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Preface

One of the most important features of vacuum electronics is the strong interaction of

two subjects: the physics of electron beams, and vacuum microwave electronics,

including millimeter-wave electronics. This is evident in the statement of electron

beam problems and in the process of creating practically all microwave electron

devices. Comprehension of these subjects is important for the development and

application of devices; in general, it determines the professional level of a researcher

or an engineer in this field.

There are a number of books devoted to the physics of electron beams and

to microwave electronics. However, in books on the physics of electron beams,

the problems of microwave electronics are usually treated briefly. Similarly, in

books on microwave electronics, the theory of electron beams usually occupies a

modest place. Two books (Barker and Schamiloglu, 2001; Barker et al., 2005) are

a notable exception. These books give detailed coverage of most problems of

physics, engineering, technology, and the use of power microwave electronics,

combined with the physics of electron beams and a detailed historical survey.

However, with the exception of the klystron analysis, these books do not include

a systematic exposition of the theory of different devices; instead, they assume

the reader’s familiarity with the theory.

The primary goal of this book is discussion of the foundations of the physics and

theory of electron beams and microwave electronics. The structure is dictated by a

historical sequence from classical vacuum electronics of the twentieth century, to

the impressive achievements of recent years. A similar presentation was offered

by the remarkable books of Chodorow and Susskind (1964), Granatstein and

Alexeff (1987), Kirstein et al. (1967), Kleen (1958), Lawson (1988), and Szilagyi

(1988). The sense of historical perspective gives each new generation of researchers

and teachers confidence that the path chosen is correct, and it protects against

repeating previous errors.

The book consists of two parts. In Part I, the motion of charged particles in static

fields, the theory of electron lenses, and problems of the formation and transport of

xix



intense electron beams are considered. Part II covers the principles and theory of the

interaction of electron beams with electromagnetic waves in quasistationary systems

(e.g., diodes, klystrons), systems with continuous interactions (e.g., traveling-wave

tubes and backward-wave oscillators), crossed-field systems (e.g., traveling-wave

and backward-wave tubes of M type, magnetrons, crossed-field amplifiers), and

finally, the extensive class of systems based on the stimulated radiation of classical

electron oscillators: classical electron masers, including gyrotrons, classical autore-

sonance masers, and free electron lasers. Prominent space is given to the relativistic

beams and corresponding powerful relativistic devices that occupy center stage

in contemporary vacuum electronics. The book also provides significant coverage

of theoretical methods. Statements of problems, discussion of models and approxi-
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Introduction

I.1 OUTLINE OF THE BOOK

Recent trends in the development of vacuum microwave electronics and the physics

of electron beams have been shaped in part by competition with solid-state high-

frequency electronics. So practically all information technology and microwave

devices of small power and limited frequency are based on solid-state electronics.

Contemporary vacuum microwave electronics and the physics of charged-particle

beams include the formation and transport of intense and relativistic electron

beams, electron optics, powerful microwave devices together with millimeter- and

submillimeter-wave devices, charged-particle accelerators, material procession,

and free electron lasers. This narrowing of focus has led to considerable progress

in the following aspects of theory and engineering:

. Theory of electromagnetic fields

. Dynamics of charged-particle beams

. Interaction of electron beams with high-frequency fields

. Electron emission and optics

. Development and application of vacuum electron devices

. Methods of computer simulation

. Technology and powerful and high-voltage experimental techniques and

equipment

It would thus be very difficult to embrace within a single volume a complete descrip-

tion of the state of the art in this field. There are many books on the subject of

vacuum electronics (many of which we cite in the book). They do not, however,

provide a thorough treatment of the theory of both electron beams and microwave
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electronics. Two books, Modern Microwave and Millimeter-Wave Power

Electronics (Barker et al., 2005) and High Power Microwave Sources and Technol-

ogies (Barker and Schamiloglu, 2001), are the exception. These volumes are

characterized by an exceptionally wide scope of information. They do not,

however, include a systematic exposition of the theory of basic processes assuming

the reader’s familiarity with the theory. In this book I strike a compromise, providing

the reader with a foundation in the physics and theory of electron beams and vacuum

microwave electronics. The material is presented in historical sequence, and classi-

cal results and concepts are treated alongside contemporary issues.

The book is divided into two parts: Part I, Electron Beams (Chapters 1 to 5), and

Part II, Vacuum Microwave Electronics (Chapters 6 to 10). Auxiliary information

(e.g., equations of motion, Maxwell’s equations, Hamiltonian formalism, the

Liouville theorem) is presented in the Introduction. This material cannot, however,

replace corresponding background fundamental guides. It serves a reference func-

tion and provides notation and definitions.

Part I begins in Chapter 1 with a discussion of the motion of charged particles in

static electric and magnetic fields. Special attention is devoted to an analysis of rela-

tivistic beams and the motion of charged particles in weakly inhomogeneous fields

(e.g., adiabatic invariants, drift equations).

In addition to classical paraxial electron optics, in Chapter 2 we describe the

theory and applications of quadrupole lenses, which are important elements of accel-

erators and effective correctors of aberration in paraxial electron-optical systems.

Principles of electronic image construction are an important element in electron

beam formation in microwave devices and accelerators.

In Chapters 3 and 4, an extensive area of the physics of intense electron beams

that are used in most high-frequency electron devices is considered. The self-

consistent equation of steady-state space-charge beams is derived. Self-consistent

solutions for certain space-charge curvilinear flows as well as gun synthesis

methods are described. A number of electron guns with compressed electron

beams are discussed. The theory of noncongruent space-charge beams and its appli-

cation to the design of magnetron-injected guns are considered.

Electron guns that use explosive electron emission, making it possible to obtain

electron beams with energy on the order of MeV and currents of hundreds of kilo-

amperes, have acquired great significance in powerful high-frequency electronics

and electron beam technology. Guns using planar explosive emission and magneti-

cally insulated diodes are considered.

Transport problems of lengthy intense electron beams that are key problems for

microwave devices are discussed in Chapter 5. A group of relevant problems is con-

nected with the transport of nonrelativistic and relativistic Brillouin beams of

various configurations. The transport of intense beams in an infinite magnetic

field approximation and centrifugal focusing is also discussed. A theory of intense

axially symmetric paraxial electron beams with arbitrary shielding of the cathode

magnetic field is described. A criterion for stiffness beam formation is formulated.

Finally, the transport of intense electron beams in spatially periodic fields is con-

sidered. A theory of periodic magnetic focusing, which has the most practical value

for beam-type tubes, is expounded.

2 INTRODUCTION



Part II opens (Chapter 6) with an analysis of quasistationary microwave devices

in which the electric field is potential but the energy integral is not conserved.

Analysis of the simplest element of these systems, a planar electron gap, demon-

strates two principal effects: bunching of electrons and phasing of bunches. The

latter, and also the effects of velocity and energy modulation, are crucial for all

vacuum microwave devices. All these effects in the electron gap are not optimal,

however. Their implementation led to the first truly microwave amplifiers and oscil-

lators: klystrons based on electron-stimulated transition radiation. In Chapter 7 a

number of klystron systems, including reflex and relativistic klystrons, are

considered.

Linear and nonlinear theories of traveling-wave tubes of O type (TWTOs) based

on the synchronous radiation of rectilinearly moved electrons in the field of a slow

electromagnetic wave are discussed in Chapter 8. These tubes and backward-wave

oscillators (BWOs), in which an electron beam interacts with an electromagnetic

wave whose phase and group velocities are opposite, possess unique properties as

wideband oscillators. Relativistic TWTOs are considered there as well. These

tubes have output power on the order of gigawatts and should provide very high

gain, because only in this case can conventional low-power input sources be used.

Powerful relativistic TWTs have spatially extended electromagnetic structures.

Therefore, mode selection is an important problem in these tubes.

The energy of the electromagnetic field in TWTs and BWOs of O type is fed by

electron kinetic energy. Decrease in electron velocities in the process of interaction

violates the synchronism. So the efficiency of these tubes, especially of BWOs, is

comparatively low. An essentially different mechanism is implemented when elec-

tron beams interact with electromagnetic fields in crossed static electric and mag-

netic fields (M-type systems). In this case the energy of the electromagnetic field

is extracted from the potential energy of particles. As a result, synchronism is main-

tained along a deep conversion of the electron energy. M-type systems can have an

efficiency close to 100%. In Chapter 9, typical devices of M type are considered:

magnetrons, injected-beam traveling-wave and backward-wave amplifiers and oscil-

lators, and amplifiers of magnetron type. The very high efficiency and high pulse

power of the latter allow them to be used as basic high-frequency sources in radar

systems and electronic countermeasure devices. Also, the high efficiency, compact-

ness, and low cost of low-power magnetrons explain their exceptional use in dom-

estic microwave ovens. Relativistic magnetrons that use explosive emission

cathodes are also considered in Chapter 9. These oscillators are very promising high-

frequency sources in radar systems and countermeasure means.

A very interesting power oscillator that utilizes crossed fields is the magnetically

insulated line oscillator (MILO). In this tube, the magnetic field of the electron beam

replaces the external magnetic field of a conventional magnetron. This requires a

very high beam current that can be provided only by explosive electron emission.

The constructive simplicity of such systems provides potential advantages with

respect to other pulse sources of electromagnetic oscillation with power on the

order of gigawatts in the L and S frequency bands.

The microwave amplifiers and oscillators mentioned above exploit radiation of

electrons executing rectilinear or close to rectilinear particle motion: transition
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and Cerenkov radiation. In the latter, synchronous radiation of particles is possible,

due to their interaction with slow and therefore surface electromagnetic fields. The

output power and efficiency of corresponding devices inevitably drop with the fre-

quency. So the shortest nonrelativistic BWOs have a maximum output power on the

order of milliwatts in the submillimeter-wavelength range. Relativistic devices of

O type are an exception, but the possibilities for their practical application,

especially in continuous-wave (CW) regimes, are limited.

New ideas were put forward at the end of the 1950s and the beginning of the

1960s. The natural attenuation was turned to electron beams with curvilinear period-

ical trajectories of particles in which electrons radiate at an arbitrary ratio of their

velocity to the phase velocity of a wave in a given medium. This concept is the

idea underlying classical electron masers (CEMs), where stimulated radiation of

oscillating electrons takes place.

Chapter 10 is devoted to the mechanism, theory, and sources of stimulated radi-

ation of classical electron oscillators. This area of vacuum electronics reflects

perhaps the most significant tendencies in modern high-frequency electronic devel-

opments. The analysis of an ensemble of classical electron oscillators in electromag-

netic fields displays two important mechanisms: linear and quadratic bunching. The

latter is the result of the nonisochronism of oscillators. Among the examples of

subrelativistic classical electron masers considered in the book, the gyrotron and

the ubitron are notable, in which takes places the stimulated bremsstralung of elec-

trons in uniform and spatially periodic magnetic fields, respectively. The surprising

property of the gyrotron is the existence of a strong essentially relativistic quadratic

bunching for subrelativistic energies of electrons (on the order of tens of keV).

Another important property of a gyrotron is the possibility of using spatially devel-

oped electrodynamic and electron-optical systems, due to the existence of effective

mode selection methods for gyrotrons. That allows one to obtain record average

output power in the millimeter- and submillimeter-wave ranges. Unique gyromono-

trons have been developed that deliver CW output power up to 1 MW in a 2-mm

wavelength. Similar gyromonotrons find wide application in controlled fusion

experiments (e.g., electron–cyclotron resonance heating and electron–cyclotron

current drive in tokamak–stellarator plasmas). A substantial part of Chapter 10

covers an analysis of the gyrotron mechanism, gyrotron electron-optical systems,

methods of mode selection in gyrotrons, and various gyrotron applications.

The efficiency of gyrotrons drops, however, as the electron energy approaches the

relativistic energy, because the decrease in the relativistic electron mass in the

process of radiation violates the synchronism between oscillating electrons and

the electromagnetic field. In this case, cyclotron autoresonance masers (CARMs)

and free-electron masers (FELs) are alternatives. In a CARM, synchronism is sup-

ported when the phase velocity is closed to the light velocity c, due to compensation

of the electron relativistic gyrofrequency shift and the Doppler shift stipulated by a

change in the electron drift velocity. In a FEL, an ultrarelativistic version of the

ubitron, the stimulated radiation of electrons in wiggler (undulator) devices with a

spatially periodic magnetic field, is used. A very important property of a FEL is

the bremsstrahlung Doppler frequency up-conversion, according to which the radi-

ation frequency in the laboratory frame of reference increases approximately
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proportionally to the square of the relativistic mass of the moving radiating particle.

This property, together with those specific for the FEL pondermotive bunching

effect, allows one to obtain powerful coherent radiation in the infrared, optical, ultra-

violet, and potentially, even hard x-ray ranges.

CARMs and FELs are considered in the book comparatively briefly. FELs were

invented in 1971, and at present the number of published papers dedicated to FELs

is on the order of 104. Due to its wavelengths, coherent properties, frequency tunabi-

lity, and high output power, FELs open an unprecedented range of applications. A list

that is very far from complete includes such topics as biology, biomedicine, surgery,

solid-state physics, chemistry and the chemical industries, defense, micromachining,

photophysics of polyatomic molecules, and military and domestic applications.

Unfortunately, a reader will find very little material on electron emission,

stochastic oscillations in electron beams and microwave tubes, and charged-particle

beam problems in accelerators. That restriction certainly narrows the scope of the

book but opens additional possibilities for a more detailed discussion of theory

and methods in the main topics mentioned above. Also, there was no room for

numerous constructive implementations of devices. This is a very complicated

problem taking into account the modern dynamics of high-power vacuum elec-

tronics development.

Finally, computation algorithms and softwares that have reached a very high

level of sophistication are not considered in this book. Surely, they should now be

treated as an independent area of vacuum electronics. Certainly, numerical methods

are a necessary component of the design of all electron devices. However, the appli-

cation of the numerical simulation can turn out to be useless without a clear under-

standing of theoretical foundations.

I.2 LIST OF SYMBOLS

Vector values are denoted in bold face. MKS units are used.

A magnetic vector potential

B, B magnetic induction

c ¼ 2.997925 � 108 m/s light velocity

E, E electric field

e0 ¼ 1:602177� 10�19C absolute value of an electron

charge

h ¼ 6.626076 � 10 234 J . s Planck’s constant

I0 ¼ 4p10c
3

h
� 17 kA

relativistic current

i imaginary unity

j, j current density

k ¼ 1:38066� 10�23J=K Boltzmann’s constant

m electron relativistic mass

m0 ¼ 9.109390 � 10231 kg electron rest mass

n particle density

p, p momentum
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v, v velocity of a particle

vg group velocity

vph phase velocity

w0 ¼ m0c
2 ¼ 8:187111� 10�14 J electron rest energy

b ¼ v

c
dimensionless velocity

b propagation constant

g ¼ m

m0

¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
relativistic factor

10 ¼ (m0c
2)�1 ¼ 8:854188� 10�12F=m permittivity of free space

h ¼ e0

m0

¼ 1:758820� 1011 C=kg electron specific charge

m0 ¼ 4p� 10�7 H/m permeability of free space

r space-charge density

w electric potential

w0 ¼
m0c

2

e0
� 511� 103 V reduced electron rest energy

vg ¼ e0B

m
¼ e0B

m0g

gyrofrequency (electron–cyclotron

frequency)

vp ¼ nee
2
0

m010

� �1
2

electron plasma frequency

vq reduced plasma frequency

I.3 ELECTROMAGNETIC FIELDS AND POTENTIALS

Considered below are electromagnetic fields acting on a moving particle with

location r(t); therefore, the fields and potentials are expressed as

E ¼ E½r(t),t�, B ¼ B½r(tÞ,t�, w½r(t),t�, A ¼ A½r(tÞ,t� (I:1)

For static fields, @=@t ¼ 0 and

E ¼ E½r(t)�, B ¼ B½r(t)�, w½r(t)�, A ¼ A½r(t)� (I:2)

Field–potential relations according to Maxwell’s equations are

E ¼ �gradf� @A

@t
, B ¼ curlA (I:3)

For static fields:

E ¼ �gradw, B ¼ curlA (I:4)

Maxwell’s equations (in free space):

curlB ¼ m0 jþ
1

c2
@E

@t
(I:5)

curlE ¼ � @B

@t
(I:6)
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divE ¼ r

10
(I:7)

divB ¼ 0 (I:8)

For static fields according to Eqs. (I.4) and (I.7), Poisson’s equation is valid:

div grad w ¼ � r

10
(I:9)

This equation is reduced to the following forms in Cartesian and cylindrical coordi-

nates, respectively:

@2w

@x2
þ @2w

@y2
þ @2w

@z2
¼ � 1

10
r(x,y,z) (I:10)

1

r

@

@r
r
@w

@r

� �
þ 1

r2
@2w

@u2
þ @2w

@z2
¼ � 1

10
r(r,u,z) (I:11)

I.4 PRINCIPLE OF LEAST ACTION. LAGRANGIAN. GENERALIZED
MOMENTUM. LAGRANGIAN EQUATIONS

The principle of least action (Hamilton’s principle), is stated: For each mechanical

system, the functional (the action integral of specific function L) exists as

S ¼
ðt2
t1

L(q1, q2, . . . , qN , _q1, _q2, . . . , _qN , t) dt (I:12)

For real trajectories, qi ¼ ½qi(t)�real S has the least (in general, extreme) value. Here

L is the Lagrangian, qi and _qi(i ¼ 1, 2, . . . , N) are generalized coordinates and

velocities, and N is the number of degrees of freedom. A system of n particles

has N ¼ 3n degrees of freedom. All possible (comparable) trajectories belong to

the class

qi(t1) ¼ q(1)i , qi(t2) ¼ q(2)i , i ¼ 1, 2, . . . , N (I:13)

It can be shown that a necessary condition for realization of the extreme of the func-

tional S is the system of equations

d

dt

@L

@_qi

� �
� @L

@qi
¼ 0, i ¼ 1, 2, . . . , N (I:14)
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which determines the real trajectories. These are the famous Lagrangian equations.

Generalized momenta are defined as

Pi ¼ @L

@_qi
, i ¼ 1, 2, . . . , N (I:15)

It is convenient for the particle (N ¼ 3) to use the vector notation

r(q1, q2, q3), v(_q1, _q2, _q3). Then the generalized momentum is

P ¼ @L

@v
(I:16)

An alternative Lagrangian equation to (I.14) is

d

dt

@L

@v

� �
� @L

@r
¼ dP

dt
� @L

@r
¼ 0 (I:17)

The Lagrangian for the electron in the electromagnetic field is given by (see, e.g.,

Landau and Lifshitz, 1987)

L ¼ �m0c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
� e0 Avþ e0w (I:18)

The electron generalized momentum according to Eqs. (I.16) and (I.18) is

P ¼ @L

@v
¼ m0vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p � e0A ¼ p� e0A (I:19)

where the mechanical momentum p ¼ m0gv. Then the electron Lagrangian may be

written as

L ¼ � m0c
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p (1� b2)� e0Avþ e0f ¼ Pv� w (I:20)

where the quantity

w ¼ mc2 � e0w (I:21)

is the electron energy [see Eq. (1.3)] and m ¼ m0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
is the relativistic

electron mass. The equation of motion according to Eqs. (I.17) and (I.19) is

dp

dt
� e0

dA

dt
þ e0

@(Av)

@r
� e0

@w

@r
¼ 0 (I:22)

Using a known relation of vector analysis,

@(Av)

@r
¼ (vr)Aþ v� curl A (I:23)
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we obtain

dp

dt
� e0

@A

@t
� e0(vr)Aþ e0(vr)Aþ e0v� B� e0 grad w ¼ 0 (I:24)

So, corresponding to Eqs. (I.3), Eq. (I.24) becomes

dp

dt
¼ �e0E� e0v� B (I:25)

This equation can also be expressed in terms of the relativistic factor g ¼ m=m0:

d(gv)

dt
¼ �h(Eþ v� B) (I:26)

The equation of motion in the nonrelativistic approximation (g ¼ 1) is

dv

dt
¼ �h(Eþ v� B) (I:27)

I.5 HAMILTONIAN. HAMILTONIAN EQUATIONS (e.g., Landau
and Lifshitz, 1987)

According to Eq. (I.20), the energy in terms of the momentum and the Lagrangian is

w ¼ Pv� L (I:28)

Here L and w are functions of r, v, and t. Using the formula for generalized momen-

tum (I.19), we can express v in terms of P, r, and t. The energy as a function of these

variables is called the Hamiltonian:

H ¼ w(P, r, t) ¼ Pv� L (I:29)

We can express the equation of motion via the Hamiltonian. The total differential of

H is

dH ¼ P dvþ v dP� @L

dr
dr� @L

@v
dv� @L

@t
dt (I:30)

Taking the Lagrangian equation [Eq. (I.17)] and the Lagrangian momentum defi-

nition [Eq. (I.16)], we find that

dH ¼ @H

@r
drþ @H

@P
dPþ @H

@t
dt ¼ v dP� dP

dt
dr� @L

@t
dt (I:31)

Equating corresponding terms in Eq. (I.31), we obtain the Hamiltonian equations

dP

dt
¼ � @H

@r
,

dr

dt
¼ @H

@P
(I:32)
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Also, we find that

dH

dt
¼ @H

@t
¼ � @L

@t
(I:33)

The Hamiltonian equations are the equations of motion in the variables P and r.

Note that for static fields according to Eq. (I.33), dH=dt ¼ 0. This relation is equiv-

alent to the conservation of energy.

The explicit expression of the Hamiltonian for an electron in the electromagnetic

field as a function of P, r and t according to Eq. (I.19) is

H ¼ mc2 � e0w ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0c
2 þ (Pþ e0A)

2

q
� e0w (I:34)

Here A and w are functions of r and t. We also used the obvious relationship for the

relativistic mass:

m2c2 ¼ m2
0c

2 þ p2

If one differentiates the first of Eqs. (I.32) with respect to P and the second with

respect to r and add them, we obtain

@Ṗ

@P
þ @ṙ

@r
¼ 0 (I:35)

I.6 LIOUVILLE THEOREM

I.6.1 Liouville Theorem for Interaction Particles

When F(P, q, t) is the distribution function in the phase space (i.e., a number of par-

ticles in the unity phase volume),

F ¼ dn

dP dq

where dn is the number of particles in the phase volume dP dq. The value F denotes

density in the phase space. In general, if there are N interacting particles, the Lagran-

gian for each particle depends on the coordinates and velocities of all particles, and

the phase space has 6N dimensions.

Each element of dPi dqi is really a six-dimensional element in Euclidean space.

The 6N dimension’s current density of these particles is

j ¼ v
dn

dP dq
¼ vF
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where the 6N velocity v has the components _P and _q. According to a continuity

theorem (conservation of the particle number),

div jþ @F

@t
¼ 0 or

@jP
@P

þ @jq
@q

þ @F

@t
¼ 0

Then

@(F _P)

@P
þ @(F _q)

@q
þ @F

@t
¼ 0 or

_P
@F

@P
þ F

@ _P

@P
þ _q

@F

@q
þ F

@_q

@q
þ @F

@t
¼ 0

(I:36)

By letting the particles move along trajectories, Eq. (I.35) becomes valid, and the

second and fourth terms in Eq. (I.36) cancel. We obtain

@F

@P
_Pþ @F

@q
_qþ @F

@t
¼ 0 or

DF

Dt
¼ 0 (I:37)

This is a version of the Liouville theorem: The density F of particles moving along

trajectories is constant.

Consider a group of N particles that move along their trajectories. The number of

the particles in the group is constant:

N ¼
ð
V

F dP dq ¼ const: (I:38)

Because F ¼ const., we obtain ð
V

dP dq ¼ const: (I:39)

The volume of the 6N phase space that encloses a chosen group of the particles is

constant. This is the second version of the Liouville theorem.

Note that the Hamiltonian equations (I.32) are valid if the forces acting on the

particles have a potential. These forces are called Hamiltonian forces. For non-

Hamiltonian forces (i.e., radiation losses, frictional forces, etc.) the first of

Eqs. (I.32) must be changed (Landau and Lifshitz, 1987). In this case, the Liouville

theorem is not valid, and the phase density as well as the phase volume of the group

of particles chosen has no more invariants.

I.6.2 Liouville Theorem for Noninteraction Identical Particles

In this case, the Lagrangian of each particle will depend on the coordinate andmomen-

tum of the particle. Then we can write the Hamiltonian equations for each particle in

the same six-dimensional phase space and use a distributive function in this space for
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identical particles:

f ¼ dn

dP dq

Furthermore, formulas (I.37)–(I.39) are repeated and we obtain Liouville’s theorem

for six-dimensional phase space. In particular,

f ¼ const: or
@f

@P
Ṗþ @f

@r
ṙþ @f

@t
¼ 0,

ð
V6

dP dq ¼ const: (I:40)

where V6 is the six-dimensional phase volume.

I.6.3 Liouville Theorem for a Phase Space of Lesser Dimensions

The invariant phase volume in the Liouville theorem may be shortened even more if

some degree of freedom of the noninteraction particles is independent of the

other(s). In this case, the corresponding Hamiltonian may be represented as the

sum of independent components, and for each component we obtain invariants cor-

responding to Eq. (I.40) (Moss, 1968; Reiser, 1994). For example, if the motion in

the transverse plane ( p?, q?) and the longitudinal motion ( pz, qz) are independent,

the invariants are

f (P?, q?) ¼ const:,

ð
V4

d _P? dq? ¼ const: (I:41)

f (Pz, qz) ¼ const:,

ð
V2

dPz dqz ¼ const: (I:42)

Finally, if motions in the x and y directions are independent, the invariant of

Eq. (1.41) is split to

f (Px, x) ¼ const:, f (Py, y) ¼ const:ð
V2

dPx dx ¼ const:,

ð
V2

dPy dy ¼ const.
(I:43)

I.7 EMITTANCE. BRIGHTNESS (Humphries, 1990; Lawson, 1988;
Lejuene and Aubert, 1980)

I.7.1 Emittance in a Zero Magnetic Field

In this case, P ¼ pþ e0A ¼ p. Consider the first of the integrals in Eq. (I.43):ð
dpx dx ¼

ð
dpx

pz
pz dx ¼

ð
pz dx dx

0 ¼ const. (I:44)
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Suppose that pz is constant in each transverse section of the beam. Then

pz

ð
dx dx0 ¼ pzV2 ¼ const: (I:45)

If the particles move with constant energy in the z-direction ( pz ¼ const.),

Jx ¼
ð
dx dx0 ¼ V2 ¼ const. (I:46)

The ðx, x0Þ phase space is called a trace space. The integral Jx is called an

emittance. In the literature, the emittance is often defined as ð1=pÞJx. According

to Eq. (I.40), the area of the trace space for some groups of the particles with con-

stant axial momentum along a trajectory is invariant. Note that the configuration of

the contour enclosing a chosen group of particles in the trace space can vary, but the

area into the contour is conserved. A reader can find many interesting pictures dis-

playing contour transformations in the literature (see, e.g., Humphries, 1990;

Lawson, 1988; Lejuene and Aubert, 1980).

If the beam is axially symmetric, the single emittance of Eq. (I.46) may be uti-

lized. For the nonsymmetrical paraxial beams with constant pz, only the invariance

of a hyperemittance

Jh ¼
ð
dx dx0dy dy0 ¼ V4 (I:47)

is correct. If the beam has two planes of symmetry x and y, the hyperemittance is

Jh ¼
ð
V2

dx dx0
ð
V2

dy dy0 ¼ JxJy

For a beam with variable pz momentum, the invariant is

p2zJh � b2g2Jh ¼ b2gV4 (I:48)

In nonrelativistic approximation, that is equivalent to

w(z)Jh ¼ const: (I:49)

I.7.2 Brightness

Microscopic brightness is, by definition,

Bm ¼ dI

dV4

¼ dI

dx dx0dy dy0
A=rad2 �m2 (I:50)

where I is the beam current. Usually, the average brightness value is utilized:

B ¼ I

V4

¼ I

Jh

(I:51)
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For the small beam angles, this definition is equivalent to

B � j

V
¼ j

pa2(z)
A=m2 � st (I:52)

where j is a current density,V is a solid angle enclosing all the rays emerging from a

point on the z-axis, and a(z) is the angle between the z-axis and the beam edging

rays. According to Eq. (I.47), the brightness is invariant if bg or w(z) is a constant.
Otherwise, invariants are

Binv ¼ Bb
2
g2

b2g2
(relativistic), Binv ¼ Bw

w(z)
(nonrelativistic) (I:53)

where b, g, and w are average values.

I.7.3 Maximum Langmuir Brightness for Thermionic Emitters

Assuming a Maxwellian distribution of initial velocities and neglecting all other

factors that can limit the beam current density, Langmuir (1937) obtained the

following formula for a theoretical maximum of current density:

j(z) ¼ jc
e0w(z)

kT
sin2a(z) (I:54)

where jc is the cathode current density, T is the cathode temperature, and k is

Boltzmann’s constant. This formula is valid in a nonrelativistic approximation

and for w(z)=kT � 1.

Substituting Eq. (I.54) for small a(z)½sina(z) � a(z)� into Eq. (I.52), we obtain

the maximum brightness:

Bmax ¼ jc
e0w(z)

pkT
(I:55)

Correspondingly, the invariance maximum brightness [Eq. (I.53)] is

Binv,max ¼ jc
e0

pkT
w (I:56)

According to Eq. (I.54), for small a the maximum current density is

jmax ¼ jc
e0w

kT
a(z)2 (I:57)

14 INTRODUCTION



PART I

ELECTRON BEAMS

Electron beams are flows of free electrons moving in the direction chosen. This is

called the axis of the beam. The trajectories of the beam particles often come

close to being rectilinear, although recently, specific devices with periodic curvi-

linear beams, in particular classical electron masers (CEMs) and free electron

lasers (FELs), are attracting more and more attention. A beam’s axis may be

either straight or curved. Finally, beams may have different symmetry: for

example, a cylindrical, a sheet, or a strip.

Let us list some properties of electrons as elementary particles. These make elec-

tron beams very important for creating and controlling images, material processing,

transferring energy with high density, generating other particles, and generating and

transforming high-frequency signals.

. Electrons are charged particles that provide effective control of a particle’s

movement by means of electric and magnetic fields. At the same time, inter-

action between the particles through self fields (space-charge and self magnetic

fields) raises many specific effects and problems connected with the control and

stability of intense electron beams.

. Electrons are stable (long-life) particles.

. Electrons are very light particles. They are the lightest among all long-living

elementary charged particles and the longest living of the light charged par-

ticles. The small mass and correspondingly, inertia of electrons forms the func-

tioning base of high-frequency systems. The transfer of an electron’s beams is

not accompanied by a large mass transport. So a 100-kA beam transfers only

2 g of electrons during 1 hour. Self fields are relatively weak, due to their

high level of electron mobility.

. Electrons are chemically neutral particles. Their transfer does not change the

chemical content of electrode surfaces.
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. Simple and effective methods are available to extract electrons from solid,

liquid, or gaseous media. It is essential that each type of electron emission

provide many important applications of corresponding electronic devices.

Usually, beams are thought of as thin flows with transverse dimensions (at least, a

single transverse dimension for sheet beams) and are quite small compared to beam

length.

The physics of electron beams certainly does not exhaust the topic of vacuum

electronics. Nevertheless, the sphere of electron beam applications is great. A list

of some important applications follows:

. Electron optics (e.g., lenses, electron guns, beam deflection systems)

. Microwave vacuum electronics, including relativistic microwave electronics

and free-electron lasers

. Electron microscopy, including electron-probe microanalysis

. Electron beam tubes in television, radar, and radio-meter systems

. Electron beam technology (e.g., precise cutting, drilling, welding, melting,

high-resolution lithography, manufacture of integrated contours)

. Electron accelerators

. Formation and transport of intense electron beams

To stay within the scope of the book, we will not give a detailed exposition of the

huge family of microwave devices and in general, devices using electron beams, or

catalogue their numerous specific properties. Only a description of key devices and

clarification of their design schemes are offered.
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CHAPTER ONE

Motion of Electrons
in External Electric and
Magnetic Static Fields

1.1 INTRODUCTION

Taking external fields into account—the sources of fields that are independent of

beam electrons—is the simplest approximation. In general, the motion of charged

particles is also determined by interaction with other particles in the beams. For

pure electron beams, this interaction is realized through macroscopic (collective)

forces created by electrons themselves (self fields, i.e., space-charged electric and

magnetic fields) and by microscopic fields (in practice, through collisions). Consid-

ering motion and ignoring space-charge fields is sufficient for rarefied beams (e.g.,

for beams in electron lenses). But to study dense beams, knowledge of motion prin-

ciples in external fields is also necessary. Beams with the essential effect of self

fields are considered in Chapters 3 to 5.

In this chapter we limit ourselves to a study of static fields. Aspects of electron

motion in nonstationary fields are considered in Chapters 6 to 10.

1.2 ENERGY OF A CHARGED PARTICLE

The important principle of charged-particle motion in static fields is energy

conservation. Let us multiply Eq. (I.25) by v:

v
dp

dt
¼ �e0 vE (1:1)
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The transformation of Eq. (1.1) for the static fields (@w=@t ¼ 0) gives

dw½ r(t)�
dt

¼ @w

@ r

d r

dt
¼ �vE

v
dp

dt
¼ 1

m
p
dp

dt
¼ 1

2m

dp2

dt
¼ 1

2m

d

dt
(m2c2 � m2

0c
2) ¼ d

dt
(mc2)

Here we used the relation

m2c 2 ¼ p2 þ m2
0c

2 (1:2)

following the expression for the relativistic mass m ¼ m0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
. Substituting

these formulas in Eq. (1.1), we obtain the conservation of energy:

d

dt
(mc2 � e0w) ¼ 0, w ¼ mc2 � e0w ¼ const: (1:3)

The energy w can be called a full energy, one that is equal to the sum of the electron

potential e0w and kinetic mc2 energies. Often, the kinetic energy is assumed as the

difference wk ¼ w� w0 ¼ (m� m0)c
2 ¼ m0c

2(g� 1). Note that in the important

quasistatic approximation, where the equation E ¼ �gradw is still correct but the

electric field depends on the time explicitly, the following relation is true:

dw

dt
¼ @w

@t
(1:4)

In nonrelativistic approximation, the energy is mc 2 ¼ (m0v
2=2)þ m0c

2. Omitting

m0c
2, we obtain the conservation of nonrelativistic energy:

wn ¼ m0v
2

2
� e0w ¼ const: (1:5)

1.3 POTENTIAL–VELOCITY RELATION (STATIC FIELDS)

Let us assume that an electron leaves a cathode with velocity vc and mass mc corre-

spondingly. We believe that the cathode potential wcath ¼ 0. Below m and w are the

electron mass at an arbitrary point r; e0wc is the initial energy of the electron at

the cathode. Then, according to energy conservation,

mc 2 � e0w ¼ m0c
2 þ e0wc (1:6)

18 MOTION OF ELECTRONS IN EXTERNAL ELECTRIC AND MAGNETIC STATIC FIELDS



Let us divide Eq. (1.6) by m0c
2:

g ¼ m

m0

¼ 1þ e0(wþ wc)

m0c2
¼ 1þ e0w

�

m0c2
¼ 1þ w�

w0

¼ 1þ hw�

c2
(1:7)

where w0 ¼ m0c
2=e0 ¼ c2=h is the reduced electron rest energy in volts;

w� ; wþ wc. Taking 1 MV as a unit of potential, we obtain w0 � 0:51100 MV, and

g � 1þ 1:9569f�
MV � 1þ 2f �

MV (1:8)

For zero initial velocity, w� ¼ w and

g ¼ 1þ w

w0

� 1þ 1:9569wMV � 1þ 2wMV (1:9)

where wMV is the potential in megavolts. In nonrelativistic approximation and for

wcath ¼ 0, we obtain from Eq. (1.5) the nonrelativistic dimensionless velocity

bn ¼
v

c
¼

ffiffiffiffiffiffiffiffi
2w

w0

�
s

� 1

16

ffiffiffiffiffiffiffiffi
f�
kV

p
(1:10)

wherew�
kV is the reduced potential in kilovolts. Using the dependenceg ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
and Eq. (1.7), it is easy to find that

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�(w� þ 2w0)

p
w� þ w0

, bwc¼ 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w(wþ 2w0)

p
wþ w0

(1:11)

In the extreme relativistic limit w0=w 	 1, according to Eq. (1.11),

bext � 1� 1

2

w0

w

� �2

(1:12)

The values of bn,b, andbext are given in Table 1.1 for different values of w.
According to the table, nonrelativistic approximation “works” until w � 10 kV.

Extreme relativistic approximation is acceptable after w ¼ 5 MV.

TABLE 1.1 Reduced Nonrelativistic, Relativistic, and Extreme Relativistic Velocities as
Functions of the Potential

w 1.0 V 100 V 1 kV 10 kV 100 kV 300 kV 1 MV 5 MV 25 MV

bn 0.001978 0.01978 0.06256 0.1976 0.625 1.083 1.976 4.42 9.9

b 0.001978 0.01978 0.06247 0.1950 0.5482 0.7253 0.9411 0.9957 0.9998

bext 213� 1010 213� 106 213� 104 21300 212 20.451 0.8694 0.9948 0.9998
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1.4 ELECTRONS IN A LINEAR ELECTRIC FIELD e0E ¼ kx

Equations of motion:

dp

dt
¼ �e0Ex ¼ �kx (1:13)

dx

dt
¼ p

m
¼ pcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
0c

2
p (1:14)

1.4.1 Nonrelativistic Approximation

Equation (1.14) becomes

dx

dt
¼ p

m0

(1:14a)

Equations (1.13) and (1.14a) are the equations of a harmonic oscillator. Their

solution is

x(t) ¼ x0 cos(vt þ a)

p(t) ¼ �x0m0v sin(vt þ a)
(1:15)

where v ¼ ffiffiffiffiffiffiffiffiffiffi
k=m0

p
is the oscillation frequency. The trajectory in a phase space for

this oscillator is the ellipse:

x2

x 2
0

þ p2

x 2
0 km0

¼ 1 (1:16)

1.4.2 Relativistic Oscillator

Return to the relativistic system of equations. Dividing Eq. (1.14) by Eq. (1.13), we

obtain

�kx dx ¼ cp dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

0c
2

p (1:17)

Integration of this equation yields the trajectory in phase space:

a2 � kx2

2
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

0c
2

q
(1:18)

where a2 is an arbitrary constant. It is readily verified that this trajectory

describes a finite (periodic) motion. Actually, the variables x and p have maximum

values (amplitudes):

xmax ¼ x p¼0 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0

k
(u� 1)

r
pmax ¼ px¼0 ¼ m0c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p (1:19)
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where u ¼ a2=m 0c
2 . 0 is a reduced arbitrary constant. The results of a numerical

integration of Eqs. (1.13) and (1.14) have been given by Humphries (1990). It was

shown that phase trajectories have the form of distorted ellipses. According

to Eq. (1.19), they are transformed to correct nonrelativistic ellipses when

u� 1 � kx2=2m0c
2 	 1. This inequality means that the potential energy of an

oscillator is negligible compared with the particle rest energy.

1.5 MOTION OF ELECTRONS IN HOMOGENEOUS STATIC FIELDS

Homogeneous fields certainly are idealizations. However, the principles and

results of this theory are a basis for the solution of much more complicated

problems.

1.5.1 Electric Field

We assume that the electric field is opposite the y-axis (Fig. 1.1), so that Ey ¼ �E.

Consider two cases:

1. Initial momentum p0 of the electron turns toward the x-axis (Fig. 1.1). The

equations of motion are

dp

dt
¼ �e0 E (1:20)

dpx

dt
¼ 0,

dpy

dt
¼ e0E (1:21)

FIGURE 1.1 Motion of an electron in a homogeneous electric field. Solid curve, relativistic

trajectory; dashed curve, nonrelativistic trajectory.
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Integrating the first equation in Eq. (1.21), we obtain

px ¼ mvx ¼ p0 (1:22)

As follows from the second equation in Eq. (1.21),

dpy

dt
¼ dpy

dx

dx

dt
¼ p0

m

dpy

dx
¼ e0E (1:23)

According to Eq. (1.2), the mass may be written as

m ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

0c
2

q
¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þ m2

0c
2 þ p2y

q
¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

0

c2
þ p2y

r
(1:24)

whereW0 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0c
2 þ p20

q
is the initial kinetic energy of the particle. Substituting m

into Eq. (1.16), we obtain

dpyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(W2

0=c
2)þ p2y

q ¼ e0E

cp0
dx

Integration of this equation gives

sinh�1 pyc

W0

¼ e0E

cp0
x (1:25)

Note that

py ¼ m
dy

dt
¼ m

dy

dx

dx

dt
¼ px

dy

dx
¼ p0

dy

dx

After a corresponding transformation (1.25) and integration, we obtain

y ¼ W0

e0E
cosh

e0Ex

cp0
� 1

� �
(1:26)

This is the equation of a catenary curve. In the nonrelativistic approximation

(e0Ex=cp0 	 1), the energy W0 � m0c
2. The first term of the Taylor expansion of

cosh in Eq. (1.19) gives the well-known parabolic trajectory

y ¼ e0E

2m0v
2
0

x2

In Fig. 1.1 the catenary curve is situated above the parabola because of the more

rapid (almost exponential) change of the relativistic y-coordinate as a function of

x [Eq. (1.26)].
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2. Initial momentum p of the particle is parallel to the y-axis (Fig. 1.1).

According to Eqs. (1.21),

px ¼ 0

py ¼ m
dy

dt
¼ e0Et þ p

(1:27)

Then using relation (1.2) for m, we find that

dy ¼ c(e0Et þ p)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0c
2 þ (e0Et þ p)2

q dt

Integrating this equating with the initial condition y0 ¼ 0, we obtain

y ¼ c

e0E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0c
2 þ (e0Et þ p)2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0c
2 þ p2

q� �

1.5.2 Magnetic Field

The equation of motion

dm v

dt
¼ �e0 v� B (1:28)

Since the force is perpendicular to the velocity, the modulus of v and the electron

mass m are constants:

v ¼ jvj ¼ const:, m ¼ const: (1:29)

The same result follows from the energy integral (1.3) because the electric field is

zero. Then the potential w ¼ const: and m ¼ const. Equation (1.28) becomes

dv

dt
¼ � e0

m
v� B (1:30)

Let us assume that vB and v? are velocity components parallel and perpendicular to

B, respectively. We obtain from Eq. (1.30)

vB ¼ const: (1:31)

dv?
dt

¼ � e0

m
v? � B (1:32)

From Eqs. (1.29) and (1.31) follow

v? ; j v?j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v 2B

q
¼ const: (1:33)
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So in a static magnetic field, the values m, v, v?, and vB are constants. The

quantity a? ¼ dv?=dt is the acceleration of a plane motion. In this case, it may

be represented as a sum of the tangential and the centripetal components:

an ¼ v2?
R
, at ¼ dv?

dt
(1:34)

where R is the radius of curvature in the given point of the trajectory. According to

Eq. (1.33), at ¼ 0. Then

an ¼ v2?
R

¼ e0

m
j v? � Bj ¼ e0

m
v?B (1:35)

The radius of the curvature

R ¼ r? ¼ v?
(e0=m)B

¼ const: (1:36)

Hence, the electron trajectory in the plane perpendicular to B is a circle. The

quantity

vg ;
e0

m
B ¼ hB

g
(1:37)

is the angular velocity of gyration.

We find that the motion of the electron (in general, of a charged particle) is the

superposition of two motions: uniform drift along the magnetic field with velocity vB
and uniform gyration on a circle of radius r? [Eq. (1.36)] with frequency vg

[Eq. (1.37)]. Therefore, the spatial trajectory of the particle is a helical line

(Fig. 1.2) with pitch h ¼ (2p=vg)vB. It is evident that equations of the trajectory

for x0 ¼ y0 ¼ z0 ¼ 0 are

x ¼ r? sin(vgt)

y ¼ r?½cos(vgt)� 1�
z ¼ vBt

(1:38)

FIGURE 1.2 Motion of an electron in a homogeneous magnetic field.
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The circle is called a Larmor circle, the radius is a Larmor radius, the center of the

Larmor orbit is a guiding center, and vg is the gyrofrequency or cyclotron frequency.

It is essential that the relativistic gyrofrequency depends on the particle’s kinetic

energy:

vg ¼ e0c
2

w
B ¼ hB

g
(1:39)

Therefore, electrons in magnetic fields behave as nonisochronous oscillators.

This property of electrons has very important applications in electron masers

(Chapter 10).

In the nonrelativistic approximation g ¼ 1, the gyrofrequency is vg ¼ hB. In

this case, the electrons are isochronous oscillators.

Example 1.1 Find the trajectory parameters of an electron that is injected into the

uniform magnetic field B ¼ 1 T at an angle a ¼ 308 (Fig. 1.2). The electron energy

is 1MeV.

For w ¼ 1MeV, g ¼ 1:957 [Eq. (1.12)], and b ¼ 0:941 (Table 1.1). The gyro-

frequency is vg ¼ hB=g ¼ 8:99� 1010 rad=s. The velocity components (Fig. 2.1)

are v ¼ bc ¼ 2:82� 108 m=s; vB ¼ v cosa ¼ 2:43� 108 m=s; and v? ¼ v sina ¼
1:41�108m=s. The pitch of the helical trajectory is h¼ (2p=wg)vB ¼ 1:7�10�2m.

The radius of the helix is r? ¼ v?=vg¼ 1:6�10�3m.

1.5.3 Parallel Electric and Magnetic Fields

Now assume that the electric and magnetic fields are oriented along the z-axis. Let

Ez ¼ �E and Bz ¼ B (Fig. 1.3). The equations of motion are

dp?
dt

¼ �e0 v? � B (1:40)

dpz

dt
¼ e0E (1:41)

Nonrelativistic Approximation (m¼m0) Equations (1.40) and (1.41) become

d v?
dt

¼ �h v? � B (1:42)

dvz

dt
¼ hE (1:43)

FIGURE 1.3 Motion of an electron in parallel fields E and B.
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Comparison of Eq. (1.42) with Eq. (1.32) shows that motion of the electron per-

pendicular to the z-axis plane is the same as motion without an electric field; the

electron gyrates on the Larmor circle with gyrofrequency vg ¼ hB. However,

the velocity vB (the velocity of the guiding center along the magnetic field) is

now proportional to t. As a result, the trajectory is a helix with variable pitch

h. Note that for large t the velocity vB reaches arbitrarily large values that contradict

relativity theory. In fact, for a velocity of order c, the mass becomes variable and the

motion in the transversal plane is not described by Eq. (1.42).

Relativistic Motion Let us turn to Eqs. (1.40) and (1.41). According to Eq. (1.41),

pz ¼ e0Et (1:44)

(for simplicity we take pz0 ¼ 0). Since p? is perpendicular to v? � B and according

to Eq. (1.40), the magnitude of the perpendicular momentum

p? ; j p?j ¼ const: (1:45)

Then the full momentum of the particle is

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2? þ p2z

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2? þ (e0Et)

2

q
(1:46)

The mass is [Eq. (1.2)]

m ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

0c
2

q
¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2? þ m2

0c
2 þ (e0Et)

2

q
¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
0

c2
þ (e0Et)

2

r
(1:47)

where w0 is the initial kinetic energy of the particle.

The perpendicular velocity now decreases with time:

v? ¼ p?

m
¼ p?cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðw 2
0=c

2Þ
p

þ (e0Et)
2

(1:48)

The magnitude of the full acceleration of the particle in the plane perpendicular

to B is

a ¼ dv?
dt

���� ���� (1:49)

This value may be found from Eq. (1.4):

d

dt
(mv?) ¼ m

d v?
dt

þ v?
dm

dt
¼ e0v? � B (1:50)

and

a ¼ 1

m
e0v? � B� v?

dm

dt

���� ���� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(e0v?B)2

m2
þ v 2?
m2

dm

dt

� �2s
(1:51)
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It is readily verified that the second term under the square root in Eq. (1.51) is a2t ,

where at is the tangential acceleration in the transverse plane:

at ¼ dv?
dt

¼ d

dt

p?
m

� �
¼ � p?

m2

dm

dt
¼ � v?

m

dm

dt
(1:52)

Therefore, the first term equals a2n, where an is the centripetal acceleration. Thus,

an ¼ v2?
R

¼ e0v?B
m

(1:53)

where R is the curvature radius of the trajectory in the perpendicular plane. We

obtain

R ¼ mv?
e0B

¼ p?
e0B

¼ const: (1:54)

The angular velocity is

v ¼ v?
R

¼ e0

m
B (1:55)

This value is analogous to the gyrofrequency vg [Eq. (1.33)], but m increases with

t [Eq. (1.47)]. We find that the trajectory of the particle is a helical line of constant

radius, variable pitch, and variable angular velocity (Fig. 1.3). It may be

seen from Eqs. (1.44), (1.47), and (1.55) that v � 0, vz � c for very large t and

the trajectory becomes a straight line parallel to the z-axis at a distance from it of

R ¼ p?=e0B.

1.5.4 Perpendicular Fields E and B

Nonrelativistic Approximation The coordinate system and directions of fields

are shown in Fig. 1.4. For this configuration

Ey ¼ �E ¼ const:, Bx ¼ B ¼ const: (1:56)

The nonrelativistic equations of motion are

dvx

dt
¼ 0 (1:57)

dv?
dt

þ hv? � B ¼ �hE (1:58)

Equation (1.57) corresponds to uniform drift in the x direction with velocity

vx ; vB ¼ const: (1:59)
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The drift velocity vB is determined by the initial condition. Equation (1.58) describes

motion in the plane (Y, Z) perpendicular to B. This is an ordinary linear inhomo-

geneous differential equation of first order in v?. The general solution of this

equation is the sum of a general solution of the homogeneous equation and a

partial solution of the inhomogeneous equation.

The homogeneous equation is

dv?
dt

þ hv? � B ¼ 0 (1:60)

which we considered in Section 1.4.2. As has been shown, its general solution

describes the electron motion as gyration along the Larmor circle in the (Y, Z)

plane with gyrofrequency vg ¼ hB. The magnitude of the gyratic velocity v? is

determined by the initial conditions.

The nonhomogeneous equation is Eq. (1.58). The right side of this equation is a

constant. Because we need a partial solution, we can use any solution of the type

v? ¼ vt ¼ const: Then Eq. (1.58) is reduced to

vt � B ¼ �E (1:61)

Vector multiplication of Eq. (1.61) by B yields

B� ( vt � B) ¼ �B� E ¼ E� B (1:62)

Using the rule of vector algebra for a double cross product, we have

vtB
2 � B(Bvt) ¼ E� B (1:63)

We can further specialize the partial solution setting vt perpendicular to B. Then

vt ¼ E� B

B2
, vt ¼ j vtj ¼ E

B
(1:64)

FIGURE 1.4 Motion of an electron in perpendicular fields E and B.
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Velocity vt is perpendicular to both E and B. It is the transversal (perpendicular)

drift. Its value does not depend on initial conditions. The full velocity can be

represented as a sum:

v ¼ vv þ vd (1:65)

where vv is the velocity of gyration and vd ¼ vt þ vB is the velocity of the guiding

center. Its trajectory is evidently a straight line in the (X, Z) plane with slope vB=vt.
The trajectory in the plane perpendicular to B is the superposition of the drift vt and

gyration vv. The character of the trajectory depends on the velocities vt and vv. In

the lower part of the trajectory, the resulting velocity is (see Fig. 1.4).

vr ¼ vt � vv

The following are possible types of trajetories:

. Extended trochoid: vr . 0, vt . vv

. Cycloid: vr ¼ 0, vt ¼ vv

. Contracted trochoid: vr , 0, vt , vv

These trajectories are shown in Fig. 1.5 and can be described in kinematic terms as

trajectories of the point on the rim of rolling wheel.

Note that for the electric field direction chosen, the magnitude of the electron

velocity on the lower point of the trajectory is less than that on the upper point,

where the potential is higher.

Perpendicular Fields E and B: Relativistic Version One method of solving

this problem is based on the transformation of electromagnetic fields E and B by

transition to another inertial frame of reference. Below we limit ourselves to a

FIGURE 1.5 Electron trajectories in perpendicular E and B fields for different values of

vt=v?: (a) extended trochoid; (b) cycloid; (c) contracted trochoid.
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qualitative discussion. According to the properties of the electromagnetic field

tensor (see, e.g., Landau and Lifshitz, 1987; Lehnert, 1964), there are two invariants

that are conserved with the transition:

E2 � c2B2 ¼ invariant; EB ¼ invariant (1:66)

In the case of perpendicular E and B, the second invariant is EB ¼ 0. Therefore, it is

possible to find an inertial frame of reference in which either the E or the B field

is zero.

A field that is not zero depends on the first invariant. Let’s assume that E/B . c,

so the first invariant is positive E 2 � c 2B 2 . 0. Hence, it is possible to find an iner-

tial frame of reference with a purely electric field where the first invariant is equal to

E02 and is also positive. According to Eq. (1.62), E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 2 � c2B2

p
. As can be

shown, the velocity of the reference frame must be V=c ¼ cB=E. In the

new frame the particle velocity as a function of time would not be periodical. It

is clear that after returning to the old frame of reference, the motion will not be

periodical either.

In the alternative case, E 2 � c2B2 , 0, a transition is possible to an inertial frame

with a purely magnetic field. In the new inertial frame of reference, the motion evi-

dently would be a superposition of the gyration and the uniform drift along the new

magnetic field (it is equal to B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � E 2=c2

p
and has the same direction as the

initial magnetic field). However, the coordinates are functions of time within a

moving inertial frame of reference. It is readily verified that this time is

dt 0 ¼ 1� Ev=Bc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E 2=B2c2

p dt (1:67)

It is not the proper time (the time in the frame of reference linked with the moving

particle). We can return to the old system by recalculating coordinates and time

simultaneously using the Lorentz transformation. Numerically, this operation

is very simple. However, the result computed for the analysis does not have

a simple physical interpretation such as that for superposition of the gyration and

uniform drift as in nonrelativistic approximation. Therefore, we do not discuss

this topic in greater detail. Another possible solution of this problem is given by

Landau and Lifshitz (1987), but their result is also not very obvious.

1.5.5 Arbitrary Orientation of Fields E and B.
Nonrelativistic Approximation

Let us draw an (X, Y ) plane through fields E and B and decompose vector E on the

components EB and E? parallel and perpendicular to the magnetic field (Fig. 1.6).

The nonrelativistic equations of motion are

dvB

dt
¼ hEB (1:68)

dv?
dt

þ hv? � B ¼ �hE? (1:69)
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Equation (1.68) describes uniformly accelerated drift in the direction of the

magnetic field:

vB ¼ hEBt þ vB0 (1:70)

The only difference between Eqs. (1.69) and (1.58) is the replacement of field E
by E?; therefore, all characteristics of motion perpendicular to the B plane

coincide in both cases except for the substitution of transversal drift velocity

[Eq. (1.64)]:

vt ¼ 1

B2
E? � B (1:71)

The full velocity of the guiding center is

vd ¼ vB þ vt ¼ vB
B

B
þ 1

B2
E? � B (1:72)

The electron gyrates on the Larmor circle in the plane perpendicular to B with gyro-

frequency vg ¼ hB, and the guiding center moves with uniform acceleration along

B. Evidently, the trajectory of the guiding center is a parabola in the (X, Z ) plane

(Fig. 1.6).

1.6 MOTION OF ELECTRONS IN WEAKLY INHOMOGENEOUS
STATIC FIELDS (Lehnert, 1964; Northrop, 1963;
Vandervoort, 1960)

The motion of electrons in weakly inhomogeneous fields is the next approximation

in the dynamics of charged particles. A physical system in general may be

considered as slowly varying when change in its properties is small on a character-

istically finite scale (temporal or spatial) for the system. Small varying systems

FIGURE 1.6 Electron velocities for arbitrary orientation of fields E and B. Trajectory T of

the guiding center in the (X, Z) plane is parabolic.
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often display important specific properties. Typical are dynamic oscillatory systems

with slowly varying parameters. Here the finite scale is a period T of oscillations.

The condition of slow changes is

T
dX

dt

���� ����	 jXj (1:73)

or

T
dX

dt

���� ���� ¼ 1jXj (1:74)

where X is some parameter of the system and 1 	 1 is the smallness parameter.

1.6.1 Small Variations in Electromagnetic Fields Acting on Moving
Charged Particles

If one passes from a laboratory frame where a particle moves in inhomogeneous

static fields to a frame moving with a guiding center, the particle will experi-

ence action of the variables in time fields. The conditions of slow change in fields

(adiabatic approximation) according to Eq. (1.74) are

Tg
dB

dt

���� ���� ¼ 1BjB j, Tg
dE

dt

���� ���� ¼ 1EjEj (1:75)

where Tg ¼ 2p=vg is the cyclotron period (gyroperiod), and 1B and 1E are the

smallness parameters. Below we assume for simplicity that 1B,E ¼ 1 and B,E ¼ F.

Let us return to the laboratory frame. The velocity magnitude is jvj ¼ jdr=dtj
and dt ¼ jdrj=jvj. Substituting in Eq. (1.75) gives conditions for a small inhomo-

geneity of

Tgj v j dF
dr

���� ���� ¼ 1jFj (1:76)

The full velocity of a particle in homogeneous fields [Eq. (1.65)] is

v ¼ vv þ vB þ vt (1:77)

Assume that the gyratic velocity magnitude is

j vvj � j vBj þ j vtj (1:78)

This means that jvj � jvvj ¼ v?. From Eq. (1.76) we obtain

2pr?
dF

dr

���� ���� ¼ 1jFj (1:79)
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where r? ¼ (1=2p)Tgv? is the Larmor radius. Usually, these conditions are written

without a factor 2p. This means that changes in field magnitudes on the Larmor

radius scale must be much smaller than full field magnitudes. The alternative

condition takes place when

j vBj � j vvj þ j vtj and hence j v j � vB (1:80)

In this case, we obtain from Eq. (1.72)

h
dF

dr

���� ���� ¼ 1jF j (1:81)

where h ¼ vBTg is the pitch of the helical trajectory. Hence, Eq. (1.79) must be

fulfilled as a condition of small field changes on the helical trajectory pitch. Note

that this is possible only if the component of the electric field EB parallel to the

magnetic field is notzero in the limited time interval, and EB 	 E?. Thus, in
the presence of magnetic fields, two natural spatial scales of the weak inhomo-

geneous electromagnetic field appear: the Larmor radius and the pitch of the

helical trajectory.

Example 1.2 It is instructive to calculate the parameter 1B for electrons in a near-

Earth space magnetic field Be � 2� 10�5 T. The characteristic scale of change of

the magnetic field is Earth’s radius, �104 km. Therefore, the value jrBej=Be is on

the order of �1027m21. Let us assume that the electron moves toward the Earth

perpendicular to the magnetic field. Find the value of 1B for various electron

energies.

1. Nonrelativistic Electron Velocity. b ¼ 0:2, g � 1. The gyrofrequency is

vg ¼ hBe=g � 3:5� 106 rad/s. The Larmor radius is R ¼ bc=vg � 17 m.

1B ¼ R(jrBej=Be) � 1:7� 10�6. As shown in this case, Earth’s magnetic field is

essentially adiabatic.

2. Relativistic Velocity. b ¼ 0:995, g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
� 10, the electron energy

is �5 MeV, vg � 3:5� 105 rad=s, R � 800 m, and 1B � 8� 10�5. The magnetic

field is again adiabatic.

3. Supreme Relativistic Energy. �50 GeV (g ¼ 1� 105), vg � 35 rad=s,
R � 107 m, and 1B � 1. The magnetic field is nonadiabatic.

1.6.2 Adiabatic Invariants (Landau and Lifshitz, 1987; Northrop, 1963)

Consider an oscillatory system with a slowly varying parameter X so that condition

(1.74) is being fulfilled. Let us assume that only one of the system’s degrees of

freedom is oscillatory with the coordinate q and generalized momentum P. The

Lagrangian equation of the system is

dP

dt
� @L

@q
¼ 0 (1:82)
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Because the Lagrangian L depends on X as a parameter,

@L

@q
¼ @L

@q

� �
X¼const:

þ @L

@X

dX

dq
(1:83)

The first term in Eq. (1.83) can be found by integrating Eq. (1.82) with X ¼ const.

Then we obtain a nonperturbed trajectory, and this term must be a strictly periodic

function of q. Evidently, the second term is nonperiodic if the function X ¼ X(t) does

not have periodicities commensurable with the system oscillation. We can represent

this term as

@L

@X

dX

dq
¼ @L

@X

dX

dt

dt

dq
(1:84)

Now let us integrate Eq. (1.82) along the closed contour corresponding to the

nonperturbed particle trajectory:

d

dt

þ
P dq ¼

þ
@L

@q

� �
X¼const

dqþ
þ
@L

@X

dX

dt

dt

dq
dq (1:85)

The first term on the right-hand side equals zero as an integral over the period of a

periodic function. The second term isðT
0

@L

@X

dX

dt
dt ¼ @L

@X

dX

dt

ðT
0

dt ¼ @L

@X
T
dX

dt

So taking Eq. (1.74) into account, we obtain

d

dt

þ
P dq ¼ 1

@L

@X
X (1:86)

This equality means that at least in the first order of the smallness parameter 1, the
integral

I ¼
þ
Pdq ¼ const: (1:87)

Remember that the integration in Eq. (1.87) is performed along a nondisturbed oscillat-

ing trajectory. This integral is called the adiabatic invariant. The number of adiabatic

invariants for any system is equal to the number of its oscillatory degrees of freedom.

For one particle the maximum possible number of degrees is 3. Particle motion

describedby three adiabatic invariants is anuncommonevent. For example, oscillations

of charged particles captured in Earth’s Van Allen radiation belt have three invariants,

corresponding to three types of oscillatingmotions (see, e.g., Northrop, 1963): gyration

on the Larmor orbits, north–south oscillations, and precession about the Earth.
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Transversal Adiabatic Invariant of an Electron in an Electromagnetic Field Let

us consider the integral from Eq. (1.87) within the frame of reference of the

guiding center. In this frame the contour in Eq. (1.87) is the Larmor circle of

the electron gyrating in the static electromagnetic field if E=cB , 1. Then, taking

into account the fact that the momentum on the circle is P ¼ P? ¼ const:, we obtainþ
P dl ¼

þ
P?dl ¼ 2pp?r? � e02pr?A? (1:88)

Application of Stokes’ theorem to Eq. (I.3) yieldsð
S

BndS ¼
ð
S

curln A dS ¼
þ
A?dl ¼ 2pr?A? (1:89)

The integral (1.89) is taken over by the Larmor circle, where normal components

of a weakly inhomogeneous magnetic field Bn ¼ B ¼ const: Therefore,Ð
S
Bn dS ¼pr2?B. By substituting this in Eqs. (1.88) and (1.89), we obtainþ

P dl ¼ p(2p?r? � e0r
2
?B) (1:90)

The Larmor radius is equal to

r? ¼ v?
vg

¼ v?m
e0B

¼ p?
e0B

(1:91)

Then we obtain from Eqs. (1.87) and (1.90),

I ¼ p

e0

p2?
B

(1:92)

This invariant refers to the gyrating degree of freedom and is called the transversal

(perpendicular) adiabatic invariant. Usually, I is written

I? ¼ p2?
B

¼ const: (1:93)

In nonrelativistic approximation we can replace p? by v?, and

I?n ¼ v2?
B

(1:94)

It is instructive to calculate the invariant I? directly, considering the gyration of

an electron in weakly inhomogeneous magnetic fields. Assume that the guiding

center drifts along an increasingly magnetic field (Fig. 1.7). The magnetic field

lines are shown in Fig. 1.7. The magnetic field in the moving frame would increase

in time. In this frame of reference, the electron experiences the action of the inducing
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electric field E? directed along the Larmor circle clockwise (looking from the mag-

netic field side; Fig. 1.7). The field E? can be found by integrating Maxwell’s

equation (I.6) over the Larmor circle and using Stokes’ theorem:ð
S

@Bn

@t
dS ¼ �

ð
S

curln E ds ¼ �
þ
E? dl (1:95)

Obviously, Bn ¼ B, and as a result of Eq. (1.79), fields B and E? are almost uniform

on the Larmor circle. We now obtain

dB

dt
pr2? ¼ �2pr?E? (1:96)

E? ¼ � r?
2

dB

dt
¼ � p?

2e0B

dB

dt
(1:97)

This electric field (according to Fig. 1.7) accelerates the electron along the Larmor

orbit (the particle has a negative charge). The corresponding change in momentum is

dp?
dt

¼ �e0E ¼ p?
2B

dB

dt
(1:98)

By integrating this equation, we obtain conservation of the perpendicular

adiabatic invariant:

I? ¼ p2?
B

¼ const: (1:99)

The electron motion on the Larmor circle forms the elementary current

I ¼ e0

T
¼ e0vg

2p
(1:100)

FIGURE 1.7 Perpendicular adiabatic invariant.
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The magnetic moment of this circular current is M ¼ (m0=4p)IS (Northrop,

1963), where S is the area of the circle. Thus, the magnetic moment of the

electron is

M ¼ m0

4p

e0vg

2p
pr2? ¼ m0

8pm
I? (1:101)

We see that for E ¼ 0 (m ¼ const.) in the nonrelativistic approximation, the

magnetic moment of the electron is the adiabatic invariant. The transversal adiabatic

invariant has the meaning of a magnetic flux through the Larmor circle:

C ¼ pr2?B ¼ p

e20
I? (1:102)

Accuracy of Conservation of an Adiabatic Invariant According to numerical

calculations in many specific problems, the accuracy of the conservation of the

transversal adiabatic invariant generally is higher than the first power of 1
[see Eq. (1.86)]. But a rigorous consideration of this problem is complicated

(Arnold et al., 1988; Kruskal, 1960; Littlejohn, 1980). Let us suppose, following

Arnold et al. (1988), that the state of some system depends on a slow parameter l,
which quickly pushes the adiabatic invariant I to its limits: I(t ¼ �1) and

I(t ¼ þ1). Then one can introduce an increment of I: DI ¼ I(þ1)� I(�1).

Although for finite t, oscillations of I are of order 1, the increment DI is much

smaller than 1. If l depends analytically on 1t, then DI � O(exp (�c=1))(c . 0). So

the increment of an adiabatic invariant decays faster than any power of 1 as 1 ! 0.

1.6.3 Motion of the Guiding Center

Drift Equations The conditions (1.74) and (1.81) of the small inhomogeneity

allow us to set the following scaling orders for the particle trajectory parameters:

r?� 1, Tg � 1, vg ¼ 2p

Tg
� 1

1
(1:103)

In the inhomogeneous fields considered, the particles [as seen from Eq. (1.103)]

perform oscillations of very high frequency but small amplitude. As a result, the

vibrations do not perturb slow movement of the guiding center (evolution of

the system). This effect is typical for oscillatory systems with slowly varying para-

meters. The key method in the theory is the averaging procedure, which separates

small oscillations from the drift. This procedure, applying the motion of particles

in inhomogeneous static electromagnetic fields, is described briefly below. We

use nonrelativistic approximation as well as the conditions

E

B
, v EB 	 E (1:104)
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Let us write the instantaneous position of the particle (see, e.g., Morozov and

Solov’ev, 1960; Northrop, 1963) as

r(t) ¼ Rd(t)þ r?(t) (1:105)

where Rd is the position of the guiding center and r? is a radius vector of the particle

relative to the guiding center (Fig. 1.8). Thus, the particle velocity is

v ¼ dRd

dt
þ v? (1:106)

Substituting Eq. (1.104) in the nonrelativistic equation of motion, we obtain

R̈þ r̈? ¼ �h½E(Rþ r?)þ ( Ṙþ ṙ?)� B(Rþ r?)�

Expand the fields in a Taylor series about R up to the first degree of r?. In this case

the error is of order O(1). We obtain

R̈þ r̈? ¼ �h{E(R)þ r?rE(R)þ ( Ṙþ ṙ?)� ½B(R)þ r?rB(R)�}
þ O(1) (1:107)

Now we must express the gyration of vector r? explicitly. Let us introduce three

orthogonal unit vectors t1, t2, and t3, where t1 ¼ B=B is parallel to the magnetic

field and t2 and t3 are perpendicular to the B plane (Fig. 1.8). The particles

gyrate in the plane perpendicular to B. Therefore, we can write

r? ¼ r?(t2 sin uþ t3 cos u), u ¼
ð
vg dt (1:108)

Repeated differentiation of Eq. (1.108) gives

ṙ? ¼ vr?(t2 cos u� t3 sin u)þ ( r?t2) sin uþ ( r?t3) cos u (1:109)

FIGURE 1.8 Motion of a particle as a superposition of the guiding center on a gyrating

cyclotron.
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We have omitted the corresponding expression of r̈? (Northrop, 1963). The next

step is the substitution of Eqs. (1.108) and (1.109) and a similar expression for

r̈? into Eq. (1.107) and integration of the resulting expression:

R̈ ¼ F½R, Ṙ,E(R),B(R),r?,u�

over u with a 2p period
Ð 2p
0

(� � �)du. After a complicated iterative procedure which

takes into account the estimations of Eq. (1.103) and the conditions of Eq. (1.104),

the following basic equation of the guiding center’s motion is given by Morozov and

Solov’ev (1960) and Northrop (1963):

dR d

dt
¼ vB

B

B
þ E� B

B2
� v2? þ 2v2B

2hB3
B� rB (1:110)

Let us augment the energy relation to this equation:

W ¼ m0

2
v2 � e0U ¼ m0

2
(v2B þ v2?)� e0w (1:111)

where vB is the velocity component parallel to B. Recall that the drift equation

(1.110) is correct in nonrelativistic approximation. Relativistic drift equations

may be found in an article by Vandervoort (1960).

We see that the guiding center velocity consists of three components: (1) drift

along the curvilinear line of the magnetic field, (2) transversal (perpendicular)

drift, and (3) gradient drift. The first two components are similar to the drifts in

uniform fields. The third component exists only in an inhomogeneous magnetic field.

Equation (1.10) is a first-order differential equation, a significant simplification of

the original second-order equation of motion because Eq. (1.110) gives the velocity

of the particle directly. It is interesting to compare the accuracy of the numerical cal-

culation of the velocity using the original equation of motion in second order and

Eqs. (1.110) and (1.111). The latter gives acceptable accuracy for the times

t � 1�1, whereas the accuracy of the numerical methods is reduced with time.

Integration of the Drift Equation The right-hand side of Eq. (1.110) can be

expressed explicitly in terms of the potential U ¼ U(r) and the magnetic field

B ¼ B(r). Let us suppose that the cathode potential and the initial velocity

are zeros and the oscillatory velocity v?0 is given at the point where B ¼ B0. The

full velocity is

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hU(r)

p
(1:112)

The oscillatory velocity can be found from the nonrelativistic adiabatic invariant

I ¼ In ¼ v2?
B(r)

¼ const: (1:113)
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The value of I is determined by the initial condition

I ¼ I0 ¼ v?0

B0

2

The oscillatory velocity then is v? ¼ v?0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B(r)=B0

p
. The longitudinal velocity

according to the relation of the energy [Eq. (1.11)] is

vB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � v2?

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � IB(r)

p
(1:114)

The electric field E(r) ¼ �rU(r). Thus, all values on the right-hand side of

Eq. (1.110) have been expressed as functions of r.

Example 1.3: Drift Motion of Electrons in an Adiabatic Magnetic Trap The

scheme of a magnetic trap (elementary mirror machine or magnetic bottle) is

shown in Fig. 1.9. The particle moves in the magnetic field, which is assumed to

be weakly inhomogeneous, so that Eq. (1.113) is valid. As can be seen, the magnetic

field in the bottle ends B ¼ BM is maximum. According to Eq. (1.14), the

velocity component vB is reduced when the particle moves in the direction of

increasing magnetic field. This effect can be interpreted as an action of the radial

component Br existing in the region of an inhomogeneous magnetic field. The cor-

responding force FB ¼ �e0v? � Br is directed along magnetic lines. In increasing

magnetic field, one is opposite to the velocity component vB. When the oscillatory

velocity v? achieves the full velocity v, the value vB ¼ 0 and the particle is reflected.

The corresponding planes are named magnetic mirrors. Regions where v? . v,

called magnetic corks, are unattainable for the particle.

Let us suppose that the particle is injected into the magnetic field B at the angle a
with the magnetic line (Fig. 1.9). The adiabatic invariant

I ¼ v2?
B

¼ v2 sin2a

B
(1:115)

FIGURE 1.9 Adiabatic magnetic trap (mirror machine).
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The velocity vB of the particle in the maximum of the magnetic field BM according to

Eq. (1.114) is

vB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � IBM

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 1� BM

B
sin2a

� �s
(1:116)

Particles injectedwith sina .
ffiffiffiffiffiffiffiffiffiffiffiffi
B=BM

p
are reflected and captured in the adiabatic trap.

When the particles emerge in themediumplane of the trap, where themagnetic fieldBn

is minimal, the critical angle is also minimal.

sinamin ¼
ffiffiffiffiffiffiffi
Bn

BM

r
(1:117)

1.7 MOTION OF ELECTRONS IN FIELDS WITH AXIAL AND
PLANE SYMMETRY. BUSCH’S THEOREM

Similar to the way that field independence (Lagrangian independence) of time leads

to a conservation of energy, any symmetry of fields (i.e., independence of the

Lagrangian of some other variables) leads to conservation of the corresponding

momenta. These laws of conservation are the foundation of mechanics.

Assume that the Lagrangian L does not depend on the generalized coordinate q

(i.e., @L=@q ¼ 0), which is a cyclic variable. The Lagrangian equation (I.17) for

this case is

dPq

dt
¼ @L

dq
¼ 0 (1:118)

Pq ¼ const: (1:119)

1.7.1 Systems with Axial Symmetry. Busch’s Theorem

Consider a cylindrical coordinate system (Fig. 1.10). For axially symmetric fields, the

cyclic variable is u. This tells us that a turning does not change an electromagnetic

field in the system. We can find corresponding generalized momentum by writing

the Lagrangian as a function of u and _u. According to Eq. (I.18), the Lagrangian is

L ¼ �m0c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
� e0 Avþ e0U

¼ �m0c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

c2
(_r2 þ r2 _u

2 þ _z2)

r
� e0(_rAr þ r _uAu þ _zAz)þ e0w

(1:120)

where @A=@u ¼ @w=@u ¼ 0. Then the angular generalized momentum is

Pu ¼ @L

@_u
¼ m0c

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p r2 _u

c2
� e0rAu ¼ mr2 _u� e0rAu ¼ const: (1:121)
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To obtain Au, let us apply Stokes’ theorem to Maxwell’s equation (I.3):ð
Bn dS ¼

ð
curln A dS ¼

þ
Au rdu (1:122)

Integration is performed along the circle of radius r shown in Fig. 1.1. Here Bn ¼ Bz.

The value rAu is constant on the contour; therefore,

rAu ¼ 1

2p
C ¼ 1

2p

ð
Bz dS (1:123)

So the equation of angular momentum conservation is

Pu ¼ mr2_u� e0

2p
C ¼ const: (1:124)

whereC ¼ 2p
Ð r
0
Bz(r, z)r dr is themagnetic flux through a circle of radius r. Suppose

that the electron leaves the cathode at a distance rc from the axis of symmetry with

angular velocity _uc. Then, according to Eq. (1.124),

mr2 _u� e0

2p
C ¼ mcr

2
c
_uc � e0

2p
Cc (1:125)

We obtain the formula for angular velocity:

_u ¼ mcr
2
c

mr2
_uc þ e0

2pmr2
(C�Cc) ¼ gc

g

rc

r

� �2
_uc þ h

2pg r2
(C�Cc) (1:126)

This relation is known as Busch’s theorem. In nonrelativistic approximation,

_u ¼ rc

r

� �2
_uc þ h

2p r 2
(C�Cc) (1:127)

FIGURE 1.10 Cylindrical coordinate system.
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Busch’s theorem for zero cathode velocity is

u̇ ¼ h

2p r2
(C�Cc) (1:128)

1.7.2 Formation of Helical Trajectories at a Jump in a Magnetic Field

The electron in an axially symmetric system is injected into a jump in the magnetic

field so that in the plane z ¼ 0 the magnetic field changes from B ¼ B1 to B ¼ B2

(Fig. 1.11). Before the jump (z , 0) the electron moves parallel to the z-axis. In the

plane of the jump, the magnetic field is radial. One rotates the particle, and

the latter continues to gyrate after the jump in the magnetic field B2 along the

helical trajectory. Themagnetic fields on both sides of the jump are assumed uniform.

Let us find the parameters of the electron trajectory. For z , 0, _u ¼ 0 and we can

write Busch’s theorem similar to Eq. (1.128):

_u ¼ h

2pr2
(C2 �C1) (1:129)

C1 and C2 are the magnetic fluxes through circles of radii r1 and r2, which are the

distances of the electron from the z-axis before and just after the jump. We assume

that the radial position of the particle does not change across the jump. Therefore,

r1 ¼ r2 ¼ r and

C1 ¼ pr2B1, C2 ¼ pr2B2 (1:130)

The angular velocity according to Eqs. (1.129) and (1.130) is

_u ¼ h

2
(B2 � B1) (1:131)

The azimuthal velocity is

vu ¼ r _u ¼ hr

2
(B2 � B1) ¼ v? (1:132)

FIGURE 1.11 Jump of a magnetic field as the formation system of a helical trajectory.
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where v? is the velocity of the cyclotron gyration. The Larmor radius is

r? ¼ v?
vg2

¼ v?
hB2

¼ r

2
1� B1

B2

� �
(1:133)

The guiding center radius (see Fig. 1.11) is

R ¼ r � r? ¼ r

2
1þ B1

B2

� �
(1:134)

Thus, Busch’s theorem allows us to solve the problem.

Let us consider two particular cases:

1. Injection from a Region with Zero Magnetic Field. B1 ¼ 0: We find from

Eqs. (1.131)–(1.134) that

_u ¼ hB2

2
, r? ¼ r

2
, R ¼ r

2
(1:135)

We see that the Larmor circle touches the z-axis. According to Fig. 1.12, angle u of

the turn of the radius vector about the axis equals the half-angle b of the Larmor

radius turn. Therefore, _u ¼ 1
2
_b ¼ 1

2
vg.

2. Reverse (cusp) of the Magnetic Field. B1 ¼ �B2. We find from Eqs. (1.131),

(1.133), and (1.134) that _u ¼ hB2, r? ¼ r, and R ¼ 0. So in this case, after the jump

the electron gyrates at cyclotron frequency around the guiding center located on the

z-axis. The Larmor radius after the cusp is equal to the initial distance of the electron

from the axis (Fig. 1.13). Axis-encircling helical electron beams that are formatted

in the magnetic cusp are used last time in high-harmonic gyrotrons (Appendix 9,

Idehara et al., 2004).

1.7.3 Systems with Plane Symmetry

Consider the Cartesian coordinate system in Fig. 1.14. By definition the plane

symmetric system is the electromagnetic system that is uniform along one

FIGURE 1.12 Motion of an electron injected from a region with zero magnetic field.
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coordinate (e.g., in the y direction) and symmetrical about a plane parallel to this

direction [e.g., the (Y, Z) plane]. It means that the Lagrangian is independent of y;

that is,

@L

@y
¼ 0 (1:136)

and the potential and z-components of the fields are symmetrical functions of x:

w(x) ¼ w(�x); Ez(x) ¼ Ez(�x); Bz(x) ¼ Bz(�x)

Ay(x) ¼ �Ay(�x); Ex(x) ¼ �Ex(�x); Bx(x) ¼ �Bx(�x)

Ax ¼ Az ¼ Ey ¼ By ¼ 0

(1:137)

FIGURE 1.13 Motion of an electron through a magnetic cusp.

FIGURE 1.14 Derivation of Busch’s theorem for a plane symmetrical system.
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The generalized momentum for a plane symmetrical system according to

Eq. (1.136) is

Py ¼ py � e0Ay ¼ m_y� e0Ay ¼ const: (1:138)

Applying Eq. (1.3) and Stokes’ theorem to the contour abcd (Fig. 1.14), we find thatð
Bz ds ¼

þ
abcd

Al dl (1:139)

Taking into account the relations (1.137), we obtain 2L
Ð x
0
Bz dx ¼ 2LAy; that is,

Ay ¼ C ¼
ðx
0

Bz dx (1:140)

where C is the magnetic flux through a strip of width x and unit length in the y

direction. So

m_y� e0C ¼ const: (1:141)

Let us assume that the electron leaves the cathode at distance xc from the plane of

symmetry with the velocity _yc. Then the velocity for the particle in the question is

_y ¼ _yc þ
h

g
(C�Cc) ¼ _yc þ

h

g

ðx
0

Bz(x, z) dx�
ðxc
0

Bz(x, zc) dx

� 	
(1:142)

Equation (1.142) is a version of Busch’s theorem for a plane symmetric system.

46 MOTION OF ELECTRONS IN EXTERNAL ELECTRIC AND MAGNETIC STATIC FIELDS



CHAPTER TWO

Electron Lenses

2.1 INTRODUCTION

The origin of electron optics dates back to the first quarter of the twentieth century,

when it was discovered that electric and magnetic fields could be used as lenses

for electron images. The term electron optics is not casual. The proximity of the

fundamental Fermat principle in optics and the Maupertuis principle for particle

trajectories, basic ideas of image formation, lens classification, the theory of aberra-

tions, and even the terminology are thoroughly analogous in electron and light

optics. It is significant that publication of de Broglie’s famous paper which estab-

lished wave–particle duality, and the first steps of electron optics, were almost

simultaneous.

Generally speaking, many electron-optical devices are systems that produce

spatial separation and focusing of charged particles in a beam according to a

chosen criterion. So mass spectrometers separate the particles according to their

masses (or the ratio of the mass to the charge) and bring them into focus on a

screen. Beta-spectrometers handle an analogous problem for particles according

to their energy. The main function of electron lenses is to prepare images of

objects: to sort particles according to their points of exit from the object and their

convergence to corresponding points of the image. Problems such as the transport

of electron beams and beam concentration at small targets or channels cannot be

solved without electron lenses. Naturally, electron lenses are components of

almost all other electron-optical devices.

Two of the most important qualities of lenses must be provided.

1. Stigmatic Imaging: Rays emanating from any point of an “object” on planeO in

Fig. 2.1 that are perpendicular to some line z called an optical axismust intersect after

the lens at one point of the image in plane I, perpendicular to the z-axis. The beam
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formed by rays diverging from or converting to some point is called a homocentric

beam. The lenses form stigmatic images if they support the homocentricity of beams.

The stigmatic image ensures the sharpness of a picture.

2. Geometric Similarity of an Image to an Object: The distances between any

points of an image are proportional to the distances between corresponding points

of an object.

Below, a differential equation of electron trajectories is derived and discussed.

The greatest attention is devoted to axially symmetric lenses. These lenses,

among other extensive systems, have the maximum degree of symmetry. The

majority of light optical systems are also axially symmetrical.

2.2 MAUPERTUIS’S PRINCIPLE. ELECTRON-OPTICAL REFRACTIVE
INDEX. DIFFERENTIAL EQUATIONS OF TRAJECTORIES

2.2.1 Maupertuis’s Principle. Differential Equations of Trajectories

Rewrite Hamilton’s principle [Eq. (I.12)] using the Lagrangian form [Eq. (I.20)]

Smin ¼
ðt2
t1

(Pv� w) dt (2:1)

Take into account the time independence of the energy for a static field. We can then

narrow the class of comparable trajectories. Let us assume equal and constant

particle energy. Then we obtain

Smin ¼
ðt
t1

Pv dt � w(t2 � t1) (2:2)

The second term is constant and may be omitted because all trajectories compared

have the same energy. We obtain Hamilton’s principle for shortened action:

S�sh ¼
ðt2
t1

Pv dt (2:3)

FIGURE 2.1 Stigmatic imaging.
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In this integral, P and v depend on time only via the time-dependent coordinates of

the particles [see. Eq. (I.2)]. The time may be excluded completely. Substituting

Pv dt ¼ P dl, we obtain

SM ¼
ðr2
r1

P dl ¼
ðr2
r1

(p dl� e0A d l) ¼
ðr2
r1

(p� e0Ail) dl (2:4)

where il is the unit vector directed along the trajectory. We come to the variational

Maupertuis principle: Among all trajectories with given constant energy that

connect points r1 and r2, only that trajectory which is real imparts to the integral

(2.4) the least (in general, extreme) value. Compare this principle with Fermat’s

principle that in light optics,

SF ¼
ðr2
r1

n dl ¼ extr: (2:5)

According to this principle, the optical path length SF (the eikonal) is extreme for a

real ray. Thus, the rays in the optical medium with an index of refraction n(r, r0) ¼
ne0 (r, r

0) have the same geometry as the trajectories in corresponding electro-

magnetic fields. The quantity

ne0 (r, r
0) ¼ p� e0Ail (2:6)

is called the electron-optical index of refraction.

Let us express the momentum p in terms of the potential and electron initial

energy. Take the cathode potential wcath ¼ 0. Then, from the integral energy

equation (1.3),

mc2 ¼ e0wþ m0c
2 þ e0wc ¼ e0(w0 þ w�) (2:7)

where

w� ¼ wþ wc (2:8)

and wc (V) is the reduced electron kinetic energy at the cathode:

wc ¼
m0c

2

e0
(gc � 1) ¼ c2

h

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

c

q � 1

0B@
1CA

Using Eq. (1.2), we obtain

p ¼ m0c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2

m0c2

� �2

�1

s
¼ m0c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(w0 þ w�)2

w2
0

� 1

s
¼ e0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�(w� þ 2w0)

p
¼ e0

c
F (2:9)
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where e0w0 is the electron rest energy in electron volts, F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�(w� þ 2w0)

p
. Then

we have

ne0 ¼ e0
1

c
F� Ail

� �
(2:10)

A nonrelativistic index of refraction can be obtained by setting w0 � w� and

omitting the coefficient
ffiffiffiffiffiffiffiffiffiffiffiffi
2m0e0

p
in ne0 :

nnrele0
¼ ffiffiffiffiffi

w�p �
ffiffiffi
h

2

r
Ail (2:11)

Differential Equations of Trajectories Let us select particle coordinate z as

an independent variable. The other two coordinates are denoted q1 and q2. Then

the trajectory can be written as

q1 ¼ q1(z) q2 ¼ q2(z)

The integral (2.4) is equal to

SM ¼
ðz2
z1

p
dl

dz
� e0

A d l

dz

� �
dz ¼

ðz2
z1

e0

c
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q021 þ q022

q
� e0

A d l

dz

� �
dz

¼
ðz2
z1

N dz (2:12)

where dI ¼ il dl and

N(q1, q2, q
0
1, q

0
2, z) ¼ e0

1

c
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q021 þ q022

q
� A d I

dz

� �
The necessary conditions of the extreme functional (2.7) are the Euler–Lagrange

equations:

d

dz

@N

@q01

� �
� @N

@q1
¼ 0

d

dz

@N

@q02

� �
� @N

@q2
¼ 0

(2:13)

These are differential equations of trajectories. N may be called a reduced index of

refraction.

2.2.2 General Properties of Charged-Particle Trajectories in
Electromagnetic Fields

Assume a static electromagnetic field in space with charged particles as an

electron-optical medium. Consider some properties of the electron trajectories in

this medium.
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1. Anisotropy: The refraction index [Eqs. (2.10) and (2.11)] in the presence of a

magnetic field depends not only on the coordinates, but also on the ray direction at

a given point.

2. Conservation of Trajectories: If the refraction indicated in two media are

linear dependent, the charged-particle trajectories in these media are the same.

Assume that the initial energy of nonrelativistic particles on the cathode equals

zero (i.e., w� ¼ w). Increasing the potentials in each point n times and the magnetic

fields
ffiffiffi
n

p
times does not change the trajectories. Also, increasing the zero initial

energy of the particles’ proportional change of all electrode potentials n times and

the currents in coils creating the magnetic field
ffiffiffi
n

p
times does not change the

trajectories.

3. Dependence of Trajectories on e0 and m0: Nonrelativistic charged particles

with equal specific charge h move on the same trajectories. The trajectories of non-

relativistic particles in an electrostatic field do not depend at all on e0 and m0.

The theory of electron lenses developed below does not take space-charge fields

into account.

2.3 DIFFERENTIAL EQUATIONS OF TRAJECTORIES IN AXIALLY
SYMMETRIC FIELDS

A cylindrical coordinate system is shown in Fig. 1.10. For axially symmetric fields,

the coordinate u is a cyclic variable. This means that w� and A are independent of u;
that is,

w� ¼ w�(r, z), A ¼ A(r, z) (2:14)

For an axially symmetric system without space charge, the magnetic potential has

only the component Au (Appendix 1), and according to Eq. (1.123),

rAu ¼ 1

2p
C ¼

ðr
0

rBz(r, z) dr (2:15)

where C is the magnetic flux through a circle of radius r. The circle center is on the

z-axis (Fig. 1.1). Then

A d l

dz
¼ Auru

0 ¼ C

2p
u0 (2:16)

The reduced index of refraction N is [see Eq. (2.12)]

N ¼ e0
1

c
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02 þ r2u02

p
� C

2p
u0

� �
(2:17)
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where

F ¼ F(r, z) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�(w� þ 2w0)

p
¼ c

e0
p (2:18)

Because u ; q2 is a cyclic variable, we obtain, according to the second of

Eqs. (2.13),

@ne0
@u0

¼ e0
Fr2

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02 þ r2u02

p u0 � C

2p

 !
¼ const: (2:19)

Assume that a subscript c denotes cathode variables. Then, where all variables are

supplied by c (taken at the cathode), the constant on the right-hand side of

Eq. (2.19) will equal the left-hand side and we obtain the following relation for u0:

u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02 þ r2u02

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02c þ r2cu

02
c

q Fc

F

rc

r

� �2
u0c þ c

C�Cc

2pFr2
(2:20)

where

Fc ¼ Fw¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wc(wc þ 2w0)

p
(2:21)

[see Eqs. (2.18) and (2.8)]. Equation (2.20) is a version of Busch’s theorem [Eq.

(1.126)] for trajectories. Substitution of ne0 from Eq. (2.17) in the first of Eqs.

(2.13), where r ; q1 gives

d

dz

Fr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr02þr2u02

p !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr02þr2u02

p @F

@r
� Fru02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr02þ r2u02
p þcrBzu

0 ¼0 (2:22)

Equations (2.20) and (2.22) are differential equations of trajectories in axially

symmetric fields. Substituting u0 from Eq. (2.20) in Eq. (2.22), we obtain an ordinary

second-order differential equation for the function r ¼ r(z). Substitution of r(z) in

Eq. (2.20) gives a first-order differential equation for u¼u(z): The following

initial conditions determine the solution:

rc¼ rz¼0,r
0
c,uc,u

0
c,wc,Cc¼2p

ðrc
0

rBz(r,0)dr (2:23)

These equations are too complicated and we will not write them out explicitly.

Without further strong approximations, only their numerical solutions can be

found. Fortunately, the beams considered are not suitable for obtaining images.

The light optics gives clear proof of this assertion: Almost all optical tools

have essentially bound-beam apertures. Expansion of the apertures always increases

aberrations, whose minimization is very labor-intensive.

In principle, only paraxial (close to the optical axis) trajectories (rays) can give

stigmatic and similar images. Therefore, the theory of image construction in electron
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(light) optics in the first approximation is formulated as paraxial theory. Next,

approximations lead to aberration theory.

2.4 DIFFERENTIAL EQUATIONS OF PARAXIAL TRAJECTORIES IN
AXIALLY SYMMETRIC FIELDS WITHOUT A SPACE CHARGE

The following conditions define the paraxial trajectory.

1. Small Transversal Velocities: (i.e., a small slope of the trajectory to the z-axis)

dr

dt
	 dz

dt

dr

dz
¼ r0 	 1, r

du

dt
	 dz

dt
r
du

dz
¼ ru0 	 1 (2:24)

Then ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02 þ r2u02

p
� 1 (2:25)

2. Small Distances r of Trajectories from the Axis: This means that trajectories

deviate from the z-axis by no more than the distance at which the potential and

magnetic field are equal to their axis values:

w(r, z) � w(0, z) ; wz(z) (2:26)

Equation (2.26) is also applicable to the axis components of electric and magnetic

fields:

Ez(r, z) ¼ � @w(r, z)

@z
� � dw(0, z)

dz
; �w0

z(z) ¼ Ez(0, z)

Bz(r, z) � Bz(0, z) ; B(z)

(2:27)

The conditions of Eq. (2.27) are not applicable to radial components of fields

because these components are zero on the axis. The radial components in the par-

axial approximation are followed fromMaxwell’s equation for an axially symmetric

electric field [Eq. (I.7)] with r ¼ 0:

divE ¼ 1

r

@(rEr)

@r
þ dEz(0, z)

dz
¼ 0 (2:28)

Integrating Eq. (2.28), we obtain rEr ¼ �(r2=2)E0
z(z)þ f (z), where f (z) is an arbi-

trary function and

Er ¼ � r

2
E0
z(z)þ

f (z)

r
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For f (z) = 0, the field has a singularity on the axis. That is possible only if there are

line charges on the z-axis. So f (z) ¼ 0, and the radial electric field in the paraxial

approximation is

Er ¼ � @w

@r
¼ � r

2
E0
z(z) ¼

r

2
w00
z (z) (2:29)

Then, according to Eqs. (2.18) and (2.26), we obtain

@F

@r
¼ w� þ w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w�(w� þ 2w0

p
)

@w

@r
¼ � r

2

w�
z þ w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w�
z (w

�
z þ 2w0

p
)
w00
z ¼ � r

2bz

w00
z (2:29a)

where bz ¼ vz=c.
Using Maxwell’s equation (I.8) and assuming the absence of magnetic charges on

the axis, we obtain an analogous expression for the radial magnetic field:

Br ¼ � r

2
B0(z) (2:30)

Magnetic fluxes in the paraxial approximation are obviously

C ¼ pr2B(z), Cc ¼ pr2cB(0) (2:31)

Equation (2.31) is valid for a cathode located on the plane perpendicular z-axis.

Substitution of Eqs. (2.25)–(2.27) and (2.31) in Eqs. (2.20) and (2.22) gives

u0 ¼ c

2Fz

Q
r2c
r2

þ B(z)

� 	
(2:32)

d

dz
(Fzr

0)� @F

@r
�Fzru

02 þ crB(z)u0 ¼ 0 (2:33)

where, taking into account Eqs. (1.7), (1.11), and (2.18), we find that

Fz ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�
z (w

�
z þ 2w0)

p ¼ bz(w
�
z þ w0) ¼ bzgw0 ¼ bzg

c2

h
¼ c

e0
pz (2:34)

Q ¼ 2

c
Fcu

0
c � B(0) (2:35)

It is readily verified that according to Eqs. (1.124) and (2.32),

Q ¼ 2Pu

e0r2c
¼ � C0

pr2c
(2:35a)
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where Pu is the azimuthal generalized momentum andC0 is the magnetic flux in the

plane where _u ¼ 0. Substitution of Eq. (2.32) for the angular velocity, and

Eqs. (2.29a) and (2.34) into Eq. (2.33), gives a radial paraxial equation

F2
z

w�
z þ w0

r00

rc
þ w0

z

r0

rc
þ w00

z

2
þ c2B(z)2

4(w�
z þ w0)

� 	
r

rc
� c2Q2

4(w�
z þ w0)

r3c
r3

¼ 0 (2:36a)

Equations (2.32) and (2.36a) in terms g ¼ (wz=w0)þ 1 and C0 ¼ �pr2cQ can be

written as

u0 ¼ hB

2bzcg
� hC0

2pbzcg
r00

þ g0

b2
zg

r0 þ g00

2b2
zg

þ hB

2bzcg

� �2
" #

r � hC0

2pbzcg

� �2
1

r3
¼ 0 (2:36b)

These equations, according to Eq. (2.35a) in the term Pu, are

u0 ¼ hB

2bzcg
þ Pu

bzcgm0

1

r2
r00

þ g0

b2
zg

r0 þ g00

2b2
zg

þ hB

2bzcg

� �2
" #

r � Pu

bzcgm0

� �2
1

r3
¼ 0 (2:36c)

Equations (2.32) and (2.36) are the fundamental equations of paraxial electron

optics without a space charge for axially symmetric systems.

If the cathode is disposed at a plane perpendicular to the z-axis, the following

initial conditions at the cathode (z ¼ 0) must be set: rc ¼ r(0), uc ¼ u(0),
r 0c ¼ r 0(0), u0c, and wc. The initial angular velocity u0c and the energy wc enter

correspondingly in Q and in wz or g.
Nonrelativistic paraxial equations can be obtained by setting w� 	 w0 ¼

m0c
2=e0 ¼ c2=h in Eqs. (2.32) and (2.36):

u0 ¼
ffiffiffiffiffiffiffiffi
h

8w�
z

r
Qn

r2c
r2

þ B(z)

� 	
, Qn ¼ 2

ffiffiffiffiffi
w�
z

h

s
u0c � B(0) (2:37)
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rc
� hQ2

n

8wz

r3c
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¼ 0 (2:38)
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2.5 FORMATION OF IMAGES BY PARAXIAL TRAJECTORIES

2.5.1 Linearization of Trajectory Equations

Later it will be shown that the linearity of trajectory differential equations is a suffi-

cient condition for the formation of similar and stigmatic images. From a formal

mathematical standpoint, derivation of the paraxial ray equation is a linearization

procedure for the original system. Unfortunately, this goal is not achieved! Accord-

ing to Eqs. (2.32) and (2.36)–(2.38), the nonlinear terms remain. What is the reason?

Nonlinearities disappear only forQ ¼ 0. According to Eq. (2.35), it is possible when

the cathode magnetic field B(0) and the cathode angular velocity u0c are zero simul-

taneously. But the initial energy wc can be nonzero. In this case (if C ¼ 0), the

linearity of the equation is not violated. It means that only the r and z components

of the initial velocities are admissible (i.e., the trajectory has to lie in a meridional

plane).

However, the linearity of the original trajectory equations and of meridional

trajectories are not necessary conditions. It is shown (see, e.g., Glazer, 1952;

Kelman and Yavor, 1963; Klemperer and Barsnett, 1971; Lawson, 1988;

Rusterholz, 1950; Szilagyi, 1988) that the proper transformation of variables can lin-

earize the equations. After this transformation, the trajectories become more compli-

cated and do not lie in the meridional plane. Nevertheless, the fundamental

possibility of obtaining stigmatic and similar images is restored. This result is

very important because it means that arbitrary axial symmetric fields in the approxi-

mation of paraxial optics are lenses. It is interesting that after the transformation,

the new equation has the same form (in reduced variables) as the original but

with Q ¼ 0. Therefore, below we choose the condition Q ¼ 0 as a simple

approximation.

The corresponding equations are now relativistic equations:

u0 ¼ cB(z)

2Fz

(2:39)

F2
z

w�
z þ w0

r00

rc
þ w0

z

r0

rc
þ w00

z þ
c2B2(z)

4(w�
z þ w0)

� 	
r

rc
¼ 0 (2:40)

Nonrelativistic equations will be

u0 ¼
ffiffiffiffiffiffiffiffi
h

8w�
z

r
B(z) (2:41)

r00

rc
þ w0

z
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z

r0

rc
þ w00

z
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z

þ hB2(z)

8w�
z
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r

rc
¼ 0 (2:42)
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2.5.2 Rotation of an Image. Stigmatic Imaging. Image Similarity

Rotation of an Image Assume that a trajectory came to point r(b) from point r(a).

According to Eqs. (2.39) and (2.41), the rotation angle is

(ub � ua)rel ¼
c

2

ðb
a

B(z) dz

Fz

(2:43)

(ua � ub)nrel ¼
ðb
a

ffiffiffiffiffiffiffiffi
h

8w�
z

r
B(z) dz (2:44)

Because Fz and w�
z are functions of z alone, we have an important result: Any

trajectory going between two planes perpendicular to the optical z-axis rotates by

the same angle. Assume that the stigmatic image of the object has gotten into a

plane. Then the entire image will be turned about the object without angular distor-

tion. The rotation angle is the linear function of B, and reversing the sign of B

changes the rotation to the opposite direction. The rotation angle depends only on

the specific charge h ¼ e0/m0 for the same initial energy of the trajectories. This

property is also valid for relativistic particles because w0 ¼ c2=h [see Eq. (2.34)].

Stigmatic Imaging and Image Similarity Turn to the radial equations (2.40) and

(2.42). Note that the radial variable in these equations is the ratio r/rc. It means that

trajectories emanating from different points of the cathode are similar geometrically

if their initial angles r0 are the same (e.g., r0 ¼ 0 when trajectories start normally to

the cathode plane). All of these trajectories can be crossed only at the axis (r ¼ 0).

Both equations are ordinary linear homogeneous differential equations of the

second order. As is known, the general solution of these equations may be

represented as

r(z) ¼ Pr1(z)þ Qr2(z) (2:45)

where P and Q are arbitrary constants. Functions r1 and r2 are linearly independent

partial solutions of the trajectory equations; that is, the relation

r1(z) ¼ kr2(z) (2:46)

is prohibited. Geometrically, it means that any trajectories expressed by the partial

solutions must not be similar to each other.

Assume that a trajectory r1(z) crosses the z-axis in two points, a and b (Fig. 2.2).

Consider the bundle of trajectories

r(z) ¼ Pr1(z) (2:47)

with an arbitrary P. All of these trajectories pass through points a and b. These

points differ only by the slope [i.e., by values of the derivative r0(z)]. If point a is
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an object, point b will be the stigmatic image of this object. Can it be that any tra-

jectory that crosses the z-axis only at point a does not cross it at point b? It is easy to

see that such a solution would contradict the Cauchy uniqueness theorem (by chan-

ging the constant P, we sample all possible values of the first derivative of the func-

tion in point a).

Let us take another solution of the trajectory equation r2(z) that does not pass

through the points z ¼ a and z ¼ b. Obviously, the functions r2(z) and r1(z) are line-

arly independent. Now add to the trajectoryQ1r2(z) passing through points A1 and B1

the bundle of the trajectories [Eq. (2.47)]. We obtain the bundle of trajectories that

intersect the planes z ¼ a and z ¼ b at the points A1 and B1, respectively (Fig. 2.2):

R1(z) ¼ Pr1(z)þ Q1r2(z) (2:48)

Repeating the argumentation above, we conclude that point B1 is a stigmatic image of

point A1. Now take the bundle of trajectories

R2(z) ¼ Pr1(z)þ Q2r2(z) (2:49)

whereQ2r2(z) is a trajectory that passes through pointsA2 andB2.We see that pointB2

will be the stigmatic image of point A2. As a result, trajectories that are described

by Eq. (2.40) or (2.42) produce in plane z ¼ b the stigmatic image of the object in

plane z ¼ a.

Now let us show the geometrical similarity of the image to the object. Because

r1(a) ¼ r1(b) ¼ 0, we obtain

R1(a) ¼ Q1r2(a), R1(b) ¼ Q1r2(b), R2(a) ¼ Q2r2(a); R2(b) ¼ Q2r2(b)

(2:50)

FIGURE 2.2 Stigmatic and similar images.
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Dividing the first relation from Eqs. (2.50) by the third, and the second relation by

the fourth, we obtain

R1(a)

R2(a)
¼ R1(b)

R2(b)
¼ Q1

Q2

(2:51)

The ratio of the radial positions of any two points of the object in the plane perpen-

dicular to the z-axis is equal to that for corresponding points of the image.

Previously, it was shown that all trajectories in the image plane rotate by the

same angle around the object plane. So the similarity of the image and the object

has been proven. Note that the first formulation of these electron-optical relations

belongs to Busch (1926).

2.5.3 Magnifications

According to Eq. (2.51), the quantity

M ¼ R1(b)

R1(a)
¼ R2(b)

R2(a)
¼ const. (2:52)

The constant M determines a similar change in radial sizes and is called magnifi-

cation. It is the image parameter for a given position of the object around the lens.

Note that when a trajectory crosses the axis, we change the sign of the variable

r, although as the radial coordinate of the cylindrical system, it must be positive.

This difficulty may be overcome in the following way. As we saw, trajectories

rotate in the rotating meridional planes. Motion in the meridional plane is described

by the linear homogenous equation (2.40) or (2.42), which is satisfied by any sign of

r. If we hadn’t used the paraxial approximation, we could have taken r , 0 and

defined the electromagnetic fields for r , 0 as the analytical continuation of the

fields at r . 0. The axis potential in the paraxial equations is independent of r.

Therefore, we can use the trajectory equations with any sign of r, assuming that

we operate with analytical continuation of the fields. In this case, M may by

either positive or negative. For M , 0 the image will be inverted, respectively, to

the object in the meridian plane.

Angular Magnification Assume that the trajectory r1(z) intersects the z-axis in the

points z ¼ a and z ¼ b. Any trajectory that intersects the z-axis in these points is

expressed as

r(z) ¼ Pr1(z) (2:53)

where P is an arbitrary constant. We find from Eq. (2.53) that the quantity

G ¼ r0(b)
r0(a)

¼ r01(b)
r01(a)

(2:54)
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is the same for all trajectories passing through the points a and b on the optical

axis. It is called angular magnification and is also the image parameter for a

given position of the object.

Correlations M and G Represent the differential radial equation of the trajectory

[Eq. (2.40)] as

Q½r(z)� ¼ F(z)r00 þ 1
2
F0(z)r0 þC(z)r ¼ 0 (2:55)

where

F(z) ¼ w�
z (w

�
z þ 2w0) ¼ F2

z , C(z) ¼ w00
z (w

�
z þ w0)

2
þ c2B2(z)

4
(2:55a)

We now form the combination

r1(z)Q½r2(z)� � r2(z)Q½r1(z)� ¼ F(z)(r002r1 � r001r2)þ 1
2
F0(z)(r02r1 � r01r2)

¼ 0 (2:56)

Taking it into account that

r002r1 � r001r2 ¼
d

dz
(r02r1 � r01r2)

we obtain from Eq. (2.56),

d

dz
(r02r1 � r01r2)

r02r1 � r01r2
þ

d

dz
F(z)

2F(z)
¼ 0 (2:57)

Integrating this equation givesffiffiffiffiffiffiffiffiffi
F(z)

p
(r02r1 � r01r2) ¼ Fz(r

0
2r1 � r01r2) ¼ const. (2:58)

Assume that the trajectory r2(z) crosses the z-axis in the points z ¼ a, b. The

trajectory r1(z) does not pass through these points. Applying Eq. (2.58) to planes

z ¼ a and z ¼ b, we obtain

Fz(b)r
0
2(b)r1(b) ¼ Fz(a)r

0
2(a)r1(a) (2:59)

so that

r02(b)
r02(a)

r1(b)

r1(a)
¼ Fz(a)

Fz(b)
(2:60)
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According to the definitions ofM [Eq. (2.52)] and G [Eq. (2.54)], Eq. (2.60) may be

represented as

GM ¼ Fz(a)

Fz(b)
¼ ne0 (a)

ne0 (b)
(2:61)

For nonrelativistic beams,

GM ¼
ffiffiffiffiffiffiffiffiffiffiffi
w�
z (a)

w�
z (b)

s
¼ ne0 (a)

ne0 (b)
(2:62)

Equations (2.61) and (2.62) are known as the Helmholtz and Lagrange formulas.

The original light optics versions of the formulas are the Helmholtz and Lagrange

theorems. It is obvious that if the trajectory crossed the z-axis twice, G would be

negative. In this case, the magnificationM is also negative (i.e., the image is inverted

in the meridional plane). We note that the right-hand sides of formulas (2.60)

and (2.61) are equal to the ratios of corresponding electrostatic paraxial indexes

of refraction ne0 (a)=ne0 (b) [see Eqs. (2.10) and (2.11) for r ¼ 0 and A ¼ 0].

2.6 ELECTROSTATIC AXIALLY SYMMETRIC LENSES

2.6.1 Classification of Electrostatic Lenses

We have written relativistic and nonrelativistic equations of paraxial trajectories in

the electrostatic field, setting B ¼ 0 in Eqs. (2.39), (2.40), and (2.42):

u0 ¼ 0 (2:63)

F2
z

r00

rc
þ w0

z(w
�
z þ w0)

r0

rc
þ w00

z

2
(w�

z þ w0)
r

rc
¼ 0 (relativistic) (2:64)

r00

rc
þ w0

2w�
z

r0

rc
þ w00

z

4w�
z

r

rc
¼ 0 (nonrelativistic) (2:65)

As shown, the nonrelativistic equation has two important features that are related to

the absence of the reduced rest energy w0 ¼ c2=h in Eq. (2.65), unlike Eq. (2.64).

1. The trajectories geometry of any charged particle is independent of its charge

and mass.

2. Proportional variation of the potential in all points of the lens space does not

affect the geometry of the trajectories. It means that a proportional variation of the

electrode potentials of all the lens does not influence the trajectory.

According to Eq. (2.63), u ¼ const. (i.e., particles move in nonrotational

meridional planes).
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It may readily be shown that the lens effect is possible only in an inhomogeneous

electric field. The lens effect is displayed by the rays emerging in the lens parallel to

the optical axis. The real lens necessarily deflects the rays to or out of the axis. Let us

rewrite Eq. (2.64) in the following form [see Eq. (2.40)]:

Fz

d

dz
Fz

r0

rc

� �
þ w00

z (w
�
z þ w0)

2

r

rc
¼ 0 (2:66)

Assume that the lens electric field is homogeneous [i.e., w0(z) ¼ const.]. Then

w00
z ¼ 0 and we obtain from Eq. (2.66),

Fz

r0

rc
¼ const. (2:67)

Thus, if the trajectory in a plane is parallel to the optical axis (r0 ¼ 0), it would not be

deflected at all. So the electrostatic lens space is localized in the region of the

inhomogeneous electric field.

Let us suppose that the object and image are located outside the lens (i.e., in the

region of the homogeneous or zero electric field). It is impossible to detect strict

boundaries of any electron lens (unlike optic lenses) because fields, including

inhomogeneous fields in open structures, have, in principle, infinite extent. But

this issue is rather abstract because it is always possible to use as a criterion the exist-

ence of almost straight trajectories near the object and the image. Besides, for typical

axially symmetric electrode configurations, edged fields decrease abruptly. We

specify the boundary planes of the lens as z ¼ za and z ¼ zb (Fig. 2.3). The

regions z , za and z . zbwill be called an object space and an image space, respect-

ively. All quantities in the object space will be denoted by a subscript a

and accordingly in the image space by a subscript b. Note that inside the lens, the

potential distribution as a function of z is displayed by lines with a nonzero

curvature.

The electron optics interact with a huge variety of electrostatic lens devices. The

choice of a particular device depends on many factors: purpose, construction

FIGURE 2.3 Object and image spaces in a lens. Trajectories r(z) and R(z) display a conver-

gent effect of the immersion lens [see Eqs. (2.68) and (2.69)].
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requirements, power supply, electrical breakdown, aberrations, and so on. It is diffi-

cult to classify lenses according to all these factors. As the main criterion, the struc-

ture of the axis potential distribution in the object and image spaces is usually taken.

Following are the basic types of electrostatic lenses:

1. Lenses with a Limited Field Extent: The potential outside the lenses is con-

stant (the field is zero). These lenses can be divided into two categories: (a) unipo-

tential (Einzel) lenses, which have equal constant potentials in the object and image

spaces, and (b) immersion (bipotential) lenses, which have different constant poten-

tials in these spaces.

2. Aperture Lenses: A nonzero (homogeneous) field exists in at least one space

(the object space or image space).

3. Cathode Lenses: The inhomogeneous field of the lens begins directly from

the cathode surface.

In Fig. 2.4, the axis potential distributions for these lenses are shown. The basic

properties of the lenses are considered briefly below.

2.6.2 Immersion and Unipotential Lenses

Note first that immersion and unipotential lenses are focusing (i.e., the trajectories

that parallel the optical axis in the object space are collected at the axis in the

image space, and vice versa). This effect can be demonstrated by the example of

the simplest immersion lens formed by two half-cylinders with different potentials.

In Fig. 2.5, the equipotential surfaces are shown by thin lines. The electric fields

(arrows in Fig. 2.5) are directed normally to equipotential surfaces and point to

the right.

The radial field in the open area of the left half-cylinder increases the radial vel-

ocity of the electron. This part of the electron lens acts as a diverging light lens. The

field on the right-hand side of the lens produces a contrary effect. This part is analo-

gous to a convergent light lens. But the focusing effect prevails over the defocusing

effect because the axial velocity of the electron at the right-hand side is less than that

FIGURE 2.4 Axial distributions of the potential in lenses: (a) unipotential lens (wa ¼ wb);

(b) immersion lens (wa = wb); (c) aperture lens; (d) cathode lens.
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at the left-hand side (the potential w1 . w2). The particle spends more time in

the right half-cylinder than in the left one. Note that for this reason, the final

radial velocity is proportional to the square of the field (second-order focusing).

Below it is shown that any electrostatic lens with limited field extent is convergent.

Let us introduce the following variable in Eq. (2.64):

r ¼ RF1=2
z ¼ R½w�(w� þ 2w0)��1=4 (2:68)

We obtain the equation of the paraxial trajectory in the following form:

R00 þ 1

4

w02
z ½(w�

z þ w0)
2 þ 2w2

0�
(w�2

z þ 2w�
zw0)

2

" #
R ¼ 0 (2:69)

Let us take the ray r(z) parallel to the z-axis in the object space (Fig. 2.3). Because the

potential w�
z (z) is constant in the object space, the curve R(z) is parallel to the z-axis

also. In the lens, the curvature of R(z) is negative because the coefficient in brackets

in Eq. (2.69) is essentially positive and the curve R(z) is convex. Therefore, after the

lens, the straight line R(z) intersects the z-axis (point F in Fig. 2.3). According to

Eq. (2.68), the trajectory r(z) is also a straight line in the image space and crosses

the z-axis at the same point, F. In Fig. 2.6, the simplest specific schemes of unipoten-

tial and immersion lenses are presented.

FIGURE 2.5 Focusing effect of an immersion lens.

FIGURE 2.6 Lenses with limited field extent.
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2.6.3 Cardinal Elements of a Lens with Limited Field Extent

The fundamental idea of studying the image properties of light lenses on the basis

of cardinal elements was suggested by Gauss. He introduced the idea that cardinal

elements could describe a lens (in a paraxial rays approximation) by a small

number of parameters and lead to a unified and clear theory of image formation

for lens systems of any degree of complexity. Below we define the cardinal

elements for electrostatic lenses with a limited field extent when an object and

an image are on the outside of the lens field. Consider a trajectory r1(z) that is par-

allel to the z-axis in the object’s space and intersects the z-axis in point F (Fig. 2.7).

Obviously, the equation rc(z) ¼ cr1(z) represents a bundle of trajectories that is also

parallel to the z-axis and crosses it at point F. The trajectories are straight lines

outside the lens (z , z1 and z . z2). Let us take the trajectory r2(z) ¼ c2r1(z) and

move it backward from plane z ¼ zb as a straight line (dashed line in Fig. 2.7).

The distance Zb from the plane z ¼ zb to point Fb, where this line crosses the

z-axis, is

Zb ¼ zb � zFb
¼ r2(zb)

tana
¼ r2(zb)

r02(zb)
¼ c2r1(zb)

c2r1(zb)
¼ r1(zb)

r01(zb)
(2:70)

As we see, Zb does not depend on c1. So any trajectory of the bundle rc(z) after

continuing backward from the image space intersects the z-axis at the same

point, Fb. This point is called the principal focus of the image space. In the

same way, it can readily be shown that these trajectories intersect their continu-

ations from the object space on the common plane Hb. This plane, z ¼ zHb
, is

called the principal plane of the image space. The distance fb ¼ zFb
� zHb

is called

the principal focal length of the image space. By drawing the trajectories parallel to

the z-axis in the image space, we can obtain analogous cardinal elements of the

object space: Fa, zFa
, zHa

, and fa.

FIGURE 2.7 Cardinal elements of lenses with limited field extent. z1 and z2, lens bound-

aries; zHb
, position of the principal plane in the image space; zFb

, focal coordinate in the

image space; fb ¼ zFb
2 zHb

, focal length in the image space.
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Construction of an Image A scheme for image construction is given in Fig. 2.8.

It is sufficient to know the positions of the principal planes Ha and Hb of the prin-

cipal foci Fa and Fb and the position of the object. Planes z1 and z2 in Fig. 2.8 are

the lens boundaries, and a and b are the coordinates of the corresponding points A

and B on the object and the image. We can very easily form the image shown in

Fig. 2.8. Let us draw a ray parallel to the z-axis through object A. This is the first

principal ray. The continuation of this ray is the dashed line inside the lens

(z1 , z , z2). It runs parallel to the z-axis until it reaches the principal plane Hb

and further through the principal focus Fb. The real ray is in z . z2. The second

principal ray is drawn through object A and the focus through Fa until the inter-

section with plane Ha. After that happens, this ray must be drawn parallel to the

z-axis.

The intersection of both principal rays creates point B of the image. Let us find two

basic parameters of the image: the position and themagnification. From the geometrical

similarity of triangles BbFb, cdFb and egFa, aAFa, we find that

M ¼ rb

ra
¼ Zb

fb
¼ fa

Za
or ZaZb ¼ fa fb (2:71)

The distances from the object and image to the corresponding principal planes are (see

Fig. 2.8) da ¼ Zaþ fa and db ¼ Zbþ fb. Then we obtain from Eq. (2.71),

fa

da
þ fb

db
¼ 1 (2:72)

Relation (2.72) is known in light optics asNewton’s formula. If the object position (Za)

is given, the magnificationM can be found from the first of Eqs. (2.71) and the image

position (Zb) from the second of Eqs. (2.71). The angularmagnification can be obtained

from Eq. (2.61) or (2.62). Note that for unipotential lenses, G ¼ 1/M.

FIGURE 2.8 Construction of an image with cardinal elements.
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Thus, image construction only requires knowing the cardinal elements. If the dis-

tribution of the axial potential w�
z is known, it is sufficient to calculate two principal

rays (trajectories) that are parallel to the z-axis in the object and image spaces.

In general, it is necessary to find two solutions of Eq. (2.64) or (2.65) with initial

conditions rz¼a ¼ ra and r0z¼a ¼ 0 (the first principal ray) and rz¼b ¼ rb and

r0z¼b ¼ 0 (the second principal ray). Here, ra and rb are arbitrary constants; a and

b are z-coordinates in the object and image spaces accordingly.

2.6.4 Focal Length of Thin Unipotential and Immersion Lenses

A thin lens is defined as a lens whose thickness is small in comparison with both

focal lengths, z2 � z1 	 fa, fb (Fig. 2.9). This lens may be also called weak. It

means that r � const. inside the lens (z1 , z , z2). We can assume that the principal

planes coincide and are disposed of in the middle of the lens. Let us take the trajec-

tory parallel z-axis in the object space. Integrating the reduced trajectory equation

(2.69) over an interval z1 , z , z2 yieldsðz2
z1

R00 dz ¼ � 1

4

ðz2
z1

R
w02
z ½(w�

z þ w0)
2 þ 2w2

0�
(w�2

z þ 2w�
zw0)

2

" #
dz (2:73)

where

R ¼ rF1=2
z (2:74)

Taking into account the boundary conditions

r0(z1) ¼ 0, r0(z2) ¼ � tana, w0
z(z1) ¼ 0, r(z2) ¼ ra (2:75)

we obtain

w�
z (z1)¼w�

za
, w�

z (z2)¼w�
zb
, R(z2)¼ raF

1=2
za

, R0(z2)¼�F1=2
zb

tana (2:76)

FIGURE 2.9 Thin lens with limited field extent.
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Subscripts a and b in Fz indicate values of F calculated respectively in the object

and image spaces. Taking into account both these relations and Eq. (2.34), we obtain

1

fb
¼ tana

ra
¼ F1=2

za

4F1=2
zb

ðz2
z1

w02
z ½(w�

z þw0)
2þ2w2

0�
(w�2

z þ2w�
zw0)

2

" #
dz

¼ h2(bza
ga)

1=2

4(bzb
gb)

1=2c4

ðz2
z1

E2
z (g

2þ 2)

b4
zg

4
dz (2:77)

Note that the values z1 and z2 are not given. Formally, we can replace z1 and z2 by

21 and 1 because w0
z ¼ 0 for z, z1 and z. z2. In reality, this substitution is based

on the assumption that the decrease in the fields is sufficiently abrupt. The focal

length in the object space may be found analogously:

1

fa
¼ F1=2

zb

4F1=2
za

ð1
�1

w02
z ½(w�

z þw0)
2þ2w2

0�
(w�2

z þ2w�
zw0)

2

" #
dz (2:78)

Nonrelativistic focal lengths are found from Eqs. (2.34) and (2.78) for w0 �w�
z and

equal, respectively, to

1

fb
¼ 3

16

w�
za

w�
zb

 !1=4ð1
�1

w0
z

w�
z

� �2

dz,
1

fa
¼ 3

16

w�
zb

w�
za

 !1=4ð1
�1

w0
z

w�
z

� �2

dz (2:79)

The ratio of the focus lengths is

fa

fb
¼

Fza

Fzb

¼bza
ga

bzb
gb

(relativistic)

ffiffiffiffiffiffiffi
f�
za

q
ffiffiffiffiffiffiffi
f�
zb

q (nonrelativistic)

8>>>>>><>>>>>>:
(2:80)

Compare Eqs. (2.80) with Eqs. (2.61) and (2.62). We see that in both (relativistic and

nonrelativistic) approximations,

fa

fb
¼ ne0 (a)

ne0 (b)
¼GM (2:81)

For the same angular magnification G, the magnification M increases with ne0(a).

This property is used in light microscopy by immersing the object into a optically

denser medium (e.g., oil). Similar lenses in light optics are called immersion
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lenses. Another reason for object immersion in a dense medium is related to short-

ening the wavelength in a dielectric. This effect increases the diffraction resolution

of light microscopes.

2.6.5 Aperture Lenses

The characteristic distribution of the axis potential in the aperture lenses is shown in

Fig. 2.4d. A nonzero homogeneous field must be in at least one space (the object or

image space). In Fig. 2.10, the simplest electrode configuration is shown: three par-

allel electrodes with potentials wa, wd, and wb. The middle electrode (a diaphragm)

has a hole (an aperture). Its radius R is usually supposed to be small compared with

interelectrode distances. In this case, the inhomogeneous field of the lens is localized

in the R region of the aperture.

Two versions of the equipotential pattern are shown in Fig. 2.10. In Fig. 2.10a,

the potential of the diaphragm wd is greater than wa and wb; therefore, the directions

of the electric fields in the object and image spaces are opposite and a saddle point

is formed on the z-axis. It is easy to see that in the vicinity of the saddle point, the

universal form of the equipotential surface is a cone with an angle in the vertex of

2a � 1088 (tana ¼ ffiffiffi
2

p
). In Fig. 2.10b, the value of the potential wd is intermediate

between wa and wb. The inhomogeneous field of the aperture in this case appears

only if the values of the electric fields in the object and image spaces are different

(Ea = Eb).

If the field in the image space is nonzero, the trajectory of the particle is a para-

bola. Usually, the focus is defined as the point of intersection of the tangent to a

trajectory with the z-axis on the boundary of the inhomogeneous field (Fig. 2.11).

Let us find the focal length in the thin (weak) lens approximation: the width of

the inhomogeneous lens field z2 � z1 	 f (Fig. 2.11).

We begin with the integration of Eq. (2.65) over the interval z1 and z2:

ðz2
z1

d

dz
(Fzr

0)dz ¼ � 1

2

ðz2
z1

w00
z (w

�
z þ w0)

Fz

r dz (2:82)

FIGURE 2.10 Equipotential patterns in an aperture lens: (a) wa , wd, wb , wd; (b) Eb . Ea.
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The axis potential in the thin lens is almost constant and equal to the diaphragm

potential; that is,1

w�
z (z) ¼ w�

d, Fz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�
z (w

�
z þ 2w0)

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�
d(w

�
d þ 2w0)

p
, z1 , z , z2 (2:83)

Taking Eq. (2.83) into account and writing

r ¼ ra; w00
z ¼ �E0; r0(z1) ¼ 0,

r0(z2) ¼ �tana; E(z1) ¼ Ea; E(z2) ¼ Eb (2:84)

we obtain from Eq. (2.82),

� tana ¼ ra(w
�
d þ w0)

2w�
d(w

�
d þ 2w0)

(Eb � Ea) (2:85)

so the focal length is

f ¼ ra

tana
¼ 2w�

d(w
�
d þ 2w0)

(w�
d þ w0)(Ea � Eb)

(2:86)

In the nonrelativistic approximation, this is

f ¼ 4w�
d

Ea � Eb

(2:87)

The approximate values of fields Ea and Eb in these formulas are easily calculated.

It is sufficient to notice that cutting a hole in the diaphragm perturbs the field only in

the R region of the aperture. If we close the hole with metal, the fields will not

FIGURE 2.11 Focal length of a thin aperture lens.

1We remind readers that a superscript asterisk indicates that the corresponding variable is taken with the

initial energy wc [see Eq. (2.8)].
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change in remote regions; therefore, Ea and Eb can be found as the fields in the cor-

responding flat capacitive gaps:

Ea ¼ wa � wd

da
, Eb ¼ wd � wb

db
(2:88)

These fields can have any sign; therefore, both convergent and divergent aperture

lenses can be realized, as in the following particular cases:

. Convergent lens: Ea . Eb

. Divergent lens: Ea , Eb

. Saddle, convergent lens: Ea . 0, Eb , 0

. Saddle, divergent lens: Ea , 0; Eb . 0

. No lens: Ea ¼ Eb, f ¼ 1

Example 2.1: Anode Aperture as a Divergent Lens In Fig. 2.12, the simplest

version of the electron gun based on a planar diode is shown. Use of an electron

gun together with a transportation system makes it possible to get extended, often

intense, electron beams. After transportation, the electron beam emerges in a

working space, where its energy is used for interaction with electromagnetic

fields, other particles, or for material processing. The open end of the beam tube

at the diode is an aperture lens.

Let us find its focal length using Eqs. (2.87) and (2.88). Here wd ¼ wa,

Ea ¼ �wa=d, and Eb ¼ 0. According to Eq. (2.87), nonrelativistic and extreme

relativistic focal lengths are, respectively,

fnrel ¼ �4d, fext ¼ �2d (2:89)

FIGURE 2.12 Equipotential pattern in an anode aperture lens.

2.6 ELECTROSTATIC AXIALLY SYMMETRIC LENSES 71



As shown, the lens is divergent. The virtual focuses in the nonrelativistic and relativistic

cases are located behind the cathode at a distance of 3d and d, respectively. The diver-

gent effect may also be seen on the pattern equipotentials: the electrical forces defocus

the beam (Fig. 2.12). In effective guns, various methods of minimization of this

defocusing effect are used. This topic is considered in detail in Chapter 3.

Cathode Lens (Immersion Objective) According to Eqs. (2.86) and (2.87) and

Example 2.1, the near-cathode aperture lens may be convergent only if the electric

field in the object space (where the field is homogeneous) Ea . 0. But in this case,

the electric field in the cathode is retarding and the electron beam current is practi-

cally zero. This situation can be changed if the inhomogeneous field of the lens

reaches the cathode. Similar fields can be realized in a three-electrode system. In

Fig. 2.13 a typical scheme for a three-electrode cathode lens is shown. The field

nearest the cathode electrode Wehnelt has a small negative potential (the cathode

potential is zero). But for a sufficiently positive anode potential, the electric field

in the zone of the central cathode region is accelerating. According to Fig. 2.13,

the electric field in this region focuses the beam and a convergent beam will

be formed.

Note that the current to the negative Wehnelt is practically zero. Variation of the

Wehnelt potential wW provides effective control of the beam current. For thermionic

cathodes in the space-charge regime, the beam current Ib changes approximately as

Ib ¼ C(wW þ Dwa)
3=2 (2:90)

where wa is the anode potential; D is the penetration factor of the Wehnelt, which is

analogous to the penetration factor of a thermionic triode control grid; and C is a

constant proportional to the effective cathode area Sc, where the electric field accel-

erates. Note that Sc increases with wW ; therefore, the dependence Ib ¼ Ib(wW ) is

sharper than the 3/2 law. Electrons in the cathode lens leave the cathode at arbitrary
angles to the axis (if one takes the initial velocities into account), and the paraxial

approximation is not directly applicable. This difficulty is overcome by the

FIGURE 2.13 Equipotential pattern of a cathode lens (immersion objective).
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introduction of an imaginary cathode (Rusterholz, 1950). At the small distance d

from the cathode, the electric field may be considered uniform. Then the electron

trajectory that goes into the region 0 
 z 
 d is a parabola. Let us draw a tangent

to the trajectory in the plane z ¼ d (Fig. 2.14b) and find the intersection point of

the tangent with the straight line that passes through the output point parallel to

the z-axis (Fig. 2.14b). Assume that the electron leaves the cathode (z ¼ 0) parallel

to the cathode surface with a velocity of v0. Then

L ¼ h

tga
¼ v0t

v0=vz
¼ vzt ¼ 2d (2:91)

because vz is the velocity of the uniformly accelerated motion in the plane z ¼ d. We

see that L does not depend on the initial velocity v0. Now we can assume the trajec-

tories in the region�d , z , d to be straight lines that leave the imaginary sourceO

at arbitrarily small angles with the z-axis. The inhomogeneous lens field begins in

the plane z ¼ d, and the paraxial approximation is restored. The plane z ¼ �d

can be called an imaginary cathode.

2.6.6 Applications of Cathode Lenses

Emission Microscopes Figure 2.14a shows an emission microscope that can be

used to investigate the emitting structure’s details. As we can see, a magnified

image of the cathode surface is formed on the screen. The contrast of the image

is determined by the emission currents from different elements on the cathode.

Note that to obtain a sharp cathode image, it is necessary to operate in the regime

of a temperature-limited emission.

Electron Guns These guns are used to concentrate the electron beam on small

targets. The scheme of the electron gun can be obtained by adding a second

anode to the schemes shown in Figs. 2.13 and 2.14a (see Fig. 2.15). The rays are

FIGURE 2.14 (a) Image formatting by a cathode lens (IC, imaginary cathode; Cr, cross-

over); (b) formation of an imaginary cathode.
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also refracted, and with the proper electrode geometry and potentials, they form a

little circle on the screen that may be considered the crossover image. One disadvan-

tage of this gun is the impossibility of independent control of the beam current and

image focusing. Variations in the Wehnelt potential or the potential of anode 1

change these parameters simultaneously.

Usually, a version of the electron gun with sectioned anode 2 (Fig. 2.16) is used.

Here, anode 2 is divided into two sections between which anode 1 is placed. Anode 1

is called a focusing electrode; variations in its potential affect focusing only. A vari-

ation in the Wehnelt potential basically influences only the beam current. As a

whole, two sections of anodes 2 and 1 form a unipotential lens (Fig. 2.6) that projects

the crossover on the screen.

The electron guns described are used to obtain very small spots on various

targets. These guns usually operate with small currents and high voltages; therefore,

the space-charge fields on the targets are very small. Properties of electron guns are

essentially different from high-current applications in microwave and technological

devices (e.g., klystrons, traveling-wave tubes, free electron lasers and masers, elec-

tron beam welding and machining systems). In the latter the space-charge field

is significant, and it is important to use the maximum part of the emission current

(considered in Chapter 4).

FIGURE 2.15 Two-anode electron gun. IC, imaginary cathode; Cr, crossover.

FIGURE 2.16 Electron gun with sectioned anode (2). C, cathode; W, Wehnelt; A1, first

anode (focusing electrode); A2, second anode.
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The following devices are known (see, e.g., Goldstein et al., 1992; Moss, 1968;

Reimer, 1985; Reiser, 1994; Whitaker, 2000):

1. Cathode-Ray Tubes: The distance between the lens and the screen in these

tubes is usually more than the distance between the lens and the crossover.

The electron beam spot on the phosphorescent screen is a magnified image of

the crossover. It is essential to have the minimal crossover size, which is limited

basically by the initial electron velocities (Langmuir, 1937). The formula

for estimating the crossover diameter of thermionic cathodes is (see, e.g.,

Glazer, 1952)

dcr ¼ fa

ffiffiffiffiffiffiffiffiffiffi
kT

e0wd

s
(2:92)

where fa is the focal length of the cathode lens in the object space,T is the cathode temp-

erature, k ¼ 1:3807� 10�23 J=K is Boltzmann’s constant, and wd is the potential of

the boundary plane z ¼ d of the uniform field (Fig. 2.14a). Usually, dcr � 0:1mm.

For example, let us take fa ¼ 1mm, T ¼ 1100K (kT=e0 � 0:1V), and wd ¼ 5V.

We obtain dcr � 0:14mm.

2. Scanning Electron Microscopes: These devices utilize highly demagnified

images of the crossover as electron spots on the specimens. The typical size of the

spot that determines the microscope resolution is on the order of 10 nm. The required

demagnification factors M ¼ dcr=ds (ds is the diameter of the electron spot), on the

order of 1000, are realized in systems with one or two intermediate condenser lenses

(see, e.g., Goldstein et al., 1992; Reimer, 1985). In each lens (and also in a final lens)

Mi � Si=fi � 1, where Mi is the ith lens demagnification factor, Si is the distance

from the intermediate crossover image to the ith lens, and fi is the focal length of

the ith lens.

For the given size of the electron spot, the maximum probe current is determined by

themaximum beam brightness [Eq. (I.57)], and it increases witha, jc, and �w. The aper-
ture lens angle a is limited primarily by the spherical aberration (see Section 2.8). It is

�5 to 10mrad. The voltage is usually 10 to 30 kV. Themaximumvalues ofw are deter-

mined by the increase in parasitic X-ray radiation. Reducingw decreases the brightness

and increases the chromatic aberration (Goldstein et al., 1992). The cathode current

density depends on the type of emitter used. The best results for thermionic cathodes

are those of the LB6 cathode ( jc, max � 100A=sm2). The probe current for the spot

size �1 to 10 nm is about 0.01 to 1 nA. That is enough to form a picture. In general,

field emission cathodes are best. They improve all parameters by anorder ofmagnitude.

The disadvantage of these cathodes is the necessity of working with ultrahigh vacuum

(�1029 torr).

3. Electron-Probe Analyzers (Goldstein et al., 1992): These analyzers are often

provided with scanning microscopes in a common installation. They are applied in

X-ray spectrometers for the analysis of characteristic X-ray radiation and of the

chemical content of specimens irradiated by scanning electrons.
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4. Electron beam lithography (e.g., Valiev, 1992): Electron beam lithography is

provided by scanning systems similar to an electron-optical ESM system. A sample is

covered by a thin layer of specific matter that changes its properties after being irra-

diated by scanning electrons. In particular, the exposed layer changes its solubility

toward certain chemicals. Themotion of a scanning electron beam is usually controlled

by a computer. As a result, the hyperfine microstructures required can be obtained.

2.7 MAGNETIC AXIALLY SYMMETRIC LENSES

A magnetic lens is a focusing system with a purely magnetic field. The electric

field found in the lens (i.e., in the object and image space) is equal to zero, and

the potential is constant. The electric field differs from zero only in the region

where the electron beam is formed. We do not consider that region here.

2.7.1 Equations of Paraxial Trajectories. Classification of
Magnetic Lenses

Consider the equations of paraxial trajectories [Eqs. (2.39)–(2.42)] with

w0
z ¼ w00

z ¼ 0:

u0 ¼ cB(z)

2Fz

r00 þ cB(z)

2Fz

� 	2
r ¼ 0

9>>>>=>>>>; relativistic (2:93)

u0 ¼
ffiffiffiffiffiffiffiffi
h

8w�
z

r
B(z)

r00 þ hB2(z)

8w�
z

r ¼ 0

9>>>>=>>>>; nonrelativistic (2:94)

Equations (2.93) and (2.94)may be applied directly for trajectories inmeridional planes

and for zero cathode magnetic fields. Nevertheless, as mentioned in Section 2.5.1,

these equations can be written in the identical form without the restrictions indicated

but with other variables instead of u and r (see, e.g., Lawson, 1988; Szilagyi, 1988).

Consider the following properties of magnetic lenses (from Eqs. (2.93) and (2.94)):

1. The rotational angle u of any trajectory is a linear function of B(z) and does

not depend on r directly. Therefore, the entire image turns without angular

distortion. The direction of the rotation is determined by the sign of Bz.

2. For any B(z) = 0, the second derivative d2r=dz2 = 0. Therefore, a ray enter-

ing a lens parallel to the z-axis will always be deflected. This means that anymagnetic

field is a lens. We are reminded that only inhomogeneous electric fields form electro-

static lenses.

3. Because r00 , 0, all magnetic lenses are convergent (rays entering the lens

parallel to the z-axis approach this axis up to the first intersection with the axis).
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Taking Eq. (2.34) into account for the functionFz, we can rewrite Eqs. (2.93) and

(2.94) as follows:

u ¼
ðz2
z1

pdz (2:95)

r00 þ p2r ¼ 0 (2:96)

where

p ¼

cB(z)

2Fz

¼ hB(z)

2bgc
¼ vgr(z)

2bc
(relativistic)

hB(z)ffiffiffiffiffiffiffiffiffiffiffi
8hf�

z

p ¼ vgnffiffiffiffiffiffiffiffiffiffiffi
8hf�

z

p (nonrelativistic)

8>>><>>>: (2:97)

vgr and vgn are the relativistic and nonrelativistic gyrofrequencies, respectively, and

z1 and z2 are coordinates of the lens boundary planes (we assume that the magnetic

field in the lens has sharp boundaries). If the magnetic field is decreased fast enough

at z , z1 and z . z2, we can change z1, z2 to (�1,1).

Equation (2.97) can also be written as

p ¼ p

h
(2:98)

where h ¼ h(z) is an instantaneous pitch of the helical trajectory (accordingly,

relativistic or nonrelativistic) computed for the magnetic field B(z).

The principle of electrostatic lenses classification (see Section 2.6.1) cannot be

utilized here because unlike the latter, the field in the magnetic lens is zero

outside the lens. Instead, let us use the value of h for classification in the natural

spatial scale of the magnetic field. Then the following types of lenses can be defined:

x ; pL � L

h
	 1 short lenses

x ; pL � L

h
� 1 strong lenses

x ; pL � L

h
� 1 long lenses

(2:99)

Here L ¼ z2 � z1 is the lens length and �p is an average of p in the lens. Note that the
inequality defining the long lenses is similar to condition in Eq. (1.81) of the small

magnetic field inhomogeneity.

2.7.2 Short Magnetic Lenses

Let us rewrite Eq. (2.96) as

d2r

dz2
þ x2r ¼ 0 (2:100)
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where z ¼ z=L and the lens region is

z1

L
¼ z1 
 z 
 z1 þ 1 (2:101)

It can readily be shown from Eq. (2.100) that for x 	 1, the deflection of the ray

entering the lens parallel to the z-axis ½(dr=dz)z1 ¼ 0� is small; that is,

Dr ¼ r2 � r1 	 r1 (2:102)

The inequality (2.102) can also be used as a definition of short lens.

Focal Length of a Short Lens Assume that the trajectory enters the lens parallel to

the z-axis at the radius r1; that is,

r0(z1) ¼ 0, r(z1) ¼ r1 (2:103)

Integration of the second of Eqs. (2.97) over the interval z1 
 z 
 z2 givesðz2
z1

d2r

dz2
dz ¼ �

ðz2
z1

cB(z)

2Fz

� 	2
r dz ¼ � c

2Fz

� �2ðz2
z1

B(z)2 dz (2:104)

According to Eqs. (2.102) and (2.103), we obtain

r0(z2) ¼ �tana ¼ �r1
c

2Fz

� �2ðz2
z1

B(z)2 dz (2:105)

where a is the slope of the trajectory with respect to the z-axis in the plane z ¼ z2.

For z . z2, the trajectory is a straight line lying in the nonrotating meridional plane.

The focal length of the image space is the distance between z ¼ z2 and the intersec-

tion point of the trajectory with the z-axis: fb ¼ r2= tana. Obviously, the focal length
for the object space is the same: fb ¼ fa. Thus, according to Eq. (2.105), we obtain

the focal lens power:

1

fa
¼ 1

fb
¼ c

2Fz

� �2ðz2
z1

B(z)2 dz ¼ h2

4b2c2g2

ðz2
z1

B2
z dz �

c

2Fz

� �2ð1
�1

B(z)2 dz (2:106)

The focal length of a nonrelativistic short lens is obtained from Eq. (2.106) by

setting g ¼ 1 and b2c2 ¼ v2 ¼ 2hf�
z :

1

fa
¼ 1

fb
¼ h

8w�
z

ð1
�1

B(z)2dz (2:107)

Taking Eq. (2.97) into account, formulas (2.106) and (2.107) can be written as

1

f
¼
ðz2
z1

p2 dz ¼ L p2 (2:108)
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where p2 is the average of p2 over the length of the lens. The lens’s length is small in

compared with the focal length. Then, according to Eq. (2.108),

L

f
¼ L2 p2 	 1 (2:109)

This inequality coincides with the definition of a short lens [Eq. (2.99)].

According to Eqs. (2.106) and (2.107), the focal lens power 1/f grows with the

magnetic field B and/or with a decrease in energy (the potential) Fz(f
�
z ). Is it

possible to increase the optical power indefinitely? It is easy to see that

Eq. (2.106) or (2.107) becomes inapplicable when the focal length decreases

beyond the range of inequality (2.109) because (1) inequality (2.102), which is

the basis of Eq. (2.105), is not valid, and (2) knowledge of focal lengths in

general is insufficient for construction of the image. It is necessary to determine

the cardinal elements of the lens. Essentially, for f � L the form of the

trajectories is changed. In particular, an effect of multifocusing appears. The quali-

tative shape of the trajectories for different values of B(z)2=Fz is shown in Fig. 2.17.

It is instructive to consider qualitatively the focusing effect of the magnetic lens.

We draw a magnetic field line pattern of a solenoid lens in Fig. 2.18. This pattern

FIGURE 2.17 Change of shape of lens trajectories with increasing focal power: (a) short

lens; (b) strong lens; (c) the focus is inside the lens (the latter is a divergent lens); (d ) two

focuses are into the lens; (e) multifocusing lens.

FIGURE 2.18 Pattern of field lines of a magnetic lens.
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satisfies the following requirements: (1) axial symmetry is present; (2) the sources of

the magnetic field (currents) are arranged on the outside of the operation (near-axis)

region of the lens; and (3) the magnetic field is localized in the closed region

(�z1 
 z 
 z2).

Assume that an electron enters the lens parallel to the z-axis. Initially, it is

accelerated in the azimuthal direction by the radial component of the magnetic

field. The azimuthal velocity increases up to the middle plane of the lens, and

afterward, when Br changes the sign of rotation, it is retarded. But according

to Eqs. (2.93) and (2.94), the sign of the azimuthal velocity does not change.

When looking from the z-axis, the rotation direction for the pattern shown in

Fig. 2.18 is counterclockwise. The presence of the azimuthal velocity in combi-

nation with the axial component of the magnet field induces radial movement of

the electrons directed toward the axis. Changing the sign of the magnetic field in

Fig. 2.18 does not affect the sign of the radial velocity, because the direction of

the azimuthal velocity and that of the axial magnetic field change simultaneously.

This proves that any magnetic lens is convergent. The radial motion is a quadratic

function on the magnetic field because the radial force is proportional to vuBz,

where vu is also proportional to B.

2.7.3 Strong Magnetic Lenses

The optical properties of short lenses are determined by one parameter: the focal

length. In turn, according to Eqs. (2.109) and (2.97), the focal length is determined

by the average of B2(z) over the lens length. Therefore, details of the magnetic field

distribution, as well as analysis of the trajectories in short lenses, are not important.

But when we turn to strong lenses, these problems become essential.

Glazer’s Bell-Shaped Distribution The field distribution in real magnetic lenses

does not have well-defined boundaries. The magnetic field decreases more or less

smoothly from the middle lens plane and almost reaches the object and image

spaces. Some models of the distribution B(z) are, on the one hand, similar to the

real distribution, and on the other hand, permit a closed solution of the paraxial tra-

jectory equation (2.93) or (2.94) (Glazer, 1952; Szilagyi, 1988). Below we consider

the bell-shaped distribution proposed by Glazer (1952):

B(z) ¼ B0

1þ (z=d)2
(2:110)

where B0 is the magnetic field in the lens center and d is a half-width of the distri-

bution (Fig. 2.19). Substituting Eq. (2.110) for Eqs. (2.96) and (2.97), we obtain the

following equation for the paraxial trajectories:

d2r

dz2
þ k2

½1þ (z=d)2�2 r ¼ 0 (2:111)
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where

k ¼

cB0

2Fz

(relativistic)

hB0ffiffiffiffiffiffiffiffiffiffiffi
8hf�

z

p (nonrelativistic)

8>>><>>>: (2:112)

We see that the magnetic field in this model extends over the entire space, and the

trajectories are curvilinear everywhere. That makes this theory significantly differ-

ent from the immersion electrostatic lenses theory (Section 2.6.2). In particular, the

definition of cardinal elements must be changed.

It is easy to verify that the solution of Eq. (2.110) is (Glazer, 1952)

r ¼ d½C1 cos (vc)þ C2 sin (vc)�
sinc

(2:113)

where

c ¼ a cot
z

d
, v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2d2

p
(2:114)

and C1 and C2 are constants of the integration. The interval (p, 0) of the independent
variable c corresponds to the domain (�1,1) of the variable z. The lens center is at

the point c ¼ p=2. We can introduce two functions,

r1(c) ¼ d½A1 cos (vc)þ B1 sin (vc)�
sinc

r2(c) ¼ d½A2 cos (vc)þ B2 sin (vc)�
sinc

(2:115)

as linear independent solutions of Eq. (2.111). Let them intersect in points of the

object c ¼ ca and an image c ¼ cb [i.e., r1(ca) ¼ r2(ca), r1(cb) ¼ r2(cb)�. Then

FIGURE 2.19 Bell-shaped distribution of an axis magnetic field.

2.7 MAGNETIC AXIALLY SYMMETRIC LENSES 81



we obtain a system of two homogeneous linear equations for A1, 2 and B1, 2: The

condition of compatibility of this system yields the following relation between coor-

dinates of the object and image:

sin½v(ca � cb)� ¼ 0 or ca � cb ¼
np

v
, n ¼ 1, 2, . . . (2:116)

According to Eqs. (2.116) and for the given position of the object ca can be n images

in the planes

cbn ¼
vca � np

v
, n ¼ 1, 2, . . . (2:117)

The maximum number of images depends on v because 0 , c , p. Therefore, we
have n images if n , v , nþ 1. Using the definition of v [Eq. (2.114)], we obtain

the following condition of having n images:

n2 � 1 , k2d2 , (nþ 1)2 � 1 (2:118)

So if 0 , k2d2 , 3, we have one image; if 3 , k2d2 , 8, we have two images; and

so on.

Foci of Glazer’s Lens Let us define the focus of the image space as the intersection

point of the image’s principal ray with the z-axis. This ray is parallel to the z-axis

in the zero magnetic field [i.e., in the plane c ¼ 0 (z ¼ �1)�. It can readily be

shown that the equation of the corresponding trajectory is the second term of

the general solution [Eq. (2.113)]. In particular, the equation for the ray that

passes c ¼ 0 parallel to the z-axis at the distance rb is
2

r ¼ rb

v

sinvc

sinc
(2:119)

Positions of foci according to Eq. (2.119) are vcFb, n
¼ np or [see Eq. (2.114)]

zFb, n
¼ d cot

np

v
¼ d cot

npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2d2

p (2:120)

Evidently, coordinates of the focal points shift to the left with increased n. The

number of foci is equal to the number of images for each object. In the strong mag-

netic field when the number of foci is more than two [according to Eq. (2.118),

1þ k2d2 . 4], the foci with small n can lie within the right (image) side of the

lens. However, if there is only one focus (1þ k2d2 , 4), it always lies on the left

(object) side. The principal ray of the object space also forms n symmetric foci,

2Reminder: Subscripts a and b refer to the object and image spaces, respectively.
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which accords with the symmetry of the magnetic field distribution [Eq. (2.110)]. So

zFa, n
¼ �d cot

np

v
¼ �d cot

npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2d2

p (2:121)

Principal Planes Let us define the principal plane of the image spaceHb as the plane

drawn through the intersection point of the tangent to the image’s principal ray in the

focus and the straight line that is a continuation of this trajectory from z ¼ 1 (c ¼ 0)

(Fig. 2.20). Then

zHb
¼ zFb

þ rb

(dr=dz)Fb

¼ zFb
þ rb

(dr=dc)Fb

dz

dc
(2:122)

where r(c), z(c), and zFb
are given by Eqs. (2.119), (2.114), and (2.120). Substituting

these functions into Eq. (2.121) for c ¼ cFb, n
¼ np=v, we obtain

zHb, n
¼ d cot

np

v
� d

sin (np=v) cos np

¼ d

sin (np=v)
(�1)nþ1 þ cos

np

v

h i
(2:123)

Analogously, the location of the principal plane of the object space is

zHa, n
¼ �d cot

np

v
� d

sin (np=v) cos np

¼ d

sin (np=v)
(�1)nþ1 � cos

np

v

h i
(2:124)

Focal Length By definition, the focal length is the distance between the principal

plane and the focus:

fb, n ¼ zHb, n
� zFb, n

¼ (�1)nþ1d

sin (np=v)
(2:125)

FIGURE 2.20 Cardinal elements of an image space.
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It is easy to verify that

fa,n ¼ zHa, n
� zFa, n

¼ fb, n (2:126)

Magnification Assume that the position of the object is za(ca). The image

positions zb, n can be obtained from Eq. (2.117). Because the ray equation is

known [Eq. (2.119)], we can find the values of the radii r(za) and r(zb, n) on this

trajectory. The ratio of these values is the magnification

M ¼ r(zb, n)

r(za)
¼ sinv(ca þ np=v)

sin (ca þ np=v)

sinca

sinvca

¼ (�1)n sinca

sin (ca þ np=v)
(2:127)

Sign inversion ofM for subsequent images shows that periodically, the images move to

another side of the axis. For the minimum focal length (v ¼ 2, n ¼ 1)M ¼ � tan gca.

Construction of Images. Newton’s Relationship Consider the tangent t � t to

the trajectory at the focal point Fb (see Fig. 2.20) and find the length of the

segment zaA
� cut off by the tangent in the object plane:

ra ¼ �(zFb
� za)(r

0)Fb
¼ � d cot

np

v
� d cot ca

� � rb
d
(�1)nþ1 sin

np

v

¼ rb(�1)n
sin (ca � np=v)

sinca

¼ 1

M
rb (2:128)

We have obtained an important result: The straight line parallel to the axis in the image

space after refraction on the cardinal plane Hb and crossing the focus Fb crosses the

object. We call this line the first auxiliary principal ray. An analogous line in the

object space after refraction in the principal plane Ha and crossing the focal point Fa

hits the image. This is the second auxiliary principal ray. Thus, if the positions of the

principal planes and the foci are known, the parameters of images are obtained by

drawing the foregoing twoauxiliary principal rays through the object. Their intersection

gives the position of the image andmagnification. Although the definitions of principal

elements in both cases are different, this method of the image’s construction is comple-

tely identical to themethod in the theoryof electrostatic immersion lenses (Section2.6.3

and Fig. 2.8). Evidently, the relationship (2.71) between the magnification of focal

length and distances of the object and image from the corresponding foci,

M ¼ rb=ra ¼ Zb=fb ¼ fa=Za, and Newton’s formula,

ZaZb ¼ fa fb (2:129)

are valid also.

Image Rotation The angle of the image rotation according to Eqs. (2.95), (2.97),

(2.110), and (2.116) is

u ¼ k

ðzb
za

dz

1þ (z=d)2
¼ kd a tan

zb

d
� a tan

za

d

� �
¼ kd(ca � cb) ¼ n

kdp

v

84 ELECTRON LENSES



or, taking Eqs. (2.114) into account, we obtain

u ¼ n
pkdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2d2
p (2:130)

where k is given by Eq. (2.112).

General Characteristics of Glazer’s Lens It is interesting to determine the

dependence of the focal length and focal point position of a magnetic field. Let us

consider the half-width d. The coefficient k is proportional to the value of the

maximum magnetic field B0 [see Eq. (2.112)]. When B0 is small, v � 1, the focal

length f � d, and zFa
¼ �zFb

� d. This is the case for a short lens. For a larger

B0, the focus of the object space moves to the left and the focal length decreases.

For v ¼ 2, n ¼ 1, and we obtain the minimum focal length fa ¼ fb ¼ d. Both foci

move to the lens center z ¼ 0. For v ¼ 2, the parameter kd ¼ ffiffiffi
3

p
; that is, according

to Eq. (2.112),

B0d ¼
2
ffiffiffi
3

p
Fz

c
(relativistic)ffiffiffiffiffiffiffiffiffiffi

24w�
z

h

r
(nonrelativistic)

8>>><>>>: (2:131)

Further increase in B0 removes the object focus to the left of the lens, the focal length

increases, a second focus (n ¼ 2) appears, and so on. Relations (2.131) determine

the optimal regime of Glazer’s lens. The maximum focal-lens power is obtained

for minimum d and corresponds to a large value of B0. On the contrary, if we

increase B0, we must provide an adequate decrease in d; otherwise, the lens

power would be reduced. In practical versions of strong magnetic lenses, the fore-

going problems (increase in B0 and reduction in d ) are solved simultaneously by

the application of suitable systems for magnetic field concentration. Figure 2.21 is

a schematic of a magnetic lens with an axially symmetric magnetic iron circuit.

Similar systems are typical in electron microscopes. It is a very promising appli-

cation of superconducting lenses and lenses with permanent-magnet circuits in

connection with progress in high-temperature superconductors and magnetic alloys.

FIGURE 2.21 Magnetic lens with an iron circuit. 1, Electron beam; 2, iron shield; 3, winding.
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2.7.4 Long Magnetic Lenses

When the lens length ismuchmore than thepitchof thehelical trajectory, there aremany

foci in the lens. The simplest case of a long lens is a homogeneous magnetic field. The

electron-optical properties of a homogeneous magnetic field can easily be analyzed

without using the equationsofparaxial trajectories. In this case, theconditionof thepara-

xial approximationBz(r, z) � Bz(0, z) holds automatically because themagnetic field is

homogeneous. It remains to provide the condition a 	 1, where a is the slope of the

trajectory to the axis. Then the axial velocity is vz ¼ vcosa � v ¼ const., where v is

the total velocity, and the pitch h ¼ vgT ¼ const., where T is the gyroperiod.

Let us consider a bundle of trajectories emanating from point A1 in Fig. 2.22 with

different angles to the z-axes. They are helical trajectories with equal pitch that inter-

sected at point B1 on the same magnetic line. This is also valid for points A2 and B2.

Therefore, if points A1 and A2 lie in a plane perpendicular B, the stigmatic image of

object A1A2 in plane B1B2 will have a magnificationM ¼ 1. Thus, lenses with a homo-

geneous magnetic field transfer the image. Note that the screen may be placed at any

distance nh, n ¼ 1, 2, . . . , from the object. This lens is a typical multifocusing

element.

A more general class of long magnetic lenses are axially symmetric lenses with a

small inhomogeneous field. In this case and according to Eq. (1.110), guiding

centers move along the curvilinear magnetic field lines with a constant velocity

(Fig. 2.23) and drift slowly in the plane perpendicular to the magnetic field. The

pitch of helical trajectories does not depend on the guiding center radius (in the para-

xial approximation) or on the input angle of the trajectories. Therefore, in the plane

FIGURE 2.22 Focusing in an homogeneous magnetic field.

FIGURE 2.23 Long magnetic lens with an inhomogeneous field.
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perpendicular to themagnet field, a stigmatic image of the object is formed. Obviously,

corresponding points of the object and image lie on the same magnetic field lines. We

see that these lenses give a magnified or reduced image of the object, depending on the

sign of Ba=Bb � 1. It is easy to see that the condition of constant flux into the magnetic

field tube leads to the following formula for lens magnification:

M ¼
ffiffiffiffiffi
Ba

Bb

r
(2:132)

We see that if Bb , Ba, the magnetic field lines form a widening tube and M . 1.

2.8 ABERRATIONS OF AXIALLY SYMMETRIC LENSES

The theory of electrostatic and magnetic lenses described earlier in the chapter was

based on a number of assumptions. Their implementation provides the creation of an

ideal lens that forms stigmatic and similar images. Let us recall these assumptions:

(1) rigorous axial symmetry; (2) paraxial trajectory approximation; (3) energy

homogeneity, including the absence of time-dependent processes; and (4) negligible

space-charge fields and small effects of electron diffraction. Violation of at least one

of these conditions leads to aberrations that are responsible for blurred or distorted

images and complicate beam transport problems. The theory of aberrations is the

most extensively studied area in both light optics and electron optics. Intensive

investigations of aberrations in axially symmetric electron-optical systems

were carried out in the 1930s in connection with studies of the electron transmission

microscope problem. Detailed analyses of aberrations may be found in books by

Glazer (1952), Grivet (1972), Klemperer and Barnett (1971), Sturrock (1955), and

Szilagyi (1988), and in a number of related journal papers. Below, we consider

briefly classification and basic notions of aberrations in axially symmetric lenses.

2.8.1 Geometric Aberrations

Geometric aberrations result from violation of paraxial trajectory approximation.

The beginning of the geometric aberration theory in light optics dates from the

middle of the nineteenth century, when the classification of geometric aberrations

and corresponding aberration figures were developed. Note that the basic ideas in

aberration theory regarding light and electron optics are very similar.

Strictly speaking, a paraxial ray is a ray infinitesimally close to the axis

with infinitesimal transverse velocities of particles. Perturbation theory is used

to estimate the influence of small but finite disturbances. According to this theory,

a current radius vector of the particle can be represented as a perturbation of the

paraxial approximation:

r ¼ rG þ Dr (2:133)

where r(z) ¼ reiu is the complex radius vector and r and u are cylindrical coordi-

nates. rG(z) is the solution of paraxial equations (2.39) and (2.40), or (2.41) and
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(2.42), and can be called a paraxial trajectory because in these equations, the axial

potential w�
z is implied, although r(z) and r0(z) are finite. Dr(z) is the perturbation.

To find Dr, the fields and the potential are represented as a power series of r. In
third-order aberration theory, expansions of r up to third order are used.

Consider a possible scheme for aberration analysis of electrostatic lenses in a non-

relativistic approximation. Let us take the trajectory equations (2.22) and (2.18),

where we assume, according to these conditions, u0 ¼ 0 and F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2w0w

�p
, that

d

dz

ffiffiffiffiffi
w�p

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p

2
ffiffiffiffiffi
w�p @w�

@r
¼ 0 (2:134)

[We are reminded that according to Eq. (2.8), w�(z) ¼ w(z)þ wc.] Expansions of the

potential in terms of r up to O(r3) are

w�(r, z) ¼ w�
z �

r2

4
w00
z ,

@w�

@r
¼ � r

2
w00
z þ

r3

16
wIV
z

where w�
z ¼ w�(0, z). Also,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p � 1þ r02=2. Substituting these equations

into Eq. (2.134), we obtain up to third-order terms in the equation for the

perturbation:

Dr00 þ Dr0
w0
z

2w�
z

þ Dr
w00
z

4w�
z

¼ r3G
16

wIV
z

2w�
z

� w00
z

w�
z

� �2
" #

þ r2Gr
0
G

8

w000
z

w�
z

� w0
zw

00
z

w�2
z

� �� 	

� rGr
02
G

4

w00
z

w�
z

� r03G
2

w0
z

w�
z

(2:135)

Here rG ¼ rG(z) is a solution of the paraxial equation

r00G þ w0
z

2w�
z

r0G þ w00
z

4w�
z

rG ¼ 0 (2:136)

which is obtained using initial values rG(za) and r0G(za). Equation (2.135) is an

ordinary linear differential equation with a right-hand side that is a known func-

tion of z. The solution of Eq. (2.135) can be represented as a linear combination

of two linearly independent solutions r1(z) and r2(z) of the homogeneous equation

that is the left-hand side of Eq. (2.135):

Dr ¼ C1(z)r1(z)þ C2(z)r2(z)

According to the method using parameter variation, functions C1(z) and C2(z) can

be expressed as definite integrals along the z-axis of the function on the right-

hand side of Eq. (2.135), and a combination of the functions r1(z) and r2(z)

(i.e., integrals of the axial potential and its derivatives up to the fourth order).

Note that the homogeneous equation on the left-hand side of Eq. (2.135)

coincides with the equation of paraxial trajectories [Eq. (2.136)].
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The perturbation in the image plane can be described by the function

½Dr(zb)�ra,ua,r0a ¼ e�iua ½D(zb)�ra,r0a , where ra, ua, and r0a are cylindrical coordinates

and the slope of the trajectory to the axis in the object plane, and z ¼ zb is the

position of the image plane. According to Eq. (2.135), Dr(zb) is a polynomial of

third degree in terms such as r3a , r
03
a , r

2
ar

0
a, rar

02
a . The coefficients of this expansion,

Ai ¼ Ai(ra, r
0
a, ua), found after integration, are called geometrical aberration coeffi-

cients. Note that in reality, realization of this simple procedure is very complicated.

Other methods are used more often, in particular, the method of characteristic

functions (see, e.g., Glazer, 1952; Sturrock, 1955; Szilagyi, 1988).

Let the paraxial trajectories give a stigmatic image of the object in the plane

z ¼ zb, called a Gauss plane. According to Eq. (2.133), in the Gauss plane

rb ¼ rG,b þ (Dr)b ¼ Mra þ Drb (2:137)

whereM is the magnification. For the electrostatic lenses,M is a real value. If a cone

of nonparaxial rays emerges from point ra, it forms after intersecting with the

image plane of some figure (an aberration figure). Classification of the geometrical

aberrations is based on the characteristic features of aberration figures.

Below we use an analysis of aberration figures that is based on the introduction of

an auxiliary aperture plane perpendicular to the z-axis. This plane has a circular

aperture with the center on the axis at the point z ¼ zd. Previously, we determined

the particular trajectory by setting the values ra and r0a. Let us replace r0a by the

complex radius vector rd of the trajectory in the aperture plane. The particular

trajectory is determined unambiguously by the complex values ra ¼ r(za)e
iua and

rd ¼ r(zd)e
iud . The perturbation Drb at the Gauss plane is now

Drb ¼ f (ra, rd) (2:138)

It is convenient to arrange the aperture plane after the lens so that the trajectories in

the region zd , z , zb will be straight lines. A diagram of aberration figure formation

is shown in Fig. 2.24. Here rG(z) is one of the paraxial trajectories that satisfies the
paraxial equation (2.136). These trajectories emerge from point ra with different

r0a values, but they pass through the Gauss plane at the same point, Mra.

FIGURE 2.24 Formation of an aberration figure. rG(z), paraxial trajectory.
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Take into account the small size of ra and rd. Let us to expand Drb into a power
series of the products ra, r

�
a, rd, and r�d up to third order:

Drb ¼ a1r
2
a þ a2rar

�
a þ a3rard þ � � � þ b1r

3
a þ b2r

2
ar

�
a

þ b3rar
�2
a þ b4r

2
ard þ � � � (2:138a)

The number of terms in this sum can be reduced considerably if we take into account

the axial symmetry of the system. In particular, if the system is turned as a whole by an

angle a, the vectors ra, rd , and Drb must be multiplied on eia and r� on e�ia. But then

the term r1r2 will be multiplied by e2ia and the term r1r
�
2 by 1. So all quadratic terms

must be dropped. As far as the cubic terms are concerned, only terms like r21r
�
2 yield

multiplication by eia. Therefore, the sum (2.138a) transforms into a thirdorder sum:

Drb ¼ Ar2dr
�
d þ Br�ar

2
d þ Crardr

�
d þ Dr2ar

�
d þ Erar

�
ard þ Fr2ar

�
a (2:139)

Here the values A, B, C, D, E, and F are, in general, complex aberration coefficients.

Altogether, we have 12 real coefficients. This number may be reduced further if one

takes into account that after the lens, trajectories are straight lines. Therefore, the

vector Drb must not be rotated when rd ¼ jrdj is changed; that is,

Im
@Drb
@rd

� �
¼ 0 (2:140)

It is possible to show (Born and Wolf, 1965) that

Im A ¼ Im E ¼ 0, C ¼ 2B� (2:141)

Equation (2.139) becomes

Drb ¼ Ar2dr
�
d þ Br�ar

2
d þ 2B�rardr

�
d þ Dr2ar

�
d þ Erar

�
ard þ Fr2ar

�
a (2:142)

The number of independent aberration coefficients now is eight. For electrostatic

lenses, the coefficients are real and there are five. Note that in obtaining Eq. (2.142),

the concrete form of the paraxial equations has not been used. Therefore, properties

of the aberrations, including aberration figures, must be the same in light and

electrostatic electron optics. Let us consider these aberrations very briefly.

Spherical Aberration The problem of spherical aberration is fundamental in elec-

tron microscopy, in which objects are very small and arranged close to the optical

axis. Let us arrange the point object exactly at the axes. According to Eq. (2.42),

for ra ¼ 0 only the first term remains:

Drb ¼ Ar3de
iud ¼ Ar3de

iub (2:143)

We see that the trajectories leaving the point on the z-axis at different angles form in the

Gauss plane a circle with radius Drb that is proportional to r3d . Note, however, that
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the coefficientA in Eq. (2.142) depends on the aberration plane position. Therefore, it is

difficult to compare different lenses using A as a criterion. One can show that rd is

proportional to the angle a between the ray that passes through an aperture edge and

the z-axis in the Gauss plane, and we can write instead of Eq. (2.143),

Drb ¼ Csa
3 (2:144)

Here Cs is a spherical aberration coefficient that does not depend on the aperture plane

position.

In Fig. 2.25, the formation of an aberration circle is shown. The boundary rays

cross the z-axis at point F, which is to the left of the Gauss plane. In light optics,

there are lenses with different signs of Cs, so aberration rays intersect the z-axis

on different sides of the Gauss plane. Combining similar lenses allows one to

design optical objectives with a very large aperture, practically without spherical

aberration. The problem of spherical aberration in the electron optics is much

more complicated. As determined by Scherzer (1936a,b), all electrostatic and mag-

netic lenses with electric and magnetic Laplace potential fields have the same sign of

Cs, and the aberration cannot be eliminated. It is possible to decrease only the coeffi-

cient Cs in choosing a proper lens configuration. Therefore, the radical way is to use

very small apertures. Fortunately, de Broglie’s electron wavelength is sufficiently

small to neglect (in certain limits) the effects of electron diffraction.

If the image plane moves to the left of the Gauss plane position, the radius of the

aberration disk can be decreased. The radius Drlc ¼ 1
4
Drb (the radius of least con-

fusion) is minimal when the displacement Llc ¼ 3
4
LF , where LF is the distance

from the Gauss plane to the point where the boundary rays intersect with the

z-axis (Fig. 2.25).

Coma This aberration is described by the sum of the second and third terms in

Eq. (2.142). For the electrostatic lenses (the coefficient B is real), it reads

Drb ¼ B(r�ar
2
d þ 2rardr

�
d) (2:145)

FIGURE 2.25 Formation of a spherical aberration. AP, aperture plane; GP, Gauss plane;

PR, paraxial rays; Drlc, radius of least confusion.
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Let rays enter from the point ra, ua ¼ 0 on the object plane, and rd ¼ rde
iud . Then,

taking into account that ud ¼ ub, we obtain

Drb ¼ Brar
2
d(2þ e2iub ) (2:146)

We see that the aberration figure is a circle. The center of this circle is located at a

distance 2Brar
2
d from the image point on the Gauss plane, and the radius of the circle

is Brar
2
d . The radius and the displacement of the center increase linearly with the

object point’s distance from the axis, but the radius of the circle and the displace-

ment of the center in the image plane increase as a square of the aperture radius.

Note that the shift of image points for other aberrations increases according to

Eq. (2.142) as r2a . The image of the objects may be strongly disguised, as they are

being covered by the coma when large apertures are used. When the object is

close to the axis, spherical aberration dominates. It is also necessary to keep in

mind that spherical aberration is the only type of aberration that cannot be sup-

pressed by the proper lens configuration or combination of lenses (electrostatic

and magnetic).

Astigmatism The fourth term in Eq. (2.142) describes astigmatism. For electro-

static lenses, the coefficient D is real (D ¼ D). The aberration figures are formed

by rays emerging from the object point, O. Let us take ra ¼ ra, and ud ¼ ub. Then

Drb ¼ Dr2ard e
�iub (2:147)

The aberration figure in the Gauss plane is a circle, but the direction of rotation of

any point on this circle is opposite the rotation of the corresponding point on the

aperture plane. It can be shown that horizontal and vertical rays passing through

the aperture have different foci. In Fig. 2.26, the focus of the horizontal rays

FIGURE 2.26 Astigmatic aberration. O, object; AP, aperture plane; GP, Gauss plane; SF,

sagittal focus; MF, meridional focus.
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(the sagittal focus) locates the left of the Gauss plane and the focus of the vertical

rays (the meridional focus) locates the right.

If the image plane is moved from the Gauss plane to the left or right, the circle is

transformed to ellipses. These ellipses degenerate into straight lines when the image

plane is at the sagittal or meridional foci (see Fig. 2.26). Suppression of astigmatic

aberration is possible in principle (unlike spherical aberration). According to

Eq. (2.147), it becomes very important when wide bundles of rays, especially

large objects or objects distant from the axis, are used.

Field Curvature This is the fifth term in Eq. (2.142). Because the coefficient E is

real, aberrations are the same for electrostatic and magnetic lenses. Taking

ra ¼ raw and wud ¼ ub, we obtain

Drb ¼ Er2ard e
iub (2:148)

The aberration figure is also a circle with the image point in the Gauss plane as the

center. Now, the rotation direction of any point in the aperture and the corresponding

point on the circle in the Gauss plane are the same. According to Eq. (2.148), the

image of the axial point ra ¼ 0 is a point.

It can be shown (see, e.g., Rusterholz, 1950) that if the image plane is moved to the

left of the Gauss plane, a circle in the object plane of definite radius ra will be imaged

as a sharp circle with the center on the axis. For each ra, there is a definite position of

the image plane with a stigmatic image of the corresponding circle. Therefore, a

curved surface can be found that touches the Gauss plane at the axis with the stig-

matic image of a wide object. It can be shown that this surface is a paraboloid for

an electron lens that is concave toward the lens. The stigmatic image can be

located in the plane if the object is disposed on the paraboloid surface.

Distortion The distortion is described by the sixth term in Eq. (2.142). For

electrostatic lenses and ra ¼ ra,

Drb ¼ Fr3a (2:149)

Because Drb does not depend on rd, the image in the Gauss plane is stigmatic. But

the image points are displaced by�r3a from the paraxial image. As a result, horizon-

tal or vertical lines in the object plane will be imaged as curved on the Gauss plane.

Specific features of distortions (i.e., barrel or cushion distortions) are determined by

the sign of F (Klemperer and Barnett, 1971).

Anisotropic Aberrations Anisotropic aberrations are aberrations of magnetic

lenses. They are described by the terms in Eq. (2.142), with complex aberration coeffi-

cients B, D, and F. These aberrations, called anisotropic coma, anisotropic astig-

matism, and anisotropic distortion, do not have analogs in light optics. It can be

shown (see, e.g., Glazer, 1950; Rusterholz, 1950) that unlike corresponding aberrations

in electrostatic lenses, these aberration figures are twisted as a result of azimuthal shift.
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2.8.2 Chromatic Aberration

The cause of chromatic aberration in light optics is the dependence on the refrac-

tion index of the wavelength. The use of nonmonochromatic lightning is therefore

accompanied by blurring of the image. In electron optics, the particle energy is

the analog of the wavelength in light optics. The formulas for the electron-optical

index of refraction [Eq. (2.10) or (2.11)] include the reduced potential

w� ¼ wþ wc, where wc is the initial electron energy. The spread in values of wc

is one of the causes of chromatic aberration of electron lenses. Another cause is

the instability of voltage or current power supplies of electric and magnetic lenses.

The spread in the initial energy is determined by various factors. For thermionic

cathodes, the energy spread is about 0.1 to 0.2 eV, and the potentials of electrodes in

electric and magnetic lenses are usually higher than 1 kV; therefore, this factor is not

important. For photocathodes, the energy spread is greater (on the order of 1 eV),

and the chromatic aberration can be significant. Secondary electrons can have a

much greater energy spread, so the energy spread of secondary particles reflected

from the target can be comparable to the primary energy. In transmission electron

microscopes, the factor that determines the spread is the inelastic scattering of

electrons into a specimen. In this case the energy losses can reach �10 eV.

The instability of modern power supply sources is not large (it can be better

than 1025). Therefore, this factor is not considerable, especially for electrostatic

lenses if the potentials of all electrodes are set from a common source. The chro-

matic aberration does not disappear, even for nearby axis objects. Therefore,

similar to spherical aberration, it is the most important limiting factor for electron

microscopy.

Let us consider as an example the chromatic aberration of thin nonrelativistic

(unipotential electrostatic or magnetic) lenses when the point object is on the axis

(axial chromatic aberration). Assume that rays leave an axial object O into the cone

at the angle aa (Fig. 2.27). According to Eq. (2.54) and the Helmholtz–Lagrange

formula [Eq. (2.62)], the edge ray in the image plane is

tanab ¼ G tanaa ¼ 1

M
tanaa (2:150)

FIGURE 2.27 Axial chromatic aberration. GP, Gauss plane for Df ¼ 0; Drb, radius of least
confusion.

94 ELECTRON LENSES



because for the lenses being considered, ne0 (a) ¼ ne0 (b). The radius of least

confusion of a disk is

Drb ¼ Ddb tanab ¼ 1

M
Ddb tanaa (2:151)

where Ddb is the shift in the Gauss plane for perturbed trajectories. This value can be
found from Newton’s formula [Eq. (2.72)], which can be written as

1

da
þ 1

db
¼ 1

f
(2:152)

(da and db are the distance between the lens and the object and the image, respect-

ively). Taking into account that da ¼ const:, we obtain

Ddb ¼ Df
db

f

� �2

� M2Df (2:153)

Equation (2.153) is valid for M � 1. Substituting Eq. (2.153) in Eq. (2.51), we find

that

Drb ¼ M tanaa Df (2:154)

Consider the two following cases.

1. Initial energy spread in a thin unipotential electrostatic lens. According to

Eq. (2.79),

1

f
¼ 3

16

ð1
�1

w0
z

w�
z

� �2

dz (2:155)

In this formula only the value w�
z depends on the initial energy. Therefore, it can

readily be shown that

Df ¼ 2Dw

�w
f , Drb ¼ M

2Dw

�w
f tanaa (2:156)

where �w is an average potential in the lens.

2. Nonstability of the power supply of thin magnetic lenses. In Eq. (2.107) for the

focal length of a thin magnetic lens, the perturbation DB of the value B(z) does not

depend on z. Therefore,

Df ¼ Dw

w
� 2DB

B

� �
f

Drb ¼ M
Dw

w
� 2DB

B

� �
f tanaa

(2:157)
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Note that the value of the radius of least confusion Drb is the linear function of the

aperture angle, whereas for spherical aberration, Drb � a3. Therefore, at low aper-

ture angles the performance of the lenses is limited by the chromatic aberration. For

larger apertures, spherical aberration prevails.

A comprehensive analysis of chromatic aberration problems can be found, for

example, in a book by Szilagyi (1988).

2.8.3 Disturbances of Axial Symmetry

Axially symmetric aberrations are the result of unavoidable errors in the manu-

facture of parts or assembly of systems. Errors in assembly, or alignment aberration,

can be excluded almost entirely by proper adjustment. It is also possible to correct

a finished system. If displacements from the axis are small in terms of the aperture

radius, the errors have little effect on image quality.

Errors defined by the asymmetry of some parts of a system are more serious.

Very often, it is impossible to either avert or eliminate them. For example, asym-

metric magnetization of the iron circuits in magnetic lenses may be a result of the

structural inhomogeneity of the magnet. A simple analytical model of asymmetric

perturbations is presented by the quasielliptic distribution of the electric or magnetic

potential. This model gives two different stigmatic images of the axial point object:

one image for rays in a vertical plane and another for horizontal rays. As a whole, the

picture of image formation is similar to that of astigmatic aberration (Fig. 2.26) and

is called axial astigmatism. These aberrations in electron optics (especially in elec-

tron microscopy) are corrected by special devices, stigmators, that add the same

type of asymmetry as that of the original device but with the opposite sign.

Often, multipole lenses are used as stigmators (see, e.g., Szilagyi, 1988).

2.8.4 Space-Charge Fields

The effects of space-charge field can create problems, even in such low-current

electron-optical topics as electron microscopy (especially, scanning microscopy)

and electron beam lithography. As the dimensions of an electron beam spot in cor-

responding devices shrink, the importance of the influence of space-charge fields

increases. There are two types of effects. The first is collective interaction, when

every particle participates in the formation of the average field of a beam. If

we neglect the dynamic effects in the beam (instabilities), this effect becomes the

classical problem in space-charge beam theory. Similar problems are considered

in Chapter 3. The space-charge fields determine the waist of the beam near

the spot that defines the minimal thickness of the beam. This effect is added to

the broadening of the beam upon the action of spherical and chromatic aberrations.

The second effect is related to particles collisions. As discovered by Boersh, indi-

vidual interactions can lead not only to direct spatial broadening of the beam, but

also to the effect of energy broadening with subsequent deterioration of beam

quality (the Boersh effect) (see, e.g., Arnold et al., 1988).
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2.8.5 Electron Diffraction

The impossibility of creating electron lenses without spherical aberration dictates

the narrowing of apertures as a radical way of obtaining adequate high resolution

in electron microscopy, which inevitably lowers the maximum current density on

the image [Eq. (I.57)], although this difficulty can be overcome by sensitive

modern methods of recording the optical information. But the principal limiting

factor in both transmission and scanning microscopes is the effect of electron

diffraction. According to the de Broglie formula, the electron wavelength is

l ¼ h

p
¼ hc

e0F
¼ hc

e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�(w� þ 2w0)

p (2:158)

where h ¼ 6:6261� 10�34 J=s is Planck’s constant. For w� ¼ 10 kV,

l � 1.2 � 10211 m ¼ 0.12 Å; for f� ¼ 500 kV, l � 1.4 � 12212 m ¼ 0.014 Å.

These small wavelengths do not exclude, however, large sizes of the Airy disk for

small apertures. So for object aperture angle aa, the image aperture angle is ab ¼
aa=M [see Eq. (2.62)]. The radius of the first Fresnel zone in the image plane is

DrF ¼ 0:6l

ab

¼ M0:6l

aa

(2:159)

Then the radius of the Airy disk in the object plane is

Drda ¼ DrF
M

¼ 0:6l

aa

(2:160)

So for aa ¼ 1 � 1023 and for w� ¼ 10 kV and 500 kV, Drda ¼ 72 Å and 8 Å, corre-

spondingly. The last value essentially limits the resolution of an electron transmission

microscope. Ifaa is increased, problems related to chromatic and spherical aberrations

will arise.

2.9 COMPARISON OF ELECTROSTATIC AND MAGNETIC LENSES.
TRANSFER MATRIX OF LENSES

2.9.1 Comparison of the Optical Power of Electrostatic and
Magnetic Lenses

Averaging over the lens length fields and potentials in Eqs. (2.77) and (2.106), and

for the focal lengths of electrostatic and magnetic lenses, we obtain

1

fE
¼ h2E2

z (g
2 þ 2)

4c4b4
zg

4
L,

1

fB
¼ h2B2

z

4c2b2
zg

2
L (2:161)

2.9 COMPARISON OF ELECTROSTATIC AND MAGNETIC LENSES 97



In a nonrelativistic approximation, these relations become

1

fE
¼ 3

16

E2
z

w2
z

L,
1

fB

hB2
z

8wz

L (2:162)

where L is the lens length. Then, omitting the signs of the averages, we find that

FBE ;
fB

fE
¼ E2

z (g
2 þ 2)

B2
zb

2
z c

2g2
(relativistic)

FBE ¼ 3

2h

Ez

Bz

� �2
1

wz

(nonrelativistic)

(2:163)

Let us take intermediate values of Ez and Bz: Ez ¼ 3 � 106 V/m and Bz ¼ 0.2 T. We

find in the nonrelativistic approximation that FBE � 2000 /wz. So the optical power

of magnetic lenses is higher than that of electrostatic lenses for all wz . 2 kV. If one

takes the limiting values Ez ¼ 107 V/m (a breakdown strength) and Bz ¼ 3 T (a

saturation of the ferromagnetic), we obtain FBE � 100 wz. In this case, the optical

power of magnetic lenses is already higher for wz . 100 V.

Obviously, for relativistic energies, magnetic lenses have a clear advantage.

Furthermore, the relativistic electrostatic lenses for values of electrical fields less

than the breakdown values have unacceptably low optical power. One advantage of

magnetic lenses is the possibility to place parts of the lens outside the vacuum

chamber. That essentially simplifies the correction of lens parameters. The advantages

of electrostatic lenses are small mass, compactness, and a simpler power supply.

2.9.2 Second-Order Focusing of Axially Symmetric Lenses

For thin electrostatic lenses according to the first of Eqs. (2.162),

L

FE

¼ 3

16

EzL

wz

� �2

	 1

The parameter (EzL=wz)
2 is the square of the ratio of the axial voltage on the lens to

the average energy of the electron. The smallness of this parameter leads to weak

focusing by axially symmetric electrostatic lenses. The same conclusion is valid for

magnetic lenses [Eq. (2.162)]. The cause of this effect is the absence in both types

of lenses of fields that could provide constant radial acceleration of electrons along

the lens. The radial component of anelectricfieldaccording toEq. (2.29) is proportional

to E0
z, which changes the sign in electrostatic lenses with a limited field extent.

For magnetic lenses, the weak (second-order) focusing [Eq. (2.161)] is the result

of the zero azimuthal component of the magnetic field Bu in axially symmetric

systems. When particles moving parallel to the axis enter the lens, the radial accel-

eration is zero. Acceleration begins only after the initiation of rotational motion
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whose velocity is proportional to the axial component of the magnetic field Bz.

This component further determines the radial acceleration that is proportional to B2
z .

2.9.3 Transfer Matrix of Lenses

Consider the general solution of the linear paraxial equation

r(z) ¼ Pu(z)þ Qv(z)

where u and v are linearly independent partial solutions of the equation. Let

the values r(z1) ¼ r1, r
0(z1) ¼ r01 belong to some trajectory in the plane z ¼ z1.

We obtain

r1 ¼ Au(z1)þ Bv(z1)

r01 ¼ Au0(z1)þ Bv0(z1)
(2:164)

The solution of Eq. (2.164) is

A ¼ r1v
0(z1)� r01v(z1)

W1

, B ¼ r01u(z1)� r1u
0(z1)

W1

(2:165)

where W1 ¼ u(z1)v
0(z1)� u0(z1)v(z1) is the Wronskian of the paraxial equation,

which is nonzero if u and v are linearly independent. Substitute Eq. (2.165) into

Eq. (2.164) written for another point, z2, of the same trajectory. We obtain the

linear equation

r2(z2) ¼ m11r1 þ m12r
0
1

r02(z2) ¼ m21r1 þ m22r
0
1

(2:166)

where the mij are known functions of z1 and z2. We can write Eqs. (2.166) in matrix

form as

r2
r02

� �
¼ m11 m12

m21 m22

� �
r1
r01

� �
¼ M21

r1
r01

� �
(2:167)

The matrix M21, called the transfer matrix, sets the linear relation between vectors

r1
r01

� �
and

r2
r02

� �
, which belong to the same trajectory in two arbitrary sections of the

electron-optical system. The matrix elements mij depend only on z1 and z2. There-

fore, any pair of conjugated vectors in the z1 and z2 planes will be transferred by

the same matrix, M21. Obviously, successive transfer through a number of the

sections is performed by multiplication of the transfer matrix for each section.

Consider some examples.
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1. Transfer matrix of a drift space. Let the vectors r1=r
0
1


 �
and r2=r

0
2


 �
belong to

the planes z1 and z2 ¼ z1þ l in the drift space where the trajectory is rectilinear. We

obtain

r2 ¼ r1 þ lr01
r02 ¼ r01 ¼ 0r1 þ r01

so the transfer matrix of this section is

M21 ¼ 1 l

0 1

� �
(2:168)

2. Transfer matrix of a thin immersion lens. Take planes z1 and z2 at the left and

right boundaries of the lens in Fig. 2.28. Placing the object A and the image B on the

axis, we obtain

r2 ¼ r1 ¼ r1 þ 0r01 (2:169)

d1 ¼ r1

tana1

¼ r1

r01
; d2 ¼ �r2

r02
(2:170)

Substituting Eqs. (2.170) into Newton’s formula f1=d1 þ f2=d2 ¼ 1, we obtain

r02 ¼ � 1

f2
r1 þ f1

f2
r01 (2:171)

Let us combine Eqs. (2.169) and (2.171) into a transfer matrix:

M21 ¼
1 0

�1

f2

f1

f2

0@ 1A (2:172)

For a unipotential immersion lens, f1 ¼ f2 ¼ f and

M21 ¼
1 0

�1

f
1

0@ 1A (2:173)

FIGURE 2.28 Transfer matrix of a thin electron lens.
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3. Two thin unipotential lenses separated by a drift space of length l. The trans-

fer matrix is equal to the product of three matrices [Eqs. (2.173) and (2.168)]:

M ¼
1 0

�1

f2
1

0@ 1A 1 l

0 1

� � 1 0

�1

f1
1

0@ 1A (2:174)

Performing the matrix multiplication, we find that

M ¼
1� l

f1
l

�1

f1
� 1

f2
þ l

f1 f2
1� l

f2

0BB@
1CCA (2:175)

Let the distance between the lenses be small: l/f 	 1. Then we can write

Eq. (2.75) as

M ¼
1 0

�1

F
1

 !
(2:176)

where

1

F
¼ 1

f1
þ 1

f2
� l

f1 f2
(2:177)

So a pair of nearly unipotential thin lenses is equivalent to a single thin lens with

the focal length F. It is interesting to note that the combination of a divergent and

a convergent lens with equal focal lengths ( f1 ¼ 2f2) always forms a convergent

lens (F . 0).

2.10 QUADRUPOLE LENSES

2.10.1 Introduction

As we have seen, the main disadvantage of axially symmetric lenses is the second

order of focusing, which is the result of a comparative weakness of the net radial

acceleration in axially symmetric systems with a simple connective cross section.

To avoid this problem, one possibility is to apply coaxial electrostatic or magnetic

configurations. But these systems obviously are useless in electron microscopy,

where the objects and images must be arranged near the axis. Abandoning the

axial symmetry changes the problem (although it brings new problems). The sim-

plest system of this type is a flat capacitor oriented along the z-axis. In this

system, the transverse electric field is constant along the axis, and excluding the

end fields, the axial field is zero. Unfortunately, this device can be used only as a

beam deflecting system, because in this case, the function of image formation is

absent. However, there are systems without axial symmetry but with a higher

degree of symmetry than that of this flat capacitor. The corresponding fields are
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obtained as solutions of the two-dimensional Laplace equation

r
@

@r
r
@w

@r

� �
� @2w

@u2
¼ 0 (2:178)

Consider a system of 2N identical electrodes placed equally in the azimuthal

direction. The system has N planes of symmetry. If one of these planes coincides

with the (x, z) plane, the solution of Eq. (2.178) can be written as (Hawkes, 1970;

Szilagyi, 1988)

w(r, u) ¼
X
n

anNr
nN cos (nNu) (2:179)

Naturally, this representation is valid for a potential independent of z. An analogous

formula can be written for the magnetic potential. Every term of this sum satisfies

Eq. (2.178). In general, a sum of the terms in Eq. (2.179), including n ¼ 1, is

required to satisfy the boundary conditions. However, it is possible to use single

terms of the sum as solutions of boundary value problem, setting the electrode con-

figuration as an equipotential surface of the type

rnN cos nNu ¼ const., nN ¼ 1, 2, . . . (2:180)

In general, these equations represent the electrode geometry of multipoles

(Hawkes, 1970). The quadrupole distribution corresponds to the term n ¼ 1 and

two symmetry planes (i.e., nN ¼ 2):

w(r, u) ¼ a2r
2 cos 2u

In Cartesian coordinates (x ¼ r cos u, y ¼ r sin u), the quadrupole potential is

w(x, y) ¼ a2(x
2 � y2) ¼ w0

a2
(x2 � y2) (2:181)

Let the potential of the electrode be w0. Then the equation of the electrode surface is

x2 � y2 ¼ a2 (2:182)

These are two horizontal hyperboles with a distance between vertices of 2a. The other

two surfaces are symmetrical vertical hyperboles corresponding to the potential �w0

(Fig. 2.29).

The components of the electrical field according to Eq. (2.181) are

Ex ¼ E0

x

a
, Ey ¼ �E0

y

a
(2:183)
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where E0 ¼ �2w0=a is the electric field in the hyperbole vertices. So if w0 , 0,

the vertical electrodes have a positive potential, and E0 . 0. Correspondingly, the

components of the magnetic field are

By ¼ B0

x

a
, Bx ¼ B0

y

a
(2:184)

These simple relations are very significant. They mean that the field components are

linear functions of the transverse coordinates in the entire volume of the system. In

the practice lens, lengths are limited. A structure of fields at the lens’ ends (fringe

fields) is like a multipole and is essentially more complicated than one described

by Eq. (2.183). Obviously, the increase in lens length weakens the influence of

the fringe fields. A detailed discussion of this topic and of the analysis of the influ-

ence of nonhyperbolic perturbations on electrode configurations may be found in a

book by Hawkes (1970).

2.10.2 Equation of Paraxial Trajectories

In general, trajectory equations for the field [Eqs. (2.183) and (2.184)] contain

nonlinear terms. However, the equations of the paraxial trajectories are linear

(see, e.g., Szilagyi, 1988):

x00 ¼ � hE0

b2c2ga
xþ hB0

bcga
x

y00 ¼ hE0

b2c2ga
y� hB0

bcga
y

(2:185)

FIGURE 2.29 Electric and magnetic quadrupole lenses. The arrows show the field

lines and the directions of the magnetic force acting on electrons that move “under the

paper.”
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Let us write the equations for the electric and the magnetic quadrupoles

separately:

x00 þ k2ex ¼ 0, y00 � k2ey ¼ 0 (2:186)

x00 � k2bx ¼ 0, y00 þ k2by ¼ 0 (2:187)

where

k2e ¼
hE0

b2c2ga
¼ h(w� þ w0)

2E0

c2w�(w� þ 2w0)ga
(2:188)

k2b ¼
hB0

bcga
¼ h(w� þ w0)B0

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�(w� þ 2w0)

p
ga

(2:189)

In a nonrelativistic approximation,

k2e ¼
E0

2aw� , k2b ¼
hB0

a
ffiffiffiffiffiffiffiffiffiffiffi
2hw�p (2:190)

Equations (2.186) and (2.187) are the equations of the harmonic oscillator. The

solution of these equations is a linear combination of harmonic or hyperbolic

functions:

x ¼ a cos kezþ b sin kez, y ¼ c cosh kezþ d sinh kez (2:191)

Also for the magnetic quadrupole,

xb ¼ ab cosh kbzþ bb sinh kbz, yb ¼ cb cos kbzþ db sin kbz (2:192)

Analysis of the image properties of the lenses is better performed using transfer

matrices.

2.10.3 Transfer Matrix

Consider an electric quadrupole lens. Let both the object and image be situated

outside the lens. Assume that the x-coordinate of the ray at the left lens

boundary (z1 ¼ 0) is x1 and the ray slope is x01. According to the first of Eqs.

(2.191), x1 ¼ a and x01 ¼ bke. Then the ray equation (2.191) in the (x, z) plane can

be written as

x ¼ x1 cos kezþ x01
ke
sin kez (2:193)
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The coordinate and the ray slope on the right-hand boundary of the lens can be

obtained using Eq. (2.191) in the plane z ¼ L (Fig. 2.30):

x2 ¼ x1 cos keLþ x01
sin (keL)

ke

x02 ¼ �x1ke sin keLþ x01 cos keL
(2:194)

Thus, the transfer matrix in the (x, z) plane is

m11 m12

m21 m22

���� ���� ¼ cos keL
sin keL

ke
�ke sin keL cos (keL)

������
������ (2:195)

Using the second of Eqs. (2.192), we obtain the transfer matrix in the (y, z)

plane:

cosh keL
sinh (keL)

ke
ke sinh keL cosh keL

������
������ (2:196)

We are reminded that these formulas are valid in neglecting the fringe fields at

the ends of the lens.

2.10.4 Cardinal Elements

Let us find the focal lengths and position of the principal planes. We assume that

the lens foci are located in the image (the convergent lens) or object (the divergent

lens) spaces. The principal planes are defined as intersection planes of the ray

continuations from the object and image spaces (dashed lines in Fig. 2.30).

FIGURE 2.30 Cardinal elements of (a) convergent and (b) divergent quadrupole lenses.

P–P, principal plane; F, focus.
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Assume that the trajectory is in the (x, z) plane (Fig. 2.30a) and that the electron

enters the lens parallel to the optical axis. Hence, the beginning vector of the particle

is
x1
0

���� ����. The vector in the output plane of the lens is

x2
x02

���� ���� ¼ m11 m12

m21 m22

���� ���� x1
0

���� ���� (2:197)

or x2 ¼ m11x1 and x02 ¼ m21x1
The focal length f and distance lp between the left lens boundary and principal

planes, respectively, are equal:

f ¼ � x1

x02
¼ �1

m21

, lP ¼ L� x1 � x2

�x02
¼ Lþ 1� m11

m21

(2:198)

Substituting mij for Eq. (2.195), we obtain

f ¼ 1

ke sin keL
(2:199)

lP ¼ L 1� tanðkeL=2Þ
keL

� 	
(2:200)

For the trajectory in the (y, z) plane, we obtain, according to Fig. 2.30b and

Eqs. (2.196) and (2.198).

f ¼ � 1

ke sinh keL
, lP ¼ L 1� tanh (keL=2)

keL

� 	
(2:201)

The parameters of the magnetic quadrupole lens are obtained by substitution of ke
for kb in Eqs. (2.199)–(2.201).

We assume that the foci are situated outside the lens. Therefore, we require that

L , j f j or, according to Eqs. (2.199) and (2.201),

keL sin keL , 1, keL sinh keL , 1 (2:202)

According to these conditions, Lmaxke, b ¼ 1 approximately. Let us also assume that

Lmin ¼ a, because neglecting the fringe fields for L , a is impossible. So we obtain

the following proper range for L:

a , L , 1=ke, b (2:203)

Note that the criterion ke, bL , 1 leads to the conclusion that quadrupole lenses,

especially magnetic quadrupole lenses, must be relativistic devices. For example,
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for B0 ¼ 1 T, L ¼ 2 cm, and a ¼ 0.5 cm, the criterion indicated is satisfied when

g . 50.

In Table 2.1, values of the parameters for different values of ke, bL are presented. The

transfer matrix of a thin quadrupole lens can be found from Eqs. (2.195) and (2.196),

assuming that keL 	 1. Then, m11 ¼ 1, m12 ¼ L, m21 ¼ �1=f , and m22 ¼ 1. Note

that m12 ¼ 0 is usually assumed also. This change hardly influences the value of x2.

So the transfer matrix is

Mth ¼
1 0

� 1

f
1

������
������ (2:204)

where

1

fe
� +k2eL ¼ +

hE0

b2c2ga
L,

1

fb
� +k2bL ¼ +

hB0

bcga
L (2:205)

The+ signs refer to convergent and divergent lenses, respectively. Assume that the

object and image are located at distances p and q from the lens, respectively. The trans-

fermatrix of the system is equal to the product ofmatrix (2.204) and the twomatrices of

the drift object and drift image spaces:

M ¼ 1 p

0 1

���� ����Mth
1 q

0 1

���� ���� ¼ 1� p

f
pþ q� pq

f

� 1

f
1� q

f

��������
�������� (2:206)

The condition of the stigmatic image formation is equal to zero of element m12 of

matrix M. Indeed, coordinate x2 of the image point in this case will not depend on

the slope x01 of the rays leaving point x1 of the object [see Eq. (2.162)]. So

pþ q� pq

f
¼ 0 or

1

p
þ 1

q
¼ 1

f

This relation coincides with Newton’s formula [Eq. (2.72)] for a thin unipotential

lens. We see that a thin quadrupole lens forms a real stigmatic image in the converging

TABLE 2.1 Parameters of Quadrupole Lenses for Different Values of ke,bL

ke,bL

0.1 0.5 1.0

f

L

lp

L

f

L

lp

L

f

L

lp

L

Convergent

lens

100 0.50 4.2 0.49 1.2 0.45

Divergent

lens

2100 0.50 23.8 0.51 20.85 0.54
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plane. In the diverging plane, the stigmatic image is absent. Therefore, the image of

the point in the plane determined by Eq. (2.206) is a line.

2.10.5 Quadrupole Doublets

The quadrupole doublet is a system of two quadrupole lenses turned by p=2 with

respect to each other, so that in each plane of symmetry there are both convergent

and divergent lenses. Consider the properties of doublets consisting of two thin

quadrupole lenses separated by a drift section of length d. The transfer matrix of

this doublet can be written as

Md ¼
1 0

� 1

f1
1

������
������ 1 d

0 1

���� ���� 1 0

� 1

f2
1

������
������ ¼

1� d

f2
d

� 1

f1
� 1

f2
þ d

f1 f2
1� d

f1

��������
�������� (2:207)

The focal power of the doublets is

1

F
¼ �m21 ¼ 1

f1
þ 1

f2
� d

f1f2
(2:208)

Let us consider the version of the doublet consisting of lenses with equal focal

lengths f1 ¼ �f2 ¼ f . So

1

F
¼ d

f 2
, m11 ¼ 1þ d

f
, m21 ¼ � d

f 2
, m22 ¼ 1� d

f
(2:209)

We see that the doublet is likened to a thick convergent lens with equal focal lengths

in both planes. Exchanging lenses 1 and 2 is equivalent to a change of sign of f. Let

f ¼ f1 . 0: It means that the ray described by the transfer matrixMd in Eq. (2.207) is

in the converging plane of lens 1 (the lens nearest the object). According to

Eqs. (2.198) and (2.209), the distance from the left boundary of lens 1 to the prin-

cipal plane of the doublet is

lP ¼ Lþ 1� m11

m21

¼ Lþ f (2:210)

Obviously, in the diverging plane of lens 1, lP ¼ L� f , so the positions of

the principal planes and the foci in both planes are sufficiently different (i.e., the

doublet is a strong astigmatic lens). According to Eqs. (2.209) and (2.205), the

optical powers of the thin electrostatic and magnetic quadrupole doublets are

1

Fe

¼ h2dL2

b4c4g2a2
E2
0,

1

Fb

¼ h2dL2

b2c2g2a2
B2
0 (2:211)
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It is seen that the doublet focusing is of second order. The reader may recall that in

the qualitative discussion of the focusing mechanism of an immersion

lens (Section 2.6.2), the focusing effect was interpreted as a result of the

consecutive action of both lens halves, one-half a divergent lens and one-half a

convergent lens.

Compare the optical power of an axially symmetric magnetic lens (superscript

“as”) and a quadrupole magnetic doublet (superscript “d”). According to Eqs.

(2.161) and (2.211), we have

F(as)
b

F(d)
b

¼ 4dL2

a2L
(2:212)

where L is the length of an axially symmetric lens. Assume for purposes of esti-

mation that L ¼ 2L and d ¼ L. Then we obtain F(as)
b =F(d)

b ¼ 2(L=a)2. Only

for L=a � 1 do an axially symmetric lens and a quadrupole doublet have approxi-

mately equal optic powers. But in real quadrupole doublets, L=a � 1 (up to 10),

and therefore the superiority of the doublets is beyond doubt.

2.10.6 Quadrupole Triplets

A quadrupole triplet is a system of three quadrupole lenses. The first and third

(“outer”) quadrupoles are oriented so that their focusing planes coincide. The

second (“central”) quadrupole is turned by p=2. In symmetric triplets, the outer

quadrupoles are identical and the drift spaces are equal.

It has been shown (Regenstreif, 1967) that the triplet could provide a stigmatic

image with equal magnifications in both planes, although the corresponding distance

between an object and the first quadrupole is not arbitrary but depends on the focal

lengths of the triplet’s elements. It is interesting that the triplet can be considered as

a thin lens because the principal planes for the rays in both symmetric planes for a

symmetric triplet are closed to the center of the triplet.

2.10.7 Applications of Quadrupole Lenses

Transport of Charged Particles in Accelerators A periodic lattice of quadru-

poles has been shown to be the most accurate system to describe the precision trans-

port of relativistic beams at large distances. The properties of quadrupole lenses,

such as strong focusing and the linearity of the focusing (transverse) forces, are

most important in this respect. The latter property is most important in the

problem of transport of real nonlaminar beams. Let us touch briefly on this

problem by neglecting self fields (space-charge and self magnetic forces).

Let us write the solution of the paraxial trajectory [Eq. (2.186)] in the converging

plane as

x ¼ a cos (kzþ b) (2:213)
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where the phase b of any trajectory is arbitrary for different particles in a nonlaminar

beam. Find the equation of a trajectory in the trace space (see Section I.7).

x0 ¼ �ak sin (kzþ b) (2:214)

x2

a2
þ x02

a2k2
¼ 1 (2:215)

We obtain the equation of an ellipse with semiaxes a and ak. The trajectory equation

(2.215) does not include the phase b. It means that all particles with equal amplitude

move in the trace space along the common elliptic trajectory. The particles of the

beam with amplitudes ai , a move with the same frequency along similar ellipses

that are inserted into an ellipse [Eq. (2.215)]. According to Eq. (I.46), the emittance

in this case is equal to the area of the ellipse that is constant if motions in the (x, z)

and (y, z) planes are independent and the momentum pz ¼ const. In an arbitrary field,

the configuration of the trace contours can be modified, but for noninteracting par-

ticles the area of the corresponding figures and the particle density are invariants

according to the Liouville theorem. The elliptical form of trace trajectories is con-

served when conversion of the particle coordinates in the trace space is determined

by transfer matrices, because of the linearity of the transformation. Note that the

determinant of the transfer matrix must be equal to 1 because it coincides with a

Jacobian of the transformation. A Jacobian value of 1 is a condition of trace

figure area conservation for the conversion of variables.

The transport of a nonlaminar beam with a given emittance depends on the sol-

ution of a matching problem (Humphries, 1990; Lawson, 1988; Regenstreif, 1967;

Reiser, 1994). Here, the concept of acceptance (defined as a contour in the trace

space determined by limiting coordinates of the particles that can pass through a

given section of the system without interception by the walls) is essential. If the

emittance is less than the acceptance, the beam can pass through the system.

However, the form and orientation of the emittance contour must be properly modi-

fied. This is the problem of matching, which is best approached using the concept of

a beam envelope. If the envelope of a nonlaminar beam is known, the matching con-

sists of joining the waist of the beam envelope with the acceptance contour.

Figure 2.31 depicts passage of a nonlaminar beam through a thin lens. In the

lower part of the figure, the positions of the trace ellipses in various cross sections

of the beam are shown. The horizontal position of the big semiaxis of the ellipse in

the lens plane corresponds to the maximum width of the envelope. The ellipse

upright position in the right part of the scheme corresponds to the envelope waist.

It can be shown (Arnold et al., 1988) that the envelope equation for the drift

space in the vicinity of the waist is a hyperbola:

a2 ¼ a20 þ
J2z2

a20
(2:216)

where a0 is the radius of the waist (Fig. 2.31) and J is the emittance.
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An analysis of the envelope problem for both nonlaminar beams and beams with

self-fields can be found in monographs by Humphries (1990), Lawson (1988), and

Reiser (1994). The transport and matching of the beam in accelerator systems are

reached by using adjustable lenses and drift spaces. In general, this is a complicated

and specialized procedure. The periodic lattice of the quadrupoles, the FODO

lattice, is used in accelerators. The simplest version of a FODO cell is a magnetic

doublet with two-sided symmetric drift sections (see, e.g., Reiser, 1994). Large

accelerators contain hundreds of FODO cells, each several meters in length. So,

for example, the length of Fermilab’s proton–antiproton collider Tevatron, so far

the world’s largest collider, is approximately 6 miles. Quadrupoles in the Tevatron

are formed by superconducting magnets with field 4.2 T. CERN (Switzerland) is

building a proton–proton collider LHC 17 miles in length. The field projected for

the superconducting magnets is 8.4 T.

Correction of Aberration As we have seen, all axially symmetric lenses have

nonvanishing spherical and chromatic aberrations. Unlike axially symmetric

elements, multipole elements have no fixed sign of spherical aberration and there-

fore may be used as compensation devices. Also, quadrupole lenses may be used

to compensate for astigmatism. Effective compensation spherical aberration can

be realized with octupole lenses. Octupole lenses can also compensate the aperture

aberrations of quadrupoles. The combination of electrostatic and magnetic quadru-

poles can form an achromatic system. The main limiting factor for the use of similar

systems is the problem of their alignment (see, e.g., Szilagyi, 1988).

FIGURE 2.31 Passage of a nonlaminar beam with straight trajectories through a thin lens.

1, 2, any two trajectories of the beam. In the lower part of the scheme, 1 and 2 are projections

of these trajectories in the trace space. The dashed lines are the beam envelope.
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CHAPTER THREE

Electron Beams with
Self Fields

3.1 INTRODUCTION

So far, our consideration of electron beams has been based on neglecting self fields,

which is valid for small beam currents. This approximation provides both high-quality

images and simplicity of electron-optical theory. However, there is extensive area of

charge-particle physics in which disregarding space-charge fields in general deprives

the theory of intense charge beams of physical content. The space-charge effects

often are the main limiting factors in powerful beam systems, especially of microwave

devices.

A criterion for a space-charge beam1 is revealed in any model of intense electron

beams. Consider, for example, an entire cylindrical electron beam in a conductive

tube. The beam is supposed homogeneous with space-charge density r ¼ const., and

the trajectories are supposed parallel to the z-axis (Fig. 3.1). The potential w depends

only on the radial coordinate, and the electric field Er of the electron space charge is

directed radial to the cylinder axis.

The potential satisfies Poisson’s equation [Eq. (I.11)], which in this case is

1

r

d

dr
r
dw

dr

� �
¼ � r

10
(3:1)

The integral of this equation is

w ¼ wa �
r

410
(r2 � r2a) (3:2)

1Below we use the term space-charge field in the sense of self fields (i.e., space charge and self magnetic

fields).
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Let us estimate the depression dw of the axis potential for the given tube potential wa:

dw ;
wa � wr¼ 0

wa

¼ � rr2a
410wa

¼ jar
2
a

410wava
(3:3)

where ja and va are correspondingly a current density and the electron velocity for

r ¼ ra.

Assume that

jar
2
a ¼

ja

j

I

p
� I

p
(3:4)

where I and j are the beam current and average current density, respectively. Taking

Eq. (I.11) into account, we obtain

dw � 1

4p10

I

wava
¼ 1

4pc10

I

w3=2
a

wa þ w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wa þ 2w0

p (3:5)

The parameter P ¼ I=(wa)
3=2 is called a perveance. It is the base parameter

of intense nonrelativistic electron beams because according to Eq. (3.5), the

corresponding potential depression is

dw ¼ 1

4p10
ffiffiffiffiffiffi
2h

p P (3:6)

We can estimate the limiting values of the perveance by setting dw ¼ 1 in Eq. (3.6).

Then

Pmax ¼ 4p10
ffiffiffiffiffiffi
2h

p
� 6:6� 10�5A=V3=2 (3:7)

Usually, a special unity of the perveance, mkp ; 1� 10�6A=V3=2, is used,

and instead of Eq. (3.7) we can write Pmax ¼ 66 mkp, so nonrelativistic

space-charge beams can be defined as beams with a perveance of order 10 mkp.

The perveance of corresponding ion beams is less. So for a proton beam,

hpr ¼ 1
1840

h and Ppr,max � 1
43

Pmax. For example, the limiting electron current for

FIGURE 3.1 Potential depression in a cylindrical electron beam. wa, potential of the

conductive tube.
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w ¼ 10 kV is 6:6 � 10�5(104)3=2 ¼ 66 A. The proton limiting current for the same

voltage is 66/43 �1.5 A. For w ¼ 1 kV, the limiting electron and ion currents are

2 A and 47 mA, respectively.

Considering the proper coefficient in Eq. (3.5), we obtain the following correction

for moderate relativistic beams:

dw ¼ (dw)nrel
ffiffiffiffiffiffi
2h

p wa þ w0

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wa þ 2w0

p � (dw)nrel 1þ 3

4

wa

w0

� 5

32

wa

w0

� �2

þ � � �
" #

For extreme relativistic beams, in Eq. (3.5) the velocity va � c. Therefore, a measure

of the extreme relativistic beam intensity is a conductance:

Pextr ¼ I

fa

A=V (3:8)

The limiting value of Pextr for dw ¼ 1 is

(Pextr)max ¼ 4p10c � 3:3� 10�2 A=V (3:9)

Principal Problems of Space-Charge Beam Theory In Fig. 3.2 the scheme for

an electron-optical system with a space-charge beam is shown. We can define the

following basic regions and detect the corresponding problems as basic:

1. Gun region. This is a region of beam formation. The basic problems are

(a) gathering an electron beam from the cathode (sometimes from the maximum

area of the cathode with the maximum current density) and guiding it into a transport

channel, and (b) formation of the appointed shape of the trajectories.

2. Regions of beam transport, working space, and collector. The beam must be

guided to a working space for interaction with the electromagnetic field or with

matter. The transport region itself can also be used as the working space. Problems

are the conservation or additional transformation of trajectory shapes. The specific

problem is ensuring depressed collector operation when the efficiency of the system

can be increased by applying retarded potential to the collector. In this case the prin-

cipal problem is adequate distribution of secondary electrons.

FIGURE 3.2 Electron-optical system with an intense electron beam.
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3. Beam stability. In principle, an intense beam is always unstable: The particle

interaction leads to excitation and the growth of spontaneous oscillatory processes.

The theory of beam instabilities and their suppression is the most complicated aspect

of space-charge beam physics.

In this chapter, we consider only the theory of electron space-charge beams in

static fields.

3.2 SELF-CONSISTENT EQUATIONS OF STEADY-STATE
SPACE-CHARGE ELECTRON BEAMS

The particles in space-charge beamsmove in the fields created both by external sources

(charges and currents) and by charged particles themselves, so that the resulting

fields that determine electron motion are not given and must be found simultaneously

with the solution of equations of motion. This leads to self-consistent equations of

the electron beams. Three versions of these equations are considered below.

3.2.1 Single-Flow Approximation (Laminar Beams). Pinch Effect

In laminar beams trajectories do not cross. Therefore, the velocities of particles at

any points of the electron flow are single-valued, and the vector v ¼ v(r) ¼ v(r(t))
is an unambiguous function of the coordinates. The particle velocities in the flow

form a velocity field. A vector of the electron current density j(r) is

j ¼ �r v (3:10)

where r . 0 is the volume charge density. This approximation is typical for the

mechanics of fluids and is called hydrodynamic approximation. The self-consistent

equations in this case are

dgv

dt
¼ �hE� hv� B (3:11)

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2

p
)

(3:12)

E ¼ �grad w (3:13)

Dw ¼ r

10
þ rext

10
(3:14)

curlB ¼ m0 jþ m0 jext (3:15)

j ¼ �rv (3:16)

div j ¼ 0 (3:17)

divB ¼ 0 (3:18)

where rext and jext are the external values of the electron charge density and the

current density. This is a system of 15 scalar equations; the number of unknown

scalar functions is also 15, so this is really a self-consistent system.
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If we neglect the self magnetic field, the system (3.11)–(3.18) is simplified to 12

equations (below we omit the term rext=10):

dgv

dt
¼ �hE� hv� Bext (3:19)

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (3:20)

E ¼ �grad w (3:21)

Dw ¼ r

10
(3:22)

j ¼ �rv (3:23)

div j ¼ 0 (3:24)

Neglecting the self magnetic field is usually correct in nonrelativistic approxi-

mation. Let us consider, for example, a section of a round solid electron beam

(Fig. 3.3) and compare the forces of the self electric and magnetic fields acting on

peripheral electrons. The electric (Coulomb) force according to Gauss’s theorem

is given as ð
Erds ¼ �Q

10
, Er2prL ¼ �prLr

10
, Er ¼ �rr

210

FE ¼ �e0Er ¼ e0rr

210

(3:25)

The magnetic (Lorentz) force is given asþ
Budl ¼ m0I, Bu2pr ¼ m0pr

2j, Bu ¼ � r

2
m0rv

FB ¼ e0vBu ¼ � r

2
m0e0rv

2 (3:26)

FIGURE 3.3 Comparison of self electric and magnetic forces in an electron beam.
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The ratio

kB ;
FB

FE

���� ���� ¼ 10m0v
2 ¼ v2

c2
¼ 1� g�2 , 1 (3:27)

We see that the resulting self force for the electron beam model being considered is

always repulsive (although for relativistic beams, kB � 1). Note if there is a positive

ion background, the resulting force can be attractive and the electron beam be

convergent. That is the case for the pinch effect. The criterion for the pinch effect is

f � g�2 . 0 (3:28)

where f is the ratio of positive ion charge to electron beam charge (Arnold

et al., 1988).

Estimation of the self magnetic field for other models of nonrelativistic beams

can give different results. Consider, for example, an electron beam in a wide

planar nonrelativistic diode (Fig. 3.4). Here, according to the boundary condition,

the radial component of the electric field Er � 0, unlike components of the electric

field Ez and the self magnetic force Bu. Let us compare the electric and magnetic

forces FE ¼ �e0Ez and FB ¼ e0vBu. The magnetic force according to Eq. (3.26) is

FB ¼ � r

2
m0e0r�v

2 ¼ m0e0I �v

2pr
(3:29)

where I ¼ �pr2r�v is the beam current. The velocity �v is assumed equal to

an average electron velocity in the cathode–anode gap. The electric field Ez can

be expressed in terms of the beam current using the Child–Langmuir formula

FIGURE 3.4 Electric and magnetic forces in a planar diode.
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(see Section 3.4.4) for a planar diode in the space-charge regime:

I ¼ Pw3=2
a � 4

9
10

ffiffiffiffiffiffi
2h

p pr2

d2
w3=2
a � 4

9
10

vapr
2

d
Ez ¼ 8

9
10

�vpr2

d
Ez (3:30)

Then FE ¼ �(9e0dI=810~vpr
2).

Here we assume that Ez ¼ wa=d is equal to the average field in the diode gap. The

ratio of magnetic to electric forces is

kB ¼ FB

FE

¼ m0e0I �v810~vpr
2

2pr9e0dI
¼ 4r

9d

�v2

c2
(3:31)

We see that in principle the pinch effect (kB . 1) is possible in nonrelativistic very

narrow diodes (r=d .. 1) even without a positive ion background.

3.2.2 Multistream Flows

The next approximation in the theory of space-charge beams suppose that an elec-

tron beam can be represented as a superposition of N laminar flows (streams). There-

fore, for each partial flow the continuity equation

div ji ¼ div(ri vi) ¼ 0, i ¼ 1, 2, . . . , N (3:32)

where values with a subscript i refer to the ith partial flow, must be satisfied.

Generally, the flow is not laminar if partial flows intersect. Such a beam can be

called quasilaminar (Kirstein et al., 1967). Equations for a multistream flow can

be written in the same way as Eqs. (3.11)–(3.18):

d(givi)

dt
¼ �hE� hvi � B, i ¼ 1, 2, . . . ,N (3:33)

gi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2i =c
2

p , i ¼ 1, 2, . . . ,N (3:34)

E ¼ �grad w (3:35)

Dw ¼
XN
i¼1

ri
10

(3:36)

curlB ¼ m0

XN
i¼1

ji (3:37)

ji ¼ �rivi, i ¼ 1, 2 . . . ,N (3:38)

div ji ¼ 0, i ¼ 1, 2, . . . ,N (3:39)

divB ¼ 0 (3:40)

This is the self-consistent system of 8Nþ 7 scalar equations with 8Nþ 7 unknown

scalar functions.
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The magnetically insulated electron beam in a cylindrical magnetron (the cylind-

rical diode in the axial magnetic field B) is a good example of multistream electron

flow. The electrons are emitted from the cathode and accelerated by the electric field

in the radial direction, but the magnetic field bends the trajectories, and for a suffi-

ciently strong magnetic field, the electrons return to the cathode (Fig. 3.5). As a

result, a two-stream electron flow arises: In any point of the beam there are particles

with two different (on the direction) velocities.

3.2.3 Kinetic Description

Now we consider total nonlaminar beams that cannot be represented as a sum of a

finite number of laminar flows. In this case, individual treatment of particle motion is

impossible. Instead, statistic description and corresponding distribution functions

must be used.

We have seen (Section I.6) that a distribution function in phase space satisfies the

Liouville equation, which for a steady state has the form

@f

@r
vþ Ṗ

@f

@P
¼ 0 (3:41)

Equation (3.41) is applied rigorously for an ensemble of the noninteracting particles.

However, interaction can be included in this equation if we take into account only

collective forces through average electric and magnetic fields of the particles and

neglect short-range interactions that are described as interparticle collisions.

Let us take the charge density as an integral over all values of the momentum of

particles in the unit volume; that is,

r ¼ e0

ð
dn

d3r
(3:42)

where dn is the particle number in the phase volume d3r d3P. The distribution

function in six-dimensional space is (Section I.6) f (r,P) ¼ dn=d3r d3P. Then the

FIGURE 3.5 Two-stream flow in a static cylindrical magnetron.
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electron charge density as the source of a self electric field is

r ¼ �e0

ð
f (r,P) d3P (3:43)

Analogously, the electron current density is

j ¼ �e0

ð
vf (r,P) d3P (3:44)

The self electric and magnetic fields must satisfy the following equations:

E ¼ �grad w (3:45)

Dw ¼ e0

10

ð
f (r,P) d3P (3:46)

curlB ¼ �m0e0

ð
vf (r,P) d3P (3:47)

divB ¼ 0 (3:48)

Equations (3.41) and (3.45)–(3.48) describe a self-consistent steady-state (equili-

brium) of the electron system in the space r,P.

Usually, an alternative and more convenient form of the distribution function

f ¼ f (r, p), where p is the mechanical momentum is used. A modified Liouville

equation for f (r,p) is similar to Eq. (3.41):

@f

@r
vþ ṗ

@f

@p
¼ 0 (3:49)

This statement is founded on the equality of the volumes in phase space:ð
Dd3r d3p ¼

ð
d3r d3P

where

D ¼ @ q1,q2,q3,p1,p2,p3ð Þ
@ q1,q2,q3,P1,P2,P3ð Þ (3:50)

is a Jacobian of the transformation from the variables (r,P) to the variables (r, p)

(here s1,s2, and s3 denote the components of the vector s). It is readily shown that

D ¼ 1, and

@qi
@qk

¼ dik,
@pi
@qk

¼ 0,
@qi
@Pk

¼ 0,
@pi
@Pk

¼ @pi
@( pk � e0Ak)

¼ dik (3:51)
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We see that only the elements of determinant D on the main diagonal ¼ 1 are

nonzero, and D ¼ 1. Therefore, the volume of six-dimensional phase space (r, p)

enclosing a chosen group of particles that move along the trajectories is constant,

and the distribution function of the particles is conserved:

f ¼ dn

d3r d3p
¼ const: (3:52)

Thus, the version of the Liouville equation in (3.49) is proven. Substitution of the

motion equation [Eq. (I.25)] in Eq. (3.49) yields the Vlasov–Maxwell equation

(see, e.g., Davidson, 1990):

@f

@r
v� e0(Eþ v� B)

@f

@p
¼ 0 (3:53)

where the velocity

v ¼ p

m
¼ pcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
0c

2
p (3:54)

Together with Eqs. (3.45)–(3.48) (we must replace p in these equations by P), we

obtain a self-consistent system of equations (Vlasov–Maxwell equations).

A nonrelativistic equation is

@f

@r
v� h(Eþ v� B)

@f

@v
¼ 0 (3:55)

The entire system of Vlasov–Maxwell equations obviously is formed by supple-

menting Eq. (3.55) with the field eqations

E ¼ �grad w (3:56)

Dw ¼ e0

10

ð
f (r, v) d3v (3:57)

curlB ¼ �m0e0

ð
vf (r, v) d3v (3:58)

divB ¼ 0 (3:59)

Solution of the self-consistent system (3.41) and (3.45)–(3.48) gives the desired

distribution function f (r, p) and any macroscopic quantities ½E(r), B(r), �r(r), etc:�
that describe the equilibrium state. Finding solutions of that system of integrodiffer-

ential equations is the difficult problem.

Essential simplification of the problem gives knowledge of the integrals of

motion Ik(r(t), p(t)) (i.e., an energy, components of the momentum, etc.). Now

we can seek the distribution function as a function of Ik:

df

dt
¼
X
k

@f

@Ik

dIk

dt
¼ 0 (3:60)
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and this distribution function satisfies the Vlasov–Maxwell equation. Note that the

maximum number of independent integrals of motion is 2s� 1, where s is the

number of degrees of freedom (Landau and Lifshitz, 1976, 1987). If some integrals

of motion are known, the problem is reduced to finding a concrete form of the

function f (I1, I2, . . . , In) and then to a solution of Eqs. (3.45)–(3.48) or (3.56)–

(3.59). This solution is far from unambiguous and depends on many geometric and

physical conditions, approximations, and so on. In general, one can note the absence

of regular analytic methods of problem solution. Each known solution is something

of a work of art (see, e.g., Arnold et al., 1988; Davidson, 1990; Reiser, 1994).

An example of a distribution function is the Boltzmann–Maxwell distribution of

a nonrelativistic electron gas. In this case, the integral of motion is the energy

w ¼ m0v
2

2
� e0w ¼ const: (3:61)

The Boltzmann–Maxwell function

f (w) ¼ f0 exp
�w

kT

� �
¼ f0 exp � m0v

2

2
� e0w

� ��
kT

� 	
(3:62)

obviously satisfies the Vlasov–Maxwell equation. Substituting Eq. (3.62) in

Eq. (3.57) allows us in principle (for corresponding boundary conditions) to get

the potential distribution. Note that the right side of Eq. (3.57) gives the density

of particles:

n ¼
ð
fd3v ¼ f 0

ð
exp �m0v

2

2

� �
d3v exp

e0w

kT

� �
(3:63)

Denoting the integral in Eq. (3.63) as n0, we obtain a known barometric formula,

n ¼ n0 exp
e0w

kT

� �
(3:64)

3.3 EULER’S FORM OF A MOTION EQUATION. LAGRANGE AND
POINCARÉ INVARIANTS OF LAMINAR FLOWS

3.3.1 Equation of Motion in Euler Form. Regular Beams

As we noted in Section 3.2.1, the particle velocities in laminar flow form a velocity

field. The corresponding description of motion is typical for mechanics of fluids and

can be called an Euler description. Consider the velocity of particles as the velocity

of the stream for a stationary observer. Assuming that the flow is steady, we find that

the derivative of the momentum @p=@t ¼ 0. Then the equation of motion can be

expressed as

@p

@r
_rþ e0 gradw� e0v� curlA ¼ 1

m
(pr)pþ e0 gradw� e0v� curlA

¼ 0 (3:65)
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Apply the formula from vector analysis (ar)a ¼ 1
2
grad a2 � a� curl a. Then

1

2m
grad p2 � 1

m
p� curl p ¼ e0 gradw� e0v� curlA (3:66)

Finally, using the relation (1.2), we obtain the equation of motion in Euler form:

gradw ¼ v� curlP (3:67)

In this equation the quantity w ¼ mc2 � e0w is no longer the energy of a separate

particle but the energy in the stream as a function of the coordinates w ¼ w(r).

Equation (3.67) contains an energy integral because gradvw ¼ 0 (i.e., w is constant

along the trajectories). Note that if the beam is quasilaminar, Eq. (3.67) is true for the

each partial flow.

Among the various types of charged-particle beams, regular beams, beams with

uniform energy within the flow, are very important. According to Eq. (3.67), for a

regular beam

v� curlP ¼ 0 (3:68)

So the vortex of the generalized momentum in the regular bean is parallel to the tra-

jectories. Electrons are emitted from an equipotential cathode with equal velocities.

In this case the electrons have equal energy at all cathode points. Because the energy

is constant along each trajectory, it is constant within the entire beam. In general,

regular beams are a useful idealization. Very often, real electron beams in a state

of equilibrium can be considered regular.

3.3.2 Lagrange and Poincaré Invariants

Lagrange’s and Poincaré’s invariants are applicable for an arbitrary laminar beam in

the steady state or separately for each partial flow in a quasilaminar beam. Consider

an arbitrary contour L1 (Fig. 3.6). Assume that the particles move from points of this

contour along corresponding nonintersecting trajectories. Through a time interval dt,

these particles shift on a distance v dt, and form the contour L2. Take a vortex vector

G ¼ curl (v� curlP). As follows from Eq. (3.67), this vector is

G ¼ curl (v� curlP) ¼ 0 (3:69)

Represent the flux ofG through the surface S2 that is carried by contour L2 and apply

Stokes’ theorem:ð
S

Gn ds ¼
ð
S

curln(v� curlP) ds ¼
þ
L2

(v� curlP)l dl ¼ 0 (3:70)

Transform the latter equality:

dt

þ
L2

(v� curlP) dl ¼
þ
L2

curlP(dl� v dt) ¼ 0 (3:71)
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The vector product dt ¼ dl� v dt in Eq. (3.71) is directed along the normal N to the

lateral surface SL that is formed by trajectories and passes through contours

L1and L2. The value of jdtj is equal to the area dSL of the elementary strip on the

surface SL, so the integral in Eq. (3.71) is equal toð
SL

curlNP dSL ¼ 0 (3:72)

Now let us take the flux of the vector curlP through the surface S1 ¼ SL þ S2 that is

carried by the contour L1:ð
S1

curlNP dS ¼
ð
SL

curlNP dSþ
ð
S2

curlPN dS (3:73)

Taking Eq. (3.72) into account, we obtain Lagrange’s invariant:

L ;
ð
S

curlNP dS ¼ const: (3:74)

The flux of the momentum vortex through the surface that is carried by the

contour attached to the particles of the beam is conserved in particle motion and

the contour.

Applying Stokes’ theorem to the integral in Eq. (3.74),ð
S

curlNP dS ¼
þ
L

Pl dl (3:75)

we obtain Poincaré’s invariant:

P ¼
þ
L

Pl dl ¼ const: (3:76)

Circulation of the generalized momentum around a contour attached to the moving

particles of the beam is conserved.

FIGURE 3.6 Derivation of the Lagrange and Poincaré invariants.
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The Case of a Regular Beam As we have seen [Eq. (3.68)], the vector curl P in

the regular beam is parallel to the trajectories. Therefore, the flux of this

vector through the lateral surface of a current tube is zero. Take two arbitrary

contours L1 and L2 at the current tube. Because the integral
Ð
SL

curlNP is zero,

the integralsð
S1

curlNP dS ¼
ð
S2

curlN P dS or L ¼ const:; P ¼ const: (3:77)

As we can see, for regular beam the Lagrange and Poincaré invariants are applicable for

arbitrary contours L1 and L2 on a current tube, not only for contours that move together

as particles.

3.3.3 Generalized Busch Theorem

Apply Poincaré’s invariant [Eq. (3.76)] to contours L1 and L2 on two arbitrary

cross sections of a current tube: þ
L1

Pl dl ¼
þ
L2

Pl dl (3:78)

It is readily seen thatþ
L

Pl dl ¼
þ
L

pl dl� e0

þ
L

Al dl ¼
þ
L

pl dl� e0

ð
S

Bn dS ¼
þ
L

pl dl�C (3:79)

where C is a flux of the magnetic field through the surface S that is carried by the

contour L. We obtain the generalized Busch theoremþ
L1

pl dl�
þ
L2

pl dl ¼ e0(C1 �C2) (3:80)

For axially symmetric beams, let us take contours L1 and L2 as circles with centers

on the z-axis. Then þ
L

pl dl ¼ 2pmr2 _u ¼ 2pm0gr
2 _u (3:81)

which gives the following version of the Busch theorem:

_u2 ¼ g1
g2

r1

r2

� �2

_u1 þ h

2pg2r
2
2

(C2 �C1) (3:82)

This formula coincides with Eq. (1.127). However, Eq. (3.82) has been derived

directly only for axially symmetric flows. Equation (1.127) is more universal and

applicable for separate particles in axially symmetric fields.
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3.4 NONVORTEX BEAMS. ACTION FUNCTION. PLANAR
NONRELATIVISTIC DIODE. PERVEANCE. CHILD–LANGMUIR
FORMULA. r- AND T-MODES OF ELECTRON BEAMS

Nonvortex beams are flows for which

curlP ¼ 0 (3:83)

Such a beam is called a normal congruence (Sturrock, 1955). We use the term

congruent beams for these beams (Kirstein et al., 1967), reserving the term

normal congruent beam for a nonmagnetic nonvortex beam (see below).

As we see from Eq. (3.68), these beams are a particular case of regular beams.

According to this definition, the momentum in the congruent beam is

P ¼ gradC (3:84)

where the function of the coordinates C ¼ C(r) is called an action function. This

function, which is similar to the function S ¼ S(r, t) in Hamiltonian mechanics

(see, e.g., Jackson, 1999; Landau and Lifshitz, 1976), is of fundamental importance

for all theoretical physics. The action function C(r) is sometimes an effective tool

for congruent beam analysis.

3.4.1 Indications of Congruent Beams

1. A beam is congruent if it is regular and curln P ¼ 0 in some cross section of

the beam. According to the version of the Lagrange invariant in Eq. (3.77), the inte-

grals
Ð
S
curlnP dS for a regular beam are the same on any two cross sections of a

current tube. But then it is obvious that curl P ¼ 0 always.

2. A beam is congruent if it is emitted from a cathode that is not intersected by a

magnetic field (zero normal component Bc;n of the cathode magnetic field) and the

tangential initial velocities in any point of the cathode are zero.

Take an arbitrary contour Lc on a cathode surface and find the flux of rot P

through the cathode element restrained by this contour:ð
Sc

curlnP dS ¼
ð
Sc

curlnp dSþ
ð
Sc

curlnA dS ¼
þ
Lc

ptdlþ
ð
Sc

Bn dS (3:85)

Both integrals in Eq. (3.85) are zero. Because the contour is arbitrary, it means that

curlnP ¼ 0 on the cathode. Therefore, according to the first indication, the beam is

congruent.

3.4.2 Differential Equation of a Congruent Beam

Relation (3.84), which expresses generalized momentum in terms of the action func-

tion C leads to a differential equation that describes completely the self-consistent

state of a congruent beam. According to Eq. (3.84), the mechanical momentum is

equal to

p ¼ gradCþ e0A (3:86)

3.4 NONVORTEX BEAMS. ACTION FUNCTION 127



Write the remainder of the self-consistent equations of the congruent electron

beam:

w ¼ mc2 � e0w ¼ const: (3:87)

mc2 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

0c
2

q
(3:88)

Dw ¼ r

10
(3:89)

j ¼ �rv (3:90)

div j ¼ 0 (3:91)

We have from Eqs. (3.86)–(3.89),

r ¼ 10Dw ¼ 10
e0

Dmc2 ¼ 10c

e0
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gradCþ e0A)

2 þ m2
0c

2

q
(3:92)

It follows from Eqs. (3.88) and (3.86) that

v ¼ p

m
¼ c

gradCþ e0Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gradCþ e0A)

2 þ m2
0c

2

q (3:93)

We obtain the following differential equation from Eqs. (3.90)–(3.93):

div
(gradCþ e0A)D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gradCþ e0A)

2 þ m2
0c

2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gradCþ e0A)

2 þ m2
0c

2

q
264

375 ¼ 0 (3:94)

In the nonrelativistic approximation p2 ¼ (gradCþ e0A)
2 ,, m2

0c
2, the differen-

tial equation (3.94) becomes

div (gradCþ e0A)D(gradCþ e0A)
2

 � ¼ 0 (3:95)

We now have only one equation, a very complicated one: the boundary problem

for a fourth-order nonlinear partial differential equation. Solutions of this equation

succeeded in finding rare cases. Therefore, it is often preferable to use the original

equations (3.86)–(3.91).

3.4.3 Nonmagnetic Congruent Beams

This is a casewhenB ¼ 0 everywhere in the beam. For these beams, according to (3.86),

p ¼ gradC (3:96)
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that is, the particle trajectories are perpendicular to surfaces of the constant action func-

tion. According to indication 2 in Section 3.4.1, the velocities of a normal congruent

beam are perpendicular to the cathode surface. These beams also called normal

congruent beams, are the full analog of the normal congruence in light optics (Kirstein

et al., 1967; Sturrock, 1955). Congruent beams with B = 0 are called skew congruent

beams (Kirstein et al., 1967).

The differential equation of a relativistic normal congruent beam is

div
gradCD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gradC)2 þ m2

0c
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gradC)2 þ m2

0c
2

q
264

375 ¼ 0 (3:97)

The corresponding equation in a nonrelativistic approximation is

div gradCD(gradC)2
 � ¼ 0 (3:98)

3.4.4 Application of an Action Function to Analysis of a Planar
Nonrelativistic Diode. Child–Langmuir Formula. r- and T-Modes

In the planar diode (Fig. 3.7) all quantities depend only on x. Assume that the initial

velocities of the electrons are zero. According to Section 3.4.3, the nonmagnetic

electron beam is normal. Therefore, we can apply Eq. (3.98), which can be

written in a one-dimensional version as

d

dx

dC

dx

d2

dx2
dC

dx

� �2
" #

¼ 0 (3:99)

The nonrelativistic velocity for zero initial velocity and zero cathode potential

according to Eqs. (3.96) and (1.19) is given as

px ¼ dC

dx
¼ m0v ¼ m0

ffiffiffiffiffiffiffiffiffi
2hf

p
(3:100)

FIGURE 3.7 Potential distribution in a planar diode: (a) zero initial velocities; (b) nonzero

initial velocities.
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Then Eq. (3.99) in terms of w will be

ffiffiffi
w

p d2w

dx2
¼ const: (3:101)

where (Fig. 3.7)

w(0) ¼ 0, w(d) ¼ wa (3:102)

Let us represent the solution of Eq. (3.101) as w(x) ¼ Axn. It satisfies the

first of Eqs. (3.102). Substitution of w(x) in Eq. (3.101) gives the relation

A3=2(n� 1)=(n� 2)xn=2þ(n�2) ¼ const: We obtain n ¼ 4=3 and then w ¼ Ax4=3.

According to boundary condition w(d) ¼ wa,

w(x) ¼ wa

x

d

� �4=3
(3:103)

The beam current corresponding to Eqs. (3.89) and (3.100) is

I ¼ Sj ¼ Srv ¼ S10
d2w

dx2

ffiffiffiffiffiffiffiffiffi
2hw

p
(3:104)

where S is the area of the diode electrodes. Substituting Eq. (3.103) in Eq. (3.104),

we obtain the Child–Langmuir formula (Childs, 1911; Langmuir and Blogett, 1923,

1924):

ICL ¼ 4

9

S

d2
10

ffiffiffiffiffiffi
2h

p
w3=2
a ¼ Pw3=2

a � 2:33� 10�6 S

d2
w3=2
a (3:105)

where P is the perveance.

The relation w(x) ¼ Axn that was used for derivation of the Child–Langmuir

formula implies that the cathode field Ec ¼ �½dw(x)=dx�x¼0 ¼ 0 for n . 1. If

Ec ¼ Ec0 � Ecr (Ec0 ¼ wa=d is the cathode field in the diode without the beam

and Ecr is the cathode electric field that is created by the space charge of the

beam), we obtain Ecr ¼ Ec0. In fact, it means that for a given a wa, the current

ICL is the limiting current. If we tried to raise the current more than ICL by, for

example, increasing the cathode temperature, Ecr would be more than Ec0 and

then Ec , 0. But in this case, electrons with zero initial energy could not leave

the cathode and the current would not depend on the cathode emission. We call

this current ICL a current limited by the space charge and the corresponding diode

regime the r-mode. Note that a power dependence I(wa) of the type of Eq. (3.105)

is called the 3/2 law. It is shown in Appendix 1 that this law is applied to any non-

relativistic diode in the r-mode.

On the contrary, if the current is decreased up to I , ICL (e.g., by cooling the

cathode), the cathode field Ec will be accelerating and this current will not longer

depend on wa. We call this current a current limited by the emission and the

diode regime the T-mode.
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3.4.5 Influence of Initial Velocities

Assume that the initial electron velocity is not zero. For simplicity, suppose that

initial velocities of all the electrons are the same (in reality, they have a Boltzmann

distribution) and their energy is equal to e0w0. For a current limited by the space

charge (the r-mode), the cathode electric field must be retarded (negative). There-

fore, the curve of the potential distribution has a minimum (Fig. 3.7b). It is easy

to see that the value of the potential minimum for the r-mode is wmin ¼ w0. Then

the electron velocities at the plane x ¼ xmin are equal to zero, and this plane has

properties of the cathode in an idealized plane diode for the r-mode (zero initial vel-

ocity and zero electric field). This cathode is called a virtual cathode. This diode has

the anode potential wa þ w0 and an anode–cathode distance d � xmin. According to

Eq. (3.105), the current in the r-mode is

I ¼ 2:33� 10�6 S

(d � xmin)
2
(wa þ w0)

3=2

In this equation the virtual cathode location xmin is unknown. To determine xmin

we should consider the region 0 
 x 
 xmin, that is, a diode with negative anode

potential. We do not consider this problem. Note only that in general (for velocity

distribution) there are two flows (a forward and a reflected flow) in the left diode.

3.4.6 Optical Definition of a Congruent Beam

Assume that a laminar beam is focused to a point. Circumscribe the flow at this point

by a circle of indefinitely small radius. It is obvious that the Lagrange and Poincaré

integrals on this circle are zero if the generalized momentum P is finite. But if we

take into account the invariance of these integrals, we find that invariants L and

P [Eqs. (3.74) and (3.76)] are both zero in a whole beam. According to indication

1 in Section 3.4.1, this beam is congruent (i.e., rotP ¼ 0). Thus, a congruent

beam can be focused to a point. If the beam is not congruent, it obviously cannot

be focused to a point. In Chapter 2 we called beams formed by rays diverging

from or converting to a point homocentric. Thus, the term normal congruence

from classical geometrical optics is equivalent to the term homocentric beam.

3.5 SOLUTIONS OF SELF-CONSISTENT EQUATIONS FOR
CURVILINEAR SPACE-CHARGE LAMINAR BEAMS. MELTZER
FLOW. PLANAR MAGNETRON WITH AN INCLINED
MAGNETIC FIELD. DRYDEN FLOW

3.5.1 Forms of Representation of Solutions for Curvilinear
Space-Charge Beams

The self-consistent equations of space-charge flows belong to the nonlinear partial

differential equations of mathematical physics. Even if we limit ourselves to
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equilibrium states, solution of these equations is very complicated, especially if we

want to obtain analytical results. Certainly, modern numerical methods and compu-

ter resources create innumerable possibilities for investigation of concrete problems.

However, numerical methods need a high degree of detailed elaboration of the struc-

tures analyzed: geometry of the beams, electrodes and magnets, field distribution,

and so on. These problems cannot be set properly if real common characteristics of

flows (there can be many types) are not given. That requires certain analytical work.

We can arrange the types of curvilinear space-charge beams in the order of com-

plexity of analysis:

1. Normal (nonmagnetic) congruent beams

2. Skew congruent beams

3. Laminar noncongruent beams

4. Nonlaminar beams

For types 1 and 2, differential equations of the action function (3.94) or (3.95) can

be used. Also, the original system of self-consistent differential equations (3.11)–

(3.18) or (3.19)–(3.24) for types 1 to 3 is applicable, although it is not so easy in

these cases to control beam laminarity. Finally, the Vlasov–Maxwell equations

[Eqs. (3.55)–(3.59)] can be used in the analysis of beams of type 4.

For linear partial differential equations, the most universal method is perhaps the

separation of variables. A partial differential equation is split after a functional rep-

resentation to a set of independent ordinary differential equations for certain vari-

ables or even for each variable. Due to the linearity of the original equation, a

general solution is sought as a linear combination of the partial solutions obtained.

This method is not applicable for finding general solutions of nonlinear equations.

However, the idea of the separation of variables is used to reduce the original

equation to the ordinary differential equations that determine a certain class of

helpful solutions (Kirstein and Kino, 1958; Kirstein et al., 1967). In particular,

they can be solved numerically.

The additive and product forms of the method of the separation of variables are

known. The action function in additive form is represented as

C(q1, q2, q3) ¼ C1(q1)þC2(q2)þC3(q3) (3:106)

This method was used successfully for solution of the Hamilton–Jacobi equation in

classical dynamics (Landau and Lifshitz, 1976, 1987). However, in the theory of

normal congruent flows, the method was not of great interest because, as shown

by Kirstein et al. (1967), the cathode in corresponding devices can only be a

point source or a finite number of discrete points.

More important applications are connected with the product form of the separ-

ation of variables:

C(q1, q2, q3) ¼ C1(q1)C2(q2)C3(q3) (3:107)
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Note that this form is used almost exclusively for the solution of boundary

problems in Maxwell’s theory. In a paper by Kirstein and Kino (1958) and a

book by Kirsten et al. (1967), important examples are given of the use of

this form in the analysis of congruent and even noncongruent beams. Single-

component normal congruent flow and some cases of noncongruent beams are

considered next.

3.5.2 Normal Congruent Nonrelativistic Beams. Single-Component Flows

The single-component version is the simplest form of separation of variables. In this

case the action function is represented as a function of only one coordinate:

C(q1, q2, q3) ¼ C(q1) (3:108)

According to Eq. (3.96), the velocity components v(v1,v2,v3) are equal:

v1 ¼ 1

m0h1

dC

dq1
, v2 ¼ v3 ¼ 0 (3:109)

where h1 is a metric coefficient. In this flow the particle trajectories coincide with

coordinate lines q1. Let us obtain an ordinary differential equation of a beam in an

orthogonal coordinate system. For this system the length element is represented as

dl2 ¼ h21 dq
2
1 þ h22 dq

2
2 þ h23 dq

2
3 (3:110)

where hi(q1, q2, q3) (i ¼ 1, 2, 3) are metric coefficients. Differential operators in an

orthogonal coordinate system are

gradC ¼ 1

h1

dC

dq1
e1 (3:111)

div b ¼ 1

h1h2h3

@

@q1
(h2h3b1)þ @

@q2
(h1h3b2)þ @

@q3
(h1h2b3)

� �
(3:112)

DF ¼ 1

h1h2h3

@

@q1

h2h3

h1

@F

@q1

� �
þ @

@q2

h1h3

h2

@F

@q2

� �
þ @

@q3

h1h2

h3

@F

@q3

� �� 	
(3:113)

where e1 is the unit vector in the q1 direction. b(b1, b2, b3) and F(q1, q2, q3) are an

arbitrary vector and function.

Let us turn to Eq. (3.98) of normal congruent flow:

div gradCD(gradC)2
 � ¼ 0 (3:114)

Denote the derivative dC/dq1; Q(q1). Then

gradC ¼ Q

h1
e1 (3:115)
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The vector into div for Eq. (3.114) has only one nonzero component:

b1 ¼ Q

h1
D

1

h21
Q2

� �
(3:116)

Then, according to Eqs. (3.112) and (3.114),

div b ¼ 1

h1h2h3

@

@q1

h2h3

h1
QD

1

h21
Q2

� �� 	
¼ 0 (3:117)

So the function in brackets does not depend on q1:

h2h3

h1
QD

1

h21
Q2

� �
¼ f (q2, q3) (3:118)

Substituting the operator D according to Eq. (3.113), we obtain

Q

h21

@

@q1

h2h3

h1

@

@q1

Q2

h21

� �� 	
þ Q2

�
@

@q2

h1h3

h2

@

@q2

1

h21

� �� ��
þ @

@q3

h1h2

h3

@

@q3

1

h21

� �� �	�
¼ f (q2, q3) (3:119)

This is an ordinary differential equation about the function Q(q1). The right side of

Eq. (3.119) is an arbitrary function of q2 and q3. Equation (3.119) is considerably

complicated; nevertheless, it can be solved in some cases.

Before considering a concrete example, we note the following. In principle, we

have two approaches to our problem:

1. We can consider the metric coefficients h1, h2, and h3 of a coordinate system

as given functions of the coordinates q1, q2, and q3. In this case, integration of

Eq. (3.119) gives a result (analytical or numerical): trajectories and other parameters

of the beam. Certainly, the problem of determining the corresponding electrode con-

figuration must still be solved. Unfortunately, use of this method is very limited

because no adequate orthogonal system is available for arbitrary beams.

2. The metric coefficients are not given. It was shown by V. A. Syrovoy that tra-

jectories of a spatial electron beam in an external magnetic field in general may be

included as the coordinate lines only in essentially nonorthogonal system compris-

ing at least five nonzero elements of the metric tensor. In this case, geometrized beam

equations are developed that include equations of motion and of the electromagnetic

field, and equations for components of the metric tensor (see, e.g., Syrovoy, 1999).

3.5.3 Meltzer Flow (Meltzer, 1956)

Meltzer flow is infinite flow formed by electrons rotating on circular trajectories in

planes perpendicular to the z-axis with centers on this axis (Fig. 3.8). For this flow
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the coordinates are q1 ¼ u, q2 ¼ r, and q3 ¼ z. The length element and metric coeffi-

cient in this coordinate system are

dl2 ¼ r2du2 þ dr2 þ dz2

h1 ¼ r, h2 ¼ h3 ¼ 1
(3:120)

Substituting h1 from Eq. (3.120) in Eq. (3.119), we obtain the following differential

equation for the function Q(u):

Q
d2Q2

du2
þ 4Q2

� �
¼ r5f (r, z) (3:121)

The left and right sides of this equation depend on different variables (u and r,z).

Therefore, each side is constant. Thus, Eq. (3.121) is reduced to

d2Q2

du2
þ 4Q2 ¼ C

Q
(3:122)

where C ¼ const. It is readily verified that a solution of this equation is

Q ¼ C1=3 sin 3
2
u


 �2=3
(3:123)

Let us now find the beam parameters. According to Eq. (3.109), the velocity is

v ¼ 1

m0r

dC

du
¼ Q

m0r
¼ C1=3

m0r
sin 3

2
u


 �2=3
(3:124)

The angular velocity is

v ¼ v

r
¼ C1=3

m0r2
sin 3

2
u


 �2=3
(3:125)

One is not uniform as the function of the radius and azimuth. The nonrelativistic

potential is

w ¼ v2

2h
¼ C2=3

2r2e0m0

sin 3
2
u


 �4=3
(3:126)

FIGURE 3.8 Meltzer flow.
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The space-charge density r = 10 Dw. Using the expression of the operator D from

Eq. (3.113), we readily obtain

r ¼ 10C
2=3

2r4e0m0

sin 3
2
u


 ��2=3
(3:127)

Then the current density

j ¼ rv ¼ 10C
2=3

2r4e0m0

sin 3
2
u


 ��2=3C1=3

m0r
sin 3

2
u


 �2=3¼ 10C

2r5e0m
2
0

(3:128)

We have obtained a result that agrees with Eq. (3.91): The current density is con-

stant along the beam (one does not depend on u). The interesting features of this flow
are the very strong dependence on the current density of the radius and the non-

uniform rotation of particles. The problem of electrode synthesis for a gun with

Meltzer flow is considered in Section 4.3.2.

3.5.4 Laminar Noncongruent Beams

The vortex of the momentum rot P in this case is nonzero, and it is impossible to

replace the original system of equations (3.11)–(3.18) by the sole equation for

the action function. Nevertheless, some important solutions are known (see, e.g.,

Dryden, 1962; Kirstein et al., 1967). Below we consider two cases using the

theory of magnetron injection guns as developed by Dryden (1962), Manuilov

and Tsimring (1978), and Tsimring (1977).

Nonrelativistic Electron Flow in a Planar Magnetron with an Inclined
Magnetic Field A scheme for a planar static magnetron with an inclined magnetic

field in a near cathode region is depicted in Fig. 3.9. It is a uniform infinite system

FIGURE 3.9 Planar magnetron with an inclined magnetic field.
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along the x and z directions. Therefore, all quantities depend on y only, and the elec-

tric field has only one nonzero component, E ; –Ey ¼ dw/dy. The cathode is

arranged in the (X,Z) plane. The magnetic field is assumed uniform, parallel to

the (X,Y) plane and inclined to the cathode plane with angle u. The distinguishing

feature of this problem is taking into account versions with a nonzero cathode

electric field [Eq. (3.141)]. The system of self-consistent flow equations is

reduced to a system of 11 scalar equations with 11 unknown functions because

the self magnetic field can be neglected in a nonrelativistic approximation (see

Section 3.2.1):

dv

dt
¼ �hE� hv� B

E ¼ �grad w

Dw ¼ r

10

j ¼ �rv

div j ¼ 0

(3:129)

Let us write Eqs. (3.129) in the terms of the coordinates:

dvx

dt
¼ �h(v� B)x ¼ hBvz sin u ¼ vgvz sin u (3:130)

dvy

dt
¼ �hEy � h(v� B)y ¼ hE � vgvz cos u (3:131)

dvz

dt
¼ �h(v� B)z ¼ vg(vy cos u� vx sin u) (3:132)

E ¼ dw

dy
(3:133)

d2w

dy2
¼ r

10
(3:134)

jx ¼ �rvx (3:135)

jy ¼ �rvy (3:136)

jz ¼ �rvz (3:137)

djy

dy
¼ 0 (3:138)

where vg is the gyrofrequency. Here equations Ex ¼ Ez ¼ 0 are omitted and there

are nine equations. The number of independent self-consistent equations can be

further reduced to six because Eqs. (3.135) and (3.137) are necessary only for
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the determination of the current density components jx and jz, and instead of

Eqs. (3.133) and (3.134), one can write

dE

dy
¼ r

10
(3:139)

Integration of the System Eqs. (3.130)–(3.132), (3.136), (3.138), and
(3.139) This problem has an analytic solution in elementary functions. According

to continuity equation (3.138),

jy ¼ �j0 ¼ const. (3:140)

Find E(t) ; E[y(t)] using Eqs. (3.137), (3.139), and (3.140):

dE

dt
¼ dE

dy

dy

dt
¼ r

10
vy ¼ � jy

10
¼ j0

10

After integration, we obtain

E ¼ j0

1
t þ Ec (3:141)

where Ec is an electric field for t ¼ 0 (i.e., the electric field on the cathode). Note

that the time in Eq. (3.141) is determined by the position of the particle on the tra-

jectory. To obtain the field as an explicit function of the coordinates, it is necessary

to know the function t ¼ t(r). According to Eq. (3.141), for the r-mode (see

Section 3.4.4) we must assign Ec ¼ 0 and set the potential w ¼ wa at a

plane y ¼ d. So we will obtain a current j0 limited by the space charge. For the

T-mode the field Ec is unknown but the emission current j0 must be given.

For determination of the velocity components, let us differentiate Eq. (3.132)

with respect to t and substitute dvy/dt and dvz/dt from Eqs. (3.130) and (3.131).

We obtain

d2vz

dt2
þ v2

gvz ¼ hvg cos u
j0

10
t þ Ec

� �
(3:142)

This is the equation of a harmonic oscillator, with the right side a linear function of

time. Assume that the component of the initial velocity vx0 ¼ 0. The solution of the

equation is

vz ¼ M(F� sinF)þ N(1� cosF) (3:143)

whereF ¼ vgt is a transit angle. The quantitiesM ¼ (h j0/10vg
2) cos u andN ¼ (hEc/

vg) cos u are current and field parameters, respectively. The other two components of

the velocity can be found by integration of Eqs. (3.131) and (3.132) with initial

conditions vy0 ¼ vz0 ¼ 0 after substitution of Eq. (3.142).
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Finally, integration of the functions vx ¼ dx/dt, dy/dt, and dz/dt with initial con-
ditions (x)t¼0 ¼ x0, (y)t¼0 ¼ 0, and v (z)t¼0 ¼ z0 gives the equations of the trajectory:

X(F) ¼ vg(x� x0) ¼ M sin u
F3

6
�Fþ sinF

� �
þ N sin u

F2

2
� 1þ cosF

� �
(3:144)

Y(F) ¼ vgy ¼ M cos u
F3

6
tan2uþF� sinF

� �
þ N cosu

F2

2
tan2uþ 1� cosF

� �
(3:145)

Z(F) ¼ vg(z� z0) ¼ M
F2

2
� 1þ cosF

� �
þ N(F� sinF) (3:146)

The potential according to Eq. (3.133) is w ¼ Ð
E dy ¼ Ð t

0
Evy dt, which gives

U(F) ¼ hw ¼ M2 F4

8
tan2uþF2

2
�F sinFþ 1� cosF

� �
þMN

F3

2
tan2uþF�F cosF

� �
þ N2 F2

2
tan2uþ 1� cosF

� �
(3:147)

For different values of x0 and z0 we find a bundle of trajectories. Note that in general

the trajectories obtained intersect each other and form a two-stream flow. This effect

contradicts the primary condition of beam laminarity. In particular, Eqs. (3.135)–

(3.137) are not applicable. These equations are true only if returning points on the

trajectories are absent (i.e., for the conditions dy/dF � 0 and d2y/dF2 � 0). The

signs of equality determine the critical angle uc; exceeding that provides a

laminar beam. Using conditions (3.145), (3.147) the critical angle uc is readily

obtained as a function of the parameter k ¼ M/N ¼ j0/10vgEc. The function

uc ¼ uc(g) calculated is shown in Fig. 3.10. As we see, the angle uc � 248 for

FIGURE 3.10 Critical angle of inclination of a magnetic field to a cathode as a function of

the parameter k ¼ j0/10vgEc.
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the “cold” diode (k ¼ j0 ¼ 0). It is readily seen that uc ¼ 0 for the r-mode (Ec ¼ 0,

k ¼ 1). Thus, an electron beam in the r-mode is laminar for any u. Typical trajec-
tories of the laminar beam (u . uc) are shown in Fig. 3.11.

Dryden Flow Dryden flow (Dryden, 1962) is a laminar electron flow from a conic

cathode in an axially symmetric magnetic field. Similitude relationships in this flow

correspond to transferring any trajectory to another by a proportional variation of the

radius (in a spherical coordinate system). Then a power law dependence on the flow

dynamical variables of the radius is ensured (Dryden, 1962). Any variable of the

axially symmetric flow is represented in product form as

f (r,u) ¼ rmf (1,u) (3:148)

where r and u are the radius and polar angle in a spherical coordinate system. Taking

into account the relationships between the basic flow variables, one can obtain the

following radial variations of these quantities:

Velocity: v � rn

Electric field: E � r2n�1

Magnetic field: B � rn�1

Potential: w � r2n

Charge density: r � r2n�2

Current density: j � r3n�2

(3:149)

where n is an arbitrary constant (integer or fractional). These relationships can be

considered as the product form of the separation variables. As a result, the nonrela-

tivistic self-consistent equations of flow [Eqs. (3.129)] are transformed into a system

of ordinary differential equations. Equations in a spherical coordinate system are

given by Dryden (1962). Note that according to Eq. (3.149), the case n ¼ 1 corre-

sponds to a uniform magnetic field. The cylindrical coordinate system in

this important case is more suitable because unlike the spherical system, the

FIGURE 3.11 Trajectories of laminar flow in a planar magnetron with an inclined

magnetic field.
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system of differential equations does not contain equations for the magnetic field.

Equations in the cylindrical coordinate system r,u,z are given by Manuilov and

Tsimring (1978).

dr

dt
¼ vr,

du

dt
¼ vu

r
,

dvz

dt
¼ vz

dvr

dt
¼ v2u

r
� hEr � hvuB,

dvu

dt
¼ � vrvu

r
þ hvrB,

dvz

dz
¼ �hEz

dEr

dt
¼ Ervr 1� z2

r2

� �
þ Ezvz

� 	
r � (Ezvr � 2Ervz)z

�
þ jcr

2
c z

10r sinac

�
1

r2 þ z2

dEz

dt
¼ (2Ervr þ Ezvz)zþ (Ezvr � 2Ervz)r � jcr

2
c

10 sinac

� 	
1

r2 þ z2

dw

dt
¼ �(Ervr þ Ezvz)

(3:150)

FIGURE 3.12 Trajectories in Dryden flow: (a) G � 10; (b) G 
 5.

FIGURE 3.13 Critical angle of a cathode cone as a function of the parameter G ¼ (1/hB)
( 2h j/10r0)

1/3. (From Manuilov and Tsimring, 1978.)
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where jc is the cathode current density, rc is the initial radius of the trajectory on the

cathode, and ac is an angle of the cathode cone (Fig. 3.12).

So we have a system of nine ordinary differential equations of the first order. The

numerical solution of these equations was obtained by Dryden (1962) for a regime of

current limited by the space charge (the r-mode). As it turned out, the trajectories

oscillate, in general, into a near-cathode region. However, for a strong magnetic

field [the coefficient G�1 ¼ hB(10rc=2h j)1=3 � 10], trajectories quickly transform

to straight lines parallel to the z-axis (Fig. 3.12a). For less B (G 
 5), the extent

of the region of oscillating trajectories increases notably (Fig. 3.12b). The frequency

of the oscillations is close to the gyrofrequency hB.
Note that some solutions of the equations (3.150) can give two-stream flows even

for the r-mode (unlike the planar magnetron; Section 3.5.2). These solutions must be

excluded. In Fig. 3.13 the critical cone angle acr curve is shown (Manuilov and

Tsimring, 1978).2 The region of the laminar beams corresponds to ac . acr.

2In a paper by Manuilov and Tsimring (1978), another parameter of the magnetic field l ¼ G3 was used.
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CHAPTER FOUR

Electron Guns

4.1 INTRODUCTION

An electron gun is one of the basic components of an electron beam system, which

includes microwave tubes, electron accelerators, and technology procession devices.

The gun transforms the electron flow emitted from a cathode in a finite (dense) elec-

tron beam with rectilinear or curvilinear electron trajectories. In this chapter, the

principles of finite electron beam formation and basic types of electron guns

(excluding electron maser guns) (see Chapter 10) are considered.

It is necessary to emphasize that an important element of gun design is the

numerical simulation of systems. However, as mentioned in the Introduction, com-

putation analysis problems are beyond the scope of this book.

4.2 PIERCE’S SYNTHESIS METHOD FOR GUN DESIGN

So far, our analysis of space-charge electron beams was connected with two funda-

mental conditions: (1) single-flow approximation (laminar beams), and (2) beams

that fill all space (boundless beams). The second condition allows us to ignore

no-cathode boundary value problems. Essentially, this simplifies solution of self-

consistent equations and gives in closed form, beam quantities (i.e., trajectories, vel-

ocities, space-charge and current densities, distribution of the potential, etc.) as a

function of coordinates or other parameters. However, this consideration does not

solve the entire problem of electron gun design with bound, sharply outlined

beams and with the given beam trajectories. Is it possible to use the solutions of

boundless electron beam equations for this problem? A statement and method for

solving the problem of electrostatic beams with rectilinear electron trajectory

were given by J. R. Pierce (see, e.g., Pierce, 1954).
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Pierce’s method consists of the following: Consider, for example, a nonrelativistic

electron beam in a planar diode. The flow fills the entire diode space (Fig. 4.1a).

According to Eq. (3.103), the potential distribution in this diode for the r-mode is

w(x; y) ¼ wa(x=d)
4=3, and the electric field perpendicular to the trajectories is

E ¼ Ey ¼ �@w=@y ¼ 0.

Let us eliminate the beam section from the region y . 0 (Fig. 4.1b). This reduces

the problem in this region to that of obtaining a potential distribution that does not

change the electric field at the beam boundary from that of the original beam

(Fig. 4.1a). In this case, after beam “preparation,” the rectilinear electron trajectories

will not be disturbed. In the region y . 0, Poisson’s equation is transformed to

Laplace’s equation Dw ¼ 0, and we arrive at the problem of solving Laplace’s

equation with boundary conditions

@w(x,y)

@y

� �
y¼0

¼ 0

w x,yð Þð Þy¼0 ¼ wa

x

d

� �4=3 (4:1)

Equipotential surfaces in this region determine the configuration desired for electrodes

outside the beam. In Fig. 4.1b, the dashed and dash-dotted lines show the shapes of

two electrodes for potentials w ¼ 0 and wa, which follow an elegant Pierce solution

(see Section 4.4.2). Afterward, the Pierce method was extended to beams with

various boundary surface forms.We examine similar problems in subsequent sections.

The general idea behind the Pierce synthesis method is contained in the division

of a single problem into two particular subproblems:

1. Internal Problem of Synthesis: Solution of the self-consistent equation for a

boundless beam

2. External Problem: Preparation of a beam by eliminating a section of it lying

outside the envelope of trajectories, which is the given boundary of the beam,

solution of the Laplace equation in the volume selected, and determination of

the electrode configuration

FIGURE 4.1 Pierce’s synthesis of electrodes for a planar diode: (a) boundless beam;

(b) prepared beam.
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4.3 INTERNAL PROBLEMS OF SYNTHESIS. RELATIVISTIC PLANAR
DIODE. CYLINDRICAL AND SPHERICAL DIODES

So far, we have considered the following internal problems:

1. Flow in planar nonrelativistic diodes (Section 3.4.4)

2. Meltzer flow (Section 3.5.3)

3. Nonrelativistic electron flow in a planar magnetron with an inclined magnetic

field (Section 3.5.4)

4. Dryden flow (Section 3.5.4)

Next we study some other important cases.

4.3.1 Relativistic Planar Diode in the r-Mode

The scheme of a planar diode is depicted in Fig. 3.7. The problem is reduced to a

solution of the one-dimensional Poisson equation

d2w

dx2
¼ � r

10
(4:2)

with boundary conditions

w(0) ¼ 0, w(d) ¼ wa, (v)x¼0 ¼ 0,
dw

dx

� �
x¼0

¼ 0 (4:3)

The final condition in Eq. (4.3) is referred to the r-regime. Using the energy integral

[Eq. (1.7)], g ¼ 1þ hw=c2, expressions for space-charge density, r ¼ �I=Sv, and
velocity, v ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
=g

� �
, we rewrite Eq. (4.2) as

d2g

dx2
¼ I

IrS

gffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p (4:4)

where I is the beam current, S is the square of the electrodes, and the current

parameter Ir is

Ir ¼ c310
h

� 1356 A (4:5)

We express the charge density as r ¼ j=v ¼ Ig=Sc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
.

Boundary conditions [Eq. (4.3)] in the term g is now

gx¼0 ¼ 1, gx¼d ¼ 1þ hwa

c2
,

dg

dx

� �
x¼0

¼ 0 (4:6)
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Let us multiply both sides of Eq. (4.4) by the factor dg=dx. After integration and

taking Eq. (4.6) into account we obtain

dg

dx
¼

ffiffiffiffiffiffi
2I

IrS

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 14

p
(4:7)

Repeated integration gives the diode volt–ampere characteristic:

I ¼ IrS

2d2

ð1þhwa=c
2

1

dgffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 14

p !2

(4:8)

The integral in Eq. (4.8) can be reduced to elliptic integrals of the first and second

type (Miller, 1982). The simplest way, however, is numerical computation of the

integral. Let us consider two extreme cases when the integral can be expressed

through elementary functions.

1. Nonrelativistic Diode, hw=c2 	 1. In this case,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 14

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(g� 14
p

). Then

I � 8IrS

9
ffiffiffi
2

p
d2

(g� 1)3=2 ¼ 4

9
10

ffiffiffiffiffiffi
2h

p S

d2
w3=2
a

� 2:334� 10�6 S

d2
w3=2
a A=V3=2 (4:9)

The formula obviously agrees with Eq. (3.105).

2. Supreme Relativistic Diode, g � 1. Then
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 14

p
� ffiffiffi

g
p

, and the current is

I � IrS

2d2

ðga
1

dgffiffiffi
g

p
� �2

� 2IrS

d2
ga �

2IrS

d2
hwa

c2
¼ 2c10

S

d2
wa (4:10)

Thus, the supreme relativistic diode is equivalent to a linear admittance:

Y ¼ 2c10
S

d2
� 1

188

S

d2
V�1 (4:11)

For a diode with circular cross section (S ¼ pr2), the admittance is

Y � 1

60

r2

d2
V�1 (4:12)

The normalized admittance of the diode for various approximations is depicted in

Fig. 4.2. According to the plot, nonrelativistic approximation is applicable up to

w � 500 kV; supreme relativistic approximation is acceptable for values above

w � 50 MV.
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4.3.2 Nonrelativistic Cylindrical and Spherical Diodes in the r-Mode

A diode scheme is shown in Fig. 4.3. Let us confine ourselves to consideration of

diodes with an external cylinder as the cathode (i.e., rc=ra . 1). Corresponding

flows are generally used in electron guns that compress the beam following an emis-

sion. Assume that the fringe effects in the cylindrical diode are absent. The potential

in both diodes will depend only on the radial coordinate, and the electric field will

have only a radial component. Assume that the initial velocities are zero. In this

case, the velocities and current densities are radial and the trajectories are rectilinear.

So we can write

w( r) ¼ w(r), v ¼ vr ; v, j ¼ jr ; j (4:13)

FIGURE 4.2 Diode admittance for different approximations. 1, Nonrelativistic diode;

2, supreme relativistic diode; 3, exact solution.

FIGURE 4.3 Cylindrical and the spherical diodes with an external cathode.
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A system of self-consistent equations for both diodes is

Drw ¼ � r

10

j ¼ I

S
¼ rv

v ¼
ffiffiffiffiffiffiffiffiffi
2hw

p
div j ¼ dI

dr
¼ 0

(4:14)

where Dr is the radial component of the Laplace operator and I is the beam current,

which is the same in any cross section S of the flow. Consider each diode separately.

Cylindrical Diode According to Fig. 4.3 and Eqs. (4.14),

S ¼ 2prL, r ¼ I

Sv
¼ I

2prL
ffiffiffiffiffiffiffiffiffi
2hw

p (4:15)

Using the known expression for Dr in the cylindrical coordinate system, we obtain

after substituting Eq. (4.15) in the first of Eqs. (4.14), the equation

ffiffiffi
w

p d

dr
r
dw

dr

� �
¼ I

2pL10
ffiffiffiffiffiffi
2h

p (4:16)

and the boundary conditions

w(rc) ¼ 0, w(ra) ¼ wa,
dw

dr

� �
r¼rc

¼ 0 (4:17)

As was shown (Langmuir and Blogett, 1923), it is convenient to express the current

through an auxiliary function b(r=rc):

I ¼ 8p

9
10L

ffiffiffiffiffiffi
2h

p w3=2

rb2(r=rc)
(4:18)

Note that this representation is valid for L � rc � r. The potential as a function of r

according to Eq. (4.18) is

w(r) ¼ Cr 2=3 b
r

rc

� �� 	4=3
(4:19)

where the constant C and taking the boundary conditions (4.17) into account is

C ¼ wa

r
2=3
a ½b(ra=rc)�4=3

(4:20)
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Then Eq. (4.16) for the term b ¼ b(r=rc) is

C3=2r1=3b2=3 d

dr
r
d

dr
(r2=3b4=3))

� 	
¼ I

2pL10
ffiffiffiffiffiffi
2h

p (4:21)

Langmuir obtained the solution of Eq. (4.21) by expanding b(r=rc) in a quickly

convergent power series of the variable v ¼ ln(rc=r) (Langmuir and Blogett, 1923):

b ¼ vþ 2v2

5
þ 11v3

120
þ 47v4

3300
þ � � � (4:22)

Spherical Diode According to Fig. 4.3,

S ¼ 4pr2, r ¼ I

Sv
¼ I

4pr2
ffiffiffiffiffiffiffiffiffi
2hw

p (4:23)

Using an expression for Dr in the spherical coordinate system, after substituting

Eq. (4.13) in the first of Eqs. (4.14), we obtain

ffiffiffi
w

p d

dr
r2
dw

dr

� �
¼ I

4p10
ffiffiffiffiffiffi
2h

p (4:24)

with boundary conditions (4.17).

According to Langmuir and Blogett (1924), the current can be represented

through a function a(r=rc):

I ¼ 16p

9
10

ffiffiffiffiffiffi
2h

p w3=2

a2(r=rc)
(4:25)

Note that the current depends on neither the anode nor the cathode radius separately

but only on the ratio of these values. The potential as the function of r according to

Eq. (4.25) is

w(r) ¼ D a
r

rc

� �� 	4=3
(4:26)

where the constant D, taking the boundary conditions (4.17) into account, is

D ¼ wa

½a(ra=rc)�4=3
(4:27)

So Eq. (4.24) in the term a is

D3=2a2=3 d

dr
r2

d

dr
(a4=3)

� 	
¼ I

4p10
ffiffiffiffiffiffi
2h

p (4:28)
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The function a(r=rc) can be expanded (Langmuir and Blogett, 1924) in a quickly

convergent power series of the variable v ¼ ln rc=rð Þ:

a ¼ vþ 3v2

10
þ 3v3

40
þ 0:00143v4 þ 0:0021v5 þ � � � (4:29)

In conclusion, let us rewrite the expressions for distribution of the potential in the

diodes:

w(r) ¼
wa

r

ra

� �2=3
b2(r=rc)

b2(ra=rc)

� �2=3

(cylindrical diode) (4:30)

wa

a2(r=rc)

a2(ra=rc)

� �2=3

(spherical diode) (4:31)

8>>>><>>>>:
4.4 EXTERNAL PROBLEMS OF SYNTHESIS. CAUCHY PROBLEM

Next we turn to the second half of Pierce’s synthesis, the external subproblem.

4.4.1 Cauchy Problem for Laplace’s Equation

As seen earlier, the external problem can be reduced to solution of the Laplace

equation in the domain outside the beam with the electric field on the beam bound-

ary, which in turn was found in the solution of the internal problem. It can readily

be proven that assignment of the boundary electric field for the Laplace equation is

equivalent to setting the boundary potential and its normal derivative. In this case,

the boundary value problem is called the Cauchy problem. Note that the boundary

potential and its normal derivative (Cauchy data) are given on the part of the

domain boundary that is common with the beam. This problem of the potential

theory is distinguished from classic Dirichlet–Neiman problems. In the latter

case, the potential or its normal derivative is given on a closed boundary of the

domain. The main peculiarity of the Cauchy problem when used in Laplace’s

equation is its incorrect setting. According to Hadamard’s definition (see, e.g.,

Fattoriny, 1983), the conditions of the correct setting involve small variations of

the solution that occurs when variations of the boundary values are small. It can

be shown that, in general, the setting of the Cauchy problem is correct for hyper-

bolic equations and is incorrect for elliptic equations. In the latter case, the Cauchy

problem is correct only if the boundary values are analytical functions of argu-

ments. This condition is not fulfilled in direct numerical solution of boundary

value problems.

Let us illustrate this effect by using the example of an electric field in the triode.

Consider a planar model of the grid–cathode gap. The grid is carried out from

thin equidistant rectilinear wires arranged perpendicular to the plane of the
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drawing (Fig. 4.4). Assume that we have solved the Dirichlet problem for the

given boundary potentials wg of the grid and wc of the cathode. We obtain a

pattern of periodic equipotential lines of the type in Fig. 4.4 that appears along

the coordinate, x. It can be shown that the amplitude of the potential variations

decreases exponentially with distance from the grid. The potential on the

cathode as a function x will be constant, but the electric field (the normal deriva-

tive of the potential) changes as

Ey ¼ � @w(x,y)

@y

� 	
y¼0

� a sin
2p

L
x

� �
(4:32)

where the amplitude a is an exponentially small value as a function of d.

Consider the same problem as the Cauchy problem with the Cauchy data on the

plane y ¼ 0:

½w(x,y)�y¼0 ¼ wc ¼ const:,
@w(x,y)

@y

� 	
y¼0

¼ a sin
2p

L
x

� �
(4:33)

If we found a rigorous solution to this problem, we would obviously obtain the

pattern in Fig. 4.4. Now let us replace the small oscillating normal derivative

with one of uniform value: for example, @w=@y ¼ a. Then the pattern correspond-

ing to a solution of the Cauchy problem is changed drastically. We would get a

uniform potential distribution, and the shape of the equipotential on the plane of

the grid would be plane. Thus, the small nonanalytic variation of the Cauchy

data led to a qualitative reformation of the solution. Essentially, the amplitude a

of the periodic variations of the cathode field is decreased with L. Therefore,

the instability of the Cauchy problem is intensified when the scale L decreases.

If the Cauchy problem is solved by a finite-difference method, small rounding

errors and machine noises make the solution untrue. Below we consider some

important examples of Cauchy problem solutions when analytical Cauchy data

are given.

FIGURE 4.4 Potential pattern in the grid–cathode gap of a triode.
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4.4.2 Synthesis of a Pierce Gun

The Cauchy data for a Pierce gun are given by Eqs. (4.1). Following Pierce

(1954), let us continue the potential w(x) analytically into the upper half-plane

(Fig. 4.1):

w(z) ¼ wa

z

d

� �4=3
(4:34)

where z ¼ xþ iy and y . 0. The real function

w(x,y) ¼ Re w(z) (4:35)

is the desired solution of our problem.

Indeed, as is generally known, real and imaginary parts of any analytical function

satisfy a Laplace equation. It is readily verified that Eq. (4.35) satisfies the boundary

conditions (4.1) also:

F(x,0) ¼ ½Re w(z)�y¼0 ¼ Re½wa(xþ iy)4=3�y¼0 ¼ wax
4=3

@F(x,y)

@y

� 	
y¼0

¼ {Re½wai
4
3
(xþ iy)1=3�}y¼0 ¼ Re(i 4

3
wax

1=3) ¼ 0
(4:36)

The equation of a equipotentials in a Pierce gun with potential wi is obviously

Re½wa(xþ iy)4=3� ¼ wi ¼ const: (4:37)

It is convenient to use polar coordinates r and u (Fig. 4.1b). Then xþ iy ¼ r exp (iu)
and the equation of the equipotentials is

war cos 4=3uð Þ ¼ wi (4:38)

In particular, the equation of the cathode equipotential (wi ¼ 0) is u ¼ 3
8
p . This

straight line inclines to the beam edge an angle of 3
8
p ¼ 678300. According to Eq.

(4.38), the equation of the anode equipotential (wi ¼ wa) is r ¼ 1= cos ( 3
8
u). It can

readily be shown that equipotentials with wi = 0 cut the beam at an angle of

p=2. The equipotentials are shown in Fig. 4.1b by dashed lines.

It is interesting to note that Pierce’s angle 678300 is universal: The cathode equi-
potentials in any gun in the space-charge regime (the r-mode) and for zero initial

velocities cut the beam at the same angle. Indeed, trajectories and a potential distri-

bution for any flows (including relativistic ones) in the nearest vicinity to the cathode

are the same as in a planar nonrelativistic diode. Therefore, a local geometry of

cathode equipotentials near the point of its intersection with a beam must coincide

with the geometry of Pierce’s planar gun.
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The difficult problem is the exit of the beam from the gun considered. If an anode

aperture is used to achieve this goal, it will act as a divergent lens (Section 2.6.5) and

the beam will not be rectilinear. Use of the grid as an anode electrode leads to partial

interception of the beamand to the disturbance of rectilinear trajectories near gridwires.

4.5 SYNTHESIS OF ELECTRODE SYSTEMS FOR
TWO-DIMENSIONAL CURVILINEAR BEAMS WITH TRANSLATION
SYMMETRY (LOMAX–KIRSTEIN METHOD). MAGNETRON
INJECTION GUN

Let us consider an infinite laminar electron flow with curvelinear trajectories that are

identical in the z-direction. The translation of the flow in the stated direction does not

change the beam. In general, the trajectories can be three-dimensional curves of the

laminar flow. We can consider the latter as a system of the curvilinear surfaces with

a straight generatrix parallel z-axis. The beam quantities would not, however,

depend on the variable z.

Let us choose one surface within the flow as the beam boundary. The equation of

the surface coincides with the equation of a projection of the boundary trajectory on

the (x,y) plane. We write this equation in parametric form,

x ¼ X(t), y ¼ Y(t) (4:39)

where X and Y are analytic functions. The parameter t cannot be obligatory to the

time. Remove parts of the beam above (or under) the boundary surface. We come

to the Cauchy problem for the Laplace equation. It is supposed that the internal

problem has been solved and that the Cauchy data on the beam boundary are known:

w½x(t),y(t)� ¼ w(t) (4:40)

@w

@n
¼ �En(t) (4:41)

Here n is used as a direction of a normal-to-boundary surface. We can, instead

[Eq. (4.40)], use the tangential component of the electric field:

@w(t)

@t
¼ �Et(t) (4:42)

4.5.1 Lomax–Kirstein Method of Synthesis of Two-Dimensional
Systems (Kirstein, 1958; Lomax, 1957)

Let us continue analytically the functions X and Y from Eq. (4.39) into the upper

half-plane w ¼ t þ iu (u . 0), and consider the following conformal transformation

of the plane v ¼ xþ iy to the plane w ¼ t þ iu:

xþ iy ¼ X(t þ iu)þ iY(t þ iu) (4:43)
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It is readily seen from Eq. (4.41) what the transformation corresponding to

Eq. (4.43) transfers from the boundary trajectory of the beam into the t-axis of

the plane w (Fig. 4.5). Because of invariance of Laplace’s equation under

conformal transformation, the transformed potential w(t,u) must satisfy the equation

@2w

@t2
þ @2w

@u2
¼ 0 (4:44)

To obtain the Cauchy data in the (t,u) plane, we take into account the correspon-

dence of the lines for the conformal transformation. It means that the translation

along t and n in the (x,y) plane corresponds to translation along t and u in the

(t,u) plane. Then the fields on the line u ¼ 0 are

Et0(t) ¼ � @w(t,u)

@t

� 	
u¼0

¼ � @w(t,u)

@t

� 	
u¼0

dt

dt
¼ Et(t)

dt

dt
(4:45)

Eu0(t) ¼ � @w(t,u)

@u

� 	
u¼0

¼ � @w(t,u)

@n

� 	
u¼0

dn

du
¼ En(t)

dn

du
(4:46)

The geometric meaning of the derivatives dt=dt and dn=du is an extensions of the

(x,y) plane in the directions t and l for transfer to the (t,u) plane. By virtue of con-

formal transformation, these extensions are the same. Then according to Eqs. (4.45)

and (4.46),

Eu0 ¼ Et0

En(t)

Et(t)
¼ Et0 tana (4:47)

where a is an angle contained by the boundary electric field and the trajectory (see

Fig. 4.1). But the quantity Et0 according to Eq. (4.45) is

Et0 ¼ � dw

dt
(4:48)

FIGURE 4.5 Conformal transformation of the external domain of a beam.
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Analytic continuation of the fields from the line u ¼ 0 into the upper half-plane

gives

Et0(t) �! Et0(t þ iu) ; Et0(w), Eu0(t) �! Eu0(t þ iu) ; Eu0(w) (4:49)

Now let us form a specific complex field and a corresponding complex potential:

J(w) ¼ Et0(w)� iEu0(w) (4:50)

w(w) ¼ �
ðw
0

J(w) dw (4:51)

It is readily verified that the solution desired for the Cauchy problem in the (t,u)

plane is

w(t,u) ¼ Rew(w) ¼ �Re

ðw
0

½Et0(w)� Eu0(w)� dw (4:52)

w(t,u) obviously satisfies Laplace’s equation [Eq. (4.44)], One task remains—check

the boundary conditions (4.4). Let us try Eu0(t):

Eu0(t) ¼ � @w(t,u)

@u

� 	
u¼0

¼ � @

@u
Re½w(w)�

� 	
u¼0

¼ �Re
dw(w)

dw

@w

@u

� 	
u¼0

¼ Re{i½Et0(w)� iEu0(w)�u¼0 ¼ Re½iEt0(t)þ Eu0(t)� ¼ Eu0(t) (4:53)

The condition for Et0(t) could be checked analogously.

The equipotentials (electrode shape) can be calculated by integrating Eq. (4.52)

numerically. If we separate the real and imaginary parts in Eq. (4.43), we obtain the

functions

x ¼ x(t,u); y ¼ y(t,u) (4:54)

While integrating Eq. (4.52), we replace t,u on x,y in every point according to

Eqs. (4.54) and obtain w ¼ w(x,y). As a result, we must find the surfaces of an

equal potential.

A simpler procedure is based on direct numerical integration of the differential

equation of equipotentials. The equation of the equipotentials in the (t,u) plane is

obviously

du

dt
¼ � @w=@t

@w=@u
¼ �

@

@t

�
Re

ðw
0

J(w) dw

	
@

@u

�
Re

ðw
0

J(w) dw

	 ¼ Re½J(w)�
Im½J(w)� (4:55)
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Taking Eq. (4.50) into account, we obtain the following ordinary differential

equation:

du

dt
¼ Re½Et0(w)� iEu0(w)�

Im½Et0(w)� iEu0(w)� (4:56)

While integrating this equation we are moving along the equipotential in the (u,v)

plane. If we replace u,v in each point by x,y, we immediately obtain an equipotential

in the real (x,y) plane. This problem can be solved easily with a computer, but it is

necessary to have a solution of the internal problem in analytic form. This is, in

essence, the method’s limitation.

4.5.2 Design of Electrodes for a Meltzer Flow Gun (Lomax, 1957)

Let us take as the boundaries of a beam circles of radius b and a (Fig. 4.6; see also

Section 3.5.3). According to Eq. (3.126), the potential and the components of the

electric field on the outer boundary r ¼ b are

wr¼b ¼
A

b2
sin

3

2
t

� �4=3

, En ¼ � @w

@r

� �
r¼b

¼ 2A

b3
sin

3

2
t

� �4=3

Et ¼ � @w

r@u

� �
r¼b

¼ � 2A

b3
sin

3

2
t

� �1=3

cos
3

2
t

� � (4:57)

[We formally replace the argument u in Eq. (3.26), by the parameter t.] The equation

of the outer boundary trajectory is

x ¼ b cos t, y ¼ b sin t (4:58)

Let us find the angle a (Fig. 4.5):

tana ¼ En

Et
¼ � sin 3

2
t


 �4=3
sin 3

2
t


 �1=3
cos 3

2
t
¼ � tan

3

2
t, a ¼ � 3

2
t (4:59)

FIGURE 4.6 Meltzer flow.
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The conformal transformation according to Eqs. (4.43) and (4.58) is

xþ iy ¼ b cos (t þ iu)þ ib sin (t þ iu) ¼ b exp½i(t þ iu)�

Then

x ¼ b cos t exp(�u), y ¼ b sin t exp(�u) (4:60)

The differential equation of the equipotential is Eq. (4.60), where according to

Eqs. (4.47), (4.48), (4.57), and (4.59),

J ¼ Et0(w)� iEu0(w) ¼ � 2A

b2
sin

3

2
w

� �1=3

cos
3

2
w� i

2A

b2
sin

3

2
w

� �4=3

¼ � 2A

b2
sin

3

2
w

� �1=3

exp i
3

2
w

� �
(4:61)

Let us now transform this equation to polar coordinates. According to Eq. (4.60),

t ¼ u, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ b exp(�u), u ¼ ln

b

r

� �
(4:62)

Then it is readily verified that the differential equation of the equipotentials

[Eq. (4.58)] is

du

dt
¼ cot½argJ(w)� (4:63)

In polar coordinates it becomes

du

dt
¼ � 1

r

dr

du
¼ cot

�
1

3
a tan

1� (r=b)3

1þ (r=b)3
cot

3

2
u

� 	
þ 3

2
u

�
(4:64)

The equation is an ordinary first-order differential equation. It can easily be inte-

grated numerically. The equipotentials corresponding to the inner part of the gun

is obtained from Eq. (4.64) by replacing the ratio r=b . 1 by r=a , 1.

The pattern of the calculated equipotentials is shown in Fig. 4.7. The system is

symmetric near the line u ¼ p=3. The gun’s important feature is the presence of equi-

potentials that don’t intercept the beams. Thus, for this gun, unlike that of Pierce

guns, there is no anode hole problem. The peculiar feature of the gun is not having

uniform rotation of the particles in the flow. The velocity is zero on the cathode

(u ¼ 0), attains a maximum at u ¼ p=3, and again is zero at u ¼ 2p=3. If one sets
two electrodes as planes at positions u ¼ 0 and 2p=3, it is possible to pass current

between them without transferring beam energy to these electrodes. As one

would expect, the cathode equipotentials make Pierce’s angle 67.58 with the beam.
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4.5.3 Design of Electrodes for a Magnetron Injection Gun
(Tsimring, 1977)

Let us take a nonrelativistic electron flow in the planar magnetron with an inclined

magnetic field as the basis for a magnetron injection gun (MIG) design (see Section

4.7.2). Corresponding flow was used first by Kino (1960) in his theory of the MIG .

The model used in that work was of a MIG with a zero cathode electric field

(r-mode). As a simplified condition, Kino has also introduced a small initial electron

velocity that allows us to exclude from the flow equations oscillatory terms of type

sinF [see Eqs. (3.144)–(3.147)]. This approximation simplifies the solution of the

external problem significantly. Disregarded oscillating trajectories can represent

independent interest in electron maser gyrotrons in that interaction of a

high-frequency electromagnetic field with oscillating electrons is used. The same

reasoning also requires using a T-mode with a nonzero cathode electric field.

Corresponding topics are considered in detail in Chapter 10.

The solution based on the full system of the equations (3.144)–(3.147) is

described below. The system takes into account an arbitrary cathode electric

field [Eq. (3.141)] and zero initial velocity. According to the Lomax–Kirstein

method, we continue the boundary beam trajectory of Eqs. (3.144), (3.145)

analytically:

X ¼ Xb(F), Y ¼ Yb(F) (4:65)

into a complex plane Q ¼ Fþ iC by a conformal mapping with the function

W ¼ X þ iY ¼ Xb(Q)þ iYb(Q) (4:66)

This mapping transforms the trajectory T in the real axis C ¼ 0 (Fig. 4.8). After

separation of the real and imaginary parts in Eq. (4.66) and using Eqs. (3.144) and

FIGURE 4.7 Meltzer gun.
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(3.145), we obtain

X ¼ tan u
F2 �C2

2
þ cosF coshC� 1þ g

F3 � 3FC2

6
�Fþ sinF coshC

� �� 	
� FC tan2 uþ sinF sinhCþ g

3F2C�C3

6
tan2uþCþ cosF sinhC

� �� 	
(4:67)

Y ¼ tan u FC� sinF sinhCþ g
3F2C�C3

6
�Cþ cosF sinhC

� �� 	
þ F2 �C2

2
tan2u� cosF coshC

�
þg

F3 � 3FC2

6
tan2uþF� sinF coshC

� �
þ 1

	
(4:68)

The shape of electrodes is determined from a differential equation of equipoten-

tials [Eq. (4.56)] in the (F,C) plane, which in the given case is

dC

dF
¼ Re½EF(Q)� iEC(Q)�

Im½EF(Q)� iEC(Q)� (4:69)

where EF(Q) and EC(Q) are analytically continued electric fields:

EF ¼ � dU(F)

dF
, EC ¼ � dU(F)

dF
tana (4:70)

Here U(F) is determined by Eq. (3.147) and a is the angle between the boundary

electric field and the trajectory. The electric field is directed along the Y-axis;

therefore, tana ¼ dx=dy ¼ X0(F)=Y 0(F).

FIGURE 4.8 Conformal mapping of a (X,Y) plane to F,C. The rays OA0 and OB0 are the

mapping of the rays OA and OB in the vicinity of the origin of the coordinates.
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With the aid of Eqs. (4.67)–(4.70) and some algebra, we obtain the following

differential equation of the electrodes in the (F,C) plane:

dC

dF
¼ H½(C2 þ D2) cot uþ BC � AD� þ F(AC þ BD)

F½(C2 þ D2) cot uþ BC � AD� � H(AC þ AD)
(4:71)

where

H ¼ F tan2uþ sinF coshCþ g
3(F2 �C2)

2
tan2uþF sinF coshC

�
�C cosF sinhC� cosF coshCþ 1

	
þ g2

F3 � 3FC2

2
tan2uþF�F cosF coshC�C sinF sinhC

� �
(4:72)

F ¼ C tan2uþ cosF sinhCþ g(3FC tan2uþF cosF sinhC

þC sinF coshCþ sinF sinhC)

þ g2
3F2C�C3

2
tan2uþCþF sinF sinhC�C cosF coshC

� �
(4:73)

A ¼ F� sinF coshCþ g
F2 �C2

2
þ cosF coshC� 1

� �
(4:74)

B ¼ C� cosF sinhCþ g(FC� sinF sinhC) (4:75)

C ¼ F tan2uþ sinF coshCþ g
F2 �C2

2
tan2u� cosF coshCþ 1

� �
(4:76)

D ¼ cosF sinhC�C tan2uþ g(FC tan2uþ sinF sinhC) (4:77)

The pointF ¼ 0 andC ¼ 0 is the singular point for the right side of Eq. (4.71). It

is a branch point for the function Q ¼ Q(W) that maps the (X,Y) plane into the

(F,C) plane. Therefore, for the integration of Eq. (4.71), calculating the zero equi-

potential must not start from zero but from some adjacent point identified by the

trend in the integral curves and by conformal mapping in the vicinity of the

origin. Disregarding terms of higher orders than the first, we obtain from

Eqs. (4.71)–(4.77) the equation

dC

dF
¼ F

C
(4:78)

according to which the zero is a saddle point. The integral curves passing through it

are inclined to the F-axis at angles +458 (Fig. 4.8). Let us expand the right-hand

sides of Eqs. (3.144) and (3.145) into series in F up to second-order terms

160 ELECTRON GUNS



inclusively. We then find from Eq. (4.66) the conformal mapping in the vicinity of

the origin of coordinates:

W ¼ X þ iY ¼ j
Q2

2 cos2u
(4:79)

Near the coordinates’ origin, the electrodes lie in the plane Y ¼ 0: the rear one at

X , 0 and the front electrode at X . 0 (respectively, lines OA and OB in

Fig. 4.8). In Fig. 4.9a, the trajectory calculated for g ¼ 0:5 and u ¼ 158 is shown
as a result of numerical integration of Eq. (4.71) and the transfer from F,C to

X,Y with Eqs. (4.67) and (4.68).

According to Fig. 4.9a, the anode electrode found by the synthesis method

described intercepts the electron beam. We meet a problem that is similar to the

anode-hole problem of Pierce planar guns. But this task is more difficult because

it is necessary to conserve the complicated oscillating trajectories. As a guide, it

is useful to apply the method of a correction of the anode shape based on the require-

ment for minimal perturbations of the electrostatic field at the cathode and its vicin-

ity. The solution is reduced to an electrostatic problem for a system without the

beam with subsequent testing of the trajectories by a numerical simulation. This

approach is close to the superposition method developed by Kirstein et al. (1967).

Note the possibility that considerable variation of the anode shape without substan-

tial perturbation of the cathode field can be considered as a consequence of the

Cauchy problem setting: Strong perturbations of the potential distribution in a

remote space produce small variations in the boundary (cathode) conditions. To

illustrate, the corrected configuration of the electrodes is depicted in Fig. 4.9b,

showing small perturbations of the trajectories and beam current.

The special case u ¼ 0 requires a separate consideration (Appendix 2). In this

case the electron trajectories according to Eqs. (3.144)–(3.146) are disposed in

the plane perpendicular to the magnetic field. The corresponding scheme is used

in electron guns of crossed-field traveling-wave tubes and backward-wave oscil-

lators (Chapter 9).

FIGURE 4.9 (a) Equipotentials and trajectories in an electron beam with g ¼ 0.5, u ¼ 158;
(b) electrode configuration and trajectories after correction.
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4.6 SYNTHESIS OF AXIALLY SYMMETRIC ELECTRODE SYSTEMS
(Harker, 1960, 1963)

Axially symmetric electron beam devices have obvious advantages: There are no

edge effect problems, and technologically, these systems are significantly simpler.

A general method for the synthesis of axially symmetric systems was developed

by D. Radley (Radley, 1958). His method can be used in cases where Laplace’s

equation into outer domains of the beams is separable. However, realization of

the Radley method encounters difficulties that are connected to the need to

operate with analytical representations of the internal problem solutions. Harker’s

method is free of these limitations.

4.6.1 Statement of the Problem. Harker’s Method. Conformal Transform-
ation of a Boundary Trajectory. Field Equations in a Transformed Plane

Consider an infinite laminar electron beam with trajectories that are identical in the

azimuthal direction. As in the two-dimensional case, the trajectories can be spatial

(three-dimensional) curves (i.e., they could not be arranged in the meridional

planes). But the laminarity and the axial symmetry of the flow allow us to consider

the latter as a system of cylindrical corrugated surfaces, ri ¼ ri(z). Each surface is

formed by rotating one of the trajectories around the z-axis. In the meridional

(r,z) plane these surfaces are depicted as trajectories of the two-dimensional

laminar beam. Let us choose two trajectories as boundaries of the beam

(Fig. 4.10). Owing to the axial symmetry, the Cauchy data can be given on the

curves in the meridional (r,z) plane.

Assume that the equation of the upper boundary in parametric form is

r ¼ R(t), z ¼ Z(t) (4:80)

The functions R(t) and Z(t) are known from a solution of the internal problem. These

functions are supposedly analytical, although knowledge of their analytical

expressions is not obligatory. Harker’s method provides the possibility of an oper-

ation with numerical values of these functions. That also concerns the Cauchy data

FIGURE 4.10 Conformal transformation of an external domain of an axially symmetric beam.
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on the beam boundary [Eq. (4.80)]:

w ¼ w(t) (4:81)

Er(t) ¼ � @w(t)

@r
, Ez(t) ¼ � @w(t)

@z
(4:82)

The next step is analogous to the theory of plane-symmetric beams. Let us con-

tinue Eqs. (4.82) analytically into the upper half-plane of the (t,u) plane and consider

the conformal transformation of the (z,r) plane to the (t,u) plane (Fig. 4.10):

zþ ir ¼ Z(t þ iu)þ iR(t þ iu) (4:83)

It is seen that the boundary trajectory in the (z,r) plane is transformed on the line

u ¼ 0 of the plane (t,u).

At this point, the similarity between the axially symmetric and plane symmetric

cases ends because the Laplace equation in the cylindrical coordinate system,

@2w

@r2
þ 1

r

@w

@r
þ @2w

@z2
¼ 0 (4:84)

is not invariant under the conformal transformation. To obtain a field equation in the

(t,u) plane we will use Maxwell’s equations

divE ¼ 0, curlu E ¼ 0 (4:85)

and the Cauchy–Riemann equations for a conformal transformation [Eq. (4.83)]:

@z

@t
¼ @r

@u
,

@r

@t
¼ � @z

@u
(4:86)

Let us write Eq. (4.85) in coordinate form:

@Er

@r
þ Er

r
þ @Ez

@z
¼ 0 (4:87)

@Er

@z
� @Ez

@r
¼ 0 (4:88)

Derivatives of Ez and Er as functions of t and u, taking Eqs. (4.86)–(4.88) into

account, are

@Ez

@u
¼ @Ez

@r

@r

@u
þ @Ez

@z

@z

@u
¼ @Ez

@r

@z

@t
� @Ez

@z

@r

@t
(4:89)

@Er

@t
¼ @Er

@r

@r

@t
þ @Er

@z

@z

@t
¼ � @Ez

@z

@r

@t
� Er

r

@r

@t
þ @Ez

@r

@z

@t
(4:90)
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A combination of these equations gives

@Ez

@u
¼ @Er

@t
þ Er

r

@r

@t
(4:91)

This is the first equation for the fields in the (t,u) plane. The second equation,

@Er

@u
¼ � @Ez

@t
� Er

r

@z

@t
(4:92)

is obtained if we express the derivatives @Ez=@t and @Er=@u analogously to Eqs. (4.89)
and (4.90). Equations (4.91) and (4.92) together with the Cauchy–Riemann

equations [Eqs. (4.86)] form a complete system of equations for the functions

r(t,u), z(t,u), Ez(t,u), and Er(t,u). These equations must be solved with the bound-

ary conditions

(r)u¼0 ¼ R(t), (z)u¼0 ¼ Z(t), (Ez)u¼0 ¼ Ez0(t),

(Er)u¼0 ¼ Er0(t)
(4:93)

which are known from the solution of the internal problem. This system is simpler

than the original one because the boundary conditions are now given on the straight

line u ¼ 0. Unfortunately, it can be shown that this system belongs to the elliptic

type also. For example, Eqs (4.86) follows the elliptic Laplace equation,

@2z

@t2
þ @2z

@u2
¼ 0 (4:94)

and for that, the Cauchy problem is not correct. Therefore, at the stage of the

theory given, it is very difficult to construct a stable numerical realization of the

problem.

4.6.2 Transformation of Beam Equations to a Hyperbolic Type.
Numerical Realization of Harker’s Method

The method pertaining to the transformation of elliptic equations to the hyperbolic

type was first worked out by Garabedian and Lieberstein (1958) and applied to elec-

tron optics by K. Harker. Let us introduce an additional axis s perpendicular to the

(t,u) plane; then a three-dimensional (t,u,s) space is formed (Fig. 4.11). Further, let

us continue the functions Ez(t,u), Er(t,u), r(t,u) and z(t,u) analytically along the

variable t to an upper half-plane (t,s) by replacing t ! t þ is. The quantities are

comprised of the functions of three arguments: Ez(t,u,s), Er(t,u,s) and so on.

Now, if we fix the argument t ¼ t1, the variables will be the functions of arguments

(u,s) in the plane t ¼ t1 (Fig. 4.11).

Which will be the field equation in this plane? We must take into account that the

differentiation of functions with respect to the complex quantity t ! t þ is for the
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constant t ¼ t1 can be written as

@

@(t þ is)t¼t1

¼ @

@is
¼ �i

@

@s
(4:95)

Then Eqs. (4.86), (4.90), and (4.91) take the form

@Ez

@u
¼ �i

@Er

@s
þ Er

r

@r

@s

� �
(4:96)

@Er

@u
¼ i

@Ez

@s
þ Er

r

@z

@s

� �
(4:97)

@r

@u
¼ �i

@z

@s
,

@z

@u
¼ i

@r

@s
(4:98)

Let us add to these equations the equation for the potential in the (u,s) plane:

@w

@u
¼ @w

@r

@r

@u
þ @w

@z

@z

@u

Taking Eqs. (4.98) into account, this gives a differential equation for the potential in

the (s,u) plane:

@w

@u
¼ iEr

@z

@s
� iEz

@r

@s
(4:99)

A remarkable distinction of these equations from the original equations (4.91),

(4.92), and (4.86) is that they are of hyperbolic type (Garabedian and Lieberstein,

1958; Harker, 1960). For example, Eqs. (4.98) give direct hyperbolic (wave)

FIGURE 4.11 Complex space (t,u,s) for transformation of beam equations to hyperbolic

equations.
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equations in any (u,s) plane:

@2r

@u2
� @2r

@s2
¼ 0,

@2z

@u2
� @2z

@s2
¼ 0 (4:100)

The Cauchy problem of integrating the hyperbolic system [Eqs. (4.96)–(4.99)] in

the (u,s) plane, is properly set. The Cauchy data must be given on the line AC

(Fig. 4.11). They can be obtained as the analytic continuation of the Cauchy data

on the boundary u ¼ 0 of the real (t,u) plane.

According to the theory of partial differential equations (see, e.g., Garabedian,

1998), the solution is defined inside the characteristic domain. Here, the latter is

the triangle ABC bounded by the characteristics s ¼ +uþ const. The numerical

integration of the system in the (u,s) plane can easily be executed by a finite-difference

method (Harker, 1960; Soluyanova et al., 1986) when the solution of the internal

problem can be described by a system of ordinary differential equations.

Here the next Harker step is important: to continue analytically not the solution of

the internal problem but the ordinary differential equations of the original flow. In

this case, the internal and external problems should be solved simultaneously.

The numerical procedure of the synthesis consists of the following steps (Fig. 4.11):

1. Integrating the self-consistent ordinary differential equations of the flow con-

taining boundary conditions that correspond to chosen boundary trajectories: first

along the real axis t from t ¼ 0 to t ¼ t1 and then along the imaginary axis s (chan-

ging t ! is) until point A. We obtain the complex Cauchy data on the interval O1A.

The Cauchy data on the interval O1C are the complex conjugation of data on the

interval O1C:

2. Integrating the hyperbolic equations (4.96)–(4.99) in the characteristic triangle

ABC, with the Cauchy data obtained on the first step of the interval AC. The values of

all functions desired are real on the line O1B that belongs to the (t,u) plane.

3. Translating the triangle ABC to other positions along the t-axis (e.g., to t ¼ t2)

and repeating steps 1 and 2 allows coverage of the (t,u) plane by a net of real values

of the potential w(t,u) and the functions z(t,u) and r(t,u), which give a mapping of the

conformal transformation (4.83).

4. Connecting the points with the given potential yields equipotentials. Using the

functions z(t,u) and r(t,u) determines desired electrode shapes in the (z,r) plane.

This process can be automatized as a computer code (see, e.g., Manuilov and

Tsimring, 1978; Soluyanova et al., 1986). For its realization as applied to any

axially symmetric beam, it is sufficient to give the right sides of the flow ordinary

differential equations and boundary conditions. It is supposed that the flow equations

can be reduced to system ordinary differential equations of first order with analy-

tical right sides. It is also possible to use a method of the Riemann function

(Garabedian, 1998; Harker, 1963; Syrovoy, 1994a), although that is more laborious

because it involves transformation and a tabulation of hypergeometric functions
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and elliptic integrals in the complex domain. However, if the flow equations are not

reduced to a system of ordinary differential equations, use of Riemann’s method can

be inevitable, for example, in the theory of three-dimensional electron beam for-

mation (Syrovoy, 1994a). Note that analytic continuation of the Cauchy data can

be complicated and is determined essentially by the specific character of the

problem. This method can easily be transferred to two-dimensional systems with

translation symmetry if jr � �rj=�r 	 1(�r is the average radius of the trajectories in

an axially symmetric system).

4.7 ELECTRON GUNS WITH COMPRESSED BEAMS. MAGNETRON
INJECTION GUN

4.7.1 Electron Guns with Wedge-Shaped and Conic Beams

Electron flows in the cylindrical and spherical diodes can be used. In Fig. 4.12 (x,z)

is the symmetry plane for the wedge-shaped gun. For the conic gun, z is the axis of

the axial symmetry. Following the Pierce method, let us cut a sector from the cylind-

rical or conic flows involving an angle greater than u0 (Fig. 4.12). We come to

Laplace’s equation in the section of the beam that has been eliminated, with

Cauchy data on the beam boundary: the potential distribution [Eq. (4.30) or

(4.31)] and the normal derivative of the potential

@w(r,u)

@u
¼ 0 (4:101)

That is the condition that of the trajectories will obtain a rectilinear shape.

A comprehensive theory of these guns has been developed by Radley (1958,

1963). The Cauchy problem was reduced to a pair of integral equations that were

solved analytically. The general pattern of the equipotentials is similar for both

guns and is shown schematically in Fig. 4.12. The Radley method is applicable in

principle not only to planar and axially symmetric systems but also to any flows

with the boundary surfaces in that Laplace’s equation is separable.

FIGURE 4.12 Electron gun with wedge-shaped and conic beams.
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The beam currents in both guns for a given anode potential according to

Eqs. (4.18) and (4.25) and Fig. 4.12 are

I ¼

8

9
10

ffiffiffiffiffiffi
2h

p u0L

ra

f3=2
a

b2(ra=rc)

¼ 4:668� 10�6 u0L

ra

f3=2
a

b2(ra=rc)
A (wedge-shaped beam) (4:102)

16p

9
10

ffiffiffiffiffiffi
2h

p
sin2

u0
2

w3=2
a

a2(ra=rc)

¼ 29:33� 10�6 sin2
u0
2

w3=2
a

a2(ra=rc)
A (conic beam) (4:103)

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
According to Eq. (4.102), the current in the wedge-shaped gun for a given ratio ra=rc
increases inversely proportional to the anode (cathode) radius. The current in the

conic gun depends only on the ratio ra=rc.
Let us concentrate on the problem of an anode aperture. As we have seen, the

anode hole in a planar Pierce gun leads to beam divergence. This effect impedes

use of this gun as an electrostatic device (without an additional strong focusing mag-

netic field) for the formation of dense, lengthy electron beams. In compression guns,

the initial convergence of beams allows beams to become parallel or even conver-

gent after the anode (see, e.g., Fig. 4.12).

An analysis of the anode-hole action can be executed considering the anode aper-

ture as a divergent lens. So for the axially symmetric case (Section 2.6.5) it can be

shown according to Eq. (2.82) that in the nonrelativistic approximation the angle g
of the beam after the lens is a function of the ratio rc=ra:

tan g ¼ 1� 1

4(rc=ra � 1)

� 	
tan u0 (4:104)

As we see, a parallel beam after aperture (g ¼ 0) is achieved for rc=ra ¼ 1:25. It can
be seen that for the wedge-shaped gun, the corresponding ratio is rc=ra ¼ 1:5. Note
that similar considerations give rough guide results. Real designs are usually based

on available computer codes of the trajectory analysis.

The use of compressed guns allows a significant increase in beam currents for

limited cathode emission density. By neglecting variation in a cross-section beam

beyond the anode space, a compression coefficient

Kc ¼

rc

ra
(wedge-shaped gun)

rc

ra

� �2

(spherical gun)

8>><>>:
The disadvantages of guns with an anode aperture are irregularities of the emission

current distribution and reduction in the cathode current.
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4.7.2 Magnetron Injection Electron Guns (Kino–Taylor Guns)

Magnetron injection electron guns (Kino and Taylor, 1962; Midford and Kino,

1962) use laminar flow in the planar magnetron with an inclined magnetic field or

Dryden flow (Sections 3.1 and 3.5). After cutting off the upper and adjoining axis

section of the electron flow, we obtain a hollow beam. In Fig. 4.13 a diagram of

an axially symmetric magnetron injection gun (MIG) situated on the base of

Dryden flow is shown. The Harker method (Harker, 1960, 1963), which gives a sol-

ution of the Cauchy problem for similar electrode systems, was considered in

Section 4.6. Assuming that the magnetic field is uniform, let us estimate the dimen-

sions of the hollow beam and the compression coefficient. We use the Busch

theorem [Section 1.7, Eqs. (1.126) and (1.127)]:

_ub ¼ hB

2
1� rc

rb

� �2
" #

(4:105)

where rc and rb are corresponding radiuses of the trajectory on the cathode and after

the gun (Fig. 4.13); _ub is the angular velocity of the beam on the radius r ¼ rb. The

beam is supposedly laminar; therefore, the beam envelope coincides with the trajec-

tories of the flow.

Assume rectilinear motion of the electrons at the internal boundary of the beam

appearing after the gun. According to Eq. (4.105), the necessary condition of non-

rotational motion (_ub1 ¼ 0) is rb1 ¼ rc1: This condition is sufficient for equilibrium

of the internal boundary because the space-charge field for r 
 rb1 is zero. Because

the space-charge field is not zero at r . rb1, equilibrium is possible if the outer

layers of the beam rotate counterclockwise (_ub . 0). So for the chosen direction

of the magnetic field in Fig. 4.13, the Lorentz force is directed to the axis. According

to Eq. (4.105), the equilibrium radius rb2 . rc2. But for the small space-charge field,

we can take rb2 � rc2. The thickness of the beam in this case is rb2 � rb1 � rc2 � rc1.

Then the coefficient of compression is

K ¼ Sc

Sb
� 1

sin g0
(4:106)

FIGURE 4.13 Magnetron injection gun.
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Note two important advantages of the MIG:

1. Formation of a hollow beam improves the performance of some microwave

devices with distributed interaction of the electron beam and an electromag-

netic field (i.e., traveling-wave tubes, backward-wave tubes, etc.) (see

Chapter 8).

2. No problem connected with the anode hole.

A disadvantage of use of the MIG is the comparatively high noise level. Among

different mechanisms of hollow electron beams instability in crossed magnetic and

space-charge electric fields is the very likelihood of diochotron instability. According

to Davidson (1990), oscillations on a diochotron frequencyv2
p=2vg and its harmonics

(vp andvg are the plasma and gyrofrequencies, respectively) could be in the unstable

regime. However, one should take into account that diochotron instability belongs

to a convective type, and therefore in a near-cathode domain must be instability

of another origin. Experiments with MIGs (Midford and Kino, 1962) registered

considerable currents on sole electrodes that were negatively biased with respect

to the cathode—evidence of the presence of alternating electromagnetic fields.

4.7.3 High-Convergence Electron Gun with a Magnetic Accompaniment
(Baryshev et al., 1994; Yakovlev and Nezhevenko, 1999)

Relativistic electron guns have been applied in power magnicon microwave ampli-

fiers (Nezhevenko et al., 2002; Yakovlev and Nezhevenko, 1999) (see also Section

10.4.5) as a prototype of power pulse sources for future electron–positron colliders.

The gun is depicted schematically in Fig. 4.14. The gun’s base is the conic beam

described in Section 4.5.1. But this gun had important peculiarities that together

with comprehensive computer-aided design, and taking a self magnetic field into

account, have made it possible to obtain a beam with very high compression and

low emittance. In particular, magnetic accompaniment of the beam was used. Fol-

lowing the anode hole, the electrons enter into a nonuniform magnetic field with

magnetic force lines parallel to the electron trajectories. As a result, additional mag-

netic compression of the beam (i.e., �2) has been obtained. Magnetic screening

FIGURE 4.14 High-convergence magnicon electron gun. 1, Cathode; 2, focusing electrode;

3, anode; 4, electron trajectory; 5, magnetic force line; 6, ferromagnetic yoke; 7, solenoid.
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close to a Brillouin structure ensured electron beam transport (see Section 5.2.3).

Finally, use of an electrically isolated focusing electrode biased negative with

respect to the cathode has allowed a decrease in the beam emittance and reduction

or elimination of the beam halo.

In Table 4.1, some design and experimental parameters of this gun are presented

(Nezhevenko et al., 2002). The beam radius was close to a Brillouin radius. Note that

in an earlier version of a 7-GHz magnicon, a beam compression of 2300 was

measured for a design compression of 2400.

4.7.4 Centrifugal Electrostatic Guns

The central idea of a centrifugal electrostatic electron beam formation with high

compression is based on the space separating the region where current is drawn

from the cathode and the region of beam acceleration and compression. The guns

were proposed and studied by Chernov et al. (1978).

In Fig. 4.15, a centrifugal electrostatic gun (CEG) is represented. An annular-

shaped Pierce gun with a cathode (1) and first anode (2) forms a circular disk–

shaped electron beam with trajectories in meridional planes. Further, the beam

enters into a deflection system consisting of two electrodes: an anode (3) and a

TABLE 4.1 Design and Experimental Parameters of the
High-Convergence Gun

Parameters Design Experiment

Current (A) 210 225

Voltage (kV) 500 480

Cathode radius (mm) 37 37

Beam radius (mm) 0.75 1.0

Beam compression 2500 1400

Beam transverse

emittance (mrad.cm)

1.6p

FIGURE 4.15 Centrifugal-electrostatic gun. 1, Cathode; 2, anode 1; 3, anode 2; 4, mirrors;

5, drift tube.
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conic mirror (4). A potential of the mirror is higher than a potential of an anode (2).

A corresponding electric field balances the centrifugal force that arises when the

deflected electrons gain curvilinear motion. After leaving the deflecting system

and entering a drift tube, the disk-shaped electron beam is transformed into an

axially symmetric hollow electron beam. In principle, the beam can be a solid cylind-

rical beam. If the magnetic field does not penetrate the gun, the structure of this beam

will be close to that of the Brillouin structure. In this case, the maximum perveance

of the beam is �25� 10�6A=V3=2 (see Section 5.2.3) and does not depend on the

drift tube radius. In principle the beam compression in this gun is not limited. There-

fore, these guns can be used to shape thin electron beams with very high current

density. The perveance can be significantly greater for thin hollow electron beams

(see Section 5.2.4).

Note that a compression in the Pierce gun is based on the use of initial wedge-

shaped or conic convergent beams (Section 4.5.1). Further transformation of parallel

beams is a result of the repulsive action of the space charge and lens fields. The action

of the space-charge field can be altered by the buildup of positive ions. So in many

cases, beam transformation can be unstable. In a CEG, the action of the space-charge

field in the deflected region is accomplished on the basis of two strong opposed stable

centrifugal and electrostatic interelectrode forces. Furthermore, the cathode in a CEG

is protected from bombardment by positive ions that arise in ionization processes in

residual gases. The positive ions from the drift tube are deflected in the vicinity of

the opening in electrodes 4 and 3, strike the low potential anode (3), and cannot

reach the thermoionic cathode (1). The latter can be subjected to the positive ions

formed only in a Pierce gun. The number of these particles is small.

According to Chernov et al. (1978, 1983), additional optimization of electrode

geometry is necessary to obtain a laminar beam in the drift tube. That is attained

by a numerical simulation method. A relativistic version of a CEG is considered

in Chernov et al. (1983).

4.8 EXPLOSIVE EMISSION GUNS

4.8.1 Introduction

The discovery of explosive electron emission (EEE) and related effects (Dyke and

Trolan, 1953; Fursei and Vorontsov-Vel’yaminov, 1968; Mesyats, 1995; Mesyats

and Proskurovskii, 1968) marked a new age in high-current and high-power elec-

tronics. EEE and progress in powerful pulse equipment allow us to reach pulse

beam currents and the electron energy up to 106 A and 107 eV for a pulse duration

of 10210 to 1025 s. A beam current in EEE diodes is emitted from the cathode

plasma that is generated by explosive processes on the cathode surface. A brief

qualitative scheme of EEE evolution follows.

According to Fowler–Nordheim field emission theory (FNT), the values of an

electric field supporting the emission developed from a metal with a smooth

surface are on the order of 107 V/cm. However, appreciable currents appear for

essentially smaller electric fields (about two orders of magnitude). The explanation
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of this effect is reduced by taking into account the many micropoints on the real

metal surface. The electric field near these micropoints increases the magnitude

by up to two to three orders with a comparatively smooth surface. This effect devel-

ops irreversible features with further increases in the electric field. When the emis-

sion current density reaches �107 A/cm2, the Joule heat of the points leads to

increased thermionc emission. A corresponding increase in the temperature and

current density (up to 109 A/cm2) is terminated by destruction of emission

centers. The transient time of this process is about 1029 s, and it has the character-

istics of an explosion. Dense cathode flare plasma—a composition of the ions,

neutral atoms, and free electrons—is formed close to the metal surface. This

plasma determines further processing in two ways (Mesyats, 1991). On the one

hand, a high temperature in the cathode area and a potential difference between

the metal surface and the cathode flare plasma support intense electron emission

from the metal to the plasma. On the other hand, the potential difference between

the plasma and the anode gives a current of free electrons from the plasma to the

anode. So the plasma layer plays the role of an electron cathode. This cathode has

a small effective work function, and the electron current in the plasma cathode–

anode gap is limited by the space charge of the electrons in the r-mode and deter-

mined by the Child–Langmuir law (Sections 3.4.4 and 4.3.1).

The cathode plasma expands during explosive emission with an average velocity

of about 106 to 107 cm/s. The velocity is essentially dependent on a value and a dis-
tribution of the magnetic field in the gap. It determines the rate at which the accel-

erating gap is filled and closed by the plasma.

Below, two basic types of explosive emission diodes as parts of high-current

accelerators are considered: planar and magnetically insulated diodes.

4.8.2 Planar Explosive Emission Diodes

Foiled Anode Diodes A diagram of a diode is shown in Fig. 4.16a. The acceler-

ating gap is formed by a planar plasma cathode and a planar foil anode. The elec-

trons emitting from the cathode pierce the thin anode foil (�0.01 cm) with small

energy losses because the interaction of high-energy electrons with atoms of the

foil is practically elastic. After escape from the foil, the electrons move in a drift

FIGURE 4.16 Planar explosive emission diodes: (a) foiled anode diode; (b) foil-free

annular diode. 1, Plasma cathode; 2, anode; 3, collector; 4, electron beam; 5, solenoid.
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space. In general, the electron beam is nonuniform and nonlaminar; as a result, there

is strong inhomogeneity of the cathode plasma due to the chaotic distribution of

emission centers and the random nature of the explosions. The electron beam is

also scattered in the foil. Nevertheless, the motion of electrons in a drift tube is

approximately rectilinear because of the focusing action of the self magnetic field

in the relativistic beams (see Graybill and Nable, 1966; see also Section 3.2.1).

Two types of such planar diodes are used. The first type is used in the production

of dense electron beams with a current density of 104 to 107 A=sm2 and a pulse dur-

ation of 10 to 100 ns. They are used in nuclear fusion investigations, microwave

electronics, X-ray generation, and so on. The second type of diode produces wide

beams with a comparatively low current density ( j � 1 to 10A=cm2), a large area

(S � 102 to 104 cm2), and a pulse duration up to 1000 ns. These diodes are used

for pumping lasers and for technological purposes. The maximum pulse duration

equals approximately

tmax ¼ d

vp
(4:107)

where vp is the velocity of expansion of the cathode plasma. For vp ¼ 107 cm=s,
d ¼ 1 cm and tmax ¼ 100 ns. Real t , tmax.

Among the various causes for shortening of the real pulse duration, one essential

cause arises from the anode flare plasma, its expansion to the cathode, and closure of

the cathode–anode gap, an effect called gap closure. The current pulse duration can

be increased by extension of the acceleration gap, slowing down of the cathode

plasma (e.g., by using a transverse magnetic field), and elimination of the anode

flare (Bugaev et al., 1975).

Foil-Free Annular Diode A diode is depicted in Fig. 4.16b. A hollow ringlike

cathode is placed close to an anode plate with annular cut. The annulus is interrupted

by radial struts to support the central region of the anode. Emission takes place from

the edge of a hollow cathode. The gun is inserted in a strong axial magnetic field,

and the electrons in the annular electron beam outside the anode plate have

low transverse momentum. Only a small fraction of the total current is passed

through the annular slot. However, the diode can be considered as an effective low-

emittance filter. This diode has been used as a part of an electron-optical system,

forming a helical electron beam in relativistic gyrotrons (Black et al., 1990; see

also Section 10.7.1).

4.8.3 Magnetically Insulated Diodes

The idea of increasing pulse duration by using the transverse to an acceleration gap

magnetic field, together with the production of annual high current electron beams,

has been realized in magnetically insulated diodes. The first experimental results

were obtained by Friedman and Uri (1970).

A diagram of a magnetically insulated diode (MID) is shown in Fig. 4.17. A

tubular cathode and an anode form a coaxial diode. The drift tube is a continuation

of the anode. In the simplest version of an MID, the magnetic field is assumed to be
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parallel to the axis of axial symmetry and is infinitely large, providing rectilinearity

to the electron trajectories and their parallelism to the z-axis. Taking into account the

specific character of explosive emission, including nonstationary states even in an

approximation of an infinite magnetic field, comprehensive analysis of the MID is

complicated and requires computer simulation.

An instructive simplified analytic MID theory developed by Fedosov et al. (1977)

is considered below. The theory allows us to obtain MID volt–ampere character-

istics without consideration of electron motion in the acceleration region. Let us

write the beam equations and boundary conditions:

div E ¼ r

10
(4:108)

curlu E ¼ @Ez

@r
� @Er

@z
¼ 0 (4:109)

dp

dt
¼ �e0Ez (4:110)

j ¼ �rv (4:111)

(Ez)r¼rc ¼ 0 (4:112)

(p)r¼rc,z¼0 ¼ 0 (4:113)

(w)r¼rc,z,0 ¼ 0, (w)r¼ra ¼ wa (4:114)

Here p, v, and j are nonzero z-components of a momentum, a velocity, and a current

density, respectively. Equation (4.112) expresses the assumed regime of the current

limitation by the space charge.

Multiply Eqs. (4.108) and (4.110). Then using Eq. (4.111), we obtain

Ez div E ¼ � r

e010

dp

dt
¼ j

e010

dp

dz
(4:115)

Let us represent Ez div E as div of a vector A:

Ez div E ¼ div(EzE)� E grad Ez

¼ 1

r

@

@r
(rEzEr)þ @

@z
(E2

z )� Ez

@Ez

@z
� Er

@Ez

@r
(4:116)

FIGURE 4.17 Magnetically insulated diode. 1, Cathode; 2, anode; 3, collector.
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According to Eq. (4.109), replace @Ez=@r by @Er=@z. We obtain

Ez divE ¼ 1

r

@

@r
(rEzEr)þ @

@z

E2
z � E2

r

2

� �
¼ divA (4:117)

where

Ar ¼ EzEr, Az ¼
E2
z � E2

r

2
(4:118)

so

div A ¼ j

e010

dp

dz
(4:119)

Let us to integrate Eq. (4.119) over a volumeV of the diode between radiuses rc and

ra and the cross sections z1 and z2, including the volume of the beam (Fig. 4.17), and

use Gauss’s theorem: þ
Ands ¼ 1

e010

ð
V

j
dp

dz
dt (4:120)

The surface integral is the sum of four integrals:þ
An ds ¼ �

ð
z¼z1

Az dsþ
ð
z¼z2

Az ds�
ð
r¼rc

Ar dsþ
ð
r¼ra

Ar ds (4:121)

Take into account that Ez ¼ 0 for z ¼ z1 and z ¼ z2 if we choose z1 and z2
sufficiently far from the plane z ¼ 0. In these planes, Az ¼ 2Ar

2/2. Also, Ez ¼ 0

for r ¼ ra. Therefore, the third integral in Eq. (4.121) is missing. Then

Eq. (4.121) becomesþ
An ds ¼

ð
z1

E2
r

2
2pr dr �

ð
z2

E2
r

2
2pr dr �

ðz2
0

2prcEzEr dz (4:122)

The last integral in Eq. (4.122) must be taken over the inner boundary of the beam.

The lower limit in this integral is zero because (Ez)r¼rc,z,0 ¼ 0. In general, one

can see (Fedosov et al., 1977) that this integral is small for narrow beams (see

Fig. 4.17):

hc � hb 	 rc, ra, ra � rc (4:123)

The volume integral in Eq. (4.120) in this approximation can be represented asð
V

j
dp

dz
dt ¼

ðz2
0

dp

dz
dz

ð
S

j ds ¼ I(p2 � p0) ¼ Ipb (4:124)
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where pb ¼ p2 is the electron momentum in the far region z2 � rc, ra. We assumed

the initial momentum p0 ¼ (p)z¼0 ¼ 0. Neglecting the integral
Ð z2
0
2prcEzEr dz in

Eq. (4.122), we can write Eq. (4.120) asðra
rc

E2
r1r dr �

ðra
rc

E2
r2r dr ¼

Ipb

pe010
(4:125)

It can be shown that Eq. (4.125) expresses conservation of the z-axis momentum of a

system electron beam–electrostatic field (Barker et al., 2005).

The configuration of the system in the cross sections z ¼ z1 and z ¼ z2 is geome-

trically similar to a uniform coaxial line. Then the electric field in the plane z ¼ z1 is

Er1 ¼ wa

r ln (ra=rc)
(4:126)

The electric field in the plane z ¼ z2 is

Er2 ¼ q

2pr10
¼ � I

2prvb10
(4:127)

where q is a beam charge on a length unit and vb is the beam electron velocity. The

potential difference across the beam–tube gap is

wa � wb ¼ �
ðra
rb

Er2dr ¼ I

2p10vb
ln
ra

rb
(4:128)

This relationship gives the beam current

I ¼ (wa � wb)2p10vb
ln (ra=rb)

¼ I0
(ga � gb)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2b � 1

p
2gb ln (ra=rb)

(4:129)

where ga and gb are relativistic factors, corresponding to the potentialswa andwb, and

I0 ¼ 4p10
c3

h
� 17 kA (4:130)

is a relativistic unity of the current (relativistic current).

Substitution of Eqs. (4.126), (4.127), and (4.129) in Eq. (4.125), and assuming

that rc ¼ rb, we obtain, after integrating,

(ga � 1)2 � (ga � gb)
2 ¼ 2(ga � gb)(g

2
b � 1)

gb
(4:131)

It is readily verified that Eq. (4.131) is reduced to

g2b þ gb � 2ga ¼ 0 (4:132)
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to give

gb ¼ 1
4
þ 2ga


 �1
2� 1

2
(4:133)

Equations (4.129), (4.133) determine the volt–ampere characteristics of the diode.

Consider the following examples:

1. wa ¼ 1 MV, ra ¼ 1:1rb, ga � 3, gb ¼
ffiffiffiffiffiffiffiffiffiffi
1
4
þ 6

q
� 1

2
¼ 2, and

I ¼ I0(
ffiffiffi
3

p
=4 ln 1:1) � 4:5Ir � 77 kA:

2. wa ¼ 10 MV, ra ¼ 1:1rb, ga � 21, gb ¼ 6, and I � 78I0 � 1:3 MA.

3. Nonrelativistic approximation (g� 1 ¼ e0w=m0c
2 	 1).

According to Eqs. (4.129) and (4.131), we obtain

wa ¼
2

3
wb, I ¼ I0

(ga � 1)3=2

3
ffiffiffi
3

p
ln(ra=rb)

� 0:5

ln(ra=rb)
I0wa

3=2 (4:134)

As we see, the perveance of the MID, P ¼ ½0:5= ln(ra=rb)�I0, is enormous with

respect to ordinary planar and cylindrical diodes [see, e.g., Eqs. (3.105) and

(4.18)]. This effect can be explained in the frame using a diode model (i.e., a

narrow cathode, an infinite magnetic field) and anode screening of the beam space-

charge field (Fig. 4.18).

According to Fig. 4.18, the space-charge field on the cathode Esc is formed by the

small part of the beam length, on the order of the cathode thickness, hc. The majority

of the space-charge lines are completed through the anode. Therefore, the field

balance in the r-mode E0 � Esc ¼ 0 (E0 is the cathode field without the beam) is

attained with large beam currents.

Some refinement of the theory (Fedosov et al., 1977) was obtained by Belomytsev

et al. (1981). In particular, these authors have extended the theory up to a finite mag-

netic field. In this case, it is necessary to take into account the self magnetic field and

related effects: the expansion and radial displacement of the beam, the spread of par-

ticlemomentum, and so on. Estimation of the external finitemagnetic field, providing

validity of the approximation B ¼ 1, has been given by Belomytsev et al. (1981).

The principal advantages of magnetically insulated coaxial diodes (MICDs) is the

absence of a fast-exploding anode foil and considerable weakening of the gap

FIGURE 4.18 Pattern of space-charge field lines in an idealized model of an MID.

178 ELECTRON GUNS



closure effect, which is determined by a lower rate of filling in the accelerating gap

by the cathode plasma. MICDs are widely used to generate high-current beams in

pulsed electron accelerators of direct action. These accelerators are applied in ther-

monuclear fusion experiments for collective ion acceleration, especially in high-

power microwave electronics. In this connection, a very important problem is

further increase in the pulse duration. According to Nikonov et al. (1983), a definite

rise in the pulse duration pulse in an MICD that is determined by the time of filling

of the drift space by the cathode plasmas can be achieved by using an increasing

magnetic field from the cathode to the drift tube. Data reported by Nikonov et al.

(1983) include a magnetic field ratio of �4, an expanding cathode plasma velocity

of �(1 to 2) � 106 cm/s, and a collector plasma of �7� 105 cm=s, whereas the
expanding velocity of the cathode plasma in the uniform magnetic field exceeds

107 cm=s. The stable pulse duration attained was 10 ms, which is approximately

three orders of magnitude above the pulse duration in planar explosive emission

diodes.

Increasingly interesting is the use of fiber cathodes, which in comparatively lower

electric fields (i.e., �10 to 30 kV=cm produce current densities of 1 to 10 A=cm2.

Using cesium iodide (CsI)–coated carbon fiber reduces closure velocity up to

0:46� 106 cm=s (see, e.g., Barker and Schamiloglu, 2001, and Section 9.3.1).
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CHAPTER FIVE

Transport of Space-Charge
Beams

5.1 INTRODUCTION

Following the scheme shown in Fig. 3.2, we pass to the drift space, where the electron

beam formed in a gun should be transferredwithminimal distortions in awork space or

interact directly after the gun with a high-frequency electromagnetic field or substance.

It is clear that the transport of electron beams is one of the most important problems in

determining the effective operation of microwave devices and electron accelerators. In

this chapter transport problems of smooth (unrippled) or small rippled beams are

considered. These problems are essential for klystrons, especially for multicavity and

multibeam klystron amplifiers (Chapter 7) and for beam-type devices: TWTOs,

MTWTs, BWOs, and MBWOs (Chapters 8 and 9). The transport of electron beams

with oscillating electron trajectories is a specific problem. One is considered in

Chapter 10: dedicated, in particular, to gyrotrons. The transport of nonlaminar beams

with constant or growing emittance and with Maxwell–Boltzmann velocity distri-

bution is a key problem in the theory of high-energy accelerators with extensive

charged-particle beams. Consideration of these topics is, however, beyond the scope

of this book. An interested reader can find an analysis of these problems in Davidson

(1990), Humphries (1990), Lawson (1988), and Reiser (1994).

In Section 5.2, transport of unrippled nonrelativistic axially symmetric laminar

electron beams in an external magnetic field is considered. It is the easiest

problem in the theory of the propagation of space-charge electron beams, although

even in this case the idealized scheme of Fig. 3.2 is insufficient because it is not poss-

ible to achieve equilibrium of nonrotating space-charge beams in a finite magnetic

field. For proper rotation of a beam, it is necessary either to change the gun itself or

to introduce a transition section between the gun and the drift space with
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corresponding distribution of electric and magnetic fields. It is a problem of match-

ing the gun and the drift beam. Naturally, this problem is more complicated for

relativistic beams when it is necessary to take into account the self magnetic field

(Section 5.3). The matching problem is solved automatically only in an infinite mag-

netic field. A similar case was considered in the theory of magnetically insulated

guns (Section 4.8). Note that the stability of beams in an infinite magnetic field

can be disturbed by transverse potential depression with a rising problem of limiting

currents (Section 5.4).

A number of factors make the unrippled beam model unsatisfactory. Among

these we can mention the nonlaminarity of a beam, dismatching of the

gun and the beam, constructive disturbances, inevitable velocity spread, and

dynamic effects. Finally, there is a wide range of problems where the use of

unrippled electron beams is not optimal or may even be impossible (e.g., helical

beams in gyrotrons, free electron lasers, or electron beams in periodic focusing

systems).

As a first approximation to the theory, a paraxial-ray approximation based on a

model of pulsatory laminar beams (Kirstein et al., 1967) can be used. The envelope

of these beams is formed by boundary trajectories or by the rotation of any boundary

trajectory for an axially symmetric beam with dr/dz = 0. The derivation of paraxial

equations for solid and annular beams and some of their applications are considered

in Section 5.5. It will be seen that paraxial approximation is very effective for the

optimization of beam parameters in the presence of disturbances.

In Section 5.6, electrostatic focusing of electron beams is considered. Note that

stable equilibrium of these beams is also impossible without rotation. The theory

of periodic focusing of nonrelativistic electron beams based on paraxial approxi-

mation is given in Section 5.7.

5.2 UNRIPPLED AXIALLY SYMMETRIC NONRELATIVISTIC BEAMS
IN A UNIFORM MAGNETIC FIELD

5.2.1 Statement of the Problem. Equations of an Equilibrium Beam

Consider propagation of a round unrippled space-charge beam in vacuum. Note that

in the literature, transport systems are often called focusing systems. A beam in a

conducting drift tube is depicted in Fig. 5.1. It is supposed that after the transition

space (z . ztr), an electron beam propagates in a uniform magnetic field, and all

beam quantities do not depend on z; that is, w ¼ w(r), v ¼ v(r), and r ¼ r(r). The
electric field at z . ztr has only the radial component Er ¼ 2dw/dr. It can readily

be shown that the external magnetic field at z . ztr has only axial component

B0 ¼ const. Let us assume that the magnetic field in the gun Bc is uniform. In

general, Bc = B0. Below we obtain the basic system of equilibrium beam equations.

This system takes into account the following relationships that imply a stationary

state and axial symmetry of the space-charge beam: (1) the rotary beam equilibrium,

(2) the energy integral, (3) Poisson’s equation; and (4) conservation of the azimuthal

generalized momentum (Busch’s theorem).
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1. The condition of the rotary beam equilibrium is

Fr þ Fcf þ FL ¼ 0 (5:1)

where (Fig. 5.1a)

Fe ¼ �e0Er

Fcf ¼ m0v
2
u

r
¼ m0v

2r (5:2)

FL ¼ �e0vuB0 ¼ �m0rvvc

are the space-charge, centrifugal, and Lorentz forces, respectively. Here vc ¼ hB0 is

the nonrelativistic cyclotron frequency. Substituting Eq. (5.2) in Eq. (5.1), we can

write the equilibrium condition as

hEr ¼ v2r � vvcr (5:3)

2. The energy integral in the nonrelativistic approximation for zero cathode

potential and zero initial electron velocities is

2hw ¼ v2z þ v2u ¼ v2z þ v2r2 (5:4)

Differentiation of Eq. (5.4) with respect to r and taking w0 ; dw/dr ¼ 2Er into

account gives

hEr ¼ �vzv
0
z � vv0r2 � v2r (5:5)

FIGURE 5.1 (a) Space-charge electron beam in a drift tube (1, cathode; 2, gun; 3, transition

space; 4, electron beam; 5, conducting drift tube); (b) distribution of the axial component of a

magnetic field and axis potential.
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Combining Eqs. (5.3) and (5.5), we obtain the equation

vzv
0
z þ v

d

dr
r2 v� vc

2

� �h i
¼ 0 (5:6)

3. Poisson’s equation can be written as

div E ¼ 1

r

d

dr
(rhEr) ¼ �v2

p (5:7)

where vp
2 ¼ 2rh/10 ¼ e0

2 n/m0 10 is the electron plasma frequency (n is an electron

density). Substituting the electric field from Eq. (5.3) into Eq. (5.7), we obtain

2v(vc � v)þ rv0(vc � 2v) ¼ v2
p (5:8)

4. Busch’s theorem provides matching the beam parameters in the gun and in the

drift space. The nonrelativistic Busch theorem for zero cathode velocity according to

Eq. (1.128) is

_u ¼ v ¼ h

2pr2
(C�Cc) (5:9)

The magnetic fields Bc and B0 in the gun and the drift space, respectively, are

assumed to be uniform. Then the magnetic fluxes are

C ¼ pr2B0, Cc ¼ pr2cBc (5:10)

where r and rc are the radii of the same trajectory in the drift space and on the

cathode. Letting hBc ; vck, we can write Busch’s theorem as

v ¼ vc

2
1� vck

vc

r2c
r2

� �
(5:11)

Equations (5.6), (5.8), and (5.11) are the basic equations of an equilibrium beam.

Some particular cases are considered below.

5.2.2 Isovelocity Beams

The longitudinal velocity of the isovelocity beam does not depend on the radius (i.e.,

v0z ¼ 0). These beams are active components of microwave electron devices with

distributed interaction, similar to traveling-wave tubes of O-type (TWTOs) or

backward-wave oscillators (BWOs) based on a synchronism of the beam with an

electromagnetic wave. We obtain from Eq. (5.6)

r2 v� vc

2

� �
¼ K ¼ const: (5:12)
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Assume that the angular velocity at some radius r0 is

(v)r¼r0 ¼ v0 (5:13)

Then according to Eq. (5.12),

v ¼ vc

2
1� 1� 2v0

vc

� �
r20
r2

� 	
(5:14)

Taking Busch’s theorem [Eq. (5.11)] into account, we obtain

vc

2
1� 1� 2v0

vc

r20
r2

� �� 	
¼ vc

2
1� vck

vc

r2c
r2

� �
(5:15)

which gives us

rc ¼ r0
vc

vck

1� 2v0

vc

� �1=2
" #

(5:16)

We see that the cathode radius rc in general does not depend on r (i.e., all trajectories

of the beam should be emitted from a cathode of constant radius; Fig. 5.2). Note that

v0 , vc=2 ; vL, where vL is the Larmor frequency. An exception is the case

v0 ¼ vL; vck ¼ 0 (5:17)

This case corresponds to that of a Brillouin beam (considered in the next section).

According to Eq. (5.14), the condition of the positive frequency v for v0 , vL is

r . r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v0

vL

r
(5:18)

This unequality means that isovelocity beams, with the exception of Brillouin beams

[Eq. (5.17)], are always hollow beams. In Fig. 5.2 two possible schemes of isovelo-

city beam formation with inner and external cathodes are depicted. As we can see,

FIGURE 5.2 Two versions of guns with isovelocity beams.
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these devices are versions of magnetron injection guns (Section 4.5.2). However,

these schemes are only approximate. Their design is possible by a numerical

method on the basis of adequate simulation codes with subsequent experimental

adjustment.

5.2.3 Solid Brillouin Beams (Brillouin, 1945)

Earlier we defined a Brillouin beam (BB) as a beam for which the angular velocity at

a particular radius is equal to the Larmor frequency [Eq. (5.17)]. It can readily be

seen after substituting v0 ¼ vL ¼ vc/2 into Eq. (5.12) that constant K ¼ 0. This

means that at any radius,

v ¼ vc

2
¼ vL (5:19)

that is, BBs are not only isovelocity but also isorotational beams. According to the

Busch theorem [Eq. (5.11)] for BB formation, a zero cathode magnetic field vck ¼ 0

must be provided. In this case, Eq. (5.15) is satisfied for any rc and the limitations of

Eq. (5.16) disappear. Thus, in contrast to other isovelocity beams, BBs are solid

beams. These beams rotate similar to a rigid rotator. A diagram of Brillouin beam

formation is shown in Fig. 5.3. The iron shield should provide a zero magnetic

field near the cathode. According to the theory above, in some domain there must

be a transition from a zero cathode magnetic field to a uniform field B0 in the

drift space. An idealized Brillouin beam is formed when the radial component of

the magnetic field is nonzero only in the transition space. As electrons are emitted

they move along straight trajectories up to the transition space. After the transition,

all trajectories become helical lines with centers on the z-axis and with equal pitch.

Note that the formation of helical trajectories encircling the z-axis in rare space-

charge beams is provided by the cusp of the magnetic field (Section 1.7).

Real systems certainly do not provide ideal cathode shielding. Therefore, the

characteristics of experimental beams are different from those of idealized beams.

This topic is discussed in Section 5.7, where the paraxial theory of the space-charge

beams is described.

FIGURE 5.3 Brillouin beam formation. 1, Iron shield; 2, cathode; 3, solenoid; 4, drift tube;

5, electron beam.
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Space-Charge Density and Brillouin Beam Current The plasma frequency in

BBs is constant according to Poisson’s equation [Eqs. (5.8) and (5.19)]:

vp ¼ vcffiffiffi
2

p ¼
ffiffiffi
2

p
vL ¼ const: (5:20)

The electron charge density and current density are also constant:

r ¼ �v2
p10

h
¼ �v2

c10
2h

¼ const: (5:21)

j ¼ �rvz ¼ v2
c10
2h

vz ¼ const: (5:22)

The current in the beam of radius a is

I ¼ pa2j ¼ pa2v2
c10

2h
vz (5:23)

The z-component of the electron velocity according to the energy integral,

Eq. (5.4), is

vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hwa �

a2v2
c

4

r
(5:24)

where wa is the beam potential at the radius r ¼ a. We see that velocity vz in the

beam decreases with increased a, due to the increasing azimuthal linear speed.

Since the rotational velocity vu ¼ vr is zero on the axis, the velocity axial com-

ponent is

vz ¼
ffiffiffiffiffiffiffiffiffiffiffi
2hw0

p
(5:25)

where w0 is the potential on the axis. Then

a2v2
c ¼ 8h(wa � w0) (5:26)

The beam current according to Eqs. (5.23), (5.24), and (5.26) is

I ¼ pa2v2
c10

2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hwa �

a2v2
c

4

r
¼ 4p10

ffiffiffiffiffiffiffiffiffiffiffi
2hw0

p
(wa � w0) (5:27)

It is straightforward to express the potential wa through the potential of the drift tube

wb as the potential of a uniform charged cylinder. Then we obtain

I ¼ pa2v2
c10

2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hwb �

a2v2
c

4
1þ 2 ln

b

a

� �s
(5:28)

where b is the drift tube radius.
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According to Eq. (5.27), the current first increases with increased wa2 w0

(or avc), but after reaching a maximum begins to decrease as a result of lowering

vz. The maximum of the current is determined from the condition

@I

@(avc)
¼ 0 (5:29)

Let us find the current maximum assuming the ratio b/a ¼ const. From Eq. (5.28)

we obtain

(a2v2
c)max ¼

16hwb

3½1þ 2 lnðb=aÞ� (5:30)

After substitution of Eq. (5.30) in Eq. (5.28), we find that

Imax ¼
8
ffiffiffi
6

p
p10

ffiffiffi
h

p
9½1þ 2 ln (b=a)� (wb)

3=2 ¼ Pmax(wb)
3=2 (5:31)

where P is the perveance. For a solid Brillouin beam that fills the drift tube

(b/a ¼ 1) completely, we obtain from Eq. (5.30)

(a2v2
c)max ¼ 16

3
hwa ¼ 16

3
mwb (5:32)

or according to Eq. (5.26), the axis potential for the maximum current is

w0,max ¼ 1
3
wa ¼ 1

3
wb (5:33)

The maximum perveance is

Pmax ¼
8
ffiffiffi
6

p
p10

ffiffiffi
h

p
9

� 25:4� 10�6A=V3=2 (5:34)

The magnetic field B0,max corresponding to the maximum of the BB current can be

found from Eq. (5.30):

B0;max ¼ 4

a
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wb

h½1þ 2 ln (b=a)�
r

(5:35)

Note that we can search the maximum current as the extreme of the function I(w0)

from Eq. (5.27). For a/b ¼ 1 we obtain the same Eq. (5.33) and the same maximum

current [Eq. (5.31)].

It is instructive to depict the function I ¼ I(w0) corresponding to Eq. (5.27)

(Fig. 5.4). Let us increase the cathode injection current from zero. When the

beam current is zero, the potential depression is absent and w0 ¼ wa. Increase in
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the injection current reduces the axis potential. The point w0 ¼ wa/3 corresponds to

the beam that completely fills the drift tube. When the injection current attains the

values Imax, determined by Eq. (5.31) with a/b ¼ 1, the axis potential drops to

wa/3. Further increase in the injection current (supercritical current) cannot raise

the beam current above Imax. The descending (left) branch of the curve I(w0) for

w0 , wa/3 is unstable and not realizable experimentally. In the static version of a

theory with Iinj . Imax, a virtual cathode occurs and a fraction of the injected

current is reflected back toward to the cathode. The corresponding solution should

take into account two beams (straight and backward) in the domain between real

and virtual cathodes. However, according to numerical simulation, solution of

the steady-state problem is physical unrealizable. The beam is unstable, and for

Iinj . Imax, oscillations of various types can be developed (see, e.g., Haeff, 1939).

In any case, the equilibrium will be disturbed and an unrippled beam structure is

not possible.

5.2.4 Hollow Brillouin Beams

According to Section 5.2.3, all isovelocity beams with the exception of solid

Brillouin beams are hollow. Brillouin hollow beams (BHBs), for which by definition

the angular velocity on the inner boundary beam is zero, have the most practical

interest. Let us take r0 in Eq. (5.14) as the inner radius of a BHB. Then

v0 ¼ v(r0) ¼ 0, and we obtain from Eq. (5.14),

v ¼ vc

2
1� r20

r2

� �
(5:36)

The charge density of the BHB is found by substituting Eq. (5.31) into Eq. (5.36):

v2
p ¼ � rh

10
¼ v2

c

2
1þ r40

r 4

� �
(5:37)

FIGURE 5.4 Current of a solid Brillouin beam as a function of axis potential.
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Then the current of the beam with the outer radius a is

I ¼ �
ða
r0

rvz � 2p rdr ¼ �2pvz

ða
r0

rr dr ¼ p10v
2
ca

2

2h
vz 1� r40

a4

� �
(5:38)

Here vz ¼ const. Expressing (vz)r¼a from the energy integral (5.4) and substituting

it into Eq. (5.38), we obtain

I ¼ p10v
2
ca

2

2h
1� r40

a4

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hwa �

v2
ca

2

4
1� r20

a2

� �2
s

(5:39)

Let us find the maximum BHB current as a function of the product vca, assuming

the ratio r0/a ¼ const. Then application of the condition @I/@(vca) ¼ 0 to the

current of Eq. (5.39) with fixed values wa is analogous to application of

Eq. (5.29) to the current I(a) from Eq. (5.28). So we obtain

a2v2
c 1� r20

a2

� �2
" #

max

¼ 16hwa

3
(5:40)

Substitution of Eq. (5.40) in Eq. (5.39) gives the maximum current of the BHB:

Imax ¼
8
ffiffiffi
6

p
p10

ffiffiffi
h

p
9

1þ r20=a
2

1� r20=a
2
(wa)

3=2 (5:41)

The corresponding perveance of the BHB is

Pmax ¼ 25:4� 10�6 1þ r20=a
2

1� r20=a
2

A=V3=2 (5:42)

Comparison of Eqs. (5.42) and (5.34) shows that the maximum perveance of hollow

Brillouin beams is greater than the corresponding perveance for solid Brillouin

beams. For thin beams, the ratio of the perveances is �r0/Dr, where Dr is the

beam thickness. The cathode of BHB as cathodes in all other hollow isoivelocity

beams must be a surface of constant radius.

The important practical advantage of hollow Brillouin beams is the lower

requirement of magnetic field distribution than in solid BBs, where ideal magnetic

shielding of the cathode must be provided. In particular, a uniform magnetic field

over the entire system length can be used. In this case (vck ¼ vc), and according

to Eq. (5.16), the inner radius of the beam r0 [v0(r0) ¼ 0] is equal to the cathode

radius rc. Note that the use of hollow Brillouin beams increases the efficiency of

microwave high-frequency devices with slow-wave structures, similar to nonrelati-

vistic TWTOs and BWOs, due to the proximity of the surface structure of slow

waves and the structure of BHBs.
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5.3 UNRIPPLED RELATIVISTIC BEAMS IN A UNIFORM EXTERNAL
MAGNETIC FIELD

5.3.1 Introduction

Formulation of a problem for relativistic beams is somewhat similar to the

foregoing. In particular, the beam is supposed to be uniform in the z-direction and

axially symmetrical. Also, an equilibrium state of flow is assumed. We can therefore

write the following equalities:

vr ¼ 0,
@Qi

@z
¼ @Qi

@u
¼ @Qi

@t
¼ 0 (5:43)

where Qi are any beam quantities. So beam variables are a function of r only. The

beam is injected from a gun into a conducting cylindrical drift tube with radius r ¼ b

(Fig. 5.3). The drift tube is placed inside a uniform round solenoid that produces a

magnetic field B0. The natural condition that provides the laminarity of the beam is

the zero initial (cathode) velocities of the particles.

The relativistic formulation of the problem suggests the following distinctions

from the nonrelativistic formulation, which complicates the theory. First, it is the

necessity to take into account the self magnetic field of the beam. According to

Eqs. (5.43), the self magnetic field has two nonzero components: axial Bsz and

azimuthal Bsu. Another problem with the theory is related to the use of short

pulse high-current relativistic beams when the effects of self magnetic field shield-

ing by the drift tube are relevant. Then the equilibrium state of the beam is possible

in two extreme cases: either during an initial short period of time when the self mag-

netic field does not penetrate the metal drift tube and is localized inside the drift tube

(e.g., when using very short pulses, on the order of nanoseconds), or when a long

pulse duration is possible because the drift tube does not disturb the self magnetic

field. We postulate the latter case below. An additional complication of the theory

is determined by the use of relativistic equations of motion.

Development of the theory of equilibrium intense relativistic beams began the

1960s. Here we should refer a paper by DePackh and Ulrich (1960), in which a

fully relativistic theory of space-charge cylindrical Brillouin beams was developed.

Reiser (1977) has given a comprehensive fully relativistic theory of space-charge

cylindrical flow in the magnetic field, taking into account the effect of locking the

self magnetic field into the drift tube. Presented below is an analysis that follows

works of DePackh and Ulrich (1960) and Reiser (1977) in the approximation of a

long-pulse self magnetic field.

5.3.2 Equations of Relativistic Equilibrium Electron Flow

Relativistic equilibrium of radial forces is

g(r)m0v
2
u(r)

r
� e0Er � e0vu(r)Bz(r)þ e0vz(r)Bsu(r) ¼ 0 (5:44)
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where Bz(r) ¼ B0 þ Bsz(r) and B0 is the uniform external magnetic field given.

The relativistic factor is

g(r) ¼ 1� v2u
c2

� v2z
c2

� ��1=2

(5:45)

In suggesting zero cathode potential and zero initial electron velocities, the energy

integral can be written as

g(r) ¼ 1� e0w(r)

m0c2
(5:46)

Poisson’s equation is

1

r

d

dr
r
dw(r)

dr

� 	
¼ e0n(r)

10
(5:47)

The condition of conservation of azimuthal generalized momentum Pu(r)

[Eq. (1.124)] can be written as

Pu(r)¼ Puc(rc)¼m0rg(r)vu(r)� e0

2p
C(r)¼m0rg(r)vu(r)� e0

ðr
0

rBz(r)dr (5:48)

Here Puc(rc) is the cathode azimuthal momentum. Expressing this quantity through

the cathode magnetic field and cathode electron velocity leads to Busch’s theorem.

Below, Pu(r) will be assumed as a given function.

Let us add to these equations for electric andmagnetic self fields. The electric field is

Er(r) ¼ � dw(r)

dr
(5:49)

The magnetic field is determined by Maxwell’s equation, curl B ¼ m0j ¼ 2m0e0nv.

That leads to the equations

d

dr
½rBsu(r)� ¼ �m0e0rn(r)vz(r) (5:50)

dBsz(r)

dr
¼ m0e0n(r)vu(r) (5:51)

Herewe took into account dB0/dr ¼ 0, and then dBz/dr ¼ dBsz/dr. Note that initiation
of the self magnetic field Bsz, which is always directed opposite B0, characterizes the

electron beam as a gyrotropic diamagnetic medium.

Thus, we have got a set of eight self-consistent equations (5.44)–(5.51) for eight

functions: g(r), vz(r), vu(r), Er(r), Bz(r), Bsu(r), w(r), and n(r). As one has been
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obtained, this system can be reduced to three equations for the functions g(r), vz(r),

and vu(r) by elimination of the remaining functions from the original set

[Eqs. (5.44)–(5.51)]. These are the following nonlinear ordinary differential

equations:

½r(gvz)0�0 � vz(rg
0)0 þ 1

m0

vuP
0
u

vz

� �0
¼ 0 (5:52)

vu

r
g0 þ (rg)0

vu

r

� �0
þ (gv0u)

0 þ 1

m0

P0
u

r

� �0
¼ 0 (5:53)

and Eq. (5.45) for the relativistic factor g. Here all primed symbols signify differen-

tiation, d/dr. The azimuthal momentum Pu(r) is determined by the initial cathode

conditions and can be assumed as a given function. Solving these equations in

general is a difficult problem. Below, the simplest case (although an important

one), Pu ¼ const., is considered. In this case Eqs. (5.52) and (5.53) are reduced to

1

g
(rg2v0z)

0 ¼ 0 (5:54)

vu

r
g0 þ (rg)0

vu

r

� �0
þ(gv0u)

0 ¼ 0 (5:55)

The obvious first integral of Eq. (5.54) is

rg2v0z ¼ K ¼ const: (5:56)

5.3.3 Solid Relativistic Brillouin Beams

Assume that similarly to nonrelativistic solid Brillouin flow (Section 5.2.3), the

cathode magnetic field in relativistic flow is zero, and correspondingly, Pu ¼ 0.

This is the simplest way to realize a distribution of the cathode magnetic field

with Pu ¼ const.

According to Eq. (5.56), for solid beams, K ¼ 0; otherwise, we obtain

(v0z)r¼0 ¼ 1. Then vz
0 ¼ 0, and we obtain the isovelocity beam:

vz ¼ v0 ¼ const: (5:57)

The azimuthal velocity is expressed through g from the energy integral:

vu ¼ c

gg0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � g20

q
(5:58)

where

1

g20
¼ 1� v20

c2
(5:59)
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Because the azimuthal velocity on the axis is zero, we see, according to Eq. (5.58),

that for solid beams, Eq. (5.59) is equivalent to

(g)r¼0 ¼ g0 (5:60)

Substitution of Eq. (5.58) in Eq. (5.55) gives the following differential equation

for g:

g00 � gg02

g2 � g20
þ g0

r
� g

r2g20
(g2 � g20) ¼ 0 (5:61)

The first integral of this equation can be presented as (see DePackh and Ulrich,

1960)

r 2g0 2

g2 � g20
� g2

g20
¼ C ¼ const: (5:62)

A solution of this equation for an arbitrary C is expressed through the elliptic

integral of the first kind. According to Eq. (5.60), for a solid Brillouin beam in

the vicinity of a point r ¼ 0, the ratio g/g0 can be represented as

g
g0

¼ 1þ kr2 (5:63)

Substituting Eq. (5.63) in Eq. (5.62), we obtain for the solid beams, C ¼ 21. In this

case, Eq. (5.62) becomes

g0g
0

g2 � g20
¼ 1

r
(5:64)

It is readily verified that the solution of this equation is

g ¼ g0
r20 þ r2

r20 � r2
(5:65)

where r0 is a constant of integration. The constant r0 depends on the electron energy

and the beam dimensions. For nonrelativistic energies the factors g � g0 � 1, and

we obtain

rnrel 	 r0 (5:66)

Next, we obtain the remaining quantities of the Brillouin flow.

The charge density is determined by Poisson’s equation [Eq. (5.47)]. The

corresponding relationship in terms of g is

n ¼ 10m0c
2

e20

1

r
(rg0)0 (5:67)
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Substituting Eq. (5.65) in Eq. (5.67), we find that

n ¼ 810g0m0c
2r20(r

2
0 þ r2)

e20(r
2
0 � r2)3

(5:68)

We see that unlike the nonrelativistic solid Brillouin beams, the charge particle

density here is essentially nonuniform. However, for nonrelativistic beams corre-

spondingly to the inequality (5.66) and g0 � 1, we obtain

nnrel � 810m0c
2

r20e
2
0

¼ const: (5:69)

which agrees with Eq. (5.21) for a nonrelativistic solid Brillouin beam. Comparison

of this formula with Eq. (5.21) gives us

(r0)nrel ¼
4c

vc

(5:70)

It is readily seen that this quantity is really much greater than r.

The angular velocity is found from Eqs. (5.58) and (5.65):

v ¼ vu

r
¼ c

rgg0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � g20

q
¼ 2r0c

g0(r
2
0 þ r2)

(5:71)

Thus, the relativistic Brillouin solid beam does not represent a rigid rotor. In

nonrelativistic approximation, neglecting r in Eq. (5.71) and taking Eq. (5.70)

into account, we obtain v ¼ vc/2 (i.e., we return to the beam model as a rigid

rotor). According to Eqs. (5.57) and (5.67), a beam current that fills a tube of

radius r ¼ a

I ¼
ða
0

2prvze0n(r) dr ¼ 2pv0e0
10m0c

2

e20

ða
0

r
1

r
(rg0)0dr ¼ I0

v0

2c
ag0a (5:72)

where I0 ¼ 4p10m0c
3=e0 � 17 kA is the relativistic current [see Eq. (4.129)],

ga ; g(a). Using Eqs. (5.64) and (5.72), we obtain the current in terms of g/g0:

I ¼ I0
v0

2c

g2a � g20
g0

¼ I0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g20 � 1

p
2

g2a
g20

� 1

� �
(5:73)

This is a volt–ampere characteristic of a diode with a solid Brillouin beam. Consider

the current as a function of the axis potential w0 ¼ (m0c
2=e0)(g0 � 1) and the beam

potential on the surface r ¼ a, wa ¼ (m0c
2=e0)(ga � 1). According to Eq. (5.73), the

current is zero for g0 ¼ 1 and g0 ¼ ga. In the first case it indicates a zero axis poten-
tial. In the second case we have zero potential depression on the beam, which
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requires zero current. The maximum current is found from the condition dI=dg0 ¼ 0,

where I is determined by Eq. (5.73). That yields

g20;max ¼
g2a
2

1þ 8

g2a

� �1=2

� 1

" #
(5:74)

Substitution of g0,max into Eq. (5.73) gives the maximum current:

Imax ¼ I0

2

g2a
2

1þ 8

g2a

� �1=2

� 1

" #
� 1

( )1=2
2

½1þ (8=g2a)�1=2 � 1
� 1

" #
(5:75)

Let us find the beam current as a function of gb, which corresponds to the drift

tube potential wb (Fig. 5.3). Considering the electric field in the gap ra 
 r 
 rb
as the field of a charged cylinder, we obtain, according to Eq. (5.73),

Er � � I

2prv010
¼ I0

4p10cr

g2a � g20
g0

(5:76)

Then the potential difference wb � wa and, respectively, the difference gb � ga is

equal to

gb � ga ¼
g2a � g20

g0
ln
b

a
(5:77)

For computation of the maximum current as a function gb, it is necessary to solve

Eqs. (5.74) and (5.77) to find a function ga ¼ ga(gb) and substitute it into

Eq. (5.75). If the beam fills the drift tube completely then ra ¼ rb, ga ¼ gb, and
the current is obtained directly from Eq. (5.75).

An external magnetic field B0, focusing the maximum current, can be found from

Eq. (5.48) for Pu ¼ 0:

m0rg(r)vu(r)� e0

ðr
0

r½B0 þ Bsz(r)� dr ¼ 0 (5:78)

where Bsz(r) is determined by Eq. (5.51). Taking into account that in the long-pulse

approximation, the self magnetic field on the beam surface Bsz(a) ¼ 0, we obtain

from Eq. (5.51),

Bsz(r) ¼
ðr
a

m0e0n(r)vu(r) dr (5:79)
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Substituting the functions n(r) and vu(r) from Eqs. (5.68) and (5.71), respectively,

and integrating, we find the axial component of the self magnetic field:

Bsz ¼ 4cr30
h

1

(r20 � r2)2
� 1

(r20 � a2)2

� 	
(5:80)

Now substitute the functions g(r), vu(r), and Bsz(r) from Eqs. (5.65), (5.71), and

(5.80), respectively, into Eq. (5.78). After integration, we obtain

B0 ¼ 4c

hr0

1

(1� a2=r20)
2

(5:81)

Note that this formula distinguishes it from the relation (see Reiser, 1977)

B0 ¼ 4c

hr0

(1� a4=r20b
2)

(1� a2=r20)
2

(5:82)

obtained by taking into account the shielding effect of the drift tube. Equation (5.82)

is reduced to Eq. (5.81) in b ! 1.

B0 is readily expressed as a function of g0 and ga. According to Eq. (5.65),

r0

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ga þ g0
ga � g0

r
(5:83)

Then we find from Eq. (5.81),

B0 ¼ c

ha

ga
g0

þ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2a
g20

� 1

s
(5:84)

We can find the external magnetic field that corresponds to the maximum of the

beam current by substituting the ratio ga=g0 from Eq. (5.74) in Eq. (5.84).

The curves of the current for the beams, which fill the drift tube (b/a ¼ 1)

completely, and the corresponding values of the magnetic field as functions of the

ratio g0=ga for different values of ga, are shown in Fig. 5.5. As we see, the

current reaches a maximum near small values of g0=ga, which correspond to

large values of the potential depression. Here, just as in Fig. 5.4, the left branch

or curve I(g0=ga) is unstable and not realizable physically. Also, by exceeding

the injection current, the value Imax forms a virtual cathode and the growth of

beam instabilities.

In the extreme relativistic limit (ga .. 1) according to Eq. (5.74), g20,max ¼ 2 and

does not depend on ga. Substitution of this quantity into Eqs. (5.73) and (5.84) gives

Ierel ¼ I0
g2a
4

(5:85)
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(B0)erel ¼
c

ha

g2a
2

(5:86)

Note that the extreme relativistic magnetic field in a quasistationary short-pulse

approximation, taking into account the effect of self magnetic field shielding, is

(Reiser, 1994)

(B0)erel ¼
c

ha

ffiffiffi
2

p
ga (5:87)

We see that the external magnetic field required in the long-pulse approximation in an

extreme relativistic limit essentially exceeds themagnetic field for themodel of locking

the selfmagnetic fieldwhen short-pulse processes are used. Thus, the effect ofmagnetic

shielding in this case softens considerable the requirements for an external magnetic

field. Let us consider as an example an electron beam with b ¼ a ¼ 1 cm and

gb ¼ ga ¼ 5(wb ¼ 4 MV).We obtain fromEq. (5.74), g0,max/ga ¼ 0.27. Then accord-

ing to Fig. 5.5, we find in dimensionless units Imax ¼ 4 and B0 ¼ 20, which correspond

to Imax ¼ 68 kA and B0 ¼ 3.4 T.

The formulas formaximum current Imax and corresponding externalmagnetic field

B0 in nonrelativistic approximation follow from Eq. (5.75) and Eqs. (5.84) and (5.74)

after substituting g ¼ 1þ w=hc2 for w=hc2 	 1 in these relations. It is readily veri-

fied that the same current is obtained from corresponding nonrelativistic formulas

(5.31) and (5.35) (for b/a ¼ 1).

Note that the formation of equilibrium solid Brillouin beams with maximum

currents is not always possible or even necessary. In this case there are wide possi-

bilities for choosing the beam parameters because only three equations [Eqs. (5.68),

FIGURE 5.5 Dimensionless maximum beam current and external magnetic field as func-

tions of the ratio g0=ga for different values of the relativistic factor ga.
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(5.72), and (5.79)] must be satisfied. As we can see, the beam is described by the five

experimental quantities I, B0, gb, a, and b and by the two theoretical quantities g0
and ga. In principle it is possible to specify any four quantities and calculate the

remaining three. This is a comparatively simple computational problem, although

its experimental realization can be complicated.

An analysis of equilibrium hollow relativistic beams with distributions of

momentum Pu(r) = 0 (different from the solid Brillouin beams) is a significantly

more difficult problem. Consideration of the corresponding theory exceeds the

scope of this book however. A case involving a cathode immersed in an external

magnetic field with Pu(r) / r2 (neglecting the self magnetic field) has been analyzed

by Miller (1982). The reader can find a useful qualitative discussion of this problem

in a book by Reiser (1994). An exception is he analysis of relativistic beams in an

infinite magnetic field (Section 5.4).

5.4 CYLINDRICAL BEAMS IN AN INFINITE MAGNETIC FIELD

The solid Brillouin beams (SBBs) considered in Section 5.3 are particular types of

the flows for a full set of self-consistent equations that has a rigorous analytical sol-

ution. Simulation methods provide a considerable expansion of a class of solvable

problems connected with self-consistent flows. However, the limits of applicability

of these methods are often indefinite. In this regard, the SBB solution can be con-

sidered a standard for the control of simulation software.

Practically, SBBs are not the best type of beams, due to the complexity of obtain-

ing adequate magnetic shielding of the cathode. In addition, it could be necessary to

obtain structures of relativistic flows that differ from the SBBs. Note that design dif-

ficulties of self-consistent relativistic beams are connected basically with an account

of the self magnetic fields. However, if experimental conditions do not limit values

of the external magnetic field, self-consistent relativistic flows are available and the

self magnetic fields can be neglected. A strong magnetic field, together with ade-

quate distribution of cathode emission, will allow the transversal structure of the

electron flows to vary within wide limits. In these cases, however, a problem of lim-

iting currents arises. The theory of beams with rectilinear trajectories in the infinite

magnetic field is a theoretical idealization of this problem. In this section we con-

sider hollow and solid flows in an infinite magnetic field. The first works on the

theory of space-charge rectilinear beams in the nonrelativistic limit are those of

Haeff (1939) and Smith and Hartman (1940). Thin annular and solid relativistic

beams are considered next.

5.4.1 Thin Annular Flows in an Infinite Magnetic Field

Let us consider an axially symmetric beam formed by electrons injected from a thin

annular cathode into a strong uniform magnetic field B0 ! 1 (Fig. 5.6). The

electrons emitted move parallel to the magnetic field and pass into a long metal drift

tube with the potential wb and the radius r ¼ b. It is suggested that the beam is thin

5.4 CYLINDRICAL BEAMS IN AN INFINITE MAGNETIC FIELD 199



[i.e., Da 	 a(b� a)]. Therefore, the potential into the beam is constant, w ¼ wa. The

radial equilibrium of the beam is supported by the strong magnetic field, and the elec-

tron velocity has only the z-axis component v. The beam equations are

g(r) ¼ 1þ hw(r)

c2
(5:88)

ga ¼
1� v2

c

� ��1=2

¼ 1þ hwa

c2
(5:89)

wb � w(r) ¼

I

2p10v
ln
b

r
, a 
 r 
 b

I

2p10va
ln
b

a
, 0 , r 
 a

8>><>>: (5:90)

Equations (5.88) and (5.89) are consequences of the energy integral for zero electron

initial velocity and zero potential of the cathode; Eq. (5.90) is the potential of

the charged cylinder outside the annular beam with charge density j ¼ 2rv. From
Eqs. (5.88) and (5.90) we obtain

gb � g0 ¼
2I

I0va=c
ln
b

a
(5:91)

where the relativistic unity of a current is

I0 ¼ 4p10c
3

h
� 17 kA (5:92)

In the nonrelativistic limit

wb � wa ¼
I

2p10va
ln
b

a
(5:93)

FIGURE 5.6 Thin electron beam transport in a strong magnetic field, and distribution of the

potential. 1, Emitter; 2, electron beam; 3, drift tube.
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Let us express current I as a function of ga. Finding the electron velocity v from

Eq. (5.89) and substituting it in Eq. (5.91), we obtain

I ¼ I0

2 ln (b=a)

gb
ga

� 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2a � 1

q
(5:94)

According to this equation, the current is zero in two cases: ga ¼ 1 (full drop of the

depressed potential) and ga ¼ gb (zero potential depression). The maximum current

according to the condition @I/@ga ¼ 0 corresponds to the point ga ¼ gb
1/3. Then this

current is

Imax ¼ I0

2 ln (b=a)
(g2=3b � 1)3=2 (5:96)

It is readily verified that in the nonrelativist limit,

wamax ¼
1

3
wb (5:97)

Imax ¼ 4p10
ffiffiffiffiffiffi
6h

p
9 ln (b=a)

w3=2
b � 12:7� 10�6 w3=2

b

ln (b=a)
A (5:98)

The beam current as a function of the relativistic factor ga is shown in Fig. 5.7. For
small injection currents the beam potential is closed to the drift tube potential

(i.e., ga � gb). When the injection current increases, the corresponding point moves

along the right branch of the curve. The maximum current Imax is the limiting beam

current. When Iinj . Imax, both a virtual cathode and beam instabilities in the input

domain of the beam arise. A state of the beam corresponding to the left branch of

the curve I(gb) (here, 1 , ga , gb
1/3; in the relativistic limit it corresponds to

0 ,wa ,
1
3
wb) is unstable and physically unrealizable, similar to solid Brillouin

beams (see Figs. 5.4 and 5.5).

According to Eq. (5.93), the potential depression depends on two factors that deter-

mine the charge density of the beam: the beam current I and the electron velocity v.

When the injection current increases, the potential depression also increases and

FIGURE 5.7 Current of a thin relativistic beam in the infinity magnetic field as a function of

the relativistic factor.
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the velocity decreases; that leads to increased charge density, further growth of the

potential depression, and so on. Thus, charged particles determine a specific positive

(regenerative) feedback in the beam that finally (for Iinj . Imax) makes the beam

unstable.

Note that it is possible to interpret the instability of the beam on the left branch

of the curve I ¼ I(ga) from the energy minimum principle (Breizman and

Ryutov, 1974). It is seen that for each value of the injection current Iinj , Imax,

there are two states with different beam energies. Because the energy of the elec-

trons is equal to 2e0wa, the state of the beam on the right branch, which answers

to a higher potential, has a lower energy. Therefore, of the two branches, only the

right branch will be stable.

5.4.2 Cylindrical Solid Beams in an Infinite Magnetic Field

In this case the electrons are injected from an entire circular emitter. In infinite mag-

netic field they form a cylindrical electron flow (Fig. 5.8). The electron velocity has

only the z-component v. The beam is described by the following equations:

g(r) ¼ 1þ hw(r)

c2
¼ 1þ v2

c2

� ��1=2

(5:99)

Dw ¼ 1

r

d

dr
r
dw

dr

� �
¼ c2

hr

d

dr
r
dg

dr

� �
¼ � r

10
0 
 r 
 a (5:100)

j ¼ �rv (5:101)

Equation (5.99) is the energy integral written for zero cathode potential and zero

initial velocity. Equations (5.100) and (5.101) are Poisson’s equation and the

equation for electron current. Assume that the current density j(r) ¼ const. That is

a natural sequence of a uniform distribution of the emission current. Then the poten-

tial in the region between the beam and the drift tube is [similar to Eq. (5.90) for the

tubular beam]

w(r) ¼ wb �
I

pa210
ln
b

r

ða
0

r dr

v
, a 
 r 
 b (5:102)

FIGURE 5.8 Cylindrical electron beam in a strong magnetic field. 1, Emitter; 2, electron

beam; 3, drift tube.
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Equations (5.99)–(5.102) are self-consistent equations for the set of functions g(r),
r(r), and v(r), or in terms of w, for the set w(r), r(r), and v(r). The current density j

and current I ¼ pa2j in general are arbitrary parameters. Eliminating v and r from

Eqs. (5.99)–(5.102) reduces these equations to

1

r

d

dr
r
dg

dr

� �
¼ 4I

I0a2
gffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � 1
p ; 0 
 r 
 a (5:103)

g(r) ¼ g(b)� 4I

I0

c

a2
ln
b

r

ða
0

r dr

v
, a 
 r 
 b (5:104)

where I ¼ pa2j. These equations in the nonrelativistic limit (rw/c2 	 1) are

reduced to

1

r

d

dr
r
dw

dr

� �
¼ I

pa210
ffiffiffiffiffiffi
2h

p w�3=2; 0 
 r 
 a

w(r) ¼ w(b)� I

pa210
ffiffiffiffiffiffi
2h

p ln
b

r

ða
0

r dr

w1=2
; a 
 r 
 b

(5:105)

Analytic solutions of Eqs. (5.103) and (5.104) or Eqs. (5.105) in general are compli-

cated, and only numerical integration can be used. The nonrelativistic beams were

treated by Smith and Hartman (1940). The typical curves I ¼ I(w0=wb) ½w0 ; w(0)�
for different values of b/a are depicted in Fig. 5.9. As we see, these functions have

maximums for some w0 ¼ w0,max. The left branches of the curves w0 , w0,max

correspond to unstable regimes. In this region, increase in the beam current leads to

0.6

0.8

0.4

0.2

1.00 0.6 0.80.40.2

1.0

b / a = 1

b / a > 1

0 /   b�
�

�

I / Imax

0, max

FIGURE 5.9 Currents of a nonrelativistic beam in the infinity magnetic field as functions of

an axis potential.
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reduction in the potential depression wb2 w0. When an injection current Iinj is greater

than Imax, the axis potential drops to zero and a virtual cathode arises. Between the

cathode and the virtual cathode, a reflected beam appears. According to Pierce

(1944), in the case of complete filling by the beam of the drift tube, the current for

zero axis potential (w0 ¼ 0) is

Iw0¼0 ¼ 16p10
ffiffiffiffiffiffi
2h

p
9

w3=2
b � 29:33� 10�6w3=2

b A (5:106)

The maximum current for complete filling is

Imax ¼ 1:963p10
ffiffiffiffiffiffi
2h

p
w3=2
b � 32:4� 10�6w3=2

b A (5:107)

There are situations in which relativistic equation (5.103) has simple solutions: low

filling of the drift tube and supreme relativistic beams. In the first case the beam is loca-

lized in the small domain near the axis a/b 	 1. Therefore, the potential in the beam

[w(r) � w0] is constant, and the right side of Eq. (5.103) is also constant. The integrand

into Eq. (5.104) is also constant and that is true for Eqs. (5.105). It is readily seen that

formulation of the problem and a solution will exactly coincide with the problem of the

thin annular beam (Section 5.4.1). In particular, the limiting currents are determined for

relativistic and nonrelativistic beams by Eqs. (5.96) and (5.98), respectively.

For extreme relativistic beams (g ! 1, v ! c) the right side of Eq. (5.103) and

an integrand into Eq. (5.104) are constant, and the equations become

1

r

d

dr
r
dg

dr

� �
¼ 4I

I0a2
(5:108)

ga ¼ gb �
2I

I0
ln
b

a
(5:109)

It is readily verified that the solution of Eq. (5.108) is

g ¼ Ir2

I0a2
þ C (5:110)

Finding the integration constant C from Eq. (5.109) and substituting a constant into

Eq. (5.109), we obtain the solution of Eq. (5.107):

g ¼ Ir2

I0a2
þ gb �

I

I0
1þ 2 ln

b

a

� �
(5:111)

Then the potential minimum is obtained on the axis:

g0 ¼ gb �
I

I0
1þ 2 ln

b

a

� �
(5:112)
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The limiting current corresponds obviously to g0 ¼ 1, which gives

Imax ¼ I0
gb � 1

1þ 2 ln (b=a)
� I0

gb
1þ 2 ln (b=a)

(5:113)

It is interesting to note that in the supreme relativistic limit the unstable branch of the

current characteristic I ¼ I(w0) is absent. The maximum of the current is attained for

g0 ¼ 1: Equation (5.113) for the near axis beams ½ln (b=a) � 1� follows directly from
Eq. (5.96) if we assume that in the latter, gb � 1.

Using an iteration procedure, Bogdankevitch and Rukhadze (1971) have obtained

the following formula as a good approximation for the limiting current in all cases:

Imax ¼ I0

1þ 2 ln (b=a)
(g2=3b � 1)3=2 (5:114)

As is seen, this formula differs from Eq. (5.96) in replacing the coefficient 2 ln (b=a)
by 1þ 2 ln (b=a). Remember that Eq. (5.96) concerns annular flows, whereas

Eq. (5.114) is applied entirely to cylindrical flows.

5.5 CENTRIFUGAL ELECTROSTATIC FOCUSING

5.5.1 Introduction

Centrifugal electrostatic focusing of electron beams is based on the existence of

stable helical electron orbits in a coaxial cylindrical tube with a nonzero potential

difference between coaxial cylinders. Assume that a particle moves on a circular

trajectory in the crosssection of a coaxial system (Fig. 5.10). The condition

of orbital equilibrium is equal to a sum of radial electric and centrifugal forces

of zero:

F(r) ¼ Fr þ Fc ¼ 0 (5:115)

FIGURE 5.10 Cross section of a centrifugal electrostatic focusing system.
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The radial electric force acting on an electron in neglecting the space charge is

Fr ¼ � e0V

r ln(c=a)
¼ �N

r
(5:116)

where V ¼ wd � wc is the potential difference between electrodes (a voltage). If

wd . wc, N . 0 and equilibrium is possible. The centrifugal force is

Fc ¼ m0v
2r. The condition of angular momentum conservation in the axially sym-

metrical system Pu ¼ vr2 ¼ const., leads to the equality Fc ¼ M=r3. So a full

radial force is

F(r) ¼ M

r3
� N

r
(5:117)

The orbital equilibrium [Eq. (5.115)] on the radius r0 requires that M ¼ Nr20.

Therefore, the radial force is equal to

F(r) ¼ N
r20
r3

� 1

r

� �
(5:118)

The condition of stability of the equilibrium orbit is

dF(r)

dr

� 	
r0

¼ � 2N

r20
, 0 (5:119)

We see that since N . 0, the equilibrium is always stable.

A method of electron beam formation based on the centrifugal focusing effect

was proposed by Harris (1952). The first theory and experimental study of a cen-

trifugal focusing system (the Harris flow) are also credited to Harris. A diagram of

the Harris flow formation is shown in Fig. 5.11. An electron gun (2) is enclosed in

a ferromagnetic yoke (1). The magnetic flow, created by the drive winding (3),

FIGURE 5.11 System forming Harris flow. 1, Ferromagnetic yoke; 2, gun cathode; 3, drive

winding; 4, radial magnetic field; 5, electron beam; 6, drift tube; 7, collector.
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forms a radial magnetic field (4) in an annular gap of the yoke. The electrons

crossing the gap acquire angular velocity and form a rotating electron beam (5)

into a drift tube (6). The angular velocity according to Busch’s theorem

[Eq. (1.128)] is

v ¼ _u ¼ h

2pr2
Cc ¼ A

r2
(5:120)

where Cc is a magnetic flux into the central rod of the yoke. We use nonrelativistic

approximation because the specific constructive features of a Harris gun do not

allow us to use relativistic voltage.

5.5.2 Self-Consistent Centrifugal Focusing of an Annular Electron Beam

The condition of orbital equilibrium according to Eq. (5.118) can be fulfilled only

for a single trajectory of a given radius r0. If the beam has finite thickness, orbits

with r = r0 would not be circles in the cross section, and the beam inevitably

would be rippled. Kirstein et al. (1967) have shown that it is possible for nonrelati-

vistic beams to take the space-charge field into account to obtain self-consistent flow

of the finite thickness, with rigorously concentric helical trajectories and with equal

axial velocities on any radius.

Let us take for simplicity a beam that fills the system completely. Then accord-

ing to Fig. 5.10, c ¼ a, d ¼ b, wa ¼ wc, and wb ¼ wd. A self-consistent set of

equations for an equilibrium beam is given as

e0Er ¼ m0v
2r (5:121)

2hw ¼ v2z þ v2r2 (5:122)

1

r

d

dr
(r hEr) ¼ rh

10
¼ �v2

p (5:123)

Pu ¼ m0vr
2 ¼ const. (5:124)

Here Eq. (5.121) is the condition of radial equilibrium, Eq. (5.122) is the energy inte-

gral, Eq. (5.123) is Poisson’s equation, and Eq. (5.124) is the condition of angular

momentum conservation. According to Eq. (5.124),

v ¼ Pu

m0r2
¼ A

r2
(5:125)

where the coefficient A is determined according to Eq. (5.120) by the value of the

magnetic flux Cc into the ferromagnetic yoke (Fig. 5.11).

Let us limit ourselves to consideration of isovelocity beams (vz ¼ v0 ¼ const.),

which are most important for microwave devices. It can readily be shown that in

this case the condition of radial equilibrium is fulfilled on any radius in the flow.
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Differentiation of Eq. (5.122) with respect to r, taking Eq. (5.125) into account, gives

�2hEr ¼ d

dr
(v2r2) ¼ � 2A2

r3
¼ �2v2r (5:126)

for which Eq. (5.121) follows. Note that radial equilibrium is possible only with

specific distribution of the space-charge density. Substituting the electric field from

Eq. (5.121) into Poisson’s equation, and taking Eq. (5.125), into account, we obtain

r ¼ � 210A
2

hr4
(5:127)

Thus, formation of the equilibrium space-charge beam must provide a distri-

bution of the space-charge density inversely proportional to the fourth power of

the radius.

Find a beam current

I ¼
ðb
a

2prj dr ¼ �2p

ðb
a

rrv0 dr ¼ 4p10A
2v0

h

ðb
a

dr

r3

¼ 2p10A
2v0

h

1

a2
� 1

b2

� �
(5:128)

Accordingly to the energy integral (5.122) and Eq. (5.125), the axial velocity is

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hwa �

A2

a2

r
(5:129)

Then the beam current is

I ¼ 2p10
h

1

a2
� 1

b2

� �
A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hwa �

A2

a2

r
(5:130)

As we see, the beam current as the function of A that according to Eq. (5.120)

determines the angular velocity v has a maximum. For small v the electric field

that supports the radial equilibrium is also small. It leads to smallness of the space-

charge density [Eq. (5.127)] and beam current. To the contrary, for a large value of v
(coefficient A), the radial energy increases, and the axial velocity decreases with the

corresponding drop in beam current. The optimal value of A corresponding to

the condition @I=@A ¼ 0 is

A2
opt ¼ 4

3
hwaa

2 (5:131)

Substitution of this value into Eq. (5.130) gives the maximum current:

Imax ¼ 8p10
ffiffiffiffiffiffi
6h

p
9

1� a2

b2

� �
w3=2
a ; Pmaxw

3=2
a � 25:4� 10�6w3=2

a A (5:132)
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where Pmax is a corresponding perveance. In this case the electron rotational energy

on the inner cylinder is equal to (m0=2)v
2
aa

2 ¼ 2
3
e0wa (i.e., twice as much as the axial

energy of the electrons). On most radiuses the energy of rotation decreases as a2=r 2,
and a fraction of the axial energy grows. It can readily be shown that the ratio of the

axial and rotational energy in the regime I ¼ Imax is r
2=2a2.

5.5.3 Electron Guns Formatting Harris Flow

As we have seen, a specific feature of Harris flow is the very heterogeneous radial

distribution of the space-charge density �1=r4 [Eq. (5.127)]. If a gun in the ferro-

magnetic yoke does not provide a similar distribution of charge density, the

unrippled structure of the flow is inevitably disturbed.

Harris–Waters Gun Waters (1959) has developed a gun with a tubular azimuthal

electron flow in a spherical diode. This gun has a conical cathode similar to that of a

magnetron injection gun. But this gun is purely electrostatic. The gun provides ade-

quate distribution of the space-charge density �1=r4. A diagram of this Harris–

Waters gun is depicted in Fig. 5.12. The system forms a hollow beam. In principle,

Eq. (5.132) is used to estimate the limiting current in the hollow beam, at although

the inner potential wa of the beam is not given directly. However, it is not difficult to

express the potential wa through given values of wc and wd for the maximum current.

Let us write the voltage as

V ¼ wc � wd ¼
Q

2p10
ln
a

c
þ Dwþ Q

2p10
ln
d

b
� Imax

2p10v0
ln
d

b
(5:133)

Here Q is the surface charge on an inner electrode per unit of length. According to

Eqs. (5.129), (5.131), and (5.125), for the maximum beam current

v 20 ¼ 2hw� A2
opt

a2
¼ 2

3
hwa (5:134)

The potential difference on the beam

Dw ¼ wa � wb ¼
A2
opt

a2
1� a2

b2

� �
¼ 2

3
wa 1� a2

b2

� �
(5:135)

FIGURE 5.12 Harris–Waters gun formatting a centrifugal focusing electron beam.
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Substituting v0, Dw, and Imax from Eqs. (5.134), (5.135), and (5.132), respectively,

into Eq. (5.133), we obtain

V ¼ Q

2p10
ln
ad

bc
þ wa

2

3
1� a2

b2

� �
1� 2 ln

d

b

� �
(5:136)

Let us express Q=2p10 from Eq. (5.136) through V and wa. Then we can write

wa ¼ wc �
Q

2p10
ln
a

c

Finally,

wa ¼ wc � V
ln (c=a)

ln (ad=bc)

� 	
1

K
(5:137)

where

K ¼ 1� 2

3
1� a2

b2

� �
1� 2 ln

d

b

� �
ln (a=c)

ln (ad=bc)

Using potentials of the electrodes wc and wd and dimensions of the system a,b,c,d,

we find the potential wa and current Imax according to Eqs. (5.137) and (5.132).

Applying Eq. (5.131) and Busch’s theorem [Eq. (5.120)], we also obtain a necessary

magnetic flux in the ferromagnetic yoke:

Cc ¼ 4a

ffiffiffiffiffiffi
wa

3h

r
(5:138)

Chernov Gun Chernov (1956) developed an electrostatic screw electron gun for

formation of Harris flow without a ferromagnetic yoke. A diagram of this gun is

shown in Fig. 5.13. Harris flow with helical electron trajectories into a coaxial

system is formatted. However, unlike a Harris gun, rotary flow is created by an

electrostatic diode system of screw electrodes. The faces of the electrodes have

spiral sections (Fig. 5.13), so their configuration is similar to the geometry of single-

threated turbine screws. The advantage of a Chernov gun is the absence of the

complicated magnetic system that must be mounted close to hot electrodes inside

FIGURE 5.13 Chernov gun formatting a centrifugal focusing electron beam. 1, Cathode;

2, anode; 3, low potential cylinder.
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a Harris–Webster gun. Experimentally, Chernov (1956) obtained sharply bounded

electron beams with a current density up to 0.4 A/cm2 and diode and focusing vol-

tages of 800 V and 300 V, respectively. The system was used in TWTO microwave

amplifiers (spiratrons) in the frequency range 100 to 4500 MGz.

It is important to note that thermionic cathodes of guns in any centrifugal focus-

ing electron beam devices are protected from bombardment by positive ions that

arise during the ionization of residual gases. The radial electric field in a transpor-

tation area makes it possible to draw off the ions going to the low-potential cylinder

(3) (Fig. 5.13). Bombardment of the cathode is carried out by ions only created

inside the gun.

5.6 PARAXIAL-RAY EQUATIONS OF AXIALLY SYMMETRIC
LAMINAR BEAMS

As we have seen, the formation of unrippled self-consistent beams is difficult. For

non-Brillouin beams, only cylindrical cathodes are available. The formation of

Brillouin beams requires ideal magnetic isolation of the cathode. And finally,

unrippled beams have to be launched into a uniform magnetic field rigorously

along cylindrical surfaces with assumed distribution of the current or space-charge

densities. Obviously, the violation of ideal conditions disturb the radial equilibrium,

and oscillating trajectories are developed. However, if the amplitudes of the oscil-

lations are small, these mismatched beams can be used successfully.

The small amplitude of trajectory oscillations allows us to employ the paraxial

theory of beams. However, that is only one of the conditions of paraxial theory

validity. Another condition is small thickness of the beams (Section 2.3). Earlier

(Chapter 2), paraxial equations were obtained by negelcting the selffields. Below,

we derive paraxial equations by taking into account self-electric and self-magnetic

fields. Examples of application of these equations are also considered.

5.6.1 Paraxial-Ray Equations of Axially Symmetric Hollow Beams with
Rectilinear Axis1

The differential equation of relativistic trajectories in an axially symmetric field

[Eq. (2.22)] taking the self magnetic field into account must include in general all

components of the magnetic vector potential. Therefore, in Eq. (2.12) we must

assume that

Adl

dz
¼ Auru

0 þ Arr
0 þ Az (5:139)

So the trajectory differential equation (2.22) will include an additional term:

c
@Ar

@r
r0 þ c

@Az

@r
(5:140)

1General theory of paraxial space-charge beams with curvilinear axis has been developed in the book of

Syrovoy, 2004 (in Russian).
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For the paraxial trajectory we can neglect Ar, and according to Eq. (A3.8) from

Appendix 3, we can write the additional component as

c
@Az

@r
¼ �m0cIr

2pr
(5:141)

where Ir is the beam current within the tube of the radius r ¼ r(z). It is also necessary

to change Eq. (2.29) in the paraxial equation, because in taking the self electric field

into account we must use instead of Eq. (2.28) the equation

divE ¼ 1

r

@(rEr)

@r
þ dEz(0, z)

dz
¼ r

10
(5:142)

Integration of this equation on the cross section of a current tube of a hollow beam

(Fig. 5.14) gives ðr
r0

@

@r
(rEr) dr ¼ �

ðr
r0

r
dEz

dz
dr þ 1

10

ðr
r0

rr dr (5:143)

Here dEz=dz ¼ �w00(0, z) ; �w00. After integration we find that

Er ¼ � r0

r
Ein þ r2 � r20

2r
w00 þ 1

10r

ðr
r0

rr dr (5:144)

where Ein ¼ Er(r0) is the electric field into the beam, which can be nonzero if there

is a charged cylinder inside the beam (Fig. 5.14); r0 ¼ r0(z) is an inner radius of the

beam. The integral on the right side of Eq. (5.144) is expressed in paraxial approxi-

mation through the beam current:

Ir ¼ �
ðr
r0

rvz � 2pr dr ¼ �2pcbz

ðr
r0

rr dr (5:145)

so

Er ¼ � r0

r
Ein þ r2 � r20

2r
w00 � Ir

2pc10rbz

(5:146)

FIGURE 5.14 Hollow axially symmetrical electron beam.
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Using Eq. (5.146), the term @F=@r can be written instead of Eq. (2.29a) as

@F

@r
¼ r0

rbz

Ein � 1� r20
r2

� �
r

2bz

w00 þ Ir

2pc10rb
2
z

(5:147)

Then the radial paraxial equation (2.36a) becomes

F2
z

w�
z þ w0

r00 þ w0r0 � r0

r
Ein þ 1� r20

r2

� �
w00

2
þ c2B(z)2

4(w�
z þ w0)

� 	
r

� c2Q2
1

4(w�
z þ w0)

1

r3
� Jbz ¼ 0 (5:148)

where Q1 ¼ 2Pu=e0 and J is the sum of the additional components determined by

the self-fields [Eqs. (5.141), (5.146)]:

J ¼ Ir

2pcr10b
2
z

� m0cIr

2pr
¼ Ir

I0

2w0

b2
zg

2r
(5:149)

where I0 is the relativistic current. The azimuthal paraxial equation does not depend

on the self fields and coincides with Eq. (2.32). The latter and the terms g and Pu in

Eq. (5.149) [see also Eq. (2.34)] are

u0 ¼ hB

2bzcg
þ Pu

bzcgm0

1

r2

r00 þ g0

b2
zg

r0 þ 1� r20
r2

� �
g00

2b2
zg

þ hB

2bzcg

� �2
" #

r � Kr

r
� Pu

bzcgm0

� �2
1

r3
¼ 0

(5:150)

where

Kr ¼ 2Ir

I0b
3
zg

3
(5:151)

In nonrelativistic approximation (bz ¼
ffiffiffiffiffiffiffiffiffiffi
2hwz

p
=c, g ¼ 1), the coefficient Kr is

reduced to the perveance term:

K(nr)
r ¼ Ir

4p10
ffiffiffiffiffiffi
2h

p
w3=2
z

¼ Pr

4p10
ffiffiffiffiffiffi
2h

p � 1:515� 104
Ir

(w�
z )

3=2
A=V3=2 (5:152)

The coefficient Kr is called a generalized perveance. According to Lawson (1988), if

a background of neutralizing ions is presented, the generalized perveance Kr can be
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expressed as

Kr ¼ Ir

I0

2

b3
zg

3
(1� g2f ) (5:153)

where f is the ratio of the neutralizing charge to the beam charge. Note we can

replace a relativistic factor g in the paraxial equations on the axial factor

g0 ¼ (g)r¼0. This follows from Eq. (5.65).

A nonrelativistic radial paraxial equation is obtained from Eq. (5.150) and differs

from Eq. (2.38) by additional terms which take into account the space-charge field

and the hollow structure of the beam:

r00 þ w0
z

2w�
z

r0 þ 1� r20
r2

� �
w00
z

4wz

þ hB2

8w�
z

� 	
r � Pr

4p10
ffiffiffiffiffiffi
2h

p 1

r

� P2
u

2e0m0w�
z

1

r3
¼ 0 (5:154)

Assume that the cathode angular velocity uc ¼ 0 and that the cathode magnetic field

is uniform. Then according to Eq. (1.124), the azimuthal generalized momentum is

given as

Pu ¼ e0

2p
Cc ¼ e0r

2
c

2
Bc (5:155)

In this case the last terms in Eqs. (5.150), (5.154) are, respectively,

r2chBc

2bzcg

� �2
1

r3
,

hr4cB
2
c

8w�
z

1

r3
(5:156)

It is important that for a laminar beam, the trajectory r ¼ r(z) is the envelope

equation for a beam of radius r. Therefore, Ir as a magnitude of the beam current

within a tube of radius r is constant (i.e., does not depend on z).

5.6.2 Paraxial-Ray Equations of Axially Symmetric Solid Beams

These equations are obtained from Eqs. (5.150) and (5.154) setting r0 ¼ 0. If we

assume that uc ¼ 0 and uniformity of the cathode magnetic field, the radial paraxial

equations according to Eq. (5.156) would be

r00 þ g00
b2
zg0

r0 þ g000
2b2

zg0
þ hB

2bzcg0

� �2
" #

r

� Kr

r
� r2chBc

2bzcg0

� �2
1

r3
¼ 0 (relativistic) (5:157)
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r00 þ w0
z

2w�
z

r0 þ w00

4w�
z

þ hB2

8w�
z

� �
r

� Pr

4p10
ffiffiffiffiffiffi
2h

p 1

r
� r4chB

2
c

8w�
z

1

r3
¼ 0 (nonrelativistic) (5:158)

Let us consider the interesting case of a laminar beam with uniform charge density

r ¼ const. In this case, according to Eq. (5.145),

Ir ¼ I
r2

r2m
(5:159)

where I is the full beam current and rm ¼ rm(z) is an external radius of the beam

(Fig. 5.14). Then the perveance and the generalized perveance are

Pr ¼ P
r2

r2m
, Kr ¼ K

r2

r2m
(5:160)

where

P ¼ I

(w�
z )

3=2
, K ¼ I

I0

2

b3
zg

3
0

(1� g2f ) (5:161)

It is can readily be shown that in nonrelativistic approximation,

K ¼ P

4p10
ffiffiffiffiffiffi
2h

p ð1� f Þ (5:161a)

The values I and rm ¼ rm(z) are the same for all trajectories of the beam. Substituting

Eq. (5.160) into Eq. (5.157) and Eq. (5.155) into the first of Eqs. (5.150), we can

write the paraxial relativistic equations as

u0 ¼ hB

2bzcg0
þ hBc

2bzcg0

r2c
r2

(5:162)

r00

rc
þ g00
b2
zg0

r0

rc
þ g000

2b2
zg0

þ hB

2bzcg0

� �2
" #

r

rc
� K

r2m

r

rc
� hBc

2bzcg0

� �2
r3c
r3

¼ 0 (5:163)

An analogous system can be obtained for the nonrelativistic equation (5.158). We

see that the trajectories determined by these equations are functions of the ratio

r=rc, which means that all paraxial trajectories in a laminar beam with uniform

space-charge density distribution are similar, beginning with the cathode.
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5.6.3 Expansion of a Laminar Beam in a Uniform Drift Tube

Let us consider the expansion of a free electron beam in a drift tube as an example of

the use of paraxial-ray equations. The electron beam enters the tube with beginning

radius (r)z¼0 ¼ r0 and slope (r0)z¼0 ¼ 0. Assume that the external electric and mag-

netic fields are absent, so that in Eq. (5.157), g0 ¼ g00 ¼ B ¼ Bc ¼ 0. We obtain the

following equation for any trajectory in the laminar beam:

r00 � Kr

r
¼ 0 (5:164)

The generalized perveance Kr is determined by Eq. (5.153). Since g ¼ const.,

the perveance is constant. In principle, Kr can have any sign, depending on the mag-

nitudes of g and f. Assume for simplicity that f ¼ 0. Then Kr . 0. The trajectory

r ¼ r(z) can be considered as a boundary of the beam. Note that the equation of a

beam envelope, rm ¼ rm(z), can be obtained if to take r ¼ rm in Eq. (5.163). We

would see that this equation coincides with Eq. (5.164) if we replace r by rm.

Before integrating Eq. (5.164), let us introduce the dimensionless variables

R ¼ r=r0, Z ¼
ffiffiffiffiffiffiffiffi
2Kr

p z

r0
(5:165)

Equation (5.164) becomes

d2

dZ2
¼ R00 ¼ 1

2R
(5:166)

The first integral of this equation with (R)Z¼0 ¼ 1 and (R0)z¼0 ¼ 0 after multiplying

on R0 is equal to

dR

dZ
¼ R02 ¼ lnR (5:167)

Let us enter the auxiliary function

F ¼
ffiffiffiffiffiffiffiffi
lnR

p
(5:168)

Then R0 ¼ F. According to Eq. (5.168), R ¼ eF
2

. Differentiating this equation with

respect to Z, we obtain

R0 ¼ F ¼ 2FF0eF
2

(5:169)

Canceling F out of Eq. (5.169) and integrating with respect to Z and F gives

Z ¼ 2

ðF
0

eF
2

dF ¼ 2

ð ffiffiffiffiffiffi
lnR

p

0

eF
2

dF (5:170)
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The low limit of the integral for R ¼ 1 is found from Eq. (5.168). In the literature the

integral

D(x) ¼ e�x2
ðx
0

et
2

dt (5:171)

is known as the Doson integral. Tabulated values of the integral can be found in

Abramowitz and Stegun (1972).

A function R ¼ R(Z) covers the dependence r ¼ r(z) for all possible values of the

beam parameter. The corresponding universal beam extension curve is shown in

Fig. 5.15. Note that in the vicinity of the point Z ¼ 0, R � 1 and R0 	 1. In this

region the upper limits of the integral in Eq. (5.170) are
ffiffiffiffiffiffiffiffi
lnR

p � ffiffiffiffiffiffiffiffiffiffiffiffi
R� 1

p
and

F 	 1. Therefore, the approximation of Eq. (5.170) is Z � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
R� 1

p
, and the func-

tion R(z) is the parabola

R ¼ 1þ 1

4
Z2 ¼ 1þ Kr

2

z

r0

� �2

(5:172)

The curve in Fig. 5.15 allows us to determine the profile of the beam for any initial

conditions and any perveances. Let us, for example, assign the perveance, initial

beam slope r0, and radius r0. We obtain R0 ¼ r0=r0 and according to Eq. (5.167),

R ¼ eR02
and r ¼ Rr0. Using R we can find a corresponding point M on the curve

in Fig. 5.15. The abscissa ZM for the given perveance determines the coordinate

z ¼ r0ZM=
ffiffiffiffiffiffiffiffi
2Kr

p
. Now, moving point M in any direction along the curve, we

obtain the current values of Z and R (i.e., a beam profile with a positive or negative

slope). For a negative slope the curve determines the profile until the point z ¼ 0,

where the beam radius is minimal. The profile of the beam in Z , 0 is obtained

as a symmetric continuation of the curve from Z . 0.

5.6.4 Transfer of a Maximal Beam Current Through a Drift Tube
Without External Fields

In Fig. 5.16 a drift tube of length L and radius rT is depicted. Trajectories of the par-

ticles with initial slope too small and too large are shown. As we see in both cases,

the particles are quickly intercepted by the tube wall.

FIGURE 5.15 Universal beam extension curve.
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The following setting of the problem is convenient. Place the origin of coordi-

nates z ¼ 0 in the middle plane of the tube. It can be assumed that the beam

profile is symmetric about a middle plane of the tube. Then we can choose the

origin coordinate in this plane and require that the boundary trajectory touch

the tube in the plane z ¼ +L=2, (i.e., rz¼+L=2 ¼ rT ; Fig. 5.16). According to

Eqs. (5. 170) and (5.165), we have

L

2r0

ffiffiffiffiffiffiffiffi
2Kr

p
¼ 2

ðFT

0

et
2

dt (5:173)

where FT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln (rT=r0)

p
. r0 is the beam radius in the plane z ¼ 0. Let us write

Eq. (5.173) as

L

4rT

ffiffiffiffiffiffiffiffi
2Kr

p
¼ e�F2

T

ðFT

0

et
2

dt (5:174)

This formula allows us to find the beam perveance for any given parameters L, r0,

and rT .

The condition of the maximum Kr is

d

dFT

e�F2
T

ðFT

0

et
2

dt

� �
¼ 0

This condition gives

e�F2
T

ðFT

0

et
2

dt ¼ 1

2
FT (5:175)

The numerical solution of this equation is (FT )opt ¼ 0:924. That gives us

rT=r0 ¼ e(0:924)
2 � 2:35. The extreme generalized perveance according to

Eqs. (5.174) and (5.175) is

(Kr)ext ¼
2

F2
T

rT

L

� �2
� 2:34

rT

L

� �2
(5:176)

FIGURE 5.16 Transfer of a beam through a drift tube.
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The nonrelativistic perveance is [see Eq. (5.161a)]

Pext ¼ 8p10
ffiffiffiffiffiffi
2h

p

F2
T

rT

L

� �2
� 155� 10�6 rT

L

� �2
(5:177)

Corresponding values of the beam current are

Iext ¼
1:17I0b

3g3
rT

L

� �2
kA (relativistic)

155� 10�6(f�
z )

3=2 rT

L

� �2
A (nonrelativistic)

8><>:
(5:178)

(5:179)

As we see, the current diminishes very quickly with increased drift length L. So for

L=rT ¼ 10, f�
z ¼ 1000 V and Iext � 50 mA.

A slope of the beam boundary trajectory in the plane z ¼ L=2 according to

Eqs. (5.165) and (5.169) is

dr

dz
¼

ffiffiffiffiffiffiffiffi
2Kr

p dR

dZ

� �
z¼L=2

¼
ffiffiffiffiffiffiffiffi
2Kr

p
FT (5:180)

Substitution
ffiffiffiffiffiffiffiffi
2Kr

p
from Eq. (5.174) gives

dr

dz
¼ 4rT

L
FTe

�F2
T

ðFT

0

et
2

dt (5:181)

Taking Eq. (5.175) into account, we find that

dr

dz
¼ rT

L=2
(5:182)

Thus, to provide passage of the beam through the drift tube with maximum per-

veance, a tangent to the beam boundary trajectory in an input plane of the tube

must be directed to the tube center (Fig. 5.16).

5.7 AXIALLY SYMMETRIC PARAXIAL BEAMS IN A UNIFORM
MAGNETIC FIELD WITH ARBITRARY SHIELDING OF A
CATHODE MAGNETIC FIELD

In Section 5.6 we analyzed the transport of a paraxial beam in a drift tube without

external fields as an example of the use of paraxial equations. Below we add to this

model an external uniform magnetic field. In general, trajectories of those beams,

unlike the foregoing, will oscillate and the beam will be rippled. The problem is

to find the conditions for sufficiently small rippling of the beams for a given

initial perturbation. Solution of this problem is always important in designs and

experiments.
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5.7.1 Paraxial-Ray Equation of an Axially Symmetric Laminar Beam
in a Uniform Magnetic Field and Its First Integral

For a zero external electric field we can assume that g ¼ g0 ¼ const:, in the relati-

vistic equation (5.157). We obtain the following paraxial-ray equation:

r00 þ hB

2bzcg0

� �2

r � Kr

r
� r2chBc

2bzcg0

� �2
1

r3
¼ 0 (5:183)

The nonrelativistic equation differs from Eq. (5.183) only by the coefficients:

g ! 1, b2
z c

2 ! 2hw�
z , Kr ! Pr

4p10
ffiffiffiffiffiffi
2h

p (5:184)

After multiplication of Eq. (5.183) by 2r0, we obtain the following first integral:

r0
2 ¼ r0

2

0 þ hB

2bzcg0

� �2

(r20 � r2)þ 2Kr ln
r

r0
þ r2chBc

2bzcg0

� �2
1

r20
� 1

r2

� �
(5:185)

where r0 and r
0
0 are initial values of r and r

0, respectively. The motion determined by

Eq. (5.185) is finite. As is readily verified, an increase in the radius by more than

some value of rmax or a decrease by less than some value of rmin results in

r02 , 0, so that rmin 
 r 
 rmax (Fig. 5.17).

5.7.2 Equilibrium Radius of an Electron Beam

The equilibrium radius is a beam radius re on which r00e ¼ 0 (i.e., all forces acting

on the beam are balanced). According to Eq. (5.183), the following equation deter-

mines the equilibrium radius:

r4e � Kr

2bzcg0
hB

� �2

r2e � r4c
Bc

B

� �2

¼ 0 (5:186)

FIGURE 5.17 Electron trajectory in a uniform magnetic field.
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The corresponding equation for a nonrelativistic beam differs by a coefficient less

than r2e , which according to Eq. (5.184) isffiffiffi
2

p
Prw

�
z

p10h3=2B2
(5:187)

Let us consider two particular cases:

1. Zero current, Ir ¼ Kr ¼ Pr ¼ 0. Denoting the equilibrium radius for this case

as re ¼ ra, we obtain from Eq. (5.186)

ra ¼ rc
Bc

B

� �1=2

(5:188)

According to this relation, magnetic fluxes through the beam cross section on the

cathode and on a circle with radius ra are equal (i.e., a particle on the equilibrium

radius beginning at the cathode moves along the magnetic flux surface).

2. The cathode is shielded from the magnetic field Bc ¼ 0, but Ir = 0. Denote

the equilibrium radius as re ¼ rb. According to Eq. (5.186),

r2b ¼ Kr

2bzcg0
hB

� �2

¼ Ir

I0

8c2

h2B2bzg0
(5:189)

In nonrelativistic approximation using Eq. (5.184), we obtain

r2b ¼ Pr

ffiffiffi
2

p

p10h3=2B2
w�
z ¼ Ir

ffiffiffi
2

p

p10h3=2B2
ffiffiffiffiffi
w�
z

p (5:190)

Let us compare the equilibrium radius [Eq. (5.189)] with the radius of the equili-

brium (nonrippled) solid Brillouin beam. According to Eq. (5.189),

Ir ¼ I0
h2B2r2bbzg0

8c2
(5:191)

On the other hand, according to Eq. (5.73), the current of a solid equilibrium

relativistic beam is

Ir ¼ I0
bzg0
2

g2r
g20

� 1

� �
Substituting

g2r
g20

� 1 ¼ v2r2g2r
c2
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from Eq. (5.71), we obtain

Ir ¼ I0
v2r2bzg0g

2
r

2c2
(5:192)

where the angular velocity v in general is a function of the radius (unlike

the angular velocity in a nonrelativistic beam). If we assume as in the nonrelati-

vistic case that v ¼ vc=2 ¼ hB=2gr, Eq. (5.192) would coincide with Eq. (5.191).

But this assumption in general is not correct. Thus, the equilibrium radius of a

magnetic shielded cathode for relativistic beams in general does not coincide

with the radius of an unrippled Brillouine beam. For nonrelativistic beams, as

we have seen, the two radiuses are equal.

Let us estimate a change in the equilibrium radius as a function of the magnetic

field and beam current. Replacing coefficients in Eq. (5.186) through the radiuses ra
and rb, we obtain the equation

r4e � r2br
2
e � r4a ¼ 0 (5:193)

Let us write the solution of this equation in two forms:

re ¼
rb

1þ (1þ 4r4a=r
4
b)

1=2

2

� 	1=2

ra 1þ r4b
4r4a

� �1=2

þ r2b
2r2a

" #1=2

8>>>>>><>>>>>>:
(5:194)

(5:195)

According to Eqs. (5.194) and (5.195), the equilibrium radius re � rb when

ra=rb 	 1, but re � ra when ra=rb .. 1. Consider some particular cases.

1. Small Magnetic Field. Because rb � 1=B and ra � 1=
ffiffiffi
B

p
, the ratio

ra=rb 	 1, so that when the magnetic field decreases, the equilibrium radius re,

being greater than rb, approaches rb. Note that for a small magnetic field

and a large current, the radius rb is large. However, the current

density is small. Therefore, too great a diminution of the magnetic field is not

acceptable.

2. Small Beam Current. The radius rb decreases but ra does not change. There-

fore, re, being greater than ra, approaches ra.

3. LargeCathodeMagneticField. According toEq. (5.188), the radius ra increases

but rb does not change. So for large Bc, re, being more than ra, approaches ra.
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5.7.3 Stiffness of an Electron Beam. Frequency and Wavelength of
Small Ripples

Let us rewrite Eq. (5.185) assuming that the initial radius equals the equilibrium

radius (i.e., r0 ¼ re). According to Eqs. (5.188) and (5.193) we have

r4cB
2
c ¼ r4aB

2 ¼ B2(r4e � r2e r
2
b) (5:196)

Replacing r0 in Eq. (5.185) with re and using Eqs. (5.196) and (5.190), we obtain

R02 ¼ R02
e þ KB 2� R2 � 1

R2

� �
þ Kr

r2e
lnR2 þ 1

R2
� 1

� �
(5:197)

where R ¼ r=re, R0
e ¼ r0e=re, and KB ¼ (hB=2bzcg)

2. The extreme values of R are

found from the condition R0 ¼ 0. That gives a transcendental equation determining

Rmax and Rmin as functions of R0
e, KB, and Kr. Note that these parameters do not

depend on z. It proves that the rippled beam is periodical. Integration of

Eq. (5.197) is possible in general only by numerical methods. However, assuming

small ripples (r ; Dr=re 	 1), it is easy to obtain the solution in closed form.

Expansion of Eq. (5.197) in a power series on r and neglecting quantities of

order greater than 2 gives the equation

R02 ¼ R02
e � 4Kb 1� r2b

2r2e

� �
r2 ¼ R02

e � vg

vz

� �2

1� r2b
2r2e

� �
r2 (5:198)

where vg ¼ hB=g is a gyrofrequency. The extreme amplitude of the ripples is

rmax ¼
R0
e

S
or Drmax ¼ r 0e

S
(5:199)

A quantity S ¼ r0=Drmax in general is called beam stiffness. One characterizes a

capacity of the beam to conserve its form in the presence of perturbations. In our

case the stiffness is

S ¼ vg

vz
1� r2b

2r2e

� �1=2

(5:200)

This quantity has dimensions of inverse length. Note that for the shielding cathode,

re ¼ rb and S ¼
ffiffi
2

p
2

vg

vz
. That is a minimal beam stiffness because in a nonzero

cathode field according to Eq. (5.194), rb=re , 1. The maximum stiffness takes

place for zero current (rb ¼ 0), Smax ¼ vg=vz.
Equation (5.198) shows that the beam envelope accomplishes harmonic oscil-

lations. Differentiation of this equation with respect to z and taking r 	 1 into
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account gives the differential equation of a linear harmonic oscillator:

€rþ S2v2zr ¼ 0 (5:201)

The frequency of the small envelope oscillation is

v ¼ Svz ¼ vg 1� r2b
2r2e

� �1=2

(5:202)

The frequency in the absence of space charge (rb ¼ 0) is equal to the relativistic

gyrofrequency. The ripple wavelength is

l ¼ 2p

v
vz ¼ 2pvz

vg(1� r2b=2r
2
e )

1=2
(5:203)

5.8 TRANSPORT OF SPACE-CHARGE BEAMS IN SPATIAL
PERIODIC FIELDS

5.8.1 Introduction

The methods of beam focusing considered earlier in fact do not solve the transport

problems of space-charge beams over a long distance, a vital problem in microwave

electronics and accelerator physics. The maximum beam current that can be trans-

ferred due to inertial focusing (i.e., focusing without external fields) is diminished

inversely proportional to the square of the transport length (Section 5.6.4). Also in

this case, too high precision of the beam launching must be provided. In principle,

transport of a space-charge beam in a uniformmagnetic field is possible over any dis-

tance. However, implementation of the corresponding magnetic system is very diffi-

cult in practice. In Fig. 5.18 the magnetic force lines of a long solenoid are depicted.

As can be seen, the lines diverge in a radial direction over a distance on the order of

the solenoid length L. Hence, a volume occupied by the magnetic field and corre-

spondingly, the magnetic field energy, are quantities of order L3. The solenoid

weight is also proportional to L3, and there is large external leakage of the field.

FIGURE 5.18 Magnetic force lines.
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Now let us consider a case of magnetic field reverse: two closely placed solenoids

with an opposite the magnetic directions of the axial magnetic field (Fig. 5.19). As

we see, the directions of the magnetic force lines on the periphery of the solenoids

are opposite and cancel each other out. Therefore, a summary volume of the mag-

netic field is approximately equal to the doubled volume of a single solenoid field

with length L=2 [i.e., proportional to 2(L=2)3 ¼ 1
4
L3�. On the other hand, since the

magnetic term in the equations of paraxial trajectories is proportional to B2 [see,

e.g., Eq. (5.183)], the trajectories in the reverse system are the same as in a

uniform magnetic field with an equal total solenoid length. So use of the reverse

system gives fourfold saving, on the order of the magnitude of the solenoid

weight and the magnetic energy. This result is also true for a reverse system of per-

manent magnets.

Let us continue this concept and take a system of N identical short close-placed

solenoids with alternately opposite magnetization (Fig. 5.20). We again conclude

that the paraxial trajectories in this periodical system would not differ from the tra-

jectories in a single solenoid of the same total length. Assume that the magnetic

energy and weight of each solenoid are both P ¼ k(L=N)3, where L is the total

length of the system. The total magnetic energy and the weight of the system

would be PN ¼ k(1=N2)L3. Thus, the use of a periodic system of N magnets gives

an approximate N2-fold saving in weight and energy consumption of the system.

FIGURE 5.19 (a) Two solenoids with opposite directions of the magnetic field; (b) distri-

bution of an axial magnetic field in an idealized reverse system.

FIGURE 5.20 Idealized distribution of an axialmagnetic field in amagnetic periodical system.
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The real distribution of a magnetic field is essentially different from the idealized

distribution and correspondingly, the transport characteristics of a periodic system

are much more complicated. A periodic magnetic system can be considered as a

lattice of short magnetic lenses. According to Section 2.6, each lens is convergent.

The focusing effect balances the effect of the space-charge field. But, in general, this

system is unstable: The ripples can grow indefinitely as a function of distance.

Nevertheless, analysis of the beam stability allows us to choose the proper range

of initial and system parameters, providing beam stability. As result, transport of

a stable rippled beam is attained.

Related to the magnetic focusing is periodic electrostatic focusing. In this case

the beam in general is transferred by a periodic system of electrostatic immersion

or unipotential lenses. As shown in Section 2.5.2, all these lenses are convergent,

and their electric field can balance the space-charge force. As a result, transport

of long space-charge beams is possible. Many electrostatic periodic system versions

have been proposed, and corresponding theory has been developed (basically in the

1950s; see, e.g., Kirstein et al., 1967; Tien, 1954; Cook et al., 1957; Hoggs, 1958;

Waters, 1960). Outlines of some systems are given below.

In Fig. 5.21, two electrostatic focusing systems with axially symmetric electron

beams are represented. The system shown in Fig. 5.21a is a periodic sequence of

immersion lenses. Each lens is formatted by two metal rings with different potentials

wa andwb. According to Kirstein et al. (1967), the equilibrium perveance of the beam is

P � 110
(wb � wa)

2

(wb þ wa)
2

r0

L

� �2 1

I20 (2pb=L)

sin (2pd=L)

2pd=L

� 	2
micropervs (5:204)

where r0 is a beam radius and I0 is a modified Bessel function.

A bifilar helix spiral system is shown in Fig. 5.21b. The potential difference

between the spirals forms a periodical electric field similar to a lens system. This

system was proposed by Tien (1954). The interesting property of bifilar helixes is

its applicability simultaneously as a focusing system and as a slow-wave electrody-

namic TWT or BWO structure.

Two electrostatic periodic systems for the transport of sheet beams are illustrated

in Fig. 5.22. The system shown in Fig. 5.22a is formed by the lattice of tape lines

FIGURE 5.21 Electrostatic periodic axially symmetric focusing systems: (a) rings with

alternatively changed potential; (b) bifilar bipotential helix spiral.
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above the plane base (Waters, 1960). The tapes alternating potentials wa and wb. The

equilibrium position of the rippled electron beam is determined by the relation

(Kirstein et al., 1967).

(wb � wa)
2

j(wb þ wa)E0jpL
sinh (4py0=L)

cosh2 (2pb=L)

sin (2pd=L)

2pd=L

� 	2
� 1 (5:205)

where E0 is the average electric field between electrodes. An important virtue of this

system is the possibility of using the unipotential lower electrode as an electrody-

namic structure in microwave devices with distributed parameters similar to

TWTOs and BWOs. Disadvantages of the system are the requirement for three

different electrode potentials and the very critical beam adjustment conditions.

The structure in Fig. 5.22b is called Slalom focusing. A deflection type of focus-

ing system (Kirstein et al., 1967; Cook et al., 1957; Hoggs, 1958) was invented by

Compfner et al. The system contains a series of equidistant-spaced wires with equal

potentials between two parallel plates with another potential. It is interesting that the

electron trajectory is close to one of the equipotential surfaces. As can be shown

(Kirstein et al., 1967), the perveance of the slalom system is

P � 200
S

L2
mperv (5:206)

were S is the area of a beam cross section. The basic difficulty of slalom focusing is

very strong criticality of a trajectory with respect to injection conditions.

A common disadvantage of electrostatic periodic systems is the impossibility of

their use in focusing of high-voltage beams. Even in a nonrelativistic range of

energy the small distance between electrodes in a periodic system and the nearness

of the system itself to the beam increase the probability of an electric breakdown and

limit the energy and power of the beam. Magnetic focusing has far wider appli-

cations, especially periodic permanent magnetic focusing on the highly effective

permanent-magnet base materials.

Periodic magnetic systems have found exceptional use in the transport of relati-

vistic beams. In the range of extreme relativistic energies, in particular for accelera-

tors of charged particles, the systems are used on the base of quadrupole and

multipole lenses (see Section 2.9). In this aspect, such properties of these lenses

FIGURE 5.22 Electrostatic periodic systems focusing sheet beams: (a) asymmetrical elec-

trode system; (b) slalom focusing system.
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as strong focusing and linearity of the focusing (transversal) forces to provide

support for beams with very low emittance are the most important. In large accel-

erators, basically FODO lattices are used, containing up to hundreds of sections.

Below we limit ourselves to an analysis of focusing only in a periodic axially sym-

metric magnetic field.

5.8.2 Magnetic Periodic Focusing

Periodic Focusing System with Permanent Magnets A typical axially sym-

metrical periodic permanent-magnet system (PPM) is depicted in Fig. 5.23. Perma-

nent magnetic rings are usually manufactured from an effective magnetic alloy such

as SmCo or NdFeB. The rings are magnetized in the axial direction with alternately

changing polarity, and separated by ferromagnetic inserts from soft-magnetic

material. This construction provides some regularization of axial magnetic field dis-

tribution. Note that a distribution of the axial magnetic field created by a magnetic

ring is essentially irregular. In particular, there are large backswings where the field

changes sign (Fig. 5.24a). The presence of backswings is explained by the follow-

ing. A schematic pattern of molecular currents in the volume of the magnetized ring

is shown in Fig. 5.24b. As we see, the adjacent molecular currents into a volume of

the magnets are concealed from each other. Two unbalanced currents remain that

flow in opposite directions along the boundaries of the ring. These currents can

FIGURE 5.24 (a) Axial magnetic field distribution of a magnetized element of a PPM

system; (b) pattern of PPM micromagnetization.
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be considered as a source of the magnetic field. The magnetic field of an interior

current on a contour of smaller radius is stronger in the central plane than the

field of the outer current. However, the field of the interior current decreases

faster with distance from the central plane. Therefore, the sign of the axial field is

changed within some distance. The soft-magnetic inserts regularize the field distri-

bution. It can be shown that the distribution of the axial magnetic field is approxi-

mately sinusoidal:

B ¼ Bm cos
2pz

L
(5:207)

Periodic Focusing in a Sinusoidal Magnetic Field A relativistic equation of the

paraxial trajectory can be obtained by substituting Eq. (5.207) in Eq. (5.183):

r00 þ hBm

2bzcg0

� �2

r cos2
2pz

L
� r2chBc

2bccg0

� �2
1

r3
� Kr

r
¼ 0 (5:208)

A nonrelativistic equation follows Eq. (5.208) using Eqs. (5.184). It is convenient to

transform Eq. (5.208) to dimensionless form. Let us define the following dimension-

less variables (the corresponding coefficients for the nonrelativistic equation are

given if they are different from the relativistic ones):

Z ¼ 2p

L
z (a length) (5:209)

R ¼ r

re
(a radius) (5:210)

where re is the equilibrium radius.

a ¼ 1

2

hBmL

2pbzcg0

� �2

,
hB2

mL
2

64p2w�
z

� �
(parameter of the periodic magnetic field) (5:211)

KB ¼ r 4c B
2
c

r 4e B
2
m

(parameter of the cathode shielding) (5:212)

b ¼ KrL
2

4p2r2e

PrL
2

16p310
ffiffiffiffiffiffi
2h

p
r2e

� �
space-charge parameter (5:213)

Equation (5.208) then becomes

d2R

dZ2
þ a(1þ cos 2Z)R� 2aKB

R3
� b

R
¼ 0 (5:214)
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This is a nonlinear second-order differential equation with a periodic coefficient. Let

us linearize the equation mean about the small ripples. Assume that

R ¼ r

re
¼ re þ Dr

re
¼ 1þ r (5:215)

where r ¼ Dr=re 	 1. Substituting R into Eq. (5.214) and omitting the terms with

rn of order n . 1, we obtain the following linear differential equation:

d2r

dZ2
þ (aþ 6aKB þ bþ a cos 2Z)r ¼ 2aKB þ b� a(1þ cos 2Z) (5:216)

A general solution of this inhomogeneous equation can be represented as a sum of a

general solution rh of the homogeneous equation and a partial solution ri of the
inhomogeneous equation:

r ¼ rh þ ri (5:217)

Let us write the homogeneous equation in the form

d2y

dx2
þ (a� 2q cos x) ¼ 0 (5:218)

where

y ¼ r, x ¼ Z, a ¼ aþ 6aKB þ b, q ¼ �a

2
(5:219)

Equation (5.218) is a standard form of aMathieu equation (see, e.g., Abramovitz and

Stegan, 1972). A general solution of the Mathieu equation according to the Floquet

theorem (a general theorem for differential equations with periodical coefficients) is

y ¼ C1e
mxP(x)þ C2e

�mxP(�x) (5:220)

where P(x) is a function with period p. That corresponds to a period of the envelope
rippling equal to a half-period L of the magnetic system. The parameter m, in
general, is a complex constant. If Re m = 0, the function y(x) is increased infinitely

for x ! 1, which indicates beam instability. In this case the amplitudes of the

ripples increase but the period remains L=2. In principle, it is possible to eliminate

of from the coefficients Ci by proper choice of an initial condition and to obtain a

bounded solution. However, this solution will in the end be unstable because an arbi-

trarily small addition of the coefficient that is eliminated again leads to an exponen-

tial grow of ripples. If Re m ¼ 0, the solutions are stable; that is, the functions

y(x) are bounded for x ! 1 and the envelope oscillates with a period L=m that

depends on the values of the constants a and q. Let us call these oscillations
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free ripples. Values of the parameters a and q corresponding to stable (periodic) or

unstable solutions form connective regions in the (q,a) plane. In Fig. 5.25, the cor-

responding Mathieu stability diagram is shown. The shaded parts mark unstable

regions. Note that solutions of the Mathieu equation that correspond to boundaries

between stable and unstable regions are functions with period p or 2p (Mathieu

functions).

First, let us consider a case of ideal cathode magnetic shielding and neglect by

space charge (i.e., assume that the parameters KB ¼ Kr ¼ b ¼ 0) [see Eqs.

(5.212) and (5.213)]. Then according to Eq. (5.219),

a ¼ aþ 6aKB þ b ¼ a ¼ �2q (5:221)

In this case Eq. (5.214) is linear for any R. Let us trace the stability of a beam with

changing amplitude Bm of the magnetic field. According to Eqs. (5.221) and (5.211),

the parameter q is negative, and when we change Bm we move along the straight line

a ¼ �2q in the left half-plane of the stability diagram (dashed line in Fig. 5.25). As

can be seen from Fig. 5.25, we are in the first stability zone, beginning witha¼ q¼ 0

until q��0:3 (i.e., a¼�2q� 0:6). For better accuracy one can use an equation for
the upper boundary of the first stability zone 86]:

a¼ 1þ q� q2

8
� q3

64
� � � � (q, 0) (5:222)

Then taking Eq. (5.221) into account, we obtain a� 0:66. For a. 0:66 we find our-
selves in an unstable zone, and the trajectories diverge. That effect is similar to the

phenomenon of multifocusing in magnetic lenses (Section 2.7.2). For too large a

magnetic field, the trajectory can leave the first lens under an angle greater than an

FIGURE 5.25 Mathieu stability diagram. Shaded parts are unstable zones. Dashed curve,

Kr ¼ b ¼ 0; dash-dotted curve, Kr . 0, b . 0.
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entrance angle (Fig. 2.17); in the second lens this effect is repeated; and so on. Recall

that it was a case of zero space charge. For b. 0 the value of the parameter a can

be positive even for Bm ¼ a¼ 0, and we can skip the first stable zone. Then it

is necessary to use higher stability zones, and considerable more values Bm can be

required.

For a space-charge beam and nonzero cathode magnetic field (b = 0, Br = 0),

we obtain from Eq. (5.219),

a ¼ �2q(1þ 6KB)þ b (5:223)

The corresponding straight line is shown in Fig. 5.25 as a dash-dotted line. As we

see, the upper boundary of stability shifts to values jqj , 0:33 and a . 0:66 (i.e.,

maximum permission amplitudes Bm are reduced with an increase in the cathode

magnetic field).

It is necessary to take this assertion into account as applied to the solution of the

homogeneous linear equation. For a final conclusion about the stability of the beam,

it is necessary first, to estimate a contribution of the right side in the solution of Eq.

(5.216) (i.e., the particular solutions of the inhomogeneous equation), and second, to

evaluate the influence of the nonlinearity in the original equation [Eq. (5.208)].

The right side of Eq. (5.216) contains two terms:

ri ¼ A1 þ A2 ¼ �a cos 2Z þ (2aKB þ b� a) (5:224)

It is readily seen that the influence of the term A1 in the stable zone is equivalent to

nonresonance excitation of the oscillatory circuit. This effect combines with free

beam rippling and increases total beam rippling. Therefore, it is advisable to use

not too large values of a. That simplifies the magnetic system and removes

parameter a from the boundary of an unstable zone.

The component A2 in Eq. (5.224) plays a part in the constant force that strives to

widen the beam. This effect is minimal for the equilibrium condition when

2aKB þ b� a ¼ 0 or a ¼ b

1� 2KB

(5:225)

Since the space-charge parameter b . 0, the equilibrium parameter of the mag-

netic field a will be positive if the shielding parameter KB , 1
2
. Note that a decrease

in KB reduces the required equilibrium value a (i.e., the amplitude Bm).

Let us write the equilibrium condition (5.225) in an explicit form using Eqs.

(5.211)–(5.213):

hBmL

4pbzcg0

� �2
r4cB

2
c

r4eB
2
m

þ KrL
2

4p2r2e
� 1

2

hBmL

4pbzcg0

� �2

¼ 0 (5:226)
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This is the equation for an equilibrium radius re that we can write as

r4e � r2bmr
2
e � r4am ¼ 0 (5:227)

where

r2bm ¼ Kr

2bzcg0

hBm=
ffiffiffi
2

p
� �2

(5:228)

ram ¼ rc
Bc

Bm=
ffiffiffi
2

p
� �1=2

(5:229)

We see that the equilibrium condition for a periodic magnetic field coincides with

the equilibrium condition for the beam in a uniform magnetic field B ¼ Bm=
ffiffiffi
2

p
[Eq. (5.193)]. In particular, for a zero cathode magnetic field (ram ¼ 0); the equili-
brium radius rbm is equal to the radius of the Brillouin beam in the uniform magnetic

field B ¼ Bm=
ffiffiffi
2

p
.

Nonlinear Effects Analysis of a linearized equation with the exception of the case

Bc ¼ b ¼ 0 can give only trends for changing the ripples. In fact, even unbounded

growth of the ripples in an unstable zone as a consequence of a linear Mathieu

equation does not yet mean real loss of stability (i.e., does not exclude the possibility

to establish the stabilization with finite values of R). Taking nonlinearity into

account requires numerical computations. This design and an approximate analyti-

cal solution for the search of minimal ripples were undertaken by Harker (1955).

These investigations have given not only general results but also concrete values

for the amplitudes of rippling for different values of the system parameters.

Numerical solutions of nonlinear equations have been found by Harker directly

on an analog computer with initial condition (dR=dZ)Z¼0 ¼ 0. Particular values

a, KB, and b were determined from the need to obtain minimal ripples. Analytical

solutions were close to computed solutions when the trial solution was taken as

R ¼ 1� aþ a cos 2Z (5:230)

where the parameter a is the ripple amplitude. Note that this form of the beam cor-

responds to the nonresonance excitation of the envelope oscillations by the force on

the right side of Eq. (5.216). Some results obtained (Harker, 1955) are the following.

1. Stable solutions of Eq. (5.214) continue to exist when the parameter of a per-

iodic magnetic field a becomes greater than 0.66. In general, that is a consequence

of the nonlinearity because deleting the nonlinear terms in Eq. (5.214) returns this

equation to Mathieu form with Eq. (5.221) or (5.223).

2. Ripples of the beam are decreased with increased cathode shielding. However,

even for full magnetic shielding of the cathode, minimal ripples can be too large, and
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the parameter a of the cathode magnetic field must be chosen considerably lower

than the critical value 0.66.

3. The presence of a cathode magnetic field in beams with a small space charge

significantly reduces the maximum permissible values of a.

4. No minimal ripple solutions were obtained for KB . 1
2
, which corresponds to

Eq. (5.225).

The theory of PPM focusing described here may be used as a starting design

point. The final versions are usually obtained as a result of a numerical design

and empirical experimental adjustment.

In concluding this section, let’s compare some properties of focusing using a

uniform magnetic field and permanent periodic magnets for the same lengths of

both systems and the same root mean square value of the average magnetic field.

1. PPM systems provide values of a perveance and a beam stiffness comparable

with those in a uniform magnetic field.

2. PPM systems are much lighter and have considerable lower external magnetic

field leakage.

3. PPM systems do not require a power supply. Permanent magnets with a

uniform magnetic field are also independent of the power supply, but their cost

and weight is much higher.

One of the substantial advantages of PPM systems over electrostatic focusing

systems in microwave devices is the possibility of design and optimization of the

parameters (including experimental adjusting) independent of electrodynamic

properties of systems.
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PART II

MICROWAVE VACUUM
ELECTRONICS

The history of radio electronics from the very beginning (late nineteenth to early

twentieth centuries) was to a certain extent a history of the search for sources with

increasing frequencies and electromagnetic radiation power. The first step in the found-

ation of vacuum radio electronics was undoubtedly the discovery by Thomas Edison in

1880 of the effect of unipolar conductance: Evacuated light bulbs with a second elec-

trode would allow current to flow in one direction. Using the Edison effect in 1904,

John Fleming invented a vacuum diode as a detector of electromagnetic oscillations.

By 1907, Lee de Forest had created a three-electrode vacuum tube. This device,

called the Audion, was the first successful electron amplifier. Since 1907, arrays of

different electron tubes with permanently increased frequency and power of electro-

magnetic radiation have been invented. However, until the 1920s, vacuum electronics

was of low-frequency type. At that time, principles of the electron tubes were founded

implicitly with the following restrictions.

1. Quasistationarity of a working space where an electron beam interacts with a

high-frequency field. The electromagnetic field does not change while light is

passing through an interaction space: that is,

tc 	 eT (PII:1)

where tc is the light transit time andeT is a specific time of field change. For a periodic

signal,eT ¼ T , whereT is the period. Then criterion (PII.1) is equivalent to the condition

li 	 l (PII:2)
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where li and l are a length of theworking space and awavelength of the radiation in the
free space, respectively. It is clear that shortening the wavelength leads at the end to an

unacceptable reduction in the working space.

2. Quasistationarity of device leads. Lengths of open sections lout in the devices

outside the electron beam are small compared to the wavelength:

lout 	 l (PII:3)

In the opposite case, radiation emerges, and the leads work as antennas.

3. Noninertia of electrons. The electromagnetic field interacting with the

electrons is not changed for the time te of the electron transit through the working

space:

te 	 eT (PII:4)

This condition can be written analogous to Eq. (PII.2) as

li 	 lb (PII:5)

where b ¼ v=c. Effects connected with violation of the criterion (PII.4) are called

transit-time effects.

Microwave electronics originates as a result of overcoming at least one of these

restrictions. Note that conditions (PII.4) and (PII.5) are stronger than (PII.1) and

(PII.2) if the microwave devices are not relativistic. Thus, in general, transit-time

effects determine a low-frequency boundary fL of the microwave range. For

f . fL, the high-frequency electric field is not static, and the energy integral is not

conserved.

Example PII.1 Let w ¼ 3 kV, l ¼ 10 cm ( f ¼ 3 GHz), li ¼ 1 cm, v ¼ ffiffiffiffiffiffiffiffiffi
2hw

p �
3:2� 107 m=s.

Then tc ¼ li=c � 3� 10�11 s, T ¼ l=c � 3� 10�10 s, and te ¼ li=v �
3� 10�10 s. We see that the condition (PII.1) is fulfilled, whereas the condition

(PII.4) is not true, and we find that we are in the microwave range. Note that the

restriction (PII.4) is important for vacuum electronics. Therefore, strictly speaking,

the term microwave electronics is inherent to vacuum electronics. For solid-state

electronics, the term ultrahigh-frequency electronics would perhaps be more

appropriate.

The low-frequency boundary of the microwave range is rather relative and is

determined by the specific dimensions of the devices and by the electron

energy. Conventionally, the microwave range is 300 MHz to 3000 GHz. The

upper limit of the microwave is the boundary between the submillimeter-wave

and infrared spectrums. Thus, the frequency overlap in the microwave range is

104. Note that in the acoustic range, the frequency overlap is 103, and in the

optical range it is 2.
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The standard notation of frequency bands for the microwave spectrum is presented

in Table PII.1 and Fig. PII.1 (see, e.g., Gilmour, 1986). Here:

. Bands B and C (300 MHz to 1 GHz) form the ultrahigh-frequency (UHF)

range.

. Bands D to I (1 to 10 GHz) form the superhigh-frequency (SHF) range.

. Bands J to M (10 to 100 GHz) form the extra-high-frequency (EHF) range.

. Band N (100 GHz to 3 THz) forms the short millimeter and submillimeter range.

The wide frequency range of microwaves results in the essential difference in gen-

erating and amplification methods, and in general, in a difference in signal processing

and a layout of devices at different bands of the microwave spectrum. Gridded tubes

(triodes, tetrodes, etc.) were the first amplifier vacuum electron devices that worked in

the microwave range. Construction of these tubes provided conservation of the funda-

mental principle of acceptable functioning, the classic low-frequency gridded tubes,

and gridded control of the electron current, excluding velocity modulation and bunch-

ing of the electron beam. In fact, that requires the carrying out of criterion (PII.5),

where li ¼ lg1�c is the distance between the first grid and the cathode. Therefore,

lg1�c and the grid structure must be increasingly smaller with increasing frequency

TABLE PII.1 Frequency Bands in the Microwave
Range (Old Designation)

Band Range (GHz)

Average

Wavelength (cm)

L 1–2 20

S 2–4 10

C 4–8 5

X 8–12 3

Ku 12–18 2

K 18–26 1.4

Ka 26–40 0.9

Q 30–50 0.75

U 40–60 0.5

V 46–56 0.5

W 56–100 0.38

FIGURE PII.1 Frequency bands in the microwave range (new designation).
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and with a corresponding reduction in the output power. These tubes have been

applied in low microwave bands (300 to 3000 MHz). They may be called microwave

only because non-quasistationary electromagnetic structures are used in them.

The first true microwave tubes were klystrons in the sense that velocity modulation,

space bunching of the electron beam, and transfer of the energy to the electromagnetic

field in the output cavity that provides the stimulated electron transition radiation are the

fundamental working factors. The velocity modulation and energy extraction in the

input and output gaps, respectively, are accomplished on the full electron velocities.

Therefore, these gaps are not as small as those in gridded tubes. It is possible to use

klystrons equipped with the proper electrodynamic systems on higher-frequency

bands, including centimeter and even millimeter ranges (bands S to K in Table PII.1).

In systems with continuous interaction that exploits the Cerenkov synchronism

(Section 8.2.2), the quasistationarity of the working space is violated. These are

traveling-wave tubes (TWTs), backward-wave oscillators (BWOs) of the O type,

and their cross-field versions. They are used widely in the S to K bands. Note that

magnetrons and magnetron amplifiers with electrons moving in crossed electric

and magnetic static fields can also be referred to systems with noquasistationary

interaction space or developed electrodynamic structures.

Finally, in the millimeter and submillimeter ranges (bands K to U), devices with

curvilinear periodical electron beams are used where normal Doppler synchronism

of electrons with the electromagnetic field takes place: classical electron masers

and free electron lasers (FELs). These devices are usually relativistic or extreme

relativistic with multimode electrodynamics systems. They provide the highest

levels of output power in short wavelength bands in long-pulse and continuous-wave

regimes.

The use of microwave vacuum electronic tubes is a huge sphere of study and

embraces extensive fields of science, technology, transport, domestic equipment,

consumer service, and the military. After 1960, when transistors penetrated radio

equipment and microelectronics originated, solid-state devices practically excluded

vacuum electron tubes from radio and television, in general, from the sphere of

information technology. However, vacuum electronics was developed in an acceler-

ated sense as a field of a high-power microwave (HPM). So vacuum and solid-state

electronics today may be considered not as competitive areas but as a mutual sup-

plement enriching other regions of electronics.

Concrete applications of vacuum microwave tubes are discussed in sections dedi-

cated to consideration of corresponding electron devices. We should emphasis that

this book cannot be used as a reference book on different microwave-constructive

versions of electron devices (unlike, e.g., the comprehensive book of Gilmour,

1986). Here, the accent is on the detailed physical and analytical treatment of the

mechanism of electron beams interacting with high-frequency fields. Considerable

attention is given to detailed statements of problems, physics of operation, discus-

sions of models and approximations, and the sequence of analysis. I have

chosen material in a form acceptable for students and experts working not only in

microwave electronics but also in adjacent fields of science and technology.
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It must be admitted that the material in Part II is distributed unevenly. More atten-

tion is given to the physics and analysis of nonrelativistic and moderate relativistic

microwave electronic tubes, such as klystrons, TWTs, BWOs, orotrons, magnetron

amplifiers, magnetrons, gyromonotrons, and gyroklystrons. The theory of devices

with high-current relativistic and especially extreme relativistic electron beams

(e.g., CARMs and FELs), are given comparatively briefer treatment. The reader

can find more detailed consideration of the physics and construction of correspond-

ing devices in the books of Barker and Schamiloglu (2001), Barker et al. (2005), and

Freund and Antonsen (1992).
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CHAPTER SIX

Quasistationary Microwave
Devices

6.1 INTRODUCTION

In this chapter we consider electron devices that retain the criteria of quasistationar-

ity equations (PII.1) and (PII.2), but conditions (PII.4) and (PII.5), which exclude

transit effects, are violated. Therefore, the electric field is potentially one that

satisfies Eq. (PII.1), but the energy integral is not conserved. Furthermore, when

the electric field acting on the particles is variable, the space-charge density is

also variable and the continuity theorem must be written as

div j ¼ � @r

@t
(6:1)

In addition, there may be cases where the outside field is constant but the

space-charge density is changed for a time on the order of the transit time. Then

the space-charge field is variable and we are again in the frame of microwave

electronics.

6.2 CURRENTS IN ELECTRON GAPS. TOTAL CURRENT AND THE
SHOCKLEY–RAMO THEOREM

First, wemust revise the ordinary (“obvious”) approach to currents flowing through the

gaps when the transit time is long (te � eT).
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Example 6.1 The point charge e starts at the time t ¼ 0 from a cathode in a flat gap

connected with a source of constant voltage V (Fig. 6.1a). What current would be

measured by the ammeter in the gap circuit? It is expected that because

V ¼ const. and the capacitive current is zero, the circuit current’s shape will be

spikelike (Fig. 6.1b).

Below we’ll see that the form of a true current will be another shape.

6.2.1 Total Current. Continuity of Total Current

Definition of Total Current Let us write the Maxwell equation (I.5) as

curlH ¼ jþ 10
@E

@t
¼ jc þ jd (6:2)

where jc and jd are convection and displacement currents respectively. In this

equation the variable electric field that determines the displacement current includes

the space-charge field.

Let us define the total density current as a sum:

jt ; jc þ jd (6:3)

Correspondingly the total current is a sum:

It ¼ Ic þ Id (6:3a)

Note that the electric field in metal is zero; therefore, the total current in the metal is

equal to the convection current:

Itm ¼ Ic (6:4)

Continuity of Total Current According to the identity div curl H ¼ 0 of the

vector analysis,

div jt ¼ 0 (6:5)

Let us choose a volume V in the electron gap (Fig. 6.2) confined by surfaces S1, S2,

and S, where the completed surface S passes outside the electric field and

convection current.

FIGURE 6.1 (a) Electron gap; (b) projected current curve.
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Application of Gauss’s theorem to the integral of div jt over the volume V gives

0 ¼
ð
V

div jt dt ¼
ð
S1

jtn1dsþ
ð
S2

jtn2 ds ¼ �It1 þ It2 (6:6)

where It1 and It2 are the total currents intersecting the surfaces S1 and S2. Thus,

It1 ¼ It2 ¼ It, which indicates continuity of the total current. Because the displace-

ment currents in wires connecting the sources to the gap are zero, the total current in

the gap is equal to the convective currents in the leads: It ¼ I1 ¼ I2.

6.2.2 Total Current and the Shockley–Ramo Theorem

Assume that some source with voltage U is connected to the gap, and the electron

current of the source is Ic. Let us write the power expenses in terms of the source:

first, the work
Ð
V jcE dt of the electric field over the electrons in the volume V;

and second, a change in the electromagnetic field energy in the gap. Because

of the condition of quasistationarity, the electromagnetic energy We is equal to

the electrostatic energy CgU
2=2. Then

dWe

dt
¼ d

dt

CgU
2

2

� �
¼ CgU

dU

dt

Thus, the source power is

IU ¼
ð
V

jcE dtþ CgU
dU

dt
(6:7)

Here I is the current in the wires that, as shown, is equal to the total current. We

obtain the total current theorem:

It ¼ 1

U

ð
V

jcE dtþ Cg

dU

dt
(6:8)

FIGURE 6.2 Continuity of total current It into a gap.
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According to Eq. (6.8), the total current is equal to the sum of two components.

The second component is the current through the capacitance formed by the gap

electrodes. What is the first component? The answer to this question is given by

the Shockley–Ramo theorem (Ramo, 1939b; Shockley, 1938).

Let us consider a system of grounded metal electrodes (Fig. 6.3) and put the

point charge e into the interelectrode region. This charge induces charges on

the electrodes: the electric field of charge e ejects charges of the same sign from

the electrodes to Earth and retains the opposite (induced) charges on the electrode

surfaces, maintaining the zero electric field inside the metal electrodes.

Values of the induced charges could be found from a Green’s formula for a poten-

tial field (see, e.g., Smythe, 1950). So to find the charge induced on the nth electrode,

a test voltageU between this electrode and the Earth is applied. The charge induced is

expressed via the potential U(n)
e , which originates at the position of the charge e:

Q(n)
ind ¼ �e

U(n)
e

U
(6:9)

Note thatQ(n)
ind does not really depend onU becauseU andU(n)

e are proportional, so the

ratio U(n)
n =U is a purely geometric factor that is determined by the position of the

charge e and the configuration of the electrode system. The current induced on

the nth electrode by moving charge is

I(n)ind ¼
dQ(n)

ind

dt
¼ �e

1

U

dU(n)
e

dt
(6:10)

Here the potential U(n)
e is the function of time through position re(t) of the charge e:

U(n)
e (t) ¼ U(n)

e ½re(t)�. Therefore, the derivative
dU(n)

e

dt
¼ @U(n)

e

@re

dre

dt
¼ �E(n)

e ve

whereE(n)
e is the electric field that originates in the position of charge e. So the current

induced on the nth electrode is

I(n)ind ¼ e
E(n)
e ve

U
(6:11)

Again, the ratio E(n)
e =U is a purely geometric factor.

FIGURE 6.3 Shockley–Ramo theorem.
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Induced Current Produced by a System of N Moving Charges The current is

equal to the sum of the currents induced from each charge:

I(n)ind(t) ¼
1

U

XN
m¼1

emE
(n)
ml (t) vm(t) (6:12)

It is necessary to remember that all values E(n)
ml (t) and vm(t) must to be taken at the

same time, t. Note that the ratios E(n)
ml =U are no longer purely geometric factors

because they can be dependent on a space-charge field.

Induced Current Produced by a Continuous Distribution of Charges Assume

that the distribution of moving charges in the gap is given a density r(r; t):
Considering the elementary charge r dt in the volume dt as the point charge, we

obtain the current induced:

I(n)ind(t) ¼
1

U

ð
V

r(r,t) v(r,t)E(n)(r,t) dt ¼ 1

U

ð
V

jc(r,t)E
(n)(r,t) dt (6:13)

Here the integration must be extended to the fixed time. Equations (6.11)–(6.13)

express the Shockley–Ramo theorem. Previously, we determined the total current

as the sum of the convection and displacement currents. The total current theorem

represents the same current as another sum of induced and capacitive currents.

6.2.3 Particular Cases

Stationary Current in a Constant Electric Field In this case the derivative dU=dt
and the displacement current are zero. According to Eqs. (6.3a) and (6.8), we obtain

It ¼ Ic ¼ Iind (6:14)

The total current is equal to the convection and induced currents together.

Moving Point Charge in a Flat Gap Let us reconsider Example 6.1. It is clear that

in the circuit of Fig. 6.1 the total current circulates. According to Eq. (6.8), the total

current is equal to the induced current because U ¼ const: For this case, the induced
current that was produced by motion of the point charge according to Eq. (6.11) is

Iind ¼ e

U
Ev ¼ ev

d
(6:15)

where d is the gap width. The velocity of a charge in the homogeneous electric field

is v ¼ (hU=d)t. Thus, the current in the circuit is shaped like a triangular pulse

(Fig. 6.4):

I ¼ Iind ¼ ehU

d 2
t (6:16)
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Total Current Theorem for a Flat Gap Assume that the electric field in the flat

electron gap (Fig. 6.5) is directed along x. Then the volume integral in Eq. (6.13)

can be written as

Iind(t) ¼ 1

U

ðd
0

dx

ð
S

jc(r,t)E(r,t) ds (6:17)

If neglected by the space-charge field, the electric field would be written as

E ¼ U=d, and Eq. (6.17) takes the form

Iind(t) ¼ 1

d

ðd
0

dx

ð
S

jc ds ¼ 1

d

ðd
0

Ic(x;t) dx (6:18)

Thus, the total current theorem for the flat gap in the absence of the space charge is

It(t) ¼ 1

d

ðd
0

Ic(x;t) dxþ Cg

dU

dt
(6:19)

FIGURE 6.4 Current in the circuit of Fig. 6.1.

FIGURE 6.5 Flat electron gap.
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6.3 ADMITTANCE OF A PLANAR ELECTRON GAP. ELECTRON GAP
AS AN OSCILLATOR. MONOTRON

6.3.1 Formulation of the Problem. Scheme of the Solution

An electron gap is depicted in Fig. 6.6. The electrons are accelerated by the constant

electric field between the cathode and the left grid of the gap, up to the velocity

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2hU0

p
. After entering the gap where a high-frequency voltage eU cosvt is

applied, the problem consists of the calculation of the current in the circuit of the

ac source. The solution contains the following idealizations: (1) nonrelativistic

approximation, (2) one-dimensionality (all quantities depend only on x), and (3)

neglect by the space-charge field. According to the assumed approximations, we

will use Eq. (6.19), where, in principle, the convection current can be written as

Ic(x, t) ¼ rl(x, t)v(x;t) (6:20)

Here rl(x;t) is the linear space-charge density (a space-charge density per unit axial

length) and v(x,t) is the electron velocity. The electric field in the gap is uniform:

E(x;t) ¼
eU
d
cosvt (6:21)

In the frame of a complex amplitude method,

E(x;t) ¼
eU
d
eivt (6:22)

and the equation of the electron motion into the gap (0, d) is

dv

dt
¼ hU

d
eivt (6:23)

It is important to remember that the method of complex amplitudes is only applicable

to linear relations between quantities. Then, on each step of an analysis we can replace

a real equation by a complex form. But if the analysis is extended to a nonlinear

stage, we must first transform the corresponding expressions or equations to their

real form.

FIGURE 6.6 Electron gap.
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Integration of Eq. (6.23) is simple, but before doing so, let us consider the

problem of initial conditions. The choice of initial conditions in the constant field

is simple because the velocity of the particles at each point do not depend on

time. However, the motion of particles entering the gap with a variable field in

different moments of time will also be different. Therefore, we must introduce

into the description of motion an entry time t of a particle as a separate variable.

In the present case, the initial velocities of all particles are the same:

v(x, t)x¼0 ¼ v(t) ¼ v0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2hU0

p
(6:24)

Integrating Eq. (6.23) with the initial condition (6.24), we obtain

v(t, t) ¼ v0 þ
ðt
t

heU
d

eivt dt ¼ v0 1þ iheU
vv0d

(eivt � eivt)

" #
(6:25)

Integrating v(t, t) gives the coordinate of the particle:

x(t, t) ¼
ðt
t

v(t, t) dt ¼ v0(t � t)þ iheU(t � t)

vd
þ heU
v2d

(eivt � eivt) (6:26)

where we assumed that xt¼t ¼ 0.

Here we encounter the following difficulty: The velocity v in Eq. (6.25) was

found as a function of t and t, whereas in Eq. (6.20), v ¼ v(x, t). Note that t and t

are Lagrangian variables (see, e.g., Lamb, 1945). They describe electron flow via

the motion of separate particles. So v(t, t) is the velocity of a particle in a

moment t that began to move in a moment t, whereas x and t are Eulerian variables

and v(x, t) is the vector of the velocity field that describes the electron beam as a con-

tinuous medium. So v(x, t) is the velocity of particles in the moment t in the plane x.

It is possible to convert v(t, t) in v(x, t) using Eq. (6.26). To find v(x, t) from v(t, t) it
is necessary to calculate a function t(x, t). However, determining the function t(x, t)
from transcendental equation (6.26) is not a simple problem. In addition, the v(x, t)

obtained can be a multivalued function of x. At last, it remains a problem of

obtaining, the function r(x, t).

6.3.2 Law of Charge Conservation

Let us concentrate on the physical mining of the velocity multivaluedness of multi-

stream states of beams with intersecting electron trajectories. In principle, it is possi-

ble to consider multistream beams; however, in the present case it is easier to

convert Eq. (6.20) to Lagrangian variables for the current induced. This is

reached by using the law of charge conservation.

Consider themotion of the electron in a planar gap (Fig. 6.7). Assume that the elec-

tron enters the gap through the grid x ¼ 0 in themoment t and finds itself in the plane x
in amoment twhere x ¼ x(t, t) according to Eq. (6.26). Now let us place an electron in

the gap in themoment tþ dt. It is clear that in the samemoment t, the electronwill be

in the plane xþ dx, where dx ¼ (@x=@t)t¼const: , 0. So the same charge I0 dt that
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intersects the plane x ¼ 0 for the time interval dtwill be disposed in the moment t on

the line section dx. We obtain the law of charge conservation:

I0 dt ¼ �rl dx (6:27)

6.3.3 Calculation of Induced Current

Substituting Eq. (6.27) in Eq. (6.20), we determine the induced current as

Iind ¼ � 1

d

ðd
0

I0v(x, t) dt (6:28)

In this integral, the independent variable is t. Therefore, we can replace v(x, t) by the
function v(t, t) from Eq. (6.25). We must also change the limits of the integration.

The limit t ¼ t corresponds to x ¼ 0. Because the integration in Eq. (6.28) must

be carried out for the same time t [see the remark following Eq. (6.13)], the upper

limit x ¼ d must correspond to t ¼ t � T , where T is the transit time. Thus,

Eq. (6.28) is replaced by

Iind(t) ¼ � I0

d

ðt�T

t

v(t, t) dt ¼ I0

d

ðt
t�T

v0 1þ iheU
vv0d

(eivt � eivt)

" #
dt (6:29)

The integration is developed easily. However, let us first introduce the following

dimensionless variables that are typical for microwave electronics.

. c ¼ vt is a dimensionless time. Because U ¼ eUeivt ¼ eUeic, this variable is a

phase of high-frequency voltage applied to the gap.

. w ¼ vT is a transit angle. That is a change in the voltage phase for the transit

time. Note that T and w are not constants. The electrons that enter into the gap in

the different moments of time move in different fields, and their transit time will

be different. So T ¼ T(t) and w ¼ w(c).

. w0 ¼ vT0 is a nondisturbed transit angle; T0 ¼ d=v0 is a nondisturbed transit

time.

. a ¼ vt is an input phase (i.e., the voltage phase in a moment of the electron’s

entry into the gap).

FIGURE 6.7 Law of charge conservation.
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. j ¼ eU=U0 is a voltage factor.

. m ¼ heU=vv0d ¼ j=2w0 is a velocity modulation factor.

Using these variables, we rewrite Eq. (6.25) as

v ¼ v0½1þ im(eia � eic)� (6:30)

After integration, the current induced in the dimensionless variables according to

Eq. (6.29) would be

Iind ¼ I0

w0

ðc
c�w

½1þ im(eia � eic)� da ¼ I0

w0

½wþ meic(1� e�iw � iw)� (6:31)

Outwardly, Eq. (6.31) is very simple. However, for calculating Iind ¼ Iind(c), we
must know the relationship of the transit angle and the time [the function w ¼ w(c)�.

To get this function, let us use Eq. (6.26) for x ¼ d. The electron in the plane

x ¼ d at this moment t must enter the gap at the moment t ¼ t � T . Then, setting

x ¼ d and t ¼ t � T , in Eq. (6.26) and transforming the equation to dimensionless

variables, we obtain

w ¼ w0 þ meic(1� e�iw � iwe�iw) (6:32)

This equation is transcendental for the desired function w(c). It does not have

an analytical solution. According to Eq. (6.32), the function w(c) is periodical

with period 2p (i.e., the transit time is periodical in t with a period eT of the input

signal). The current induced is also periodic in t with the period eT . But it is

obvious that the current induced is not a harmonic function and includes a

number of harmonics from the input signal. So, in general, the electron gap is a non-

linear element. Note that because Eq. (6.32) is nonlinear, it is necessary to transform

this equation to a real form before obtaining a numerical solution.

6.3.4 Linearization of Induced Current. Complex Admittance of an
Electron Gap

It is interesting to explore Eq. (6.31) in a linear approximation when the amplitude of

the input signal is small (i.e., the voltage factor j ¼ eU=U0 	 1, and the velocity

modulation factor m ¼ j=2w0 	 1). If we replace the term in parentheses in

Eq. (6.32) by w ! w0, we make a mistake on the order of j. Substituting w from

Eq. (6.32) into the first term w in brackets in Eq. (6.31), we represent the current

induced as

Iind ¼ I0 1þ ijw

w2
0

e�iw=2 sin (w=2)

w=2
� cos (w=2)

� �
eic

� 	
(6:33)
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We find that the periodic in the time term is proportional to j. Because w differs from

w0 by a value of order j, we will make an error on the order j2 in Iind if we replace w
in Eq. (6.33) by w0. So up to values of second order in j, we obtain

Iind ¼ I0 þ I0
ij

w0

e�iw0=2
sin (w0=2)

w0=2
� cos

w0

2

� 	
eic (6:34)

In this approximation, the current induced is the harmonic function of c ¼ vt, and
the electron gap is a linear element. Let us represent Eq. (6.34) as Iind ¼ I0 þ Iee

ic,

where the function

Ie ¼ ij
I0

w0

e�iw0=2
sin (w0=2)

w0=2
� cos

w0

2

� 	
(6:35)

is the complex amplitude of the current induced. Then the total current corresponding

to Eq. (6.8) is equal to the sum of the induced and capacitive currents:

It ¼ Iee
ic þ Cg

dU

dt
¼ (Ie þ Icap)e

ic ¼eIeic (6:36)

where Icap ¼ ivCg
eU is a complex amplitude of the capacitive current. A complex

admittance of the electron gap as the linear element is

Y ¼
eIeU ¼ IeeU þ IcapeU ¼ Ye þ ivCg (6:37)

where the complex electron admittance

Ye ¼ i
Y0

w0

e�iw0=2
sin (w0=2)

w0=2
� cos

w0

2

� 	
¼ Yer þ iYei (6:38)

Here Y0 ¼ I0=U0 is a dc conductance of the electron gap. The real and imaginary parts

of Ye are correspondingly the conductance and susceptance of the gap:

Yer ¼ Re(Ye) ¼ Y0

2

sin (w0=2)

w0=2

� �2

� sinw0

w0

" #
(6:39)

Yei ¼ Im(Ye) ¼ Y0
sinw0

w2
0

� cos2 (w0=2)

w0

� 	
(6:40)

The quality plot of Yer and Yei as functions of w0 is depicted in Fig. 6.8. Note that

according to Eqs. (6.39) and (6.40), Yer ¼ 0 for w0 ¼ 0, 2np, and Yei ¼ 0 for

w0 ¼ 0, (2nþ 1)p (n ¼ 1, 2, . . . ).
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Discussion of Results The average oscillation period power expended by any

source of a harmonic current is

I U ¼ 1

T

ðT
0

IU dt ¼ Yr
eU2

2
(6:41)

Because the capacitive admittance is a purely imaginary value, the conductance of

the electron gap is the electron conductance (i.e., Yr ¼ Yer). According to Fig. 6.8,

the conductance of the gap in the range 0 , w0 , 2p is positive and the

source accomplishes positive work (i.e., on the average over the period when the

electrons are accelerated. In the range 2p , w0 	 3p, the work of the source is

negative, which means that on average over the period, the source retards the

electrons.

Mechanism of Acceleration and Retardation Consider the following example:

Assume that a nondisturbed transit angle is p (i.e., Yer is positive). Assume that the

voltage on the gap varies as eU sinvt (Fig. 6.9). Also assume that electron 1 enters

the gap at the moment t ¼ 0 and the nondisturbed transit time is equal to a half-

period. It means that if the electron moves with a nondisturbed velocity v0, it

would leave the gap in the moment t ¼ 1
2
T0. But the electron moves in the acceler-

ating field and its velocity would be v . v0. Therefore, the electron leaves the

gap t1 ,
1
2
T0 at that moment. Now let us take electron 2, which enters the gap at

the moment t ¼ � 1
2
T0. This electron begins the motion in the retarding

FIGURE 6.8 Conductance and susceptance of an electron gap as functions of a nondisturbed

transit angle.

FIGURE 6.9 Electron bunching in an electron gap.
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field (Fig. 6.9) with velocity v , v0. Therefore, electron 2 leaves the gap

at the moment t2 . 0.

Following is a summary. The first electron spent all of its time moving in the

accelerating field, while the second electron moved partly in the retarding and

partly in the accelerating field. Therefore, on average, both particles are accelerated,

and the source performs positive work. It is important to pay attention to the time

interval changes between particles. In the beginning they were a half-period apart.

In the end they have closed in. This means that bunching occurs. In the present

case, bunching occurred in the accelerated phase of the field. Thus considered,

the transit effect has led to the bunching of the particles and phasing of the

bunches. Furthermore, we will see that bunching and phasing are typical for any

microwave electron devices. Note that for nondisturbed transit angles in the range

2p , w0 , 3p, the conductance is negative. This may be treated as bunching of

electrons in the retarding phase of the field.

It is interesting to trace why Yr ¼ 0 for w0 ¼ 0. In this case, when the particles

intersect the gap, the field does not change and bunching is absent. Therefore,

half of the particles move in constantly accelerating fields and the other half in

retarding fields. The summary effect is equal to zero.

The imaginary part of the electron admittance (susceptance) arises as a result of a

phase difference between the bunch and the field. Note that when the phase shift is

equal to zero or to an odd multiple of p, the bunches are in phase or antiphase

with the field, and the susceptanse is equal to zero. In general, susceptance has

different signs. This means that for different transit angles, the electron gap acquires

capacitive or inductive properties.

6.3.5 Equivalent Circuit of an Electron Gap. Electron Gap as
an Oscillator. Monotron

The total admittance of an electron gap is

Y ¼ Yer þ Yei þ ivCg (6:42)

Summation of the conductance corresponds to their parallel connection in the

equivalent circuit performance. The equivalent scheme is shown in Fig. 6.10.

Let us adopt the oscillator scheme shown in Fig. 6.11a. Cc, Lc, and R are para-

meters of the circuit; and R is a resistor that includes losses from Lc and Cc and from

an output load. An equivalent circuit for the oscillator is shown in Fig. 6.11b. Here,

the total capacity is C ¼ Cg þ Cc. The source eUeivt is connected to the circuit in

FIGURE 6.10 Equivalent circuit of an electron gap.
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Fig. 6.11b. But in the self-excitation mode, the source is absent. A condition of the

self-excitation of the oscillations is equal to zero of the total complex admittance.

This condition is

Yer þ 1

R
¼ 0 real admittance (6:43)

iYei þ ivC þ 1

ivLc
¼ 0 imaginary admittance (6:44)

To satisfy Eq. (6.43), Yer must be negative and sufficiently large in magnitude. A

negative sign for Yer is achieved by the choice of the transit angle, which is deter-

mined by the dc potential U0, the distance d, and the frequency v. The magnitude

of Yer is proportional to dc admittance Y0 ¼ I0=U0 (i.e., to the beam current), and

does not depend on eU. That is obviously a result of linear approximation. So the con-

dition (6.43) gives a starting current of self-excited oscillations. A zero imaginary

admittance [Eq. (6.44)] determines the frequency of oscillations (see below).

The oscillator in Fig. 6.11 is sometimes called a monotron (Birdsall and Bridges,

1966) because it works with a single oscillatory circuit. Experimental versions of

monotrons have been developed successfully. However, the parameters of the

current device have not been high because the processes of bunching and phasing

in the monotron considered are not optimal.

6.4 EQUATION OF STATIONARY OSCILLATIONS OF A
RESONANCE SELF-EXCITED CIRCUIT

Let us write the conditions of self-excitation of oscillations in explicit form. First,

find the complex resonance frequency of the circuit (i.e., the eigenfrequency of

the circuit without the electron beam). One is determined by the equation

YC ¼ 1

R
þ iv(0)C þ 1

iv(0)L
¼ 0 (6:45)

FIGURE 6.11 (a) Electron oscillator; (b) equivalent circuit.
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Assume that v(0) is close to the eigenfrequency of an ideal LC circuit, v0 ¼ 1=
ffiffiffiffiffiffi
LC

p
:

that is,

v(0)
�� ��� v0

v0

	 1 (6:46)

Then we obtain from Eq. (6.45),

v(0) � v0 þ i

2RC
¼ v0 þ iv0

0 (6:47)

The presence of the imaginary component v0
0 . 0, of course, corresponds to an

aperiodicity of the oscillations in the circuit without the electron beam. It is easy

to show that

v0
0 ¼

1

2RC
¼ v0

2Q
(6:48)

where Q is the loaded quality factor:

Q ¼ v0CR ¼ v0W

Pl

(6:49)

W is the energy stored in the resonator and Pl is the power dissipated in the circuit,

including losses of output power. Remember that Eq. (6.47) is true when v0
0 	 v0

(i.e., Q � 1).

Now let us return to Eqs. (6.43) and (6.44). According to Eq. (6.48),

1=R ¼ v0C=Q; then, from Eq. (6.43),

Yer þ v0C

Q
¼ 0 (6:50)

Equation (6.44) can be written as

Yei þ 2C(v� v0) ¼ 0 (6:51)

To obtain Eq. (6.51), we took into account that the frequency of the self-excited

oscillation v is real and jv� v0j 	 v0. Equation (6.50) allows us to find a starting

current if Yer does not depend on the ac amplitude of the potential eU (i.e., in the

linear approximation of the admittance). In the same approximation, Eq. (6.51)

gives the electron tuning of the frequency. Equations (6.50) and (6.51) can be rewrit-

ten when transferring from admittance to electron power. Express the capacity C

through the energy stored in the circuit (resonator):

W ¼ CeU2

2
(6:52)

6.4 EQUATION OF STATIONARY OSCILLATIONS OF A RESONANCE 255



Here W is the sum of the energies stored in the capacity and the inductance. Let us

multiply Eqs. (6.50) and (6.51) by eU2=2 and take into account that Per ¼ YereU2=2

and Pei ¼ YeieU 2
=2 are the real and imaginary parts of the complex electron power.

We then obtain

Per þ v0W

Q
¼ Per þ Pl ¼ 0 (6:53)

v� v0

v0

¼ � Pei

2v0W
¼ 1

2Q

Pei

Per

(6:54)

Remember that Eqs. (6.50) and (6.51) determine the starting current and frequency

when the electron power Pe is proportional to eU2 [i.e., when the electron admittance

is linearized like Eqs. (6.39) and (6.40)]. However, Eqs. (6.53) and (6.54) exceed the

limits of linear approximation. After multiplying Eqs. (6.50) and (6.51) by eU2=2, we
restore the nonlinear representation of the electron power, which is virtually contained

in Eq. (6.7). As shown by Vainstein and Solntsev (1973) and by Vainstein (1988),1

these equations describe, in general, the stationary oscillations of any single-mode

self-excited oscillator when complex electron power at the input-to-oscillation circuit

is known.

6.5 EFFECTS OF A SPACE-CHARGE FIELD. TOTAL CURRENT
METHOD. HIGH-FREQUENCY DIODE IN THE r-MODE.
LLEWELLYN–PETERSON EQUATIONS

The theory stated in Section 6.4 cannot describe the operation of devices in which an

electron motion depends on the space-charge fields. When we wrote the equation of

motion as d2x=dt2 ¼ h(U=d), we believed that E ¼ E(t) ¼ �U=d. However, when
taking the space-charge field into account, the electric field must be written as

E ¼ E(x, t), where the electric field in general is an unknown function of x. Then

the equation of motion in the nonrelativistic approximation is

d2x

dt2
¼ �hE(x, t) (6:55)

Here, distribution of the space-charge field itself is determined by the motion of the

particles, and we arrive at a typical self-matching problem.

6.5.1 Total Current Method

This method was first worked out by Lewellyn (1939). After Grinberg (1948)

developed a method for arbitrary one-dimensional high-frequency electron gaps

(i.e., cylindrical, spherical, etc.) and large transit angles. The theory of a planar

electron gap with nonzero space charge is considered briefly below.

1Unfortunately, these two remarkable books have not been translated into English.
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Let us take a time derivative of Eq. (6.55):

d3x

dt3
¼ �h

dE(x, t)

dt
¼ �h

@E

@t
þ @E

@x

dx

dt

� �
¼ � h

10
rvþ 10

@E

@t

� �
¼ � h

10
( jc þ jd) ¼ � h

10
jt (6:56)

(we used the relation @E=@x ¼ div E ¼ r=10). The density of the total current

according to Eq. (6.5) depends only on t: jt ¼ jt(t).

In the theory of electron gaps with zero space charge, we set a voltage U(t) and

found a current. Now, we assume that the total current It(t) ¼ Sjt(t) is given and we

will search the voltage. Performing three successive integrations of Eq. (6.56) in the

Lagrange space with initial acceleration a(t, t), velocity v(t, t), and coordinate

x(t, t), we obtain

d2x

dt2
¼ a(t, t) ¼ � h

10S

ðt
t

It(t) dt þ a(t, t) (6:57)

dx

dt
¼ v(t, t) ¼

ðt
t

a(t, t) dt þ v(t, t) (6:58)

x(t, t) ¼
ðt
t

v(t, t) dt þ x(t, t) (6:59)

On first glance the appearance of the initial acceleration is strange. It is known

that motion of a particle in the field of forces is determined uniquely by its initial

velocity and position. Why is it necessary to specify the initial acceleration?

The reason is simple. In the present self-matching problem, the field is not given.

The motion takes place in a field that must be found.

The method of finding a voltage is the following. From Eq. (6.59) we obtain the

function t ¼ t(x, t). Then from Eq. (6.57) we find the electric field:

E(x, t) ¼ � a(x, t)

h
¼ � a½t(x, t), t)

h
(6:60)

and the voltage U(t) ¼ � Ð d
0
E(x, t) dx.

6.5.2 Analysis of a Diode for Current Limited by Space Charge

In Chapter 3 we analyzed the static diode in a r-mode (current limited by space

charge). Let us consider briefly the results of the theory of high-frequency planar

diode in the r-mode. The scheme of an ac source connected in series with a dc

voltage source is depicted in Fig. 6.12. Let us use the basic equation of the total

current method:

d3x

dt3
¼ � I(t)

10S
(6:61)
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When we take the total current as a harmonic function of time I(t) ¼ I0 þeIeivt, a
consistent solution of the corresponding Eqs. (6.57)–(6.60) would obviously lead

to a solution for the ac voltage as a nonharmonic function of time. However, if

we use a linear approximation assuming the smallness of the quantities eI=I0 andeU=U0, the ac voltage would be a harmonic function of time as noted in Fig. 6.12.

Let us assume that both the initial position and the velocity of electrons found in

the solution of Eq. (6.61) are equal to zero:

x(t, t)t¼t ¼ 0 (6:62)

v(t, t)t¼t ¼ 0 (6:63)

The cathode electric field in the r-mode with a zero initial velocity is zero. Therefore,

the initial acceleration is also zero:

a(t, t)t¼t ¼ 0 (6:64)

The scheme for the solution corresponds to the chain of equations (6.57)–(6.60). Here

we omit the calculations and give the results (see, e.g., Chodorow and Susskind, 1964).

In contrast to the theory of the electron gap (Section 6.3.4), the solution is given in terms

of the complex impedance Z ¼ eU=eI ¼ Rþ iX, where R is the resistance (a real part of

the impedance) and X is the reactance (an imaginary part of the impedance).

The resistance and the reactance as functions of the nondisturbed transit angle w0 are

(Chodorow and Susskind, 1964)

R ¼ R0

12

w4
0

½2(1� cosw0)� w0 sinw0� (6:65)

X ¼ �R0

12

w4
0

w3
0

6
þ w0(1þ cosw0)� 2 sinw0

� 	
(6:66)

Here R0 is a dc admittance of the diode. Using the Child–Langmuir formula

[Eq. (3.105)], I0 ¼ 4
9
(S=d2)10

ffiffiffiffiffiffi
2h

p
U

3=2
0 , and Eq. (3.103), U(x) ¼ U0(x=d)

4=3, for dc

FIGURE 6.12 High-frequency flat diode.
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potential distribution, we obtain

R0 ¼ dU0

dI0
¼ 3d2

2w10S
ffiffiffiffiffiffiffiffiffiffiffi
2hU0

p ,

w0 ¼ vT0 ¼ v

ðd
0

dx

v
¼ v

ðd
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hU(x)

p ¼ 3vdffiffiffiffiffiffiffiffiffiffiffi
2hU0

p
(6:67)

Resistance and reactance as functions of the nondisturbed transit angle are depicted in

Fig. 6.13. According to Eqs. (6.65) and (6.66), R ¼ 0 for w0 ¼ 2np and X ¼ 0 for

w0 ¼ 0.Aswe can see, the resistance is positive in the range 0 
 w0 , 2p and negative

in the range 2p , w0 , 2:7p. The magnitude of the negative R is very small. So the

maximum of �R=R0 is �0.022 (w0,max � 2:3p). In contrast to the resistance, the

reactance is a monotonic function of w0. The admittance of the diode is

Y ¼ 1

Z
¼ R

R2 þ X2
� i

X

R2 þ X2
(6:68)

In the diode and in contrast to the electron gap, the number of electrons that enter the

interelectrode space in the positive and negative half-periods of the potential are not

the same because the current depends on the voltage. Therefore, the admittance for

the zero transit angle is not zero either: Yw0¼0 ¼ 1=Rw0¼0 ¼ 1=Ri.

For large transit angles (w
0
� 1), the resistance jR1j 	 jX1j, and according to

Eq. (6.68), the reactance is

Y1 � �i
1

X1
� i

w0

2Ri

(6:69)

Substituting w0 and Ri from Eq. (6.67), we obtain Y1 ¼ v(10S=d) ¼ vC; that is, the
admittance of the diode for large frequencies is purely reactive and is equal to the

reactance of the cold capacity formed by electrodes of the diode.

The scheme of the diode oscillator is very simple, for it is only necessary to

include an oscillatory circuit in the diode circuit (Fig. 6.14). For oscillation

FIGURE 6.13 Diode impedance for current limited by a space charge.
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excitation the real part of the admittance [according to Eq. (6.68), approximately

equal to R=X2 for w0 . 2p] must be taken to be negative and sufficiently large in

magnitude. That is attained by the choice of transit angle w0. After choosing the

oscillation frequency and according to Eq. (6.67), selection of the values d, S,

and U0 remains.

The oscillation frequency is determined by the capacity Cc and inductance Lc. If

it remains within the range of transit angles where the conductivity is negative, it is

possible to retune the frequency by a small variation of the voltage U0. The effi-

ciency of experimental diode oscillators is very low (less than 1%) (Llewellyn

and Bowen, 1939; Muller, 1934), because of the noneffective processes of bunching

and phasing.

6.5.3 Llewellyn–Peterson Equations

Llewellyn–Peterson (L-P) equations (Llewellyn, 1935; Llewellyn and Peterson,

1944) are the result of consistent application of the total current method (Section

6.5.1) to an analysis of planar electron gaps, taking the linear approximation and

space-charge fields into account. So any quantity zS(t, t) in the problem, including

the transit time T ¼ t � t, can be represented as zS ¼ z0 þ z ¼ z0 þ ~zeivt, where
z0 and z are dc and ac components of zS and z 	 z0, respectively. The equations

relate input and output quantities in two planes of the gap (Fig. 6.15), where

va and vb are ac inputs and output velocities, respectively, and Ica and Icb are the

corresponding ac convective currents. Finally, the It is the total ac current, which

according to Section 6.2.1 is continued into the gap and equals the ac current in

the leads. These equations follow:

U ¼ a11It þ a12Ica þ a13va

Icb ¼ a21It þ a22Ica þ a23va

vb ¼ a31It þ a32Ica þ a33va

(6:70)

The coefficients aij are functions of the gap parameters (e.g., geometric parameters,

an initial dc velocity, a dc potential U0, an undisturbed transit angle w0 between

FIGURE 6.14 Diode oscillator.
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planes a and b) and the frequency of the signal. The expressions for aij are very

cumbersome and have been omitted. The reader can find them for example, in,

Kleen (1958).

Let us write the L-P equations for a diode in the r-mode with zero initial velocity.

Assume that both the cathode and anode are arranged correspondingly in planes a

and b. Then va ¼ 0 and Ica ¼ It because the cathode electric field in the r-mode

and the corresponding displacement current are zero. The L-P equations (6.70)

are reduced to

U ¼ (a11 þ a12)It

Icb ¼ (a21 þ a22)It

vb ¼ (a31 þ a32)It

(6:71)

We see, in particular, that the diode impedance is Z ¼ U=It ¼ a11 þ a12.

The L-P equations have been used for analysis of multielement tubes (e.g.,

triodes, tetrodes) considering the regions between electrodes as successive electron

gaps. The exit velocities vbi, convention currents Icbi total currents Iti of any gap, and

corresponding dc quantities, can be used as entrance conditions for a following gap,

and so on. For example, the total current in the second gap can be written as

It2 ¼ It1 � Ib (6:72)

where Ib is the lead current in plane b.

FIGURE 6.15 Variables in Llewellyn–Peterson equations.
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CHAPTER SEVEN

Klystrons

7.1 INTRODUCTION

In Chapter 6 we have seen how transit effects radically revise traditional concepts of

quasistationary devices. The novel essential properties were bunching and phasing

of particles in the beam. That ensures electron-stimulated transition radiation in

the gap and leads to such important properties of the electron gaps as negative or

additional positive absorption of the ac electron beam energy. The negative admit-

tance allows us, in particular, to realize high-frequency oscillators. However, as

mentioned, these effects are weak and these devices have found few applications

in microwave electronics.

The concept of a klystron, the first genuine microwave electronic device to take

full advantage of the principle of bunching and phasing, was proposed by Russel and

Sigurd Varian in 1935. During 1935–1939, Russel, an engineer, and his brother

Sigurd, a pilot, developed their klystron idea. Together with William Hansen,

Russel Varian worked out the theoretical basis of the klystron while Sigurd

Varian built the device. The first klystron was tested in August 1937. The Varians

named the new device the klystron, using the Greek word clyso, meaning “waves

breaking on a shore.”

Stanford University provided the Varian brothers with only $100 for all this

work. However, the great value of the klystron was very quickly appreciated by

contemporaries. The past 65 years have fully confirmed expectations. Until now,

klystrons have found very extensive use among all microwave devices as power

and superpower amplifiers in the UHF and SHF ranges. It is sufficient to mention

such important areas as radar, radio navigation, space communication, television,

radio repeaters, and charged particle accelerators. In 1948 the Varians established

the company Varian Associates, now one of the largest corporations producing

microwave electronic devices.
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Let us quote a description of the klystron mechanism given by the Varians

(Varian and Varian, 1939), which can be used as a good introduction to this chapter):

A dc stream of cathode rays of constant current and speed is sent through a pair of grids

between which is an oscillating electric field, parallel to the stream and of such strength

as to change the speeds of the cathode rays by appreciable but not too large fractions of

their initial speed. After passing these grids the electrons with increased speeds begin to

overtake those with decreased speeds ahead of them. This motion groups the electrons

into bunches separated by relatively empty spaces. At any points beyond the grids,

therefore, the cathode ray current can be resolved into the original dc plus a nonsinu-

soidal ac. A considerable fraction of its power can then be converted into power of high

frequency oscillations by running the stream through a second pair of grids between

which is an ac electric field such as to take energy away from the electrons in

bunches. These two ac fields are best obtained by making the grids form parts of the

surfaces of resonators of type described in [this journal].

In Fig. 7.1 a diagram of the klystron that corresponds to this description is shown.

Here a buncher cavity implements velocity modulation of the electron beam. After

the buncher gap, electrons move with different velocities, depending on the phase of

the ac field between buncher grids. In the drift tube between the buncher and the

catcher, an electric field is absent, and the electrons move due to the force of

inertia and are bunched. In the catcher cavity, which in general can be tuned to

the nth harmonic of the input signal, the electron bunches deliver power to the ac

field, and the output signal is formed.

The Cavities The buncher and catcher grids are installed in oscillatory circuits

where the two pairs of grids play the role of capacitances. Usually, the klystron

circuits are versions of the cavity resonators (sometimes, of toroidal cavities). The

use of cavities allows us to accumulate the ac field energy and increase the field

amplitude in order to intensify electron–field interaction. That property unifies

FIGURE 7.1 Double-cavity klystron. 1, Cathode; 2, buncher cavity; 3, bunched electron

beam; 4, catcher cavity; 5, collector.
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the klystrons with other nonquasistationary microwave devices (e.g., TWTs, BWOs,

magnetron amplifiers). The evolution of the ac circuits originating from the

usual low-frequency oscillation circuit to the toroidal cavity is illustrated in

Fig. 7.2. Replacement of the multiturn inductor (Fig. 7.2a) by a single half-turn

wire (Fig. 7.2b) and further by a few inductors in parallel (Fig. 7.2c) decreases

the inductive impedance of the circuit and allows its natural resonant frequency

to increase. Finally, substitution of many half-turn wires by a wall of the hollow

toroid transforms the system into a cavity resonator. In principle, many oscillation

types (modes) are possible in this resonator. Usually, the lowest-frequency (funda-

mental) mode is used. In this mode the electric field is localized between grids, and

the magnetic field is stored in a toroidal tube (Fig. 7.2d). It is important that radiation

losses are nearly absent in the cavity resonator. Use of a cavity resonator in the

klystron was a revolutionary idea of Hansen and the Varians. Hansen called these

resonators rumbatrons. The first Varian klystron model underwent significant

improvements in modern klystron systems. The largest modernization is related to

application of multiple-cavity and multibeam klystrons (Section 7.7) and to aban-

donment of gridded cavities in high-power, high-current klystrons. The ac electric

field that is localized in the central region of these gridless resonators (Fig. 7.2e)

is quasiuniform and available for effective interaction with an electron beam.

7.2 VELOCITY MODULATION OF AN ELECTRON BEAM

A buncher can be considered as an electron gap with applied potential UB ¼ eUeivt.

Let us examine the velocity modulation process, neglecting the space-charge field in

FIGURE 7.2 Transformation of a simple oscillation circuit in a toroidal cavity resonator.
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the gap. This process was analyzed in Section 6.3. We have obtained Eq. (6.30) for

the velocity in dimensionless Lagrange variables:

v ¼ v0½1þ im(eia � eicÞ� (7:1)

Let us recall that v0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2mU0

p
is the input electron velocity, a ¼ vt is the input

phase, m ¼ j=2w0 is the velocity modulation factor, and j ¼ eU=U0 is the voltage

factor. That expression gives an electron velocity at time t if the electron enters

the gap at time t.
We are interested in the output velocity of electrons from the gap; hence, if t is the

time of electron departure, the input time and input phase will be, respectively,

t ¼ t � T , a ¼ c� w (7:2)

where T is the transit time and w ¼ vT is the transit angle. Substituting Eqs. (7.2) in

Eq. (7.1), we obtain

v ¼ v0½1þ im(ei(c�w) � eicÞ� ¼ v0 1þ 1

2
j
sin (w=2)

w0=2
ei(c�w=2)

� 	
(7:3)

In this equation the transit angle w ¼ w(c) is an unknown function of time that must

be determined [see Eq. (6.32)]. However, it is necessary to remember that the

klystron is an amplifier and the input signal (drive power) is weak. Therefore, the

voltage factor j 	 1. Because the small parameter j is in front of the temporal

exponent in Eq. (7.3), replacing w by w0 in this term leads to an error of second

order in j [see also Eqs. (6.32) and (6.33)]. Thus, the approximate output velocity

is a linear function of eU:

v ¼ v0 1þ 1

2
j
sin (w0=2)

w0=2
e�iw0=2 eic

� 	
¼ v0 þ ~v eic (7:4)

The velocity v is a sum of dc and ac components. The ac component is a harmonic

function of time. The complex amplitude of the ac velocity component can be

written asev ¼ 1
2
v0jMe�iw0=2, whereM ¼ sin (w0=2)=w0=2 is the gap coupling coeffi-

cient. So the velocity is

v ¼ v0 1þ 1
2
jMe�iw0=2 eivt


 �
(7:5)

Discussion of Results The coupling coefficient M characterizes the influence of

the transit angle on the velocity modulation. The phase factor e�iw0=2 indicates

that the ac velocity component is shifted backward in phase relative to the input

signal by a half of the nondisturbed transit angle. It means that the ac output velocity

component is in phase with the ac voltage taken at the time electrons pass the gap

midplane.
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The dependence ofM on the nondisturbed transit angle is depicted in Fig. 7.3. If,

for example, w0 ¼ 2p, the electrons would be accelerated by the electric field within
the first half of the gap and retarded during the second half. The resulting ac velocity

would be zero. According to Fig. 7.3, the best value of the transit angle is w0 � 0.

But this case experiences technological difficulties, especially for short wavelengths.

Let us take, for example, U0 ¼ 3 kV, l ¼ 4 mm; then the transit angle is

w0 ¼
vd

v0
¼ 2p

c

v0

d

l

For U0 ¼ 3 kV we obtain c=v0 � 16=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U

0 kV
p � 10, and the corresponding transit

angle is w0 � 20p(d=l). Assume, for example, that d ¼ 0:2 mm. That corresponds

to d=l ¼ 0:05, and we obtain w0 ¼ p. For w0 ¼ p=4, the gap width d would be

0.05 mm, which is a very small value. Can we take w0 ¼ p? In this case, according

to Fig. 7.3, M is reduced to �65%. This is not so bad. However, let us recall the gap

conductance as a function of the transit angle (Section 6.3.4). According to Fig. 7.3,

the gap conductance for w0 ¼ p is maximal. It leads to high power losses during the

acceleration of electrons in the gap. The electrons “load” the cavity resonator, and its

Q-factor is decreased. As a result, the accumulated circuit energy ½w ¼ Q(P=v)�, the
corresponding ac electric field, and the modulation efficiency will drop. Note that for

w0 � 0 the modulation is realized without energy consumption. But as we saw

earlier, this process is not feasible technologically.

7.3 CINEMATIC (ELEMENTARY) THEORY OF BUNCHING

7.3.1 Qualitative Discussion

Onemay suppose that after leaving the buncher gap, electronsmove in a channel where

dc and ac fields are absent. It is the first approximation in klystron theory. The most

FIGURE 7.3 Coupling coefficient and conductance of an electron gap as functions of a

nondisturbed transit angle.
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important disadvantage of this approach that it ignores interaction forces between

particles (i.e., space-charge fields). The theory will be refined correspondingly later.

So the particles move in a straight line with the velocity they acquired at the

buncher. A distance–time diagram (Applegate diagram) is shown in Fig. 7.4.

The slope of each straight line is determined by the velocity of the corresponding

particle at the buncher output plane. According to Eq. (7.5), the velocities are sinu-

soidal functions of the exit time. In Fig. 7.4, the numbers on the t-axis represent

different phases of the velocity. For points 2 and 4 the ac component of the velocity

is zero, which means that the velocities of electrons leaving the buncher at these

times are equal to the nondisturbed velocity. The electrons leaving the buncher at

times 3 have maximal velocities. They will overtake the slower electrons

(2) that left the buncher earlier. The intersection of straight lines 2 and 3 in the

plane x ¼ L means that particles 3 surpass particles 2. The velocities of particles

1 are minimal. If these particles left the buncher first, they would be overtaken

first by electrons 2 and then by electrons 1. Assume that line 1 intersects lines 2

and 3 in the plane x ¼ L. Then we arrive at an effect of the formation of ideal

bunches in this plane. In general, this process can be treated as a mechanism of

conversion from a velocity-modulated beam to a density-modulated beam.

According to Fig. 7.4, bunches in the plane x ¼ L alternate through time intervals

equal to the period of the input signal. An observer in the plane x ¼ L detects a periodic

current of frequencyv. Electrons 2 formcenters of bunches. These electronsmovewith

nondisturbed velocity and intersect in the midplane of the gap in moments when an

ac electric field crosses zero from the retarding phase to the accelerating phase. Note

that electrons 4 do not participate in the bunching. It can be shown that they will

form second bunches with electrons 4 as centers. In principle, bunches of any high

order can be obtained though the space-charge field effects that perturb this process.

7.3.2 Bunching of a Convection Current

Earlier we used the following formula for the convection current [Eq. (6.20)]:

Ic(x, t) ¼ rl(x, t) v(x, t)

FIGURE 7.4 Distance–time diagram in a velocity-modulated beam.
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But the use of this equation meets the same difficulties as for a planar electron gap:

absence of adequate relations for the linear space-charge density rl(x, t) and the

velocity v(x, t) in Euler variables. These difficulties are removed by using Lagrange

variables in a manner similar to the theory of the flat electron gap, in particular, by

using the law of charge conservation. However, it is convenient in this case to use

another formulation of the charge conservation law.

In Fig. 7.5 a diagram of a bunching space is shown. The coordinate x ¼ 0 is the

beginning of the drift region. Assume that an electron enters the drift region at time t
and is located in plane x at time t. Now let us introduce another electron into the drift

region, at time tþ dt. The second electron will be in the same plane x at time t þ dt.

If the function t ¼ t(t) is known,

dt ¼ @t

@t

� �
x¼const

dt (7:6)

According to the condition of charge conservation, all electrons that enter the drift

region in the time interval dt will intersect plane x in the time interval dt. The full

charges that pass through the intervals indicated are I0 dt and Ic(x, t) dt, where I0 is

the dc beam current. These are charges of the same particles. So we obtain the law of

charge conservation:

I0 dt ¼ Ic(x, t) dt (7:7)

Using Eq. (7.6), we find that

Ic(x,t) ¼ I0

�
@t

@t

� �
x¼const:

(7:8)

The relation between t and t can be found if we take into account that the motion of

the electrons in the region x . 0 is uniform:

t ¼ tþ Ttr ¼ tþ x

v
(7:9)

FIGURE 7.5 Klystron bunching space.
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where Ttr is the transit time in the bunching region. Let us substitute in this relation

velocity v from Eq. (7.5). But there t denoted the time departure from the gap. There-

fore, we replace t by t, where t is the time of entrance into the drift region, and

Eq. (7.9) becomes

t ¼ tþ x

v0 1þ 1
2
jMei(vt�w0=2)

� � (7:10)

Remember that j 	 1 and M , 1. Then up to O(j2) we can write

t ¼ tþ x

v0

�
1� 1

2
jMei(vt�w0=2)

	
(7:11)

Let us multiply Eq. (7.11) by v and transform this equation to dimensionless

variables [see the comments following Eq. (6.29)]. Denote the coefficient

vx=v0 ¼ vTtr ¼ u0. Here Ttr ¼ x=v0 is the nondisturbed transit time in the drift

region and u0 is the corresponding transit angle. This gives rise to a new

nondimensional parameter,

X ¼ 1

2
jMu0 ¼ 1

2
jM

vx

v0
(7:12)

called the bunching factor. In essence, X is a dimensionless distance x. The dimen-

sionless equation (7.11) becomes

c ¼ aþ u0 � Xei(a�w0=2) (7:13)

where a ¼ vt. The dimensionless equation (7.8) is

Ic(x, t) ¼ Ic(X,c) ¼ I0

�
@c

@a

� �
X¼const:

(7:14)

Differentiating, we obtain the convection current,

Ic(X,c) ¼ I0

1� iXei(a�w0=2)
(7:15)

Discussion of Results The right-hand side of Eq. (7.15) is a function of (X,a);
however, we are interested in the function of (X,c). To express a via c it is necessary

to solve transcendental equation (7.10) or (7.11). This situation recalls the theory of

the electron gap (Section 6.3.4). However, in contrast to j, the bunching factor X is

not small because it contains the transit angle u0, which can be large for a balance of
small velocity modulation.

Let us consider first some qualitative properties of the relations above. It may

easily be shown that the convection current is a periodic function of time with

period equal to the period of the input signal, eT ¼ 2p=v. Indeed, according to

Eq. (7.13), replacing c by cþ 2p changes a by 2p. That means that t and Ic are

periodic functions of t with periodeT . Now let us examine qualitatively the temporal
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dependence of the convection current on different values of the bunching factor X

(Fig. 7.6). We consider the function Ic(t) in the same plane. Then different values

of X are distinguished by the voltage factor j ¼ eU=U0.

. X 	 1. According to Eq. (7.13), a � vt � u0. We obtain from Eq. (7.15) the

fact that the convection current is a harmonic function of t.

. Large X , 1. The current is a smooth periodic but nonharmonic function of

time.

. X ¼ 1. The denominator in Eq. (7.15) in some moments becomes zero and the

convection current becomes, infinity. That occurs when

a ¼ w0

2
þ 3

2
p (7:16)

Because the potential was assumed to be eUeivt, Eq. (7.16) means that peaks of

the beam pulse in Fig. 7.6c belong to the electrons that intersect the midplane of

the buncher at moments when the ac field crosses zero from a retarding phase to

an accelerating plane.

. X . 1. In this case the convection current becomes infinite twice during the

period. The bunching process is reminiscent of the formation of a shock

wave, which justifies the commonality of the terms klystron and cliso.

7.3.3 Fourier Expansion of a Convection Current

Equation (7.15) for a convection current has two defects. The first was mentioned

earlier: The current in Eq. (7.15) is expressed as a function of (x,t) but not (x, t),
and a method for the transformation of variables is not obvious. The second dis-

advantage is the following: We are interested in the convection current as a sum

of harmonics. Indeed, the periodic convection current excites the catcher resonator,

which is a spectral device. It responds to specific frequencies. Both problems can be

solved simultaneously and completely.

Let us write the Fourier expansion of the convection current:

Ic(x,t) ¼
X1
�1

An(x) e
invt (7:17)

FIGURE 7.6 Convection current in a fixed plane for different values of the bunching factor.
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or in dimensionless form,

Ic(X,c) ¼
X1
�1

An(X) e
inc (7:18)

The series coefficients are determined by the formula

An(X) ¼ 1

2p

ð2p
0

Ic(X,c) e
�inc dc (7:19)

Let us apply the charge conservation law [dimensionless form of Eq. (7.7)] as

I0 da ¼ Ic dc (7:20)

Then we obtain

An(X) ¼ I0

2p

ð2p
0

e�inc da (7:21)

Further, we can use Eq. (7.13), which gives c as a function of a. But because we will
carry out a nonlinear operation, we first represent Eq. (7.13) in a real form:

c ¼ aþ u0 � X cos
a� w0

2

� �
(7:22)

Substitution of Eq. (7.22) in Eq. (7.21) gives

An(X) ¼ I0

2p

ð2p
0

e�in½aþu0�X cos (a�w0=2)� da (7:23)

It may readily be shown (see, e.g., Abramowitz and Stegun, 1972) that the integral in

Eq. (7.23) is an integral representation of a Bessel function:

An(X) ¼ I0e
�in(w0=2�p=2þu0)In(nX) (7:24)

where In is a Bessel function of the first kind of order n. Substitution of Eq. (7.24) in

Eq. (7.17) gives a Fourier expansion of the convection current. The corresponding

relation can be simplified using the formula for Bessel functions:

In(nX) ¼ �I�n(�nX) (7:25)

Combining the terms with positive and negative n and applying Eq. (7.25), we

obtain the solution as a real series:

Ic(X,c) ¼ I0 þ 2I0
X1
1

In(nX) cos n c� u0 � w0

2
þ p

2

� �
(7:26)
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The harmonics of the convection current are traveling waves with identical

wavelengths lc ¼ 2p(v=v0), and the amplitudes

I(n)c (X) ¼ 2I0In(nX) (7:27)

The maximum dimensionless amplitudes of some harmonics and corresponding

values of Xmax are given in Table 7.1. It can be seen from the table that the ampli-

tudes of even very remote harmonics can be sufficiently high if one chooses

adequate values of X. So the maximum amplitude of the tenth harmonic is 0.60 of

the dc beam current. There is a tendency to approach X ! 1 for obtaining

maximum amplitudes of remote harmonics. As we can see from a qualitative discus-

sion of the bunching process, a form of the convection current for X ! 1 is close to

a d-function. That corresponds to Fourier series theory because Fourier expansion of
the periodic sequence of d functions has a uniform Fourier spectrum. The value of

the bunching factor X ¼ 1
2
jMu0 ¼ 1

2
(eU=U)Mu0 � eUx is proportional to the product

of the amplitude of the modulating signal and the bunching length. That is easy to

treat qualitatively: The smaller the signal amplitude, the smaller the velocity modu-

lation. But the optimal bunching is then attained at correspondingly greater length.

7.4 INTERACTION OF A BUNCHED CURRENT WITH A CATCHER
FIELD. OUTPUT POWER OF A TWO-CAVITY KLYSTRON

7.4.1 Interaction of a Bunched Current with a Catcher Field

A diagram of an interaction region and its notation are given in Fig. 7.7. We assume

that the resonator of the catcher is tuned to the nth harmonic of the input signal. Let

us calculate the power expense of the output source when the bunching current inter-

sects the catcher. If the power is negative, it would correspond to positive output

power. Let us write the potential of the catcher corresponding to the nth harmonic

of the input signal as

Uct ¼ eU(n)
ct e

i(nvtþbn) (7:28)

The average over a period power expended by the catcher source is

P(n)
ct ¼ 1

Tct

ðTct
0

I(n)ct (t)U
(n)
ct (t) dt ¼

1

2
Re½eU(n)

ct
eI(n)�ct �eibn (7:29)

TABLE 7.1 Maximum Amplitudes and Bunching Factors of nth Harmonics

n

1 2 3 5 10 20

(nX)max 1.84 3.05 4.20 6.21 11.7 22.2

Xmax 1.84 1.52 1.40 1.25 1.17 1.11

2In(nX)max 1.16 0.96 0.86 0.74 0.60 0.48
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where eU(n)
ct andeI(n)ct are complex amplitudes on the nth harmonic of the voltage and

current in the catcher circuit respectively. Ict is, as we know, equal to the total

current in the catcher area:

Ict ¼ (Ict)ind þ C
dUct

dt
(7:30)

The capacitive current can be ignored in the calculation of power because the phase

shift of this current with respect to the catcher potential is p=2. According to

Eq. (6.18), for the current induced in the planar gap we find that

(Ict)ind ¼
1

dct

ðLþdct

L

Ic(x, t) dx (7:31)

Substitution of Ic(x, t) in Eq. (7.26) gives in dimensionless variables

(Ict)ind ¼
1

wct

ðuLþwct

uL

Ic(X,c) du

¼ 1

wct

ðuLþwct

uL

2I0
X1
1

In(nX) cos n c� u� w0

2
þ p

2

� �h i
du (7:32)

where w0 ¼vd=v0,wct ¼vdct=v0, uL ¼vL=v0, c¼vt, X¼ 1
2
jMu0, and u0 ¼vx=v0.

We can assume a small variation in the bunching factor in the catcher gap; therefore,

the average of the Bessel function over the catcher gap is

In(nX)¼ ½In(nX)�x¼L ¼ In(nXL) (7:33)

Now we can extract the Bessel function in Eq. (7.32) outside the integral. Then the

integration is reduced to

(Ict)ind ¼ 2I0
X1
1

In(nXL)M
(n)
ct cos n c�uSþ

p

2

� �h i
(7:34)

whereM(n)
ct ¼ sin(nwct=2)=nwct=2 is the coupling coefficient of the catcher gap at the

nth harmonic, and uS ¼ uLþw0=2þwct=2 is the nondisturbed transit angle between

the buncher and catcher midplanes.

FIGURE 7.7 Interaction region of a two-cavity klystron.
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7.4.2 Output Power and Electron Efficiency in a
Kinematic Approximation

Let us find the complex amplitude of the nth harmonic of the current induced. The

nth term from the series in Eq. (7.34) is read

(Ict)
(n)
ind ¼ 2I0In(nXL)M

(n)
ct cos n c� uS þ p

2

� �h i
(7:35)

Replacing the cos factor here by the complex exponent and separating the temporal

factor einc, we obtain the desired complex amplitude of the nth harmonic as

(eIct)(n)ind ¼ 2I0In(nXL)M
(n)
ct e

in½(p=2)�uS� (7:36)

The value R(n)
g ; U(n)

ct =eI(n)ct is called the gap resistance. According to Eq. (7.36),

R(n)
g ¼ 1

2

U0

I0

j(n)e�in½(p=2)�uS�

In(nXL)M
(n)
ct

(7:36a)

and j(n) ¼ U(n)
ct =U0.

According to Eq. (7.29), the average power that the source gives away to

electrons is

P(n)
ct ¼ 1

2
Re½eU(n)

ct 2I0In(nXL)M
(n)
ct e

i½nuS�n(p=2)þbn��

¼ I0eU(n)
ct In(nXl)M

(n)
ct cos nuS � n

p

2
þ bn

� �
(7:37)

The output power is obviously the power that the source gets from electrons

(i.e., P(n)
out ¼ �P(n)

ct . Evidently, the condition of maximum output power is

cos nuS � n
p

2
þ bn

� �
¼ �1 (7:38)

which yields the maximum output power

(P(n)
out)ext ¼ I0eU(n)

ct M
(n)
ct In(nXL) (7:39)

This power can be called the electron power: It is not equal to the output power,

which depends on dissipation of the energy in the catcher circuit and in a load resist-

ance. We can define maximum electron efficiency as

(h(n)
el )ext ¼

(P(n)
out)ext
I0U0

¼
eU(n)

ct

U0

M(n)
ct In(nXL)

¼ jctM
(n)
ct In(nXL) (7:40)

Attainable Maximum Electron Efficiency The greatest possible electron effi-

ciency can be obtained for two rather unrealistic conditions: (1) M(n)
ct ¼ 1, and

(2) jct ¼ 1. Condition 1 requires a zero length of the catcher gap. Realization of

the approximate condition M(n)
ct � 1 is especially difficult for n . 1. The alternative
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to condition 2, jct . 1 [i.e., eU(n)
ct (n) . U0�, results from the reflection back from

the catcher gap of some part of the electrons, with a decrease in efficiency. Thus,

the absolute maximum of electron efficiency is

h(n)
max ¼ In(nXmax) (7:41)

where the quantities Xmax maximize the function In(nXL). According to Table 7.1,

these quantities are

n ¼1: Xmax ¼ 1:84, hmax ¼ 58%

n ¼2: Xmax ¼ 1:52, hmax ¼ 48%

n ¼5: Xmax ¼ 1:25, hmax ¼ 37%

(7:42)

The case n ¼ 1 corresponds to an amplifier klystron, and n . 2 corresponds to mul-

tiplier klystrons.

Let us dwell on the physical meaning of the phase condition for maximal

efficiency [Eq. (7.38)], which leads to the equality

nuS � n
p

2
þ bn ¼ (2mþ 1)p (7:43)

Let us take for simplicity n ¼ 1 (an amplifier). Assume also that the phases of the ac

potentials in the buncher and the catcher are identical (b1 ¼ 0). Then condition

(7.42) gives up the form

uS ¼ 2mpþ 3
2
p (7:44)

We see that the nondisturbed transit time between the buncher and catcher midplanes

must be equal ( 3
4
þ m)eT , where eT is the oscillation period. Now let us recall the

Applegate diagram (Fig. 7.4). We saw that the centers of the bunches are electrons

2, which move with undisturbed velocity and intersect the midplane of the buncher

gap in the moments when the ac electric field crosses zero from the retarding phase to

the accelerating phase. Then, according to Eq. (7.43), the center of the bunch will

cross the midplane of the catcher at a moment when the electric field in the

buncher will be at the maximum retarding phase. But because the fields in the

buncher and in catcher were supposed co-phased, we come to the following phys-

ically transparent result: For maximum efficiency, the centers of bunches must

arrive at the catcher midplane in the maximum retarding phase.

7.5 EXPERIMENTAL CHARACTERISTICS OF A TWO-RESONATOR
AMPLIFIER AND FREQUENCY-MULTIPLIER KLYSTRONS

There are two types of operations: voltage amplifier mode and power amplifier

mode. In the voltage amplifier mode (amplification of a small drive power), effi-

ciency is not essential. Maximum amplification is reached when the drive power

is minimum and determined by space-charge debunching (see below), by losses

in the catcher circuit, and by noise (Chodorow and Susskind, 1964).
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Parameters of the power amplifier mode are determined by the maximum

efficiency attainable. They are much worse than the idealized values given in

Eq. (7.42). For example, the following efficiencies of experimental klystrons have

been obtained (Hamilton et al., 1966): for n ¼ 1, h � 10%; for n ¼ 11, h � 0:4%.

Three main factors are responsible for this disadvantage. First, it is space-

charge debunching that is a result of the action of repulsive forces in bunches

and correspondingly, space-charge waves in velocity-modulated electron beams.

(This effect is considered in the next section.) The second factor is related primarily

to the impossibility of reaching optimal bunching in two-cavity klystrons. As

we have seen, not all electrons of the beam participate in the formation of

bunches. Also, the spread of electron velocities in the bunch is too great. These

factors can be overcome successfully in multicavity klystrons (Section 7.7). The

third factor is connected with the gap coupling coefficients M(n)
ct ¼ sin(nwct=2)=

(nwct=2). The reduction in efficiency due to this factor is especially notable in a mul-

tiplier klystron on high harmonics. One way to enhance efficiency is to increase the

drive power (the coefficient j). Therefore, in power-amplifier mode, gain is

diminished.

7.6 SPACE-CHARGE WAVES IN VELOCITY-MODULATED BEAMS

7.6.1 Formulation of the Problem

Space-charge fields describe repulsive forces in dense beams of charged particles.

These forces induce oscillations of particles with plasma frequency vp ¼ jrjh=10,
which in a moving medium have the form of a propagating wave (i.e., the space-

charge wave). In general, space-charge waves are connected with electromagnetic

waves: for example, in traveling-wave tubes. However, in klystrons, the electro-

magnetic waves can be ignored. The theory of “pure” space-charge waves was

first developed by Hahn (1939).

The basic assumptions that are used in a one-dimensional model of space-charge

waves in velocity-modulated beams are as follows:

1. All values depend only on a single space variable x.

2. The electric field has only an x-component, E ¼ �@U=@x.

3. There are no transverse velocities of electrons.

4. Ac values are small compared with dc values.

5. Electrons have a constant dc velocity.

6. The electron velocities v 	 c.

7. Electron beams are nondense:

vp 	 v (7:45)

8. Dc quantities r0 and v0 are constant.

7.6 SPACE-CHARGE WAVES IN VELOCITY-MODULATED BEAMS 277



9. There is wave variation in all values:

E ¼ eEei(vt�bx), v� ¼ ~vei(vt�bx), j� ¼ ~jei(vt�bx),

r� ¼ ~rei(vt�bx) (7:46)

where b is a propagation constant (to be determined).

This formulation is a base of the simplified version of the space-charge wave

theory, which is applicable only in the approximation of infinitely wide beams

and for a strong magnetic field when any transverse motion can be excluded. The

comprehensive theory was developed by many authors, including Chodorow and

Susskind (1964), Hahn (1939), Ramo (1939a), and Trotman (1966). The assump-

tions above do not strongly contradict klystron model theory, except for assumption

4, which is, however, inherent in other versions of the theory. To summarize,

assumptions 1 to 8 correspond to the one-dimensional small-signal low-velocity

model of a beam neutralized by ions (Trotman, 1966).

7.6.2 Equations of Space-Charge Waves

Let us divide the derivation of space-charge wave equations into two particular

subproblems.

Expression of an Electric Field Through a Current The basic equations are

dv

dt
¼ �hE, j ¼ rv,

@j

@x
¼ � @r

@t
;

v ¼ v0 þ v�, j ¼ j0 þ j�, r ¼ r0 þ r�

(7:47)

where quantities with the subscript � denote an ac component of a beam. It is con-

venient to transfer from a current density to a current. Write I ¼ rlv, where rl is a
line charge density. Then taking into account that all values are functions of t

and x and supposing further that r is the line charge density, we can rewrite

Eqs. (7.47) as

dv�
dt

¼ @v�
@t

þ @v�
@x

(v0 þ v�) ¼ �hE

I ¼ I0 þ I� ¼ r0v0 þ r�v0 þ r0v� þ r�v� or

I� ¼ r�v0 þ r0v� þ r�v�

@I�
@x

¼ � @r�
@t

(7:48)

278 KLYSTRONS



Now let us linearize these equations:

@

@t
þ v0

@

@x

� �
v� ¼ �hE

I� ¼ r0v� þ r�v0

@I�
@x

¼ � @r�
@t

(7:49)

Eliminating r� from Eqs. (7.49), we obtain

@

@t
þ v0

@

@x

� �
I� ¼ r0

@v�
@t

(7:50)

Differentiation of the first equation of Eqs. (7.49) with respect t and taking Eq. (7.50)

into account gives us an equation that connects I� and E:

r0h
@E

@t
¼ � @

@t
þ v0

@

@x

� �2

I� (7:51)

Expression of a Current Through a Field The Poisson equation is1

@E

@x
¼ r�

10S
(7:52)

The continuity equation is

@I�
@x

¼ � @r�
@t

(7:53)

Eliminating r� from Eqs. (7.52) and (7.53), we obtain

@I�
@x

¼ �10S
@2E

@x@t
(7:54)

7.6.3 Fast and Slow Space-Charge Waves

Let us substitute the wave representation [Eq. (7.46)] in Eqs. (7.51) and (7.54):

(v� v0b)
2I� ¼ ivr0hE (7:55)

I� ¼ �iv10SE (7:56)

1The equation divE ¼ r�=10S is reduced to Eq. (7.52) only for a single component of the electric field. In

this case the electric field has a potential, and Eq. (7.52) is the Poisson equation.
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The condition for the existence of nonzero solutions of Eqs. (7.55) and (7.56) gives

the dispersion equation

(v� v0b)
2 ¼ v2

p (7:57)

or

b ¼ v+ vp

v0
(7:58)

where v2
p ¼ �r0h=10S is the positive electron plasma frequency (remember that

r0 , 0 is the nondisturbed line electron beam density). According to Eq. (7.58),

b is real. So there are two nonattenuated waves with phase velocities

v(s)p ¼ v0

1þ vp=v
(7:59)

v(f )p ¼ v0

1� vp=v
(7:60)

Since vp 	 v, the “slow” wave [Eq. (7.59)] has a phase velocity slightly lower than
the nondisturbed electron velocity, and the “fast” wave [Eq. (7.60)] has a slightly

higher phase velocity. Let us write Eq. (7.58) as

b(s) ¼ be þ bp

b(f) ¼ be � bp

(7:61)

where be ¼ v=v0 and bp ¼ vp=v0 are propagation constants of the electron and

space-charge waves, correspondingly . In general, any value connected with a space-

charge wave in the electron beam is a linear superposition of both waves: for

example, for a velocity

v� ¼ A1e
i½vt�b(s)x� þ A2e

i½vt�b(f)x� (7:62)

Discussion of Results We have seen that ac disturbances can propagate along the

beam as space-charge waves. Let us discuss briefly the properties of these waves.

The following relation between the ac velocity and ac density in the beam may

be found readily from the first of Eq. (7.49), and Eqs. (7.46), and (7.52):

(v� v0b)v� ¼ v2
p

b

r�
r0

(7:63)

or according to Eqs. (7.59) and (7.60), and assuming that b � be ¼ v=v0 on the

right-hand side of Eq. (7.63),

v�
v0

� +
vp

v

r�
r0

(7:64)
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where theþ and 2 signs correspond to fast and slow waves, respectively. We find

that in a fast wave, the ac velocity and density are in phase, whereas in a slow wave,

these quantities have opposite phases. Thus, in a fast wave the number of particles

traveling with velocity greater than the dc velocity is more than the number of

particles traveling with velocity less than the average velocity, and vice versa. So

the beam kinetic energy increases when a fast wave is excited: that is, if we want

to excite the fast space-charge wave, we must add the energy to the beam to

“heat” it. For a slow wave, the number of particles with decreased velocities

prevail. Hence, the beam energy is decreased when a slow wave is excited. For

excitation of a slow wave we must take away the beam’s kinetic energy—“cool”

the beam. Usually, it is said a fast space-charge wave carries positive energy,

and a slow wave carries negative energy.

7.6.4 Plasma Frequency Reduction Factor

So far we have considered only infinite electron beams. In finite beams, in general,

one should consider transverse particle motion. This motion can be excluded,

however, if one uses a strong magnetic field. But independent of that, longitudinal

interaction forces between particles can be suppressed due to the fringing effect

caused by the presence of conducting walls. In this case, a part of the force lines

is closed by the walls (Fig. 7.8).

The theory of finite electron beams was developed by Hahn (1939) and Ramo

(1939a) and involves the solution of Maxwell’s equations with corresponding

boundary conditions. It was shown that finite electron beams with excluded trans-

verse motion of the electrons can be described with reduced plasma frequency

vq, which depends on the frequency, electron velocity, and geometric parameters

of the drift tube. One can show that if vq has been calculated, one can replace

vp by vq in all beam relations. The ratio R ¼ vq=vp , 1 is called the plasma

reduction factor. Some curves R ¼ R(va=v0) with various a=b values are shown

in Fig. 7.9 (Branch and Mihran, 1955; Collin, 2001).

7.6.5 Debunching of a Velocity-Modulated Beam by a Space Charge

The space-charge waves that are generated in the velocity-modulated beam

obviously interfere with bunching. This process diminishes ac current and electron

power. Because of the linearity of the beam equations, ac beam current as well as ac

velocity are determined by a linear combination of two particular solutions

FIGURE 7.8 Reduction in the space-charge field pattern in a finite beam.
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corresponding to two space-charge waves. Therefore, we can write, similarly to

Eq. (7.62),

I� ¼ B1e
i½vt�b(s)x� þ B2e

i½vt�b(f)x� (7:65)

The constants Ai and Bi can be found from Eq. (7.50), which links the ac components

of the current and velocity, and from the following initial conditions (plane x ¼ 0 is

the buncher output border):

v�x¼0 ¼ 1
2
v0jMeivt (7:66)

I� ¼ 0 (7:67)

Equation (7.66) is taken from Eq. (7.5) without dc velocity and with the phase

multiplier e�if0=2 � 1. Equation (7.67) assumes that bunches do not have time to

form in the short buncher gap and that the ac convection current into the buncher

gap is zero.

Using Eqs. (7.50), (7.57), (7.62), and (7.65), we obtain the following relations

between amplitudes of the current and velocity:

B1 ¼ � v

vp

r0A1, B2 ¼ v

vp

r0A2 (7:68)

Substitution of Eq. (7.68) into Eq. (7.65) and application of Eqs. (7.62), (7.66), and

(7.67) leads to a system of two equations determining the coefficients A1 and A2. As

a result, we obtain

A1 ¼ A2 ¼ 1
4
v0jM (7:69)

FIGURE 7.9 Space-charge reduction factor for a cylindrical electron beam inside a circular

tube.
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Substitution of Eqs. (7.69) and (7.68) in Eqs. (7.62) and (7.65) gives the

following relations for the ac velocity and current in the bunched beam:

I� ¼ � 1

4

v

vp

r0v0jMeivt½e�ib(s)x � e�ib(f)x� (7:70)

v� ¼ 1

4
v0jMeivt½e�ib(s)x þ e�ib(f)x� (7:71)

Using Eq. (7.58) and I0 ¼ r0v0, u ¼ vx=v0, and X ¼ 1
2
jMu [from Eq. (7.12)],

we obtain

I� ¼ iI0e
iv(t�x=v0)X

sinbpx

bpx
(7:72)

v� ¼ 1
2
v0jMeiv(t�x=v0) cosbpx (7:73)

where X ¼ 1
2
jMu0 is the bunching factor that was defined in Eq. (7.12).

Let us compare Eq. (7.72) with Eq. (7.15) for the convection current that was

found in the kinematic bunching theory. If we assume that X 	 1 in this formula,

we find the ac current (with the multiplier e�iw0=2 ¼ 1) as

Ic� ¼ iI0Xe
ia (7:74)

Because a ¼ vt ¼ v(t � x=v0), we see that in the linear approximation (X 	 1),

space-charge debunching is described by the term

sinbpx

bpx
¼ sin (vpx=v0)

vpx=v0

in the ac current. For small vp and a small length of the bunching region (bpx 	 1),

this coefficient is close to 1. The reduction in the bunched current with increased bp

can be considerable. It is interesting to note that when the factor bpx approaches

p=2, the bunched current and the output power cease to depend on the length

of the bunching region because X=x is approximately constant. It is obviously

a result of the linear approximation. To diminish the debunching effect without

changing vp it is desirable to shorten the length of the bunching region while

increasing the drive power (coefficient j). That way of increasing the efficiency

and power decreases the gain at small signals (voltage amplifier mode). Webster

(1939) recommended the following formula for bunched current, which takes into

account space-charge debunching in a nonlinear approximation:

I� ¼ 2I0I1(X)
sinbpx

bpx
(7:75)
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The origin of this formula is not clear. It is probably a distinctive interpolation from

Eqs. (7.27) and (7.72) (i.e., it is a space-charge correction of the nonlinear kinematic

bunching theory).

It is necessary to note that the peculiarity of frequency harmonics is not displayed

in the Eq. (7.72). In particular, there is a drop in efficiency with n harmonics even if

one does not take into account the decrease in coupling coefficient M(n)
ct [see Eqs.

(7.34), (7.37)], which is not seen. The reason for this disadvantage is obviously con-

nected with the linearity of space-charge bunching theory. According to the kin-

ematic nonlinear approximation, the appearance of noticeable amplitudes of high

harmonics is possible for X � 1 when the form of the bunched current is essentially

nonsinusoidal (Section 7.3.3). Meanwhile, space-charge debunching that smoothes

the form of bunches must significantly reduce the amplitudes of high harmonics.

This effect can be traced using numerical analysis.

7.7 MULTICAVITY AND MULTIBEAM KLYSTRON AMPLIFIERS

As we have seen in Section 7.5, two-cavity klystron amplifiers do not display high

efficiency and amplification. During World War II and in the first after-war years,

the magnetron oscillators were used widely in the radars. They were practically the

only sources of powerful pulse microwave radiation in those years. Meanwhile,

new problems that have appeared in radars, charged particle accelerators, and

other powerful radio-electronic systems could not be solved without frequency

synchronization of many high-frequency (HF) sources. For magnetrons (as for

oscillators) it was a very difficult problem. In addition, the structural features of

magnetrons do not allow the realization of powerful CW and long-pulse

devices. The best solution was the use of powerful amplifiers. Therefore, the

problem of effective high-power klystron amplifiers was very urgent. The solution

has been found with the multicavity klystrons in the L and partially in the S to X

ranges (see the introduction to Part II). The earliest powerful pulse three-cavity

klystron was developed at Stanford in 1948 for the Mark III electron accelerator

(Chodorow et al., 1953).

A multicavity klystron is depicted in Fig. 7.10. A velocity-modulated elec-

tron beam in the first cavity (the buncher) enters the second cavity. This

cavity is unloaded and has a high Q-factor; therefore, even in the case of

weak bunching, the high ac power is stored in the resonator. The amplified

ac field in the second cavity gap causes additional velocity modulation of the

beam. As result, under the action of both the first and second electron gaps,

a complicated velocity modulation is created. Effective bunching is achieved

for favorable conditions in the drift region between the second and third cav-

ities. Further, the process is repeated, and a high gain and/or high efficiency

can be realized. A multicavity klystron is a very complicated device with

many independent parameters. There are three important modes that must be

considered in choosing these parameters: the voltage amplifier, power amplifier,

and bandwidth amplifier modes.
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7.7.1 Voltage Amplifier Mode (Maximum Gain)

In this mode, the resonance frequencies of all cavities are chosen to be identical,

equal to the input (operating) frequency (the synchronous tuning regime). At reson-

ance, when the natural frequencies of cavities are equal to the frequency of the input

signal, the excited ac fields in the cavities are maximal. Upon arrival of the bunch

centers in the gap, the ac field phase induced aligns itself at maximum retarding.

If this condition is satisfied in all cavities, it leads to high amplification for a suffi-

ciently small beam current (essentially, that in this case the space-charge debunch-

ing is weak). In principle, an arbitrarily large gain can be obtained in the voltage

amplifier mode for a sufficient number of cavities. There is the following rough

empirical formula for the dependence of the maximum power gain on the number

N of cavities in the klystron:

KP ¼ 15þ 20(N � 2) dB (7:76)

Really attainable maximum amplification values are on the order of 50 to 70 dB. The

main limiting factors are noise and self-excitation of the klystron because of

parasitic feedback between cavities.

The voltage amplifier mode is realized with a small drive power. Increased

drive power leads to a gain saturation level long before the optimal efficiency is

attained, because the velocity modulation in this case is determined by a nonoptimal

ac field.

7.7.2 Power Amplifier Mode

The main principle in the realization of high efficiency is obtaining compact bunches

entering the last (output) resonator. The term compact means a short length of the

bunch, minimum velocity spread, and effective filling of the bunch by beam elec-

trons. Compact bunching, combined with an appropriate value for a retarding ac

field in the last gap, allows one to extract from an output resonator an overwhelming

share of the electron kinetic energy with high efficiency.

FIGURE 7.10 Four-cavity klystron. 1, Electron gun; 2, input cavity; 3, bunched electron

beam; 4, drift tube; 5, intermediate cavity; 6, penultimate cavity; 7, output cavity; 8, collector.
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Let us consider in more detail a realization of the power amplifier mode in a four-

cavity klystron (Fig. 7.10). The first cavity is tuned synchronously to obtain a

maximum velocity modulation. The second (intermediate) unloaded cavity must

be tuned slightly upward in frequency (i.e., the resonance frequency v2 must be

slightly greater than the operating frequency v0). Then the susceptance of this reso-

nator reduced to the electron gap is inductive. As a result, the ac field in the gap

advances the phase of the ac convention current. According to an analysis by

Webber (1958), optimal bunching is achieved when the ac potential at the second

cavity outruns the current by p=2. The bunch center enters the gap not at the

maximum retarded phase of the ac field but at the moment when the field crosses

zero from the retarded phase to the accelerated phase (see the Applegate diagram

in Fig. 7.4). In this case the fast electrons in front of the bunch are decelerated,

and the slow electrons behind the bunch are accelerated. In addition, former

“neutral” particles participate in the bunching process. Thus, although the detuning

of the intermediate cavity reduces the ac potential induced, the bunching after this

cavity is improved significantly.

The detuning of the third (penultimate) cavity is also positive (v3 . v0).

However, the difference v3 � v0 must be smaller for excitation of a higher ac

output potential. Simultaneously, the ac potential in the penultimate gap must be

increased significantly (up to 0.3 to 0.4 of the dc potential). Then it is possible to

shorten the length of the last drift tube. That leads to the weakening of space-charge

debunching and diminishing the velocity spread in bunches. The small velocity

spread allows all electrons of a bunch to overcome the strong retarding ac electric

field in the output electron gap without reflections. The features indicated provide

a high efficiency. Note that an optimum is reached with an increased drive power,

which in general reduces the gain.

Multicavity klystrons usually employ a larger number of resonators: five or six,

sometimes up to eight. In some cases, one or more resonators are tuned on the

second harmonic of the drive frequency to improve the bunch compactness. As an

example, the following data are from a superpowerful CW klystron (VKP-7952,

developed by Communications & Product Industries in Palo Alto, California)

(Lenci and Bohlen, 2002):

. Frequency: 700 MHz

. Cathode voltage: 92 kV

. Beam current: 17 A

. Output power: 1.02 MW

. Efficiency: 66%

. Gain: 43 dB

. Drive power: 51 W

This klystron has been delivered to the Los Alamos National Laboratory for

accelerator-assisted production of tritium.
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7.7.3 Bandwidth Amplifier Mode

The klystron bandwidth is determined by two main factors: the bandwidth of the

effective velocity modulation and the bandwidth of the output resonator. Optimiz-

ation of the velocity modulation is reached by the detuning of intermediate resonators

and reduction in their Q-factors. In Fig. 7.11 a scheme for tuning in five-cavity

klystrons is presented. As we see, the first and output (fifth) resonators are tuned syn-

chronouslywith the drive signal. This strengthens the velocity modulation and allows

us to extract the maximum beam energy through the output resonator. The intermedi-

ate cavities (2,3) are detuned downward and upward. Although this operationworsens

the bunching and finally, the efficiency, it broadens the bandwidth Dv. Detuning
upward of the penultimate (fourth) cavity corrects bunching following the intermedi-

ate cavities. The typical bandwidth of multicavity klystrons is on the order on 1%.

Theparameters of the output resonator are very significant. Themost important is the

choice of the loadingQ-factor and gap resistanceR(1)
g [Eq. (7.36a)] (Caryotakis, 1998).

In particular, the bandwidth is increased with reduction of the loadingQ-factor and gap

resistance. Very effective for increasing bandwidth is the use of coupled cavities

(Gilmour, 1986). To support high output power, it is desirable to use high perveance

of the beam. However, that increases space-charge debunching and diminishes the

efficiency. Thus, the development meets the contradictory requirements.

7.7.4 Multibeam Klystrons

One promising solution of these problems is attained in amultibeam klystron (MBK).A

typical MBK is depicted in Fig. 7.12. After formation in the gun with a common

cathode (1), an anode (2), and a common focusing magnetic field, the electron

beams (4) are transported through separate thin tunnels that reduce the plasma fre-

quency. The beams are coupledwith radio-frequency cavity fields via common electron

gaps. Therefore, a large total perveance is combined with the small perveances and cur-

rents of each beam. That weakening of the debunching space-charge effect simplifies

the problem of beam formation and transport. In particular, the focusing magnetic field

can be reduced. The possibility of achieving a high total level of perveance allows us to

FIGURE 7.11 Optimal tuning of the resonators in a five-cavity klystron.
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work with reduced dc potential and to broaden the MBK bandwidth significantly

compared with single-beam multicavity klystrons (Korolyov et al., 2004).

A pulse seven-beam six-cavity klystron for a Tesla linear collider was developed

by Thomson Tubes Electroniques in France. The operating frequency, output power,

gain, RF pulse duration, and efficiency of this device were, respectively, 1300 MHz,

10 MW, 48 dB, 1.5 ms, and 65% (Beunas and Fallon, 1998). The number of the

beams in an advanced MBK can be increased up to 18 (Nguen et al., 2005).

7.8 RELATIVISTIC KLYSTRONS

Development of superpowerful klystrons amplifiers with corresponding enhance-

ment of the voltage up to the relativistic electron energy is dictated primarily by

needs in charged particle accelerator physics and in particular, RF linear accelerators

(linacs) for TeV electron colliders. In general, three essentially different types of

relativistic klystrons are known (see, e.g., Fazio et al., 1994).

The first type is low-perveance klystrons with a solid beam, such as the pulse

three-cavity relativistic klystron with voltage 400 kV developed at Stanford Univer-

sity in 1949 by the team of Chodorow and Ginzton (Chodorow et al., 1953). The

operating frequency of this klystron and the output power were correspondingly

3 GHz and 10 MW. Advanced X-band SLAC klystrons of this type operate at

voltage 1.3 MV, a current of 600 A, and produce 300 MW of power.

The second type is relativistic multibeam klystrons of a gigawatt power level

(GMBK). The Stanford University designed a 10-beam L-band GMBK (Caryotakis

et al., 1996, 1998). This GMBK should produce 1 GW with an efficiency of 40%.

The beam voltage of this klystron is 500 kV, and the total current is 5.0 kA, so the

current of the each beam is 500 A. The peculiarity of the GMBK is the use of the

periodic permanent magnetic focusing (see Section 5.8.2). In the proposed klystron,

the spacing between beams is large and the considered focusing is very effective.

The third type of relativistic klystrons is a high-current, high-perveance, mildly

relativistic tube with an annular beam, generated by an explosive emission magne-

tically insulated diode (see Section 4.7.3), and coaxial cavities. These klystrons were

investigated originally at the Naval Research Laboratory (NRL) (Friedman et al.,

1990). The thin annular electron beam, propagating near a conducting wall of a

large-diameter tube, can carry much higher currents than solid beams can. The

FIGURE 7.12 Five-cavity three-beam klystron. 1, Cathode; 2, anode; 3, input resonator;

4, beams; 5, output resonator; 6, collector.
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typical value of the accelerating voltage is 500 kV, and the current of 5 to 20 kA is

approximately an order of magnitude greater than the current in SLAC klystrons. The

output power of the 1.3-GHz klystron was about 3 GW, the efficiency 50%, and the

pulse duration up to 100 ns, with 37 dB gain (Lau et al., 1990).

Physical processes in the relativistic klystrons have a number of important

peculiarities, so the velocity modulation in a klystron of the first type is very low

compared with the nonrelativistic version. The correct relativistic formula for the

ac velocity at the output buncher is (Chodorow et al., 1953)

~v � 2v0

g(gþ 1)
jMe�iw0=2 (7:77)

where g is a relativistic factor. Let us compare this relation with Eq. (7.5). For

v ¼ 600 kV, we obtain 2=(g(gþ 1)) � 0:29, more than a threefold reduction of

the ac velocity. The gap coupling coefficient M is not changed compared with the

nonrelativistic version. The small velocity modulation is balanced by a significant

lengthening of the drift tunnels, although according to the results of the analysis,

the velocity modulation for the attainment of optimal efficiency should not be

very large. So in the last drift tube of a 500-kV klystron, the maximum deviation

of the velocity from the average value does not exceed 0.05. The energy extraction

in relativistic klystrons also has interesting features that do not require a strong

deceleration of electrons in the output gap because the energy draws out from the

particle mass. So for U0 � 1 MV, the minimum electron velocities for efficiency

exceeding 80% can comprise 0.5 to 0.8 of the average value.

In relativistic klystrons of the third type, space-charge waves on tenuous electron

beams in conventional klystrons are modified dramatically by the strong self-electric

field of beams. The bunching mechanism in the modified beams is unique; unlike the

case of klystrons of the first type, a longer drift region is unnecessary. The second

important property of the modified space charge in the third type of klystron is

the strong electrostatic insulation against a vacuum breakdown at high power levels.

The analysis of optimal regimes in relativistic multicavity klystrons was devel-

oped by a team working with A. A. Kuraev (Aksenchik et al., 1982). A klystron

has been developed in which both efficiency and gain grow with the number of cav-

ities. For eight-cavity klystrons, for example, with a voltage of 1500 kV, the

maximum designed efficiency and the amplification coefficient were respectively

84% and 70 dB. For a current of 450 A, the maximum output power was

0.56 GW. The optimal ac electric field in the optimized regimes increases with

the dc potential. For U0 ¼ 1:5 MV, Eopt ¼ 75 kV=mm, which is close to the elec-

trical breakdown in a vacuum. An effective method of reduction of the optimal elec-

tric field is the use of output resonators as coupled cavity systems of the type used in

sections of a slow-wave structure (Pohl, 1965). We thus arrive at a scheme for a

twistron (see, e.g., Gilmour, 1986). In general, the design of optimal multicavity kly-

strons is a difficult task. It is an optimization control problem involving the nonlinear

interaction of the electron beams and ac electromagnetic field, taking into account

many parameters (a space charge, eigenfrequencies and quality factors of resona-

tors, lengths of the drift tunnels, parameters of electron gaps, etc.). Experimental
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examination involves adjusting many units and is also very complicated because of

the high amplification rate.

The basic use for relativistic klystrons is as high-energy drivers for electron and

ion accelerators and colliders. An important use is in compact RF electron accelera-

tors to drive free electron lasers and possible even high-frequency drivers for direct

energy weapons (see, e.g., Barker and Schamiloglu, 2001).

Increasing the radio frequency and pulse duration is a very important way to

create multi-TeV linear colliders. Also, perspective radars and communication

systems should operate at the W-band, where there is an atmospheric window.

High-power efficiency relativistic klystrons do not exist at these frequencies

because the dimensions of basic component became too small; frequencies of

order 10 GHz are practically the upper boundary for these klystrons. Relativistic

gyroamplifiers have a number of advantages (see Chapter 10).

7.9 REFLEX KLYSTRONS

Reflex klystrons (RKs) are velocity-modulation single-cavity tubes that for long

were widespread microwave low-power oscillators applied in diverse fields of

microwave engineering. The frequency range of the RK family is striking: from

the L up to the Ka band. The highest frequency of the RK is near 150 GHz

(l ¼ 2 mm). The positions of RKs have lately been weakened by the advent of

solid-state high-frequency oscillators; however, some advantages of RKs, especially

its radiation steadiness, justify its use especially in the short-wave millimeter range.

In any case, the physics of the RK as an oscillator with intrinsic electron feedback is

of general interest. RKs were invented independently in 1939 by R. Varian and

W. Hansen at Stanford University, W. C. Hahn and G. Metcalf at Schenectady,

and A. Arsenjeva-Heil with O. Heil in Germany and the USSR (see Ginzton and

Harrison, 1946; Pierce, 1945). A scheme of RK is shown in Fig. 7.13.

The only cavity of the tube accomplishes the functions of a buncher and a catcher

simultaneously. The reflector potential is negative around the cathode, and the

FIGURE 7.13 Reflex klystron. 1, Cathode; 2, anode; 3, cavity; 4, reflector.
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electrons are reflected and move backward through the cavity gap at the anode. In

the gap between the reflector and the cavity (the reflection space), the electron

beam is bunched. As a result, a periodic convection current is formed that intersects

the cavity gap in the back motion. Self-excitation oscillations are attained for favor-

able phasing between an ac potential and an ac current.

Given below is a detailed description of the reflex klystron mechanism that is

both elegant and instructive.

7.9.1 Bunching of an Electron Beam in a Retarded Field

The velocitymodulation of the electronbeam in the cavity gap is the same as in a simple

electron gap (Section 7.2). Applying formula (7.5) for the electron velocity, we obtain

v ¼ v0 þ ~vei(vt�w0=2) ¼ v0½1þ 1
2
jMei(vt�w0=2)� (7:78)

where v0
ffiffiffiffiffiffiffiffi
2U0

p
, j ¼ eU=U0, M ¼ sin(w0=2)=w0=2, and w0 ¼ vd=v0. The time t

denotes the moment of the departure of electrons from the gap cavity into the reflection

space.Assume that the space-charge effects in the reflection space can be neglected and

the electric field is uniform. Then the motion of electrons in this region can be

considered as decelerated uniformly with the acceleration and velocity, respectively:

a ¼ h(U0 þ Ur)

dr
, v ¼ v0 � at (7:79)

An electron in a retarding dc field moves to the reflector until it stops. The total

nondisturbed transit time in the reflection space is

T0 ¼ 2v0

a
¼ 2v0dr

h(U0 þ Ur)
¼ 2dr

ffiffiffiffiffiffiffiffiffiffiffi
2hU0

p
h(U0 þ Ur)

(7:80)

The ac transit time determined by the velocity modulation is

T ¼ 2v

a
¼ 2v0

a

v

v0
¼ T0½1þ 1

2
jMei(vt�w0=2)� (7:81)

where we used Eq. (7.78). The corresponding transit angle is

u ¼ u0 þ Xei(a�w0=2) (7:82)

where u ¼ vT , u0 ¼ vT0, a ¼ vt, and the bunching factor

X ¼ 1

2
jMu0 ¼ 1

2

eU
U0

Mu0 (7:83)

According to Eqs. (7.81) and (7.82), the transit time and angle oscillate with frequency

v of the drive signal. In Fig. 7.14 a version of the Applegate diagram for motion of

electrons in the reflection space is presented. According to Eq. (7.81), the transit time

is proportional to the initial velocity. That is analogous to the motion of a ball

thrown up in the air: The greater the initial velocity of the ball, the higher it raises

and the later it returns. The parabolic trajectories in Fig. 7.14 are depicted in such a

way (which is the most favorable case) that for a given reflector potential, they return
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in the buncher simultaneously. Electron 2 enters first. At thatmoment, the ac gap poten-

tial ismaximal. Therefore, electron2 is “raised” to the greatest height and its transit time

is also the greatest. Then electron 3 begins; its velocity is slower. Electron 4 has the

slowest velocity. It moves the shortest time and overtakes electrons 2 and 3. As a

result, the bunch is formed and it returns to the input gap in the maximum retarding

phase of the field (for backward motion). The curves marked in Fig. 7.14 as m ¼ 0

correspond to the maximum retarding reflector potential. Other trajectories (m ¼ 1)

correspond to a smaller reflector potential that also form the bunch.

Electron 3 is a bunch center. It moves with a nondisturbed velocity and intersects

the midplane of the buncher gap at the moment when the ac electric field crosses

zero from an acceleration phase to a retarding one. As can be seen from comparison

between Figs. 7.14 and 7.4, the bunch center is phase-shifted by p relative to the

bunch centers in two- or multiresonator klystrons. According to Fig. 7.14,

the optimal nondisturbed transit angle is 3
2
p or the transit time is 3

4
eT . The other

optimal transit angles are u0 ¼ 3
2
pþ 2mp or T0 ¼ 3

4
eT þ meT . Note that the

optimal transit angle is the same as in a drift tube klystron. That is explained by

the additional shift by p in the returning phase compared with an ordinary klystron

(the ac electric field must be accelerating for forward motion).

7.9.2 Calculation of Electron Power and Efficiency

The calculation method is analogous to the method used in Sections 7.3.3 and 7.4.2

for ordinary klystrons. The convection current Ic(x,t) in dimensionless variables is

Ic(X,c), where c ¼ vt. The bunching factor X from Eq. (7.83) is equivalent to

the factor X in drift tube klystrons [Eq. (7.12)]. Let us write the expansion of the con-

vection current into a Fourier series in dimensionless form:

Ic(X,c) ¼
X1
�1

An(X)e
invt (7:84)

FIGURE 7.14 Distance–time Applegate diagram for a velocity-modulated beam for two

values of the reflector potential.
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where

An(X) ¼ 1

2p

ð2p
0

Ic(X,c)e
�inc dc (7:85)

Applying the charge conservation law (7.20), we obtain

An(X) ¼ I0

2p

ð2p
0

e�inc dc (7:86)

For calculation of the integral in Eq. (7.86), we need the function c ¼ c(a). In
this case, t ¼ tþ T , or in dimensionless variables, c ¼ aþ u. Using Eq. (7.82),

we find that

c ¼ aþ u0 þ Xei(a�w0=2) (7:87)

Before substituting the function [Eq. (7.87)] into the integral [Eq. (7.86)], we must

take its real part (see Section 7.3.3). Then we obtain

An(X) ¼ I0

2p

ð2p
0

e�in½aþu0þX cos (a�w0=2)� da (7:88)

This integral is again reduced to a Bessel function. We can omit the corresponding

calculation. It is sufficient to note that this integral differs from the integral in

Eq. (7.23) only by the sign of X. Therefore, we can take Eq. (7.26) for the convection

current and replace X by 2X. Furthermore, we can use Eq. (7.37) for the nth har-

monic of a complex electron power:

P(n)
e ¼ I0eU(n)

ct In(nXL)M
(n)
ct e

i½nuS�n(p=2)þbn� (7:89)

and transform this formula, taking into account the following obvious features of a

reflex klystron:

n ¼ 1, bn ¼ 0, eU(n)
ct ¼ �eU, X ! �X,

M(n)
ct ! M ¼ sinw0=2

w0=2
, uS ! u0

As a result, we obtain the electron power:

Pe ¼ I0M(�eU)I1(�X)ei(u0�p=2) (7:90)

So the real and imaginary parts of the electron powers are

Per ¼ I0MeUI1(X) sin u0 ¼ 2
I0U0

u0
XI1(X) sin u0 (7:91)

Pei ¼ �I0MeUI1(X) cos u0 ¼ �2
I0U0

u0
XI1(X) cos u0 (7:92)
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The optimal electron power that is delivered to the cavity according to Eq. (7.91) is

achieved for sin u0 ¼ �1. That gives us

u(m)0 ¼ 3
2
pþ 2mp (7:93)

Equation (7.93) agrees with the qualitative discussion of the Applegate diagram in

Fig. 7.14 and represents the condition of return of the bunch in the phase of the

maximum retarding field. As a result, optimal electron output power and optimal

electron efficiency are

P(opt)
e ¼ I0MeUI1(X), h(opt)

e ¼ Pe

I0U0

¼ MjI1(X) (7:94)

Using Eqs. (7.83) and (7.94), we obtain

h(opt)
e ¼ 2XI1(X)

3
2
pþ 2mp

(7:95)

A value of the bunching factor X giving the maximum efficiency can be found from

the equation

d

dX
½XI1(X)� ; I0(X) ¼ 0 (7:96)

The first zero of the Bessel function I0 is X � 2:4. Then

h(max )
e ¼ (2) (2:4) I1(2:4)

3
2
pþ 2mp

� 2:5
3
2
pþ 2mp

(7:97)

The greatest electron efficiency h(max )
e ¼ 0:53 is obtained for m ¼ 0. In this case the

transit angle is minimal and is (u0)opt ¼ 3
2
p.

The reflector potentials corresponding to the optimal transit angles [Eq. (7.93)]

can be found from Eq. (7.80):

u(m)0 ¼ 3

2
pþ 2mp ¼ 2vdr

ffiffiffiffiffiffiffiffiffiffiffi
2hU0

p

h½U0 þ U(m)
r � (7:98)

According to this equation, U(m)
r decreases with m. The minimum of Ur is zero,

because for a positive reflector potential the electrons do not return to the cavity.

As a result, a number m is restricted. mmax can be found if we set Ur ¼ 0 in

Eq. (7.100).

The efficiency quickly drops with increased m. Let us return to the Applegate

diagram (Fig. 7.14). We see that the bunch can pass the retarding maximum

at various distances. But for any m, the optimal bunching factor X ¼ 1
2
jMu0

found from Eq. (7.96) is the same. Therefore, with increasing u0 the corresponding
value j ¼ eU=U0 is decreased (i.e., with increased m the optimal amplitude of the ac

potential, and also the power and the efficiency, are decreased).
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7.9.3 Equation of Stationary Oscillations. Starting Current.
Electronic Frequency Tuning. Oscillation Zones

The equation of stationary oscillations can be obtained by substitution of electron

power equations (7.91) into the general equations (6.53) and (6.54) of the oscillator:

2
I0U0

u0
XI1(X) sin u0 ¼ �Pl (7:99)

v� v0

v0

¼ 1

2Q

Pei

Per

¼ � cot u0
2Q

(7:100)

The power dissipated in the cavity Pl ¼ 1
2
YleU2, where Yl is the loading cavity con-

ductance. Using Eq. (7.83), we obtain

I1(X)

X
¼ �U0

I0

Yl

M2u0 sin u0
(7:101)

This equation defines the amplitude of stationary oscillations of the loading reflex

klystron.

The starting current corresponds to oscillations with an amplitude close to zero.

Assuming that X ! 0 and taking into account that I1(X)=XjX!0 ¼ 1
2
, we obtain from

Eq. (7.101) the starting current

Ist ¼ � 2YlU0

M2u0 sin u0
(7:102)

As we see, Ist is minimal for the optimal transit angles u(m)0 ¼ 3
2
pþ 2mp when

sin u(m)0 ¼ �1. A deviation of u0 from the optimal u(m)0 increases the starting

current and decreases the power. Also, the starting current decreases with m.

The limiting deviations u(m)min and u(m)max of u(m)0 correspond to a range of transit

angles where I1(X)=X , 1
2
. So the dependence of the output power of the transit

angle acquires the form of the separated zones (oscillation zones). Obviously, the

starting current in each zone is decreased with the zone number m. That can be

explained by an increase of u0 in the bunching length. Therefore, the amplitude

of the ac potential eU required for proper velocity modulation is reduced. That

decreases cavity losses and correspondingly, the starting current.

How can we control the transit angle? According to Eq. (7.98), it is possible by

changing U0 or Ur. It is more beneficial to change Ur because the current of the

reflector at the negative electrode is zero. The corresponding control u is realized

without energy consumption.

In Fig. 7.15, a qualitative view of the power and oscillation frequency as func-

tions of the reflector potential is shown for the first three oscillation zones. The

reflector potentials at the centers of the zones correspond to the optimal transit

angles [Eq. (7.98)]. According to Eqs. (7.97) and (7.98), the output power is

maximal in the zone centers and decreases with m. The frequencies in the centers

7.9 REFLEX KLYSTRONS 295



of the zones according to Eq. (7.100) are the same and equal to the nondisturbed

cavity frequency. This is a result of the reactive electron admittance being zero at

the centers of each zone. The ability to control the radiation frequency by the reflec-

tor potential (electronic tuning) is a very valuable property of the reflex klystron,

which does not require energy consumption and is practically without inertia.

Usually, the electronic tuning is about 1%, but it can be enhanced to 10% by

using a cavity with a small Q-factor [Eq. (7.100)] and increasing the beam current.

7.9.4 Efficiency and Applications of Reflex Klystrons

Above we estimated the maximum efficiency for a zero oscillation zone as�53%. In

the experimental klystrons the efficiency is significantly smaller. The main reason is

connected with the influence of the space charge, which has not been taken into

account in the previous analysis. The disturbance in the electron motion, especially

space-charge debunching in the reflex klystron, is stronger than in the amplified

klystrons because of electron deceleration near the reflector and the corresponding

increase in the space-charge density. As result, even in the zeroth zone, the exper-

imental efficiency is less than 10%. The space-charge effects are reinforced with

m because of expansion of the bunching region. The efficiency in zones with

m � 1 is only of order 1%, but one is balanced by small starting currents in these

zones and an increased electronic tuning band (see Fig. 7.15). Therefore, the

reflex klystrons are designed for large values of u with correspondingly low

collector potentials and used as oscillators of small power.

FIGURE 7.15 Output power and frequency for the first three oscillation zones as functions

of a reflector potential.
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CHAPTER EIGHT

Traveling-Wave Tubes and
Backward-Wave Oscillators
(O-Type Tubes)

8.1 INTRODUCTION

Traveling-wave tubes (TWTs) and backward-wave oscillators (BWOs) are

microwave amplifiers and oscillator electron tubes, respectively, in which a recti-

linear electron beam interacts with a traveling electromagnetic field. In the oper-

ational space of both TWTs and BWOs, dc electromagnetic fields are absent,

except for a focusing magnetic field that runs parallel to the beam. Such tubes

(including klystrons) are called O-type devices. These contrast with M-type

devices, in which electron beams interact with electromagnetic waves in crossed

dc electric and magnetic fields.

The following principal disadvantages of klystron amplifiers stimulated the

development of O-type TWTs.

1. Narrow bandwidth. Ac electric fields in klystrons are localized in very short

gaps. Therefore, for effective control of electron velocities, strong ac electric fields

are required, along with a correspondingly large stored energy, W, in the klystron

resonators. Recall that the quality factor of a resonance circuit, Q, is equal to a

ratio of frequency to resonance width:

Q ¼ vW

P
¼ v

Dv
(8:1)

Therefore, a device with high Q will necessarily possess a correspondingly narrow

bandwidth Dv.
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2. High-frequency limitations. The effect indicated above becomes more and

more significant as the wavelength is shortened. Therefore, expansion of the kly-

strons into short centimeter and especially into millimeter bands leads to a drop

in output power.

The traveling-wave tube was invented in 1942 by Rudolf Kompfner in England,

although Lindenblad was perhaps the first to propose the idea of a helix traveling-

wave amplifier in a patent (Lindenblad, 1942) (filed May 1940). Kompfner (1964)

described the history of this invention. It is interesting that microwave electronics

began as a hobby for Kompfner; he was trained as an architect in Vienna.

The design of traveling-wave tubes addresses the following key issues: Is it possible

to extend the interaction length if the field is variable in the time? Can the electrons

“see” the same ac field phase over an extended period? Both are achieved through

the interaction of particles with a traveling wave whose phase velocity is close to the

particle velocity. Since the electron velocity in nonrelativistic beams is much less

than the light velocity, it is necessary to apply some waveguide structure that would

significantly reduce a velocity of the electromagnetic wave. Kompfner used a helix

as a slow-wave structure for this purpose. The brilliant service of Kompfner was

the embodiment of this idea in a real working tube. The first comprehensive theory

of O-type TWTs (TWTOs) was formulated by Pierce (1947).

8.2 QUALITATIVE MECHANISM OF BUNCHING AND ENERGY
OUTPUT IN A TWTO

8.2.1 Scheme of a TWTO

In Fig. 8.1 an O-type traveling-wave tube is shown. As we see, the basic TWTO

components are an electron gun, a slow-wave structure (here the helix structure),

a collector, a power supply source, device input–output, and a focusing magnet.

Occasionally, solenoids are used, but periodic magnet systems are usually employed

(see Section 5.8).

FIGURE 8.1 Traveling-wave tube. 1, Electron gun; 2, input–output; 3, helix slow-wave

structure; 4, focusing magnet; 5, electron beam; 6, collector.
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8.2.2 Qualitative Mechanism of Bunching and
Energy Radiation in a TWTO

So there is a traveling electromagnet wave synchronized with the moving electrons.

Let’s pass to the frame of reference where both the wave field and the electrons are

immovable. A representation of the sinusoidal electric field together with particles is

shown in Fig. 8.2. At first, the electrons fill all wave phases uniformly (Fig. 8.2a).

But in a moving frame of reference, electrons move to the right in the accelerating

phase of the wave and to the left in the retarding phase. As a result, they fill the

leading wave edge (Fig. 8.2b). At some time at a sufficiently large distance from

the entry point, the electrons form a bunch at the point where the field crosses

zero from the accelerating phase to the retarding phase (Fig. 8.2c). Thus, ideal

bunching is achieved through exact synchronism and small space-charge repulsion.

But the phasing of the bunch is not favorable: The bunch arises at a zero field and

cannot exchange energy with the wave. It is necessary to shift the bunch in the

retarding phase of the field. Let us create some desynchronism, making the velocity

of the electrons little more than the wave phase velocity v . vph. The bunch will

move into the retarding phase and take energy out of the beam into the field.

However, after some time the electrons turn into an accelerating phase and begin

to take back wave energy. To avoid that, the interaction must be terminated. So

the bunch must not pass a distance greater than half the wavelength with respect

to the wave field during the transit time: that is,

(v� vph)T 
 l

2
(8:2)

According to Eq. (8.2), the maximum relative desynchronism must be approx-

imately equal to

dv ¼ Dv

vph
¼ l

2Tvph
¼
eT
2T

	 1 (8:3)

The inequality in Eq. (8.3) assumes that the transit time T is large in TWTOs.

FIGURE 8.2 Electron bunching in a traveling wave.
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Another interpretation of the TWTO mechanism comes from electromagnetic

radiation theory. As has been shown (see, e.g., Barker et al., 2005; Jackson, 1999;

Landau and Lifshitz, 1995), a charged particle that executes nonuniform or curvi-

linear motion always radiates an electromagnetic field. But a uniformly rectilinearly

moving particle radiates in only two cases.

Cerenkov (Cherenkov) radiation arises when a charged particle moves with a

speed that is greater than the speed of an electromagnetic wave in the same

medium, v . vph. In general, each particle radiates independently. Therefore, the

radiation is noncoherent and not effective for radio electronics. For the radiation

to become coherent, it is necessary to form bunches. This is possible when the differ-

ence v� vph is not large (i.e., in the presence of synchronism). We come to the same

condition. Note that the bunching is forced, and the radiation is not spontaneous but

is induced by the ac field. So in TWTOs, stimulated (induced) Cerenkov radiation

takes place.

Transition radiation is observed when a particle moves in a nonhomogeneous

dielectric medium, or more generally, in a medium containing nonhomogeneities.

For example, consider an electron passing near an angular nonhomogeneity

(Fig. 8.3). As we see, the electron induces positive charge in metal or dielectric,

and together with this charge forms a dipole that has a variable dipole moment

and radiates. The stimulated transition radiation is realized in narrow gaps of

klystrons also, owing to the bunching of electrons and the phasing of bunches.

8.3 SLOW-WAVE STRUCTURES

As we have seen, the TWTO interaction is possible in the presence of electromag-

netic structures that support propagation of “slow” electromagnetic waves with

a phase velocity less than the speed of light. The first such structure, used by

Kompfner, was a helix (Fig. 8.4). The theory of the helix as an electrodynamic slow-

wave structure was developed by A. Sommerfeld long before the invention of

TWTOs. In the simplest model of this structure, the wave propagates along a wire

FIGURE 8.3 Transitive radiation on an edge nonhomogeneity.
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at the speed of light and therefore moves in an axial direction with the phase velocity

vph ¼ c sinc (8:4)

where the helix pitch angle

c ¼ a tan
L

2pR
(8:5)

According to Eq. (8.4), the phase velocity does not depend on the frequency (zero

dispersion). This is a very important property, because the synchronism of the

beam and the wave would be supported at all frequencies, which implies the

broad bandwidth of TWTOs. In reality, the dispersion of the helix is not zero.

The phase velocity increases at low frequencies, and at a high frequency where

l ! 2L (Fig. 8.4), and the wave field in general is strongly perturbed. Nevertheless,

the bandwidth of the helix is striking: So far there are no other known slow-wave

structures whose dispersion comes close to the helix. Disadvantages of the helix

include a significant limitation in the propagating high-frequency power, losses,

and mechanics problems. Huge versions of slow-wave structures have been devel-

oped that satisfy many specific requirements, depending on the required frequency,

power, and other properties of the device.

The examples in Fig. 8.5 show two typical slow-wave structures: a comb struc-

ture and an interdigital structure. The structures shown in Fig. 8.5 are chosen from

a broad class of periodic structures, which are formed by electromagnetic coupling

FIGURE 8.4 Helical slow-wave structure.

FIGURE 8.5 Slow-wave structures with electron beams: (a) comb slow-wave structure;

(b) interdigital structure.
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of the cavities through specially designed holes. The frequency dispersion of the

phase velocity in these structures is considerably stronger than in the helix, and

the bandwidth is correspondingly narrower (Appendix 4). Coupled cavity structures,

however, are mostly metallic, and they have significantly better mechanical and

thermal properties than those of helix structures. As a result, coupled-cavity

TWTOs allow much greater average power, especially in the short-wave bands of

the microwave range (see Section 8.7).

In principle, uniform dielectric waveguides can also be used as slow-wave

structures in TWTOs. In this case, the electron beam propagates in a hollow

tube inside the dielectric. The phase velocity equals approximately vph ¼ c=
ffiffiffi
1

p
.

Since an attainable permittivity is roughly 1max � 10, these structures can be

employed in high-voltage TWTOs. One serious disadvantage of using dielectric

waveguides is the charging of dielectric surfaces by the electron beam. Accumulated

negative charge finally closes the beam. Therefore, only metal slow-wave structures

are used inmodern TWTOs.We turn next to some general properties of these periodic

structures.

8.4 ELEMENTS OF SWS THEORY (see, e.g., Brillouin, 1953)

8.4.1 Floquet’s Theorem

Assume that the electromagnetic field is a harmonic function of time:

E(r, t) ¼ E(x,y,z)eivt (8:6)

Consider a structure that is periodic along z with period L. Then a modulus of the field

will also be a periodic function with the same period: jE(x,y,zþ L)j ¼ jE(x,y,z)j.
Hence, the complex amplitude after a shift by one period along z gets the phase

multiplier e�iw, where w is a real constant:

E(x,y,zþ L) ¼ E(x,y,z)e�iw (8:7)

Now consider the function of coordinates F(x,y,z) ¼ E(x,y,x)eib0z, where b0 ¼ w=L.
It is readily verified that this function is periodic:

F(x,y,zþ L) ¼ F(x,y,z) (8:8)

Thus, a field in a periodic system with period L is a periodic function of z with the

same period L up to the factor e�ib0z:

E(x,y,z) ¼ F(x,y,z)e�ib0z (8:9)

Equations (8.8) and (8.9) express Floquet’s theorem. According to Eq. (8.6), we can

write the Floquet theorem as

E(x,y,z, t) ¼ F(x,y,z)ei(vt�b0z) (8:10)
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8.4.2 Spatial Harmonics

Using the periodicity of the function F(x,y,z), let us write it as a Fourier series:

F(x,y,z) ¼
X1
�1

Fn(x,y)e
�i(2p=L)nz (8:11)

Substituting Eq. (8.11) in Eq. (8.10), we obtain

E(x,y,z, t) ¼
X1
�1

Fn(x,y)e
i(vt�bnz) (8:12)

where

bn ¼ b0 þ
2p

L
n, n ¼ �1, . . . ,�1, 0, 1, . . . , 1 (8:13)

So the field in the periodical structure is a superposition of wave type:

Fn(x,y)e
i(vt�bnz). These waves have equal frequencies but different spatial structures.

In particular, they have different wavelengths ln ¼ 2p=bn. They also have different

transversal distributions. The function Fn(x,y) is obtained by solving Maxwell’s

equations with the corresponding boundary conditions. These waves are called

spatial harmonics. Below we describe informally the key properties of spatial

harmonics.

1. Wavelength:

ln ¼ 2p

bn

¼ 2p

b0 þ 2pn=L
, n ¼ . . . ,�1, 0, 1, . . . (8:14)

2. Phase velocity:

vph,n ¼ v

bn

¼ v

b0 þ 2pn=L
, b0 ¼

v

vw0
(8:15)

3. Group velocity:

vg ¼ @v

@bn

¼ @v

@b0

(8:15a)

As we see, the group velocity is the same for all harmonics. It can be shown that in

systems without losses, vg ¼ ven, where ven is the velocity of an energy motion:

ven ¼ P=W , P ¼ Ð
S
½E� H�z ds, and W ¼ (1=2L)

Ð
VL

(10E
2 þ m0H

2) dt are the

energy flux through a cross section of the structure and the average energy stored

per unit length, respectively, VL is a volume of one cell of the structure.
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4. The field of each harmonic satisfies the Maxwell equations but not the bound-

ary conditions. The period of harmonic ln does not equal a multiple of the structure

period L. Only the total field [Eq. (8.12)] satisfies the boundary condition. Thus, if

we excite any single harmonic (e.g., by interaction with a synchronous electron

beam), all other harmonics would emerge with amplitude and phase relationships

that are determined by the geometry of the structure and frequency. A specific set

of harmonics determines a certain mode. In general, an infinite number of modes

are possible for any periodic structure.

5. For sufficiently large n, harmonics are slow waves. This follows from

Eq. (8.15).

6. All slow harmonics (vph,n , c) have properties of surface waves. It may

be shown that the field of the nth harmonic decreases with distance x from the

boundary of the periodical structure as

e�
ffiffiffiffiffiffiffiffiffiffi
b2
n�k2

p
x ¼ e�(2px=ln)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�(vph,n=c)

2
p

So the field of the slow harmonic diminishes by a factor of e2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�(vph,n=c)

2
p

along a

distance of ln. Thus, the energy of the slow harmonic propagates in the skin layer,

Dsk ¼ ln

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (vph,n=c)

2
q ¼ l

2p

vwn

c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (vph,n=c)

2
q (8:16)

For a large delay (vph,n 	 c),

Dsk ¼ ln
2p

¼ l

2p

vph,n

c

7. The function v ¼ v(b0) is periodic with period 2p=L. If we increase b0 by

2p=L, bn takes the place of bnþ1. As a result, the label of each bn is changed,

but the full set of harmonics does not change. For the same reason, we can conclude

that v is an even function of b0: Inverting the sign for b0 together with the rest of the

harmonics b�n, gives the same wave traveling in the 2z direction. In Fig. 8.6 a

qualitative diagram of the dispersion function v(b0) is provided. The lower curve

corresponds to the fundamental mode N ¼ 1. Propagation of the wave in this

mode is possible in the frequency bandwidth Dv1 (Fig. 8.6). In the next mode the

bandwidth is Dv2. In principle, the frequency domain of any periodic system con-

sists of separate transmission bands divided by attenuation bands (i.e., any periodic

structure similar to some bandpass filter).

8. Taking into account the properties of the dispersion function v ¼ v(b0) indi-

cated above, we can deduce that the propagation constant of the zero harmonic b0 is

enclosed in the range

0 
 b0L 
 p (8:17)
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So the maximum phase shift of the zero harmonic per period is equal to p. The group
velocity vg for the range boundaries b0 ¼ 0,p is obviously zero.

9. According to Eqs. (8.13) and (8.17), we find that the module of the propa-

gation constant (21)th harmonic is within the range p=L 
 jb�1j 
 2p=L. As
such, the modules of the harmonic propagation constants can be arranged as

jb0j 
 jb�1j 
 jb1j 
 jb�2j 
 jb2j 
 � � � (8:18)

It can be shown that the fields of the harmonics decrease with jbnj. Therefore,
Eq. (8.18) gives the law of harmonic amplitude decrease. The zero harmonic has

the greatest amplitude. Recall that the field of the harmonic decreases with distance

x from the boundary as e�bnx. So at a sufficient distance from the boundary, we see

only zero harmonics (i.e., the field has the structure of a regular waveguide field).

10. All harmonics with n � 0 have a positive phase velocity. On the contrary, the

harmonics with n , 0 have a negative phase velocity. Assume that the curve v ¼
v(b0) has a positive slope similar to the curve shown in Fig. 8.6 for the first mode in

the range of Eq. (8.17). We find that all positive harmonics have coinciding directions

of phase and group velocities, so they are forward waves. All negative harmonics

having phase and group velocities in the opposite direction are backward waves. For

mode 2 in Fig. 8.6, all positive harmonics are backwardwaves, and the negative harmo-

nics are forward waves.When the phase and group velocities of a fundamental harmo-

nic of a structure have the same directions the structure is said to have positive

dispersion. In a structure with negative dispersion the zero harmonic and all positive

harmonics in the fundamentalmode, the phase andgroupvelocities haveoppositedirec-

tions. The comb and interdigital structures in Fig. 8.5 are examples of structures with

positive and negative dispersion, respectively.

Note that the group velocity of nth spatial harmonic can be represented as

1

vg,n
¼ dbn

dv
¼ � 2p

l2n

dln
dv

FIGURE 8.6 Dispersion diagram for a periodic structure.
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Therefore, for structures with positive dispersion, the wavelengths of the zero and all

positive spatial harmonics are decreased with frequency.

The theory of the slow-wave structures reduces to solving the Maxwell equations

with periodic boundary conditions. The problem is sufficiently complicated due

to complex boundary conditions. A number of computational methods (e.g., integral

equations, variational methods, direct simulation) have been proposed (see, e.g.,

Bevensee, 1964; Lines et al., 1950; Tsimring, 1957). The final results [dispersion

v(b) and distribution of electromagnetic fields] are usually developed numerically.

An equivalent circuit method occupies a particular place. The method

gives a detailed qualitative description of dispersion characteristics for very complex

structures: in particular, systems of coupled-cavity TWTOs (see, e.g., Gilmour, 1994).

8.5 LINEAR THEORY OF A NONRELATIVISTIC TWTO.
DISPERSION EQUATION, GAIN, EFFECTS OF NONSYNCHRONISM,
SPACE CHARGE, AND LOSS IN A SLOW-WAVE STRUCTURE

8.5.1 Statement of the Problem

The exchange of energy between the bunched electron beam and the electromag-

netic field in a TWTO is accompanied by the formation of a variable wave ampli-

tude, which is not given beforehand. On the other hand, bunching of the electron

beam is determined by an unknown distribution of the electromagnetic field.

Thus, we are presented with a typical self-matched problem. The usual method

for solving such problems is to split them into subproblems and then match the

solutions to the subproblems. In the case of TWTOs, we come to the following sub-

problems: calculation of a bunched electron beam in the wave field, and excitation of

the wave in the slow-wave structure by the convection current obtained. Naturally,

the field and current in both subproblems include some arbitrary parameters that

are defined in the process of matching. In the linear theory, the ac values (current

I�, velocity v�, and space-charge density r�) are assumed to be small compared

with the dc values. Therefore, in the frame of the linear theory variation, the dc

electron energy is ignored.

8.5.2 Bunching of a Convection Current in a Traveling-Wave Field

This problem is similar to the one considered in Section 7.6 on space-charged waves

in velocity-modulated beams, with the exception of a condition of potentiality in the

electric field. We accept the following:

1. One-dimensionality (all values are functions of a single spatial variable, z)

2. A strong focusing magnetic field Bz, which excludes transverse motion of the

electrons

3. Smallness of ac values as compared with dc values
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4. Constant dc quantities v0 and r0

5. A nonrelativistic approximation of v 	 c

6. Consideration of only a fundamental (zero) spatial harmonic of the field

7. Wave behavior for all values

8.
E ¼ eEei(vt�bz), v� ¼ ~vei(vt�bz),

I� ¼eIei(vt�bz), r� ¼ ~rei(vt�bz)
(8:19)

where I� and r� are the ac beam current and ac line charge density correspondingly.

We can see that these idealizations do not include condition 2 from Section 7.6.1,

according to which the ac electric field has only a z-component. One leads to the

Poisson equation [Eq. (7.52)] and indicates the potentiality of the ac electric field.

This equation is added to conditions 1 to 7 only for an analysis of the space

charge in TWTOs.

Unlike in Eq. (7.46), here the propagation constant is assumed to be complex:

b ¼ b1 þ ib2, where b1 and b2 are not given and should be found via matching.

According to Eq. (8.19), if b2 . 0, the wave is amplified along the z-coordinate. The

real component, b1, determines a phase velocity vw ¼ v=b1:
Temporarily we will neglect losses in the slow-wave structure without the

electron beam. So the propagation constantb0 in the equation of the undisturbedwave

E(0) ¼ eE(0)
ei(vt�b0z) (8:20)

is real. In general,b1 = b0. Ifb1 . b0, the phase velocity of a “hot”wave is less than

vw0. This wave is called a slow wave. Waves where b1 , b0 are fast waves.

As we see, the equations describing the bunching process coincide with Eqs.

(7.47)–(7.49), which were used for an analysis of space-charge waves. This is

because conditions 1 to 7, and the corresponding conditions from Section 7.6.1

are identical. Therefore, we can apply Eq. (7.51) directly. (Here we replaced x by z):

@

@t
þ v0

@

@z

� �2

I� ¼ �r0h
@E

@t
(8:21)

where v0 is the dc electron velocity and E is the z-component of the electric field.

Substituting Eq. (8.19) in Eq. (8.21), we obtain

(b� be)
2eI ¼ ir0hbe

v0
eE (8:22)

where be ¼ v=v0. Equation (8.22) determines the amplitude of the bunched convec-

tion current in a given field. According to Eq. (8.22), the bunched current is maximal

for the synchronism condition:

b � be or vph � v0 (8:23)
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Separation of the Space-Charge Field The field E is the longitudinal component

of an ac electric field. It can be represented as a sum of the electric field of the

slow-wave structure and the ac space-charge field:

E ¼ Ew þ Ep

Ew can be considered a z-component of the purely vortical field Ew ¼ curlBw,

where Bw is a magnetic field in the slow-wave structure. Therefore, divEw ¼ 0.

In the first approximation, the field Ew is not coupled locally with the electron

beam. The space-charge field Ep, on the contrary, is a purely longitudinal wave

field with a z-component only. It is expressed through the ac space-charge line

density r� via the Poisson equation,

@Ep

@z
¼ r�

10S
(8:24)

This is a key equation in the theory of space-charge waves. According to Eqs. (8.24)

and (8.19),

r� ¼ �i10SbEp (8:25)

On the other hand, using the continuity equation @I�=@z ¼ �@r�=@t, we obtain

bI� ¼ vr� (8:26)

Equations (8.25) and (8.26) allow us to express the space-charge field through the

current

Ep ¼ i
I

v10S
(8:27)

Substitute E ¼ Ew þ Ep and Ep from Eq. (8.27) in Eq. (8.22). We find that

(b� be)
2I ¼ ir0hbe

v0
Ew þ r0h

S10v20
I (8:28)

Finally, taking into account that

v20 ¼ 2hU0, r0v0 ¼ �I0, v2
p ¼ � r0h

10S
, bp ¼

vp

v0
(8:29)

we obtain the desired connection between I and Ew:

½(b� be)
2 � b2

p�I ¼ �i
I0be

2U0

Ew (8:30)

8.5.3 Excitation of the Field Ew in a Slow-Wave Structure by a
Given Convection Current

Let us represent the slow-wave structure as a generalized transmission line

(Fig. 8.7). It can be considered as a first approximation in the theory of waveguide

308 TRAVELING-WAVE TUBES AND BACKWARD-WAVE OSCILLATORS



excitation. We postpone discussion of this issue, however, to the next section. The

bunched electrons exchange energy with the electric field in each plane of the struc-

ture. Let us consider a layer j , jþ dj as an elementary source of a radiation. The

field in the z plane is formed as a sum of the input wave Ein(z, t) ¼ eEine
i(vt�b0z) and

waves of the secondary sources Esec(j, t). So the field in this plane is

E(z, t) ¼ eEine
i(vt�b0z) þ

X
j, z

Esec(j, t)þ
X
j. z

Esec(j, t) (8:31)

Determination of Secondary Fields Assume that P(j) is the energy flux of the

wave Ew(j) in plane j. This field forms in the gap j , jþ dj with a voltage of

dU(j) ¼ �Ew(j)dj. The source accomplishes the work 1
2
Re½eI(j)deU�(j)�: That

work is equal to the increment in the energy flow:

dP(j) ¼ � 1

2
Re½eI(j)eE�

w(j)�dj (8:32)

On the other hand, the power flow is proportional to the square of the field amplitude

modulus:

P(j) ¼ KjeEw(j)j2 (8:33)

The constant K is usually expressed via another constant, Z ¼ 1=2b2
0K. We obtain

Z ¼ jeEw(j)j2
2b2

0P(j)
(8:34)

It is readily seen that the quantity Z has dimensions of the impedance. It is called a

coupling impedance. Let us find from Eq. (8.33) the power increment in the element

j , jþ dj:

dP(j) ¼ 1

2b2
0Z

djeEw(jj2 ¼ 1

b2
0Z

Re½deEw(j)eE�
w(j)� (8:35)

FIGURE 8.7 Transmission line excited by an electron beam.
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Equating dP(j) of Eq. (8.35) to dP(j) of Eq. (8.32), we come to the relation between

the field increment in the plane j and the beam current:

deEw(j) ¼ �b2
0Z

2
eI(j)dj (8:36)

This perturbation propagates to the z plane as a wave and forms in this plane the field

deEw(j,z) ¼ deEw(j)e
�ib0(z�j) ¼ �b2

0Z

2
eI(j)e�ib0(z�j) dj (8:37)

Similarly, a perturbation propagating to the z plane from the right source (j . z) is

deEw(j,z) ¼ �b2
0Z

2
eI(j)eib0(z�j) dj (8:38)

Thus, according to Eq. (8.31), the total electric field excited in plane z is equal to

eEw(z) ¼ eEin e
�ib0z � b2

0Z

2

ðz
0

eI(j)e�ib0(z�j) dj� b2
0Z

2

ðL
z

eI(j)eib0(z�j) dj (8:39)

To obtain Ew(z,t); this expression must be multiplied by eivt. The integral represen-

tation of the field [Eq. (8.39)] is not convenient for analysis. Let us transform it

instead into a differential equation. Taking a double differential eEw(z) from

Eq. (8.39) and adding the resultant with b2
0
eEw(z), we arrive at the linear second-order

differential equation

d2eEw

dz2
þ b2

0
eEw ¼ ib3

0Z
eI (8:40)

Again representing the field as eEw(z) � e�ibz, we obtain

(b2
0 � b2)eEw ¼ ib3

0Z
eI (8:41)

8.5.4 Dispersion Equation of the TWTO

The linear equations (8.41) and (8.30) must form a self-consistent system. As a

result, we obtain the dispersion equation

(b2 � b2
0)½(b� be)

2 � b2
p� ¼ �b3

0beI0Z

2U0

(8:42)

which determines the propagation constant b as a function of the frequency

and other parameters of the system. Equation (8.42) is a fourth-degree algebraic
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equation and has four complex roots: b1, b2, b3, and b4. The resulting field and

other TWTO quantities (eI, ~r, and ~v) are superpositions of the waves that are deter-
mined by these roots. Solution of this equation needs four boundary conditions.

They can be taken as voltages at the two ends of the circuit and input values of

the ac velocity and the current.

Our discussion below of the linear theory of TWTO is based on an analysis of

the dispersion equation (8.42). We note that the foregoing reduction of the exci-

tation problem to the excitation of an idealized transmission line is an essential

simplification. In reality, the electric field Ew is the superposition of many

waves (modes). Among these waves there is one (synchronous) wave whose

phase velocity is close to the undisturbed electron velocity v0. This is a resonant

wave. The remainder of the field is a sum of asynchronous and nonpropagation

modes. Nonresonant modes can be considered as modes locally dependent on the

ac current. In sum, they supplement the quasistatic field up to the space-charge

field of the the beam in a specific slow-wave structure. As shown in relevant

works (see, e.g., Pierce, 1950; Solntsev, 1968; Vainstein, 1956), an account of

these modes for a sufficiently small gain is equivalent to replacement of the

plasma frequency vp by the reduced plasma frequency vq. The space-charge

parameter b2
p in Eqs. (8.30) and (8.42) now means that (vq=v0)

2 ¼ F2(vp=v)
2,

where F ¼ vq=vp is the reduction factor. Then the space-charge field eEp in

Eq. (8.27) should be replaced by a reduced electric field:

eE�
p ¼ i

F2eI
v10S

(8:43)

The electric field eEw in Eqs. (8.23) and (8.32)–(8.41) should now imply a resonant

(synchronous) wave. Let us consider some particular cases.

1. Z ¼ 0. Coupling between the electron beam and the electromagnetic field is

absent. We obtain two independent coupled waves: b ¼ +b0 and b ¼ be + bp.

These are two waveguide waves and [according to Eq. (7.61)] two space-charge

waves in the electron beam.

2. I0 ¼ 0 (“cold” field). The right side of Eq. (8.42) and bp are equal to zero.

Then b ¼ +b0. These are two waves (direct and reflected) in the unperturbed trans-

mission line.

3. I0 = 0, but I0 is a small quantity. J. R. Pierce, the pioneer of TWTO theory,

introduced the quantity

C3 ¼ I0Z

4U0

(8:44)

which, as will be shown, is a small parameter in ordinary TWTOs. This quantity

appears on the right side of Eq. (8.42). C is frequently called the Pierce parameter.

We will see that C determines TWTO gain, and as such is also called the gain

parameter.
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Equation (8.42) becomes

(b2 � b2
0)½(b� be)

2 � b2
p� ¼ �2b3

0beC
3 (8:45)

Let us estimate C for a TWTO of medium power. Take the current I0 ¼ 0:1A and

the voltage U0 ¼ 1000V. The coupling parameter Z is by an order of magnitude

equal to the characteristic impedance of a transmission line �100 V. Then C3 �
1=400 and C � 0.1.

Assume thatb is close tob0. Thenb
2 � b2

0 � 2b0(b� b0), andEq. (8.44) becomes

(b� b0)½(b� be)
2 � b2

p� ¼ �b2
0beC

3 (8:46)

So Eq. (8.42) has been reduced to a third-degree equation. In this approximation, we in

fact ignore a reflected wave.

If, on the contrary, b is close to �b0 (which corresponds to taking into account

only the backward wave), b2 � b2
0 � �2b0(bþ b0) and (b� be)

2 � b2
p � 4b2

0.

We obtain from Eq. (8.45),

b4 ¼ �b0 1� C3

4

� �
(8:47)

We see that the backward wave propagates as a reflected waveguide wave without

amplification or attenuation.

8.5.5 Dimensionless Parameters, Initial Conditions, and
Gain of a Nonrelativistic TWTO

Further, we will use the following dimensionless parameters that were introduced by

Pierce.

1. Parameter of nonsynchronism:

b ¼ ve � vw0

vw0C
¼ b0 � be

beC
(8:48)

2. Space-charge parameter:

q ¼ 4QC ¼ b2
p

b2
eC

2
¼ v2

q

v2C2
¼ F2v2

p

v2C2
(8:49)

This relation takes into account a reduction in the plasma frequency vp. The Pierce

notation q ¼ 4QC (Pierce, 1950) is often used in the literature.

3. Incremental propagation constant:

d ¼ �i
b� be

beC
(8:50)
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Substituting b ¼ b1 þ ib2 into Eq. (8.50), we obtain

d ¼ b2

beC
� i

b1 � be

beC
(8:51)

Hence, the wave grows when Re d . 0, and vice versa. The imaginary part of d is

proportional to the difference between the wave phase velocity and the initial elec-

tron velocity. If Im d , 0, the wave is slow (i.e., vw , v0), and in the reverse situ-

ation, where Im d . 0, the wave is fast.

Next, we transform the dispersion equation (8.46) into new parameters. We

divide Eq. (8.46) by b3
eC

3, taking into account that

b� b0

beC
¼ b� be

beC
� b0 � be

beC
¼ id� b

The constant on the right side of the transformed equation is b2
0=b

2
e ¼ (1þ Cb)2.

The dispersion equation takes the form

i(dþ ib)(d2 þ q) ¼ (1þ Cb)2 (8:52)

This equation has three complex roots: d1, d2, and d3. The partial solutions to

Eqs. (8.21) and (8.40) corresponding to these roots are

eEk(z) ¼ e�ibkz ¼ e�ibezebeCdkz, k ¼ 1, 2, 3 (8:53)

Next, we find partial solutions for the current and the velocity. After reducing this

equation to the dimensionless parameters [Eqs. (8.48)–(8.50)], we obtain from

Eq. (8.30)

eIk(z) ¼ i
I0

2U0beC
2

1

d2k þ q
eEk(z), k ¼ 1, 2, 3 (8:54)

Finally, according to Eqs. (7.50) and (8.19), we find that

~vk(z) ¼ 1

vr0
(v� v0bk)eIk(z) ¼ h

v0beC

dk

d2k þ q
eEk(z), k ¼ 1, 2, 3 (8:55)

A general solution of the equations is

eE(z) ¼X3
k¼1

Ak
eEk(z)

eI(z) ¼X3
k¼1

Ak
eIk(z) ¼ i

I0

2U0beC
2

X3
k¼1

1

d2k þ q
Ak
eEk(z)

~v(z) ¼
X3
k¼1

Ak ~vk(z) ¼ h

v0b0C

X3
k¼1

dk

d2k þ q
Ak
eEk(z)

(8:56)
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where A1, A2, and A3 are arbitrary constants which can be found from boundary

conditions. Assume, for example, that the boundary conditions are set at the input

plane:

eE(0) ¼ eE0, eI(0) ¼eI0, ~v(0) ¼ ~v0 (8:57)

Then we obtain from Eq. (8.56) a system of three linear algebraic equations, which

determine Ak, where, according to Eq. (8.53),eEk(0) ¼ 1. Using the Cramer rule, we

find the following complex amplitudes of the electric field:

Ak ¼ d2k þ q

(dk � dl)(dk � dm)
eE0 þ 2beCU0

~v0

v0
(dl þ dm)� iC

eI0
I0
(dldm � q)

" #( )
(8:58)

If the velocity and current modulation at the tube input are absent (~v0 ¼eI0 ¼ 0),

Ak ¼ d2k þ q

(dk � dl)(dk � dm)
eE0, k, l,m ¼ 1, 2, 3 (8:59)

According to Eqs. (8.56), (8.53), and (8.59), the voltage gain in this case,

GE ¼
eE(L)eE(0) ¼ 1eE(0)X

3

k¼1

Ak
eEk(L)

¼ e�ibeL
X3
k¼1

d2k þ q

(dk � dl)(dk � dm)
edkbeCL, l, m ¼ 2, 3 (8:60)

where L is the space interaction length. The power gain of the tube is

G ¼ 10 logjGEj2 ¼ 20 log
X3
k¼1

d2k þ q

(dk � dl)(dk � dm)
edkbeCL

�����
����� dB (8:61)

8.5.6 Particular Cases

Small Nonsynchronism, Cb ¼ ðb0 � beÞ=be 	 1 The dispersion equation (8.52)

assumes the form

i(dþ ib)(d2 þ q) ¼ 1 (8:62)

Taking d ¼ xþ iy, we obtain the following system of equations with respect to the

real x and y:

(x2 � y2)(yþ b)þ 2x2yþ q(yþ b)þ 1 ¼ 0

x½(x2 � y2)� 2y(yþ b)þ q� ¼ 0
(8:62a)

These equations can be solved numerically. Recall that x . 0 corresponds to a growing

wave; y , 0 corresponds to a wave with vw , v0 (a slow wave) [see Eq. (8.51)].
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Equation (8.62) has two complex-conjugate roots, d1 and d2, and one imaginary root,

x3 ¼ 0. First, we obtain from Eqs. (8.62a) for x3 ¼ 0,

(y3 þ b)(y23 � q) ¼ 1 (8:62b)

It can be shown (see, e.g., Vainstein, 1956) that complex roots exist within a limited

range of the nonsynchronism parameter: bmin 
 b 
 bmax. Inside this range the

imaginary parts of the roots are y1(b,q) ¼ y2(b,q), and the real parts are x1(b,q) ¼
�x2(b,q). Outside this range d1 and d2 are purely imaginary. The minimum value

bmin ¼ �3
ffiffiffi
43

p � �1:9
�

is attained for q ¼ 0.

Synchronous Mode with a Small Space Charge Define the synchronous mode

as the equality be ¼ b0 [i.e., the initial electron velocity and the phase velocity of

the input (cold) wave are equal, and b ¼ 0]. Assume also a small space charge

q=d2 	 1; then Eq. (8.62) reduces to

d3 ¼ �i (8:63)

We obtain the following three roots:

d1 ¼
ffiffiffi
3

p

2
� i

1

2
, d2 ¼ �

ffiffiffi
3

p

2
� i

1

2
, d3 ¼ i (8:63a)

These roots correspond to three waves. According to Eq. (8.53), we can write the

amplitudes eEk as

eEk ¼ e�ibkz ¼ e�ibezebeCdkz, n ¼ 1, 2, 3 (8:64)

We see according to Eq. (8.51) that wave 3 has a constant amplitude. Waves 1 and 2

are slow waves because Im d1 ¼ Im d2 , 0. Wave 1 is exponentially growing, since

Re d . 0 and wave 2 is an attenuating wave.

This result can be interpreted in the following way: After neglecting the back-

ward waveguide wave, three waves remain: a direct waveguide wave and two space-

charge waves. Although we ignored b2
p in Eq. (8.45), these waves do exist. They are

almost synchronous with the electrons, because according to Eq. (7.61),

jb� bej
be

� bp

be

¼ vp

v
	 1

During the interaction the slow space-charge wave absorbs the beam energy and

grows as a result. The fast wave gives energy to the beam and therefore attenuates.

The waveguide wave changes only in phase velocity.

The gain can be found from Eq. (8.59), and for the case in question (b ¼ q ¼ 0)

all three amplitudes are the same (i.e., A1 ¼ A2 ¼ A3). Because (eEk)z¼0 ¼ 1, we
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obtain from Eqs. (8.56) that eE0 ¼ A1 þ A2 þ A3 and Ak ¼ eE0=3. The gain in that

case, according to Eq. (8.61), is equal to

G ¼ 20 log
1

3

X3
k¼1

edkbeCL

A qualitative diagram of the amplitude distribution of three partial waves is shown in

Fig. 8.8.

Consider the gain of a TWTO for a large length of the system. The output signal

is represented only by the growing wave (eE1). Hence, the gain is

20 log
1

3
eð
ffiffi
3

p
=2ÞbeCL

� �
¼ �20 log 3þ 20

ffiffiffi
3

p

2
beCL log e

¼ �20 log 3þ 10
ffiffiffi
3

p 2pL

l
C log e ¼ �9:54þ 47:3CN

where N ¼ L=l is the number of slow wavelengths in the system. The constant

29.54 is called the coefficient of initial losses. It appears because the initial field

of the growing wave is one-third of the input field. Take as an example,

C ¼ 0:1, U0 ¼ 1000V, and L ¼ l0, where l0 is the wavelength in the free space.

The coefficient of deceleration [see Eq. (1.10)] is

c

v0
� 16ffiffiffiffiffiffiffiffiffiffiffi

U0 kV

p ¼ l0
l

¼ 16

Meanwhile, the gain is KdB ¼ �9:54þ 47:3� 0:1� 16 � 66 dB. However, due to

a variety of factors (some of which are discussed below), this value overestimates

the real gain in the TWTO.

Effect of a Space Charge In Fig. 8.9, solutions of Eq. (8.62), as functions of

nonsynchronous parameter q (4QC) are shown. We can see that the zone boundaries

FIGURE 8.8 Amplitude distribution of partial waves for a synchronous mode.
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bmin and bmax draw together and shift to more b with increasing q. Also, the value

bopt, corresponding to maximum x1, shifts to more b with increasing q (Fig. 8.9).

One can be shown that bopt � ffiffiffi
q

p
for large q. According to Eqs. (8.48) and (8.49),

that gives

b0,opt � be

beC
� bp

beC
, or b0,opt ¼ be þ bp

Compare this equation with Eq. (7.61). We conclude that for a large space charge,

the electromagnetic wave in the line corresponding to maximum gain is synchronous

with the slow space-charge wave. In the case of large b and small C, we find from

Eq. (8.52) that d2 þ q � �1=b � 0. Then d � +i
ffiffiffi
q

p
and according to Eqs. (8.49)

and (8.50),b ¼ be + bp:
We have arrived at the equation for space-charge waves. Thus, for a large non-

synchronism parameter and small current, the field in the line essentially does not

FIGURE 8.9 Real and imaginary parts of the incremental propagation constant d as func-

tions of the nonsynchronism parameter b for three values of space-charge parameter

q ¼ 4QC. (From Pierce, 1950.)
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interact with the electrons, and pure space-charge waves of constant amplitude pro-

pagate into the electron beam. Of course, this is true only in the framework of

the linear theory.

Next we estimate the space-charge parameter for the following conditions:

F ¼ 1, j ¼ 10A=cm2, U0 ¼ 1 kV, f ¼ 10GHz, and C ¼ 0:1. We obtain

q ¼ v2
p

v2C2
¼ jhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hU0104p2f 2C2
p � 2:7

Judging by these values, quantity q . 1 is a rather high value for a space-charge

parameter.

Effects of Attenuation (Loss) on a Slow-Wave Structure In this case the ampli-

tude of an unperturbed wave attenuates with distance as e�bdz, where bd is the loss

coefficient. Then the amplitude of an unperturbed wave in a slow-wave structure can

be written as e�ib�
0z, where b�

0 ¼ �ibd þ b0. Let us define the loss parameter as

follows: d ¼ bd=beC. Then

bd ¼ be dC and b�
0 ¼ b0 � ibe dC (8:65)

Next, we substitute b�
0 for b0 in Eq. (8.45). Repeating the calculation with d ¼ 0, we

obtain the dispersion equation

i(dþ d þ ib)(d2 þ q) ¼ (1þ Cb)2 (8:65a)

As expected, numerical solution of this equation shows (Gilmour, 1994; Pierce,

1950) a decrease in gain associated with the losses. For small losses, reduction of

the gain grows with an increase in space charge, and for a small space charge, the

reduction of the gain grows with losses into the line.

8.6 NONLINEAR EFFECTS IN A NONRELATIVISTIC TWTO.
ENHANCEMENT OF TWTO EFFICIENCY (VELOCITY TAPERING,
DEPRESSED COLLECTORS)

8.6.1 Introduction

Predicted by linear theory, unlimited exponential growth in the field amplitude with

the length of the interaction space and the absence of harmonic content in the ampli-

fied signal has not yet been affirmed for comparatively low efficiency and output

power. In reality the amplifier TWTO characteristics have a form similar to that

shown in Fig. 8.10.

In principle, the limitation of output power with the length of the tube and the

lowering of the saturation threshold with the level of the input power are both

simple consequences of the energy conservation law. However, these effects can
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result in significantly different TWTO efficiencies. Naturally, only nonlinear analy-

sis can provide a quantitative analysis of these “anomalies” and, most important,

indicate ways to increase the real gain, efficiency, and nondistortion of broadband

signals.

In the nonlinear theory of TWTOs, a number of important effects that are ignored

in the framework of linear theory should be taken into account; for example:

. Change in the average electron velocity

. Electrons overtaking one another

. Deformation of bunches and their trapping in the frame of reference of the

resonant wave

. Emergence of harmonics of the drive signal in the output signal

. Stopping and reversal of electrons

The first four of these effects are the most important, because they can be seen to

influence TWTOcharacteristics significantly even atmedium output power. The non-

linear theory is naturally more complicated than the linear theory. As a rule, the

results can be found through numerical solution of approximated nonlinear equations.

Initially, the nonlinear theory of TWTO was developed by Nordsiek (1953). The

principal results were later obtained by Rowe (1965), Tien (1956), and Vainstein

(1957a,b).

8.6.2 Derivation of Nonlinear Equations of a TWTO (Vainstein, 1957a,b)

The scheme for nonlinear analysis is similar to the self-matched scheme for

the linear theory. Both involve the formation of an ac current on the ac field and

excitation of the field by the ac current.

Calculation of Current The velocity v(z, t) in general is not a single-valued func-

tion of z, t, due to overtaking effects which occur when a number of particles with

different velocities can turn out in the same place or when some particles

FIGURE 8.10 Gain coefficient as a function of interaction length for various power values

for an input signal (Pin
(3) . Pin

(2) . Pin
(1)).
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stop and move in the opposite direction. Even ignoring the reverse motion, the need

to account for the overtaking effects significantly complicates the Eulerian descrip-

tion of an electron beam as a continuous medium. It should be replaced by the

Lagrangian description. We will use as Lagrangian variables the input time t0 and

the coordinate z (in Section 7.3.2 we used the notation t,x). The time of arrival of

the electron in the z plane is determined by the function t ¼ t(z, t0). Then the diffi-

culties raised by overtaking disappear: In fact, we follow the particle that enters

the interaction region at moment t0.

The velocity and acceleration in Lagrangian variables are equal to

v(z, t0) ¼ 1

(dt=dz)t0
¼ 1

@t=@z

dv

dt
¼ @v

@z

� �
1

@t=@z

� �
¼ � @2t=@z2

(@t=@z)3

(8:66)

so the equation of motion is

@2t

@z2
¼ � @t

@z

� �3
hE (8:67)

where E ¼ Ew þ Ep is the sum of z-components of the resonant wave and the

space-charge field.

We define the function t ¼ t(z, t0) as

t ¼ t0 þ z

v0
þ D(z, t0) (8:68)

where D is a perturbation of the arrival time in the z plane determined by the ac field.

Multiplying Eq. (8.68) by v, we obtain the phase relation

vt ¼ vt0 þ bezþ u(j, t0) (8:69)

where u(j, t0) ¼ vD(z, t0): Here we replace z on a slow variable, j ¼ Cbez.

The meaning of this replacement follows from the linear theory. According to

Eq. (8.50), all ac quantities change with z as ebz � ebe(1þkC)z, where k � 1 and

C 	 1. Therefore, the perturbation of the electron phase is kb0Cz.

Let us represent Eq. (8.69) as

vt ¼ j=C þ u where u(j, t0) ¼ vt0 þ u (8:70)

Quantity u represents the electron phase in the reference frame that moves with the

initial electron velocity. Without perturbation, the phase would be equal to the initial

phase vt0.
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We obtain from Eqs. (8.66) and (8.70),

@t

@z
¼ @t

@j

@j

@z
¼ 1

v0
1þ C

@u

@j

� �
(8:71)

@2t

@z2
¼ 1

v0

@

@j
1þ C

@u

@j

� �
@j

@z
¼ v

v20
C2 @

2u

@j2
(8:72)

The equation of motion (8.67) takes the form

@2u

@j2
¼ � h

vv0C2
1þ C

@u

@j

� �3
E (8:73)

Let us express the current as the Fourier series

I(z, t) ¼ I0 þ Re
X1
n¼1

eIn(z)einvt (8:74)

The complex Fourier coefficients are

eIn(z) ¼ 1

p

ð2p
0

I(z, t)e�invt d(vt) (8:75)

Application of the law of charge conservation (Section 7.3) gives

I(z, t) dt ¼ I0 dt0 (8:76)

Then using Eq. (8.70), we obtain

eIn(z) ¼ I0

p

ð2p
0

e�invt d(vt0) ¼ I0e
�inbezeFn(j) (8:77)

where

eFn(j) ¼ 1

p

ð2p
0

e�inu(j, u0) du0 (8:78)

Equations (8.74), (8.77), and (8.78) give the convection current through a given

electric field that determines the function u(j, t0) from the equation of motion

(8.73). Initial conditions for the equation of motion (8.73) are

uj¼0 ¼ u0 ¼ vt0,
@u

@j

� �
j¼0

¼ 0 (8:79)

The first condition determines the input phase; the second ensures that the initial

electron velocity is equal to v0. That follows from Eq. (8.71).
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Excitation of the Field Ew of a Resonant Wave by an AC Convection
Current Above we obtained Eq. (8.40) as the excitation equation of a synchronous

wave based on the integral representation (8.39) and taking into account the forward

and backward waves propagating from their sources. If we consider only forward

waves, however, Eq. (8.40) is replaced by a simpler first-order equation. Retaining

only forward waves in Eq. (8.39), we arrive at the integral representation

eEw(z) ¼ eEine
�ib0z � b2

0Z

2

ðz
0

eI1(j)e�ib0(z�j) dj (8:80)

Differentiating eEw(z) with respect to z and summing with ib0Ew, we obtain the

equation

deEw

dz
þ ib0

eEw ¼ �b2
0Z

2
eI1(z) (8:81)

If eEw(z) is not monochromatic, we expand it into a Fourier series:

Ew(z, t) ¼ Re
X1
n¼1

eEwn(z)e
invt (8:82)

Now we should write equations similar to Eq. (8.81) separately for each complex

component of the field spectrum. Note that the benefit of this representation is

related primarily to the account of the space-charge field, which is essential for

examination of the configuration of bunches at the end of the interaction space.

We omit this analysis here and use only the first harmonic [i.e., Eq. (8.81)].

Let us introduce a dimensionless complex amplitude of the synchronous wave:

eFw(z) ¼
eEw(z)e

ibez

2beU0C2
(8:83)

Note that according to definition (8.83), eFw(z) is in fact a complex amplitude of the

synchronous field in the moving reference frame. According to the equality

d

dz
¼ d

dj

dj

dz
¼ beC

d

dj

we obtain

deEw(z)

dz
þ ib0

eEw(z) ¼ 2b2
eC

3U0

deFw(j)

dj
þ i(b0 � be)

beC
eFw

" #
¼ �b2

0Z

2
eI1(z)eibez

Recall that ðb0 � beÞ=beC ¼ b [see Eq. (8.48)] and

2
b2
eC

3U0

b2
0Z

¼ I0
b2
e

2b2
0

¼ I0

2

1

(1þ Cb)2
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[see Eq. (8.44)]. Then we find that

deFw(j)

dj
þ ibeFw(j) ¼ �(1þ Cb)2

eI1(z)
I0

eibez (8:84)

SubstitutingeI1(z) from Eq. (8.77) and using Eq. (8.78), we come to the excitation

equation of the resonant wave field by the convection current:

deFw(j)

dj
þ ibeFw(j) ¼ �(1þ Cb)2 ~F1(j) (8:85)

where

~F1(j) ¼ 1

p

ð2p
0

e�iu(j,u0) du0 (8:86)

The initial condition for this equation, according to Eqs. (8.80) and (8.83), is

½eFw(j)�j¼0 ¼
eEw(0)

2beU0C2
¼

eEin

2beU0C2
(8:87)

We express through eF(j), the right side of the equation of motion (8.73):

hE

vvC2
¼ h

vvC2
Re(eEeivt) ¼ h

vvC2
Re½2beU0C

2eF(z)ei(vt�bez)� ¼ Re(eF(z)eiu)
HereeF(j) ¼ eFw(j)þeFp(j), whereeFp is the dimensionless complex amplitude of the

space-charge field. Finally, the equation of motion is

@2u

@j2
þ 1þ C

@u

@j

� �3

Re{½eFw(j)þeFp(j)�eiu} ¼ 0 (8:88)

We have obtained two equations [(8.88) and (8.85), with Eq. (8.86)] for two func-

tions, eFw(j) and u(j) (slowly varying amplitude and phase), with initial conditions

(8.79) and (8.87). These are nonlinear integrodifferential equations. The solution

of this system requires computation of the space-charge field eFp(j), which is not a

trivial problem (see, e.g., Rowe, 1965; Tien, 1956; Vainstein, 1957a,b). If eFp(j) is
neglected, this system fully determines the nonlinear characteristics of TWTOs in

the monochromatic approximation.We limit further discussion by this approximation.

Linearization of Equations These equations can be transformed into linear

equations if we assume a small phase perturbation u ¼ ju� u0j 	 1,

Cj@u=@jj 	 1. The linearized equation describes characteristics of a TWTO only

in the initial part of the tube. As a result, a system of two equations of the linear

theory of TWTOs can be deduced. Matching this system leads to the dispersion

equation (8.65a) with d ¼ q ¼ 0 if we do not take the line losses into account and

if we neglect the space-charge field (eFp ¼ 0). Note that these solutions can be

used as initial conditions for solving the nonlinear equations. In the initial section
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of the TWTO, three waves will be excited according to the linear theory. If one of

these waves is growing, it will dominate, acting as if there are no other waves. This

wave can be considered an initial condition. However, this approach is not appli-

cable to the analysis of TWTOs with finite or large input signals.

Conservation of Energy in an Electron Beam Interacting with a Traveling
Wave To begin, we average the equation of motion (8.88) over the initial phase

u0. Take as a simple example C 	 1 and eFp ¼ 0. We obtain the law of conservation

of energy in the following form:

I0

e0

mv20
2

� 1

2p

ð2p
0

mv2

2
du0

� �
¼ 1

2

ðz
0

Re(eEw
eI�) dz (8:89)

Here v ¼ v(z,u0) is the electron velocity in the z plane as a function of the initial

phase. The left-hand side of Eq. (8.89) is averaged over the period of loss of the elec-

trons’ kinetic energy. The right-hand side is equal to the (retarding) work over a

period produced by the synchronous wave field. Such a relationship could not

be obtained in the linear theory, because within that theory the average energy of

electrons is constant.

8.6.3 Phasing of Electrons and Trapping of Bunches in a Traveling Wave

For simplicity, let us consider the mechanism of nonlinear electron phasing, suppos-

ing that C 	 1 and neglecting the space-charge field eFp ¼ 0. The equation of

motion (8.88) in this case can be written as

@2u

@j2
¼ �Re½eFw(j)e

iu� (8:90)

Let us represent

eFw(j) ¼ Fe�iw (8:91)

where F(j) ¼ jeFw(j)j and w(j) are the slowly varying modulus and phase of the

resonant wave field in the moving reference frame.

The factor Re½Fei(u�w)� ¼ F cos(u� w) on the right-hand side of Eq. (8.90) can be
considered as a derivative of the function V ¼ F sin(u� w) with respect to u. So we
can write the equation of motion in the form

@2u

@j2
¼ � @V

@u
(8:92)

It can be shown that the variable 2u is the dimensionless coordinate in the moving

reference frame. As such, according to Eq. (8.70),

�u ¼ bez� vt ¼ be(z� v0t) (8:93)
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Therefore, the function V(j,u) represents a dimensionless potential in the

moving reference frame, and @V=@u is the dimensionless force. j is a very slowly

varying variable since C 	 1 and j ¼ Cbez. Therefore, the potential in the

moving frame depends only on u. Functions V and dV=du are shown in Fig. 8.11.

The shaded zone in the figure is the zone of the retarding (negative) force dV=du.
Consider the equation of excitation (8.85) for C 	 1, where we substitute

Eq. (8.91) and represent the function

eF1(j) ¼ F(j)e�ub(j) (8:94)

We obtain

dF

dj
� i

dw

dj
F þ ibF ¼ �Fei(w�ub) (8:95)

Take the real part of Eq. (8.95):

dF

dj
¼ �F cos(ub � w) (8:96)

where ub � w is the phase shift between the current and the field of the resonant

wave. According to Eq. (8.96), the condition of the wave growing along the tube

(dF=dj . 0) is cos(ub � w) , 0; that is,

p

2
, ub � w ,

3p

2

It is interesting to discuss the physical meaning of the current phase ub. We

can show that ub is the coordinate of the bunch center in a moving frame. Indeed,

we can write the beam current, using Eqs. (8.74) and (8.77) for n ¼ 1 and

Eqs. (8.70) and (8.94), as

I(z, t) ¼ I0 þ I0Re½ei(vt�bez)eI1(j)� ¼ I0 þ I0FRe½ei(vt�bez)e�ub �
¼ I0½1þF cos(u� ub)� (8:97)

FIGURE 8.11 Dimensionless potential V and force @V/@d as functions of phase u2 w.
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We see that the maximum for the current is attained when u ¼ ub. When the bunch

center moves in the shaded zone in Fig. 8.11, the amplitude of the wave grows. Thus,

the wave grows when the bunch center is retarded by the wave field. Note that the

retarding region is at the right slope of the potential V(u� w):
After reaching the potential well, the bunch finds itself in the accelerating field.

The wave amplitude decreases and velocity v increases. Then, according to

Eq. (8.71), the dimensionless velocity @u=@j in the moving reference frame is

decreased and the bunch can return to the retarding phase—if its velocity is not

too large. As a result, the bunch begins to oscillate near the potential well. The

net effect is to trap the bunch with the resonant traveling-wave field.

The final results are determined by the choice of the nonsynchronism parameter

b. Assume that b ¼ bopt, where bopt corresponds to the maximal gain in the linear

theory. Then the bunch is formed in the maximum of the retarded field

(u� w ¼ p in Fig. 8.11). Continuing to move in the retarding phase, the bunch

gives the energy to the field until it reaches the minimum potential

(u� w ¼ 3p=2). At this point, the power has reached its maximum. Passing

through the minimum of the potential energy, the bunch is accelerated and takes

the field energy. So the power is decreased, and at some distance it reaches its

minimum. When the bunch returns to the potential minimum, the second

maximum of the power is attained. The magnitude of the second maximum of the

electromagnetic field is a little different from the first. The process is repeated

further, and the movement of the bunch is similar to oscillations of a pendulum.

Thus, the electron movement breaks into two stages: (1) bunching, as determined

by the linear theory, and (2) oscillations of the bunches about the minima of the

potential. The amplitude of oscillations determines the level of the saturated

power and the difference between maximum and minimum of the electron power.

So if the bunch was formed near the minimum of the potential u� w ¼ 3p=2
(minimum in excess of the electron velocity), the difference in power would be

near zero, and the level of the saturation of the power would be low. Obtaining

more power requires the choice of b ¼ bmax, when bunches are formed in u� w ¼
p=2 (i.e., in the beginning of the retarding phase and when the bunches spend energy
along the fully retarded zone). Note that the linear gain for b ¼ bmax is decreased

because the strong nonsynchronism lowers the growth rate of the exponentially

growing wave. Thus, the conditions of reaching maximum gain and maximum effi-

ciency are essentially distinct, and the maximum excessive velocity (value of bmax)

is determined by the permissible minimum of the amplification.

In the framework above, treatment two mechanisms of limitations of the effi-

ciency and output power can be indicated: (1) retarding of the electrons, and as a

result, attainment of the saturation level when retarded electrons are transferred in

the accelerated phase of the traveling-wave field, and (2) instability of the

bunches. Because the formation of bunches is a result of the difference electron

velocities, continuation of the same factor causes a decay in bunches.

Recall that these results are valid only for the essentially simplified model of

TWTO (low space-charge field, low magnitude of the Pierce parameter C, low

input power, and finally, low losses in the slow-wave structure). Numerical analysis
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of the idealized scheme estimates the maximum efficiency TWTO at about 50% for

C � 0:1 and b � 1:8.
Taking the space charge into account changes these optimistic estimates signifi-

cantly. The space-charge field accelerates the decay of bunches. Note that the space-

charge interaction takes place not only inside a bunch but also between neighboring

bunches. For a large space charge, a second bunch is formed during decay of the main

bunch, and power reaches the maximum. There remain a large number of irregular-

phase electrons. After completion of the initial process of bunching and the decay

of bunches, the maximum output power is expressed unclearly (Vainstein, 1957a,b).

An interesting illustration to these processes in a typical TWTO is shown in

Fig. 8.12. We see that the initial bunching is performed strictly in the retarding phase

of the field. But after formation, the bunches slowly lag from the retarded phase of

the wave field, and power reaches a maximum. Further, the splitting of bunches

begins. As can be seen, at this phase in each period two bunches arise within each

period. So the frequency of the current doubles and the first current harmonic is close

to zero.

8.6.4 Enhancement of TWTO Efficiency. Velocity Tapering.
Depressed Collectors

Velocity Tapering As we saw above, the saturation of power and the correspond-

ing limitation in efficiency is due in large part to the reduction in electron velocity

FIGURE 8.12 Interaction mechanism in a TWTO. (From Hess, 1960.)
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caused by transfer of the beam kinetic energy to the electromagnetic field. Under-

standing this effect stimulated the idea of modifying slow-wave structures to

reduce the phase velocity of the slow wave toward the end of the interaction

space and extend the existence of bunches in the retarded phase of the circuit

field. This idea of velocity tapering was suggested in several early works (see,

e.g., Meeker and Rowe, 1962; Pierce, 1950; Rowe, 1965). Early attempts to use vel-

ocity tapering, however, were not successful and achieved little or no improvement

in efficiency. Development of computer analyses of TWTO nonlinear theory

resulted in a better understanding of the velocity-tapering possibilities and even-

tually led to the design of tapers that produced appreciable improvements in

efficiency and gain.

In principle, a number of versions of tapering are possible: maintaining a fixed

nonsynchronism of both disturbed electrons and the wave during interaction; main-

taining fixed detuning between the averaged electron velocity and the phase velocity

of the nonperturbed circuit wave; maintaining optimal phasing between the first

current harmonic and the circuit wave; and so on. Let us consider as an example

a condition of fixed detuning between the perturbed averaged velocity of the elec-

trons and the wave phase velocity. This can be written as a condition of constancy

of the ratio of the average electron velocity over a period of the initial phase of the

circuit-wave phase velocity:

1

2pv2ph

ð2p
0

v2 du0 ¼ v0

vph,0

� �2

(8:98)

where v and vph are the electron and phase velocities that are variable along z as a result

of interaction, and v0 and vph,0 are the initial (nonperturbed) velocities. According to

the definition of the nonsynchronism parameter [Eq. (8.48)], their ratio is equal to

v0

vph,0
¼ 1þ b0C (8:99)

A perturbed electron velocity is [Eq. (8.71)]

v ¼ 1

@t=@z
¼ v0

1þ C(@u=@j)
(8:100)

To find the perturbed phase velocity of the circuit wave, we use Eq. (8.82) (for n ¼ 1),

and Eqs. (8.83) and (8.91). Then the electric field of the resonant wave can be

represented as

Ew(z, t) ¼ ReeEw(z)e
ivt ¼ MF Re½ei(vt�bez�w)� (8:101)

whereM is a constant. The phase velocity is found from the following condition of the

constant phase:

d

dt
(vt � bez� w) ¼ v� @

@z
(bezþ w)

dz

dt

� 	
¼ v� dz

dt
be þ

@w

@z

� �
¼ 0 (8:102)
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Taking into account that j ¼ Cbez, we obtain the phase velocity:

vph ¼ dz

dt
¼ v

be þ @w=@z
¼ v0

1þ C(@w=@j)
(8:103)

Substituting Eqs. (8.99), (8.100), and (8.103) into Eq. (8.98) gives the relation

1

2p

ð2p
0

du0

½1þ C(@u=@j)�2 ¼
(1þ b0C)

2

½1þ C(@w=@j)�2 (8:104)

Equation (8.104) must be added to the fundamental system equations (8.85), (8.86),

and (8.88). The system of equations that results includes the function b(j), along with
the unknown functions eFw(j) and u(j). Having b(j) and using Eqs. (8.99), we can

obtain the desired distribution of the phase velocity:

vph(z) ¼ vph,0
1þ b0C

1þ Cb(j)j¼Cbez

(8:105)

The resulting efficiency and gain depend on a number of parameters (b0,C,Pin,q,L),

where Pin is the input power, q is the space-charge parameter, and L is the length of

the interaction space. According to the results of the analysis, velocity tapering in

general ensures the essential enhancement of efficiency. For a large space

charge (q . 1), however, the tapering does not increase and even diminishes the

efficiency. It can be explained by the increase in velocity spread in the bunches

(Hess, 1960). For large q, two bunches are formed (Fig. 8.12) whichmovewith essen-

tially different velocities. As a result, velocity tapering does not make sense in this

context.

Note that the increase in efficiency takes place for comparatively small values of

parameter bwhich correspond to the maximum linear gain. In this case the efficiency

reaches maximum values of nontapering TWTOs with large values of b. For large b,

tapering has no effect on efficiency. As a result, we obtain the remarkable feature of

tapering TWTO: combining in one tube high gain with high efficiency. In addition,

velocity tapering in general expands the region of linearity of amplification. This is

important for communication applications of TWTOs, where low distortion is

required.

In work of Gulyaev et al. (2004), a method of enhancing of the efficiency of

TWTOs has been developed in a general statement: search of the optimal distribution

of the cold phase velocity in arbitrary irregular slow-wave structures of TWTOs. The

problem is solved in the paper by Gulyaeu et al. using a variation-iteration optimiz-

ation method. The results of computations confirm possibilities of increased

efficiency.

Depressed Collectors Depressed collectors convert some of the kinetic energy

remaining in beams after interaction (spent electron beams) into potential electric
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energy, thus reducing the power consumed by the tube. This reduction is accom-

plished by depression of the potentials of collecting electrodes located outside the

tube body. As a result, the overall efficiency

hov ¼
Pe

I0U0 � Prec

(8:106)

can significantly exceed the electron efficiency he ¼ Pe=I0U0 (Pe is the electron

power and Prec is the power recovered by the collector from the spent beam). In

addition to saving power, the use of depressed collectors diminishes the problems

of cooling the collector. This feature is very important in high-power tubes. In

medium-power tubes, depressed collectors allow use air cooling of collectors

instead of water cooling. Finally, depressed collectors reduce the X-ray radiation

in high-voltage tubes.

Consider a simple scheme of a depressed collector with a single electrode (a

single-stage depressed collector; Fig. 8.13). A retarded voltage Vcoll is applied

between the body of the tube and the collector. When the collector voltage increases,

electrons of the spent beam can be reflected and the collector beam decreases.

Figure 8.14 shows the curve Icoll ¼ Icoll(Vcoll) of the collector cutoff current.

We ignore the current of secondary electrons. So the area under the cutoff curve

Ps ¼
Ð Vmax

0
Icoll dVcoll is the power of the spent beam. The tail between U0 and

Vmax belongs to the small current of the electrons that are accelerated during inter-

action with the ac field. The shape of the curve depends on the nature of the

interaction between the beam and the ac field. The more the efficiency, the less

the spent beam power, and the curve is lowered. For example, the cutoff curves

of highly effective klystrons are arranged essentially lower than TWTO curves.

The dashed curve in Fig. 8.14 is the approximate cutoff current curve. Here Vknee

corresponds to the lowest energy of electrons in the spent beam. So if the potential

of the collector with respect to the cathode is equal to Uck ¼ U0 � Vknee, the collec-

tor current does not change but the power recovered by the collector will be

Prec ¼ I0Vknee ¼ I0(U0 � Uck) (8:107)

1 3 4
2 0U collV

FIGURE 8.13 Single-state depressed collector. 1, Cathode; 2, slow-wave structure (body of

the tube); 3, spent electron beam; 4, collector.
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Substituting Eq. (8.107) into Eq. (8.106), we obtain the overall efficiency of a single-

state depressed collector:

hov ¼
Pe

I0Uck

¼ he

U0

Uck

(8:108)

If a potential of the collector negative to the tube body exceeds Vknee, the reflected

current and correspondingly, the body current increase, and the current efficiency

drops. Note that Eq. (8.108) overestimates the efficiency because the knee of the

curve is normally not defined as it is shown on the approximate curve in Fig. 8.14.

Disadvantages of single-state depressed collectors include low collector effi-

ciency hcoll ¼ Prec=Psp and a high current of secondary electrons. The secondary

currents flow into the tube body. These diminish the collector efficiency, causing

excessive noise and heating of the slow-wave structure.

Modernmultistage depressed collectors (MDCs) use several electrodes of special

shape with a variety of potentials. Electrons of the spent beam are sorted by the col-

lector into different energy classes and collected by corresponding electrodes. The

MDCs can recover a large fraction of the spent beam power (up to 90% and

more). According to Sterzer (1958), the maximum overall efficiency that can be

obtained with an n-stage collector is given by

hov ¼
hePn

m¼1 Km(am � am�1)þ 1� an

(8:109)

where Km ¼ Um=U0,U1 , U2 , � � � , Un , U0, am is the fraction of electrons that

have been slowed down to less than Um, and a0 ¼ 0. The positive electrode poten-

tials are adjusted so that the denominator in Eq. (8.109) is minimal.

The design for a four-stage depressed collector is shown in Fig. 8.15. A spent

beam in the figure corresponds to a TWTO operating at a saturation output

power. The numbers on the left side of the plot are potentials of electrodes with

respect to the tube body. The numbers on the right side are energies of particles.

As we can see, the electrons hit the back sides of the electrodes, and the electric

field between electrodes retards secondary electrons. Therefore, the bulk of the

secondary electrons return to the emission zones.

FIGURE 8.14 Collector cutoff current.
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8.7 BASIC CHARACTERISTICS AND APPLICATIONS OF
NONRELATIVISTIC TWTOs

8.7.1 Introduction

The sphere of applications of TWTOs, beginning with their invention in 1942,

expanded continuously correspondingly to progress in the theory (including compu-

ter simulation), experiment, and technology, which in turn was stimulated by the

applications. TWTO efficiency, power, and gain in all primary microwave bands

(including the Ka-band) progressed rapidly. The lifetime of space TWTOs is

about 15 years. Applications of TWTOs have penetrated science, communications,

radar, electronic countermeasure systems, and other branches.

Satellite TWTOs helped to open the era of space communications (in 1962).

After launch of a geostationary satellite by the United States in 1965, progress in

FIGURE 8.15 Design for a four-stage depressed collector. (From Kosmel, 1982.)
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space communication TWTOs (including commercial and military ground appli-

cations) acquired in the character of a revolution. According to the data of Mahie

et al. (1998), the worldwide TWTO market already in 1998 was on the order

$500 million ($250 million in the United States). The total TWTO space market

has been estimated then at $250 million.

In Fig. 8.16 an informative graph of the Thompson (AERG) Corp. is shown

where improvement of TWTO efficiency over time and projections up to 2004 are

given. DJM Electronics Corp. has developed a TWTO satellite amplifier in the

Ku-band with output power 500 W and gain 70 dB (Gulyaev et al., 2004). Such

powerful TWTOs are necessary for satellite TV broadcasting in both analog and

digital systems. Radar TWTOs are characterized by high-power pulsed transmission

of relatively low duty cycle. Their progress is equally impressive. According to

published information (Anon., 2003), powerful radar TWTOs developed in the

frequency range 9.4 to 10 GHZ have reached an output power of 50 kW and a satu-

rated gain of 55 dB (maximum duty 1%).

Communication applications require the development of both sensitive low-power

TWTOs and powerful high-efficiency TWTOs with linear gain. TWTO properties

that determine the above-mentioned characteristics are discussed briefly below.

8.7.2 TWTO Noises

Noise determines the sensitivity of an amplifier: the minimum drive power that can

be distinguishable after amplification. The principal issue in noise theory is the

problem of noise measurement, which depends on the choice of a noise standard

FIGURE 8.16 Efficiency of TWTOs in the Ku-band vs. time. Dashed part of the curve,

projected up to year 2004. (From Mahie et al., 1998.)
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source and a noise unit. The best source is a thermal (Johnson) noise that is gener-

ated by the thermal agitation of electrons in a conductor. Thermal noise is a naturally

reproductive source; its important property is uniform energy distribution in the fre-

quency spectrum. The power (W) of the thermal noise generated in a conductor with

temperature T is

P ¼ 4kT Df (8:110)

where k is the Boltzmann constant and Df ¼ f2 � f1 is the frequency bandwidth in

hertz. The effective voltage produced by the thermal noise on the resistance R is

given by

e2 ¼ 4kT

ð f2

f1

R( f ) df (8:111)

If R does not depend on the frequency,

e2 ¼ 4kTRDf (8:112)

When the resistor R is connected with a matched conductor, the noise voltage

is divided equally between R and the load conductor. Then the thermal power

delivered to the load is

PL ¼ (e=2)2

R
¼ kTDf (8:113)

PL is the theoretical minimum for the noise level. At room temperature (290 K) and

1 MHz bandwidth, PL � 4� 10�15 W.

Definition of Noise Figure If noise of a receiver (amplifier) with a gain G is

absent, the output noise power according to Eq. (8.113) is P(0)
out ¼ kTGDf . The

noise figure of the real amplifier with the noise is defined as

F ¼ (Pout)T¼290

(P(0)
out)T¼290

¼ (Pout)T¼290

290kGDf
(8:114)

A noise figure in decibels is

FdB ¼ 10 log10 F (8:115)

For a noise-free amplifier, FdB ¼ 0. By definition, the equivalent noise tempe-

rature Te corresponds to a power of

Pa ¼ kTeGDf (8:116)

where Pa is the noise power that is added by the amplifier. It follows that

Pa ¼ (Pout)T¼290 � 290kGDf ¼ (F � 1)290kGDf (8:117)
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Then the equivalent noise temperature according to Eq. (8.116) is

Te ¼ (F � 1)290 (8:118)

This factor is generally used for amplifiers with small noise figures. For example,

Te ¼ 75K for F ¼ 1 dB.

Noise in a TWTO Electron Gun The main sources of noise in a TWTO gun are

shot noise and velocity noise. Shot noise is the result of the random nature of

the emission of electrons as discrete particles. Velocity noise arises as a consequence

of the velocity distribution of electrons emitted by a hot cathode.

Certain effects in the gun promote the reduction of noise. The important factor for

shot noise reduction is related to the existence of a potential minimum near the ther-

mionic cathode (Section 3.4.5). Slow electrons are reflected from the potential

barrier. This equalizes the velocity distribution and the current fluctuations

beyond the barrier. One method for a reduction in gun noise is control of the ampli-

tude of standing space-charge wave patterns which are generated by shot and

velocity noises and the location of the helix entrance at a position that minimizes

the noise induced by waves. In particular, a transformer of the beam impedance is

used. The transformer comprises several electrodes within the electron gun which

control the rate of beam acceleration.

Partition Noise Partition noise is generated by transverse components of vel-

ocities that cause fluctuations in the current intercepted by electrodes in a gun and

by the slow-wave structure. Analog noises are produced by the transverse motion

of electrons in a slow-wave structure, even when random currents are not intercepted

by the structure. This effect is connected with the essentially nonuniform transverse

distribution of the ac field in a surface slow wave.

There are also many (more than 10) other known noise sources, but these sources

fall outside the scope of this discussion.

The minimum noise figure of TWTOs was estimated by Haus and Robinson

(1955). Assuming the absence of any correlation between the shot noise and the

velocity noise at the potential minimum leads to the relation

Fmin ¼ 1þ Tc

290
(8:119)

where Tc is the cathode temperature. For Tc ¼ 1000K, Fmin � 5 dB.

Haus and Robinson also predicted the possibility of Fmin approaching zero in

low-noise TWTO through the use of very large magnetic fields. Experimental

confirmation of this effect was obtained by Hammer and Wen (1964).

8.7.3 Influence of Wave Reflections on Gain. Self-Excitation of TWTOs.
Attenuation and Severing

In the analysis of TWTO amplification, it is assumed that input and output tran-

sitions are matched perfectly. However, real transitions are mismatched
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significantly, especially if one takes into account the broad bandwidth of TWTO. As

a result, feedback arises, which leads to the frequency variations of amplification

and even to the self-excitation of TWTO.

Let us denote the input and output ac electric fields (without taking reflections

into account) as Ei and Eo, respectively. The amplification coefficient then

is K ¼ Eo=Ei. Following reflection of the signal from both the output and input

terminals, an additional input field EF appears:

EF ¼ EoroKLrie
iw ¼ EiKKLrorie

iw (8:120)

where ro and ri are the magnitudes of the output and input reflection coefficients (in

voltage), KL is the loss coefficient of the cold structure (from output to input), and w
is the phase difference, including the phases of the reflection coefficients and the

phase shift of wave propagation. Thus, the total input field is the sum Ei þ EF ,

and an effective amplification coefficient is

KE ¼ Eo

Ei þ EF

¼ K

1þ KKLrorie
iw

(8:121)

We see that the effective amplification changes with the frequency. For w ¼ p the

maximum KE will be

KE,max ¼ K

1� KKLrori
(8:122)

According to Eq. (8.122), self-excitation of the RWT may occur when

K . 1=KLrori or when

G . Gmax ¼ L� 20 log (rori)

where G and L are the gain and the loss in decibels. Taking L ¼ 6 dB and rori ¼ 0:1
for real estimates we obtain Gmax ¼ 26 dB. To limit the variation in gain with fre-

quency, the actual gain must be no more then 20 dB. Note that the maximum

gain can be reduced some more as a result of reflected wave amplification via

elastic reflected secondary electrons (Peter and Ruetr, 1953).

There are two known methods of increasing the stable gain.

1. Local attenuators. Some sections of a slow-wave structure, for example, the

dielectric support rods in a helical TWTO (Fig. 8.17), are coated with a lossy

material that forms an attenuator. The attenuation of the backward wave weakens

the feedback significantly. On the other hand, the forward wave is also attenuated.

After the attenuator, the amplitude of the forward wave can be close to zero. But the

bunching of the beam before the attenuator leads to intensification of the amplifica-

tion after the attenuator.

One disadvantage of this method is the need for a lengthy attenuation section for

matching the attenuator impedance with the rest of the slow-wave structure. As a

result, there is a loss of control of the bunching process that increases the velocity
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spread in bunches and reduces the efficiency. Finally, the lossy film technique for

producing attenuation is not attractive for high-power TWTO.

2. Severing slow-wave structures. This is a more adequate technique for sup-

pressing the reflected wave in high-power TWTOs. The forward wave is lost at

the break, but the bunching of the beam produced in the input section remains

and leads to further amplification in the output section (Fig. 8.18). The severed

region should be as short as possible to preserve bunching. Because the reflection

coefficients at the severed terminals are not greater than those in the input and

output terminals, the limiting gain of each section G1 and G2 can be estimated

similar to the gain of the TWTO without severing (i.e., about 20 dB). Then the limit-

ing gain in two-section TWTOs will be about 40 dB. Greater gains are possible with

additional severing.

8.7.4 Intermodulation Distortion

Intermodulation distortion results from the nonlinearity of an amplifier’s amplitude

characteristic. If one carrier is being amplified, nonlinear distortion produces

FIGURE 8.17 Lossy film attenuator in a helical TWTO. 1, Helix; 2, support rods; 3, lossy

film; 4, thickness of the film is gradually reduced at ends of the helix.

FIGURE 8.18 TWTO with two-section severed helix.
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harmonics of the signal. For most communication TWTOs (with bandwidth less than

an octave), these harmonics can be eliminated through filtering. However, if two or

more carriers are present, beat products are generated in the vicinity of the input

signal. These new signals are known as intermodulation distortion (IMD) products.

They are located at frequency intervals equal to the separation of the input carriers.

Filtering cannot eliminate these products because they are located at the same

frequency or nearby. Most IMD products are of third order, which is closest to

the signal frequency and largest in amplitude (Fig. 8.19). The frequencies of the

fifth-order product are 3f1 � 2f2 and 3f2 � 2f1. If TWTOs are driven to saturation,

the distortion is significant. According to Gilmour (1994), third-order products are

below the input signal by 8 to 10 dB for equal amplitudes of two carriers. IMD

significantly influences communication in both analog and digital signals.

The linearity of TWTOs can be improved by optimization of the taper in a helical

TWTO and also by operation of the tube at a level significantly lower than satur-

ation. However, backed-off operation requires higher power capabilities than

does operation at saturation. According to Goebel et al. (2000), an L-band TWTO

operated at 8 dB, reduced from 1600 W at saturation, produced over 250 W of con-

tinuous output power with level IMD products at 228 dB and an efficiency of over

25%. Another method of suppressing intermodulation products is based on harmonic

injection. Wirth et al. (2002) obtained suppression of third-order IMD products at

25 dB without back-off from saturation.

8.7.5 Characteristics of Helical and Coupled-Cavity TWTOs

Helix and coupled-cavity TWTOs, which use helix and coupled-cavity slow-wave

structures, respectively, each have specific properties and application problems.

Helical TWTOs The most important property of helix tubes is their great band-

width, which follows from almost near-zero dispersion of the helix circuit in a

broad frequency band (see Section 8.3). Some helical TWTOs have a bandwidth

of over two octaves. Most other TWTOs have a bandwidth no greater than 10%.

The helix structure in general is not an adequate system for generating large

average power in high-frequency microwave bands. So the diameter of the helix

in the Ka-band (l � 1 cm) must be about 0.5 mm, with an electron beam diameter

of �0.4 mm. The obvious difficulties in designing such powerful TWTOs lie in

FIGURE 8.19 Intermodulation products of third order.
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formation of the electron beam, losses in slow-wave systems, and their cooling.

Nevertheless, the development of powerful and sophisticated software that performs

three-dimensional electromagnetic simulations, together with overall progress in the

technology, have allowed the development of helical TWTOs with incredible para-

meters. According to Fig. 8.20, the maximum average power of a helical TWTO in

the S-band can reach 10 kW. In general, helical TWTOs are the best amplifiers

for communication and particularly for space communication applications. In the

L and S bands, helical TWTO demonstrates high efficiency (more than 30%) and

high gain (more than 50 dB).

Wide bandwidth, together with highly nonlinear bunching processes, gives rise to

some problems that are not typical for other TWTOs.1 For example:

1. Harmonic generation. If the second harmonic is generated near the low part

of the frequency band, the corresponding signals are amplified when they are within

the bandwidth, for example, of the octave TWTO.

2. Backward-wave oscillations. These oscillations are the result of beam inter-

action with the first negative spatial harmonic of the structure (see Sections 8.4.2

and 8.8). It is a major problem that determines the upper frequency of the bandwidth

and the peak power capability of the tubes. One method of suppressing BWO oscil-

lation is the introduction into the helix of frequency-sensitive attenuation. This

problem can also be solved by applying other helix-like structures (Fig. 8.21) but

with some narrowing of the bandwidth.

3. Matching of transitions. The transitions at the TWTO input and output term-

inals must provide reasonable impedance matching. This process is difficult when

we take the great bandwidth into account. As we saw in Section 8.3, the presence

of even small reflections from transitions leads to a frequency dependence of the

gain and to self-excitation of the tube.

FIGURE 8.20 Maximum average power of TWTOs as a function of frequency. Solid curve,

helical TWTO; dashed curve, coupled-cavity TWTO. (From Whitaker, 1999.)

1A detailed analysis of these problems is provided by Gilmour (1994).
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Coupled-Cavity TWTOs (CCTs) The slow-wave structure of a CCT is a linear

chain of several tens of cavities provided by coupling holes or slots and a beam

tunnel. The slow-wave structures in Fig. 8.5 represent particular cases from

among the huge family of CCT structures. Some schemes of CCT structures are

also given as examples in Fig. 8.22.

The cloverleaf structure (Fig. 8.22a) (Chodorow and Craig, 1957) is commonly

used in high-power CCT and as an output section of a twistron (a combination of a

high-power klystron as an input section and a TWTO output section). The high-

power twistron amplifier has a bandwidth of up to 15% and output power on

the order of 4 MW. Twistrons with a peak power output of up to 10 MW have

been built. The average power exceeds 30 kW and can be increased by an order

of magnitude (Gilmour, 1994).

The stagger slot CCT (Fig. 8.22b) has an output power on the order of 10 kW in

the range 10 to 10.5 GHz with an overall efficiency of 20 to 30% (Staprans et al.,

1973). Aligned slot CCTs (Fig. 8.22c) are characterized by a smaller bandwidth.

However, for a given frequency this structure has larger dimensions, and higher

powers are possible. Ladder core structures (Fig. 8.22d ) have a comparatively

simple geometry which allows the use of microfabrication in their manufacture.

FIGURE 8.21 Helixlike structures with suppressed BWO oscillations: (a) ring-bar circuit;

(b) bifilar helix.

FIGURE 8.22 Slow-wave structures of coupled-cavity TWTOs: (a) Cloverleaf; (b) stag-

gered slot; (c) aligned slot; (d ) ladder-core structure with staggered coupled slots.
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These structures are adequate for the millimeter range. CCTs with a ladder structure

have demonstrated 20% bandwidth in the range 100 GHz with a power output of

100 W in continuous-wave operation (Gilmour, 1994).

Note the following general properties of CCTs:

. Larger dispersion and correspondingly narrower bandwidth than for helical

TWTOs

. Large coupling impedance

. High wave phase velocity and corresponding electron velocity

. Mostly metallic construction

. Low thermal resistance

We see that coupled-cavity TWTOs are significantly more powerful as amplifiers

(both average and peak power) than helical TWTOs, especially in high-frequency

bands (Fig. 8.20), but with considerably reduced bandwidths. The high-power proper-

ties of CCTs allowed their use as ground-based and airborne radars. According to L3

Communications (2003), radar CCTs have been produced in San Carlos, California,

with power levels of up to 150 kW peak, 5 kW of average power, and 10% bandwidth

in the X and Ku bands.

8.8 BACKWARD-WAVE OSCILLATORS

8.8.1 Traveling-Wave Tube as an Oscillator

In Section 8.7.2. we saw how reflection waves excite autooscillations in TWTOs.

However, this property of TWTOs cannot be designed in advance. The regular

way to create a TWTO oscillator is setting a special feedback line in the TWTO

(Fig. 8.23). The feedback signal must be in phase with an input signal, which is

not provided in all frequencies. It can be shown that for optimal positive feedback,

the total phase shift in the circuit, including forward and backward waves propa-

gation, must be a multiple of 2p. In principle, the slow wave–electron synchronism

makes it possible to vary the oscillation frequency continuously by tuning the beam

potential. However, the excited frequencies must also satisfy the phase condition

mentioned above. As a result, we obtain a frequency characteristic (Fig. 8.24)

reminscent of the frequency zones of the reflex klystron. Within each zone, the

FIGURE 8.23 TWTO oscillator.
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frequency variations correspond to the dispersion characteristic of a slow-wave

structure. At the maxima of the frequency zones, synchronism and the phase

condition are satisfied simultaneously.

8.8.2 Backward-Wave Amplifier Tubes: Principles of Operation

BWT performance for amplifiers and oscillators is based on an interaction between

the electron beam and the negative spatial harmonics of the slow-wave structure. As

we saw in Section 8.4.2, the energy velocity in the slow-wave structure moves oppo-

site to the phase velocity of the negative harmonics. If the electron beam is synchro-

nized with some negative harmonic (i.e., if the synchronous condition is fulfilled

[see Eq. (8.15)],

jb�nj � be or
2pn

L
� v

vph,0
� v

v0
, n . 0 (8:123)

the energy that the electron beam transfers to the field is transported back to the

cathode. So the output terminal must be positioned near the gun end of the tube

(Fig. 8.25).

The interaction of an electron beam with a backward wave essentially changes

the character of the field and the current distribution in comparison with forward

TWTOs (Fig. 8.26). In the TWTO the current and field are increased exponentially

in the direction of electron movement. In BWTs, because the energy is transferred to

the left, the field amplitude increases to the left and its maximum is attained near the

cathode. Consequently, electron bunching is accomplished in the lowering field. In

the region near to collector where the field is small, the current does not change

FIGURE 8.24 Frequency characteristic of a TWTO with positive feedback.

FIGURE 8.25 Backward-wave amplifier.
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practically. The maximum rate of bunching will be near the gun where the field is

maximum. Thus, the distribution of the ac convection current has the form of

the curve with saturation (the current distribution is similar to the first quarter

of a sinusoid for a large space charge) (Heffner, 1954). On the other hand, the

field near the cathode changes very little because a small convection current gives

a small contribution to the energy. So the field distribution has the form of the low-

ering curve with distribution similar to that of the first quarter of the cosinusoid

(Heffner, 1954). So the BWTs are typical regenerative amplifiers. Note that in

these systems the backward wave is alone, and the phasing of the feedback signal

is set automatically.

The magnitude of the output field depends on the dc beam current. Now let us

imagine that we decrease the input signal and increase the beam current simul-

taneously. For some current magnitude, a finite output signal will be formed

when the input signal is zero. Then the amplifier is converted in the oscillator

[the backward-wave oscillator (BWO)]. The BWO was invented by R. Kompfner

in 1952. He reported on this invention with N. Williams at the conference in

Ottawa (Kompfner and Williams, 1952). At the same conference, Epsztein (1952)

reported on the independent invention in France of a backward-wave oscillator of

M-type, the carcinotron.

8.8.3 Gain in Backward Amplifiers and Starting Conditions of BWOs

According to the discussion above, the difference between bunching processes in

BWAs and TWTOs is determined solely by the quantitative distribution of the ac

field. Therefore, we can use Eq. (8.30) to describe the relation between the

current and the field. Using dimensionless variables [Eqs. (8.48)–(8.50)], this

relation has the form

(d2 þ q)eI ¼ i
I0

2U0beC
2
eEw (8:124)

FIGURE 8.26 Amplitude distribution of convection current and electric field in a BWA

amplifier (solid curves) and a TWTO amplifier (dashed curves).
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Let us turn to the problem of excitation of the field with a negative spatial harmonic.

We can use Eq. (8.39) for an excited field, where we will retain the integral

corresponding to the propagation of the back wave:

eEw ¼ eE0e
�ib0z � b2

0Z

2

ðL
z

eI(j)eib0(z�j) dj (8:125)

Taking into account the opposite directions of phase and group velocities, we must

reverse the sign of b0 in the integral. Finally, the amplitude of the input signal iseEin ¼ eE0e
�b0L at the plane z ¼ L. As a result, we obtain

eEw ¼ eEine
�ib0(z�L) � b2

0Z

2

ðL
z

eI(j)e�ib0(z�j) dj (8:126)

Following the same logic as that used in deriving Eq. (8.81), we pass from

Eq. (8.126) to the differential equation

deEw

dz
þ ib0

eEw(z) ¼ b2
0Z

2
eI(z) (8:127)

This equation differs from Eq. (8.81) only in the sign on the right-hand side. Note

that we also omit the subscript 1 in the first harmonic of the ac convection currenteI1(z). Substituting eEw,eI � eAe�ibz into Eq. (8.127), we obtain an equation with

dimensionless variables [Eqs. (8.48)–(8.50)]:

(dþ ib)eEw ¼ b2
0Z

2beC
eI (8:128)

Matching Eqs. (8.124) and (8.128), and taking Eq. (8.44) into account, we obtain the

dispersion equation

i(dþ ib)(d2 þ q) ¼ �(1þ Cb)2 (8:129)

The difference between the dispersion equations for TWTOs [Eq. (8.52)] and BWTs

is in the sign on the right-hand side.

Solution of the remainder of the problem follows the solution for TWTOs

[Eqs. (8.53)–(8.60)]. Assume that the three complex roots of Eq. (8.129) are

d1, d2, and d3. The partial solutions of Eqs. (8.124) and (8.127) corresponding to

these roots are

eEk(z) ¼ e�ibezebeCdkz (8:130)

The partial solutions for the current and the electron velocity coincide with

Eqs. (8.54) and (8.55).

344 TRAVELING-WAVE TUBES AND BACKWARD-WAVE OSCILLATORS



A general solution of the equation repeats the derivation of Eqs. (8.56). The

arbitrary constants A1, A2, and A3 are found from the following boundary conditions

at the plane z ¼ 0:

eE(0) ¼ eE0, eI(0) ¼ ~v(0) ¼ 0 (8:131)

The boundary condition follows Eq. (8.57) except that eE0 is now the complex

amplitude of the output but not the input ac electric field. It is obvious that constants

Ak are determined by the same Eq. (8.59) as that used above, and we do not repeat

the procedure here.

The input (collector) complex amplitude eE(L) is determined by the first of

Eqs. (8.56), where amplitudes of the partial solutions are eEk(L) ¼ e�ibezebeCdkL.

As a result, the complex gain in BWA is

GE ¼
eE(0)eE(L) ¼ eibeL

1P3
k¼1

d2k þ q

(dk � dl)(dk � dm)
edkbeCL

(8:132)

The starting conditions for BWOs (starting current and frequency) correspond to the

infinite complex gain or to the zero of the denominator in Eq. (8.132). Let us write

this condition as

(d21 þ q)e2pCNd1

(d1 � d2)(d1 � d3)
þ (d22 þ q)e2pCNd2

(d2 � d1)(d2 � d3)
þ (d23 þ q)e2pCNd3

(d3 � d1)(d3 � d2)
¼ 0 (8:133)

where N is the length of the interaction space in electronic wavelength, or

beL ¼ 2pN (8:134)

Taking into account loss in the slow-wave structure [see Eqs. (8.65) and (8.65a)], the

dispersion equation (8.129) for Cb 	 1 assumes the form

i(d� d þ ib)(d2 þ q) ¼ �1 (8:135)

Note that besides the sign on the right-hand side, Eq. (8.135) also differs from

Eq. (8.65a) for TWTOs in the sign of d. This definition is chosen so that d . 0

corresponds to the attenuation of a backward wave in a slow-wave structure.

Simple Lossless Case d 5 0 We introduce the incremental propagation constant

d ¼ ix (8:136)

Then Eq. (8.135) becomes a cubic equation with real coefficients:

(xþ b)(q� x2) ¼ 1 (8:137)
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In general, this equation can have one real root and two complex roots, or three real

roots. Assume that the real root is x1. Then the two complex roots will be

x2,3 ¼ � x1 þ b

2
+

i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3x21 þ 2x1b� b2 � q

q
(8:138)

We obtain one wave of constant amplitude and two waves with increasing and

decreasing amplitudes, respectively. However, in the case of BWO, the growing

wave does not become dominant at the output end of the tube, because the initial

amplitudes of the three waves at the input end (z ¼ L) must satisfy Eq. (8.133)

and can in principle have any magnitude. Finally, depending on the magnitudes

of the coefficients b and q, Eq. (8.137) can have three real roots (i.e.,

d1, d2, and d3 will be imaginary). In this case, the output signal is the superposition

of three waves with comparable amplitudes. The gain mechanism, is therefore, the

result of an interference effect. The same holds for d . 0 as well.

The numerical solutions to Eq. (8.135) or (8.137), together with the real and ima-

ginary parts of Eq. (8.133), provide starting values of d1, d2, and d3 as well as values
for CNst and bst which determine the starting current and the frequency, respectively.

Taking into account the definitions of C [Eq. (8.44)] and b [Eq. (8.48)], we obtain

Ist ¼ 4U0

(CNst)
3

ZN3
(8:139a)

v0

vph,0
¼ bst

N
(CNst)þ 1 (8:139b)

Equation (8.139b) determines the oscillation frequency, v, when the dispersion of

the slow-wave structure vph,0 ¼ vph,0(v) is known.
The reader can find the results of computations of BWO starting conditions in

papers by Heffner (1954) and Johnson (1955). We note that for q ¼ 0, the following

relation is valid with good precision:

(b0 � be)L ¼ (2nþ 1)p (8:139c)

The onset of oscillations in the tube follows from a noise level of electromagnetic

waves that are excited by a noisy electron beam. The frequency spectrum of these

waves is extremely wide. The noisy waves propagate with different phase velocities

that are determined by dispersion of the slow-wave structure. The condition of effec-

tive interaction [Eqs. (139b,c)] selects only the wave that is synchronous with the

electron beam. This backward wave then modulates the electron beam, creating a

mechanism for maintaining stationary oscillations.

We saw in Section 8.2.2 [Eq. (8.2)] that the physical meaning of relation (8.139c)

for n ¼ 0 is that the bunch must pass a distance of one half-wavelength relative to

the wave during transit time (i.e., it must move permanently in the retarding phase

of the field). For n . 0, condition (8.139c) requires that the bunch pass a distance of

ðl=2Þ=(2nþ 1) in the retarding phase. According to Eq. (8.139c), the electrons
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pass n half-wavelengths in the accelerated phase and (nþ 1) in the retarding

phase, which is equivalent to shortening the structure 2nþ 1 times. Obviously,

the starting current in this case should increase significantly.

Some computed values for (b0 � be)L and CNst for q ¼ 0 are given in Table 8.1.

According to the table and Eq. (8.139a), the starting current for n ¼ 1 is greater than

the starting current for n ¼ 0: approximately 6.6 times. It is important to note that

the conditions in Eq. (8.139c) can be satisfied simultaneously for different frequen-

cies. Thus, if a current exceeds the starting current for n � 1, self-excitation of the

tube is possible at very closely spaced frequencies, and the output signal becomes

nonmonochromatic. Therefore, for stable operation of BWOs, the current should

remain in the range of (Ist)n¼0 , I , (Ist)n¼1.

The values (b0 � be)L and CNst (frequency detuning and the starting current,

respectively) grow with an increase in loss d and space charge q. It can be shown

(see, e.g., Chodorow and Susskind, 1964) that for large q, and in the absence of

loss, the parameter of nonsynchronism b � ffiffiffi
q

p
. This b is equal to bopt, which corre-

sponds to the maximum gain in TWTO for a large space charge. In that case, as

shown in Section 8.5.6, the circuit wave is synchronous with the slow space-charge

wave. The corresponding CNst is equal to

(CN)st ¼
(2nþ 1)2=3

2

bpL

2p

� �1=3
(8:140)

where bp is determined by Eq. (8.49).

Gain in Backward Tubes for Current Below the Starting Current Applying a

Taylor expansion to the denominator in Eq. (8.132) around the G ¼ 0 point, we

obtain a first-order approximation of the voltage gain:

G ¼ k

Is � I
(8:141)

An analogous expansion can be developed around the starting value b ¼ bst. Thus,

the gain in BWTs is highly nonuniform near the starting frequency. As such, BWAs

are considered narrowband amplifiers in contrast with TWTOs. The central fre-

quency of the amplifier band can be shifted by varying the voltage. In this mode,

BWAs can be used as voltage-tuning selective microwave filters.

TABLE 8.1 Starting Condition BWO for Different
Orders of Oscillations

n (b0–be)L CNst

0 3.003 0.314

1 9.860 0.588

2 16.388 0.762

3 21.403 1.046

Source: Heffner (1954).
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8.8.4 Frequency Tuning in BWOs

According to relation (8.139c), the starting difference (b0 � be) should not depend

on be ¼ v=
ffiffiffiffiffiffiffiffiffiffiffi
2hU0

p
. Therefore, when U0 is changed, the self-excitation of BWOs

is accompanied by a corresponding change b0 ¼ v=vph,0(v) (i.e., by frequency

tuning). Voltage frequency tuning is an extremely valuable property of BWOs.

Proper choice of the slow-wave structure and construction of the tube (electron

gun, magnetic focusing system, impedance matching of the output terminal over

the entire band) allows us to attain up to three-octave band frequency tuning. In

particular, good results are obtained with different modifications of the interdigital

structure (Fig. 8.5b), where the first negative spatial harmonic is the fundamental one.

In wideband BWOs it is essential to match not only the output terminal but also

the collector end of the slow-wave structure. The reflection of the energy from the

collector end creates a wave with the phase velocity directed along the electron

velocity. As a result, the parasitic reflected wave is amplified, and it interferes

with the basic wave. This effect distorts the frequency characteristics of the oscil-

lator. Matching is achieved through the application of a special absorber at the

collector end of the slow-wave structure.

8.8.5 Properties of Nonrelativistic BWOs for a Current Greater
Than the Starting Value

When the beam current exceeds the starting value, the behavior of the BWOs should

be described by nonlinear theory. Grow and Watkins (1955) calculated the effi-

ciency of lossless BWOs based on the assumption that the oscillation level of the

tube is limited by the saturation of the ac beam current. According to Grow and

Watkins, the efficiency for a zero space charge changes approximately as

h ffi C (8:142a)

The analysis in Grow andWatkins (1955) does not, however, yield frequency detun-

ing as a function of the beam current.

A comprehensive nonlinear theory of stationary oscillations in nonrelativistic

BWOs was developed by Rappoport (1964) and Rowe (1965). The details are

beyond the scope of this work, but we consider briefly the results of the numerical

computation of efficiency and the parameter b (frequency detuning). The curves

h ¼ h(I=Ist) and b ¼ b(I=Ist) for different values C and q are shown in Fig. 8.27.

As shown, the efficiency and nonsynchronous parameter decrease with the space-

charge parameter q. The relation between the efficiency and C (Fig. 8.27a) is

comparable to relation (8.142) of Grow and Watkins (1955).

In general, the maximum efficiency for this type of wideband BWOs is signifi-

cantly lower than the corresponding value for TWTOs. This is the natural result

of unfavorable distribution of the ac electric field in BWOs (Fig. 8.26): the ac

field is minimal where the ac current is maximal, and vice versa.

Resonant BWO is a version of BWOs in which instead of a matched absorber, a

reflector on the collector end is employed. Furthermore, the gun terminal is supplied
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with a special ac transformer that provides the required matching of the tube with the

output line. In such a tube there are multiple reflections of the ac electric field that

make its distribution along the interaction space almost uniform. As a result, a signifi-

cant increase in the efficiency and a reduction in the starting current in the selective

values of the phasing beL can be achieved. The disadvantage of resonant BWOs is

the discontinuity of the frequency characteristics. The tube works in a narrow

frequency band that is determined by the resonance condition in the feedback

circuit. Therefore, the generating frequency is changed discontinuously with voltage.

The low efficiency of BWOs makes their applications advisable as the oscillators

of a small output power but with a very wideband voltage detuning and

FIGURE 8.27 Efficiency (a) and nonsynchronism parameter (b) as functions of I/Ist. (From
Rowe, 1965.)
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monochromatic spectrum. Structurally, BWOs in the centimeter frequency range are

usually carried out as compact devices with built-in periodical permanent magnetic

systems (see Section 5.8.2). But in short millimeter and submillimeter BWOs,

the solenoidal magnetic systems with a uniform magnetic dc field are used

(see Section 8.9).

8.9 MILLIMETER NONRELATIVISTIC TWTOs, BWOs, AND
OROTRONS

8.9.1 Structural Features of Millimeter Nonrelativistic
TWTOs and BWOs

Consider as an example the construction characteristics of both TWTOs and BWOs

at a wavelength l ¼ 2mm. Assume an accelerating voltage U0 ¼ 3 kV. The

nonrelativistic deceleration of the electron then is (see Section 1.3)

jn ¼
c

v0
� 16ffiffiffiffiffiffiffiffiffiffiffi

U0 kV

p ¼ 16ffiffiffi
3

p � 10

This is also the deceleration of the electromagnetic wave that interacts with the elec-

tron beam. Therefore, the delayed wavelength is equal to ls ¼ l=10 ¼ 0:2mm.

Recall (Section 8.4.2) that slow waves are surface waves and that their fields

decrease with a distance x from the structure surface as e�ð2p=lsÞx. This means that

the ac field in the slow-wave structure is localized in the characteristic layer (the

skin layer) at a depth of Dx ¼ ls=2p � 1
6
ls adjoining the structure surface. In our

example Dx � 0:03mm ¼ 30mm. So the thickness of the electron beam must be

less than 30mm. Note that the beam must be very smooth. The radius of a helical

trajectory in the magnetic field is equal to r? ¼ v?=hB. Assume that the transverse

electron velocity at the entrance to the interaction space is v? ¼ 0:05v0. Then, if one
takes the maximum admissible ripple amplitude r? ¼ 1

3
Dx ¼ 10mm, the magnetic

field required will be

B .
0:05v

hr?
¼ 0:05c

hjnr?
� 0:8T

Thus, attainable output power for both TWTOs and BWOs in the millimeter-

wave range diminishes sharply with increased frequency. The common construction

elements of millimeter TWTOs and BWOs are tiny slow-wave structures, very thin

electron beams, high current density, and strong focusing magnetic fields. It is

important to emphasize that the features indicated for nonrelativistic TWTOs and

BWOs are the result of Cerenkov radiation of uniformly moving electrons, since

this requires the use of slow electromagnetic waves with a phase velocity much

less than the light velocity. Here we discuss only nonrelativistic electron beams.

Some properties of relativistic TWTOs and BWOs are considered in Section 8.10.

Let us estimate typical dimensions of for the slow-wave structure. Take, for

example, the comb structure (Fig. 8.5a). The height of the tooth for this structure

is h � 1
4
l ¼ 0:5mm, the pitch L � 1

2
l ¼ 1mm. Losses in the structure grow with
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the frequency, approximately as
ffiffiffiffi
v

p
. More strict limitations are typical for helical

TWTOs. The diameter of the helix in a 4-mm TWTO must be on the order of

0.5 mm, and the diameter of the electron beam, �0.4 mm. The rods support the

helix. Therefore, wideband helix TWTO amplifiers are not used on wavelengths

shorter than 4 mm. Wideband BWOs are produced and used for frequencies up to

500 GHz.

Table 8.2 lists some typical CWoutput powers for nonrelativistic millimeter BWOs

with U0 ¼ 10 kV. As shown, output power decreases faster than l2 (which would

correspond to the cross section of the electron beam area). Here it is necessary to

take into account the growth of losses and the nonideal focusing of the electron beams.

Below we consider two more advanced versions of millimeter oscillators.

8.9.2 Clinotrons

The clinotron has been proposed as a modification of convention BWOs to eliminate

some disadvantages of the latter. The basic principle of electron–wave interaction in

the clinotrion (see, e.g., Levin et al., 1992; Schuneman and Variv, 1999) is similar to

that in ordinaryBWOs.The distinguishing features of this oscillator consist of the follow-

ing. First, the electron beam is inclined to the surface of a grating as illustrated in

Fig. 8.28. By varying the small angle a, it is easy to adjust the effective interaction

length L without changing the grating geometry. Second, the beam thickness is large

compared with that in conventional BWOs and more than the thickness D of the skin

layer. Third, requirements as to the smoothness of the electron beam and consequently,

the value of the focusing magnetic field and the precision of the beam formation weaken

essentially. As a result, the level of the clinotron output power is almost an order of mag-

nitude larger than for ordinary millimeter BWOs while small physical dimensions, the

possibility of using a low operating voltage and other advantages of BWOs are is retai-

ned. Some characteristics of clinotrons currently in production are listed in Table 8.3.

TABLE 8.2 CW Output Power of Nonrelativistic Millimeter BWOs

l (mm) 8 4 1 0.2

Pout 100 W 10 W 50 W 0.5 mW

FIGURE 8.28 Clinotron.
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8.9.3 Orotrons

The orotron is a generator of coherent electromagnetic radiation in the millimeter

and submillimeter range. A diagram of the oscillator is shown in Fig. 8.29. The

electron beam (1) moves over a grating (2) which is placed on the plane mirror of

a quasioptic resonator. The second mirror (3) of the resonator is usually formed

as a spherical reflector. As a result, caustic surfaces (4) are formed that provide a

high value of the quality factor Q for the resonator.

The device in Fig. 8.29 was developed by Rusin and Bogomolov (1969) and

called the orotron. It also is known by other names, such as laddertron (Mizuno

et al., 1973) and generator of diffraction radiation (Balaklitskii et al., 1973). The

electron beam in the orotron is synchronous with the mth spatial harmonic of

the periodic structure (usually, m ¼ 1). It is similar to the synchronism in TWTOs

and BWOs (depending on a sign of m), and the scheme of the orotron is reminiscent

of resonant TWTOs or BWOs. However, the important distinctionof theorotron is that

the zero and perhaps a few other lowest spatial harmonics are fast waves. Therefore,

the electromagnetic field generated is not propagated as a pure surface wave but is

basically radiated through fast harmonics into the volume of the quasioptic resonator.

The fundamental wave, corresponding to zero spatial harmonic, is an eigenmode of

an open resonator. The phase velocity of this harmonic, v0,ph � c; that is,

b0 ¼
v

v0,ph
	 2p

l
(8:142b)

TABLE 8.3 Parameters of Advanced Clinotrons

Range of Frequency

Tuning (GHz)

Maximum Output

Power (W)

Anode

Voltage (kV) Weighta (kg)

53–63 11.0 4.0 1.2

113–122 3.0 4.3 1.2

137–151 2.0 4.5 1.2

345–390 0.1 5.0 12

442–510 0.05–0.1 5.5 12

aTogether with a focusing magnet.

FIGURE 8.29 Orotron.
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The radiation of electrons passing over a grating was discovered by Smith

and Purcell (1953). But they did not use any resonators that in general could provide

feedback and bunching of the electron beam. Therefore, their radiation was spon-

taneous, incoherent, and had very little output power. Note that, in principle, the

Smith–Purcell effect can be considered a particular case of transition radiation

(Section 8.2.2) over periodical nonhomogeneities.

If a proper condition of synchronism between the electron and phase velocities

of a slow spatial harmonic is satisfied and if the electron beam current exceeds

the starting current, the orotron will radiate coherently at a frequency close to one

of the resonant frequencies of an open resonator. In this sense the orotron is a

device with stimulated (induced) Smith–Purcell radiation.

The primary difference between orotron theory and classic TWTO and BWO

theory is reduced to taking into account the specific electromagnetic structure of

the open resonator. However, that does not change the mechanism of the interaction

between an electron beam and a high-frequency field compared with closed

tubes. The starting current and frequency are determined from the conditions of

stationary oscillation of the orotron, which can be written similar to Eqs. (6.53)

and (6.54):

v0W

Q
¼ �Per

v� v0

v0

¼ 1

2Q

Pei

Per

(8:143)

where for the starting mode, Per and Pei are the linearized real and imaginary elec-

tron power, respectively. W is the energy stored in the open resonator. (We omit

various other details of this analysis.) It can be shown (Vainstein et al., 1983) that

the starting current has a magnitude on the order of

Ist ¼ K
v0U0

ber
3

V̂

Q
� U

�3=2
0

Q

V̂

r3
(8:143a)

where V̂ is the effective volume of the resonator and r is the radius of a caustic zone

that significantly influences the starting current.

The nonlinear theory of the orotron is analogous to the nonlinear theory of the

TWTO (Vainstein et al., 1983). Approximate analytic nonlinear theory is developed

by Myasin et al. (1990).

The orotron has the following potential advantages as an oscillator in the milli-

meter and especially in the submillimeter range.

1. Fewer losses, because the energy is translated and radiated through the fast

spatial harmonics.

2. A high quality factor Q value of the resonator, leading to high-frequency

stability and small starting currents.
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3. A large volume of space occupied by the ac electromagnetic field. [This pro-

perty of the orotron makes it usable, for example, in high-sensitivity molecular

spectrometers (Surin et al., 2001). The gas being examined is placed into the

orotron resonator and the absorption signal is detected as a function of

the tuning frequency.]

4. Technological advantages in manufacturing slow-wave structures,

electron-optical focusing systems, and output circuits.

5. In relativistic orotrons (Bratman et al., 1987) with v0 � vph,1 
 c, a period L of

the SWS close to the radiation wavelength l, as follows from Eq. (8.142).

As a whole, orotrons are more adequate than BWOs as power oscillators in the

submillimeter range, especially at relativistic energies. The main disadvantage of

an orotron is the limitation on electron frequency tuning. Variation of the oscillation

frequency is possible only via simultaneous adjustment of both the voltage and

natural frequency of the resonator.

8.10 RELATIVISTIC TWTOs AND BWOs

8.10.1 Introduction

An increase in electron velocities up to relativistic velocities will significantly weaken

limitations connected with the surface nature of slow electromagnetic waves in O-type

devices. In particular, taking into account the synchronism condition vwn ¼ v0, we

obtain from Eq. (8.16) the thickness of the skin layer for relativistic beams:

Dsk ¼ l

2p

vwn

c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (vwn=c)

2
q ¼ l

2p
g
vwn

c
� l

2p
g

For example, Dsk � l for U0 ¼ 2.5 MV. A very important aspect of relativistic beam

use is determined by weakening of the space-charge limitation (see Sections 3.1, 4.8,

and 5.1 to 5.3). Thus, transfer to relativistic TWTOs and BWOs allows us essentially

to increase both the frequency and the energetic limits of amplifiers and oscillators

being considered.

Creation of these tubes is possible to a considerable extent by the effect of explo-

sive electron emission that has ensured a generation of superintense relativistic elec-

tron beams (see Section 4.8). Only two years later, Nation (1970) investigated the

interaction between a relativistic beam and a backward wave. Nation obtained an

output power of about 10 MW in the X-band with a beam current of 30 kA and

an energy of 500 keV. Although the efficiency was not high (�0.05%), it was a

promising result. Kovalev et al. (1973) obtained radiation with an efficiency of 12

to 15% at a 3-cm wavelength, using a design of relativistic BWOs with a corrugated

slow-wave structure (Fig. 8.30) and electron energy 700 keV. Relativistic TWTOs

appeared in about 1985–1991 (Korovin et al., 1985; Shiffler et al., 1991). Below

some principal features of powerful BWOs and TWTOs are described briefly.
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8.10.2 Equations of Relativistic BWOs and TWTOs.
Relations of Similarity

Considered below are equations (Petelin, 1970) based on a simplest approx-

imation: one-dimensional motion of electrons in a given high-frequency electric

field:

E ¼ E(z)eivt ¼ eE(z)eiv(t�z=vw)

The relativistic equation of motion

d(mv)

dt
¼ Re½F(z)eivt� (8:144)

[where F(z) ¼ �e0E(z) ¼ eF(z)e�iv(z=vw)� can be written in the form of two first-

order equations:

c2
dm

dz
¼ m0c

2 dg

dz
¼ Re ½F(z)eivt� (8:145)

dt

dz
¼ 1

v
¼ g

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p (8:146)

g ¼ m=m0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v=c)2

p
is the relativistic factor. The solution of Eqs. (8.145)

and (8.146)—g ¼ g(z, t0) with initial conditions

(g)z¼0 ¼ g0, (t)z¼0 ¼ t0 (8:147)

determines the motion of an electron that enters the interaction space at the

moment t ¼ t0. The electron efficiency is an average of the relative energy that

the electrons give to the ac field in the interaction length L:

h ¼ 1

g0 � 1
g0 �

1

T

ðT
0

g(L, t0) dt0

� 	
(8:148)

FIGURE 8.30 Corrugated slow-wave relativistic BWO–TWTO.
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Let us consider a case of ultrarelativistic electronic devices: a beam with

extreme relativistic energy of electrons g � 1. Equations (8.146) and (8.148) in

this case are transformed to the forms

dt

dz
¼ 1

c
1þ 1

2
g�2

� �
(8:149)

h ¼ 1� 1

T

ðT
0

g(L, t0)

g0
dt0 (8:150)

The system of equations (8.145), (8.149), and (8.150) can be reduced to a form that

does not contain the initial energy g0. Here we introduce the dimensionless quantities

m ¼ g

g0
, F ¼ v t � 1þ 1

2g20

� �
z

c

� 	
(8:151)

We obtain from Eq. (8.149) the equation

1

v

dF

dz
¼ 1

2cg20

1

m2
� 1

2cg20
(8:152)

Defining the dimensionless length

z ¼ 2cg20
v

z ¼ lg20
p

z (8:153)

we reduce the system of equations (8.145), (8.152), and (8.150) to the form

dm

dz
¼ Re½A(z)eiF� (8:154)

dF

dz
¼ 1

m2
� 1 (8:155)

h ¼ 1� 1

2p

ð2p
0

m(L,F0) dF0 (8:156)

where

L ¼ p

g20

L

l
(8:157)

A(z) ¼ 2g0
m0vc

F(z)ei(vt�F) ¼ lg0
pm0c2

eF(z)ei½(1þ1=2g2
0
)ðvz=cÞ�vz=vw�

¼ lg0
pm0c2

eF lg20
p

z

� �
eidz (8:158)

d ¼ 1� 2g20½(c=vwÞ � 1� is the ultrarelativistic parameter of nonsynchronism.
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The system (8.154)–(8.156) allows a set of problem to search the function A(z),
which ensures maximum efficiency [Eq. (8.156)]. Such a function in principle may

be physically unrealizable. But taking a number of limitations into account (e.g., the

equations for the electromagnetic field, configuration waveguide, losses) it is poss-

ible to reduce the problem to searching for optimum efficiency. If the corresponding

optimal distribution A(z) is found, important scaling rules arise which follow from

relations (8.157) and (8.158). In particular, the optimal length L=l of the tube should

be chosen proportional to g20 (the square of the initial beam energy). It is interesting

that the amplitude of the optimal ac electric field is inversely proportional to g0,
while at low voltages the amplitude increases with V. According to Eq. (8.158),

the optimal field amplitude grows with shortening wavelength.

The theory described above does not take into account the dependence of F(z) on

beam bunching, space charge, and so on. So the theory can be applied to devices

with a fixed spatial structure of the ac field (e.g., resonant TWTOs, BWOs, and

orotrons). Self-consistent equations for the electron beam and electromagnetic

field have been obtained by Kovalev and Smorgonsky (1975) similar to equations

in the theory of nonrelativistic TWTOs and BWOs (Sections 8.5, 8.6, and 8.8).

In this case the system of equations (8.154) and (8.155) is supplemented by the

equation of ac electric field excitation for the case of interaction of the electron

beam with a single mode of the traveling wave. Corresponding equation in is

the ultrarelativistic version of the nonrelativistic equations (8.85) and (8.86). This

equation has the form

dA

dz
� idA ¼ +I

ð2p
0

e�iF dt0 (8:159)

The term on the right side of Eq. (8.159) is proportional to a first harmonic of the ac

convection current. The sign on the right side of Eq. (8.159) should be chosen nega-

tive or positive for beam interaction with the forward and backward spatial

harmonics of the periodic slow-wave structure, respectively.

8.10.3 Relativistic BWOs

The diagram of a relativistic BWO with a tubular electron beam is shown in

Fig. 8.31. The electron beam in the tube interacts with the synchronous

FIGURE 8.31 Relativistic single-stage BWO. 1, Cathode; 2, electron beam; 3, output

window.

8.10 RELATIVISTIC TWTOs AND BWOs 357



21 spatial harmonic: usually, the TM01 mode in a circular corrugated waveguide or

the HE01 mode of a rectangular waveguide. The depth of the corrugations is small,

h/l	 1, because of the small deceleration of relativistic electrons. The beam tunnel

from the regular slow-wave structure to the gun is tapered up to the cutoff waveguide

in order to exclude ac power leakage into the gun. The synchronous (backward)

harmonic of the wave reflected from the input waveguide does not interact with

the electron beam, and the wave radiates through the waveguide in the collector

end. The widening of the output waveguide (Dout/l � 1) excludes high-frequency

breakdown in a dielectric output window.

After obtaining the first results (Kovalev et al., 1973; Nation, 1970), the devel-

opment of BWOs was determined by requirements of enhancement output power,

efficiency, and coherence of radiation. The common way of increasing the output

power is using space-developed (overmoded) slow-wave structures (SWSs). On

the one hand, there is an increase in the volume of an active medium that is

formed by electrons and the electromagnetic field, and on the other hand, it prevents

RF breakdown and development of processes that lead to output pulse shortening

(Barker and Schamiloglu, 2001; Benford and Benford, 1997; Kovalev et al.,

1998) (the RF pulse becomes shorter than the applied electric pulse). According

to a number of works (see, e.g., Kovalev et al., 1998), the main factor in output

pulse shortening is a multifactor effect in the strong HF electric field. Bombardment

by secondary electrons of SWS walls stimulates desorption of gas and finally, for-

mation of plasma that stops microwave generation. The characteristic time of this

process at the gigawatt power level according to data of Kovalev et al. (1998) is

much shorter than the time of processes determined by the cathode and collector

plasma expansion.

Bugaev et al. (1990) developed an ultrarelativistic oscillator with a periodic two-

section diaphragmatic waveguide and the ratio of the diameter to the wavelength

ðD=lÞ up to 13. The output power and efficiency reached 15GW and 50%, respec-

tively, in the X-band. The energy of electrons in the beam generated by the magne-

tically insulated diode and the beam current were �2 MeV and 15 kA with a pulse

duration of �70 ns. The electron beam interacted with a set of harmonics of differ-

ent modes near the short-wave boundary of the fundamental mode passband. As

such, this tube can be considered simultaneously a resonant BWO and a TWTO

oscillator. The authors called their tube a multiwave Cerenkov generator. Although

the oscillator had a high degree of time coherence, the spatial coherence could not in

practice be ensured by the multimode indefinite output structure of a signal. Thus,

effective application of space-developed SWS required solution of a mode selection

problem.

A number of electrodynamic and electron methods of mode selection are known

(see, e.g., Bratman et al., 1987). In particular, Abe et al. (1998) have studied mode

selection in relativistic BWO with over-moded corrugated SWS up to a D=l ratio of

�3. Selection of the fundamental mode TM01 has been achieved through variation

of the corrugated structure parameters L, h, and D (Fig. 8.31) in order to merge the

interaction range of TM01 with the short-wave edge of the passband, thus increasing

frequency separation from the competing mode TM02 (electrodynamic selection).
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The beam was also placed closer to the corrugated wall in order to increase the coup-

ling impedance of the chosen harmonic (the electron selection). With these modif-

ications, BWOs have generated an output power of 200 MW in the frequency range

5.2 to 5.7 GHz with an efficiency of 4%. The time coherence (Dv=v , 0:5%) and

spatial coherence according to the experimental data of Abe et al. (1998) were both

sufficiently high.

Effective cyclotron-resonance mode selection was proposed and developed

by Abubakirov et al. (1983). Let us choose the focusing uniform magnetic field

B according to the equality

vc ¼ hB

g
¼ 2p

L
v0 (8:160)

Then, taking the Cerenkov condition of synchronism for the 21 harmonic

[Eq. (8.123)] into account, 2p=L� v=vph,0 ¼ v=v0, we arrive at the equation

vc ¼ v 1þ v0

vph,0

� �
(8:161)

This equation corresponds to the Doppler condition of cyclotron resonance for a

beam with zero spatial harmonic which propagates to the cathode (i.e., against the

electrons). The electron beam in the BWO is practically rectilinear, and the electrons

are similar to linear oscillators. In this case, the electron beam forms an absorbing

medium (see Section 10.1), and all backward modes of the slow-wave structure

whose zero harmonics have a phase velocity close to vw0 will be damped.

However, if we choose the radius r of the electron beam according to the condition

of zero absorption at the cyclotron resonance

Im+1(kr) ¼ 0 (8:162)

where Im is a Bessel function of first kind, m order, and k is the transverse wave

number of the operative mode, this mode does not decay. This method was realized

successfully in X-band BWOs with operative mode TM02.

The theoretical efficiency of an idealized model of ultrarelativistic BWOs with

uniform SWS is 15% (Kovalev et al., 1979). Possibilities of efficiency enhancement

are connected with using nonuniform SWSs to compensate for the ordinary BWO

unfavorable axial structure of the ac electric field. Using a jump in SWS coupling

impedance allows increase in the theoretical efficiency up to 45% (Kovalev et al.,

1979). It is attained by changing the amplitude and period of the ripples in corru-

gated SWSs (Fig. 8.31). In particular, the elevation of the coupling impedance

near the end of an SWS has allowed increased experimental efficiency: up to 35%

in the X-band (Korivin et al., 1992a). Another possibility lies in changing the

phase velocity at the end of the interaction space (Korovin et al., 1992b; Moreland

et al., 1994). In this case the mechanism for efficiency improvement is similar to

velocity tapering in nonrelativistic TWTOs (see Section 8.6.3).
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Powerful relativistic BWOs can operate in both the single-shot and repetitive

regimes. Maximum output power is attained in single-shot operation. So far, these

sources have been used in some plasma experiments and in the exploration of super-

powerful relativistic electron beams. Usually, the energy pulse parameter E ¼ Wt,
where t is a pulse duration, is used for comparing ultrarelativistic electron guns.

This parameter is limited by the pulse-shortening effect. For ordinary BWOs, E is

significantly less than 1 kJ. The record Emax � 1 kJ belongs to the aforementioned

multiwave BWO with D/l � 13.

BWOs in the repetitive operation regime are characterized by a comparatively

high average power if one takes the nanosecond pulse duration into account. So

the X-band BWO described by Bykov et al. (1989) reached an average radiation

power of 400 W with a pulse repetition frequency of 100 Hz and a pulse duration

of 5 ns. In single-shot operation this tube produced 0.8 to 1 GW. Use of repetitive

operation significantly increases the precision of measurements of frequency and

output power.

Extension of this line of research has led to the creation of nanosecond radars, for

which a series of compact and reliable high-voltage modulators (SINUS generator of

Clunie et al., 1997) for repetitive operation are employed. A BWO in the X-band as a

radar microwave source had an output pulse power of 500 MW, a pulse duration of

5 ns, and a repetition frequency of 150 Hz. Use of a short-duration pulse and high

peak microwave power have ensured unique resolution for the detection of

fast-moving targets traveling above the sea surface. The slowly changing clutter

returns were suppressed by the over-period subtraction. Some characteristics of a

radar built in Russia under contract to the United Kingdom, as well as the results

of experimental trials of a radar system on the southern UK coast, are described

by Clunie et al. (1997).

8.10.4 Relativistic TWTOs

Relativistic TWTO amplifiers combine high power, efficiency, and the possibility of

phase synchronization, which is very important for such uses as high-energy accel-

erators (colliders), phase array radars, and communication systems. The following

key problems specify trends in the investigation and construction of these tubes.

1. Enhancement of the pulse output power and pulse duration. This goal requires

enlargement of the interaction space and cross section of the output waveguide to

avoid microwave breakdown and pulse shortening. This inevitably leads to the

problem of mode selection. Note that this problem is more vital for TWTOs than

for BWOs because of the need to ensure phase synchronization.

2. The necessity of getting high amplification, which in turn is dictated by the big

gap between the gigawatt output power of ultrarelativistic TWTOs and the power of

traditional microwave sources as master oscillators. For example, the maximum

output of magnetrons in the X-band is on the order of 100 kW. Therefore, to

reach 1 GW of output power in a TWTO, the necessary magnitude of gain should

be no less than 40 dB. Another important problem for high-gain TWTOs is the
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self-noise of electron beams generated by explosive emission guns. The high level of

this noise limits the low level of the input signal.

Note that if the electron beam in a TWTO is chosen to be synchronous with the

þnth spatial harmonic and the phase velocity of the zero harmonic is equal to c,

the SBS spatial period L is very large for relativistic energies. Indeed, assuming

that b0 ¼ v=c, we find from Eq. (8.15) that

L ¼ 2pnvph,n

v(1� vph,n=c)
¼ nvph,n

(1� vph,n=c)
l (8:163)

Taking into account that the electron velocity is v0 � vph,n, we find that for

relativistic velocities the denominator in Eq. (8.163) is �1/2g2, so L � 2ng2 l.
The first relativistic TWTOs had a comparatively high output power, �400 MW,

but they did not use oversized SWSs. For these TWTOs the most important problem

was suppressing backward self-excitation. Recall (see Section 8.7.2 and Gittins,

1965) that this is also the key problem for nonrelativistic TWTOs. This problem

is usually solved by using severed structures. A comprehensive exploration of

single- and two-stage severed amplifiers was carried out by Shiffler et al. (1991).

In that work, a tube with frequency 8.8 GHz was operated in the TM01 mode, and

the electron energy was 850 keV. For a single-stage amplifier, a maximum gain

TABLE 8.4 Output Parameters of Single- and Two-Stage 8.8-GHz TWTOs

Type of Tube Single Stage Two Stage

Gain (dB) 13–35 28–35

Peak output power (mw) 100 400

Efficiency (%) 11 45

3-dB bandwidth (MHz) 20 150

Source: Shiffler et al. (1997).

FIGURE 8.32 Two-section TWTO amplifier with mode transformation.
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of 33 dB and an output power of 110 MW in the 0.2% band were achieved with a

beam current of 1.6 kA. Attempts to operate with higher currents a have led to oscil-

lation at the input frequency. A two-stage TWTO with stages separated by a sever

(a graphite section with an attenuation of �30 dB) shows enhanced output power,

efficiency, gain, and bandwidth (Table 8.4). The primary disadvantage of this

device is the presence of intense oscillations in sidebands. These are always

present in severed amplifiers, but in single-stage devices, sidebands appear at

power levels in excess of 70 MW. The microwave power in the sidebands can

reach up to 50% of the total output power. The results of simulations did not give

a definite explanation for this phenomenon. Note, however, that the use of

severed structures does not resolve the problem of mode selection in oversized

SWSs when synchronous spatial harmonics of different modes have a close-

coupling impedance.

A different and very effective method of sectioning ultrarelativistic TWTOs was

proposed and realized by Abubakirov et al. (2002). Two sections of a TWTO were

formed by an SWS with different azimuthal symmetries and types of interaction

(backward and forward). As a result, only electron coupling between sections was

present. A block diagram of the amplifier is shown in Fig. 8.32. The first stage is

a regenerative backward-wave amplifier (BWA). It operates at the TE41 mode of

a helical corrugated waveguide. The second stage is an amplifier at a forward syn-

chronous harmonic of the mode HE11 in the azimuthally symmetrical corrugated

waveguide. The external signal from a 100-kV magnetron enters the quasioptical

mode converter, which transforms the TE10 mode of a rectangular waveguide into

a hybrid whispering gallery mode TE41 with a synchronous 21 harmonic. A back-

ward interaction in that section provides transportation of the amplified energy in the

direction of the gun. This effect, along with the essentially different spatial structure

of TE41 and HE11 modes, ensured very weak electrodynamic coupling between sec-

tions. The specifications for the BWA narrowband of the amplification (see Section

8.8.3) favors mode selection and reducing the noise in a bunched electron beam.

Also, the choice of operating in a high whispering gallery mode TE41 reinforced

the mode selection. The surface structure of operating harmonic determines the

sharp dependence of the gain on the initial radius of the electron beam. The electron

bunching, coupling of the sections, and gain essentially depend on drift section

length.

The maximum for the electron beam current and the energy were 6 kA and

9.8 MeV, respectively. The radiated power of the X-band tube in the optimal

operation exceeded 1 GW with a gain of 47 dB and efficiency at 23%. The output

power growth was accompanied by pulse shortening. Thus, the increase in

output power from 0.3 GW to 1.1 GW reduced the duration of the pulse

from 250 ns to 90 ns. Use of the HE11 mode as an output wave and application of

an adiabatically widening horn antenna obtains an output signal close to a Gaussian

wave beam, which can also be considered a result of the high mode selection.
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CHAPTER NINE

Crossed-Field Amplifiers and
Oscillators (M-Type Tubes)

9.1 INTRODUCTION

Classical high-frequency crossed-field oscillators (magnetrons) have a much longer

history than that of O-type traveling wave tubes (TWTOs), which appeared in

1942. However, the fundamental idea of synchronism between traveling waves and

electrons in magnetron theory was adopted from TWTOs. The earliest magnetrons

(1921) used smooth cylindrical anodes and demonstrated poor output power and effi-

ciency. Later, in 1935, magnetrons with multisegment anodes (which, in fact, appear

as closed-loop slow-wave structures) were proposed by Posthumus (1935). These

magnetrons radiated 500 MHz with an efficiency of up to 50%. Then in 1938,

Alekseev and Malairov developed a prototype of the modern cavity magnetron

with a copper anode and hole-slot resonators (Alekseev and Malairov, 1944). The

cavity magnetron was invented independently by Boot and Randall in 1940 (Boot

and Randall, 1946). By May 1940, experimental radar containing a pulsed-power

3-GHz cavity magnetron was in operation. It would not be an exaggeration to say

that magnetron radars played a central role in the defense of Great Britain against

German missiles and submarines. By the end of World War II, the magnetron had

become the most widely used powerful microwave tube.

Other devices of M type (e.g., injected-beam amplifiers and oscillators, magne-

tron amplifiers) were proposed later (in the early to mid-1950s) (Brown, 1984;

Epsztein, 1952; Warnecke et al., 1950, 1955). Their appearance resulted in

significant progress in power microwave electronics and its application, especially

in radar technology.

Alongside the development of construction and technology of magnetrons and

other crossed-field tubes, great attention has been paid to the theory of these
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devices. Note that despite intense theoretical investigation and the application of

large-scale computer simulations, magnetron theory met with significant difficulties,

connected primarily with the inherent instability of electron clouds. A possible cause

of these difficulties is related to the unique property of the magnetron as a device that

is stable only in the large-signal regime (i.e., large ac amplitudes), where the motion

of electrons cannot be described by simple equations.

Let us first take up two classes of M-type devices: planar M-type traveling-wave

tubes and backward-wave oscillators with an injected beam: MTWTs and MBWOs

(carcinotrons). Below we refer to both MTWT and MBWO devices as MTWT

unless otherwise noted.

9.2 ELEMENTARY THEORY OF A PLANAR MTWT

9.2.1 Scheme of a Planar MTWT. Electron Beam in DC Crossed Fields

The anode of the tube is implemented as a slow-wave structure (SWS) (see Fig. 9.1,

where the comb structure is shown). The electron beam is injected by an M-type

electron gun (Appendix 2) into a space with dc electric and magnetic crossed

fields. Assume that the undisturbed electron beam is rectilinear. Then the sum of

electrical and magnetic forces e0E0 � e0vz0B should be zero. We obtain the undis-

turbed velocity vz0 ¼ E0=B (the direction of B, shown in Fig. 9.1, is chosen for

vz . 0). We assume that nonhomogeneities of the dc electric field formed by the

slow-wave structure decay quickly with D (Fig. 9.1), so the dc electric field

acting on the beam E0 ¼ const.

Another approach is based on drift equations (Section 1.5.3). Because v? ¼ 0, we

obtain from Eq. (1.106) the fact that v ¼ dRd=dt. Uniformity of the dc magnetic

field and the absence of velocity along the magnetic field vB ¼ 0 allow us to

reduce Eq. (1.110) to

v ¼ E0 � B

B2
or vz0 ¼ E0

B
(9:1)

Here vz0 is the velocity of the guiding center. Thus, Eq. (9.1) is true in the drift

approximation, and it allows us to ignore small disturbances in the dc electric

field created by the periodic slow-wave structure (SWS).

FIGURE 9.1 Planar M-type traveling-wave tube.

364 CROSSED-FIELD AMPLIFIERS AND OSCILLATORS (M-TYPE TUBES)



Suppose that the beam is thin and we can neglect the dc space-charge field as

well. This gives us a simple relation for the beam position. Because vz0 is

the full velocity, this value is determined by the energy integral vz0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2hUx0

p
,

where Ux0 ¼ (Ua=d) x0 ¼ E0x0 is the potential of the beam relative to the cathode

(the sole plate). From Eq. (9.1) we obtain E0=B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hE0x0

p
. Then

x0 ¼ E0

2hB2
¼ Ua

2hB2d
(9:2)

9.2.2 Motion and Bunching of Electrons in a High-Frequency Field
(Adiabatic Approximation)

Assume that some spatial harmonic of the SWS is synchronous with the electron

beam. For example, for a comb structure, a zero (direct) spatial harmonic is the

best. Let us describe the electron motion in a frame of reference that moves with

respect to a laboratory coordinate system with undisturbed velocity vz0. In this

frame the undisturbed electrons are not moving. Let us draw qualitatively electrical

field lines (Fig. 9.2). We used the following properties of the spatial harmonics

(Section 8.4).

1. The field of the nth harmonic is periodic, with the spatial period equal to its

wavelength:

ln ¼ 2p

b0 þ 2pn=L
(9:3)

where L is the period of an SWS.

FIGURE 9.2 Electron bunching in crossed fields. Solid arrows, electric field lines; dashed

arrows, velocities of the particles; light shading, undisturbed beam; dark shading, disturbed,

beam.
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2. The field of each spatial harmonic satisfies Maxwell’s equations. In particular,

field lines are either closed curves, or they begin and finish at infinity. In the present

example, the field lines are closed around sources outside the interaction space.

3. The synchronous spatial harmonic is the slow wave. Therefore, the latter is a

surface wave and its field lines become more rarefied away from the SWS surface. In

Fig. 9.2, dashed arrows denote the velocities in different quadrants of the wave-

length. Long arrows indicate velocities at the upper boundary of the beam, and

short arrows indicate velocities at the lower boundary, where the ac electric field

is weaker because of the surface character of the slow wave.

Disturbed Electron Motion Suppose that the high-frequency fields are weakly

nonhomogeneous: that is, the scale of nonhomogeneity of the electric field is signifi-

cantly greater than the characteristic spatial scale of the electron trajectory in the

magnetic field. For this case it is the Larmor radius, r?. Then we can represent

the velocity as a sum of the drift and gyrating velocities:

v ¼ vd þ v? (9:4)

Taking into account the shortness of the Larmor radius compared with the wave-

length, and ignoring the resonance interaction of the high-frequency (HF) field

with gyrated electrons,1 we can ignore the Larmor gyration, as it does not signifi-

cantly affect the position of particles on the scale of the wavelength. Thus, the influ-

ence of electron rotation on bunching and energy transfer is negligibly small. This

type of approximation in MTWT theory is called adiabatic approximation. So the

electron velocity is a pure drift velocity:

v ¼ E0 � B

B2
þ E� B

B2
(9:5)

where E0 is the dc electric field. The first term in this sum is the undisturbed drift

velocity, which is equal to zero in the moving frame of reference. In this frame

the electron velocity is equal to v0 ¼ (E� B)=B2. The electric field has components

Ex and Ey. The magnetic field is directed along2y (i.e., By ¼ �B; see Fig. 9.1). As a

result, we obtain

vx ¼ Ez

B
, v0z ¼ �Ex

B
(9:6)

The z0 coordinate in the moving reference frame is

z0 ¼ z� vz0t (9:7)

where vz0 ¼ �Ex0=B.

Disturbed Form of a Beam Let us define the retarded and accelerated phases of

the electric field with respect to the longitudinal electron velocity: In the retarded

1The interaction of electron oscillators with ac fields is taken up in Chapter 10.
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phase, Ez . 0, and in the accelerated phase, Ez , 0. Based on the analysis of

Fig. 9.2 and Eq. (9.6), we reach the following conclusions:

. Retarded Phase. The electron beam is expanded and lifted. The potential

energy of the electrons decreases in this phase, and the beam is then fed by

electrons from the accelerated phase.

. Accelerated Phase. The electron beam descends and the potential energy of the

electrons increases. The electrons transfer to the retarded phase.

Let us express the components of the electron velocity as functions of the ac field

[Eqs. (9.6) and (A5.10) from Appendix 5]:

vx ¼ � 1

B

@U

@z
¼ 1

B
Ez ¼ i

bUd

B

shbx

shbd
ei(vt�bz)

v0z ¼
1

B

@U

@x
¼ � 1

B
Ex ¼ b0Ud

B

chbx

shbd
ei(vt�bz)

(9:8)

where Ud ¼
Ð d
0

E0x(x)j jdx.
Taking Eq. (9.8) into account, it can readily be shown, that electrons in the

moving frame move along equipotential lines of the potential U(x,z). Assume for

simplicity that static fields and the position of the beam are chosen to ensure

exact synchronism between the undisturbed electron beam and the high-frequency

field (i.e., vz0 ¼ vph ¼ v=b, where vph is the wave phase velocity). Then taking

Eq. (9.7) into account, we obtain the fact that in the moving frame the real part of

the potential can be written as [see also Eq. (A5.9)]

U(x,z0) ¼ Ud

shb0d
cosbz0shbx (9:9)

The equipotential lines corresponding to Eq. (9.9) are shown in Fig. 9.3 for x . 0.

According to Fig. 9.2, the centers of the bunches are located in the planes

bz0 ¼ (p=2)þ 2np. The electrons (guiding centers) in these planes move to the

anode. The direction of the electron velocities at these trajectories (the arrows

FIGURE 9.3 Equipotentials and trajectories.

9.2 ELEMENTARY THEORY OF A PLANAR MTWT 367



in Fig. 9.3) is determined from Eqs. (9.8) and (9.9). Also, in these planes the com-

ponent Ez is positive (retarded) and maximal. Thus, the bunching and phasing of the

electrons takes place in the retarded phase of the synchronous harmonic, and on

average, the potential energy of electrons in the beam decreases. It is important

that the synchronism is preserved so that the electron kinetic energy does not

change.

Note in Fig. 9.3 that only possible trajectories are shown. The actual form of

the beam is determined by real filling of the trajectories by the guiding centers.

The actual positioning of the guiding centers is determined in turn by the lifetime

of electrons in the interaction space and by the manner of electron input into this

space. In the framework of the linear theory, the electron beam can be considered

thin. Qualitatively, its form corresponds to Fig. 9.2.

According to Eq. (9.8) div v0 ¼ @vx=@xþ @v0z=@z
0 ¼ 0. Then we obtain from the

continuity theorem, div j ¼ div (rv0) ¼ r div v0 þ v0rr ¼ �@r=dt, that

@r

@t
þ v0rr ;

dr

dt
¼ 0 (9:10)

so the space-charge density in crossed-field beams is invariant, and the guiding

centersmove as particles of incompressible fluid.Assume that the initial space-charge

density is constant, (r)t¼0 ¼ r0. Then

~r ¼ (~r)t¼0 ¼ 0 (9:11)

in the moving frame.

9.2.3 Comparison of Basic Features of Bunching and Energy Transfer
in MTWTs and TWTOs

1. The energy transfer in both TWTOs and MTWTs is controlled by the longi-

tudinal component of the ac electric field. However, TWTO beams exploit kinetic

energy, whereas MTWT beams exploit potential energy.

2. In TWTOs, bunching is determined by the longitudinal component of the ac

electric field. Bunching in MTWTs is also connected with the longitudinal motion

of particles, but here it is controlled by the transverse field component.

3. In TWTOs the transfer of energy from the beam occurs when v0 . vw.

Furthermore, in O-type tubes, efficiency is determined by the deceleration of

electrons within a range of excess velocity. In M-type tubes, however, energy is

transferred when the electron velocity ve ffi vw, and it does not change in the

process of interaction. Thus, the nature of electron radiation in crossed-field

devices is essentially different from that of Cerenkov radiation, and the motion

of guiding centers is different from the electron motion seen in the rectilinear

beams of O-type devices. However, the synchronism required between an electron

beam and a slow wave, as well as the surface character of the wave, brings

us very close to the frequency limitations of both TWTMs and TWTOs (see

Section 9.4.3).
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4. InO-type tubes, bunching is accompanied by an increase in space-charge density,

which leads to a decrease in electronic efficiency. The space-charge density in MTWT

is not affected by bunching.

5. The active area of the beam is variable in MTWTs but not in TWTOs.

6. Ac fields in TWTOs determine the acceleration rate of particles. Therefore, if

particles acquire different velocities (as a result of different accelerations), the

velocities remain constant following the release of force, and bunching continues

under inertia. This inertial bunching takes place in klystrons, TWTOs, BWOs, and

other devices. The motion of particles in MTWTs (and in other M-type devices) is

basically a drift motion. In this case, the force determines velocity directly. There-

fore, if the force is released, the drift motion stops, as does the bunching. The latter is

called forced bunching orM-type bunching, as opposed to the inertial O-type bunch-

ing in O-type devices.

It is interesting to compare the motion of an electron toward the anode in an

MTWT with a falling body in the atmosphere, where a gravitational force is

balanced by a frictional force. The body moves with constant velocity and loses

only potential energy, which is turned into heat. The electrons in MTWTs fall on

the anode, and the potential energy is converted into electromagnetic energy. As

such, this process can be called electromagnetic friction.

9.3 MTWT AMPLIFICATION

The linear theory of amplification can be reduced to the derivation and analysis of

dispersion equations. This problem in TWTO theory has been split into two subpro-

blems: calculating the bunching of the electron beam in a wave field, and calculating

the excitation of the wave in the slow-wave structure by the ac convection current.

The general approach for the analysis in MTWT theory is similar. However, the two-

dimensional character of motion and the interaction in MTWTs, and the consider-

able transversal heterogeneity of the electromagnetic field complicate the analysis,

requiring revision of the equations used in Chapter 8. Derivation of the dispersion

equation based on the equation of excitation of equivalent transmission lines with

lumped parameters is given by Gittins (1965), Kleen (1958), and Mourier (1961).

A consistent electrodynamic analysis has been developed by Gaiduk (1971) and

Hutter (1965).

9.3.1 Equation of Excitation

Let us use the formula for excitation of the waveguide (Vainstein, 1956), ignoring

the spacecharge and using only one waveguide eigenmode (one fundamental

spatial harmonic), E1(x,z):

Ex(x,z, t) ¼ CE1x(x,z, t) (9:12)

Ez(x,z, t) ¼ CE1z(x,z, t) (9:13)
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where

C ¼ 1

4P

ðz
z1

dz

ð
Sp

½ jz(x,z, t)E�
1z(x,z, t)

þ jx(x,z, t)E
�
1x(x,z, t)�ds (9:14)

P ¼ 1

2
Re

ð
Sp

(eE1 � eH�
0)z dS (9:15)

is the real power transmitted by the undisturbed wave in the direction of the z-axis.

Sp is the beam cross-sectional area. Further, we use the notation

j(x,z, t) ¼ j̃(x)ei(vt�bz), E1(x,z, t) ¼ eE1(x)e
i(vt�b0z) (9:16)

where variables with a tilde (�) denote complex amplitudes. Substituting

Eqs. (9.16) into Eq. (9.14), we obtain

C ¼ eivt

4P

ðz
z1

ei(b0�b)z dz

ð
Sp

½ ~jz(x)eE�
1z(x)þ ~jx(x)eE�

1x(x)� ds

¼ eivt

4iP(b0 � b)
ei(b0�b)z

ð
Sp

½ ~jz(x)eE�
1z(x)þ ~jx(x)eE�

1x(x)� ds
(9:17)

Next we use the factor

C1 ¼ 1

4iP(b0 � b)

ð
Sp

½ ~jz(x)eE1z(x)þ ~jx(x)eE1x(x)� ds (9:18)

Then substituting Eq. (9.17) into Eqs. (9.12) and (9.13) and using Eq. (9.18), we

obtain

eEx(x) ¼ C1
eE1x(x) (9:19)eEz(x) ¼ C1
eE1z(x) (9:20)

Let us introduce perturbations r̃ of the coordinates r ¼ r0 þ r̃(x)ei(vt�bz). In the fra-

mework of the linear theory, these perturbations are considered small. We find r̃

according to Eq. (9.6):

vx ¼ Ez

B
¼ dx

dt
¼ @x

@t
þ v0

@x

@z
¼ i(v� v0b)x ¼ iv0(be � b)x (9:21)
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Then, using Eqs. (9.8), we obtain the amplitude of the perturbations:

~x(x) ¼ 1

iv0B(be � b)
eE1z(x) ¼ Ud

Ua

bd

be � b

shbx

shbd
(9:22)

Similarly,

~z(x) ¼ � 1

iv0B(be � b)
eE1x(x) ¼ �Ud

Ua

ibd

be � b

chbx

shbd
(9:23)

It has been shown by Gaiduk (1971) that the constant C1 can be expressed through

amplitudes ~x and ~y:

C1 ¼ � r0v

4ib0P(b� b0)

ð
Sp

�ib0~z(x)eE�
1z þ ~x(x)

@eE�
1z

@x

" #
ds (9:24)

It is important that the integral in Eq. (9.24) be taken over the undisturbed beam

cross section. Using Eqs. (A.5.7) and (A.5.8) and equality eE�
1z(x) ¼ �eE1z(x), we

obtain

C1 ¼ � r0v

4P(b� b0)

ð
Sp

(~z(x)eE1z � ~xE1x(x)) ds (9:25)

9.3.2 Dispersion Equation

Let us rewrite the integrand in Eq. (9.25) using Eqs. (9.19), (9.20), (9.22), and (9.23):

~zeE1z � ~xeE1x ¼ �C1

2eE1x(x)eE1z(x)

iv0B(be � b)
(9:26)

Substituting Eq. (9.26) into the integral in Eq. (9.25), we find that

C1 ¼ � r0vid

2P(b� b0)(be � b)Ua

ð
Sp

C1
eE1x(x)eE1z(x) ds (9:27)

Canceling out C1 and noting that eE1x ¼ ieE�
1z cothb0x0 [Eqs. (9.22) and (9.23)], we

obtain the dispersion equation

(b� b0)(be � b) ¼ b2
0I0bed

Ua

ZM (9:28)

where ZM ¼ (jeE2
1zj=2b2

0P) cothb0x0 is the coupling impedance. This value differs

from the coupling impedance used in TWTO theory by a factor of cothb0x0.
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The dispersion equation accepts the form

(b� b0)(be � b) ¼ b2
0D

2 (9:29)

where

D2 ¼ I0bed

Ua

ZM (9:30)

9.3.3 Gain of an MTWT

First we introduce dimensionless parameters similar to those used in TWTO theory

(Section 8.5.5):

. Nonsynchronism parameter

b ¼ b0 � be

beD
(9:31)

. Incremental propagation constant

d ¼ �i
b� be

beD
(9:32)

The dispersion equation (9.29) accepts the form d(dþ ib) ¼ (1þ bD)2 or

d(dþ ib) ¼ 1 (9:33)

for b 	 1 (i.e., when the tube operates near synchronism). Equation (9.33) has two

roots, corresponding to two waves that are the result of coupling of the beam with a

slow-wave structure wave. In general, roots of Eq. (9.33) are complex-conjugate

roots. As such, one wave will be growing exponentially and another will be decaying

exponentially. The general solution is determined by the sum

eE ¼ eE1e
�ib1z þ eE2e

�ib2z (9:34)

where b1,2 corresponds to the two roots of Eq. (9.33). The amplitudes eE1,2 can be

found from boundary conditions. Assume, for example, that the beam is unmodulated

at the input plane (z ¼ 0) and that the input signal is given as

~x(0) ¼ 0 and eEz(0) ¼ E0 (9:35)

According to Eqs. (9.22) and (9.32),

iv0 B~x(0) ¼
eEz(0)

be � b
¼ ieEz(0)

beDd
(9:36)
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Taking Eq. (9.35) into account, we obtain

eEz1(0)þeEz2(0) ¼ E0eEz1(0)

d1
þ
eEz2(0)

d2
¼ 0

(9:37)

so

eEz1(0) ¼ E0

1� d2=d1
, eEz2(0) ¼ E0

1� d1=d2
(9:38)

Consider, for example, the case of rigorous synchronism b ¼ 0 (be ¼ b0).

The roots of Eq. (9.33) are d1,2 ¼ +1. According to Eq. (9.38),

eEz1(0) ¼ eEz2(0) ¼ E0

2
(9:39)

The amplification coefficient K is determined by the growing wave with

d ¼ d1 ¼ þ1 and according to Eqs. (9.32) and (9.34) is

K ¼ 1
2
e�ib1x ¼ 1

2
e�ibexebeDx (9:40)

The gain is

G ¼ 20 log Kj j � �6þ 55DN dB (9:41)

whereN is the number of wavelengths along the interaction length. The initial 6-DB

loss corresponds to the splitting of the signal into two waves. Note that the gain is

proportional to I
1=2
0 [see Eq. (9.30)], in contrast with TWTO, where G � I

1=3
0 .

The general case of arbitrary nonsynchronism as represented in Eq. (9.33) is illus-

trated in Fig. 9.4a, where real and imaginary parts of the incremental propagation

constant d ¼ xþ iy are shown as functions of b. As seen in the figure, the

maximum gain becomes be ¼ b0. This value corresponds to Eq. (9.41). Amplifica-

tion takes place for �2 
 b 
 2. The propagation constants for bj j , 2 (in the zone

of amplification) are the same for both waves. Since in this zone y1,2 ¼ �b=2,
we find that the two waves travel with equal velocities. This velocity is intermediate

between the undisturbed phase velocity and the beam velocity.

9.3.4 Effects of Space Charge and Losses

The space charge increases the order of the dispersion equation. This is the result of

oscillations of electrons under the space-charge effect exciting space-charge

waves which are coupled with circuit waves. According to Gould (1957), taking

the space charge and losses into account, the dispersion equation is

(dþ ibþ d)(d2 þ 2igSd� S2) ¼ d (9:42)
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where the space-charge parameter is

S ¼ v2
p

vvgD
(9:43)

and the geometric parameter is

g ¼ tanhbe(d � x0)� tanhbex0

tanhbe(d � x0)þ tanhbex0
(9:44)

The loss parameter is

d ¼ bd

beD
(9:45)

where bd is an imaginary attenuation correction factor of the real propagation con-

stant. For the beam in the middle, between the sole and the anode (the slow-wave

structure), x0 ¼ d=2 and g ¼ 0. In this case the dispersion equation is

(dþ ibþ d)(d2 � S2) ¼ d (9:46)

The real and imaginary parts of the incremental propagation constant d as

functions of b, following from Eq. (9.46) for S ¼ 1 (moderate space-charge par-

ameter), are shown in Fig. 9.4b. Comparing Fig. 9.4a and b leads us to conclude

that space charge increases gain, independent of the sign of b, even for big

values of bj j. This property of MTWT is different from that of TWTOs and corre-

sponds to the difference in signs of the space-charge terms in Eqs. (9.46) and

(8.62), According to Fig. 8.9, the growth of the space charge for TWTOs leads to

a narrowing of the amplification zone. Note that according to Fig. 9.4b, the imagin-

ary parts of d1,2 are equal and small. So the phase velocities of both waves (growing

and attenuated) are close to the undisturbed electron velocity. We see that the

presence of the positive factor d in Eq. (9.46) always decreases the magnitude of

the real part of d and as a result, the gain.

FIGURE 9.4 Real and imaginary parts of an incremental propagation constant as functions

of nonsynchronous parameter b for the beam in the middle between the anode and the cathode:

(a) space-charge parameter S ¼ 0; (b) S ¼ 1. (From Gould, 1957.)
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9.3.5 Nonlinear Gain of an MTWT

The nonlinear theory of MTWT was developed in a number of works (see, e.g.,

Feinstein and Kino, 1961; Gandhi and Rowe, 1961; Sedin, 1961. The theory takes

into account the effects of space charge and circuit loss. However, complicated

nonlinear equations admit only numerical solutions.

Here we consider briefly the results of a numerical nonlinear analysis of ampli-

fication in MTWT, ignoring space-charge effects. This analysis was carried out by

Feinstein and Kino (1961). The growth of the ac field K(z) ¼ eE(z)=E0D as a function

of DN for various values ofeEz(0) is plotted in Fig. 9.5 (eE is the output amplitude of

the ac field, E0 is the dc electric field in the interaction space, and N is the number

of wavelengths along the tube). We see that the rate of signal growth along the tube

is initially small and increases when the beam approaches the anode and enters a

region with a strong ac field. Further, as the beam is gradually collected at the

anode, the rate of growth decreases until the output becomes constant. The theory

indicates one essential difference in the operation of MTWTs and TWTOs: Below

saturation level the gain in MTWTs can increase with the input signal. For

example, according to Fig. 9.5, when the input field eE1(0) ¼ 0:04E0D, the power

gain for distance DN ¼ 0:35 is �10. But when eE1(0) ¼ 0:2E0D, the power gain

at the same distance is �30. The reason for this behavior is that as the input level

increases, a large part of the beam is raised nearer the anode, where the ac field is

stronger, so the effective impedance seen by the beam is increased.

9.3.6 Efficiency of an MTWT

According to Figs. 9.2 and 9.3, electrons in the center plane of the bunch do not

change their longitudinal velocities in the process of interaction with an RF field

and move to the anode. Here we assume that all electrons of the beam have

bunched in the retarded phase. The electrons begin moving from level x0, where

they have energy e0Ux0 ¼ e0(Ua=d)x0. If the electron bunches in the process of

FIGURE 9.5 Amplitude of a normalized ac field as a function of the normalized distance

along the MTWT for various values of the input field.
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interaction approach the anode, the kinetic energy of all electrons at the anode is the

same. But if the electrons arrive at the anode moving in the dc electric field, their

kinetic energy is e0Ua. The energy difference

DW ¼ e0Ua � e0Ux0 ¼ eUa 1� x0

d

� �
transfers to the electromagnetic field. Thus, the electronic efficiency is

he ¼
DW

e0Ua

¼ 1� x0

d
(9:47)

This relation ensures high efficiency, in principle. For example, he ¼ 90% when

x0=d ¼ 0:1. The real electronic efficiency is significantly less. First, not all elec-

trons turn out in the retarded phase; some of the electrons appear in the accelerated

phase and are collected at the sole. Second, the real undisturbed beam is not strictly

rectilinear. The initial beam can be rippled, with the dimension of ripples approxi-

mately equal to the Larmor radius r. Because the drift to the anode does not

change r, the electrons are collected by the anode when they are at the top of

the cycloid, where their velocity is v ¼ v0 þ vgr. Then Eq. (9.47) should be

replaced by

he ¼ 1� x0

d
1þ vgr

v0

� �2

(9:48)

The relation (9.48) can be represented as [see Eq. (9.2)]

he ¼ 1� 1

4
1þ vgr

v0

� �2
Bc

B

� �2

(9:49)

where Bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ua=h

p
=d is the minimal magnetic field that provides the cutoff for

the anode current and forms a magnetic isolation in the planar diode. The effi-

ciency he is called the saturated efficiency because it is assumed that the tube is

sufficiently long to collect all the electrons at the anode.

Saturation efficiency in TWTOs is determined by the maximum permissible

excess velocity (Section 8.6.2) and the space-charge effect. As a result, the efficiency

of MTWT is significantly higher. Typical parameters for both types of tube are given

in Table 9.1.

The high efficiency, output power, broad bandwidth, and compactness of M-type

amplifiers (especially in pulse operations) make them ideal for a variety of

applications. A very important application of MTWTs, in particular, is related

with radar-phased antenna arrays.
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9.4 M-TYPE INJECTED BEAM BACKWARD-WAVE OSCILLATORS
(MWO, M-CARCINOTRON)

9.4.1 Introduction

The two types of backward-wave oscillators (BWOs and MBWOs) were invented

almost simultaneously in 1952: the BWO by R. Kompfner and the MBWO by the

R. Warnecke team. Despite differences in bunching processes and energy transfer

from the beam to the electromagnetic field, the two oscillators are based on the

same fundamental idea: synchronous interaction of an electron beam with a negative

spatial harmonic of a slow-wave structure. As a result, the two carcinotrons

have similar operating principles. In particular, as in the theory of BWOs

[Eqs. (8.65a) and (8.135)], the dispersion equation for MBWOs can be derived

from the dispersion equation of MTWTs [Eq. (9.42)] simply by replacing the

signs on the right side of the equation and the loss parameter d, due to the reverse

propagation of energy. Here we consider the midway position of the beam

between the sole and the anode, as shown in Fig. 9.6. According to Eq. (9.46),

the dispersion equation of the MBWO is given as

(dþ ib� d)(d2 � S2) ¼ �d (9:50)

where d ¼ �i½(b� be)=beD�, and the parameter of nonsynchronism b ¼
(b0 � be)=beD.

9.4.2 Starting Conditions of an MBWO

With no space charge or loss, Eq. (9.50) is reduced to a second-degree equation:

(dþ ib)d ¼ �1 (9:51)

outP

B�E
x

y

d �

0x
aUz

Sole plate

Anode

en 0

FIGURE 9.6 Planar M-type backward oscillator.

TABLE 9.1 Comparative Parameters of TWTM and TWTO

Amplifier

Gain

(dB)

Bandwidth

(%)

Efficiency

(%)

TWTM 15–25 25–35 40–60

TWTO 20–60 10–100 5–35

Sources: Mourier and Okress (1961).
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We obtain two waves with purely imaginary d:

d
1,2

¼ �i
b

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

4

r !
(9:52)

As a result, exponentially growing waves are absent. The general wave solution is

thus

eE ¼ eE1e
�ib1z þ eE2e

�ib2z (9:53)

The amplitudeseE1,2 can be found from boundary conditions similar to Eq. (9.35) for

the TWTM:

eEz(0) ¼ E0, ~x(0) ¼ 0 (9:54)

This gives us

eE1z(0) ¼
eE0

1� d2=d1
, eE2z(0) ¼

eE0

1� d1=d2
(9:55)

Let us assume that the tube is matched at both ends, so that reflections are absent.

Then the field at the collector end (z ¼ L) should be equal to zero under conditions

of self-excitation. Substituting Eq. (9.55) in Eq. (9.53), we obtain for the

z-component of the field the condition

eEz(L) ¼
eE0

d1 � d2
(d1e

�ib1L � d2e
�ib2L) ¼ 0 (9:56)

Hence,

d1
d2

¼ ei(b1�b2)L ¼ ebeDL(d2�d1) ¼ ei2beDL
ffiffiffiffiffiffiffiffiffiffiffi
1þb2=4

p
(9:57)

Separating real and imaginary parts of Eq. (9.56) or (9.57) and using Eq. (9.52), we

obtain

b ¼ 0, d1 ¼ �d2 ¼ �i, cos 2beDstL ¼ �1 or

DstN ¼ 2n� 1

4
, n ¼ 1, 2, . . . : (9:58)

Here beL ¼ 2pN and N is the length of the slow-wave structure in wavelengths. We

see that the undisturbed phase velocity in the starting regime equals the beam

velocity. This property provides electronic tuning of the carcinotron. Note that dis-

turbed phase velocities of both waves, which are determined by d1,2, are not equal to
the electron velocity.
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Using the definition of D [Eq. (9.30)], we obtain the starting current

Ist ¼ (2n� 1)2Ua

16N2be dZM
¼ (2n� 1)2UaL

32pN3dZM
, n ¼ 1, 2, . . . (9:59)

According to this relation, there are several orders of oscillation at the same fre-

quency, and the starting current increases rapidly with n. For example, I(2)st ¼ 9I(1)st .

Taking the space charge into account leads to the dispersion equation (9.50) with

three waves. Starting conditions in this case are determined by an equation of Gould

(1957):

X3
i¼1

j,k¼1�3

d2i � S2

(di � dj)(di � dk)
e2pDNdi ¼ 0 (9:60)

This equation follows from the analogous equation for BWOs [Eq. (8.133)] if one

replaces q by�S2 and C by D. The change of sign in the space-charge term indicates

an opposite effect of the space charge on the starting current, which decreases with S.

The starting current and the factor (b0 � be)L ¼ 2pNDb are shown as functions of S
in Fig. 9.7.

As shown, the starting current decreases considerably with S. Starting currents of

oscillations with n . 1 decrease much more. So for zero space charge, the ratio

Ist2=Ist1 ¼ 9. For large S, Ist2=Ist1 � 3 to 5. Note that for S ¼ 0, oscillations with

any n have the same value as the parameters bn ¼ 0, but with an increase in S,

values of bn become nonzero and different. As a result, frequencies of oscillations

with different n are not the same (Df � 1%), and for the beam current I . Ist2,

the radiation spectrum of the M-carcinotron becomes worse.

FIGURE 9.7 Starting current of an MBWO and a nonsynchronism parameter as functions of

a space-charge parameter.
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9.4.3 Large-Signal Effects

Despite the smallness of the ac field near the collector end seen in all carcino-

trons, the choice of proper tube length and magnitude of the beam current

in M-carcinotrons permit collection of beam electrons at the anode with high satur-

ation efficiency, according to Eq. (9.49). Thus, in contrast to BWOs, where the

saturation is fundamentally different (see Section 8.6.2) and the negative effect of

the space charge is very strong, MBWOs are highly effective devices and can be

designed as powerful oscillators.

The analysis of MBWOs for currents greater than the starting current is a topic of

interest within the nonlinear theory. Feinstein and Kino (1961) considered models

for MTWTs and MBWOs with a thin beam, ignoring the space charge. It is interest-

ing that space-charge effects for M-carcinotrons do not play as important a role in

the large-signal mode as they do in small-signal operation. This is because ac

fields are stronger, and they suppress space-charge fields. The amplitude of the nor-

malized ac field as a function of the normalized distance along the tube is shown in

Fig. 9.8. If we take into account the same full lengths of the SWS, different curves

in Fig. 9.8 correspond to different beam currents. The output power grows quickly

with the current (� E2
out). One interesting feature predicted by these curves is that in

large-signal mode the same output power should be obtained with a tube length

shorter than the starting value DstN ¼ 0:25. This follows from small-signal theory

[see Eq. (9.58)]. This effect is similar to increasing gain in MTWT by increasing

the signal level (Fig. 9.5). Obviously, under large-signal conditions, the beam is

raised toward the anode and the effective impedance of the slow-wave structure

increases. One might expect that a tube with DN , 0:25 would not be self-running,

but the application of external power would start oscillations, which would then con-

tinue after the external power is removed. This effect is typical for generators with

hard excitation.

FIGURE 9.8 Normalized amplitude of an ac output field of an M-carcinotron as a function

of normalized distance along a tube for various beam currents.

380 CROSSED-FIELD AMPLIFIERS AND OSCILLATORS (M-TYPE TUBES)



According to the theory and confirmed by experimental data, the efficiency of

MBWOs grows almost linearly with beam current and becomes constant for large

currents (saturation effect). The experimental efficiency as a function of current

for an L-band M-carcinotron is shown in Fig. 9.9.

9.4.4 Parameters and Construction of an MBWO

Typical values of parameters for M-carcinotrons include the following: Output

power is a few hundred watts between the X and S bands in continuous-wave

(CW) operations and a few megawatts in pulsed operations; the voltage frequency

tuning is over 20 to 50%; and the efficiency approaches 60%, depending on the fre-

quency band and the operating voltage. These tubes operate on frequencies from

300 MHz to 35 GHz.

The output power and efficiency of MBWOs both decrease sharply in the milli-

meter range. The cause is the same as that seen in BWOs: the interaction of electrons

with slow waves that are surface waves. This factor is even more important for

MBWOs because electrons in the skin layer, of width D ¼ (1=2p)(vw=c)l (see

Section 8.4.2), must move in the transverse direction and deliver the potential

energy. For l ¼ 1 cm and Ua ¼ 5 kV,D � 0:2mm. The maximum CW power for

a 35-GHz MBWO is �10 W (Feinstein and Kino, 1961). Thus, the frequency

range of powerful M-carcinotrons is limited by frequency bands L to X.

Three versions of M-carcinotrons and MTWTs are used: planar (Figs. 9.1 and

9.6), cylindrical, and coaxial. The cylindrical version (Fig. 9.10a) is more

compact and is used more often, especially with M-carcinotrons. In cylindrical

MTWTs, maximum gain is limited by self-excitation because of stronger parasitic

feedback between the input and output of the tube. A photograph of a pulse

M-carcinotron in the S-band is shown in Fig. 9.11. In coaxial designs, a magnetic

FIGURE 9.9 Efficiency of an M-carcinotron as a function of the ratio of the operation

current to the starting current. (Experimental data from Doehler, 1961.)
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field is usually created by a strong axial current IM fed by a special pulse source

through the central rod (Fig. 9.10b). The current of magnetization is on the order

of kiloamperes. The coaxial M-type devices are rarely applied.

M-type backward devices are also used as M-type backward amplifiers.

Naturally, in these cases the electrons are synchronous with some backward

spatial harmonic, which is fundamental for SWSs with negative dispersion

(e.g., interdigital SWSs) or 21 for SWSs with positive dispersion (e.g., with

comb structure). Sometimes, MBWOs are used as synchronizing oscillators. In

FIGURE 9.10 M-carcinotron: (a) cylindrical construction; (b) coaxial M-traveling-wave

tube. 1, Cathode; 2, electron beam; 3, slow-wave structure; 4, collector; 5, absorber; IM,

current of magnetization.

FIGURE 9.11 S-band pulse cylindrical M-carcinotron with an output power of 150 kW.
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these cases, the current is set higher than the starting current, but a strong input

signal is applied to the collector end of the tube. A synchronized MBWO ensures

narrowband amplification with controlled frequency.

The high power, efficiency, and very broad voltage tuning (sometimes up to an

octave) of MBWOs ensure their effective application in radar countermeasure

systems.

9.5 MAGNETRONS

The scheme of a magnetron is shown in Fig. 9.12. The following characteristics dis-

tinguish the magnetron from M-type crossed-field tubes with injected electron beams

considered above.

. Cylindrical construction only.

. The reentrant electron beam is emitted from the negative electrode (as opposed

to the sole electrode in injected beam devices) into the interaction space. The

electron beam, without ac electromagnetic fields and in a stable state, forms

an axisymmetrical cloud.

. The reentrant anode periodic structure forms a resonator.

9.5.1 Electromagnetic Field in a Magnetron Resonator

If we mentally cut and straighten the structure in Fig. 9.12, we obtain a regular

slow-wave structure (if extended to infinity). The dispersion curve of the funda-

mental spatial harmonic as dependent on the delay factor of the wavelength for a

structure with positive dispersion (see Section 8.4.2 and Appendix 4) is depicted

in Fig. 9.13.

FIGURE 9.12 Six-resonator magnetron. 1, Anode with resonators; 2, cathode; 3, electron

beam.
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Recall that since b0,max ¼ p=L [Eq. (8.17)], the boundary of the bandwidth is

determined by the relation

lg, min ¼ 2p

b0,max

¼ 2 (9:61)

where lg is the wavelength in the waveguide and L is a period of the structure. Now

let us restore the initial structure by bending and closing the ends. Because the

phases of the ends must coincide, phase progression along the revolution length

must be a multiple of 2p. Then the full length of the structure L ¼ NL (N is a

number of the cavities in the magnetron resonator) must be equal to an integer

multiple of lg:

NL ¼ nlg, n ¼ 0, 1, 2, . . . (9:62)

According to Eq. (9.61), lg,min ¼ 2L. Hence, the number of eigenmodes in the resona-

tor will be equal to nmax � N=2þ 1. If N is even, nmax is precisely equal to N=2þ 1

(i.e., n ¼ 0, 1, 2, . . . ,N=2Þ. The dispersion curve in Fig. 9.13 corresponds to an eight-
cavity magnetron. The phase shift per period for the shortest wavelength is w ¼ p.
This is referred to as the p-mode of operation. Fields in neighboring cavities for the

p-mode oscillate in the antiphase without energy exchange with their neighbors.

Even in an open (i.e., nonclosed) transmission line, forward and reverse traveling

waves coalesce and are indistinguishable in the p-mode. The dispersion curve

passes through the stationary point corresponding to the zero group velocity. At

this point, the characteristic impedance for a loss-free line is infinite. For mode

n ¼ 0, w ¼ 0 and the fields in all cavities are co-phased.

It can readily be shown that the spectrum of the resonator on each spatial

harmonic belonging to the samemode is the same. Assume that the field of themth har-

monic satisfies the closing condition NL ¼ nlg,m. Because according to Eq. (8.14),

lg,m ¼ 2p=(b0 þ 2pm=L) where b0 ¼ 2p=lg, we obtain NL(b0 þ 2pm=L) ¼ 2pn

FIGURE 9.13 Dispersion curve of a structure with positive dispersion and the spectrum of

an eight-cavity resonator.
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or NL ¼ (n� mN)lg. We arrive at the same formula: Eq. (9.62). Thus, the entire

spectrum of spatial harmonics is represented within each oscillation mode.

In reality there are (N=2)þ 1 other oscillations in the resonator, because the same

set of oscillations can be obtained from waves that propagate opposite to the trans-

mission line. Each pair of waves, traveling in opposite directions, would have iden-

tical frequencies after closure to the origin line. Hence, oscillations in the resonator

have two-fold degeneracy, excluding the p- and 0-modes, because these modes are

not traveling waves. So there is a total of N oscillations: (N=2)� 1 twofold degen-

erate oscillations and two nondegenerate oscillations. This is important when a

perturbation is introduced into the resonator. An example of such a perturbation

is an anode output power hole (Fig. 9.12). It is known that any disturbance with

lesser symmetry destroys the degeneracy. Then each of the degenerate oscillations

would split into two oscillations (a doublet) with close frequencies. Only the

p- and 0-modes do not form such doublets. This property of the p-mode, along

with its high coupling impedance and high delay factor, make the p-mode preferable

as the operative mode for a magnetron.

Separation of the p-Mode Despite the absence of a frequency split in the

p-mode, the frequency separation between the p-mode and the nearest

½(N=2)� 1�-mode is too small. For example, in an eight-cavity resonator, the fre-

quency separation is only �1 to 2%. This sometimes leads to a loss of operative

stability and, in particular, to frequency jumps. An increase in mode separation

can be attained by different methods. Let us consider here briefly two frequently

used techniques: straps and rising-sun structure.

In the strapped structure (Fig. 9.14a), alternate anode segments are connected by

wires (straps). For the p-mode of operation, the alternate segments and corresponding

strap ends have identical ac potentials. Thus, no additional inductance will be intro-

duced. Straps will, however, add capacitance to the circuit and alter the p-mode fre-

quency. The voltage drops between alternate segments are nonzero for modes other

than the p-mode, and therefore the straps introduce inductance, resulting in a different

frequency shift with respect to the p-mode. According to measurements, this mode

FIGURE 9.14 (a) Hole-and-slot block of a strapped magnetron resonator; (b) rising sun

resonator.
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separation reaches10 to35%,dependingon the tubepower.The effect of strapping in an

eight-cavity magnetron is shown in Fig. 9.15.

The mechanism for mode separation in a rising sun resonator is based on

the different influence of short and long slots on the frequencies of low and

high modes. Rising sun resonators are generally used in the millimeter wavelength

range, where dimensions are small and fabrication of strapped structures is difficult.

Rotational Waves in a Magnetron Resonator The ac electric field in a resonator

can be represented as

E ¼ E(r, t) ¼ ~E(r,z,c)eivt (9:63)

For the n-mode of the resonator, the angular period of the field is cT ¼ 2p=n. Let us
expand ~E in a real Fourier series:

~E(r,z,c) ¼
X1
m¼1

~Em(r,z) cos
2pm

cT

c ¼
X1
m¼1

~Em(r,z) cosmnc (9:64)

The first (main) term of the series is ~E1(r,z) cos nc. Using Euler’s formula, we

obtain

E(r, t) ¼ 1
2
~E1(r,z)e

i(vt�nc) þ 1
2
~E1(r,z)e

i(vtþnc) (9:65)

Thus, the full field can be represented as the sum of two waves rotating in opposite

directions. The angular phase velocity of these waves is V ¼ v=n. For the p-mode

n ¼ N=2, and the angular phase velocity is

Vp ¼ 2v

N
(9:66)

FIGURE 9.15 Frequency separation of frequencies by mode strapping. Solid curve,

unstrapped structure; dashed curve, strapped structure. Mode n ¼ 4 is an p-mode.
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9.5.2 Electron Beam in a Magnetron

State of a Magnetron Electron Beam The state of the electron cloud in a magne-

tron is one of the oldest problems in vacuum high-frequency electronics. It has been

discussed since the 1920s, before the multicavity magnetron was even invented.

Basically, smooth magnetron diodes were proposed (i.e., cylindrical diodes with

magnetic field B directed along the axis). The magnetic field distorts the electron tra-

jectories. Depending on the B magnitude, the following three types of trajectories

are possible (Fig. 9.16):

. Cutoff regime, B ¼ Bc: electron trajectories touch the anode surface.

. Before-cutoff regime, B , Bc: electron trajectories intersect the anode surface.

. After-cutoff regime, B . Bc: electrons do not reach the anode but instead,

return to the cathode (the magnetically isolated anode).

Cutoff Relation. Hull Parabola The relation describing the cutoff regime was

first obtained by Hull (1921). We assume axial symmetry of the electron beam

and the existence of a static regime. In this case, two quantities are conserved: the

energy integral and the generalized angular momentum (Busch’s theorem). For

the cutoff regime, the electron velocity at the anode has only an angular component.

Using the energy integral and assuming zero velocity at the cathode, we can write in

the nonrelativistic approximation:

(v)ra ¼ ra _wra ¼
ffiffiffiffiffiffiffiffi
2Ua

p
(9:67)

Busch’s theorem [Eq. (1.127)] yields

_wra
¼ h

2pr2a
(Cra � crc

) ¼ hBc

2
1� r2c

r2a

� �
(9:68)

FIGURE 9.16 Three types of electron trajectories in cylindrical magnetron diodes: (a)

cutoff regime (trajectories touch the anode surface); (b) before-cutoff regime; (c) after-cutoff

regime.
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where Bc is the value of the magnetic field corresponding to the cutoff regime.

Combining Eqs. (9.67) and (9.78), we obtain the cutoff relation

Ua ; Uc ¼ hB2
cr

2
a

8
1� r2c

r2a

� �2
(9:69)

The curveUa ¼ Ua(Bc) is a parabola calledHull’s parabola (Fig. 9.17). The relation

(9.69) is exact for an arbitrary space-charge distribution if the latter is stationary and

axisymmetric.

Failure of the Cutoff Relation From the cutoff relation we can conclude that the

electron current in the magnetron diode, as a function of the anode potential Ua for

the constant magnetic field Bc, must be zero until Ua ¼ Uc. Thereafter, it would

jump to I ¼ I0, with subsequent increase in Ua. The corresponding volt–ampere

characteristic is shown by the dashed line in Fig. 9.18. However, in reality,

volt–ampere characteristics follow the solid curve in Fig. 9.18.

FIGURE 9.17 Hull’s parabola (cutoff regime).

FIGURE 9.18 Idealized and real volt–ampere characteristics of a magnetron diode.

388 CROSSED-FIELD AMPLIFIERS AND OSCILLATORS (M-TYPE TUBES)



As we see, the anode current appears in the essentially after-cutoff regimes. A

number of investigations have attempted to find an explanation of this effect

within the framework of static approximation. In particular, the effects of electron

emission velocities, the tilt of the magnetic field, the cathode eccentricity, and

fringe fields have been examined (Harvey, 1942). However, none of these effects

could agree with the magnitude of deviation from the cutoff state. Furthermore,

essentially nonstationary effects were found, among them the existence of electrons

with excess energy up to 105 8C (Linder, 1938) and back-bombardment of the

cathode (Jepsen and Miller, 1951). Thus, the nature of the cutoff curve anomalies

is related to oscillations in the electron cloud.

Steady States of an Electron Cloud Let us dwell on the states of the electron cloud

in the after-cutoff regime, because in this regime only, the electrons spend a long time

in the interaction space. The question is: If the above-mentioned oscillations are small

perturbations of some steady states of the electron cloud, what are these steady states?

The actual form of the steady states has been the subject of much investigation, and

two stationary solutions that satisfy the boundary conditions have been proposed:

1. The double-stream state, in which electrons follow the orbits that intersect the

cathode surface. The configuration of the stream is close to Fig. 9.16c.

2. The single-stream state, in which electrons move in concentric circles around

the cathode. This state was first pointed out by Brillouin (1941) and is known

as the Brillouin stream.

Examination of the double stream indicates that this state is unstable (see, e.g.,

Kadomtsev, 1960). The nature of this instability is close to the classical two-stream

instability of two rectilinear streams moving in opposite directions (e.g., Lawson,

1988). It turns out that the instability of the double-stream state in a magnetron

diode develops on a time scale on the order of the time of electron motion along

one loop. As a result, the double-stream state is not realized at all (Kadomtsev, 1960).

Let us consider the Brillouin stream in more detail (Fig. 9.19). The electrons in

the stream have only an angular velocity. In this case, the full velocity in the

nonrelativistic approximation is

v(r) ¼ r _w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hU(r)

p
(9:70)

According to Busch’s theorem,

_w ¼ h(C�Cc)

2pr2
¼ h(Bpr2 � Bpr2c )

2pr2
¼ hB

2
1� r2c

r2

� �
(9:71)

We obtain from Eqs. (9.70) and (9.71) the potential distribution

U(r) ¼ r2hB2

8
1� r2c

r2

� �2
(9:72)
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The self-matched solution must also satisfy Poisson’s equation,

DU ¼ 1

r

d

dr
r
dU(r)

dr

� 	
¼ � r

10

Because the distribution U ¼ U(r) is known, we obtain for the space-charge density

r
�� �� ¼ 10

1

r

d

dr
r
dU(r)

dr

� 	
¼ 10hB

2

2
1þ r4c

r 4

� �
(9:73)

Thus, all characteristics of the stream have been found: trajectories, velocities,

potential, and space-charge density. Note that according to Eqs. (9.72) and (9.69),

the trajectories at each radius of the Brillouin stream satisfy the cutoff condition.2

The stability of the Brillouin solution has been studied by many authors. In par-

ticular, Harris (1953) has shown that the electron cloud is stable for an infinitely thin

cathode. This is to be expected, in general, because in this case the cloud is analo-

gous to a solid rotator ( _w ¼ hB=2 ¼ const.). Therefore, according to the Larmor

theorem, in a coordinate system that rotates with angular velocity hB=2,
the effect of the magnetic field on the electron motion is eliminated, and the

electron cloud is comparable to a quasineutral plasma. The perturbations of the elec-

tron density are reduced to purely harmonic oscillations and do not lead to instabilities.

For rc = 0, slipping of the electron layers occurs. In this case, the electron cloud is

unstable with respect to nonsymmetrical disturbances. However, this instability is

significantly weaker than the double-stream instability. Two considerations make the

existence of the Brillouin stream questionable: (1) it seems extraordinary as a

process for launching electrons from the cathode into equilibrium (r ¼ const:) orbits;
and (2) the back-bombardment of the cathode needs an explanation.

FIGURE 9.19 Brillouin flow.

2Note that although the electron velocity at the cathode is equal to zero, the space-charge density jpcj ¼
10hB

2 = 1 since the current density j ¼ rvr ¼ 0. It is readily verified that the plasma frequency vp at the

cathode is equal to the gyrofrequency vg ¼ hB. It is a specific space-charge limitation for Brillouin flow.
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In principle, the nonlinear character of the processes of formation of an electron

cloud provides a number of quasistable states. It is essential to retrace the transient

processes. Corresponding “computational experiments” were carried out by Hartree

and Nicolson (1943) (see also Buneman, 1961). They integrated the equations of

motion numerically for a large number of electron sheets, starting with an empty

diode at time t ¼ 0. In Fig. 9.20, formation of the Brillouin stream is shown in

the planar model when anode potential rises over 4 gyroperiods. As we see, the

stream remains single at all times. After the establishment of the anode potential,

the emission of new electrons practically ceases, and the electron sheets perform

steady oscillations about their equilibrium (Brillouin) positions. This result is

instructive: we see that instabilities are developed in such a way as to diminish

the electron velocities in a direction perpendicular to the cathode.

9.5.3 Dynamic Regime of a Magnetron. Threshold Voltage

In the dynamic regime, in addition to the static electric field there is a rotating high-

frequency wave field in the interaction space. According to Section 9.5.1, the angular

velocity of this wave is

Vn ¼ v

n
, n ¼ 1, 2, . . . ,N=2 (9:74)

whereN is the (even) number of cavities in the resonator.Below, the after-cutoff regime

(B . Bc) is considered. Interaction of the electron beamwith a synchronous ac field is

similar to the bunching and energy transfer processes in planar MTWTs discussed in

Section 9.2: Spokes are formed; the centers of the spokes are located in the

FIGURE 9.20 Formation of a single Brillouin state.
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maximum of the retarded phase of the longitudinal ac electric field; and electrons inter-

acting with the ac field drift to the anode along equipotentials of the ac electric field in

the rotating frame. Unlike in MTWTs, in magnetrons the transfer of electron energy to

an electromagnetic field with zero anode current is not possible, because a dc source

would not perform any work without an anode current.

Below, the condition of attainment for a nonzero anode current is formulated for a

small ac field energy that corresponds to a starting regime of a magnetron. We con-

sider the frame of reference that rotates with angular frequencyVn. In this frame the

electron angular velocity at the anode is

_ua ¼ _wa �Vn (9:75)

where according to Eq. (9.71),

_wa ¼
hB

2
1� r2c

r2a

� �
(9:76)

Using Eq. (9.75), we find that the electron kinetic energy at the anode in the rotating

frame is

Wa ¼ m

2
_r2a þ r2a

_u
2

a

� �
¼ m

2
(_r2a þ r2a _w

2
a � 2r2a _waVn þ r2aV

2
n) (9:77)

Assuming that the RF field energy is small, we can write

m

2
(_r2a þ r2a _w

2
a) ¼ e0Ua (9:78)

where Ua is the dc anode voltage. Thus, the kinetic energy of electrons at the

anode is

Wa ¼ e0(Ua � UBH) (9:79)

where

UBH ¼ 1

h
r2a _waVn � r2a

2h
V2

n (9:80)

Taking Eq. (9.76) into account, we obtain

UBH ¼ B

2
(r2a � r2c )Vn � r2a

2h
V2

n (9:81)

The value UBH is called the threshold voltage or Buneman–Hartree threshold

voltage. When the anode voltage is increased, oscillations in the magnetron

can begin from Ua � UBH. In this case, according to Eq. (9.79), the kinetic

energy of electrons at the anode in the rotating frame is Wa � 0: The function
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UBH ¼ UBH(B) is a straight line. Let us show that the threshold line is located

below the cutoff parabola. According to Eqs. (9.69) and (9.81), the difference

Uc � UBH is equal to

Uc � UBH ¼ r2a
2h

hB

2
1� r2c

r2a

� �
�Vn

� 	2
¼ r2a

2h
( _wa �Vn)

2 ¼ r2a
_u
2

a

2h
� 0 (9:82)

Thus, the threshold line does not intersect the cutoff parabola. It can only be a tangent

to the parabola. According to Eq. (9.82), the magnetic field in the tangency point is

B0 ¼ 2Vn

h(1� r2c=r
2
a)

(9:83)

The corresponding value of the anode voltage is minimal and can be obtained by

substituting Eq. (9.83) in the cutoff relation (9.69):

Ua, min ¼ r2aV
2
n

2h
(9:84)

TheHull parabola and threshold lines corresponding to differentVn ¼ v=n (n ¼ 1, 2,

3, 4) for an eight-cavity magnetron are shown in Fig. 9.21. As we see, the threshold

voltage is minimal for the p-mode (i.e., the latter is excited in the first place). In

region 1 the value of the voltage is insufficient for electrons to reach the anode. In

FIGURE 9.21 Threshold voltage tangents to a Hull parabola as functions of the magnetic

field for an eight-cavity resonator. The line n ¼ 4 corresponds to the p-mode.
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region 2 the electrons synchronous with the rotating wave are bunched in rotating

spokes that are attached to the anode. A typical configuration for this electron

“rotor” formed by the rotating spokes is shown in Fig. 9.22. The illustration corre-

sponds to the p-mode in an eight-cavity magnetron. The base of the spokes r ¼ rs
(synchronous radius) is determined by the condition _w ¼ Vn in the Brillouin

stream. In the threshold regime, the value of rs is adjusted by the magnetic field selec-

tion: According to Eqs. (9.70), (9.71), and (9.81),

r2sV
2
n ¼ 2hUBH ¼ hB(r2a � r2c )Vn � r2aV

2
n

Vn ¼ hB

2
1� r2c

r2s

� � (9:85)

Note that the configuration of the rotating electron cloud shown in Fig. 9.22 is

true as a result of an averaging of the real electron motion. In fact, the electrons

besides the drift also perform an orbital motion. One such trajectory is shown in

Fig. 9.22.

In region 3 in Fig. 9.21 an excitation of the magnetron is impossible because it is

the region of the before-cutoff regime (Fig. 9.17), and the electrons travel directly to

the anode without interacting with the RF field.

9.5.4 Magnetron Efficiency

Magnetrons are high-efficiency microwave devices that share a common property of

crossed-field tubes. The relation for the magnetron electronic efficiency can be

obtained in the same way that we obtained the efficiency for MTWT (Section

9.3.6). Let us assume that the undisturbed state of the electron cloud has the form

of a Brillouin stream. An electron interacts with the high-frequency field beginning

from the synchronous radius rs with kinetic energy m(rsVn)
2=2. We assume that

FIGURE 9.22 Electron beam in an oscillating magnetron.
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the magnetic field is chosen to provide synchronism between electrons and the rota-

ting wave in the threshold regime ½( _w)Ua¼UT
¼ Vn�, and the kinetic energy stays the

same when the electron arrives at the anode. The energy that the electron

transfers to the HF field is then e0Ua � e0UT . According to Eq. (9.85), the electronic

efficiency is

he ¼ 1� UBH

Ua

¼ 1� B(r2a � r2c )Vn � r2aV
2
n=h

2Ua

(9:86)

Formula (9.86) is an estimate. It does not take into account the orbital motion of

electrons in the spokes or the presence of electrons in the accelerated phase of

the HF field, which bombard the cathode. The latter process significantly affects

electron emission, especially in powerful tubes. Both factors lead to a decrease in

efficiency he compared to Eq. (9.86).

The conversion efficiency of the magnetron is equal to h ¼ hehc, where hc is a

circuit efficiency that is determined by the loss in the output circuit. Nevertheless,

the conversion efficiency of the experimental magnetrons in the S-band can

exceed 80%. Note that according to Eq. (9.86) and Fig. 9.21, the efficiency is

maximal for the p-mode.

9.5.5 Magnetron Performance

The voltage–current characteristics of magnetrons depend strongly on the magnetic

field. As such, these characteristics are usually displayed on performance charts like

the one shown in Fig. 9.23, where the anode voltage, efficiency, and output power of

a 50-GHz pulse magnetron are shown as functions of the current for various values

of the magnetic field.

The current depends on the anode voltage, the magnetic field, and the cathode

temperature, although secondary electrons in the oscillating magnetron make a sig-

nificant contribution to the current as a result of back-bombardment. Usually, the

current influences the frequency as a result of electronic impedance variation. The

change in frequency with current is called frequency pushing.

Average and CW power levels are limited by the ability to dissipate heat by the

anode and cathode bombarded by electrons. Therefore, power magnetrons are gen-

erally used in pulse regimes. Only these magnetrons are suitable for radars and elec-

tronic countermeasure means. Overall power characteristics for CW and pulsed

magnetrons are shown in Fig. 9.24. As can be seen, the peak power exceeds

1 MW. The pulse duration for these magnetrons is �1 ms. The peak power of rela-

tivistic magnetrons (see below) exceeds 1 GW with a pulse duration of �10 ns. One

notable use is that of magnetrons in microwave ovens. These tubes typically operate

at a power level around 0.8 to 1 kW and a standard frequency of 2.45 GHz. Mass

production of these tubes (�10 million in a year) forced the design of very effective,

reliable, lightweight, and inexpensive devices.
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Magnetrons as a whole have high noise levels. This is the result of the common

instability of electron clouds in crossed fields. This instability and the competition of

the p-mode with other (N=2)� 1 modes are the cause of an additional low-

frequency instability. Frequency fluctuations can lead to serious difficulties in

some radar applications: for example, in Doppler radars. In this respect, amplifiers

are preferable to oscillators.

9.5.6 Magnetron Frequency Tuning

The ability to change the radiation frequency (tuning) is an important operation

characteristic of magnetrons. Below we consider two methods of magnetron tuning.

FIGURE 9.23 Operation characteristics of a pulse 50-GHz magnetron. (From Bernstein and

Kroll, 1961.)
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Mechanically Tuned Magnetrons Two basic methods of mechanical tuning are

known. The more straightforward approach employs a change in capacitance or

inductance of the anode cavities. For example, the capacitance of the cavity can

be varied by a movable element in the vicinity of the slot portion of the cavity

(Fig. 9.25). This method makes broadband tuning possible. However, the tuning

mechanism often negatively affects other characteristics of the magnetron.

An alternative method is based on changing the reactance of single or multiple

external circuits coupled with anode cavities. This method is convenient for power-

ful magnetrons because it does not impede anode cooling and does not use small

gaps with possible breakdown. The maximum range of tuning is close to the fre-

quency separation between p- and (N=2)� 1 modes. According to Vaccaro

(1961), using four external resonators gives the best results. Typical characteristics

for an X-band magnetron are as follows:

Range of tuning 8500–9600 MHz

Output peak power 220 kW

Full efficiency in tuning range 37%

Anode voltage 22 kV

Pulse duty factor 0.001

Voltage-Tunable Magnetrons Two important properties distinguish voltage-

tunable magnetrons (VTMs) from conventional narrowband magnetrons: injection

FIGURE 9.24 Magnetron power capability. 1, CW magnetrons; 2, beacon magnetrons; 3,

pulsed magnetrons; , magnetrons for microwave ovens.
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FIGURE 9.25 Configuration of capacitive tuning elements of a mechanically tuned

magnetron. (From Coleman, 1982.)

FIGURE 9.26 Voltage tunable magnetron. (From Varian Associates, Microwave Tube

Manual, Air Force Publication T.O. 00-25-251, October 1979.)
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of an electron beam into the interaction space from an external cathode and the

very low Q-factor of the resonator. One possible scheme for a VTM is shown in

Fig. 9.26. The low Q-factor is attained by the choice of anode structure. The

interdigital anode is an example of a heavily and uniformly loading structure

(Wilbur and Peters, 1961).

Electrons are accelerated between the emitter and the control electrode in the ver-

tical magnetic field, and the hollow beam that is formed is injected into the appro-

priate magnetron region. This device is similar to the magnetron injected gun

(Section 4.7). The structure of the beam rotating between the sole and the anode

circuit is similar to a Brillouin stream in the before-threshold voltage regime. Let

us estimate the threshold voltage. Because the anode angular velocity is

_wa . Vn=2, we can neglect the second term in Eq. (9.81) and the threshold

voltage will be equal to

UBH � B

2
r2a 1� r2c

r2a

� �
Vn (9:87)

According to Eq. (9.66) for the p-mode Vn ¼ 2v=N ¼ 4pf =N, so

UBH ¼ 2pBf

N
r2a 1� r2c

r2a

� �
(9:88)

For VTMs the operation voltage DU ¼ Uop � UBH � 1:1UBH (Wilbur and Peters,

1961). Therefore, we can assume that UBH � Uop, and relation (9.88) thus ensures

the linear tuning characteristic. The beam reactance for conventional magnetrons

with a high Q-factor consists of a small portion of the resonator circuit reactance;

therefore, the frequency tuning is very small. The increase in DU raises the beam

current and the output power, but not the frequency.

The low Q-factor of VTM resonators and beam current limitations diminish the

ac circuit voltage. The reactance of the circuit turns out to be close to the beam reac-

tance. As a result, the beam reactance essentially determines the resonator fre-

quency, and the condition of constant current determines the output power. Thus

important properties of VTMs include the broadband linear frequency characteristic

and a weak dependence of the output power on the anode voltage. For low-power

low-frequency VTMs, the tuning range reaches 75% and the efficiency �30%.

When these values are increased, the tuning range shrinks rapidly. Usually,

VTMs operate in the CW regime, so their output power and efficiency are not

high. Bandwidth capabilities of VTM are illustrated by Fig. 9.27.
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9.6 RELATIVISTIC MAGNETRONS

9.6.1 Introduction

A fundamental distinction between relativistic and conventional magnetrons is the

application of much higher voltages and explosive emission cathodes. That allows

one to overcome current limitations connected with cathode emission and space

charge (the Child–Langmuir law) and to raise the current and output power by

approximately two orders of magnitude.

Bekefi and Orzechowski (1976) at the Massachusetts Institute of Technology

were the first to develop a relativistic magnetron. Theirs was an S-band magnetron

equipped with a six-sector cavity resonator, a graphite cathode, and a tapered output

waveguide (Fig. 9.28). The magnetron operated at a 10-cm wavelength with a poten-

tial of 360 kV, a magnetic field 8 kG, and a field emission current of 35 kA (without

the magnetic field). Taking into account that this was the first relativistic magnetron,

the results were sensational: output power 1.7 GW, conversion efficiency 35%, and

pulse duration 30 ns. This large pulse duration was essentially determined by the

highly favorable diode orientation of the magnetic field in the magnetron for explo-

sive emission, similar to magnetically insulated diodes (see Section 4.8.3). Average

comparative parameters of conventional and relativistic magnetrons are given

in Table 9.2. Characteristic dimensions (in centimeters) of several relativistic

FIGURE 9.27 Tuning bandwidth BW as a function of frequency for different values of the

output power in a VTM. (From Gilmour, 1986.)
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magnetrons (Fig. 9.28) are given in Table 9.3. The frequency of the p-mode is com-

puted for an infinitely long anode block.

9.6.2 Hull and Buneman–Hartree Conditions

According to experimental and simulation data, the fundamental properties of rela-

tivistic magnetrons can be considered as a relativistic extension of the corresponding

properties of conventional magnetrons. In particular, it was proven that the operation

space for the relativistic magnetron is limited by the Hull and Buneman–Hartree

curves (see, e.g., Benford, 1987; Benford and Swegle, 1992).

FIGURE 9.28 Bekefi relativistic magnetron. (From Palevski and Bekefi, 1979.)

TABLE 9.2 Comparative Parameters of Conventional and
Relativistic Magnetrons

Parameter Conventional Relativistic

Maximum voltage �10 kV �1 MV

Maximum current �100 A �10 kA

Emission Thermoionic

and secondary

Field

Maximum power �10 MW �1 GW

Maximum efficiency �85% 30%

Pulse duration .1 ms ,100 ns

Maximum frequency 100 GHz 10 GHz

TABLE 9.3 Characteristic Dimensions (in centimeters) of Several MIT Relativistic
Magnetrons

Magnetron rc ra rb L w (deg) f GHz N

A6 1.58 2.11 4.11 7.2 20 2.34 6

B6 1.58 2.11 4.11 3.81 20 2.34 6

D6 1.83 2.46 4.83 8.42 20 1.98 6

J6 1.69 2.22 3.82 7.2 18 2.81 6
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Similar to Eqs. (9.67) and (9.68), the relativistic version of the Hull cutoff con-

dition follows from the energy integral and Busch’s theorem [see Eq. (1.126) for
_uc ¼ 0 and uniform magnetic field]:

va ¼ ra _fra
¼ c

ga

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2a � 1

q
(9:89)

_fra
¼ hBc

2ga
1� r2c

r2a

� �
(9:90)

where Bc is the cutoff value of the magnetic field and

ga ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2a=c
2

p ¼ 1þ hUa

c2

is the relativistic factor, corresponding to velocity va as a full velocity. Combining

Eqs. (9.89) and (9.90), we obtain the cutoff relation:

Bc ¼ 2ffiffiffi
h

p
ra(1� r2c=r

2
a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ua þ hU2

a

c2

r
(9:91)

A comparison of Eq. (9.91) with Eq. (9.69) shows that the nonrelativistic approxi-

mation (the Hull parabola) can be used for Ua , 300 kV. On the contrary, the

extreme relativistic approximation when the voltage Ua is a linear function of Bc

is correct for Ua . 5 MV.

Derivation of the relativistic Buneman–Hartee condition (the threshold voltage)

can be found in Collins (1948, Chap. 6). That relation in our notation is

UBH ¼ B

2
(r2a � r2c )Vn � c2

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� raVn

c

� �2s24 35 (9:92)

Note that the first term on the right-hand side of Eq. (9.92) coincides with the corre-

sponding term in the nonrelativistic Eq. (9.81). According to the experimental data

(see, e.g., Benford, 1987; Benford and Swegle, 1992), operational values ofU and B,

which give maximum efficiency, are near the Buneman–Hartree straight line.

9.6.3 Performance of Relativistic Magnetrons

Efficiency The theoretical estimation of electronic efficiency according to Benford

and Swegle (1992) is

he ¼ 1� 2m0U

e0{B2½(r2a � r2c )
2=r2a� � U2=c2}

(9:93)

The conversion efficiency h should take the circuit efficiency into account. The

experimental efficiency (Benford and Swegle, 1992) turns out to be lower than he
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from Eq. (9.93) typically by a factor of 2 or more. There are several causes, includ-

ing emission from the cathode tip and dissipation of energy in the electron

plasma. Note that according to recent simulations (Barker and Schamiloglu, 2001,

Sec. 3.2), spokes are developed under only one vane and their energy is extracted

in a short transit time.

Power Extraction and Limitations of Output Power Two methods of power

extraction are known for relativistic magnetrons: radial and axial (Fig. 9.29).

Radial extraction (Fig. 9.29a) is more common and involves radial transfer of ac

power through apertures in the anode. Apertures and the corresponding extraction

waveguides can be installed in one or many vanes. TE10 modes are excited in

each rectangular waveguide. Extraction power as a function of waveguide number

was studied by Sze et al. (1987). Maximum power for the A6 magnetron was

achieved with three open vanes, reaching �3.5 GW.

The axial extraction method was applied for X-band magnetrons by Kovalev

et al. (1980). A tapered coaxial waveguide (Fig. 9.29b) produces TMnp modes,

where p is the radial index. These modes have a central null and propagate

further in the tapered hollow waveguide. The design is similar to the diffraction

power output in gyrotrons. Effective mode transformers have been developed for

the transformation of these modes into Gaussian beams (see Section 10.9.3). An

output power of about 4 GW has been obtained (Kovalev et al., 1989).

Next we turn to some fundamental effects in relativistic magnetrons which limit

output power.

1. Maximum Axial Current. The angular component of the magnetic field

produced by the axial current, together with a radial electric field, creates an axial

drift of electrons that leads to their departure from a resonator before they

produce high power. According to estimates of Benford and Swegle (1992), the

maximum axial current is equal to

Imax(kA) � 0:8B(kG)L(cm) (9:94)

FIGURE 9.29 Power extraction in relativistic magnetrons: (a) radial extraction; (b) axial

extraction.
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where L is the resonator length. For example, Eq. (9.94) gives Imax ¼ 24 kA at

B ¼ 4.6 kG in an A6 magnetron (Table 9.3). The threshold current observed was

15 to 20 kA.

2. Upper Limit of ac Power. HF electric and magnetic fields at high output

power can cause a loss of electrons across the gap. In particular, because the HF

magnetic field eB is axial, the difference jB�eBj can lead to violation of the Hull

cutoff with a corresponding loss of electrons, at least within a part of the ac period.

9.6.4 Pulse Duration, Repetitive Operations, and Phase Locking
in Relativistic Magnetrons

Pulse Duration Because the total energy in the pulse for a constant output power

is proportional to the pulse duration, increased pulse duration is problematic for

many applications of relativistic magnetrons, in particular for radar. The time

scale of the relativistic magnetron operation, typically tens of nanoseconds, is sub-

stantially less than the duration of an electrical pulse. Three main factors determine

the pulse duration.

1. Pulse Rise Time tr. This is basically determined by the relation tr � Q=v for

a Q-factor of �50 to 100, and f ¼ 3 GHz is tr ¼ 5 to 10 ns. This quantity is negli-

gibly small for conventional magnetrons but represents a substantial part of an elec-

trical pulse for relativistic magnetrons.

2. Voltage Variations during the Operation Part of a Pulse. There is only a

narrow range of voltages for which the magnetron can oscillate with a given

magnetic field. The small input impedance of the magnetron circuit compared to

conventional magnetrons impedes reaching the necessary pulse flatness.

3. Closure of the Anode–Cathode Gap by the Cathode Plasma. The gap closure

effect is significantly weakened in coaxial magnetically insulated diodes with a

strong axial magnetic field (see Section 4.8.2). There the pulse duration can be

greater than 1 ms. According to some authors, however, the high HF electromagnetic

field in relativistic magnetrons significantly accelerates transport of the gap plasma

and truncates pulses. It is necessary to take into account as well that the cathode

plasma motion leads to an alteration of the resonance conditions essentially prior

to real gap shorting, even if the voltage pulse is constant. So retarding the plasma

motion is very important for increasing effective pulse duration.

Two effects determine the rate of plasma expansion: the mass of the plasma ions

and the plasma temperature, because v ¼ ffiffiffiffiffiffiffiffiffiffiffi
kT=m

p
. In this respect the application of

carbon fiber cathodes coated by heavy elements (Barker and Schamiloglu, 2001)

is very promising (Section 9.3). Application of carbon velvet cathodes with fibers

coated by cesium iodide (CsI) (Garate et al., 1995; Shiffler et al., 2002) is particularly

interesting, because besides the large mass of cesium and iodine ions, plasma

formation in CsI is accompanied by photoemission. As a result, the number of emis-

sion centers is increased, the local current density is lowered, ohmic heating is

reduced, and gap closure by the cathode plasma is delayed. The application of CsI

in HPM for many years was limited by the electric field and emission current
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density. Today, however, adequate fabrication technology allows an increase in the

maximum electric field up to 300 kV/cm with a speed of closure �0.7 � 106 cm/s
(Benford, 1998).

Repetitive Operations Repetitive operations allow the average power of pulse

devices to increase and in general to broaden their application domains. Two

primary factors limit the rate and the operational lifespan of relativistic magnetrons:

diode recovery and anode erosion. Electron bombardment releases plasma and

neutral particles, and the system must be cleared before voltage can again be

applied. To ensure long-term operation, it is necessary to provide sufficiently high

pumping speed. Anode erosion is a result of two effects: fracture of the surface

with detachment of metallic particles and melting of the surface layer. In the

latter case it is necessary to maintain the temperature of the surface below its

melting value. One drastic measure for doing so is raising magnetron efficiency.

However, rate repetition, peak power, pulse duration, and operation frequency

must, in reality, be chosen carefully.

According to Smith et al. (1991), there was no detected erosion in an L-band

magnetron at a repetition rate of 100 Hz after several thousands of shots, despite

high power (up to 3 GW), because of the larger resonator volume. A repetition

rate of 50 Hz in an S-band magnetron with a peak power of 360 MW was obtained

(Vasil’ev et al., 1987).

Phase Locking Many applications for microwave sources require high radiated

energy. The upper limit of the high-frequency power of a single magnetron raises

the problem of phase locking for a group of magnetrons. The physics of phase

locking of high-power microwave oscillators has been discussed at length (see,

e.g., Benford and Swegle, 1992; Woo et al., 1989). Phase locking of two oscillators

is considered for cases in which the coupled oscillators drive one another or one

oscillator is driven without feedback. The phase locking of two coupled oscillators

can occur only when the connector contributes zero or p phase delay.

For relativistic magnetrons, locking time is essential. According to Benford and

Swegle (1992), locking time is inversely proportional to the ratio r of the incoming

and outgoing fields in the output of coupled magnetrons. This time turns out to be

sufficiently small for r , �1. In experiments with r ¼ 0.6 (Benford et al., 1989),

phase locking occurred at an output power of 1.5 GW with a locking time

of �10 ns. The phase discriminator signal for this case is shown in Fig. 9.30. A

fourfold increase in power density was reported relative to a single magnetron.

9.7 MAGNETICALLY INSULATED LINE OSCILLATORS

A magnetically insulated line oscillator (MILO) is a cross-field oscillator that differs

from the magnetron primarily in that the insulating dc magnetic field, which together

with the orthogonal dc electric field determines the electron drift, is generated by its

own electron beam instead of the external magnetic field. This possibility requires

such high current density that it can only be provided by an explosive electron
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emission. Thus, MILO is an astonishing combination of magnetic insulation, explo-

sive emission, and interaction with retarding electromagnetic waves. The first MILO

was implemented by Clark et al. (1988).

9.7.1 MILO Principles of Operation. Choke-Equipped MILOs

A MILO scheme is shown in Fig. 9.31. The absence of a heavy supply of dc mag-

netic field simplifies the construction of MILO significantly compared with relativis-

tic magnetrons and especially with conventional magnetrons. The explosive

emission current in MILO is provided by the emitter, which is made out of a material

with a low emission threshold (e.g., velvet). The emitter is set on the cathode in the

region between the upstream side of the first vane and the end of the cathode. The

rest of the cathode surface is aluminum, which has a large emission threshold. The

coaxial resonator in Fig. 9.31 is the section of an SWS with mode TM00. The lengths

FIGURE 9.30 Phase difference D8 for seven consecutive shots of two magnetrons as a func-

tion of time (t nanoseconds).

FIGURE 9.31 MILO. 1, Cathode; 2, emitter; 3, vane of anode (SWS); 4, extractor gap; 5,

microwave output. The dimensions indicated correspond to those of a 1.2-GHz MILO. (From

Lemke et al., 1997.)

406 CROSSED-FIELD AMPLIFIERS AND OSCILLATORS (M-TYPE TUBES)



of vanes are chosen to be approximately one-fourth of the wavelength, to provide

operation on the p-mode.

After turning on the high voltage, the state of the MILO passes through three

distinct phases:

1. Initial Phase. The electron beam is uninsulated (Fig. 9.32a).

2. Short Intermediate Phase. The electron beam is insulated, but the ac field is

insufficient to form spokes.

3. Final, Steady Phase. High-density spokes drift in the crossed dc electric and

magnetic fields and interact with the HF electromagnetic field (Fig. 9.32b).

The original MILO had N � 6 cavities, and radial power was extracted through aper-

tures in the cavity walls. The level of output power was �50 MW. The considerable

increase in power (�300 MW) was obtained as a result of the transition to an axial

extraction scheme, even though the group velocity is near zero for the p-mode.

Experiments (Lemke et al., 1997) with MILOs of the type shown in Figs. 9.31

and 9.32, with a number of cavities varying from 4 to 15, revealed significant

leakage of microwave power toward the pulse-power source. The leakage power

was reflected at some location and returned to the SWS out of the oscillation

phase, thereby degrading tube performance.

Using results from both simulations and experiments, Lemke et al. (1997) have

modified the configuration Fig. 9.31 by applying chokes (cavities with a long

vane) and decreasing the total number of vanes (Fig. 9.33). The cathode is

covered with velvet from the upstream side of the third choke vane to the end.

The choke structure is not an active element of the MILO. It probably operates as

a rejection filter. It turns out that implementation of the choke, besides reducing

leakage significantly, also increases output power (by a factor 2 or more).

An experimental MILO with a peak power of 1.3 GW, peak efficiency of �8%,

and frequency of 1.8 GHz has been developed. The input voltage and the current

were 510 kV and 34 kA, respectively. The pulse duration in these MILOs reached

�150 ns with an output power of �1 GW, and the microwave energy per pulse

reached more than 200 J (Barker and Schamiloglu, 2001). A delay between the

FIGURE 9.32 Phases of an electron cloud state: (a) uninsulated electron cloud; (b) steady

phase with drifting electron spokes. (From Lemke et al., 1997.)
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onset of the beam current and microwaves was usually on the order of 50 ns. This

delay corresponds to the time for establishing self-magnetic insulation.

9.7.2 Tapered MILOs

A tapered MILO, developed by Eastwood et al. (1998), is distinguished by combin-

ing the cavity depth tapering section and the diode configuration into a slow-wave

interaction space (Fig. 9.34). The driver section ensures interaction at the p-mode

and defines the oscillation frequency. The group velocity in this section is nearly

zero. The group velocity at the next gently tapered section increases gradually at

the same frequency, but the small variation in the phase velocity supports synchro-

nous interaction of the spokes with the wave. Two factors determine the choice of

taper: power flow and amplification. Lengthening of the taper improves the power

extraction but worsens phase focusing because an increasing fraction of electrons

would be below the resonance threshold. Eastwood et al. (1998) concluded that

phase focusing in a tapered MILO allows increased gain by using M-type interaction

but avoids the self-oscillation problem for different frequencies.

The sharp tapered section provides a transition to the coaxial line and addition-

ally, diode extraction of power from the electron spokes that flow from the diode

FIGURE 9.33 Optimized configuration of a MILO equipped with chokes. 1, Choke; 2,

velvet emitter; 3, primary SWS.

FIGURE 9.34 (a) Tapered MILO; (b) MILO interaction space. 1, Cathode; 2, anodes; 3,

diode gap; 4, driver section; 5, gentle section; 6, sharp section; 7, coxial output.
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end of the cathode. This jet, according to a simulation (Eastwood et al., 1998), feeds

the wave mainly by giving up its kinetic energy, while the M-type interaction pro-

vides the transfer of potential beam energy into the driver and tapered sections.

The current in a MILO can be divided into two components: the first flows to the

outer anode (SDS structure), and the second flows to the inner anode (to the right of

the diode gap). The latter current component is largely responsible for the insulating

magnetic field, while the former feeds the microwave energy. This component is

an essential part of the dc current I9 in the plane (A–A) crossing the last (ninth)

vane before the diode. Figure 9.35 shows I9 as a function of the input voltage

U. The Hull cutoff and the Buneman–Hartree curves (Eastwood et al., 1998) are

also shown. These functions can be represented in the following forms. Hull

cutoff condition:

eRcIH

c
¼ 1ffiffiffi

h
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UH þ hU2

H

c2

r
(9:95)

Buneman–Hartree threshold voltage:

UBH ¼ ZcIBHb� c2

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q� �
(9:96)

where b ¼ L=h, Zc ¼ (Z0=2p) ln (rA=rK), Z0 is the input resistance of the system, L

is the period of the SWS, h is the cavity depth, and rA and rK are the outer and inner

radii of the coaxial line. Note that these equations are exact analogs of the corre-

sponding relativistic magnetron conditions (9.91) and (9.92) if we replace the mag-

netic field B with the dc magnetic insulation current I. As we see, the operation

current curve I9 is located between the Hull and B-H threshold curves. Comparison

of these curves shows that at low voltage the magnetic insulation is lost and the

potential energy contribution to the microwave power is reduced. At the high

FIGURE 9.35 Dc operation current MILO in the A–A plane (Fig. 9.34). Hull and B–H cur-

rents as functions of input voltage.
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voltage, electrons remain close to the cathode and the ac power is reduced. Accord-

ing to Eastwood et al. (1998), peak performance is reached when the current I9 is

close to that of the Hull curve (�550 kV).

Computer modeling of a prototype 1-GHzMILO with input impedance 15V pre-

dicts 25% efficiency (Eastwood et al., 2000). Experimental shots at 475 kV yielded

250 J per shot and a mean power of�1 GW, with a pulse length of 200 ns (the latter

was limited by the power supply). Profiles of the measured output power for three

shots at 475 kV are shown in Fig. 9.36.

9.8 CROSSED-FIELD AMPLIFIERS

Crossed-field amplifiers can be classified as either distributed-emission or injected-

beam devices. The latter [M-type traveling-wave tubes (MTWTs)] were considered

in Sections 9.2 and 9.3. Distributed crossed-field amplifiers (CFAs) comprise a

family of devices that differ from the magnetron in that their slow-wave circuits

are non-reentrant and nonresonant. The reentrant electron beam in CFAs is

similar to the magnetron beam. CFAs were invented in 1953 by Brown (1961,

1965, 1984) under the name platinotron.

9.8.1 Basic Types of CFAs

Diagrams of two primary CFAs are presented in Fig. 9.37. The amplitron

(Fig. 9.37a) has broad applications as a high-power amplifier in L and S bands. It

combines a number of positive features, including efficiency in excess of 70%

and output power of several hundred kilowatts in the CW regime and tens of mega-

watts in the pulse regime. The amplitron employs a cold secondary emission cathode

and has a broad bandwidth, together with both good phase linearity and low phase

pushing. The tube has a simple structure and is mechanically rugged.

As can be seen in Fig. 9.37, the structural differences between the amplitron and

the ultron include the type of interaction of the beam with the slow wave and the

corresponding type of SWS employed. The amplitron is based on a backward inter-

action (i.e., the angular velocity of the spokes Vs and the corresponding angular

phase velocity of the wave vph are opposite to the group velocity vg). In the ultron

FIGURE 9.36 Measured output ac power of a 1-GHz MILO for three successive shots.
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(Fig. 9.37b), forward interaction takes place (i.e., the above-mentioned velocities

have coincident directions). This difference significantly influences the structure

of the electron cloud in the dynamic regime. The crucial point is that the high-

frequency field is absent in the gap between input and output, and therefore

bunches entering this gap partly defocus as a result of the forced nature of bunching

in M-type systems (see Section 9.2.3). But bunches in the amplitron after the gap are

located in the strong output field, and as such are restored very fast, (i.e., the bunch-

ing process in an amplitron is essentially similar to bunching in the magnetron). This

leads to the formation of identical rotating spokes (Section 9.5.3) in which the elec-

trons move synchronously with the corresponding spatial harmonic of the ac field

and drift slowly (in the rotating frame of reference) to the anode along equipotential

lines (Section 9.2.2). The number of spokes corresponds to the periodicity of the

synchronous component of the ac field (Fig. 9.37). (Each spoke is located in

the retarded phase of the ac field).

Because the bunching processes are very similar in the amplitron and magnetron,

we can apply the Buneman–Hartree threshold relation [Eq. (9.81)] for the magne-

tron directly to the amplitron. First we rewrite the phase of the rotating wave

from Eq. (9.65) as

vt � u
raf

L
¼ vt � uN

2p
w (9:97)

where w is an angle and u is a phase shift in the SWS period. As a result, the angular

phase velocity is

V ¼ 2pv

Nu
¼ 4p2c

Nlu
(9:98)

So the factor Nu=2p replaces the coefficient n in the formula for the

magnetron angular velocity VM ¼ v=n [see Eq. (9.66)]. Substitution of V in

FIGURE 9.37 Platinotrons: (a) amplitron; (b) ultron. C, cathode; EC, electron cloud; Vs,

angular velocity of spokes; vph and vg, phase and group velocities of waves in SWS.
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Eq. (9.81) gives the Buneman–Hartree threshold voltage for the amplitron:

UBH ¼ B

2
(r2a � r2c )V� r2a

2h
V2 ¼ U0

2B

B0

� 1

� �
(9:99)

where

U0 ¼ 8p4c2r2a
hu2l2 N2

, B0 ¼ 8p2c

ulN(1� r2c=r
2
a)

(9:100)

There are also two other important versions of the CFA: the stabilotron and the reflex

amplitron. The stabilotron (Fig. 9.38a) is a derivative of the amplitron. Part of the

output power in a stabilotron is reflected back through the tube to cavity resonator 1

at the input. The amplitron is characterized by high directivity: the backward signal

will be neither increased nor decreased (for the most part). After reflection from the

cavity at its resonance frequency, the signal is amplified and directed into the output.

Any nonresonance signal is absorbed in thematched load at the input. So the stabilotron

is characterized by high power, high stability, and a tunable capability.

The stabilotron is tuned and stabilized in frequency simultaneously by resonator

1. The tuned band reaches 6 to 10%. However, for effective operation of the stabilo-

tron within a frequency band, it is necessary to draw both the frequency of the

tunable cavity and the natural frequency of the amplitron system. The latter is

attained through phase shifter tuning. Without a phase shifter the frequency band

is only about 0.5%. The frequency stability of the stabilotron is greater than that

of the magnetron by approximately one order of magnitude (Brown, 1961). Due

to this high stability, the efficiency of the stabilotron in the X-band can be close

FIGURE 9.38 (a) Stabilitron; (b) reflex amplitron. 1, High-Q tunable cavity; 2, phase

shifter; 3, output load; 4, circulator.
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to the efficiency in the S-band. Another important property of the stabilotron is the

possibility of obtaining a long-pulse duration (up to 20 to 40 ms). That is a perquisite
for radar in the L-band. The stabilotron was first used in the Hawk missile system in

1954 and is still used today, more than 50 years later.

The reflex amplitron (Fig. 9.38b) is a single-port device. It is transformed due to

circulator 4 into a two-port amplifier. The signal is introduced into the tube through

one of two circulator terminals. It propagates further without gain or appreciable

attenuation to the input of the amplitron, where it is amplified and reflected entirely.

The amplified signal is delivered to the output through another port of the circulator.

Use of a reflex amplitron greatly simplifies construction of the tube. These amplifiers

have sufficiently high efficiency but comparatively narrow bandwidth. For example,

in the X-band a gain of 20 dB has been obtained with a pulse power of 10 kW, an

efficiency of 40%, and a bandwidth of 5%.

9.8.2 Slow-Wave Structures of CFAs

As seen in Fig. 9.37, CFAs can be backward- or forward-wave tubes. Taking into

account the high power of CFAs, and setting aside issues of dispersion, coupling

impedance, and bandwidth, the choice of SWS is determined essentially by the

thermal capability of the structure. We point out that SWS in the CFA, as in the mag-

netron, operates as a collector for the electron beam.

Among the broad class of SWS configurations, helical SWSs are used more often

in ultrons. These structures have the best dispersion properties and can be configured

as heavily loaded systems (see, e.g., Gilmour, 1986). In principle, any waveguide-

loaded forward-wave circuits can be used. The interdigital structures (Fig. 8.5)

are employed in the amplitron as backward SWSs. But most applied SWSs are

strapped bar lines. According to Fig. 9.39, the strapped structure consists of a

system of vanes and two circular straps, one of which is attached to all even

vanes, another to all odd vanes. The ends of the straps are connected with input

and output devices.

Note that, in general, the dispersion of the phase velocity in backward structures

is stronger than in forward structures. Therefore, the bandwidth of an amplitron, all

else being equal, is narrower than the bandwidth of an ultron.

FIGURE 9.39 Strapped bar structure of an amplitron.
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9.8.3 Amplification and Efficiency of Amplitrons

Typical characteristics of the amplitron as a circuit element are represented in

Fig. 9.40, where the dependence of the peak ac output power is shown as a function

of the peak ac input power for different values of the input dc power.3 As we see, the

amplificationG ¼ Pout/Pin essentially diminishes with the growth in input power, so

the amplitron behaves as a saturated amplifier. For each value of the dc input power,

there is a minimum input power level that provides stable amplification. In Fig. 9.40

a nonadmissible area is shown where the output signal is not controlled by the input

power. In this zone the output signal is noise, poorly defined with a frequency differ-

ent from a driving signal. The output power is maximum at the boundary of this zone

and, according to Brown (1961), is determined by the empirical relation

Pout ¼ K2

4
þ K

ffiffiffiffiffiffi
Pin

p þ Pin (9:101)

where K is a constant. Pin and Pout should be expressed in kilowatts. Thus, the

maximum gain as a function of ac input power is equal to

Gmax ¼ 1þ K2

4Pin

þ Kffiffiffiffiffiffi
Pin

p (9:102)

FIGURE 9.40 Peak HF power as a function of peak drive power for different input dc

power.

3These characteristics belong to the classical amplitron QK434, the first CFA, which replaced the magne-

tron 5J26, the backone of many L-band radars during World War II, with exceptional success (Brown,

1965).
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The parameter K � 43 for the amplitron QK-434. So for Pin ¼ 100 kW,

Gmax ¼ 9.9 (�10 dB); for Pin ¼ 1000 kW, Gmax ¼ 2.8 (4.5 dB). It should be

noted that although the gain for a large input power is itself not large, the efficiency

is very high, increasing with both dc and output power. This can be seen in Fig. 9.40.

So for the dc power 2000 kW, Pmax � 1000 kW, which corresponds to h � 60%.

Recall that input power is not lost but appears as a part of the output

power. Figure 9.41 shows the typical voltage–current characteristic of the amplitron

along with values of output power and efficiency in isolated points of the character-

istic. Note that powerful CFAs are characterized by relatively low voltage. For

example, the superpower amplitron GR1224, developed by Raytheon Co., delivered

a CW output power of 450 kW for an anode voltage of 20 kV. The amplitron had a

gain of�10 dB and an efficiency of�70%. The same amplitron has delivered a pulse

output power of 35 MW with 60% efficiency for an anode voltage of 120 kV.

We can trace the location of effective regimes along the Buneman–Hartree

threshold line [Eqs. (9.99.) and (9.100)]. In Fig. 9.42 the optimal wavelength l
and the corresponding phase shift u ¼ u(l) were used (Brown, 1961).

9.8.4 Amplitron Bandwidth

Figure 9.43 shows efficiency as a function of frequency for a typical amplitron at a

fixed input. As we see, efficiency remains almost constant over the 10% frequency

band. This property, along with exceptionally low phase pushing (see below), is a

key characteristics of the amplitron as a powerful microwave amplifier.

Bandwidth shrinks with increase in gain. The operation range at a low-frequency

border is limited by the current shift in the breakdown area (Tseytlin et al., 1978).

The output signal in this case is not controlled by the input power (see Fig. 9.40).

The limitation of the bandwidth at the high-frequency-side end is determined

by the sharp decay of amplification as well as by mode interference and competition.

The gain–frequency characteristics shown below were calculated by Dombrowski

for a single-frequency input signal with a dc voltage that is adjusted by the

Buneman–Hartree condition. The envelope of a family of such characteristics

FIGURE 9.41 Voltage–current characteristic of an amplitron. Frequency ¼ 440 MHz,

Pin ¼ 25 kW.
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with different input powers is shown in Fig. 9.44. It can be assumed that the dB gain–

bandwidth product is more or less independent of the relative drive power level.

The overall power capabilities of the main CFA types are shown in Fig. 9.45. As

shown, amplitrons have a smaller bandwidth than ultrons. This can be explained by

the lower dispersion of forward-wave SWSs. The output power of an ultron

exceeds the megawatt level at a frequency 10 GHz. However, pulse amplitrons

have significantly higher output power.

FIGURE 9.42 Buneman–Hartree line and the experimental zone of effective regimes for a

QK434 amplitron. (From Brown, 1961.)

FIGURE 9.43 Efficiency of a typical amplitron as a function of frequency. (From Brown,

1961.)
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9.8.5 Amplitron Phase Characteristics

A phase shift between output and driver signals in any amplifier device depends on

all of the operating parameters. Among them, phase sensitivity to voltage and

current (phase pushing) has special practical importance. In TWTOs the phase

changes are about 308 for a 1% change in beam voltage. In CFAs the angular vel-

ocity of the spokes is locked to the phase velocity of waves in SWSs. In addition,

the electric length of the ac circuit is not large. As a result, the phase sensitivity

to anode voltage changes in CFAs is significantly less than that seen in TWTOs.

Phase characteristics are determined by the electric length F of a device, which

can be assumed to be

F ¼ F0 þFe (9:103)

where F0 and Fe are the lengths of slow-wave structures without an electron beam

and in a dynamic regime, respectively. The qualitative dependence of Fe on the

anode current in the amplitron, according to Tseytlin et al. (1978), can be rep-

resented by Fig. 9.46. Because the cold phase shift F0 as a function of I is

practically constant, the curve in Fig. 9.46 can be assumed to be a full phase

shift. A near-zero slope for the curve can be seen for some current value. Within

that region the phase pushing changes sign and is very small. In general, phase

pushing in the amplitron is negligibly small compared with the injected beam high-

power microwave amplifier. Experimentally measured averaged phase-pushing

values of an L-band amplitron (degree/ampere) are represented in Table 9.4.

According to the table data, the phase pushing changes sign in the approximate

current range 15 to 25 A.

FIGURE 9.44 Envelope of the gain–frequency characteristics of a typical amplitron. (From

Dombrowski, 1959.)

9.8 CROSSED-FIELD AMPLIFIERS 417



The possibility of obtaining small amounts of phase pushing in an amplifier has

considerable importance in the design of many radar systems. For example,

phased-array antennas provide an advance in radar system performance far

beyond the capabilities of the rotating antenna radars of their past.

FIGURE 9.45 Power capabilities of various CFAs. 1, Injected beam CW CFAs (CW

MTWT); 2, Pulsed ultrons; 3, pulsed amplitrons; 4, superpower CW amplitron; 5, superpower

pulsed amplitron. (From Gilmour, 1986.)

TABLE 9.4 Phase-Pushing Values (degree/ampere) of L-Band
Amplitron

DI

UkV 10–20 A 20–30 A 30–35 A

36 20.8 þ0.34 þ0.85

35 20.45 þ0.22 20.8

33 20.44 þ0.22 þ0.9

30 20.6 þ0.40 þ0.8

26 20.8 þ0.60 þ0.9

Source: Brown (1961).
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9.8.6 Electron Emission in CFAs

The effects of cathode back-bombardment by out-of-phase electrons are seen in all

microwave M-type tubes where the cathode is positioned in the interaction space.

For CFAs these effects are particularly important because the combination of

large ac output power and small amplification results in the need for a powerful drive

signal. In this case, a relatively small density of free electrons near the cathode

surface is sufficient for the initiation of secondary emission. These electrons appear

from various emission sources, including even negligible thermionic emission at

room temperature. Further, a process of secondary emission-back-bombardment mul-

tiplication is developed that is finished by the built-up emission level. This process can

be performed until the output power builds up to a sufficient dc voltage and input power.

The resulting emission buildup time is very short (�10 ns) with a small jitter.

In magnetrons where the drive power is absent, secondary electron emission is

possible once oscillations have begun. Therefore, the use of thermionic cathodes

or other initial electron sources is necessary. In water-cooled CFAs, purely second-

ary emission cathodes can be used. Obvious advantages of these cathodes include a

potentially very high lifetime, simplicity of construction and technology, short

starting time, and of course, a very high emission current density.

Because of the emission dependence on the cathode heat regime, the theory of

emission effects that are stipulated by bombardment by out-of-phase electrons is

very complicated, especially with regard to the space-charge field. These effects

are also essential for steady-state and transient processes, and in particular, for

setting the Brillouin flow near the cathode.

It is known that a stable secondary-emission current in operating CFAs is

maintained automatically. However, this effect has not been investigated

thoroughly.

FIGURE 9.46 Electron phase shift of an amplitron as a function of beam current.
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CHAPTER TEN

Classical Electron Masers and
Free Electron Lasers

10.1 INTRODUCTION

Until the mid-1960s, almost all vacuum microwave amplifiers and oscillators

exploited radiation of electrons with rectilinear and uniform motion (i.e., Cerenkov

and transition radiation). Even when trajectories of particles were not strictly recti-

linear, this difference had no real effect on the interaction mechanism. Despite

efforts, output power and efficiency of devices inevitably declined with frequency.

So the shortest nonrelativistic BWOs have a maximum output power of �1 mW in

the range of a fraction of a millimeter. As we saw in Chapters 7 to 9, this tendency, is

not the result of design or technological miscalculation, but arises from the nature of

Cerenkov and transition radiations. In both cases, effective interaction of the elec-

tron beam with the electromagnetic field is possible at a distance of a fraction of

a wavelength from the beam to the circuit surface. This also concerns crossed-field

devices in which synchronism of the electrons with slow electromagnetic waves

should also be provided, which predetermines in the MSM range (0.1 to 4 mm) a

small volume of the active medium and exceedingly tense specific loading of the

circuits. Meanwhile, practical applications of microwave devices have required

considerably more power. Among applications requiring it are long-range radars,

countermeasure means, space communication, thermonuclear fusion experiments,

and in general studies of the effect of strong radiation on matter, and in many

other technological and medical applications. However, serious demand for such

powerful devices in the MSM range has been damped, because demand usually

follows supply, which was absent at the time. The possibility of creating powerful

relativistic Cerenkov devices [i.e., O-type traveling-wave tubes (TWTOs),

backward-wave oscillators (BWOs), orotrons] into the MSM range was difficult
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to realize in practice for long-pulse or CW regimes because the advantages of

these devices occur only for the relativistic factor g � 1 and short-pulse explosion

emission beams (Kovalev et al., 1979).

A break into the range of short electromagnetic waves occurred in 1960 and was

caused by lasers, which opened the era of quantum electronics. The most effective

and powerful lasers work in visible and near-infrared ranges, where the energy of

quanta and the efficiency of pumping are significant. However, both decrease

quickly with increased wavelength. As a result, there exists a long-wavelength

threshold for the operation of powerful lasers, and this threshold coincides with

the short-wave boundary of the MSM range. Thus, the MSM range turns out to

be a peculiar gap in the spectrum of powerful coherent electromagnetic oscillators,

where both classic microwave devices (e.g., klystrons, TWTs, BWOs, magnetrons)

and lasers are not effective.

New ideas emerged toward the end of the 1950s and the beginning of the 1960s.

At that time, attention turned to beams with curvilinear trajectories of electrons,

because a charged particle whose trajectory has a nonzero curvature radiates for

any relationship between its velocity and the wave phase velocity in the given

medium. It is clear that if the trajectory of the particle is periodic in a uniform

medium, its radiation should also be periodic in time. So in this case, a synchronous

interaction of electrons with fast electromagnetic waves can be realized. However,

this does not solve the problem. First, the electron radiation should be coherent; only

in this case it does have a value for radio electronics. Second, because in general the

spatial period of a trajectory (at least for subrelativistic energies) is small compared

with the wavelength of radiation, it is not so simple to form electron-optical systems

with elements that are not small on the wavelength scale. Otherwise, the difficulties

arise for transfer from electrodynamics to electron optics, which would, as before,

limit the volume of the active medium.

Two ideas, proposed simultaneously and independently by Gaponov (1959),

Schneider (1959), Twiss (1958), and Zheleznyakov (1960), turned out to be deci-

sive: (1) discovery of a mehanism of stimulated radiation via curvilinear relativistic

electron beams as an ensemble of nonisochronous (anharmonic) classical electron

oscillators, and (2) the formation of periodical electron trajectories in a uniform

magnetic field. The reader can find a detailed account of the beginning phase of

this field of research in historical surveys by Hirshfield and Granatstein (1977)

and Petelin (1999).

As is well known, the electron in an atom is an oscillator with an essentially

nonequidistant energy spectrum. The radiation of electrons induced in an electro-

magnetic field with frequency v can be performed through a transition between

levels with an energy difference DW ¼ h�v. Therefore, to obtain stimulated radi-

ation, it is sufficient to place the corresponding matter into a resonator with a

high Q-factor and to create an inversion population in this two-level system. The

considerable energy of a quantum in the optical range and the high density of the

active medium together form a fundamental basis for high-power lasers.

Electrons moving in a magnetic field from a quantum physics standpoint are

oscillators with a discrete energy spectrum but with a very small difference
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between the nearby levels in comparison with the oscillation energy of particles (see,

e.g., Landau and Lifshitz, 1977). Their frequency in the relativistic approximation

depends on the energy (see Section 1.5). Therefore, the energy spectrum of these

anharmonic oscillators is weakly nonequidistant. As has been shown (see, e.g.,

Gaponov, 1960), it is possible to provide radiation transitions between multiple

pairs of levels. As a result, each electron can perform many successive transitions

downward and transfer a considerable share of its energy to the field.

These properties of relativistic electrons in the magnetic field provide conditions for

stimulated radiation (bunching and energy transfer) of electrons in quasiuniform elec-

tromagnetic fields for any relation of electron and wave phase velocities. Application

of a uniform magnetic field considerably simplifies the electron-optical problem

of the formation of a periodic beam in large volumes (on the wavelength scale).

Electrons moving in spatial-periodical magnetic fields possess analogous proper-

ties. Stimulated radiation generated by ultrarelativistic electrons in a spatially peri-

odic magnetic field, as shown first by Madey (1971), constitutes the basis for free

electron lasers (FELs).

Devices based on the stimulated radiation of classical electron oscillators (normal

Doppler synchronism; see Section 10.2) are called classical electron masers

(CEMs). The acronym ECM (electron cyclotron maser), introduced by Hirshfield

and Wachtel (1964), is used for devices using stimulated radiation of electrons in

a dc magnetic field. According to their operational principle, ECMs occupy an inter-

mediate place between conventional microwave devices and optical lasers, and

fortunately, ECMs do not encounter the difficulties considered above in the

MSM range. A unique place among ECMs belongs to gyrotrons (Flyagin et al.,

1977), which are distinguished by helical electron beams and weakly irregular

open cavities as resonators. Today, gyromonotrons and their varieties (i.e., gyrokly-

strons, gyroTWTs, etc.) are the most powerful long-pulse and CW oscillators and

amplifiers in the MSM range.

Devices based on the stimulated radiation of ultrarelativistic electrons in spatially

periodic magnetic fields are called free electron lasers (FELs). These startling

systems cover not only infrared and optical, but even ultraviolet and soft x-ray, ranges.

The mechanism of spontaneous and stimulated electron radiation is considered in

Sections 10.2 and 10.3. Examples of electron CEMs are given in Section 10.4. In

Sections 10.5 to 10.9, various gyrotron issues are treated. Some properties of gyro-

klystrons, gyroTWTs, masers on the cyclotron autoresonance (MCARs), FELs, and

applications of gyrotrons are discussed in Sections 10.10 to 10.14.

10.2 SPONTANEOUS RADIATION OF CLASSICAL
ELECTRON OSCILLATORS

10.2.1 Introduction

Assume that an electron performs periodic motion with velocity v1 and transfers

energy to a plane wave with a wave vector k, where k ¼ v=vph. Following

Zheleznyakov (1960), let us consider the result of radiation on the basis of the
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quantum laws of energy and momentum conservation and in the end, proceeding to

the classical limit by approaching the Planck constant h� ! 0.

When an electron in a laboratory frame of reference emits a photon with energy

h� v and momentum h� k, it changes its momentum from p1 to p2. The electron in the

guiding center frame (the rest frame) can be considered as an oscillator with nonzero

internal energy and a rest massm1, which is changed tom2 as a result of the emission

of the quantum h� v0. Therefore, the condition of the energy conservation in this

reference frame is

m1c
2 � m2c

2 ¼ h� v0 (10:1)

The conservation laws in the laboratory frame areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1c
4 þ p21c

2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2c
4 þ p22c

2

q
¼ h� v (10:2)

p1 � p2 ¼ h� k (10:3)

Eliminating terms with p2 and m2 from these equations, we obtain

v0c
2 m1 þ kp1c

2 � vm1c
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
1

q ¼ h�

2
(v2

0 þ v2 � c2 k2) (10:4)

where b1 ¼ v1=c. Transforming Eq. (10.4) in the classical limit (h� ¼ 0), we find that

v ¼ v0

g 1� v1

vph
cosq

� � (10:5)

where v1 cosq is the projection of v1 on k, g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
is the relativistic factor,

b ¼ v0=c, and v0 is the full velocity. Equation (10.5) expresses the Doppler effect:

The radiation of a source with frequency v0 in a moving frame is perceived in

the laboratory frame as a wave with frequency v if the source moves with the vel-

ocity v at angle q to the wave vector. It can be seen that Eq. (10.5) expresses a con-

dition of resonance of the oscillator and the high-frequency field with a Doppler

effect correction. Note that an ensemble of uncoupled electrons can produce only

incoherent, spontaneous radiation.

Let us consider some particular cases.

1. v0 ¼ 0. The internal energy of the particle does not change (i.e., it behaves as

a charged particle performing uniform rectilinear motion). According to Eq. (10.5),

v = 0 only for vph=v ¼ cosq , 1. This relation expresses the necessary condition

of the Cerenkov synchronism (i.e., radiation of rectilinear and uniformly moving

particles is possible only when they are synchronous with slow electromagnetic

waves).
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2. v0 . 0. The particle loses oscillatory energy with radiation. In this case there

should be v=vph , 1= cosq. This inequality can be fulfilled for any relation between
v and vph. This is a case of normal Doppler synchronism.

3. v0 , 0. The oscillatory energy of the particle increases with radiation.

According to Eq. (10.5), radiation is possible only for slow waves where

v=vph . 1= cosq. This is a case of an anomalous Doppler effect. Thus, the particle

radiates and simultaneously increases its oscillatory energy. Clearly, the source of

both energies is the energy of the drift motion. The necessity of operating with

slow waves makes the anomalous Doppler effect less attractive in the MSM

range. Note, however, that the corresponding CEM can in principle be very effec-

tive, because it is possible to introduce a nonoscillating beam into a system while

maintaining the possibility of subsequent emergence of oscillations.

10.2.2 Magnetic Bremsstrahlung. Doppler Frequency Up-Conversion

Radiation of an electron rotating in a uniform magnetic field is a specific case of

magnetic bremsstrahlung (magnetic braking radiation). An oscillation frequency

v0 in the Doppler formula [Eq. (10.5)] is the gyrofrequency e0B=m0 in the rest

frame. Then Eq. (10.5) can be rewritten as

v ¼ vg

1� v
vph

cosq
(10:6)

where vg ¼ v0=g ¼ e0B=m0g is the gyrofrequency in the laboratory frame.

Another variant of magnetic bremsstrahlung is the radiation of an electron in a

spatially periodic magnetic field. The simplest device used to produce oscillatory

motion in a spatially periodic magnetic field (called an undulator or wiggler) is

depicted in Fig. 10.1. It can be shown that the fundamental frequency of the electron

oscillations in the laboratory frame is

vu ¼ 2pv

L
(10:7)

where v is the velocity of the guiding center along the z-axis. The frequency in the

rest frame will then be v0 ¼ 2pv=L0, where L0 is the period of the structure for the

observer in the rest frame. Let us next take into account Lorentz contraction,

FIGURE 10.1 Undulator with permanent magnets.
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L0 ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
. Then v0 ¼ (2pv=L)g ¼ vug. Substituting v0 in Eq. (10.5), we

obtain the Doppler formula for the bremsstrahlung with vu in the laboratory frame,

v ¼ vu

1� (v=vph) cosq
(10:8)

Doppler frequency up-conversion (frequency gain) consists of an increase in the

radiation frequency v for a given vg or vu by means of decreasing the factor

½1� (v=vph) cosq�. The application of frequency up-conversion is especially effec-

tive for the radiation of relativistic electrons into a wave that propagates with vel-

ocity vph ¼ c in the direction of the translation motion of the particle (i.e., for

q ¼ 0). In this case the Doppler formula [Eq. (10.8)] takes the form

v ¼ vu

1� v=c
(10:9)

Let us substitute the relativistic factor g into Eq. (10.9), taking into account the par-

ticle oscillatory velocity v?:

g�2 ¼ 1� v20
c2

¼ 1� v2 þ v2?
c2

or 1� v

c
¼ g�2 þ v2?=c

2

1þ v=c
(10:10)

Then Eq. (10.9) can be written as

v ¼ 1þ v=c

1þ (v2?=c2)g2
g2vu (10:11)

Equation (10.11) for an ultrarelativistic beam with the condition

v?
c
g 	 1 (10:12)

is reduced to

v ¼ 2g2vu (10:13)

As we see, the frequency v does not depend on v? for the condition (10.12). Accord-

ing to Eq. (10.13), it is possible to attain a very large frequency gain for a sufficiently

large g. This relation expresses the fundamental property of FELs.

A similar relation can be derived from Eq. (10.6) for the bremsstrahlung in a

uniform magnetic field:

v ¼ 2g2vg (10:14)
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However, the real frequency gain in this case is a linear function of g only because

the gyrofrequency vg changes as 1=g.

10.3 STIMULATED RADIATION OF EXCITED CLASSICAL
ELECTRON OSCILLATORS

10.3.1 Admittance of an Ensemble of Classical Oscillators

The conditions for coherent stimulated radiation by classical oscillators can be

analyzed in a highly general form (Gaponov et al., 1967). We will follow a

simplified model (presented by Gaponov et al., 1967). Let us consider an ensemble

of identical one-dimensional oscillators formed by electrons that oscillate in a

potential well U0(x) [i.e., under the action of the force F0(x) ¼ �dU0(x)=dx�.
The oscillators are also under the action of a high-frequency field F(t) ¼
�e0E0e

ivt, which for the sake of simplicity is assumed uniform and sufficiently

weak for the linear approximation to be applicable. The equation of motion in

these fields reads

m
d 2x

dt2
� F0(x) ¼ F(t) (10:15)

The undisturbed periodical motion is described by the equation

m
d 2x(0)

dt2
� F0(x

(0)) ¼ 0 (10:16)

The solution of this equation can be represented by the Fourier series:

x(0) ¼
Xk¼1

k¼�1
xk e

ik(v0tþf0) (10:17)

where x(0)(t) is the real function. Therefore,

x�k ¼ x�k (10:18)

Taking into account the assumed weakness of the perturbation created by

the high-frequency field and also the limitations of the oscillator lifetime

(see below), we can represent the solution of Eq. (10.15) as x(t) ¼ x(0)(t) þ x(1)(t),

where x(1) 	 x(0). Therefore, this equation in the first-order approximation is

m
d 2x(1)

dt2
� dF0(x

(0))

dx(0)
x(1) ¼ F(t) (10:19)
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Unlike Eq. (10.15), Eq. (10.19) is a linear equation because dF0(x
(0))=dx(0) is a known

function of t. Its general solution by the Lagrange method of variations of coeffi-

cients yields

x(1) ¼ 1

mW

ðt
t0

½j2(t)j1(t0)� j1(t)j2(t
0)�F(t0) dt0 (10:20)

Here j1(t) and j2(t) are linearly independent solutions of the homogeneous equation

m
d 2x(1)

dt2
� dF0(x

(0))

dx(0)
x(1) ¼ 0 (10:21)

W ¼ j1(t)_j2(t)� j2(t)_j1(t) is theWronskian of solutions. It can readily be shown that

for the capacity of j1 and j2, the partial derivatives @x(0)(t, C1,2)=@C can be used,

where C1,2 are parameters specified by initial conditions. Let us, for example,

choose C1,2 as the initial phase f0 and energy E; that is,

j1 ¼
@x(0)

@f0

, j2 ¼
@x(0)

@E
(10:22)

Using Eq. (10.17), it is readily verified that in this case the Wronskian is equal to

W ¼ 1

mv0

= 0 (10:23)

and hence the j1 and j2 chosen are linearly independent.

The next stage of the analysis of the radiation properties of the ensemble of oscil-

lators consists of calculation of the current produced by the ac field and then of the

system admittance. At this point, it is necessary to take two principal factors into

account:

1. The particles oscillate in different phases. Therefore, the total effect can be

found by phase averaging of the current obtained.

2. It is necessary to express explicitly the condition of restricting oscillator life-

time t in the ac field. Particles with infinite t would continuously exchange energy

with the ac field, and the average effect would be zero.

Let us introduce a lifetime distribution function g(t). Then the density of particles
with a lifetime in the interval ½t, tþ dt� is equal to

dN ¼ N0g(t) dt (10:24)

428 CLASSICAL ELECTRON MASERS AND FREE ELECTRON LASERS



where N0 is the total density of particles. The current density will be

j ¼ �e0

ð
_x(1) dN ¼ �e0 N0

ð1
0

_x(1)g(t) dt (10:25)

Measured current should be averaged over initial phases f0. The latter are usually

distributed uniformly and included explicitly in j1 and j2 (see below):

j ¼ 1

2p

ð2p
0

j df0 ¼ �e0 N0

ð1
0

g(t)
1

2p

ð2p
0

_x(1) df0

� 	
dt

¼ �e0 N0

ð1
0

g(t)�_x
(1)

dt

(10:26)

The average value �_x is determined by the integral in Eq. (10.20), taking Eq. (10.23)

into account:

�_x ¼ v0

2p

ðt
t0

ð2p
0

½_j2(t)j1(t0)� _j1(t)j2(t
0)�F(t) dt0 df0 (10:27)

Let us rewrite expressions for j1,2 using the Fourier series [Eqs. (10.17) and (10.22)]:

j1 ¼
@x(0)

@f0

¼
X1
k¼�1

ikxke
ik(v0tþf0)

j1 ¼
@x(0)

@E
¼
X1
k¼�1

@

@E
½xkeik(v0tþf0)�

(10:28)

The derivatives _j1 and _j2 can be found by differentiating expressions (10.28)

with respect to t. Substitution of these series into Eq. (10.27) leads to integrals

such as

1

2p

ð2p
0

X1
k¼�1

ake
ikf0

X1
m¼�1

bme
imf0

 !
df0

Obviously, only terms withm ¼ �k in the double series are nonzero. These integrals

are reduced to the form
P1

k¼�1 akb�k ¼
P1

k¼�1 akb
�
k [taking Eq. (10.17) into

account]. Then the integral in Eq. (10.27) of f0 is equal to

1

2p

ð2p
0

½_j2(t)j1(t0)� _j1(t)j2(t
0) df0 ¼

X1
k¼�1

k2
@

@E
v0jxkj2eikv0(t�t0)� �

(10:29)
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Assuming that the HF field has the form F(t) ¼ �e0E0e
ivt, we find, using Eqs.

(10.27) and (10.29), that

�_x ¼ �v0e0E0

X1
k¼�1

k2
@

@E
v0jxkj2eikv0t

ðt
t0

eiDvkt
0
dt0

� 	
(10:30)

where Dvk ¼ v� kv0. Finally, taking into account that t � t0 ¼ t, we obtain

�_x ¼ iv0e0E0

X1
k¼�1

k2
d

dE
v0jxkj2 1� e�Dvkt

Dvk

� �
(10:31)

Let us assume the following lifetime distribution: g(t) ¼ ne�nt. It is readily ver-

ified that the average lifetime for this distribution is �t ¼ 1=n. Substituting

1

2p

ð2p
0

X1
k¼�1

ake
ikf0

X1
m¼�1

bme
imf0

 !
df0

into Eqs. (10.27) and (10.25) and integrating, we obtain the current density and the

complex admittance of the medium formed by the ensemble oscillators:

Y ¼ j

E
¼ e20 N0v0

X1
k¼�1

k2
d

dE

v0jxkj2
iDvk þ n

� �
, n ¼ 1

�t
(10:32)

Limiting cases:

1. n ¼ 0 (infinite lifetime). According to Eq. (10.32), the admittance of the

system oscillators–HF field for Dvk = 0 is reduced to pure susceptance. The sub-

systems of this system exchange energy, but the average energy of each subsystem is

constant.

2. n ¼ 1 (zero lifetime). In this case, Y ¼ 0; interaction is absent.

10.3.2 Linear Oscillators Near a Resonance

Oscillators that move in a parabolic potential well ½F(x(0) ¼ �a2x(0)� are harmonic

oscillators, which means that only terms k ¼ +1 should be retained in the series

(10.32). Also, the natural frequency of oscillators v0 does not depend on their

energy: dv0=dE ¼ 0. Taking into account that E ¼ 2mv2
0jx1j2, we obtain

djx1j2=dE ¼ 1=2mv2
0, and according to Eq. (10.32),

Y ¼ Y 0 þ iY 00 ¼ e20 N0

2m

1

i(v� v0)þ n
þ 1

i(vþ v0)þ n

� 	
(10:33)

430 CLASSICAL ELECTRON MASERS AND FREE ELECTRON LASERS



Let us examine Y near the resonance v� v0 	 v0 with a lifetime significantly

exceeding the period (i.e., �t ¼ 1=n � 2p=v0. The first (resonant) term in

Eq. (10.33) for these conditions is much larger than the second term. Then conduc-

tance Y 0 and susceptance Y 00 are

Y 0 ¼ e20 N0n

2m½(Dv)2 þ n2� , Y 00 ¼ � e20 N0Dv

2m½(Dv)2 þ n2� (10:34)

A plot of Y 0 and Y 00 as functions of Dv is shown in Fig. 10.2. We see that Y 0 is posi-
tive for any frequency (i.e., harmonic oscillators form a purely absorbing medium).

The absorption maximum is related to the exact resonance v ¼ v0 and grows with

an increase in lifetime. A half-width of the resonance curve is equal to 2n ¼ 2=t:
The longer the lifetime, the more exact the resonance should be. The susceptance

is zero at v ¼ v0 and changes sign together with the sign of Dv, which is typical

for any resonance circuit.

A quantum interpretation of the behavior of this system is as follows. The

spectrum of the energy levels of the harmonic oscillators is equidistant. In this

case (see, e.g., Petelin, 1999) the probability of transitions between neighboring

levels is proportional to the energy of the output level. Then it is obvious that

the probability of the transition to the upper level is greater than to the lower

level, and the oscillators absorb energy, on average. This effect can be explained

from the classical standpoint by the isochronism of linear oscillators. Interaction

of particles with the HF field proceeds in this case independent of the energy. But

oscillators with zero energy can absorb energy only.

FIGURE 10.2 Conductance and susceptance of an ensemble of oscillators as functions of

resonance mismatch, Dv ¼ v� v0.
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10.3.3 Stimulated Radiation of Nonlinear Oscillators Near
Resonance on the nth Harmonic (jDvnj¼jv� nv0j 	 v0)

Only the nth term should be retained in the sum Eq. (10.32) for the admittance:

Y ¼ e20 N0v0n
2 d

dE

v0jxnj2
iDvn þ n

� �
; Y1 þ Y2 (10:35)

where

Y1 ¼ e20 N0v0n
2

iDvn þ n

d

dE
(v0jxnj2), Y2 ¼ ie20 N0n

3v2
0jxnj2

(iDvn þ n)2
dv0

dE
(10:36)

The denominators in Y1 and Y2 are linear and quadratic functions, respectively, of

the resonance factor iDvn þ n. Let us consider the real parts of Y1 and Y2:

Y 0
1 ¼

e20 N0n
2nv0

(Dvn)
2 þ n2

d

dE
(v0jxnj2), Y 0

2 ¼
2e20 N0n

3v2
0jxnj2nDvn

½(Dvn)
2 þ n2�2

dv0

dE
(10:37)

Y 0
1 and Y 0

2 are even and odd functions, respectively, of the mismatch Dvn. A quali-

tative plot of the functions Y 0
1(Dvn) and Y 00

2 (Dvn) for values d(v0jxnj2)=dE . 0 and

dv0=dE . 0 is depicted in Fig. 10.3. According to Eq. (10.37), Y 0
1 has an extreme at

the exact resonance. The sign of Y 0
1 coincides with the sign of d(v0jxnj2)=dE. In

contrast, the sign of Y 0
2 can be arbitrary for a given nonsynchronism dv0=dE. This

is achieved by the choice of Dvn. The maximum of Y 0
2 is achieved for a mismatch

from the resonance of approximately jDvnj�n.
What is notable in the behavior of the nonlinear oscillator ensemble? Essentially,

it depends on the lifetime. According to Eqs. (10.37), the modulus of Y 0
1 is

proportional to �t, while Y 0
2 is a quadratic function of �t. Thus, for large values of

the lifetime, the conductance of the system is determined by Y 0
2 (i.e., by the

FIGURE 10.3 Frequency dependence of linear and quadratic conductances in the vicinity of

resonance on the nth harmonic.

432 CLASSICAL ELECTRON MASERS AND FREE ELECTRON LASERS



nonsynchronism of oscillators). For an arbitrary sign of dv0=dE, the system of

oscillators can be made radiating by choice of the sign of Dvn.

Quantum Interpretation of the Behavior of Nonisochronous Oscillators In

this case (Gaponov, 1960; Gaponov et al., 1967) the energy spectrum of the

classic oscillator is nonequidistant. Therefore, the frequencies of the transitions

vp,pþn (from level p to level pþ n) and vp,p�n are different. One can show

(Gaponov, 1960) that the conductance Y 0
2, which is an even function of Dv

[Eq. (10.37)], is connected with the difference in transition probabilities p ! pþ n

and p ! p� n. The negative sign of Y 0
2 for the oscillators with a large negative

derivative dv0=dE is a result of vp,pþn � vp,p�n , 0 (i.e., of the excess of quantum

radiated over quantum absorbed.

Example 10.1: Relativistic Electrons in a Magnetic Field The natural frequency

of electron oscillations is v0 ¼ vg ¼ e0B=m0g ¼ (E0=E)v
(0)
g , where E0 ¼ m0c

2,

E ¼ mc2, and v(0)
g ¼ hB is the nonrelativistic gyrofrequency. The derivative

dv0=dE ¼ �E0v
(0)
g =E2 ¼ �vg=E. According to Eq. (10.37), the stimulated

magnetic bremsstrahlung takes place for Dvn . 0 (i.e., for nvg , v).

Linear and Quadratic Bunching One question arises: Why does the ensemble of

oscillators distributed randomly over initial phases possess nonzero admittance; that

is, why does it give a specific response to high-frequency perturbation? The reason

for this behavior is that phase bunching of particles occurs with respect to the phase

of the HF field. Let us calculate the average perturbation of the electron coordinate

over the initial phase and the lifetime. Applying Eq. (10.20), we obtain

�x(1)1 ¼ v

2p

ð2p
0

ð1
0

ðt
t0

½j2(t)j1(t0)� j1(t)j2(t
0)�F(t0)g(t) dt0 dt df0 (10:38)

Substitution j1 and j2 from Eq. (10.28), g(t) ¼ ne�nt, F(t0) ¼ �e0E0e
ivt0 , and

integration give

�x(1)1 ¼ ie0Ev0

X1
k¼�1

k
d

dE

jxkj2
iDvk þ n

� �
(10:39)

Separating the resonance term k ¼ n, we obtain

�x(1)1

E
¼ e0v0

in

iDvn þ n

djxnj2
dE

� n2

(iDvn þ n)2
dv0

dE

� 	
(10:40)

This formula shows that the average shift of the particles is nonzero and oscillates

with the field (i.e., phase bunching takes place). An imaginary part of j�x(1)1 j=E deter-

mines the phase shift of the bunch with respect to the field. The first term in
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Eq. (10.40) has the value �1=n (i.e., it grows linearly with the average lifetime and

describes linear bunching. The second term, connected with nonsynchronism of the

oscillators, varies as �t2 and describes quadratic bunching.

Nonisochronous Parameter An effectiveness of quadratic bunching that ensures

negative absorption of the medium (i.e., radiation), can be estimated through the

special nonisochronous parameter

m ¼ Y 0
2

Y 0
1

���� ����
Dvn¼n

¼ v0njdv0=dEjjxnj2
njd(v0jxnj2)=dE

(10:41)

Example 10.2: Nonisochronous Parameter m of Electron Oscillators in a
Magnetic Field In this case, v0 ¼ vg: Using dv0=dE from Example 10.1 and

taking into account that fact thatmvg does not dependonE, we obtain fromEq. (10. 41),

m ¼ nmv3
gjxnj2

nEd(mv2
gjxnj2)=dE

(10:42)

Consider further a subrelativistic approximation E � m0c
2 þ m0v

2
?=2,m � m0, and

vg � v(sr)
g . We find that mv2

gjxnj2 � m0v
2
? and d(m0v

2
?)=dE � 2. Then taking

Eq. (10.32) into account, we obtain

m ¼ nm0v
(0)
g v2? �t

2m0c2
¼ nv(0)

g b2
? �t

2
¼ pb2

? N ¼ pb2
?L

bzl
(10:43)

where L is the interaction length and N ¼ �t=T is the number of revolutions of an elec-

tron during the lifetime, b? ¼ v?=c and bz ¼ vz=c. Note that relativistic properties of
the electron oscillator validate this approximation since dv0=dE = 0. The dimension-

less parameter m in the gyrotron theory is sometimes called the normalized interaction

length (see, e.g., Kartikeyan et al., 2004).

Radiation via Linear Bunching. Phase Selection Let us consider the case of a

lifetime that is insufficient for developing quadratic bunching, and the main part

of the conductance is determined by the term Y 0
1. The condition of radiation in

this case, according to Eq. (10.37), is

d

dE
(v0jxnj2) , 0 or v0

djxnj2
dE

, �jxnj2 dv0

dE

If the derivative dv0=dE . 0, the derivative djxnj2=dE must be negative, which has

a small probability. It remains to assume that dv0=dE , 0, and the value jdv0=dEj
must be sufficiently large. This case can be realized when a potential well has a

“shelf” (Fig. 10.4). If the shelf is long (dashed line), this effect becomes more

pronounced.
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A particle at a long shelf practically stops oscillating and interacting with the

field. This type of phasing is called phase selection. The phase selection effect

leads to radiation when electrons in the accelerated phase of the HF field are

excluded from the interaction.

10.3.4 Spatial Bunching of Classical Oscillators

The spatial uniformity of an HF field and the one-dimensional motion of particles

assumed above in general represent significant idealizations. In more general situ-

ations, other mechanisms of phasing and stimulated radiation are also possible.

These mechanisms were considered in detail by (Gaponov et al., 1967). In parti-

cular, even linear oscillators can form a radiative medium if the HF field has

alternate signs on the particle trajectory.

As an example, we consider particles that perform nondisturbed oscillations

along the x-axis, drift in the Y-direction, and are placed in the HF field with

components Ex and Ey. Further, we assume that the HF field is nonuniform in the

x-direction with a nonuniformity scale on the order of the amplitude of oscillations.

In this case, the oscillators drift along the y-axis with different velocities that depend

on the HF field phase. As a result, bunches emerge and radiate in the retarding phase

of the Ex field. It turns out that this is quadratic bunching (Gaponov et al., 1967).

This spatial bunching is not connected with the nonisochronism of oscillators.

Note that for “pure” phase bunching, oscillators are stirred and spatial compressions

in the medium are absent.

10.4 EXAMPLES OF ELECTRON CYCLOTRON MASERS

10.4.1 Oscillator of Barkhausen–Kurtz

The scheme of the oscillator of Barkhausen–Kurtz (1920) is shown in Fig. 10.5.

Structurally, this is a triode with a positive charged grid. Electrons of an undisturbed

beam perform oscillations, passing through the grid. The LC circuit that is tuned to

the frequency near the frequency of free electron oscillations is introduced between

the cathode and the anode. Electrons in the retarded phase of an HF field perform

FIGURE 10.4 Potential well with a shelf.
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damping oscillations near the grid and transfer their energy to the circuit. Electrons

in the accelerated phase of the HF field depart to the anode or the cathode with small

energy. The oscillator is a typical system with phase selection.

10.4.2 Strophotron

A three-electrode structure is placed into a uniform dc magnetic field (Alfven and

Rommel, 1954), as shown in Fig. 10.6. Electrons emitted from the cathode

perform oscillations in the potential well along the magnetic field. The presence

of a y-component of the dc electric field, together with the dc magnetic field B,

provides a drift of electrons in the crossed fields along the plates, so that the total

particle trajectories have a form of flat helices.

A strophotron can operate in two modes: phase selection and phase bunching. If a

potential well has a parabolic structure, the oscillations are harmonic. Then stimu-

lated radiation is determined by phase selection: Accelerated particles are deposited

on the cathode plates. Retarded particles oscillate with reduced amplitudes and

transfer energy to the LC circuit. The second mode is a result of a nonparabolic

potential well: The electrons become nonisochronous oscillators and phase bunch-

ing arises. This mode was investigated by Agdur (1957), a graduate student of

H. Alfven. Note that Agdur was probably the first person to formulate the principle

FIGURE 10.5 Barkhausen–Kurtz oscillator.

FIGURE 10.6 Strophotron.
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of phase bunching of nonisochronous oscillators. In reality, the operational mode of

the strophotron is a combination of the two modes indicated.

10.4.3 Ubitron

Spontaneous radiation of electrons in a spatial-periodic magnetic field discovered by

Motz (1951) used high-energy electron beams (up to 3 MeV) and produced milli-

meter and submilimeter radiation. Phillips (1960) developed a microwave amplifier

based on this principle which he called the ubitron (undulating beam interaction).

Stimulated radiation of an electron beam propagating in a periodic magnet system

(undulator) has been implemented on the basis of synchronous interaction of elec-

trons with a TE01 mode of a circular waveguide. The scheme of the undulator with

permanent magnets is shown in Fig. 10.1 in connection with magnetic bremsstrah-

lung. The synchronism condition is

v ¼ vu

1� v=vph
(10:44)

where the undulator frequency vu ¼ 2pv=L. v and vph are the electron and the wave
phase velocities, respectively, and L is the period of the magnetic structure. The ratio

v=vph 	 1 for subrelativistic ubitrons, and v � vu.

Development of ubitrons by the Phillips team continued until 1966, when the

project was terminated for a lack of financial support. The final 70-kV ubitron

produced 150 kW of peak power at 54 GHz with a maximum efficiency of 6%

and a maximum gain of 30 dB (Phillips, 1988). Intensive investigations of the

ubitron on the basis of relativistic Doppler frequency up-conversion (see Section

10.2.1) did not begin until 1971. This development transformed the ubitron into a

free electron laser (FEL) (see Section 10.14).

10.4.4 Peniotron

The electrodynamic system of the first peniotron (Yamanouchi et al., 1964) was a

double-pair ridged rectangular waveguide (Fig. 10.7). The electric field of the

TE wave in the waveguide is concentrated mainly between ridges (regions I and

III) and is practically absent in region II. A field frequency is chosen equal to one

of the even harmonics of the gyrofrequency (usually, the second or fourth). The axis

FIGURE 10.7 Bunching in a peniotron.
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of the undisturbed thin helical electron beam coincides with the axis of symmetry

of the waveguide cross section. The dimensions of the cross section and the

Larmor radius are chosen so that an undisturbed electron beam intersects all three

regions.

The vertical arrows in Fig. 10.7a and b correspond to the phase of the ac electric

field in which the electrons in region I are accelerated. When the particles pass half

of the circle and get to region III, the field phase is changed by 2p and the electrons

are retarded. In the beginning, the two actions indicated are equal. However, it is

necessary to take into account the drift of the guiding center in the cross fields

(static magnetic field and ac electric field). This drift for the phase of the ac electric

field shown in Fig. 10.7b is directed to the right. Therefore, rotating particles are

subjected mainly to retardation. The radii of the orbits are decreased, and the

beam kinetic energy is transferred to an electromagnetic field. For the inverse

phase of the electromagnetic field, the “left” electrons are retarded, but the direction

of the drift is also reversed. Therefore, the retardation also prevails, and the orbits

tighten to the left ridge (Fig. 10.7c). We see that nonsynchronism of oscillators is

not important in this case, and bunching can be considered spatial.

The peniotron has a number of attractive properties (e.g., high efficiency, possi-

bility of operation on harmonics of the gyrofrequency). Its main disadvantage is a

small volume of active medium in the wavelength scale and very tough requirements

for electron optics. Certain improvements have been made in the modified peniotron

(Razeghi et al., 1985), in which a ridged waveguide is replaced by a rectangular

waveguide with a TE11 mode. This version produces certain increases in efficiency

and output power in the centimeter range.

10.4.5 Magnicon

Magnicon is a scanning-beam microwave amplifier that is an advanced version of

the girocon, invented by G.I. Budker in 1967 (Budker et al., 1974). The input

cavity of a girocon with a circular polarized ac field works as a deflector, deflecting

electron trajectories of a relativistic beam with frequency v. The scanned beam can

interact synchronously with the rotating electromagnetic field of the output resona-

tor without bunching. This creates the preconditions for a significant increase in effi-

ciency compared with other types of microwave amplifiers. In contrast to the

girocon, in the magnicon (see, e.g., Nezhevenko, 1994) the output resonator is

placed in a dc magnetic field, which is conducive to the formation of helical trajec-

tories. The gyrofrequency of electrons vg is chosen to be equal to natural frequen-

cies of both input and output resonators v. As a result, a stimulated synchronous

bremsstrahlung arises. Thus, a magnicon can be referred to as one of the class of

electron cyclotron masers (ECMs).

The scheme of the simplest version of the magnicon is shown in Fig. 10.8. The

electron trajectories of the beam emitted by the high-voltage gun (1), are deflected

by the rotating ac magnetic field of TM110 mode in a cavity (2) at angle a0. The

radially deflected electrons travel along straight lines, forming a conic surface.

After the electrons enter the magnetic field formed by the magnet (3), and the
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electron trajectories are transformed into helixes with a pith angle a . a0. Then the

helical trajectories enter the output cavity (4) with a rotating entry point at the drive

frequency v, and the mode TM110 is excited at the same frequency v of the input

signal. If the gyrofrequency vg is equal to v, the interaction is supported during

many periods of RF oscillations. Particle energy is transformed into electromagnetic

field energy due to the decrease in transverse velocity. It can be shown (Nezhevenko,

1994) that axial electron velocity is conserved. Therefore, to achieve a high

efficiency, the maximum values of angle a should be provided. The large time

and long length of the interaction make it possible to diminish the RF field and

ohmic losses in the output cavity. In addition, the presence of a strong dc magnetic

field decreases beam interception. As a result, the magnicon can produce signifi-

cantly higher power at shorter wavelengths than can the gyrocon. The early magni-

con (1985) had the following parameters (Nezhevenko, 1994): frequency, 915 MHz;

beam voltage and current, 300 kV and 12 A; output power, 2.6 MW; efficiency,

73%, RF pulse duration, 30 ms; and gain, 30 dB.

Later versions of the magnicon included two interim (passive) cavities, which

made it possible to increase the deflection angle at the entry to the output resontor.

The latter is tuned to the second harmonic (mode TM210) of the drive signal. Para-

meters of this magnicon were as follows: frequency, 7 GHz; output power, 50 MW;

beam voltage and current, 420 kV and 240 A; efficiency, 50%; RF pulse duration,

5 ms; and gain, 50 dB. Note that the required small thickness of the electron beam

was provided by the electron gun with the extraordinary electrostatic compression

of 1000 : 1 in area.

An advanced version of the magnicon worked in the millimeter range (34 GHz)

(Nezhevenko et al., 2003). The RF system consisted of seven cavities. The last

output cavity was tuned to the third harmonic (mode TM311) of the drive frequency

11.2 GHz. The beam voltage and current were 500 kV and 215 A. The output power

measured was about 4 MW, and the pulse duration was 1.5 ms. The beam diameter

FIGURE 10.8 Magnicon.
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was less than 1 mm, which that a cathode current density of 12 A/cm2 corresponded

to an electrostatic compression of �2000 : 1 in area.

As we have seen, the CEM structures considered above for creating periodic

motion of electrons have typical transversal dimensions much larger than the wave-

length. But transversal dimensions of the electron beam are on the order of the spatial

oscillator scale (i.e., considerably less than wavelengths). So the difficulties of

short-wavelength TWTs and BWOs connected with the surface nature of slow

electromagnetic waves are transferred to the electron optics. Note that transversal

distributions of both fields (static fields in electron masers and slow-wave electro-

magnetic fields in conventional TWTs and BWOs) are described by the same

Laplace equation. The difficulties indicated can be partially overcome by the use

of relativistic and ultrarelativistic electron energies. However, these devices in

general are not suitable as sources of powerful CW or long-pulse radiation in the

MSM range.

In light of the foregoing discussion, free electron masers in which periodic trajec-

tories are formed by dc uniform (homogeneous) fields currently attract the greatest

attention. Of course, the dc magnetic field is an obligatory element. Thus, CEMs

with uniform dc fields are always electron cyclotron masers (ECMs). Only two

types of periodic trajectories are possible in uniform static fields (Section 1.5):

helical trajectories (e.g., uniform magnetic field) and trochoidal trajectories (e.g.,

perpendicular electric and magnetic fields, nonrelativistic approximation). Trajec-

tories of relativistic electrons in perpendicular E and B fields are periodic for

E=B , c. However, these trajectories are not trochoids and are quite complex

(see Landau and Lifshitz, 1987, and Section 1.5.4).

10.4.6 Trochotron (ECM with Trochoidal Electron Beam)

In Fig. 10.9 the interaction zone of an ECM with a trochoidal beam (a trochotron)

(Antakov et. al., 1960) is shown. In a weakly relativistic approximation (see Section

1.5.4), electron trajectories in uniform crossed fields are formed by superposition

of the rotation with the gyrofrequency in the plane perpendicular to B0 and the

transversal drift of the guiding center with velocity

vt ¼ E� B0

B2
0

(10:45)

For the proper length of the interaction zone, the quadratic bunching caused by the

relativistic dependence of a gyrofrequency on an energy prevailed, and stimulated

bremsstrahlung follows. These ECMs can be used as amplifiers and oscillators,

FIGURE 10.9 Interaction zone in a trochotron.
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depending on the type of electrodynamics system. The CW output power of a

35-GHz trochotron amplifier reached a record value of 1 kW in 1966.

The drift velocity vt diminishes with frequency because the magnetic field

B0 ¼ vg=h � v=h. Therefore, it is necessary to increase the value of the

electric field E0 for maintaining the drift velocity. However, the electric field

is limited by the effect of the electric breakdown of the interelectrode gap

(E0,max � 100 kV=cm). As a result, the drift velocity is diminished when the

wavelength is shortened, and the space-charge density increases for a given beam

current. For example, B0 � 10 T for a wavelength of 1 mm, and according to

Eq. (10.45), a drift velocity with E ¼ Emax is equal to vt ¼ 106 m=s, which corre-

sponds to the energy of the drift motion 3 eV. The latter leads to a strong

potential depression in an electron beam and inhomogeneity of the electric field.

These effects significantly limit the output power of trochoidal ECMs in the

short-wavelength band of the MSM range.

10.4.7 Gyromonotron: Oscillator with a Helical Electron Beam in a
Quasiuniform Waveguide Near Its Cutoff Frequency

The fundamental flawof the trochoidal ECM is absent in another ECM, the gyrotron, in

which electrons move in a purely magnetic uniform field B0 and the electron trajec-

tories are helix lines. The scheme of the gyromonotron (a gyrotron oscillator with a

single resonator) (Flyagin et al., 1977; Gaponov et al., 1976; Antakov et al., 1966) is

shown in Fig. 10.10.

Stimulated radiation arises as a result of quadratic bunching. Taking the Doppler

effect into account, the frequency of radiation is

v ¼ nvg

1� vd=vph
, n ¼ 1, 2, . . . (10:46)

where vph is the phase velocity and vd is the drift velocity of the guiding center. In

contrast to vt, in Eq. (10.45) the velocity vd depends on the conditions of beam

FIGURE 10.10 Gyromonotron. 1, Cathode; 2, emitter; 3, anode; 4, resonator; 5, collector;

6, output window.
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formation (see, e.g., Section 4.3), and in principle it is not the same for different elec-

trons of the beam. However, these distinctions are not significant for vph � vd.

Therefore, the electrodynamic system of a gyrotron is chosen as sections of a

weakly irregular waveguide with the cross section close to cutoff at an operation fre-

quency. So vph � c, and the frequency is practically independent of vd (v � vg) if

the distribution of the dc magnetic field at the resonator is uniform.

Let us illustrate the mechanism of the phasing of electron oscillators based on

their nonisochronism. Assume that rotating electrons interact with a wave in

which the electric field is linearly polarized in a plane perpendicular to the dc

magnetic field. In this plane, undisturbed electron trajectories have a circular

shape. One such trajectory of an electron emitted from a certain point on a

cathode is shown in Fig. 10.11 by solid circles. Electrons emitted from the same

point on a cathode at equal time intervals will fill that circle uniformly.

Let us decompose the linearly polarized HF electric field into the sum of two rotat-

ing circular polarized fields. One component, Ec, rotates synchronously with the elec-

trons and will affect their motion significantly. In the frame of reference that rotates

with the field frequency about the laboratory frame, this component looks like a

static uniform field, and together with the dc magnetic field, it produces a drift of elec-

trons and their shift to the left with the velocity vdr (without taking Coriolis accelera-

tion into account). Therefore, over time the electrons will come to occupy the dashed

circle with center O0 (Fig. 10.11a). In the laboratory frame they rotate around the

center O but with different radii: The radii of “left” electrons increase and those

of “right” electrons decrease. The increments of the radii of the left and right electrons

in the first approximation are equal. However, the change of energy is proportional

to the square of the radius; therefore, the change in left electrons’ energy prevails.

Thus, an ensemble of isochronous oscillators on average absorbs HF field

energy. This effect has been established in a general form in Section 10.3.2.

Let us take into account nonisochronism of the electron rotation. An increase in

electron energy at an accelerated HF field is accompanied by an increase in mass

and a decrease in gyrofrequencies. Therefore, particles in the rotating frame

not only drift to the left but turn clockwise. Electrons in the retarded phase lose

mass and turn counterclockwise. As a result, a bunch is formed in the neutral

phase of the HF field (the upper part of the Larmor circle) (Fig. 10.11b). This

system could begin to radiate if the bunch is displaced in the retarded phase of

the field (Fig. 10.11c). This is achieved by choosing a positive frequency detuning

FIGURE 10.11 Phasing of electrons in a gyrotron.
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Dv ¼ v� vg . 0. Subsequent passage of the bunch further into an accelerated

phase can be eliminated by limiting the transit time (lifetime) �t: Dv�t , p.
It may readily be shown that the orbital bunching considered belongs to a type of

inertial bunching (see Section 9.2.3). Indeed, let us imagine that electrons have inter-

acted with an HF field and after that entered a region free from the HF field. Then the

difference of masses and the corresponding difference of angular velocities that were

accumulated during interaction would be conserved and would lead to continuation

of the bunching. This bunching has much in common with the bunching seen in

rectilinear electron beams, which is being used in conventional O-type electron

beam devices (e.g., klystrons, TWTOs, BWOs). This analogy suggests a correspon-

dence between O-type devices and the various types of gyrotrons. Table 10.1 pre-

sents sketches of devices of both classes. The longitudinal distributions of the HF

field shown in the table are the simplest approximations that were assumed in esti-

mation of the efficiency in a gyrotron theory (Flyagin et al., 1977). In particular, the

uniform approximation and the narrow gap approximation were used in gyromono-

tron and the gyroklyston theory, respectively. The form of electrodynamic systems

in gyroTWTs and gyroBWOs was assumed to be uniform waveguides. In all cases,

the magnetic field was assumed uniform. The orbital efficiency shown in Table 10.1

is by definition equal to the ratio of the electron power to the power of the oscillatory

motion in the electron beam. Experimental data in general are in accord with the

theory. It is important to note that optimization of the longitudinal field distribution

may lead to a considerable rise in efficiency. The principal advantages of the gyro-

trons described above have been realized in an extensive set of theoretical and

experimental work. These studies have demonstrated that gyrotrons do not have

competitors as sources of CW and long-pulse radiation in the MSM range.

Below, the physics of these devices is considered in more detail. Primary attention

is paid to the gyromonotron (note that this oscillator is often called simply a gyrotron

TABLE 10.1 Similar Features ofGyrotronDevices and ElectronBeamDevices ofO-Type
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in the literature). The most significant theoretical and experimental results in theory

and experiments with cyclotron masers have been obtained with gyromonotrons.

Finally, a large part of gyromonotron theory can be extended directly to other

types of gyrotrons. Note that the main differences between magnicon and gyrotron

designs (but not mechanisms!) consist of the method used to create electron oscil-

latory motion.

10.5 RESONATORS OF GYROMONOTRONS (FREE AND
FORCED OSCILLATIONS)

10.5.1 Construction and Basic Parameters of Resonators

As mentioned earlier, we will focus on the gyromonotron: that is, a gyrotron-type

oscillator with a single cavity. The configuration of the resonator at first glance is

very simple (Fig. 10.12). In reality, one should take into account a number of

factors that arise from the necessity of obtaining high power in the MSM range,

peculiarities of the bunching and radiation mechanism, design considerations, and

so on. Let us discuss some of the most important requirements.

1. Axial symmetry has significant technological and constructive advantages. In

particular, it is optimal for a magnetic system (usually, solenoids), and for just this

reason, it is preferable for electron-optical systems.

2. Condition vph � c leads to design of the resonator as a section of a quasi-

regular waveguide that is partially closed at the ends and has a cross section close

to cutoff. Assume that k is the transversal wave number for a chosen wave

type. Then the condition of quasicriticality is evidently

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

p
	 k (10:47)

3. Transverse dimensions of the resonator must be large in the wavelength scale;

that is,

R

l
� 1 (10:48)

This condition is not only the result of a desire to have a large volume of the active

medium but also of necessity to dissipate high Joule losses on resonator walls.

FIGURE 10.12 Gyromonotron resonator.
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4. The length L of the resonator should be sufficient for the development of quad-

ratic bunching. From the results of gyrotron theory (Nusinovich, 2004; Schneider,

1959; Yulpatov, 1981), an acceptable efficiency for the gyromonotron can be

obtained for the value of the nonisochronous parameter m � 1. Thus, the length

of the resonator according to Eq. (10.43) equals

L

l
¼ m

bz

pb2
?
¼ m

1

pgb?
� 1

pgb?
(10:49)

where g ¼ v?=vz. Let us estimate L=l, assuming that m ¼ 5, g ¼ 2, and b? ¼ 0:3
(U0 � 30 kV). We obtain L=l � 4. Note that assumed values of m and g agree

with the parameters of real gyromonotrons.

5. In regular hollow waveguides, propagation of both TE and TM modes is

possible. According to the theory (see, e.g., Bratman et al., 1977), interaction of

electrons in the helical beam with TM modes, having a longitudinal component

of the HF electric field, is significantly less effective for subrelativistic electron

energy than with TE modes, as a result of the disbunching effect of the HF longi-

tudinal electric field. A balance of TE and TM modes is restored for relativistic

energy. Below we use the mode notation, TEmnq, where m is an azimuthal

(angular) index, n is a radial index, and q is a longitudinal index. The index q

will often be omitted.

6. Slight waveguide irregularity [condition (10.47)] leads promptly to the need to

apply high modes in the circular waveguides, for which one or both transversal

indexes are significantly greater than 1. For example, for the TE11 mode, the ratio

R=l is only about 0.3. But the high modes are not stable: Sharp variation of the

radius results in the transformation of a chosen mode in other modes, which radi-

cally changes the efficiency of the interaction and the characteristics of the radiation.

Note that a partial reflection of the operation field mode takes place for a small

length of the narrowed section and leads to a leak of the radiation power into an

output waveguide. A choice of the narrow spot geometry then allows us to use

this element as a power output (diffraction power output) and also as a corrector

of the resonator’s Q-factor. The idea of the diffraction power output belonging to

Gaponov and Petelin in, 1965 (Gaponov et al., 1976) formed an important landmark

in the history of the gyrotron.

Taking into account all of the foregoing, we can summarize that cylindrical, long,

and slightly irregular waveguides should be used as gyromonotron resonators that

are supplied by the diffraction power output and operate on the TEmnq modes with

a frequency close to the cutoff.

10.5.2 Free Oscillations of Gyrotron Resonators

Below, we consider axially symmetric resonators and neglect ohmic losses. In this

case, damping of free oscillations is caused only by the energy radiation through the

open end cross sections z ¼ z1 and z ¼ z2 (Fig. 10.12).
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It can be shown (Katselenbaum, 1998) that a transverse distribution of the elec-

tromagnetic field in any cross section of a sufficiently weakly nonuniform wave-

guide coincides with the distribution of the field in a regular waveguide of the

same crosssection. (The latter is called a comparison waveguide.) For TEmn

modes the axial component of the magnetic field Bz(r?, z) = 0 and can be

represented as (Appendix 6)

Bz( r?,z) ¼ C(z)Bz?( r?) (10:50)

where Bz? is a membrane function that satisfies the equation

r2
?Bz? þ k2Bz? ¼ 0 (10:51)

with the differential operator

r? ¼ @

@r
ir þ 1

r

@

@w
iw ¼ @

@x
ix þ @

@y
iy (10:52)

The boundary condition at the cross section of the comparison waveguide should be

@Bz?( r?)
@n

¼ 0 (10:53)

where k ; kmn is an eigenvalue of the membrane equation (10.51). The eigen-

function in the axially symmetrical resonator is

Bz(r,w,z) ¼ C(z)Im(kr)e
�imw ¼ Af (z)Im(kr)e

�imw (10:54)

where Im is themth-order Bessel function of the first kind. The boundary condition in

this case is

d Im(kr)

dr

����
r¼R

¼ 0 (10:55)

The expression for Bz as a function of Cartesian coordinates is given in Appendix 6.

The boundary value problem (10.51)–(10.53) determines the spectrum of eigen-

values k. Because the contour of the transverse cross section (in our case, a circle) is
different for each cross section, the radius of the circle in Eq. (10.55) is a function of

z, R ¼ R(z). Therefore, the eigenvalues of Eq. (10.51), k ¼ k(z). The transverse field
components are expressed through Bz (see, e.g., Jackson, 1999):

B? ¼ � ib

k2
r?Bz, E? ¼ iv

k2
(r? � iz)Bz (10:56)
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Next we find the amplitude C(z). It can be shown (Appendix 6) that

d2C

dz2
þ b2C ¼ 0 (10:57)

Equation (10.61) is distinguished from the analogous equation for a regular wave-

guide by the value of b2(z) ¼ k2 � k2(z), which is a function of z. For the free

oscillations considered, the field at the end cross sections z ¼ z1 and z ¼ z2
(Fig. 10.12) is determined by the radiation conditions:

dC(z)

dz

����
z¼z1

¼ ibC(z1),
dC(z)

dz

����
z¼z2

¼ �ibC(z2) (10:58)

Nontrivial solutions of Eq. (10.57) with conditions (10.58) exist for some discrete

complex values v ¼ v0 ¼ v01 þ iv02 that determine the natural frequency v01

and the diffraction Q-factor of the resonator

Qdif ¼ v01

2v02

(10:59)

Obviously, v02 . 0 for damping oscillations.

10.5.3 Energy Balance for Free and Forced Stationary Oscillations

Let us turn to Maxwell’s equations for complex amplitudes [Eqs. (A6.3) in

Appendix 6]. Multiplication of the first equation by the factor E� dt and integration

over the resonator volume between cross sections z ¼ z1 and z ¼ z2 (Fig. 10.12)

gives ð
V

E�curlB dt ¼ iv

c2

ð
V

jEj2dtþ m0

ð
V

jE� dt (10:60)

Integration of the left side by its parts, application of Gauss’s theorem, and substi-

tution of the second of Eqs. (A6.3) leads to the following equation:

v

c2

ð
V

jEj2 dt� v�
ð
V

jBj2 dt ¼ i

þ
S

(E� � B)n dsþ im0

ð
V

jE� dt (10:61)

Equating separately the real and imaginary parts of Eq. (10.61) and taking

v ¼ v1 þ iv2 into account gives

v1

ð
V

10jEj2 � 1

m0

jBj2
� 	

dt ¼ � 1

m0

Im

ð
S

(E� � B)n ds� Im

ð
V

jE� dt (10:62)

2v2

ð
V

10jEj2 þ 1

m0

jBj2
� 	

dt ¼ 1

m0

Re

ð
S1,2

(E� � B)n dsþ Re

ð
V

jE� dt (10:63)
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In Eqs. (10.62) and (10.63), we have replaced the integration along a closed surface

of the resonator by the integration along the end cross sections S1,2 due to zero ohmic

losses. Consider two particular cases.

Free Oscillations (j 5 0) All values in this case will be denoted by the index

0. Note that the integral
Ð
S
(E�

0 � B0)n ds can be considered as a real function of a

real frequency v because the waves at the end cross sections are purely traveling,

for which E and B are in phase. Then we obtain from Eq. (10.62)

W0 ¼
ð
V

10jE0j2 dt ¼ 1

m0

ð
V

jB0j2 dt (10:64)

where W0 is the total energy (sum of electric and magnetic energies) stored in

the resonator. The equality of the time-averaged electrical energy stored in the

resonator to the magnetic energy is a well-known property of closed resonators

without ohmic losses. If the natural frequency is complex, Eq. (10.64) is satisfied

approximately for open resonators with a high Q-factor.1

Another common property of free oscillations follows from Eq. (10.63). Taking

j ¼ 0 and using Eq. (10.64), we obtain

2v02W0 ¼ P0 (10:65)

where P0 ¼ 1=2m0 Re
Ð
S
(E�

0 � B0)n ds is the average power of diffraction

losses. Using the definition of the Q-factor, Q ¼ v01W0=P0, we arrive at formula

(10.59).

Forced Stationary Oscillations with a Fixed Transverse Field
Structure Assume that j = 0 and oscillations are stationary (i.e., the balance of

energies radiated by the beam and radiated from the resonator has reached a

steady state). For these oscillations, v2 ¼ 0 and v is real. The important assumption

that transverse distributions of the HF field in question coincide with the structure of

the free oscillations field is not evident. Nevertheless, the detailed theory, based on

numerical results (Bratman et al., 1973, 1981a), shows that structures of both fields

are close for a sufficiently highQ-factor of the resonator (i.e., the validity of the fixed

field structure approximation).

Two relations that determine the amplitude and frequency of the stationary oscil-

lations can be obtained (Appendix 7):

2v02W ¼ ReP (10:66)

2(v� v01)W ¼ Im P (10:67)

1The value of the Q-factor of the gryotron resonator can be considered high when Q=Qmin � 1, where

Qmin ¼ 4p(L=l)2 is the Q-factor of the resonator that is formed by a section of a uniform waveguide

with length L that is matched with a load (Bratman et al., 1973).
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where the complex power extracted by the resonator from the electron beam is

P ¼ � 1

2

ð
V

jE� dt ¼ � 1

2p

ð
V

ð2p
0

j( r, t)E�e�ivt dvt dt (10:68)

Note that Eqs. (10.66) and (10.67) coincide with the respective equations of the

resonant self-excited circuit: Eqs. (6.53) and (6.54). The latter is also true only

when Q � 1.

If the density of the exciting current is given, and the distribution of the HF field

is determined by an approximation of the fixed field structure, the right-hand sides

of Eqs. (10.66) and (10.67) can be considered known. Then Eq. (10.66) determines

the amplitudes of the fields that are contained in W, and Eq. (10.67) yields the

mismatch between the frequency of stationary oscillations and the natural frequency

of the resonator.

However, in reality the HF current density is not given. The relations described

by Eqs. (10.66) and (10.67), can then be considered solutions of the first subproblem

of the general self-consistent problem. The second subproblem consists of obtaining

j(r, t), which is based on the analysis of particle motion in an HF field, the amplitude

of which should be found. This analysis for the gyrotron is simplified significantly

by averaging of the motion equations.

10.6 THEORY OF A GYROMONOTRON2

10.6.1 Equation of Electron Motion in a TE Wave at
Quasi-Cutoff Frequency

The equation of the electron motion in a static magnetic field B0 and HF fields

E and B reads

dp

dt
¼ �e0 E� e0 v� (B0 þ B) (10:69)

The magnetic field B0 is assumed uniform. According to Eq. (10.56), B? ¼ 0,

because the propagation constant b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

p
is close to zero at the cutoff

frequency. So the HF magnetic field is directed along the z-axis (i.e., parallel to

B0). The HF electric field E in the TE wave has only a transverse component.

Thus, the equations of motion [Eq. (10.69)] accept the form

dp?
dt

¼ �e0 E? � e0(B0 þ Bz)( v? � iz) (10:70)

dpz

dt
¼ 0 (10:71)

2The content of Sections 10.6 and 10.7 essentially follows a paper of Yulpatov (1981).
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Obviously, the conservation of longitudinal momentum is a direct consequence

of using quasi-cutoff waves for which the phase velocity vph � c. In this case the

wave propagates almost perpendicular to the waveguide axis.

Let us rewrite Eqs. (10.70) and (10.71) by taking p(t) ¼ p½z(t)� and replacing the

independent variable t by z ½d=dt ¼ vzd=dz�. We obtain the equations

dp?
dz

þ bgp? � iz ¼ � e0 m

pz
G (10:72)

dr?
dz

¼ p?
pz

(10:73)

dt

dz
¼ m

pz
(10:74)

m ¼ m0g ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (10:75)

pz ¼ const: (10:76)

where bg ¼ e0B0=pz ¼ vg=vz ¼ const: is the electron propagation constant of the

wave whose frequency is the gyrofrequency, and the phase velocity is the electron

velocity vz. This constant has the meaning of the turning angle of the electron at a

Larmor circle when a particle shifts by a unit of length along z. The factor

G ¼ E? þ Bzv? � iz is an HF Lorentz force acting on a unit positive charge.

Using Eqs. (10.56), we obtain G ¼ ðiv=k2Þ(r? � iz)Bz þ v? � izBz. For the cutoff

frequency, k � k ¼ v=c. Then

G ¼ ic

k
(r? � iz)Bz þ v? � izBz (10:77)

A direct solution to the system (10.72)–(10.76) presents significant difficulties

if one takes into account the fact that the Lorentz force G is a complicated function

of time and particle coordinates. However, the motion is quasiperiodic, and it

is possible to simplify the equations considerably by averaging over rapidly

oscillating variables (this is a standard method in the theory of nonlinear

oscillations).

10.6.2 Reducing Eqs. (10.72) and (10.73) to Slow Variables

Let us introduce the following change of variables:

x ¼ X þ r? cos u, y ¼ Y þ r? sin u

px ¼ �p? sin u, py ¼ p? cos u

r? ¼ p?
bg pz

, u ¼ bgzþC

(10:78)
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Substituting Eqs. (10.78) into Eqs. (10.72) and (10.73), after simple manipulations

we arrive at the following equations with respect to the new variables

X, Y , p?, and C.

p0? ¼ e0

vz
Gu, p?C0 ¼ � e0

vz
Gr

X0 ¼ 1

B0vz
Gy, Y 0 ¼ � 1

B0vz
Gx

(10:79)

where

Gu ¼ Gx sin u� Gy cos u, Gr ¼ Gx cos uþ Gy sin u (10:80)

The primed symbols mean d=dz.
Let us discuss the meaning of the new variables. Assume that the HF force

G ¼ 0. Then Eqs. (10.72) and (10.73) describe the helical motion of the electron

(Fig. 10.13). Here X0 and Y0 are transverse coordinates of the guiding center (the

axis of a helix) and r?0 is the Larmor radius. The coordinates and momenta of

particles at the helical trajectory are equal to

x ¼ X0 þ r?0 cos u0, y ¼ Y0 þ r?0 sin u0

px0 ¼ m_x ¼ �p?0 sin u0, py0 ¼ m_y ¼ p?0 cos u0
(10:81)

where u0 ¼ vgt þC0 ¼ bgzþC0, r?0 ¼ v?0=vg ¼ p?0=e0B0, and p?0 is the

undisturbed oscillatory momentum. It is clear that X0, Y0, p?0, r?0, and C0 are con-

stants. Comparison of Eqs. (10.81) with Eqs. (10.78) shows that X, Y , p?, r?, and C
can be considered coordinates of the guiding center, the transverse electron momen-

tum, the Larmor radius, and the phase, respectively. However, although the new

values are variable, they should change only slightly during a gyroperiod. Otherwise,

the synchronism conditions would be violated, and resonance would be impossible.

10.6.3 Averaging of Equations

The slowness of new variables does not exclude their small pulsations. Such

“tremors” are induced by components of the HF force G on the right-hand side of

Eqs. (10.79) explicitly and indirectly (through coordinates of rotating electrons),

FIGURE 10.13 Parameters of an undisturbed electron trajectory.
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depending on the fast variable u. However, the presence of fast oscillations does not
influence the characteristics of the radiation in the frame of the resonance mechan-

ism. Therefore, averaging of the right-hand sides in the equations indicated is an

adequate procedure. In this case, the slowly changing components are isolated,

leading to significantly simpler, “reduced” equations.

The HF force averaged over the rotation phase u is equal to

G( r, t) ¼ 1

2p

ð2p
0

G( r, t) du ¼ 1

2p
Re

ð2p
0

G(x,y,z)eivt du (10:82)

Since x and y are periodic functions of u [Eqs. (10.78)], the complex amplitude

G(x, y, z) can be represented by the Fourier series

G x, y, zð Þ ¼
X1

m¼�1
Gme

�imu (10:83)

where amplitudes of harmonics are equal to

Gm ; Gm(X,Y ,r?,z) ¼ 1

2p

ð2p
0

G(x,y,z)eimu
0
du0 (10:84)

Substitution of Eq. (10.83) into Eq. (10.82) yields

G( r, t) ¼ Re
1

2p

X1
m¼�1

ð2p
0

Gme
i(vt�mu) du (10:85)

Because Gm does not depend on u, the averaging reduces Eq. (10.85) to the

calculation of integrals:

1

2p

ð2p
0

ei(vt�mu) du (10:86)

The phases v t � mu in general change quickly in the interval 0 4 2p, so these

integrals are small. But let us assume that for some m ¼ n, the phase vt � nu is

approximately constant. Then the corresponding integral yields the main contri-

bution to the sum in Eq. (10.85). Using the last equation from Eqs. (10.78), we

can obtain the condition of the phase constancy

d

dt
(vt � nu) ¼ v� nbgvz � nC0 ¼ 0

Because C0 is small, we obtain the condition of the gyroresonance v� nvg � 0.
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Thus, we can retain in the series equation (10.85) only the nth term that contains

the integral

1

2p

ð2p
0

ei(vt�nu) du ¼ ei(vt�nu) (10:87)

As a result, we obtain

G( r, t) ¼ Re(Gne
�iq) (10:88)

where

q ¼ �vt þ nu ¼ �vt þ nbgzþ nC (10:89)

The value of q changes slowly. As such, this is sometimes called a slow phase.

Note that if a drift of electrons (with the velocity vz) is present, Eq. (10.87) is

valid in the guiding center frame only. In the laboratory frame, instead of

Eq. (10.82) the average value of G should be written as

G( r, t) ¼ 1

2p
Re

ð2p
0

Gei(vt�bz) du (10:90)

Therefore, the exponential factor in the integral of Eq. (10.87) should be replaced by

vt � bz� nu. Then the gyroresonance condition becomes v� bvz � nvg (i.e., the

Doppler factor appears).

Let us replace components Gu, Gr, Gx, and Gy in Eqs. (10.79) by their averaged

values Gun, Grn, Gxn, and Gyn [Eqs. (10.84) and (10.88)], and also take

nC0 ¼ q0 þ v=vz � nbg. Then we obtain averaged (“reduced”) gyrotron equations:

p0? ¼ e0

vz
Re(Gune

�iq) (10:91)

p? q0 þ v

vz
� nbg

� �
¼ e0n

vz
Re(Grne

�iq) (10:92)

X0 ¼ 1

vzB0

Re(Gyne
�iq) (10:93)

Y 0 ¼ � 1

vzB0

Re(Gxne
�iq) (10:94)

Calculation of the Fourier coefficients Gun, Grn, Gxn, and Gyn is described in

Appendix 8.
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10.6.4 Hamiltonian Form of Averaged Equations

The averaged equations can be rewritten in a form in which the relativistic electron

energy

E ¼ mc 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0c
4 þ ( p2? þ p2z )c

2

q
(10:95)

and the slow phase q forms a pair of variables similar to a canonical conjugated pair

for Hamiltonian equations (I.32).

Because pz ¼ const:, it is easy to see from Eq. (10.95) that E0 ¼ v?p0?. Multi-

plying Eq. (10.91) by v? and taking the first of Eqs. (A8.9) into account leads to

E0 ¼ e0
p?
pz

Re Gune
�iq


 � ¼ e0
p?
pz

Re �ic
dIn

dj
Lne

�iq

� �
¼ e0Re

@H

@q

� �
(10:96)

where we introduce the Hamiltonian

H ¼ c
p?
pz

dIn

dj
Lne

�iq (10:97)

and

Ln ¼ DnBz(X,Y ,z) ¼ 1

kn
@

@X
þ i

@

@Y

� �n

Bz(X,Y ,z) (10:97a)

The second equation for the Hamiltonian pair is obtained from Eq. (10.92) and the

second equation in Eq. (A8.9):

q0 þ v

vz
� nbg ¼

e0n

vz p?
Re � c

n

d

dj
j
dIn

dj

� �
Lne

�iq

� 	
(10:98)

where

j ¼ kr? ¼ k
v?
vg

¼ k
p?
e0B0

(10:99)

Then substitution of Eqs. (10.97) and (10.99) into Eq. (10.98) and using pz ¼ const:
yield

q0 þ v

vz
� nbg ¼ �Re

km

p?B0

@H

@j

� �
¼ �Re

km

p?B0

@H

@z
=@j

@z

� �
¼ �Re

e0

v?p0?

@H

@z

� �
¼ �e0Re

@H

@E

� � (10:100)
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Similarly, it is straightforward to convert Eqs. (10.93) and (10.94) using Eqs. (A8.9).

Finally, the Hamiltonian version of the gyrotron equations takes the form

E0 ¼ e0Re
@H

@q

� �
(10:101)

q0 þ v

vz
� nbg ¼ �e0Re

@H

@E

� �
(10:102)

X0 ¼ � 1

vB0

Re
@H

@Y

� �
(10:103)

Y 0 ¼ 1

vB0

Re
@H

@X

� �
(10:104)

10.6.5 Energy Integral of Averaged Equations

The current density j and the electric field E in Eq. (10.68) for the complex power P

have not been expressed through slow variables. Therefore, P contains small

pulsations and should be averaged. Let us first convert P using the approximation

of a thin beam. In this case, electron velocities and the HF field are con-

sidered uniform over the beam cross section. For TE modes, the factor

jE� ¼ j?E
�
? ¼ jzp?=pzE

�
?. Then Eq. (10.68) can be written as

P ¼ � 1

2p

ð2p
0

ð
V

jz
p? E�

?
pz

e�ivt dvt dt (10:105)

The volume integral of jz dt in the thin beam approximation is reduced to I(t, z) dz.

Next, let us apply the law of charge conservation (Section 7.3.2), I dt ¼ �I0 dt0,

where t0 and I0, respectively, are the input time and the positive current. Using

the equality p?E
� ¼ p?E�

? ¼ p?G�
u, we obtain

P ¼ I0

2ppz

ð2p
0

ðL
0

p?G�
ue

�ivt dvt0 dz

The orbital average complex power would then be equal to

P ¼ I0

2ppz

ð2p
0

ðL
0

dvt0 dz
1

2p

ð2p
0

p?G�
u du (10:106)

The calculation of the inner integral coincides with the procedure for averaging the

right-hand sides in Eqs. (10.79): expansion of G�
u in a Fourier series and separation

of a resonance term. Using Eqs. (10.87), (10.89), (A8.9) and (10.97), we obtain the

averaged complex power

P ¼ I0

2ppz

ð2p
0

ðL
0

p?G�
une

iqdz dvt0 ¼ � I0

2p

ð2p
0

ðL
0

@H�

@q
dz dq0 (10:107)

where dv t0 ¼ �dq0 because q0 ¼ (q)z¼0 ¼ nC0 � vt0.
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The energy integral is equal to the real part of the averaged complex power:

ReðPÞ ¼ � I0

2p

ð2p
0

ðL
0

Re
@H

@q

� �
dz dq0 ¼ � I0

2pe0

ð2p
0

ðL
0

dE

dz
dz dq0

¼ I0

e0

1

2p

ð2p
0

½E(0)� E(L)� dq0

(10:108)

Here the first of Eqs. (10.101) was used. The physical meaning of Eq. (10.108) is

clear: Averaging over the period of the real power that an electron beam delivers

to the HF field is equal to averaging the electron power loss over the initial phase.

10.6.6 Averaged Equations in Polar Coordinates

Let us turn to polar coordinates of the guiding center:

X ¼ R cosC, Y ¼ R sinC (10:109)

In this case, averaged equations (10.101) and (10.102) do not change. Equations

(10.103) and (10.104) are converted to

RR0 ¼ � 1

vB0

Re
@H

@C

� �
(10:110)

RC0 ¼ 1

vB0

Re
@H

@R

� �
(10:111)

Let us express function H through the coordinates R and C using Eqs. (10.97) and

(10.54). Taking into account Eqs. (A8.8), (10.54), and (10.109), we obtain

L1 ¼ 1

k

@

@X
þ i

@

@Y

� �
C(z)Im(kR)e

�imC

¼ eiC

k

@

@R
þ i

R

@

@C

� �
C(z)Im(kR)e

�imC

¼ C(z)Im�1(kR)e
�i(m�1)C ¼ Af (z)Im�1(kR)e

�i(m�1)C

Ln ¼ Af (z)Im�n(kR)e
�i(m�n)C

(10:112)

Then

H ¼ c
p?
pz

dIn

dj
Lne

�iq ¼ Af (z)c
p?
pz

dIn(j)

dj
Im�n(kR)e

�i(m�n)Ce�iq (10:113)

Equations (10.110), (10.111), and (10.113) together with Eqs. (10.101) and (10.102)

and the averaged complex power equation (10.107) form a full system of averaged

equations for the axially symmetric gyrotron. These equations have, besides
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the energy integral, an additional integral of motion. According to Eq. (10.113),

@H

@C
¼ �i(m� n)H ¼ (m� n)

@H

@q

Then, using Eqs. (10.110) and (10.111), we obtain

RR0 ¼ 1

2
(R2)0 ¼ �m� n

vB0

Re
@H

@q

� �
¼ � m� n

e0vB0

E0

Integration of this equation gives

E � E(0) ¼ e0vB0

2(n� m)
½R2 � R2(0)� (10:114)

The change in energy turns out to be proportional to the radial shift of the guiding

center. If the order of the synchronous harmonic n is greater than the azimuthal

indexm of the mode, the transfer of energy by electrons is accompanied by a decrease

in R. For example, an electron interacting with the mode TE01 always, on average,

approaches the resonator axis; the radius of the guiding center for interaction with

the mode TE1p at the first harmonic (fundamental cyclotron resonance), does not

change; and so on.

The changes indicated in R are negligible for subrelativistic energies, however.

It can be readily estimated from Eq. (10.114) that

R� R(0)

R(0)
� 1

4p2

E � E(0)

E0

l

R(0)

� 	2
n(n� m) (10:115)

For example, for m ¼ 0, R(0) ¼ l, E � E(0) ¼ 100 keV, and E0 ¼ 500 keV (the

rest energy of the electron), we obtain DR=R(0) � 0:05 even for n ¼ 3.

Applying Eq. (10.114) allows us to reduce the system of four equations [Eqs.

(10.101) and (10.102) and Eqs. (10.110) and (10.111)] to a system of two equations

(Yulpatov, 1981):

dE

dz
¼ e0Re

@H

@ �q

� �
d �q

dz
þ v

vz
� nbg ¼ �e0Re

dH

dE

� � (10:116)

where the new phase is �q ¼ qþ (n� m)C, and the total derivative is

dH

dE
¼ @H

@E
þ @H

@R2

dR2

dE

These equations form a complete system: They do not containC because according to

Eq. (10.113)H ¼ H(R, �q), and the radius R included inH is expressed simply through

E [Eq. (10.114)].
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10.7 SUBRELATIVISTIC GYROTRONS

10.7.1 Introduction

In the traditional scheme of a gyrotron (i.e., in the synchronism v ¼ nvg), high

efficiency can be realized when a reduction in the electron energy during interaction

does not change substantially the particle mass and hence the gyrofrequency.

Therefore, the electron energy must satisfy the condition (E � E0)=E0 	 1, where

E0 is the electron rest energy. This inequality is the condition of the subrelativism

v=c 	 1 and allows us to consider the gyrotrons as classical subrelativistic

devices. More careful analysis (Bratman et al., 1981b) shows, however, that even

in an approximation of the fixed field structure, the efficiency of relativistic gyro-

monotrons may remain on a sufficiently high level in the moderate energy range

(200 to 500 keV). In this case the attainment of 20 to 30% efficiency is provided

by reducing the interaction space length, thus expanding the cyclotron resonance

bandwidth. Bratman et al. used an approximate model based on the reduction

of equations of a relativistic gyromonotron to a subrelativistic version, which

reinforces the universality of the subrelativistic equations considered below.

These results have been confirmed in experiments with relativistic high-power

gyromonotrons Black et al. (1990). An output power of 100 MW at 35 GHz in

the TE62 mode with an efficiency of approximately 8% of a 800-kV gyromonotron

has been achieved. A helical electron beam in the oscillator was formed by the

magnetically insolated explosive emission diode (see Section 4.8) with a pulse dur-

ation of �50 ns and a short pump magnet, arranged after the diode, with a nonadia-

batic change in the axial magnetic field. As a result, electrons passing the region of

the pump magnet acquire an initial transversal magnetic moment. The latter is

increased further in a routine adiabatically increased magnetic field.

We can also refer to the important result of recent theoretical and experimental

optimization of a relativistic gyromonotron (Zaitsev et al., 2002). The numerical

simulation was based on the solution of relativistic equations of motion combined

with the nonuniform string equation for the stationary regime (see, e.g., Nusinovich,

2004):

d2C

dz2
þ b(z)2C ¼ I

ð2p
0

wn=2eiq dq0 (10:117)

where I is a dimensionless current and w is determined below in Eq. (10.123).

Unlike the analogous equation (10.57) for free oscillations, this equation determines

a self-consistent field profile. The results have shown that the reduction in efficiency

after passing over to the relativistic range and with an optimization of the field

profile is considerably lower than predicted by theory (Bratman et al., 1981b).

The parameters achieved for an X-band 280-keV experimental gyromonotron

were: efficiency, 50% at a power of 7 MW; and efficiency, 30% at a power of

11 MW. A gyromonotron gun was provided by a thermoionic cathode, and the

microwave pulse duration was about 6 ms.
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10.7.2 Derivation of Subrelativistic Averaged Equations

In the derivation below, we assume Eqs. (10.101) and (10.102), the Hamiltonian

(10.110), and the expression for active power (10.105). Equation (10.101), which

determine the motion of guiding centers, are unnecessary, because the guiding

center displacement is negligible in subrelativistic approximation [Eq. (10.115)].

Thus, H can be calculated using the input coordinates of these centers. Let us

introduce the following dimensionless variables.

1. Relative oscillatory and drift velocities at the input to the interaction space:

b?0 ¼
v?0

c
, bz ¼

vz0

c
(10:118)

It is clear that these values are small in a subrelativistic approximation.

2. Longitudinal coordinate:

z ¼ pb2
?0

bz

z

l
(10:119)

3. Parameter j ¼ kr? [argument of the Bessel function In(j)] is small in the case

of synchronism and when n is not very large:

j ¼ kr? � nvgr?
c

¼ n
v?0

c

p?
p?0

¼ nb?0

ffiffiffiffi
w

p 	 1 (10:120)

Therefore, the derivative dIn(j)=dj that enters the Hamiltonian H [Eq. (10.97)] can

be replaced by the first term of the power series dIn(j)=dj � njn�1=2nn!. Thus, H
adopts the form

H ¼ m0cvb
4
?0

4e0bz

wn=2e�iqF (10:121)

with the field parameter

F ¼ e0

m0v

nn

2n�2n!
bn�4
?0 Ln ¼ Af (z)

e0

m0v

nnbn�4
?0

2n�2n!
Im�n(kR)e

�i(n�m)C (10:122)

Ln was defined in Eqs. (10.112).

4. Subrelativistic oscillatory energy:

w ¼ E?
E?0

¼ p2?
p2?0


 1 (10:123)
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This ratio allows us to rewrite Eq. (10.101) in the following way. Since p2z ¼ const.,

we can see from Eq. (10.95) that E2� E 2
0 ¼ p2?0c

2(w� 1). The derivative of this

relation gives

dw

dz
¼ 2EE0

p2?0c
2

(10:124)

Then using Eqs. (10.116), (10.121), and (10.119) and assuming that E ¼ mc2,

we obtain

dw

dz
¼ @

@q
Re(wn=2Fe�iq) (10:125)

The term (v=vz)� nbg in Eqs. (10.116) is equal to

v

vz
� nbg ¼

v

pz
½m� m(0)� þ v

vz(0)
� nbg

where the mass difference is approximately equal to

m� m(0) ¼ E � E(0)

c2
� p2?0

2m0c2
(w� 1)

Then we obtain

v

vz
� nbg ¼

m

L
(Dþ w� 1) (10:126)

where

D ¼ 2½v� nvg(0)�
vb2

?0

(10:127)

is the dimensionless frequency mismatch. The parameter

m ¼ pb2
?0

bz0

L

l
(10:128)

has the meaning of the normalized length of the interaction space. We saw before

[Eq. (10.43)] that this “nonisochronous parameter” characterizes the efficiency of

the quadratic bunching.

Using Eq. (10.124) and Eqs. (10.119), (10.121), (10.126), and (10.128), we can

reduce Eq. (10.102) to the form

dq

@z
þ Dþ w� 1 ¼ � @

@w
Re½(wn=2Fe�iq)� (10:129)
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Equations (10.125) and (10.129) are the averaged equations of the subrelativistic

gyrotron. The energy w on the left-hand side of Eq. (10.129) is directly related to

the relativistic nonisochronism of oscillators. It determines the inertial bunching

that can develop in a drift section where the HF field is absent, as in the case of kly-

strons. On the other hand, the right-hand side of Eq. (10.129) is proportional to the field

amplitude and determines the force bunching. Note the bunching in the input section of

the interaction space, where w � 1 is determined mainly by the mismatch term D.
According to Eqs. (10.107) and (10.121), the subrelativistic complex power is

equal to

P ¼ �i
I0

2p

m0cvb
4
?0

4e0bz

F

ð2p
0

ðL
0

wn=2eiq dz dq0

or, replacing z by z, according to Eq. (10.119), we obtain

P ¼ �i
I0 m0c

2b2
?0

4pe0
F

ð2p
0

ðm
0

wn=2eiq dz dq0 (10:130)

The active power in a subrelativistic approximation can be obtained by substi-

tution of the difference E(0)� E(L) � ð p2? � p2?0Þ=2m0 into Eq. (10.108). As

a result, Re(P) ¼ P?0(1=2p)
Ð 2p
0

(1� w) dq0, where P?0 ¼ ðI0=e0Þðp2?0=2m0Þ is

the input oscillatory power of the electron beam. The value

h? ¼ ReðPÞ
P?0

¼ 1

2p

ð2p
0

(1� w) dq0 (10:131)

is called the electronic orbital efficiency (the ratio of the power that the electron beam

transfers to the electromagnetic field in a resonator to the input oscillatory power).

10.7.3 Results of Integration of Subrelativistic Gyrotron Equations

Equations (10.125) and (10.129) contain parameters D and F, which depend on the

distribution and amplitude of the HF field ½Bz ¼ Af (z)Im(kr)e
�imw�, frequency v, and

the parameters of the electron beam, b? and vg. The solutions also depend on the

normalized interaction length m, (i.e., on the size of the integration domain). Even

if the function f (z) can be considered as given in a fixed field approximation, the

amplitude A and oscillation frequency v remain unknown. As already mentioned,

that uncertainty can by removed using Eqs. (10.66) and (10.67) for the amplitude

and frequency of stationary oscillations, together with Eqs. (10.125) and (10.129).

There is, however, an alternative, which sees the reduction of this task as a

problem of finding the optimal efficiency. Let us consider the values D, F, and m
as varying parameters [if the field distribution f (z) is given, only the amplitude A

should vary]. Then for a certain choice of indicated parameters, Eqs. (10.125)

and (10.129) are integrated numerically, and the orbital efficiency [Eq. (10.130)]

is calculated. This process is repeated until the maximum h? is obtained. If the

optimal parameters are found, we can use the balance equations (10.66) and
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(10.67) along with formulas (10.122), (10.127) and (10.128), which determine

dimensionless parameters for the design of the resonator and electrical regime.

In Tables 10.2 and 10.3 are listed optimal parameters of gyrotrons that were

calculated by Yulpatov (1981) for two of the simplest longitudinal distributions

of the HF field in a resonator (Fig. 10.14): F ¼ F0 and F ¼ F0z=m. As we see,

the efficiency of the uniform distribution is substantially less than that of the triangu-

lar distribution. The principal cause is the following: The electrons in the input

section of the interaction space where linear bunching prevails absorb in a strong

field a large fraction of the field energy (see Section 10.3). This process is especially

intense on harmonics of the gyrofrequency. According to Table 10.3, the triangular

distribution is devoid of this defect: The efficiency is considerably higher and decays

slowly with the harmonic number.

Note that the triangular distribution is a significant idealization, but calculations

with other distributions yield similar results, provided that these distributions have a

weak field at the initial section and a strong field in the region of the energy inter-

change, where dense bunches are formed as a result of the quadratic bunching.

The values given in Table 10.3 correspond to the Gaussian distribution

F ¼ F0e
�3(2z=m�1)2 , which is close to real field distributions in gyrotron resonators,

similar to the one shown in Fig. 10.12. A comprehensive analysis of the efficiency

and starting currents of subrelativistic gyrotrons operating on the first (fundamental)

through fifth harmonics of the gyrofrequency was developed by Danly and Temkin

(1986). These authors used the longitudinal field distribution close to Gaussian.

Optimized maximum orbital efficiencies for harmonics 2, 3, 4, and 5 were 0.72,

0.57, 0.45, and 0.36, respectively.

After the optimal orbital efficiency has been found, further constructive and elec-

tric characteristics of the device should be determined. These characteristics are, in

TABLE 10.2 Optimal Parameters of a Gyrotron with Uniform Distribution
F(z) for the First Five Harmonics of the Gyrofrequency

n h?(%) m D jF0j2 � 102

1 42 7.5 0.60 8

2 30 8.0 0.55 6

3 22 10.0 0.40 2

4 17 12.5 0.35 1

5 14 17.5 0.25 4

TABLE 10.3 Optimal Parameters of a Gyrotron with Triangular
(Up) and Gaussian (Down) Distributions for the First Three
Harmonics of the Gyrofrequency

n h?(%) m D

1 71/72 14/17 0.55/50
2 64/71 14/16 0.55/55
3 56/55 20/22 0.40/40

Source: Nusinovich and Erm (1972).
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particular, the parameters of the electron beam R0, v?, vz, and vg, the axial distri-

butions of the HF field and dc magnetic field, the Q-factor of the resonator, and

its profile, including the configuration of the diffraction power output. Finally, of

an electron collector and an output window, important components of the design,

are constructed. In general, obtaining all these characteristics is a problem that

does not have a unique solution. Certain difficulties arise from consideration of a

number of important additional factors: the character of excitation of the operation

mode (hard or soft self-excitation), the relation to competing modes (Kartikeyan

et al., 2004; Nusinovich, 1981, 2004), the stability of the electron beam (Tsimring,

2001), heat effects, and others. These factors play a different role in different

frequency bands and for different energetic characteristics of devices (e.g., output

power, overall efficiency, pulse duration). Some characteristics are considered

briefly later.

10.7.4 Linearization of Subrelativistic Gyrotron Equations

The numerical solution mentioned above is insufficiently transparent. It is more

interesting to obtain a solution in analytical form. This can be done via linearization

of the averaged equations. This will also allow us to calculate the starting current in

explicit form.

If the field amplitude is small, the field parameter F, increments of the energy w,

and the phase q are also small parameters. Let us represent w and q [taking into

account Eqs. (10.89), (10.120), and (10.126)–(10.128)] in the form

w ¼ w(0)þ w1 ¼ 1þ w1, q ¼ �vt þ nbgzþ nC ¼ z � v

vz
þ nbg

� �
þ nC

¼ �Dzþ q0 þ q1 (10:132)

where w1 and q1 are small increments of the energy and phase arising from the HF

interaction. Let us linearize Eqs. (10.125) and (10.129), retaining terms of first order

with respect to w1 and q1. We obtain the linear equations

dw1

dz
¼ �Re½iFei(Dz�q0)� (10:133)

dq1

dz
¼ �w1 � n

2
Re½Fei(Dz�q0)� (10:134)

FIGURE 10.14 Uniform and triangular distributions of a field parameter.
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Here we used the following linearized representation of the the factor wn=2eiu in

expression (10.130) for the complex power:

wn=2eiq � 1þ n

2
w1

� �
(1þ iq1)e

i(q0�Dz) � 1þ n

2
w1 þ iq1

� �
ei(q0�Dz) (10:135)

The unity in the parentheses can be canceled because the integral
Ð 2p
0

eiq0dq0 ¼ 0.

This means physically that the bunching is absent, and the average power is equal to

zero when the phase does not change. The averaged complex power according to Eq.

(10.130) equals

P ¼ P?0

1

2p

ð2p
0

ðm
0

q1 � in

2
w1

� �
ei(q0�Dz)F� dq0 dz (10:136)

Integration of Linearized Equations The integral of Eq. (10.133) can bewritten as

w1(s) ¼ �m

ðs
0

Re½iF0e
i(ws0�q0)f (s0) ds0 (10:137)

Here we introduce new dimensionless variables and a normalized longitudinal field

distribution:

s ¼ z

m
¼ z

L
, w ¼ Dm ¼ v� nvg(0)

vz
L ¼ ½v� nvg(0)�T , F ¼ F0 f (s) (10:138)

where s and w are the dimensionless interaction length and the cyclotron detuning,

respectively.

The integration of Eq. (10.134) in the new variables gives

q1(s) ¼ �m

ðs
0

w1(s
0) ds0 � n

2

ðs
0

Re½ei(ws0�q0)�F0 f (s
0) ds0 (10:139)

Substituting w1 from Eq. (10.137) in the first integral of Eq. (10.139) leads to a

double integral. If we form the difference u1 � ðin=2Þw1 and substitute it in the inte-

gral of Eq. (10.136) for the complex averaged power, we obtain a sum of four- and

threefold multiple integrals that in general cannot be taken. However, as shown by

Yulpatov, the result of integration for the active averaged power is expressed

through a relatively simple one-dimensional integral:

Re(P) ¼ �P?0m
2jF0j2
4

nþ m
@

@w

� � ð1
0

eiws
0
f (s0) ds0

���� ����2 (10:140)

where jF0j should be taken from Eq. (10.122), replacing f (z) by f ¼ 1=L
Ð L
0
f (z) df .

As we see, the active power Re(P) can be positive only due to the second term in

Eq. (10.140) and for sufficiently large m. Note that this term arises from the term

�w1 in Eq. (10.134), which [see the comment following Eq. (10.129)] is connected

directly to the relativistic nonsynchronism of oscillators and the inertial bunching.

464 CLASSICAL ELECTRON MASERS AND FREE ELECTRON LASERS



The integral in Eq. (10.140) can be calculated in closed form with some

simple distributions f (s). For example, the uniform distribution f (s) ¼ 1,

0 
 z 
 L, leads to the integral

M ¼
ð1
0

eiws
0
ds0

���� ����2¼ sinw=2

w=2

� 	2
This function is depicted in Fig. 10.15 (we met the analogous function in the

theory of the electron gap, see Section 6.3.4). The intervals in w with negative

slope of the curve M correspond to the positive contribution of the term mð@=@wÞ
in Re(P). Clearly, the best interval is 0 
 w 
 2p. Note that according to

Eqs. (10.138), the mismatch angle w is the progressive phase of the rotating electron

relative to the field phase for the transit time T. The corresponding frequency band is

equal to

Dv

v
¼ (Dw)max

vT
¼ 2p

vT
¼ Tg

nT

and coincides with the bandwidth of the cyclotron absorption for linear

bunching when the parameter m is small and (P) in Eq. (10.140) is determined by

the first term.

10.7.5 Starting Regime of a Gyromonotron

The starting condition of an oscillator can be formulated as an equation of the energy

balance with infinitesimally small amplitude (i.e., in the regime that is described by

linearized equations). Let us begin with Eq. (10.66) for the active power balance.

This equation is valid for arbitrary amplitudes. If we use the linearized active

power from Eq. (10.140), then because both the stored energy W and Re(P) are

proportional to the square of the field amplitude, the latter is canceled and the

equality (10.66) gives us the starting current.

Combining Eqs. (10.66) and (10.140) leads to

2v02W � vW

Q
¼ Re(P) ¼ �P?0

m2jF0j2
4

q(w) (10:141)

FIGURE 10.15 Linearized active power of a subrelativistic gyrotron for uniform field dis-

tribution as a function of the mismatch angle: w ¼ ½v� nvg(0)�T .
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where

P?0 ¼ I0

e0

p2?0

2m0

, q(w) ¼ (nþ m)
@

@w

ð1
0

eiws
0
f (s0) ds0

���� ����2
Let us represent F0 and W in polar coordinates. For this case according to

Eqs. (10.122) and (10.140),

jF0j ¼ jAj f e0

m0v

nn

2n�2n!
bn�4
?0 Im�n(kR0) (10:142)

where f ¼ 1=L
Ð L
0
f (z) dz. The stored energy is calculated from the integral

W ¼ 1

2m0

ð
V

jBzj2 dt0

¼ jAj2
2m0

ðL
0

f (z)

ðRr

0

Im
2(kr)2pr dr dz

¼ jAj2pR2
r L f

2m0

½I2m(kRr)� Im�1(kRr)Imþ1(kRr)� (10:143)

Substituting these values in Eq. (10.141) and canceling jAj2, we obtain the

starting current:

Ist ¼
pm0vR

2
r (n!)

2 � 4nb2
z ½I2m(kRr)� Im�1(kRr)Imþ1(kRr)�

Qm0e0b
2n�2
?0 Ln2nq(w)I2m�n(kR0)f

(10:144)

Let us take q(w), corresponding to a Gaussian distribution of the field. Then it can be
shown that the minimal starting current (in amperes) for the optimum mismatch

angle w is equal to

Ist, min ¼ 17:5
4n(n!)2m2(2�n)

(Q� 10�3)n2nG(L=l)5�2n(pg)2(3�n)
(10:145)

where the pitch factor of the helical beam and the structure factor are equal to

g ¼ b?0

bz0

, G ¼ I2m�n(kR0)

½(kRr)
2 � m2�I2m(kRr)

(10:146)

respectively. It is important that the values wst � ½v� nvg(0)st�, corresponding to the
minimum of the starting current, do not coincide with the valueswh � ½v� nvg(0)h�,
providing the maximum of the orbital efficiency. In the latter case the values of the

starting current can be greater than the operation beam current, which corresponds

to the hard self-excitation regime.
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The qualitative dependence of the starting current of the mismatch w is shown in

Fig. 10.16. According to the figure, the current Ist is maximal near w ¼ 0, 2p, where
the slope of the curve M(w) is close to zero (Fig. 10.15). Note, however, that

the optimal efficiency is realized in regimes with a large initial mismatch wh

because during the interaction, the electron energy diminishes, the gyrofrequency

grows, and w decreases.3 If the starting current exceeds the operation current, the

condition of the energy balance excludes self-excitation of the device, beginning

from the noise level of the HF amplitude. The energy balance is possible for

finite amplitudes of the HF field because of the nonlinear nature of the electron

power P. In this case, oscillations begin when the initial amplitude exceeds a

certain bifurcation threshold. This is a case of hard self-excitation. The hard self-

excitation regime can be achieved by other methods as well. In particular, in CW

operation, an initial magnetic field can be chosen that is greater than optimal

(Kisel et al., 1974). Then w is less, and a regime of soft self-excitation is realized.

Next, the magnetic field is decreased and the optimal efficiency is restored.

However, this method cannot be used in pulse regimes. In the latter case a startup

scenario is realized in which the regime of the soft self-excitation is achieved

through a pulse voltage switch process (see Nusinovich, 1974; Nusinovich et al.,

2004; Whaley et al., 1994; and Section 10.9.2.). Note that the region of soft self-

excitation at gyroharmonics is significantly narrower than that for fundamental

gyroresonance (n ¼ 1).

According to Eq. (10.144), the starting current (or the product IstQ) quickly

increases with n (due mostly to b?0 in the denominator). The presence of this

factor and of the factor Im�n(kR0) is determined by nonuniformity of the HF field

at the Larmor circle. For radiuses of the latter on the order of the wavelength, the

nth component of the effective field is equal to (r?=l)n�1(E2)1=2. Therefore,

the starting current increases with n and decreases with the particle energy. Bunch-

ing of electron oscillators in harmonic fields has significant differences compared

with bunching at the fundamental harmonic. In particular, the scheme of phasing

in Fig. 10.11 is changed: The number of electron bunches at the Larmor circle

FIGURE 10.16 Starting current as a function of normalized mismatch: w ¼ ½v� nvg(0)�T .

3This effect is analogous to the influence of the nonsynchronism parameter b in TWTOs (see Section

8.6.3).
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increases and becomes equal to the harmonic number. Note that the starting current

at the fundamental harmonic increases with energy due to bz in the numerator of

Eq. (10.144), which is related to the decrease in the interaction duration.

10.8 ELEMENTS OF GYROTRON ELECTRON OPTICS

10.8.1 Parameters of Helical Electron Beams

Let us assume an axially symmetric configuration for electron-optical systems and

corresponding fields in gyrotrons. Any particle trajectory in a helical electron beam

(HEB) can be characterized by four parameters: the gyrofrequency vg, the axis

radius R0 of the helical trajectory (Fig. 10.17), and the oscillatory v? and longitudi-

nal (drift) vz velocity components. Instead of v? and vz, the full velocity v and the

parameter g ¼ v?=vz can be utilized. Then

v? ¼ v
gffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
p , vz ¼ v

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p (10:147)

The parameter g characterizes the angle of the helical winding of the trajectory and

is called the pitch-factor. Because the radiation energy in gyrotrons is extracted from

oscillatory electron motion, the magnitude of the pitch factor should be g . 1. This

parameter is determined by an entire complex of factors participating in the

formation of the helical trajectory. Varying these factors along different trajectories

signifies a velocity spread and a corresponding spread in the values g.

All practical methods of helical beam formation use static electric and magnetic

fields. Therefore, if we neglect initial velocities and dynamic instabilities (these

issues are considered later), the spread of full electron velocities is equal to zero:

Dv2 ¼ D(v2? þ v2z ) ¼ 0 (10:148)

Then the values of the relative oscillatory and drift velocity spread are coupled by

the following approximate relations:

dvz ;
Dvz
vz

� g2dv? ¼ g2
Dv?
v?

(10:149)

If g2 � 1, dvz � dv?. For example, for g ¼ 2 and dv? ¼ 0:1 (the latter value is

rather moderate for an HEB (see, e.g., Avdoshin et al., 1973), we get dvz ¼ 0:4.

FIGURE 10.17 Helical electron beam in a uniform magnetic field.
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The large values of dvz are responsible for two undesirable effects: (1) the spread
of the transit time of electrons in the interaction space, and (2) the reflection back to

the cathode of electrons with small vz (maximum g). The first effect diminishes the

interaction efficiency. Taking into account the cutoff structure of the electromag-

netic field in gyrotron resonators, we can conclude that the Doppler suppression

of resonance is not significant. However, the velocity spread has other important

consequences. In particular, bunching of the electrons at the initial section of the

resonator where the HF field is weak (e.g., for Gaussian or triangular field distri-

butions) is determined mostly by the mismatch D ¼ 2(v� nvg)=vb
2
?0 (see

Section 10.7.1) with the dispersion of order of 2dv?. This effect can significantly

reduce efficiency.

An analysis of the velocity spread effects (Ergakov et al., 1980) has shown that this

decrease in efficiency as a function of the velocity spread can beweakened by an optim-

ization of gyrotron construction and electric regimes. For example, the optimized

orbital efficiency, even for dv? ¼ 0:3, can exceed 0:6h0, where h0 is the optimal

orbital efficiency for dv? ¼ 0. The change of optimal input parameters of the gyrotron

(i.e., m0, I0, g0, D0) can be considerable. So, according to Ergakov et al. (1980),

optimum values of g0 in the range 0:1 , dv? , 0:8 are determined by the relation

g2optdv? ¼ const. Naturally, a decrease in gopt with dv? can lead to a considerable

loss of efficiency. We should point out an interesting result in a paper by Ergakov

et al. (1980): an extension of a zone of soft self-excitation regimeswith velocity spread.

The second effect, reflection of some electrons with large g back to the cathode,

taking into account a very small probability of their capture by the cathode, leads

to an accumulation of reflected particles in the region between the cathode and

the resonator and to an excitation of instabilities in the electron beam. This effect

is considered later.

Every known system of formation of HEBs contains an extended section with

a weakly inhomogeneous distribution of electric and magnetic fields in which a

transversal (orbital) invariant is conserved (see Section 1.6):

J ¼ p2?
B

¼ const. (10:150)

.

where p? ¼ mv? is the electron oscillatory momentum. It can readily be shown that in

this case relative spreads of oscillatory velocities or momenta can also be considered

as adiabatic invariants. Indeed, according to Eq. (10.150), oscillatory momenta or the

velocities of all particles in any two cross sections of the beam are in the same relation,

which is determined by the ratio of the magnetic fields and potentials in these cross

sections. This means that a distribution of the oscillatory momenta is identical in all

cross sections of the beam in weakly inhomogeneous fields, including the relative

spread of oscillatory momenta or velocities. (In the last case, corresponding planes

are assumed equipotential). The spread indicated can be taken as the fundamental par-

ameter of the beam transverse momentum (velocity) distribution. According to Eq.

(10.150), oscillatory momentum and velocity increase when the beam moves in the

direction of a growing magnetic field, which allows one to pump the oscillatory
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energy in the beam. Note that the relative spread of longitudinal velocities in this case

increases continuously.

Other characteristic parameters of HEBs are the Larmor radius r? and the pitch h

of the helical trajectory (Fig. 10.17). Taking into account the condition of the gyro-

resonance v ¼ nvg and neglecting the Doppler effect, it can readily be shown that

r? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
g

gffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p nl

2p
� 0:01

g
ffiffiffiffiffiffi
U0

p

(1þ 0:0015U0)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p" #
nl

h ¼ 2p
r?
g

(10:151)

An error of the approximate formula (10.151) (U0 is expressed in kilovolts) is on

the order of (hU=4c2)2, which is �1% for U0 ¼ 200 kV.

10.8.2 Systems of HEB Formation

The criterion of weakly inhomogeneous fields required for the validity of

Eq. (10.150) is (see Section 1.6)

1 ¼ L
1

jFj
dF

dr

���� ����	 1 (10:152)

where L is the Larmor radius or the pitch (the largest of the two) and jFj is the

modulus of electric or magnetic fields. This criterion is a basis for the classification

of HEB guns, defining their essential features.

Adiabatic guns are, by definition, systems for which criterion (10.152) is satisfied

in an entire zone of formation. Therefore, the electrons must acquire oscillatory

energy just after emission from the cathode. That is possible if the latter is immersed

in crossed electrical and magnetic fields. Otherwise, if v? ¼ 0 at the cathode,

according to Eq. (10.150), oscillatory motion will be absent. A typical adiabatic

system is the magnetron injection gun (MIG) (see, e.g., Goldenberg and Petelin,

1973), whose scheme is shown in Fig. 10.18. Electrons that are emitted move

along quasi-throchoidal trajectories in weakly inhomogeneous crossed fields. A

component of the electric field that is parallel to the magnetic field provides an injec-

tion of the beam in the transitional area with a purely magnetic field and transforms

the beam to a helical beam. The configuration of electrodes in a gyrotron’s MIG is

analogous to the configuration in a Kino–Tailor gun (see Section 4.7.2), which is

used to obtain rectilinear electron beams. However, typical gyrotron MIGs have

important distinctions. In particular, the T-mode (see Section 3.4.4) is generally

used with the electric field at the cathode weakly disturbed by the space charge.4

4Note that in advanced MIGs developed by a numerical optimization, the current can be increased up to a

significant fraction of the space-charge current (Section 10.8.4). Furthermore, even MIGs working in the

r-mode can be designed (Kuftin et al., 1993; Manuilov et al., 1995), although strictly speaking, the guns

cannot be called completely adiabatic.
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Below, an elementary theory of the gyrotron MIG neglecting the space-charge field

is represented.

Nonadiabatic guns form helical beams when an initially rectilinear beam inter-

sects a sufficiently short section with transverse magnetic or electric fields. Note

that a number of diverse nonadiabatic guns can be proposed, whereas the fundamen-

tal features of adiabatic guns follow immediately from the assumed requirement of

adiabaticity.

Probably, the first nonadiabatic gun applied in an ECMwas theChow–Pantell gun

for a gyroresonance BWO oscillator (Chow and Pantell, 1960) (Fig. 10.19). The con-

struction of the gun resembles that of a Harris gun (Section 5.5), in which electrons of

the rectilinear beam after an annular slot with a radial magnetic field are introduced

into a coaxial tube with a radial electric field and move along helical trajectories

that encircle the z-axis. The electrons in a Chow–Pantell gun after the annular slot

find themselves in a uniformmagnetic field and form a hollow helical beamwith elec-

tron trajectories that in general do not encircle the z-axis. Note that the gun can operate

in the r-regime. It is readily shown that the system is efficient when the gap of an

annular slot is on the order of the Larmor radius or the pitch of the helical trajectory.

FIGURE 10.18 Magnetron injection gun of a gyrotron.

FIGURE 10.19 Chow–Pantell gun. 1, Ferromagnetic yoke; 2, cathode; 3, drive winding;

4, solenoid.
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A wide class of nonadiabatic guns is formed by systems with a jump in the

magnetic field (Section 1.7.2). In particular, thin helical electron beams encircling

the axis of an axially symmetric system are produced by cusp-injected guns

(Section 1.7.2). The latter are utilized in large orbit relativistic gyrotrons, providing

selective generation of short-wave radiation at the nth cyclotron harmonic (Idehara

et al., 2004; Lawson et al., 1985; McDermott et al., 1983) when the annular helical

electron beam interacts with the TEnp mode of an axially symmetric waveguide.

Nonadiabatic systems producing an annular helical beam in large-orbit relativis-

tic gyrotrons are based on the usage of kickers (Bratman et al., 1999) in the form of

rectangular current frames sloping to the z-axis and producing a practically homo-

geneous transverse magnetic field close to the initial rectilinear beam. Bratman

et al. have implemented a large-orbit gyrotron with an electron energy of

�300 kV, generating gyroharmonics up to fifth order. To this type of electron

guns, relativistic guns formatted by an explosive emission diode and a nonadiabatic

pump magnet can be referred (see Sections 4.8.2 and 10.7.1).

It is necessary to keep in mind that in all enumerated gyrotron electron-optical

systems, the magnets that create a quasiuniform magnetic field in the cavity and a

nonuniform field in the formation region and near the collector are obligatory com-

ponents. The value of the magnetic field in a cavity B0 must satisfy Doppler con-

ditions [Eq. (10.46)] and determine the output frequency of the gyrotron. Thus,

possibilities for the attainment of the greatest output frequency of the gyrotron are

determined to a decisive degree by limitation of the magnetic field that can be

created by the magnet. Some available magnetic systems are considered briefly in

Appendix 9.

10.8.3 Theory of an Adiabatic Magnetron-Injected Gun in a
Nonrelativistic Approximation

According to Eq. (10.152), fields in a near-cathode area of adiabatic guns can be

assumed uniform. Below, all values in this area are marked by the subscript c.

The electron velocity can be represented as a sum of oscillatory and drift velocities

[Eq. (1.65)]:

v ¼ v? þ vd (10:153)

where the drift velocity [see Eq. (1.72)]

vd ¼ vB
B

B
þ 1

B2
E? � B (10:154)

E? is the component of the electric field perpendicular to the magnetic field B. The

components of Eqs. (10.53) and (10.54) at the plane perpendicular to B near the

cathode are

v?c ¼ E?c

Bc

+ vq ¼ Ec cosw

Bc

+ vq (10:155)
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where vq is the modulus of the initial azimuthal velocity in the q-direction (the

direction perpendicular to the magnetic field Bc on the cathode surface; see

Fig.10.18). The condition of the adiabatic invariant conservation [Eq. (10.150)]

and the energy integral in the nonrelativistic approximation determine the

oscillatory and drift velocities in the operation space of the gyrotron:

v?o ¼ Ec cosw

Bc

+ vq

� � ffiffiffi
a

p
, vzo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hUo � v2?

q
(10:156)

where a ¼ Bo=Bc is the magnetic compression coefficient, w is the slope of the mag-

netic field to the cathode surface (Fig. 10.18), and Bo and Uo are the magnetic field

and the potential in the operation space, respectively. Further, the theory is built with

the following conditions that characterize a simplified model of an adiabatic MIG

(Goldenberg and Petelin, 1973):

1. Axial symmetry

2. Small space-charge field

3. Quasiplanar gun construction typical of short-wave gyrotrons. This leads to

the cathode electric field

Ec ¼ Ua

d
(10:157)

where Ua is the anode voltage and d is the distance anode–cathode

(Fig. 10.18).

4. Paraxial approximation for the magnetic field:

Bz(r, z) � Bz(0, z) (10:158)

Taking Busch’s theorem and conditions 1 and 4 into account, it can be shown that

guiding centers of electron orbitsmove in the operation space along themagnetic lines

of force that pass through cathode entry points of the corresponding particles. Then

the radius Ro of the guiding center in the operation space according to Eq. (10.158) is

Ro ¼ Rcffiffiffi
a

p (10:159)

where Rc is the cathode radial position of a given particle.

Let us introduce the following dimensionless parameters (see Fig. 10.18):

1. The ratio of the beam current to the Child–Langmuir current in the

quasiplanar nonmagnetic diode formed by the gun electrodes:

tj ¼ I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:33� 10�6ð2pRcl=d2ÞU3=2

a

q
(10:160)
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2. The nonrelativistic oscillatory electron energy in operation space:

t? ¼ v2?o

v2
¼ g2

1þ g2
(10:161)

3. The width of the emitter:

tl ¼ l

d
(10:162)

4. The height of the electron trajectory at the cathode:

ty ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½1þ ðp2=4Þ tan2 w�

p
(10:163)

This formula is based on the relation for the first maximum of the electron trajectory

in the planar magnetron with an inclined magnetic field (see Section 3.5.3):

y ¼ 2Ec cos
2 w

hB2
c

1þ p2

4
tan2 w

� �
(10:164)

For w 	 1, Eqs. (10.156)–(10.163) lead to the following relations for the beam

current, the cathode beam density, the anode voltage, and the magnetic compression:

I ¼ 0:93 tjtlt
�1=2
y t

1=2
? U1=2

o EcRo (10:165)

jc ¼ I

2pRcl
¼ 4:52 tjt

1=2
y t

�1=3
? U�1=3

o E5=3
c B

1=3
0 (10:166)

Ua ¼ 2:63 t�1
y t

2=3
? U2=3

o E2=3
c B�2=3

o (10:167)

a ¼ 1:52 t1=3? B2=3
o E�2=3

c U1=3
o (10:168)

Here the following respective units were used: A, A=cm2, kV, kV=mm, mm,

and kG. e0U0 is the electron energy in the working space (cavity).

The right-hand sides of Eqs. (10.165)–(10.168) contain only the parameters

specified. In particular, the magnetic field is determined by wavelength. According

to the conditions of gyroresonance and the energy integral,

Bo ¼ 2pc

nlh
g ¼ 2pc

nlh
1þ hUo

c2

� �
� 107

nl
(1þ 0:002Uo)

It can readily be shown that the beam thickness in the cavity (Fig. 10.18)

DRo � l sinwffiffiffi
a

p (10:169)

The average beam radius Ro is determined based on the operation mode chosen from

the condition of the effective interaction of the wave with the electron beam.

The parameter tj can be considered an empirical constant: Its maximum value
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corresponds to a current in which the space-charge field determines the

velocity spread (see Section 10.8.4). The parameter ty characterizes the proximity

of the regime to the cutoff regime for the planar magnetron formed by the

cathode–anode gap in the magnetic field. This parameter is usually equal to

ty ¼ 0:2 to 0:7. The parameter tl � 0:5 to 1:0. For tl . 1 it is difficult to get an elec-

trode configuration that excludes the position velocity spread determined by the

difference in the fields at different points of the emitter. In this case, the electrode

geometry can only be found using numerical optimization. Finally, the value of

t? corresponds to the pitch factor chosen [Eq. (10.161)].

According to Eq. (10.165), the beam current increases proportionally to the

cathode electric field Ec. The magnetic compression and cathode radius in this

case are determined by Eqs. (10.168) and (10.159). The limiting current is deter-

mined by vacuum breakdown of the anode–cathode gap. The corresponding electric

field is usually on the order of 5 to 10 kV/mm. It is necessary, however, to control

the cathode current density [Eq. (10.166)]. If the latter exceeds the maximum current

for the type of cathode chosen, the limiting current is estimated with jc but not with

Ec (i.e., tj ¼ I=2pRcljc).

Example 10.3: Calculations for an Adiabatic Gun Let us assume the following

parameters for the gyrotron: frequency f ¼ 140 GHz; fundamental harmonic

n ¼ 1; mode TE26,6; electron energy e0Uo ¼ 80 keV; Ec ¼ 5 kV=mm; g ¼ 1:5;
tj ¼ 0:3; ty ¼ 0:2; tl ¼ 0:1. The following values are calculated:

. Wavelength l: c=f ¼ 2:14mm.

. Beam radius Ro: found from the conditions of the minimal starting current,

which according to Eq. (10.146), corresponds to the maximum of the function

Im�1(kRo) or the null of the function I0m�1(kRo) ¼ I025(kRo). Usually, the first

(largest) maximum is chosen. In this case, kRo � ð2p=lÞRo ¼ 27:4. Then

Ro ¼ 27:4ðl=2pÞ ¼ 9:3mm.

. Magnetic field B0: ð2pf =hÞg � ð2pf =hÞ(1þ 0:002U0kV) � 58 kG.

. Parameter t?: g2=ð1þ g2Þ ¼ 0:69:

. Magnetic compression a: According to Eq. (10.168), a is 29.7.

. Emitter radius Rc: Ro

ffiffiffi
a

p ¼ 9:3
ffiffiffiffiffiffiffiffiffi
29:7

p ¼ 51 mm.

. Anode voltage [Eq. (10.167)] Ua: 37 kV.

. Beam current [Eq. (10.165)] is I: 43A.

. Cathode current density [Eq. (10.166)] jc:

I

2pRcl
¼ I

2pR2
ctl

¼ 2:7A=cm2

10.8.4 Advanced Design of an MIG

The task of MIG optimization is solved through numerical analysis in three parts: the

self-consistent solution to beam equations, which are reduced to relativistic
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equations of motion for a chosen number of trajectories (or large particles), the con-

tinuity equation, and the boundary problem for the Poisson equation, taking into

account the self-magnetic field of the beam (see, e.g., Borie et al., 1995; Lygin

et al., 1987; Rayski and Tsimring, 1996). The numerical methods are distinguished

by their approach to solving the Poisson equation [e.g., method of integral equations,

finite differential method (net method), PIC method]. Initial data for the design are

usually taken using Eqs. (10.165)–(10.169). The first-order data taking relativistic

effects into account can be chosen correspondingly to Edgcombe (1988b).

It is necessary tomark the class of gyrotronMIGsworking in a space-charge-limited

current regime as an advanced version of gyrotron guns. The latter use laminar

helical electron beams (see Section 10.8.5) and possess the following potential

advantages:

. Absence of the growth emission current effect as a result of heating of the

cathode by trapped electrons (see Section 10.8.5)

. Weakening of the influence of factors leading to the velocity spread in

HEBs (see Section 10.8.5): roughness of an emitting surface and nonuniform

distribution of cathode emission

Some results of theoretical and experimental investigation of these guns are given

in Edgcombe (1988b), Kuftin et al. (1993), and Manuilov et al. (1995). Note that the

initial state of a laminar beam can be calculated by the synthesis method based on an

application of the Dryden flow (see Section 3.5 and Dryden, 1962; Edgcombe,

1988a; Manuilov and Tsimring, 1978; Tsimring, 1977). A detailed account of

these topics goes beyond the scope of this book.

10.8.5 Velocity, Energy Spread, and Instabilities of HEBs

The major factor responsible for gyrotron characteristics is the quality of a helical

electron beam (HEB). What is the quality of a HEB? It includes the homogeneity

of current, velocity, and energy distributions, and beam stability: the absence of

parasitic oscillations and the spontaneous rise of the emission current. Finally, high-

quality HEBs must have a sufficient share of electron oscillatory energy determined

by the pitch factor g. According to theory and experimental data, the most important

factor providing high-quality HEB is the minimization of velocity and energy spread

(VESP).

The influence of velocity spread was discussed briefly in Section 10.8.1. The

energy spread is a result of dynamic effects in the beam. According to experiments,

the energy spread in real gyrotron beams in general is on the order of a few percen-

tage points (Dumbrais and Koponen, 1999; Glyavin et al., 1999). However, due to

the relativistic dependence of electron gyrofrequency on energy, the efficiency of

gyrotrons in which particles usually perform some large number N of cyclotron

rotations is sensitive to the spread of the initial energy. The theory has shown that

even for the energy spread DE=E ,, 1=N, the effect can be considerable

(Dumbrais and Koponen, 1999).
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VESP in helical electron beams has been studied in a number of papers (see, e.g.,

Glyavin et al., 1999; Kuftin et al., 1992b; Tsimring, 1972, 2001; Tsimring and

Zapevalov, 1996). The following factors leading to VESP in a magnetron-injection

gun (MIG) are considered:

1. Spread of initial electron velocities

2. Roughness of an emitting surface

3. Nonuniform distribution of electric and magnetic fields determined by the

geometry of electrodes and magnets

4. Nonuniform distribution of an emission current on the cathode

5. A space-charge field in the beam

6. Convective instabilities in the beam

7. Global instability in the beam

Factors 1 to 4 and 5 (in part) are static. Note that these factors mostly determine

the dynamic factors 5 to 7 and also depend on them.

Factor 1: Spread of Initial Electron Velocities The nature of this spread is

contained in Eq. (10.155), according to which, unlike the total velocity, the

oscillatory velocity is determined by the sum of velocities rather than energies.

This causes a substantially greater dependence of helical beam parameters than

straight beams on small initial velocity perturbations. Let us denote the average

initial electron energy in the q-direction by e0Uq0. Then extreme values of the

initial velocity are +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2hUq0

p
and the quantity

2vq0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2hUq0

q
(10:170)

is the spread of the initial velocities. The relative spread of oscillatory velocities

according to Eq. (10.155) is then given by

dv? ¼ 2vq0

v
(0)
?c

¼ 2Bc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2hUq0

p
Ec cosw

(10:171)

Let us express dv? using Eq. (10.164) in terms more convenient for characterization

of the gun operation mode:

dv? ¼ 4

ffiffiffiffiffiffiffiffi
Uq0

Ua

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

y0
1þ p2

4
tan2 w

� �s
(10:172)

where Ua is the anode voltage and y0 is the height of the first vertex of the electron

trajectory above the cathode (Fig. 10.18) for zero initial velocity. The coefficient 4 in

Eq. (10.172) should be replaced by 3.6 for the normal (Gaussian) distribution of

initial velocities (Tsimring, 1972).
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The spread is very small for thermal velocities (e0Uq0 � kT � 0.1 eV). So

for typical values Ua ¼ 50 kV, d=y0 ¼ 10, and w ¼ 258; we obtain dv? ¼ 2%.

However, the magnitude of Uq0 for real emitters can be substantially larger (up to

1 eV). The principal cause is the nonequipotentiality of active emitter centers.

This may also be the result of emission inhomogeneity (see, e.g., Ilyin et al.,

1998) associated with the spread of the work function and the cathode temperature.

In this case, dv? may be more than 10%. Another cause of the increase in initial

velocities is secondary emission as a result of cathode bombardment by trapped

electrons and subsequent development of instability of the electron beam (see

the discussion of factor 7).

Factor 2: Roughness of the Emitter Surface Roughness affects the spread in a

manner similar to the nonequipotentiality of the emitter. Velocities that electrons

acquire in local fields of nonuniformities can be treated as initial velocities on the

surface of a smooth emitter.

Let us estimate the velocity component vx0 of electrons emerging from a non-

uniformity, which we will consider a hemisphere with radius r0 	 d located on

the cathode surface (Fig. 10.20) in a uniform magnetic field. Integration of the

equations of motion using the general expression for the electric field of a hemi-

sphere over the conducting plane (Smythe, 1950) shows that the maximal value

of vx0 is reached in the vicinity of the hemisphere where d2x=dt2 ¼ O(r30=y
3): The

typical value vx0 according to Tsimring (1972) is equal to

vx0 ¼ dx

dt

� �
x¼r0,y¼1:5r0

¼ 0:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hUa

r0

d

r
(10:173)

Using values vx0 as the initial velocities vq0 in Eq. (10.171) allows us to use

Eq. (10.172) and find the spread of the oscillatory velocities:

dv? ¼ 1:6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

y0
1þ p2

4
tan2 w

� �s
(10:174)

One can show that the effect of the magnetic field on the motion of electrons near the

hemisphere is very small. In light of the fact that the ratio r0=y0 enters Eq. (10.174)
in the power of 1

2
, even relatively little roughness may cause considerable spread. So

FIGURE 10.20 Roughness of an emitter surface modeled by a hemisphere in a uniform

magnetic field.
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for r0 ¼ 2mm, y0 ¼ 2mm, and w ¼ 208, we have dv? � 6%. This example proves

that the requirements for the smoothness of the emitter must be very stringent.

Factor 3: Nonuniform Distribution of Electric and Magnetic Fields Near the
Cathode Electron trajectories in adiabatic fields are determined by the distribution

of static fields on the cathode. For an axially symmetric system there is software

available for optimizing the gun geometry up to small values of the velocity

spread. However, thermal deformations and inaccuracy of the installation of electro-

des or magnets can induce asymmetry in the gun assembly. In these cases, radial dis-

placement of the cathode is most dangerous. The corresponding velocity spread is

determined by the approximate formula (Avdoshin et al., 1975)

dv? � 2a cos u

d
(10:175)

where a is the radial displacement of the cathode and u is the inclination of the

cathode generatrix to the system axis.

Factor 4: Nonuniform Distribution of the Emission Current This factor is

connected partially with factor 2, because the roughness of the cathode surface

and subsequent increase in the velocity spread may induce nonuniformity of the

emission current distribution. The strong emission inhomogeneity of gyrotron emit-

ters has sometimes been blamed on the spread of experimental characteristics

of identically constructed gyrotrons and from the temporal instability of their

characteristics during long-term operation.

Raster electron microscopy has been applied to obtain an emission image of the

surface of large cathodes (Andronov et al., 1995). An electron probe of a specific

diameter was used with a resolution better than 0.1 mm. According to Andronov

et al. (1995), angular variation of the density of the emission current can achieve

a factor of 4.

Two mechanisms can be suggested to explain the influence of the emission

current nonuniformity on the velocity spread. In the first, the oscillatory spread is

the consequence of nonuniform space-charge fields (especially in the case of

angular variation of the emission; see the discussion of factor 6). The second (in-

direct) effect of spatial fluctuations of the emission current lead to the instability

of HEBs and therefore to further increase in the velocity and energy spread. We

discuss this topic in more detail below.

Factor 5: Space-Charge Fields in HEBs The influence of the space-charge field in

HEBs on the velocity spread is often the most important factor. The effect of the

space charge depends on the position of electrons in the beam and on the beam

topology. The latter is determined by the angle w of inclination of the magnetic

field to the conical cathode (Fig. 10.18). Two types of beams are represented in

Fig. 10.21: a beam with regularly intersecting electron trajectories (Fig. 10.21a)

and a laminar beam (Fig. 10.21b). Typically, regularly intersecting beams are
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obtained for w � 10 to 208, whereas laminar beams are obtained for w . 248 in the
T-mode. The boundary of the laminar topology onset shifts to smaller angles with an

increase in the beam current (see Fig. 3.10). These results are applicable for a planar

model of the gun. A more complicated type of border between laminar beams

and beams with regularly intersecting trajectories is obtained for the cylindrical

geometry of the gun (see Manuilov and Tsimring, 1978, Fig. 2).

Let us consider a regularly intersecting beam (Fig. 10.21a). As we see, the space-

charge force has a specific spatial resonant character: electrons emitted from the left

part of the emitter are continuously decelerated in the direction of the magnetic field

by the space-charge force Er, whereas the “right” electrons are accelerated continu-

ously. This effect creates a velocity spread. According to Kuftin et al. (1992b),

dv? ¼ I

Ir
(10:176)

where I is the beam current and Ir ¼ A(w,C)RcE
2
ca=B0. The coefficient A depends on

w and the electron transit angleC through a region of regularly intersection of trajec-

tories. Using Eq. (10.176), we can estimate the velocity spread as �10% for

I ¼ 20 A. Numerical simulations typically give higher values (Kuftin et al., 1992b)

(Table 10.4). According to Table 10.4, the velocity spread in the laminar beam

(w ¼ 278) is significantly less for a large beam current than in a regularly intersecting

beams.This effect is explained by the absence of spatial resonance:Space-charge forces

acting on electrons in the frame moving with the particles change sign (Fig. 10.21b).

FIGURE 10.21 Topologies of a helical beam: (a) beam with regular intersections of

trajectories; (b) laminar beam.

TABLE 10.4 Velocity Spread in Laminar and Regularly Intersecting Beams

Beam current, I

0 20 A 30 A

w (deg) t? dv?(%) t? dv?(%) t? dv?(%)

12 0.64 0.6 0.54 21 0.51 30

17 0.62 5.0 0.57 16 0.55 25

27 0.61 6.0 0.56 8 0.54 10
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Experimental investigations confirm the results of simulations with the exception

that the experimental spread for laminar beams usually exceeds the velocity spread

calculated. The cause of this discrepancy is probably related to the stronger influence

of reflected electrons, because these electrons in laminar HEBs produce regular

intersections with trajectories of the primary beam (Manuilov et al., 1990; Tsimring

and Zapevalov, 1996).

Factor 6: Convective Instabilities in HEBs Instabilities inHEBs are strongly con-

nectedwith velocity and energy spreads:As a rule, they are determined by the velocity

spread and themselves lead to a spread increase. Intense HEBs are similar to a dense

plasma and so can be prone to many types of instabilities. Below we consider two

types that are better investigated and presumably have the most significance.

Electrostatic Cyclotron Instability (ESCI) ESCI is also known as a negative-mass

instability (NMI) or Berstein mode instability (see, e.g., Bratman and Savilov, 2000;

Li and Antonsen, 1994). It takes place in any ensemble of electrons moving in a

magnetic field and interacting via a space-charge field. The mechanism of NMI is

similar to the gyrotron mechanism (Sections 10.6 and 10.7) with the exception

that the high-frequency field of the cavity is replaced by the space-charge field of

the beam. The simplest model of an HEB, taking into account space-charge inter-

action, is a flat thin layer of particles rotating in a uniform magnetic field

(Fig. 10.22). The leading centers of the Larmor orbits are located in the plane

x ¼ 0. The Coulomb forces acting on the electrons in the beam can be represented

as a superposition of fields of thin layers at planes x ¼ const. Each layer is formed

by particles rotating in the phase interval ½c, cþ dc�. In the theory of NMI

(Bratman and Savilov, 2000), a method of averaged equations has been used. High-

frequency initial perturbations are amplified in the drift direction along the

magnetic field. The distribution of the energy spread dE computed is shown in

Fig. 10.23. The saturation (dE � 7%) is reached in a region after the plateau of

the function B(z) (beyond the cavity). The measured energy spread (ES) in experi-

mental gyrotrons was relatively low, �1 to 2% (Glyavin et al., 1999). However, the

ES at the linear stage depends on initial perturbations that are determined by

emitter quality. Besides this, an enlargement of the drift region length (the distance

between the cathode and the cavity) can increase the ES considerably: for example,

in quasioptical gyrotrons (Bratman and Savilov, 2000).

FIGURE 10.22 Flat thin layer formed by electrons rotating in a magnetic field.
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Diochotron Instability (DI) So far, the influence of the space-charge field on the

velocity spread has been considered for an idealized axially symmetrical distribution

of the charge density. However, according to experimental results (see the discus-

sion of factor 4; see also Andronov et al., 1995), the angular distribution of the

emisson current for real cathodes can be highly irregular. Hollow electron beams

transported in a magnetic field are unstable with respect to angular perturbations

of emission (Cutler, 1956; Kyhl and Webster, 1958). The latter produce an un-

balanced space-charge field in a direction that increases perturbations further. As

a result, initial weakly angular nonuniformity breaks up (at a sufficient distance

from the cathode) into a series of specific nebulas. This effect was first observed

in straight electron beams by Kyhl and Webster (1958). According to the linear

theory (e.g., Davidson, 1990), the growth rate of this spatial DI is on the order of

D � v2
p=vgvz, where vz is the electron velocity along the magnetic field. The

motion of particles leading to the DI has the character of drift in the space-charge

and magnetic crossed fields. Therefore, DI is also developed in HEBs with the differ-

ence that the drift of electrons in straight beams is replaced by drift of the leading

centers of Larmor orbits. A peculiarity of these thin, hollow gyrotron beams is

the strong transverse nonuniformity of their space-charge distribution (see

Fig. 10.22). The linear theory of the DI in HEBs was given by Lygin et al. (1991),

where the spatial growth rate of the diochotron perturbations for different radial dis-

tributions of the space-charge density was recorded. However, real estimations of the

DI effect on the velocity spread require a study of the beams in saturated regimes.

Direct simulation of HEBs with azimuthal nonuniformity was carried out by

Kuftin et al. (1993). They considered an MIG with irregular (periodic) angular

current distribution but within axially symmetric electrodes and magnets. The

Fourier expansion of the current density has the form

j(w) ¼ j0 þ Re
X1
n¼1

jne
iMnw, M ¼ 1, 2, . . . (10:177)

where M is a given value for the initial azimuthal current variations and n is the

number of an azimuthal harmonic. Application of the expansion (10.177) to all

FIGURE 10.23 Distribution of a magnetic field and the electron energy spread in an elec-

tron beam for the nominal regime of a gyrotron. (From Glyavin et al., 1999.)
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variables and using the equation of motion gives relations between complex ampli-

tudes of the azimuthal modes. The main difficulty for further analysis is related to

solution of the Poisson equation with periodic boundary conditions, for which the

special numerical code EPOSR was used (Kuftin et al., 1993). The final stage of

the procedure is calculation of the velocity spread according to the trajectories

found. In Table 10.5, values of the velocity spread obtained for two MIGs are

shown as functions of jDIj=I, where I is the beam current and DI is the current

deflection from the average value; M is the number of current variations on the

full angle. According to the table, an increase in dv? reaches 150% and 80% for

guns 1 and 2, respectively. The theory above was limited to considerations of

spatial DI only. Temporal DI obviously leads to an energy spread of HEBs.

Factor 7: Global Instability As a rule, analysis and synthesis of gyrotron HEBs

use models with a static electric field. The theory allows us to determine the elec-

trode configuration required and distribution of the magnetic field and electric

regimes. Experimental values of the gun parameters generally agree with the

static model (Tsimring and Zapevalov, 1996).

However, in the framework of the foregoing theory, it is difficult to explain some

important observations:

1. The experimental velocity spread (VS) as a function of the beam current

sometimes exceeds the calculated spread significantly.

2. There are limiting values of the pitch factor g for each gun construction.

Larger values of g are unattainable by any regime change, including an increase

in the magnetic compression a.

3. Intense quasiperiodic oscillations of the current and an electromagnetic radi-

ation in the frequency range 10 to 1000 MHz (low-frequency oscillations) are

observed for large currents (Goldenberg, 1976; Gorelov et al., 1999; Luksha and

Sominski, 1998).

These effects are accompanied by the growth of the anode current, although

the cathode–anode gap in guns of powerful short-wave gyrotrons is an order of

TABLE 10.5 Velocity Spread for Two Guns with
Periodic Irregular Distribution of an Emission

Gun f (GHz) M tj jDIj=I dv?

1 20 6 0.1 0 0.24

0.3 0.35

0.5 0.44

1.0 0.62

2 140 6 0.1 0 0.16

0.3 0.44

0.5 0.22

1.0 0.28
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magnitude greater than the height of the vertex of static electron trajectories above

the cathode. Growth of the emission current is also observed, which can lead to a

failure of the corresponding operation regimes for a large pulse duration, especially

in a CW mode.

Clearly, as a result of VS, the distribution of electron oscillatory velocities does

not have a sharp boundary on the large oscillatory velocity (small drift velocity)

side. Therefore, reflection of some fraction of electrons from the magnetic mirror

is inevitable. These particles in static fields cannot return to the cathode because a

coincidence of direct and return trajectories near the cathode has a probability of

practically zero. The reflected electrons in static fields also cannot reach the

anode because the magnetron diode is in the over-cutoff regime. As a result,

reflected electrons are locked in the trap between the cathode and the magnetic

mirror preceding the cavity. The lifetime of trapped electrons (TEs) in a typical

gyrotron adiabatic distribution of electric and magnetic fields can be very large

because of the adiabatic invariant conservation. Therefore, an accumulation of

TEs leads to the onset of instability. The latter can be called a global instability

because the disturbances arise at every point of the confined space between the

cathode and the magnetic mirror.

The following issues are of the most interest:

1. The origin and evolution of the instability

2. Possibility of the existence of stationary states of a beam with TEs

3. Nature of low-frequency electromagnetic oscillations

4. Possibilities of suppression of space-charge oscillations and electromagnetic

low-frequency radiation

Origin of TE Instability. Stationary States The results of numerical simulations

of the dynamic processes in an HEB with trapped electrons are presented briefly

below. More detailed consideration of this problem has been given by Rayski and

Tsimring (1996) and Tsimring (2001).

The algorithm of the simulation was implemented as a succession of temporal

steps. At each step, large particles move in a given magnetic field and in the electric

field found from the distribution of the space charge calculated at the preceding step.

Simultaneously, particles with charges em ¼ Imt, m ¼ 1, 2, . . . ,N, are injected

into the beam from the cathode. Here t is the temporal step and Im is the emission

current emitted from the mth cathode section. The distribution of initial oscillatory

velocities was taken close to a normal distribution. The value of the magnetic field

compression a was taken such that the share of reflected particles with oscillatory

velocities v? . v was about 10%. A quasilaminar undisturbed beam has been

assumed.

Some computed characteristics of the beam evolution are given below.

. 0–2 ns: First, reflected electrons appear in the beam. The electric field on the

cathode equals approximately 0.9 of a “cold” field.
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. 2–4 ns: Next, reflected electrons reach the cathode. The trajectories of

reflected particles are phased with direct trajectories. This effect increases the

velocity spread in the direct beam (Manuilov et al., 1990).

. 4–20 ns: The beam is gradually filled by electrons locked in the trap. The

phases of the trajectories are mixed, and TEs form a halo around direct trajec-

tories. Accumulation of TEs near the cathode leads to further depression of the

electric field. This field is nonstationary and oscillates. After several oscil-

lations, some electrons lose part of their oscillation energy and can leave the

trap. The number of new particles in the direct beam that can be reflected

from the magnetic mirror also decreases, because these electrons begin to

move in the weakened electric field.

. .20 ns: The beam acquires a quasistationary state in which the balance of

reflected and departed particles is reached. Electrons can leave the trap by

three different routes: into the operation space (through the magnetic mirror),

toward the cathode, and toward the anode. Temporal variations for averaged

beam parameters are illustrated in Fig. 10.24. According to Fig. 10.24, the

asymptotic values of g and dv? are worse than values in the absence of TEs,

(i.e., for t , 10 ns).

We can conclude that even a relatively small share of reflected electrons will

worsen the beam quality considerably. Furhtermore, we can now understand the

above-mentioned existence of the limiting value of g. For example, an attempt to

enhance g by raising the magnetic compression a increases the number of reflected

electrons. This leads to growth of the electric field depression near the cathode, and

the pitch factor returns approximately to its old value. It is clear that the limiting

value of g increases with a decrease in the initial spread dv?.

Space-Charge Oscillations The establishment of a quasistationary state with TEs

does not exclude the existence of space-charge oscillations. The origin of these oscil-

lations is obviously connected with axial oscillations of TEs in the adiabatic trap

FIGURE 10.24 Values computed for pitch factor and velocity spread as functions of time.
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(see an estimation of the frequency of these oscillations a paper by Tsimring, 2001).

But even in the presence of TEs, the excitation of the space-charge oscillations is not

a simple problem: In the absence of particle bunching, temporal oscillations of

space-charge density are impossible. At least two mechanisms of high-frequency

instability of an ensemble of electron oscillators may be proposed (see

Section 10.3).

1. Nonisochronous Oscillators dvl=dE = 0; where vl is the frequency of axial

oscillations of the electrons in the trap and E is the oscillator energy. The sign and

value of dvl=dE depend on the static magnetic field distribution. The latter can be

controlled by appropriate design of the magnetic system.

2. Phase Selection This takes place when some trapped electrons depart the

beam. Departure to the cathode is important because particles can heat up

the cathode. In this case, trapped electrons that are in the accelerated phase of the

space-charge field oscillate around their leading centers along loops of larger size

and depart to the cathode, leaving oscillating retarded particles in the beam.

This mechanism is similar to the Bakhausen–Kurz bunching of oscillators

(Section 10.4.1). Note that particles can also reach the anode due to the diochotron

effect.

Parasitic Electromagnetic Radiation In general, electromagnetic and space-

charge oscillations are linked in a unified process. A very general overview is

provided below. First, note that the transformation of low-frequency space-charge

oscillations in electromagnetic radiation is possible only in the gun area where

TEM oscillations are permitted. But the gap cathode–anode is short-circuited by

the power supply circuit. Thus, an electron gun with a power supply circuit may

be considered an open LC circuit. The power supply can be considered as an

element of the circuit with distributed admittance, and the gap anode–cathode, as

a nonlinear capacitance. We can interpret the electromagnetic radiation as an emis-

sion of an open LC circuit excited by the oscillating space charge. It is very import-

ant that oscillations of the anode voltage can amplify oscillations of the space-charge

field. The usual recommendations for weakening oscillations are to increase dissipa-

tion in the power supply circuit and to detune the natural frequency of the circuit

from the frequency of the space-charge oscillations.

The spectrum of parasitic electromagnetic oscillations in a powerful 110-GHz

gyrotron was observed by Gorelov et al. (1999). The gyrotron was used in electron

cyclotron heating and noninductive electron cyclotron current drive (see Section

10.12.2) in a DIII Tokamak (General Atomics, San Diego, California). The

maximum output power was about 2 MW with a pulse duration of 2 s. The

frequency of the parasitic emission was about 100 MHz near the frequency of

the axial electron oscillation in the trap (Tsimring, 2001). According to Gorelov

et al. (1999), the threshold electron beam current of the parasitic emission was

about 4 A. At low currents, sporadic oscillations were observed over the range

+5 MHz centered at 100 MHz. For currents 4 A , I , 9 A, the averaged spectrum
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is filled by harmonics. For I . 9 A, the spectrum was narrowed drastically and was

not changed up to a maximum operating current of 33 A. In that range, the fully

developed instability had a rather monochromatic spectrum.

10.8.6 Potential Depression and Limiting Current of HEBs

The potential depression (PD) is one of the limiting factors of powerful gyrotrons.

This factor leads to a limitation of a beam current similar to that in rectilinear

beams (Bogdankevich and Rukhadze, 1971). However, in HEBs this effect is

expressed more strongly because the drift velocity that determines the beam space-

charge density is substantially less than the full velocity. Besides, PD in HEBs

perturbs the gyrofrequency and leads to beam broadening.

PD and limiting current (LC) in HEBs were first analyzed by Drobot and Kim

(1981) and Ganguly and Chu (1984). Influence of the velocity spread on PD and

LC was studied by Antonsen and Levush (1986) and Tsimring (1993) for uniform

distribution of oscillatory velocities, which in fact assumes the absence of electron

reflection. Rayleigh distribution, which takes into account the reflection of electrons,

was also treated by Tsimring (1993). It was shown in those papers that the velocity

spread leads to further considerable reduction in the LC. Below we consider briefly

the PD and LC in monovelocity HEBs and in helical beams with velocity spread,

including the effect of the electron reflections. A nonrelativistic approximation is

used by Tsimring (1993). Corresponding results are available up to a voltage of

100 kV, which is typical for subrelativistic gyrotrons.

The ion compensation of the PD is neglected. According to Varentsov and

Tsimring (1983), the ion background may be ignored inside a MIG with a gaseous

pressure below 10�6 torr. The effect of the ion compensation can be considerable

for a sufficiently large pulse duration in the cavity where the static electric field is

small and the ion departure time is large.

Next, we consider the problem of limiting current for various velocity

distributions.

Monovelocity HEB The beam inside a circular tube with radius Ra (Fig. 10.25)

is assumed thin, so the radial potential variation on the beam cross section

may be neglected. The PD of the beam relative to the tube well with potential is

DU ¼ I

2p10vz
ln
Ra

R0

(10:178)

Equation (10.178) determines DU indirectly, because this value also enters the

longitudinal (drift) velocity vz, which in the nonrelativisic approximation is

vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h(Ua � DU)� v2?

q
(10:179)
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Here v? is the oscillatory velocity, which does not depend on DU (the result of con-

servation of the adiabatic invariant). We obtain from Eq. (10.179)

vz ¼
ffiffiffiffiffiffiffiffiffiffiffi
2hUa

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1þ g20)� x
ps (10:180)

where x ¼ DU=Ua is the relative PD, g0 ¼ v?=vz0 is the nonperturbed pitch factor

(vz0 is the drift velocity without PD). Substituting Eq. (10.180) into Eq. (10.178),

we find that the current is

I ¼ 2p10
ffiffiffiffiffiffi
2h

p
U3=2

a x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=(1þ g20)� x

p
ln (Ra=R0)

(10:181)

According to this relation, the current initially grows with x, but after reaching the

maximum, it drops. It is readily verified that the maximum I corresponds to

xmax ¼ 2

3(1þ g20)
(10:182)

Substitution of Eq. (10.182) into Eq. (10.181) gives the maximum current,

Imax ffi 0:4U3=2
a

(1þ g20)
3=2 ln (Ra=R0)

(10:183)

Here I and U are expressed in amperes and kilovolts, respectively. The beam is

unstable for x . xmax. Therefore, the current Imax is the limiting current (LC). The

limiting disturbed pitch factor

gmax ¼ g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x(1þ g20)

p" #
x¼xmax

¼
ffiffiffi
3

p
g0 (10:184)

The change in g influences the interaction efficiency.

FIGURE 10.25 Hollow electron beam in a gyrotron cavity.
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Homogeneity of the Velocity Distribution of Electron Beams The presence of

an electron portion with large oscillatory and accordingly, small drift velocities in

multivelocity beams increases the space-charge density and diminishes the LC.

In general, if a velocity distribution is similar to a normal distribution with

typical “tails,” the reflection of some part of the electrons is inevitable, and the

situation is complicated. Let us first assume a uniform gyrovelocity distribution

without reflections. The flow distribution function is used; that is, the beam current

related to the gyrovelocity interval v?4v? þ dv? equals dI ¼ f (v?) dv?, where

f ¼
0, v? 
 v?min

N, v?min , v? , v?max

0, v? � v?max

8<: (10:185)

Here N ¼ I=(v?max � v?min). Let us define the velocity spread as dv? ¼ (v?max �
v?min)=�v?, where

�v? ¼ v?max þ v?min

2
¼ g0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
0

p ffiffiffiffiffiffiffiffiffiffiffi
2hUa

p
Then it can be shown (Tsimring, 1993) that the current

I ¼ 1:04
U3=2

a

ln (Ra=R0)
F(x) (10:186)

where

F(x) ¼ xg20dv?ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g20

p
a sin

g0(1þ d?=2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� x)(1þ g20)

p � a sin
g0(1� dv?=2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� x)(1þ g20)

p" #

The limiting current can be found numerically from the condition of the maximum value

of the function F(x). The ratio of the LC of multivelocity and monovelocity beams as

a function of the velocity spread for different values of g0 is shown in Fig. 10.26.

Note that the geometric factor ln (Ra=R0) in Eq. (10.186) and in other appropriate

equations of this section must be replaced by ln (Ra=R0) ln (R0=Rb)= ln (Ra=Rb) for a

coaxial structure with the inner rod radius Rb and the same radii of the beam R0 and

the anode Ra.

Helical Electron Beams with Electron Reflection Let us turn to a situation

where the primary velocity distribution does not have a sharp boundary at the

side of large oscillatory velocities, and the reflection of some electrons from the

magnetic mirror is inevitable. What are the general features of the velocity distri-

bution in the cavity (i.e., in the uniform magnetic field beyond the magnetic

mirror)? First, there is a limiting oscillatory velocity in this distribution,

v? lim ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h(U � DU)

p
(10:187)
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were DU is the potential depression. It is clear that the drift velocities of the electron

become zero for v? ¼ v? lim. The distribution f (v?) with lesser v? maintains the fea-

tures of the primary distribution [(i.e., there is a velocity v?m corresponding to the

maximum of the distribution, and f (v?) falls down behind v?m]. The corresponding

distribution is depicted in Fig. 10.27. In a paper by Tsimring (1993), a Rayleigh

distribution in the interval 0 4 v? lim,

f (v?) ¼ Av? exp � (v? � v?0)
2

d2

� 	
(10:188)

FIGURE 10.26 Ratio of limiting currents of multivelocity to monovelocity beams as a

function of velocity spread for various nondisturbed pitch factors.

FIGURE 10.27 Velocity distribution in a cavity with the reflection of electrons in the region

of a magnetic compression.
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was used for simplicity. This distribution differs from the Gaussian distribution

by the presence of the multiplier v?. Thus, the normalized velocity distribution,

corresponding to Fig. 10.27, can be written as

dI ¼ Ad2 exp½�(y� y0)
2�d, y 
 ylim

0 y . ylim

�
(10:189)

where y ¼ v?=d, y0 ¼ v?0=d, and ylim ¼ v? lim=d. The velocity spread can

be expressed through the dispersion D and the mean oscillatory velocity of the

distribution [Eq. (10.189)]:

dv? ¼ 2
ffiffiffiffi
D

p

�v?
(10:190)

Calculation of LC and PD has been carried out by Tsimring (1993) according to the

scheme of calculation of the LC for a beam with zero velocity spread: The current I

is expressed as a function of DU, and then LC and the limiting PD are found from the

condition dI=dDU ¼ 0.

A normalized limiting current (the ratio of the HEB limiting current to the LC of

a thin rectilinear beam) as a function of the unperturbed velocity spread dv?0

(neglecting the potential depression) with different unperturbed pitch factors g0 is

depicted in Fig. 10.28. The qualitative peculiarities of the curves in the figure

may be treated in the following way. According to Eq. (10.181), the beam current

can be written as I ¼ S DU vz, where vz is some mean drift velocity. First the

current grows with DU because vz decreases weakly, but further, the current falls

FIGURE 10.28 Normalized limiting current as a function of unperturbed velocity spread for

different unperturbed pitch factors. Solid curves, Rayleigh velocity distribution; dashed

curves, uniform velocity distribution.
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due to the decrease in vz. Consider first the case of uniform gyrovelocity distribution

while setting aside the electron reflection. Let us take the mean oscillatory velocity

equal to the velocity in the monovelocity beam. Then that portion of the beam that

has a gyrovelocity greater than the mean velocity decreases the drift velocity more

strongly than the symmetric portion increases the drift velocity. As a result, vz is

lower than in monovelocity beams (the dashed curves in Fig. 10.28).

The situation is different for the distribution (10.189). Here the growth of the vel-

ocity spread reinforces electron reflection. As a result, the upper boundary of the

gyrovelocities is lowered. For small dv?0, this effect is not significant. Therefore,

changes in the LC and PD are similar to the case of uniform velocity distribution.

However, with the growth of dv?0 and g0, the effect of the upper boundary limitation

changes the velocity distribution considerably. That weakens the decrease of vz with

an increase of DU. Therefore, the maximum of the current is reached for a greater

potential depression, and LC increases (solid curves in Fig. 10.28).

Influence of Potential Depression on Gyrofrequency The increase in the

gyrofrequency vg is a direct consequence of depressing particle energy due to

PD. It is readily verified that normalized perturbation of the gyrofrequency

Dvg

v
¼ x

1þ m0c2=e0Uo

(10:191)

where x ¼ DUo=Uo and Uo is the unperturbed potential of the interaction space.

Beam Broadening The combined influence of the space-charge and magnetic

fields excites an azimuthal rotation of beam layers. The angular drift velocity of

the external layer with radius Re is

V ¼ Er

ReB
(10:192)

where Er ¼ Q=2pRe10 is the space-charge field at radius Re. Using Eq. (10.178),

we obtain

V ¼ Uox

R2
eB ln (Rc=Re)

(10:193)

According to the Busch theorem [Section 1.7, Eq. (1.128)]

V ¼ D_u ¼ h

2pR2
e

DC ¼ hB

2pR2
e

2pRe DRe

Then

DRe

Re

¼ V

vg

(10:194)
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and we obtain

DRe

Re

¼ hUox

R2
ev

2
g ln (Rc=Re)

(10:195)

It can be estimated that this value is significant only for long-wavelength gyrotrons.

10.9 MODE INTERACTION AND MODE SELECTION IN
GYROTRONS. OUTPUT POWER SYSTEMS

A distinctive feature of the gyromonotron as an oscillator in the submillimeter

and short-millimeter ranges is its high power in long-pulse and continuous

regimes. We have seen that the bremsstrahlung nature of the electron radiation

in gyrotrons, together with peculiarities of the magnetron injection guns, lift restric-

tions on the volume of an active medium. However, at least two fundamental difficul-

ties remain. The first is to ensure spatial coherence of radiation while retaining

sufficient efficiency under conditions inwhichmanymodes in the spatially developed

medium can be excited simultaneously. The second is the canalization of large fluxes

of energy with a simple spatial transverse radiation structure. In this section we

discuss briefly methods for solving these problems in experimental gyromonotrons.

10.9.1 Mode Interaction

Any researcher or designer of powerful oscillators sooner or later encounters the

problem of mode competition or general mode interaction. This problem marks

the juncture where the straight path of development turns into a labyrinth littered

with many dead ends and blind alleys. The gyromonotron is an example of a

system that moved along a straight path farther than many others. This is a result

of peculiarities of the interaction mechanism which allow a designer to apply

open resonators effectively with their extraordinarily selective properties. Neverthe-

less, even in gyrotrons, after achieving a certain level of power, the problem of mode

interaction becomes acute.

The spectral density N of free oscillations of an arbitrary cavity is determined by

the well-known Rayleigh–Jeans relation N � V=l3, where V is the resonator

volume. In light of the foregoing [Eqs. (10.48) and (10.49)], it is clear that resonators

of powerful gyrotrons must have a dense spectrum. If two or more modes get into a

cyclotron resonance band, their interaction can negatively affect the gyrotron effi-

ciency, monochromaticity, and spatial coherence of radiation (see, e.g., Kreischer

et al., 1984). The mode interaction in gyrotrons is characterized by the following

two basic effects (Nusinovich 1999, 2004):

1. Mode Suppression and Coexistence. Mode suppression takes place when

excitation of one mode worsens the starting conditions for other modes. Usually,

the first excited mode suppresses other modes. Analysis shows that the effect of
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mode suppression requires strong coupling among modes. In the gyrotron this situ-

ation arises when frequencies of interacting modes are inside the gyroresonance

band, and the mode competition is determined by the extraction of energy by the

HF field of each mode from the same active medium (helical beam) (Nusinovich,

2004).Modecoexistence (multifrequencyoscillations) is possible forweakmodecoup-

ling. So inHEBswith a large velocity spread, modes can interact with separate velocity

fractions of the beam.

2. Nonlinear Mode Excitation. Frequency separation of competing modes is on

the order of the gyroresonance band. According to Nusinovich (2004), one mode can

improve the condition of excitation of another mode for a proper phase of the bunch.

The effect of nonlinear excitation is pronounced in gyrotrons operating at high gyro-

harmonics (Zapevalov et al., 1977, 1993; Zarnitsina and Nusinovich, 1977) in

the presence of an interaction with the beam at the fundamental resonance (first har-

monic). So the quadrupole nature of bunching of electrons in the field of the second

harmonic leads to fast saturation of the oscillation amplitude. But the bunched

current of the second harmonic mode reduces the starting current of the fundamental

harmonic when the latter is in the zone of hard excitation. The growth of the funda-

mental harmonic field can thus suppress the beginning of the operational mode.

This effect has been observed in experiments by Idehara and Shimizu (1994) and

Zapevalov and Tsimring (1978).

10.9.2 Mode Selection

The mechanism of mode suppression is the decisive factor that determines the possi-

bility of single-mode operation under the conditions of a dense mode spectrum.

The minimal requirement for the realization of this effect is selection of the

desired mode, so that the starting current of the latter is smaller than for other

modes. There are two common methods of mode selection: electrodynamic and

electronic.

Electrodynamic Selection Methods of selection in this case are differentiated

depending on the type of mode index TEmnq selected.

Axial selection (of the longitudinal indexes q) is very important if one takes into

account large values L=l, because many modes with different values of q would be

competitive. For a given q, the length of the resonator is equal to L � q(lw=2),
where lw is the wavelength in a waveguide. Therefore, the wavelength in free

space corresponding to the mode TEmnq is equal to

l ¼ lcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (lc=lw)

2
p ¼ lcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (qlc=2L)
2

p (10:196)

where lc is the cutoff wavelength of the mode TEmn in a regular waveguide. We see

that l is maximal for q ¼ 1 and decreases quickly with q. For modes with small q,

where q(lc=2L) 	 1, the wavelength l � lc½1� (q2=8)(lc=L)
2�, so the
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wavelengths of the first oscillations are close to cutoff. The modes TEmn1 are the

most interesting. By forming a little narrowing of the cross section at the output

end of the waveguide (on the right side of Fig. 10.12), it is possible to choose the

dimension of the corresponding cross section that will correspond to the super

cutoff for the mode TEmn1 and to after the cutoff for modes with q . 1. As a

result, the mode TEmn1 is reflected, whereas modes with q . 1 radiate freely, and

the corresponding Q-factors of these modes are small. For example, the Q-factor

for the mode TEmn2 is two to three times less than that of the TEmn1 mode.

Q-factors of modes with q � 3 are negligibly small. Thus, the method of selection

described rarefies the spectrum approximately 2L=l times.

Selection over azimuthal indexes m necessitates disturbing the axial symmetry of

the resonator (Gaponov et al., 1981). The cross section of such a resonator with an

electron beam is depicted in Fig. 10.29. The axial slots ensure suppression of whis-

pering modes (modes with m � n), so the TE1p mode may have the highest value of

Q. Resonators of the type shown in Fig. 10.29 are similar to the open resonators of

lasers and masers, and the corresponding gyrotrons are called quasioptical gyrotrons

(see, e.g., Fliflet et al., 1990). An attractive feature of such gyrotrons is the possi-

bility of mechanical tuning of their eigenfrequency by varying the distance

between mirrors. The disadvantage of quasioptical gyrotrons is the absence of cor-

respondence between the transverse structures of both the HF field and the annular

electron beam. Therefore, the efficiency of quasioptical gyrotrons is significantly

lower than that of axially symmetric gyrotrons.

Electrodynamic selection on radial indexes n may be attained in a number ways.

Let us consider the two most important cases.

1. Coaxial resonators (Gaponov et al., 1981; Piosczyk et al., 1999; Vlasov et al.,

1976). A diagram of the coaxial cavity is shown in Fig. 10.30. For the most part,

whispering gallery modes (m � n) do not “feel” the presence of the inner rod,

and their transverse structures are basically the same as in empty cavities. Modes

with greater n, having a radius of caustic surfaces close to the radius Rd of the

inner tapered conductor, are radiated, and the cavity Q-factor for these modes

diminishes considerably. Thus, the mode spectrum of the radial indexes in the

coaxial cavity is significantly rarefied compared with an empty cavity of the same

FIGURE 10.29 Cross section of a resonator in a quasioptical gyrotron.
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cross-sectional size. It naturally opens possibilities for single-mode operation with

high modes. For example, a coaxial gyrotron with a TE31,17 mode has been devel-

oped by Piosczyk et al. (1999) (frequency, 165 GHz; output power, 1.7 MW; effi-

ciency without depressed collector, �30%). Another positive feature of coaxial

cavities is a reduced potential depression.

2. Complex cavities (coupled resonators with mode conversion) The systemcon-

tains circular open resonators (Fig. 10.31a) 1 and 2 with equal eigenfrequencies

of modes TEmn11 and TEmn21, which are characterized by coinciding azimuthal and

different radial indexes. In the irregular waveguide 3, mutual mode conversion

occurs, providing coupling between the resonators. Under certain conditions, ampli-

tudes of the fields of normal oscillations in both resonators are comparable (Tsimring

and Pavelyev, 1982; Malygin et al., 1983). This circumstance, as well as the coinci-

dence of radii corresponding to maxima of structure factors that do not depend on

the radial indexes of the modes [Eq. (10.146)], favors the efficient interaction of

HEBs with an electromagnetic field over the entire length of the coupled system.

Some other pairs of modes TEm2,p3 and TEm2,p4 can also form coupled oscillations.

However, the number of these pairs is small, and the frequency separation of these

FIGURE 10.30 Cavity in a coaxial gyromonotron.

FIGURE 10.31 (a) Longitudinal cross section of a complex resonator; (b) distribution of

field amplitudes of coupled modes.
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pairs from the frequency of the fundamental pair is enlarged. Uncoupled modes can be

excited only separately; their interaction lengths (L1 or L2) are shorter than L1 þ L2
(Fig. 10.31b), and the starting currents are significantly higher. Thus, the spectrum of

effective (strongly coupled) modes is rarefied compared with that of conventional cav-

ities. At the same time, using a high mode in output cavity 2 provides an adequate

working space and reduces the wall losses needed for power operation.

Complex cavities were originally proposed by Pavelyev and Tsimring (1979). The first

results of gyrotron application of complex resonators were published byGaponov et al.

(1981) and Carmel et al. (1983). Operations with complex cavities in gyrotrons on the

second (Pavelyev et al., 1987) and thirdharmonic (Malygin, 1986) of the gyrofrequency

have confirmed the effectiveness of the method of mode selection considered and

allowed for an increase in output power and efficiency. One disadvantage of

complex resonator structures, however, is their more stringent requirements for

fabrication.

Electronic Selection The choice of an optimal radius R0 for the electron beam in

the resonator is the most obvious method. The radius of the electron beam must cor-

respond to the maximum of the structure factor G as a function of R0 [Eq. (10.146)].

So the beam on the fundamental harmonic should be located at the inner peak of the

electric field. This ensures a minimum starting current for the mode chosen.

A startup scenario (Nusinovich, 2004; Nusinovich et al., 2004) is the specific

protocol of temporal varying gyrotron parameters (i.e., magnetic field, beam

energy, anode and cavity voltages, and beam current) in the process of turning on

a gyrotron, which leads to the onset of the single-mode stable oscillation desired.

The choice of a proper startup scenario is determined by working in the hard self-

excitation regime, which often is the only possible way to achieve high efficiency

and suppressing of competitive modes. The problem of an adequate startup scenario

was addressed in early investigations of gyrotrons (see, e.g., Nusinovich, 1974). In a

CW regime, the simplest startup scenario is reduction of the dc cavity magnetic field

Bo after attainment of starting oscillations. In this case, the power increases from the

minimum starting value to a value ensuring stable maximum of the output power,

usually with maximum admissible mismatch (Kisel et al., 1974). In general, the

startup scenario can also be realized by variation of the anode voltages (for triode

guns), the dc magnetic field of the cathode coil Bc (see Fig. 10.18), and the beam

current (Nusinovich et al., 2004).

In a pulse regime, some of the methods described above are not applicable

because of the inertia of gyrotron magnetic systems and the thermal inertia of a

cathode heater. Instead, a scenario connected with the choice of the voltage feed

in the gyrotron power supply can be used. Note, however, that the scenario with vari-

able beam current can be realized in the MIG in the r-mode (space-charge-limited

current) (see, e.g., Kuftin et al., 1993).

In triode-type guns in a pulse gyrotron with a separate anode (Fig. 10.18), two

methods of feeding are possible: either proportional variation of the resonator and

anode voltages (V0 and Va, respectively) due to a voltage divider, or keeping up a

constant difference (V0 � Va) between the voltages during the voltage rise. Each

10.9 MODE INTERACTION AND MODE SELECTION IN GYROTRONS 497



scenario gives a different character for the pitch factor and the electron energy vari-

ation during the voltage rise. For a dense mode spectrum, these scenarios determine

the sequence of excitation of the operation and parasitic modes. It has been shown

that the second scenario provides better conditions for single-mode excitation of

the desired mode (see, e.g., Nusinovich, 2004). For diode-type guns, only the first

scenario with Va ¼ V0 can be realized.

For multi-beam gyromonotrons (Wang Hui et al., 1985; Zapevalov and Tsimring,

1990; Zapevalov et al., 1989, 1991) the main beam is supplemented with one or

several hollow HEBs coaxial with it. Depending on the parameters of the sup-

plementary beams (mainly the oscillatory and drift velocities), the latter can

execute functions of radiative or absorbing beams. This creates rich possibilities

for mode selection. There are a number of constructive versions of multibeam

MIGs (Zapevalov et al., 1991). Two possible schemes with supplementary radiative

and absorbing beams are depicted in Fig. 10.32. According to Zapevalov and Tsimr-

ing (1990), the introduction of supplementary radiative beams (SRB) (Fig. 10 32a)

increases the margin of oscillation stability for zero coupling of the SRB to the field

of a parasite mode even though the coupling of the SRB to the field of the operating

mode generally differs from optimal. The main factor here is that the enhanced oscil-

lation stability makes it possible to draw closer to the high-efficiency regime of the

main beam. The spatial separation of partial beams weakens the effect of the space

charge on the velocity spread and reduces the probability of two-beam instability,

which in principle can occur because of the multihump distribution function of

longitudinal velocities.

Supplementary absorbing beams (SABs) should have parameters that ensure a

maximum of cyclotron absorption of the parasitic mode at minimum interaction

with the field of the operation mode. It can be shown that power absorbing by

the helical beam is proportional to b2(n�1)
? (Zapevalov et al., 1991), hence

the absorbing intensity does not depend on b? at the fundamental resonance and

is zero for interaction of the rectilinear beam with the field at the harmonic of the

gyrofrequency. Two particular cases are of greatest interest.

Operational and parasitic modes are synchronous with a beam at the fundamental

resonance. A SAB should be introduced at the zero value of the operational mode

FIGURE 10.32 Two-beam MIGs: (a) gun with both radiative beams; (b) gun with one

radiative and one absorbing beam (beam Ra).
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field so that coupling of the beam with the field of the parasitic mode are maximal. It

can be shown that the absorption power Pa � U2
a , where e0Ua is the energy of elec-

trons in the SAB, so beams with minimum energy are best. However, in practice

the energy should not be very low because of the detuning of the cyclotron resonance.

Note that SABs aremonovelocity beams even for a high degree ofmode selection and

can be recuperated effectively.

The operational mode is synchronous at the second harmonic of the gyro-

frequency, and the parasitic mode is synchronous at the first harmonic. This is

the most efficient case. The injection radius of an SAB should be chosen only

under conditions of the best interaction with the parasitic mode field. Introduction

of a nonoscillating beam ensures absorption of the first harmonic modes and has

no effect on the field of the operating second harmonic.

Experiments by Zapevalov et al. (1993) with a gyrotron at the second harmonic of

the gyrofrequency (l ¼ 1.2 cm, mode TE03) confirmed the effectiveness of mode

selection using absorbing beams. The maximum stable output power reached with

an SAB was 600 kW, whereas without an SAB it was only 360 kW.

10.9.3 Output Power Systems

The purpose of an output system is to extract the RF power from the cavity through

the RF window into the output waveguide with small losses. Simultaneously, an

important function of the output system is to transform a resonator mode having a

complicated transverse structure into a simple wave beam (e.g., a Gaussian beam)

appropriate for channeling the RF power without distortions along an oversized

transmission line into a load. Two possible output systems are depicted in Fig. 10.33.

A straight output system (Fig. 10.33a) unites producing transport of an electron

beam to the collector with transmission of RF power to the window. However, use of

this outwardly simple system to transmit high power meets significant difficulties.

Because the output waveguide serves as an electron collector, the ratio Rcol=Ra

should be very large for gyrotrons with a high level of average power. In this

case, elimination of mode transformation in the taper, even with optimization of

its profile (Mobius and Thumm, 1993) is very difficult and requires using exceed-

ingly long tapers. Besides, the problem of conversion of the operational mode

into a Gaussian wave beam remains unsolved.

FIGURE 10.33 Output power systems: (a) straight output system; (b) quasioptical converter.

1, Resonator; 2, taper; 3, collector; 4, HF window; 5, launcher; 6, reflector.
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A quasioptical converter (Fig. 10.33b), proposed and developed by Vlasov and

Orlova (1974) and Vlasov et al. (1975), provides a pivotal solution to these pro-

blems. The mechanism of the converter is based on the Brillouin concept, represent-

ing the waveguide mode as a beam of rays. Straight Brillouin rays in a circular

waveguide with the mode TEmn are inclined to the waveguide axis with the angle

b ¼ sin�1 (kmn=kRa). Each ray crosses a distance in the axial direction between

two subsequent reflections from the waveguide wall equal to

LB ¼ 2Ra 1� m

kmn

� �2
" #1=2

cotb (10:197)

and shifts by the angle

Dw ¼ 2 cos�1 m

kmn
(10:198)

Thus, the reflection points of each ray make a full revolution at the following

distance along the waveguide axis:

H ¼ LB
2p

Dw
¼ 2pRa

cos�1 (m=kmn)
cotb (10:199)

It can be shown (Denisov et al., 1992) that all rays corresponding to the mode

considered in the regular waveguide belong to the region G, having the form of a

parallelogram of length H and width Ra Dw. Thus, by cuting out segment G from

the waveguide wall, we can obtain the flux of all rays (Fig. 10.34) through this wave-

guide cut with angular divergence in the azimuthal plane. The flux can be trans-

formed into a beam of quasiparallel rays, due to a specially designed (Vlasov and

Likin, 1980) quasiparabolic mirror (Fig. 10.34). The beam after the first mirror trans-

mits across two correcting reflectors and propagates radially through the

output window (Fig. 10.33b), shaped as a Gaussian wave beam. The best excitation

coefficient (in terms of power) of this beam in this scheme was about 0.85 (see, e.g.,

Denisov et al., 1992).

FIGURE 10.34 Quasioptical mode converter. 1, Waveguide cut; 2, caustic; 3, first mirror.
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It is necessary to note that mode converters with such comparatively high trans-

mission coefficients are not appropriate for the powerful CW gyrotrons because a

diffraction RF power that is not directed through the output window (“stray RF

power”) overheats internal parts of the tube (basically, ceramic insulators).

A cardinal solution to this problem has been developed by Denisov et al. (1992). A

regular section before the waveguide cut is replaced by a smooth perturbed (rippled-

wall) waveguide. The appropriated shape of the inhomogeneous waveguide surface

provides a particular distribution of the field at the G-region that optimizes the

Gaussian structure of the beamand diminishes beamscattering at the cut edges (diffrac-

tion losses). In an experimental 110-GHz gyrotron, ameasured transmission coefficient

(by a power) after the convertor formedby a rippled-wall launcher and three-mirror line

was about 95% (Denisov et al., 1992). But even in this case the fraction of the stray HF

radiation is on the order of 10%. For a 1-MW gyrotron, that is 100 kW! An advanced

internal converter has been designed that produces an output beam with a Gaussian

mode content of 99.5%, which produces diffraction losses as small as 1 to 2%

(Litvak et al., 2005). So in the 140 GHz FTZ gyrotron (Germany) power of the stray

radiation was of order 1% (Dammertz et al., 2006). A synthesis technique for phase-

correcting mirrors designed with reduced diffraction losses using irradiance moments

developedbyShapiro et al. (2005) has been realized in a four-mirror 110-GHzgyrotron.

10.9.4 Output Windows

Development of adequate gyrotron output windows gets more and more complicated

with increases in the average output power, frequency, size, and requirements con-

cerning the quality of the output radiation. In the first small power laboratory gyro-

trons (Pout , 4 kW), thin-film mica windows were applied. However, in early

experiments with gyrotrons as sources of radiation for electron–cylotron heating

of plasmas in a TM-3 tokamak at the Kurchatov Institute in Moscow (Alikaev

et al., 1972), ceramic windows of comparatively large size were used.

The choice of construction and materials of windows for powerful gyrotrons is

dictated by a combination of requirements, among which the most important are

low reflection of the wave from the window, low losses in the ceramic material,

high thermal conductivity, the method of mounting, mechanical strength, and

even (for gyrotrons in fusion reactors) radiation insensitivity to neutron fluxes. A

minimum of reflection is reached when the window thickness is equal to

D ¼ n
ld
2
, n ¼ 1, 2 . . . (10:200)

where ld ¼ l=
ffiffiffiffiffiffiffiffiffi
1=10

p
is the wavelength in a dielectric.

Over a period of development of gyrotrons with high average power in various fre-

quency bands, a number of ceramic materials and systems of window cooling were

tested. The most promising ceramics were beryllia ((BeO), boron nitride (BN),

silicon nitride (Si3 N4), sapphire (Al2 O3), Au-doped silicon (SiþAu), and a synthetic

CVD (chemical vapor deposition) diamond (see, e.g., Kartikeyan et al., 2004). The goal
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is to get awindow for the transmissionofCWpower around1 MWat a frequency on the

order of 140 to 170 GHz. The frequency chosen corresponds to the condition of cyclo-

tron resonance at the first or second harmonic in a tokamak magnetic field. A power of

1 MW corresponds to the power limitations of other gyrotron components (i.e., cavity,

collector, electron gun, power supply). It turned out that only a CVD diamond satisfied

the requirements indicated. The power limit of a sapphire window at a frequency of

�100 GHz at room temperature is around 0.3 to 0.4 MW. It can be used at lower fre-

quencies and for pulsed operation, but the power criterion noted above is considerably

higher. Improvements can be attained by using cooled double-disk windows and by

reducing the operating temperature. However, the complicated construction and

losses in cooling liquid lead to considerable difficulties.

The characteristics of CVD-diamond windows are very high. The loss tangent at

frequency 145 GHz is �2 � 1025, approximately 10 times less than in sapphire

windows, and the thermal conductivity is 50 times higher. This unique parameter of

a CVD diamond allows us to use the simplest cooling method: water-edge-cooling

(coolingwater flows along the disk edge). LargeCVD-diamond disks aremanufactured

in a number of countries. The leader, DeBeers Ltd. (UK), produces disks with diameter

and thickness of up to 119 mm and 2.2 mm, respectively, with good reproducibility of

parameters.

An interesting version of gyrotron output windows is the Brewster window (see,

e.g., Kartikeyan et al., 2004), which has an angle uB ¼ tan�1 (
ffiffiffiffiffiffiffiffiffi
1=10

p
) between the

ray and the normal to the disk surface. In a Brewster window, reflections vanish

independent of the frequency for parallel polarization of a wave. These windows

provide broadband operation of multifrequency or step-tunable gyrotrons (see,

e.g., Kreischer and Temkin, 1987).

10.9.5 Depressed Collectors

According to Eq. (10.150), the motion of electrons in diminishing the magnetic field

near a collector (Fig. 10.10) leads to decompression of the spent electron beam (i.e., to

degeneration of the spent helical beam into a rectilinear beamwith the corresponding

spread of the longitudinal electron energy). In this case, it is possible to use a

depressed collector (DC) to enhance gyrotron efficiency, similar to the use of DCs

in traveling-wave tubes. The construction and electric scheme of DCs are analogous

to the DC schemes used in conventional TWTs (see Section 8.6.4). The simplest

single-stage DC allows for an increase of efficiency from the typical 25 to 35% to

50% and more (see, e.g., Andersen et al., 2004). Use of DCs also facilitates cooling

of the collector and lowers the intensity of x-ray radiation.

10.10 GYROKLYSTRONS

10.10.1 Introduction

The gyroklystron depicted in Fig. 10.35 is analogous to a conventional klystron

(Figs. 7.1 and 7.10). The analogy includes fundamental physical effects: HF modu-

lation, inertial bunching in the drift sections, and extraction of the HF energy in the

502 CLASSICAL ELECTRON MASERS AND FREE ELECTRON LASERS



output cavity. However, there are essential differences in the nature of the effects

indicated. In particular, the energy modulation of the helical beam in the input

cavity of a gyroklystron is different from the longitudinal velocity modulation of

the rectilinear beam in conventional klystrons. Furthermore, the orbital (phase)

bunching of electrons in gyroklystrons (in general, gyrotrons), which is an essen-

tially relativistic effect, is not accompanied by an apparent change in the beam

spatial structure, in contrast to the axial (spatial) bunching in conventional klystrons.

Naturally, these differences lead to differences in the theory for both amplifiers.

The gyroklystron was invented in 1967 (Antakov et al., 1967). The idea behind

the gyroklystron can also be found in early theoretical and experimental work by

Wachtel and Hirshfield (1966). A detailed exposition of gyroklystron theory is

beyond the scope of this book. We limit ourselves below to a description of the

theoretical model, formulation of basic equations, and a summary of the most

important results.

10.10.2 Basic Model

The interaction of a subrelativistic electron beam with the TE mode is assumed.

Space-charge effects as well as the electron velocity spread are neglected, so the

energy and phase are determined by Eqs. (10.125) and (10.129). Resonators 1, 3,

4, and 5 in the Fig. 10.35 are assumed to be short cavities where phase bunching

is not developed. HF fields in drift tubes are neglected. Therefore, the electron

energy w in these sections is constant, and according to Eq. (10.129), the growth

rate of phase in the drift section between the (i2 1)th and ith cavities is equal to

q(zi)� q(zi�1) ¼ �½Dþ w(zi�1)� 1�(zi � zi�1) (10:201)

where w(zi�1) is the electron energy at the output of the (i2 1)th cavity, D is the

frequency mismatch [Eq. (10.127)], and the zk are dimensionless coordinates. The

stagger-tuned model of the gyroklystron (Nusinovich et al., 1997) can also be

taken into account, according to which the eigenfrequencies v(k) ¼ v(k)
01 þ iv(k)

02 of

the cavities can be different, as well as the dimensionless frequency mismatches:

di ¼ 2Q(v� v (i)
01 )=v (10:202)

10.10.3 Gyroklystron Equations

The analysis proceeds via successive calculations of HF fields in resonators and

bunched HF currents in drift tubes beginning with the first resonator that is fed by

FIGURE 10.35 Four-cavity gyroklystron. 1, Input cavity; 2, drift tube; 3, intermediate

cavity; 4, penultimate cavity; 5, output cavity; 6, output window.
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the input power Pin. The resonators that follow the input cavity are excited by the

bunched HF currents. The fields and the average electron energies in each resonator

are determined as a result of the joint solution of the equations of motion and the

equations of complex power balance.

Balance equations according to Eqs. (10.66) and (10.67) can be written as

2v(1)
02W1 ¼ Re(P1Þ þ Pin

2v� v(1)
01W1 ¼ Im(P1)

(10:203)

2v(i )
02Wi ¼ Re(Pi)

2(v� v(i)
01 )Wi ¼ ImðPiÞ

, i ¼ 2, 3, . . . , N (10:204)

whereWi is the stored energy in the ith resonator . The subrelativistic average complex

power P is determined by Eq. (10.130). Equations (10.203) and (10.204) should be

solved in each cavity jointly with the averaged subrelativistic equations of motion

(10.125) and (10.129) for both energy and phase. The HF fields in drift sections are

suppressed. Therefore, the corresponding energies are constant and equal to the ener-

gies in the resonators at the entry of each drift section. The phase shift in the drift

section that determines the bunched current is given by Eq. (10.201).

Usually, dimensionless equations are used instead of Eqs. (10.203) and (10.204).

In this case the susceptibility x ¼ x0 þ ix00 ¼ �i(s=10v) is introduced. Here s is the

complex admittance of the electron beam. The complex dimensionless susceptibility

(see, e.g., Nusinovich, 2004)

x ¼ 2

F

1

2p

ð2p
0

ðzout
zine

w n=2eiqf �(z) dz dq0 (10:205)

Balance equations for the input resonator can be written as

I(1)1 x1 þ
A

jFj e
�ic ¼ i� d1 (10:206)

where the dimensionless current in the ith cavity corresponding to the nth harmonic is

I(i)n ¼ 8
e0Ib

m0c3
G(i ) nn

2nn!

� �2
b2(n�2)
?0

bz0

1Ð m
0
j f (i)(z)j2 dz (10:207)

Here Ib is the beam current andG is a structure factor determined by Eq. (10.146). The

amplitude A of an input signal is assumed to be real. The complex field in the input

resonator is represented as F ¼ jFjeic. The frequency mismatch d is determined by

Eq. (10.202). It is readily found from Eq. (10.206) that

jFj2 ¼ A2

(1� I(1)1 x001)
2 þ (d1 þ I(1)1 x01)

2
(10:208)

tan c ¼ 1� I(1)1 x001
d1 þ I(1)1 x01

(10:209)
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Balance equations for resonators other than the input resonator are

I(i )n x00i ¼ 1

I(i )n x0i ¼ �di

)
, i ¼ 2, 3, . . . , N (10:210)

The interaction between the bunched electron beam and the HF field in the output

cavity leads to the orbital efficiency:

h? ¼ 1� 1

2p

ð2p
0

wN(q0) dq0 (10:211)

The relations (10.208)–(10.211) should be solved jointly with subrelativistic

averaged equations of motion (10.125) and (10.129) and with relation (10.201) for

the phase shift.

The outlined procedure in general is rather complicated and can only be

implemented numerically. Considerable simplification is attained through a linear

approximation which is based on the smallness of electromagnetic fields and the cor-

responding perturbations of the electron energy in all resonators except the output

cavity. This approximation in gyromonotron theory was considered in Section

10.7.3. Linearized equations of motion are given by Eqs. (10.133) and (10.134).

The corresponding susceptibility is

x ¼ 2

F

1

2p

ð2p
0

ðzout
zin

f �(z)ei(q0�Dz) 1þ iq1 þ n

2
w1

� �
dz dq0 (10:212)

where w1 and z1 are small perturbations of energy and phase determined by

Eqs. (10.132). In a linear approximation, the relation for the phase shift can be

written in an explicit form. For example, application of Eq. (10.201) to the first

drift section leads to the relation

q(z2) ¼ q(z1)� (Dþ w1)m21 (10:213)

where m21 ¼ z2 � z1 and w1 ¼ w� 1 is a small increment of the energy [see

Eq. (10.132)]. Integration of Eq. (10.133) and substitution of the value obtained

for w1 into Eq. (10.213) give

q(z2) ¼ q(z1)� Dm21 þ X sin (c� q0) (10:214)

where the parameter X ¼ jFjm21 can be called a bunched factor. Comparison of

Eq. (10.214) with Eqs. (7.12) and (7.13) in the theory of conventional klystrons

justifies this definition.
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10.10.4 Efficiency, Gain, and Bandwidth of Gyroklystrons

Two-Cavity Gyroklystrons

Efficiency Let us suppose that eigenfrequencies of both cavities are the same and

their lengths are small (the point gap model). In this case the maximum efficiency

h? � 34% is reached for zero detuning [the frequency mismatch d ¼ 0, as

defined by Eq. (10.202)] and the bunched factor X ¼ 1:84. This value corresponds
to the first maximum of the function I1(X), where I1 is a Bessel function of the first

order. The value X ¼ 1:84 provides a maximum efficiency h ¼ 58% for a conven-

tional klystron in a kinematic approximation (see Section 7.4.2). The maximum effi-

ciency for X . 1:84 can be realized with nonzero detuning (Fig. 10.36). It is

obvious that the gain is reduced if the increase of X ¼ jFjm21 is due to increased

input power.

For long resonators, the maximal orbital efficiency can be increased up to 70%

(Antakov et al., 1994). According to Kuraev (1979), optimization of the distribution

of the HF field and use of a tapered dc magnetic field allow one to increase the

efficiency up to 80% or more.

Gain In general, the gain grows with any decrease in the input power or increase in

the length of the drift section. Maximum gain is attained with zero detuning.

Bandwidth Bandwidth can be defined as the frequency detuning range Dv provid-

ing deviation in the gain if less than 3 dB. The order of bandwidth is defined as

Dv � v=Q, and the normalized bandwidth is BW ¼ Dv=v. This value can be

increased substantially for slight detuning of eigenfrequencies of the cavities

(stagger tuning). According to Nusinovich et al. (1997), up to a fivefold increase

in bandwidth can be achieved in this case; however, it is accompanied by a reduction

in gain. A useful criterion is the gain–bandwidth product.

Multicavity Gyroklystrons (Fig. 10.35) There are many adjustable constructive

parameters of multicavity gyroklystrons (e.g., eigenfrequencies of cavities and their

FIGURE 10.36 Typical characteristics h?(d) for various values of a bunched parameter.
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Q-factors, lengths, operation modes, positions, number of gyrofrequency harm-

onics). Therefore, the choice of the optimal version that satisfies specific require-

ments (e.g., maximum efficiency, gain, bandwidth) is a very complicated

problem, even more difficult than optimization of conventional klystrons where

interaction spaces are short and the modes are fundamental. In general, this

problem does not have a unique solution.

Let us outline some relevant results.

Efficiency It has been shown by Kuraev (1979) that the orbital efficiency can reach

96% in three-cavity gyroklystrons with sinusoidal distribution of HF fields in the

cavities. One important condition for the realization of such high efficiency is the

detuning of the penultimate cavity; its eigenfrequency should be shifted downward

relative to that of the output cavity, or to the input signal if the detuning of the output

cavity is zero. It is interesting that this detuning is opposite the optimal detuning

upward of the penultimate cavity in conventional multicavity klystrons (see

Section 7.7.2). As shown by Chu et al. (1988), this property is connected with the

energy dependence of the gyrofrequency, which determines the rate of phase bunch-

ing, inverse to linear bunching in conventional klystrons. The position of the penul-

timate cavity is also important. According to Zasypkin et al. (1995), the highest

efficiency in a three-cavity gyroklystron is achieved when the penultimate cavity

is close to the output cavity. The highest gain is attained if the eigenfrequencies

of all the cavities are the same and the intermediate cavity is separated equally

from the input and output cavities.

Bandwidth Use of stagger-tuned gyroklystrons increases their bandwidth

considerably (see, e.g., Blank et al., 2000). So, according to Nusinovich et al.

(1997), the maximum bandwidth of a four-cavity gyroklystron can be 16 times

larger that in the absence of stagger tuning. However, this increase leads to consider-

able degradation of gain. The optimal criterion for multicavity gyroklystron is thus

determined by the product of bandwidth and gain (BW-G), which for proper adjust-

ment is also increased by stagger tuning. So in a four-cavity gyroklystron, the BW-G

enhancement can reach a factor of 4 to 6.

10.11 GYRO-TRAVELING-WAVE TUBES

Gyro-TWT amplifiers based on the interaction of a helical electron beam with a

fast-traveling electromagnetic wave drew the attention of researchers in the earliest

stages of ECM investigations (Gaponov, 1959, 1960; Pantell, 1959). However,

development of gyrodevices in the USSR and after 1975 in the United States was

concentrated initially on gyromonotrons and gyroklystrons as unique sources of

short-wave radiation with high average power, high gain, and a comparatively

large bandwidth (for gyroklystrons). Prospects for the gyro-TWT looked less attrac-

tive, because anticipated strong sensitivity to the velocity spread and low stability of

these amplifiers did not promise large gain or bandwidth. However, a demand for
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powerful broadband amplifiers in the millimeter band (mainly for radar) has revived

interest in gyro-TWTs. Intense investigations (especially in the United States) began

in the late 1970s. New ideas have led to considerable progress in gyro-TWTs as power-

ful, stable, wideband amplifiers with high gain throughout the millimeter range.

Earlier work (see, e.g., Chu et al., 1979; Seftor et al., 1979) performed with uniform

interaction waveguides demonstrated power levels much higher than for short-wave

conventional TWTs. However, instantaneous bandwidths at that time were on the

order of only a few percentage points. Some properties of the gyro-TWT (within

the scope of this book) are considered below. In particular, a short outline of the

linear theory and some results of experimental studies are presented.

10.11.1 Scheme of a Gyro-TWT. Resonance Condition

A scheme of gyro-TWT is depicted in Fig. 10.37. This device, as shown in Table 10.1,

is analogous to a conventional TWT (Fig. 8.1) with a distributed electrodynamic

system and inertial O-type bunching (see Section 9.2.3). The magnetron-injection

gun determines the required values of energy and the pitch factor g ¼ v?=vz of the
helical electron beam, which interacts with the traveling electromagnetic wave in

the regular waveguide.

The frequency and phase velocity of thewave required for resonance interaction of

gyrating electronswith an electromagnetic field are determined by two conditions: (1)

the dispersion equation of the mode in a regular waveguide [Eq. (10.47)],

v2 ¼ v2
cr þ k2s c

2 (10:215)

and (2) the equation of the cyclotron resonance on the nth harmonic [Eq. (10.46)],

which can be written as

v ¼ nvg þ ksvz (10:216)

where vcr is the cutoff frequency of the waveguide at the chosen mode and

ks ¼ v=vp,hs is the propagation constant. The term ksvz is the Doppler shift of the

cyclotron resonance.

It is convenient to represent resonance conditions on a dispersion diagram

(Fig. 10.38) as the intersection points of the hyperbola Eq. (10.215) with the straight

FIGURE 10.37 Gyro-TWT. 1, Cathode; 2, anode; 3, regular waveguide; 4, solenoid;

5, collector.
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line Eq. (10.216). The case shown in Fig. 10.38a is definitely not preferred for a

gyro-TWT. Crossing the cyclotron resonance line with the negative ks branch of

the waveguide mode hyperbola in point B corresponds to interaction with a back-

ward wave, which can lead to an absolute instability (see, e.g., Section 8.8.2). Inter-

section at point A with the large Doppler shift does not provide an effective

interaction with the forward wave and intensifies the velocity spread effect.

The case shown in Fig. 10.38b corresponds to a grazing intersection of the lines

indicated above. It is readily verified that at the grazing point,

vg ¼ 1

n
vcr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vz

c

� �2r
¼ vcr

ngz
(10:217)

Relation (10.217) determines the gyrofrequency (the magnetic field) necessary

for the grazing intersection. Point C is located near the waveguide cutoff for subre-

lativistic velocities. This version has several advantages: (1) the proximity of point C

to the waveguide cutoff increases the interaction impedance and weakens sensitivity

to the beam velocity spread; (2) there is no backward interaction; and (3) the

bandwidth is enlarged. Indeed, let us estimate the rate of the cyclotron mismatch

Dvn ¼ v� nvg � ksvz as a function of the signal frequency v:

dDvn

dv
¼ 1� dks

dv
vz (10:218)

The rate is minimal when dv=dks ¼ vz. It is the grazing intersection condition,

which is provided in practically all gyro-TWTs.

10.11.2 Linear Theory of Gyro-TWTs

The linear theory of gyro-TWTs (Gaponov, 1959, 1961) is analogous to the linear

theory of conventional TWTs (see, e.g., Section 8.5), although the former takes

into account curvilinear electron motion, making the use of averaged equations

somewhat more complicated. Let us outline the three basic steps of the theory.

FIGURE 10.38 Dispersion diagrams of a gyro-TWT. (a) Two types of instability: A,

forward-wave interaction; B, backward-wave interaction. (b) Grazing intersection: backward-

wave interaction is absent. Lines v ¼ +ksc are asymptotes of the hyperbola.
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1. Determination of the equation for s-mode excitation in a regular waveguide

(see, e.g., Vainstein, 1956) proceeds as follows:

E(r) ¼ Cs(z)Es(r) (10:219)

where

E(r) ¼ E(r?)e�ikzz, Es(r) ¼ Es(r?)e�ikszz (10:220)

are complex amplitudes of the excited field and the eigenfield of the s-mode of

the waveguide, respectively. The amplitude Cs satisfies the equation dCs=dz ¼
�(1=Ns)

Ð
S?

jE�
s ds?, where Ns is the norm of the wave. The electric force in

the moving frame of reference can be replaced by the Lorentz force e0E ! e0G ¼
e0(Eþ v? � B) (see Section 10.6.1). Taking into account Eqs. (10.219) and

(10.220), and replacing the electric fields by the Lorentz field, we obtain the thin

beam approximation (
Ð
S?

j ds? ¼ �Ib(v=vz0) ¼ �Ib(iv=vz0)r
(1)
v , where Ib is the

beam current, r(1)v is the alternating electron’s shift component), and the equation of

excitation

(kz � ksz)Cs ¼ � vIb
vz0Ns

r(1)v G�
s,v (10:221)

where Gs,v is the complex amplitude of the field, Gs ¼ Es þ v? � Bs.

2. Calculation of the perturbation r(1)v of electron motion is based on the following

equations of motion in cylindrical coordinates:

d

dt
g
dr

dt

� �
� gr _u

2 ¼ �h½Gr þ (v� B0)r�

1

r

d

dt
(gr2 _u) ¼ �h½Gu þ (v� B0)u�
d

dt
(g_z) ¼ �h½Gz þ (v� B0)z�

(10:222)

3. Linearization of equations of motion leads to equations for small components

r1, u1, and z1 of rv. This result, combined with their representation by the Fourier

series and the retention of resonance terms, gives the shift rv as a linear function

of Cs. Substitution of rv into Eq. (10.221) and cancellation of Cs leads to the

dispersion equation, which can be written as (Gaponov, 1959; Nusinovich, 2004)

(kz � kzs)(Dvn)
2

v3
vz0 ¼ �C3 (10:223)

where

C3 ¼ hIb f
2
s

g0v
2 Ns

½(1� b2
z0)jGznj2 � b2

?0jGunj2 � 2bz0b?0Re(GunG
�
zn)�

and Dvn ¼ v� kzvz0 � nvg is the frequency mismatch. The Fourier components

Gzn and Gun of the Lorentz force in general depend on d and b (Gaponov, 1959),
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but for TE modes and frequencies near the cutoff [see Eqs. (10.77)] they are given by

Eqs. (A8.9). The dispersion equation (10.223) in this case can be written as

d2(id� b) ¼ 1 (10:224)

where

d ¼ i
Dvn

vC
, b ¼ �v� kzsv0 � nvg

vC

This equation coincides with the famous Pierce dispersion equation (8.52) for con-

ventional TWTs if one neglects the space charge and uses the small nonsynchronism

approximation (Cb 	 1). Here the frequency mismatch of the unperturbed wave

plays the role of the nonsynchronism parameter b in the theory of conventional

TWTs. Further analysis of amplification properties of gyroTWTs can proceed

along the lines of the design for conventional TWTs (Sections 8.5.5 and 8.5.6). In

particular, the gain of gyroTWTs equals

GdB ¼ �9:54þ 47:3CNL (10:225)

where NL ¼ L=bz0l. Independence of GdB in Eq. (10.225) of the drive power is a

result of the linearity of the small-signal gain. An increase in the input power

leads to saturation effects in gain and efficiency. These effects are analogous to

the nonlinear effects in conventional TWTs (Section 8.6).

10.11.3 Bandwidth of Gyro-TWTs

Equation (10.225) refers to the synchronous regime b ¼ 0. In this regime the small-

signal gain is maximal. The frequency shift decreases gain. An estimation of the cor-

responding bandwidth can be obtained from the Pierce diagrams (Fig. 8.9a), which

refer to the case of zero space charge. However, real values of the gyro-TWT band-

width are usually significantly lower. The limitation of the bandwidth is determined

mainly by crossing the cyclotron resonance line with negative b branches of other

waveguide modes on the fundamental or higher harmonics of the gyrofrequency

(Fig. 10.39), which leads to absolute instability. Furthermore, absolute instability

of the single operation mode is also possible near the cutoff for large beam currents,

due to broadening of the cyclotron resonance band.

It turns out that the starting current for backward modes can be increased signifi-

cantly by a number of methods without noticeable degradation of the saturated gain

and efficiency. The most useful methods (see, e.g., Song et al., 2004) are heavy

loading of the long section of the waveguide by lossy layers and limiting of the vel-

ocity spread and the factor g ¼ v?=vz. So, according to the result of a large-signal

simulation, a bandwidth of 5% can be reached for the powerful 94-GHz

gyro-TWT (output power, 140 kW; efficiency, 28%; and saturated gain, 50 dB).

Some interesting possibilities for bandwidth widening are raised by the use of a

tapered interaction waveguide with a tapered magnetic field (Fig. 10.40) (see, e.g.,

Park et al., 1994). The section DL, where condition (10.217) of the grazing
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intersection is accomplished at a given wave frequency, is much shorter than the

total length L of the system. But the location of the section DL shifts with frequency,

so the effective grazing synchronism for the adjustable tapering of the cavity and the

magnetic field is achieved within a large bandwidth. The shorter effective inter-

action length DL increases the starting currents of the absolute instability and

weakens the influence of velocity spread. So the main problem for these gyro-TWTs

is a reflective instability (see below).

Park et al. (1994) have implemented a Ka-band tapered gyro-TWT amplifier with

bandwidth 33% and gain 25 dB. Note that the tapered technique was first used for

bandwidth widening of gyro-TWTs (Moiseev, 1977).

10.11.4 Reflective Instability of Gyro-TWTs

Self-excitation of oscillations can impede widening of the gyro-TWT bandwidth. This

self-excitation is induced by a feedback loop as a result of the reflection of outgoing

radiation from the output taper and the input cutoff narrowing. Effective means of sta-

bilizing gyro-TWT operation by suppressing both the absolute and reflective instabil-

ities include precise matching of the output circuit with the interaction wavegide, as

FIGURE 10.40 Interaction space in a tapered gyro-TWT.

FIGURE 10.39 Dispersion diagram of the interaction of fundamental mode TE01 with

possible oscillation modes. Lines n ¼ 1 and 2 correspond to resonance on the fundamental

and second harmonics of the gyrofrequency.
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well as using distributed losses in the interaction space. So a graphite-coated lossy

section of length 20 cm with a full 24-cm length of interaction waveguide was used

by Chu et al. (1999). Such Ka-band gyro-TWTs have demonstrated high performance

(65 dB saturated gain, 80 kW output power, and bandwidth 1 GHz). Another method

for suppressing reflective oscillations is the use of two-stage or, in general, multistage

gyro-TWTs, similar to severed TWTs (see Section 8.7.3).

10.12 APPLICATIONS OF GYROTRONS

10.12.1 Introduction

The potential for gyrotrons (oscillators and amplifiers) as sources of high average

power in the millimeter and submillimeter range has led to extraordinarily quick

progress in developing these devices. Let us recall that the maximum power of con-

ventional CW BWOs is on the order of 100 W in the W-band. The first gyromono-

tron (1964) produced about 200 W of CW power at a frequency of 25 GHz

(Gaponov et al., 1965), but as early as 1965 CW power has reached 4 kW

(Gaponov et al., 1975). It was clear that those powers were far from the limit. At

present the CW output power of gyromonotrons in 140- to 170-GHz bands has

been increased by more than two orders of magnitude, along with a number of

new concepts enhancing the fundamental gyrotron mechanism (e.g., transfer to

high-volume cavity modes, diffractive power output, CVD-diamond windows,

depressed collectors, superconductive magnetic systems). Similar progress has

been seen in long-pulse amplifier gyrotrons (e.g., gyroklystrons, gyro-TWTs).

The fast development of advanced gyrotrons has outpaced the dynamics of their

applications. Nevertheless, at present the number of gyrotron applications is signifi-

cant. Note that many corresponding fields in applied powerful high-frequency elec-

tronics were simply absent in the pre-gyrotron era. Several important gyrotron

applications are considered briefly below:

. Controlled fusion experiments [electron–cyclotron resonance heating

(ECRH) and electron–cyclotron current drive (ECCD)] in tokamak–stellarator

plasmas

. Generation of multiply charged ions and soft x-rays; electron spin resonance

spectroscopy

. Microwave procession of materials (e.g., advanced ceramics sintering, joining

of ceramics)

. Millimeter radar systems (e.g., gyromonotron and gyroklystron radars)

. RF drivers for TeV electron–positron colliders

10.12.2 Electron–Cyclotron Resonance Heating and Current Drive

ECRH is based on resonance acceleration of the electron component in hot tokamak

or stellarator plasmas by the electromagnetic HF field. Nonelastic collisions between
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accelerated electrons and ions provide additional heating of the plasma. The temp-

erature of the latter can reach values sufficient for thermonuclear fusion if adequate

power and duration of the RF radiation are achieved, and if the concentration and

stability of the plasma are sufficient. The frequency of the RF drive signal should

correspond to the condition of the cyclotron resonance of electrons with a toroidal

magnetic field at the fundamental gyrofrequency or its harmonic (usually, the

second harmonic). The toroidal magnetic field required for plasma confinement is

on the order of several tesla. Therefore, in the majority of plasma fusion installations

with electron-resonance heating, required frequencies are in the range 70 to

170 GHz. Powerful RF radiation penetrating the plasma induces high currents (up

to 100 kA). Routine ohmic heating is also accompanied by a high current drive.

However, the ohmic current is not continuous because it is induced by the alternat-

ing magnetic field. Noninductive ECCD, by contrast, is essentially a continuous

effect. In comparison with other noninductive methods (e.g., neutral-beam, ion

cyclotron resonance, low hybrid heating) ECRH and ECCD are characterized by

highly localized deposition and flexible steering, which is especially well suited

for controlled fusion applications. An important property of the ECCD is the

suppression of some high plasma instabilities.

The first ECRH experiments were performed in 1972 on the tokamak TM-3 at the

Kurchatov Institute in Moscow (Alikaev et al., 1972). The characteristics of the

gyrotron were: wavelength, 9 mm; output power, 80 kW; and pulse duration,

0.6 ms. Early results were impressive, but considerably higher output power and

pulse duration were needed. At present, practically all the world’s fusion installa-

tions of tokamak and stellarator types are equipped with gyrotron units. The par-

ameters for the gyrotrons in the two most powerful existing reactors are given in

the first two lines of Table 10.6 (see Denisov, 2004). Gyrotron parameters are

given for two fusion installations currently under construction: ITER (International

Thermonuclear Experimental Reactor) and Stellarator W7-X, at Cadarache (France)

and Greiswald (Germany), respectively. Note recent result in FZK Germany

(Dammertz et al., 2006): 140GHz gyrotron with output power 0.93MW and

pulse duration 10min.

TABLE 10.6 Gyrotron Provided in Different Experimental Fusion Reactors

Reactor

Type

Operating

Mode

Frequency

(GHz)

Number of Gyrotrons � Power

(MW)/Pulse Duration

Tokamak DIII-D

(U.S.)

TE22,6 110 3 � 0.8/2 s; 3 � 0.6/10 s

Tokamak JT-60U

(Japan)

TE22,6 110 4 � 1.0/5 s

Tokamak ITER TE31,8;

TE25,10

170 24 � 1.0/CW

Stellarator W7-X

(Germany)

TE28,8 140 10 � 1.0/CW
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Prospects for further increase in the output power are connected with the use of

coaxial gyrotrons (Section 10.9.2). Effective mode selection in these gyrotrons,

especially with corrugated coaxial inserts, allows one to use very high operational

modes (e.g., TE44,44). In this case, it is possible to obtain CW output power up

to 2 MW (Piosczyk et al., 2005; Dammertz et al., 2006). Let us note the recent

development of an important type of oscillator that reinforces efficiency and flexi-

bility of ECRH–ECCD control: frequency step-tunable gyrotrons (step tuning on

a few frequencies) (see, e.g., Dumbrais et al., 2001; Koppenburg et al. 2005).

These gyrotrons are desired, in particular, for stabilization of neoclassical testing

modes (NTM).

10.12.3 Generation of Multiply Charged Ions and Soft X-rays.
Electron Spin Resonance Spectroscopy (Kartikeyan et al., 2004)

Electron–cyclotron resonance (ECR) discharge in plasma as a source of multiply

charged ions can be used for accelerators and material processing (e.g., ion implan-

tation in semiconductors). The use of such HF sources as gyrotrons significantly

improves the discharge characteristics because the current of ions with fixed

charge Z is proportional to the square of frequency, and an average ion charge Z

in the ion current grows with frequency as 3:5 ln f (Kartikeyan et al., 2004).

A gaseous source of ions is placed in a magnetic field with the configuration of an

adiabatic magnetic trap (see Section 1.6.3). For example, the discharge in argon gas

with a pressure of 10�4 torr due to radiation of 37-GHz 130-kW gyrotrons produced

multiply charged ions ranging from Ar2þ to Ar18þ, with a maximum generation rate

at Ar14þ.
ECR discharge may also be used as a source of soft x-ray radiation. According to

an experiment by Golubev et al. (1996), the amount of x-ray emission power in the

range of 9 nm was on the order of 7 kW with a conversion efficiency of up to 5%.

Electron spin resonance spectroscopy (ESR) is based on measurements of the res-

onance absorption of the gyrotron radiation in millimeter and submillimeter ranges

corresponding to transitions between various spin states. Application of ESR at high

frequencies and high powers offers several advantages. In particular, millimeter-

wave ESR provides high resolution, so the fine-structure constants and the effects

of nonlinear magnetic field interaction can be determined experimentally. Higher

versatility and sensitivity is ensured by using step-tunable gyrotrons, which can

cover a broad frequency range in millimeter and submillimeter wavelength bands.

10.12.4 Microwave Procession of Materials

Microwave heating, being a fast, noninertial, and easily controllable procedure,

promises rich capabilities for producing materials with favorable properties. Volu-

metric and selective heating is a unique property of microwaves. However, appli-

cation of traditional microwave installations at frequencies of 0.9 to 2.5 GHz for

heating of large advanced ceramic materials is complicated by low absorption

and nonuniform distribution of electromagnetic field in insufficiently multimode
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resonators. High-temperature material procession research at frequencies of 24 to

300 GHz has been carried out in the past few years at laboratories in Russia, the

United States, Germany, and Japan (see, e.g., Denisov et al., 2005; Gaponov-

Grekhov and Granatstein, 1994). Available CW drivers for this purpose include

24- to 30-GHz 15-kW gyrotrons with resistive solenoids (i.e., water and oil-cooled

magnets) (e.g., Denisov et al., 2005), 30-GHz 10-kW gyrotrons with permanent

magnets (Kuftin et al., 2000; Thumm, 2002), and 300-GHz 3.5-kW gyrotrons

with superconducting liquid helium–free magnets (Hoshizuki et al., 2005)

(see Appendix 9).

To date, gyrotron technology has been used primarily for ceramic sintering and

joining of ceramic parts. Deep penetration of microwave radiation compared

with that of thermal radiation in conventional heating systems allows one

to realize homogeneous volumetric heating of large-scale samples. Due to

microwave-induced diffusion, the temperature and time of sintering are significantly

lower. Therefore, the growth of grains in ceramics during sintering is very small, so

even nanocrystalline powders can be sintered without losing fine nanoscale structure

(Kartikeyan et al., 2004). Advanced microwave sintering opens a path to materials

with new properties and novel technological applications (e.g., sintering of metal

powder compact and metal–ceramic composites).

10.12.5 Millimeter Radar Systems

According to the well-known formula, the maximum range Rmax of a radar system

can be determined as

R 4
max ¼

PrtA
2s

(4p)2l2Emin

(10:226)

were Pr is the radar radiation power, t is the pulse duration, A is the antenna area, s
is the effective cross section of a target, and Emin is the minimal detectable returned

energy in a pulse. Therefore, millimeter gyrotrons, which combine short wavelength

l with very high average output power Prt=T , improve radar characteristics con-

siderably by providing a large range and high angular resolution, thus opening

new avenues for their use.

In general, propagation of millimeter waves in the atmosphere is characterized by

high absorption. A comparatively lower absorption occurs in atmospheric windows,

bands near 35, 94, and 140 GHz. A number of gyrotrons acting as drivers for

millimeter-wave radars have been developed: gyromonotrons (Woo et al., 1989),

powerful gyroklystrons, and gyro-TWTs in the 35- and 94-GHz bands.

A very important characteristic of any radar driver is the possibility to control its

frequency and phase. There are phase-locked gyromonotrons, gyroklystrons, and

gyro-TWTs. Such sources can be used for phased-array antennas. In military appli-

cations, the latter allow for the simultaneous detection of multiple targets, extension

of the target-detection range, and improved stealth operation. For example, the

powerful mechanically steered phased-array radar system Ruza was developed in
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Russia on the basis of a gyroklystron complex (two Ka-band gyroklystrons, each

with 500 kW of power). This radar was used successfully in the 1990s for tracking

satellites and other ballistic objects (Tolkachev et al., 2000).

High-power millimeter-wave sources have been used in studies of atmospheric

phenomena as well. Loss at the W-band for very humid conditions at sea level is

about 1 dB/km. Thus, the use of powerful sources in this band is promising. In

practice, the propagation distance is increased by 15 km when one changes the

average power from 4 W to 4 kW. A powerful millimeter radar in the W-band

can resolve multiple cloud layers (structure and extension) and give information

about humidity and turbulence. Note that water clouds are too dense a medium

for laser probes. Detailed studies of cloud structure were performed using the

94-GHz radar system WARLOC (Fliflet et al., 2003). Radar gyroklystrons devel-

oped for the WARLOC at NRL in the United States had 100 kW of peak power

and 10 kW of average power.

An interesting (but futuristic) application of gyrotron amplifiers is related to the

problem of space debris detection, because collision of a spacecraft with even a

1-cm object is very dangerous. Estimates show that the effective handling of large

spacecraft is possible when a dangerous object is detected at a distance of about

1000 km. In this case the proper phased-array radar should contain about thirty

35-GHz 1-MW gyroklystrons (Kartikeyan et al., 2004).

10.12.6 Gyroklystron RF Drivers for TeV Linear
Electron–Positron Colliders

Possible types of drivers for colliders include conventional klystrons, gyroklystrons,

TWTs, magnicons, cyclotron autoresonance masers (CARMs), and free-electron

lasers (FELs). At present linear electron–positron colliders are driven by conven-

tional klystrons. The Stanford linear electron–positron collider (SLC) on the base

of SLAC (see Section 7.8), with an energy 0.1 TeV in the center-of mass (CMS),

uses 2.856-GHz, 65-MW klystrons. The next collider (NLC) should be driven by

75MW 11.424-GHz klystrons. The designed CMS energy of particles for this

collider will be 0.5 TeV for the linac length 6.3 km and 1 TeV for the length

12.8 km. An effective accelerating gradient in this accelerator is 48MeV/m. The

RF peak power and, correspondingly, the accelerated gradient are limited by a RF

field breakdown. The possibility of increasing the acceleration energy and/or redu-
cing the number of RF sources, which determines the collider price, depends on the

value of the parameter Prt=l
2. Note that the same parameter enters relation (2.226)

for a maximum range of radars. Thus, increasing the RF frequency is a very import-

ant means for creating multi-TeV linear colliders. However, a frequency on the

order of 10 GHz is the upper boundary for effective conventional klystrons.

Gyroklystrons are promising sources to replace conventional klystrons

(Granatstein and Lawson, 1996). The first two-cavity gyroklystron for a collider

was designed and tested at the University of Maryland. The gyroklystron operated

at a frequency of 9.85 GHz, fundamental harmonic, mode TE01, voltage 425 kV,

and current 200 A. The amplifier demonstrated an output power of 27 MW with a
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pulse duration 1.5ms, gain of 36 dB, and efficiency of 32%. A two-cavity gyrokly-

stron with the same input cavity but with an output cavity tuned to the second

gyro-harmonic and the TE02 mode produced peak power of 21 MW with efficiency

21% and gain 25 dB at a frequency of �20 GHz. A design for a 91-GHz 10-MW

six-cavity gyroklystron has been presented by Lawson et al. (2001). The first two

cavities operate on the TE011 mode at a drive frequency near 46 GHz. The remaining

four cavities operate at the second harmonic (frequency, 91.4 GHz; TE021 mode).

The high output power combined with moderate voltages requires the use of high

beam currents. This requirement complicates beam formation and raises a potential

depression problem if one takes into account that the beam should be located at the

inner maximum of the electric field (see Section 10.9.2). Solution of this problem

needs transfer to higher-ordermodes and a corresponding enlargement of cross sections

of cavities and drift sections. But at this point, two other problems arise: mode selection

and suppression of parasite coupling through drift tunnels between cavities. Proper sol-

ution of these problems depends on the use of a coaxial configuration. This design facil-

itates problems of mode selection, potential depression, and decoupling of cavities

simultaneously. At present, a frequency-doubling coaxial gyroklystron at 70 MW

and 17.12 GHz is being developed at the University ofMaryland (Lawson et al., 2002).

10.13 CYCLOTRON AUTORESONANCE MASERS

10.13.1 Moderately Relativistic Gyrotrons

An increase in accelerating voltage up to relativistic values in the frame of the gyro-

tron mechanism meets one fundamental limitation. It can readily been seen (see also

Section 10.7) that the efficiency of ultrarelativistic gyrotrons should be small.

Indeed, if the input orbital energy of electrons is E?0 � E0 (where E0 is the electron

rest energy), the relative gyrofrequency change should be

Dvg

vg

� DE

E
� 1 (10:227)

which obviously contradicts the gyro-synchronous condition. For the phase change

of the rotating electron with respect to the RF field to remain within p, the number of

electron revolutions in the interaction space should be decreased. The maximum

number of revolutions is estimated as

Nmax ¼ T

Tg
� p

(v� vg)Tg
¼ vg

2(v� vg)
(10:228)

This number, according to Eq. (10.227), should be�1. However, the mechanism for

quadratic bunching cannot work properly with this condition (see Section 10.3.3),

and the efficiency would be small. As a compromise, moderately relativistic energies

(200 to 500 keV) can be used. In this case, according to Zaitsev et al. (2002), an elec-

tronic orbital efficiency of 30% or even 50% can be attained for U ¼ 280 kV, due to

shortening of the cavity and optimization of its profile.

518 CLASSICAL ELECTRON MASERS AND FREE ELECTRON LASERS



It is possible in principle to apply a variable along the cavity axis dc magnetic

field to compensate for phase desynchronization. This method leads, however, to

hard excitation of oscillations. Indeed, in the small-signal regime the mass variation

is insignificant, and the nonuniform magnetic field violates the synchronism con-

dition. As a result, the “starting” effective interaction length would be significantly

less than the operational length, and as a result, the starting current would be more

than the working current.

10.13.2 Operation Principle and Some Properties of CARM Oscillators

The concept of CARM was developed by Petelin (Petelin (1974) on the basis of

the autoresonance effect known in the theory of accelerators (Davydovsky, 1962;

Kolomensky and Lebedev, 1962). In contrast to gyrotrons, CARMs operate with tra-

veling waves whose phase velocity is close to the speed of light, c. In this case, the

transverse component of a magnetic field of a TE mode is different from zero, and

the HF Lorentz force has a longitudinal component. As a result, power exchange is

accompanied by a change not only of the oscillatory velocity but also of the drift

velocity of particles.

Let us consider radiation of one photon by the electron oscillator in the field of an

electromagnetic wave traveling along a dc magnetic field with phase velocity vph. In

this case, quantum laws of energy and momentum conservation of the photon can be

written as

Dmc2 ¼ h� v

Dpz ¼ h� k
(10:229)

where k ¼ v=vph. The ratio of the increments

Dmc2

Dpz
� dmc2

dpz
¼ v

k
(10:230)

does not depend on Planck’s constant. Therefore, Eq. (10.230) is valid in the

classical limit. We obtain the following conservation law:

m

m0

� vpz
km0c2

¼ g(1� bphbz) ¼ G ¼ const: (10:231)

where bph ¼ vph=c ¼ v=ck and bz ¼ vz=c. Let us combine Eq. (10.231) with the

Doppler synchronism relation

v ¼ nvg

1� bz=bph

(10:232)

assuming in both equations that bph ¼ 1 (the exact autoresonance). Then the

right-hand side of Eq. (10.232) will be constant:

nvg

1� bz=bph

¼ nvg

1� bz

¼ nvgn

G
(10:233)
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where vgn ¼ gvg ¼ hB is the nonrelativistic gyrofrequency. The synchronism takes

place independent of the electron energy loss in the process of interaction with the

HF field. Thus, the synchronism is maintained due to the compensation of the rela-

tivistic frequency shift and the Doppler shift stipulated by the drift velocity change.

Note that the phase of rotating electrons relative to the field phase for the strong auto-

resonance indicated is not changed. But then, phase bunching and stimulated radiation

are absent. If, however, there is a small detuning from autoresonance (bph . 1),

nonisochronism and radiation appear. The corresponding dispersion characteristic of

a CARM is shown in Fig. 10.41. The intersection point A on the characteristic

corresponds to the CARM regime. The low-frequency intersection point B with

comparatively high phase velocity corresponds to the competing gyrotron regime.

Application of electromagnetic waves with vph � c in a CARM leads to a signifi-

cant difference between the electrodynamic system and the gyrotron resonator. In

particular, the gyrotron diffraction power output turns out to be useless. There are

a few substitute systems (see, e.g., Bratman and Denisov, 1992) providing a high

Q-factor value for CARM resonators. In particular, Bragg resonators are used

(see, e.g., Bratman and Denisov, 1992; McCowan et al., 1989). The resonator is

formed by a section of the regular waveguide and a pair of Bragg reflectors (sections

of corrugated waveguides) (Fig. 10.42). The geometry of Bragg reflectors provides a

sufficiently high reflectivity at the frequency chosen. Effective operation of the

device in the CARM regime also requires suppression of the gyrotron mode, indi-

cated above, by raising its starting current. According to the works cited above,

reaching the CARM regime requires beams with bz � 1 and correspondingly

reduced values of the pitch factor g ¼ v?=vz. This case is favorable as well for

Doppler frequency up-conversion (see Section 10.2.2), which allows for a 2g-fold
rise in frequency of the ultrarelativistic electron energy.

Small values of g do not exclude the possibility of obtaining comparatively high effi-

ciency values. However, in contrast to the gyrotron, the large Doppler shift in a CARM

leads to very stringent requirements as to velocity spread. According to Bratman and

Denisov (1992), the allowable starting velocity spread is determined by the condition

db?0

b?0


 1

4bN
(10:234)

FIGURE 10.41 Dispersion characteristic of a CARM.
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where N is the number of electron gyrorevolutions in the interaction space,

b ¼ b2
?0

2bzbph(1� bz0=bph)

According to experimental data, classical magnetron injection guns do not provide

proper beam quality. Kicker guns (see, e.g., Bratman et al., 1995, and Section 10.8.2)

are considered more promising.

The high electronic efficiency of CARMs (26%) has been obtained in experiments

by Bratman et al. Use of a kicker gun has provided a small velocity spread (the stimu-

lated spread was �3%). The CARM operated on the TE11 mode, with accelerated

voltage 500 kV, beam current 100 A, and transverse particle velocity b? ¼ 0:5.
The wavelength was 7.9 mm. The output Bragg reflector had a length of 83 mm

and a corrugated depth 0.7 mm. Note that the efficiency indicated above was obtained

by cutting a small central section with little ripples from the primary electron beam.

10.14 FREE ELECTRON LASERS

10.14.1 Introduction

Free electron lasers (FELs) originated from the Phillips ubitron (Section 10.4.3),

which is an amplifier (electron oscillators excited by spatially periodic magnetic

field produce a stimulated microwave radiation). The FEL era began in 1971,

when J. Madey demonstrated the possibility of stimulated bresstrahlung emission

in the optical range as a result of Doppler up-conversion (see Section 10.2.2) and

interaction between radiation and relativistic electrons in a spatially periodic trans-

verse magnetic field (Madey, 1971). In 1975–1977, Madey, Elias, et al. performed

the first experiments with an FEL amplifier and oscillator (Elias et al., 1976) and

obtained coherent emission on wavelengths corresponding to 10.2 and 3.4 mm.

The next few years saw an avalanche in the amount of research devoted to FE.

The number of publications up to 2005 has reached about 104. At present, different

FELs overlap in frequency ranges from a millimeter up to the ultraviolet spectrum

(wavelengths of 10 mm to 10 nm). FELs operating in long-wavelength bands

usually employ nonrelativistic beams and are called free electron masers (FEMs)

(Thumm, 2002). In general, the problems of FELs differ from those of microwave

electronics in practice as well as in theory. However, some fundamental concepts,

in particular electron velocity modulation and bunching as a necessary premise

for stimulated emission, are common for FELs and other microwave devices.

Certainly, it is difficult to describe the foundations of FEL physics and technol-

ogy in sufficient detail within the scope of this book. However, it is instructive to

FIGURE 10.42 CARM Bragg resonator.
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trace some principles of energy modulation and bunching in FEL. Below, the sim-

plest version of linear FEL theory, as well as some parameters and applications of

FELs are outlined.

10.14.2 Scheme of an FEL

A sketch of an FEL oscillator is depicted in Fig. 10.43. Electron gun 1 forms a thin

electron beam. The guns supplied by the photocathode provide the beams with a

small emittance. The electron accelerators provide high-energy pulse electron beams.

The shortest-wavelength FELs use the following types of accelerators: storage rings,

linear accelerators (linacs), and electrostatic accelerators (see Table 10.7). The

electron energy produced by these accelerators is in the range �5 to 100 MeV.

A spatially periodic magnetic field in the helical wiggler, depicted schematically

in Fig. 10.43, is generated by bifilar current winding. The static transverse magnetic

FIGURE 10.43 FEL. 1, Electron gun; 2, electron accelerator; 3, mirrors; 4, wiggler

(undulator); 5, electron dump.

TABLE 10.7 Wavelength of Some Worldwide FELs

Location Name Wavelengths Accelerator Type

Duke

(North Carolina)

OK-4 217 nm Storage ring

MK-III 1.7–9.1 mm Linac

IEFL (Japan) 1 5–22 mm Linac

3 230 nm–1.2 mm Linac

Vanderbilt

(Tennessee)

MK-III 2.1–9.8 mm Linac

Stanford

(California)

SCA-FEL 3–10 mm SC-linac

University of

California–Santa

Barbara

30 m-FEL 30–63 mm Electrostatic

MM-FEL 340 mm–2.5 mm Electrostatic

DESY (Germany) Tesla FEL 80 nm SC-linac

Source: World Wide Web (2004).

522 CLASSICAL ELECTRON MASERS AND FREE ELECTRON LASERS



field produced by this wiggler in the paraxial approximation has a simple harmonic

form (see, e.g., Freund and Antonsen, 1992; and Robertson and Sprangle, 1989):

Bw(z) ¼ Bw(ex cos kwzþ ey sin kwz) (10:235)

where kw ¼ 2p=lw and lw is the spatial period of the wiggler. A uniform axial mag-

netic field B0 ¼ B0ez is often employed in conjugation with the helical wiggler to

provide strong focusing of intense electron beams. Another widespread configur-

ation (especially in the shortest-wavelength FELs, near-infrared, and shorter

bands) is a planar wiggler that produces a linearly symmetric field. In Fig. 10.1

the design of a planar wiggler with permanent magnets is shown. A typical range

for the wiggler periods is 3 to 10 cm.

The optical cavity of FEL is formed by a pair of mirrors (3). FEL requires a full

overlap between electron and optical beams. Since the transverse dimensions of

the electron beam are small, this implies that the transverse dimension of the

optical beam must also remain small. Therefore, tolerances for the distance

and the angular alignment of the mirrors are very stringent. The electromag-

netic field of the optical mode is a transverse field with the magnetic vector

potential

AR(z, t) ¼ AR½cosf(z, t)ex þ sinf(z, t)ey� ¼ AR(e
if(z,t)e� þ e�if(z,t)eþ) (10:236)

where f(z, t) ¼ kz� vt, k ¼ 2p=l, and e+ ¼ (ex + ey)=2.

10.14.3 Linear Theory of FELs

The outline of the linear theory given below follows Freund and Neil (1999) and

Robertson and Sprangle (1989). We consider the Compton scattering regime or

low-gain Compton regime. This regime occurs when the electron current is suffi-

ciently small. In this case the RF electric field is purely transverse, and as shown

in the Introduction [Eq. (I.3)], it equals

E(z, t) ¼ � @AR

@t
(10:237)

In the opposite situation, when the space-charge potential is considerable, a Raman

scattering regime is present. Note that in the first experiments of Elias et al. (1976),

FELs worked in the Compton regime.

Let us write the force equation (see, e.g., Landau and Lifshitz, 1987),

dv

dt
¼ �h

g
Eþ v� B� 1

c2
v(vE)

� 	
(10:238)
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The z-component of the force equation in the Compton regime is given by

dvz

dt
¼ �h

g
(v� B)ez � vz

c2
(vE )

h i
(10:239)

The wiggler magnetic field Eq. (10.235) can be represented as

Bw ¼ curlA ¼ ez � @Aw

@z
(10:240)

where

Aw ¼ Aw(e
ikwze� þ e�ikwzeþ) (10:241)

Then the total magnetic field is

B ¼ Bw þ BR ¼ ez � @A

@z
¼ ez � @

@z
(Aw þ AR) (10:242)

Using Eq. (10.242), we can write the first term in Eq. (10.239) as

(v� B)ez ¼ v
@A

@z
¼ v

@

@z
(Aw þ AR)

so Eq. (10.239) can be written

dvz

dt
¼ �h

g
v
@

@z
(Aw þ AR)þ vz

c2
@AR

@t

� 	
(10:243)

The velocity can be expressed through the vector potential due to conservation

of the transverse canonical momentum dP?=dt ¼ �@H=@r? ¼ 0 (H is the

Hamiltonian). So P? ¼ gm0v? � e0A ¼ const: ¼ 0 and

v? ¼ h

g
A ¼ h

g
(Aw þ AR) � h

g0
(Aw þ AR) ¼ vw þ vR (10:244)

where g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (hAw=c2)

2
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2z0=c
2

q
and vz0 is the constant axial velocity. It

can be shown (Robertson and Sprangle, 1989) that after substitution of

Eq. (10.244) into Eq. (10.243) and linearizing of the latter while keeping terms

up to the first order in the radiation field, Eq. (10.243) becomes

d~vz

dt
¼ @

@z
þ vz0

c2
@

@t

� �
F p(z,t) (10:245)

where

F p ¼ � h

g0c
2
AwAR ¼ � h

2g0c
2
AwA

i½(kþkw)z�vt�
Re þ c:c: (10:246)
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We see that the potential Fp that is responsible for the longitudinal acceleration of

electrons is the result of wiggler and radiation field interference (i.e., it is a beat

wave). The corresponding force is called the pondermotive force. Note that the

phase velocity of this wave, (vph)b ¼ v=(k þ kw), is less than the speed of light,

and the beat wave can be synchronous with the electron beam. The beat effect

leads to the possibility of electron bunching.

A component of the space-charge density satisfies the continuity equation.

Therefore, we can write in the linear approximation

@~r

@t
¼ � @

@z
(vz0 ~rþ r0 ~v) ¼ �vz0

@~r

@z
� r0

@~v

@z

Then

d ~r

dt
¼ @~r

@t
þ vz0

@~r

@z
¼ �r0

@~v

@z
(10:247)

Using Eqs. (10.247) and (10.245), we obtain

d2 ~r

dt2
¼ � r0h

g0

@

@z

@

@z
þ vz0

c2
@

@t

� �
Fp(z, t) (10:248)

Taking into account that the functions ~r(z, t) and Fp(z, t) include the multiplier

ei½(kþkw)zþvt�, we obtain the equation

½vz0(k þ kw)� v�2 ~r ¼ h10v
2
b

2g20
(k þ kw) k þ kw � vvz0

c2

� �
AvAR (10:249)

where vb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjr0j=10

p
is the electron plasma frequency.

The radiation field satisfies the wave equation

@2

@z2
� 1

c2
@2

@t2

� �
AR ¼ �Fm0 j? (10:250)

where j? is the transverse driving current, F ¼ (sb=sR) is the filling factor associ-

ated with the radiation field, and sb and sR are the cross-sectional areas of the elec-

tron beam and the radiation field, respectively. It can be shown (Robertson and

Sprangle, 1989) that

j? ¼ ~rvw þ r0vR (10:251)

where vw and vR are defined by Eq. (10.244). Using Eqs. (10.244), (10.236), and

(10.241), we obtain

k2 � v2

c2
þ F

v2
b

g0c
2

� �
AR ¼ Fm0

~rh

g0
Aw (10:252)
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Let us combine Eqs. (10.249) and (10.252). After cancelling AR, we obtain the

dispersion equation of FELs in the Compton regime:

v2 � k2c2 � Fv2
b

g0

� �
½vz0(k þ kw)� v�2 ¼ F

v2
b

g0
b2
wc

2kkw (10:253)

where bw ¼ vw=c. In the derivation of Eq. (10.253), we used the approximation

(k þ kw)(k þ kw � vz0v=c
2) � 2kkw. The dispersion equation leads to a gain in the

Compton regime (Robertson and Sprangle, 1989):

G ¼ pF
y

g0
b2
w

L3

r2blw

@

@u

sin u

u

� �2

(10:254)

where u ¼ (1� vz0=vph)(Lv=2vz0), y ¼ (vbrb=2c)
2 ¼ Ib=17b0 is the Budker

parameter, Ib is the beam current in kiloamperes, and rb is the beam radius.

Intrinsic Efficiency The radiation amplitude increases together with the expense

of the electron’s kinetic energy until the particles are trapped in the pondermotive

wave. At this point, the radiation field reaches its maximum amplitude and the elec-

trons oscillate in a potential well. That mechanism is similar to the gain saturation

effect in TWTs considered in Section 8.6.2. It can be shown that the intrinsic power

efficiency

h ¼ 1

2N
¼ lw

2L
(10:255)

The efficiency can be enhanced by the use of spatially tapered wigglers (see, e.g.,

Freund and Neil, 1999).

10.14.4 Parameters of FELs

Parameters for some existing FELs are listed in Table 10.7. As we see, FELs use

different types of electron accelerators and overlap ranges from millimeter waves

up to soft x-ray waves. SC-linac is supplied by superconducting cavities placed in

cryostats. The same cryostats are used to cool superconducting quadrupole

magnets. Electrostatic accelerators are based on stabilized Van de Graaft generators.

Powerful FELs operate on subpicosecond and tens-of-femtosecond pulses with

maximum power on the order of 1 GW. Large average power is achieved in high

repetition rates. The record average power was obtained at Thomas Jefferson

National Accelerator Facility in Newport News, Virginia, using a tunable laser in

the range of 1 to 14 mm with an average power of 10 kW. The laser had

an output power of 120 MW with pulse duration of �1 ps and a pulse repetition

frequency up to 75 MHz .

The second important path in the evolution of FELs is the shortening of the wave-

length up to hard x-rays. So far, most short-wave x-ray sources have utilized
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spontaneous synchrotron radiation of relativistic electrons, called third-generation

sources. Creation of coherent sources in x-rays on the basis of an ordinary

low-gain regime is not possible because of the large losses in optical cavities.

Fortunately, FELs have a high-gain regime in the self-amplified spontaneous emis-

sion (SASE) mode. SASE FELs are characterized by an exponentially growing

instability, starting from noise to saturation. In the initial section of a SASE FEL,

electrons radiate spontaneously. Their radiation fields have no phase correlation

and the intensity of radiation is proportional to the number of electrons, Ne. After sat-

uration, electron bunches achieve maximum modulation and all electrons radiate

coherently. Then the intensity of radiation is proportional toN2
e . SASEFELs represent

the fourth generation of light sources. The peak brightness created by today’s FELs

exceeds the brightness of third-generation sources by up to ten orders of magnitude.

An x-ray FEL concept called a linac coherent light source (LCLS) was designed

for a wavelength of 0.15 nm (1.5 Å) and peak power of 8 GW. Because it should

operate in the single-pass regime, the crucial condition for its successful realization

is a very high gain. At the same time, the important parameters of the electron beam

are the energy spread and the transverse emittance. The LCLS project is scheduled

to begin operation in 2008 (Pellegrini and Reiche, 2004).

10.14.5 Applications of FELs

Because of their wavelength, coherence properties, tunability, intensity, and pulse

duration, FELs demonstrate unprecedented capabilities for versatile applications

across a variety of fields in science, technology, and industry. The span of possible

applications of FELs is already considerable. Far from complete, the current list

includes such areas as pharmacology, solid-state physics, chemistry and the chemi-

cal industries, civil engineering, shipbuilding, environmental sciences, defense,

space-debris orbital control, polymer surface processing, micromachining, and the

photophysics of complex polyatomic molecules. Especially interesting applications

of FELs are in biology and biomedicine (see, e.g., Edwards et al., 2003). The latter

include surgery, photo-dynamic therapy, and mammography. Very important pro-

spects have also been opened by the development of SASE FELs that can reach

the hard x-ray range.

Certainly, only the first steps in the FEL application have been made. For FELs to

become a practical radiation source at the shortest wavelengths, it will be necessary

to reduce the size and cost of these devices. As a result, research is being pursued

actively at several centers (see, e.g., Sprangle et al., 2004).
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Appendixes

APPENDIX 1 (TO SECTION 3.4.4): PROOF OF THE 3/2 LAW FOR
NONRELATIVISTIC DIODES IN THE r-MODE

The following conditions must be satisfied:

1. Zero potential of the cathode:

w(r)r ¼ rc ¼ 0 (A1.1)

2. Anode potential:

w(r)r¼ra ¼ wa (A1.2)

3. Zero initial velocities:

v(r)r¼rc ¼ 0 (A1.3)

4. Zero cathode electric field (r-mode):

@w(r)

@r

� 	
r¼rc

¼ 0 (A1.4)
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5. Energy integral for the static electric field; with conditions (A1.1) and (A1.3),

it gives

v ¼
ffiffiffiffiffiffiffiffiffi
2hw

p
(A1.5)

In this case the system of self-consistent equations becomes

Dw ¼ � r

10
(A1.6)

j ¼ rv (A1.7)

div j ¼ 0 (A1.8)

Let some self-consistent flow in the diode be described by the quantities w(1), v (1),

r(1), and j (1). Let us perform the following operation: Increase the potential in every

point of the diode n times (i.e., assume the state of the diode with w(2) ¼ nw(1)) and

find the change in the remaining quantities of the flow. According to the conse-

quence of the Maupertuis principle (Section 2.2.1) the shape of the particle trajec-

tories does not change. Therefore, the velocity directions in the each point of the

flow will be the same. The values of the velocities according to Eq. (A1.5) are

equal: v(2) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2hw(2)

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hnw(1)

p
¼ ffiffiffi

n
p

v(1). Then v(2) ¼ ffiffiffi
n

p
v(1). According to

Eq. (A1.6), the charge density becomes r(2) ¼ �10 Dw
(2) ¼ �10nDw

(1) ¼ nr(1).

The current density is j(2) ¼ r(2)v(2) ¼ n3=2j(1). Hence, the current in the any cross

section of the beam is I(2) ¼ Ð
S
j(2)n ds ¼ n3=2

Ð
S
j(1)n ds ¼ n3=2I (1) and I (2)=I (1) ¼

n3=2 ¼ w(2)
a =w(1)

a

� �3=2
. Then

I(2)

(w(2)
a )3=2

¼ I(1)

(w(1)
a )3=2

¼ P ¼ const:

Finally, we obtain the 3/2 law: I ¼ Pw3=2
a . The perveance P is a constant that is

determined by a geometry of the diode.

APPENDIX 2 (TO SECTIONS 4.5.3; 9.2.1): SYNTHESIS OF
GUNS FOR M-TYPE TWTS AND BWOS

The theory of the synthesis of these guns was developed by Kino (1960). Following

this work, let us set u ¼ 0 in Eqs. (3.144)–(3.146) for nonrelativistic electron flow in

a planar magnetron. Then we obtain the flow in the (Y,Z) plane perpendicular to the

magnetic field with the cathode in the plane y ¼ 0 (Fig. 3.9). Assume, following

Kino, that the beam is limited by the space charge Ec ¼ 0 (r-mode). Then equations

of trajectories and the potential according to Eqs. (3.144)–(3.147) acquire the
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following form (take into account that M ¼ h j0=10v
2
g and N ¼ hEc=vg ¼ 0):

X(F) ¼ X0 (A2.1)

Y(F) ¼ M(F� sinF) (A2.2)

Z(F) ¼ Z0 þM
F2

2
þ cosF� 1

� �
(A2.3)

U(F) ¼ M2 F2

2
�F sinF� cosFþ 1

� �
(A2.4)

Let us also write the velocity components:

vy ¼ dY

dF
¼ M(1� cosF) (A2.5)

vz ¼ dZ

dF
¼ M(F� sinF) (A2.6)

The planar geometry of the beam allows us to use the Lomax–Kirstein method

(Section 4.5.1). First let us continue the functions X(F) and Z(F) analytically to

the upper half-plane w ¼ Fþ iC(C . 0) and apply conformal transformation of

the plane v ¼ Yþ iZ to the plane w ¼ Fþ iC:

Y þ iZ ¼ Y(Fþ iC)þ iZ(Fþ iC) (A2.7)

Further, we can directly apply the differential equation (4.56) of the equipotentials in

the (F,C) plane:

dC

dF
¼ Re½Et0(w)� iEu0(w)�

Im(Et0(w)� iEu0(w)� (A2.8)

where Et0(w) and Eu0(w) are analytically continued tangential and normal to the

trajectory components of the electric field. According to Eqs. (4.45), (4.47), and

(A2.4) and Fig. 4.5 (we have replaced the x-axis by the z-axis):

Et0(F) ¼ � @U

@t
¼ vg

dU

dF
¼ vgM

2F(1� cosF) (A2.9)

Eu0(F) ¼ Et0(F) tana ¼ Et0(F)
vz(F)

vy(F)
¼ vgM

2F(F� sinF) (A2.10)

When integrating Eq. (A2.8), we are moving along the equipotential in the (F,C)

plane. If we replace F and C in the each point by Y and Z from Eq. (A2.7), we

immediately obtain equipotentials in the real (Y,Z ) plane. This problem is easily

solved numerically. According to the results of the computations (Kino, 1960),

the trajectories and the electrode geometry are sufficiently simple in form;

however, they can be used only untilF ¼ 2p. These guns are called short-type guns.
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In another, simpler solution (solution 2), given by Kino (1960), an initial cathode

velocity is assumed (vy)F¼0 ¼ M. In this case, the oscillating terms vanish in the

equations above. The new equations are obtained from Eqs. (A2.2)–(A2.6) by sub-

stituting sinF ¼ 0 and cosF ¼ 1. We see that the trajectory acquires the form of a

parabola. Note that the initial velocity M ¼ h j0=10v
2
g is usually small. The transit

angle F of trajectories for solution 2 is not limited. Corresponding guns are

called long-type guns. Typical trajectories and the electrode geometry of such

guns are shown in Fig. A2.1.

APPENDIX 3 (TO SECTION 5.6.1): MAGNETIC FIELD IN AXIALLY
SYMMETRIC SYSTEMS

Azimuthal Component of aMagnetic Field In a static approximation, Maxwell’s

equation [Eq. (I.5)] can be integrated around the contour in the plane

perpendicular to the z-axis:ð
curlzB ds ¼

þ
Bu dl ¼ m0

ð
jzds ¼ m0I (A3.1)

where I is the beam current. If the contour is a circle of radius rwith the center on the

z-axis, we obtain from Eq. (A1.1) for axially symmetric systems

Bu(r) ¼ m0Ir

2pr
(A3.2)

where Ir is the beam current within a circle of radius r. In a nonrelativistic approxi-

mation, we can neglect a self-magnetic field (Section 3.2.1) and assume that Ir ¼ 0.

Then

Bu ¼ 0 (A3.3)

Magnetic Vector Potential According to Eq. (1.123),

rAu ¼ C

2p
¼ 1

2p

ð
Bz ds (A3.4)

FIGURE A2.1 Long-type gun.
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Let us write the equation B ¼ curlA in the cylindrical coordinates

Br ¼ 1

r

@Ar

@u
� @Au

@z
¼ � @Au

@z
(A3.5)

Bu ¼ @Ar

@z
� @Az

@r
(A3.6)

Bz ¼ 1

r

@(rAu)

@r
� @Ar

@u

� 	
¼ 1

r

@(rAu)

@r
(A3.7)

If we take Ar ¼ Az ¼ 0, Eq. (A3.3) will be satisfied automatically. Thus, the mag-

netic vector potential in the nonrelativistic approximation has only component Au.

In the relativistic case, the components Ar and Az in general are not zero. In the

paraxial approximation, Ar 	 Az. Then, according to Eqs. (A3.6) and (A3.2),

@Az

@r
¼ �Bu ¼ �m0Ir

2pr
(A3.8)

APPENDIX 4 (TO SECTION 8.3): DISPERSION CHARACTERISTICS
OF INTERDIGITAL AND COMB STRUCTURES

Interdigital and comb structures are shown in Fig. A4.1. A rigorous analysis of the

dispersion characteristics and a distribution of the electromagnetic field in these

structures are complicated problems. Let us consider asymptotic solutions supposing

the width of the teeth to be sufficiently small.

Interdigital (IG) Structure It is supposed that a TE wave propagates along a

zigzag path. Then the phase shift on the period is equal to b0L ¼ v(Lþ 2h)=c.
The same phase shift would equal b0L, where b0 ¼ v=vph,0 is the propagation con-

stant for the zero spatial harmonic and vph,0 is the phase velocity. Hence, the equality

b0 ¼ v(Lþ 2h)=cL is a dispersion characteristic of the zero harmonic. Taking into

account that b�1 ¼ b0 � ð2p=LÞ, we obtain the asymptotic dispersion characteristic

for the21 harmonic:

c

vph,�1

¼ b�1c

v
¼ l

L
� Lþ 2h

L
(A4.1)

FIGURE A4.1 (a) Interdigital structure; (b) comb structure. GP, ground plate.
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The sign on the right side in Eq. (A4.1) is changed because vph, �1 should be greater

than 0. We see that the delay factor c=vph,�1 � 1 if L 	 l and l . Lþ 2h. Because

1

vgr
¼ � l2

2pc

@b

@l
(A4.2)

we find from Eq. (A4.1) that the group velocity is negative. The dispersion curve

(the straight line) corresponding to Eq. (A4.1) is depicted in Fig. A4.2. The line

passes the point l10 ¼ Lþ 2h, where c=vph ¼ 0. It is the first boundary of the band-

width. The second boundary corresponds to the phase shift b�1L ¼ p. Let us take
into account that the phase shift on the period

f ¼ bL ¼ c

vph

2L

l
or

c

vph
¼ f

2pL
l

So the lines w ¼ const. in Fig. A4.2 are straight lines intersecting the origin of coor-

dinates. The intersection of the line w ¼ p with the dispersion curve determines a

second boundary, l20, of the bandwidth. Using Eq. (A4.1), it may readily be

shown that l20 ¼ 2(Lþ 2h). The delay factor for l20, c=vph ¼ 1
2
þ (h=L) � 1

when L 	 h. Note that according to Eq. (A4.1), the amplitude of the 21 harmonic

for l . l10 ¼ Lþ 2h is more than the amplitude of the zero harmonic. It means that

the interdigital structure has a negative dispersion (see Section 8.4.2).

A corrected analysis taking into account the presence of a grounded plate leads to

a change in the dispersion curve (the solid curve in Fig. A4.2) and to a shift in the

boundaries of the bandwidth to locations l1 and l2 (see, e.g., Arnaud, 1961).

Comb Structure (Fig. A4.1b) The asymptotic dispersion characteristic for the

absent grounded plate and thin teeth (conditions d ! 1, L 	 h,

kh ¼ (2p=l)h 	 1, and r ¼ c=L � 1) is easily obtained by matching the TEM wave

FIGURE A4.2 Dashed curve, asymptotic; solid curve, corrected. Dispersion curves of an

interdigital structure.
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into the comb and the delayed wave; then the delay factor for the zero harmonic is

c

vph
¼ 1

cos (2p=l)h
(A4.3)

The dispersion curve corresponding to Eq. (A4.3) is shown in Fig. A4.3. The curve

stretches from l10 ¼ 4h, where the delay factor c=vph ¼ 1, to l20 ¼ 1, where

c=vph ¼ 1. In latter case the wave “sees” the plane x ¼ d of the periodic structure as

a smooth metal surface, and the ordinary plane wave propagates along the z-axis

with velocity vph ¼ c. It is obvious that the lines w ¼ p and w ¼ 0 coincide with the

vertical and horizontal axes, respectively. If r ¼ c=L , 1, the dispersion characteristic

is (Tsimring, 1957)

c

vph
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ cot2kh

p

cot kh
(A4.4)

When the grounded plate presents a long-wavelength boundary of the bandwidth,

l20 is the cutoff wavelength of the smooth waveguide l20 ¼ 2d. In this case, the

delay factor (c=vph)l20 ¼ 0. The corresponding dispersion characteristic is shown in

Fig. A4.3 as a dashed curve. Finally, finite thickness of the teeth, the short-wave bound-

ary l1 grows. The resulting qualitative dispersion curve is shown in Fig. A4.3 as the

solid curve. Note that the slope of the characteristics is negative. It indicates, corre-

sponding to Eq. (A4.2), that the comb structure has a positive dispersion.

FIGURE A4.3 Dispersion characteristics of a comb structures. Dash-dotted curve, asymp-

totic characteristic; dashed curve, asymptotic characteristic with a grounded plate; solid

curve, characteristic with finite thickness of teeth and a grounded plate.
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APPENDIX 5 (TO SECTION 9.2.2): ELECTROMAGNETIC FIELD IN
PLANAR UNIFORM SLOW-WAVE STRUCTURES

Consider a system formed by two parallel plates (Fig. A5.1). Assume that the upper

conductor is executed as a periodic structure in the z-direction and uniform in the

y-direction. Let us choose some spatial harmonic that propagates in the z-direction

as the wave

E0(x,z) ¼ bEe+ikxei(vt�b0z) (A5.1)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

0

q
and b0 ¼ v=vw. For the slow harmonic, b0=k ¼ c=vph . 1.

Further, assume that the delay is large, b0 � k. Then k � ib0 and

E0(x,z) ¼ Ae+b0xei(vt�b0z) (A5.2)

The common solution can be represented as a linear combination of functions [Eq.

(A5.2)]: that is,

E0z ¼ (A1e
b0x þ A2e

�b0x)ei(vt�b0z) (A5.3)

Supposing that the sole plate (x ¼ 0) is an ideal conductor [i.e., (E0z)x¼0], we find

that A1 ¼ 2A2 ¼ A/2. Then

E0z ¼ Ashb0xe
i(vt�b0z) (A5.4)

It is readily shown from the equation divE0 ¼ 0 that

E0x ¼ iAchb0xe
i(vt�b0z) (A5.5)

Let us enter the potential

Ud ¼ �
ðd
0

jE0x(x,z)j dx ¼ �A
shb0d

b0

(A5.6)

FIGURE A5.1 Uniform planar SWS.
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Expressing A through Ud, we obtain the following representation for components of

the electric field:

E0x ¼ �b0Ud

chb0x

shb0d
ei(vt�b0z) (A5.7)

E0z ¼ ib0Ud

shb0x

shb0d
ei(vt�b0z) (A5.8)

Equations (A5.7) and (A5.8) allow us to represent the electric field as the gradient of

the potential:

U(x,z, t) ¼ Ud

shb0x

shb0d
ei(vt�b0z) (A5.9)

As is easily seen, this is a consequence of a transition of the wave equation to a

Laplace equation for the large delay (if neglect a space charge). So

E0x ¼ � @U

@x
, E0z ¼ � @U

@z
or E0 ¼ �rU(x,z) (A5.10)

APPENDIX 6 (TO SECTION 10.5.2): EQUATIONS OF FREE
OSCILLATIONS OF GYROTRON RESONATORS

Assume that fields and current are harmonic functions of time. Then the complex

amplitude of the first current harmonic is

j(r,v) ¼ 1

p

ð2p
0

j(r,t)e�ivtdvt (A6.1)

and the first current harmonic is

j(r, t) ¼ Re j(r,v)eivt (A6.2)

Complex amplitudes E(r,v) and H(r,v) can be determined analogously.

Maxwell’s equations [Eqs. (I.5), (I.6)] via complex amplitudes assume the form

curl B ¼ m0 jþ
iv

c2
E (A6.3)

curl E ¼ �ivB (A6.4)

Let us consider free oscillations ( j ¼ 0):

curl B ¼ iv

c2
E

curl E ¼ �ivB

(A6.5)
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Combinating Eqs. (A6.5) gives the Helmholtz equations:

(Dþ k2)
E

B

���� ���� ¼ 0 (A6.6)

where k ¼ v
ffiffiffiffiffiffiffiffiffiffi
10m0

p ¼ v=c. The Laplacian operator D ¼ curl curl for waveguides

with a rectilinear z-axis can be written as

D ¼ r2
? þ @2

@z2
(A6.7)

where r? is an operator of the transverse gradient. This operator is

r? ¼ @

@r
ir þ 1

r

@

@w
iw

in cylindrical coordinates.

It is convenient to choose the axis component of the magnetic field Bz as the fun-

damental function for TE modes. Transverse field components are expressed simply

through Bz (Jackson, 1999):

B? ¼ � ib

k2
r?Bz, E? ¼ � iv

k2
iz �r?Bz (A6.8)

where k ; kmn is an eigenvalue of the membrane equations (10.52) and (10.53) for

the TEmn mode. The Helmholtz equation in respect to Bz has the form

r2
?Bz þ @2Bz

@z2
þ k2Bz ¼ 0 (A6.9)

A transverse distribution of the electromagnetic field in any cross section of

a nonuniform waveguide in the frame of the transverse cross-section method

(Katsenelenbaum, 1998) can be represented as an expansion into a series of

modes of a regular waveguide with the same cross section (the latter is called a

comparison waveguide). This expansion (Tsimring and Pavelyev, 1982) describes

the effects of mode transformation when an incident wave is transformed in a set

of modes. However, for sufficiently weak uniformity of the waveguide, the trans-

formation can be neglected, and the incident wave is subject only to reflection.

The corresponding equation of the cross-section method is pretty simple and is

written as

Bz(r?,z) ¼ C(z)Bz?(r?) (A6.10)

where Bz? is a membrane function of a comparison waveguide that satisfies the

equation following from Eq. (A6.9):

r2
?Bz? þ k2Bz? ¼ 0 (A6.11)
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with the boundary condition

@Bz?(r?)
@n

¼ 0 (A6.12)

on the cross-section contour. Nonzero solutions of Eqs. (A6.11) and (A6.12) exist

for discrete wave numbers k that form a spectrum of eigenvalues of the comparison

waveguide. For an axially symmetric waveguide,

Bz(r,w,z) ¼ C(z)Im(kr)e
�imw (A6.13)

where Im is a Bessel function of the first kind of mth order. The boundary condition

in this case is

dIm(kr)

dr

����
r¼R

¼ 0 (A6.14)

Because the radius of the irregular waveguide in each cross section is different [i.e.,

R ¼ R(z)], the eigenvalues k ¼ k(z).
Let us transform Eq. (A6.13) to Cartesian variables with the help of an integral

representation of a Bessel function (Bateman and Erdelyi, 1953):

Im(kr) ¼ 1

2p

ð2p
0

ei(kr sina�ma)da ¼ i�m 1

2p

ð2p
0

ei(kr cosaþma) da (A6.15)

Then the function Bz from Eq. (A6.13) can be written as

Bz(r,w,z) ¼ i�mC(z)
1

2p

ð2p
0

ei½kr cosaþm(a�w)� da (A6.16)

Changing the variable a ¼ w� c and using the formula for cos (w� c), it may

readily be shown that

Bz(r,w,z) ¼ Bz(x,y,z) ¼
ð2p
0

A(c,z)eik(z)(x coscþy sinc) dc (A6.17)

where

A(c,z) ¼ i�m C(z)

2p
e�imc ¼ C(z)

2p
e�im½ðp=2Þþc� (A6.18)

It remains to find the amplitude C(z). Substituting Eqs. (A6.10) and (A6.11) into

Eq. (A6.9), we obtain

d2C

dz2
þ b2(z)C ¼ 0 (A6.19)
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Equation (A6.19) is distinguished from an analogous equation for a regular wave-

guide for which the value b2 ¼ k2 � k2 is a constant; here, b2(z) ¼ k2 � k2(z) is a
function of z that is found after solution of the boundary problem equations

(A6.11) and (A6.12). In mathematical physics Eq. (A6.19) is called the equation

of a nonuniform vibrating string. Solution of this equation is determined by bound-

ary conditions. Free oscillations of the resonator that is formed as a section of the

nonuniform waveguide is determined by the radiation condition at the end cross sec-

tions z ¼ z1 and z ¼ z2 (Fig. 10.12). If these cross sections are localized on the

sections of a uniform waveguides, the radiation conditions can be written as

dC(z)

dz

����
z¼z1

¼ ibC(z1),
dC(z)

dz

����
z¼z2

¼ �ibC(z2) (A6.20)

Nontrivial solutions of Eq. (A6.19) with conditions (A6.20) exist for some discrete

complex eigenvalues v ¼ v0 ¼ v01 þ iv02, which determine the spectrum of free

frequencies of the resonator. Because the oscillations are damping, v02 . 0. The

problem is reduced totally to a solution of Eqs. (A6.11) and (A6.19) with boundary

conditions (A6.14) and (A6.20). Generally, numerical methods of the solution

are used.

APPENDIX 7 (TO SECTION 10.5.3): DERIVATION OF
EQS. (10.66) AND (10.67)

Let us write fields according to an approximation of the fixed field structure:

E ¼ ME0, B ¼ NB0 (A7.1)

where M and N in general are complex constants. It is readily verified that

M ¼ v

v0

N (A7.2)

To obtain Eq. (A7.2), it is sufficient to substitute Eqs. (A.7.1) into the Maxwell

equation curlE ¼ �ivB and use the equation curlE0 ¼ �iv0B0. Substituting

Eqs. (A7.1) and (A7.2) into Eqs. (10.61) and (10.62) with v1 ¼ v and v2 ¼ 0,

we obtain

vjMj2
ð
V

10jE0j2 � v0

v

��� ���2 1
m0

jB0j2
� �

dt

¼ �jMj2 v02

v

1

m0

ð
S

(E�
0 � B0)n ds� Im

ð
V

jE� dt (A7.3)

¼ jMj2 v01

v

1

m0

ð
S

(E�
0 � B0)n dsþ Re

ð
V

jE� dt (A7.4)
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Using Eqs. (10.63) and (10.63a), we find from Eqs. (A7.3) and (A7.4) that

1

2
vjMj2W0 1� v0

v

��� ���2þ4
v02

v

� �2� 	
¼ � 1

2
Im

ð
V

jE� dt (A7.5)

2jMj2W0v02

v01

v
¼ � 1

2
Re

ð
V

jE�dt (A7.6)

Taking into account that W ¼ 1
2

Ð
V
(10jEj2 þ (1=m0)jBj2) dt and using Eqs. (10.63),

(A7.1), and (A7.2), we obtain

W ¼ 1

2
jMj2W0 1þ v0

v

��� ���2� �
(A7.7)

Substituting Eq. (A7.7) into Eqs. (A7.5) and (A7.6) gives

v 1þ v01

v

� �
1� v01

v

� �
þ 3

v02

v

� �2� 	
2W

1þ jv0=vj2
¼ � 1

2
Im

ð
V

jE� dt (A7.8)

v02

v01

v

4W

1þ jv0=vj2
¼ � 1

2
Re

ð
V

jE� dp (A7.9)

For a high Q-factor, we can assume that v01=v � jv0=vj � 1 and (v02=v)
2 	

1� v01=v. Then Eqs. (A7.8) and (A7.9) are reduced to

2(v� v01)W ¼ Im(P) (A7.10)

2v02W ¼ Re(P) (A7.11)

where a complex power that the current gives up to the resonator is

P ¼ � 1

2

ð
V

jE�dt ¼ � 1

2p

ð
V

ð2p
0

j(r,t)E�e�ivt dvt dt (A7.12)

APPENDIX 8 (TO SECTION 10.6.3): CALCULATION OF FOURIER
COEFFICIENTS IN GYROTRON EQUATIONS

The averaged (“shortened”) equations (10.91)–(10.94) contain Fourier coefficients

of the force component: Gx, Gy, Gu ¼ Gx sin u� Gy cos u, and Gr ¼ Gx cos uþ
Gy sin u, where the force G according to Eq. (10.77) is

G ¼ ic

k
r? � izBz þ v? � izBz (A8.1)

A common relation for the Fourier coefficients of these components is determined

by Eq. (10.84) and after using Eq. (A8.1) will contain the integrals

1

2p

ð2p
0

Fs(u)e
inu du (A8.2)
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where Fs(u) contains Bz, @Bz=@x, @Bz=@y, and trigonometrical functions of u. Let us
consider as an example, calculation of the integral Bzn ¼ 1=2p

Ð 2p
0

Bz(x,y,z)e
inu du.

Using Eqs. (A6.17) and (A6.18), we obtain

Bzn ¼ 1

2p

ð2p
0

ð2p
0

A(c,z)eik(z)(x coscþy sinc)þinu dc du (A8.3)

where A(c,z) ¼ �in½C(z)=2p�e�inc. The coordinates x and y of the electron on the

helical trajectory are determined by Eqs. (10.78). Then the integral in Eq. (A8.3)

takes the form

Bzn ¼
ð2p
0

A(c,z)eik(z)(X coscþY sinc)dc
1

2p

ð2p
0

eik(z)r? cos (u�c)þinu du (A8.4)

The inner integral according to Eq. (A6.15) is inIn(kr?)einc, where In is a Bessel

function of the first kind of order n. We obtain

Bzn ¼ inIn(kr?)
ð2p
0

A(c,z)eik(X coscþY sinc)þinc dc (A8.5)

According to Eq. (A6.17),

Bz(X,Y ,z) ¼
ð2p
0

A(c,z)eik(X coscþY sinc) dc (A8.6)

Then the integral in Eq. (A8.5) can be calculated by applying the operator

D ¼ (1=k)½(@=@X)þ i(@=@Y)� n times successively to the integral in Eq. (A8.6):

DnBz(X,Y ,z) ¼ in
ð2p
0

A(c,z)eik(X coscþY sinc)þinc (A8.7)

Thus,

Bzn ¼ In(kr?)Ln(X,Y ,z) (A8.8)

where Ln(X,Y ,z) ¼ DnBz(X,Y ,z)

Other Fourier coefficients are found analogously. Finally, we obtain

Gun ¼ �ic
dIn

dj
Ln, Grn ¼ � c

n

d

dj
j
dIn

dj

� �
Ln

Gxn ¼ � v?
k

dIn

dj

@Ln
@X

, Gyn ¼ � v?
k

dIn

dj

@Ln
@Y

(A8.9)

Here j ¼ kr?. The value b? ¼ v?=c and the derivation of Eq. (A8.9) was

supposed equal to j=n. This is satisfied for the gyroresonance when v ¼ nvg and

k ¼ k (i.e., for a cutoff resonator).
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APPENDIX 9 (TO SECTION 10.8.2): MAGNETIC SYSTEMS OF
GYROTRONS

Operational frequencies of contemporary gyrotrons cover frequency bands on

the order of 3 to 300 GHz. According to the Doppler resonance condition

(10.46a), a magnetic field in the interaction space of the gyrotrons must be close to

BT � 10:7

lmm

g

n
(A9.1)

and have values of �0.1 to 10 T for interaction at the fundamental cyclotron reson-

ance. Basic types of gyrotron magnets are described briefly below; our choice is

determined by a gyrotron’s frequency bands, construction, and operation

requirements.

Resistive (Water Cooling or Oil Cooling) Solenoids These devices were the first

magnets used in Russian gyrotrons, beginning in 1965. At present, these magnets are

used in technological gyrotrons on frequency bands K and Ka operating basically on

the second cyclotron harmonic. In this case, the magnetic field required does not

exceed 0.7 T. In principle, resistive magnets are available for creating much

higher magnetic fields. However, energy consumption, power supply, and cooling

systems for these solenoids become very sophisticated. So a 30-T resistive

magnet (the world’s highest-field dc resistive magnet) required a 20-MW power

supply (Mossang et al., 2005).

Liquid Helium–Cooled Superconducting Magnets The use of these solenoids

was a miletone in the development of powerful short-wave gyrotrons (see, e.g.,

Zaitsev et al., 1974). At present, almost all gyrotrons operating in the frequency

bands 40 to 250 GHz are equipped with liquid helium magnets.

The magnet is depicted in Fig. A9.1. The superconducting coil is inserted into a

helium container that is, in turn, inserted into a liquid nitrogen container. The central

bore is at room temperature. Most of the magnets are wound by conductors

FIGURE A9.1 Liquid helium superconductive magent.
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comprised of many fine filaments of NbTi alloy embedded in a copper matrix.

Liquid helium has a normal boiling temperature of 4.2 K, corresponding to atmos-

pheric pressure. In this case the critical magnetic field of an NbTi superconductor is

close to 9 T. Large magnets could have a bore diameter above 100 mm for a B value

of �5 to 7 T and a length of �1 m. Multifilamentary Nb3Sn superconductors are

now being used. The critical magnetic field of a Nb3Sn superconductor is 10 T

for a temperature of 4.2 K and 16 T for a temperature of 2.5 K. This superconductor

is expensive, and the corresponding magnets cost substantially more than NbTi

magnets.

The main disadvantage of liquid helium magnets is the need to in refill the liquid

helium. The basic causes of helium evaporation lie in the thermal conductivity and

in the electric resistance of the leads that connect the superconducting coil with a

current source.

Liquid Helium–Free Superconducting Magnets (Watanabe et al., 1996) The

current leads in these magnets are executed as coils of a high-temperature supercon-

ductor Bi2223 wound on ceramic cylinders. The warm ends of the leads are at liquid

nitrogen temperature. The critical temperature of the Bi2223 is higher than the

boiling point of liquid nitrogen at 1 atm (77 K). As a result, the heat leakage of a

magnet with Bi2223 leads drops almost to zero. Now very large liquid helium–

free magnets (LHFMs) are cooled by comparatively small Gifford–McMahon

(GM) cryocoolers with a cooling capacity on the order of 1 to 10 W until a

temperature of 4 K and lower. Using the superconductor Nb3Sn achieves a

15-T field.

At present, LHFM magnets are produced by Japanese firms. Jastec, Inc. (Japan

Superconductor Technology, Inc.) produces 12-T magnets with a room-temperature

bore diameter of 100 mm. The magnet container’s diameter and height are 740 and

650 mm, respectively. The magnets could operate at any angle with respect to ver-

tical and are practically maintenance-free. A 300-GHz gyrotron with a CW output

power of 3.5 kW equipped by a LHFM magnet system was used successfully for

a microwave procession of materials (see Hoshizuki et al., 2005; Kuftin et al.,

2000; and Section 10.12.3).

Hybrid Magnets These magnets can produce the highest dc magnetic fields. They

are composed of outside coils of a low-temperature superconductor such as an

Nb3Sn superconductor and insert coils with a high critical magnetic field. Two

types of hybrid systems are known. In the first system the inner coil is executed

as a resistive water-cooling magnet. The high fields in this case are attained

with considerable lower cost than with purely resistive magnets. The highest

steady magnet field was built at the National High Magnetic Field Laboratory in

Tallahasee, Florida. This 45-T hybrid system combines outer superconducting

coils that produce a 14-T field and an insert 30-MW resistive magnet producing a

field of 31 T (Bird, 2004).

In the second system the inner insert coil is manufactured of high-temperature

superconductor Bi2223 that has an extraordinarily high upper critical magnetic
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field. So a hybrid liquid helium–free magnet with an 19-T field and a 52-mm bore

has been designed (Kurusu et al., 2004). The outer coil is composed of Nb3Sn and

NbTi coils and delivers a maximum magnetic field of 16.5 T.

Permanent Magnets The use of permanent magnets in gyrotrons began in the

1990s (see, e.g., Kuftin et al., 1992a). At present, the most promising material for

permanent magnets from the stand point of coercive force, cost saving, and temporal

and temperature stability is the rare-earth alloy NdFeB. NdFeB permanent magnets

used in gyrotrons provide a magnetic field of more than 1 T in a bore up to 60 mm.

The frequency generated by gyrotrons with these magnets on the second harmonic of

the gyrofrequency is near 56 GHz. Similar gyrotrons can be developed for CW

output power up to 50 kW and are very promising technological oscillators for

microwave material processing. A high harmonic gyrotron with an axis-encircling

electron beam and a permanent magnet delivered on a fourth harmonic an output

power of 3.5 kW in a 1-ms pulse and a frequency of 112 GHz (Idehara et al., 2004).

A principal point in a construction of a gyrotron with a permanent magnet was

ensuring available distribution of the magnetic field with sufficient uniformity

over the length of the interaction space and with adiabatic reduction of the field

to the gun and collector regions. A solution has been found by forming an extended

area in the magnet with radial magnetization (see, e.g., Kuftin et al., 2000). In

Fig. A9.2, the structure of a 1 T permanent magnet is depicted.

Pulsed Magnets Pulsed magnets are divided into two categories: nondestructive

magnets with a field below 100 T and a pulse duration in the range 1ms to 1 s,

and self-destruction coils with a field above 100 T and a pulse duration of

FIGURE A9.2 1-T permanent magnet. The magnetization of each element is shown by the

arrows. Dimensions are in millimeters. (From Idehara et al., 2004.)
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microseconds (see, e.g., Herlach, 1996). For nondestructive magnets the most

important parameters of the coil material are mechanical strength and electrical con-

ductivity. The energy density and corresponding stress due to Lorentz forces depend

quadratically on the magnetic field. At 100 T the stress is up to 4 GPa. It is equal to

the mechanical strength of the strongest materials presently available. By compari-

son, the mechanical strength of copper is on order of 0.1 GPa. Another important

parameter is the size of the magnet bore. Using the most advanced materials and

a sophisticated coil design obtains peak fields of about 75 T in 1
2
-inch bores

(Herlach, 1996). Fields up to 60 T are available for routine experiments.

The use of a strong pulsed magnetic field for gyrotrons as for other cored micro-

wave electron devices is complicated by the following contradictory requirements.

On the one hand, conductivity of the metallic sheath of the cavity should be low

enough and the pulse duration large enough to penetrate the magnetic field in a reso-

nator. On the other hand, conductivity of the inner surface of the resonator should be

high, to reduce ohmic losses.

In the first successful experiments with powerful submillimeter gyrotrons pro-

vided by pulsed magnets (Luchinin et al., 1983; Nusinovich, 2004), the tube body

was made of thin stainless steel covered on the inner surface by a thin layer of

copper (10 to 20 mm). The pulse duration of the magnet field was about 10 ms.

Luchinin et al. (1983) have achieved a radiation wavelength of �0.6 mm in a mag-

netic field of about 20 T on the fundamental gyroresonance. Microwave power of

100 kW at 8% efficiency for a voltage of 70 kV and 50-ms pulses has been obtained.
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Index

Aberrations, 87–97

chromatic, 94

correction of, 111

disturbance of axial symmetry, 96

electron diffraction, 97

geometrical, 87

anisotropic, 93

astigmatism, 92

coma, 91

distortion, 93

field curvature, 93

spherical, 90

space-charge fields, 96

Accelerators:

colliders, 517

FODO lattices in, 111, 228

types of, 111, 522

Action integral, 7

Adiabatic design of MIG, 473

Adiabatic guns, 472

Adiabatic invariant, 33–36, 473

Admittance of electron gap, 247–252

Admittance of ensemble of classical

oscillators, 427–430

Amplitron, 411–418

amplification and efficiency, 414

bandwidth, 415

Buneman–Hartree line, 416

electron emission, 419

phase characteristics, 417

slow-wave structures, 413

Anode aperture, 71

Anomalous Doppler effect, 425

Applegate diagram, 268

Approximations

adiabatic, 32

hydrodynamic, 116

kinematic, 267

linear, 250, 258, 463, 523

nonrelativistic, 19–28, 42, 98,

128, 472

paraxial, 53, 211

quasistatic, 18

single-flow, 116

Averaged equations of gyrotron, 451–454

in Hamiltonian form, 454

in polar coordinates, 456

Backward wave

amplifier (BWT), 342

nonlinear effects in BWO, 348

oscillations, 339, 509

oscillator (BWO), 345

oscillator of M-type (MBWO), 377–382

relativistic BWO, 357

Bandwidth

amplitron, 415

gyroklystron, 506

gyro-TWT, see Gyro-TWT

klystron, 287

TWTM, 377

Barkhausen-Kurtz oscillator, 435

Beams:

brightness, 13

Brillouin, 186–189, 193–198

congruent, 127
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Beams: (Continued )

emittance, 12, 110

equilibrium, 182–184, 191, 205, 220

helical electron, 24, 43, 468–475

hollow, 189, 211

homocentric, 48, 131

isorotational, 186

isovelocity, 184

laminar, 116, 124, 136, 480

nonvortex, 127

regular intersection, 479

space-charge, 113, 115, 131, 181, 479

stiffness, 223

thin annular, 199

unrippled beams, 182

Bessel function, 272, 294, 539

Boltzman–Maxwell distribution, 123

Bremsstrahlung magnetic, 425

Brillouin stream, 389–391

Brillouin rays, 500

de Broglie’s wave, 97

Bunching:

crossed fields, 365

current, 268

electron gap, 252

gyroklystron, 503

inertial and forced, 369, 443

klystron, 269, 283

linear and quadratic bunching

of oscillators, 433

retarded field, 290

spatial and phase, 434–445

Buneman–Hartree threshold voltage, 391, 401

Busch theorem, 41, 126

BWO, see Backward wave

Carcinotrons of M-type, 377–383

Cathode lens (immersion objective), 63, 72–75

Cathode plasma, 173, 179

Cathode thermionic, 75

Cauchy problem, 150–152, 162–167

Cavities:

buncher, 264–266

catcher, 273

penultimate, 284–287

toroidal, 265

Centrifugal electrostatic focusing, 171, 205–210

Ceramic sintering, 515

Cerenkov radiation, 300

Cerenkov synchronism, 424

CFA, 410–419

Charge conservation law, 248, 269, 292, 455

Child–Langmuir formula, 130

Classical electron oscillators, 427

Clinotron, 351

Coaxial gyrotrons, 463, 479

Coaxial resonators, 496, 514

Colliders, see Accelerators

Complex resonators, 496

Conductance of electron gap, 251, 267

Continuity theorem, 11, 368

Controlled fusion experiments, 514

Convective instabilities of helical

electron beams, 481

Converter quasioptical, 499

Coupled cavity TWTO, 340

Coupling coefficient, 266

Crossed field amplifiers (CFA), 410–419

Crossed field oscillators, see Backward wave

Crossover, 73

Current:

capacitive, 243, 250

convection, 242, 268–272, 306–308

displacement, 242

induced, 244–246

total, 242

Cusp magnetic, 44, 472

Cutoff relation, 387

Cyclotron:

frequency (gyrofrequency), 25

resonance, 441, 508

Cyclotron autoresonance masers

(CARM), 517–521

Debunching by space charge,

281–283, 296

Differential equations of trajectories, 51–54

Diffraction power output, 499

Diffraction losses, 501

Diodes:

cylindrical, 148

explosive emission, 173–179

foiled anode, 173

foiled free annular, 174

high-frequency with nonzero

space charge, 257–260

magnetically insolated, 174–179

oscillator, 260

planar, 118, 129, 144, 529

relativistic planar, 145

spherical, 149

supreme relativistic, 146

volt–ampere characteristics, 146

Dispersion equation:

BWO, 344

FEL, 525
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gyro-TWT, 510

MBWO, 377

MTWT, 371

space charge waves, 280

TWTO, 310, 313, 318

Doppler anomalous effect, 425

Doppler frequency up conversion, 426

Doppler normal synchronism, 424

Drift:

equations, 37, 39

gradient, 39

guiding center, 39

transversal, 29, 39

Dryden’s flow, 140

Efficiency:

amplitron, 415–417

BWO, 348, 359

diode oscillator, 260

gyroklystron, 506

gyrotron, 443, 462, 517

klystron multibeam, 287

klystron multi-cavity, 286

klystron two-cavity, 275, 277

magnetron, 394

magnetron, relativistic, 402

magnicon, 439

MBWO, 381

MILO, 408

MTWT, 375

reflex klystron, 293, 296

ubitron, 437

Electron gap, 242, 245, 251

Emission:

crossed field amplifiers (CFA), 419

explosive electron, 171

secondary, 331, 410, 419

self-amplified spontaneous

(SASE), 526

Emittance, 12, 110

Energy:

balance for free and forced stationary

oscillations, 447, 541

conservation law, 18

integral of averaged equations, 455

spread, 476

transfer in MTWT and TWTO, 368

Euler–Lagrange equation, 50

Euler’s motion equation, 123

Explosive emission diodes, 173–179

Floquet theorem, 302

Focal length:

cathode lens, 73

quadrupole lens, 105–108

short magnetic lens, 78

strong magnetic lens, 83

thin aperture lens, 70

thin unipotential and immersion

lenses, 68

Foci, sagittal and meridional, 92

Focusing:

centrifugal electrostatic, 205–208, 211

electrostatic periodical, 226

magnetic periodical, 228–234

multifocusing effect, 79, 83

slalom, 227

strong, 80

Free electron laser (FEL)

applications, 527

linear theory, 523

parameters, 526

Frequency:

bands, 237

electron cyclotron (gyrofrequency), 25

multiplier klystron, 277

plasma, 6, 280

plasma reduction, 281

Frequency oscillation zones of

reflex klystron, 295

Frequency tuning:

BWO, 348

clinotron, 352

gyrotron, 495, 515

magnetron, 396–399

MBWO, 381, 383

reflex klystron, 295

Gain (amplification):

amplitron, 414

BWA 348

gyroklystron, 506

gyro-TWT, see Gyro-TWT

klystron, 285, 288

MTWT, 372

TWTO, 336, 361

Gaussian beams, 362, 403, 499

Gaussian distribution of the

gyrotron hf field, 462

Gauss plane, 89

Girocon, 438

Global instability, 483–485

Grazing intersection, 509

Guiding center, 25, 31, 37–41, 367,

440, 451, 457, 472

Guns:

cathode, 73

centrifugal electrostatic, 171
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Guns: (Continued )

Chernov’s, 210

Chow–Pantell, 471

cusp-injected, 44, 472

explosive–emission, 172–179

Harris–Waters, 209

high-convergence, 170

Lomax–Kirstein synthesis method, 153

magnetron injection gyrotron

adiabatic, 470, 472–476

magnetron injection Kino-Taylor, 169, 530

Meltzer, 156–158

with wedge-shaped and conic beams, 167

Gyroklystron:

bandwidth, 506

construction, 503

equations,503–505

multicavity, 503, 506

Gyrotron:

applications

electroncyclotron current

drive (ECCD), 513

electron–cyclotron resonance heating

(ECRH), 513

generation of multiply charged ions

and soft X-rays, 515

gyroklystron RF drivers for TeV linear

colliders, 517

microwave procession of

materials, 515

millimeter radar systems, 516

coaxial, 463, 479

depressed collector, 502

hard self-excitation regime, 467,

494, 497

large orbit, 442

multibeams, 498

nonsynchronous parameter, 434

output power system, 499

quasioptical, 495

relativistic, 517

resonators, 444

starting regime, 465

subrelativistic, 458

subrelativistic equations, 459–465

TE, TM modes, 445

theory, 449–457

thin beam approximation, 455

Gyro-TWT:

bandwidth, 511

gain, 511

reflective instability, 512

resonance conditions, 508

Hamiltonian equations, 9

Harker’s method, 162–166

Harmonics:

gyrofrequency, 439, 452, 467

spatial, 303–306, 382

Harris flow, 206

Helix dispersion, see Slow-wave

structures

Helix TWTO, 338

Helmholz and Lagrange formulas, 61

Hull’s parabola, 387

Hybrid magnets, 544

Image rotation, 84

Image space, 62, 65, 83

Image stigmatic and geometric

similarity, 47

Immersion lens, 63, 67

Impedance of diode, 258

Incremental propagation constant, 312,

317, 345, 372

Instabilities:

diochotron, 170, 482

global, 483–485

negative-mass (electrostatic cyclotron), 481

reflective of Gyro-TWT, 512

TE instabilities, 484

Intermodulation distortion, 337

Invariants, Lagrange and Poincare, 124,

127, 131

Ions compensation, 487

ITER, 514

Kicker, 472, 521

Klystrons:

Applegate diagram, 268

applications, 263, 284, 288, 296

frequency multiplier, 276

invention, 263

multicavity and multibeam, 284–288

reflex, 289–296

relativistic, 289

two-cavity, 264, 273–277

Lagrange invariant, 125

Lagrangian equations, 8

Langmuir maximum brightness, 14

Laplace equation, 102, 144, 150–153, 163

Lenses:

aperture, 63, 69–71

cardinal elements, 65, 82, 105

cathode (immersion objective), 63, 72–75

electrostatic, 61–76
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immersion 63, 67

magnetic:

classification, 76, 79

Glazer’s, 80–85

long, 86

short, 77–80

magnification, 59, 84

quadrupole:

applications, 109

cardinal elements, 105

equation of paraxial trajectories, 103

quadrupole doublets and triplets, 108

second order focusing, 109

transfer matrix, 104

second-order focusing of axially symmetric

lenses, 98

transfer matrix, 99

unipotential, 63, 67

Limiting current, 204, 487–492

LINAC, 527

Linearization:

gyro-TWT equations, 509

induced current, 250

subrelativistic gyrotron equations, 463

Liouville theorem, 10

Llewellyn–Peterson equations, 260

Magnetic bottle, 40

Magnetic fields spatial periodic, 225, 228

Magnetic lenses, see Lenses, magnetic

Magnetic systems of gyrotrons:

hybrid magnets, 544

permanent magnets, 516, 545

pulsed magnets, 545

resistive solenoids, 543

superconductive magnets, 543

Magnetrons:

applications, 395

Brillouin stream, 389–391

Buneman–Hartree threshold voltage, 391, 401

efficiency, 394

Hull’s parabola, 387, 401

mechanically tunable, 397

performance, 395

phase locking, 405

p-mode, 384–386, 393

planar, 136–140

relativistic, 400–405

resonator, 383

voltage tunable, 397

Maxwell equations, 6

Meltzer’s flow and gun, 134–136, 156–158

Membrane equation and function, 446, 538

Microscopes:

emission, 73

lenses, 85

resolution, 75, 97

scanning, 75

transmission, 94

Millimeter TWTO, BWO, and

orotrons, 350

MILO (magnetically insulated line oscillator),

406–410

Modes:

gyrotron interaction:

selection, 494–499

suppression, 493

p-mode, 384–386, 393

r-mode, 129, 257–259, 479, 529

T-mode, 129, 257–259, 479, 529

voltage-, power-, and bandwidth

amplifier klystron modes, 276,

285–288

Modulation:

energy, 503, 521

velocity, 265–267

Momentum generalized, 8, 41,

46, 55

Motion of electrons in static fields:

axially symmetric and plane

symmetric, 41–46

electric, 21–23

magnetic, 23–31

weakly inhomogeneous, 31–41

M-type injected beam back wave

oscillator (MBWO),

377–382

M-type injected beam traveling

wave tube (MTWT):

bunching, 368

construction, 381

efficiency, 375

gain, 369, 372

nonlinear effects, 375

planar, 364, 381

Negative conductance:

diode, 258

electron gap, 252

Negative mass instability, 481

Noise:

figure, 334

magnetron, 396

partition, 335

shot, 335

velocity, 335
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Orotrons, 352–354

Oscillators, classical electron:

admittance of assemble, 427–430

harmonic, 20, 138, 430

isochronous, 442

nonisochronous, 432–436, 486

phase bunching, 433

relativistic, 20

spatial bunching, 435

spontaneous radiation, 423

stimulated radiation, 427–432

O-type devices, 297, 368

Paraxial ray equations, 211–215

Peniotron, 437

Periodic focusing, 225–234

Permanent magnetic system, 516, 545

Perveance, 114, 130, 214

Phase:

locking, 405

selection, 434–437

Phased antenna array, 360, 376, 418, 481

Pierce:

formula of TWT and Gyro-TWT

amplification, 316, 511

gun, 152, 168

parameter, 311

synthesis gun method, 143

Pinch effect, 118

Pitch-factor, 468, 476, 483

Poincaré invariant, 124

Poisson’s equation, 113

Pondermotive force, 524

Potential depression, 114, 201, 204, 487, 496

Pulsed magnet, 545

Pump magnet, 458, 472

Quadrupole lenses, see Lenses, quadrupole

Quality factor (Q-factor):

diffracton, 447

loaded, 255, 297, 399, 448

Quasioptical gyrotron, see Gyrotron

Quasistatic approximation, 18

Radar, 333, 360, 396, 516

Radiation:

Bremsstrahlung, 425

Cerenkov, 300

parasitic electromagnetic, 486

spontaneous, 423–426

stimulated, 427–433

stray, 501

synchrotron, 526

transition, 300

Reduction factor plasma, 281

Reflected electrons, 335, 484

Reflective waves, 312, 335, 337, 348, 358, 512

Reflex klystron, 289–296

Relativistic:

beams in an infinite magnetic field, 199–205

current, 213

gyrotron, 517

klystron, 289

magnetron, 400–405

paraxial ray equations, 211–215

perveance, 114, 130, 214

planar diode, 145–147

solid Brillouin beams, 193–199

TWTO and BWO, 354–362

unrippled beams, 191–193

Resistive magnet, 543

Resonator (cavity):

Bragg, 520

buncher cavity, 264

catcher cavity, 264

coaxial, 496, 514

gyromonotron open, 444

hole-and-slot magnetron, 385

rising sun, 385

strapped, 385

toroidal, 265

Saturation effects:

gyro-TWT, 511

MTWT and MBWO, 375

TWTO, 285, 318, 326

Secondary emission, 331, 410, 419

Selection modes, 494–499

Shockley-Ramo theorem, 243–245

Slalom focusing, 227

Slow-wave structures (SWS):

cloverleaf, 340

comb, 301, 350, 533–535

coupled cavity, 340

dispersion diagram, 395

helix, 290, 338

interdigital, 301, 350, 533–535

staggered slot, 340

surface waves, 304, 350, 366

Solenoids, see Magnetic system of gyrotrons

Space charge:

beams, 113, 115, 131, 181, 479

current limitation, 114, 130

effects in MTWT, 373

fields, 178, 479

parameters, 229, 312, 318, 349, 374

self consistent equations, 116

waves in velocity modulated beams, 277
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Spectrum:

energy in atoms, 422

energy of electron oscillators, 422,

431, 433

modes in waveguides and

resonators, 384, 493, 496

Spent beam, 114, 201, 204, 487, 496

Spot size of electron beam, 75

Spread:

energy spread in HEB, 476, 481

velocity in helix electron beam

(HEB), 476–481

Stagger-tuned model, 503

Starting current:

BWO, 345–347

gyromonotron, see Gyrotron

MBWO, 377

monotron, 254

orotron, 353

reflex klystron, 295

Startup scenario, 497

Step-tunable gyrotron, 515

Stiffness of beams, 223, 234

Strong focusing, 80

Suppression of modes, 493

Susceptibility of gyroklystron, 504

Synchronous mode, 311, 315, 498

Synchronous radius (in magnetron), 394

Synchronous spatial harmonic, 358,

361, 365

Tapered gyro-TWT, 512

Tapered MILO, 408–410

Tapering velocity, 327–329

Temperature equivalent noise, 335

Thermal (Johnson) noise, 334

Thermonuclear fusion, 514

Thermonuclear reactor, 514

Tokamak, 514

Total current method, 256

Transfer matrix, 99

Transit:

angle, 249, 266, 270, 294, 480, 532

time, 235, 241, 249, 250–252, 299

Transition radiation, 300

Transversal adiabatic invariant,

33–36, 473

Trap, magnetic, 484

Trapping electrons (TE), 484

Traveling wave tube O-type (TWTO):

applications, 332

attenuators and severs, 336

bandwidth, 301, 338

bunching, 299, 306–308

depressed collectors, 329–332

dispersion equation, 310, 313, 318

efficiency, 327–329, 333

gain, 316

helical and coupled cavity tubes,

338–341

intermodulation distortion, 337

linear theory of nonrelativistic TWTO,

306–318

noise, see Noise

nonlinear equations and effects in

nonrelativistic TWTO,

318–329

parameters, 312

relativistic, 354–362

self-excitation, 335–337

slow-wave structures, 300–306

space charge, 316

Tuning:

frequency BWO, 348

frequency magnetron, see Magnetron

frequency reflex klystron, 295

Twistron, 289, 340

Ubitron, 437, 521

Ultron, 411

Velocity spread, 476–481

Vlasov–Maxwell’s equations, 122

Velocity modulation, 265–267

Voltage depression, 114, 201, 204,

487, 496

Waveguides:

circular, 445

comparison, 445, 538

corrugated, 358, 362

irregular, 442, 446, 496

periodic, 301

rectangular, 437

tapered, 400

Weakly inhomogeneous fields, 31–41

Windows:

atmospheric, 516

Brewster’s, 502

ceramic, 501

CVD-diamond, 502

output, 358, 501

Work function, 173, 478

Wronskian, 99, 428
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