent
resonance conditions as will be shown, in particular, in Chap. 7.

For an explicit solution of the linearised Vlasov-Poisson problem we use the
single particle frequencies in Eqs. 4.9 and start from the unperturbed Hamiltonian,
Eq. 3.1, as well as the linearised Vlasov equation, Eq. 3.2.

Due to the absence of coupling in the KV-type equilibrium space charge
potential, separate unperturbed Hamiltonians can be written for the x�px and y�py

planes:

H0x D 1

2m�

�
p2

x C m2�2
2
x x2
�

H0y D 1

2m�

�
p2

y C m2�2
2
y y2
�

: (5.1)

By using the property that the unperturbed orbits are harmonic oscillators with
frequencies 
x; 
y, within the boundary ellipse given by a and b, we can define an
anisotropy factor T as ratio of average oscillator energies, which is identical to the
definition in Sect. 2.2.3:

T � a2
2
x

b2
2
y

: (5.2)

This allows us to use the two separate Hamiltonians as constants of motion to define
a generalized anisotropic KV-distribution as

f0.x; y; px; py/ D NT
y=
x

2�2m�a2
ı
�
H0x C TH0y � m�
2

x a2=2
�

: (5.3)
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Analogous to the isotropic KV-distribution, Eq. 5.3 describes a uniformly populated
ellipsoid in the 4D phase space, with uniform projections into any 2D subspace.

We now assume a small perturbation of the equilibrium beam distribution and
space charge potential

f D f0.H0x; H0y/ C f1.x; y; px; py; t/

˚ D ˚0.x; y/ C ˚1.x; y; t/; (5.4)

and obtain from Eq. 3.2 the linearised Vlasov equation

df1
dt

� @f1
@t

C px

m�

@f1
@x

C py

m�

@f1
@y

� m�
2
x x

@f1
@px

� m�
2
y y

@f1
@py

D NTq 
y=
x

2�2m2�4a2

�
px

@˚1

@x
C T py

@˚1

@y

�


 ı0 �p2
x C 
2

x x2 C T.p2
y C 
2

y y2/ � 
2
x a2
	

; (5.5)

where ˚1 is given by the perturbed density n1

r2˚1 D � q

�0

n1 D � q

�0

Z
f1dpxdpy: (5.6)

Equations 5.5 and 5.6 are a closed set of linear, partial differential equations with
f1 and ˚1 as unknown functions. Following the method of characteristics, f1 is
determined by integrating the r.h.s. of Eq. 5.5 along the unperturbed orbits. To
carry out this integration it is essential that due to the linear total restoring force
the unperturbed orbits are those of harmonic oscillators. For rational ratios of
betatron tunes the two-dimensional unperturbed orbit is thus a periodic function
characterized by an angle '. This allows writing the total derivative of f1 in the
simplified form:

df1
dt

� @f1
@t

C 
x
@f1
@'

: (5.7)

Thus, a time harmonic ansatz can be made by introducing a mode frequency ! and
writing

f1 D f1.'/e�i!t; ˚1 D ˚1.'/e�i!t: (5.8)

f1.'/ is obtained by integrating the total derivative over the full period of the
two-dimensional unperturbed orbit. Moreover, due to the ı�function character of
the equilibrium distribution, the solutions for ˚1 can be expressed as finite order
polynomials in x and y in the interior of the beam, and as angular harmonics
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vanishing at infinity outside.5 The leading order of the polynomials determines the
order of the mode.

Dispersion relations for the mode frequency ! in the form of algebraic expres-
sions are found as conditions for the existence of solutions of these equations, where
Im ! > 0 indicates exponential instability. For details of the solutions up to fourth
order the reader is referred to [2]. It is noted that due to anisotropy the size of
the algebraic expressions and the number of solutions grows substantially with the
order. Some approximate examples for ! will be discussed in the following for
further application in the following chapters.

5.3.3 Different Order Mode Frequencies

The above introduced space charge eigenmodes play a role in a variety of contexts.
Some can be subject to instability even in constant focusing, where the instability
is driven by anisotropy or emittance exchange (Chap. 9); others require periodic
focusing and parametric resonance to be unstable (Chap. 7). Approximate formulae
can be derived for small space charge terms, which are useful for interpreting
computer simulation results; in particular, also with regards to the matter of Landau
damping, the coherent mode frequency shift needs to be compared in size with the
incoherent tune spread as will be discussed in Sect. 5.5.

It is helpful to introduce here several dimensionless quantities:

	 � !=
xI 	p � !p=
xI ˛ � 
y=
xI � � a=bI (5.9)

where 	 and 	p are the coherent mode rsp. plasma frequencies normalized to 
x,
and ˛, � measure the ellipticity in focusing and in size.

The general form of solutions can be written as

! l;m D l
x C m
y C �
coh;l;m; (5.10)

where jljC jmj is bounded by the order of the mode, which is defined by the leading
power in the perturbing space charge potential. �
coh;l;m stands for the coherent tune
shift,6 which depends on space charge and the particularities of the mode.7 Note that

5For a more general distribution function an infinite series expansion is needed as shown in an
example in [3], besides the additional difficulty of anharmonic unperturbed orbits.
6Note that alternatively ! can be written in terms of zero intensity tunes 
0;x;y. This requires
absorbing the space charge shifts from 
x;y into �
coh;l;m.
7In most cases �
coh;l;m is a positive number, with the exception of the “negative energy modes”
discussed in Sects. 5.3.3.2 and 5.4.3. For full characterization of the mode spectrum additional
parameters are needed in �
coh;l;m, besides l; m, to distinguish between even and odd and
combinations with lower order resonant terms.
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the total number of coherent mode frequencies – even and odd – rises steeply with
the order: in second order it is four, in third order ten, and in fourth order it can reach
twenty – depending on parameters.

For small space charge effects the various resonant denominators – increasing
in number with the order – can again be assumed as small quantities leading to
dominant terms. We evaluate the full dispersion relations derived in [2] up to fourth
order for a small incoherent space charge tune shift, and for the highest frequency
modes.

5.3.3.1 Second Order Even Modes

The second order even perturbations are of the envelope oscillation type and require
a perturbing potential ˚1;even D a0x2 C a2y2 inside the unperturbed beam, where
a0 and a2 are constants depending on focusing and emittance ratios. The scaled
eigenfrequencies 	 are solutions of the dispersion equation

.1 C �/2 C 	2
p

�
1 C 2�

4 � 	2
C 2� C �2

4˛2 � 	2

�
C 	4

p

�
2�

.4 � 	2/.4˛2 � 	2/

�
D 0;

(5.11)

which allows only real eigenfrequencies.
For zero space charge the mode frequencies are given by the zeros of the resonant

denominators, hence ! results as 2
0x or 2
0y. For finite space charge the solutions
of Eq. 5.11 also depend on ˛ and � as measures for the anisotropy, hence the
asymmetry in focusing and beam size respectively emittances. An example with
values for ˛ D 
y=
x D 0:48 and � D a=b D 1:54 kept fixed, hence also a
fixed emittance ratio �x=�y D 4:91, is shown in Fig. 5.4 (see also [2]). The tune
depression 
y=
0y is varied, which also determines 
x=
0x. Note that the coherent
mode frequencies !1; !2 and their incoherent constituents 2
x; 2
y according to
Eq. 5.10 are all normalized to 
0y.

Approximate explicit formulae are easily obtained in first order of the space
charge parameter 	2

p � 2.1 C �0/�
x=
0x by assuming that the resonant denom-
inators 4 � 	2 or 4˛2 � 	2 are independently small quantities.8 For given space
charge this requires that the tunes in x and y are sufficiently split, otherwise a
different – more complex – expansion is needed. With the space charge tune shifts
�
x � 
0x � 
x and �
y � 
0y � 
y we obtain in first order in �
x;y:

!1 D 2
0x � 2�
x

�
1 � 1 C 2�0

4.1 C �0/

�

!2 D 2
0y � 2�
y

�
1 � 2 C �0

4.1 C �0/

�
: (5.12)

8Here, �0 is understood as fixed value, hence independent of space charge.
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Fig. 5.4 Anisotropic second
order even modes showing
coherent mode frequencies
!1; !2 and 2
x; 2
y as
function of space charge tune
depression (all divided by

0y)

Equations 5.12 indicate that the repulsive character of space charge induces a
downwards shift of the mode frequencies relative to their zero-current values
2
0x; 2
0y.

More significant is the shift relative to 2
x; 2
y. It contains the actual coherent
tune shift �
coh, which plays a key role for the Landau damping discussion in
Sect. 5.5 and is found positive for this mode:

!1 D 2
x C �
coh;2;1 D 2

�

x C 1

4
�
x

1 C 2�0

1 C �0

�

!2 D 2
y C �
coh;2;2 D 2

�

y C 1

4
�
y

2 C �0

1 C �0

�
: (5.13)

The dependence on the ellipticity parameter �0 is relatively weak, and for not too
flat beams Eq. 5.12 can be approximated by assuming �0 D 1, hence,

!1;2 D 2

�

x;y C 3

8
�
x;y

�
: (5.14)

In the special case of a round (�0 D 1) beam with identical focusing, 
0x D 
0y D

0, hence the beam is fully isotropic. In this case Eq. 5.11 yields the familiar results
for “fast” and “slow” envelope modes for arbitrary intensity, and in dimensionless
units:

	2
f D 4 C 	2

p ; 	2
s D 4 C 	2

p

2
: (5.15)

Solutions of Eq. 5.15 as function of 
=
0 are shown in Fig. 5.5.
In terms of mode frequencies, expanded for small space charge, we obtain:

!f D 2
0 � �
 D 2.
 C 1

2
�
/I !s D 2
0 � 3

2
�
 D 2.
 C 1

4
�
/: (5.16)
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Fig. 5.5 Second order even
modes coherent frequencies
!f ; !s and 2
 for round beam
and identical focusing
strength as function of space
charge tune depression (all
divided by 
0)

The fast mode is also called “breathing mode” due to the periodically oscillating
radius. In the slow or “quadrupolar mode” the initially circular beam is periodically
flattened. The former is an in-phase mode, the latter an out-of-phase mode relating
to the change of envelopes in the two planes.

5.3.3.2 Second Order Odd Modes

The less familiar second order odd space charge modes of Fig. 5.3 involve a skew
rotation (tilting) in x � y space. For this discussion a linear lattice without any
external skew components is assumed here, hence the skew force is entirely due
to space charge. These odd modes have a perturbed space charge potential ˚1;odd D
a1xy inside, with a1 an arbitrary coefficient. Note that they cannot be obtained by
perturbing the usual envelope equations of Sect. 3.2.1, which only describe even
modes. Alternatively to our Vlasov analysis, they can be also retrieved by linearising
the second order “Chernin equations” in [4].

With our Vlasov ansatz the odd mode dispersion equation is found as

.1 C �/2 C 	2
p

2

�
.1 � ˛/.1 � �2=˛/

.1 � ˛/2 � 	2
C .1 C ˛/.1 C �2=˛/

.1 C ˛/2 � 	2

�
D 0; (5.17)

Inspecting the resonant denominators, a coherent sum ( !sum) as well as a
coherent difference (!d) mode are associated with the “C” and “�” sign. A solution
of Eq. 5.17 for these mode frequencies and their incoherent constituents 
x ˙ 
y

for the sum (C) respectively difference modes (�) are shown in Fig. 5.6, again for
˛ D 
y=
x D 0:48 and � D a=b D 1:54. For small space charge, 
y=
0y ! 1,
the coherent sum and difference mode frequencies merge to 
0x C 
0y respectively

0x � 
0y.
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Fig. 5.6 Anisotropic second
order odd modes showing
coherent sum and difference
mode frequencies, !sum; !d ,
and 
x ˙ 
y as function of
space charge tune depression
(all divided by 
0y); !d is a
“negative energy mode”
turning into exponential
instability (Im !d > 0)

Noteworthy is the fact that for sufficiently strong tune depression – in our
example for 
y=
0y < 0:3 – the coherent difference mode becomes unstable with
!2

d < 0, hence a pair of stable and unstable solutions is emerging. This occurs if
for 
0x > 
0y, anisotropy and space charge lead to 
x < 
y, hence a focusing ratio
reversal (equally by swapping x and y). In Fig. 5.6 the switch to instability happens
at the point, where 
0y=
0x changes from < 1 to > 1. This spontaneous space charge
induced instability is a “self-skewing” effect, which leads to a periodical emittance
exchange between x and y. A necessary condition is a sufficiently high degree of
anisotropy to enable the focusing ratio reversal via different tune depressions in x
and y.

Note that the difference mode !d is shifted downwards from the incoherent term

x � 
y. It thus qualifies as “negative energy mode”, which can become unstable by
coupling with a “positive energy mode” – here the corresponding negative frequency
mode �! – without change of the total energy. The sum mode !sum, instead is a
“positive energy mode” due to the upwards shift from the incoherent term 
x C 
y.
For further details on the role of these mode energies see Sect. 5.4.

In practical terms, this self-skewing mode may not be directly observable as it
closely overlaps with a connected space charge phenomenon in fourth order, the
“Montague resonance” at 2
x � 2
y � 0 – see Fig. 9.2 in Chap. 9.

The dynamical behaviour of this self-skewing beyond linearised theory has been
studied in some detail in [5], based on Chernin’s fully nonlinear equations.

We search for explicit analytical expressions by expanding Eq. 5.17 for small
space charge. For the coherent sum mode, which will find application in the sum
parametric resonances of Sect. 7.7, we use the sum resonant denominator and obtain
in first order in �
x

9:

!sum D 
x C 
y C �
coh;2;sum D 
x C 
y C �
x

 
�0 � ˛2

0

˛0
C 1

2

˛0 C �2
0

˛0.1 C �0/

!
: (5.18)

9�0 and also ˛0 are both understood as values independent of space charge.
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!sum approaches 
0x �
0y in the limit of vanishing space charge, while the coherent
shift, �
coh;2;sum, is found positive for all cases of anisotropy.

For the coherent difference mode the difference resonant denominator in Eq. 5.17
yields, expanded for small space charge (and assuming 
0x > 
0y),

!d D 
x � 
y C �
coh;2;d D 
x � 
y C �
x

�
˛2

0 � �0

˛0

C 1

2

˛0 � �2
0

˛0.1 C �0/

�
: (5.19)

!d approaches 
0x � 
0y in the limit of vanishing space charge, but the coherent
shift, 
coh;2;d, is found negative for all values 
0x > 
0y, hence we deal with negative
energy modes as in the example of Fig. 5.6.

5.3.3.3 Third Order Modes

For the full dispersion relation expression we refer to [2]. For sufficiently split tunes,
and the highest frequency mode (assuming 
0x > 
0y without loss of generality),
only terms with resonant denominators of the kind 9�	2 need to be retained. Hence,
in first order in �
x we find10:

!3 D 3

�

x C �
x

24

3 C 9�0 C 8�2
0

.1 C �0/2

�
: (5.20)

As already in second order, the dependence on �0 in this and the following
examples is again relatively weak, thus an expression for approximately round –
not too flat – beams is obtained by setting �0 D 1, in which case the coherent
frequency is:

!3 D 3

�

x C 5

24
�
x

�
; (5.21)

which yields only slightly different results from Eq. 5.20. The coefficient in front of
�
x changes typically by < 10% for a change of �0 by ˙25% away from unity.

Explicit calculation of frequencies is straightforward for identical focusing
constants and a round beam. This leads to four solutions branching off from the zero-
intensity mode frequencies 3
0 as well as 
0, which are written here for arbitrary
intensity, and in dimensionless units:

	2
1;2 D

10 C 	2
p ˙

q
64 C 20	2

p C 	4
p

2

	2
3;4 D

20 C 	2
p ˙

q
256 C 16	2

p C 	4
p

4
: (5.22)

10Note that in third order the distinction even-odd is equivalent to an exchange between x and y.
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Fig. 5.7 Third order
coherent mode frequencies !i

(i D 1 : : : 4) and their
incoherent constituents 3


and 
 as function of space
charge tune depression, for
round beam and identical
focusing strengths (all
divided by 
0)

Solutions of Eqs. 5.22 as function of 
=
0 are shown in Fig. 5.7. Note that the lowest
order mode !2 is shifted downwards with respect to 
. Hence, it qualifies as negative
energy mode similar to the second order odd mode in Sect. 5.3.3.2, but in this case
it is always stable.11

For the highest frequency mode, and in first order in �
, this results in

!3 D 3

�

 C 1

4
�


�
: (5.23)

5.3.3.4 Fourth Order Modes

Similar to third order, and for sufficiently split tunes, the fourth order even mode
dispersion relation in [2] yields for the highest frequency mode, and in first order in
�
x (again assuming 
0x > 
0y):

!4 D 4

�

x C �
x

64

5 C 20�0 C 29�2
0 C 16�3

0

.1 C �0/3

�
: (5.24)

For approximately round – not too flat – beams, we set again �0 D 1 and find

!4 D 4

�

x C 35

256
�
x

�
: (5.25)

The case with identical tunes and a round beam leads to five solutions, again for
arbitrary intensity and in dimensionless units:

11With anisotropy also third order modes may become unstable – see Chap. 9.
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	2
1 D 16 C 	2

p

	2
2;3 D

20 C 	2
p ˙

q
.20 C 	2

p /2 � 4.64 � 2	2
p /

2

	2
4;5 D

40 C 	2
p ˙

q
.40 C 	2

p /2 � 8.128 C 10	2
p /

4
: (5.26)

Here, 	1;2;4 are branching off from the zero-intensity mode frequency 4
0, and 	3;5

from 2
0.
For the highest frequency mode, 	2, this yields in first order in �
x:

!4 D 4

�

 C 3

16
�


�
: (5.27)

Of theoretical interest is the lowest frequency branch mode, 	3, which yields12

!3 D 2

�

 � 1

4
�


�
: (5.28)

The “�” sign in front of the coherent shift indicates a negative energy mode.
Using the full expression in Eq. 5.26 for all intensities shows that for this branch
	2

3 becomes negative, hence unstable, for sufficiently high intensity. The transition
occurs for 
=
0 < 0:24, which is the lowest order case of the so-called “Gluckstern
modes” derived in [6]. It is a particular feature of the KV-distribution, with a more
detailed discussion in Sect. 7.3.2.

5.3.4 Overview on Coherent Mode Frequencies

For an overview we summarize here some the above results, in first order of the
space charge shift, and written in the form !k D k .
x C Fk�
x/. The factors Fk are
listed in Table 5.1 for the highest frequency branches of even modes up to fourth
order. They determine the intensity dependent shift away from k
x, which is given
for equal focusing strengths as well as for split focusing, and beams not too far
from round. For completeness we also add the first order dipole mode, which is not
pursued further here.

It is noted that in all orders the coherent shifts away from 
x;y are always largest
for the un-split tunes cases. This is apparently due to the fact that equal tunes allow
density deformations, which are in phase in both degrees of freedom – like in the

12The index of ! is only numbering the different options in fourth order; the r.h.s. factor “2” has
to do with the symmetry of this particular fourth order mode.
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Table 5.1 Coefficients Fk in coherent frequency expressions !k D k .
x C Fk�
x/ for highest
frequency branches and equal as well as significantly split focusing

First order Second order Third order Fourth order

k: 1 2 3 4

Fk: (
0x D 
0y) 1 1=2 1=4 3=16

Fk: (
0x ¤ 
0y) 1 3=8 5=24 35=256

case of the envelope breathing mode (F2 D 1=2). Also, these shifts are all upwards
with space charge, which qualifies them as positive energy modes. Negative energy
modes can only occur with the lower frequency branches.

5.4 Negative Energy Modes and Free Energy

The concept of waves of “negative energy” is widely used in plasmas, where
dissipation allows growth of such a wave under total energy conservation (see,
for example, a review by Lashmore-Davies in [7]). In accelerators negative energy
waves find direct application for example in the “resistive wall instability” of
longitudinal waves on a beam. In the context of beam particles confined by a
focusing potential, where propagating waves are replaced by oscillatory modes, the
subject of negative energy is conceptually more challenging.

5.4.1 Basic Concept

The concept that waves of negative energy in plasmas can couple with positive
energy waves and create a so-called “reactive” (non-dissipative) instability was
originally developed by Kadomtsev et al. in [8].

Some general and very useful principles to understand this concept have been
presented by Landau and Lifschitz in [9] with the observation that in a plasma in
thermal equilibrium – like a Gaussian distribution – excitation and relaxation of
a wave always means “positive energy”: the energy of the system with the wave
excited is higher than that of the equilibrium. Under total energy conservation such
a wave cannot grow, and stability is a consequence.

Of direct applicability to charged particles confined in a time-independent
focusing potential is the so-called “Newcomb-Gardner theorem” discussed by
Fowler in [10]. According to it a system described by a monotonically decreasing
function of the Hamiltonian – hence also isotropic – is stable. In such a system
the highest density layer in phase space is close to zero energy, and layers with
increasing total particle energy have lower density. Fowler argues that in this case
there is no source of free energy to drive an instability.
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Fig. 5.8 Principle of
two-stream instability in
longitudinal phase space
between plasma stream A
with slow wave and B with
fast wave

A different situation arises for a drifting plasma or a beam, which is not isotropic
in the laboratory frame. Looking at waves, the energy of a wave also depends on the
frame of reference. A backwards moving “slow” wave in the beam frame becomes
a negative energy wave in the laboratory frame: in the presence of the wave the total
energy is reduced compared with the unperturbed beam. With dissipation, like a
finite wall resistivity, unstable growth occurs as “resistive wall instability” (see, for
example, in [11]).

Since energy conservation must hold, growth of a negative energy wave is either
possible by dissipation of the electromagnetic field energy as in the resistive wall
instability, or by coupling with a positive energy wave. The coupled waves become
a “zero energy system”, which can grow without violating energy conservation.

The second case is schematically shown in Fig. 5.8 for the well-known two-
stream instability of streaming plasmas or beams with a velocity difference (see,
for example, Chen in [12]). A wave with wave number k on the plasma stream A
(velocity vA) with plasma frequency !p and velocity opposite to the direction of A,
a so-called “slow wave”

!� D kvA � !p; (5.29)

is a negative energy wave13 in the frame of the average velocity of beams A and B
as its excitation requires lowering of the total energy of A; the opposite is the case
for the forwards moving “fast wave” on plasma stream B (velocity vB)

!C D kvB C !p; (5.30)

which is a positive energy wave. If vA and vB get close enough the two waves couple,
which results in growth of their amplitudes.

13Note the connection with the sign in front of the “coherent shift” !p – in analogy with the
behaviour in a potential in Sect. 5.4.3.
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5.4.2 Multi-stream Instability of Phase Space Filaments

An interesting application of interacting “streams” of charged particles and coupling
of positive and negative energy waves is found in the subject of filamentary fine
structures in phase space, which is worth noting here.

It was shown theoretically in [13] that after injection of a bunched beam from
a linear accelerator into a circular accelerator, where the bunch structure is not
maintained by a suitable rf, the expanding filaments in longitudinal phase space
eventually become unstable due to a multi-stream instability driven by space charge.
The process is analogous to the above described two-stream mechanism in Fig. 5.8.

This was proven experimentally in the GSI synchrotron SIS18 by Appel and
Boine-Frankenheim in [14]. First the problem was studied by multi-particle sim-
ulation, and Fig. 5.9 shows the 36 MHz periodic bunch structure of the injected
beam, which is allowed to de-bunch if no rf voltage is applied. The de-bunching
process starts right after injection, which creates a rising number of increasingly
fine near-by filaments in longitudinal velocity space as shown in Fig. 5.10. The
length of these filaments is increasing, while the momentum displacement between
neighbouring filaments as well as their width are shrinking. The top frame in
Fig. 5.10 at 0.04 ms indicates a point of transition, where the “laminar” filamentary
flow in phase space turns into a “turbulent” flow, which eventually smears out the
void between filaments as shown in the bottom graph of Fig. 5.10 at 0.13 ms. The
point of such a transition is reached, when neighbouring filaments satisfy the “multi-
stream instability” threshold derived in [13].

Figure 5.11 confirms this process by experimental Schottky noise data obtained
and using a 36 MHz Ar18C beam in the SIS18 injected at 11.4 MeV/u (with lower
intensity than assumed in simulations). There is good agreement between the
experiment and the theoretical picture noting that a broad coherent Schottky noise
spectrum starts growing beyond the dotted line on the r.h.s. graph, which is the
theoretically calculated time threshold for the given beam current in the experiment.

Fig. 5.9 Initial longitudinal
phase space of a sequence of
bunches at injection into the
SIS18 (Source: [14])
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Fig. 5.10 Simulation results
at 0.04 ms (top graph) and
0.13 ms (bottom graph) after
injection showing onset of
multi-stream instability
(Source: [14])

For completeness we also mention that the lengthening filaments at some point
may also become subject to longitudinal resistive impedance driven instability. This
is due to the fact that the local current of a single filament shrinks proportional to its
momentum width, hence the corresponding threshold for resistive instability – with
the current proportional to the square of the momentum width (see, for example,
in [11]) - is exceeded at some point. Which one of these instability processes –
multi-streaming or longitudinal resistive – dominates in a given situation needs to
be checked.

5.4.3 Negative Energy Modes in a Potential

An analogous approach to interpret coherent space charge instabilities of beams in
a focusing potential was suggested in [15]. In this case one deals with coupling
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Fig. 5.11 Experimental
results with frequency
spectrum of coherent
Schottky noise rising right
after the theoretically
calculated time of onset as
indicated by the dotted line
(Source: [14])

of (non-propagating) negative energy modes of oscillation with positive energy
modes, which is conceptually challenging. The ansatz in [15] was in terms of a
dielectric function – in analogy with the wave problem in [8] – applied to the
special case of the “Gluckstern” type KV-instabilities discussed in Sect. 7.3.2.3.
The characterisation of the mode energy as positive or negative was made in [15] –
analogous to [8] – according to the sign of the derivative of the dielectric function
with respect to the mode frequency.

This is applied in [3] to the behaviour of the negative energy modes in the
transition from the highly non-monotonic KV-distribution to a monotonically
decreasing distribution function. In this work the perturbed space charge potential
in constant focusing and for 2D axisymmetric beams is expanded in an infinite
series of Legendre polynomials.14 For analytical tractability the nonlinear part of the
equilibrium space charge potential is assumed compensated by a suitable external
potential.

As shown in Fig. 5.12, four cases of distribution functions are distinguished,
where “A” stands for the completely hollow KV-distribution, “B” for a semi-
hollow non-monotonic distribution, “C” for a waterbag and “D” a strictly monotonic
distribution. B, C and D are defined as superpositions of a continuous spectrum
of KV-distributions with radius a and weight function g.a2/. It is suggested in [3]
that sufficiently hollow (non-monotonic) distributions in phase space have the free
energy to drive an instability. In the mode picture such instabilities are enabled by a
confluence of a negative energy with a positive energy oscillation. The confluence
allows growth of the amplitude of the coupled oscillation without violating energy
conservation.

14This extends the procedure by Gluckstern in [6] for a KV-distribution, where due to the ı-function
nature only a finite series of Legendre polynomials is needed.
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Fig. 5.12 Definition of
different axisymmetric
distribution functions A, B, C
and D as superpositions of a
spectrum of KV-distributions
with radius a and weight
g.a2/, used as basis for a
Vlasov stability analysis
(Source: [3])

The spectrum of the axisymmetric modes is shown in Fig. 5.13 for above cases
A, B and C. From [15] a mode of given order 2j can be characterized as negative
energy oscillation, if !=.2j
/ < 1, and as positive energy oscillation, if !=.2j
/ > 1.
Hence, for negative (positive) energy oscillation !=
 is decreasing (increasing)
with increasing intensity.15 Applied to the KV-distribution, case A of Fig. 5.12, the
following results: in fourth order the negative energy oscillation !21 couples with the
corresponding negative frequency mode as positive energy mode.16 This happens
for !p=
 D 5:66 (
=
0 D 0:24), and beyond this point instability emerges. In sixth
order the same between !32 and !31 for !p=
 > 3:39 (
=
0 < 0:39), and similar in
higher order. The semi-hollow Case B shows only short patches of instability, with
tiny growth rates; the waterbag case C shows that the negative energy oscillations
have entirely disappeared (similar for Case D, not shown), and stability results.
Note that the remaining “fast” modes !jj – characterized by a large and positive
coherent tune shift, hence positive energy oscillations – are also retrieved in the
fluid model of Sect. 5.6. Instead, the additional (also positive energy) oscillations
!31 etc. are kinetic, but have almost vanishing coherent tune shifts. It is concluded
that this switch in stability behaviour from case A to D is fully consistent with the
Newcomb-Gardner theorem in [10].

The appearance of negative energy oscillations is not limited to KV-type or
hollow distributions. Negative energy modes also play a role for anisotropic distri-
butions, where apparently the “negative energy” stems from anisotropy. Instability
is found accordingly as is the case in the second order odd mode example of
Sect. 5.3.3.2 – see also Chap. 9.

15Note that it is essential here to compare ! with the space charge shifted 
.
16This mode is identical with !3 in Sect. 5.3.3.4.
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Fig. 5.13 2D axisymmetric
coherent mode frequencies
(divided by 2
, continuous
lines) for KV-distribution
(case A, left graph),
semi-hollow phase space
distribution (case B, centre
graph) and waterbag
distribution (case C, right
graph) as function of
intensity parameter !p=
.
Note that the order of a mode
is given by 2j, where j is the
first index of !jn; while the
second index is an additional
azimuthal mode number;
negative energy mode
frequencies thick (blue)
continuous lines, on
instability thick dashed (red)
lines (Source: [3])
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5.5 Landau Damping

Conceptually, Landau damping in multi-dimensional beams is not a simple phe-
nomenon, and its interpretation can be a challenging problem. The concept of
Landau damping of a longitudinal wave in a plasma – or on a coasting beam – by
freely streaming particles cannot directly be applied to non-propagating eigenmodes
in a potential. We draw an analogy and describe this problem as interaction between
coherent modes of oscillation and the spectrum of single particle tunes trapped in
the transverse potential well. The assumption that damping of these modes works
similar to that of waves – depending on the overlap between coherent frequency
and the distribution of single particle tunes – is built on this analogy and requires
validation by simulation.

5.5.1 General Observations

In circular accelerators the primary source of a spread in the spectrum of single
particle tunes can be a magnetic octupole, or the momentum spread combined with
chromaticity. We focus here on dominant space charge effects and ignore the effects
of octupoles or chromaticity. For non-KV beams at high intensity we thus assume
the spread of single particle frequencies is only due to the space charge nonlinearity.
Furthermore, we limit the discussion to internal modes of beams – leaving aside the
dipole modes, where space charge plays a different role.

In the presence of mechanisms to excite coherent oscillations, like parametric
resonances in periodic focusing or coherent magnet error driven resonances, the
following questions arise:

• Under what conditions can the tune spread work as Landau damping and prevent
the instability of certain modes – here the parametric resonances? (Chap. 7)

• Are similar conditions also applicable if these modes are excited by external
sources, like in the case of coherent magnet error resonances? (Chap. 8)

• What is the role of Landau damping if a coherent resonance is “mixed” with
single particle resonances?

Quantitative criteria for Landau damping are not straightforward for beams in
a confining – possibly time-dependent – potential. It is helpful for the present
discussion to compare the spectral distribution of single particle frequencies with
the location of expected coherent frequencies calculated by smooth approximation,
which is shown schematically in Fig. 5.14. Particles with frequencies in the vicinity
of a coherent mode frequency ! may interact with the mode and cause damping
– analogous to the velocity comparison between particles and waves in the usual
Landau damping mechanism for propagating waves. It is essential here that beams
with monotonically decreasing distribution function have their highest density in
the beam centre. Thus, due to space charge repulsion the lowest frequencies in
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Fig. 5.14 Principle of
Landau damping of an
eigenmode ! by a spectral
distribution of single-particle
tunes 
x

the distribution are associated with the smallest betatron oscillation amplitudes.
Particles with lower frequency than that of the coherent oscillation gain amplitude
to synchronize with the oscillation, while higher frequency particles lose amplitude.
If the location of the coherent frequency ! on the spectral distribution occurs at
a sufficiently large negative slope – as indicated in Fig. 5.14 – more particles gain
energy, and the net effect is a damping of the coherent oscillation.17

Two necessary conditions for Landau damping can be adopted from the analogy
with waves:

• A sufficient overlap of the spectrum of single particle frequencies with the
coherent mode frequency ! under consideration,

• and a positive shift of ! with regard to the peak of the spectral distribution, which
ensures the negative slope.

Note that in beams the peak of the spectral distributions is largely identical with
the rms value of single particle frequencies 
. Following Sect. 5.4.3 a positive shift
is thus a feature of positive energy modes, while a negative shift would indicate
negative energy modes.

5.5.2 Tune “Footprints” with Space Charge

These conditions can be tested by determining analytically the coherent mode
frequencies and plotting them on a spectral chart of single particle frequencies of
a well-matched beam. Such “tune footprints” are shown here by using the 2D beam
option of the TRACEWIN multi-particle simulation code (for TRACEWIN see also
Sect. 2.3.2).

The tune footprints for rms equivalent Gaussian (truncated at 3.2	 ) and waterbag
distributions of 2D coasting beams18 are compared in Fig. 5.15. The footprint is a

17A sign of caution is in place here: coherent frequencies calculated for KV-distributions are
compared with single particle tune spectra of non-KV beams, which ultimately requires validation
by computer simulation.
18The structure of the FODO lattice used here is defined in Fig. 7.2 of Sect. 7.4, but its details are
not significant here.
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Fig. 5.15 Tune footprint for
rms equivalent waterbag (top)
and truncated Gaussian
(bottom) distributions and
tunes 
0;x;y D 0:25=0:19, with
rms tunes 
x;y D 0:17=0:11.
Also shown are the highest
frequency coherent space
charge mode frequencies
(“even” transverse modes in
x, divided by the order k, up
to fourth order) and tune
density projections; the
vertical dotted line indicates
the rms tune 
x D 0:17

colour coded density plot of tunes of all involved particles (a TRACEWIN option),
including projections of tune spectral densities. For k-th order19 space charge modes
the coherent frequencies of the highest frequency branches are plotted in normalized
form as !=k D 
x C Fk�
x, where Fk are the algebraic factors determined in

19Where k D 2j compared with Sect. 5.4.3.
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Sect. 5.3.4, evaluated for approximately round beams with split tunes, and 
x is
the rms tune. For reference, the bare tune 
0;x D 0:25 is also plotted; likewise the
corresponding space charge shifted value 
x D 0:17, which is obtained as tune of
an rms-equivalent KV-beam.

Note that for the Gaussian beam the lower edge of the single particle spectra in x
and y, related to the small amplitude particles, is shifted twice as much downwards
from 
0;x;y as the rms 
x;y. This is in agreement with the doubled electric field
gradient in the centre of a Gaussian, compared with the rms equivalent KV-beam,
as shown in Fig. 4.1.

Conclusions from Fig. 5.15 are summarized as follows:

• The coherent shift (relative to the rms 
x) for the plotted “even” modes is always
in the positive direction.

• The shift is the larger the lower the order of the mode, where the second order
envelope mode falls definitely outside the single particle tune spectrum for the
waterbag, but it is close to the edge of the truncated Gaussian beam.20

• No Landau damping can be expected for the envelope mode of both, Gaussian
and waterbag distributions. This is important with regard to the parametric
resonances of Chap. 7 and the externally driven betatron resonances of Chap. 8.

• Third and fourth order modes slightly overlap with the particle tune spectrum
of the waterbag case, and efficient Landau damping cannot be expected; for the
Gaussian case the overlap is significant, hence a necessary condition for Landau
damping would be fulfilled. This issue is further examined by the coasting beam
parametric resonance simulations in Sect. 7.4.

5.6 Fluid Models

It is interesting to reduce the kinetic Vlasov model to a much simpler non-kinetic
“real space fluid” model. This is achieved by integrating Vlasov’s equation over
momentum space. The corresponding moments like density, flow velocity, pressure,
heat flow etc. form an infinite chain. Its truncation results in a loss of the kinetic
nature of the “phase space fluid”.

Lund and Davidson have calculated in [16] the spectrum of axisymmetric
coherent modes of a 2D “warm-fluid” model beam. Figure 5.16 shows their results
compared with the axisymmetric “Gluckstern-modes” as obtained from the kinetic
Vlasov-approach for KV-beams (see also Sect. 5.4.3 as well as Sect. 7.3.2.3). The
lowest order “Gluckstern-modes” are the fourth order modes, j D 2, with instability
for 
x=
0;x < 0:24; and in sixth order, j D 3, for 
x=
0;x < 0:39 (both in agreement
with Fig. 5.13, where ! is normalized to 
 rather than 
0.) In the fluid mode
spectrum – not unexpectedly – all the unstable negative energy modes are absent.

20The largest shift is with the dipole mode in free space, which oscillates with the zero intensity
tune 
0;x.
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Fig. 5.16 Plot of warm-fluid model coherent mode frequencies (dotted lines) and 2D axisym-
metric (“Gluckstern type”) mode frequencies for KV-distribution (continuous lines) versus tune
depression and for orders 2j, with j D 2; 3. Shown are normalized real parts of coherent frequencies
for both types (left graphs); also imaginary parts for the non-fluid “Gluckstern modes” (right
graphs) (From [16])

Only the highest frequency – positive energy – Vlasov modes are retrieved by the
fluid model. Almost coinciding frequencies for these two approaches are noted in
Fig. 5.16, which equally applies to higher orders.
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Chapter 6
Beam Mismatch and Halo

Abstract In the presence of space charge perfect matching of the beam is a
desirable goal, in particular in high current and high average power linear accel-
erators. However, discontinuities in focusing geometry, rf frequency or phase
etc. are often inevitable sources of mismatch, which result in emittance growth,
beam halo and loss. This chapter discusses some basic aspects of the role of rms
mismatch with regards to beam halo. Interpreting mismatch and halo is a complex
interplay between coherent beam motion, single particle parametric resonance with
the core and chaotic motion. A further mechanism – although quantitatively less
significant – is density profile mismatch, which is also outlined. Application of this
chapter is primarily to linear accelerators, whereas in circular accelerators beam
halo is normally understood as a result of nonlinear dynamics driven by external
nonlinearities, which are not considered here.

6.1 Fundamental Mechanisms

The danger of producing unacceptable levels of beam loss and thus radioactivity,
also in connection with matching, was already recognized in the early pioneering
work at LAMPF in Los Alamos in the 1970’s–1990’s, where much effort went into
understanding the origin of halo and beam loss as reported by Jameson in [1] and
[2]. The main point of this halo model is that the beam core oscillates in an envelope
mode at twice the frequency of the resonant single particle and thus excites a 1:2
parametric resonance.1 Note that in circular accelerators the subject of beam halo
is normally understood as a matter of single particle nonlinear dynamics driven by
external nonlinearities, which are not in the focus of this book.

Historically, Reiser was the first to discuss in [3] the conversion of the energy
from rms mismatch into emittance growth as a starting point to quantify the
connection between rms mismatch and halo.

The model that halo is a mechanism, where the oscillating beam core drives
particles to large amplitude due to the 1:2 single particle parametric resonance was

1This is a single particle parametric resonance, in spite of the coherent beam motion of the driving
core, to be distinguished from the coherent parametric resonances in Chap. 7.

© The Author(s) 2017
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found by Jameson in [2]. The important step of quantifying the halo radius by the
outer separatrix of the parametric core and that of the mismatch radius was made in
this paper as well as in O’Connell et al. in [4].

Further analytical description of the halo and mismatch mechanism was worked
out by Gluckstern in [5], and by Gluckstern et al. in [6]. A number of simulation
studies by Wangler in [7, 8], Chen and Jameson in [9], Okamoto and Ikegami in [10],
Fedotov et al. in [11] and others gave important insight into questions like halo size,
the role of different distribution functions and of various focusing configurations.
Lagniel in [12] elucidated the role of overlapping resonances in high intensity
beams as source of chaotic motion driving particles to large amplitudes by Arnold
diffusion.

6.1.1 Characterization of Core and Halo

In the absence of space charge and external nonlinearities, an ideally matched beam
has a density profile following its initial distribution, and a distinction between beam
“core” and “halo” is unnecessary.

In space charge dominated beams with rms mismatch this is no longer the case. In
the literature, primarily of high intensity linear accelerators, different interpretations
of the terms core, tail or halo exist. Although a sharp distinction is often not possible,
a useful set of definitions is discussed by Jameson in the context of round beams,
where the space charge force has a peak at some radius, and drops like / 1=r at great
distance (Jameson, Los Alamos National Laboratory Report No. LA-UR-94-3753,
1994, unpublished) (see also Fig. 4.1):

• Core: the part of beam within the radius, where the space charge force peaks
• Tail: the region beyond this peak as part of the “natural” distribution2

• Halo: particles, which go beyond the tail region due to the action of a space
charge induced resonance.

In real beams in concrete linear accelerators the matter of a suitable definition of
halo can be more complicated, and other definitions of it have been suggested. In
Ref. [13], for example, a method for precisely determining the core-halo boundary
is proposed, that allows characterizing the halo and the core regions independently.

6.1.2 Rms Mismatch Conversion

Reiser showed in [3] that an rms mismatched beam has a higher total energy than
if it were matched, which includes the potential and the kinetic part of the energy.
Under certain circumstances this extra energy can be relaxed into incoherent motion

2Jameson calls it “natural”, which can be understood also as “initial”, hence up to typically 3–4
times the rms width.
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Fig. 6.1 Final rms emittance
growth factors in z and x as a
function of tune ratio kz=kx,
for 40% mismatched 2D
beam with kx=k0;x D 0:95.
Compared are a waterbag
(top) and untruncated
Gaussian (bottom)
distributions; also shown is
averaged emittance growth in
z and x (continuous),
including Gaussian truncated
at 1.7	 (dotted line) (From
[14])

of particles – including formation of a halo – and an associated rms emittance
growth. In Reiser’s model for isotropic 2D round beams, with equal focusing in
both directions, this emittance growth is found to depend primarily on the amount
of mismatch, and to a lesser degree on the tune depression.

For multi-dimensional and anisotropic beams the simple round beam models
cannot be applied. Franchetti et al. show in [14] that the transfer of mismatch
energy into halo in the different degrees of freedom is strongly influenced by the
difference in tunes. This is explained in terms of the distance of fixed points from the
core, which varies significantly with the splitting of tunes and with anisotropy. An
example is shown in Fig. 6.1 for kx=k0;x D 0:95 and a 40% mismatch (�z=�x D 1).
The top figure shows curves of �x; �z and the average emittance growth, as a function
of kz=kx, for a waterbag distribution. The bottom figure shows the analogous curves
for a non-truncated Gaussian distribution, and in addition it contains a curve of
average emittance growth for a Gaussian truncated at 1.7 	 . Each marker is a
simulation over 190 betatron periods, long enough to reach saturation.

Note that the averaged rms emittance growth is 24% for the non-truncated
Gaussian, independent of the tune splitting. This value is in agreement with an
analytical calculation from Reiser’s model for round beams [3]. For the truncated
Gaussian, instead, the averaged emittance growth (dotted line) drops, and vanishes
nearly completely for the waterbag distribution. This is explained as follows: The
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chosen initial mismatch is in-phase in x and y, which means only the fast (breathing)
mode is excited, which has a mode frequency shifted further away from the single
particle frequencies than that of the slow quadrupolar mode (compare Eq. 5.15).
Thus, the breathing mode cannot sufficiently interact with truncated distributions –
compare also with the discussion in Sect. 6.2.2.

6.1.3 Core-Test-Particle Model

In this model the beam core is assumed to keep its density profile unchanged, for
example a uniform one, and only rms size oscillations are allowed. Test particles are
introduced, which – depending on their amplitudes – can move through the core and
also the outside region as described in [2, 4, 7].

For a round and uniform density beam a possible mode of mismatch oscillation
is the envelope breathing mode of Eq. 5.16. A particle oscillating beyond the core
sees a linear force in r inside the core and, following Fig. 4.1, a strongly nonlinear
force proportional to 1=r outside, which is weakening the space charge tune shift.
A sufficiently large amplitude can shift the tune of a particle closer to the condition

 D !f =2, where the core frequency is twice the single particle frequency. This
enables the 1:2 parametric resonance of the single particle type, driven by the
mismatch coherent mode (see Ikegami et al. in [15]).

Such an example by Ryne et al. in [16] is shown in the top graph of Fig. 6.2,
for 
=
0 D 0:5 in a constant focusing lattice, and an initial radius of the core
0.62 times the matched radius, hence a significant mismatch. A stroboscopic plot
of 32 particles, where particles are plotted only at the minimum of the exactly
periodic breathing oscillation, is shown over 1000 such periods. Particles, which
are initially seeded outside the linear force core region, hence in the tails of the
distribution, eventually reach the separatrix marked by the two unstable fixed points.
Further on they are carried to large amplitudes by moving along the outer branch of
the separatrix. The peanut-shaped boundary just beyond the unstable fixed points
gave this kind of diagram the name “peanut-diagram”. Note that for stronger tune
depression the separatrix turns into a chaotic band.

The bottom graph of Fig. 6.2 shows the corresponding self-consistent simulation
for a KV-distribution, which confirms the peanut boundary of the core-test-particle
model. The core is unstable under the action of the large mismatch, which
proliferates particles into the originally unpopulated tail region, from where they
can access the halo region as analysed by Jameson in [2] and Gluckstern in [6].

The peanut-shaped boundary is used by Wangler in [8] to derive scalings for the
maximum halo radius of round beams. The dominant parameter in this model is the
mismatch parameter �, defined as ratio of the initial core radius (where the phase
space ellipse is upright) to the matched beam radius. In Fig. 6.3 the ratio of the
maximum particle amplitude from simulation to the rms size of the matched beam
is plotted versus the mismatch parameter �. The space charge tune depression has a
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Fig. 6.2 Comparison of
core-test-particle model (top
graph) and azimuthally
symmetric selfconsistent
simulation (bottom graph) for
a round KV-beam in constant
focusing with 
=
0 D 0:5,
and mismatched by the factor
0.62. The outermost
peanut-shaped boundary in
the bottom graph is taken over
from the first curve (dashed
line) bounding the outer
branch of the separatrix in the
top graph (Source: [16])
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minor effect, also the halo radius predicted by this model is quite insensitive to the
choice of initial distribution.

For non-isostropic beams additional factors may influence halo formation and
halo sizes, which lead to different criteria. The role of anisotropy on mismatch
conversion as introduced in Sect. 6.1.2 can change the simple round beam criteria.
Mismatch modes confined to one, or two phase planes with identical parameters,
lead to halos up to typically three times the core edge radius; this rule no longer
applies if coupled mismatch modes between transverse and longitudinal degrees are
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Fig. 6.3 Comparison of
maximum halo radius from
the core-test-particle model
(curve) with multiparticle
simulations for a waterbag
distribution (squares and
circles from different space
charge routines) as function
of mismatch parameter �,
and for a round beam in
continuous focusing
(Source: [8])

involved, including anisotropy. Qiang et al. find in [17] that, in cases where the
longitudinal focusing exceeds the transverse focusing, certain choices of focusing
parameters may lead to a coupled-plane resonance with a theoretically unlimited
transverse amplitude.

6.2 Examples of Self-consistent 2D Simulation

The conversion of mismatch into halo, in particular the role of coherent mismatch
frequencies and their overlap with the distribution function in this context, is
illustrated in the following by comparing TRACEWIN simulations of a Gaussian
and a waterbag distribution.

6.2.1 Mismatch Conversion

To characterize the self-consistent interplay between distribution tails and halo
formation we first show in Fig. 6.4 an example of a mismatched 2D coasting beam
simulation with TRACEWIN and 
0;x;y D 0:18, 
x;y D 0:155 (k0;x;y D 65ı,
kx;y D 56ı) over 250 FODO cells: The initial mismatch is chosen as 20% increase of
the amplitude in x in both cases, which excites a mix of fast as well as slow envelope
eigen modes. The resulting coherent envelope mismatch oscillation decays much
faster for the Gaussian distribution than for the waterbag. The mismatch energy
gets transformed into halo as shown by the phase space plots. For the Gaussian
(left centre graph) a more progressed evolution of halo is seen if compared with
the waterbag (right centre graph). Likewise, the bottom graphs show approximately
10% rms emittance growth for the Gaussian, but only 6%, and further downstream,
for the waterbag.
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Fig. 6.4 Rms mismatch evolution for Gaussian (left column graphs) and waterbag (right column
graphs) distributions for coasting beam in FODO lattice, 
0;x;y D 0:18, 
x;y D 0:155. Top: rms
envelopes; Centre: Phase space projections in x � x0 at cell 46; Bottom: rms emittances

6.2.2 Interpretation

To visualise the possible interaction of the mismatch oscillation with the particle
distribution in phase space we use the tune footprint tools presented in Sect. 5.5.2.
In Fig. 6.5 the tune footprints for the case of Fig. 6.4 are shown, but in the absence
of mismatch, hence there is no active Landau damping. The coherent frequencies
of the fast and slow envelope modes (Sect. 5.3.3.1), divided by two, are plotted as
well to evaluate their possible interaction with the single particle spectrum in case
of mismatch. For the Gaussian (truncated at 3	 ) it is noted that the fast mode sits
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Fig. 6.5 Tune footprint for
Gaussian (top graph) and
waterbag distributions
(bottom graph) for Fig. 6.4
case, but without mismatch.
Also shown are theoretical
locations of envelope mode
frequencies for the fast and
slow envelope modes, !f =2,
!s=2

at the edge of the distribution, and the slow mode in the interior; for the waterbag,
both fall outside.

As a consequence, for a beam with mismatch, there are sufficiently many
particles directly interacting with the coherent oscillation in the case of the
initial Gaussian: they gain amplitude and damp the envelope oscillation with an
accompanying rms emittance growth. The initial waterbag distribution, instead, has
practically no tails and thus no or only few particles, which immediately get into
a halo.3 Consistently the envelope oscillation is sustained for a longer distance,
and only gradually more particles are caught by the resonance. Accordingly, the
damping of the mismatch as well as the halo population set in more slowly.

3In fact, as pointed out by Jameson in Private communication, it is not necessary for halo particles
to be initially far out in the distribution.
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6.3 Density Mismatch and Nonlinear Field Energy

Struckmeier et al. introduced in [18] the idea that each density profile is associated
with a certain amount of electrostatic field energy. Under certain circumstances
it can get “thermalized”, i.e. relaxed to incoherent motion with a corresponding
increase of the rms emittance. This is the case if at injection into a focusing lattice
the density profile is only matched in the rms sense, but not matched to the intrinsic
nonlinear space charge potential. For a given distribution function and due to space
charge repulsion, the self-consistent density profile is the flatter the stronger the
tune depression. Choosing an initial density profile without taking this effect into
account, enforces a charge redistribution towards a more uniform one, while the
difference in electrostatic field energy gets converted into emittance.4

Wangler in [20] suggested an analytical expression for this “nonlinear field
energy conversion” in the case of a round beam in constant focusing on the basis
of the envelope equations.5 Using numerical simulation it is also shown that this
conversion occurs on the rapid time scale of about 1

4
of a plasma oscillation, which

is typically one focusing cell in a high-current beam. Thus, this relaxation process
is much faster than all resonant processes discussed so far.

The model gives an upper limit for the rms emittance growth if full conversion
of the nonlinear field energy is assumed. In practical terms the effect is significant
only for strong tune depression as in high-current linear accelerators. In [19] it is
shown that, based on 3D envelope equations, an analogous model can be developed
for 3D bunches. For a spherical bunch in constant focusing, the emittance growth in
all directions of 3D is estimated by a similar relation as in 2D,

�f

�i
�


1 C 1

3

�

2

0


2
� 1

� �
Ui � Uf

��1=2

; (6.1)

where Uf and Ui are normalized measures for the electrostatic field energy of the
final, respectively initial state. For a uniform initial density beam Ui D 0, a parabolic
profile Ui D 0:057, and for a Gaussian one Ui D 0:26, while – for getting an upper
limit estimate – one simply assumes Uf � 0.

Practically speaking this source of emittance growth is always an issue if the
focusing density changes abruptly, and the self-consistent density profile is not
allowed to gradually adjust itself. As suggested by Eq. 6.1, this mechanism is
particularly relevant for high intensity linear accelerators, where 
2 � 
2

0 , which
means that the electrostatic part in the total energy (in the moving frame) is
significant.

4It is shown in [19] that among all rms equivalent charge distributions the uniform one has the
lowest Coulomb energy content.
5A similar relation was previously obtained by Lapostolle [21].
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Chapter 7
Coherent Parametric Instabilities

Abstract This chapter applies the coherent mode framework of Chap. 5 to periodic
focusing, where coherent space charge eigenmodes can be subject to parametrically
driven, resonant instability as in the case of the well-known envelope instability.
Their main characteristic is that they follow a half-integer resonance condition
between a coherent eigenmode of oscillation and the periodic focussing – in contrast
with the (also half-integer) single particle parametric resonances discussed in the
mismatch context. The subject will be discussed here from various points of view:
as Vlasov perturbation theory; in smooth approximation; using the nonlinear rms
envelope equations; and finally with multiparticle simulation comparing 2D and
3D models. This chapter is particularly relevant to periodic lattices in linear high
intensity accelerators, but in a variety of aspects also to circular accelerators.

Historically, the envelope instability was the first – second order – case of such
a coherent instability driven by space charge. Due to its expected occurrence in a
stopband at 90ı phase advance it was adopted as a serious limit in lattice design for
linear accelerators and discussed in much detail, for example in [1–4]. The general
theoretical basis for higher than second order modes – also a theory background
paper for parts of this chapter – is found in [2].

The terminology coherent parametric instabilities is used here to distinguish this
particular kind of “space-charge induced instabilities” – as they were called in [2] –
from single particle resonant or parametric phenomena. The present notation follows
largely a recent review of this subject in [9]. In the literature they are also called
space charge structural instabilities to account for the importance of the lattice
structure as driving mechanism.

The coherent parametric instabilities differ significantly from the magnet error
driven resonances with space charge to be discussed in Chap. 8, or from the single
particle structural space charge resonances in Sect. 4.4.2 for two reasons:

1. They grow exponentially from an initial presence of the corresponding eigen-
mode on the noise level, or by a suitable mismatch;
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2. They follow a half-integer resonance condition1 which is also typical for
parametric resonances in other areas.

7.1 Parametric Instability Conditions

We start with the well-known single particle parametric resonance. Although all
cases considered here are resonant processes, it will be seen that the term instability
is more appropriate as it characterizes the exponential growth from a small initial
excitation.

7.1.1 Single Particle Parametric Resonances

The Mathieu stability diagram (see also [5]) of a single particle in periodic focusing
is a well-known example, where a parametric resonance occurs. A particle with an
arbitrarily small off-axis perturbation suffers exponential instability if its oscillation
frequency ! is subject to the condition

! D n

2
!0; (7.1)

with !0 the focusing periodicity and n a positive integer expressing the parametric
order. The most pronounced case of this parametric resonance – with the widest
stopband – is the half-integer case for n D 1. In the literature on parametric res-
onances this 1:2 parametric resonance is frequently called “parametric instability”,
also “sub-harmonic instability”, see in [6].

Another example in beams – in constant as in periodic focusing – is the so-called
1:2 core-test-particle resonance, where the beam core is assumed to perform an
periodic envelope oscillation at some frequency !0, which drives a single particle
with frequency ! out of the core and into a halo (see Sect. 6.1.3).

7.1.2 Coherent Parametric Instabilities

We focus on the coherent version of such a parametric instability. An example is
the envelope instability in one plane, or in two planes with identical tunes, where
instead of a single particle the whole ensemble of particles takes coherently part in

1Note that half-integer is relative to a linac focussing or a ring structure period; also integer cases
cannot be excluded, but they are much weaker.
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the resonant process. Here the 1:2 relationship, as described by Eq. 7.1, is between
the focusing periodicity !0 and the coherent envelope eigenfrequency !.

Such coherent parametric resonances may also be found in higher order –
possibly not beyond fourth order – except for KV distributions, where they are
present in arbitrarily high order.

7.1.3 Sum Parametric Instabilities

In parametric resonance theory of mechanical or electrical systems one often deals
with several coupled equations, and so-called “combination” resonances are known
to exist [6, 7]: two or more eigenmodes of the isolated systems are coupled and
jointly enable a parametric resonance via, for example, a sum resonance condition
of the kind:

!1 C !2 D !0: (7.2)

As an example consider two pendula, which are weakly coupled by a spring. Due to
coupling a joint periodical length modulation can drive a sum parametric instability
if according to Eq. 7.2 the modulation frequency !0 is twice the arithmetic average
of the individual frequencies !1; !2.

In the context of beams, sum parametric instabilities can occur between coherent
eigenmodes of the beam, if the coupling is sufficiently strong. So far this mode
has been found to occur between envelope oscillations in different planes, where
efficient coupling between the eigenmodes is provided by the direct space charge
(see Sect. 7.7).

7.2 Smooth Approximation Approach

Under periodic focusing conditions a fully self-consistent analytical analysis of
coherent parametric instabilities is a challenging issue. As will be described in
Sect. 7.3, this has so far been undertaken in a rigorous way only for KV-distributions.

An very useful approximation is the “smooth approximation” approach: using the
above derived constant focusing eigenfrequencies a parametric resonance condition
between these frequencies and the lattice periodicity can be formulated, which will
be validated by subsequent computer simulation results.

We make an analogous ansatz to single particle nonlinear resonances as in
Eq. 4.10, but now the l.h.s. stands for the coherent mode frequency ! for constant
focusing following Eq. 5.10. In the notation of circular accelerators, we write the
smooth approximation coherent parametric resonance condition as

! D l
x C m
y C �
coh;l;m D n

2
N; (7.3)
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with l; m integers and �
coh;l;m the respective coherent tune shift. The factor n
2

on the r.h.s is essential for the parametric character of the resonance, where n
describes its order, and N stands for the number of structure cells (super periods) per
ring circumference. Note the 1

2
, which is crucial: it is absent in the single particle

resonance condition Eq. 4.10 and is a characteristic feature of parametrically driven
instabilities.2 For n D 1, for example, it stands for the 1:2 coherent parametric
envelope instability of Eqs. 5.12.

The analogous expression in linac notation, where k0x;y stands for the phase
advance in degrees per lattice period, and �kcoh;l;m again for the coherent shift, is

! D lkx C mky C �kcoh;l;m D n

2
360ı: (7.4)

Resonance conditions by using this smooth approximation model are increas-
ingly correct in the limit of weak periodic interruptions, for example for long
solenoids with short interruptions, which would yield correspondingly short reso-
nance stopbands. For periodic lattice structures with strong flutter, like alternating
gradient, one can still obtain useful guidance about stopband centres as will be
shown in the remainder of this chapter and in Chap. 8.

7.3 Vlasov Approach to Coherent Parametric Instabilities

In this section we outline the self-consistent, linearized Vlasov approach to resonant
parametric instabilities in periodic focusing as a basis for comparison with multi-
particle simulation and more realistic distribution functions.

7.3.1 1D Beams

In [8] Okamoto and Yokoya have explored coherent parametric instabilities in a
linearised Vlasov approach for a 1D sheet beam model, assuming a waterbag phase
space distribution in an alternating gradient focusing system. Ignoring the spread
of betatron frequencies, the model permits deriving approximate expressions for
stopbands and growth rates. No instability is found for constant focusing. For
periodic focusing they obtain half-integer and integer parametric resonances. They
are compared with multiparticle simulation for a 1D Gaussian distribution with the
suggestion that high order stopbands are unlikely to play a role in practice.

2It is equally absent in the coherent betatron resonances of Chap. 8.
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7.3.2 2D Beams

For 2D beams so far only one case of linearised Vlasov analysis of coherent
parametric instabilities in periodic focusing exists in the literature, which is the
stability analysis of a KV-distribution in a FODO channel in [2].3

As already discussed in the constant focusing study of Sect. 5.3, the advantage of
using KV-distributions stems from the fact that they allow an analytical integration
of Vlasov’s equation without further approximation. Similar to the constant focusing
case, the eigenmodes can be characterized again by finite order polynomials of the
space charge perturbation potential in x; y, where the leading power describes the
order of the mode. A third order mode, for example, is characterized by a third
order expression in x; y as leading term, with additional lower order terms.4

The analysis of [2] assumes a symmetric periodic focusing with equal tunes
as well as emittances in both degrees of freedom. Stopbands are defined as
regions, where non-zero exponential growth rates are obtained. The main results
are summarized in Fig. 7.1, where only even modes from second to fourth order are
shown. For easier comparison with the following TRACEWIN simulation results,
which are in linac notation, we use here k0;x;y, kx;y to characterize betatron tunes in
degrees per focusing period.

7.3.2.1 Envelope Modes

In second order the envelope instability stopbands are retrieved. Instability requires
k0;x;y > 90ı, where all stopbands start for kx;y slightly under 90ı, with a width
shrinking to zero for k0;x;y ! 90ı. The smooth approximation expression is
! D 2kx;y C �kcoh;2 D 1

2
360ı, which should describe the location of the stopband

centre and reflect the half-integer 1:2 character of the mode. The asymmetry of
the stopbands with respect to 90ı confirms the existence of the coherent tune shift
�kcoh;2, which describes the downwards shift of the stopband centre. For further
details on this stopband see Sect. 7.4.

7.3.2.2 Third and Fourth Order Modes

The third order mode has a clear three-fold symmetry in phase space, and an
asymmetry in real space. It was unexpectedly discovered in a 2D KV-beam transport
simulation in periodical focusing by Haber as reported in [10] at a time, when

3In [2] these modes where simply called space-charge induced instabilities, and the notion
parametric was not used. The term parametric more precisely describes their nature; moreover
it distinguishes them from the so-called “Gluckstern mode” instabilities (see Sect. 7.3.2.3) also
found in [2], which are not parametric, but intrinsic to the non-monotonic KV-distribution.
4The presence of such lower order terms does not mean lower order modes are included.
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Fig. 7.1 Stop-bands
(indicated by thick lines) of
parametric instabilities
obtained by analytical Vlasov
analysis for a 2d KV-beam in
periodic focusing. Shown are
second order (top, envelope
instability), third order
(centre) and fourth order
(bottom) parametric
instabilities as function of a
dimensionless intensity
parameter. Each curve relates
intensity to kx;y for a fixed
value of k0;x;y in degrees
(From [9], original data from
[2])

most people in the accelerator community made space charge calculations with an
assumed four-fold symmetry in real space.

The third order mode stopband5 for k0;x;y D 90ı starts closely under kx;y D 60ı.
It generally requires k0;x;y > 60ı and is found to occur only for kx;y < 60ı
– analogous to the envelope mode behaviour at 90ı. Note that the width of the
stopband shrinks to zero for k0;x;y ! 60ı. This resonance can be described by
! D 3kx;y C �kcoh;3 D 1

2
360ı, hence again a half-integer 1:2 coherent parametric

instability. For completeness we mention that a further branch of a third order mode

5Following [2] this stopband is actually composed of several bands with gaps in between.
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starting from ! D k0;x;y at vanishing intensity is predicted in [11]; this resonance is
avoided if – as is usually the case – k0;x;y < 180ı.

In fourth order a larger number of stop-bands is found, which can be described
by ! D 4kx;y C�kcoh;4 D n

2
360ı for different values of n. For k0;x;y D 120ı a pair of

nearly adjacent stopbands for kx;y � 90ı is identified, and its width shrinks to zero
for k0;x;y ! 90ı. Different from the above envelope and third order examples, these
n D 2 modes obey an integer parametric relationship. The curve for k0;x;y D 60ı
suggests that also a fourth order n D 1 half-integer mode exists for kx;y slightly
under 45ı. It is connected with 45ı and disappears for k0;x;y below 45ı.

Another pair of fourth order stopbands is recognized on the curves for k0;x;y=
80ı, 90ı and 120ı, with kx;y somewhat below 60ı. Note that according to [11] two
well separated branches6 of modes exist in fourth order, a high frequency one with
!h D 4kx;y C �kcoh;4;h, and a low frequency one – also fourth order – with !l D
2kx;y C�kcoh;4;l. It can be assumed that a sum parametric resonance !f C!s D 360ı
helps explaining this pair of stopbands, which is connected with k0;x;y D 60ı for
vanishing intensity.

7.3.2.3 The “Gluckstern-modes”

This non-parametric instability was found by Gluckstern in a theoretical analysis of
round beams in constant focusing in [12].7 In the fourth order graph of Fig. 7.1 it is
described by extended regions of instability for low values of kx;y – theoretically for
all values of kx;y=k0;x;y below 0:24, and even below 0:39 for higher than fourth order
(see also Sect. 5.4).

It is an artefact of the KV-distribution for sufficiently strong space charge, which
is only populated on an energy surface in the four-dimensional phase space, and
void inside. Two related interpretations have been given (for details see Sect. 5.4):
one as coupling between a negative and a positive energy mode in [13], which
allows instability without an extra source of energy; another one in [14] in terms
of the strongly non-monotonic character of the ı-function KV-distribution. This
provides a source of free energy for growth – absent for monotonically decreasing
distribution functions. Accordingly, this behaviour of a KV-distribution is found to
exist independent of the type of focusing structure.

7.3.3 Comments on Non-KV Distributions

It cannot be overlooked that the diagrams of Fig. 7.1 are only based on KV-
beam perturbation theory, also with the restriction of symmetrical emittances and

6Precisely speaking, each branch splits further into two adjacent modes.
7A historical side note: this instability – frequently called “Gluckstern mode” – was of major
concern in the pioneering time of space charge studies for linacs in the 1970s, until it was later
recognized as irrelevant for realistic beams.
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focussing, hence isotropic. No self-consistent analytical generalization beyond this
level has so far been suggested for 2D beams and periodic focusing systems.

The difficulties encountered have to do with the presence of a confining potential
and the complicated unperturbed orbits – characteristic of the underlying partial
differential equation – as soon as the equilibrium beam is anisotropic or non-KV.

Thus, computer simulation remains the most important tool to model the
behaviour of space charge dominated beams. Nonetheless, predictions from KV-
theory on coherent parametric instabilities remain a valid tool to examine and
interpret computer simulation output. There is evidence in Sect. 7.5.2 that this even
applies to the transverse plane of short 3D bunches, where Landau damping appears
to work less effectively than in coasting beams.

7.4 KV Envelope Approach

The envelope instability near 90ı phase advance has been the subject of numerous
detailed theoretical studies over more than three decades, like Struckmeier and
Reiser in [4], where different focusing configurations are compared; Lund and Bukh
in [15] exploring the fine structure of these modes under a diversity of conditions;
and, more recently, Li and Zhao in [16].

Envelope instabilities are also useful to further explore the nonlinear features of
a parametric beam instability. Furthermore, they are also a valid starting point for
comparison with the multiparticle simulations. We use the 2D and 3D KV-envelope
options of the TRACEWIN code for this purpose.

7.4.1 Model Lattice for Simulations

As an example for the KV envelope and following multiparticle TRACEWIN
simulations we consider an initially well-matched beam in a symmetric periodic
FODO array of quadrupoles, where longitudinal focusing – if needed – is provided
by two thin rf gaps in the centre of drift spaces. For simplicity we choose equal
emittances in both transverse planes, unless otherwise mentioned. As an example,
we set k0;x;y D 100ı and show the sample lattice in Fig. 7.2.

Note that for the coasting beam cases in this chapter the rf voltage is set to zero.

7.4.2 Comparison with 2D Vlasov Stopband

Here we use the coasting beam 2d KV-envelope option of the TRACEWIN code and
examine the case k0;x;y D 100ı in the top graph of Fig. 7.1. Raising the current level
in small steps, a visible evidence of envelope instability is found for kx;y D 88ı.
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Fig. 7.2 Matched envelopes in sample FODO lattice showing locations of symmetrically posi-
tioned rf gaps, and for k0;x;y D 100ı

The onset of the instability at the opposite, lower edge of the stopband is found for
kx;y D 73ı. Thus, both edges agree very well with the predictions of the perturbation
analysis. Corresponding envelopes are shown in Fig. 7.3. The lower edge case shows
that the initial growth takes a long distance with many e-foldings, until a sudden rise
happens with significant growth. An aperiodic, chaotic pattern with large envelope
excursions continues due to the space charge coupling between envelopes. Starting
the simulation at this edge of the stopband has an attractive effect: a small dilution
of space charge due to a growing envelope reduces the space charge defocusing and
pushes the system further into the stopband. This continues self-consistently, until
the effective kx;y reaches the opposite (low intensity) edge of the – also dynamically
evolving – stopband. Starting at the low intensity upper edge, instead, has a repulsive
effect: the beginning of a dilution of space charge pushes the effective kx;y backwards
to smaller values, and growth stops at a small level of envelope perturbation as is
shown in the bottom graph of Fig. 7.3.

7.4.3 Envelope Instability for Split Tunes

The so far considered envelope instabilities have occurred simultaneously in x and
y due to equal tunes and emittances, which is mostly relevant to linacs.

In circular accelerators horizontal and vertical tunes are usually split by either a
fraction of an integer, or an integer or several ones. As example we consider a case,
where k0;x is sufficiently above, and k0;y below 90ı, hence no envelope instability
is expected in y. Figure 7.4 shows the envelope instability for k0;x;y D 100=80ı
and an intensity such that kx;y D 82=60ı. Noticeable is the fast exponential rise of
the x-envelope from a small initial envelope mismatch with an estimated e-folding
of about 10 cells, with no visible increase of the envelope during the first few
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Fig. 7.3 Evolution of envelopes versus cell number for k0;x;y D 100ı. Top graph: at lower (high
intensity) edge of stopband with kx;y D 73ı; Bottom graph: upper (low intensity) edge, with
kx;y D 88ı

Fig. 7.4 Evolution of KV-envelopes versus cell number for split tunes k0;x;y D 100=80ı, kx;y D
82=60ı

e-foldings. Thereafter, a highly periodic pattern of rising and decreasing amplitudes
associated with space charge dependent selfconsistent detuning and re-tuning is
noted. This periodic, recurrent feature is related to the appearance of a single mode
and the absence of any Landau damping effects in the envelope approach. The x � y
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space charge coupling in the envelope equations causes only a slight modulation in
the y-envelope, and the nonlinear chaotic coupling between x and y as in the top
graph of Fig. 7.3 is absent.

Note that the separation of modes requires that the space charge tune shift is
sufficiently small compared with the tune split.

7.4.4 3D Envelope Instability

For linac applications the envelope instability of 3D short ellipsoidal bunches is
of interest. At this level we consider separate envelope modes transversely and
longitudinally and leave the coupled sum modes to Sect. 7.7.

7.4.4.1 Transverse 90ı Stopband

Results shown in Fig. 7.5 for k0;x;y D 100ı and kx;y D 80ı reflect a similar behaviour
as in the top graph of Fig. 7.3 for 2D, with again a highly aperiodic exchange
between x and y amplitudes due to the space charge coupling term in the envelope
equations. For the third dimension we have chosen k0;z D 60ı – low enough to avoid
envelope interaction with the transverse direction. Thus, z plays a minor role here
and mainly leads to minor change of the width of the stopband.

We evaluate the maximum amplitudes over a 500 cell long lattice and scan over
different kx;y, which yields the full stopband as shown in Fig. 7.6. Note that the
maximum is usually reached between cells 50 and 100, or much earlier, if a larger
initial mismatch is chosen. Comparing with the 2D curve for k0;x;y D 100ı from
Fig. 7.1 (top graph), it is noted that the 3D stopband in Fig. 7.6 extends about 10ı

Fig. 7.5 Evolution of KV-envelopes versus cell number for k0;x;y D 100ı, kx;y D 80ı
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Fig. 7.6 Complete stop-band
with relative growth of rms
envelopes for k0x;y D 100ı as
function of kx;y (From [9])

further at the high intensity side. This is due to a difference in the space charge
geometry factor for 2D and 3D, which enters into the envelope equations.

The response curve is highly asymmetric, with significant maximum amplitude
growth at the high intensity edge. Note the sharp maximum at this edge, with a
steep drop to zero for slightly higher intensity, which is a strong coherent effect.
This is once again the attractive effect already discussed in Sect. 7.4.2, along with
the repulsive effect at the soft opposite edge.

Width and height of this stopband are not independent of each other: it has been
shown recently that the emittance growth can be related to the time needed for
crossing this stopband [16].

7.4.4.2 Longitudinal 90ı Stopband

The behaviour in the longitudinal plane is comparable if k0;z is raised above 90ı.
Caution is needed as to the appropriate definition of the cell period, which is not

necessarily the transverse period. This matter will be discussed further in the applied
discussion of Chap. 10.

7.5 Multiparticle Simulation

Self-consistent PIC-simulation is necessary to model the fully nonlinear behaviour
of coherent parametric instabilities. The TRACEWIN code (see Sect. 2.3.2) is
employed in the following examples by using the lattice of Sect. 7.4.1.

As first example we evaluate a 2D coasting beam to check the predictions of
Fig. 7.1. In practical terms, the 2D coasting beam model can be applied to long
bunches in circular accelerators, if the transverse processes are fast enough on the
time-scale of the synchrotron period.

In Sect. 7.5.2 we continue with a closer examination of the 90ı and higher order
stopbands in the case of short 3D short ellipsoidal bunches with reference to linear
accelerator applications.
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For further aspects of this subject, in the context of interpreting the theoretical
and practical significance of the 90ı stopband for linear accelerator design we refer
to Chap. 10.

7.5.1 2D Coasting Beams

It is of interest to compare the behaviour of simulated non-KV coasting beams with
the various stopbands of Fig. 7.1. Although coasting beams cannot be compared
directly with short bunched beams in linear accelerators, their behaviour serves as a
valuable bridge to the corresponding phenomena in fully 3D beams.

To start with, the resonant features near a quarter integer tune, k0;x;y � 90ı, have
some interesting properties of competition between second order and fourth order
effects.8 They are quite different at the upper and the lower edge of the stopband
and illustrate the difference between predominantly incoherent, at the upper edge,
and coherent response at the lower edge.

7.5.1.1 90ı Degree Stopband – Upper Edge

As first example we simulate in Fig. 7.7 a Gaussian distribution beam, with tails cut
off at 3	 , and take k0;x;y D 118ı (
0;x;y D 0:328) equally in x and y. The intensity
is chosen such that kx;y D 90:5ı (
x;y D 0:251), which – according to Fig. 7.1 – is
slightly above the upper edge of the envelope instability stopband.

Fig. 7.7 PIC simulation of 2D Gaussian distribution with k0;x;y D 118ı and kx;y D 90:5ı: shown
are rms emittances as function of cells (left graph) and a x � x0 phase space distribution at cell 8
(right graph)

8Mentioned already in early simulations of a coasting waterbag beam in [17].
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Fig. 7.8 Same as Fig. 7.7 for waterbag distribution

The rapid initial rms emittance growth of 15% is explained as fourth order
single particle space charge structure resonance 4kx;y D 360ı, following Eq. 4.10
with n D 1 and N D 1. As structure resonance it is driven by the relatively
strong space charge pseudo-octupole, which is present in the initial Gaussian density
profile. All particles overlapping with the resonance stopband initially contribute to
the first rise. The resulting space charge dilution leads to gently rising tunes, and
more particles enter the stopband from below. The slow continuing growth of the
rms emittance must be attributed to this progressive, self-consistent effect on this
incoherent resonance.

The waterbag distribution in Fig. 7.8, with its weaker initial space charge pseudo-
octupole, shows only slightly more than 5% initial growth, again driven by the same
incoherent resonance.

In order to visualize the difference between Gaussian and waterbag it is useful to
compare the tune footprints for both cases. The tune spectrum in Fig. 7.9 is obtained
over 500 cells, including the dynamical initial phase. In the Gaussian case the
incoherent fourth order resonance 4
x;y D 1 results in a migration of particles from
initially below 
x;y D 0:25 across this value, which is reflected by the pronounced
“wings”. This effect is much weaker for the waterbag. It has particles initially within
the 
x;y D 0:25 stopband, but not below, and de-tuning stops the resonance at
relatively small amplitude.

It is also interesting to locate in Fig. 7.9 the smooth approximation value of fast
and slow envelope eigenfrequencies9: the fast envelope mode has !f =2 D 0:29,
the slow one (not shown) !s=2 D 0:27. Hence, both are sufficiently far from the
parametric resonance condition. The latter would require !=2 D 0:25, which is
consistent with the absence of any coherent envelope instability.

9Noting that in a symmetric FODO-channel the slow and fast envelope modes are actually not
separate modes.
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Fig. 7.9 Tune footprints for
coasting beams at upper edge
of 90ı stopband for Gaussian
in Fig. 7.7 (top graph) and for
waterbag in Fig. 7.8 (bottom
graph), with 
0;x;y D 0:328

and 
x;y D 0:251; also shown
is the theoretical location of
the envelope mode frequency
!f (divided by 2), which
cannot be excited in this case

7.5.1.2 90ı Degree Stopband – Lower Edge

We keep the intensity unchanged, but reduce k0;x;y to 100ı such that the resulting
kx;y D 74:2ı coincides with the lower edge of the envelope instability stopband in
Fig. 7.1. The resulting coherent frequency !f =2 � 87ı (=0.24) is sufficiently close
to the smooth approximation coherent resonant condition !f =2 � 90ı.

For the simulation of a Gaussian distribution results in Fig. 7.10 show a strong
rms emittance growth exceeding 300% in both planes. The rms value of phase
advances (including space charge) shown in the bottom graph of Fig. 7.10 rises due
to the emittance growth and levels off – after an intermediate overshoot – at 90ı,
which indicates the upper edge of the stopband.

Noteworthy is the intermediate plateau in the rms emittance between cells 20,
30 and 150, which marks a switch in the type of resonance. For this purpose we
compare the phase space plots in x � x0 at cell 20 and 50 as shown in Fig. 7.11.
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Fig. 7.10 PIC simulation of
2D Gaussian distribution in
90ı stopband, with
k0;x;y D 100ı and
kx;y D 74:2ı: shown are rms
emittances (top graph) and
phase advances (in degrees
per cell) as function of cells

Fig. 7.11 Phase space distributions in x � x0 for Fig. 7.10 at cells 20, 50 and 150

Up to the plateau, we identify the incoherent fourth order single particle resonance
of Sect. 7.5.1.1, which is followed by the significantly stronger coherent envelope
instability.

These findings are further supported by the time evolution of the so-called
mismatch and halo parameters, e.g. Mx; My and Hx; Hy as shown in Fig. 7.12. Mx; My

quantify the deviation from the initial values of the matched envelopes [18]. The
Hx; Hy are defined as ratios of a fourth order moment to a second order moment,
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Fig. 7.12 Mismatch and
Halo parameters as function
of cells for Fig. 7.10

and normalized to zero for uniform density [19]. For a non-truncated Gaussian
distribution they are 1, and for a water bag distribution 0.25. Results in Fig. 7.12
indicate a peak of the Hx; Hy between cells 10 and 20, where the fourth order
resonance plateau is reached. A peak of My between cells 30 and 40 is followed
by a peak of Mx, which are a clear measure of the unstable envelope. This growth is
accompanied by rising values of the respective rms emittances.

Comparing the details of evolution of rms emittances is also noteworthy: up to
the first plateau in Fig. 7.10 both, �x and �y grow synchronized, which is due to
the single particle fourth order structure resonance. As it is driven by the initial
space charge pseudo-octupole, it acts synchronously in x and y. Note that the further
growth in the following phase (beyond cell 30) is un-synchronized in x and y. This
is typical for an instability situation, where the initial (random) mismatch matters
and influences, which emittance grows first.

For comparison, the waterbag distribution, with otherwise identical parameters,
yields a somewhat higher emittance growth than the Gaussian as is shown in
Fig. 7.13. The initial fourth order activity, however, is completely absent, and the
envelope instability starts exponentially from the low-level initial mismatch. Un-
synchronized (in x and y) rms emittance growth becomes visible after 30 cells,
accompanied by a strong mismatch signal.
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Fig. 7.13 Rms emittances
for waterbag distribution in
90ı stopband, parameters
same as Fig. 7.10

This difference in behaviour between a waterbag and a Gaussian distribution
can be illustrated with reference to the tune footprint of Fig. 7.9. Note that the tune
distribution of the Gaussian reaches up to !f , but not for the waterbag. The coherent
resonance cases of Figs. 7.10 and 7.13 are obtained by shifting the footprint with all
associated frequencies to the coherent resonance point, where !f =2 � 0:25 (90ı).
Then, for the waterbag distribution, no particles overlap with the stopband, and
the fourth order single particle resonance phenomenon is absent; for the Gaussian,
instead, the r.h.s tail particles overlap, which is consistent with the initial fourth
order activity preceding the envelope instability.

In [20] the analogous behaviour, with competing coherent second order and
incoherent fourth order resonances close to 90ı, is also found in the transverse
plane of short 3D ellipsoidal bunches, which is relevant to linac applications (see
also Chap. 10).

7.5.1.3 Higher Order Stopbands

The existence of higher order parametric resonances predicted in Fig. 7.1 for KV-
beams is examined for non-KV distributions.

Using the definitions of Sect. 7.2 and Eq. 7.4, a third order mode parametric
resonance of the kind !3 D 3kx C �kcoh;3 D 1

2
360ı (similar in y) is considered. It is

associated with 60ı phase advance and predicted in Fig. 7.1, where it is calculated
for k0;x;y D 90ı and an approximate range 40ı < kx;y < 60ı. We use similar
parameters and choose the intensity such that kx;y D 47:3ı, thus within the predicted
stopband, but close to the lower edge of it.

For a waterbag distribution a clear indication of coherent parametric instability
rising from noise is identified in Fig. 7.14, with a 60% rms emittance saturated
growth. The three-fold symmetry of the phase space distribution clearly identifies
this mode. This picture flips by 180ı from cell to cell, hence two cells are needed per
period, which also confirms the half-integer parametric nature of the instability. The
accompanying self-consistent rms phase advance grows during the evolution of the
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Fig. 7.14 Rms emittances for third order parametric resonance of waterbag distribution with
k0;x;y D 90ı, kx;y D 47:3ı and phase space distribution in x � x0 at cell 40

instability and reaches saturation at a point, where kx;y has dynamically come close
to 60ı. By slightly raising the intensity in the simulation to an initial kx;y D 40ı, the
maximum of about 80% rms emittance growth is obtained, and this is the simulation
lower edge of the stopband. Surprisingly good agreement is found by comparing this
with the Vlasov theory stopband prediction of Fig. 7.1.

For comparison, a Gaussian distribution of the same case, simulated at various
points in the assumed stopband, has no indication of parametric instability, with rms
emittance growth always <2%.

This difference in behaviour is consistent with the findings of Sect. 5.5 on Landau
damping of coherent oscillations. According to Fig. 5.15 the waterbag tune spectrum
shows at best marginal overlap with the third order coherent eigenfrequency;
in the presence of parametric resonance, Landau damping is insufficient. The
Gaussian distribution, in contrast, shows effective overlap with the third order
coherent eigenfrequency in Fig. 5.15, which is consistent with the suppression of
the parametric instability.

The stopbands in the bottom graph of Fig. 7.1 also predict a fourth order coherent
parametric instability !4 D 4kx C �kcoh;4 D 1

2
360ı. It is associated with 45ı and

identified in Fig. 7.1 for k0;x;y D 80ı, within an approximate stopband 30ı < kx;y <

40ı. We assume k0;x;y D 70ı, kx;y D 37ı and a waterbag initial distribution. The
result of Fig. 7.15 confirms the existence of the predicted fourth order parametric
resonance, although with a modest rms emittance growth of 8% only:

As for the third order mode, a Gaussian distribution with the same parameters
shows an upper limit of <1% rms emittance growth, hence no evidence of such a
resonance. Comparing with Fig. 5.15 the same argument applies as before: the good
overlap of the distribution tail with the coherent fourth order frequency again fulfils
a necessary condition for Landau damping. The modest overlap for the waterbag
distribution – more than in the third order case – might be seen as indication for the
reduced growth of the rms emittance in this case.
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Fig. 7.15 Rms emittances for fourth order coherent parametric instability of waterbag distribution
with k0;x;y D 70ı and kx;y D 37ı and phase space distribution in x � x0 at cell 30

Summarizing, Landau damping by the tails of the tune distribution appears to
play a decisive role, in particular for Gaussian distribution beams. For the latter,
higher than second order coherent parametric instabilities can be assumed benign or
absent. For a well-truncated distribution, like waterbag, some moderate effects must
be expected.

Questions on the validity of this Landau damping argument for bunched beams
with fast synchrotron motion will be raised in the following section.

7.5.2 3D Ellipsoidal Bunches

The space charge issues discussed for 2D coasting beams can provide useful
guidance to understand what new elements become important in short 3D bunched
beams.10 First, the additional third dimension allows additional modes of coherent
space charge response; second, it also modifies the transverse modes of interaction
due to the extra motion of single particles in the longitudinal direction and its
possible influence on transverse Landau damping.

The coasting beam findings of Sect. 7.5.1 to a large extent confirm the results of
[9, 20] for short 3D ellipsoidal bunches. This includes, for example, the absence of
higher than second order coherent parametric instabilities in Gaussian distributions.

Comparison with waterbag simulations, however, raises additional questions.
The fourth order parametric resonance near 45ı in the waterbag coasting beam
simulation of Fig. 7.15 can be compared with the TRACEWIN simulations of
short 3D bunches in [9], where a 6D waterbag distribution is used with equal rms

10With reference to linacs; long bunches as in synchrotrons or storage rings require different
approaches in the third dimension.
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Fig. 7.16 Rms emittances versus cell number showing fourth order coherent parametric instability
in 45ı stopband, for k0;x;y D 70ı, kx;y D 35ı, k0;z D 120ı and waterbag distribution (From [9])

emittances in all planes. The same mode is retrieved there for the transverse plane.
Its growth is, however, not independent of the phase advance in the longitudinal
plane:

• With a moderate longitudinal focusing of k0;z D 50ı and kz D 17ı, a weak
evidence of this mode is found, with only 4% rms emittance growth.

• Raising k0;z to 120ı, and keeping the same tunes transversely, the rms emittance
growth increases to 30%.

This unexpected result is shown in Fig. 7.16. A possible explanation is that the
roughly five times faster effective longitudinal tune kz in the second example plays
a decisive role here. The additional mixing from this fast longitudinal motion could
possibly make transverse Landau damping less effective and delay early saturation
of the parametric growth.

For additional modes of coupled interaction in short 3D bunches we refer to
Sect. 7.7.2, where the sum parametric modes for longitudinal-transverse coupling
are introduced; and to Chap. 9 dealing with emittance exchange modes.

7.6 Experimental Evidence of the 90ı Stopband

Interpreting space charge effects in the 90ı stopband cannot easily be done unam-
biguously without experimental data. In fact, the discussion about a competitive
interplay between a fourth order space charge resonance and the coherent envelope
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instability gained new momentum with measurements, which are challenging by
themselves.

The first measurement of this 90ı stopband in an operating RF linear accelerator
was reported by Groening et al. in [21] who used the GSI heavy ion linear
accelerator UNILAC. For this purpose the first tank of the drift tube linac (DTL) was
used, with 15 cells corresponding to approximately 4 full betatron periods within a
length of 12 m. The experiment was enabled by the possibility to vary the transverse
phase advance over a broad range, for which purpose the relatively light ion 40Ar10C
was chosen.

Measurements of the transverse emittance were performed with the slit-grid
method for a transverse phase advance varied between 60ı and 120ı and compared
with simulations using the DYNAMION code as shown in Fig. 7.17. The four-
fold resonance structure is clearly visible in both, the slit-grid experimental data
(upper row), and the DYNAMION multi-particle simulation (lower row) for the
zero-current phase advance of 100ı, where the phase advance with current is 84:6ı.

The full width of this stopband was quantitatively confirmed by comparing
measured with simulated (using DYNAMION, PARMILA and TRACEWIN) output
rms emittances shown in Fig. 7.18. Due to the phase space analysis of Fig. 7.17 there
is clear evidence that in this experiment the 90ı stopband is dominated by the fourth
order resonance, with no indication of the envelope instability, which would have
been a theoretical possibility.

The matter was further analysed more recently in [20], where it is re-emphasized
that the dominance of the fourth order space charge resonance in the UNILAC
experiment is consistent with the relatively short length of the experiment; however,
it is also suggested that in measurements over a larger number of cells (typically
doubled or less if the initial envelope is not well-matched) the envelope instability
can be expected to overtake the fourth order phenomenon as a stronger, but initially
delayed phenomenon (see also the related discussion in Sect. 7.5.1).

Fig. 7.17 Upper row: measured horizontal/vertical phase space distributions at exit of DTL
for transverse zero current phase advances 80ı, 100ı and 120ı; Lower row: simulations with
DYNAMION code (color code referring to beam intensity) (Source: [21])
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Fig. 7.18 Average of horizontal and vertical rms emittances as a function of the transverse zero
current phase advance, with horizontal line indicating the initial emittance value. Measured results
are compared with simulations by DYNAMION, PARMILA and TRACEWIN codes (Source: [21])

Jeon et al. in [22] interpret their 3D PARMILA code simulations and suggest
that for certain parameter conditions “the envelope instability is excited from the
mismatch generated by the fourth order resonance”.

More experimental data, possibly taken over a larger number of cells, could
help resolving the details of space charge physics in this or similar stopbands.
Indispensable are clear phase space signatures to identify the mode resonance order,
and a careful comparison with theoretical models.

7.7 Sum Parametric Instabilities

The envelope instability near 90ı phase advance per cell as single mode phe-
nomenon is only a special case of a larger class of coherent parametric instabilities.
The existence of additional coherent sum envelope instabilities was shown only
recently by Boine-Frankenheim et al. in [23]. Following the overview in Sect. 7.1.3,
it is the collective analogue to sum parametric instabilities known in theoretical
mechanics. As derived in [23] for 2D, and generalized to 3D by Hofmann and Boine-
Frankenheim in [24], two even envelope modes in different degrees of freedom can
couple via space charge and become unstable under conditions where the individual
envelope modes would be stable.
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Note here that the single particle second order sum resonance 
x C 
y D nN,
known to occur in circular accelerators, is driven by external skew quadrupole
components and therefore follows an integer resonance condition. It is thus
fundamentally different from the coherent half-integer resonance condition of the
sum parametric envelope mode, which obeys


0;x C 
0;y � �
coh;s D 1

2
N; (7.5)

where the coupling force stems only from the coherent space charge force.11

7.7.1 Transverse Sum Modes

Following [23] the space charge term in the standard x� and y� rms envelope
equations (Sect. 3.2.1) provides the coupling needed for sum instabilities due to the
dependence of the force in x on the beam dimension in y, and vice versa.

An approximate resonance condition can be written in smooth approximation by
using the expansion of mode frequencies in first order in the tune space charge
tune shift, Eq. 5.12, as derived in [23]. For beams not too far from round, and
expressing the coherent tune shift of this mode in terms of �kinc, which is the
average incoherent space charge tune shift in x and y, we obtain

k0;x C k0;y � 5

4
�kinc D 180ı: (7.6)

This equation also indicates that the coherent tune shift of this mode has the same
sign as the incoherent space charge tune shift �kinc, which is assumed as a positive
number here. Thus, a sufficient condition to avoid the sum mode is k0;xCk0;y < 180ı.

The connection with the conventional envelope instability near 90ı phase
advance per cell as well as the comparison with the smooth approximation criterion
of Eq. 7.6 is shown in the “tune scan” of Fig. 7.19 from [23]. It is evaluating the
output of envelope simulations in x and y for an initially not perfectly matched beam
in a FODO lattice. The resulting mismatch by growing envelopes is plotted colour-
coded for a scan in tunes in the k0;x �k0;y plane, with an tune depressed in x and y by
an averaged value of � D 17:5ı. The horizontal and vertical bars indicate the 90ı
envelope instabilities, which are shifted upwards or to the right due to space charge.
The negative diagonal reflects the sum instability, which is also shifted upwards.
Note the good agreement with the � D 17:5ı smooth approximation result from
Eq. 7.6.

11Note that in this sum mode section the resonance condition is written using tunes without space
charge, and the space charge shifts are absorbed in the correspondingly modified �
coh;s of Eq. 7.5.
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Fig. 7.19 Tune scan of
envelope mismatch factors for
envelope and sum parametric
envelope instabilities (colour
coded) for � D 17:5ı,
obtained after 200 cells in a
FODO lattice. Also shown
(dashed lines) theoretical
smooth approximation values
for different � (From [23])

Fig. 7.20 Transverse KV-envelopes versus cell number in FODO lattice for sum parametric
envelope instability, with k0;x D 60ı, k0;y D 140ı (From [9])

In [9] the occurence of the sum instability is extended to the transverse plane
of an ellipsoidal bunch. Figure 7.20 shows an example based on the KV-envelope
equations of a transverse sum mode in a short ellipsoidal bunch. The split phase
advances are chosen as k0;x;y D 60=140ı, kx;y D 40=123ı. The longitudinal focusing
– of minor importance here – is set to k0;z D 50ı. The pattern of the KV-envelope
evolution resembles very much the highly periodical picture of the single envelope
instability of Fig. 7.4, where instability and detuning alternate. For the sum mode
this happens in both planes, where the coherent phase in the second plane is exactly
in phase with the first plane to match the resonance condition.

A 3D waterbag PIC simulation of the same case as in Fig. 7.20, shown in
Fig. 7.21, indicates an exponentially rising growth of both rms emittances. The
inherent phase space mixing in a PIC simulation suppresses the periodical return
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Fig. 7.21 PIC simulation of
sum envelope instability case
in Fig. 7.20, showing rms
emittances growth versus cell
number for an initial
waterbag distribution (From
[9])

Fig. 7.22 Phase space plots at cell 120 for sum envelope instability of Fig. 7.21 (From [9])

of the KV-envelopes and leads to a significant emittance degradation. Phase space
pictures in x�x0 and y�y0 shown in Fig. 7.22 for the early phase of growth show the
stretched ellipses of the coupled mode, which confirms the second order character.

For completeness note that the corresponding equation in circular machine
notation, with N superperiods, is


0;x C 
0;y � 5

4
�
inc D N

2
: (7.7)

This also reflects the difference from the well-known expression for a sum resonance
with external skew components.
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Fig. 7.23 PIC simulation of odd mode sum envelope instability for k0;x D 60ı, k0;y D 145ı and
initial waterbag distribution, with rms emittance growth (left graph) and real space plots (right
graph) at consecutive cells 200/201 (From [9])

However, it should be kept in mind that the envelope sum mode would appear in
a stopband very close to the fourth order single particle structure resonance 2
x C
2
y D N, which is normally avoided by a suitable choice of working point.

In addition to the sum mode employing the coupling between two envelope
modes, it is found in [23] that a similar coherent sum parametric resonance
condition can be obtained if the odd mode in Sect. 5.3.3.2 is considered. From
Eq. 5.18 we obtain for equal rms emittances, and not too far from round beams,
the approximation

k0;x C k0;y � 3

2
�kinc D 180ı: (7.8)

Compared with Eq. 7.6, this suggests a coherent term about 20% larger, which
amounts to an extra shift of about 4ı.

This theoretical result is in good agreement with waterbag simulations in [9]
shown in Fig. 7.23. Here, k0;y is increased to 145ı to compensate the expected
larger coherent tune shift, and a clear evidence of the odd mode sum resonance is
recognized. The odd mode is characterized by a self-skewing of the x�y projections,
which is confirmed by the real space plots in Fig. 7.23. Comparing the plots at the
consecutive cells 200 and 201 also confirms that the phase of this coherent self-
skewing mode advances by 180ı per cell.

7.7.2 Longitudinal-Transverse Sum Modes

Not surprisingly, as shown in [24], a similar sum mode exists between the
longitudinal and the transverse directions of a short ellipsoidal bunch, with possible
application to linac beam dynamics.
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In this case the analogous smooth approximation for the coupling between z and
x; y reads as

k0;z C k0;x;y � �ks;coh D 180ı; (7.9)

applied to both, x and y, jointly.12 Similar to the transverse case, the coherent shift
is again positive here, and a sufficient condition to avoid the longitudinal-transverse
sum mode is k0;z C k0;x;y < 180ı.

This is studied in detail in [24], where a FODO lattice as described in Sect. 7.4.1
is used. Based on the 3D KV-envelope equations, an example for k0;z D 120ı,
k0;x;y D 85ı and �kinc D 20ı is shown in Fig. 7.24. All three envelopes are closely
coupled to each other to comply with the sum mode condition, similar as for the
purely transverse case.

Again, the 3D PIC simulation for a waterbag shows that the rms emittance growth
is significant as shown in Fig. 7.25 (left graph). Surprising is the observation in
[24] that the parametric driving force does not need to act on all three degrees
of freedom involved in the motion. Acting on one or two of them is enough to

Fig. 7.24 Longitudinal and
transverse KV-envelopes
versus cell number for 3D
parametric sum envelope
instability, with k0;z D 120ı,
k0;x;y D 85ı (From [24])

12Here it is assumed that transverse tunes and emittances are identical, which is roughly the case
in linacs.
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Fig. 7.25 PIC simulation of longitudinal-transverse sum envelope instability in Fig. 7.24, showing
rms emittance growth versus cell number for an initial waterbag distribution (left graph) and phase
space plots at cell 100 (right graph) (From [24])

Fig. 7.26 Phase advance
evolution across stopband
versus cell number for
longitudinal-transverse sum
envelope instability in
Fig. 7.25 (From [24])

comply with the resonance condition, and the space charge coupling between all
three is sufficient. The longitudinal period can, for example, be half the length of
the transverse period as is the case in the lattice used here. The rule here is that for
the longitudinal-transverse coherent sum instability to occur it is sufficient for the
parametric action that the coupled mode eigenfrequency is half the transverse lattice
periodicity, whereas the longitudinal periodicity can adopt any value, and vice versa.

The emittance growth in z of 170% is significant and equal to the sum of
individual growths in x and y, which agree with each other. Note that this is
consistent with the fact that the longitudinal degree of freedom has to keep balance
with two transverse degrees of freedom. Accordingly, phase space plots in Fig. 7.25
show that the envelope deformation in z is much larger than in x or y.

The stopband of this mode during the evolution of the instability is simultane-
ously crossed in the longitudinal and transverse directions as shown in Fig. 7.26,
where an effective stopband width of over 10ı is suggested.
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7.8 Dispersion-Induced Envelope Instability

Most of the work on the envelope instability has been focussing on straight lattices –
without the effect of dispersion as in circular accelerators. This is largely due to the
fact that the 90ı condition (e.g. >90ı for the zero-current phase advance per lattice
period, and <90ı for the space charge shifted one) for instability of the usually
considered envelope mode has been considered of relevance primarily for linear
accelerators.13

The combined effect of space charge and dispersion on matched beams in circular
accelerators has been the subject of numerous studies, for example by Venturini
and Reiser in [25], Lee and Okamoto in [26]; and by Ikegami et al. in [27] who
considered stable (coherent) dispersion modes.

Recently, Yuan et al. reported in [28] about a coupling phenomenon between
the envelope mode and the coherent dispersion mode in circular accelerator lattices
as another type of sum parametric resonance. They find that due to a confluence
of the usual envelope mode with the coherent dispersion mode an additional 120ı
instability condition emerges: a zero-current phase advance below this value is
safe – with regard to this mode –, while a higher value is subject to an instability
stopband by the envelope-dispersion coupling. Based on a mode analysis of the
coupled system of transverse envelope equations with the dispersion equation, the
phenomenon is described by a sum resonance condition – in analogy with the sum
envelope modes in Sect. 7.7 – of the kind

ˆ1;2 C ˆ3 D 360ı; (7.10)

where ˆ1;2 stands for the phase advance of the envelope modes, and ˆ3 for
the dispersion mode. Results from the perturbation theory, compared with the
full envelope model and particle-in-cell simulation are shown in Fig. 7.27. The
confluence of the envelope mode ˆ1 and the dispersion mode is recognized in
the (shaded area) stopband. It is noted that the particle-in-cell result without
dispersion only yields an emittance growth for kx < 90ı due to the usual envelope
instability; with dispersion a significant growth is obtained within the stopband,
which well overlaps with the growth factor j�j. Note that the confluence disappears
for k0 < 120ı.

7.9 Overview Chart on Coherent Parametric Instabilities

The different options of space charge driven coherent parametric instabilities versus
zero-current phase advances per structure cell for two planes are schematically

13Noting that in circular accelerators lattices a 90ı phase advance condition is usually avoided for
reasons of structural resonances.
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Fig. 7.27 Coupled envelope and dispersion mode instability in periodic lattice with dispersion for
transverse k0 D 130ı: (a) Phase shifts ˆ1, ˆ2 (solid lines) and ˆd (D 360ı � ˆ3, dashed line)
versus space charge depressed phase advance kx, including dispersion; (b) growth factor j�j (solid
line) from numerical calculation, and normalized emittance growth factor �x=�x0 (dotted line) from
PIC simulation versus depressed phase advance kx with and without dispersion, with shaded area
denoting the stop band of the dispersion-induced instability. Insets: x � x0 phase space distribution
at periodic cells 0 and 500 (Source: [28])

shown in Fig. 7.28. The planes are marked by the second index of k0;i, where 1/2
stands either for longitudinal/transverse or horizontal/vertical. The bars have a width
and a (positive) shift from zero-intensity limits, which express only schematically
the effect of space charge.
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Fig. 7.28 Schematic overview on parametric instabilities identified by simulation, from second
to fourth order in plane of zero-current phase advances k0;1/k0;2 (longitudinal/transverse or
horizontal/vertical). Dashed lines in each order indicating location of zero-intensity limits, with
bars shifted by space charge (only schematically)

Simulation shows that second order coherent modes, including sum modes,
are basically independent of the distribution function. Third and fourth order
instabilities, instead, are identified in simulations with waterbag distributions, but
with little or no evidence for Gaussian distributions.

Note that single particle resonances of a given order – not shown on this graph
– would occur at twice the phase advances (besides space charge shifts), which
marks the difference between parametric instability and single particle resonance.
Also note that the envelope instability stopbands nearly overlap with the fourth order
structural space charge resonance discussed above.
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Chapter 8
Magnet Error Driven Resonances

Abstract This chapter considers space charge effects in connection with exter-
nally excited resonances in circular accelerators. The main focus is on coherent
phenomena, which are evident in second order gradient as well as skew error
driven resonances, and in particular for coasting beams. A direct consequence are
coherent shifts of resonance conditions beyond the incoherent space charge tune
shifts as well as the phenomenon of “coherent advantage” suggesting that the shifts
allow higher intensity than would result from an incoherent resonance condition.
These externally excited second order resonances are described by coherent integer
resonance conditions – in contrast with the half-integer resonance conditions of the
parametric instabilities. In the field of higher order magnet error driven resonances,
in particular when applied to bunched beams with Gaussian distributions, the current
understanding is that of dominance of incoherent space charge effects, which is
briefly discussed in connection with an experimental observation.

Image effects are ignored here, only direct space charge with its intrinsic density
perturbations is considered. Image effects are of a certain relevance in dipole modes
not considered here (see, for example, the discussion by Kornilov et al. in [1]). Also
not under consideration is the role of synchrotron motion except for the discussion
in Sect. 8.4, which is not yet sufficiently explored theoretically in the context of
resonances and space charge.

8.1 Overview

We consider 2D coasting beams, including anisotropy, and make use of the coherent
mode framework as well as the smooth approximation principle from Sects. 5.3
and 7.2. For 1D beam approximations, which have a simpler structure in comparison
with 2D, we refer to [2–4].

© The Author(s) 2017
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8.1.1 Coherent Effects

The importance of space charge in defining intensity limits in proton synchrotrons
was understood relatively early. First, at the single particle level, the effect of space
charge was only seen as a shift and spread of betatron tunes of individual particles.
The importance of coherent effects was pointed out by Morin in [5] and Lapostolle
in [6] in connection with integer resonance crossing. They realised that what matters
is the coherent tune – the tune of the centre of mass – and not the single particle
one shifted by space charge. A significant step was the finding of Smith in [7],
who claimed that also for second order gradient error resonances of round beams
the tune of the coherent envelope mode is decisive. The conclusion was that more
particles should be acceptable if the coherent mode on resonance matters rather than
the single particle tune with space charge.

8.1.2 Smooth Approximation

As for the coherent parametric instabilities, we assume here again smooth approx-
imation resonance conditions, and allow for two-dimensional anisotropic beams,
where focusing and emittances may be different in x and y. Such a smooth
approximation with space charge and multipole errors in circular machines was
studied by Venturini and Gluckstern in [8], based on a perturbation approach of
Vlasov’s equation. Arbitrarily large space charge effects were assumed with the
assumption of isotropic focusing – besides the errors – and round beams. Their
not unexpected conclusion is that the “forced” coherent frequencies associated
with lattice resonances are part of the “free” eigenfrequency spectrum of the beam
as discussed in Chap. 5. Obviously, deviations must be expected, if the constant
focusing of the smooth approximation is replaced by alternating gradient focusing.

For second order errors Aslaninejad has extended this in [9] to anisotropic
beams, allowing for arbitrary tune and/or emittance ratios as well as including linear
coupling modes with space charge.

This justifies the smooth approximation conjecture that coherent resonance takes
place whenever an eigenmode of a given order has an integer tune, which brings the
mode into a resonance with a suitable error harmonic. For convenience we write the
condition in the form (using space charge dependent single particle tunes here)

! D l
x C m
y C �
coh;l;m D n: (8.1)

�
coh;l;m is the coherent space charge tune shift depending on the specific mode, and
n the Fourier component of the error driving the resonance.1 The main difference

1Alternatively nN, if the driving term comes from a structure resonance.
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from the parametric resonances of Chap. 7, where the driving force is entirely from
space charge, is the absence of the r.h.s. factor 1

2
characteristic for the 1:2 parametric

resonance.
In real accelerators the subject of coherent gradient error resonances and its

observation is complex. An overview of Warsop et al. in [10], based on numerical
models and observations at the ISIS synchrotron, claims that the gap between
models and observations on beam loss is still not closed.

8.2 Second Order Resonances

Basic aspects of coherent effects in second order resonances are described by
the following examples, including gradient error and skew error (linear coupling)
effects. The former are related to the even modes, the latter to the odd modes of
Sect. 5.3.3.

8.2.1 Examples of Gradient Error Resonance

The coherent nature of resonances with gradient errors in an idealized model is
demonstrated with examples of KV envelope simulations carried out in the context
of early design options of the Spallation Neutron Source (SNS) storage ring in
[11]:

• A constant focusing lattice is assumed with tunes 
0;x;y D 4:6=4:6, alternatively
split tunes 
0;x;y D 6:45=4:6.

• A gradient error harmonic n D 9 is adopted, with variable strength.
• The 2D KV-envelope equations are used to model a long bunch, thus ignoring

the effect of the slow synchrotron motion in a real bunch.

Figure 8.1 shows the maximum KV-envelope excursions in x and y, normalized
to the initial envelope, for the unsplit lattice with 
0;x;y D 4:6=4:6. The gradient
error level is 10�3 relative to the unperturbed focusing on harmonic n D 9. First,
it is noted that in the presence of space charge there is practically no response of
the envelope at the single particle tune resonance condition 
x;y D 4:5. Second, the
fast (in-phase) and slow (out-of-phase) eigenmodes calculated in Sect. 5.3.3.1 are
retrieved. Due to the different coherent shifts the fast mode frequency fulfils the
exact resonance condition, !f D 9, at the higher intensity, where 
x;y D 4:4; and
the slow mode !s D 9 at the slightly reduced intensity, where 
x;y D 4:47.

Due to the finite width of the resonance stopband, growth occurs for still
lower values of 
x;y, until the sharp drop of the response. The peak growth, when
entering the stopband from the l.h.s. edge, is owed to the fact that the onset of
envelope instability dynamically shifts the envelope eigenfrequency to higher values
– towards the low space charge direction – while the amplitude is increasing. Hence,
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Fig. 8.1 Coherent resonance stopband showing maximum KV-envelope excursions for symmetric
and antisymmetric gradient errors at harmonic n D 9, with fixed 
0;x;y D 4:6=4:6 and as function
of tune 
x;y. For reference, also the zero-current response to the same error is shown (From [11])

the system remains in the effective stopband until it reaches its r.h.s. edge. Entering
at the r.h.s. of the stopband the opposite occurs, where a small growth causes a
detuning, and the system is pushed out of resonance.

A similar observation of a nonlinear attractive, respectively repulsive effect of
space charge at opposite ends of the stopband is described in the parametrically
driven envelope instability phenomenon in Sect. 7.4.2 and Fig. 7.6.

For the split tunes, 
0;x;y D 6:45=4:6, the eigenmodes are also separated, and
the harmonic n D 9 only drives the envelope resonance in y. Figure 8.2 shows
results for different error levels, and with a “normalized tune shift” as abscissa.
The latter is defined as .
y � 4:6/=0:1, hence increasing intensity in the opposite
direction compared with Fig. 8.1. Again, no resonant effect is obtained for 
y D 4:5

(“normalized tune shift”=1). The different error levels show that the stopband for
vanishing gradient error approaches the smooth approximation resonance condition,
!2 D 9. The latter is described by Eq. 5.14, which leads to a ‘normalized tune shift”
of 1.6 (the exact value theoretical value of 1.635 is indicated in Fig. 8.2).

The findings in [11] confirm that coherent space charge effects cannot be ignored
for coasting beams and second order resonances. Note that the coherent resonance
frequency is shifted away from the single particle tune, and in the direction of the
zero-intensity tune. This re-confirms the earlier suggestion by Smith in [7] that such
coherent effects potentially should allow higher intensities than would be suggested
by the single particle resonance condition. In the literature this observation is
occasionally called “coherent advantage” – see also Sects. 8.2.3 and 8.2.3 for a
quantified discussion of this in multi-particle simulation.
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Fig. 8.2 Coherent n D 9

gradient error resonance
stopband of y-envelope for
split (fixed)

0;x;y D 6:45=4:6, as function
of normalized tune shift, and
for three different error levels
(From [11])

8.2.2 Skew Errors and Linear Coupling

Aslaninejad has quantified in [9] the effect of space charge and anisotropy on the
sum and difference odd modes with skew errors (linear coupling) by using the
Vlasov perturbation approach. Note that the odd difference modes can also become
spontaneously unstable – in the absence of external skew errors – if sufficient
anisotropy is present as shown in Sect. 5.3.3.2.

Given an external linear coupling term / xy, the theory allows calculating
the linearised theory resonance response on the normalized space charge potential
perturbation of the same functional form, which is plotted in Fig. 8.3. Note that at
resonance the linearised theory potential perturbation becomes infinite. Nearly no
response is found at an assumed single particle resonance condition, 
x D 4, which
ignores the coherent shift. Including the coherent effects, however, shifts the sum
mode resonance to a smaller value, and the difference mode to a larger value.

Using the fully nonlinear Chernin equations, the emittance exchange in a
stopband of an n D 1 difference resonance case is studied by Franchetti et al. in
[12]. Results for a lattice with constant focusing and a single skew quadrupole kick
per turn are shown in Fig. 8.4, where 
0y D 3:2 is kept fixed, and 
0x is varied.
The initial emittance ratio is �r � �x=�y D 4, with intensity such that �
x D 0:09

and �
y D 0:2. For reference, a zero space charge case with the same strength
of linear coupling is included (dotted), where resonance occurs at 
0x D 4:2, and
emittances are completely exchanged. With space charge and the same strength of
linear coupling (dashed line), the exchange is weaker and shifted, both caused by
space charge.2

The emittance exchange modelled by the second order Chernin equations is
always periodical due to lack of Landau damping. For zero intensity the exchange
is always complete, but the time needed decreases with larger skew strengths.

2Note that the shift on the 
0x axis differs from that on the 
x axis in Fig. 8.3.
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Fig. 8.3 Normalized linearised theory resonance response for second order odd coherent modes
in sum (n D 7, dotted curves) and difference (n D 1, continuous curves) resonances as function
of 
x (fixed �x=�y D 4, 
y D 3, 
0;y D 3:2). Vertical dashed lines are indicating exact resonance
locations (From [9])

Fig. 8.4 Linear coupling
difference resonance with
coherent space charge effect
from fully nonlinear Chernin
equations: fixed 
0y D 3:2

and scanned over region
4:1 < 
0x < 4:25 (n D 1).
Shown is the maximum
emittance exchange for
nominal strength of linear
coupling as well as five times
smaller, including the zero
space charge case for the
nominal strength (From [12])

For finite intensity there is a coherent shift by space charge; also a space charge
detuning effect with beginning exchange, which limits the amplitude (plotted is
the maximum of exchange). For the five times weaker skew strength the maximum
exchange amplitude is correspondingly decreased (continuous line). The shift can be
calculated theoretically from the small perturbation model in [9], or the eigenmode
derivations in Sect. 5.3.3.2, which yields
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x � 
y D n C �
x
�r � 1

2.1 Cp
�r
0y=
0x/

: (8.2)

Inserting numbers we obtain 
x D 4:05, or 
0x D 4:14, which agrees very well with
the location of the stopband for small strength in Fig. 8.4. For comparison, ignoring
the coherent r.h.s. term in Eq. 8.2 would yield a stopband at 
x D 4, or 
0x D 4:09,
where obviously no response is seen.

In summary, as in the previous section for gradient errors, coherent shifts are an
essential element to determine the proper location of the stopbands as well as explain
the nonlinear limitation of the amplitude of exchange by merit of the self-consistent
space charge detuning.

8.2.3 PIC-Simulation Examples

The resonant response obtained by second order moment equations is by nature
coherent. PIC-simulation is needed to test this coherent behaviour versus the de-
coherence effect of broadened particle tune spectra in non-KV distributions. For the
gradient error resonances this is elucidated here in a few examples.

We take a “toy ring”, where the ring “circumference” is assumed to consist of
three FODO cells, and 
x;y is understood as phase advance “per turn”.

In the absence of gradient errors we refer to the simulation of Fig. 6.4. It serves
as reference case, except for the fact that in Fig. 6.4 tunes are defined per cell, and
in the present case per turn, hence multiplied by three.

The n D 1 error is realized by extending the length of a single quadrupole in
the third cell of the “circumference” by 2%. The smooth approximation resonance
condition reads 2
 C �
coh D 1, where �
coh is given by �
 for the fast, and 1

2
�


for the slow mode (Sect. 5.3.3.1).
In Fig. 8.5 we assume 
x;y D 0:5 to test the behaviour at an assumed single

particle resonance condition.3 The theoretical coherent frequencies for fast and slow
envelope modes are further away from this assumed resonance condition. No res-
onance response is found for the waterbag distribution, likewise the accompanying
envelopes only show a small, periodical modulation due to the proximity of the
gradient resonance. However, a small resonance action is seen for the Gaussian,
where the tunes of a fraction of the particles close to the condition 
x;y D 0:5 are
pushed above 0.5. The net effect is a 6% growth of the rms emittances over the first
100 turns, which continues with the smaller rate of �1% per 100 turns.

For comparison, we shift 
0;x;y upwards to the value 0.6. As expected, again no
resonance effect is seen for the waterbag distribution; for the Gaussian Fig. 8.6
indicates a trapping effect of some particles exactly at 
x;y D 0:5, but the rms
emittance growth is only �2% over 200 turns. This justifies the observation that for

3Note that in the TRACEWIN code 
x;y corresponds to an rms value.
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Fig. 8.5 Tune diagrams for
coasting beam in FODO
lattice with gradient error;
rms tunes are 
x;y D 0:5, with

0;x;y D 0:58. Shown are
Gaussian (top graph) and
waterbag distribution (bottom
graph); also indicated are the
resonant tune values 0.5
(dashed lines), and the
theoretical envelope mode
frequencies

both, waterbag and Gaussian distributions, a part of the particle tune spectrum can
be on and even beyond the single particle resonance condition, without significant
resonant growth. Hence, the claim of a “coherent advantage” is justified here.

In Fig. 8.7 we set 
0;x;y D 0:56, which has the effect that the slow mode
accurately satisfies the coherent resonance condition !s D 1. The resonance effect
is pronounced in both cases. A significant part of the particle spectrum is pushed
above the slow mode coherent resonance condition.

The corresponding KV envelopes in the top graph of Fig. 8.8, where the
maximum of an x�envelope coincides with a minimum of the y�envelope, and vice-
versa, confirm the action of the out-of-phase nature of the slow mode. The lower
graph shows the mismatch factors of the waterbag case (similar for the Gaussian
one), which suggest that the response is highly coherent in the beginning, and more
incoherent later on.

Figure 8.9 shows the corresponding rms emittance evolution for both distribu-
tions. Most of the emittance growth occurs during the pronounced initial coherent
resonance phase; for the Gaussian case a kind of saturation is reached; whereas



8.2 Second Order Resonances 123

Fig. 8.6 Tune diagram for
coasting beam in FODO
lattice with gradient error;

x;y D 0:52 and 
0;x;y D 0:6

for Gaussian distribution

the waterbag emittance continues growing, although in a less coherent fashion than
initially. Checking Fig. 8.7, this could be owed to the fact that the low-tune (e.g.,
low betatron amplitude) part of the broad Gaussian spectrum is too far from the
resonance to interact with it.

8.2.4 Coherent Advantage

The above findings on gradient error resonances in coasting beams confirm the early
envelope based observation by Smith in [7] that the coherent response generates a
space charge gradient force, which counteracts the applied gradient error force and
thus leads to a favourable shift of the resonance condition.

Results on the resulting “coherent advantage” are summarized in the following.
Note that we define it here as the acceptable factor (e.g. for which no rms emittance
growth occurs) by which the intensity can be increased relative to the assumed
single-particle criterion, according to which the small amplitude particles (e.g. the
lowest tune particles) would just reach the resonance condition.

• The picture of a coherent resonance crossing is justified for a compact distribu-
tion as the waterbag, but also for the Gaussian. Both allow having a significant
part of the single particle tune spectrum under the resonance condition, and
without a visible evidence of a resonance effect.

• The more compact waterbag distribution altogether responds in a more coherent
fashion, which can be attributed to the fact that the slow as well as fast mode
frequencies fall outside the single particle tune spectrum.

• The suggestion of a “coherent advantage” effect is confirmed. Taking Fig. 8.6 as
reference for the Gaussian, and Fig. 8.5 for the waterbag distribution, this factor
is at least 1.5.
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Fig. 8.7 Tune diagrams for
coasting beam in FODO
lattice with gradient error;
with slow mode frequency on
coherent gradient error
resonance, 
0;x;y D 0:56,

x;y D 0:48; for Gaussian (top
graph) and waterbag
distribution (bottom graph)

The absence of synchrotron motion is essential for these conclusions. In bunched
beams, with sufficiently fast synchrotron motion, individual particle tunes migrate
due to space charge and chromatic effects, which is expected to mitigate the coherent
effect. This subject is still a matter of ongoing research activities.

8.3 Application to Quadrupolar Signals for Diagnostics

The measurement of the coherent envelope or quadrupole mode frequencies is a
direct method of observation of a space charge effect. Theoretically, it is closely
connected with the discussion of gradient error enforced resonance of the previous
section, but here an external kicker is assumed instead.

So-called “quadrupolar pick-ups” have been conceived in many places to
measure beam ellipticity via the quadrupole moment oscillations of the beam, which
indicate, for example, a mismatch of the injected beam. Ideally they consist of a
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Fig. 8.8 Top graph: KV-envelopes for Fig. 8.7 case confirming the out-of-phase nature of the slow
envelope mode excited by the gradient error. Bottom graph: mismatch factor for same case and
waterbag distribution indicating the strongly coherent response in the early phase

horizontal and a vertical pair of plates and a kicker. The difference between sum
voltages (needed to suppress the signal from transverse dipole modes) on both
pairs is measured. Besides electrostatic versions, which have been used in various
accelerators [13–15] also magnetic versions have been developed [16].
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Fig. 8.9 Rms emittance growth for Fig. 8.7 case; for Gaussian (top graph) and waterbag distribu-
tion (bottom graph)

Using the relationship between coherent frequency shift and rms single particle
tune shift, the latter can be determined through a measurement of the former.
Generally, for all parameters, such a relationship can be determined by using the full
second order even mode dispersion equation, Eq. 5.11. For sufficiently split tunes,
and linearized in �
x, we use Eqs. 5.12 and readily obtain (and similar in y)

�
x D 2
0;x � !1

1
2

�
3 � �0

.1C�0/

� ; (8.3)
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where !1 is the measured coherent frequency. Eq. 8.3 can be used to determine the
emittance, and it is identical with the relation derived by Hardt in [17], where it was
proposed as diagnostics method in the earlier days of high intensity accelerators.

Using the full dispersion equation, Eq. 5.11, it can be shown that the approxi-
mation of Eq. 8.3 is sufficiently accurate for tune splits down to the incoherent rms
space charge tune shift. For very small tune splits, j
0;x � 
0;yj � �
x, Eq. 8.3
becomes inaccurate as pointed out by Metral in [18]. For sufficiently round beams
we can employ the formula for unsplit and round beams, Eq. 5.16. For the slow
mode branch of it, which relates to quadrupolar oscillations,4 this is equivalent to

�
x D 2

3
.2
0;x � !1/ : (8.4)

For practical measurements related to quadrupolar modes the effect of realistic
distribution functions and possible decoherence of the quadrupolar mode merit
further consideration. Simulations of Sect. 8.2.3 suggest that this should not be an
issue for well-truncated distributions, like waterbag, but more work is needed to
explore this in detail.

8.4 Nonlinear Dynamics and Space Charge

As was shown in previous chapters, coherent shifts of space charge modes become
smaller with increasing order of the resonance. Even compact distributions, like
waterbag, are likely to overlap with higher order coherent mode frequencies. This
enhances the possibility that the resonance response of the density distribution is de-
cohered by Landau damping, and mainly incoherent response matters. Synchrotron
motion is likely to further enhance this de-coherence. Under such conditions, fully
self-consistent modelling of space charge may not be necessary, and the incoherent
tune shift becomes the dominant effect of space charge.

Experiments and simulations on nonlinear dynamics with space charge have
grown substantially in recent years. An overview on this and the associated
challenges in operating circular accelerators is given by Machida in [19].

In fact, simulations using methods like “frozen-in” space charge – possibly with
rms size updates – are significantly faster than fully self-consistent PIC-methods,
which matters for very long-term simulations of nonlinear dynamics problems
including space charge. The “frozen-in” space charge method has been explored
extensively, and compared with experiments, by Franchetti and his collaborators in
the context of simulations for benchmarking experiments on nonlinear dynamics

4For unsplit focussing and round beams the fast mode pertains to a pure breathing oscillation,
which would not leave a signal on quadrupolar pickups.
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and space charge at the CERN Proton Synchrotron in [20] (using an octupole to
drive the resonance) and at the SIS18 of GSI Darmstadt in [21].

As an example we briefly discuss the SIS18 nonlinear dynamics and space charge
benchmarking. It was part of the dedicated experimental campaign S317 in the
years 2007–2010 using an 40Ar18C beam injected at 11 MeV/u and a maximum
intensity of 109 ions. Its scope was to validate the MICROMAP code (see [22])
predictions by modelling a space charge dominated nonlinear resonance crossing in
an ion synchrotron, where the resonance under study was driven by a sextupolar type
magnet error. The data included complete sets of measurements comparing beams
with and without rf, both at low and at high intensity. The assumed theoretical model
has been that space charge (in combination with chromaticity) leads to a periodical
crossing of the resonance due to synchrotron motion. This has a scattering effect5

on the crossing particles, which should lead to emittance growth and beam loss. The
observed correlation between transverse beam loss and simultaneous bunch length
shortening has been taken as confirmation for this space charge dominated periodic
resonance crossing model.

For illustration, quantitative results of code predictions with the experimental
results at a horizontal tune of 4.33 and horizontal/vertical tune spreads of 0.04/0.045
are shown in Fig. 8.10 (for details on measurements and theory see [21]). The space
charge induced shifts of loss and emittance growth are seen to agree well between
simulation and experiment. The simulation can, however, only explain about 50%
of the measured beam loss, while the simulated emittance growth is higher. The
authors claim that this is to be attributed to the limited knowledge of the SIS18
synchrotron lattice (closed orbit, multipole strengths etc.), which does not allow a
satisfactory reproduction of the real dynamic aperture of the machine, hence beam
loss. Also, the lack of selfconsistency in the MICROMAP simulations, where the
“frozen-in” space charge method is used, should play a role.

New benchmarking experiments on different types of resonances are in progress
at the CERN Proton Synchrotron as reported in [23, 24] and [25].

Complementary to code comparisons in large accelerators are experiments
including space charge in the table-top Paul-trap devices reported by Okamoto et al.
in [26, 27], and by Gilson et al. in [28]. These experiments allow easy parameter
changes and good comparison with theory, but comparison with production accel-
erators is challenging.

5Accompanied also by trapping of particles on the resonance, but to a much weaker degree.
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Fig. 8.10 SIS18 nonlinear
dynamics and space charge
benchmarking campaign.
Based on a sextupolar
resonance (zero current
resonance location marked by
bar) with space charge:
Relative emittance growth
(�x=�0x), beam loss (I=I0) and
bunch length (z=z0) as
function of horizontal tune
shown in experiment (top
frame) and MICROMAP
simulation (bottom frame)
(Source: [21])
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Chapter 9
Emittance Exchange in Anisotropic Beams

Abstract Anisotropy – as imbalance of rms kinetic energies between different
degrees of freedom in the moving frame – is an important source of resonant
behaviour under space charge. In practice anisotropy may result from production,
injection, acceleration, changes in focusing and other sources. This chapter con-
siders space charge as source of resonant emittance transfer in anisotropic beams.
The description focusses on theoretical models, with examples of experimental
evidence. In circular accelerators the most commonly known example is the so-
called “Montague resonance”. In linear accelerators such anisotropy occurs between
transverse and longitudinal degrees of freedom. Although the distinction between
“coherent” and “incoherent’ resonance is not always straightforward, examples of
clearly coherent features are presented.

9.1 Introductory Remarks

The question arises, what mechanisms can lead to emittance transfer and – at
least in part – removal of anisotropy during acceleration or beam storage. Due
to the relatively low density of beams in conventional accelerators collisional
relaxation towards more isotropic beams does not occur.1 An alternative source of
emittance transfer within the beam is space charge, and its various modes of resonant
interaction.

The “Montague-resonance” has been known since the 1960s as undesirable
source of horizontal-vertical emittance exchange in synchrotrons, and the original
analysis by Montague [1] treated the phenomenon as a purely single particle
resonance phenomenon.

For high-current linear accelerators the issue of undesirable emittance exchange
in “non-equipartitioned” designs of accelerators was first raised by Jameson in
[2, 3] and compared with the theoretical model on “space charge coupling due to
anisotropic distributions” from [4].2

1This is different for long-term storage as in colliders or storage rings, where small angle Coulomb
scattering (intrabeam scattering) can be significant.
2Fully documented in [5].
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The focus of this chapter is to explore the subject of resonant emittance
exchange in a broader context by going beyond Montague’s single particle model
and discussing it as space charge coupling in anisotropic beams as introduced in
Sect. 5.3.

9.2 Definition of Anisotropy and Equipartition

Following Sect. 2.2.3 we express anisotropy as ratio of kinetic energies as intro-
duced by the factor T . Assuming an equivalent constant focusing3 and introducing
a and b as rms sizes in the directions z and x, and similar for rms tunes 
z;x,4 the
factor T can be re-written as5:

T � a2
2
z

b2
2
x

D �z
z

�x
x
: (9.1)

This definition is an exact measure of the kinetic energy ratio for KV-distributions,
and we extend it to all other rms equivalent distributions used in simulations.

A beam with T D 1 is then described as isotropic or equipartitioned between
z and x with the understanding that this is equivalent to equal rms velocities in
the moving frame. Obviously, “equipartitioned” does not have the thermodynamic
implication here that particles are uniformly distributed on surfaces of constant
energy in phase space.

9.3 Montague’s Single Particle Approach

Emittance exchange due to space charge forces at or near the fourth order difference
resonance condition 2
z � 2
x D 0 in the transverse plane of a synchrotron was
first suggested and analysed in the frame of a single particle model by Montague
in [1]. Exchange of significantly different emittances in horizontal and vertical
planes is at risk of beam loss in case of aperture limitations. His conclusion was
that the resonance should be avoided in circular accelerators by sufficient splitting
of horizontal and vertical tunes, unless they are already separated by one or more
integers.

3Equivalent is understood as equal phase advances per meter, independent of the type of focusing.
4Here we use z and x as transverse coordinates for easier comparison with the longitudinal and
transverse coupling in the later part of this chapter.
5This definition assumes, however, upright ellipses in phase space; for tilted ellipses as in

convergent or divergent beams, or in periodic focusing, the additional “flow term” xx0
2

in Eq. 2.8
(similar for z) must be considered.
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Montague’s derivation is based on the assumption of a rigid Gaussian density
profile. The space charge potential, expanded around the beam axis, has even order
terms, and the zero-th harmonic of a pseudo-octupole term, z2x2, provides the
driving term for the single particle difference resonance 2
z � 2
x D 0, which is
a relatively strong resonance for high space charge levels. Analysing the stopband
width, it was concluded that sufficiently split tunes are required to avoid emittance
exchange from, for example, the horizontal to the vertical plane, and that the needed
split increases with space charge.

9.4 Coherent Resonance Approach

From a theoretical point of view, the single particle ansatz by Montague predicts no
emittance exchange for the uniform density KV-beam – however large its anisotropy
is. Limiting the analysis to a pure single particle resonance phenomenon ignores
the existence of the coherent modes of interaction derived in [5] and reviewed in
Sect. 5.3. In fact, a useful demonstration of this is the comparison between a 2D PIC-
simulation of an anisotropic KV-beam and an rms equivalent waterbag beam in [6],
where the analytical theory is compared with simulation based on the MICROMAP
code [7].

The resulting rms emittance exchange in the transverse plane of a KV and the rms
equivalent waterbag distribution, with initially �z=�x D 2, hence an initial anisotropy
T D 2, slightly split tunes 
z=
x D 1:04 and 
x=
0;x D 0:8 is shown in Fig. 9.1. The
waterbag example confirms the prediction of Montague, that too close tunes lead
to a rapid exchange of emittances due to a fourth order term already present in
the initial space charge potential – somewhat weaker for the waterbag than for a
Gaussian due to less density nonuniformity. Surprising is a similar effect in the KV-
case, with obviously a uniform initial density and no driving term for a fourth order
resonance. Both cases indicate an approach to equipartition, but full equipartition is
not reached.

The KV-behaviour can be explained only in terms of a coherent difference mode
instability growing exponentially from an initial density non-uniformity on the noise
level, which is driven by the “energy” anisotropy between x and y. The exponential
growth is qualitatively confirmed by the slowly rising exchange in Fig. 9.1. The
important conclusion is that an initial density non-uniformity is not needed due to
existence of this coherent, resonant exchange instability.

Based on the Vlasov analysis for anisotropic KV-beams summarized in Sect. 5.3,
and following [6], the imaginary parts of ! for all types of coherent difference
modes can be plotted. This is shown in Fig. 9.2 for the example of �z=�x D 2, with
a tune depression 
x=
0;x D 0:5 and a range of tune ratios (top graph). A number
of exponentially unstable coherent eigenfrequencies ! are identified. Besides the
expected fourth order mode, a second order odd mode (the “self-skewing” mode
of Sect. 5.3.3.2) and a third order even mode (Sect. 5.3.3.3) play a prominent
role. The comparison with results from the corresponding 2D PIC simulation with
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Fig. 9.1 2D PIC simulation
with MICROMAP showing
coherent nature of emittance
exchange for KV (top graph)
and waterbag (bottom graph)
distributions for initial T D 2

anisotropy, �z=�x D 2,

z=
x D 1:04, 
x=
0;x D 0:8.
Units on abscissa are betatron
periods in x in the absence of
space charge (From [6])

MICROMAP and an rms equivalent waterbag distribution in the bottom graph of
Fig. 9.2 shows very good agreement.

Interesting is the perhaps unexpected stopband just above 
z=
x D 2, which
is associated with a third order even mode instability driven by the anisotropy.
Initially, its driving term – a pseudo-sextupole space charge term – only exists on the
noise level. The exponential growth predicted theoretically for the KV-distribution
matches surprisingly well with the PIC simulation result for a waterbag distribution.
Due to the large tune split required for instability of this mode it is unlikely to occur
in circular accelerators; but possibly in linear accelerators with a strong focusing
imbalance between longitudinal and transverse. In fact, an evidence of it is recently
reported from the J-PARC linac, see Sect. 9.6.2.

The simulation results in Fig. 9.2 also give no indication of fifth – for example at

z=
x D 3=2 – or higher order resonances.

Note that the dotted vertical line in the bottom plot of Fig. 9.2 stands for “energy
equipartition” – a “safe” region. Left from it there is an indication of relatively
weak emittance exchange in the opposite direction. It would be enhanced if smaller
emittance ratios were chosen, in which case the equipartition point would move to
the right.

The question can be raised if periodic focusing systems are equally exposed to
these collective resonances. Simulations of the cases in Fig. 9.2 in a FODO lattice
show nearly identical results as long as the phase advance is away from the 90ı
stopband [6].

In summary, there is a good match between the KV-based perturbation theory
growth rate spectrum and the final output of a waterbag PIC simulation. For the
waterbag distribution the following can be concluded:
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Fig. 9.2 Top graph:
analytical theory growth rates
as function of tune ratios for
different unstable eigenmodes
of anisotropic 2D KV-beam
with �z=�x D 2; Bottom
graph: 2D PIC simulation
with MICROMAP for rms
equivalent waterbag
distribution, showing
saturated emittances, with
dotted line at 0.5 indicating
point of “energy
equipartition” (From [6])

• The 2:2 resonance, also called “main resonance”, can be interpreted as fourth
order single particle difference resonance, since the required space charge
pseudo-octupole term is already present in the equilibrium beam. A coherent part,
however, enters as shift of the exchange curve to the right of 2
z=2
x D 1, which
suggests a coherent resonance condition 2
z � 2
x � �
4;coh D 0. Furthermore,
the self-limiting effect of the exchange is also a coherent effect.

• For the 1:2 third order resonance no single particle explanation exists, and it is
entirely due to a coherent, anisotropy driven instability. The shift of the exchange
curves to the right of 
z=
x D 2, suggests an approximate resonance condition

z � 2
x � �
3;coh D 0, where �
3;coh describes the shift.

The rms emittance exchange on these resonance stopbands is predominantly a
core, and not a halo effect as is shown in [6]. There is, however, also the possibility
that anisotropic halos are subject, for example, to the 2:2 resonance driven by the
core space charge as shown in [8]. This way, coupling of transverse halo particles
into the longitudinal plane or vice versa can occur even if the core itself is isotropic
or near to it. On the other hand such a halo coupling opens the possibility of
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longitudinal “halo cleaning” by transferring it into the transverse plane by means
of the coupling resonance, where it can be scraped more easily.

9.5 Stability Charts

The commonly used resonance charts in the transverse tune space of circular
accelerators are usually based on nonlinear dynamics in the externally applied
magnetic fields. The space charge “Montague resonance” is an additional, but
relatively strong stopband adjacent to second or fourth order difference resonance
lines associated with magnet field components.

In linear accelerators magnet driven resonances play no role, and the matter of
a suitable resonance chart comes up only in connection with emittance transfer in
beams with anisotropy, at varying intensity levels as well as emittance and focusing
ratios.

The suggestion in [9] that the analytical theory for anisotropic beams could be
used to develop a kind of stability diagram for linear accelerators is supported by
complementary studies with PIC simulations in [6, 10–12] and others. The choice
of the plane of tune ratio and of tune depression, for a given emittance ratio, is based
on these theoretical results. This allows following the evolution of beam parameters
– the tune footprint – along a linac as long as the emittance ratio follows the initial
value, which is normally the design goal.

Examples of such stability charts6 are shown in Fig. 9.3. The chart with �z=�x D 2

(top graph) includes the data shown in Fig. 9.2. Growth rates, indicated by the colour
intensity coding, are understood as maxima over the unstable modes, including
second (odd), third, and fourth order, while white regions are free of instability.

The width of the 2:2 stopband near 
z=
x D 1 is estimated in [12] as approxi-
mately

�.
z=
x/


z=
x
� 3

2

�.
x=
0;x/


x=
0;x
: (9.2)

At the tune ratio, which equals the inverse of the emittance ratio, initial
“equipartition” T D 1 is realized – marked by the dotted line. It is characterized
by a wide region free of instability. Note that for very large tune depression the
stopbands overlap, and a kind of “sea of instability” is obtained.

6This and following “stability charts” have been generated with a diagnostics option of the
TRACEWIN code, which uses the stability and growth rate data generated by the theory in [9].
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Fig. 9.3 “Stability charts” for emittance ratios �z=�x of 2 (top graph) and 5 (bottom graph),
showing the analytically calculated stopbands, where resonant exchange of emittances is predicted,
as function of tune ratio 
z=
x (abscissa) and tune depression 
x=
0;x (ordinate). Contour lines
indicate levels of growth rates of unstable modes in units of zero space charge betatron units in x,
and dotted vertical lines the equipartition condition
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9.6 Experimental Evidence

Practical demonstration of the agreement between this theory and simulation has
been used since 1981 to facilitate linac design practice (as in [2]) and interpret actual
performance; but explicit experiments aimed directly at comparison to the theory
have been few and only possible in places where sufficient accelerator operation
flexibility and diagnostics exist.

We report here about three dedicated benchmarking measurements, pertaining to
circular machines as well as linacs.

9.6.1 “Montague-Experiment” at CERN-PS

The scope of these measurements was observation of the “Montague resonance”,
including a comparison with computer simulation and examining the expectation of
coherent resonance effects beyond the single-particle model by Montague. These
measurements have been carried out in the context of achieving maximum high-
intensity performance in the CERN Proton Synchrotron (PS) during the years 2002–
2004 and summarized by Metral et al. in [13].

The measurements were performed with a single bunch from the CERN Proton
Synchrotron Booster, which was fast injected into the PS machine at 1.4 GeV kinetic
energy on harmonic h D 8. The number of protons per bunch was typically 1012.
In a code benchmarking experiment, with results shown in Fig. 9.4, the vertical tune
was fixed at 
0;v D 6:21, and the horizontal one, 
0;h, was varied between 6.15 and
6.25 (constant during each measurement). Initially injected normalized emittances
have been �h D 30 and �v D 10 mm mrad. The simulations were carried out using
the fully 3D particle-in-cell code IMPACT [14], employing a grid of 65 
 65 
 257

in x; y; z, and 106 simulation particles with a 6D Gaussian distribution in a constant
focusing lattice. They have been run over 1000 turns, which was found sufficient
to ensure saturation. The synchrotron period was 1:5 ms, corresponding to 650
turns, while the emittance exchange takes typically 100 turns only, according to
simulations. Hence, the synchrotron motion should have negligible influence on the
emittance exchange, which then becomes largely a 2D phenomenon.

The widths of the stopbands in experiment and simulation are in good agreement
and support the theory background discussed in Sect. 9.4. Also, the stopbands
extend primarily left from 
0;h D 6:21, which is consistent with the fact that
�h > �v. The sharp descent of the 3D simulation response curve close to 
0;h D 6:21

fully agrees with the 2D simulations in Fig. 9.2.7

7In comparing with Fig. 9.2 it is noted that there the stopband is shifted to the right of the point,
where 
z D 
x; this is entirely explained by using space charge depressed tunes instead of zero
current tunes as Fig. 9.4.
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Fig. 9.4 Montague resonance stopband at CERN PS: Measured (full lines) and simulated (dotted
lines, with Gaussian distribution) factors of relative change of rms emittances as function of 
0;h,
with fixed 
0;v D 6:21. Vertical emittances as upper (purple) curves; horizontal emittances as
lower (blue) curves (Source: [13])

This descent is explained as result of the collective response of the charge
distribution: a beginning exchange at the left (soft) edge makes the width of the
stopband shrink and stops the exchange [10]; this is not the case at the (hard) right
edge, where the exchange can fully develop. This strongly asymmetric behaviour
is absent in the experimental response curve, where possibly chromatic effects or
additional resonances may have had an additional influence.

Besides these “static” measurements with tunes kept constant during each mea-
surement, also “dynamic crossing” measurements have been carried out during the
same 2002–2004 campaign at the CERN PS as reported in [13]. The tune was swept
through the full range of the stopband during 100 ms real time – corresponding
to more than 60 synchrotron periods and over 40.000 turns. Fully self-consistent
3D PIC simulations to model such a long-term behaviour were not feasible at
the time of the measurements. With progressing development of the IMPACT
code Qiang et al. have reported in [15] about a successful comparison using the
fully nonlinear lattice of the CERN PS, with results shown in Fig. 9.5. First, the
experimental result showed rms emittance exchange until full “equipartition”. This
was unexpected in the light of earlier 2D simulations in an idealized lattice as
reported in [12]. There, slow sweeping through the stopband from below would just
cause a reversal of emittances, hence an adiabatic and reversible process. Obviously
this was not the case in the experiment, but the 3D simulations showed excellent
agreement with this finding. It can be assumed that near the point of symmetry,
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Fig. 9.5 Dynamic crossing of Montague resonance stopband at CERN PS comparing rms emit-
tances from experimental (top graph) and simulated (bottom graph, with Gaussian distribution)
data. The horizontal tune 
0;h was swept linearly in time from 6.15 to 6.245 over 100 ms, the
vertical one was fixed at 
0;v D 6:21 (Source: [15])

where 
0;h D 
0;v D 6:21, irreversible processes connected with the combined
effects of synchrotron motion, the nonlinear lattice and space charge play a role and
contribute to the suppression of an adiabatic, reversible behaviour.

9.6.2 Linac Emittance Transfer Experiments at GSI and
J-PARC

The first experiment exploring space charge induced emittance transfer in a linear
accelerator was carried out by Groening et al. in [16]. The measurements were taken
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at tank A1 of the UNILAC heavy ion linac at GSI, and during high-current operation
with an Ar18C beam. Results are shown in Fig. 9.6. Transverse zero current phase
advances could be varied between 30ı and 100ı over the 60 cells of the tank, while
the longitudinal one was kept constant at 43ı. The initial longitudinal:transverse
ratio of emittances was a factor 10, and the growth of transverse emittances could
be measured at the end of tank A1. At the condition of the main 2:2 resonance, where
the ratio of longitudinal and transverse phase advances is near unity, the experiment
confirmed the predicted growth of the transverse emittances, as shown in the top
graph of Fig. 9.6.

The simulations were carried out with the TRACEWIN and DYNAMION codes.
Tune foot prints of the simulations for different values of the transverse phase
advance have been plotted on the stability chart for the emittance ratio 10, as shown
in the bottom graph of Fig. 9.6, illustrating the location of the 44ı case on the 2:2
resonance stopband.

An experiment at the J-PARC proton linac, extending over the full linac, and
in a different parameter range, with transverse as well as longitudinal emittance
measurements8 is reported by Plostinar et al. in [17]. J-PARC accelerates H� for
stripping injection into the subsequent rapid cycling synchrotron. It is therefore
subject to beam loss by the intrabeam stripping process described by Lebedev
et al. in [18]. In the context of minimizing this loss and at the same time avoiding
undue emittance transfer four different working points9 have been examined, with
the anisotropy factor T D kt�t=kl�l tuned to the values 1.0, 0.9, 0.7 and 0.5. The
initial emittance ratio was assumed fixed at the standard ratio �t=�l D 1:2, which
allows operation near “equipartition”. In the top graph of Fig. 9.7 these values are
located on the stability chart calculated for the given emittance ratio. As predicted
by the charts, the simulation cases with ratios 1.0 (equipartitioned) and 0.7 have
no emittance exchange, while cases 0.9 and 0.5 show exchange on the 2:2 (fourth
order), respectively 1:2 (third order) resonance. These simulations are compared
with input and output emittance measurements. Numerical results of measurements
for the four different anisotropy factors T are shown in Fig. 9.8. They confirm the
theory and simulation predictions of cases 1.0 and 0.9; case 0.7 is found to have
a small level of exchange not predicted. Not fully understood is case 0.5, which
the authors interpret as experimental observation of the 1:2 resonance. Theory in
Sect. 9.4 predicts such a mode as collective instability driven by the combined action
of anisotropy and a third order space charge pseudo-sextupole, which is assumed to
grow out of initial noise or mismatch. The observed amount of emittance exchange
for this particular case exceeds, however, the simulation results for yet unclear
reasons, and caution may be required for this interpretation.

In summary, experiments to demonstrate the effects of beam anisotropy and
space charge remain a challenging subject in linear accelerators. This includes
sufficiently accurate knowledge of the location of dangerous resonance modes and
strategies to avoid them. Certainly, more experimental data are needed.

8Using wire scanners transversely and bunch shape monitors longitudinally.
9This flexibility is owed to the fact that this linac uses electromagnetic quadrupoles.
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Fig. 9.6 Experiment on space charge induced emittance exchange at GSI UNILAC. Top graph:
Measured and calculated stopbands as function of tune ratio. Bottom graph: Stability chart for
UNILAC with simulation tune foot prints near the “main resonance”, for different values of
transverse phase advance (Source: [16])
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Fig. 9.7 JPARC linac simulation on space charge induced emittance transfer. Top graph: Stability
chart for �t=�l D 1:2 with different test working points in terms of anisotropy factors T . Bottom
graph: TRACEWIN simulated emittance evolution along linac for T D 0:9 and T D 0:5 (Source:
[17])
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Fig. 9.8 JPARC experimental output data pertaining to different values of anisotropy factor T in
Fig. 9.7 (Source: [17])
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Chapter 10
Discussion of Space Charge in Accelerator
Design

Abstract Space charge issues and their control are important factors for an
effective design of high intensity accelerators, whether circular or linear. They enter
into a number of constituents of design work: the choice of suitable lattices and
working points, definition of upper bounds in magnet nonlinearities, minimation of
lattice errors, various design considerations to avoid beam halo and beam loss, and
other measures. The goal of this chapter is to summarize criteria connected with
space charge and relate these criteria to the relevant chapters and sections of this
book. Obviously, this discussion, which is seen primarily from a theoretical angle,
can only serve as a guideline. For practical applications many other factors and
constraints will have to be considered.

10.1 Circular Accelerators

In circular accelerators space charge is often seen as main factor limiting intensity,
but with very limited direct impact on the design. Lattices are chosen to match with
the needs of injection and extraction, acceleration, avoiding resonances etc. There
are, however, several design relevant space charge issues:

1. Working points: Generally speaking, the distance of the working point to
significant resonances in the 
x � 
y tune diagram must be consistent with
the maximum expected tune spread. Flattened density profiles (Sect. 4.2) are
advantageous, also flattened longitudinal bunch profiles with higher harmonic
rf buckets. Especially for second order resonances (and coasting beams) the
“coherent advantage” phenomenon – see Sect. 8.2.4 – can help increasing the
acceptable intensity.

2. Structure resonances: Working points close to structure resonances are avoided
– depending on space charge. This is equally true for space charge driven
structure resonances (see Sect. 4.4.2), which would have significant strength at
high intensity. Along the same line the envelope instability or an accompanying
fourth order resonance at 90ı phase advance are usually avoided. However, fast
bunch rotation (compression) combined with high intensity may lead to a fourth
order structure resonance – depending on the lattice structure and working point
(compare Sect. 4.4.3).

© The Author(s) 2017
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3. Injection mismatch: Due to the smaller relative space charge tune depression
in circular accelerators an injection1 mismatch and its consequences on halo –
discussed in Sect. 6.1.2 – are less of concern than in linear accelerators. As it
always leads to some emittance degradation – even without space charge – good
injection matching is desirable.

4. The “Montague resonance”: As a purely space charge driven resonant effect
leading to exchange of initially unequal emittances the “Montague resonance” is
generally avoided by sufficiently split tunes (see Sect. 9). Possible interference
with linear coupling effects in combination with space charge needs to be
checked (Sect. 8.2.2).

5. Long-term effects of resonances and space charge: In bunched beams space
charge is an important source of periodic tune modulation and crossing of
resonances. Its effect on beam halo and loss, jointly with chromatic effects, is
a matter of ongoing research (compare Sect. 8.4).

10.2 Linear Accelerators

For linear high intensity accelerators space charge effects have a more direct impact
on the beam dynamics layout of a design. In practice, however, space charge driven
considerations must be compared with other important design constraints.

There are several challenges in these issues: First, for the accelerator designer to
balance technical and cost constraints versus beam dynamics constraints; second,
for a comparison between theory and experiment the difficulty is always faced
that idealized models cannot be easily compared with reality, where beams adopt
largely unknown 6D phase space distributions and focusing structures are exposed
to various kinds of errors.

10.2.1 General Rules

Several beam dynamics criteria addressing space charge issues have been discussed
in the literature and found wide acceptance – although some aspects are still under
discussion.

1. Mismatch, with magnet and rf errors: Deviations from ideally matched beams
throughout the accelerator by poor matching and/or errors lead to resonant halo
formation driven by space charge (Sect. 6.1.2). The relaxation of mismatch into
halo depends much on the tails of the distribution function and is, for example,

1This applies, in particular, to single-turn injection.
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much faster for a Gaussian than for a waterbag. Matching of beam core and halo
are, however, not identical tasks.

2. Transitions between structures: Abrupt non-resonant changes in average focus-
ing lead to mismatched density profiles and sudden rms emittance growth
by nonlinear field energy, especially for strong space charge tune depression
(Sect. 6.3).

3. Transverse 90ı stopband: The commonly accepted rule is k0;x;y < 90ı to avoid
the envelope/fourth order mode (Sects. 7.5 and 7.6, also Fig. 7.28), which would
lead to undesirable rms emittance growth and/or halo formation. An exception
can be made, if this limit is exceeded only for a few lattice periods leaving no
time for growth.

4. Longitudinal 90ı stopband2: Theoretically a corresponding limit k0;z < 90ı is
required to avoid the longitudinal equivalent to the transverse envelope instability
(or accompanying fourth order resonance) provided that the transverse focusing
period is identical with the effective longitudinal one. In most room temperature
linacs this limit is above what can be reached with technically feasible rf voltages.
In superconducting linacs this argument does not apply, and a different reasoning
is suggested in Sect. 10.2.2.

5. Higher order stopbands: Theoretically the third order coherent parametric
resonance (k0 > 60ı, Sect. 7.5) might be crossed in linacs, but its practical effect
may be small if the stopband is crossed sufficiently fast (similar for fourth order).
For a schematic overview on the location of all coherent parametric resonances
phenomena we also refer to Fig. 7.28, where k0;1 can be related to k0;z, and k0;2 to
k0;x;y.

6. Emittance transfer and anisotropy: Exchange of emittances, which is intensity
dependent, is undesirable. It is therefore accepted that accelerator design should
avoid stopbands, like the 2:2 one, where resonant exchange in the direction of
more equipartition could occur, as was discussed in connection with the stability
charts in Sect. 9.5. On the other hand, suggestions to design an accelerator as
“equipartitioned” from the beginning are an unnecessary constraint in view of
the large resonance-free areas on the stability charts. Beam halo can also be
anisotropic and subject to coupling. As discussed in Sect. 9.4 the presence of
one of the coupling resonances – for instance the main 2:2 resonance – can lead
to transfer from a halo-intense plane to one with no or weak halo, which may be
usable for halo cleaning.

7. Minimize intrabeam stripping for H�: For negative hydrogen beams – to allow
stripping injection into a storage ring – the possibility exists that intra-beam
stripping leads to particle loss of the resulting proton as was suggested in [1].
The only cure of this source of beam loss is lowering density by weaker focusing,
which has the undesirable side effect of enhancing space charge tune depression.
As a result, the response on space charge resonances might get more serious.

2Note that the longitudinal phase advance is equally defined over the transverse focusing period.
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10.2.2 Addendum to Superconducting Linacs

The longitudinal 90ı limit was recently revisited in [2], which is expected to be
relevant for superconducting linear accelerators and their possibilities of enhanced
longitudinal focusing up to the point, where the longitudinal phase advance exceeds
the transverse one.

It is argued in [2] that the k0;x;y < 90ı limit is only justified in the special case
where there is one rf focusing period per transverse focusing cell. This is the case,
for example, if transverse focusing is achieved with periodic solenoids, and one
rf gap per drift space. With focusing by quadrupoles and one rf gap per drift this
amounts to two rf focusing periods per transverse lattice period. Thus k0;z D 90ı
would be equivalent to only 45ı phase advance per rf period3 as illustrated in
Fig. 10.1 for a superconducting linac with, for example, a periodic sequence of
cryomodules where each module contains three focusing lattice cells.

It is therefore suggested that in a system as in Fig. 10.1 the effective rf focusing
period is only half the transverse one and the choice of k0;z > 90ı is acceptable from
the point of view of the 90ı stopband.

In the design of advanced superconducting linear accelerators this results in an
additional design freedom, which allows the option of larger accelerating gradients
and stronger longitudinal focusing with potential length and cost savings. In terms
of the stability diagrams of Fig. 9.3 a choice of working point to the right of the 2:2
stopband at kz=kx � 1 might become an option – at least from a beam dynamics
point of view.

The space k0;z > 90ı is, however, not free of additional stopbands. As shown
in Sect. 7.7.2, the parametric sum envelope instability in x; y; z defines an additional
border, which cannot be ignored. Analogous to Fig. 7.28, a thus modified overview
including the correspondingly extended design region is shown in Fig. 10.2. Note
the diagonal stopband defined by the x; y; z sum envelope instability. The stopband

Fig. 10.1 Schematic example of a cryomodule with three focusing lattice cells (dashed), each
containing two rf periods (dotted) (Source:[2])

3Note that due to transverse-longitudinal space charge coupling the transverse period is in principle
also enforced on the longitudinal one for space charge reasons, but only in a very weak sense not
leading to resonant behaviour and emittance growth as shown in [2].
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Fig. 10.2 Schematic stability chart of second and third order parametric instabilities for lattice
with two rf gaps per transverse focusing period, shown in plane of longitudinal/transverse zero-
current phase advances. The extended design region (dashed green triangular region) is compared
with the conventional one. Dashed lines in each order indicating location of zero-intensity limits
(Source:[2])

shown above k0;z D 120ı is equivalent to a halved phase advance of 60ı per
rf period, and theoretically connected with the third order parametric resonance
discussed in Sect. 7.5.1.3.

In summary, the above space charge based criteria must be understood as
guidelines. Their practical application is subject to many technical constraints and
verification by multi-particle simulation for a given design.
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Epilogue

Space charge in accelerators has primarily been considered from a theoretical angle,
comparing analytical models with the results of multi-particle computer simula-
tions, and to some extent with experimental data from a few specific, dedicated
experiments. Such comparisons help to categorize the diversity of mechanisms in
which direct space charge matters. Advances made over the past few years have
helped to arrive at a more balanced understanding of these mechanisms and narrow
the gap between highly idealized analytical models and multi-particle simulations –
a trend that is encouraging and should be promoted.

It cannot be overlooked, however, that systematic and clear experimental data on
space charge physics processes is difficult to obtain in production accelerators and
therefore still quite limited. This is to a large extent due to the challenges of having
sufficient diagnostics, and getting enough access to beam time on devices that are
primarily user facilities. The impression of many workers in the field that the gap
between theory – including simulation – and the real world of operating accelerators
is still considerable is not misleading. On the other hand, currently operating high
intensity accelerators have largely achieved their initially set goals.

It is sometimes argued that narrowing the gap between theory and experiments
is mainly “interesting”, but “not important”. What clearly speaks against this is
that progress in understanding and controlling space charge by means of more
dedicated experiments is needed to enhance the performance of existing facili-
ties and for “next-generation” high intensity accelerator projects. However, such
experiments must be done carefully and on the basis of adequate diagnostics.
Sufficient knowledge of the real machine is crucial, which is a major challenge.
This includes knowledge of errors and uncertainties; otherwise better convergence
between simulation and experiment becomes difficult if not impossible.

Experiments, even if conducted under the often-difficult circumstances of run-
ning machines, also help stimulate new ideas and models of understanding – to
the benefit of existing and new projects alike. In order to achieve this goal, ongoing
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advances in all participating fields are necessary: in understanding analytical theory,
in conducting meaningful and well-understood computer simulations and, equally
important for theorists and for experimentalists, in devoting much more time to
experimental studies.



Glossary

Coherent oscillations/resonances A mode of oscillation with phase correlations
between particles (not from periodic focusing) caused by mismatch or by a
resonance driving the coherent mode.

Direct space charge interaction The assumption that in the moving frame the
effect of space charge can be described in electrostatic approximation.

Error resonances Driven by deviations from specified magnet strength.

Even/odd modes The distinction of eigenmodes of coherent oscillation according
to their symmetry.

FODO lattice Focusing-Drift-Defocusing-Drift periodic focusing sequence.

Free energy The assumption of an amount of energy – electrostatic or kinetic –
available for emittance growth.

Halo Large amplitude particles beyond initial distribution.

Incoherent oscillations/resonances Oscillations of an ensemble of single particles
in a matched or quasi-matched equilibrium, with amplitude growth, but no phase
correlations (except for the focusing periodicity).

Landau damping Damping of coherent modes of oscillation by their interaction
with particles, or an incoherent spectrum of modes.

Matched beams The assumption that a distribution of particles follows exactly the
periodicity of a focusing system, or is time-independent in constant focusing.

Mismatched beam A coherent deviation from a matched beam.

Nonlinear field energy The extra or “free” internal electrostatic field energy of
an ensemble of particles due to an unmatched density non-uniformity; note that a
uniform beam leads to linear self-fields and minimum field energy.
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Positive/negative energy modes The phenomenon that excitation of certain modes
requires increasing/lowering of the total energy of the beam – here in the moving
frame.

Pseudo-multipoles Terms arising from expanding the space charge potential of a
beam – analogous to magnet multipoles.

Quasi-matched beams In periodic focusing exactly matched distributions are not
possible – with the exception of a 4D KV-distributions –, and “quasi-matched”
stands for an approximation to “matched”.

Parametric resonance A periodically modulated parameter of a system, like
the length of a mechanical pendulum or the focusing constant in particle optics,
can drive the system unstable; frequently the term parametric instability is used
specifically for a half-integer frequency relationship in parametric resonance.

Single particle resonance Used as synonym for incoherent resonance.

Rms-equivalence Basis of comparing different distribution functions by assuming
equal rms ensemble averages in all directions of phase space.

Smooth approximation Approximation of a periodic focusing structure by a
constant one with same phase advances per meter.

Structure resonances Driven by the force from magnets or space charge following
the focusing lattice structure periodicity.

Tunes Oscillation frequencies of particles with respect to a reference orbit or a
synchronous particle; in linear accelerator notation as kx;y;z in degrees per focusing
period, in ring notation as 
x;y;z in periods per turn. In the presence of space charge
usually understood as rms values.

Tune depression The reduction of a “tune” due to space charge.

Tune shift & spread Describes the offset of tunes by space charge; tune spread is
the width of a distribution of tunes.
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