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Preface

This book summarizes the experience of many years of teamwork with my
group, the beam diagnostics group of GSI. For a long time the group was also
responsible for operating the machines and application programming. In my
opinion, this connection was very efficient: first, because a beam diagnostic
system has to place powerful tools at the operators’ disposal; second, because
data evaluation and presentation of results for machine operation demand
application programs which can be handled not only by skilled experts.

On the other hand, accelerator developments and improvements as well as
commissioning of new machines by specialists require more complex measure-
ments than those for routine machine operation. A modern beam diagnostic
system, including the software tools, has to cover these demands, too.

Therefore, this book should motivate physicists, constructors, electronic
engineers, and computer experts to work together during the design and daily
use of a beam diagnostic system. This book aims to give them ideas and tools
for their work.

I would not have been able to write this book without a good education
in physics and many discussions with competent leaders, mentors, and col-
leagues. After working about 40 years in teams on accelerators, there are so
many people I have to thank that it is impossible to mention them all by
name here.

In recognition, of all, I would like to thank very much my first teachers,
Peter Brix and Friedrich Gudden for filling me with enthusiasm for nuclear
physics, electron scattering, and accelerator physics at the DALINAC nearly
40 years ago. Starting in 1970 at GSI, it was Christoph Schmelzer, who was
always a sympathetic listener, helping me with discussions and many sugges-
tions. Under the leadership of Dieter Böhne, who managed most accelerator
projects of GSI, the beam diagnostics group, responsible for all beam diagnos-
tics up to the target, was established. I gratefully acknowledge this in memory
of both.

I thank Norbert Angert and Klaus Blasche for helpful discussions and
support during their leadership of the accelerator department. Furthermore,
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I would especially like to thank Jürgen Klabunde for many years of collab-
oration. Specification of beam diagnostic elements, elaboration of program
algorithms, performing of accelerator experiments, and organization of ma-
chine operation was our common job.

This job could not have been done without the members of the beam
diagnostics group. Especially, many thanks to Volker Schaa, for implementing
many application programs and together with his team always available in
case of software problems. Many thanks also to Fritz Bock, keeping the process
computer system available day and night. In memory of Helgi Vilhjalmsson,
I gratefully acknowledge his professional work and his very much respected
engagement in the group.

It would be unforgivable not to acknowledge here Frank Peldzinski, to-
gether with Alfons Suderleith who were responsible for service, maintenance,
and new installations of beam diagnostic elements. In this connection, the
work of Günther Grimm and Horst Graf in the small beam diagnostics work-
shop contributed a big part to constructing the beam diagnostics system;
thanks to both of them. I thank gratefully also Jörg Glatz and Ludwig Dahl
for numerous physics discussions, resulting mostly in suggestions and improve-
ments for operating the machines. In this connection, the good collaboration
with Dieter Wilms and Uwe Scheeler, now both responsible for the operations
group, is gratefully acknowledged.

In recognition of all members of the diagnostic group, I would like to men-
tion Mohamed Fradj, Manfred Hartung, Tobias Hofmann, Wolfgang Kauf-
mann, Wilhelm Losert, Rolf Mayr, Peter Moritz, Hansjörg Reeg, and Norbert
Schneider for professional discussions and their great engagement as opera-
tors, shift leaders, and designers. Many thanks to them and all other members
of the beam diagnostics group.

Construction design and procuring of nearly all mechanical parts of the
GSI beam diagnostic systems were managed by Hubert Kraus with the help
of Jochen Störmer. I thank them both very much for their work and many
years of close collaboration.

My special thanks go to Andreas Peters and Peter Forck, who now are
the leaders of the beam diagnostics group. Designing together the beam di-
agnostic systems for SIS, ESR (partly), and the high energy beam lines, the
collaboration could not have been better. In 2002, Peter Forck took over my
courses on “Beam Instrumentation and Diagnostics” at the Joint University
Accelerator School (JUAS). He improved and supplemented my lecture notes.
Some of the contributions to this book are adapted from our common work.

After retirement, I miss very much the short meetings with Claus Riedel.
We met nearly every day for half an hour or even more for discussion. I thank
him very much for many suggestions concerning the solution of mathematical-
physical problems.

For pictures marked GSI-Foto, I acknowledge the work of Achim Zschau
and Gabriele Otto for taking them. The draft version of the book was written
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with Scientific Workplace of MacKichan Software Inc. I can recommend it as
a powerful tool.

I also thank the editorial board of Springer for helpful suggestions. Finally,
I wish to express my special thanks to my editor, Dr. Christian Caron, and
his team, especially, Gabriele Hakuba and Birgit Münch.

Darmstadt Peter Strehl
December 2005



Commonly Used Abbreviations

AC alternating current
ADC analog-to-digital converter
AlN aluminum nitrite
ATF accelerator test facility (KEK)
BCT beam current transformer
BPM beam position monitor
BNL Brookhaven National Laboratory
BTF beam transfer function
BeO beryllium oxide
CAD computer-aided design
CCC cryogenic current comparator
CCD charge-coupled device
COG center of gravity
CERN European Organisation for Nuclear Research
CT computer tomography
CVD chemical vapor deposition
CW continuous wave
DAC digital-to-analog converter
dc direct current
DESY Deutsches Elektronen Synchrotron
DSP digital signal processing
ECR electron cyclotron resonance
ESR experimental storage ring
FC Faraday cup
FD finite difference
FE finite element
FFT fast Fourier transformation
FWHM full width half-maximum
GSI Gesellschaft für Schwerionenforschung
HILAC heacy ion linear accelerator
IC ionization chamber
IF intermediate frequency



XII Commonly Used Abbreviations

ICT integrating current transformer
ISR intersecting storage ring (CERN)
KEK High Energy Accelerator Research Organisation
LEP large electron-positron storage ring
LHC large hadron collider
LBL Lawrence Berkeley Laboratory
MART multiplicative algebraic reconstruction technique
MCP multichannel plate
MCA multichannel analyzer
MEVVA metal vapor vacuum
MUCIS multicusp ion source
MWPC multiwire proportional chambers
ODR optical diffraction radiation
OTR optical transmission radiation
OTDR optical time domain reflectometer
PC personal computer
PCI industrial personal computer
PIG Penning (ion source)
PLL phase-locked loop
PMT photomultiplier tube
pps particles per second
PS proton synchrotron (CERN)
PSI Paul Scherrer Institut (SIN)
RAM random access memory
RCT resonant current transformer
RHIC Relativistic Heavy Ion Collider
rf radio frequency
RFQ radio-frequency quadrupole
rms root-mean-square
SCM scintillation current monitor
SEM secondary electron emission monitor
SI International Unit System
SIS Schwer Ionen Synchrotron
SLAC Stanford Linear Accelerator Center
SPS super proton synchrotron
SQUID superconducting quantum interference device
TAC time-to-amplitude converter
TDC time to digital converter
TESLA TeV-Energy Superconducting Linear Accelerator
TDR time domain reflectometer
TOF time of flight
UNILAC Universal Linear Accelerator
UV ultraviolet
VCO voltage-controlled oscillator
VSWR voltage standing wave ratio
WEB WorldWide Web
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Introduction

Some decades ago, particle accelerators were controlled and optimized mainly
by looking at viewing screens – mostly based on ZnS – and simple beam cur-
rent meters. Developments in the field of beam diagnostics have paralleled the
development of computers, sophisticated electronic circuits, and PCI systems.
A consequence is the design of more and more complex machines, using pow-
erful simulation programs to describe particle dynamics in modern accelerator
structures. Nowadays, computer-aided operation and on-line control of mod-
ern accelerators, operated in a great variety of modes, require the availability
of many beam parameters. Due to the manifold machines, such as linacs, cy-
clotrons, synchrotrons, storage rings, and transport lines, the demands on a
beam diagnostic system can differ. Taking additionally the broad spectrum of
particles, such as electrons, protons, and heavy ions into account, it becomes
very clear that the development of versatile measurement techniques became
essential in recent years. The main beam parameters and their meaning for
characterization of particle beams are

Beam Intensity

In the most general definition, beam intensity I is defined as

I =
number (N) of particles

time unit
(1.1)

and covers a range from some particles per second (pps) up to 10x pps
with x > 14. For charged particles, beam intensity is related to the beam
current i

Q = i × t = Nζe → (1.2)

i =
Nζe

t
, (1.3)
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where e = 1.602×10−19 As and ζ is the charge state of the accelerated particle.
For dc-machines, the time unit t is 1 s and i corresponds to the dc-current.
For rf accelerators working in continuous mode, such as cyclotrons, the time
unit is given by the bunch length ∆t. Pulsed rf accelerators are characterized
by two time units: Tp as the macropulse length and ∆t as the bunch length.
Defining the duty cycles

Dm =
Tp

T0
T0, repetition period (1.4)

Drf =
∆t

Trf
Trf , rf period (1.5)

currents in the bunch ib or macropulse ip can be related to the average current
ia, measured with a dc-meter

ip = ibDrf (1.6)
ia = ipDm . (1.7)

The great variety of intensity measuring systems is discussed in Chap. 2.

Beam Profile

In a three-dimensional rectangular coordinate system, “beam profile” means
the intensity distribution over one of the coordinates. In accelerator physics,
it is usual to distinguish between longitudinal and transverse directions. The
longitudinal coordinate runs along the beam axis and determination of the
intensity distribution along this axis requires measuring techniques other than
those for the two transverse axes. This is explained and discussed in Chaps.
4 and 5.

Beam Position

The beam position is defined only in the two transverse coordinates and can
be derived immediately from beam profile measurements. In general, the term
“beam position” refers to the center of gravity within the transverse intensity
distributions. This holds especially for measuring devices which measure only
the beam position. Beam position monitors are of great importance for oper-
ation and optimization of circular machines. In these machines, much more
information such as tune, chromaticity, and closed orbit is extracted from the
beam position monitors (BPM). In most cases, the measuring electrode sys-
tems are based on capacitive coupling to the beam. More explicit information
is given in Chaps. 5 and 6.
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Emittance

The terminus “emittance” was introduced to accelerator physics from the
Hamilton formalism. The ease with which a particle beam can be transported,
the accuracy of beam energy determination, the bunch shape and microstruc-
ture in time, and the precision with which scattering angles and a time focus
can be determined in physics experiments, depend on the distributions in the
phase spaces. As for the beam profile, it is usual to discriminate between two
transverse emittances and a longitudinal one, as derived in Chap. 6.

Beam Energy

Of course, the required beam energy is determined mainly by planned exper-
iments or in industrial use by special applications such as ion implantation,
inertial fusion, and sputtering systems. On the other hand, determination
of beam energy, energy spread, and the related quantities momentum and
momentum spread is of great importance in evaluating beam quality and op-
timizing machine parameters. We deal with the matter in Chaps. 5 and 7.

Charge States and Mass Numbers

In heavy ion machines, the ratio between the charge number ζ and the mass
number A of the ions ζ/A is important, because the rf power needed for ac-
celeration is proportional to (A/ζ)2. Therefore, the accelerator constructor
is faced with the problem of maximizing the ratio ζ/A. Highly ionized ions
are preferred in such machines. However, all types of ion sources deliver a
spectrum of ions composed of different charge states of different isotopes.
Therefore, charge state and mass separation become essential for beam diag-
nostics. This holds also for the charge state separation behind strippers which
are used in most heavy ion machines to reduce the required rf power. This is
discussed in Chap. 4.

Q Value

The Q value, respectively, tune, is a quantity defined only in circular machines.
It relates the number of betatron oscillations around a circular machine to the
settings of the focusing and beam guiding elements. In older machines, the Q
value was determined from an appropriate number of position measurements
around the machine. As discussed in Chap. 7, measurement of Schottky noise
and analysis of the so-called beam transfer function (BTF) in response to
beam excitation are now the most applied methods.
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Chromaticity

The chromaticity ξ may be considered a proportionality factor in the relation
between tune spread and momentum spread. The methods of determination
are similar to those used to determine the tune.

Modern beam diagnostic systems should cover mainly the needs of opera-
tors and shift leaders during routine machine operation. On the other hand,
accelerator developments, improvements, and commissioning of new machines
require more complex measurements by skilled experts.

Considering the high demands on beam diagnostic systems, it becomes
very clear that many fields of science and technique are involved, mainly

• vacuum and high vacuum technique;
• material research, mainly for the suitability of materials in vacuum systems

and their thermal characteristics;
• computer-aided design (CAD) of complex electromechanical devices,
• signal calculations, including

– electrodynamics, considering also relativistic effects,
– particle dynamics, including space charge effects;

• analog and digital techniques, applying modern signal analysis; and
• computer techniques, mainly process control and implementation of phys-

ical application programs, including tools for operators and accelerator
scientists.

A beam diagnostics group has to meet requirements that demand teamwork
among technicians, engineers, physicists, and software workers. Experience has
shown that members of the diagnostic group should take part in operation and
improvements of the machines.

Of course, there is great variety of specialist literature available around the
world, covering this matter in scientific journals, numerous articles, and ex-
cellent books, e.g., [1–12]. Two well-established international workshops ded-
icated to beam diagnostics give further detailed information:

• The Beam Instrumentation Workshop (BIW), organized every two (even)
years since 1994 by American accelerator centers [13–19]

• The Workshop on Beam Diagnostics and Instrumentation for Particle Ac-
celerators (DIPAC), organized every two (odd) years since 1993 by Euro-
pean accelerator centers [20–25].

It would be an unforgivable omission in the age of the Web not to mention
the excellent services in the publication of conference proceedings etc. via the
Net, (e.g., [26, 27]).

This book aims to give all experts involved in beam diagnostic system de-
sign, routine operation, and improvement of machines application program-
ming and construction design ideas and tools for their work. A recently pub-
lished book by Minty and Zimmermann [28] is an excellent treatise, showing
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very clearly the importance of beam diagnostic data for machine operation
and optimization. It deals with linacs and circular machines but is focused
mainly on highly relativistic electrons and protons. Besides numerous exam-
ples of the use of beam diagnostic data for beam dynamics and optic studies,
the book also covers machine theory such as cooling, bunch compression, in-
jection, extraction, synchrotron radiation, and polarized beams.

This new book complements it insofar as the design of beam diagnos-
tics devices and measurement procedures are also described in more detail.
Furthermore, instead of considering mainly relativistic light particles, non-
relativistic heavy ions are the subject of this book. As far as beam diagnostics
and measurements in synchrotrons are concerned, it aims to complement the
book of Minty and Zimmermann by contributions, characteristic of machines
accelerating heavy ions from low β values to β near one. Giving examples
concerning

• construction design of diagnostic devices,
• signal calculation and signal processing,
• implementation of application programs for operators, shift leaders and

skilled experts,

the author would be happy to inspire young engineers and physicists to work
in the fascinating field of beam diagnostics.

Most beam diagnostic devices, including signal processing and applica-
tion software were developed for the accelerator facilities of Gesellschaft für
Schwerionenforschung (GSI) and in consequence most of the contents refers
to long term work at GSI. The main parameters of the machines under
discussion are given in Tables 1.1–1.6, starting with the Universal Linear
Accelerator (UNILAC) [29].

Table 1.1. Technical parameters of the UNILAC

Ion source and LEBT

Ions sources MEVVA1, PIG2, MUCIS3

Max A/ζ 65
Injection energy 2.2 keV/u
Relative velocity (β = v/c) 0.217%
Magnetic rigidity 0.44 Tm
Extraction voltage 10–50 kV
Postacceleration ≤ 135 kV
Transversal emittance (normalized) ≤ 0.4 π·mm·mrad
Transversal emittance (not normalized) ≤ 190·mm·mrad
Energy spread ∆W/W ≤ ±1 × 10−4

Mass resolution m/∆m ≤ 210
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Table 1.2. Technical parameters of the UNILAC, continued

Prestripper rf accelerator

Resonator RFQ Superlens

Frequency [MHz] 36.136 36.136
Tank length [m] 9.35 0.8
Inner tank diameter [m] 0.762 0.86
Energy range [keV/u] 2.2–120 120
β [%] 0.217–1.605 1.605
100% horiz. rms emittance, norm. [mm·mrad] 0.050 0.069
100% vert. rms emittance, norm. [mm·mrad] 0.050 0.069
100% longitudinal. rms emittance [keV/u·ns] 0.139 0.250
Particle transmission in relation to RFQ input [%] 89 88

Table 1.3. Technical parameters of the UNILAC, continued

Prestripper rf accelerator, cont.

Resonator IH1 IH2

Frequency [MHz] 36.136 36.136
Tank length [m] 9.1 10.3
Inner tank diameter [m] 1.829 2.034
Energy range [keV/u] 120–743 743–1395
β [%] 1.605–3.995 3.995–5.473
100% horiz. rms emittance, norm. [mm·mrad] 0.085 0.111
100% vert. rms emittance, norm. [mm·mrad] 0.085 0.111
100% longitudinal. rms emittance [keV/u·ns] 0.390 0.446
Particle transm. in relation to RFQ input [%] 88 88

Table 1.4. Technical parameters of the UNILAC, continued

Stripper section at 1.4 MeV/u

IH2 Stripper Alvarez
exit gas entrance

Bunch frequency [MHz] 36.136 36.136 36.136
β [%] 5.473 5.473 5.473
100% horiz. rms-emitt., norm. [mm·mrad] 0.111 0.122 0.225
100% vert. rms-emitt., norm. [mm·mrad] 0.111 0.123 0.296
95% longitudinal. rms-emitt. [keV/u·ns] 0.264 0.303 1.39
Particle transm. in rel. to RFQ input [%] 88 88 88
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Table 1.5. Technical parameters of the UNILAC, continued

Poststripper accelerator

Alvarez 1 Alvarez 2

Frequency [MHz] 108.41 108.41
Energy [MeV/u] 3.6 5.9
β [%] 8.761 11.216
100% horiz. rms emitt., norm. [mm·mrad] 0.244 0.269
100% vert. rms emitt., norm. [mm·mrad] 0.306 0.287
95% longitudinal. rms emitt. [keV/u·ns] 1.42 1.52
Particle transm. in rel. to RFQ input [%] 87.7 87.7
Beam intensity [emA] 15 15
Beam power (pulsed) [kW] 459 752
Power (average) [kW] (duty factor 2%) 9 15

Table 1.6. Technical parameters of the UNILAC, continued

Poststripper accelerator, cont.

Alvarez 3 Alvarez 4

Frequency [MHz] 108.41 108.41
Energy [MeV/u] 8.6 11.4
β [%] 13.514 15.591
100% horiz. rms emitt., norm. [mm·mrad] 0.320 0.349
100% vert. rms emitt., norm. [mm·mrad] 0.301 0.298
95% longitudinal. rms emitt. [keV/u·ns] 1.47 1.44
Particle transm. in rel. to RFQ input [%] 87.7 87.6
Beam intensity [emA] 15 15
Beam power (pulsed) [kW] 1097 1454
Power (average) [kW] (duty factor 2%) 22 29

Remark. The three types of ion sources are the ones mostly used. Their use
may be characterized as follows:

1. MEVVA: Mainly for injection into the Schwer Ionen Synchrotron (SIS),
high currents, low repetition rate, short pulses.

2. PIG: Mainly heavy metal ions, long pulses, moderate currents.
3. MUCIS: Gas ions up to Xe, high currents, low repetition rate.

Remark. For further acceleration, deceleration as well as fine-tuning of the
output energy, there are 10 single gap resonators installed behind the Alvarez
4. The maximum effective acceleration voltage is 1.2 MV for each of them.
Therefore, the maximum beam energy for a 238U28+ ion is 12.8 MeV/u.
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Fig. 1.1. Layout of the SIS

Fig. 1.2. Layout of the ESR
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Table 1.7. The most important beam properties of the SIS

SIS Beam properties

Particle energy 50–1000 MeV/u for U
50–2000 MeV/u for Ne

Energy definition ca. 10−3

Cycle length 1 to 10 s
Extraction fast: ca. 1 µs

slow: 10–8000 ms
Beam emittance depending on 3–30 π·mm·mrad
ring filling and extraction time

Table 1.8. The most important beam properties of the SIS

ESR – main features

Particle energy 3–560 MeV/u for U
50–830 MeV/u for Ne

Energy definition ca. 10−4 with e-cooling
Cycle length Field ramp: 1.5 s
Storage time Minutes to hours
Extraction Fast: ca. 0.5 µs

Slow: to some 10 s
Beam emittance 0.1 π·mm·mrad, with e-cooling
Particle number per cycle Typically 108 with cooling

Figure 1.1 shows a layout of the SIS, including some information about the
equipment, and Table 1.7 summarizes the most important beam properties.

The corresponding layout of the experimental storage ring (ESR) is shown
in Fig. 1.2, and the main features of the storage ring are given in Table 1.8.
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Beam Intensity Measurements

Measurement, continuously monitoring and optimizing of beam intensity is
one of the most important activities during operation of complex accelerators
[30]. In general, a certain intensity measuring system covers only a limited
range of intensities, which is caused by

• the great variety of accelerator types,
• the manifold accelerated ion species covering a wide range of energies and

charge states, and
• the great variety in the time structure of the particle streams.

As a consequence, detectors and measuring systems show great diversity.
The measuring principles applied depend on the expected intensities and cover
a wide spectrum ranging from absolute determination by particle counting and
simple current measurements to more complicated relative methods, requiring
calibration by an absolute measurement. Detector systems may be classified
according to properties, such as

(1) on-line measurement
(2) non-destructive
(3) radiation resistant
(4) absolute measurement
(5) vacuum compatible
(6) kind of output signal

Table 2.1 gives a selection of commonly used principles. The classifications
1–6 are marked by + = yes, − = no and o = only under favorable conditions;
N = number of particles; ζ = charge state of the particles; ∆W = energy loss;
Wion = average energy needed to generate one ion pair, and p = pressure.

From Table 2.1, it becomes evident that absolute determination of beam
intensity is possible either at quite low particle streams by counting single
particles or at high intensities by using beam transformers. In the range of
about 107 < N < 1012 particles, respectively, charges per second (for ζ = 1,
it corresponds to 1.6 pA< i < 160 nA), only more or less indirect methods
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Table 2.1. Principles of intensity measurements and their classification. TC = track
counting, FC = Faraday cup, IC = ionization chamber, SPC = scintillation pulse
counter, SCM = scintillation current monitor, SEM = secondary electron monitor,
RGM = residual gas ionization monitor, NRM = nuclear reaction monitor, BCT =
beam transformer (from P. Heeg, A. Peters, Strehl, P., AIP Conference Proceedings
333, Vancouver, B.C., Canada 1994, pp. 287–293. With permission)

Nondes- Radiation Absolute Vacuum Output
Principle On-line tructive resistant calibration compatible signal

TC − − − + − N

FC + − + + + Nζe

IC + − + − − Ne ·∆W/W ion

SPC + − − + − N

DD + − + + + N

SCM + − − − − ∼ N ·∆W

SEM + o + − + ∼ N · dW/dx

RGM + + + − + ∼ N · p∆W

NRM + o + −
BCT + + + + + ∼ Nζe

have to be applied. A typical example gives the slow extraction mode of syn-
chrotrons, preferred by nuclear or atomic physicists in their experiments to
avoid pile-up in the detectors. Considering a revolution time of the order of
1µs and typical currents of the order of 100 µA, an extraction time of 1s
results in a current of 100 pA, which is too high for particle counting and
too low for measurement with a beam transformer. Due to effects which are
discussed later, even measurements of current with Faraday cups in the pA
range can be problematic. Fortunately, there is always an overlap of the ranges
of absolute methods with various indirect methods, which allows calibrating
them. This is illustrated in Fig. 2.1, which gives an overview of the ranges of
different detector systems used in the SIS of GSI.

2.1 Faraday Cups

In principle, a Faraday cup (FC) is a beam stopper, isolated from the beam
pipe ground potential and connected to a current meter. The device is the one
mostly used to measure beam intensities. Although non-destructive measure-
ments with beam transformers or similar devices are preferred for continuous
monitoring of a beam, the Faraday cup, stopping the beam completely and
measuring the beam current at the same time, has its advantages, too. For
example
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Fig. 2.1. Different detector systems used for slow extraction in the SIS at GSI.
The numbers hold for different ions (scale on the left-hand side) with a kinetic
energy of 1 GeV/u, an extraction time of 1 s and a beam spot size of 1cm2. Here
CCC stands for “Cryogenic Current Comparator” [31,32], and BT stands for beam
current transformer. Due to the destructive character of Faraday cups, they are not
used in this case

• if the beam has no time structure (dc-beam), a Faraday cup is the most
versatile device for measuring the dc-current of the beam;

• during optimization of machine settings with respect to intensity, compo-
nents of the following accelerator structures and beam transport system
are automatically protected using a Faraday cup for intensity monitoring;

• beam stoppers, respectively, Faraday cups, are often used to stop the beam
in case of emergency.

Normally, Faraday cups (FC’s) are not provided to measure very fast sig-
nals, requiring a large bandwidth of the cup itself and the accompanying signal
processing system. With a typical bandwidth up to about 10 MHz, FCs are
suitable for measuring the current of dc-beams as well as the average current
of pulsed beams having pulse lengths of the order of some microseconds to
some milliseconds.

2.1.1 Faraday Cups for Low Power Beams

Due to the electrical insulation of a cup, heat transfer by conduction does
not take place and also heat transfer by convection tends to zero in a vacuum
system. To avoid heating up, the power loss on a noncooled Faraday cup should
not exceed some watts. Cooling by radiation (see Chap. 3, Sect. 3.4) cannot
be recommended because thermal emission of electrons arises according to
Richardson-Dushmann’s law [see (7.33) in Chap. 6, Subsect. 7.1.2].

Designing a non-cooled Faraday cup, the following effects have to be taken
into account:

• emission of secondary electrons,
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Fig. 2.2. Construction drawing of a simple Farady cup without cooling, mounted
on a CF flange [33]

• leak currents arising due to sputtering and deposition of sputtered material
onto isolating ceramic parts.

Secondary Electrons

The flux of secondary electrons is ∼ cos θ, where θ is the angle of the elec-
tron trajectory against the beam axis. This implies LFc > R (LFc is the
length of the open aperture and R is its radius), which is not always possible.
Suppression of secondary electrons can be performed by

• an electric field
• a magnetic field
• a combination of both.

Figure 2.2 shows the important parts and typical dimensions of an end
Faraday cup, provided for measuring beam currents with low intensity and
low beam energy. As a consequence, neither water cooling nor a large thickness
of the stopper plate is required. Since most of the emitted secondary electrons
are in the energy region below 200 eV, a suppressor voltage of about −500 V
is sufficient. Nevertheless, the efficiency of the electrical secondary electron
suppression should be checked by measuring the current dependent on the
high voltage applied. A permanent magnet system can improve the efficiency
of the electric field, especially if the condition LFc > R cannot be fulfilled
due to spatial limitations. Figure 2.3 is an example of the design of a magnetic
suppressor showing also the measured magnetic field strength along the x, y,
z-axes. Referring to Eq. (7.74) (Chap. 6, Sect. 7.1.2), the bending radius of a
secondary electron with kinetic energy Wkin is

ρe =
√

2meWkin

eB
≈ 3.37

√
Wkin[ev]
B[mT]

[mm] . (2.1)
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Fig. 2.3. Arrangement of cobalt-samarium permanent magnets in the yoke of a
magnetic secondary electron suppressor and the magnetic field strength achieved
along the three axes (1 Vs/m2 = 1T = 104 Gauβ)

For typical field strengths of permanent magnets, bending radii of the order
of some millimeters result.

Sputtering

By the sputtering process, atoms of a material hit by energetic particles are
removed and deposited elsewhere. Therefore, deposition of sputtered conduc-
tive material on electrical insulation can result in leak currents leading to
falsification of beam current measurements. The number of sputtered atoms
per incident ion depends on many parameters. Measured sputtering rates for
a 45-keV Kr beam show relatively high differences between various materials.
Table 2.2 gives the sputtering rates [34] for construction materials used mostly
in the design of beam intercepting devices such as Faraday cups, and slits.
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Table 2.2. Measured sputtering rates for some typical construction materials with
a 45 keV Kr beam [34]

Material C Al Ti Fe Cu Mo Ta W
Atoms/Ion 2.3 < 1 2 4 12 3 3.1 5

With a sputtering rate of N atoms per incident ion, the amount of material
that will be removed can be derived easily from the following relations:

Number of projectiles
Area

=
i t

Fζe
(2.2)

Number of sputtered atoms
Area

= N
i t

Fζe
(2.3)

Number of Atoms
cm3

=
NAρ

A
, (2.4)

where, A = atomic weight, ρ = density [g/cm3] of the bombarded material
i /F = beam current density [mA/cm 2], ζ = charge state of the incident ion,
and NA = 6.022×1023/mole is Avogadro’s number. The thin layer of removed
material comes out as

Rs [µm/h] =
0.36N Ai

ζρF
. (2.5)

To avoid deterioration of the isolating material, the designer should provide
appropriate shielding for the isolating parts.

2.1.2 Faraday Cups for High Power Beams

Contact Cooling

If the average power loss in a Faraday cup becomes higher than some watts,
contact cooling may be a solution. This can be performed by using an isolat-
ing material of relatively high heat conductivity between the cup body and
a part, which can take away the heat to the beam pipe by water cooling
or via heat conductivity. Experience has shown that beryllium oxide (BeO)
and aluminum nitrite (AlN) (especially Shapal M, [35]) are suitable materials
with high heat conductivity and low specific electrical resistance. The heat
conductivity of BeO and AlN as a function of temperature is shown in Fig.
2.4. Taking the poisoning factor of beryllium into account using AlN is rec-
ommended (especially Shapal-M) as isolating material; it can be machined to
a certain extent. A practical example is shown in Fig. 2.5. The drawing shows
the main parts of a contact cooled Faraday cup provided for the following
beam parameters:



2.1 Faraday Cups 17

0 100 200 300 400
0

100

200

300

400

Temperature [C]

H
ea

t 
co

nd
uc

ti
vi

ty
 [

W
/m

 K
]

BeO

AlN

Fig. 2.4. Heat conductivity of beryllium oxide (BeO) and aluminum nitrite (AlN)
as function of temperature

Kind of ions: p, α
Beam energy: 400 keV, total
Maximum beam current: 1mA, dc, analyzed
Maximum beam diameter: 25 mm

The maximum dc-beam power is 400 W, which requires cooling. For various
reasons, no water cooling could be accepted in this case. As a solution, the
total heat of 400 W is conducted to parts of large masses outside the vacuum
via AlN insulation and a massive copper rod (see Fig. 2.5). The maximum
temperature difference between the end of the massive copper rod and the
front face of the cup body can be estimated from the sum of the gradients of
temperature over the relevant parts, using the relation:

Q̇

An
= −λ grad T → ∆T

∆x
= − Q̇

λAn
(2.6)

λCu = 0.372 [W/mm K] , λShapal M = 0.1 [W/mm K] (2.7)

where Q̇/An is the power flow through the cross section An.
Contact cooling has the following advantages:

• simpler design,
• no cooling water supply required,
• higher achievable accuracy of current measurement since there are no leak

currents via the finite resistance of deionized water,
• safer from the vacuum technical point of view.

Water Cooling

For very intense beams, the following parameters are relevant for the design
of a beam intercepting device such as a Faraday cup:

• total beam power,
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Fig. 2.5. Example of a contact cooled Faraday cup [33] provided for a power loss
of 400W. The temperature gradients over the relevant parts are given below and at
the right-hand side of the drawing

• penetration depth of the impinging particles,
• maximum power density,
• time structure of the beam.

Thermal aspects as well as procedures to calculate temperature distribu-
tions in beam intercepting devices are detailed in Chap. 3. Beside the thermal
aspects, the designer has to consider two additional effects, arising from water
cooling:

• Leak currents arising from the conductance of cooling water, even when
deionized water with low conductivity is used. The shunt impedance is
determined from

Rw = ρw

l

An
, (2.8)

where κ = 1/ρw is the conductance of the cooling water, typically
1µS/cm < κ < 10 µS /cm. An and l are the cross section and length of
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Fig. 2.6. Simplified electrical diagram to calculate the effect of cooling water con-
ductivity

the insulation bridged by the cooling water. Figure 2.6 shows a simplified
block diagram to calculate the effect. Taking Rw as calculated from (2.8),
the output voltage Ua is given by

Ua =
−is R

1 − 1
A

(
1 + R

Rw

) . (2.9)

This illustrates the usefulness of modern operational amplifiers, having
gains A � 1, which reduce the error below 1% for a 100-MΩ resistor in
the feedback circuit.

• With respect to material selection, the designer has to be careful, espe-
cially about those materials that are in touch with the cooling water. Due
to the different potentials of materials against each other, the formation of
galvanic elements may result in a considerable falsification of current mea-
surement. In practice, there can be currents of the order of some nanoam-
peres, even if all construction materials have been selected very carefully.
Table 2.3 gives the potentials of often used materials measured against an
H2 electrode.

Figure 2.7 is an example of a water-cooled FC, designed as an end cup
and provided for some kilowatts of beam power and penetration depths of
about 10 mm in copper. The construction design allows the addition of a
permanent magnet system to enhance the secondary electron suppression by
the electric field. Another example of a water-cooled Faraday cup may be
suitable to illustrate the problem between the requirements of an user and
the limitations of thermal aspects as well as geometric restrictions. In a first
step, the specifications were given as follows:

Table 2.3. Potential of various materials measured against a H2 electrode.

Material Al Ta Fe Ni W Cu Ag

Potential [V] −1.66 −0.75 −0.44 −0.25 −0.1 +0.35 +0.8
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Fig. 2.7. Construction drawing [33] of a water-cooled end Faraday cup. The cup
stops high energy particles with a penetration depth up to 10 mm and a beam power
up to some kilowatts

Beam energy: 66 MeV +, protons
Beam power: 50 kW, dc
Beam spot size (FWHM): horizontal 7 mm, vertical 10 mm
Required aperture ∗: 150 mm ∅

Maximum allowed insertion length: 1000 mm
Pressure of the cooling water: 5–6 bar
+ In addition, a 200-MeV proton beam of low intensity should also be
stopped.
∗ With the relatively large aperture, a controlled offset of the beam should
be considered.

The penetration depth of 66-MeV protons in copper is about 6.4 mm, but,
to avoid irradiation of the cooling water by the 200-MeV beam (penetration
depth � 45 mm), at least 50–55 mm of copper have to be in front of the cooling
channels. Assuming a Gaussian intensity distribution with σx = 7/2.35 �
3mm and σy = 10/2.35 � 4.3mm, one arrives at the enormous power density
of about 63 kW/cm2 at the center of the beam. To avoid melting the material,
the stopper plates have to be tilted as discussed in detail in Chap. 3. But, due
to the required aperture of 150mm in diameter and the restricted insertion
length, no solution could be found with respect to

• the maximum temperature at the front face which should be well below
the melting temperature of the stopping material.

• and the maximum allowed power flow to the cooling water of about
120W/cm2 to avoid film boiling. Due to the limitation in cooling wa-
ter pressure to 6 bar turbulent water flow, allowing higher power flow was
not possible.

In consequence, the specifications have been reduced as follows:
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• By defocusing the beam, the spot size is enlarged to 14 mm (FWHM)
for both directions, which means that nearly 100% of the 50-kW beam is
within a diameter of 35mm.

• Together with the design documents a diagram showing the maximum
allowed beam power dependent on the beam diameter should be handed
over by the designer.

Figure 2.8 shows the important parts of the FC [33], taking into account
the reduced requirements. The small inset at the bottom left shows the re-
duction in the power density with a maximum of about 22.5 kW/cm2 at the
center of the beam, the inset on the right-hand side has been calculated using
programs detailed in Chap. 3. Tilting the two stopping plates, as shown in
the figure a reduction in the power density of nearly a factor or

√
10 could be

achieved. Note that the thickness of the tilted copper plates is not determined

Fig. 2.8. High-power Faraday cup [33] provided to stop 66-MeV protons with a
beam power of 50 kW dc. The small inset at bottom left gives the beam power
density over the beam cross section. The insert at bottom right gives the allowed
beam power dependent on the beam radius for the tilted design and a design without
tilting
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Load Z2

I1 I2

V1 V2

Transmission line

Impedanz Z0

Generator

Impedanz Z1

Fig. 2.9. Simplified diagram to clarify the matching conditions for transmission of
fast signals measured with a broadband Faraday cup

by the requirement to stop 200-MeV protons also, but by the necessity to dis-
tribute the heat flow over the surface, where the cooling channels are located.
Of course, the thickness of material at the end of the cup is determined by
the requirement to stop 200-MeV protons. The weight of the two stopping
plates is of the order of 80 kp and the required cooling water flow is of the
order of 2 m3/h assuming a ∆T of 20◦C.

2.1.3 Faraday Cups in Broadband Design

Some Definitions and Formulas

To measure fast signals, the bandwidth of a Faraday cup has to be matched
to the transmission line and to the load, which is normally a low impedance
amplifier. Figure 2.9 shows this schematically. The rise time tr of a fast signal
(normally defined as the time between 10 and 90% of the signal amplitude)
is related to the bandwidth (BW) by

BW [GHz] =
0.35
tr [ns]

(2.10)

A measure for the quality of matching is the voltage reflection coefficient ρV,
defined by

ρV =
Z − Z0

Z + Z0
, (2.11)

where Z0 is the impedance of the transmission line and Z is the impedance
of the load. There are three important cases:

• Z = Z0, the matching is perfect, no reflected signal.
• Z = 0, ρV = −1, short circuit, the reflected signal has the same amplitude

but changes the sign. This is often used to generate short pulses (so-called
clipping of a signal).

• Z = ∞, ρV = 1, open circuit, the signal is reflected with the same ampli-
tude and sign.



2.1 Faraday Cups 23

Another measure for evaluating the quality of a network is the so-called
voltage standing wave ratio (VSWR), defined as

VSWR =
Z

Z0
=

1 + ρV

1 − ρV

. (2.12)

The impedance of a coaxial transmission line is given by [36]

Z0 =
Zc

2π
ln

b
a

=
60

√
εr/µr

ln
b
a

[Ω] (2.13)

Zc =
√

µ0µr

ε0εr
.

In (2.13), b is the radius of the outer conductor, a is the radius of the inner
conductor, µ0 = 1.257 × 10−6 [Vs/Am] , and ε0 = 8.854 × 10−12 [As/Vm].
Figure 2.10 shows an example of a 50-Ω coaxial Faraday cup with a bandwidth
of about 2 GHz. According to (2.13), the ratio b/a has to be 2.3. To design the
tapered section, which connects the stopping copper body to the broadband
N-connector, a formula given in [36] can be applied:

Z0 =
Zc

2π
ln

tan θ2
2

tan θ1
2

, (2.14)

where θ1,2 are the angles between the boundary of the tapered conductor and
the horizontal line (θ2 is the larger one). Because the expected beam power

Fig. 2.10. Example of a coaxial Faraday cup [33]
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Fig. 2.11. Check of a 50-Ω Faraday cup with a time domain reflectometer (TDR)
by measuring the reflection coefficient ρV

is only of the order of some 100 W, the heat transfer takes place via the three
ceramic supports made from Shapal M. The matching to 50Ω can be tested
with a time domain reflectometer (TDR). The device transmits a very fast
pulse (tr = 25 ps, for example) and measures the reflected signal. Figure 2.11
gives the result of such a measurement. Considering the coaxial cup as a trans-
mission line, Z ∼

√
L/C where L is the inductance and C is the capacitance

per unit length, respectively. Thus, the dip at the position of the commercial
connector (see Fig. 2.11) indicates that the capacitance is too high compared
to the inductance. The matching of the cup body itself is satisfactory. To
compensate for the relatively high εr of the Shapal M supporting rods, the
ratio b/a (see eq. 2.13) has been enlarged by deepening the copper body at
this position.

Two important effects have to be considered in evaluating measured sig-
nals:

• Broadening of fast signals can occur due to the emission of secondary
electrons because the electrons may be emitted with different energies as
well as different start times.

• Depending on the charge of the incident ions, the signal amplitude is en-
hanced (ζ ion > 0) or attenuated (ζ ion < 0) by the emission of secondary
electrons.

If the particles move with a velocity v � c toward the stopper plate,
one has to consider the advanced electrical field of bunches, which falsifies
the measured signal by an influenced if (also called displacement current,
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see Chap. 5). The influenced current is given by

if =
d

dt
ε0

∫
Ez dA = 2πε0

d

dt

∫ R

0

Ez r dr (2.15)

where A = πR2 is the area of the cup front face. This means that there is
a current flow before the bunch itself hits the stopper plate. The problem
can be studied, considering the longitudinal component of the electrical field
strength for a moving single particle with unit charge e [39]

Esp
z (t) = − e

4πε0

γβct
[√

r2 + (γβct)2
]3 (2.16)

and composing a bunch by a weighted distribution of this charge e over the se-
lected bunch shape. In a very good approximation, the transverse dimensions
of the bunch can be neglected. The composition of a bunch is straightforward
(see Chap. 5) and with P (m) as the normalized weights leads to

Eb
z = − e

4πε0

∑

m

P (m)
γβc(t + mδt)

[√
r2 + [γβc(t + mδt)]2

]3 . (2.17)

In (2.17), m is the number of strips and δt is the width of the strips, composing
the bunch. Now the integration and derivation according to (2.15) has to be
performed. The result is

if(t) =
e

2
γβcR2

∑

m

P (m)
1

[√
R2 + [γβc(t + mδt)]2

]3 . (2.18)

Perhaps the best illustration of the effect is to consider a bunch of square
shape. The weights P (m) are constant in this case and defined by P (m) =
∆t /(N + 1) with ∆t as the bunch length and N (−N/2 ≤ m ≤ N/2) as
the number of sampling points. It follows immediately that δt = ∆t/N . On
the left-hand side, Fig. 2.12 shows the calculated signals for a bunch length
∆t = 1 ns, corresponding to a bunch current of e/∆t =160 pA. A more
realistic bunch shape is described by a cos2 function with (see Chap. 5)

P (m) =
P (m) = cos2(πmδt/2∆t)

P0
(2.19)

P0 =
∑

P (m). (2.20)

The results for two different β values are shown in both diagrams on the
right-hand side of Fig. 2.12.
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Fig. 2.12. Effect of the advanced longitudinal electrical field on the signals of slowly
moving bunches. Left: Signal of a bunch with square shape. Middle and right: Signal
of a bunch with cos2 shape for two different β values. The radius of the stopper plate
is R =12.5 mm

The effect of the advanced field cannot be shielded by an electric field in
front of the cup. However, both effects – the advanced field effect and broad-
ening by secondary electrons – can be suppressed by mounting a shielding grid
in front of the stopper plate. If this grid is supplied with a negative voltage,
the secondary electrons are repelled to the stopper and the advanced bunch
field is shielded by the metallic grid. Figure 2.13 shows the measured bunch
signal, using a coaxial cup equipped with a grid, as shown at the right-hand
side of the figure. In the example, the bunch with ∆t � 1 ns was moving with
a β value of 0.055. Because positive ions have been stopped in the cup, beside
a broadening of the signal, a strong enhancement by the escaping secondary
electrons is observed, when the suppressor voltage is switched off.

The bunch signal, measured with a coaxial Faraday cup, corresponds di-
rectly to the bunch current; bunch shape monitoring with a capacitive pickup

Fig. 2.13. Measured fast bunch signal with a coaxial Faraday cup. Left: No voltage
on the suppressor grid. Middle: −500 V at the grid; note the different scale of the
ordinate. Insert on the right: grid to be mounted in front of the stopper plate.
Note that the timescale of the oscilloscope is opposite to the timescale used in the
calculated signals of Fig. 2.12
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shows the derivation d/dt of the density distribution within the bunch (see
Chap. 5). For absolute current measurements, the interception of the beam
by the grid structure has to be considered. As becomes clear from Fig. 2.12,
the advanced field depends strongly on the β value and may be neglected for
higher β′s, especially looking only at the bunch shape.

Referring to (2.10), the geometric design of a broadband Faraday cup with
a definitive impedance is less critical for signals with rise times of the order of
some nanoseconds. Figure 2.14 shows the model of a broadband Faraday cup,
provided to measure the shape of bunches with rise times of some nanoseconds.
Due to the high requirements concerning the power loss in the cup, the design
was determined mainly by thermal considerations. The model was designed,
approximating the 50-Ω geometry as well as possible by formulas in the liter-
ature [36–38]. Taking advantage of TDR measurements, the matching could
be improved afterward by slight changes in the geometry of the model [40].
The beam parameters given to the designer [33] are rather extreme for beam
power and beam power density:

beam energy: 2.5 MeV protons,
σx = σy = 1.8mm,
Length of the macropulse: 1 ms
length of the bunches: 650 ns (1000 bunches within one macropulse)

Fig. 2.14. Model of a broadband Faraday cup [33], provided for high beam pulse
power with tilted stopper plates. See text for details
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repetition frequency: 60/s
average current within one macropulse: 40 mA

Assuming two-dimensional Gaussian intensity distribution results in an
extreme power density of 491 kW/cm2 during the macropulse. The thermal
problem was solved by proposing two tilted plates (tilt = 8/250) with a 2 mm
sheet of tungsten on a cooled copper backing (in the model, stainless steel
was used). Performing the corresponding thermal calculations, as discussed in
Chap. 3, results in a maximum temperature of about 250◦C on the front face
at the center of the beam.

2.1.4 Faraday Cups for Electrons

The designer of Faraday cups for high energy electrons has to take two effects
into account, which do not occur for particles with higher mass:

• Generation of “bremsstrahlung”, when an electron is accelerated in the
Coulomb field of a nucleus. This requires additional measures to protect
components of the cup itself as well as to shield the environment against
dangerous radiation.

• For bremsstrahlung with an energy higher than two times the rest energy
of the electron (2 × 511 keV), creation of electron–positron pairs begins.
To avoid errors in current measurement, one has to prevent the escape of
one of them from the cup.

The energy loss by ionization and excitation (dW/dx)coll is determined
by the well-known Bethe-Bloch formula [41–45,47], and the mean energy loss
by pair production (dW/dx)rad is derived in [48]. Comparing both formulas,
one finds that the energy loss by ionization and excitation is ∼ Z and the
energy loss due to bremsstrahlung is ∼ Z2. Therefore, the ratio of the two
effects depends on the stopping material and on the relativistic region given
by [42,45,48]

(dW/dx)rad
(dW/dx)coll

≈ (W + mc2)Z

1600mc2
. (2.21)

Thus, radiation loss predominates at higher energies. The so-called critical
energy Wc, where the effects are equal, is given by

1 =
(Wc + mc2)Z

1600mc2
(2.22)

Wc [MeV] = 0.511
(

1600
Z

− 1
)

≈ 800
Z

[MeV] . (2.23)

Figure 2.15 gives Wc dependent on the atomic number. Evidently, this im-
plies using a low Z material to stop high energy electrons with a Faraday cup.
Nevertheless, the loss of charges by pair production and Compton scattering
from the produced photons has to be prevented. This can be done by placing
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Fig. 2.15. Critcal energy Wc as a function of atomic number Z

an effective absorber behind the low Z material stopper. Combining experi-
mental results [49,50] with theoretical considerations, a practical formula has
been derived [51]. The percentage of charged particle loss from a Faraday cup
consisting of t radiation lengths of a low Z material backed by a lead absorber
of x radiation lengths is approximately

fp [%] � 2W0

(
1 − D t

W0

)
e[−σ(x−ln

W0
185 )] , (2.24)

where

• D [MeV/X0] is the closely approximated average energy loss by collision
〈(dW/dx)coll〉, provided that the primary electron is completely stopped
in the initial absorber;

• X0[g/cm2] is the radiation length (see Chap. 3, eq. 3.24);
• σ [1/X0] is the minimum photon-absorption coefficient of the absorber

material. For lead, σ = 1/4.25X0 [51];
• W0 is the primary energy of the electrons;
• t [X0] is the thickness of the stopper plate in units of X0; and
• x [X0] is the thickness of the absorbing lead cylinder in units of X0.

Equation 2.24 holds under the condition that the radius of the cup is
determined from the expression,

rc [X0] = 0.85x − 2 + rb (2.25)

In Fig. 2.16, the meaning of the parameters in (2.25) is illustrated.
For the designer, it might be helpful to demonstrate the dimensioning

by an example. Let us assume W0 = 100 MeV as the primary energy of the
electrons, with a beam radius of rb = 1 cm, completely stopped in a graphite
block, as illustrated in Fig. 2.16.
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t x

rb rc

LeadGraphite

e-

Fig. 2.16. Scheme to explain the parameters of the Faraday cup in (2.25)

The critical energy Wc = 135.8MeV. The radiation length of graphite and
lead for high energy electrons, including Coulomb correction are Xcarbon

0 �
42.7 g/cm2 and X lead

0 � 6.37 g/cm2, taken from a table given in [53]. From
(3.24) in Chap. 3, the values are 44.4 and 5.6. Considering the design of a
Faraday cup, the differences are not relevant; therefore, we use the values
from the table. The value of D for graphite (carbon) is [51] D = 10 ln W0 +
53MeV / X0. With W0=100 MeV and Xcarbon

0 = 42.7 g/cm2, one obtains D �
2.3. The penetration depth of energetic electrons can be calculated from the
Bethe-Bloch formula and is displayed over the energy range 0–1000 MeV in
Fig. 2.17. The penetration depth of 100-MeV electrons is Pd � 17.4 cm, which
corresponds to t � 0.88X0. To be on the safe side, we set the thickness of
the graphite stopper at 1.3X0, which corresponds to a thickness of 26 cm.
Now all parameters for evaluating (2.24) dependent on x are determined. The
result is shown in the diagram of Fig. 2.18. As mentioned above, the diagram

Fig. 2.17. Penetration depth of energetic electrons in graphite [52]. Left: ordinate
in cm, with ρ = 2.15 g/cm2. Right: ordinate in units of the radiation lengths X0 =
42.7 g/cm2
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Fig. 2.18. Dimensioning of the Pb-absorber thickness for a given maximum loss of
charge due to pair production and escape of electrons or positrons. The insert shows
the region around the design values on an enlarged scale

holds, if (2.25), determining the dimensions of the cup according to Fig. 2.16,
is fulfilled. Hence, the radius rc of the Pb absorber has to be determined from
the diagram given in Fig. 2.19. Assuming, for example, a maximum allowed
loss of charge of 0.1% for the stopped 100-MeV electron beam, the required
absorber thickness is x = 31.53X lead

0 , which with ρ = 11.35 g/cm3 leads to a
thickness of 17.7 cm and a radius of 13.9 cm.

Of course, to avoid escape of secondary electrons and backscattered elec-
trons, the corresponding measures of suppression have to be provided in the
design of a Faraday cup for electrons, too.

Fig. 2.19. Required radius of the Pb absorber according to (2.25) dependent on the
absorber thickness, determined according to (2.24) for a 100-MeV electron beam



32 2 Beam Intensity Measurements
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Fig. 2.20. Scheme of a calorimetric beam intensity measurement. The limiting
aperture can be used to “focus” the beam into the calorimeter by minimizing the
measured current from secondary electron emission

2.2 Calorimetric Intensity Measurements

A very special problem in beam diagnostics is the intensity measurement of
neutral beams. Due to the lack of electrical signals, this task requires the
application of other methods. One possibility is given by calorimetric mea-
surements. The use of calorimetry has been discussed by a number of au-
thors [54–59]. Assuming that the energy and mass of the energetic neutral
particles are known, particle flow can be determined by measuring the change
in temperature of a thermally isolated beam stopper, as shown schematically
in Fig. 2.20. Measuring the change in temperature in a specific time interval,
the beam intensity can be determined from the relations,

dQ

∆t
=

N

∆t

m

2
v2 = mcp(T )

dT

∆t
= ρ V cp(T )

dT

∆t
(2.26)

N

∆t
=

1
∆t

ρ V

Wsp

∫ T2

T1

cp(T ) dT, Wsp =
m

2
v2. (2.27)

The slight dependency of cp on the temperature can be taken into account by
a linear approximation of the type of cp(T ) = a + b T . From the values of cp

at 25◦C and 2000◦C given in Table 3.1 of Chap. 3, one obtains a and b, given
in Table 2.4 for some typical materials.

With cp(T ) = a+b T , the number of particles hitting a calorimeter in time
∆t can be obtained from
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Table 2.4. Coefficients a and b to determine the heat capacity cp between T = 25◦C
and T = 2000◦C from the equation cp(T ) = a + bT

Graphite Al Ti Fe Cu Ta

a [Ws / g K] 0.708 0.901 0.439 0.522 0.385 0.14
b [10−4Ws / gK2] 1.458 0.947 1.939 1.342 0.557 0.142

N

∆t
=

1
∆t

ρV

W

[
a (T2 − T1) +

b

2
(
T 2

2 − T 2
1

)]
. (2.28)

The scheme of Fig. 2.20 and (2.27) may be used slightly modified if water
cooling of the stopper block is necessary. In this case, slow changes in the
beam energy – caused by changes in the kinetic energy Wsp or the particle
flux N/∆t – can be monitored by measuring the inlet and outlet temperature
of the cooling water. It is evident that the flow rate of the water ∆Vw/∆t has
to be known. With the density of water ρw = 1g/cm3 and the heat capacity
cw = 4.18Ws /g K, the change in total energy W = NWsp is given by

∆W

∆t
= ρwcw

∆Vw

∆t
∆T (2.29)

Of course, due to the long time constant of the device, only changes in en-
ergy with a rather slow rate of change can be monitored. Furthermore, after
moving the device into the beam, one has to wait a suitable time until the
cooled block of material achieves a steady state. Since the thermal insulation
of the calorimeter, as shown in the scheme of Fig. 2.20, also results in electri-
cal insulation, the calorimetric measurement may be combined with current
measurement, if charged particles are stopped.

2.3 Beam Current Transformers

The use of a beam current transformer (BCT) for intensity measurement of
charged particle beams has the following advantages:

• Non-destructive signal extraction and, therefore most of the problems dis-
cussed for the design of Faraday cups will not arise. Since the ion beam will
not be distorted by the measurement, the beam current transformer is well
qualified for on-line closed-loop feedbacks to control ion beam intensity.

• Assuming careful design of the transformer system, the measurement will
be nearly independent of beam position and beam size.

• Obviously, the most important advantage is the direct proportionality of
the output signal to the beam current. Furthermore, precise absolute cal-
ibration can be performed by feeding a well-known current pulse from an
external current source via a dedicated calibration winding.
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One basic shortcoming of beam current transformers is the strong depen-
dence of the sensitivity and time constant on the time structure of the beam.
Since there is a great variety in the characteristics of beams, a broad spectrum
of solutions is possible in:

• mechanical design,
• type of core material, for example, Vitrovac, Ni–Zn ferrites;
• winding schemes, and for example, bifilar windings to reduce common

mode noise signals;
• signal processing electronics connected to the current transformer.

The design and use of beam transformers in accelerator physics and es-
pecially for non-destructive intensity measurements are detailed in the liter-
ature [30, 60–76, 78]. Nevertheless, it can be helpful to repeat the principles
of signal generation as well as some important features, for design and signal
processing. Figure 2.21 shows a model of a beam current transformer to ex-
plain signal generation. Figure 2.22 shows a simple construction drawing of a
beam transformer. In this example, the necessary isolating gap in the beam
pipe is achieved using a ceramic insulator, with special metallic sealing rings
between the ceramic disk and the supporting metallic parts of the housing.
Another cheaper possibility to realize a gap in the beam pipe is shown in Fig.
2.28 where an O-ring is used to avoid a short circuit in the induced signal. This
kind of sealing may be used in vacua up to about 10−7 mbar and a moderate
level of radiation. A newly designed transformer [79], shown in Fig. 2.24, has
been inserted completely in a vacuum-sealed housing. As it is clear from the
figure, the construction does not require extra insulation around the gap. The
stable support, which seems to be slightly oversized, avoids vibrations causing
microphonic distortions. The transformer has been designed to measure beam

dAB,

A
ri

ra

N

Calibration

Signal

Ibeam

h

Fig. 2.21. Physical model of a beam transformer showing only one-half of the core
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Fig. 2.22. Construction drawing of a beam transformer

Fig. 2.23. Construction drawing of a beam transformer using an O-ring insulator
as the isolating gap. All dimensions in milimeters
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Fig. 2.24. Beam current transformer inside a vacuum-sealed housing [79], GSI Foto

pulses having lengths up to 8ms with a maximum droop of 3% using a ferrite
core shielded by a Mu-metal box inside the vacuum-sealed housing.

Referring also to Chap. 5, the induced voltage in one winding is given by

u(t) = − d

dt

∫ −→
B

−→
dA = − d

dt

∫
BΦ dA = − d

dt

∮ −−→
Apot

−→
dl (2.30)

where Apot is the vector potential. Since the signal is nearly independent of the
beam position and the transverse dimensions of the beam, only the azimuthal
component of the magnetic field Bϕ has to be considered. Applying Biot-
Savart’s law, one obtains

−→
Bϕ =

µ0Ibeam

2πr
−→eϕ, µ0 = 1.256 × 10−6 Vs/Am , (2.31)

with −→eϕ as the unit vector in the ϕ-direction of a cylindrical coordinate system,
defined by the two other coordinates z (in the beam direction) and the ra-
dial coordinate r. To derive the equivalent electric circuit diagram of a beam
transformer and in consequence the transfer function, the most important
parts which one has to consider are

• the transformer inductance L,
• the number of secondary windings N ,
• the load resistance of the system R,
• the resistance of the cables of the secondary circuit RL,
• the stray capacitance between the components (cables, core, windings) CL,
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UaRCL

RL
Ibeam

L, N

LS

Fig. 2.25. Simplified equivalent electrical circuit diagram of a beam current trans-
former showing the most important components. The consideration of all stray in-
ductances and capacitances shown in the diagram is only a coarse simplification and
may be found in other arrangements in the literature [80,81]

• the stray inductance between the components LS, and
• the magnetic losses caused by eddy currents and the magnetization process

[80].

The transformer inductance is given by

L =
N2µ0µrh

2π
ln

ra
ri

(2.32a)

with the dimensions as shown in Fig. 2.21 and µr as the relative permeability
of the core material.

2.3.1 The Passive Beam Transformer

The equivalent electric circuit diagram of a (passive) beam transformer is
shown in Fig. 2.25. The transfer function f(s) with s as the Laplace variable

Ua(s) → f(s) Ibeam(s) (2.33)

and the corresponding solution

Ua(t) → F (t)Ibeam(t) (2.34)

become rather complex. On the other hand, the most important features of
a passive transformer, such as the sensitivity S = Ua/Ibeam and droop time
constant τ can be figured out neglecting the small values of Ls and CL. Thus,
in a first approximation, the transfer function simplifies to

Ua(s) = −Ibeam(s)
s R L

N

1
s L + RL + R

. (2.35)

Assuming Ibeam(s) = ip/s, which idealizes the beam current to a step function,
the solution of (2.35) is
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Ua(t) = −ip
R

N
e

[
−R+RL

L t
]

. (2.36)

The sensitivity is

S =
Ua(0)

ip
=

R

N
, (2.37)

and the droop time constant τ of the exponential drop is given by

τ =
L

R + RL
≈ L

R
. (2.38a)

The effective inductance L according to (2.32a) may be reduced by eddy
currents, which results in a reduction of the time constant τ if the relation
τ e � τ is not fulfilled [69, 82]. The time constant τ e, determined by eddy
currents, is given by [82]

τ e =
µ0 µi d

2

π2ρec

, (2.39)

where µi is the relative initial permeability, d is the thickness of the laminate
and ρec is the specific electric resistance of the core material. Obviously, a
small τ e can be achieved by a thin laminate of a core material with high
specific electric resistance, whereas the selection of a material with low µi

would contradict (2.32a).
Considering (2.32a), (2.36), (2.37), and (2.38a), a conflict arises with re-

spect to the selection of N since the output voltage is proportional to 1/N and
therefore requires a low N . On the other hand, the transformer inductance
is proportional to N2 and should be high for good low frequency response,
respectively, a large droop time constant τ . To achieve a drop of less than 1%
for beam pulse lengths of the order of some microseconds requires a rather
high number of windings N and results in low sensitivity.

For illustration, we assume the following parameters:

beam pulse length: Tp = 5ms
maximum allowed drop: D = 3%
height of the core: h = 0.05m (5 cm)
inner radius of the core: ri = 0.03m
outer radius of the core: ra = 0.06m
relative permeability of the core µr = 80.000 (Ultraperm, 50 µm, [83])
load resistance R = 500Ω

Neglecting RL, the drop D = R Tp/L and the required number of windings
N can be determined from the relation L(N) = RTp/D, leading to

N(Tp) =

√
2πRTp

Dµ0µr h ln ra/ri
(2.40)

N � 388 → L = 83.44H (2.41)
S = 1.289V/A. (2.42)
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UaRCL

i (s) LS

Fig. 2.26. Simplification of the electrical circuit diagram shown in Figure 2.25 to
study the effect of stray capacitance and stray inductance

The result is quite a low sensitivity. Furthermore, due to the large number of
windings, the beam current transformer acts as a very sensitive microphone,
requiring additional measures to avoid vibrations of the core.

The stray CL and the stray Ls shown in the simplified electrical equivalent
circuit of Fig. 2.25 can be taken into account by substituting R → R ‖ CL

and multiplying the result by R/(Ls + R). This gives

Ua(s) = −ibeam(s)
sRL

N

1
R + sL + RL + sRCL(sL + RL)

1
1 + Ls

R

. (2.43)

A solution can be obtained, using PC programs [84–86]. However, one arrives
at a rather complex expression for Ua(t). On the other hand, to study the
effect of Ls and CL, it will be sufficient to consider only the right-hand part
of the electrical circuit diagram shown in Fig. 2.26. It is reasonable to assume
i(s) = i0/s, leading to

Ua(s) =
i0
s

1
s2LsCL + sRCL + 1

. (2.44)

Even for this simplified circuit, the solution for Ua(t) is quite complex and
will not be displayed here. As it becomes clear from Fig. 2.26, the rise time
is determined by the elements in this part of the electrical circuit. Further-
more, the combination of Ls and CL may result in an overshoot and damped
oscillation of the signal. This is illustrated in Fig. 2.27 assuming Ls = 10 µH,
CL = 100 pF, and R = 500Ω. From this simplified consideration, the influ-
ence of Ls and CL on the rise time, respectively, bandwidth, as well as on the
ringing characteristics become clear. For the example, a rise time of about
350 ns can be obtained, corresponding to a bandwidth of 1 MHz. One should
also keep in mind that scaling of the rise time is ∼

√
LsCL. To observe plasma

oscillations of ion sources with frequencies of the order of some 100 kHz, the
bandwidth of a beam transformer should be about 1 MHz and ringing has to
be minimized. Figure 2.28 gives an example of ion source oscillations, observed
with a beam transformer having a bandwidth of about 700 kHz. Obviously,
the rise time of the signal is determined by the ion source and not by the beam
transformer having a rise time of about 0.5 µs. The frequency of the plasma
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Fig. 2.27. Expected signal Ua(t) according to the simplified electrical cicuit diagram
of Figure 2.26. The diagram holds for R = 500 Ω, Ls = 100 µH, and CL = 200 pF

oscillations of about 100 kHz could be determined with capacitive pickups
having a bandwidth of about 2GHz (see Chap. 5).

Noise and Detection Limit

The signal-to-noise ratio of the passive transformer is determined mainly by
the effective thermal noise Ue of the load resistance R, given by

Ue =
√

4 kbT R df, kb = 1.38 · 10−23 [Ws/K] . (2.45)

Assuming ibeam R /N(Tp) = Ue, we obtain the required beam current imin for
a signal-to-noise ratio of 1. In (2.46), the number of windings for a given R
depends on the pulse length Tp and the allowed droop Dr according to (2.40):

Fig. 2.28. Plasma oscillations of a Penning Ion Source (PIG) observed at GSI with
a beam current transformer
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Fig. 2.29. Electrical equivalent circuit of an active beam transformer. A is the
complex gain of the operational amplifier

imin = 106 N(Tp)
R

√
4 kbT R df [µA] . (2.46)

For the example discussed (N = 387, R = 500Ω, df = 4.4 MHz), this yields
4.6 µA.

Remark. Due to the disadvantageous relation between the sensitivity ∼ 1/N
and the droop time constant ∼ N2, pure passive transformers are scarcely
used any longer in beam diagnostics. Nevertheless, it is an excellent example
for studying the characteristics of this type of a non-destructive beam current
monitor.

2.3.2 The Active Beam Transformer

In the last 20 years, the development of beam current transformers has fol-
lowed the development of modern electronic circuits. One important step was
the extension of the low frequency range by placing the current transformer in
the feedback loop of an operational amplifier (see e.g., [30, 61, 62]), as shown
in the modified electrical equivalent circuit of Fig. 2.29. Substituting R/A for
R in the electrical equivalent circuit of the passive beam current transformer
in Fig. 2.25 and again neglecting CL leads to the time constant

τ =
L

R
A + RL

≈ L

RL
. (2.47)

Since L/RL � L/R, the time constant is increased considerably and in con-
sequence the number of windings N can be reduced to achieve higher sensi-
tivity. Because the resistor RL is usually in the order of only some ohms or
even less, the number of windings N can be reduced to 10–20. Referring to
the example of the passive transformer, this would result in a considerable
gain in sensitivity. Of course, the reduction of N also results in a decrease
of the stray capacitances and inductances Ls, CL (see Fig. 2.26), which can
improve the rise times down to nanoseconds. This is illustrated in Fig. 2.30
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Fig. 2.30. Response (upper traces) of a fast beam transformer to ns - test pulses
(lower traces) [79]

for a transformer with 10 windings [79], showing the response to nanoseconds
test pulses. To achieve a high bandwidth, spurious oscillations are damped by
small resistors across each winding. The fast transformer has been installed
in the high energy line behind the SIS to monitor the length during plasma
physics experiments. Figure 2.31 shows a bunch signal, displayed on a digi-
tal oscilloscope with a bandwidth of 500MHz. In a very special accelerator
experiment, four SIS bunches of a N 7+ beam with an energy of 350MeV/u
were merged to one bunch. After that procedure, the remaining single bunch
was shortened in time by bunch rotation. Due to the high intensity of about

Fig. 2.31. Bunch signal behind the SIS measured with a fast beam transformer [79].
See text for details
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Table 2.5. Specifications of a fast beam current transformer

Inner diameter 140mm

Outer diameter 180mm
Transfer factor on 50Ω 0.23 A/V
Droop 2.5 % /ms
L/R-time constant ≈ 80ms
Low frequency limit (−3dB) ≈ 2 kHz
Rise time (10–90%) < 1.5 ns
Upper frequency limit (−3dB) 300 MHz
Error due to not centered beam < 0.2 % /mm
Max. i × t product 10 mA× s
Desired load impedance 50 Ω (BW=1GHz)
Resolution with appropriate amplifier ≈ 35 µApp

BW = 500 MHz, F < 2 dB, S/N=1

3 × 1010 particles within the bunch, the transformer output signal could be
transmitted without additional amplification via a 50-Ω cable (RG214) over
a distance of about 120 m directly to the oscilloscope. The specifications of
the transformer are given in Table 2.5 [79].

For noise and detection limits, as discussed very briefly for the passive
transformer, one has to consider the noise figures of the individual electronic
stages of amplification for an active transformer. In most cases, the noise
figure of a complex electronic circuit is determined by the first stage [87]. This
follows immediately from an example given in [87], considering three stages of
amplification with noise figures F1, F2, F3 and amplifications V1, V2, V3. The
resulting total noise figure fg is given by

fg = F1 +
F2 − 1

V 2
1

+
F3 − 1
V 2

1 V 2
2

. (2.48)

In the literature and data sheets on electronic circuits, the noise figure is
given in dB (see for example [88]). To calculate the equivalent noise at the
input of an electronic circuit for a given noise figure F, one has to perform
the following steps:

f = 10
F
10 (2.49)

NP = f kbT∆f , noise power [W] (2.50)

imin =
√

NP

RA
(2.51)

umin =
√

NP RA. (2.52)

With RA as the input impedance of the circuit, imin and umin give the required
input current and input voltage to obtain a signal-to-noise ratio of 1. Referring
to Fig. 2.26, one needs an amplifier, having a bandwidth of about 1GHz.
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Taking a noise figure F = 3.5 and an impedance of 50Ω, which is somehow
typical for the frequency range considered [88], one gets imin = 0.30 µA and
umin = 15.1 µV.

The introduction of new techniques such as complex electronic circuits,
operational amplifiers, charge amplifiers, filters, and active feedback loops in
beam current transformer technology results in manifold highly sophisticated
solutions to improve bandwidth, resolution, and accuracy [76]. Especially the
introduction of an active feedback loop through a separate feedback winding
(Hereward feedback), improves the low frequency response considerably and
was a first step to the development of dc-transformers.

2.3.3 The DC-Transformer

The principles of dc-current measurement applied in beam diagnostics are
similar to methods used to detect very weak magnetic fields such as the earth
vs field. But the principle is also known from telecommunication. A device for
measuring weak magnetic fields is known as a fluxgate sensor, also known as
Foerstersonde [89, 90]. In telecommunication, the principle is used for pulse
phase modulation (PPM) of signals [36, 91]. Furthermore, the principle is
also well known in the magnetic amplifier technique. Figure 2.32 shows the
scheme of a pulse phase modulator which changes the width of an output
pulse proportional to the dc-current. The scheme is the right one to explain
the principle of dc-current measurement and to discuss the improvements,
resulting from applications in beam diagnostics. With the modulator, the core
is driven into saturation, as shown in Fig. 2.33. Replacing the detector of Fig.
2.32 with a narrowband spectrum analyzer or a similar device, the dc-current
can be measured by detecting the second harmonics arising.

Remark. In the application of pulse phase modulation, the core is driven
much more into saturation, which results in nearly square pulses that change
their lengths proportional to the dc-component.

The scheme of Fig. 2.32 has some drawbacks:

Detector
Modulator

dc Current

i1sinωt

PPM signal

i0

Fig. 2.32. Scheme of a pulse phase modulator. See text for details
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Fig. 2.33. Principle of dc-current measurement. Left: Analog signals cropped by
saturation (saturation level at 0.8, dc-current = 0.5 in the units used). Right: Fourier
spectra of the signals without and with the dc-component

• The relation between the dc-current, which has to be measured, and the
amplitude of the second harmonics depends on many factors and, therefore
calibration and accurate absolute determination of current are difficult.

• Due to the large first harmonic, the first stages of the electronics have to
process relatively large signals without any information about the beam
current.

• On the other hand, total suppression of the first harmonic requires complex
filters.

• Changes in the core temperature have a strong direct effect on the output
signal.

The further development of dc-beam current transformers was very much
influenced by the operation of storage rings, especially the proton synchrotron
(CERN) (PS) and the old intersecting storage ring (CERN) (ISR) [62,92,93].

As a first consequence, the scheme of Fig. 2.32 has been improved by
adding a second core modulated opposite to the modulation, of the first one.
With this modification, the scheme can be further extended to a zero detector,
as shown in Fig. 2.34. Referring to Fig. 2.33, the resulting analog signal as
well as the expected Fourier spectrum are shown in Fig. 2.35.

From the working principle of the dc-transformer, based on a strong mod-
ulation of the magnetic material and the shift of the hysteresis curve by the
external beam, it becomes clear that the Barkhausen noise produced by wall-
jumps of magnetic regions is a limiting factor with respect to achievable perfor-
mance. To achieve high sensitivity and resolution, there are extremely specific
requirements with respect to identity of the magnetic characteristics for the
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Fig. 2.34. Scheme of a dc-transformer based on two cores, modulated in the opposite
sense. See text for details

Fig. 2.35. Principle of dc-current measurement using two cores. Left: Analog signals
cropped by saturation (saturation level at 0.8, dc-current = 0.5 in the units used).
Right: Fourier spectra of the signals with the dc-component. Due to the modulation
of the two cores in the opposite sense, there is no output signal in the absence of
dc-current

pair of cores. Thus, selection and treatment of the core material require much
effort and have to be done with care as described in more detail in [93].

2.3.4 Combined Systems

The manifold operating modes of modern computer-controlled synchrotrons
with respect to possible time structures gave impetus to further developments.
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To monitor the beam current, the number of particles during one machine
cycle requires a large bandwidth, determined by

• the injection, usually multiturn injection. Thus, to observe the increase
in current per turn, the rise time of the measuring transformer has to be
smaller than the revolution time, usually in the order of microseconds;

• the acceleration cycle (mostly of the order of microseconds), where the
increasing beam current has to be measured and compared with the values
obtained from the so-called β normalization;

• the flattop and slow extraction which may last up to 10 s and even longer.

As a consequence, combined beam transformer systems have been devel-
oped, consisting of a number of toroidal cores [93, 94]. Figure 2.36 shows
the hardware of such a combined transformer system installed in the SIS.
The transformer is a combination of three types of transformers. The fast one
(arranged on the right-hand side) has a rise time of less than 0.5 µs and is pro-
vided to observe the steps in current during multiturn injection. The response
of this fast transformer to a test pulse, simulating the stepwise current increase
during multiturn injection, is shown in Fig. 2.37. The dc-part, arranged on
the left-hand side, consists of two cores modulated with a frequency of 1 kHz.
The specifications of this part are summarized in Table 2.6).

Fig. 2.36. Picture (GSI Foto) of a combined beam current transformer system (a
part of the heating jacket and shielding removed). The transformer is installed in
period 9 of the SIS
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Fig. 2.37. Test of the fast transformer (see Fig. 2.36). Lower trace = test signal;
upper trace = transformer response. From [69]

Table 2.6. Specification of the dc-transformer installed in the SIS [79]. Note: The
bandwidth of 200 kHz does not hold in the most sensitive range.

Aperture � 200mm

Core material Vitrovac 6025 F, [83]
Core radii ri =135 mm, ra =145 mm
Permeability � 105

Number of windings 16 for modulation and sensing
12 for feedback

Isolating gap Al2O3

Ranges (full scale) 300 µA . . . 1A, bipolar
Steps 1. . . 3. . . 10
Resolution 2 µApp, S:N =1, full bandwidth
1/f noise threshold � 2Hz
Bandwidth dc to 20 kHz (200kHz)
rise time � 20 µs
Overshoot < 1%
Gain error < 3%
Linearity error < 0.1%
Offset compensation ±2.5 µA in auto mode

< 15 µA/day in free run mode
Temperature coeff. 1.5 µA /◦C

The core in the middle has an intermediate rise time and is provided for
β normalization. The fast transformer is electronically separated from the
dc- and ac-parts, whereas these are connected together to an amplifier and
phase correction network. A simplified block diagram of the network and the
corresponding Bode plot are shown in Figs. 2.38 and 2.39. A system with
similar characteristics was developed and discussed more in detail earlier by
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Fig. 2.38. Simplified block diagram of the combined dc-ac-current transformer [79].
1=Modulator (1000 Hz), 2=Power amplifier, 3=Phase sensitive detector (PSD),
4=Integrator, 5=Adding amplifier, 6=Compensation amplifier (zeroing beam cur-
rent), 7=di/dt− detector, 8=Amplifier, 9=Amplifier, 10=Automatic zeroing (during
pause), 11=Signal output

Fig. 2.39. Bode plot [79], corresponding to the amplifier and phase correction net-
work of Figure 2.38. Note the dip at1 kHz due to the suppression of the modulation
frequency

Unser [62]. A measurement over one cycle of the SIS, shown in Fig. 2.40,
illustrates the usefulness of the combined system. The observed losses due to
bad capture (see Fig. 2.40) could be minimized by improvements in hardware
and software involved in rf capture.
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Fig. 2.40. Beam intensity measurement over one cycle of the SIS [79] with a com-
bined dc- and ac-transformer system. Note the loss due to bad rf capture during
the injection phase and the constancy of the number of particles (obtained from β
normalization) during acceleration and on the flattop

2.3.5 The Integrating Current Transformer

Replacing the resistor in the feedback loop of the first stage by a capacitance
C leads to integrating the beam current signal according to

Uout =
1

N C

∫
ibeam dt → Uout =

ibeam∆t

N C
=

Q

N C
for square pulses.

(2.53)
With this special application of a beam current transformer, it is possible to
measure the charge within beam pulses. The integrating current transformer
(ICT) is commercially available [95] and even integrates pulses with rise times
< 1 ps. The charge sensitivity goes down to 1 pC. Supplementing the integrator
by a sample and hold circuit, the output voltage can be digitized by an ADC
with a readout by the control computer. Clearing the integrating capacity
after the readout by a reset pulse allows continuous monitoring during routine
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machine operation. Of course, the time structure of the beam pulse will be
lost by applying this principle.

2.3.6 The Resonant Current Transformer

A simple approach to measuring the beam current intensity of short beam
pulses refers to the well-known principle of the “ballistic galvanometer.” De-
signing the secondary winding on a ferrite toroid as a resonant L−C circuit,
a short beam pulse, which acts as the primary winding, will force the system
to damped oscillations. If the period of the resonance frequency TLC is large
compared to the primary pulse duration ∆t, the initial amplitude of the os-
cillation is proportional to the charge that has passed the toroid and does not
depend on the time structure of the beam pulse. A prototype was assembled
in the beam diagnostic laboratory of GSI [96] to study the characteristics
and achievable sensitivity dependent on the design parameters. Because the
system was developed for intensity measurements during fast extraction from
the SIS, the design is determined by the requirement TLC � 1.5 µs. A simple
approximation for the initial amplitude of the resonant circuit at the end of
the primary impact of duration ∆t leads to [97]

U(∆t) =
Q

N C

(
1 − ω2∆t2

24

)
(2.54)

Q =
∫ ∆t

0

ibeam∆t charge within the beam pulse (2.55)

ω =
2π

TLC
resonance frequency, (2.56)

holding for TLC > 10∆t and a damping time constant larger than TLC.
Comparing (2.54) and (2.53), the integration error can be defined as δ =
ω2∆t2 / 24 � 1.6(∆t/TLC)2. Thus, the resonance circuit’s period TLC is de-
termined by the tolerable value of δ. For the prototype of such a resonant
current transformer (RCT), the following parameters have been chosen [96]:

TLC = 54.05 µs → δ = 1.6 (1.5/54.05)2 < 0.15%
L = 8.6 µH, N = 100, C � 1nF

A beam pulse of ibeam = 1 µA having a length of ∆t = 1 µs gives 1 pC.
Passing the resonant current transformer (RCT) leads to an output voltage of
U(∆t) = 10 µV, which is well above the noise level of narrowband amplifiers
or oscilloscopes. On the other hand, an output voltage of 10 V seems to be a
useful maximum considering typical signal processing electronics. This leads to
a maximum beam current ibeam = 1 A which is more than a factor of 10 above
the current that can be handled in the SIS due to space charge limitations. In
practice, electronic signal processing consists of the following components [96]:

• the resonant current transformer (RCT) itself;
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• an operational amplifier with a relatively high input impedance and a gain
of 20, whereby frequencies below 2 kHz are suppressed by a high-pass filter;

• an operational amplifier with programmable gain (G) between 1 < G <
100, having a bandwidth between 1–70 kHz;

• a peak detector;
• a differential output push-pull stage;
• a trigger and synchronization unit, including electronic switches to clear

the charge on the capacitance after a measurement.

2.3.7 Some Hints for the Design of Beam Current Transformers

In addition to the aspects discussed above, the following points are also im-
portant for the design of a beam current transformer system:

• The shortcomings of a beam transformer are its high sensitivity to mechan-
ical vibrations, as well as to stray electric and magnetic fields. Therefore,
the location of the installation along the beam line should be selected very
carefully. Furthermore, the mechanical layout has to take these aspects
into account, too. One has to keep in mind that the magnetic flux density
produced by a 1-µA beam current is of the order of 10−11 tesla, which is
about five orders of magnitude below that of the earth’s magnetic field.

• The measured current may be falsified, if electrons are moving with or
against the ions. Those electrons may be generated by residual gas ioniza-
tion or emitted from the beam pipe wall by ions of the beam halo hitting
the beam pipe wall. Due to the high mass ratio between heavy ions end
electrons of about 2000A : 1, electrons with much lower energy can have
the same velocity as accelerated ions or protons.

• Differential signal transmission is essential, if line interference lies inside
the signal passband.

• To minimize microphonic effects, use of ferromagnetic cores with low mag-
netostriction and reduced remanent induction should be preferred.

• Since the metallic beam pipe has to be interrupted by an isolating gap,
the mechanical design has to provide an external bypass for the image
currents, taking into account the required bandwidth, determined by the
beam pulse structure.

• With respect to the mechanical layout of the isolating gap and the specified
vacuum, it is also important to decide on the type of vacuum seal at the
connection between the gap and beam pipe.

2.4 The Cryogenic Current Comparator

The classification of beam intensity measuring devices in Table 2.1 shows that
all properties required are fulfilled only by the beam transformer. With respect
to the absolute calibration of more or less relative methods of beam intensity
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measurements, such as the secondary electron emission monitor (SEM) or
ionization chamber (IC), it becomes very clear from Fig. 2.1 that there is no
overlap on the beam current transformer (BCT). To get an overlap in this
intensity region, it is worthwhile to look for an extension of the beam trans-
former principle down to about 5× 109 charged particles per second to cover
the dc-current region from about 10 nA to some microamperes. Extension
of dc-current measurements down to this region requires reduction of noise,
which can be achieved by

• reduction of the Barkhausen noise. This has the consequence that modu-
lation of the core material is not allowed.

• cooling down the detector to reduce the thermal noise. A cryogenic current
comparator (CCC) was first developed as a standard for calibration of
current measuring devices [98].

• Use of a superconducting quantum interference device (SQUID), in this
case, a dc-SQUID as a zero indicator.

Figure 2.41 shows the principle of a CCC in a very simplified scheme.
The magnetic flux of the two currents I1 and I2 is coupled to the SQUID,
which measures the strength in units of the flux quantum φ0 = h/2e =
2.07 × 10−15V s = 2.07 × 10−11 T cm2. Of course, this simple arrangement
cannot be adapted to measure nanoamperes current in the environment of
accelerators. Time dependent magnetic stray fields would affect the measure-
ment, preventing any SQUID operation. Furthermore, the signal would be a
function of the beam location and of the coil geometry. The drawbacks have
been overcome by changing to a toroidal geometry and introducing complex
superconducting shields [99–101]. As a consequence, the design of a CCC
becomes rather complex. The main part is a special liquid helium bathcryo-
stat with a “warm hole” through which the beam goes. Figure 2.42 shows
schematically the parts of a prototype, developed at GSI [31, 32] to measure

Fig. 2.41. Principle of dc-current measurement with a Cryogenic Current Com-
parator. (From: Peters, A., et al., AIP Conference Proceedings 451, (1998), p. 166.
With permission)
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Fig. 2.42. The main parts of a Cryogenic Current Comparator (CCC) [31]
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Fig. 2.43. Scheme of a dc-SQUID’s electronics (From: Peters, A., et al., AIP Con-
ference Proceedings 451, (1998), p. 170. With permission.)

the current during slow extraction from the SIS. The cryostat has a height of
about 1.2 m and a diameter of about 0.66 m. The calculated attenuation factor
for external background fields (nonazimuthal) has been calculated at about
2 × 10−9 using a meander-shaped shielding made from lead plates and tubes
isolated by Teflon

R©
foils. The toroid consists of a Vitrovac

R©
[83] core with

a single-turn input coil made from niobium. The scheme of the dc-SQUID
electronics in shown in Fig. 2.43. First tests have given promising results:

• The minimum boil-off rate has been determined at 5.6 l LHe/day.
• The current sensitivity has been measured at 181 nA / φ0 which leads to

an output signal of about 2.5 V/180 nA with a bandwidth of 500 Hz.
• The linearity error was < 0.5%.
• After cooling down time of 100 h, the zero drift was below 0.5 mV/s.
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• Depending on the measuring frequency, the current resolution was between
0.006 and 0.065 nA /

√
Hz.

• In the small signal mode, the cutoff frequency was found at about 10 kHz.

The system has been used to analyze the structure of extracted ion beams.
It is planned [102] to improve the system in the following aspects:

• Extension of the dc-SQUID electronics to a higher dynamic range in con-
nection with a higher slew rate and an increased bandwidth.

• Addition of an automatic offset correction.
• Replacement of the refrigerator used by a so-called pulse tube cooler to

reduce the disturbances due to vibrations by about a factor of 1000.
• Development of a small and cheap helium liquefier.

Some of the proposed improvements are already realized during the de-
velopment of a new high performance SQUID based measurement system
for detection of dark currents generated by superconducting cavities. Such
a system is in development for the TESLA project (X-FEL) at DESY Ham-
burg [103]. It uses the CCC principle. In the first test measurements, a current
sensitivity of 167 nA/φ0 and a noise limited current resolution of 13 pA/

√
Hz

were achieved.

2.5 Secondary Electron Monitors

Referring to Fig. 2.1, the usable current ranges of the CCC and the secondary
electron emission monitor (SEM) overlap each other in the nanoamperes re-
gion, which offers the possibility of covering this current range with SEMs, by
performing the necessary absolute calibration of the SEMs with a CCC or a
well-designed Faraday cup.

The principle of a SEM is shown in Fig. 2.44. An arrangement of thin foils
(typical some micrometers) is passed by the beam. Secondary electrons are
generated from the surfaces of the foils and are collected by appropriate volt-
ages between the foils. The foils are slightly curved to increase the mechanical
strength and reduce the microphonic noise signal. The accompanying electro-
magnetic field of the charged particle, passing the thin foils, interacts with the
peripheral electrons of the foil surface atoms as well as with the free electrons
of the metal. If the transfer of energy to the electrons is sufficiently high, they
can be ejected from the atoms and escape from the surface. Emission from
the foils takes place if the energy Ei transferred to the electrons fulfills the
relation [104]

Ei > Er + W , (2.57)

where W is the work function of the foil. Assuming the process takes place at
a depth ∆x below the surface, then the remaining energy Er, respectively, the
range of electrons with that energy must be large enough to penetrate a foil of
thickness ∆x. Measurements of the foils with variable bias have shown that the
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Fig. 2.44. Construction principle (left) and electrical connections (right) of a SEM.
The foil is nearly pure aluminum (� 99.5%). The foils have an active surface of
80 × 80 mm2, a thickness of 100 µm, and a spacing of 3mm

most probable energy of escaping electrons is in the range from 5−10 eV and
∆x is of the order of about 100 Å [104]. There is a small (some %) contribu-
tion from other processes such as production of δ electrons due to Rutherford
scattering or even from nuclear processes. Neglecting these processes, the sec-
ondary emission process has to be considered as a surface phenomenon, which
is independent of foil thickness. To compare different foils with respect to their
efficiency, a yield factor Y defined by

Isec = Y
dE

dx
ibeam (2.58)

has been introduced. Yields have been determined by experiments [105] with a
precision of about 5%. The actual value of the yield is very much influenced by
the surface structure of the material and depends on the production process
as well as the cleaning procedures applied. Furthermore, yield Y can change
considerably due to irradiation, which causes modification of the surface; and,
in consequence changes the work function. Significant degeneration has been
observed after irradiation with 450-MeV protons [106]. Since SEMs are used
at CERN not only for beam intensity measurements but also for beam profile
monitoring, the question of degeneration becomes of essential importance. The
authors [106] investigated various materials and came to the results given in
Table 2.7.

The percentages given in Table 2.7 are based on the definition of the
secondary emission efficiency ρe defined by [104]

ρe =
Ne

Ncp
× 100% (2.59)

Ne = Number of emitted electrons (2.60)
Ncp = Number of incident charged particles. (2.61)
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Table 2.7. Measured secondary emission efficiencies for 450-MeV protons dependent
on the charge density. [106]. Note: The combination Al/Au stands for a gold-coated
aluminum foil

Ti Al Al/Au Au

New 3.5% 6.8% 6.7% ∼ 7.2%

1018 p/cm2 3.6% 6.5% 7.0% ∼ 7.1%

1020 p/cm2 3.8% 4.0% 4.9%

Comparing the definition of ρe with the definition of Y in (2.58), it be-
comes clear that the efficiency also depends on the charged particle properties
and possibly on the incident angle of the charged particles. Considering the
definition of Y , these dependencies have been included in the term dE/dx. Of
course, both definitions can be related to each other. Taking the specifications
of a typical ion beam facility for cancer therapy [107,108,110,114–117], typical
beam intensities are 5×108 (oxygen ions)< pps < 4×1010 (protons), assuming
a spill of 1 s. Thus, to reach flux densities of the order of 1020 particles / cm2

will take some years. But the situation changes if one considers high intensity
machines with 1014 pps. In this case, SEM monitors have to be recalibrated
within a suitable time.

2.6 Ionization Chambers

Figure 2.1 shows that ionization chambers (ICs) cover the medium intensity
range with an overlap on diamond and scintillation counters at the low inten-
sity side, which allows absolute calibration of the IC. Due to the big overlap
with the SEM on the high intensity side, indirect absolute calibration against
a beam transformer (BT) or cryogenic current comparator (CCC) via a SEM
is possible. Figure 2.45 shows the scheme of an IC installed in the external
high energy beam lines of the SIS. The ionization chamber of 5 mm length
in the beam direction with two 1.5-µm Mylar

R©
windows is filled with a mix-

ture of 80% Ar and 20% CO2 at ∼ 1 bar or less. To protect the high vacuum
system of the beam transport system, the gas-filled IC is separated from the
vacuum pipe by a metallic foil about 100 µm thick. The Mylar windows form-
ing the electrodes have an active surface of � 64 × 64mm2 and are coated
with 100 µg/cm2 silver. Due to the energy loss of ions passing the detector,
electrons are created in the gas volume. To separate the charges from the
ionization of the gas, a high voltage between 500 and 2000 V is applied to one
of the electrodes. The other electrode measures the secondary charges arising
from the ionization using an appropriate current measuring device such as a
current to voltage converter. The so-called proportional region is reached at
about 500 V, corresponding to a collecting field of 1 kV/cm. Since gas ampli-
fication starts at about 10 kV/cm, there is no gas amplification and therefore
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Fig. 2.45. Principle of an ionization chamber (IC) [118–120]

the output of the ionization chamber is proportional to the energy loss of
the charged particles. Since the “target thickness” is about 1mg / cm2, the
number of electrons created in the gas volume is of the order of 104/particle
(considering heavy ions), and therefore secondary electrons from the two foils
can be neglected. Furthermore, supposing that losses by recombination and
escaping electrons can be neglected, the current output from the chamber
should be calculable using energy loss data [121–124] and the well-known W
values [125, 126] of gases (Ar→ W = 26.3 eV, CO2 → W = 33.0 eV). The
results from a series of calibration measurements are shown in Fig. 2.46 [105],
using a particle counter (see next Sect.) for absolute calibration. The straight
line, corresponding to y = x, shows good linearity and excellent agreement
with the calculated values.

Referring to Fig. 2.1, the lower detection limit of an IC is determined by
the minimum secondary current of about 1 pA. The upper limit is caused by
a decrease in the efficiency due to recombination of the liberated electrons
with the positive gas ions. Due to the risk of sparks, this decrease in efficiency
cannot be compensated for by applying higher voltages. Because the collision
frequency of electrons and ions is proportional to their concentration, it turns
out that the recombination rate is ∼ to i2beam [120, 126]. For the ionization
chamber of Fig. 2.45, the secondary current should be below ∼ 1 µA to avoid
saturation effects. The corresponding upper limit for the primary current, as
shown in Fig. 2.1, can be verified from calculations of the energy loss or from
the values given in Fig. 2.46. To get a large upper threshold, gases with high
electron affinity, such as O2 and H2O, should not be used. In particular, an
IC should not contain any air. Another restriction concerns the maximum
size of the active area. Due to electrostatic forces acting on the thin foil, the
target thickness changes. Therefore, for good performance, the maximum size
is limited to about 200 × 200 mm.
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Fig. 2.46. Measured calibration factor in coulombs per ion for the ionization cham-
ber versus calculated values. The straight line corresponding to y = x shows excellent
agreement. (From: Forck, P., Heeg, P., Peters, A., AIP Conference Proceeding 390,
(1996), p. 425. With permission)

2.7 Particle Counting

Referring again to Fig. 2.1, there is a comfortable overlap between the IC and
particle counting by scintillation counters or newly developed counters, using
diamonds as detectors.

2.7.1 Scintillation Counters

If the counting rate is well below 106/s, scintillation counters are suitable
for measuring particle fluxes precisely. Particles hitting and penetrating a
scintillation material create fluorescent photons due to collisions with target
electrons. These photons are guided by special light pipes to the photocathode
of an electron multiplier, as shown schematically in Fig. 2.47. The amplified
output signal of the photomultiplier tube(PMT) is shaped by a discriminator
and fed to a scaler. The high gain of the PMT allows counting each single
particle. Of course, there are some special requirements concerning the prop-
erties of the scintillating material as well as the material of the light guide
used [126,127]:

• The light output should be linear with respect to the energy loss in the
material.

• To achieve a high counting rate, the so-called decay time should be as
short as possible.

• The scintillator material has to be transparent to fluorescent light, and the
index of refraction should be around n � 1.5 for optimal further transmis-
sion through a light guide.
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Fig. 2.47. Scheme of a plastic scintillator counter connected to a photomultiplier
(PMT) via a plastic light guide [118]

Fig. 2.48. Output pulses from a plastic scintillator recorded [120] from 300-MeV/u
Kr ions. The lower trace shows the pulse-height distribution.

• The wavelength λ of the light generated should be in the range 350 nm<
λ < 500 nm to achieve high efficiency at the photo-cathode, which converts
the light into electrons.

• The material should be easy to form and available in sufficiently large sizes
to cover larger beam sizes, too.

• Last, but not least, the material should be radiation hard for long lifetimes.

In most cases, plastic scintillators are used that have a decay time in the
nanoseconds range. Typical output pulses are displayed in Fig. 2.48. Due to the
dispersion in several 100-m long cables between detector and signal processing
electronics, the pulses are broadened and show the typical shape of fast pulses
transmitted over long dispersive cables. Figure 2.49 shows the combination of
a particle scintillation counter and an ionization chamber of the type shown in
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Fig. 2.49. Combination of an ionization chamber and a scintillation counter
(arranged behind the IC, wraped in black tape to shield against stray light)

Fig. 2.45. The scintillation counter is arranged behind the ionization chamber,
allowing absolute calibration of the IC at intensities below about 106/pps. To
avoid damaging the scintillator by irradiation at higher beam intensities, the
scintillator can be moved out of the beam by a separate compressed air drive.

2.7.2 The Scintillation Current Monitor

By collecting the light of a plastic scintillator, it is possible to readout the scin-
tillation light intensity, operated in current mode by photodiodes [128–130].
In contrast to the pulse counting mode, in this mode, the dependence of the
light output on the deposited energy becomes important. Calibration of such
a scintillation current monitor (SCM) is simple because of the linear relation
between energy loss and light output. The energy loss of incident ions can
be calculated easily from tables of stopping powers. A series of measurements
has been performed [131], using a round plastic scintillator sheet of NE108
surrounded by 15 photodiodes SFH100 to minimize the position dependence
of the output by summing up the signals. For ions of C, Ne, Ar, Kr, Xe, and
U in the energy range between 200 and 1800MeV/u, the authors found good
linearity up to 105/pps comparing the results with counted pulses.

2.7.3 Comparison of the SEM, IC, and SCM

Obviously, for this kind of beam intensity monitor, the detector response,
defined as the output charge per incident ion, is a function of energy loss.
This holds also in case of the SEM where the output signal is independent of
the foil thickness. The response of these three types of monitors is shown in
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Fig. 2.50. Response of the SEM, IC, and SCM as a function of calculated specific
energy loss. (From: Heeg, P., Peters, A. Strehl, P., AIP Conference Proceedings 333,
1994, p. 290. With permission)

Fig. 2.50 [131] as a function of the specific energy loss taken from tables given
in [122]. The straight line through the data of the SEM results from a fit and
corresponds to 23 electrons /[MeV/(mg/cm2)].

2.7.4 Radiation-Hard Counters

An important drawback of scintillation counters and scintillation current mon-
itors, based on organic plastic material, is their low radiation hardness. Much
higher radiation hardness can be expected from inorganic crystals, often Ce-
activated materials [126]. But these inorganic scintillators are rather difficult
to produce in larger sizes because they are made of single crystals. Rela-
tively new in the field of particle counting is the use of cadmium telluride
(CdTe) photoconductor material and polycrystalline diamonds, manufactured
by chemical vapor deposition (CVD). An ionizing particle passing such a de-
tector produces electron–hole pairs along its track. The electrons and holes are
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Table 2.8. The most important physical properties of diamond and silicon

Property [at 300K] Diamond Silicon

Thermal conductivity [W /mmK] 2 0.13

Resistivity [Ω cm] > 1013 2.3 × 105

Breakdown field [V/m] 107 3 × 105

Band gap [eV] 5.45 1.12
Electron mobility [cm2/Vs] 2200 1500
Hole mobility [cm2/Vs] 1600 600
Energy to remove an atom from the lattice [eV] 80 28
Energy to create an electron-hole pair [eV] 13 6

separated by an applied electric field. In combination with a modern broad-
band signal processing system, particles can be counted up to some 108/s.

CdTe Detectors

Radiation-hard polycrystalline CdTe detectors were newly developed at CERN
[132] to monitor the luminosity of the large hadron collider (LHC). The mate-
rial is often used as detector for nuclear radiation and in optoelectronics. Test
measurements on prototype detectors, consisting of discs of polycrystalline
CdTe discs about 16 mm in diameter are very promising for signal response,
maximum counting rate, sensitivity, and radiation hardness [132]. The authors
report the following results:

• Counting rates up to 40MHz and even higher should be possible without
problems from fast signals with rise times below 10 ns.

• A minimum ionizing particle produces more than 10.000 electrons, which,
in combination with a fast 50-Ω preamplifier, results in an excellent signal-
to-noise ratio.

• No significant loss in sensitivity and signal rise time has been observed
after irradiation with 1015 neutrons/cm2.

Diamond Detectors

The use of semiconductors having a p-n junction made mostly of silicon for
particle counting is also well known from nuclear physics and leads also to
applications in beam diagnostics [133–140]. The advantages of diamond be-
come obvious by looking at the most relevant parameters of a CVD diamond,
compared to silicon in Table 2.8.

The high energy of 80 eV needed to remove an atom from the diamond lat-
tice results in excellent radiation hardness [141]. Since diamond produces very
short pulses during the passage of a charged particle, counting them can be
extended to counting rates up to some 108/s. The short pulses with a rise time
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of about 100 ps are a consequence of the high mobility of electrons and holes
in diamond. Of course, to preamplify and process such fast pulses, sophisti-
cated broadband electronics is essential. Figure 2.51 shows a typical detector
system [140, 142]. As marked by the gray box on the left-hand side, the cou-
pling of the diamond detector to the broadband amplifier via a microstrip line
and a 50-Ω coaxial transmission line allows location of the active electronics
outside the area of irradiation. To process the very fast pulses from the detec-
tor to the broadband preamplifier without remarkable reflections back to the
detector, the preamplifier input has to be carefully matched to the impedance
of the transmission line. A series of Diamond Broadband Amplifier (DBA)
systems has been developed and successively improved at GSI [140,143,144],
using modern GaAs two- or three-stage monolithic modular integrated cir-
cuits (MMICs). The electrical properties of the newest version DBA-IV are
given in Table 2.9 [143].

Beside the DBA-IV series, a modified version DBA-IV/R exists, where the
input attenuator is omitted. Thus the input has no protection, but the input
noise factor is reduced considerably. Referring to Table 2.9, the result is a
change “Gain max.” from +50dB (DBA-IV) to +53 dB (DBA-IV/R), “Gain
min.” from +10 dB (DBA-IV) to +23 dB (DBA-IV/R), and a reduction of the
noise factor from 5dB (DBA-IV) to 3 dB (DBA-IV/R). In both systems, the
gain can be remotely controlled by applying a control voltage from 0–5 V.

Spill Analysis

The excellent time resolution of diamond detectors is illustrated in Fig. 2.52.
A particle spill analysis at the SIS has been performed with a CVD-diamond

COAXIAL
TRANSMISSION
LINE

(1 - 10 m)

MICROSTRIP

CVD-

DIAMOND

(2 - 20 cm)

Reflected signal

Incident signal

BIAS TEE

Bias Voltage (100 ... 2000 V)

Z source

BROADBAND
AMPLIFIER

COAXIAL
TRANSMISSION
LINE

(1 - 30 m)
LAN
Port

ACQUISITION
SYSTEM

Area of Irradiation

LAN
Port

Fig. 2.51. Detector system arrangement showing the basic elements and analog
signal transmission [142]
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Table 2.9. Specifications of the DBA-IV amplifier series

Type DBA-IV

Description GaAs 3-stage MMIC,
noninverting broadband amplifier

Bandwidth (−3dB) 0.003−2.0 GHz
Gain max. +50 dB
Gain min. +10 dB,

Remote Controlled 0–5 V, dc
Input impedance 50Ω, SWR < 1.5
Output impedance 50Ω, SWR < 1.5
Noise fig. (input terminated) 5 dB
Max. input voltage at min. gain 1Vpeak

Max. output power level +18 dBm/2Vpeak

Max. bias voltage ± 2000 V,
No damage at detector input shorts

for detector for −600/ + 100 V bias range
Power supply +12 V, 150mA
Dimensions Length × Width × Height

95mm × 47 mm × 25 mm
Connectors rf in/out, bias: SMA,

power/remote gain: LEMO 4-pole

330 µm thick [142]. The measurement with about 108 pps in the spill also
demonstrates the extreme radiation hardness of the diamond detector. Plastic
scintillators hit at this rate would be destroyed within a very short time.

The excellent time resolution is also demonstrated in a time of flight (TOF)
reported in [140]. The energy of 200-MeV/u U73 single ions has been measured
with a setup of two diamond detectors with a spacing of only 3 cm. A nine-
strip diamond was used as the first detector, whereas the second detector,
located 3 cm downstream, was a 16- pixel diamond. At 200MeV/u, the time
of flight is of the order of 175 ps, which could be recorded with a Tektronix
TDS694C at 10 GS/s.

A further application of diamond counters for measurements in the longi-
tudinal phase plane is discussed in Chap. 6, Sect. 7.

Beam Surveillance in Medical Applications (Veto-Counters)

As already mentioned, a relatively new application of high energy proton- and
heavy ion beams is the treatment of cancer by irradiation [107,108,110,114–
117]. Two different beam delivery systems are in use:

• The passive system, where a broad uniform beam profile is generated by
wobbling magnets in front of a collimator system, shaping the beam ac-
cording to the projected area of the cancer. The beam energy and there-
fore the penetration depth of the particles is adjusted by so-called “range
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Fig. 2.52. Spill analysis at the SIS with a diamond detector [142]. Upper trace
(main trace): Sampling diamond output signals with 2GS/s. The measured data
correspond to a spill with about 108 pps. The lower traces correspond to increasing
zooming. On the lowest trace, the zoom shows single particles

shifters.” The range shifters may consist of a set of solid plates or more
complex devices which are often used in material research by irradiation.
Figures 2.53 and 2.54 show two examples provided for well-defined atten-
uation of a particle beam.

• The active system uses a beam of very small transverse dimensions (typ-
ical 5 mm FWHM), which is moved by fast vertical and horizontal scan-
ning systems [113] over the projected area of the cancer. Systems ap-
plying three-dimensional raster scanning techniques adapt the required
penetration depth by active, computer-controlled variation of the beam
energy [110].

It is evident that the application in radiotherapy requires an extremely
stable beam with respect to beam profile, beam position, beam intensity,
and beam energy. A halo detector was designed for the surveillance of beam
stability during irradiation of patients [109, 110]. The so-called veto-counter
system is based on four single particle detectors such as scintillation counters
or diamond detectors, arranged at the edges of the beam. A system based
on a four-segment ionization chamber has been developed for the PROSCAN
medical facility at the PSI [111], and the design and construction of a coron-
agraph for observation of the beam halo and tail are reported in [112]. Figure
2.55 shows schematically the proposed GSI arrangement of the detectors, sig-
nal processing, and storing of counts, measured in specific time segments.
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Fig. 2.53. Left: picture of a “range shifter” of the wedge type [33]. Right: working
principle of the device

Assuming beam profiles of Gaussian shape, sufficient sensitivity with respect
to a change in the relevant beam parameters can be achieved, if the detectors
are located at the edge of the beam. Due to the high radiation hardness of
diamond counters discussed, this type of detector should be preferred for this
application. To derive fast, potential free interlock signals, the data can be
evaluated from various viewpoints, as shown schematically in Fig. 2.56. Taking
advantage of modern PCI-systems data processing as well as data evaluation,
according to Figs. 2.55 and 2.56, can consist of a mix between hardware and
software implementation. Assuming beam profiles with a Gaussian intensity
distribution in both transverse directions, the expected counting rates are
easily derived, if the relevant beam parameters are known. But, finally, the
positions of the detectors as well as the specification of reference values (see
Fig. 2.56) should be determined experimentally before irradiation of patients
takes place. In routine operation of a machine dedicated to radiotherapeutic
applications, approved data sets should be available from a data bank. To
give an example of expected system performance, let us assume the following
beam parameters:

Beam dimensions in the x-direction (horizontal): σx = 4.19 → Rx(10%)
� 9mm



68 2 Beam Intensity Measurements

Fig. 2.54. Left: “range shifter” on the base of two rotating discs [33]. Right: Work-
ing principle of the device. Possible variation in target thickness 0.25–5 mm, target
material graphite or others, maximum beam power loss 500W/disc, maximum rev-
olution frequency 5 Hz, computer controlled

Beam dimensions in the y-direction (vertical): σy = 2.33 → Ry(10%)
� 5mm
Number of C6+ ions delivered to the patient: N = 108/ spill
Proposed counts on one of the four veto counters: N0 = 2000/spill

The counting rates can be calculated from the two-dimensional Gaussian dis-
tribution:

F (x, a, σx, y, b, σy) =
1

2πσxσy
e
− 1

2

[
(x−a)2

σ2
x

+
(y−b)2

σ2
y

]

(2.62)

with x, y as the position of the veto counter (beam sided edge of the detector)
and a, b as the displacement of the beam from the position x = 0, y = 0.
The proposed reference counts of N0 = 2000/spill lead to x0 � 17.2 mm and
y0 � 9.6mm. Figure 2.57 gives the expected counts/spill dependent on beam
displacement. From the derivation of (2.62), the change in counts/spill for
x0 = 17.2mm and y0 = 9.6mm comes out to about 207 counts per 1/10mm
beam displacement in the x-direction. Due to the smaller vertical dimensions
of the beam, the corresponding change is about 372 counts for the y-direction.
The sensitivity which can be achieved becomes clearer from Fig. 2.58 that
shows the change in counts/spill for sum and difference values.
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Fig. 2.57. Expected counts/spill for one veto counter dependent on beam displace-
ment. The horizontal veto counter (left diagram) is positioned at x0 = 17.2 mm, the
vertical one is positioned at y0 = 9.6 mm

Fig. 2.58. Expected change in counts/spill for sum and difference values dependent
on beam displacement. The horizontal veto counter (left diagram) is positioned at
x0 = 17.2 mm, the vertical one is positioned at y0 = 9.6 mm

Conclusion

The example shows that the use of veto counters for beam surveillance is a
nearly non-destructive, very sensitive possibility for monitoring the stability
of a particle beam for changes in profile, intensity, and position. Taking ad-
vantage of the radiation hardness of diamond detectors, counting rates of the
order of some thousands per spill are moderate for the lifetime of a diamond
detector.
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Thermal Aspects

Many diagnostic devices such as Faraday cups, simple beam stoppers, slit
systems, scrapers, wire scanners, profile grids, and stripping foils stop a par-
ticle beam completely or lead to partial interception. Therefore, in the worst
case, the total beam power has to be handled by a device hit by the beam.
For highly intense beams, this can even result in destroying devices, if one
does not take care of the thermal effects. Also loss of a beam, which is one
of the most severe concerns in the operation of high intensity accelerators
requires attention. Lost particles produce radioactivity in construction mate-
rials, sputter their surfaces and, in the worst case, can melt holes in the walls
of beam pipes, in thin bellows, or in synchrotron magnet chambers. To avoid
such problems, estimation and calculation of thermal effects is essential for
the design and use of beam intercepting devices.

3.1 Relevant Formulas

When a beam is completely stopped, the beam power is given by

P =
dW

dt
=

N

δt
AW , (3.1)

where N/δt is the number of impinging particles per time interval δt, A is the
mass number of the ions and W[eV/u] is their kinetic energy. N/δt can be
replaced by i/ζe, with e = 1.602 As, ζ as the charge of the ions. As briefly
discussed in the introduction, i is related to the time interval δt, respectively,
pulse length. Replacing N/δt in (3.1) by i/ζe, one obtains for the beam power
during the time interval δt,

P =
A

ζ

i

e
W (3.2)

P [kW ] =
A

ζ
i [mA]W [MeV/u] . (3.3)
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If the beam is pulsed with a macropulse length of Tp, the deposited beam
energy per pulse is

Wp = Pδt =
A

ζ

i

e
W → (3.4)

Wp [W s] =
A

ζ
i [mA]Tp [ms] W [MeV/u] . (3.5)

Thermal effects, efficiency of cooling, and maximum ratings for materials
are related to the basic laws of heat transfer [145–149].

For simple estimations of thermal effects [150, 151], the required energy
∆WV to melt a given volume V is of interest. ∆WV has to be calculated in
two steps:

∆WV = ∆Wh + ∆Wm (3.6)
∆Wh = mcp(Tm − T0) = ρV cp(Tm − T0) (3.7)
∆Wm = mwm = ρV wm , (3.8)

where cp is the specific heat, ρ is the mass density, wm is the heat of fusion,
T0 is the environment temperature, and Tm is the melting temperature.

Thermal effects in materials depend very much on

• the thermal characteristics of the stopping material;
• the duty-factor of the beam;
• the size of the beam; and
• the penetration depth pd of the impinging particles, which in turn depends

on the kind of ions and their energy.

Especially for dependence on the duty factor, a classification distinguishing
between dc-beams and intense pulsed beams has proven useful.

For dc-beams and beams with a high duty cycle, one has to consider the
stationary temperature distribution T (x, y, z) given by the solution of

∆T (x, y, z) = − 1
λ

PV(x, y, z) , (3.9)

where ∆ is the Laplace operator (∆ = d2/dx2 + d2/dy2 + d2/dz2),
λ[W/(mm K)] is the heat conductivity, and PV(x, y, z) = dWp(x, y, z)/dt
(e.g., in [W /mm3]) is the power deposited in the volume element V .

For intense pulsed beams, one has to take the time dependence into ac-
count, which means solving the partial equation of heat transfer:

∂T

∂t
=

λ

cρ
∆T (x, y, z) +

1
cρ

PV(x, y, z) . (3.10)

Here λ/cρ describes the time dependence of heat transfer; the larger values
result in faster transfer.
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Table 3.1. Relevant thermal characteristics of materials

Z A ρ λ Tm wm cp25 cp2000 Wmg Wmm

Be 4 9 1.85 0.20 1278 1350 1.83 3.28 4213 7.79

C∗ 6 12 2.25 0.09 3650 – 0.71 1 3579 8.05

Mg 12 24 1.74 0.16 649 362 1.02 1.34 1034 1.80

Al 13 27 2.7 0.24 660 388 0.90 1.09 983 2.65

Si 14 28 2.34 0.1 1410 1650 0.70 0.91 2727 6.38

Ti 22 48 4.5 0.02 1660 365 0.52 0.79 1401 6.31

V 23 51 6.1 0.31 1890 345 0.49 0.87 1587 9.68

Cr 24 52 7.1 0.09 1857 260 0.52 0.94 1567 11.1

Fe 26 56 7.87 0.08 1535 272 0.44 0.83 1163 9.15

Cu 29 64 8.96 0.37 1083 205 0.39 0.50 645 5.78

Zr 40 91 6.49 0.02 1852 211 0.28 0.35 783 5.08

Mo 42 96 10.2 0.14 2617 290 0.25 0.37 1176 12.0

Ag 47 108 10.5 0.43 962 103 0.24 0.29 337 3.54

Ta 73 181 16.6 0.06 2996 174 0.14 0.17 660 11.0

W 74 183 19.3 0.17 3410 192 0.13 0.17 751 14.5

Au 79 197 19.3 0.32 1064 64.9 0.13 0.15 205 3.96

Pb 82 208 11.4 0.04 328 23.2 0.16 0.14 71.7 0.81

In Table 3.1, the relevant characteristics of some typical construction
materials are listed. The symbol C* stands for an isotropic graphite com-
position. The dimensions in the table are chosen from a practical point
of view: ρ[g/cm3], λ[W/(mm K)], Tm[C], wm[Ws/g], cp25, cp2000[Ws/(g K],
Wmg[Ws/g], Wmm[Ws/mm3]. The values in the last two columns correspond
to the sum of required energies for melting 1g (Wmg), respectively, 1mm3

(Wmm) according to (3.6–3.8), inserting a mean value of cp25 (specific heat at
25◦C) and cp2000 (specific heat at 2000◦C). The results hold for T0 = 20◦C.

3.2 DC-Beams

The stationary temperature distribution for dc-beams and beams with a high
duty factor is determined by the solution of (3.9). In principle, there are three
possibilities:

• an analytical solution for the given geometry, considering the deposition
of power by the beam PV(x, y, z),

• a numerical solution applying the finite-element (FE) method (see, e.g.,
[152–158]),

• a numerical solution by the finite-difference (FD) method.

Due to the complex formulas of energy loss in matter, analytical solutions
exist only in some very special cases. Many FE programs exist for the solution
of differential equations of the kind discussed. However, in the special case un-
der consideration, the generation of finite elements is time-consuming because
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the deposited power/element has to be calculated or taken from known ta-
bles of energy loss. The FD method also requires complex calculations but
offers the physicists and engineers the possibility of implementing their own
programs, adapted to the very special problem of energy loss in matter. Var-
ious algorithms applying the FD method to solve the Poisson equation (3.9)
are described in the literature of numerical mathematics (see, e.g., [159–161]).
Nevertheless, the problem requires special treatment with respect to

• the size of the beam spot in comparison to the geometrical dimensions and
shape of the stopping device;

• the intensity distribution within the transverse coordinates;
• the very strong varying energy loss along the path of the particles in the

material, especially the enhanced “Bragg peak”;
• increase of the beam spot size along the path due to multiple scattering;

and
• use of various materials in the composition of a stopping device.

To implement a numerical program, the following steps are essential:

• Calculation of the maximum dc-beam power to estimate if cooling of the
intercepting device becomes necessary. A maximum of ≈100 W dc-power
or even below that value may be considered critical in this respect, taking
into account that inside a vacuum system, no cooling by convective heat
transfer takes place and heat conduction is very low due to the electrical
insulation.

Remark: It’s evident that for beams with a high duty factor, the average
power Pav = Ppulse×duty has to be considered. This also holds for the
calculation of the PV values in (3.9).

• Selection of the stopping material, whereby the choice can be influenced
by
– Geometrical constraints, requiring, for example, a material with a high

Z value to minimize the penetration depth pd and, therefore the length
of the device in the beam direction. The penetration depth can be
determined from available “Range and Stopping Power Tables” ( [121–
124]).

– The requirement to minimize the production of dangerous radiation,
which would give preference to a low Z value of the stopping material.

– The necessity for high heat conductivity λ, which for highly intense
beams is the dominating criterion.

• Determination of the specific energy loss along the longitudinal z-coordinate
for the selected material. Figures 3.1 and 3.2 show an example of 350-
MeV/u carbon ions stopped in a tungsten block.

• Definition of parameters, fixation of geometrical dimensions and materials,
provided for the final construction design in a schematic layout, as shown,
for example, in Fig. 3.3. Here a 350-MeV/u carbon beam is stopped in a
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Fig. 3.1. Example of power loss calculation

Fig. 3.2. Energy degradation in a tungsten stopper

block of tungsten with a backing of a cooled copper body, which requires
special attention at the boundary between two materials having different
λ values. Because the stopper has rotational symmetry, only two indexes
I and J are required. As becomes very clear from the example shown in
Figs. 3.1 and 3.2, the extension of the “Bragg peak” can be very small
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Fig. 3.3. Example for the numerical solution of equation 3.9

in comparison to the dimension of the stopper along the z-axis. There-
fore, it is useful to choose a mesh having a variable width along the axial
coordinate. Assuming, for example, 10-mesh lines in the z-direction over
the Bragg peak would require a spacing of about 0.05 mm, which results
in more than 450 lines over the total length of about 22 mm. Considering
the relatively plain curve of power loss in the higher energy region, such
a tight spacing is absolutely unnecessary. Variable spacing of mesh lines
should also be implemented, if the beam spot size is small versus the radial
stopper dimensions. Of course, this complicates the equations with respect
to
– the necessary conversion of the power loss data to the mesh points,
– the determination of the coefficients in the numerical equations given

below in (3.12) and (3.19).

On the other hand, it saves memory and diminishes the time of iteration.
This becomes even more important considering geometries, that require at
least three indexes.

• Evaluation of PV(x, y, z) defined in (3.9) as the power loss per volume at
the mesh points, which consists of the following steps:
– Conversion of the calculated power loss along the path to the z-

coordinate points which coincide with the mesh points. This is neces-
sary because the tables with stopping power data are given dependent
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on the energy and not just exactly at the z-coordinates of the mesh
points. (See the example given in Figs. 3.1 and 3.2). The conversion
results in one-dimensional power losses for example in [watts/mm] at
each mesh point with the coordinates z, x = 0, y = 0.

– Estimation of the contribution of multiple scattering along the path
within the stopping material, which increases the transverse size of the
beam and as a consequence reduces the specific power loss (watts/mm3)
along the path.

– Distribution of one-dimensional power losses over the cross section of
the beam at the mesh points, taking the effect of multiple scattering
into account and assuming an appropriate intensity distribution over
the transverse coordinates.

• Fixing of all boundary conditions to perform the numerical solution of
(3.9) by the FD method.

Further steps, the required formulas, the boundary conditions, and the
iteration algorithm for this numerical calculation are discussed referring to
the example of Fig. 3.3.

3.2.1 Determination of the Coefficients

The Laplace operator ∆ in cylindrical coordinates is given by

∆ =
∂2

∂z2
+

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2
. (3.11)

Due to the rotational symmetry of the example considered the last term on the
right-hand side of (3.11) can be dropped. Referring to Fig. 3.4 and applying
a Taylor series expansion, the second derivatives are obtained:

T(z,r)

T(z,r+DR)

T(z,r-HR)

T(z-HZ,r) T(z+DZ,r)

Fig. 3.4. Relevant points for the determination of T (z, r)
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∂2

∂z2
T (z) = A2zT (z + DZ) + B2zT (z − HZ) + C2zT (z) (3.12)

A2z =
2

DZ(DZ + HZ)
(3.13)

B2z =
2

HZ(HZ + DZ)
(3.14)

C2z = − 2
DZ HZ

. (3.15)

From T ′′(z) = ∂2

∂z2 T (z), the second derivative T ′′(r) = ∂2

∂r2 T (r) follows im-
mediately by substitution of DZ → DR and HZ → HR in (3.12–3.15). The
first derivative ∂/∂r can be expressed in terms of T and T ′′ from the Taylor
series:

T (r + DR) + T (r) = DR T ′(r) +
DR2

2
T ′′(r) (3.16)

T (r − DR) − T (r) = −HR T ′(r) +
HR2

2
T ′′(r) . (3.17)

The result is

T ′(r) =
∂

∂r
T (r) =

T (r + DR) − T (r − HR)
DR + HR

− DR − HR

2
T ′′(r) . (3.18)

Using (3.18), the term 1
r

∂
∂r of the Laplace operator in (3.11) leads to

1
r

∂

∂r
T (r) = A1rT (r + DR) + B1rT (r − HR) + C1rT (r) (3.19)

A1r =
1

DR + HR

HR

DR
(3.20)

B1r =
−1

DR + HR

DR

HR
(3.21)

C1r =
DR − HR

DR HR
. (3.22)

Referring to Fig. 3.3, (3.9) can be solved numerically by successive iteration
of all possible ensembles of five points in the mesh. Of course, this does not
include points located at the borders. Furthermore, mesh points located on
the border between materials with different λ values require special treatment.
Since the mesh points at T (z, r + DR), . . . in a numerical computer program
are represented by T (I, J+1), T (I, J−1), T (I+1, J), T (I−1, J), and T (I, J),
this notation is used in the following. Therefore, the coordinates z1 . . . z4 and
r1 . . . r3 can be represented by the indexes I1 . . . I4 and J1 . . . J3.

3.2.2 Estimation of Multiple Scattering

Before determination of the PV(z, r) values, respectively, P (I, J) in the nota-
tion of the mesh coordinates, the effect of multiple scattering on the beam spot
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size along the path in the stopping material should be estimated. This can
reduce the specific thermal load especially at the end of the path, where the
Bragg peak leads to a high specific power loss. To take this into account, an es-
timate of the root-mean-square (rms) scattering angle 〈θ〉 given by Rossi [162]
is useful:

〈θ〉 =
21MeV

βpc

√
ρ∆x

X0
, (3.23)

where p is the momentum of the impinging particles and ρ∆x/X0 is the
thickness in units of the so-called radiation length, also given in [162]:

X0[g/cm2] =
A

4α Z(Z + 1) r2
e NAln(183 3

√
Z)

=
716.4A

Z(Z + 1)ln(183 3
√

Z)
, (3.24)

with the fine structure constant α = 1/137.04, the classical electron radius
re = 2.82 × 10−13 cm, and Avogadro’s number NA = 6.022 × 1023 mole−1.

Although the interested reader will find various definitions of the radiation
length in the literature (for a discussion see [53]), the differences are in general
small and not relevant in the connection considered. To take corrections to
(3.24) into account, a table given in reference [53] is recommended. Referring
to Fig. 3.2, estimated the multiple scattering effect on the beam spot size can
be as follows:

• Starting with the initial energy E0 (E0 = 350MeV in the example) (βpc)n
can be determined for each energy value En along the abscissa. The tar-
get thickness ∆z relevant for the calculation of 〈θ〉n is given by the path
difference. In Fig. 3.2, ∆z can be calculated from the ordinates belonging
to En and En+1.

• Then, approximating ∆z cos(〈θ〉n) ≈ ∆z , the deviation of the particle from
a straight line due to multiple scattering in each small target section is
∆rn = ∆z sin(〈θ〉n). Of course, the ∆rn of successive sections have to be
summed up, which results in a function ∆r(zn).

• In general, the zn-values do not coincide with the mesh points. Therefore,
one needs a continuous function ∆r(z). Experience has shown that an
approximation can be performed by

∆r(z) = Az + Bz2 + Cz3 , (3.25)

applying a least squares fit to ∆r(zn) for the determination of A, B, C. In
the example of Figs. 3.1, 3.2, and 3.3 discussed, the maximum ∆r value at
the end of the path 0.16 mm, which can be neglected. But considering, for
example, 350-MeV protons stopped in tungsten, the penetration depth pd

goes up to about 64.5 mm and ∆r max sums up to about 9.5 mm, reducing
the specific thermal load considerably.
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3.2.3 Determination of the PV(z, r) Values

The calculated specific power loss (see, e.g., Fig. 3.1) to the mesh points,
located along the J = 0 line, can be converted by applying an appropriate
spline fit or similar fit to the data and interpolation to the points located on
the mesh. This results in a vector P (zI), respectively, P (I) using the indexes
I along the z-axis with r = 0. The dimension is in [watts/mm]. Due to mul-
tiple scattering, the beam spot size increases along the path in the stopping
material. Referring to (3.25), this can be taken into account by a quadratic
addition as follows:

RI =
√

R2
beam + ∆r(zI)2 . (3.26)

Since the mesh width in the z-coordinate can be variable, as shown in Fig.
3.3, one has to be careful in determining the correct zI and I values.

Experience has shown that a parabolic intensity distribution over the ra-
dial coordinate is a good and simple approach. Assuming a mesh width of
∆r1 in the region 0 ≤ r ≤ RI + δr, the vector P (I) can converted to the array
P (I, J) according to

P (I, J) =
2P (I)
πR2

I

[

1 −
(

J∆r1

RI

)2
]

(3.27)

P (I, J) = 0, if P (I, J) < 0 . (3.28)

A small margin δr has been introduced to remain inside the mesh width of
∆r1 up to the penetration depth. A less realistic homogeneous distribution
leads to P (I, J) = P (I)/πR2

I . Comparing this with (3.27) shows that the
power density of the parabolic distribution at the center of the beam with
J = 0 is just a factor of 2 higher than the homogeneous one.

3.2.4 Determination of the Boundary Conditions

From the theory of differential equations, it is well known that fixing ap-
propriate boundary conditions is very important. Furthermore, treatment of
particular points, like the change in the λ value in Fig. 3.3, requires special
attention.

To begin with, the boundary conditions for cooling the stopper body have
to be introduced. Referring to Fig. 3.3, there are for three possibilities cooling:

• Cooling of the end face at I = I4, which can be considered by setting
T (I4, J) = 0 for all J . In this case, the fact that no heat can be trans-
ported through the cylindrical mantle can be taken into account by setting
T (I, J3) = T (I, J3 − 1) for all I with the exception of I4.

• Cooling of the mantle at J = J3, setting T (I, J3) = 0 for all I and
T (I4, J) = T (I4 − 1, J) for all J with the exception of J3.

• Cooling end face and mantle, which, of course, results in T (I4, J) = 0 for
all J and T (I, J3) = 0 for all I.
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The cooling water temperature Tw can be taken into account by adding
Tw to all calculated T values. All points located on the boundaries discussed
are not included in the iteration procedure. Due to cylindrical symmetry, the
points along the axis with J = 0 also require special treatment by setting
T (I,−1) = T (I, 1) during the iteration. The treatment of the points located
at the front face with I = 0 depends on the definition of P (I = 0). From
the physical point of view, the power loss P (0) = 0. A reasonable approach
is to split the calculated power loss P (1) into P (0)/2 and P (1)/2. In this
case, T (−1, J) has to be substituted by T (1, J) in the iteration of the T (0, J)
values. From the practical point of view, it is simpler to start with P (I = 1, J)
and set the points on the front face T (0, J) = T (1, J), without iteration of
T (0, J). Experience has shown that the differences in the results are marginal.

When the stopper is composed of various materials, as in the example of
Fig. 3.3, the discontinuity in λ has to be considered in the numerical iteration
procedure. As shown schematically in Fig. 3.5, three cases must be considered.

T(I,J) T(I,J)

∆r2

∆r1

∆z1 ∆z2

λ2

λ1 λ2

λ1

T(I,J)

1 2 3

Fig. 3.5. Special points located on the borders between different λ values

The problem of determines the T (I, J), belonging to one of the three
cases shown in Fig. 3.5, can be solved by taking advantage of the well-known
equation of heat transfer:

Q̇

An
= −λ gradT , (3.29)

where Q̇/An is the power flow through a given cross section An and gradT
describes the increase in temperature along the power flow. Obviously, conti-
nuity requires

λµ gradT (I, J) = − Q̇

An
(3.30)

µ = 1, 2 . (3.31)
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From this, it follows immediately that

λ1
T (I, J) − T (I − 1, J)

∆z1
= λ2

T (I + 1, J) − T (I, J)
∆z2

. (3.32)

For the three cases of Fig. 3.5,

T (I, J)1 =
1

λ1/∆z1 + λ2/∆z2

[
λ1

∆z1
T (I − 1, J) +

λ2

∆z2
T (I + 1, J)

]
, (3.33)

T (I, J)2 =
1

λ1/∆r1 + λ2/∆r2

[
λ1

∆r1
T (I, J − 1) +

λ2

∆r2
T (I, J + 1)

]
, (3.34)

T (I, J)3 =
1
2

[T (I, J)1 + T (I, J)2] . (3.35)

Of course, the indexes I, J in (3.35) are not the same as in (3.33) and (3.34).

3.2.5 Initial Temperature Distribution

Before starting the iteration, the question of a reasonable initial distribution
T (I, J) arises. Starting the iteration with an ensemble T (I, J), close to the
final result, will shorten the computing time. However, experience has shown
that the choice of the initial distribution is not very critical. One possibility is
to consider (3.29) to derive the initial values of T (I, J) from a simple model
adapted to the geometry under discussion.

To give an example: Referring to Figs. 3.1, 3.2, and 3.3, let us assume
that the total power Ptotal = 1 kW is deposited in a cylinder, determined
by the beam radius Rb and a length L determined by the penetration depth
pd = 22mm. Neglecting the Bragg Peak, we define the specific power loss
along the z-coordinate as Q̇/L. Assuming a parabolic intensity distribution
q̇(r) over the radial coordinate, one obtains

q̇(r) =
2Q̇/L

πR2
b

[
1 − r2

R2
beam

]
(3.36)

q̇total(r = ri) =
∫ ri

0

2πrq̇(r)dr =
4Q̇

L

r2
i

R2
b

[
1
2
− r2

i

4R2
b

]
. (3.37)

Now, using 3.29, it is straightforward to determine the temperature difference
along the r-coordinate:

−
∫ T (r)

T (r=0)

= T (0) − T (r) =
∫ r

0

q̇total(ri)
2πλri

dri (3.38)

T (0) − T (r) =
Q̇

2πλL

r2

R2
b

[
1 − 1

4
r2

R2
b

]
(3.39)

T (0) − T (Rb) =
3Q̇

8πλL
. (3.40)
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On the other hand, the temperature difference outside the beam follows from

T (Rb) − T (ro) =
Q̇

2πλL
ln
(

ro
Rb

)
(3.41)

T (Rb) − T (Rmantle) =
Q̇

2πλL
ln
(

Rmantle

Rb

)
. (3.42)

Now, if the cylinder mantle is cooled by setting T (Rmantle) = 0, the initial
temperatures along the r-coordinate are defined in the section 0 ≤ z ≤ L,
taking the different λ values and the geometric dimensions into account. A
reasonable approach to defining the initial values for the rest of the body
is a simple linear decrease in the temperatures determined at the border of
the cylinder to the remaining cooled surfaces with T = 0. Of course, there
are other possibilities for arriving at reasonable initial conditions, which also
depends last but not least on the cleverness of the engineers and programmers.
Experience has shown that the simplest way is to set all initial values to zero.

3.2.6 Proposed Iteration Algorithm

The last and most important step in the numerical calculation of the temper-
ature distribution is the iteration procedure. Although skilled programmers
surely have their own ideas, a short description of a procedure which has been
tested and compared with the FE method may be helpful. Defining

Iplus = λA2z (3.43)
Iminus = λB2z (3.44)

Jplus = λ

(
A2r +

1
r
A1r

)
(3.45)

Jminus = λ

(
B2r +

1
r
B1r

)
(3.46)

A00 = λ

(
C2z + C2r +

1
r
C1r

)
(3.47)

r = J∆r1 (3.48)
r = J1∆r1 + (J − J1)∆r2, if J > J1 , (3.49)

the iteration procedure can be performed, setting

DL = IplusT (I + 1, J) + Iminus(T (I − 1, J) + . . . (3.50)
+ JplusT (I, J + 1) + JminusT (I, J − 1) + . . . (3.51)
+ A00T (I, J) + P (I, J) (3.52)

T (I, J) = T (I, J) − CkDL/A00, iterative correction (3.53)
DI = DI + ABS(DL/A00). (3.54)
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Ck is a convergence factor, which has to be optimized according to the prob-
lem. Experience has shown that 1 < Ck < 2. The iteration correction is applied
to all T (I, J), with exception of the substitutions defined by the boundary
conditions and other special cases. To value the convergence, the quantity DI
can be referred to, which has to be summed up from DI = 0 in each pass
over all mesh points. DI has the dimension of a temperature and represents a
measure of the quality and convergence of the numerical solution. Experience
has shown that in most cases the iteration can be stopped if DI is of the order
of 1.

Remark. In the equations discussed and the iteration algorithm described, it
has been assumed that the heat conductivity λ is independent of temperature.
For the most suitable materials, one finds a slight decrease with temperature.
Keeping a constant λ value, this can be taken into account by using an average
value for heat conductivity. On the other hand, the dependence of λ on T can
be included very easily in the iteration procedure by fetching the appropriate
values from a table. Including an analytical dependency of the type λ(T ) =
f(T ) from a fit to available data in the iteration procedure is another way.
In this case, the temperature at a certain point in the mesh has to be taken
from the preceding pass through the iteration procedure.

3.2.7 Check of Consistency

Referring once more to (3.29), there is a possibility of checking the consistency
of the results. Because there is nearly no heat transfer by convection in a
vacuum, the power deposited by the beam has to flow over the cooled surfaces.
Therefore, summing up the power flow through these surfaces should be about
the same as the total deposited power.

Ptotal ≈ Anλ gradT (3.55)

In the example discussed the gradient of T along the end face of the cylinder is
determined by grad T ≈ T (J, I4−1)−T (J, I4) divided by the mesh spacing ∆z,
along the mantle grad T ≈ T (J3−1, I)−T (J3, I) divided by the mesh spacing
∆r. Summing up all contributions, one has to consider that ∆An = 2πr∆rµ at
the end face with r according (3.48), (3.49), and ∆An = 2πRmantle∆zµ along
the mantle. The evaluation of the power flow through the cooled surfaces
is also important in optimizing the heat flow to the cooling water, which is
discussed in the next example.

3.2.8 Some Examples

Figure 3.6 shows the calculated temperature distribution within a graphite
stopper hit by 1000-MeV/u uranium ions of 10-kW dc-beam power. The pen-
etration depth is about 46.4mm in this case. Taking this and the beam radius
of Rbeam = 10mm into account, in a first approximation, a cylinder radius
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Fig. 3.6. Example of the numerical calculated temperature distribution applying
the FD method

of Rmantle = 25mm and a length of z = 50mm was chosen for the stopper
dimensions.

Although the calculated maximum temperatures came out well below the
melting point of graphite, looking at the power flow through the cooled mantle
and end face, the designer was confronted with a serious problem. Normally,
water flow is laminar, and therefore the maximum power flow to the cooling
water should be below about 120watt/cm2 to avoid so-called film boiling
[145,146], which would destroy the cooling water pipes as well as the stopper
device by overheating. Figure 3.7 shows that this condition is fulfilled just at
the mantle. However, it becomes very clear from Fig. 3.8 that the power flow
through the cooled end face is much too high. Destroying a water-cooled device
in the UHV system of an accelerator can have dramatic consequences. Thus,
this example demonstrates clearly the importance of thermal calculations as
a first step in the design of beam intercepting devices. In the example, the
design engineer has the following options to end up with a safe device:

• Increasing the length z results in decreasing power flow through the end
face. However, at the same time, the maximum temperature will increase.
As a consequence, this preventive measure has to go along with new cal-
culations of the expected temperature distribution.

• Choice of another material having better heat conductivity (λGraphite =
0.09W/mm K). In this case, even a new determination of P (I, J) has to
be performed.
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Fig. 3.7. Power flow through the cylinder mantle dependent on the axial coordinate

Fig. 3.8. Power flow through the cooled end face dependent on the radial coordinate

• Change to turbulent cooling water flow, which would allow higher power
flow to the cooling water. But this requires considerable effort in the con-
struction design, as well as the dimensioning of the cooling system. In
Figs. 3.9–3.11, a solution of the problem discussed is proposed. Here the
stopper consists of a copper block with Rmantle = 50 mm and z = 50mm.
Although pd goes down to only 15.3mm, by increasing the specific ther-
mal load near the front face, the maximum temperature is slightly reduced,
and the power flow through the end face remains within acceptable values.
This results from the much better heat conductivity of λ = 0.37W/mm K.
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Fig. 3.9. The 1000-MeV/u beam (see also Fig. 3.6) hits a cooled copper stopper
instead of graphite

Fig. 3.10. Power flow through the cylinder mantle dependent on the axial coordi-
nate

Remark: Summing up the power flow through the cooled surfaces (see Figs.
3.7, 3.8 and 3.10, 3.11) the check of consistency discussed is confirmed.

3.2.9 Comparison with the FE Method

Although the consistency of the FD method discussed has been proven in
many examples, a comparison with the more modern FE method is worth-
while. As expected, the agreement is excellent, as demonstrated in Fig. 3.12
for a 100-MeV proton beam with a power of 20 kW dc.
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Fig. 3.11. Power flow through the cooled end face dependent on the radial coordi-
nate

Fig. 3.12. Comparison of the FE and FD methods. The FE calculations were
performed [166] using the DOT program described in [156]

3.2.10 The Special Case of Very Small Penetration Depth

In some cases, especially for heavy ions of low energy, the penetration depth
pd can be the order of only some micrometers, and therefore of pd � stopper
length. This reduces the numerical effort because the deposition of power can
be simply derived from (3.29) as follows:

T (I = 0, J) = T (I = 1, J) + ∆z1
P (J)
An λ

, (3.56)
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with P (J)/An [watt/mm2] as the radial power density of the beam at the
mesh points along the index J . Of course, referring to Fig. 3.3, the width ∆z1

of the mesh in the axial direction has to be approximately pd in the section
0 < z < z1. As a consequence of the small penetration depth, the maximum
temperature will be found at the front face with I = 0. Because the beam
power is deposited within a very small volume, this can result in rather high
temperatures in this region, requiring careful design of the intercepting device.
The designer has the following options:

• Tilting the intercepting surface to reduce the incident power density. This
option is the one mostly used for Faraday cups or slit systems. Figure 3.13
shows the scheme of a Faraday cup, provided to stop 25-MeV protons with
a dc-power of 25 kW and a maximum power density of 10 kW/cm2. Figure
3.14 is a picture of a high-power slit system with tilted slit jaws.

Shielding aperture

Ceramic insulation
HV suppressor

Copper
Cooling pipe

Rubber tube

DN 100

Cooling channels

Supporting flange
Ceramic insulation

Current feedthroughs

Cooling water supply

Fig. 3.13. High-power beam stopper in kind of a Faraday cup

• Stopping the highly intense beam in a thin layer of material with a high
melting point, in combination with a cooled backing, consisting of a mate-
rial with high heat conductivity such as copper. This can be a practicable
solution for slit constructions, as shown in the example of Fig. 3.15. Figure
3.16 shows the numerical results for a combination of a 2-mm tantalum
plate with a cooled copper backing hit by a 10-MeV/u uranium beam.
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Fig. 3.14. High-power slit system. The linear feedthrough to vary the slit width is
not shown. The beam comes from the left-hand side. GSI Foto

Since the penetration depth is only about 40 µm, the power deposited has
been determined according to (3.56) choosing z1 = 0.4mm, with a mesh
width of ∆z1 = 0.04mm. The discontinuity in λ, which occurs at z = 2mm
has been considered according to (3.33). Due to the very different λ val-
ues of tantalum with 0.055 W/mm K, and copper with 0.372 W/mm K,
the change in gradT is rather high and becomes clearly visible in the
diagram. For the design engineer, the expected temperature at the con-
nection between the two materials is of great importance when selecting
an appropriate solder.

3.2.11 Cooling by Radiation

Equation 3.56 offers the possibility of introducing a term for the power loss
by radiation from the hot front face. Referring to the well-known Stefan-
Boltzmann radiation law in a practical form [145],
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Fig. 3.15. Cooled slit system consisting of a tantalum stopper plate 2 mm thick and
a cooled copper backing. The slit is provided for emittance measurements on highly
intense particle beams with penetration depths of the order of some ten micrometers.
The slit is 0.1 mm wide. GSI Foto

Fig. 3.16. A beam of 10-MeV/u uranium ions with a radius of 10 mm and a power
of 6 kW dc hits a tantalum stopper plate with a cooled copper backing
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Fig. 3.17. Dependence of the emissivity ε of tungsten on temperature. Boxes: Data
taken from [163], solid line: least squares fit to the data

Pr

[
W

cm2

]
= ε Cs

(
T [K]
100

)4

(3.57)

Cs = 5.67 × 10−4

[
W

cm2

]
. (3.58)

Equation 3.56 may be supplemented in the following way:

T (0, J) = T (1, J) + ∆z1

[
P (J)
Fλ

− 5.67 × 10−6 ε

λ
TE4

]
(3.59)

TE4 =
(

T (0, J)∗ + T0

100

)4

, (3.60)

where T (0, J)∗ is the calculated temperature at the front face from the preced-
ing pass through the iteration. Here λ has to be inserted with the dimension
[W/mm K] and T0 = 273 K. The emissivity ε depends on temperature and the
composition of the material surface. Because the contribution to the power
loss from radiation is ∼ T 4, the additional term becomes only of interest for
materials like tungsten or tantalum with melting points above about 2000K.
The emissivities of both materials are similar. Figure 3.17 gives the depen-
dence of ε(T ) for tungsten, applying a fit ε(K) = a K +bK2 to the data [163].
To illustrate the effect of cooling by radiation, a numerical calculation has
been performed for a beam of 10 MeV/ u with a radius of Rbeam = 7.5mm
that hits a plate of tantalum with Rmantle = 20mm and L = 10mm. The dif-
ferences in the temperatures determined at the front face (J = 0) are shown
in Fig. 3.18.

Remark. In some special cases, the radiated power can be in equilibrium
with the power deposited by the beam in a thin layer of material. In this
case, no additional cooling is necessary. An example is given by the W-Re
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Fig. 3.18. Effect of cooling by radiation at the front face of a tantalum stopper
plate, assuming only cooling of the end face results in T �= 0 along the mantle. The
calculation holds for ε = const. = 0.22

wires of a profile grid or harp, as described in Chap. 4, Sect. 4.1. A more
detailed discussion, as well as a short description of a program algorithm for
the calculation of the steady state is given in Chap. 3, Sect. 3.4.

3.2.12 Rectangular Geometries

For rectangular geometries, the iteration procedure has to be performed
on a three-dimensional array T (I, J,K), where the corrections to the mesh
point with the indexes I, J,K have to be determined from the six points
T (I − 1, J,K), T (I + 1, J,K), T (I, J − 1,K), T (I, J,K − 1), T (I, J,K + 1).
With (3.12–3.15), determination of the coefficients in the extended versions, of
(3.50), (3.53), and (3.54) is straightforward. Due to the third dimension, the
number of variables increases, requiring much more memory space, with the
consequence of increasing calculation time. Experience has shown that a rea-
sonable approach to get the temperature distribution can be achieved by an
approximation in two dimensions with cylindrical symmetry. In this approx-
imation, one sets RE as the equivalent of Rmantle to RE =

√
4xmaxymax/π,

with −xmax ≤ x ≤ xmax and −ymax ≤ y ≤ ymax as the transverse borders
of the geometry considered. Such a approximation may even be applied to
tilted rectangular plates, where a circular beam of radius Rb deforms to an
ellipse with the half axes a = Rb/sin α and b = Rb with α as the angle of
the tilted plate against the z-axis. Therefore, the equivalent of Rb is given by
RB =

√
ab.
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3.3 Intense Pulsed Beams

3.3.1 Short Pulses and Low Penetration Depth

Special attention is required by very short intense pulsed beams with low
penetration depth pd. In this case, cooling by heat conduction will not help,
since heat cannot be transported fast enough to cold regions and especially
to cooled surfaces. Neglecting the Bragg Peak by supposing that energy de-
position is constant over the range and setting T0 = 0, the temperature rise
of the “range volume” Vrange = πR2

bpd is

T (t) =
PF

ρ c pd
t , (3.61)

where PF is the beam power density P/πR2
b within the pulse and c [Ws/gK] is

the heat capacity, as given, for example, in Table 3.1. Therefore, the material
melts if T (Tp) > Tm, with Tm as the melting temperature given in Table 3.1.

However, in [164], it is shown that this linear rise of the temperature with
t holds only in the very first moment, because on this short timescale, the heat
conductivity λ can be neglected. After a very short time, heat conduction into
cooler regions starts. According to (3.29), this transfer of heat is proportional
to the area over which the transfer can take place. Therefore, tilting of the
material surface against the beam axis, as already discussed for highly intense
dc-beams will increase the heat transfer to other regions, lowering the temper-
ature. Because the maximum temperature occurs at the front face, a practical
formula derived in [164] can be very useful for determining the required tilt
angle α dependent on the stopping material and the beam pulse length. The
temperature rise at the surface is given as a function of time:

T (z = 0, t) =
2PF sin α√

πλρc

√
t . (3.62)

It shows, that the rise in temperature from heat transfer by conduction is
proportional only to

√
t. This holds for t � c ρ p2

d sin2α/λT .

Remark: Equation (3.62) has been derived by supposing a homogeneously
distributed power loss over the beam cross section. Remembering that in gen-
eral, the beam power at the center will be higher, a factor of 2 should be
applied to estimate the maximum temperature at r = 0, z = 0, because it
holds for a parabolic distribution of the intensity over the beam cross section
(see 3.27).

To save space, one wants a tilt as large as possible. Furthermore, the
designer tends to select a material which is suitable from the technological
point of view. Keeping in mind the very different melting temperatures Tm of
materials (see Table 3.1) and the factors λρc in (3.62), a “figure of merit” Q
has been defined [164], composed of material constants:
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Q = Tm

√
λρc . (3.63)

If the pulse length Tp � c ρ p2
d sin2α/λT , (3.62) and the “figure of merit”

can be very useful for determining the expected maximum temperature at the
end of the beam pulse for optimizing the tilt angle and for selecting a suitable
material.

Table 3.1 gives the “figures of merit” Q and the values of Q/Tm for some
often used construction materials.

Table 3.2. Figures of merit

Material Q/Tm [Ws
1
2 /K cm2] Q [Ws

1
2 /cm2]

Fe 2.0 3071

Al 2.5 1667

Ta 1.2 3649

W 2.2 7643

Cu 3.8 4149

Ag 3.4 3301

Au 2.9 3109

Graphite 1.3 4807

Diamond 6.4 23230

For the designer, the dependence T (z, t) may also be of interest. A prac-
tical formula can be derived from a solution of the one-dimensional partial
differential equation given by Smirnow [165], who considers the special case
of an infinite rod with the deposition of heat in a very small region at one
end. Although the formula derived, adapted to the problem discussed, looks
rather complicated, evaluation is straightforward with an appropriate PC pro-
gram [84–86]. Setting the initial temperature To = 0, one gets

T (z, t) =
PF√
λcρπ

1
2pd

∫ pdsinα

−pdsinα

[∫ t

0

1√
t ′

e−
cρ(z′−z)2

4λt′ dt′
]

dz′. (3.64)

First of all, we use this correct solution to check the approximation of
(3.62). Figure 3.19 compares both solutions for a copper target hit by a beam
of PF = 4kW/mm2 with a penetration depth of pd = 40 µm and a tilt angle
α = 11.5◦. The exact solution according to (3.64) and the approximation
according to (3.62) show a nearly constant difference of about 8.4◦C, which
will not be relevant in most cases. Nevertheless, a correction factor has been
derived in [164] leading to

T (z = 0, t) =
2PF sin α√

πλρc

(√
t −

√
πρcpd sin α

4
√

λ

)
. (3.65)

The approximations (3.62) and (3.65) do not hold in the neighborhood of
t = 0. In the example considered, the correction results in ∆T = −8.6◦ C.
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Fig. 3.19. Comparison of the results according to the approximation of (3.62)
(dotted line) with the exact solution given in (3.64) (solid line)

The solution for T (z, t), given by (3.64) is a very useful formula for study-
ing the influence of material constants on the maximum temperature at the
front face as well as the heat transfer into cooler regions over time. This is
illustrated in Fig. 3.20 for seven selected materials, where diamond has been
included for comparison with standard construction materials. Hence, calcu-
lating similar diagrams for given beam parameters, the design engineer should
be able to select a suitable material considering the maximum temperature
at the front face as well as the desired material thickness up to the cooled
surface. Because, usually the heat transfer in the radial direction is smaller
than in the beam direction, the one-dimensional equations (3.62), (3.64) and
(3.65), also give good estimations of the thermal effects in various materials in
higher dimensional problems. Figure 3.20 clearly confirms: The heat transfer
into cooler regions is faster

• as the heat conductivity λ is larger,
• as the specific weight ρ is smaller, and
• as the specific heat c is smaller.

3.3.2 Numerical Solution of the Partial Equation
of Heat Transfer

The specific energy loss of high energy particles along their path in a stopping
material is considered in the distribution PV(x, y, z) or PV(r, z), respectively.
Due to the complex specific energy loss of charged particles in materials, this
results in rather complex distributions PV, with the consequence that analyt-
ical solutions of the partial equation of heat transfer (3.10) can be found only
in some very special cases. On the other hand, based on the solutions given
above for dc-beams, the implementation of a numerical iteration procedure
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Fig. 3.20. The diagram shows calculated temperatures at the end of a beam pulse.
It holds for the following parameters: PF = 4 kW/mm2, pd = 40 µm, α = 11.5◦,
Tp = 1ms

is straightforward. Some hints for the implementation of a program may be
helpful:

• Referring to (3.50) for the iteration, the DL value which has to be mini-
mized by iteration is given by

DL = λ∆T (x, y, z, t) − PV(x, y, z, t) − ρc
∂T

∂t
. (3.66)

• ∂T/∂t should be approximated by [T (x, y, z, t) − T (x, y, z, t − ∆t)] /∆t,
where the step width in ∆t can be different during pulse and pause.

• PV(x, y, z, t) should be multiplied by the step function of Heaviside,
switched on during the pulse and switched off during pause. The most
external loop should be the loop over time, as shown in the simplified
scheme of Fig. 3.21, assuming cylindrical symmetry. Because we consider
a periodically pulsed beam, the last time slice of the nth iteration has to
be inserted as the first time slice of the (n + 1)th pass through the itera-
tion procedure. Iteration can be stopped when the changes in the last time
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Fig. 3.21. Simplified scheme to illustrate iteration in time

slice are below an acceptable level. The treatment of a periodically pulsed
beam includes two simpler cases:
– heating up the material during only one beam pulse,
– Cooling down when the beam is switched off (pause).

• Because the number of variables can be very large in a four-dimensional
array, computing time can increase considerably. To reduce required mem-
ory and computing time finding an approximation in cylindrical symmetry
is recommended.

• Referring to Fig. 3.21 and (3.66), the iteration procedure, analogous to
3.50, looks like

DL = IplusT (I + 1, J,K) + Iminus . . . + Jplus . . .

+ Jminus . . . + KminusT (I, J,K − 1) (3.67)
+ A000T (I, J,K) + P (I, J,K) (3.68)

T (I, J,K) = T (I, J,K) − CkDL/A000, iterative correction (3.69)
DI = DI + ABS(DL/A000), (3.70)

Kminus = cρ/∆t(K), K is the index of time (3.71)
A000 = A00 − cρ/∆t(K), A00 see (3.47) (3.72)

• For low penetration depth PV(x, y, z, t) can be replaced by the heat flow
at the front face, as discussed for dc-beams (see 3.56).

3.3.3 Some Examples

For comparison with the example of a dc-beam shown in Fig. 3.6, a calculation
for a single pulse has been performed. Figure 3.22 holds at the end of the
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Fig. 3.22. Numerical solution of the partial differential equation of heat for the
parameters given in the diagram (single pulse)

beam pulse, showing the Bragg peak very clearly and illustrating the time
dependence of heat transfer. The next example of Fig. 3.23 holds for a very
highly intense periodically pulsed beam heating up a tungsten stopper plate of
a Faraday cup to a rather high temperature of nearly 1800◦C. Due to the high
temperature, the material is extremely stressed in this case. The temperature
decreases with increasing duty cycle.

The last example is taken from the field of “heavy-ion-driven fusion” [167,
168], where very intense beams of heavy ions are required to drive fusion
pellets to low gain fusion burn. In various scenarios, mostly Bi1+ ions have
been discussed. Since the envisaged linac beam pulse power is of the order of
more than 1000 MW, even a beam loss of less than 1% can damage the beam
pipe, slits, or other parts of the accelerator structure. This is demonstrated
in Fig. 3.24 for a 200-mA Bi1+ beam with an energy of 50 MeV/u and a
pulse length of 1 ms. The resulting pulse power is about 2100 MW and, as the
example shows, even a loss of only some 10−3 would melt an iron beam pipe
or similar material when hit by the beam.



100 3 Thermal Aspects

Fig. 3.23. A 200 µs beam pulse of U4+-ions with an energy of 1.4 MeV/u, an
pulse power of 1.25 MW and a power density of about 2.5 kW/mm2 hits a Tungsten
stopper plate every 50 ms (20 Hz repetition frequency). The diagram holds for the
maximum temperature at the front face in the center of the beam

3.4 Cooling by Radiation

In some cases, a beam intercepting device can be driven into an equilibrium
between radiated thermal power and deposited beam power. This holds es-
pecially if the beam power is deposited within a very thin layer at the front
face of the intercepting device. In such cases, no additional cooling is neces-
sary. However, due to the proportionality of radiated heat to T 4 (see 3.57),
cooling by thermal radiation requires rather high surface temperatures of the
radiating body. Figure 3.25 gives the radiated power from a tungsten surface,
taking the temperature dependence of the emissivity ε according to Fig. 3.17
with a = 7.5 × 10−5 K−1, b = 3.1 × 10−8 K−2 into account.

3.4.1 DC-Beams

For dc-beams, it is relatively simple to find the steady state, where the radi-
ated thermal power is equal to the deposited power. In most cases, one has
to determine the maximum allowed power loss for a given maximum temper-
ature. Taking as a reasonable maximum allowed temperature ≈ 3/4 × Tmax

with Tmax = Tm + 273 (Tm from Table 3.1 +273), one gets Tmax � 2750K
for tungsten and Tmax � 2450K for tantalum. Assuming radiation only into
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Fig. 3.24. Lost Bi1+ ions with a total beam power of 2100 kW hit an iron plate
(beam pipe, . . . ) in an area of 50 cm2. To simplify the calculations, a circular cross
section of 40mm radius has been assumed, and the lost particles were parabolically
distributed over the hit area

one hemisphere, this leads to a maximum allowed specific power deposition
of Pmax ≈ 1.5W/mm2 (tungsten) and Pmax ≈ 0.75W/mm2 (tantalum). The
values can be estimated from Fig. 3.25 or from a numerical solution of (3.57).
The maximum ratings have to be multiplied by a factor of 2 for thin targets ra-
diating into both hemispheres. Scaling to other parameters can be performed
according to the dependencies given in (3.57).

3.4.2 Pulsed Beams

For pulsed beams, one expects a swing in temperature between a maximum
achieved at the end of the beam pulse and a minimum at the end of the pause.
To find the steady state is much more complicated and requires the solution
of the partial equation of heat. We use a solution given in [169–171] and define
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Fig. 3.25. Radiated power from a tungsten surface in dependence of the surface
temperature

As(T ) =
Pp + 2ε(T )σT 4

e

cmρ∆x
(3.73)

Ap(T ) =
2 ε(T )σ T 4

e

cmρ∆x
(3.74)

Cs(T ) =
[

2 ε(T )σ

Pp + 2ε(T )σT 4
e

] 1
4

(3.75)

Cp =
1
Te

. (3.76)

Definitions (3.73) and (3.75) hold during the pulse (see 3.77), and (3.74)
and (3.76) holds during the pause, when the beam is switched off (see 3.78). Pp

is the deposited beam pulse power; σ = 5.67 × 10−8[W/m2K4] is the Stefan-
Boltzmann constant, related to Cs (see 3.57) with Cs = 108σ; cm is the mean
of the specific heat (see Table 3.1), ε(T ) is the emissivity (see Fig. 3.17), Te is
the temperature of the environment (mostly 300K), ρ is the specific weight,
and ∆x is the target thickness. Assuming square beam pulses, a solution
of the partial differential equation of heat has been obtained by stepwise
integration [169] and the results are

t − t0 =
1

4As(T )Cs(T )

[
ln [1+Cs(t)T (t)][1−Cs(t)T (t0)]

[1−Cs(t)T (t)][1+Cs(t)T (t0)]
+ . . .

+2arctan Cs(T )T (t) − 2 arctan Cs(T )T (t0)

]

,

(3.77)
valid during “beam on” (pulse) and

t − t0 =
1

4ApCp

[
ln [1+CpT (t)][1−CpT (t0)]

[1−CpT (t)][1+CpT (t0)]
+ . . .

+2arctan CpT (t) − 2 arctan CpT (t0)

]

, (3.78)
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Define T1
Define a limit, Li

T(t0)=T1

Calculate Tmax,
solving F1(T)=t1

Calculate Tmax−T1
and divide the interval
in reasonable steps (e.g.20)

Calculate time in
steps up to Tmax

T2=Tmax

Calculate Tmin,
solving F2(T )=t2

Calculate time in
steps down to Tmin

T1=Tmin

=DIF

DIF>LI ?
YES

END

NO

T1−T2

T1

Fig. 3.26. Proposed algorithm for calculating temperature as a function of time,
according to (3.77) and (3.78)

holding during “beam off” (pause). The time t0 is the time at the begining
of the beam pulse (3.77), respectively, at the end, which coincides, of course,
with the beginning of the “beam off” time (3.78). T (t0) is the corresponding
temperature of the target. The solution holds for a thin material radiating
into both hemispheres.

With (3.77) and (3.78), the time dependence of temperature is given in
a relatively complex connection. To determine the target temperature as a
function of time, a numerical procedure can be implemented. A simplified
algorithm is shown in Fig. 3.26. The following definitions and abbreviations
have been introduced in the flow diagram:

• F1(T ) as the right-hand side of (3.77),
• F2(T ) as the right-hand side of (3.78),
• t1 as the beam pulse length (beam on), and
• t2 as the length of the pause (beam off).
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Fig. 3.27. Calculation of the steady state for a thin tungsten target, cooled only
by thermal radiation. Left: calculation according to (3.77) and (3.78), applying an
numerical algorithm as shown simplified in the flow diagram of Fig. 3.26. Right,
top: calculated swing in temperature. Right, bottom: curve, marked 1 calculated
temperature from the dc-calculation taking the average power PDC over one cycle.
Curve marked 2 calculated heating up with PDC according to (3.77)

Example

Tungsten, ∆x = 0.2mm
Environment temperature, Te = 300K
Pulse length (beam on): t1 = 50ms
Pause (beam off): t2 = 150ms
Beam pulse power: Pp = 3W / mm2

Equivalent dc-power: Pdc = 0.75W/mm2

Figure 3.27 shows the results. The swing between Tmax and Tmin in-
creases with decreasing duty factor. The example is typical for the maximum
power ratings on a tungsten wire of a profile grid. Similar calculations have
been performed for SiC fibers [172].

Conclusion

The connections discussed between thermal effects, the relevant parame-
ters of highly intense particle beams, and the physical-mathematical prop-
erties of construction materials should enable a designer of beam intercepting
beam diagnostic devices to solve even more complex problems concerning this
matter.
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Beam Profile Measurements

In accelerator physics, the density distributions of particles over the two trans-
verse coordinates x (horizontal) and y (vertical) are called beam profiles. As
discussed in Chap. 6, beam profiles can be derived from the two-dimensional
transversal subspaces of six-dimensional phase space, occupied by the ensem-
ble of all particles. Hence, emittance measurements in the transverse phase
planes automatically deliver also the beam profile (see Chap. 6).

Beam profile measurements and their continuous monitoring are important
during routine machine operation as well as for accelerator experiments to
optimize parameters settings and study space charge effects. Determination
of the beam width from a profile measurement is important for matching
different parts of an accelerator facility in the transverse phase planes. On the
other hand, dependency of the beam width on beam intensity may indicate
space charge effects. Furthermore, separation of isotopes by analyzing magnets
as well as determination of the charge numbers in complex stripper spectra
require beam profile measurements. There is a great variety of measuring
devices, depending on the kinds of particles, intensity, and energy. Devices
can be classified into

• non-destructive or nearly non-destructive devices, such as harps, profile
grids, SEM grids, residual gas ionization monitors, viewing screens (holds
only if the penetration depth is large in comparison to the screen thick-
ness), and wire scanners,

• destructive devices, such as segmented Faraday cups, Faraday cup - scan-
ning slit combinations, and sandwich detectors used for emittance mea-
surements (see Chap. 6).

4.1 Profile Grids, Harps

One can classify these types of detectors according to the following criteria:
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• The penetration depth of the particles is small in comparison to the thick-
ness of the grid wires or strips. This is typical for protons or heavy ions
with relatively low energies delivered mostly by linacs. In this case, the
electric current signal from a wire or strip is the sum of the charge of
the stopped particle itself and the escaping secondary electrons (assuming
there is no secondary electron suppression). Therefore, the profile signal
will gain from the secondary electrons, if positive ions hit the wires/strips,
and the signal will be lowered if negative ions hit the wires/strips. When
charged particles are completely stopped, thermal heating due to the en-
ergy loss has to be considered, since it may be the limiting factor with
respect to the maximum allowed beam intensity on the grid. Typically,
about 10% of the beam area is covered by wire grids and, therefore the
transparency is of the order of 90%. For grids consisting of thin detector
strips, transparency is lower.

• On the other hand, if the thickness of the grid wires/strips is small in
comparison to the penetration depth of the particles, the particles will
go through, and the signal from the grid is generated only from escaping
secondary electrons. As a consequence, the signals are in general much
smaller than when the particles are stopped, especially if one considers
highly positive charged heavy ions. Therefore, in many cases, so-called
SEM strips having a larger cross section perpendicular to the beam are
used, which improves the yield of secondary electrons. For energies above
about 1GeV/u, the specific energy loss is relatively small and therefore
thermal heating may be neglected in most cases.

Typical specifications of profile grids are given in Table 4.1.
Thermal protection (see Table 4.1) by a light-sensitive diode can be used

to trigger a fast device to attenuate or even stop the beam in front of the
grid. Figure 4.1 shows some construction details of a typical profile grid. If

Table 4.1. Typical parameters of profile grids

Diameter of wires 0.05–0.5 mm
Spacing 0.5−5 mm
Length of wires 40−100mm
Number of wires 15−127
Material W-Re alloy (typical)

Material of tension springs Duratherm R© 600
Tension ≈ 0.5−0.6 N

Signal wires Kapton R© isolated
Insulation (frame) Glass ceramics, Al2O3, peek
Vacuum performance � 10−7 mbar
Maximum power rating (dc) � 0.5 W/mm2

Maximum power rating (pulse) Depends on many parameters; see text
Thermal protection Light-sensitive diode



4.1 Profile Grids, Harps 107

Fig. 4.1. Construction drawing (overview from the front side) of a typical profile
grid [33]. To reduce the number of required signal processing channels, a larger
spacing outside the center has been chosen

the thermal load on the wires can be neglected, tensioning of the wires is not
necessary, which results in a simpler and cheaper design. The grid itself can
be completely dismantled from the compressed air actuator by releasing only
one screw. All signal cables from the grid to the vacuum-tight connector are
fed via a second internal connector mounted on the grid frame, usually made
from vacuum compatible plastics (up to 10−7 mbar) but may be also made
from ceramics, which can be baked. Figure 4.2 is a photo of a prototype with
96 wires per plane and 0.5-mm spacing. The frame consists of machinable
ceramic and each wire is tightened up by a Duratherm R© spring. From the
prototype, it follows that 0.5-mm spacing seems to be the minimum for this
type of grid.

4.1.1 Signal Processing

As discussed in the context of emittance measuring systems in Chap. 6, sig-
nals can be amplified by current to voltage conversion (I/U converter) or by
applying the switched integrator principle (see Fig. 6.7 in Chap. 6). The per-
formance of both types is determined mainly by the time structure of the
beam current. In Fig. 4.3, the current required to obtain an output signal
of 1 V is compared for both types, assuming a conversion rate of 2 nA/V in
the most sensitive range of the I/U converter [173] and a conversion rate
of QU = Q/U = 10−10As/V for the switched integrator type ACF2101 (inte-
grated circuit). Figure 4.4 shows a computer display of three measured profiles
from an 11.45-MeV/u 12C6+-carbon beam in the transfer channel from the
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Fig. 4.2. Prototype [33] of a profile grid with 96 wires/plane and 0.5-mm spacing
of the wires. Each wire is tightened up by a Duratherm R© spring. The prototype
shows only one plane. The Kapton R©-isolated wires on the right and left-hand sides
are connected to two 55-pin connectors

Fig. 4.3. Comparison of an I/U converter with a switched integrator (IC ACF2101)
with respect to the required pulse current dependent on the pulse length or integra-
tion time, respectively

UNILAC to the SIS. Since the pulse length in the transfer channel is below
1ms in this operating mode of the UNILAC, signal processing is based on the
I/U converter principle. An integration time of 500 µs has been chosen for
the sample and integrator stages following the I/U converters. To smooth the
profiles, a spline fit is applied to the measured raw data, which also allows
mathematical localization of the peak centers. Taking advantage of such fit-
ting procedures also gives the possibility of increasing the spacing of the wires
outside the center, which reduces the number of required signal processing
channels and therefore the costs of mechanics and electronics.
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Fig. 4.4. Three measured profiles in the transfer channel from the UNILAC to the
SIS of GSI. The horizontal profiles are displayed on the left; the vertical ones are
displayed on the right. The abscissa is scaled in millimeters

Remark. Attempts to simplify the electronics by multiplexing the signals
from the wires sequential to only one signal processing channel have shown
that the effort is comparable to a system with one channel for each wire.
This is caused by the requirement to ground all unconnected channels to
avoid charging the wires to relatively high potentials in a short time. Another
drawback of this method, especially for many channels and rather fast changes
in the beam intensity, can be the time delay between signals.

4.1.2 Minimum Current Required per Wire

For the I/U converter, the output does not depend on integration time. There-
fore, it may be worthwhile to estimate the minimum current required per wire.
Experience has shown that a current leading to 50-mV output voltage from
the wire at the center of the profile is about the detection limit. Taking the
conversion rate of 2 nA/V, this corresponds to a current of 100 pA. Of course,
the corresponding total beam current depends on the beam size. Assuming a
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Fig. 4.5. Minimum beam current required to collect 100 pA on the wire at the
center of the beam

round beam with a symmetric Gaussian intensity distribution in both trans-
verse directions, the required minimum is given in Fig. 4.5. In the calculation,
only the primary beam current has been considered. The contribution of sec-
ondary electrons may be estimated from Fig. 4.6.

Fig. 4.6. Roughly estimated number of secondary electrons per incident ion with
the energy of the incident ion as a parameter. The data have been scaled ∼ z1.5

from various data found in the literature (e.g., [203])
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4.1.3 Maximum Current on a Wire

The maximum current on a wire is limited

• due to thermal heating, leading to break of the wires,
• by too high thermal emission of electrons according to the Richardson -

Dushmann law (see Chap. 6, Sect. 7 for more details). In this case, the
measured profile peak is strongly enhanced in the center of the beam. From
this point of view, a maximum temperature of about 1900–2000 K seems to
be tolerable. Test measurements in the laboratory [174] have shown that
the wires break at about 2200 K.

Due to the very small cross section of the wires and the rather low heat
conductivity of the W-Re alloy, heat transfer along the thin wire can be ne-
glected. Because there is also no convection in a vacuum, cooling of the wires
takes place only via radiation. For a pulsed beam maximum, minimum as well
as swings in temperature depend very much on pulse length and duty cycle.
A more detailed discussion of this thermal problem as well as description of
a program algorithm for the calculation of the steady state is given in Chap.
3, Sect. 3.59. Assuming a maximum temperature of 2000 K at the end of each
beam pulse, the allowed maximum power density Pd deposited on a wire is
given in Table 4.2 for some typical macropulse lengths Tp and duty factors
D = Tp/(Tp +Tpause) = Tp f p (fp is the repetition frequency of macropulses).
In the last column of the table, the swing in temperature after reaching the
steady state is given, too. The Pd values for D = 16.7% compare well with
the value of about 0.5 W/mm2, given in Table 4.1 for a dc-beam.

Table 4.2. Calculated maximum power density deposited on a W-Re wire in depen-
dence of the time structure of the beam pulses. In the last column, the calculated
swing in temperature is given. The data hold for a maximum temperature of 2000K
in the steady state.

Tp Tpause D Pd [W/mm2] Tswing[K]

200 µs 0.5 s 3.998 × 10−4 500 438
200 µs 0.1 ms 1.996 × 10−3 190 166
200 µs 10 ms 0.02 27 24
200 µs 1 ms 0.167 3.2 2.8

1 ms 2.5 s 3.998 × 10−4 190 832
1 ms 0.5 s 1.996 × 10−3 102 437
1 ms 50 ms 0.02 22 94
1 ms 5 ms 0.167 3 11
5 ms 12.5 s 3.998 × 10−4 53 1160
5 ms 2.5 s 1.996 × 10−3 38 828
5 ms 0.25 s 0.02 14.5 310
5 ms 25 ms 0.167 2.8 51
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4.1.4 Algebraic Reconstruction Techniques

When monitoring beam profiles with profile grids, consisting of two planes
of wires (horizontal, vertical), one has to keep in mind that an integration
of the intensity distribution along a wire takes place. This integration can
result in misinterpretations, if one deals with “strange” profiles (for exam-
ple, from a hollow beam). To improve the performance of standard profile
grids in resolving such “strange” profiles, integration over one direction (over
the wire length) has to be avoided [mathematically, I(x, y) �= I(x) × I(y)].
A solution of the problem can be the rotation of a so-called harp around
the beam axis and applying the multiplicative algebraic reconstruction tech-
nique (MART) to data, measured at various angles. With this method, very
complex beam profiles can be reconstructed. The method is well known in
medical applications as computer tomography (CT), but one also finds appli-
cations in electron microscopy and accelerator physics [175–184]. Of course,
the computer-controlled rotation of a harp inside the vacuum system compli-
cates the construction design. On the other hand, it also halves the number
of required signal processing channels, which saves costs.

Short Description of the Mathematical Problem

To determine is the intensity distribution I(x, y) defined by the beam in a
limited region G, but, instead to have the information about the function
I(x, y) at any x, y, one has only the integral along a straight line g (the wire)
through the region G. Assuming that the function I(x, y) does not change very
much in certain subregions of G, one divides the region G into m subregions
where I(x, y) is approximated by piecewise constant functions. This simplifies
the problem because the integral along g can be replaced by the sum,

∫

g

I(x, y)ds →
m∑

i=1

siLi , (4.1)

with si as the approximated constant value of I(x, y) within the subregion i
and Li as the length along g bounded by the subregion i. Obviously, Li = 0 if
the path along g does not cross the subregion i. Having a harp with k wires,
one measures k intensity values Tk:

Tk =
∫

gk

I(x, y)ds ≈
m∑

i=1

siLik (4.2)

with unknown subintensities si. Hence, the approximation results in a system
of linear equations which can be solved unequivocally, if there are i = n × k
measured values, where n is the required number of different viewing angles
of the harp. To achieve good resolution, the number of subregions should be
� k or, in other words, the integral along a wire should be approximated by a
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Fig. 4.7. Reconstruction of simulated data using the an extended MART - technique
[185]. 18 different viewing angles between 0◦ and 180◦ have been used to reconstruct
the cylinder in the hollow cylinder

sufficiently large number of short pieces. In general, the number of measured
values is smaller than required, and, therefore numerical solutions are intro-
duced. The MART algorithm [185] is based on maximization of the entropy,
defined by the number of subregions, their shapes, the measured values of T ,
and the L values. This algorithm uses subregions in the shape of hexagons,
which are formed when the harp is positioned at 0◦, 120◦, and 240◦. An ad-
vantage of this method is that the lengths of all L′s are equal. To improve
the solution, the algorithm has been extended to an arbitrary number of
view directions and quadratically shaped subregions [185]. A drawback of this
method is that the lengths L differ along the lines, but taking advantage of
computer programs, this problem is easily solved. The results from a simu-
lation with numerically generated data describing a cylinder inside a hollow
cylinder are displayed in Fig. 4.7. From the figure, it becomes clear that,
due to the integration over one coordinate, the cylinder in the hollow cylin-
der cannot be observed in the one-dimensional profiles. On the other hand,
the algebraic reconstruction of the contour plot (bottom right) shows it very
clearly. Due to increasing medical applications of tomographic techniques, the
reconstruction algorithms have been refined considerably in recent years. A
method, described as the filtered-back projection technique [184], has been
developed at the Brookhaven National Laboratory (BNL). The technique is
applied to signal evaluation of a residual gas ionization monitor in the Rela-
tivistic Heavy Ion Collider (RHIC). It is based on a mathematical sequence,
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consisting of one- and two-dimensional Fourier transforms, convolution, and
back-projection by inverse Fourier transforms. The procedure has been ap-
plied to reconstruct contour plots in two-dimensional transverse phase planes
from about 40 beam profile measurements.

4.2 Profile Grids with Gas Amplification (MWPC)

In case of higher beam energies, particles go through wires/stripes with the
following consequences:

• There is no direct contribution from the charge of the passing ion to
the electrical signal. Then the signal comes only from the emitted sec-
ondary electrons. Considering, for example, the SIS, where uranium ions
are stripped before injection at 11.5 MeV/u to charges around 70+ this
results in a considerable loss in signal strength.

• As discussed in Chap. 2 for SEM monitors, the emission of secondary
electrons decreases with increasing energy of incident particles due to lower
specific energy loss and increasing penetration depth. This causes a further
reduction in signal strength at higher energies.

Increasing medical applications in the field of cancer therapy [117] require
precise beam profile measurements. For this application, the energies are of
the order of some 100 MeV/u, and the required intensities for protons or
ions with rather low atomic numbers such as 12C6+ ions are relatively low.
Thus, the signals from conventional profile grids and harps are too small. The
same arguments hold for proton machines, provided for high energy physics
experiments, delivering energy of the order of some GeV.

As a consequence, multistep avalanche chambers known as multiwire pro-
portional chambers (MWPC), first described by Breskin et al. [186] are com-
ing more and more into use for beam monitoring. A schematic layout of a
MWPC is shown in Fig. 4.8. There are three planes with thin wires inside
a vacuum-tight case: two cathode planes, one with vertical wires to measure
the horizontal profile and another one with horizontal wires to measure in the
vertical direction. On the anode plane which is located between both cathode
planes, the thin wires are arranged diagonally. The anode plane is held at a
positive potential of 2–2.5 kV. The case is sealed against the vacuum pipe by
two very thin foils (typically 25 µm) and filled with a mixture of Ar and CO2

(ratio around 90 : 10) at atmospheric pressure. An impinging ionizing particle
liberates electrons in the gas, which are multiplied in the high electric field be-
tween cathodes and anode. The gain due to this multiplication is of the order
of 103–104 and can be easily controlled by changing the high voltage. In the
current readout mode, each wire of the cathode plane is at virtual ground via
an operational amplifier. Depending on the beam pulse a length, respectively,
integration time, the operational amplifier works as a current to voltage con-
verter or switched integrator (see Fig. 6.8 in Chap. 6). In this operating mode,
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Fig. 4.8. Scheme of a MWPC for beam profile measurements

one obtains global information on the spatial distribution of the particles in
the detector planes. The current readout mode is appropriate for beam profile
measurements in the high energy lines of large machines. In medical applica-
tions for cancer therapy by protons or heavy ions, large MWPCs are arranged
outside the vacuum system in front of patients. Figure 4.9 shows an exploded
view of a chamber [187] with an active area of 400× 400 mm2, provided for
beam profile monitoring at the so-called ISO-center of a cancer therapy facility
working with protons. In this chamber, the amplification gap between the an-
ode and each cathode is 5 mm. Therefore the localization of highly misaligned
beams, strongly focused or defocused beams differ. To reduce this effect, gaps
will be reduced to 3 mm in an improved new version [188].

In experimental applications, physicists are often interested in the po-
sitional information, event-by-event, and the device can be supplemented
by a so-called preamplifier gap in front of the cathode/anode planes [189].
This leads to two-stage gas amplification with an overall gain of the order
of 105–106. Due to the very high gain in the avalanche, the width of the
Gaussian shaped charge distribution on cathode planes is of the order of 20 mm
(FWHM, [189]). Hence, more than one cathode wire (e.g., 5) are connected to
an amplifier and analog-to-digital converter (ADC). The data are processed
to a computer to determine the position by a center of gravity (COG) calcu-
lation. This method is rather complex and expensive. An alternative method
is based on the delay line technique, converting the information about the po-
sition via commercially available delay lines into time differences, which are
analyzed by a time to digital converter (TDC) [189].

4.3 Wire Scanners

Profile signal generation from a wire scanner is comparable to that from a
profile grid. However, instead of many wires covering the beam cross section,
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Fig. 4.9. Exploded view of a large MWPC [33,187] for beam profile measurements
outside a vacuum system

only one wire is moved through the beam. Referring to the remark concerning
multiplexing signals from the wires of a grid to only one signal processing
electronic circuit, the motion of the wire overtakes this function. There is a
great variety of devices in use [190–200]. Most popular are scanners performing
a linear motion through the beam and rotating wire scanners. Figure 4.10
shows the head of a wire scanner provided for moving under 45◦ through the
beam by a motor driven UHV feedthrough. The scanning speed is typically
in the range of 10–20mm/s. Due to the motion under 45◦, the profiles in both
directions (horizontal and vertical) can be monitored at the same time. The
required displacement, the wire length, and the aperture of the fork have to
be scaled by

√
2 to cover the beam cross section. Tension springs made from

Duratherm R© 600 are provided on both sides of the scanning wires.
Another scanning mode takes advantage of two wires, mounted at an angle

of 90◦ onto a vibrating support [191]. The vibrating motion is performed by
an electromagnet. The device has to be mounted onto a 45◦ port of a vacuum
chamber to perform profile measurements in both transverse directions at the
same time.
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Fig. 4.10. Head of a wire scanner [33] moved under 45◦ through the beam

The so-called Hortig scanner [190] uses a rotating wire, which allows scan-
ning speeds of the order of some millimeters/milliseconds. Figure 4.11 shows
the head of such a scanner. The shape of the spiral allows scanning in both
transverse coordinates, if the scanner is mounted on a 45◦ vacuum chamber
port. To avoid deformation of the spiral due to fast rotation and/or thermal
heating, the scanning wire is driven from both ends. The achievable resolu-
tion is limited to about 1mm by the diameter of the scanning tantalum wire.
The scanner rotates at 750 rpm, which corresponds to a scanning speed of
1.34 mm/ms. The maximum measurable beam spot size is ≈ 35 mm.

4.3.1 Wire Scanner Versus Profile Grids

When deciding between profile grids or scanners, the following points should
be taken into account:

• With a profile grid, the beam intensity is always sampled at the same
time, whereas a moving wire will sample the profile at different locations
at different times. Therefore longitudinal variations of the beam intensity
are mixed with transverse intensity variations. This holds especially during
the rise time of a beam pulse caused by the finite response time of pulsed
ion sources.

• For pulsed beams, exact synchronization of an electromechanical system
such as a scanning device is complicated.

• For a profile grid system, the signal-to-noise ratio can be enhanced by
integration of the acquired signal. This is not possible for a fast scanner.
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Fig. 4.11. Head of a rotating wire scanner, according, to Hortig [190]

• Considering a rotating wire scanner, as for example shown in Fig. 4.11, the
geometric duty factor, caused by the rotation, reduces the thermal load
and therefore allows a higher beam power loss than a static grid.

• Changes of the secondary emission efficiency, caused by high beam power
and/or long operating time, have a smaller effect on the measured profiles
if a scanning wire is used.

• Considering especially, the electronics for signal processing is much cheaper
for a scanner than for a profile grid system.

4.3.2 Flying Wire

Profile grids, harps, and scanners, as discussed above, cannot be used in circu-
lar machines (synchrotrons, cyclotrons, storage rings) because the beam will
be destroyed due to the large number of repetitive passes. For beam profile
and emittance measurements in the proton synchrotrons of CERN, a very
fast scanner sometimes called a “flying wire” was developed [194]. Taking ad-
vantage of pneumatic or spring-loaded drive systems, scanning speeds up to
20 m/s can be achieved. Since the energy loss dE/dx in the scanning wire is
proportional to ρZ/A, the scanning wire should be made of a material with
low specific weight and a low atomic number such as carbon, SiC, or Be. The
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Fig. 4.12. Specific energy loss in a beryllium target normalized to the loss of pro-
tons. See text for details

wire thickness can be as low as 10 µm. But, keeping in mind the relatively
short revolution times of circular machines of the order of microseconds, the
measured profile results from a mix of transverse-intensity distribution and
longitudinal variations of the beam intensity. Nevertheless, the flying wire has
proven itself versatile tool for probing the steady-state transverse-intensity
distributions in circular proton machines. However, considering circular ma-
chines for acceleration or storage of heavy ions, the use of flying wires is limited
due to the much higher specific energy loss of heavy ions. This is demonstrated
in Fig. 4.12, comparing the specific energy loss of C, Ne, Ar, Xe and U ions
with the specific energy loss of protons in the energy range between 100 and
2000 MeV/u. The data hold for a beryllium target and are the average from
calculated specific energy losses [122] at 100, 500, 1000, and 2000MeV/u. As
a consequence, flying wires cannot be used in heavy ion synchrotrons.

Example
Scanning wire: Beryllium with a diameter of δx = 50 × 10−3 mm
Specific weight of Be: ρBe = 1.848 g/cm3

Scanning speed: v = 20m/s
Beam radius: Rbeam = 10mm
Beam energy: W = 1000MeV/u
Ion species: 238U73+

Specific energy loss (U→Be) at 1000MeV/u: � 15.2MeV/(mg/cm2)
Number of ions: NU = 5 × 1010 (about the space charge limit)
Revolution time: Trev = 825 ns

With the specific weight of beryllium, the maximum target thickness comes
out to ρδx = 9.24mg/cm2. The part of the beam that hits the scanning wire,
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is about p = 0.003. This gives a power loss in the scanning wire of

Pwire =
15.2 pNu ρδx

Trev
� 4.1 kW (4.3)

during the movement through the beam within about 1ms. Taking the same
number of protons with 1000 MeV, one gets Pwire � 0.5W. As a consequence of
the much higher energy loss for the uranium beam, the wire will be destroyed
in a short time, and also the beam will be lost due to the high energy loss per
turn.

4.4 Scintillation Screens

The combination of a scintillation screen with a CCD camera for observation
of the light spots is a very simple, reliable profile monitor. This combination
does not require computer control or computerized signal processing, such as
more sophisticated monitors. Thus viewing screens can be very useful dur-
ing commissioning periods and for troubleshooting. This implies that viewing
screens should be installed in addition to other monitors at all critical points
along a beam transport system. Figure 4.13 shows a compact unit, consisting
of an electromagnetic lifting system, which drives a simple flipping mechanism
to move the viewing screen in and out of the beam. The electromagnetic lifter
has a stroke of 10mm and operates at 24V/ 0.85 A. A quartz window, mounted
onto the supporting CF flange allows observation of the beam spot by a CCD
camera. The window also allows illumination of the screen by an external light
source. If a graticule is provided on the screen, a factor of

√
2 has to be taken

into account for the spacing of the lines due to the 45◦ mounting. Further-
more, it may be advantageous for the operators to mark the screen with signs
such as U = Up, D = Down, L = Left, and R = Right. To avoid charging the

Fig. 4.13. Picture of a viewing screen mounted onto an electromechanically driven
flipping mechanism [33]
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non-conducting screen material, coating of the screen with a thin conductive
layer is essential. Of course, the scintillation material has to be matched to
the kind of ions and their energy, as well as to the expected beam currents.
Additionally, the beam power deposited on the screen has to be considered to
avoid thermal damage to the screen. The most important criteria for selecting
a scintillation material are [120]

• The wavelength of the emitted light should be in the range 300 nm< λ <
700 nm to match the optical properties of commercial CCD cameras.

• High intensity of the emitted light, a high dynamic range, and good lin-
earity between the incident particle flux and the light output are of impor-
tance. Saturation effects will lead to falsifications of the recorded profile
signals.

• The absorption of the emitted light by the screen material itself should be
as low as possible to prevent artificial broadening by stray light.

• To observe transients and fast variations in the beam profile, a fast decay
time is essential.

• To produce large screens, the material should have good mechanical prop-
erties for machining and mechanical strength.

• To achieve long operating times, the material should have high radiation
hardness, which automatically excludes plastic scintillators.

Table 4.3 summarizes the relevant properties of most used scintillation
materials [201], [126].

Chromolux [202] (also named Chrolox6R) is a very robust ceramic, which
is very often used to measure beam profiles in the external beam lines of
synchrotrons with slow extraction. Most of the tests of lifetime and sensitivity
were performed with minimally ionizing protons, and, therefore, scaling to low
energies and to various ion species is difficult. Assuming a minimal number
of 2× 106 protons/mm2, required within the decay time of Chromolux ([203],

Table 4.3. Chemical composition and relevant optical properties of some often used
inorganic scintillation materials

Name Material Activator λmax Decay time

Quartz SiO2 None Optical < 10 ns

CsI Tl 550 nm 1 µs

ZnS Ag 450 nm 0.2 µs

Chromolux Al2O3 Cr 700 nm 100ms

Li glass Ce 400 nm 0.1 µs

P43 Gd2O2S Tb 545 nm 1ms

P46 Y3Al5O12 Ce 530 nm 0.3 µs

P47 Y2Si5O5 Ce 400 nm 50 ns
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Fig. 4.14. Required number of particles hitting a Chromolux viewing screen within
the decay time. The data have been scaled from measured data for protons. See text
for details

[202]), a rough estimation for other particles is possible by scaling the data
∼ Z2 [204] (Z is the atomic number of the incident ion). Figure 4.14 shows
the results of such scaling for ions up to uranium assuming beam radii of 2, 5,
and 10mm.

The materials named P43, P46, P47 are scintillation phosphor screens,
where a powder is deposited on glass or metal plates. The best optical prop-
erties use Ce-activated materials, which are also used for analog oscilloscopes,
electron microscopes, and image intensifiers. Due to the rapid development of
digitizing circuits, most CCD cameras are equipped with a digital output of
the CCD-pixel signals, which allows completely computer-aided evaluation of
beam profiles dependent on time.

4.4.1 Scintillation Screens Versus Profile Grids

Comparing scintillation screens with profile grids, one should keep in mind
the following points:

• Usually the beam losses are lower for a profile grid. Therefore, the emit-
tance growth caused by multiple scattering is smaller for a grid system.
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• At low energies, particles are completely stopped in the screen material
and therefore the viewing screen acts as completely destructive beam inter-
cepting device. On the other hand, the transparency of a grid is determined
only by the spacing and diameter of the wires. This allows the observation
of more than one profile at the same time along a beam line. Only at very
high beam energies will this be possible with viewing screens, too.

• The response of various scintillation materials depends on many parame-
ters, such as energy, ion species, and time structure of the beam. Therefore,
different scintillation materials may be required at large, universal accel-
erator facilities.

• The separation of horizontal and vertical profile projections, which is char-
acteristic for grids, can be advantageous for beam alignment by operators.
Of course, this separation can be performed for a scintillation screen by
applying appropriate computer algorithms.

• The dynamic range is higher and linearity is better for profile grid electron-
ics. This can be important in view of the diversity of heavy ion accelerator
facilities.

Although most of the summarized points favor grid systems, viewing
screens offer the most direct way of beam observation and are installed in
nearly all accelerator facilities from the source up to the target.

4.5 Residual Gas Ionization Monitors

A highly ionizing particle, passing a certain volume ∆V in a beam transport
system, generates ion-electron pairs due to collisions with the atoms or mole-
cules of the residual gas within ∆V . The fact that the number of liberated
ion-electron-pairs is directly proportional to the beam intensity within ∆V
allows nearly non-destructive beam profile measurements by collecting the
ionized particles. The first devices using this technique were developed for
proton machines in 1967 [205,206]. Many similar devices based on this princi-
ple have been developed since that time [207–218], including a sophisticated
device, the so-called ionization beam scanner [210]. Although the number of
electrons liberated by the ionization process is exactly equal to the number of
positive charges generated, the collection of positively charged ions is preferred
for beam profile measurements with high resolution, due to the following facts:

• The momentum transfer to the electrons and ions perpendicular to the
collecting electric field caused by the space charge field of the beam is much
larger for electrons, which reduces the achievable resolution if electrons are
collected [215,216,218,223].

• The same argument holds considering the recoil caused by the ionization
process itself [215,218,224].

Nevertheless, there are some special applications based on the collection
of electrons. A rather complex device, provided for measurement of the longi-
tudinal intensity distribution is described in Chap. 6, Sect. 7. A device, which
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collects the electrons as well as the ions to measure horizontal and vertical
profiles at the same time with only one electrode system, is discussed in [215].

The designer of a residual gas ionization monitor has to take into account
some important differences between devices provided for linacs and transfer
systems, on the one hand, and devices provided for circular machines deliver-
ing or storing particles at high energies, on the other hand:

• Typical pressures in linacs and transfer lines are of the order of 10−6–
10−8 mbar, whereas the pressure in synchrotrons and storage rings, is
mostly of the order of 10−9–10−11 mbar.

• Due to the different vacuum pumps in linacs and transfer lines, the residual
gas is composed mainly of N2,O2 and only 10–20% H2, in circular machines
H2 makes the highest contribution (up to 90%).

• In many cases, the velocity of the accelerated/transported ions in linacs
and transfer lines is well below relativistic values, and, therefore, the spe-
cific energy loss is much higher than that for circular machines, operated
mostly at relativistic energies. As a consequence, the number of liberated
electron-ion pairs differs very much in both cases.

• low particle energies, the deflection of the particles by the collecting field
is much higher and if not tolerable, has to be compensated by additional
steering devices.

• Last, but not least, the different time structure of the beam has to be
considered in the design of a monitor, too.

4.5.1 Example for the Linac Case

Due to the high ionization cross sections, it can be sufficient to collect the
liberated ions (electrons) on metal strips and feed the signals to conventional
profile grid electronics of the type of I/U converters or switched integrators.
Figure 4.15 shows a monitor, which can be rotated around the beam axis
to perform tomographic data evaluation, as discussed above. The monitor is
equipped with 15 collector rods having a diameter of 1mm and covering a
width of 30mm.

Signal Calculation

Experience has shown that the expected signals can be calculated within an
accuracy of about 30% from energy loss data in N2 and H2 gas (see Fig. 7.16,
Chap. 6, Sect. 7). In the energy range between 2.2 keV/u and 11.5 MeV/u, the
ratio between the primary beam current and the expected electron current
collected on all detector strips has been calculated, assuming the following
parameters:

Diameter of the collector rods: 1 mm
Spacing between the rods: 1 mm
Length of the rods: 100mm
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Fig. 4.15. Study of a rotatable residual gas ionization monitor [33]

Vacuum pressure: 10−7 mbar
Residual gas composition: 80% N2, 20% H2

W value: 36.5 eV (assumed to be the same for N2 and H2 [120])

Since the example is from the UNILAC with two strippers, one at 1.4MeV/u
and one at 11.5 MeV/u, the current ratio has been calculated for the energies,
ion species, and charge states given in Table 4.4.

Table 4.4. Energies, ion species, and their charge states used for the calculation of
expected ion currents from residual gas ionization, shown in Figure 4.16

Beam energy [MeV/u] Ne Ar Xe U

0.0022 1+ 1+ 2+ 4+
0.5 1+ 1+ 2+ 4+
1.4 1+ 1+ 2+ 4+
5 7+ 10+ 20+ 28+

11.5 10+ 18+ 46+ 72+
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Fig. 4.16. Expected total current from residual gas ionization. See text for the
parameters

The results are shown in Fig. 4.16, taking energy loss data from [122,225].
Assuming primary currents in the range between µA and mA leads to accept-
able signals, using I/U converters with conversion rates between nA/V and
µA/V. In an experiment, calculated signals were compared with measured
signals for W = 2.2 keV/u. The result is shown in Fig. 4.17. For signal calcula-
tion, a parabolic intensity distribution in both transverse directions (centered
around zero) 17.7mm wido (FW) was assumed. The agreement within about
30% confirms the approximative calculability based on energy loss data and
W values.

Fig. 4.17. Comparison of expected profile signals from a residual gas ionization
monitor with measured data. Relevant data: pressure 4 × 10−7mbar, beam current
6mA Ar1+ ions, I/U-conversion rate 0.2 µA/V, collecting field 50 V/mm
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The Steering Effect

Due to the collecting field of the order of ∼500V–1 kV/cm, considerable deflec-
tion of the primary beam at low beam energies has to be taken into account.
The deflecting angle is given by

x′ =
ẋ

ż
=

ζ eE L

Am0c2 β2 , (4.4)

where ζ is the charge state of the ion; e = 1.602×10−19As; E is the collecting
field strength; L is its extension in the beam direction, including the fringing
fields on both sides; A is the mass number of the ion, m0c

2 = 931.5016MeV;
and β = v/c = ż/c. Depending on the beam energy and the tolerable x′,
the deflection may be compensated for by steerers behind, or in front of and
behind the monitor.

Space Charge Effects

There are two monitors, based on residual gas ionization, installed in the
stripper section of the UNILAC: one to measure the transverse beam profiles,
collecting ions, and the other one to monitor the longitudinal intensity distri-
bution within the bunches, collecting electrons. The measured data from both
monitor systems are influenced by space charge forces from the electromag-
netic bunch fields, which are discussed in Chap. 8. The space charge effects
on the bunch shape monitor, collecting electrons, are studied in Chap. 7.

Due to the higher mass, the momentum transfer to ions liberated from the
residual gas is much smaller than that for electrons. On the other hand, the
acceleration of the ions in the collecting field is much smaller. This fact, in turn
leads to a longer interaction time between the space charge of the bunch and
the ion. Therefore, for bunched beams, the fast accelerated electrons may “see”
only the space charge force from the bunch in which they are created, whereas
the ions can experience the forces of many bunches, depending mainly on their
velocity βc and their spacing βλ. The problem is illustrated in Fig. 4.18. At
t = 0, the center of one bunch passes the center of the monitor. The bunch
shape is approximated by a sphere, which is a good approximation for the
stripper section of the UNILAC with typical bunch length of the order of
0.5–1ns and a β value of 5.5% (W = 1.4MeV/u). The small inset at top left
shows the shape of the electric field strength, assuming a parabolic charge
density distribution inside the spherical bunch. Due to the integration of the
signals over the collector strips, which are aligned parallel to the z-coordinate,
displacements of the ions in the z-direction have no effect on the measured
profile. The same holds for changes in velocity in the x-direction, since this
leads only to differences in the arrival time of the ions at the collector strips.
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Fig. 4.18. Scheme to illustrate the estimation of space charge effects from moving
bunches on the ions driven to the collector strips by an external electrical field in
the x-direction. λ is the wavelength of the accelerating rf

To study the space charge effect with respect to measured profiles, one
has to consider the action of the field components Ex, Ey, Ez caused by the
space charge and the external field component Eext on the ions. Due to the
movement of the bunch chain as well as the movement of the ions, the field
components are changing permanently. The numerical procedure, which has
been applied to calculate the field components, velocity components and co-
ordinates dependent on time and the initial conditions, is described in more
detail in Chap. 7.

Radius of the spherical bunch: Rbunch = 10mm
Ion species in the bunch: U4+

Number of ions within one bunch: 109

Charge density distribution in the spherical bunch: parabolic
β = 0.055
Eext = 100V/mm
Distance from the center of the beam line to the collector strips: 25mm
Bunches considered in the numerical calculation: 25
Step width in time: 0.1 ns (0.01 ns for electrons; see Fig. 4.22)

Various calculations have been performed with different sets of initial condi-
tions for ions from residual gas. Assuming the ions (H2,N2) start at t = 0
at the center of the bunch with initial coordinates x = ẋ = 0, y = ẏ = 0,
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Fig. 4.19. Electrical field strength “seen” by hydrogen, respectively, nitrogen ions
moving toward the collector strips. Note that the external field Eext = 100 V/mm

Fig. 4.20. Illustration of the repulsive space charge forces acting on the positive
ions during the flight time to the collector strip

z = ż = 0, Fig. 4.19 shows that the space charge of more than one bunch acts
on the ions. Figure 4.20 shows the actions of repulsive space charge forces.

Figure 4.21 demonstrates the influence of space charge forces on measured
profiles. It shows the deviations between the required arrival coordinate (which
is just the start coordinate y(0)) and the calculated one. For the parameters of
the example, the maximum space charge force occurs at about r = 7 mm (see
Chap. 8). For this reason, in one set of the initial coordinates, x(0) = −7mm
has been considered. In addition, an initial velocity ẏ(0) of the ions in the y-
direction, corresponding to the thermal energy of 1/40 eV has been assumed
in this set (all remaining initial coordinates are given in the figure). Due to
the lower speed of N2 ions, the space charge force acts a longer time (compare
Figs. 4.19 and 4.20), and, therefore the effect on both ion species is nearly the
same. From Fig. 4.21, it follows that the resolution of the monitor is better
than 1mm, which is tolerable in most cases.
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Fig. 4.21. Deviations between the required arrival coordinate and the calculated
one. Left: hydrogen, right: nitrogen. Set 1 corresponds to the initial coordinates
x(0) = z(0) = ẋ(0) = ẏ(0) = ż(0) = 0. Set 2: x(0) = −7 mm, z(0) = 0, ẋ(0) =
z(0) = 0, y(0) = 4.15× 10−4 mm/ns. Set 3: x(0) = −7 mm, z(0) = 0, ẋ(0) = z(0) =
0, y(0) = 1.55 × 10−4 mm/ns

Fig. 4.22. For comparison: start coordinate (ys) versus arrival coordinate (ya) if
electrons would be collected. See text. The diagram holds for x(0) = z(0) and
ẋ(0) = ẏ(0) = ż(0)

The situation changes drastically if electrons would be collected as shown
in Fig. 4.22 for comparison. From the figure, it becomes very clear that there
is a focusing action of the attractive space charge force, which results in too
small measured profiles. During the flight time of the electron to the collector
in about 1.73 ns, the bunch itself moves 28.5mm. Thus, the distortion results
from the action of only one bunch.

It is well known that the deviations due to space charge forces can be
diminished by an appropriate magnetic field parallel to the electric one. From
the mathematical point of view, it is very easy to consider a homogeneous
Bx field in a numerical algorithm, but it complicates the mechanical design
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of the monitor considerably. As shown in Fig. 4.22, a rather small magnetic
field of 30mT (= 300G) can diminish the deviations to a tolerable level for
electrons. To reduce the calculated deviations for nitrogen and hydrogen (see
Fig. 4.21) remarkable below 1mm, much higher B fields would be required.

4.5.2 Residual Gas Fluorescence Monitor

A completely non-destructive method of beam profile monitoring is residual
gas fluorescence, previously applied at the continuous wave (CW) proton linac
of Los Alamos [226] and the CERN superproton synchrotronsynchrotron [227].
For a pulsed linac with relatively short pulse lengths, the emitted light inten-
sities are rather low, requiring high amplification. The emitted fluorescent
light comes mainly from excited N2 molecules and covers the blue wavelength
range. In an application at the UNILAC [228], the captured photons are con-
verted to electrons by a special photocathode, which has enhanced sensitivity
to UV light with a quantum efficiency of 25−30%. The photocathode is cou-
pled to a double multichannel plate (MCP) MCP of the Chevron type with
a maximum gain of about 106. For further signal enhancement, a moderate
pressure bump can be easily applied. The amplified electron current hits a P46
screen. The light pattern generated is observed with a CCD camera which is
coupled to the image intensifier system via a tapered light guiding system.
Figure 4.23 shows a comparison between profile data measured with the flu-
orescence monitor and a residual gas ionization monitor installed about 1m
behind the UNILAC in the transfer channel of the UNILAC to the SIS. A very
useful property of this image intensifier system is the possibility of switching

Fig. 4.23. Comparison of beam profiles measured at 11.4 MeV/u with a fluorescence
monitor and a residual gas ionization monitor [228]. Both curves are normalized to
the same integral over the intensity distribution



132 4 Beam Profile Measurements

Fig. 4.24. Top: Measured beam width of the macropulse within segments of 40 µs.
Bottom: Comparison of the measured light intensity with the beam transformer
signal (BCT) [228]

the voltage between the photocathode and the first stage of the MCP from
the transfer mode to the block mode. The relatively fast mode change within
only 100 ns offers the observation of segments within the macropulse by con-
trolling the exposure time. In the example of Fig. 4.24, the beam width has
been measured within segments of 40 µs over one macropulse. Additionally,
the intensity within the segments has been determined and compared with
the signal from a beam current transformer (BCT).

4.5.3 Residual Gas Ionization Monitors
for Circular Machines

Due to the much lower pressure in circular machines such as synchrotrons
and storage rings and the small cross sections for ionization at higher ener-
gies, much higher amplification is required. Taking advantage of two-stage
multichannel plates (MCP) of the Chevron-type, an additional gain of the
order of 106–107 can be achieved. To detect the amplified secondary electrons
at the MCP output dependent on position, the designer has a choice among
the following methods:

• Arranging a harp detector behind the MCP, which may consist of thin
wires (∅ < 0.5mm) or more stable rods (∅ � 1mm). But, in contrast to
profile grid or harp designs, the collectors have to be spaced equidistant
in this application. Although the spatial resolution will be limited by the
harp characteristic, the achievable performance is sufficient in most prac-
tical applications. This holds, especially if one considers that beam profile
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Fig. 4.25. Scheme of a MCP-fluorescent screen arrangement, taken from [230]

monitors based on residual gas ionization are rarely used in electron ma-
chines due to the extremely small beam widths in those machines. The
advantage of the method is that standard profile grid electronics can be
used for further signal processin.

• Use of anodes in wedge and strip anodes or resistive anodes [229], [222],
based on the detection of single particles, which can improve the resolution
considerably by collecting data with high statistics.

• Use of a so-called delay line anode and measuring time differences to local-
ize the creation of single ions after signal amplification by the MCP. The
design of such a delay line is rather complicated, especially if one has to
consider fast signals requiring high bandwidth in the delay line.

• Installation of a phosphor screen directly behind the MCP, as shown
schematically in Fig. 4.25, and observing the light pattern created by the
secondary electrons from the MCP output. Obviously, in this case the most
cheap and simple method is to use a CCD camera for image processing.
An advantage is the high achievable resolution. A further advantage may
be the supply of standard interfaces as well as corresponding software to-
gether with commercial CCD cameras. A drawback is the relatively low
time resolution and the limited image rate. Replacing the CCD camera by
a photomultiplier or an avalanche diode [231] improves the time resolution
and image rate.

The characteristics of some examples are discussed in the following.
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Fig. 4.26. Simplified scheme of a beam profile monitor using a MCP in front of a
harp for signal amplification

Example 1

Typical Layout

Figure 4.26 shows the simplified scheme of a monitor, using collector rods
on the back side of a MCP. Due to the very high vacuum as well as the
necessity to back out the beam pipe system, the design of such a monitor
requires experience in construction technique as well as excellent knowledge
in material science. Figure 4.27 shows part of a monitor developed for the
SIS. The MCP, not shown, is arranged directly above the collector rods. To
measure both transverse beam profiles, two monitors are installed in a vacuum
chamber, which is equipped with two sets of deflecting plates to compensate
for steering by the collecting fields.

Signal Estimation

Assuming that the residual gas consists mainly of hydrogen, the expected H+
2 -

ion current has been estimated from measured cross sections [232] given in
Table 4.5 for uranium ions.

Table 4.5. Measured cross section for the creation of electron-H2 pairs by uranium
ions

Energy [MeV/u] 10 20 50 100 200 500 1000

σU

[
10−14 cm2

]
1.8 1 0.4 0.2 0.13 0.06 0.045



4.5 Residual Gas Ionization Monitors 135

Fig. 4.27. Part of a residual gas monitor, showing the 60 collector rods (∅1 mm,
spacing 0.5 mm). GSI Foto

For a collecting length L, the total rate Rt of H+
2 ions results from

Rt = n
NU

Trev(W )
LσU (4.5)

n =
6.022 × 1023 ρH

2
p

pn
, (4.6)

where n is the number of H2 molecules per cm3 at pressure p, NU is the number
of uranium ions in the machine, and Trev is their revolution time dependent
on energy W . For the SIS, the revolution time varies between 4.63 µs at the
injection energy (11.5MeV/u) and 822 ns at the maximum achievable energy
of � 1000MeV/u for uranium ions. Figure 4.28 gives the calculated rates
per millimeters of collecting length and µs assumes NU = 109 U73+ ions in
the machine, a beam radius of 10mm, and a pressure of 5 × 10−11 mbar.
Although, according to Table 4.5, the cross sections vary by about a factor
of 40 between 10 and 1000MeV/u, the expected rates vary only by about a
factor of 6.6 in the energy range considered. Obviously, the decreasing cross
section is partly compensated for by the increasing revolution frequency. For
comparison, the rates have been calculated from energy loss data assuming
a W value of 36.5 eV. At low energies (<20MeV/u), the values agree within
about a factor of 2; at higher energies, the values from the energy loss data are
about a factor of 5 higher than the values from the measured cross sections.
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Fig. 4.28. Calculated total number of H+
2 ions per mm of collector length and µs.

The data hold for 109 U73+ ions in the SIS

But to specify the design parameters of a monitor, these differences should
not be relevant.

Keeping in mind that the collector length can be of the order of 100mm
and the collecting time may be extended up to microseconds, the output of
electrons on the back of a MCP with a gain of 106−107 is more than sufficient
as input for I/U converters. But, due to the universality of the SIS, a dynamic
range of 1 : 8 has to be taken into account, depending on the ion species, the
number of particles in the machine, and their energy. The largest signals are
expected for very heavy ions at rather low energy, as, for example, uranium
ions at the space charge limit (NU � 4 × 1010,∼ 20MeV/u). On the other
hand, very low signals are expected for few light ions at high energy, as, for
example, neon ions with NNe = 104 and W = 1 GeV/u. Considering these
two extreme cases, the expected rate will differ by about a factor of 108.
Adaptation of this broad range of rates to the MCP and the following signal
processing electronics can be performed by

• changing the gain of the MCP,
• mounting a variable slit in front of the MCP,
• varying the collecting time,
• applying a moderate pressure bump, and
• taking advantage of the dynamic range of suitable I/U converter electron-

ics, which can be of the order of 1–106.

Aging of the MCP

To avoid fast degradation of a MCP at the highest rates, the monitor should
not be used for continuous monitoring. It has been found [212, 233] that the
gain of a MCP halves after emission of about 0.1C/cm2. Assuming a rate of
Rt = 0.3/mm µs (see Fig. 4.28), this results in 30× 106 H+

2 ions per cm2µs at
the front side of the MCP. With a gain of 106, this corresponds to an output
current of about 4.8 µA leading to a half-life of T1/2 = 0.1C/4.8 µA� 2×104 s.
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Fig. 4.29. FWHM-bunch length (left in ns, right in m) in the SIS in dependence of
the energy. The data hold for the standard mode working at the 4th harmonics

Resolution

The achievable resolution is influenced by the following parameters [234]:

• The strength and homogeneity of the collecting field,
• The recoil energy of the H+

2 ions,
• The density of the residual gas ions,
• The linearity and homogeneity of the MCP.
• The spacing and voltage between the MCPs,
• The spacing and voltage between the last MCP and the collecting anode,
• The spacing and dimensions of the collector strips,
• The parallelism between the beam and the collector strips, and
• The action of space charge forces on H+

2 ions.

Considering the action of space charge separately, a resolution better than
1mm can be achieved by careful design of the mechanics and optimized elec-
tronic parameters.

Space Charge Effects

For the SIS, the space charge limit of U73+ ions is about 4×1010. Referring to
Fig. 4.18 and the estimation of space charge effects for the bunched beam of
the UNILAC with 109 U4+ ions in one bunch, the space charge effect has to
be considered in more detail. Although the charge density and therefore the
space charge force will be smaller due to the distribution over long bunches,
the momentum transfer ∼ force× time can be much higher. Figure 4.29 gives
the bunch length in the SIS dependent on energy. Potential and electric field
strength within and outside of long bunches may be calculated in two ways:

• by approximating the long bunch by a dc-beam
• by approximating the bunch shape by a rotational symmetrical ellipsoid.
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Potentials as well as electric fields for homogeneous and parabolic charge
density distributions within spherical and elliptical bunches are derived in
Chap. 8. From the mathematical point of view, the estimation of the space
charge effect on the resolution achievable with the approximation by a dc-
beam is much simpler. The estimations given in the following are based on
this approximation.
1. Long Bunch, Low Beam Energy Referring to Fig. 4.29, the bunch length
in the SIS at injection energy is about 15m (FWHM). On the timescale, this
corresponds to about 325 ns. Now, if H+

2 ions arrive at the collector within a
time less than 325 ns, we deal with the action of only one bunch. Assuming a
collecting field strength of Ex = 50V/mm, the flight time over a distance of
80mm is roughly 260 ns, and therefore the condition is fulfilled. The electric
field strength inside a dc-beam with radius R and a parabolic charge dis-
tribution along the radial coordinate ρp(r) is given by (non relativistic, see
Chap. 8)

ρ(r) = ρ0

(
1 − r2

R2

)
(4.7)

E(r)r ≤R =
1

2 ε0
ρ0

(
r − r3

2R2

)
. (4.8)

In the example considered, the “length” of the dc-beam is L = 2β c∆t
(β = 0.156,∆t = 325 ns→ L � 2 × 15m) giving

ρ0 = 2
NUζe

πR2L
. (4.9)

NU is the number of uranium ions in the long bunch, and ζ is their charge
state. Outside the beam, the field strength shows the well-known 1/r slope:

Er(r)r ≥R =
1

4 ε0
ρ0

R2

r
. (4.10)

Figure 4.30 shows the calculated electric field strength at the space charge
limit with NU = 1010 and ζ = 73. Assuming the collecting field in the x-
direction, the resolution of the monitor is diminished by the deflection of the
H+

2 ions in the y-direction. With r =
√

x2 + y2, the action of the fields on the
H+

2 ions can be separated:

mẍ = Ex + Er(r) cos ϑ (4.11)
mÿ = Er(r) sin ϑ (4.12)

ϑ = a tan
y

x
. (4.13)

The trajectories shown in Fig. 4.31 have been calculated by piecewise inte-
gration of (4.11) and (4.12). From the figure, it becomes very clear that the
achievable resolution is around 1mm at moderate beam currents, whereas de-
viations due to the very high beam current at the space charge limit are not
tolerable.
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Fig. 4.30. Electrical field strength for a dc-beam with parabolic intensity distri-
bution over the radial coordinate. For comparison, the result for a homogeneous
charge distribution is shown, too. Note: The corresponding potential V (r) fulfills
the boundary condition at the beam pipe, i.e., V (r = Rp) = 0

Fig. 4.31. Trajectories of H+
2 ions in a residual gas ionization profile monitor de-

pendent on the starting position along the y-axis. The data hold for a collecting
field strength of 50 V/mm, bunches with a length of L = 30m, NU = 109 U73+ ions
(left), and NU = 1010 U73+ ions (right). All H+

2 ions start at ẋ(0) = ẏ(o) = 0

2. Short Bunch, High Energy Considering the use of the monitor at the highest
energy (� 1000MeV/u for U73+ ions in the SIS) does not remarkably change
the effect of the space charge force. Due to the shorter bunch of L � 8.5 m,
∆t = 33ns, and a revolution time of 825 ns, the space charge is higher, acts
for a shorter time, but after about 140 ns between the bunches, the H+

2 ions
experience the force of a second bunch. This is illustrated in Fig. 4.32 showing
the velocity of the H+

2 ions gained transverse to the beam in the y-direction.
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Fig. 4.32. Velocity of H+
2 ions gained transverse to the beam in the y-direction as

a function of time. The parameters are the initial parameters y0. The diagram holds
for ẋ(0) = ẏ(0) = 0

Because the maximum field strength occurs at r =
√

2/3R = 8.2mm, an H+
2

ion starting at x = 0, y = 8mm gains the highest velocity.

Example 2

A Proposed New Residual Gas Ionization Monitor

It is easy to show (see Chap. 4) that the space charge effect on the resolution of
a residual gas ionization monitor can be nearly compensated for by providing
a homogeneous magnetic field in parallel to the electric collecting field. To
use the principle of residual gas ionization for beam profile measurements on
a beam with high space charge, an advanced high performance monitor has
been proposed and is now under development [235, 236]. Because electrons
have much smaller bending radii in moderate magnetic fields, it is proposed
to collect electrons. The main features of the new monitor are

• The collecting field strength will be of the order of 50V/mm.
• The proposed MCP is of the Chevron-type with a size of 100 × 30 mm2.
• To achieve the specified resolution of 0.1mm, a magnetic field strength of

≈0.1T (1 kG) is foreseen, realized by rare earth permanent magnets of a
rod type dipole [237]. The magnetic alloy consists of Nd-Fe-B with a rema-
nent induction B = 1.2 T. Although the working range in the z-direction
(→ beam direction) is limited by the MCP to 30mm, the rod dipole will
have a length of about 300mm to achieve the required homogeneity in the
working region. This sums to a total weight of about 92 kp for the magnet.
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Start - Stop
Time measurement

Electron cloud from the MCP Delay line

Fig. 4.33. Simplified scheme to illustrate the function of a delay line anode for
beam profile determination

• A resolution of 0.1mm cannot be achieved with an ensemble of collecting
rods or wires on the back of a MCP. The same holds for a delay line anode.
Therefore, a phosphor screen will be arranged on the back of the MCP.

• There is the intent to operate the monitor in two modes:
– A high-resolution mode, provided for precise beam monitoring with a

spatial resolution down to 0.1mm. In this mode, the measuring time
will be within the 0.1–100 ms range. A digital CCD camera can fulfill
the requirements for exposure time and frame rate up to 100 fps (frames
per second).

– To estimate the emittance blow-up due to space charge and to control
the matching conditions during and after injection within the first few
hundred turns in the SIS, a fast readout mode is proposed. In this
mode, a photodiode array is proposed to provide about 1mm resolution
in a turn-by-turn readout within about 1µs. A phosphor screen of the
P47-type (see Table 4.3) with a short decay time of about 70 ns is
proposed. To use the same phosphor screen in both modes, a rotatable
mirror above the phosphor screen is foreseen.

• To increase the amount of residual gas electrons, a moderate pressure
bump has to be applied in the fast readout mode.

Example for a Delay Line Design

Using a delay line anode, the profile information is extracted by measuring
time differences on a delay anode as explained very simply in the scheme of
Fig. 4.33. Although the principle looks very simple, the design of the delay
line itself as well as further signal processing and extraction of profile informa-
tion by appropriate software tools is rather complex. A delay line with high
bandwidth can be designed as a strip line or microstrip line with well-defined
impedance. To achieve high spatial resolution, the width of the strips and
their spacing should be minimized, with the consequence of increasing cou-
pling between strips. Therefore, the design requires careful optimization of
the dimensions shown in Fig. 4.34. To perform an optimization, the following
parameters are the most important:
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a

b
w

c

Ground plane

Strip line

Ceramics, Glass, ....
εr

Fig. 4.34. Scheme of a microstrip line with the relevant design parameters

• The impedance, mostly between 50 and 100Ω. There are many formulas
given in the literature, e.g., [36–38], differing only slightly. A practical
formula given in the “MECL Design Handbook” [37] is

Z [Ω] =
87√

εr + 1.4
ln
(

5.98 a

0.8 b + c

)
. (4.14)

• For a delay line, consisting of many strips in parallel and connected ac-
cording to the scheme of Fig. 4.33, the capacitive coupling between the
strips has to be considered, too. If this coupling is not small in comparison
to the coupling of the strips to the ground plate; a fast signal will travel
across the strips instead of along the striplines. Therefore, the ratio be-
tween these capacitances has to be optimized. Keeping in mind the other
conditions such as required impedance, required number of strips, and last
but not least, sufficient mechanical stability, the optimization procedure
may require some compromises. The capacity between one strip of length
L and the ground plane is given by [250]

C0 [pF] ≈ L [cm]






0.09εrb

a
+

0.56 (εr − 1)

ln
(

2a
c +

√
a2

c2 − 1
)




 . (4.15)

This has to be compared with the capacity between two strips [250]:

Cmn(pF) ≈ 0.064L[cm] (1 + εr)
b

w
. (4.16)

• The achievable delay time td can be estimated from [38]

td [ns/cm] ≈ 33.4 × 10−3
√

0.48εr + 0.7 . (4.17)

In most cases, a given impedance – possibly also in a certain range – will
determine the first set of parameters εr, a, b, c. The remaining parameter w
has to be determined to maximize the ratio of C0/Cmn keeping in mind the
desired spatial resolution. This may result in a later change of the first set.
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Example
Impedance: 50Ω
Length of one strip: L = 10 cm
Substrate material: Al2O3-ceramic, εr = 9.8
Substrate thickness: a = 0.3mm
Width of the strips: b = 0.265mm
Height of conducting strips: c = 50 µm
Spacing between strips: w = 0.5mm

With b + w = 0.765mm, the spatial resolution of the delay line is better
than 1mm. The ratio C0/Cmn is 23.31/3.66 = 6.37. This ratio can be im-
proved in a second step of optimization by looking at the dependencies of the
parameters. Figures 4.35–4.37 give the dependencies of the relevant parame-
ters. For the height of the conducting strips, the skin effect has to be taken

Fig. 4.35. Required substrate thickness a in dependence of the strip width b. The
diagram hold for stripline with an impedance of 50 Ω

Fig. 4.36. Capacity of a strip to the ground plane in dependence of the substrate
thickness. The diagram holds for a stripline with an impedance of 50Ω
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Fig. 4.37. Coupling capacity dependent on the strip spacing. The diagram holds
for a stripline with an impedance of 50Ω

into account, too. In practical units, the skin depth α is given by [38]

α [mm] =

√
ρ[Ω mm2/m]
µr f [MHz]

. (4.18)

4.6 Evaluation of Charge States and Mass Spectra
from Beam Profile Measurements

4.6.1 Spectra Produced by Ion Sources

In contrast to electron or proton machines, universal heavy ion accelerators
deliver all kinds of ion species to the target. A typical ion source, such as
a sputtering ion source of the PIG-type will produce a spectrum of charge
states for each isotope. Therefore, the very first separation and optimization
of a certain ion species starts in the injection behind the ion source. In most
cases, the separation is performed by measuring the beam profile behind a slit
dependent on a magnetic or/and electric deflecting field. Magnetic separation
is based on the relation (relativistic)

mv2

ρ
= ζ e v B → (4.19)

Bρ =
mv

ζ e
=

Aγm0 c2β c

ζe c2
(4.20)

Bρ [Tm] = 3.10715
A

ζ
β γ , (4.21)

whereas the electrostatic rigitidy is related to Bρ according to Eρ = βc Bρ.
Figure 4.38 is a spectrum of 68Zn from an electron cyclotron resonance (ECR)
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Fig. 4.38. Spectrum from an ECR ion source [251]. The charge states of Zn are
classified from 5+ to 14+

ion source [251]. The correct classification of all peaks requires a skilled op-
erator or ion source expert. After classification, the optimum peak has to be
selected with respect to intensity and required rf power.

Figure 4.39 shows the charge state and mass spectrum of lead produced
by a sputtering PIG [238]. The charge state spectrum has been obtained by
scanning the extraction voltage of the ion source. To measure the mass spec-
trum, the mass separation magnet has been scanned and the beam profile
was measured with a Faraday cup behind a very small slit (≈ 0.2 − 0.3mm);
the extraction voltage was adjusted to the 9+ charge state. Since the energy
in the injection area is well known, identification and separation of a certain
charge state is straightforward. To identify a certain isotope, a high-resolution
M/∆M > 200 is required. It may be helpful for the identification, if the rela-
tive isotopic abundance – the natural one or from an enrichment – is known.
Nevertheless, due to an unfavorable combination between required metal ion,
the auxiliary gas, and the material of other parts such as the cathode and
anode, strange ions with nearly the same charge over mass ratio ζ/A as the
required one are produced. An example where separation is nearly impossible
is the combination of 207Pb9+ (ζ/A = 22.9973) and 184W8+ (ζ/A = 22.9939).
In addition, there are other W 8+ and Ta8+ isotopes with similar ζ/A ratios
just around the Pb9+

isotopes [239]. Therefore, if 207Pb9+ ions are required
at the target, the use of tungsten in the ion source has to be avoided. Other
combinations with nearly identical charge over mass ratio are 96Mo4+ and
144Sm6+, 40Ar and 40Ca, 76Ge4+, and 38Ar2+ and 57Fe3+ [239].

In most of these cases, operators will not be able to separate or even ana-
lyze the contents of a beam in the magnetic and/or electric analyzing systems
of standard accelerator equipment. One possibility for analyzing the contents
of the beam is X-ray spectroscopy. A thin carbon foil is moved into the beam,
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Fig. 4.39. Charge state and mass spectrum (inset) of lead from a sputtering PIG
ion source [238]. The three mass spectra shown in the inset correspond to different
settings of the parameters to optimize the intensity of a certain isotope. Since Ar
gas has been used as burning gas, the very large peak of Ar2+ coincides with the
small Pb10+ peak

the accelerated ions are excited by the foil, and the emitted characteristic X
rays are analyzed with a commercial detector system. Identification and, in
turn, optimization of the composition of the beam can be performed easily
by the K lines emitted in the keV region. Modern analyzer systems deliver
appropriate software in combination with X ray energy tables for all isotopes.
The energy of the ions in the beam must be high enough to produce X rays
in the keV region, which means that the position of the detector system along
the machine has to be selected with respect to this point.

4.6.2 Stripper Spectra

Due to the proportionality of the required accelerating rf power to 1/ζ2, strip-
ping in a gas target or a thin foil is a common method for reducing the required
rf power. There are two strippers at the UNILAC; one in the so-called prestrip-
per section behind the IH2- accelerator section (W = 1.4MeV/u); the other
in the poststripper section in front of the SIS (W = 11.4 MeV/u, typical).
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Fig. 4.40. Charge state spectrum [240] behind a N2 gas stripper with a “target
thickness” ρN2

∆x corresponding to the equilibrium charge state distribution (dNζ/
ρN2

∆x = 0). The scale of the abscissa in volts is normalized to the maximum B field

Due to the high beam power and high energy loss, foils would be destroyed
in the 1.4-MeV position. Therefore, a gas stripper is used in the high current
mode of operation. Figure 4.40 shows a spectrum of uranium ions from the
gas stripper at this location. In the poststripper at 11.4MeV/u, a foil stripper
is in use, leading to much higher charge states due to better foil efficiency
and higher energy. Figure 4.41 is a display of the corresponding spectrum,
again for uranium ions. To estimate the expected equilibrium charge state
distribution, an empirical formula [239] may be used:

ζ = Z
(
1 − C e−137 β Z−γ)

. (4.22)

From many spectra for all kinds of ion species measured over a long period,
the parameters C and γ have been optimized by a least squares fit in the range
from 1.4 − 20MeV/u, resulting in C = 1.0285 + 140/Z2, γ = 0.56 for the foil
stripper, and γ = 0.65 for the gas stripper. Figure 4.42 shows the expected
charge distributions based on these parameters.

Although the charge states behind the strippers differ in the ζ/A ratio
up to some percent, correct assignment can be difficult due to the following
uncertainties:

• Uncertainty in the beam energy, which may happen, if the stripper is
located in a straight section behind an accelerator section.
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Fig. 4.41. Charge state spectrum behind a carbon foil stripper in the injection line
to the SIS (W =11.4 MeV/u). A foil thickness of 0.5 mg / cm2 has been chosen to get
the equilibrium charge state distribution. For detailed specification and especially
the estimated maximum ratings of the carbon foil see [241]. The scale of the abscissa
in volts is normalized to the maximum B field

Fig. 4.42. Expected charge state distribution according to the empirical equation
for uranium ions with 1.4 MeV/u and 11.4 MeV/u. The spectra are taken with a foil
and gas stripper, having a target thickness corresponding to the equilibrium charge
state distribution

• Uncertainties concerning the correct entrance of the ions into the charge
state analyzing system. This can be an offset with respect to the center of
the system as well as an unaligned beam.

• Effects of fringing fields and magnetic hysteresis.
• Not exactly known absolute calibration for the relation between required

magnetic field strength and the setting via a ADC-DAC control loop.
• Overlap of the peaks due to insufficient resolution of the analyzing system.
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Therefore mathematical procedures for exact localization of the lines
within the measured spectra as well as fit procedures for the correct assign-
ment of ζ values to the peaks become essential. In this connection, the follow-
ing relations are helpful:

B1

B2
=

ζ2

ζ1

, if β = const. (4.23)

B1

B2
=

√
ζ2

ζ1

, if W = const. (4.24)

Beam Energy Known

Assuming the stripper spectrum is analyzed via a magnet system, then a least
squares fit of the type of

∑

i

[
Bi −

3.10715Aβ γ,

ρ ζ i

]2
= Minimum = S(J) (4.25)

can be applied. Because ∆ζ = 1 for two lines next to each other, the charge
states of all peaks are known, if the correct charge state can be assigned to only
one of them. Therefore, a corresponding computer algorithm can start with a
guess, let’s say J, for the assignment to the peak with the highest magnetic
field. For the next peak, the assignment is J + 1 and so on. Summing up the
values according to (4.25) to S(J) is the next step. This procedure has to
be repeated changing J as long as a minimum can be detected. The charge
state assignments shown in Figs. 4.40 and 4.41 have been obtained by this
procedure.

Energy Not Known

The procedure is a little bit more complex. If the beam energy is not known
or known within limits, it allows different assignments to the peaks. In this
case, (4.25) can be replaced by

∑

i

[
Bi −

(
a

ζ i

+ b

)]2
= Min. = S(J, a, b) . (4.26)

The fit variable a leads to the kinetic energy W via the relation

β γ =
a ρ

3.10715A
, (4.27)

β =

√
(βγ)2

1 + (βγ)2
(4.28)

γ =

√
1

(
1 − β2

) (4.29)

W = m0c
2 (γ − 1) . (4.30)
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The other fit variable b considers a possible magnetic field offset, which may
result from various effects, such as incorrect injection or fringing fields. The
fit procedure can be performed similarly to that described for (4.25), with the
exception that for each J , the variables a and b have to be determined from
the relations,

∂S(J, a, b)
∂a

= 0 (4.31)

∂S(J, a, b)
∂b

= 0, (4.32)

with the results,

a =

[
[B/ζ] [1/ζ]
[B] N

]

DET
(4.33)

b =

[ [
1/ζ2

]
[B/ζ]

[1/ζ] [B]

]

DET
(4.34)

DET =
[ [

1/ζ2
]

[1/ζ]
[1/ζ] N

]
, (4.35)

where [. . .] stands for the sum over all lines with the assignment determined
by the corresponding J value for each pass. N is the number of peaks included
in the summing procedure.

Referring to (4.23), two other least squares fits may be applied to determine
the correct charge state assignments:

∑

i,k

[
Bi

Bk
− ζk

ζ i

]2
= S(J) (4.36)

∑

i,k

[
Bi − Bi+k

Bi + Bi+k
−

ζi+k − ζ i

ζi+k + ζ i

]2
= S(J). (4.37)

Of course, the beam energy and any offset cannot be determined in these two
cases.

4.7 Beam Alignment Based
on Beam Profile Measurements

Beam alignment becomes essential for the following reasons:

• A misaligned beam diminishes the effectiveness of transverse optimization
procedures due to the well-known steering effects of focusing elements such
as quadrupoles and sextupoles.
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Fig. 4.43. Ideal layout of an alignment section [243]. The profile grid may be
replaced by another profile measuring device

• Emittance defining collimator systems, consisting, e.g., of three collimators
with well-defined spacing and well-defined apertures require aligned beams
in both transverse directions.

• A misaligned beam can hit parts of the beam transport system, accelerator
components, or even the beam pipe which, in the case of high intensity, can
be destroyed. As a further consequence of beam loss, dangerous radiation
can be produced.

A misalignment can be detected by beam position measurements (see
Chap. 5). The beam offset from the axis as well as the steering angle can
be determined with two position monitors along a drift space. Taking advan-
tage of the steering effect of quadrupoles requires only one position measuring
device. The layout of an ideal beam alignment section is shown schematically
in Fig. 4.43. By changing the quadrupole setting and observing the beam pro-
file at the same time, a skilled operator will be able to align the beam within a
short time. But, for machines with a low duty cycle, this procedure can be very
time-consuming and troublesome. Therefore, automatic computer-controlled
alignment procedures can be very helpful. Assuming that the deflection of the
steering magnets is determined by the product of a known constant k and the
current I supplied through the coils, theoretically two different quadrupole
settings and profile measurements are necessary to calculate the beam center
x0 and slope x′

0 at the entrance of the first steering magnet (see Fig. 4.43).
The whole alignment procedure consists of the following steps [243]:

• Determination of the beam center as the center of gravity from the mea-
sured profile. This can be performed by
– Applying a spline fit to the measured profile.
– Fitting Gaussian functions to the profile curves. Since in general the

profiles will not be symmetrical, the left and right sides of the profile
peaks should be described separately by two Gaussian functions.

– Determination of the rms value from the raw data.
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• Calculation of x2 and x′
2 from two profile measurements with different

quadrupole settings and the known transfer matrix T between quadrupole
and grid. Let

T =

[
an
11 an

12

an
21 an

22

]

, (4.38)

where n = 1, 2 stands for the two different settings. Then, from
[

xn
3

x�n
3

]

= T

[
xn

2

x�n
2

]

, (4.39)

it follows immediately that

x2 =

(
a2
12 x1

3 − a1
12 x2

3

)

D
(4.40)

x′
2 =

(
a1
11 x2

3 − a2
11 x1

3

)

D
(4.41)

D = a1
11a

2
12 − a2

11a
1
12 . (4.42)

• With the known products k1 I1 for the first steerer and k2 I2 for the second,
determination of the beam offset x0 and the slope x′

0 is straightforward,
giving

x0 = x2 − x′
2(L1 + L2) + k2I2L1 (4.43)

x′
0 = x′

2 − k1 I1 − k2 I2 . (4.44)

• The correct current I∗1 for the first steerer results from the condition

x1 = x0 + L1x
′
0 + k1I

∗
1L1 = 0 → (4.45)

I∗1 = −x0 + L1x
′
0

k1L1
. (4.46)

• Finally, with the correct current I∗2 for the second steerer, the remaining
slope x′

0 = −x0/L1 has to be compensated for; hence

I∗2 =
x0

k2L1
. (4.47)

The reliability of the procedure can be improved by performing more than
two quadrupole variations and profile measurements, applying least squares
fits to the resulting equations.

Another nearly ideal configuration is the arrangement of two profile grids
(or profile measuring devices) in front of a pair of steerers. Obviously, off-set
x0 and slope x′

0 at the position of the first steerer can be calculated from the
measured offsets at both grids and the spacing between them.
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Of course, due to spatial limitations as well as other restrictions, ideal lay-
out sections as discussed may not occur often enough along a beam transport
system. In this case, one can include the steering of quadrupoles in a statistical
procedure, as described in [243]. The method is very useful for transport lines
and does not require changes in focusing or defocusing by the quadrupoles
after the alignment procedure.
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Measurements with Capacitive
or Inductive Pickups

5.1 Principles of Signal Extraction

Signals from the electromagnetic fields of moving charged particle bunches
to gain information about several beam parameters can be extracted without
any significant distortion of the beam itself. The principle of inductive signal
extraction was already discussed in Chap. 2, Sect. 2.3 because beam current
measurements by all kind of beam transformers are based on this principle.

The equivalent (2.30) in Chap. 2 for a capacitive monitor is given by

i (t) =
d

dt

∫

area

ε0
−→
E

−→
dA =

d

dt

∫

area

−→
D

−→
A , (5.1)

where E is the electric field of the moving charged particles and the “electric
displacement” is given by

−→
D = ε0

−→
E . In the field of beam diagnostics, the

radial component Er is the most interesting one.
Equations 5.1 and 2.30 are two of the four famous Maxwell equations

[39,244,245] and are well known as the “law of induction” (2.30), also known
as “Faraday’s law” and the so-called “displacement current” (5.1), so defined
by Maxwell. Figures 5.1 and 5.2 show schematically the two methods of signal
extraction from beam.

Remark:
Considering the influenced current according to (5.1), there is another possi-
bility of extracting a signal from the beam by measuring the so-called image
current flowing through the vacuum pipe, oppositely directed to the beam
current. Inserting a small isolated break into the beam pipe, bridged by small
resistors, results in a measurable voltage, proportional to the beam current
(e.g. [6,246–248]). But, caused by the small resistors, the voltages are in gen-
eral very small. From the construction point of view, the design of such a gap
is rather complex and will not be considered here.
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Bunched beam

Inductive coupling Beam pipe

u(t)

.
Coupling loop

a

b

Fig. 5.1. Scheme of inductive signal extraction

Bunched beam

Capacitive coupling
Beam pipe

i(t)

Ring-shaped electrode (length Ls, radius Rs)

Fig. 5.2. Scheme of capacitive signal extraction

5.1.1 Comparison of Inductive and Capacitive Signals

The schemes of both monitor types look similar and both can be used to
extract the same information. Therefore an estimate of the signal ratio can be
helpful. Remembering the well-known relation BΘ = β/c Er (see [39, 245]),
the ratio between capacitive and inductive signals can be estimated dependent
on the β value:

∣∣
∣∣
i(t)
u(t)

∣∣
∣∣ =

cε0
β

d
dt

∫
cylinder

ErdF

d
dt

∫
loop area

ErdF
. (5.2)

For the most practical designs, the ratio of both integral terms is very near
one. Taking this into account and assuming broadband signal processing with
an impedance of R = 50Ω, one gets

∣∣∣∣
i(t)R

u(t)

∣∣∣∣ =
∣∣∣∣
ucap

uind

∣∣∣∣ ≈
cε0R

β
≈ 0.133

β
. (5.3)
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Fig. 5.3. Capacitive pickup in 50-Ω geometry

As expected, the induced signal is higher for low β values, which becomes
clear, if one considers the well known relation i · l = q · v. Because simple
loop monitors are very sensitive to rapidly changing magnetic fields always
present in the environment of rf accelerators, capacitive pickups are preferred
in general.

5.2 Capacitive Pickups, Basics

Figure 5.3 is a picture of a pickup in 50-Ω geometry for broadband measure-
ments [249]. The segmented aperture in front and behind the pickup electrode
is provided for impedance matching. The ground potential of the probe has
been separated from the ground potential of the beam pipe to reduce noise
coming along the beam pipe.

5.2.1 Design Hints

Supposing 2πRs � Ls (see Fig. 5.2) and imagining that the capacitive pickup
is a strip line bent around the beam pipe axis, the designer can take advantage
of formulas given in the literature for the design of strip lines and microstrip



158 5 Measurements with Capacitive or Inductive Pickups

Fig. 5.4. Required height h dependent on length Ls, according to (5.4). See text
for details

lines. The design of the pickup shown in Fig. 5.3 is based on a formula taken
from [37]:

Z0(Ls) =
87√

εr + 1.4
ln
(

5.89h

0.8Ls + t

)
, (5.4)

[36–38, 250] where εr is the relative permeability, h is the distance between
inner and outer conductor, and t is the thickness of the inner ring. Because the
influenced signal can travel along two paths to the output, which corresponds
to a parallel circuit of two transmission lines, the pickup is designed in 100-
Ω geometry. Figure 5.4 gives the required height h dependent of Ls for two
different values of material thickness h. The diagram holds for Z0 = 100 Ω
and εr = 1

5.2.2 Simplified Electric Circuit Diagram

The differences between low impedance and high impedance signal processing
can be derived from the simplified electric circuit diagram of Fig. 5.5.

C Ri(t)

iC iR

u(t)

Fig. 5.5. Simplified electric circuit diagram according to Fig. 5.2
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Here, C is the capacity of the pickup electrode against the beam pipe.
A general relation can be derived for i(t), considering the image current,
generated by the motion of a charged particle. Because this image current
changes sign by passing the center of the pickup, a current according to the
scheme of Fig. 5.6 flows into the external circuit. For small ∆t, f(t + ∆t) −
f(t) = d

dtf(t)∆t. Thus, the current i(t) flowing from the pickup into the
external circuit is proportional to d

dt iB(t).

const· iB(t)

i(t) =const [iB(t) - iB(t +∆t)]

const · iB (t+∆t)

iB(t)

Beam pipe

Fig. 5.6. Simplified scheme to explain the generation of a signal on a capacitive
pickup

Considering the electric circuit diagram of Fig. 5.5, the ratio of the cutoff
frequency of this simple circuit fc = 1 / 2πRC = ωc / 2π, to the frequencies
fs, which have to be processed, determines how the output voltage u(t) looks
like. Applying a Laplace transformation, one gets

u(s) = i(s)
R

1 + RCs
. (5.5)

The exact solution for u(t) is

u(t) =
1
C

t∫

0

i(u)e− (t−u)
RC du . (5.6)

For RCs � 1, corresponding to fs � fc, it follows immediately from (5.5)
that u(s) ≈ R i(s) and u(t) ≈ R i(t). Then, because i(t) is proportional to
d
dt iB(t), the output voltage is proportional to R d

dt iB(t). In this case, the main
part of the current i(t) flows through R. On the other hand, if RCs � 1,
corresponding to fs � fc, one obtains u(s) = R i(s)

s with the solution:

u(t) =
1
C

t∫

0

i(u)du =
q(t)
C

, (5.7)
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i(t) u(t)

iC

RL C R

iR

L

Fig. 5.7. Simple parallel resonance circuit

which follows also immediately from (5.6), since the exponential function goes
to 1. Thus, u(t) is proportional to the collected charge q(t) and the output
signal becomes directly proportional to iB(t). In this case, the main part of
the influenced current i(t) flows into the capacity.

5.2.3 Resonant Circuit

In the circuit diagram of Fig. 5.5, the capacity C, determined by the geometric
design of the pickup, can be supplemented by a small inductance to a resonant
circuit, as shown in Fig. 5.7. The resistor RL takes account of the ohmic losses
in the inductance coil and, in general is small versus R. The resonant circuit
can be tuned to a harmonic of the accelerating frequency f , which results in
high sensitivity to the selected frequency. Neglecting first RL, the complex
impedance Z = |Z| eiϕ is given by

|Z| =
R/Q

√
(ω0/ω − ω/ω0)2 + 1/Q2

(5.8)

tan(ϕ) = Q(ω0/ω − ω/ω0 ) (5.9)

with ω0 = 1/
√

LC and the quality factor Q = ω0RC. At resonance |Z| =
R, ϕ = 90◦ and the induced current flows only through the load resistor
R. Therefore, it is possible to obtain high sensitivity by using a high load
impedance R. Due to the small bandwidth of the circuit, the signal-to noise-
ratio will improve considerably. But any information about the bunch shape
is lost, and even the phase of the output signal depends on the bunch shape.

Taking the resistor RL (see Fig. 5.7) into account results in damping and,
in consequence in a shift of the resonance frequency (ωD). Furthermore, it
causes a change of the impedance at resonance (RD) and leads to a decrease
in the Q value (QD):



5.2 Capacitive Pickups, Basics 161

ωD = ω0

√

1 − R2
L

C

L
(5.10)

1
QD

=
1
R

√
L

C
+ RL

√
C

L
(5.11)

RD =
L

RLC + L/R
, (5.12)

which can easily be verified from the complex admittance of the circuit. By
setting the imaginary part of the admittance to zero, the resonance frequency
can be determined.

5.2.4 Signal Estimation

Let us assume that a bunch of charged particles with geometric length ∆z
moves with βc along the z-axis. Then ∆z = βc∆t holds, with ∆t as the
bunch length in time (FWHM). Replacing d/dt in (5.1) by 1/δt, where δt
represents approximately the rise time of the longitudinal charge density dis-
tribution within the bunch, leads to a useful estimation of the expected signal
amplitude:

iring ≈ 160 pA
δt [ns]

k
Ls

βc∆t

2πRsLs

2πRsLs + 2πR2
s

=
160 pA
δt [ns]

k
Ls

βc∆t

1
1 + Rs/Ls

.

(5.13)
The meaning of the separated terms is evident; the last term considers that
the cylindrical probe is not closed on both sides, and the term Ls /βc∆t is the
ratio between bunch length and probe length Ls (see Fig. 5.2). The factor k
has been introduced to consider the influence of particles yet outside of the
probe volume. Experience leads to k ≈ 2 for bunch length βc∆t � Ls. On the
other hand, for very short bunches βc∆t � Ls, the product of kLs/βc∆t has
to be replaced by one. Whereas (5.13) gives an estimate low impedance signal
processing (RC � ∆t), the corresponding estimation for high impedance
signal processing (RC � ∆t) leads to an expected voltage of

u ≈ Qbunch

C
k

Ls

βc∆t

1
1 + Rs/Ls

, (5.14)

where Qbunch is the sum of all charges within the bunch and C is the capacity
of the pickup, according to Fig. 5.5.

5.2.5 One-Dimensional Signal Calculation

Idealized Square Bunch, Ring-Shaped Pickup

To calculate i(t) according to Figs. 5.2 and 5.5 dependent on the bunch shape
and β value, it is sufficient to consider only the longitudinal z-coordinate. In
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this approximation, a moving charge distribution (bunch) of the type of a
square pulse can be described as follows [249]:

ρ(x, y, z, t) = δ(x)δ(y)
Nζe

βc∆t

{
Θ

[
z − βc

(
t − ∆t

2

)]
− Θ

[
z − βc

(
t +

∆t

2

)]}
.

(5.15)
In (5.15), δ(x) and δ(y) are the well-known δ functions of Dirac; N is the
number of particles in the bunch; ζ is their charge; ∆t is the bunch length, as
already introduced in (5.13), and Θ(z − a) is the step function of Heaviside.
The bunch moves along the z-axis and its center passes the observation point
z = 0 at time t = 0. Taking the relativistic correction (see, e.g., [245]) with
γ = 1/

√
1 − β2 into account, the potential ϕ(r, z, t) is given by

ϕ(r, z, t) =
γ

4πε0

Nζe

∆t

∫ t′=t+∆t
2

t′=t−∆t
2

dt′
√

[γ(z − βct′)]2 + r2

, (5.16)

where r is the distance of the observation point from the beam axis (x =
0, y = 0). Substituting γ(z − βct′)/r for Z, the solution is straightforward
and leads to

ϕ(r, z, t) =
1

4πε0

Nζe

βc∆t






Arsinh
[

γ(z−βc)(t−∆t/2)
r

]

... − Arsinh
[

γ(z−βc)(t+∆t/2)
r

]





. (5.17)

The electric field strength follows from Er = − ∂
∂rϕ(r, z, t):

Er(r, z, t) =
1

4πε0

Nζe

βc∆t

1
r






γ(z−βc)(t−∆t/2)√
[γ(z−βc(t−∆t/2)]2+r2

... − γ(z−βc)(t+∆t/2)√
[γ(z−βc)(t+∆t/2)]2+r2





(5.18)

For the cylindrical pickup shown in Fig. 5.2, the influenced current i(t) is
given by (5.1), integrating over the surface of the cylinder:

i(t) = ε02πR
d

dt

∫ z=L/2

z=−L/2

Er(r = R, z, t)dz . (5.19)

This can be solved very easily without integrating, keeping in mind that Er =
f(z−βct). Therefore, d/dt can be replaced by −βcd/dt, and the result follows
immediately from (5.18)

i(t) =
γNζe

2∆t
[T1 − T2 + T3 − T4] , (5.20)

with the abbreviations (Ls → L):
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T1 =
[L/2 − βc(t + ∆t/2)]

√
{γ[L/2 − βc(t + ∆t/2)]}2 + R2

(5.21)

T2 =
[L/2 − βc(t − ∆t/2)]

√
{γ [L/2 − βc(t − ∆t/2)]}2 + R2

(5.22)

T3 =
[L/2 + βc(t + ∆t/2)]

√
{[L/2 + βc(t + ∆t/2)]}2 + R2

(5.23)

T4 =
[L/2 + βc(t − ∆t/2)]

√
{γ[L/2 + βc(t − ∆t/2)]}2 + R2

. (5.24)

From the solution, it is clear that the shape of the signal will depend very
much on the ratio between the bunch length βc∆t and the length of the
pickup. In Fig. 5.8, two cases with β = 0.1 are considered. Curve 1 shows
the signal of a long bunch with ∆t = 8ns with βc∆t/L ≈ 240 mm/50 mm.
Because there is no change d/dt while the long bunch is inside the pickup,
the signal becomes zero at this time. The two peaks, corresponding to the
entrance, respectively, to the exit of the bunch, are separated exactly by 8 ns,
which is just the bunch length. The second curve represents a signal from a
bunch with ∆t = 1 ns and βc∆t/L ≈ 30 mm/50 mm. In this case, the bunch
length compares with the length of the pickup, and thus the distance between
the two peaks is determined by the time of flight (TOF) through the probe,
which is 1.67 ns.

The relativistic effect enhances the transversal field component with
increasing β value, whereas the longitudinal component becomes smaller.
One expects sharper peaks in this case. Figure 5.9 demonstrates this for
β = 0.9 and the same bunch lengths in time as for Fig. 5.8. The higher β value
results in a larger geometric bunch length and therefore, even for curve 2,

Fig. 5.8. Comparison of the signals from two square bunches of different lengths for
β = 0.1. The length of the pickup is L = 50mm. Curve 1: Bunch length ∆t = 8ns.
Curve 2: Bunch length ∆t = 1 ns
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Fig. 5.9. Comparison of the signals from two square bunches of different lengths
for β = 0.9. Parameters: Length of the pickup = 50 mm, radius = 17.5 mm length
of the square bunches ∆t = 8 ns (curve 1), ∆t = 1 ns (curve 2)

βc∆t/L � 1. The charges in the bunches are normalized to Nζe = 1e =
1.602 × 10−19 As, thus the signal of the very long bunch (curve 1 in Fig. 5.9
with ∆t = 8 ns and ∆z = 2.16 m is much smaller than for the shorter bunch
of curve 2. Because the rise time of the idealized square bunch is zero, the
signal estimation (5.13) should not be used in this special case.

5.2.6 Bunches of Arbitrary Shape, Ring-Shaped Pickup

The one-dimensional density distribution within a bunch is more complex than
the idealized homogeneous density distribution, representing a bunch with a
square shape. Better approximations are given by a Gaussian, a cos2-like or
a parabolic distribution. In each case, the analytical solutions for i(t) accord-
ing to (5.19) become rather complex and even impossible for the Gaussian
distribution. But numerical signal calculation for bunches of arbitrary shape
can be performed very easily by summing up the weighted contributions of a
point charge. To derive the equivalent of (5.16–5.20) for a point charge, one
can take advantage of the fact that each of the terms T1 − T4 in (5.20) is a
function of (t ± ∆t/2):

i (t) =
γN ζe

2∆t
[f (t + ∆t/2) − f (t − ∆t/2)] . (5.25)

From this relation, the final result for a point charge follows immediately from
lim∆t→0 and therefore the result is given by

i (t) =
γNζe

2∆t
∆t

[
d

dt
[T12(t) + T34(t)]

]
(5.26)

T12(t) =
L/2 − βct

√
[γ(L/2 − βct)]2 + R2

(5.27)

T34(t) =
L/2 + βct

√
[γ(L/2 + βct)]2 + R2

. (5.28)
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Fig. 5.10. Signal of one electron in comparison with the signal of a very short square
bunch. Parameters: Lengths of the pickup = 10 mm, radius = 17.5 mm; length of
the square bunch ∆t = 1ps, β = 0.9

This leads to

i (t) =
eγβcR2

2

[
1

[[γ(L/2 + βct)]2 + R2]3/2
− 1

[[γ(L/2 − βct)]2 + R2]3/2

]
.

(5.29)
Remembering the relation BΘ = β/c Er a similar expression can be derived
for the voltage, induced on an inductive monitor. From (5.29), it becomes
clear that even the signal of a point charge will be broadened by two effects:

• The advanced electric field, which, with increasing β, becomes more and
more peaked in the transversal direction,

• the integration (convolution) over the length of the pickup.

To demonstrate the effect of signal broadening, Fig. 5.10 shows an example
for β = 0.9. For comparison, the signal for a very short square bunch with
∆t = 1 ps is also shown (continuous line).

Equation 5.29 gives the base for numerical signal calculation i(t), assuming
arbitrary bunch shapes. In a first step, a normalized density distribution has to
be determined, which means that the point charge has to be distributed over
the selected bunch shape. This results in an ensemble of weights, normalized to
one. Applying this procedure, it is simple to compare various models of bunch
shape by calculating the P (m) weights. The P (m) values for some typical
density distributions, having all the same FWHM-widths ∆t are various:

cos2 – like charge density distribution

With ∆t as the half width of the bunch (FWHM), T0 = 2∆t, where T0 is
the full width of the bunch at the baseline. Then, Ns sample points over time
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Fig. 5.11. Weights defined for a cos2-like intensity distribution

T0 lead to δt = T0/Ns. The normalized density distribution is

P (m) =
cos2(mδt π

T0
)

P0
(5.30)

P0 =
m=Ns/2∑

m=−Ns/2

cos2
(

mδt
π

T0

)
. (5.31)

Figure 5.11 shows the distribution assuming Ns = 80; the line at P (−20)
marks FWHM. The composition of the signal i (t) is straightforward and gives

i(t) =
eγβcR2

2

m=Ns/2∑

m=−Ns/2

P (m)(TA(t,m) − TB(t,m) (5.32)

TA(t,m) =
1

({γ[L/2 + βc(t + mδt)]}2 + R2)3/2
(5.33)

TB(t,m) =
1

({γ[L/2 − βc(t + mδt)]}2 + R2)3/2
. (5.34)

Figure 5.12 shows the calculated signal for the cos2-shaped bunch, setting
all other parameters identical to the parameters for the single particle in
Fig. 5.10.

Parabolic bunch shape: The full width is T0 =
√

2∆t, δt = T0/Ns

PP(m) =

[
1 − ( m δt

T0/2 )2
]

p0
. (5.35)

Gaussian shape: Since the Gaussian distribution extends to −∞ < t < ∞,
one needs a cutoff. Setting the cutoff at P (T0/2) = s P (0) (s � 1), one
obtains T0 =

√
ln(1/s)/ln2, δt = T0/Ns, and

PG(m) =
e
−
[

2
√

ln2m δt
∆t

]2

P0
. (5.36)



5.2 Capacitive Pickups, Basics 167

Fig. 5.12. Numerical calculated signal for a cos2 distribution. Parameters Length
of the pickup = 10mm, radius = 17.5 mm length of the bunch ∆t = 1ns, (FWHM)
β = 0.9

Triangular bunch shape: Here the full width is T0 = 2∆t, δt = T0/Ns, and

PT(m) =

[
1 − |m| δt

∆t

]

P0
. (5.37)

In each case, P0 is the normalization given by the sum over all P (m) from
m = −Ns/2 to m = +Ns/2.

5.2.7 Pickup Plates

In practice, signal calculation for rectangular plates is of special interest for
beam position measurements. In this case, the electric field components have
to be determined in the Cartesian coordinate system. Assuming dimensions
and orientation of the Cartesian coordinate system, as shown schematically in
Fig. 5.13, the y-component is relevant. Signal calculation for a square bunch
shape has been performed in [252].To perform signal calculation by summing
up weighted point charges, it is sufficient to derive the influenced current i (t)
for one plate and a point charge e. The electric potential and the y-component
of the electric field are given by

ϕ(x, y, z, t) =
eγ

4πε0

1
√

[γ(z − βct)2 + x2 + y2]
(5.38)

Ey = − ∂

∂y
ϕ =

eγ

4πε0

y
√

[γ(z − βct)]2 + x2 + y2
3 (5.39)

i (t) = ε0

∫ x=b

x=−b

[∫ z=a

z=−a

Ey(y = h)dz

]
dx . (5.40)
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b

h

Beam direction
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y

Fig. 5.13. Definitions for signal calculation of a rectangular pickup

Remembering that d/dt = −βc d/dz, only the integration over the x-coordinate
is left:

i (t) =
eγ

4π
β c h

∫ b

−b

[
1

(A2 + x2)3/2
− 1

(B2 + x2)3/2

]

dx (5.41)

A2 = [γ(a + βct)]2 + h2 (5.42)

B2 = [γ(a − βct)]2 + h2 . (5.43)

The remaining integral is of the kind
∫

dx/R3
x with Rx =

√
A2 + x2, respec-

tively, Rx =
√

B2 + x2. The solution is straightforward (see, e.g., [84, 253]):

i (t) =
e γβ c h b

2π
[TP1(t) − TP2(t)] (5.44)

TP1(t) =
1

[h2 + C(t)2] W1(t)
(5.45)

C(t) = γ(a + βct) (5.46)

W1(t) =
√

b2 + h2 + C(t)2 (5.47)

TP2(t) =
1

[h2 + E(t)2] W2(t)
(5.48)

E(t) = γ(a − βct) (5.49)

W2(t) =
√

b2 + h2 + E(t)2 . (5.50)

The composition of the signal can be performed by replacing t → mδt and
summing up over all weighted terms, as demonstrated in (5.32–5.34).

5.2.8 Comparison of Charge Density Distributions

Due to the advanced electric field of moving charged particle bunches, it is
to be expected, that it will be very difficult to decide between the discussed
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Fig. 5.14. Comparison of various bunch shape models for low β value. Parameters:
Plate length = 30 mm, plate width = 30 mm, spacing between the plates = 40 mm,
β = 0.1, ∆t = 1ns (FWHM)

models in case of low β values. This is demonstrated in Fig. 5.14, showing
calculated signals for a plate with dimensions of 2a = 30mm, 2b = 30mm,
and h = 20mm (see Fig. 5.13 for the definition of plate dimensions). For a
bunch with ∆t = 1ns (FWHM), moving with β = 0.1, the geometric bunch
length is ∆z = 0.1·300mm/ns ·1 ns= 30 mm. The differences in the influenced
signals are below any detection limit. The picture changes for highly relativis-
tic charged particle bunches with β = 0.95, as shown in Fig. 5.15. The data
hold for a bunch length of ∆t = 0.5 ns which results in ∆z = 142.5 mm. The
differences between the models are evident. Especially the proportionality of
the signal i(t) to the derivative of the charge density distribution comes out
very clearly.

5.2.9 Detection Limits

Broadband Signal Processing

To determine the signal-to-noise ratio at the output of a signal processing
circuit, which in the simplest case can be a high quality broadband amplifier,
the noise factor F of the circuit has to be known. In data books of amplifiers
and electronic circuits, it is usual to specify the so-called noise number FdB,
related to the noise factor by F = 10FdB/10. For a bandwidth δf of the signal
processing circuit, an environment temperature To, and an input impedance
of RL, the required minimum input current imin to get a signal-to-noise ratio
of S :N = 1 is determined from

imin =
√

F kBT0 δf

RL
(5.51)

kB = 1.38 · 10−23 Ws/K, the Boltzmann constant . (5.52)



170 5 Measurements with Capacitive or Inductive Pickups

Fig. 5.15. Comparison of various bunch shape models for high β values. Parameters:
Plate length = 30 mm, plate width = 30 mm, spacing between the plates = 40 mm,
β = 0.95, ∆t = 0.5 ns (FWHM)

The required bandwidth follows immediately from the well-known relation
δf [GHz] = 0.35/trise [ns]. Because all signal calculations in this chapter are
normalized to 1e, the required number of charges N ζ within a bunch is easily
calculated from

[N ζ]min =
imin

i(t)max
, (5.53)

where i(t)max is the maximum current in pA/e, taken from the calculations
for i(t). Referring to Fig. 5.12, a value of i(t)max = 9 pA/e seems reasonable.
Assuming a bandwidth of 500 MHz with a typical noise number FdB = 3.2, an
impedance of 50Ω, and room temperature, (5.51) and (5.53) lead to [N ζ]min =
0.29 µA / 9 pA = 3.2 × 104. Of course, to observe amplified bunch signals on
an oscilloscope or to perform measurements described in the following, the
signal-to-noise ratio has to be significantly larger than one. Experience has
shown that in most cases either the macro-pulse current ip or the dc-current,
respectively, mean current im are known. Keeping in mind that [N ζ e]min /∆t
corresponds to the bunch current ib the expected signal-to-noise ratio is easily
derived from these parameters.

A very similar estimation of the required current or voltage to obtain a
signal-to-noise ratio, is based on the noise power of a resistor, which does not
depend on its value and is given by PR = 4 kBT0δf [38]. Keeping in mind
P = u2/R = i2 R, the required charge within a bunch for S : N = 1 can
be figured out in the same way as described above. If the signal is processed
according to (5.7), unoise =

√
R PR has to be used for estimation of [N ζ]min.
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Resonant Signal Processing

Estimation of the signal-to-noise ratio, respectively, of the required [N ζ]min

value becomes more complicated for a resonant circuit, according to Fig. 5.7.
In this case, the magnitude of the processed harmonic component has to be
determined by a Fourier analysis. A fast Fourier transformation (FFT) can be
performed directly on the signal, calculated in the time domain. However, due
to different definitions, of normalization in the programs as well as in the liter-
ature, special attention has to be given to this point. A good recommendation
is to transform, as a test, a simple square pulse of the type of

i(t) =
{

Θ

[
βc

(
t − ∆t

2

)]
− Θ

[
βc

(
t +

∆t

2

)]}
, (5.54)

having an amplitude of one and a length of ∆t. For a repetition frequency
f , the duty factor D is given by D = f ∆t = ∆t/T , with T as the period
of f (T = 1/f). With the definition of i(t) by the Heaviside function, the
average dc-current is im = i(t)·D. Therefore, the correct normalization can be
checked by comparing this with the dc-component of the Fourier-transformed
signal. Assuming correct normalization, the amplitude of the harmonics with
frequency fn = n f is given by |Cn|, with Cn as the coefficients of the FFT.

Another possibility is to perform a FFT directly on a measured signal,
taking advantage of modern digital oscilloscopes, as shown in Fig. 5.16 for
an accelerator frequency f = 108 MHz. But also in this case, one has to be
careful concerning normalization.

To give an example, we compare resonant signal processing with broad-
band signal processing for an input signal i(t), according to Fig. 5.12 for a

Fig. 5.16. FFT of a measured bunch signal (upper trace) performed with a digital
Tektronix oscilloscope. Data taken with 2.5 Gs/s in the main control room of GSI
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Fig. 5.17. FFT of the signal i(t) according to Fig. 5.12. The frequencies of the
harmonics are given by fn = 36MHz× harmonic number

bunch repetition frequency f = 36 MHz. To perform a FFT, the signal i(t)
has to be sampled. The number of sampling points N has to be a power of
2. Taking N = 2048, the signal i(t) is described by a data vector with N
components according to

Ig = i

[
g − SN

(N − 1) f

]
= i

[
g − 1023
2047 f

]
(5.55)

g = 0, 1, ...N − 1 (5.56)
SN = (N − 2)/2 . (5.57)

The coefficients Cn are given by

Cn =
1
N

∑

g

Ig ei(2 π n / N) g, i =
√
−1 . (5.58)

Figure 5.17 gives the result for the signal of Fig. 5.12. Because the bunch length
∆t = 1 ns and f = 36MHz, corresponding to T = 27.8 ns, the first minimum
in the Fourier spectrum occurs at g = 28 (see Sect. 7.1.2 for more details).
Tuning the electronics, for example, to the sixth harmonic with f = 216MHz,
the resulting amplitude of about 0.26 pA/e is very small in comparison to
the maximum of 9 pA/e (see Fig. 5.12) for the signal in the time domain.
However, the signal-to-noise ratio can be improved considerably by

1. Reducing the bandwidth (BW) to a very small value in comparison to
broadband signal processing. The noise goes down ∼

√
BW.

2. Increasing the load resistor RL to a higher value, keeping in mind that
the main current flows through RL in resonance.

In the example, the noise voltage is determined from uN =
√

4RLkBT0δf ,
which gives uN = 4.02 µV, assuming RL = 105 Ω and δf = 10 kHz. On the
other hand, the signal voltage on RL is uS = i6 RL = 0.26 pA/e×105 Ω =
26 nV. The required number of charges [N ζ]min for S:N = 1 follows imme-
diately from [N ζ]min = uN/uS = 155, which is much better than 2.3 × 104,
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Without beam Without beam Without beam

54 MHz with beam27 MHz with beam 81 MHz with beam

Fig. 5.18. Observed distortions from the accelerating frequency f = 27MHz at
three different harmonics. The pictures are taken in the main control room of GSI

evaluated for broadband signal processing. But, as already mentioned, any
information concerning the bunch shape will be lost using narrowband signal
processing.

Special attention should be given to the selection of the harmonic num-
ber. Beside the white noise, according to the formulas given above, distortions
from the high-power rf transmitters, which are always present in the environ-
ment of rf accelerators, have to be considered. Optimizing the selection of the
harmonic number by measuring those distortions, with a tunable narrowband
amplifier is recommended. Figure 5.18 shows an example from the UNILAC
with f = 27 MHz. Although the signal amplitudes of the harmonic increase
up to about the 10th harmonic, in this case as a compromise, the third har-
monic f = 27 MHz has been selected because the poststripper is operated
at f = 108MHz, which is the fourth harmonic of the prestripper accelerating
frequency.

5.2.10 Sensitivity of Position Measurements

The difference signal from two plates, respectively, two electrodes of a seg-
mented ring-shaped pickup, positioned on opposite sides of the beam, is often
used to determine the beam position. Therefore, it might be of interest to
determine the sensitivity which can be achieved using this so-called proximity
effect. In both cases – segmented ring shaped pickups or rectangular plates
– the signal amplitude for a given displacement can be estimated from the
signal, induced by a point charge.

Segmented Ring-Shaped Electrodes

The signal from one segment (see Fig. 5.19) is given by (5.29) as i (t) =
iSP(t)/k. A good approximation of the difference signal from two opposite
plates, assuming a displacement δr of the beam is −δi(t, δr) = i (t, R − δr) −
i (t, R + δr). For small δr, this is just proportional to the derivation of the
sum signal, giving



174 5 Measurements with Capacitive or Inductive Pickups

2π/k

R-δr R+δr

δr

Fig. 5.19. Simplified scheme to define the parameters of a segmented pickup pro-
vided for determining beam position

δi (t, δr) = −2 δr
d

dR
i (t, R) (5.59)

δi (t, δr) = −e γ β cR δr

k
(TA − TB) (5.60)

TA =
[γ(L/2 + βct)]2 − R2/2

{[γ(L/2 + βct)]2 + R2}5/2
(5.61)

TB =
[γ(L/2 − βct)]2 − R2/2

{[γ(L/2 − βct)]2 + R2}5/2
. (5.62)

Pickups of the Plate Type

The difference signal from two rectangular pickups, positioned according to
Fig. 5.13, can be derived in the same way by calculating the derivative d/dh.
One obtains

δi (t, δr) = −2 δr
d

dh
i (t, h) . (5.63)

The differentiation of (5.44) with the definitions (5.45–5.50) is straightforward.
However, it results in rather long expressions and therefore the result is not
given here. The results for both versions, the ring-shaped monitor and the
plate type, are similar, if the relevant parameters are scaled as follows: 2a ≈
L, 2b ≈ 2πR/k, h ≈ R. As an example, sum and difference signals for both
types are displayed in Fig. 5.20 for a point charge.

Therefore, instead of calculating the difference signal for a pickup of the
plate type from (5.63), it can be estimated from the sum signal (5.44) and the
ratio for the segmented ring-shaped pickup, according to (5.29) and (5.59).
The required number [Nζ]min to achieve a signal-to-noise ratio S:N = 1 can
be scaled with the ratio ∆/Σ (∆ is the difference signal and Σ is the sum
signal).
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Fig. 5.20. Sum and difference signal for a point charge with β = 0.1. Left: Ring-
shaped pickup with 2π/k = 60◦, pickup radius = 17.5 mm pickup length = 10 mm.
Right: Plate type pickup with 2b = 18 mm, 2a = 10 mm, and h = 17.5 mm. The
difference signals hold for a displacement of 1 mm in both cases

5.2.11 Linearity of Position Measurements

To be independent of changes in beam intensity during beam position mea-
surements, the ∆ signal has to be normalized with the Σ signal. Keeping in
mind the dependencies of the equations given in this section, the linearity of
∆/Σ should be calculated for the selected probe dimensions and beam para-
meters to consider corrections in the evaluation software. Figure 5.21 shows a
calculation for a plate-type pickup according to (5.44):

Σ = i

(
−TOF

2
, h − δh

)
+ i

(
−TOF

2
, h + δh

)
(5.64)

∆ = i

(
−TOF

2
, h − δh

)
− i

(
−TOF

2
, h + δh

)
(5.65)

with t = TOF/2 and TOF as the time of flight through the pickup, which
corresponds about to the positive signal maximum.

From the calculation, one can conclude that the normalized difference
signal is linear up to a displacement of about one-half of the aperture.

Conformal Mapping

The position sensitivity for circularly shaped pickups can be determined, tak-
ing advantage of the bilinear transformation

w = R
i − z

i + z
(5.66)

z = i
R − w

R + w
(5.67)

which maps the upper half of the z-plane (z = x+ iy) into a circle with radius
R into the w-plane (w = u + iv). The point z = i is mapped into w = 0.
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Fig. 5.21. Linearity of position signals for a plate-type pickup. Parameters: Single
particle of charge e with β = 0.5. Plate dimensions: 2b = 25 mm, 2a = 20 mm,
h = 25 mm

A point moving on the real axis in the w-plane moves along the imaginary
axis in the z-plane. In the z-plane, the potential of a line charge q, located at
z = z0 is given by

φ(z) = − q

2πε0
ln

z − z0
z + z0

. (5.68)

For a dc-beam, q is given by i /βc. The solution holds for φ(y = 0, x) = 0
and is easily derived by placing a second line charge at z = −z0. In the w-
plane, z0 = i corresponds to a centered line charge. With (5.67), we obtain
the potential φ(z) for a line charge located at position w = ri:

φ(z) = − q

2πε0
ln

z − i R−ri
R+ri

z + i R−ri
R+ri

. (5.69)

Mapping to the w-plane results in

φ(w) = − q

2πε0
ln

ri − w
R − riw

R

. (5.70)

In connection with the problem discussed, the real part of φ(w) is of interest.
The observation point is at w = r. Thus, ri−r and R−rir/R can be replaced,
applying the law of vector multiplication. For the real part of the potential,
we arrive at

φ(r) = − q

2πε0
ln

√
r2
i + r2 − 2rircosθ

√
R2 +

(
rir
R

)2 − 2rircosθ
. (5.71)

Here the parameters are defined as follows:

• r is the radial distance from the center of the pickup to the observation
point on the segmented electrodes.

• θ is the angle between the u-axis (abscissa) and the vector to the observa-
tion point.
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• R is the radius of the grounded beam pipe.
• ri is the displacement of the beam along the positive u-axis.

To calculate the influenced signals on the electrodes dependent on the
displacement ri, the radial component of the electric field must be determined
from Er = −dφ(r)/dr. One ends up with

Er(r, ri, θ) =
q

2πε0
(T1(r, ri, θ) + (T2(r, ri, θ) (5.72)

T1(r, ri, θ) =
r − ri cos θ

r2
i + r2 − 2rir cos θ

(5.73)

T2(r, ri, θ) =
ri

(
rir − R2 cos θ

)

R4 + r2
i r

2 − 2rirR2cos θ
. (5.74)

The influenced signal on one segment located at r with the extension
θ1 ≤ θ ≤ θ2 has to be figured out from

u =
L

C

∫ θ2

θ1

ε0 Er(r, ri, θ)r dθ , (5.75)

with L as the length of the electrode in the beam direction and C as the
capacity of the pickup electrode against ground.

Example 1. L = 10mm, C = 10pF, R = 17.5mm, θ1 = −30◦, θ2 = 30◦

(electrode on the right), θ2 = −150◦, θ2 = 210◦ (electrode on the left).

Example 2. L = 10mm, C = 10pF, R = 17.5mm, θ1 = 15◦, θ2 = 75◦

(electrode on the right), θ2 = −195◦, θ2 = 255◦ (electrode on the left).

Figure 5.22 shows the normalized difference signal ∆/Σ for both examples
dependent on the displacement ri against the electrode on the right. Obvi-
ously, due to the normalization by the sum signal, specification of L and C
is irrelevant. Because the estimations given by (5.59) and (5.60) hold only for
small displacements, the method of conformal mapping delivers more precise
results. Using the manifold of conformal mappings described in the litera-
ture [254], it is possible to solve more complex problems of this kind, too.

5.2.12 Examples for Design and Signal Processing

Figures 5.23 and 5.24 show two examples of capacitive pickups with electrode
systems, provided for additional position measurements. About 30 pickups
of the type shown in Fig. 5.23 are installed along the UNILAC and in the
experimental beam lines of GSI to perform measurements as discussed in
the next section. The pickup shown in Fig. 5.24 has been designed [33] for
installation between two superconducting accelerator sections, which requires
a very short insertion length of about 10mm, a small aperture of 12mm, and
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Fig. 5.22. Normalized difference signal dependent on the beam displacement. Curve
1: Electrodes centered at 0◦ and 180◦. Curve 2: Electrodes centered at 45◦ and 225◦.
See text for details

Fig. 5.23. Segmented capacitive pickup for measurements in the longitudinal phase
plane, including position measurements. The picture on the right-hand side is a GSI
Foto

qualification with respect to a cryogenic environment. The scheme of signal
processing for the pickups, according to Fig. 5.23, is shown in Fig. 5.25. The
most relevant specifications are given in Table 5.1. To take advantage of the
higher sensitivity of narrowband signal processing, the position measurement
is based on the extraction and detection of the eighth harmonic, which is
216MHz in this case. To allow comparison of bunch signals with rf tank signals
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Fig. 5.24. Capacitive pickup, design [33], and manufaturing [255], provided for
the installation between two superconducting accelerator sections. See text for the
specifications

with respect to phase differences, all rf tank signals are also fed into the
system. This enables the operator to adjust and monitor the powering of the
accelerator sections with the correct rf phase setting. Beside evaluation of the
∆/Σ signals by the computer, the beam position is displayed to the operator
in a bar diagram (see Fig. 5.23), too.

The most important parameters of the pickup shown in Fig. 5.24 are given
in Table 5.2.

5.3 Examples of Application

5.3.1 Beam Energy Determination by Time of Flight

Taking advantage of the periodic bunch structure, very precise time of flight
(TOF) measurements can be performed to determine the beam. In this case,
the energy is determined directly by two of the basic units [m, s] of the Inter-
national Unit System (SI) [256]. Figure 5.26 shows schematically two typical
schemes. Energy is determined on the basis of the arrangement shown on top
by two measurements: the first to determine the number of bunches between
pickups P1 and P2 by measuring the time of flight from P1 to P2 and the
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Fig. 5.25. Scheme of the signal processing [40] for capacitive pickups shown in Fig-
ure 5.23. (Taken from Forck, P., Peters, A., Strehl, P., AIP Conference Proceedings
546, (2000), p. 606. With permission)

L1 L2

βλacc
P2 P3

Nx Tacc δt

Tacc

P2

tc

t

ßc

Pick up P1

Fig. 5.26. Arrangement of capacitive pickups to perform time of flight measure-
ments. See text for details

second to determine the time of flight t = NTacc+δt. Similar systems have
been installed in the experimental lines of the Super-HILAC (LBL) [257].

If the beam energy is known within certain limits, the arrangement shown
at the bottom of Fig. 5.26 can be used. Only one measurement is required in
this case. In both schemes, the precision in the time of flight measurement is
increased considerably by taking advantage of the high accuracy and stability
of the accelerating rf period.
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Table 5.1. Most important specifications of the capacitive pickups shown in Figure
5.23 [40]

Electrode length 20 mm

Aperture 50 mm

Number of electrodes 4

Insertion length 55 mm

Sealing DN 100 CF

Impedance 50Ω

Bandwidth 1 GHz

Processed signals 2×Σ, 2×∆

Σ, broadband, 2× L+R,U+D

Σ, narrowband, 216 MHz, 2× L+R,U+D

∆, digital from narrowband, 2× L-R,U-D

Required charges/bunch 2×107, (∆t =1 ns, β =1.6 %)
holds for S:N = 1 4×106, (∆t =1 ns, β = 4 %)

and 1 mm displacement 2.5×106, (∆t =1 ns, β =5.5 %)
2×106, (∆t = 0.5 ns, β =5.5 %)
3×106, (∆t =1.5 ns, β =5.5 %)

Table 5.2. Most important specifications of the capacitive pickups shown in Figure
5.24 [33]

Aperture 12mm

Shape of the electrodes 4 discs

Size of the discs 7 mm ∅

Impedance 50 Ω

Bandwidth ≈ 2 GHz

Σ-signal ≈ 20−40 pA / e

∆-signal ≈ 3−5 pA / e·mm

Connectors 4 SMA-coax

Material of the housing Copper

Insulation Vespel

Scheme with Three Pickups

To determine the unknown number N of bunches between pickups P1 and P2,
the time of flight is measured between P2 and P3. Obviously, the distance P2
and P3 has to fulfill the condition L2 < βλacc to avoid ambiguity. After the
time of flight tc (see Fig. 5.26) has been measured, N has to be determined
from

βc =
1
c

L2

tc
(5.76)

N = INT

(
L1

βc λacc

)
. (5.77)
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Fig. 5.27. Example for determination of tc, t from the crossover points of both
signals. Note: The asymmetry of the positive and negative parts of the signals is
due to cable dispersion via more than 40m and not the result of an asymmetric
bunch. The picture was taken in the main control room of GSI

With the condition ∆N < 1, the required accuracy in the determination of
tc can be estimated from the relation N ∆tc / tc < 1. In the second step, the
measurement of the time difference between the arrival of a bunch at pickup
P1 and the first bunch in the chain arriving at P2 leads to δt and, finally to
the time of flight t = NTacc + δt (see Fig. 5.26). With β = L1 / ct, the kinetic
beam energy follows immediately from (relativistic)

W [MeV/u] = m0c
2 [MeV/u]

(
1

√
1 − β2

− 1

)

(5.78)

W [MeV/u] = m0c
2 [MeV/u] (γ − 1) (5.79)

γ =
1

√
1 − β2

. (5.80)

Because the signal, delivered from a pickup in 50-Ω geometry and broad-
band signal processing is proportional to the derivative of the density distri-
bution within the bunch, a zero crossing of the signals occurs. Therefore, in
most cases, determining tc and t from the two crossover points will be more ac-
curate than determining them from the two signal maxima. Figure 5.27 gives
an example from a TOF measurement behind the IH2 section (≈ 1.4MeV/u)
of the UNILAC. To minimize errors due to different signal transmission times
from the pickups to the measuring device (oscilloscope), the signal transmis-
sion systems via preamplifier, possibly coaxial relays, and long high quality
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cables, must be trimmed to equal overall transmission times. Using a modern
time domain reflectometer (TDR) or network analyzer, this is possible within
a ∆ of 10 ps.

Remark. Depending on the expected steps in energy due to different oper-
ating modes of an accelerator facility, a larger spacing L2 < nβλacc (n > 1)
is a possible alternative for improving the accuracy of N determination.

Scheme with Two Pickups

Beam energy may be known within certain limits from the setting of a deflect-
ing magnet, from the status of the machine in the accelerator sections involved
in the accelerating process, or even from the results of an experiment. In this
case, coarse measurement can be omitted. Then, only two pickups are involved
in the energy determination, which then corresponds to the second step of the
procedure described above. Assuming an uncertainty in N as ±1, the sepa-
ration of the corresponding energies belonging to N = N0, N = N0 + 1, and
N = N0 − 1 can be estimated very roughly (nonrelativistic) from

β =
L1

c (NTacc + δt)
≈ L1

cN Tacc
(5.81)

∆β

β
≈ −∆N

N
≈ − ∆N

L1/βλacc
= −∆N β λacc

L1
(5.82)

∆W

W
= 2

∆β

β
≈ −2β λacc

L1
, ∆N = 1 . (5.83)

Two Examples

The accelerator sections of the high current linac of GSI, one radio-frequency
quadrupole RFQ section and two IH structures [258], have been commis-
sioned, using a versatile test bench [259]. Time of flight measurements could
be performed with two capacitive pickups separated by exactly L1 = (3249±
0.5)mm. In a measurement, the IH2 section was operated with a certain ampli-
tude and rf phase setting. A δt of 8.88 ns, as shown in Fig. 5.27, was measured
in this case. From the data shown in Table 5.3, presented to the operators,
the decision about the correct energy, W = 1.351MeV/u, was very clear,
even considering that the set-values of the rf (facc = 36.136MHz) were not
yet optimal with respect to the design value of 1.4MeV/u.

The expected separation according to the rough estimation given in (5.83)
for N0 = 7 is ∆W/W = −2 · 446.326/3249 = −27.5%; ∆W/W is fig-
ured out from the table to (1.351 − 1.814) /1.351 = −34.3%, respectively,
(1.045 − 1.351) /1.351 = −22.6%.

In the second example, the output energy of the first prestripper section,
the RFQ, has been measured dependent on the rf voltage. Due to the low
design value of 120 keV/u, the spacing between the bunches is only about
133 mm, and, therefore the separation of energies belonging to N,N ± 1 is



184 5 Measurements with Capacitive or Inductive Pickups

Table 5.3. Calculated beam energy dependent on N . The correct energy is given
with N = 7.

N t [ns] β [%] βλacc [mm] W [MeV/u]

5 147.246 7.402 614.089 2.562

6 174.919 6.231 516.937 1.814

7 202.593 5.38 446.326 1.351

8 230.266 4.733 392.686 1.045

9 257.939 4.225 350.557 0.833

rather small. Nevertheless, as shown in Fig. 5.28, even changes of more than
30% in the rf amplitude did not result in crossovers of the three lines with
N = 23, 24, and 25.

5.3.2 Achievable Accuracy

The accuracy of a TOF measurement can be estimated for not to high β-values
from the well-known nonrelativistic relation

W =
m

2
v2 =

m

2

(
L

t

)2

→ (5.84)
∣∣∣∣
∆W

W

∣∣∣∣ = 2
∣∣∣∣
∆L

L

∣∣∣∣+ 2
∣∣∣∣

∆(δt)
NTacc + δt

∣∣∣∣ , (5.85)

which, of course is the worst case estimation. This can be compared with the
quadratic error addition, leading to

∆W

W
= 2

√(
∆L

L

)2

+
[

∆(δt)
NTacc + δt

]2
. (5.86)

Fig. 5.28. Measured energy (TOF) of the RFQ (UNILAC) dependent on the rf
amplitude [259]. The parameter is the assumed number of bunches N between the
pickups of the test bench
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Due to the dependencies on accelerator characteristics and on the spacing
between the pickups, and the accuracy of time measurements, the achievable
accuracy has to be considered in each case separately. In practice, ∆W/W is
of the order of 1−5 × 10−3.

5.3.3 Determination of Distances by TOF

Applying the time of flight technique, the distances between two pickups can
be determined precisely, if the energy of the particles, respectively, their β
values and the rf wavelengths are known. Supposing that the distance L is
known with an uncertainty < βλacc, then L follows from a measurement of δt
according to Fig. 5.26:

L = Nβλacc + ∆L (5.87)

∆L =
δt

Tacc
βλacc . (5.88)

This method is advantageous, if a direct precise determination of L is not
possible. A typical constellation is given, if one of the pickups is installed
directly in front of a large accelerator section, and the second one is located
behind it.

5.3.4 Fine-Tuning of Beam Energy

Let us assume that after an energy determination by TOF, a small, but very
precise change in energy ∆W is required. Supposing that a single gap res-
onator or a buncher is located upstream of the TOF arrangement, fine-tuning
of the energy can be performed with the following steps:

• Adjusting the phase of the rf to ϕs = −90◦. This can be easily realized by
monitoring the bunch signal on an oscilloscope, while the rf on the single
gap resonator or buncher is switched from ON to OFF and vice versa.
Because ϕs = −90◦ corresponds to the zero crossing of the rf sine wave
(phase convention in accelerator physics), the bunch signal does not shift
in time if the phase is correctly adjusted to −90◦.

• Replacing the nonrelativistic (5.84) by the relativistic one leads to the
relation between ∆W/W and ∆β/β:

∆W

W
= (γ + 1) γ

∆β

β
. (5.89)

Assuming γ =const for small changes of ∆W/W, the change in the time
of flight ∆t is given by

∆t = − 1
γ(γ + 1)

∆W

W

L0

β c
, (5.90)

with L0 as the spacing between the rf cavity and the capacitive pickup.
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Buncher / Rebuncher S0
P1P2

L1

L0
L2

Time focus required

Fig. 5.29. Setup to optimize a rebuncher. See text for details

• Now the shift in the arrival time according to (5.90) can be observed on the
oscilloscope, changing the phase of the rf to acceleration or deceleration
and adjusting the rf amplitude.

Example 3. L0 = 50m, β = 0.5 → W = 144.104MeV/u → γ = 1.155

∆W = +100 keV/u→ ∆W/W = 6.94 × 10−4 → ∆t = −93 ps .

5.3.5 Optimization of Bunchers

Due to the energy spread of particles within a bunch, the bunch width ∆t
increases continuously in a drift space behind a waist. Most rf accelerators
use bunchers, rebunchers and, in some cases debunchers to shape the density
distribution in the longitudinal phase plane. In practice, mostly the genera-
tion of a focus at a given location is required. The correct set-values of the
corresponding buncher or rebuncher can be easily determined from a measure-
ment of the bunch width at two capacitive pickups located downstream of the
buncher/rebuncher. For an arrangement as shown in Fig. 5.29, the procedure
is as follows:

• In the first step, a time focus is generated at pickup P1 by varying the rf
amplitude of the buncher/rebuncher. Let the corresponding rf amplitude
be U1.

• The second step with the time focus at P2 leads to the set-value U2 with
U2 > U1, assuming a divergent beam at the buncher/rebuncher location.

• Then the correct set-value U0 to produce the focus at location S0 is given
by

U0 = (1 − Q)U2 + Q U1 (5.91)

Q =
(L0 − L2)L1

(L1 − L2)L0
. (5.92)

The time focus can be detected on an oscilloscope in the time domain or
more sensitively in the Fourier spectrum of the bunch signal, as illustrated
in Fig. 5.30. Since the bunch width itself is not relevant for this optimizing
procedure, the determination of the time focus by the Fourier spectrum should
be preferred.
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Fig. 5.30. Detection of a time focus at a capacitive pickup by observing the signals
in the time domain as well as in the frequency domain using a spectrum analyzer.
The pictures are taken in the main control room of GSI

5.3.6 Stopping Power Measurements

The TOF technique can be used to determine energy losses in thin tar-
gets [260]. This method has higher accuracy than measurements with semi-
conductor detectors and is free from the pulse height defect of these detectors.
Figure 5.31 shows a typical setup with two capacitive pickups, which can be
supplemented by a third pickup if there is an uncertainty in the number of
bunches between P1 and P2. The relevant formulas are already discussed in
Sect. 5.3.1. In the example of Fig. 5.31, the stopping power has been measured
dependent on particle energy, taking various accelerator sections in front of
the target successively in operation. This leads to a change of the mean charge
state of the particles due to stripping in the dE/dx target. Therefore, different
settings for the focusing quadrupoles between the two pickups would be neces-
sary for the unattenuated and attenuated beams, which can change the path
length between the two pickups. To avoid this effect, a thin charge-exchange
foil was installed permanently in front of the target. The counting rate was
adjusted by the rate divider (RD) to the maximum ratings of the time to
amplitude converter (TAC) and multichannel analyzer (MCA) boards in the
PCI system. Evaluation of the time of flight spectra by fitting Gaussians to
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Fig. 5.31. Scheme for precise stopping power determination taking advantage of
the TOF technique

the measured data can reduce the error in ∆(δt) [see (5.85) and (5.86)] to
about 10 ps, which leads to very precise determination of the energy loss in
the target. The main contribution to the error estimation may come from
the determination of the target thickness. Results for a series of dE/dx val-
ues with Kr-projectiles and various targets, obtained with this method and
reported in [260], show excellent agreement with data published by other au-
thors. The method can also be applied to determine energy loss and energy
straggling very precisely in gas- and foil-strippers.

5.3.7 Determination of the Correct Injection Energy
and Prebuncher Settings

Figure 5.32 shows a practical injection scheme, consisting of two prebunchers
in front of a capacitive pickup and the first accelerator section of a rf ac-
celerator. During routine operation or changes of the injector scheme in the
commissioning phase of a new machine, precise determination of the injection
energy, as well as the correct phase setting of the prebunchers becomes es-
sential. Taking advantage of the TOF technique, this problem can be solved
easily by a skilled operator performing the following steps:

• In a first step, the rf phase of both prebunchers is set to exactly the same
value, which is normally done by rf experts.

• Supposing that the potential of the ion source terminal, respectively, the
gap-voltage of the first accelerating gap behind the ion source is settled to
nearly the correct values, the integral and nonintegral part of bunches N
(Ni, n) between PB1 and PB2 are known from
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Fig. 5.32. Typical layout in the injection area of a rf accelerator

Ni = INT

(
L0

β λ

)
(5.93)

n =
L0

β λ
− Ni , (5.94)

with λ as the wavelength of the rf.
• Therefore, the arrival time of bunches with PB1=ON, PB2=OFF and

PB1=OFF, PB2=ON differs with a time difference

∆t = nT , (5.95)

where T is the period of the rf. This can be detected and adjusted very
easily – by change of the gap-voltage – observing ∆t with the capacitive
pickup P1. Due to relatively low energies in the injection areas, in general,
βλ will be small and, therefore the accuracy, which can be achieved is high,
even for moderate spacing between PB1 and PB2. The error in energy can
be estimated from

∆W

W
� 2

δ∆t

NiTacc + ∆t
, (5.96)

neglecting an error in the spacing PB1–PB2.
• The next step concerns the correct phase setting of PB1 and PB2. Be-

cause the ion source is operated either in the dc-mode or in a macropulse
mode, the phase of PB1 is irrelevant and only the phase of PB2 has to be
adjusted for optimal action of both prebunchers. Obviously, the required
change is determined from

ϕ(PB2) = ϕ(PB1) + ∆ϕ (5.97)

∆ϕ =
∆t

T
360◦ . (5.98)

• The correct setting can be controlled by observing the bunch signals at
P1. No shift of the bunch signals should be observed if both prebunchers
are switched ON, one after the other.
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Example 4. L0 = 1074mm, which has been determined and fixed very pre-
cisely by a massive stainless steel rod between the two prebunchers in the
injection area of the UNILAC-injector section. The accelerator frequency
f = 27.1015MHz gives T = 36.8983 ns and λ = 11061 mm. A required β value
of β = 0.005 leads to Ni = 19, n = 0.4196, and ∆t = 15.48 ns→ ∆ϕ = 151◦.
The achievable accuracy in ∆W/W is about 0.028%, assuming a δ∆t of 100 ps.

Remark. The scheme shown in Fig. 5.32 can be used to detect wrong masses,
after correctly setting U for a certain ion species. In this application, one takes
advantage of the nonrelativistic relation

m

2
v2 = ζeU → (5.99)

∆m

m
+ 2

∆L

L
− 2

∆t

t
= 0 because U = const (5.100)

∆m

m
= 2

∆t

t
, (5.101)

again neglecting the error ∆L. Evidently, the highest accuracy can be achieved
by switching PB1 ON, PB2 OFF and with L = L0 + L1 as the drift space
of the bunches, formed by the action of PB1. For the example, one gets high
resolution with

∆t [ns] � 772
∆m

m
. (5.102)

5.3.8 Estimation of Bunch Lengths

Due to the advanced field of the moving bunches and the integration over
the probe length as well as a possible limitation of the oscilloscope, direct
determination of the bunch width is not possible. On the other hand, it is
useful to estimate the bunch width very quickly and non-destructively from
a displayed pickup signal. Taking advantage of the algorithm for numerical
signal calculation (see Sect. 5.2.6), a relation between the bunch width ∆t
(FWHM) and the time between signal maximum and signal minimum ∆k
can be calculated for a given β and known pickup dimensions. Figure 5.33
shows a numerical calculation for a pickup with L = 10mm, R = 17.5mm,
β = 0.055 and a cos2-like bunch shape. Neglecting the final bandwidth of the
oscilloscope, the measured ∆k = 1.6 ns (= 2 · 0.8 ns; see Fig. 5.33) leads to a
bunch width ∆t = 1.36 ns.

The diagram in Fig. 5.33 also shows the limits very clearly. No ∆k value
exists below a certain value on the abscissa, which, of course, is a consequence
of integration over the length of the pickup. The asymptotic value for ∆t =
0 (single particle) tends toward ∆k ≈ 2L/βc for low β values caused by
the advanced field. For higher β values, ∆k → L/βc. The broadening of
the signal, caused by the advanced field and the integration also becomes
very clear from the Fourier spectrum of the original cos2 distribution and the
convoluted one. Figure 5.34 shows a comparison of the Fourier spectra.
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Fig. 5.33. Left: Numerical calculated relation between bunch width ∆t (FWHM)
and the measured time diference between the signal maximum and signal minimum
∆k. Right: Measured signal. Note: Due to cable dispersion, determining ∆k from the
time difference between the positive maximum and zero crossing is recommended

Fig. 5.34. Fourier spectrum of a cos2 distribution with width ∆t = 1.36 ns (FWHM)
and a repetition frequency of 36 MHz. Inset: Fourier spectrum of the bunch signal
after passing a capacitive pickup with L = 10 mm, R = 17.5 mm, and a β value of
0.055

In accelerator laboratories around the world, a great variety of devices for
bunch length determination with better accuracy have been developed [261–
268]. Nevertheless, non-destructive bunch length monitoring with a capacitive
pickup is a very useful tool during routine operation of rf accelerators.
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5.3.9 Monitoring of Low Beam Currents

Non-destructive absolute beam intensity measurement and monitoring of
pulsed beams with beam transformers goes down to some microamperes, as
discussed in Chap. 2, Sect. 2.3. But, in many applications, only a surveillance
of the beam current with respect to a reference value or observation of the
beam current constancy over time is required. For this application, the ab-
solute value of the beam current is not of great relevance and, therefore the
non-destructive bunch signals from capacitive pickups can be used. Further-
more, for dc-beams with rf structure, non-destructive beam current monitor-
ing based on capacitive pickups will be very sensitive and much cheaper than
the installation of dc-beam current transformers. There are two methods for
processing the pickup signals for this application:

• Broadband amplification of the original fast bunch signals. Splitting the
amplified output signals into two branches: One of them can be used to
observe the bunch structure, the other one is fed on a bandpass filter, tuned
to a harmonic of the accelerating rf. Further narrowband amplification
and demodulation of the resulting rf signal delivers the envelope of the
bunches. The signal-to-noise ratio, which can be achieved by this method,
is determined by the relatively high input noise of the first broadband
stage.

• To improve the signal-to-noise ratio, one may give up the bunch shape
observation. Then the first amplifier stage can be tuned to a harmonic and
the signal-to-noise ratio is determined by the first narrowband amplifier
stage. Although the amplitude of the harmonic is lower than the maximum
amplitude of the signal itself, a net gain in sensitivity can result, depending
on the bandwidth and the amplitude of the harmonic selected.

Example 5. Taking the analog signal of Fig. 5.12 and the corresponding
Fourier spectrum of Fig. 5.17, the relevant parameters are summarized in
Table 5.4 for a pulsed beam with a repetition frequency of 50Hz and a duty
cycle of 10%. For narrowband signal processing, a bandwidth of 10 kHz is
assumed, which responds in a time constant of about 100 µs. Depending on
the application, this may be further reduced. The data, for a signal-to-noise
ratio of 5, demonstrate clearly, that this method of non-destructive beam cur-
rent surveillance competes very well with beam current transformers if the
absolute values are not relevant.

Figure 5.35 shows the signal, generated from the demodulation of the first
harmonic of the bunch chain. The signal marked “rf envelope” in Fig. 5.35 is
a distortion from the accelerating rf. Because the first harmonic of the bunch
signal corresponds just to the accelerating rf, the bunch signal adds to the
envelope. The electronics has been improved by

• demodulation of another harmonic (third),
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Table 5.4. Comparison of demodulated bunch signals in broadband and narrow-
band signal processing, n is the harmonic number. See text for details.

Parameter Broadband Narrowband

β value 0.9
∆t(FWHM) 1ns

rf 36 MHz

Bandwidth (1-stage) 500 MHz 10 kHz

Impedance 50 Ω 50 Ω

Noise voltage at the input ≈ 15 µV ≈ 67nV

Corresponds to ≈ 0.3 µA 1.35 nA

Imax (signal) ≈ 9 pA/e ≈ 0.14 pA/e (n =3)
≈ 0.26 pA/e (n =6)

Required Nζ (S:N = 5) ≈ 1.7×105 ≈ 4.8×104 (n = 3)
≈ 2.6×104 (n = 6)

Bunch current with Nζ ≈ 27 µA ≈ 7.7 µA (n =3)
≈ 4.2 µA (n =6)

Macropulse current with Nζ ≈ 970 nA ≈ 277 nA (n =3)
≈ 151 nA (n =6)

Mean dc-current with Nζ ≈ 97 nA ≈ 28 nA
≈ 15 nA

Fig. 5.35. Signal from an electronic-prototype based on demodulation of the first
harmonic of the bunch signal. The signal corresponds to a macropulse current of 16
nA. See text for details

• use of tunnel diodes with a relatively high threshold voltage, and
• use of narrowband filters.

Nevertheless, the signal from the prototype demonstrates the sensitivity
of the method.
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Fig. 5.36. Scheme to derive the position sensitivity of a “linear cut”

5.4 Beam Position Monitors (BPM)
in Circular Machines

5.4.1 Basics

All kinds of capacitive pickups, discussed above, including variations in design
and signal processing, can be used in circular machines. The beam position is
determined from the difference of the influenced signals of opposite electrodes
(see, e.g., Figs. 5.23 and 5.24). For electron machines with relatively short
bunches, the most frequently used electrode systems are buttons [1,269,270],
which can be arranged in various schemes around the beam. In most cases,
such monitors have nonlinear transfer functions.

For machines with long bunches and relatively large apertures in the beam
pipe, especially proton and heavy ion synchrotrons, position determination
is based on the so-called linear cut. Figure 5.36 illustrates the principle. A
single particle moving above the plate influences a signal proportional to the
plate length at that position. Therefore, the signal difference between the left
triangular part, and the right one is a linear function of the displacement
∆x that is independent of the intensity distribution within a real beam. With
G = C1B L (C1 = const.) as the sum signal, the ratio S between the difference
signal D and the sum signal G is given by

S =
D

G
=
(

s1

s1 + s2
− s2

s1 + s2

)
(5.103)

s1 + s2 = L,
s1

B
2 + ∆x

=
L

B
=

s2

B
2 − ∆x

→ (5.104)

S =
2∆x

B
. (5.105)

Other linear cut configurations have been developed and discussed in the
literature [1,6,271]. Some of them allow combination of the vertical and hor-
izontal planes, but vertical and horizontal electrode sets should be separated
to achieve good performance. If full separation is not possible due to spatial
limitations, a guard ring should be provided between the two electrode sets.
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When designing a BPM system, a question arises about the required pre-
cision in manufacturing and alignment. For manufacturing, let us assume the
extreme case that the two triangular plates are machined with the dimensions
L2 = L1 − ε and B2 = B1 + δ. The beam position is determined from a mea-
sured S by ∆x = S B/2 if L2 = L1 = L and B2 = B1 = B. With the assumed
differences in L and B, one obtains

∆x =
SB

2
1 + ε

2L

(
1
S − 1

)

1 + ε
2L (S − 2) + δ

2B (S − 2)
. (5.106)

Example 6. B = 200mm, L = 120mm,∆x = 1mm gives S = 0.01 for the
perfectly machined pickup. It is reasonable to assume ε = δ = 0.1mm, which
leads with S = 0.01 to ∆x = 1.043mm.

To estimate the required accuracy for alignment of the BPM, let us assume
that the two plates are rotated by a small angle ∆α around the center (see
Fig. 5.36 for the definition of α). One gets

tan α = L/B (5.107)
tan(α − ∆α) = (tan α − tan ∆α)/(1 + tanα tan ∆α) (5.108)

tan ∆α ≈ ∆α (5.109)

∆x =
SB

2
1 + L

B ∆α

1 − B
L ∆α

. (5.110)

For the example considered and ∆α = 0.01745 (1◦), ∆x = 1.041. Irre-
versible misalignments in the order discussed may also result from the bake-
out procedure performed on BPMs.

5.4.2 Signal Calculation

In most circular machines, the bunch length βc∆t is large in comparison to
the length of the BPMs. This holds especially for heavy ion machines that
accelerate heavy ions to maximum β values < 1. As a consequence of the
longer bunches, the required bandwidth can be lower as mostly required for
pickups in rf linacs, which in turn allows high impedance signal processing. To
compare the expected signals for high and low impedance signal processing,
we calculate the expected sum signal for one plate with the dimensions given
in the example above. Furthermore, let us assume a distance H = 35mm of
the plate to the beam center, β = 0.75 (≈ 500MeV/u) and a bunch length
of ∆t = 50ns. The expected signal for a low impedance system, according to
(5.41), assuming a cos2-like bunch shape, is shown in Fig. 5.37. On the other
hand, the signal for a high load impedance can be estimated from (5.7), taking
advantage of the approximation given in (5.14), which has to be changed to
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u ≈ Qbunch

C
k

L

βc∆t

1/2
1 + 2H/B + 2H/L

. (5.111)

Assuming that C = 100 pF, Qbunch = 1e, and k = 2 leads to

u ≈ 2
1.6 × 10−19As

100 × 10−12As /V
120mm

11240mm
1/2

1 + 0.35 + 0.58
(5.112)

≈ 8.9 pV/e . (5.113)

Equation (5.111) gives only a time independent, rough estimation for a bunch
with square shape. To compare the time dependence of the signal for high
load impedance with the low impedance case (see Fig. 5.37), we replace
k Qbunch L/βc∆t in (5.111) by

Q(t) =

∫ TOF

−TOF
cos2

[
π(x−t)

2∆t

]
dx

∫∆t

−∆t
cos2

[
πt

2∆t

]
dt

, (5.114)

with TOF = L/βc as the time of flight through the pickup. The factor k, intro-
duced in the estimation of (5.111) has been considered here by performing the
integration from −TOF to + TOF instead of from −TOF/2 to + TOF/2.
Equation (5.114) is an estimation of the part within the pickup. The integral
in the denominator of (5.114) is the normalization and leads just to ∆t. With
this replacement of Qbunch by Q(t), the time-dependent signal comes out as

Fig. 5.37. Calculated signal for one plate with L = 120 mm, B = 200mm, H =
35mm, β = 0.75, ∆t = 50 ns (FWHM), assuming a cos2-like bunch shape and low
impedance signal processing
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Fig. 5.38. Calculated signal for one plate with L = 120 mm, B = 200mm, H =
35mm, β = 0.75, ∆t = 50 ns (FWHM), assuming a cos2-like bunch shape and high
impedance (1-MΩ) signal processing

u(t) =
Q(t)
C

1/2
1 + 2H/B + 2H/L

. (5.115)

Figure 5.38 is a display of the expected signal according to (5.114) and
(5.115). The maximum of the signal in Fig. 5.38 shows good agreement with
the estimation given in (5.113). Assuming a 50-Ω load in the low impedance
system, one obtains from Fig. 5.37 a voltage of about 0.02 pA/e·50V/A=
1pV/e, which has to be compared with about 9 pV/e for high load impedance.

5.4.3 Calibration of BPMs

To maximize the signal, the proportionality of u(t) to 1/C for high impedance
systems requires minimizing the capacity . Because the capacity of the cables
between the pickup and the head amplifiers adds to C, the front-end electron-
ics has to be located as near as possible to the pickups. This may be require
careful shielding against irradiation by lost particles or γ-rays. Furthermore,
to avoid systematic errors in position measurements, the capacity of each plate
has to be measured very precisely and considered in the calibration constant
k, introduced in the equation for the determination of beam position P of
the type of P = k × (UA − UB)/(UA + UB). Some BPM designs also allow
fine-tuning of the capacities. Independent from the mode of signal processing,
in general, the required measurement accuracy will be high, which in turn
may demand a reliable test setup. A versatile and solid construction [272],
provided for the calibration of at least 28 BPMs for the SIS and the exper-
imental storage ring (ESR), is shown in Fig. 5.39. The main parts are two
granite blocks and a cross sliding carriage with a stroke of 30× 30 cm, driven
by two stepping motors. The carriage supports a framework with a 0.2mm
diameter wire stretched vertically in its center. The pulling force on the wire
is nominally 20N but can be varied from 0–30 N. The BPM under test is
mounted in a fixed position on a support bolted to the upright granite block.
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Fig. 5.39. Test set-up for the calibration of beam position monitors. GSI Foto

The wire is fed through the BPM and moved by the sliding carriage in a pro-
grammed pattern inside the aperture. Two absolute angular encoders give a
resolution of ±0.01mm, and the overall accuracy is 0.03mm for each axis. To
avoid framework tilting, a “top centered” check is provided at the top of the
frame using magnetic sensors with an accuracy better than ±0.05mm. The
wire, isolated from ground at the top end by a rigid glass fiber rod, is fed with
a rf signal of 10V rms at 2MHz. Control of the stepping motors according
to the programmed pattern for data collection, data storage, evaluation of
the data, and their display are computer controlled. Of course, fine-tuning of
the capacitances has to be done before the calibration measurement, using a
capacity measuring bridge with a resolution of the order of 1 pF.

5.4.4 Signal Processing

The mathematical procedures discussed for calculating expected signals, in-
cluding approximations for rough signal estimations, hold for all kind of ca-
pacitive BPMs. However, there are various demands on the overall perfor-
mance of a BPM system for signal processing and signal evaluation. A very
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detailed comparison of signal processing systems is given in [273]. It includes
a schematic representation of the different families of systems as well as a
description of the operating principles for many implemented systems. Focus-
ing the attention on heavy ion synchrotrons, one has to take the following
additional facts into account:

• Heavy ion synchrotrons differ from e-and p-machines with respect to the
relation between accelerating frequency and particle velocity. For light
particles such as electrons or protons, β � 1 is mostly achieved after some
turns (or are even injected with β � 1). As a consequence, the accelerating
frequency remains constant over nearly the whole acceleration cycle. On
the other hand, for heavy ion synchrotrons, the relativistic mass increase
has to be taken into account over the whole accelerating process, leading
to a rather complex relation between revolution time and correct rf.

• The great variety of the charge ζ of accelerated ions 1 ≤ ζ ≤ 92, as
well as the strong change in bunch length during acceleration, require
an extremely high dynamic range for the amplifier systems. In the SIS,
the total dynamic range for broadband signal processing covers 140 dB
(−80 dBm to +60 dBm, [274,275]).

5.4.5 Broadband Signal Processing

Monitoring single bunches, turn-by-turn, in a heavy ion synchrotron requires
broadband signal processing. In most cases, a bandwidth up to about 100MHz
will be sufficient; it can be achieved with a load of up to 1M Ω. Therefore, the
expected signals can be calculated from (5.114) and (5.115). Using modern
broadband amplifiers, the input noise voltage for a bandwidth of 100MHz is
of the order of some 10 µV. To reduce noise, the front-end electronics should
be gated in coincidence with the bunch signal. Due to the change in particle
velocity and the bunch shrinking process of the bunch length during accelera-
tion, the generation of gate pulses requires rather complex electronics, which
may be realized by

• use of programmable counters, deriving the clock frequency from the rf
acceleration;

• use of shift registers arranged in a ring counter and shifting the bits with
a rf-related clock;

• setting up a fast RAM-table, whereby addressing is performed also by a
rf-related clock frequency, and

• use of modern DSPs.

Figure 5.40 shows a simplified scheme of gate pulse generation, which can
be used additionally to derive trigger signals for the kickers. In the SIS, oper-
ating normally on the fourth harmonic of the revolution frequency, there are
four bunches in the machine, shown in the inset at the top right of Fig. 5.40.
The gate generator allows selection of one or two bunches, caused by the lim-
ited length of the kicker pulses. The implementation of such a timing system
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Fig. 5.40. Scheme of gate pulse generation for BPM electronics. The inset at top
right shows a typical sum signal from a BPM, measured from a 30 µA Bi-beam at
the end of acceleration in the SIS to about 200 MeV/u. The picture was taken in
the main control room of GSI

requires additionally exact determination of all cable lengths and considera-
tion of all signal transmission times in programming the timing system. To
realize the scheme shown in Fig. 5.40, the following specific times have to be
considered:

• Time of flight of the particles from the trigger probe to the selected pickup
numbered i;

• time for the transmission of the pickup signals through the cables;
• transmission time of the signal from the trigger probe to the gate generator;
• transmission time for the gate pulse from the gate generator to the point

of coincidence;
• delay times within the electronics;
• dynamic change of the bunch length; and
• advance of the gate pulse, changing during acceleration, too.

Of course, a BPM system with broadband signal processing allowing turn-
by-turn measurements is not limited to orbit and trajectory measurement but
can give information about betatron and synchrotron oscillations, tune, trans-
fer functions, and many other static and dynamic beam parameters. Further-
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Fig. 5.41. Bunch oscillations observed [9] at the flattop of the SIS with a broadband
BPM signal processing system

more, BPMs arranged around a circular machine can be used for active beam
correction, establishing a feedback loop to kicker systems (see, e.g., [276–278]).

Some Examples

Observation of Bunch Oscillations

The advantage of single bunch observation is demonstrated impressively in
Fig. 5.41 showing bunch oscillations observed at the flattop of the SIS.

Closed Orbit and Beam Trajectory Measurements

• The ideal trajectory of particles in a circular machine coincides with the
center of the focusing devices.

• Since the field is zero there, this idealized trajectory, the so-called closed
orbit is solely determined by the bending magnets (dipoles).

• But imperfections, misalignment, stray fields and, as a consequence, arising
betatron oscillations require a more realistic definition of the closed orbit.

• Therefore, the closed orbit is defined by the paths of the particles along
the machine, taking all the unavoidable imperfections into account.
The closed orbit can be measured by bunch synchronous monitoring of
the beam position at various locations along the circular machine. In a
broadband system, it is possible to measure the closed orbit for even one
turn. Figure 5.42 shows a measurement performed in the horizontal plane
of SIS, to control the efficiency of six horizontal correction coils [280].
Without corrections, the beam orbit shows oscillations with maximum
amplitudes of about ±15 mm. Three different settings for the correction
magnets were gradually tested, leading to a reduction of oscillations to
about ± 7mm.
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Fig. 5.42. Closed orbit measurements with various settings of six horizontal cor-
rection magnets [280]

Q-Value Determination in the Time Domain

A direct method for the determination of the tune Q is illustrated schemat-
ically in Fig. 5.43. A betatron oscillation with wavelength λ is excited by
the Q kicker. Immediately after excitation, position measurements, synchro-
nous with the kicked bunch, are performed at all N BPMs along the path of
the particles. Assuming a suitable number of BPMs around the machine, the
displacement yi at a certain pickup with index i can be described by

yi = y0 sin
[
Q

R
(si − s0)

]
. (5.116)

Now, a least squares fit can be applied to determine the unknown parame-
ters Q = 2πR/λ, y0 and s0. However, due to the complexity of the resulting
equations, no analytical solution will be found. An alternative method to de-
termine first the Q value and afterward to estimate y0 and s0 is based on the
following procedure:

• Determination of the number of zero crossings, which means to find the
couples of BPMs where the sign of the y signal changes from + ←→ −.

• Approximation of the zero crossings in the s-coordinate system by a
straight line between the corresponding y-values. This leads to the lo-
cations of the zero crossings:

S(i, i + 1) =
yi+1si − yisi+1

yi+1 − yi
. (5.117)
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Fig. 5.43. Scheme to illustrate the Q-value determination by a kick and synchronous
measurement of the beam position

• Determination of the Q value from the arithmetic average over all possible
differences between two zero crossings. For a number of m zero crossings,
(m
2 ) combinations exist, determined by

S(i, i + 1) − S(k, k + 1) =
(i − k) πR

Q
. (5.118)

• After the Q value is determined, an approximation for s0 can be obtained
from the average of all zero crossings because s01 = S(1, 2), s02 = S(2, 3)−
πRQ, s03 = S(3, 4) − πRQ, . . .

• Then, with known Q and s0, the amplitude of the excited betatron oscil-
lation can be determined from a least squares fit or from the arithmetic
average of the measured amplitudes.
– From the least squares fit

N∑

i=1

{
yi − y0 sin

[
Q

R
(si − s0)

]}2

= Min , (5.119)

one obtains
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Table 5.5. Maximum Q value which can be determined with a relative accuracy
of 0.1% dependent on the number of BPMs installed. The data hold for a random
error distribution of ± 15% for the positions measured

Qmax Qmax
Number of BPMs zero-crossing method gradient procedure

8 2.8 3.3

12 4.0 5.6

16 6.2 7.0

20 7.0 7.0

y0 =

∑N
i=1 yi sin

[
Q

R
(si − s0)

]

∑N
i=1 sin2

[
Q

R
(si − s0)

] . (5.120)

– The arithmetic average is

y0 =
1
N

N∑

i=1

yi sin
[

Q

R
(si − s0)

]

sin2
[

Q

R
(si − s0)

] . (5.121)

The procedure described to determine the Q value can be used to estimate
the minimum number of BPMs, which have to be installed in a machine to
achieve a given accuracy in the determination of the Q value. This has been
studied in the range 2.8 ≤ Q ≤ 7 for 8, 12, 16, and 20 BPMs considering
a random distribution of errors for the measured positions yi. An error of
±15% has been assumed in a program using the algorithms described above.
Alternatively, an improved numerical fit procedure (gradient procedure) has
been applied for comparison. Requiring an accuracy of 0.1% for ∆Q/Q, the
results are given in Table 5.5 [282].

Remark. The zero-crossing method is very simple and delivers acceptable
values for unknown parameters, especially for Q values.

Q-Value Determination in the Frequency Domain

The coherent pickup signal, measured at a BPM after a kick, is damped as a
consequence of the decoherence of the individual motion of particles, caused
by the spread in the betatron frequency. The damping mechanism is described
in the frame of Landau damping (see, e.g., [283, 284] and further literature
given there). Nevertheless, applying a well-defined kick with a strength that
the particles are not lost, results in damped oscillation, which endures several
revolutions. Thus, a FFT (fast Fourier transform) can be performed on the
measured data, taken from a single BPM. An example of excited oscillations
in the SIS is shown in Fig. 5.44. Referring to (5.116) and keeping in mind that
s/R = 2πs/2πR = 2πt/T0, 2π/T0 = ω0, the time dependence of the signal at
a certain pickup can be written as
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Fig. 5.44. Excited oscillations observed at one BPM in the SIS [120]

y(t) = y0 sin (Qω0t) δ(t − nT0) (5.122)

with T0 as the period for one revolution. In this simplified representation, the
signal at the pickup is a pulse train. The frequency spectrum of such a signal is
a series of harmonics with sidebands at ± q f 0 given by fm = f0 |m ± q|, where
q is the nonintegral part of Q. Obviously, the FFT then gives the fractional
part of Q and the width of the line gives the tune spread with ∆q = ∆Q. The
total number of oscillations determined by Q cannot be seen by this method,
but normally the integral part of Q is known from the machine setting. A
drawback of the method is that the damping limits, the observation time, and
the kick may blow up the transverse emittance.

Remark. The Q value, respectively, the nonintegral part q can also be de-
termined from signals, as discussed in more detail in Chap. 7, Sect. 7.1.3. For
(5.122), a more detailed mathematical description of the expected signals is
given there.

Beam Transfer Function Measurements

An alternative method uses the measurement of the so-called beam transfer
function (BTF). The method uses a beam excitation, driven by a continuous
sine wave, generated by a network analyzer. The excitation is swept over a
certain band and the response of the beam, the ∆/Σ signal from one BPM,
is measured in coincidence with the excitation, feeding the signal into the
network analyzer. Another BPM can be used as an exciter. A typical setup
for Schottky and BTF measurements is shown in Fig. 7.36 (Chap. 7, Sect.
7.1.3).

As a result, amplitude and phase relative to the excitation are displayed,
representing the transfer function. This gives the betatron frequency and the
tune spread in units of the betatron frequency [285]. The results of a BTF mea-
surement performed on a cooled beam in the experimental storage ring (ESR)
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Fig. 5.45. Display of the results from a BTF measurement on a cooled ion beam in
the ESR, recorded with a scan around the 22nd harmonic [120]. The amplitude is
shown on top in a linear scale, the phase, shown on bottom, is scaled with 45◦/div.
Picture taken in the main control room of GSI

are displayed in Fig. 5.45. Applying this method, precision in the determina-
tion of Q of the order of 10−4 can be achieved. On the other hand, it takes
some time because the frequency has to be swept slowly around f0.

Q Measurement on the Ramp

With the broadband BPM, electronics of the SIS, sum and difference signals
of each BPM are digitized with a fast ADC and stored in a 4 kRAM, which
means 1 kRAM for sum and difference signals of the horizontal and vertical
plate systems. In the so-called function mode, the 1 kRAM can be divided
into N blocks with 1024/N data in each block. Because data acquisition is
always related and synchronized to the revolution of one bunch, the stored
data blocks represent measured values with very precise time stamps. Taking
advantage of this feature, Fig. 5.46 shows a series of Q measurements on the
ramp of the SIS, using the data from a single BPM. Every point in the plot
represents the result of a discrete Fourier transform, with about 100 position
measurements per data block.
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Fig. 5.46. Q measurements during acceleration in the SIS [280]

5.4.6 Narrowband Signal Processing

Narrowband analysis of BPM signals for a beam revolving with constant fre-
quency can be performed simply by connecting the analog outputs of the head
amplifiers to a spectrum analyzer, setting the analyzer to the zero-span mode
with a resolution of some kHz. Many much more sophisticated narrowband
processing systems are described in the literature [273, 281]. Most systems
transform the beam signal into a constant intermediate frequency, but, due to
the frequency swept signal during acceleration in a heavy ion accelerator like
the SIS, most methods would work only for observation of injected bunches or
on the flattop. To transform the frequency swept beam signal into a constant
IF, one needs an additional circuit, which is controlled by the accelerating rf.
Figure 5.47 shows one possibility of realizing such a transformation [275]. The
signals IN A and IN B are derived from the buffered analog outputs of the
100-MHz broadband head amplifiers. Thus, the features of broadband signal
processing are still available.

The voltage-controlled oscillator (VCO) tracks the accelerator rf via a
phase-locked loop (PLL). A quartz oscillator (XO) generates the intermediate
frequency (IF), which results in a frequency offset inside the loop. The two
multichannel mixers are fed with the resulting oscillator signal at their local
oscillator ports, while the bunch signals from the two plates LEFT,RIGHT
or UP,DOWN (A and B in Fig. 5.47) are fed to the mixer input ports. As a
result, the BPM signals are converted to a constant IF signal.
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Fig. 5.47. Narrowband signal processing system provided for beam position mea-
surement and beam intensity display [275]

To illustrate the gain in sensitivity by narrowband signal processing, let us
take the signal shown in Fig. 5.38 which shows a maximum of about 9 pV/e.
The lower straight line in Fig. 5.48 gives the required number of charges within
a bunch to obtain a signal-to-noise ratio of 1 for the sum signal. The upper
straight line gives the corresponding number of particles to measure a beam
displacement of 1mm with S:N = 1. The data are based on an input noise
voltage of 30 µV for a bandwidth of 100MHz, which is a conservative value.
A sensitivity of S = 2∆x /B = 0.01 results in a factor of 100 between the
number of particles required for the difference signal in comparison to the sum
signal. The dBm values given in the figure correspond to the power output
for a 50-Ω system and are based on the convention 0 dBm→ 1 mW.

Some Examples

Real-Time Beam Intensity and Beam Position Monitor

Feeding the two mixer output signals to a matched sum and difference am-
plifier system [286] connecting the sum and difference output to a spectrum
analyzer delivers a very sensitive real-time beam intensity and beam position
display. The spectrum analyzer has to be tuned to the IF and operated in a
two-channel receiver mode. An example from the SIS is shown in Fig. 5.49.
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Fig. 5.48. Required number of particles to obtain a signal-to-noise ratio of 1 for
the sum and difference signals of the BPM system in the SIS. See text for details

Fig. 5.49. Display of beam intensity (upper trace) and beam position during a
complete machine cycle of the SIS [275]
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Fig. 5.50. Application of the k-modulation method at the SIS [142]. The abscissa
gives the displacement of the beam in millimeters

Fig. 5.51. Demonstration of the linearity of the k-modulation method [142]

The K-Modulation Method

A very efficient and precise method for determining the center of magnetic
quadrupoles in a circular machine by position measurements is the so-called
k-modulation method [287, 288]. It is well known that a beam passing the
center of a quadrupole is deflected (steering additional to focusing). Hence,
modulation of a quadrupole at a low frequency (10–45 Hz) and shifting the
orbit results in position signals proportional to the misalignment of the beam.
Because the bandwidth of the signal detection circuit must be only of the
order of some hertz, the achievable sensitivity is very high. An example from
a measurement performed at the SIS by [142] is shown in Fig. 5.50. The
linearity of the method is excellent, as demonstrated in Fig. 5.51.
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Conclusion

Although bunch shape determination and turn-by-turn measurements are
excluded due to the longer response time of a narrowband system, similar
measurements as described in the examples for broadband systems can be
performed [275], taking advantage of the much higher sensitivity. Of course,
the examples, discussed here cannot cover the whole spectrum of possible
measurements performed with a BPM system (see, e.g., [6, 7, 28].



6

Measurements in Phase Spaces

In general, the motion of particles can be described by the Hamiltonian formal-
ism based on the well-known Hamiltonian equations. Assuming an ensemble
of N identical, non-interacting particles, the Hamiltonian of a particle de-
pends only on six coordinates in so-called phase space. Here the assumption
of non-interacting may be a particular case, but it is a very common one.
Therefore, the N particles will occupy a six-dimensional volume in the phase
space, determined by their distribution over the six coordinates. For the fol-
lowing reasons, measurement of phase space distributions are important for
the accelerator designer, physicist, operator, and, last but not least also for
the experimentalist:

• The ease with which a particle beam can be transported depends mainly
on the distribution of particles in phase space.

• The minimum spot size that can be achieved at a given target location is
determined by this distribution.

• The accuracy with which the beam energy can be measured depends also
on this distribution.

• The bunch microstructure in time, for example, the half width (FWHM)
of bunches and the bunch shape can be derived from measured phase space
distributions.

• Also the precision with which scattering angles in physics experiments can
be determined depends on the distribution of the particles in phase space.

• Furthermore, the so-called emittances which are defined in phase space
influence all aspects of accelerator design and operation.

In the Hamiltonian formalism [289], the three conjugate coordinate pairs
(x; px), (y; py), (z; pz) of each particle determine the distribution in phase
space. In this phase space, a point, which characterizes a single particle,
describes a curve in phase space determined by the Hamiltonian function
and the initial coordinates. The ensemble of N identical particles, repre-
senting the ion beam, is characterized by a set of points in phase space
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and, in general, can be represented at one instant, by a density distribu-
tion function I6(x, px, y, py, z, pz, t). The integral over all particles defines the
six-dimensional phase space volume V6:

V6 =
∫ ∫ ∫ ∫ ∫ ∫

dx dpx dy dpy dz dpz . (6.1)

In the Hamilton formalism, the continuity equation in phase space [290–292],
dV6/dt = 0, leads, to the well-known theorem of Liouville [293, 294] which
states:

For Hamiltonian systems, the density of the representative points – or
particles – in the appropriate phase space is invariant along the trajectory of
any given point.

Obviously, this means that, due to dV6/dt = 0, the six-dimensional hyper-
volume that encloses the whole ensemble of particles remains constant. Now,
if one or more components of the motion in one phase space are decoupled
from the motion in the other phase planes, as often happens in beam transport
systems, Liouvilles theorem also holds for certain subspaces, resulting from
various projections of six-dimensional phase space. Therefore the projected
phase space areas,

Ax =
∫ ∫

dx dpx, Ay =
∫ ∫

dy dpy, Az =
∫ ∫

dz dpz, (6.2)

may all be maintained, which has very useful practical consequences in ac-
celerator physics. Usually, in accelerator physics, the direction of motion is
assigned to the z-coordinate, and therefore, the three projected phase spaces
are subdivided into two transverse phase planes Ax and Ay and the longitudi-
nal phase plane defined by Az. Measurements in the longitudinal phase space
are postponed to Chap. 7.

6.1 Transverse Phase Planes

In general, motions in the transverse directions ẋ and ẏ are small in compari-
son to the longitudinal motion ż, and, therefore relativistic effects in transverse
motions can be neglected, which leads immediately to the relations,

px = mẋ = m0γ
dx

dz

dz

dt
= m0γβc

dx

dz
= m0γβcx′ (6.3)

py = mẏ = m0γ
dy

dz

dz

dt
= m0γβc

dy

dz
= m0γβcy′ . (6.4)

Here, the relativistic mass increase is taken into account by m = γm0 with m0

as the rest mass and γ = 1/
√

1 − β2, where β = v/c = (dz/dt)/c is determined
by the well-known velocity of light (c = 2.993 × 108 m/s = 299.3mm/ns).
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Applying (6.3), and (6.4) to the two projected transverse phase planes of
(6.2), one gets immediately

Ax = m0γβc

∫ ∫
dx dx′ and Ay = m0γβc

∫ ∫
dy dy′ . (6.5)

Obviously, in a two-dimensional coordinate system with horizontal and
vertical directions as transversal coordinates, an individual particle in one
of the two transverse phase planes is characterized by its coordinate x, re-
spectively, y, and the angle of motion dx/dz, respectively, dy/dz, referred to
the beam axis. Thus, the N particles considered, representing the ion beam,
occupy a certain area in the x, x′-plane as well as in the y, y′-plane and, refer-
ring to (6.5), according to the theorem of Liouville, these areas scale only with
1/βγ. Because these areas can be well described for most beams by ellipses
and the area of an ellipse contains the factor π, it is convenient to define

εx =
∫ ∫

dx dx′

π
(6.6)

as the horizontal emittance and accordingly

εy =
∫ ∫

dy dy′

π
(6.7)

as the vertical emittance. Taking the scaling with 1/βγ into account, it follows
immediately that the so-called normalized emittances εn

x = βγεx and εn
y =

βγεy are conserved. In general, phase planes, bounded by ellipses or straight
lines may be transformed by a linear transformation, mapping the initial co-
ordinates in phase space within their final values. Furthermore, straight lines
are transformed into straight lines, parallel lines remain parallel, and ellipses
transform into ellipses, changing only shape and orientation.

6.2 Emittance Measurements in Transverse Phase Planes

Measurement of transverse emittances becomes essential

• for the valuation of newly developed; ion sources, including electron guns;
• during the commissioning of a new accelerator facility;
• for the elaboration of data sets, provided for routine operation of a ma-

chine;
• for matching acceptances of various sections of a transport system, respec-

tively, accelerator sections to the beam emittances; and
• for planning experiments, especially with respect to the beam spot size

and divergence angles that can be achieved at a given target position.
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Fig. 6.1. Simplified scheme of an emittance measuring system showing a slit-
detector system. Typical parameters for the sandwich detector are 32–64 collector
strips with d = 0.05–0.2 mm and s = 0.2 mm

To determine, for example, the emittance in the horizontal phase plane,
the distance x from the beam axis and the corresponding angle of motion
dx/dz for each particle has to be determined. It is evident that this will not
be possible except in very special cases. But, due to the large number of
particles within a realistic charged particle beam, it is sufficient to perform
the measurement successively on small well-defined parts of the beam.

6.2.1 Description of a Typical Measuring System

A great diversity of devices have been developed to measure transverse emit-
tances. A comparison of different methods is given in [295]. To start with a de-
scription of various devices, perhaps the classical scheme shown schematically
in Fig. 6.1 will be most suitable to illustrate the complexity of an emittance
measuring system, requiring tight collaboration of the constructor, accelera-
tor physicist, electronic engineer, and software expert. A narrow slit, mounted
together with a detector sandwich onto a supporting bar, is moved stepwise
across the beam. The two mechanical units, slit-detector sandwich and a high
precision UHV feedthrough, to perform the movement through the beam are
shown in Fig. 6.2. The completely mounted unit is very compact but has some
drawbacks:

• Once the distance L between slit and detector as well as the parameters
of the sandwich detector have been fixed, the relevant physical parameters
cannot be changed. For this reason in the example of Fig. 6.2, the sandwich
detector can be mounted at three different positions on the supporting bar
(100, 200, 300mm).
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Fig. 6.2. Mechanical components of an emittance measuring system. See Appendix
6.A for the dimensioning of motor driven feedthroughs

• Since the slit width is also fixed, the part of the beam distributed over the
collector strips may be very small, which reduces the achievable signal-to-
noise ratio.

• The insulation between the collector strips can break down due to sput-
tering and implantation effects. Experience has shown that degradation of
the detector quality in general will be a slow process, depending of course
on the beam intensity and the frequency of measurements.

• Since the unit has to be mounted onto only one flange of a vacuum chamber
in the beam line, the length L is limited, resulting in limitation of the
achievable resolution in divergence.

A very flexible scheme, which avoids most of this drawbacks, uses a harp
as shown in Fig. 6.3 instead of the detector sandwich. Mounting the harp onto
a separately driven UHV feedthrough offers the following advantages:

• Because the feedthrough with the harp can be installed in a separate vac-
uum chamber, there is nearly no limitation on L.

• The movement of the two feedthroughs can be controlled independently;
thus more than one position of the harp detector (so-called intermediate
steps) for each slit position are possible. This improves the achievable
resolution in divergence considerably.

• Positioning the harp detector with an offset measured against the slit
position allows the measurement of very large emittances or extremely
misaligned beams.
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Fig. 6.3. Harp detector [33], shown from the back, provided for emittance measure-
ments. The detector consists of 60 W-Re wires with a diameter of 0.1 mm having a
spacing of 1 mm

Of course, performing intermediate steps and/or measurements in offset,
positions increases the measuring time accordingly. Although an emittance
measurement with the sandwich system lasts typically 40−60 s, this time may
go up to some minutes depending on the parameters of the measurement.

Remark. Due to the 1/βγ scaling, the measurable emittance ε becomes
smaller with an increasing β value. Especially the divergence of a highly rela-
tivistic beam may become very small, due to the compensation of space charge
defocusing effects by magnetic focusing forces. For two reasons, measurements
of emittances on high energy particles require special treatment:

• The emittances may become so extremely small that the resolution of
schemes discussed above will not be sufficient to measure a phase space
distribution.

• The penetration depth of the high energy particles can be very large, which
also requires special methods of emittance measurement.

Furthermore, also the determination of emittances for circular machines
requires special treatment, since destructive schemes cannot be applied.

For low particle energies and heavy ion accelerators, emittance measure-
ments, based on schemes similar to those discussed, are extremely important
for the following reasons:
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• Due to space charge effects and the low stiffness of low energy beams,
the design and operation of the corresponding transport system requires
knowledge of emittances along the machine.

• Considering accelerator facilities provided for acceleration and transport
of all kind of ions up to uranium, there is a great diversity of ion sources
with different characteristics, delivering the required beams. It is self-
explanatory that changes of the ion species as well as the use of various
ion sources, require knowledge of emittances to retune the machine.

6.2.2 The Relevant Parameters
of an Emittance Measuring System

From the examples, it is evident that the design of an emittance measuring
system requires clear specifications to meet the demands on the system. In
consequence, a detailed design study to fix and optimize the parameters with
respect to the mechanical parts and signal processing is very important. This
holds for all schemes of destructive emittance measurement systems. The most
important steps for the design of a system are discussed in the following,
supposing x and x′ are the two independent variables of the phase plane.

Resolution and Range in x and x′

Clearly, the achievable maximum range xmax in the x-coordinate is determined
by the stroke of the feedthrough, but is determined ultimately by the beam
size at the slit position. On the other hand, the resolution in x- coordinate
δx is fixed by the width of the slit (typically 0.1mm). Assuming a stepping
motor driven feedthrough, the ∆x of measured points in x-direction is given
by ∆x = Nslit δSslit, with δSslit as the displacement of the feedthrough per
step of the motor (typically 0.02−0.05mm) and Nslit as the number of steps
(typically 10–20). To achieve high accuracy in the absolute determination
of the x-coordinates, the use of absolute angular encoders, instead of linear
potentiometers or incremental encoders is recommended. The use of stepping
motors with a small angle of rotation per step is recommended to minimize the
overshoot effect and achieve more flexibility in the separation ∆x of measured
points.

On the other hand, referring to Fig. 6.1, the maximum measurable diver-
gence x′

max is determined by the total width of the detector system divided by
L. Referring to Fig. 6.1, this results in 1/2N (d+s)/L for the sandwich detec-
tor but can be extended to much larger values for the harp detector, taking
advantage of offset positions. From experience, the range form 30–200mrad
will cover most applications. Obviously, the resolution achievable in divergence
is given by d/L, typically (0.05−0.2mm)/(100–300mm)→ 0.15−2mrad. The
separation in ∆x′ is (d + s)/L for the sandwich and can be reduced to very
small values for a harp detector, considering intermediate positions.
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Fig. 6.4. Scheme to derive the current density distribution over an emittance mea-
suring slit. See text for details

Signal Estimation

From the principle of measurement, it becomes very clear that signal process-
ing electronics has to cover a high dynamic range and has to handle very
low currents. Therefore, an estimation of the expected signals is essential.
Although one does not know the exact size and orientation of the emittance
pattern, some simple geometric considerations can lead to usable results. The
estimation of the expected intensity on a certain collector strip can be per-
formed in two steps:

• First, determining the part of the beam going through the slit, dependent
on the slit and beam parameters.

• Distribution of this part over the collector strips, taking into account a
presumed divergence.

Referring to Fig. 6.4, assuming a parabolic intensity distribution over the
radial coordinate, the current density is given by

i(Rs) =
2I0

πR2
b

(
1 − R2

s

R2
b

)
=

2I0

πR2
b

(
1 − S2

x + y2
s

R2
b

)
, (6.8)

and in a good approximation, the current Is passing the slit at position Sx is

Is(Sx) ≈ 2 δS
2I0

πR2
b

∫ √
R2

b−S2
x

0

(
1 − S2

x + y2
s

R2
b

)
dys (6.9)

Is(Sx) ≈
8
3

δS

Rb

I0

π

(
1 − S2

x

R2
b

)3/2

. (6.10)

Defining V = Sx/Rb with 0 ≤ V ≤ 1, the percentage passing the slit is
approximately

P (V ) ≈ 100
8
3

δS

πRb
(1 − V 2)3/2 . (6.11)
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Fig. 6.5. Percentage of total beam current passing a slit 0.1 mm wide (according to
6.11). V = Sx/Rb = 0 corresponds to the center position of the slit; for V = 1, the
slit is at the boundary of the beam

In Fig. 6.5, P (V ) is plotted for three different radii Rb, taking a slit width
of 0.1 mm. According to (6.11), P (V ) scales linearly with δS. The approx-
imations (6.10) and (6.11) may be used to estimate the current on profile
grids, harps, and other detectors, provided for beam profile measurements. In
emittance measurements, the percentage of the beam that passes the slit is
distributed over the detector system. The resulting percentage hitting a col-
lector strip depends on the width of the strips, the divergence in the beam,
and the distance between slit and detector. The approximation of phase plane
distributions by ellipses offers the possibility of estimating the divergences in
the beam. There are different representations of the relevant ellipse parame-
ters marked as points 1–4 in Fig. 6.6. In a PSI Report by Joho [296], the
parametric representation defined by xmax, x′

max, and χ, the so-called corre-
lation phase describing the orientation of the ellipse, is compared with the
well-known Courant-Snyder representation [297], defined by the Twiss para-
meters α, β, γ and the emittance parameter ε = Area/π. As it becomes very
clear from Fig. 6.6, points 1–4 define the shape, size, and orientation of the
emittance ellipse in both representations. Furthermore, they also play im-
portant roles, in the behavior of a particle under the action of quadrupoles,
steerers, magnets, and drift spaces. Therefore, a table given in [296] is helpful
for further discussions.
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Fig. 6.6. Typical ellipse to approximate distributions in the phase plane. The mean-
ing of the four points marked 1–4 is explained in the context of this chapter (see
also [296]). The points marked 5 and 6 are relevant to the estimation of the current
on the detectors

Table 6.1. Coordinates of the points marked 1–4 of Figure 6.5 in the two represen-
tations discussed

Parametric Twiss

Nr. x x′ x x′

1 xmaxcosχ 0
√

ε/γ 0

2 xmax x′
maxsinχ

√
εβ −α

√
ε/β

3 xmaxsinχ x′
max −α

√
ε/γ

√
εγ

4 0 x′
maxcosχ 0

√
ε/β

In the parametric representation, the correlation phase χ is determined by
χ = arctan(x3/x1) = arctan(x′

2/x′
4); the Twiss parameter α, describing the

orientation of the ellipse, is determined from α = −x3/x1 = −x′
2/x′

4. In the
parametric representation, a point on the boundary of the ellipse is given by
x, x′ = xmaxcosδ, x′

maxsin(δ + χ) with 0 ≤ δ ≤ 2π, which simplifies plotting
the ellipse considerably in comparison to the Courant-Snyder representation.
Furthermore, although the emittance parameter ε is defined as one of the
Twiss parameters, ε = xmax x′

maxcos δ in the parametric representation. In
the following context, it becomes clear that both representations have their
advantages and disadvantages. Therefore, both representations are used, de-
pending on the problem under discussion.
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Remark: In the well-known TRANSPORT program [298], a representation
of the so-called σ-matrix is used, which differs only slightly from the Courant-
Snyder representation:

σ =
[

σ11 σ12

σ12 σ22

]
= ε

[
β −α
−α γ

]
. (6.12)

Setting t = arccos(Sx/Rb) and taking advantage of the parametric rep-
resentation, the points marked 5 and 6 of Fig. 6.6 determine the maximum
divergence behind the slit, located at position Sx:

x′
p(Sx) = x′

maxsin(t + χ) (6.13)
x′

m(Sx) = x′
maxsin(−t + χ) (6.14)

χ = −arctan(α) . (6.15)

In the notation of this book, α < 0 describes a divergent beam as shown, for
example, in Fig. 6.6; α > 0 describes a convergent beam and α = 0 represents
a waist. Obviously, the maximum width of the partial beam behind the slit is
given by

xmax(Sx) = L
∣∣x′

p(Sx) − x′
m(Sx)

∣∣ . (6.16)

Clearly, xmax(0) holds for the center position of the slit and results in the
maximum width, defining the required size of the detector array. To estimate
the part of the total beam on a certain collector strip, a parabolic intensity
distribution over the x-coordinate leads to

i(x) ≈ Is(Sx)
3

2xmax(Sx)

(
1 − 4

x2

xmax(Sx)

)
, 0 ≤ x ≤ xmax(Sx)

2
. (6.17)

For a detector width δx, the current ic on a collector comes out to

ic(Sx, δx) ≈ i(x)δx . (6.18)

Example. The ellipse shown in Fig. 6.6 is somehow typical for the shape and
orientation of a divergent beam. Therefore, we assume the following parame-
ters:

ε = 120, area of the ellipse/π [mm mrad]
Rb = 10, beam radius [mm]
β = 0, 833, Twiss parameter, β = R2

b/ε, [mm/mrad]
α = −1, Twiss parameter, determines the orientation of the ellipse, [−]
γ = 2.4, Twiss parameter, γ =

(
1 + α2

)
/β, [mrad/mm]

x′
max = 17, maximum divergence, x′

max =
√

εγ, [mrad]
χ = 0.785, correlation phase in the parametric representation [−]
δs = 0.1, slit width, [mm]
δx = 0.1, width of the collector strips, [mm]
L = 300, distance slit-detector array, [mm]
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Fig. 6.7. Fraction of total beam on the detectors dependent on the slit and detector
positions. For parameters, see text

First of all, the required width of the detector array is of interest. From
(6.13), (6.14), and (6.16), we obtain xmax(0) = 7.2mm, a size which can be
realized easily with a sandwich detector. The expected part of beam, estimated
from (6.10), (6.17), and (6.18) is shown in Fig. 6.7 for three positions of the
slit: Sx = 0 (centered), Sx = Rb/2, and Sx = 0.9Rb (near the boundary).

Signal Processing

For further evaluation of emittance data, the measured collector currents I
have to be converted into reasonable voltages U provided for digitization.
There are two suitable methods of I/U conversion:

• Conversion based on the simplified scheme, shown at the left-hand side of
Fig. 6.7.

• Conversion based on the principle of a switched integrator, shown at the
right-hand side of the Fig. 6.7

The output voltages using operational amplifiers of very high gain are
given by

(a) U(t) = −I(t)R (6.19)

(b) U(T ) = − 1
C

∫ T

0

I(t) dt (6.20)

Both schemes have their advantages and disadvantages:

• Scheme (a), the classical I/U converter, also converts the time dependence
of the input current with a certain smoothing due to the time constant
of the operational amplifier. Replacing R by an array of resistors, each in
series with remotely controllable switches, offers the possibility of cover-
ing a large dynamic range required by emittance measurements. Due to
increasing problems of noise from very large resistors, the conversion rate
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Op.-Amp.Op.-Amp.

a) b)
Switch

Fig. 6.8. Simplified schemes of I/U conversion

is limited to about 1–10 nA/V from the practical point of view, depending
also on the required accuracy.

• Scheme (b) is the so-called “switched integrator type” and, due to the
integration over time, the output voltage of this type does not show any
time dependence. Variation of the integration time as well as the size of
the switched capacity (optional also in the type of an array) offers the
possibility of covering a very large dynamic range. Taking as an example
the data of the integrated circuit ACF 2101, having a conversion rate of
QU = Q/U = 10−10As/V, it becomes evident that the I/U converter
should be preferred for short beam pulses. On the other hand, the switched
integrator shows advantages in long beam pulses, resulting for example,
from slow extraction of synchrotrons or dc-beams. Taking for comparison
the most sensitive range of commercial [173] I/U converter electronics with
IU = I/U =2 nA/V, the crossover point with respect to the integration
time Tint is Tint = QU/IU = 50 ms (see also Fig. 4.3 in Chap. 4).

Of course, the electronics of an emittance measuring system has to cover
many more functions than the discussed conversion of collector current into
voltage. This becomes very clear from the schematic system overview in
Fig. 6.9 and the simplified block diagram based on the I/U converter scheme,
shown in Fig. 6.10. Since measurements in the horizontal, respectively, verti-
cal phase planes have to be performed sequentially, a relay switching unit has
been added in front of the I/U converter system to reduce the costs of the
system. To reduce the influence of changes in beam intensity during a mea-
surement, one channel of the 32 I/U converters is provided to measure the
current on the isolated slit, allowing normalization of the measured data to
the total current. Taking the higher expected current on the slit into account,
the ranges of this channel are shifted by a factor of 100 to lower conversion
rates in comparison to the detector channels.

In the scheme, the output signals of the I/U converters are fed into an
integrator system which has the following advantages:

• Fast fluctuations during the measurement are averaged over the integration
time.
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Fig. 6.9. Schematic system overview showing the most important parts of an emit-
tance measuring system

• The start point of the integration with respect to the front edge of the
beam pulse as well as the width of the integration window Tint can be
varied in wide ranges.

• The integration can be performed with an additional amplification of the
signal according to

Uout =
1

RC

∫ Tint

0

Uindt . (6.21)

Assuming a square beam pulse, this results in an additional amplification
of Tint/RC (= 5 in the example of Fig. 6.10).

• For dc-beams, synchronous integration over exactly one period of the net-
work frequency can reduce distortions synchronous to the network fre-
quency considerably.

In the example of Fig. 6.10, the ranges of I/U converters cover five decades
(1 nA/V, 10 nA/V; 10 µA/V), selected by the controlling computer based on
the comparator system providing a “gain to high” or “gain to low” signal,
respectively. A change of range takes place to a higher I/U-conversion rate
when all 31 detector channels are below a certain threshold (80mV in the
example), whereas change to lower I/U conversion is performed if only one of
the detectors is above a certain threshold (1.2V in the example).
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Fig. 6.10. Simplified block diagram of control and signal processing electronics
based on the I/U -converter scheme

Typical Example of a Complete System

The great variety of possible modes of measurement as well as the parameters,
which have to be specified and controlled may be illustrated by referring to a
system [299], designed for development of ion sources for highly intense beams
and study of space charge effects. To start with the mechanical components,
the system consists of

• Two UHV feedthroughs such as shown in Fig. 6.1 on the left-hand side.
Due to the demand for very high precision, both feedthroughs are equipped
with stepping motors of low step width (0.72◦/step). The stepping motors
drive ball bearing spindles, having a pitch of 5mm. With a gear ratio of 2 :1
between motor drive and spindle, a displacement of 500 µm per step results.
To determine the position of the spindle with adequate precision, absolute
angular encoders with 512 bit /revolution have been installed. From that,
the absolute resolution comes out to 4.883 µm/bit. The stepping motors
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are equipped with magnetic brakes to avoid moving the feedthroughs when
the power on the motors is switched off or in case of power failure.

• One of the feedthroughs has been equipped with a cooled slit to withstand
the expected high beam power, especially for dc-beams.

• A 60-wire harp detector shown in Fig. 6.3 is mounted onto the second
feedthrough.

The electronic signal processing system has been designed to measure
pulsed beams as well as dc-beams of positive or negative ions. The relevant
specifications are

• number of ranges of current measurement: six decades
• conversion rates of the ranges: 100 nA/V, 1µA/V, . . . 10mA/V.
• selectable integration times: 50 µs−20ms in steps of 50 µs
• adjustable delay times against a delivered trigger pulse: 10 µs−20ms in

steps of 10 µs.

The signal processing electronics is based on the scheme of the switched
integrator. Combining the six decades with the great variety of integration
times results in nearly eight decades in the dynamic range. Because this could
not be realized with only one capacitor, an array of three capacitors with
10 nF,100 nF, and 1µF has been used to cover low, medium, and high beam
currents.

The system is very versatile with respect to the modes of measurementes
that can be performed.

Control Software

Two complex program packages had to be implemented to control the mea-
surement as well as evaluate and visualize data. The control software can be
considered as an interface between the operator, who has to specify the para-
meters of a measurement, and the computer, accomplishing the measurement.
Since the system may be operated by scientists and operators, who can be
more or less familiar with the system parameters, the control software imple-
mented displays a table (see Fig. 6.11), showing the relevant parameters in a
simplified scheme to explain their meaning.

To start a measurement, many parameters have to be specified. First of
all, the operator has to select one of four different measuring modes:

• Profile 1 – mode: The slit and harp move together in parallel through
the beam. The slit position as well as the measured profile behind the
slit are displayed on the screen. The mode is provided to get a first rough
estimation of the beam characteristics. This mode has to be applied in case
of high beam currents because it does not allow moving the harp through
the beam without protection by the slit jaws.
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Fig. 6.11. Computer display, explaining the relevant system parameters of an emit-
tance measuring system [300]

• Profile 2 – mode: Only the harp moves into the beam to estimate the
beam size or observe the change in profile due to the action of beam
transport elements or manipulations of the ion source.

• Emittance 1: In principle as Profile 1 – mode, but performing an
emittance measurement.

• Emittance 2: Sophisticated emittance measuring program, allowing in-
termediate steps as well as offset positions of the harp. Due to the large
amount of different settings for slit and harp position, the amount of col-
lected data as well as the measuring time can increase considerably in this
mode.

To specify the measuring mode with the corresponding parameters, a PC
menu, shown in Fig. 6.12, is presented to the operator. Here, in the outer
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Fig. 6.12. PC menu displayed to the operator to specify parameters and set up the
emittance measuring system [300]

left-hand side, some important data such as operator’s name, date of mea-
surement, name of the corresponding data set, kind of ion, and type of ion
source used have to be inserted. After the measurement has been started, the
operator can observe the collection of the rough data on the two displays on
the right-hand side of the menu (colored).

Evaluation Software

On the basis of the known setup parameters, the evaluation program first
converts and stores the measured rough data in a matrix such as shown in
the example of Fig. 6.13. Here each number gives the normalized intensity,
measured in a small area of the phase plane defined by ∆x, the step width
of the slit movement, and ∆x′, the divergence determined by the detector
positions behind the slit, considering intermediate steps and/or offset posi-
tions, if necessary. Depending on the measuring mode, the matrix may con-
tain some thousands of numbers, where some cells can be filled up with very
small numbers, generated by electronic noise instead of representing a real
emittance pattern. Therefore, an evaluation program should offer possibilities
for removing those strange points. Obviously, the simplest method is to set
all numbers in the matrix below a given threshold to zero. More sophisticated
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Fig. 6.13. Arrangement of measured emittance data for further evaluation. The
numbers in the matrix represent the measured intensities in the phase plane

programs offer graphical solutions, having the advantage of examining the
data by visualization before any manipulation. The program implemented in
the example presents two different solutions to the operator, which are illus-
trated in Fig. 6.14. Using method (a), the program converts the mouse pointer
into a pencil, giving the operator the option to define an area inside a closed
boundary, provided for further processing. Points outside of the boundary
are set to zero in the matrix after saving the original data in a separate file.
Method (b) converts the mouse pointer into a “rubber” which gives flexibility
to erase individual points (deep black areas) in the diagram, respectively, to
set them to zero in the data matrix.

After applying corrections like that, the data can be evaluated according
to options available in the evaluation algorithms. Practice has shown that the
following algorithms should be implemented in a versatile program:

Fig. 6.14. Illustration (colored in reality) of the two methods for removing “strange”
points from the data matrix. See text for details
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• determination of size and shape of emittances ε dependent on given per-
centages of the beam inside an area determined by πε.

• determination of beam profiles.
• determination of angular profiles.
• determination of rms values and Twiss parameters.
• transformation of ellipses over a drift space.
• conversion of data into formats used by ray-tracing programs, such as

Parmila, Parmt, Parmtra [304–306] for design and evaluation of beam
transport systems.

There are three different algorithms for extracting the size and shape of the
emittance dependent on a given percentage from the original data. The results
can differ considerably. Naming the three modes of processing “Emittance
Mode,”“Intensity Mode,” and “Minimum Subtraction Mode,” the ac-
companying algorithms can be described as follows.

Emittance Mode

Summing up all intensities Ix,x′ of the corrected data matrix defines the maxi-
mum intensity Imax, taken as reference to calculate the percentages. Therefore,
to calculate, for example, the so-called 80% emittance, a value of S = 0.2 Imax

/nx nx′ (nx = number of rows, nx′ = is number of columns) has to be sub-
tracted from each element with Ix,x′ > 0 in the data matrix. No subtraction
takes places if Ix,x′ = 0. Furthermore, since Ix,x′ < 0 is not allowed, the sub-
traction has to be performed successively in much smaller steps as defined by
S (for example S/100). Elements below zero are set to zero. The procedure is
repeated until the required value of S nxnx′ is achieved within a given thresh-
old. An example of the corresponding program algorithm using MATHCAD
is shown in Fig. 6.15. It can be easily converted to any other suitable pro-
gramming language. Figure 6.16 illustrates the effect, comparing the original
data with the reduced data in a 3-D display as well as in the corresponding
projection onto the phase plane. In the example, the base of each column rep-
resents an area of dx dx′ = 1.167 mm × 0.354mrad= 0.413mm×mrad. After
correction for noise (∼ 1%), the original matrix contains 544 elements > 0,
corresponding to an emittance of ε(100%) = 544·0.413/π = 71.58mm×mrad.
On the other hand, in the 80% matrix, reduced according to the emittance
mode algorithm, only 432 elements > 0 are left, which leads to an emittance of
ε(80%) = 56.85mm×mrad. Therefore, in this mode, the size of the emittance
corresponds to about the chosen percentage (56.85/71.58 = 0.794).

Intensity Mode

In this mode, the maximum intensity gives the reference for the percentages.
In the corresponding algorithm, the value calculated for a chosen percentage
is subtracted from each element. Elements below zero are set to zero. In Fig.
6.17, the corresponding MATHCAD program code is listed. The resulting
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I100

ix iy

Eix iy,∑∑:= I100 139.805= = 100% PERCENT 80:=

TOTALSUBTRACT I100
100 PERCENT−

100
⋅:= TOTALSUBTRACT 27.961=

ELEMENTSUBTRACT
TOTALSUBTRACT

nx ny⋅
:= ELEMENTSUBTRACT 0.031=

STEPNUMBER 100:= SUBTRACTPERSTEP
ELEMENTSUBTRACT

STEPNUMBER
:=

SUBTRACTPERSTEP 3.107 10 4−×= Subtraction per iteration step

NEWMATRIX SUBTRACT 0←

NEWi j, Ei j,←

j 0 ny 1−..∈for

i 0 nx 1−..∈for

S NEWi j, SUBTRACTPERSTEP−←

SUBTRACT SUBTRACT NEWi j,+←

NEWi j, 0←

S 0<if

SUBTRACT SUBTRACT SUBTRACTPERSTEP+←

NEWi j, S←

S 0>if

j 0 ny 1−..∈for

i 0 nx 1−..∈for

SUBTRACT TOTALSUBTRACT−
TOTALSUBTRACT

5 10 3−⋅>while

NEW

:=

max(E) 1= max(NEWMATRIX) 0 .9 4 1=

Fig. 6.15. Programming example in MATHCAD to determine size and shape of
emittances dependent on a given percentage. In the example, the 80% emittance is
evaluated in the so-called “Emittance Mode.” Remark: In the program ny stands
for nx′ , see text

data are presented in Fig. 6.19, together with the results from the “Minimum
Subtraction Mode” (see below).

Minimum Subtraction Mode

In this mode, the reference value for the percentage is again the sum over
all intensities as in the “Emittance Mode.” But, to subtract the calculated
amount from each element, the smallest values are removed (set to zero) as
long as the required value is achieved. The corresponding program algorithm
is shown in Fig. 6.18. No subtraction takes place from large elements in the
matrix. This is shown at the end of the program (see Fig. 6.18) where the
maximum of Ixx′ is displayed before [max(E) = 1] and after [max(ENEW) =
1] treatment of the data. Because it can happen, that the last subtraction
step is larger than that required, the resulting difference is added to the last
processed element at the end of the program.
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Fig. 6.16. Comparison of the original emittance data with an 80% emittance evalu-
ated in the “Emittance Mode.” In the example, a matrix of 30×30 values represents
the measured data. Keep in mind that the surface plots at the bottom have to be
rotated 90◦ to the right to compare with the 3-D plots on top. The numbers on the
x- and y-axes in all plots present the index (1 . . . 30) of the data matrix

The 3-D displays as well as the contour plots are compared in Fig. 6.19.
Obviously, the two modes last discussed lead to considerable changes in the
shape of the emittance as well as to a large reduction of their size. Ultimately,
which evaluation method has to be applied depends on the problem of beam
transport, respectively, beam manipulation, studied. It should be clear that an
algorithm based on the subtraction of a given percentage from each element
in the matrix does not change the shape and size of the pattern measured. A
complex measured emittance pattern may look like that illustrated in Fig. 6.20

Evaluation of Beam and Angular Profiles

From the example shown in Fig. 6.13, it is clear that a summation over all
columns of the data matrix will result in a distribution of the intensity over
the x-coordinate I(x), which is the beam profile. On the other hand, a sum-
mation over the rows results in a distribution I(x′), representing the measured
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Fig. 6.17. Programming example in MATHCAD to determine size and shape of
emittances dependent on a given percentage. In the example, the 80% emittance is
evaluated in the so-called “Intensity Mode.” Remark: ny stands for nx′ ; see text
for details

divergences in the beam. Processing the original data of the example, shown
on the left of Fig. 6.16, results in the profiles shown in Fig. 6.21.

Determination of rms Values and Twiss Parameters

There are various methods for determining the Twiss parameters from the
measured data. Using rms values, determined from I(x) and I(x′) in the
description of a two-dimensional Gaussian normal distribution, is one of the
most applied methods. The relevant formulas are

Sum =
∑

nx

∑

nx′

Enx, nx′ (6.22)

X0 =
1

Sum

∑

nx

∑

nx′

nx Enx, nx′ (6.23)

Xc = X0 dx + xmin (6.24)

X ′
0 =

1
Sum

∑

nx

∑

nx′

ny Enx, nx′ (6.25)

X ′
c = X ′

0 dx′ + x′
min (6.26)
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Fig. 6.18. Programming example in MATHCAD to determine the size and shape
of emittances dependent on a given percentage. In the example, the 80% emittance
is evaluated in the so-called “Minimum Subtract Mode.” Remark: ny stands for
nx′ ; see text

Here Xc and X ′
c are the center of the x-coordinates and x′-coordinates,

respectively. They are derived from the corresponding index X0, X ′
0. The rms

values σx, σy, and ρ of the Gaussian distribution

f(x, x′) = S0 e
S1

[

( x−X0
σx )2 − 2ρ (x−X0)(x′−X′

0)
σx σx′ +

(
x′−X′

0
σx′

)2]

(6.27)

S0 =
1

σxσx′2π
√

1 − ρ2
(6.28)

S1 =
−1

2 (1 − ρ2)
, (6.29)

are determined from
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Fig. 6.19. Comparison of the 80% emittances evaluated in the “Intensity Mode”
(left) and “Minimum Subtract Mode” (right). See also Fig. 6.16 for further expla-
nations and comparison with the original data

Dx =
1

Sum

∑

nx

∑

nx′

[nx − X0]
2
Enx, nx′ (6.30)

Dx′ =
1

Sum

∑

nx

∑

nx′

[n′
x − X ′

0]
2
Enx, nx′ (6.31)

Mxx′ =
1

Sum

∑

nx

∑

nx′

[nx − X0] [n′
x − X ′

0] Enx, nx′ (6.32)

σx =
√

Dx σx′ =
√

Dx′ ρ =
Mxx′

σx σx′
. (6.33)

Of course, the representation by the normalized Gaussian distribution re-
sults in smoothing the measured data in the three-dimensional representation
as well as in the two-dimensional display of the beam profile and angular
profile.

To evaluate the rms values of the Twiss parameters, σx, σx′ , and in con-
sequence ρ have to be converted as follows:
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Fig. 6.20. Computer display (colored) of measured emittance data studying space
charge effects and as well as quadrupole lens aberrations on a test stand for devel-
opment of highly intense ion sources. The pictures were taken at the Institut für
Angewandte Physik der Universität Frankfurt, Germany [299,300]
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Fig. 6.21. Beam profile I(x) and angular profile I(x′) derived from the original
data matrix of the example under discussion

σx → xmax − xmin

nx
σx (6.34)

σx′ → x′
max − x′

min

nx′
σx′ , (6.35)

leading immediately to the rms values of the Twiss parameters:

ε = 4σx σx′
√

1 − ρ2 (6.36)

β =
σx

σx′

1
√

1 − ρ2
(6.37)

γ =
σx′

σx

1
√

1 − ρ2
(6.38)

α = −ρ
√

β γ , with βγ − α2 = 1. (6.39)

It is of interest to compare the dependency of the Twiss parameters, rep-
resenting the original data as well as the 80% values of the example dis-
cussed above. Figure 6.22 compares the 100% values of the original data
with the 80%-values, evaluated according to the modes discussed. Referring

Fig. 6.22. Left: rms emittance, point 1 = 100% value; point 2 = 80% value accord-
ing to the “Emittance Mode”; point 3 = 80% value in the “Intensity Mode”; point
4 = 80% value in the “Minimum Subtract Mode.” The next diagrams show α, β, γ
in the same order
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to Figs. 6.16 and 6.19, the rms emittances are significantly smaller than the
values from the direct evaluation of the data matrix. The ratio depends on
the model of the density distribution, used as an approximation for describing
a realistic beam. The dependency of this ratio is discussed in detail in [309],
studying five different models of distribution functions. As a consequence, the
authors conclude:

“. . . Of the different types considered, the truncated Gaussian distribution
represents undoubtedly the closest approximation to a laboratory beam.”

Beside the dependencies of the Twiss parameters on the distribution func-
tion, the dependency on the percentage is also of interest. The “Emittance
Mode” is the most used mode for data evaluation, and the Gaussian distrib-
ution function seems to be the most realistic. Figure 6.23 presents the data
obtained from the example.

Fig. 6.23. Left: rms emittance dependent on the percentage, next three from the
left in this order: α, β, γ. The data evaluation is performed in the “Emittance Mode”
for a Gaussian distribution

Conversion of Data for Ray-Tracing Programs

Although the description of intensity distributions by the Twiss parameters
is very useful for studying the action of beam transport elements such as
quadrupoles, magnets, and steerers, more refined studies will require the ap-
plication of programs. Therefore, the evaluation software of an emittance mea-
suring system should offer an output of data, adapted to the format of the
corresponding ray-tracing program. Thus, the evaluation software of the sys-
tem referred to in [299,300] can convert the data in the PARMTRA format. In
the example of Fig. 6.24, the operator has to specify the number of particles
(here 5000) as well as the mode of data evaluation (here “Emittance Mode”)
to generate a file in the PARMTRA format.

6.2.3 Other Emittance Measuring Systems

Fast Emittance Measuring System

Fast measurement and continuous monitoring of emittances, in connection
with on-line calculation and visualization of beam envelopes, during operation
of an accelerator can be very efficient for the following reasons:
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Fig. 6.24. Computer display to specify the output data file in PARMTRA format
[299,300]

• The ion source may change characteristics during its lifetime, which holds
especially for sputtering ion sources of the PIG type. As a consequence the
flow of charged particles through a machine can decrease. Thus, continuous
monitoring of emittance during routine operation of a machine can be very
helpful and efficient.

• The same arguments hold with respect to frequent changes in the kinds of
ions, typical for universal heavy ion accelerators.

• Last but not least, a fast emittance measuring system, in connection with
an appropriate fast display of relevant data, can be very helpful for ion
source development and accelerator experiments, provided for the devel-
opment of optimization procedures.

Experience has shown that the installation of such a fast measuring sys-
tem in the injection, respectively, low energy area, can be very effective. The
low beam energy offers the possibility of sweeping a part of the beam over
a slit detector system instead of moving the mechanics through the beam.
Figure 6.25 shows schematically a system [310,311] that combines a very fast,
nearly, non-destructive emittance scan with the total destructive system, mov-
ing through the beam. In the conventional method, the slit-sandwich detector
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Fig. 6.25. Scheme of a fast emittance measuring system based on a slit - sandwich-
detector system. See text for details

systems can be moved sequentially through the beam, performing high pre-
cision emittance measurements. For continuous monitoring, both devices are
positioned near the boundaries outside the beam, parallel to the beam line. To
sweep the beam over the slit-detector units, two sets of horizontal and vertical
deflecting plates are installed in front of the measuring systems. The sweep is
performed by an electric field, modulated by a staircase function. Taking the
x-direction to derive the required voltage, the angle of deflection α is given by

tanα =
S0

L3
=

ẋ

ż
=

ẋ

βc
. (6.40)

Proposing low β values, ẋ can be calculated in a nonrelativistic approximation
from the well-known formula,

mẍ = ζeEx , (6.41)

with m = Am0 the mass of the ions, ζ their charge, and Ex = U/d as
the electric deflecting field strength (e = 1.6 × 10−19 As). From (6.41), ẋ =
ζeExt/m with t = l/ż as the time of flight through the plates. This leads
immediately to the required deflecting voltage U :

U =
A

ζ

S0d

L l
m0c

2 β2 . (6.42)

Referring to Fig. 6.25, it is evident that there are two free parameters due to
the possibility of changing the width d as well as the distance from the slit to
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Table 6.2. Characteristic parameters of the fast emittance measuring system

Minimum deflecting voltage 9.200 V

Maximum deflecting voltage 18.500 V

Increment in voltage 300V

Minimum time per increment 1ms

Covered range in x, y-coordinates ± 7.5–25 mm

Covered range in divergence ± 16mrad

Current range 10 nA–100 µA

Resolution in x , y-coordinates 0.1 mm

Resolution in divergence 1mrad

Step width in position 0.5–1.6 mm

the beam axis S0. Taking advantage of this mechanical flexibility, the power
supply to generate the required deflecting voltages has been designed to sweep
between two fixed values Umin and Umax dividing the stroke Umax −Umin into
31 steps to realize staircase modulation. Referring to [310], the mechanical
design parameters 40mm≤ S0 ≤ 75 mm, 31 mm≤ d ≤ 60mm, L3 = 552mm,
l = 110 mm lead to the system parameters, given in Table 6.2, for a β value
of 0.5%.

A picture of the large vacuum chamber, equipped with all parts, pro-
vided for emittance measurements in both transverse phase planes is shown
in Fig. 6.26.

A System to Handle High Beam Power

As discussed in Chap. 3, it can be necessary to tilt the surface of stopping de-
vices to avoid melting the material due to high beam power density in connec-
tion with low penetration depth of particles. Figure 6.27 shows a slit-detector
system for emittance measurements for very intense beams (≈20 kW dc), with
low penetration depth (of the order of mm). Since the power density behind
the slit would melt tungsten wires or tantalum collector strips, a second cooled
slit in front of a small Faraday cup is used as a detector. Of course, scanning
the profile for each position of the slit increases the measuring time up to
some minutes.

Crossed Slit Systems

In the examples discussed up to now, determination of emittances in both
transverse phase planes requires the installation of two complete systems,
measuring one plane after the other one. In some cases, it may also be sufficient
to use only one system installed either on the horizontal ports or on the vertical
ones. This, of course, requires some effort and a lot of time. Using a cross-
like slit with an appropriate detector, instead of a harp, offers the possibility
of measuring simultaneously in both planes. Two types of suitable detectors
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Fig. 6.26. Large beam diagnostic chamber, housing deflecting plates and emittance
measuring systems. GSI Foto

are shown in Fig. 6.28. The detector shown on the left-hand side is a special
profile grid, which has to be moved together with the cross-like slit in a 45◦

direction through the beam. The detector, shown schematically on the right-
hand side of Fig. 6.28, consists of two thin scanning wires which are driven
by an eccentric motion of a fork connected to two rotating disks.

The system using scheme (a) of Fig. 6.28 as a detector offers all options
for intermediate steps as well as offset positions. Of course, a factor of

√
2 has

to be considered in the system design as well as in the evaluation of data. On
the other hand, a system based on the detector scheme (b) of Fig. 6.28 requires
only one feedthrough, which results in compact mechanics. Figure 6.29 shows a
complete unit (the scanning wires are not mounted). Two motors are provided
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Fig. 6.27. Slit detector system, provided for emittance measurements of very high
beam power and low penetration depth

Fig. 6.28. Two schemes of detectors suitable for measuring profiles in x- and y-
directions at the same time. Left (a): profile grid, right (b): scanning wires

to perform the translation of the crosslike slit as well as the scanning motion of
the detector wires. A stepping motor is used for the translation; the rotating
disks are driven by a dc-motor.

Because the movement of the crosslike slit is slow in comparison to the
speed of the scanning wires, the unit can be moved continuously through
the beam, taking advantage of fast ADCs to determine synchronously the
position of the slit, the position of the scanning wires, and the measured
profiles. Due to the difficulty of synchronizing the scanning motion of the
detector wires with a pulsed beam, the measuring system is not suitable for
pulsed beams. In the evaluation of the data, the variable distance between slit
and detector wires due to the eccentric motion has to be taken into account. In
the example considered, this distance is determined by the simple geometric
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Fig. 6.29. Mechanics of an emittance measuring system moving a crosslike slit
together with two scanning wires according to scheme (b) of Fig. 6.28 through the
beam. The picture shows the crosslike slit seen against the beam direction. The
scanning wires are not yet mounted into the supporting fork. The inset shows the
rotating disks with the eccentrically mounted supporting fork. GSI Foto

relation L(ϕ) = l0 − r0 cos(ϕ), where l0 is the distance between the slit and
the line through the axes of the two driving disks and r0 is the offset of
the eccentrically mounted supports. The most important specifications of the
emittance measuring system shown in Fig. 6.29 are summarized in Table 6.3:

The relatively low specified beam power of 400 W did not lead to any
relevant restrictions, since the system has been developed for the study of ion
sources [312], where the relatively short measuring time of about 13 s can be
advantageous.

Error Estimation

Using systems with a crosslike slit results in a contribution to the detector
from the second cross arm, which falsifies the profile measurements. This
is illustrated, simplified in Fig. 6.30, with a profile grid as a detector. An
estimation of the error in emittance determination is very complex, since the
relative contribution from the crossed slit to the measured profile depends
very much on
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Table 6.3. Characteristic parameters of the emittance measuring system, shown in
Figure 6.29.

Stroke of the feedthrough 100 mm

Displacement per step of 1.8◦ 0.003 mm

Maximum acceleration 400 mm/s2

Maximum speed of translation 15 mm/s

Resolution of position measurement 0.1 mm

Dimension of the crosslike slit 2× 0.1 mm × 30 mm

Material of the crosslike slit Tantalum

Backing (without water cooling) Copper

Maximum allowed beam power 400 W

Distance l0 205 mm

Dimensions of the scanning wires 0.05 × 42mm

Material of the scanning wires Tungsten

Maximum measurable divergence ± 50 mrad

Resolution in divergence < 0.7 mrad

Measuring time per position of the slit ≈ 31 ms

Total measuring time ≈ 13 s

• the position of the crosslike slit;
• the shape of the emittance patterns, determined mainly by the beam ex-

tensions and the maximum divergences in both phase planes;
• the slit and detector dimensions; and
• the distance between slit and detectors.

Referring to Fig. 6.30 and considering, for example, the profile measure-
ment in the horizontal direction, it is evident that the relative contribution

Contribution
from the other slit

Horizontal
slit

Vertical
slit

Vertical grid wires

Horizontal
grid wires

Fig. 6.30. Simplified scheme to illustrate the falsification of the measured profile
behind a crosslike slit. The black and gray areas indicate the extension of the beam
on the detector wires behind the slit
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from the horizontal slit increases with increasing displacement xd of the detec-
tor wire from the position centered behind the vertical slit. Corrections mea-
sured data should be possible after the measurement. The ratio Vi between
the currents from the two arms of the crosslike slit can be very roughly esti-
mated by approximating the intensity behind the two slits f x(x, y), f y(x, y),
by parabolic distributions:

f x(x, y) =
9

16xy
max yy

max

[

1 −
(

x

xy
max

)2
][

1 −
(

y

yy
max

)2
]

(6.43)

f y(x, y) =
9

16xy
max yy

max

[

1 −
(

x

xy
max

)2
][

1 −
(

y

yy
max

)2
]

. (6.44)

Here xx
max, yx

max are the maximum extensions behind the vertical slit and xy
max,

yy
max behind the horizontal slit, respectively. Assuming the same geometries

for both directions, as well as a round beam with radius Rb, the ratio Vi is
independent of the beam current and, therefore can be normalized as follows:

∫ yx
max

−yx
max

∫ xx
max

−xx
max

f x(x, y) dx dy =
∫ y y

max

−y y
max

∫ xy
max

−xy
max

f y(x, y) dx dy = 1 .

Considering the profile measurement behind the vertical slit (means that
the emittance is measured in the horizontal phase plane), xx

max, yx
max in (6.43)

can be approximated by

xx
max ≈ δs

2
+ Lx′

max (6.45)

yx
max ≈ Rb + Ly′

max . (6.46)

The parameters x′
max and y′

max depend on the slit position, as discussed for
(6.13–6.16). The normalized contribution from the vertical slit is given by

i(x) =
∫ yx

max

−yx
max

∫ xd+δx/2

xd−δx/2

fx(x, y)dx dy , (6.47)

where δx is the width of the detector and xd is its position, measured against
the center of the slit. On the other hand,

xy
max ≈ Rb + Lx′

max (6.48)

yy
max ≈ δs

2
+ Ly′

max , (6.49)

and the normalized contribution of “false current” from the horizontal slit is
given by

i(y) =
∫ yy

max

−yy
max

∫ xd+δx/2

xd−δx/2

f y(x, y) dx dy . (6.50)
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The ratio Vi = i(y)/i(x) can be determined in analytical form by solving
the integrals of (6.47) and (6.50), leading to

Vi =
(xx

max)
3

(xy
max)

3

(xy
max)

2 − 12x2
d − δ2

x

(xx
max)

2 − 12x2
d − δ2

x

. (6.51)

The approximation (6.51) does not consider that the contribution from the
region, where both slit arms cross each other, does not lead to a falsification
of the horizontal profile and, therefore gives only a very rough estimation
of the errors arising. Furthermore, due to the parabolic approximations of
profiles behind the slits, Vi → ∞ for xd → xx

max. Replacing the parabolic
distributions by Gaussian ones shows very similar results, if the necessary
numerical integrations are performed. Since the ratio Vi can be of the order
of some 10%, the application of crosslike slits cannot be recommended for
precise emittance measurements.

The Pepper-Pot System

The measuring systems described up to now have some drawbacks:

• Due to the relatively slow movement of slit-detector systems through the
beam, the measuring time becomes rather long. Although this time will
be of the order of some 10s up to about 1 minute for dc-beams, this can
extend to some minutes for pulsed beams with a low repetition rate, due
to the necessary synchronization. Therefore, fluctuations of beam intensity
and, possibly emittance, cannot be observed during the measuring time.
However, this can be very important, for example, to assess the perfor-
mance of new types of ion sources. Furthermore, highly intense pulsed
beams with a low repetition rate and very low penetration depth can re-
quire a measurement within one beam pulse to avoid thermal destruction
of the materials.

• Due to the integration over one phase plane, coupling effects between both
transverse phase planes cannot be observed.

A possible solution offers the so-called “pepper-pot method” as analyzed
and discussed in [292]. The principle is illustrated in Fig. 6.31.

The beam hits a plate with an appropriate number of small holes, arranged
in the x, y-plane like the elements of lines and columns in a matrix. The
sample beamlets, defined by this pattern, fall on a viewing screen, where
the light spots are observed by a fast PC-controlled CCD-camera system.
It is evident that the design of the hole pattern has to be adapted to the
expected emittances to avoid overlap of beamlets. Taking this into account,
the pattern of light spots will represent a four-dimensional “hyperemittance”
(see also [292]), which, according to (6.1), (6.6), and (6.7), is derived from

V4 =
∫ ∫ ∫ ∫

dx dpx dy dpy . (6.52)
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Fig. 6.31. Scheme of the “Pepper-Pot Method” to perform emittance measurements
within one beam pulse [120]

Fig. 6.32. Example of observed light spot pattern on the viewing screen of a pepper-
pot emittance measuring system. See text for a more detailed description of the
system. The picture was taken in the main control room of GSI

From a measured light spot pattern, as shown in the example of Fig. 6.32, a
determination of the four-dimensional hyperemittance defined by

ε4 =
1
π2

∫∫∫∫
dx dx′dy dy′ (6.53)

is possible [292]. However, in practice, determination of the two-dimensional
emittances defined by (6.6) and (6.7) is of more interest.
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Fig. 6.33. Schematic drawing of the mechanics of a pepper-pot measuring system
installed in the stripper section of the UNILAC

Example of a Pepper-Pot System

As an example, the relevant design parameters as well as appropriate evalua-
tion procedures are discussed, referring to a system [313,315,316], to measure
emittances of highly intense pulsed heavy ion beams. The complete system
has been integrated into a compact measuring chamber, shown schematically
in Fig. 6.33. The system is installed in the prestripper section of the UNILAC
high current injector.

Alignment The achievable resolution in phase space coordinates depends very
much on the alignment of the system. The alignment procedure consists of
three steps:

• Alignment of the measuring chamber against the beam axis, which has to
be performed only once when the chamber is installed into the beam line.
For this purpose, the mirror and the pepper-pot plate are moved out of
axis by two compressed air actuators (not shown in Fig. 6.33). Installing
the He-Ne laser with a spot size of 0.8mm in front of the system, the
chamber is aligned exactly with beam axis.

• After this procedure, the pepper-pot plate and viewing screen are moved
in and the laser beam is enlarged with a telescope lens system to a parallel
beam, covering the pepper-pot plate. The pattern of light spots is observed
on the PC display and stored in the computer.
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• Afterward, the laser with the telescope lens is installed in a fixed position
opposite the mirror. Then the mirror is moved in front of the pepper-pot
plate and adjusted as long as the light spot pattern of the laser beam corre-
sponds exactly to the stored one. Since the two compressed air actuators
always move the mirror as well as the support bearing the pepper-pot
plate and viewing screen exactly to the same position, alignment can be
checked remotely at any time. Because the parallel laser beam has no di-
vergence, the light spots, generated by the laser-mirror combination and
observed on the PC display, guarantee exact calibration in the course of
data evaluation.

Thermal Aspects Due to a maximum beam pulse power up to 1.4 MW, ther-
mal aspects, as discussed in Chap. 3, had to be investigated very carefully.
Taking the very low penetration depth of about 10 µm into account, it is
evident that the beam at normal incidence will produce vapor and plasma
instantaneously at the surface of the pepper-pot plate. Cooling will not help
and tilting of the material surface against the beam axis (see Chap. 3) would
complicate the mechanical design and evaluation of measured data very much.
There are two possibilities to avoid melting the pepper-pot plate:

• reduction of the power density by enlarging the beam spot size.
• With a fast chopper installed in front of the high current injector, the

beam pulse length can be shortened during an emittance measurement.

As a compromise, a beam spot size of 1200mm2 and a maximum beam
pulse length of 200 µs was proposed to dimension the pepper-pot plate from
the thermal point of view. Taking into account the “figures of merit” Q, as
discussed in Chap. 3, copper was selected as the material for the pepper-
pot plate. Assuming a parabolic intensity distribution over the beam spot
with a size of 1200mm2, an increase in the temperature at the surface at the
center of the beam of ∆T � 800C for a beam pulse length of 200 µs has been
calculated [313]. The rise in temperature, as shown in Fig. 6.34, shows the
typical proportionality to

√
t, as discussed in Chap. 3.

Due to the pour thermal characteristics of Al2O3, which was selected as
the screen material, thermal heating of the screen had to be investigated, too.
The holes have a diameter of 0.1mm and are arranged in a mesh 2.5mm
wide. Although only a small part of particles goes through the small pepper-
pot holes, the power density, which is the relevant parameter, is diminished
only a little by the divergence of the beamlets and the small tilt of the screen
(see Fig. 6.33). Because heat transfer in the radial direction can be neglected
completely on the timescale under consideration, the maximum temperature
is determined only by the maximum power density at the position of the
corresponding hole. Neglecting enlargement of the beam spot sizes, Fig. 6.35
shows the calculated maximum temperatures at the center of the small beam
spots on the screen, reducing the beam pulse length to 50 µs. Although the
calculation represents the worst case, it shows very clearly, that the viewing
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Fig. 6.34. Temperature as a function of time for one beam pulse, hitting the Cu
pepper-pot plate

screen as the critical part in thermal heating determines the allowed beam
pulse length during a measurement.

CCD Camera and Optics Fortunately, the required limitation in measuring
time was not a problem in the exposure time required for the selected CCD-
camera type, whose main characteristic data are given in Table 6.4 [314]. To
extend the focal width into the macroregion, a remote control and some addi-
tional lenses improve the performance of the monitoring system. For example,
having a magnification of 5:1, the spacing of the light spots on the PC display
is enlarged to about 1.25 cm.

Determination of the Most Important Geometric Dimensions The maximum
divergence that can be measured depends mainly on the spacing of the holes
and the distance L between copper plate and viewing screen. For the following
reasons, the distance L should not be too large:

• In most cases, there will be limitations on the allowed insertion length.
This was also the case for the GSI system discussed.

• The necessary condition that the light spots of the beamlets are not allowed
to overlap requires a small distance.

• A shorter distance L minimizes broadening of the beamlets due to the
space charge.

Because the pepper-pot device has also been used to measure emittances
behind the first accelerator section of the prestripper, enlargement of the small
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Fig. 6.35. Maximum temperature at the center of the beam spots behind the holes
in the copper plate

partial beams has been estimated for a bunched beam of 120 keV/u U4+ ions
using the formula [317]

r(z) = r0 +
ζihole z2

2.092 π r0 c ε0 Am0 (βγ)3
. (6.54)

Here r0 is the initial beam radius in a double waist; ζ is the charge
state of the ions; z is the drift space; c is the velocity of light, ε0 =
8.8542 · 10−12As/Vm; A is the number of the ions, and m0 is the rest mass in
[eV/c2]. Figure 6.36 shows the calculated relative broadening (r(z) − r0) /r0

in percent. The two boxes have been calculated using a formula given in
[318]:

r(z) = r0 + 0.46
[
∆U

U

(
z2

r0

)]
(6.55)

∆U =
ihole

4πε0βγc
(6.56)

U = W
A

ζ
. (6.57)
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Table 6.4. Main characteristics of the CCD camera

Name SensiCam

Sensor type CCD-Interline

Resolution Super-VGA

Number of pixels 1280 (H)× 1024 (V)

Pixel size 6.7 µm× 6.7 µm

Sensor format 2/3′′

Scan area 8.6 mm× 6.9 mm

Response (monochrome) 280–1000 nm

Response (color) RGB primary colors

Trigger TTL, external, BNC

Exposure time setting Fast shutter

Exposure times 0–10 ms

Step width 100 ns

Multiple exposure Free programmable

Link to the PC high speed serial

Type Fiber optic, 200m

The formulas hold for a dc-beam; therefore, to consider the much higher bunch
current, a bunching factor BF= 20 has been introduced.

Because the beam spot size has to be enlarged during measurement by
defocusing to avoid thermal destruction of parts, the expected divergences are
below 10mrad. A distance of L = 250mm and a spacing of 2.5mm was chosen
for the 15 × 15 holes with 0.1mm in diameter. This leads to overlapping of
the light spots for divergences > 10mrad. Assuming a rather low maximum
divergence of ±1mrad, the increase in the light spot size due to the beam
divergence is about ± 0.25mm and therefore, referring to Fig. 6.36, broadening
by space charge forces can be neglected.

The geometric parameters chosen have been tested by transformation of
100.000 single particles, occupying an area of 10 π mm×mrad in each trans-
verse phase plane [319]. To improve the statistics, the diameter of the holes
was increased to 0.2mm. Figure 6.37 shows the calculated distribution of the
520 particles going through the holes in the horizontal and vertical phase
planes as well as the resulting pattern in the x, y-plane.

Data Processing The set of light spots on the viewing screen that have dif-
ferent brightness levels, shapes, and sizes represents the intensity distribution
in four-dimensional phase space V4. If the emittances of the two transverse
phase planes can be considered independent of each other, the same infor-
mation about the density distribution in the horizontal phase plane should
be contained within each row. The same holds for the vertical phase plane,
considering the columns. Taking advantage of this assumption, a simplified
algorithm, based on the slit-detector measurement approach, allows a skilled
operator fast data evaluation. Figure 6.38 illustrates the evaluation of light
spot intensities along a row. Due to the vanishing divergence of the laser beam,
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Fig. 6.36. Broadening of the beamlets behind holes of 0.1 mm diameter in per-
cent. The solid line corresponds to a formula given in [317], and the two boxes are
calculated using a formula given in [318]. Parameters: W = 120 keV/u U4+ ions,
idc = 16.5 mA, BF= 20 (bunching factor, see text), ihole = 5.2 µA

Fig. 6.37. Single particle transformation of 100.000 particles hitting the pepper-pot
plate. The diagrams show the expected distributions on the viewing screen for the
520 particles going through the holes

the spacing between the laser peaks is constant. The scale on the PC display
considers the magnification of the optical system as well the scaling, resulting
from graphics software. Due to the finite ion beam, no regular grid fits the
corresponding light spot pattern.

A nonlinear grid can be generated by an interactive graphic procedure.
This is illustrated in Fig. 6.39, where the ticks on top and bottom of the figure
represent the position of the light spots from the laser beam. Once a skilled
operator has manually adjusted the nonlinear grid, represented by the long
lines, to the peaks, the divergences along each row or column of the pepper-pot
holes can be determined, as shown in the example of Fig. 6.38. Obviously, the
extracted data are comparable to the profile measurements in a conventional
slit-detector system. As a consequence, the software for further data processing
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Fig. 6.38. Example showing the light peaks from the laser calibration procedure
and the peaks from the ion beam. The data hold in the horizontal direction and are
extracted from the light spots along a row behind the holes

Fig. 6.39. Generation of a nonlinear grid (long lines) by manual adjustment of the
grid lines

and display of the results can be similar to the software implemented in the
frame of a conventional slit-detector system. A detailed description of the
implemented software, the visualization possibilities, as well as possible import
of data, obtained by other emittance measurement devices, is given in [320].
It should be mentioned that the exploitation of the experimental data has
been tried also in a somewhat different way, resulting in the implementation
of some additional mathematical routines, including

• A fit to the observed light spots assuming Gaussian shapes of the peaks.
This results in automatic generation and adjustment of a nonlinear grid
instead of the manually adjusted one.

• Implementation of a mathematical algorithm for exploitation of the ex-
perimental results. Interesting features of the corresponding software tools
are
– Performing a smoothing process along all pixels in each line of the total

image by applying a least squares fit with Legendre polynomials as a
basis.

– A routine to detect each spot automatically and, assuming no overlap,
definitive assignment of each detected spots to a corresponding hole.

– Furthermore, a routine has been implemented to determine the vertical
and horizontal size of all spots resulting in a set of four coordinates
(−xmax, xmax, −ymax, ymax) representing the borders of each spot.

– Another routine derives the horizontal and vertical projected peaks.
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– In a next step, the projected spot curves are approximated by two
Gaussian functions to take the nonsymmetrical shape into account. As
a result, each spot is described by four Gaussian functions (two for
each transverse phase plane).

– Once the mathematical description of the peaks is available, further
evaluation and display of relevant data are straightforward; especially
rms values and Twiss parameters can be determined, as already dis-
cussed in Sect. 6.2.2.

The mathematical tools are described in more detail in [315]. They also
allow the investigation of coupling effects between the two transverse phase
planes.

The usefulness of the pepper-pot system, respectively, of emittance mea-
surements in general, is illustrated in Fig. 6.40. The data were taken during the
commissioning of the high current injector at GSI [258]. The three-dimensional
display (top left) and the corresponding projection onto the horizontal phase
plane show two nearly separated parts of the beam, caused by a wrong phase
setting between RFQ and a so-called “superlens” behind the RFQ. The pic-
tures on the right-hand side, corresponding to the correct setting of the phase,
impressively demonstrate the usefulness of emittance measurements with the
pepper pot.

The Multislit System

A variation based on the pepper-pot system is the combination of a plate with
a series of horizontal or vertical slits and a viewing screen behind. Depending
on the inserted slit pattern, the emittance in one of the transverse phase
planes can be determined in a similar way as described for the pepper-pot
system. The relevant criteria to optimize the design parameters of such a
system can be adapted from the discussion of the pepper-pot design. The
“multislit” technique was used for the first time at CERN [321] to check the
pulse to pulse stability of the heavy ion injector. A design study for the SPARC
photon injector (INFN) is reported in [322].

6.2.4 Determination of Emittances
by Beam Profile Measurements

All examples of measuring schemes discussed up to now allow the determina-
tion of intensity distributions of arbitrary shape in transverse phase planes.
This will be necessary

• to study aberrations as well as higher order effects of beam transport
elements, such as quadrupoles, sextupoles, and magnets and, in some cases
also complete accelerator sections;

• to investigate and improve; ion sources;
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Fig. 6.40. Emittance measurements performed with the pepper-pot system to
search the correct setting of phase between a RFQ-accelerator section and a super-
lens provided for matching to the following IH-accelerator section in the prestripper
of the UNILAC. The pictures were taken in the main control room of GSI

• to study space charge effects; and
• during commissioning of a new machine.

On the other hand, the measured emittance patterns in most cases are
approximated by ellipses applying more or less sophisticated fit procedures
to the data. Experience has shown that even for strange patterns, the core
of those beams will be included in appropriately fitted ellipses. Figure 6.41
shows an extremely deformed emittance area, but even in this case the fitted
ellipse contains about 60% of the beam intensity.

Emittances, characterized by the Twiss parameters, are much easier to
handle with respect to
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Fig. 6.41. Measured emittance [323] showing extreme aberrations.The fitted ellipse
contains about 60% of the beam intensity and corresponds roughly to 50% emittance
if evaluated in the intensity mode

• the transformation of a beam through a channel of various beam transport
elements;

• the comparison of emittances and acceptances, including correct matching
of accelerator sections; and

• the elaboration and storage of data sets for computer-aided routine oper-
ation, including optimization procedures.

Emittance Measurements in Circular Machines

The approximation of emittance patterns by ellipses allows the determina-
tion of ε in circular machines. The schemes discussed of emittance measuring
systems cannot be applied here, since the beam would be destroyed instan-
taneously. But, remembering that the β(s) function should be well known, ε
can be determined from only one measurement of the beam profile. Assuming
a Gaussian intensity distribution

f(x, σ) =
1

σ
√

2π
e−

x2

2σ2 (6.58)

where σ is the rms value of the measured profile data, determined according
to (6.30) and (6.33), the percentage emittances can be figured out from the
integration over the normalized function f(x, σ). The result is displayed in
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Fig. 6.42. Integrated Gaussian normal distribution [%]. The integration limits have
been normalized to σ; therefore, the abscissa shows t/σ

Fig. 6.42. An alternative procedure to fit a Gaussian function by a noniterative
method has been described in [324]. A very rough first estimation can be
obtained from the relation ε = xmax/β (see Fig. 6.6).

One method for determining the beam width in a circular machine is by
scrapers, which are normally installed in circular machines

• to remove particles in the halo of the beam,
• to define the beam pipe aperture at critical locations, and
• to stop the beam at a definitive location in case of emergency.

To perform a beam profile measurement in the horizontal direction, one
scraper jaw is positioned near the edge of the beam (see, e.g., [325]), as shown
schematically in Fig. 6.43. Then, at a well-known time, the accelerating rf is
switched off, while the magnetic ramp continues. As a consequence, the beam
will be swept over the scraper jaw. The beam profile can be extracted from a
measurement of the current i(t) on the jaw or by using a dc-transformer. In
both cases, the beam profile has to be derived from the current measured as
a function of time. The relevant relationships are

dN

dR
� dN

dx
=

i(t)
e ζ

1
dR/dt

(6.59)

∆p

p
=

∆B

B
(6.60)

∆R = Dx(s)
∆p

p
. (6.61)

In (6.59), dN/dx represents the beam profile sought, R is the mean radius
of the central trajectory, p is the nominal momentum at time t, and Dx(s)
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Fig. 6.43. Schematic illustration of beam profile measurement in a circular machine
by scrapers. The diagram showing the magnetic field B as a function of time t holds
for the SIS and especially for Ne10+ ions injected with 11.5 MeV/u. See text for
details

Fig. 6.44. Current measurement during displacement of the beam to determine
the emittance in the SIS. Upper curve: current measured on the jaw of the scraper.
Lower curve: intensity measured with a dc-transformer

is the well-known periodic dispersion function along the central trajectory s.
Switching off the accelerating rf at time t leads immediately to ∆B(t)/B(t) =
−∆R(t)/R. Figure 6.44 gives an example of a measurement performed on the
SIS.
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Determination of the Twiss Parameters
from Beam Profile Measurements

The simple method to determine ε from only one beam width measurement
possible in circular machines cannot be applied in general, since normally the
Twiss parameter β is not known. Furthermore, beside ε and β, γ and α also
have to be determined to characterize the corresponding emittance ellipse with
respect to size, shape, and orientation. According to the theorem of Liouville,
the area of an emittance ellipse πε remains constant along the trajectory
of the particles, whereas shape and orientation will change under the action
of quadrupoles, magnets, and along drift spaces. The transformation laws
applying the matrix formalism are given in various books (e.g., [326–329].
Referring to (6.12), the ellipse is described by

S(α0, β0, γ0) =
[

β0 −α0

−α0 γ0

]
, (6.62)

and the propagation of the Twiss parameters along a transport line is given
by the transformation

S(α1, β1, γ1) = M S(α0, β0, γ0)MT , (6.63)

where M represents the 2 × 2 matrix of the single-particle transformation:

Drift space (length L):

D(L) =
[

1 L
0 1

]
. (6.64)

Thin lens (focal length F ):

L(F ) =
[

1 0
−1/F 1

]
. (6.65)

Focusing quadrupole (k = quadrupole constant, l = effective
length):

QF (k) =
[

cos(k l) 1
k sin(k l)

−k sin(k l) cos(k l)

]
. (6.66)

Defocusing quadrupole:

QD(k) =
[

cosh(k l) 1
k sinh(k l)

k sinh(k l) cosh(k l)

]
. (6.67)

In practice, customarily the maximum current allowed through the coils of
the quadrupoles, which determines the maximum of the quadrupole constant,
is normalized to a reference voltage Uref (mostly Uref = 10V). Setting a well-
defined k value then requires transmission of the digital set-value (SV) from
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the control computer to the DAC, mostly integrated in the power supply. In
this case, the quadrupole constant k is determined by

k =

√
krSV

Bρ
, (6.68)

where k [T/V m] is defined by the normalization and 0 ≤ SV ≤ Uref is the
set-value. Bρ is the magnetic rigidity of the ions

Bρ [Tm] = 3.10715
Aβ γ

ζ
. (6.69)

Deflecting magnet (ρ = bending radius, n = field gradient, ϕ =
deflecting angle, [330]):

Horizontal plane:

MMH =

[
cos(

√
1 − nϕ) ρ√

1−n
sin(

√
1 − nϕ)

−
√

1−n
ρ sin(

√
1 − nϕ) cos(

√
1 − nϕ)

]

. (6.70)

Vertical plane:

MMV =

[
cos(

√
nϕ) ρ√

n
sin(

√
nϕ)

−
√

n
ρ sin(

√
nϕ) cos(

√
nϕ)

]

. (6.71)

Let us assume that the transformation matrix from a location “0” to a
location “1” can be represented by

M =
[

a11 a12

a21 a22

]
→ MT =

[
a11 a21

a12 a22

]
, (6.72)

which can be a drift space, or a drift space + quadrupole.
Taking advantage of the proportionality between

√
εβ and the profile width

(see Fig. 6.6) and keeping in mind that βγ − α2 = 1, the Twiss parameters
can be determined from at least only three measurements of the profile width
∼

√
εβ. Therefore, referring to (6.63), only the transformation of β is relevant

in this connection:

β1 =
(
a2
11 − 2a11a12 + a2

12

)



β0

α0

γ0



 . (6.73)

Multiplying both sides by ε =const leads to the profile width
√

εβ1 at location
“1”: √

εβ1 =
√

a2
11 εβ0 − 2 a11a12 εα0 + a2

12 εγ0 . (6.74)

Long-term experience has shown that the procedure is very sensitive to the
accuracy of the transfer matrices as well as to the achievable precision of
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profile determination. Thus, even small errors in the matrix elements or in
the measured profiles sometimes lead to negative square roots, which of course
are impossible from the physical point of view. This does not happen, if more
than three (let’s assume m) profile measurements are performed. This leads
to a set of m equations,

Pm =
√

[a2
11]m εβ0 − 2 [a11a12]m εα0 + [a2

12]m ε γ0 , (6.75)

where the index m represents the different transformation matrices and the
Pm =

√
[εβ]m represent the accompanying measured profile widths. Setting

x = εβ0, y = εα0, z = εγ0, am =
[
a2
11

]
m

, bm = −2 [a11a12]m , cm =
[
a2
12

]
m

,
and applying a least squares fit [331] to the relation

S =
∑

m

[
P 2

m − (amx + bmy + cmz)
]2

, (6.76)

x, y, z can be determined from the requirements

∂S

∂x
=

∂S

∂y
=

∂S

∂z
= 0 (6.77)

giving immediately,
[
amP 2

m

]
−
[
a2
m

]
x − [ambm] y − [amcm] z = 0 (6.78)

[
bmP 2

m

]
− [ambm] x −

[
b2
m

]
y − [bmcm] z = 0 (6.79)

[
cmP 2

m

]
− [amcm] x − [bmcm] y −

[
c2
m

]
z = 0 , (6.80)

where [. . .] stands for the sum over all m. The system of equations can be
written as

[CM ]




x
y
z



 =






[
amP 2

m

]

[
bmP 2

m

]

[
cmP 2

m

]




 (6.81)

with CM as the 3 × 3 coefficient matrix. The solution for x, y, z, ε =√
xz − y2, β0 = x/ε, α0 = y/ε and γ0 = z/ε is straightforward. For example,

x = εβ0 is determined from

x =






[
amP 2

m

]
[ambm] [amcm]

[
bmP 2

m

] [
b2
m

]
[bmcm]

[
cmP 2

m

]
[bmcm]

[
c2
m

]






DET [|CM |] . (6.82)

When a weighted least squares fit is applied, the weight factors are determined
from the measured beam sizes and their errors. An expression for the errors
in the determination of ε is derived in [331].
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Measurement Procedures

Two variants of schemes are discussed in the literature [310,332,333,335–341,
343]:

• The multigrid method: Performing profile measurements (≥ 3) with
profile grids at various positions along the beam line. Of course, the profile
grids may be replaced by other profile measuring devices, such as scanners,
and viewing screens, and residual gas ionization monitors

• The gradient variation method: Using different settings of a quadru-
pole in front of one profile measuring device.

• A combination of both methods.

Independent of the method applied, the accuracy that can be achieved
depends very much on the precision of the profile measurement as well as
on the evaluation of the profile data. This holds especially if the measured
profiles cannot be well approximated by a single Gaussian function. A better
characterization of such more complex intensity distributions by “asymmet-
rical Gaussian” fits has been described in [28] and compared with a series of
wire-scan profile measurements. The fitting function,

f(x) = f0 + fmax e

{
− (x−〈x〉)2

2〈x2〉{1+α[sign(x−〈x〉)]}

}

(6.83)

approximates the profile by an offset (f0) and two Gaussians. The asymmetry
parameter is α (do not confuse with the Twiss parameter α), which vanishes
for a perfect Gaussian profile. The σ values for the left- and right-hand sides
are σ =

〈
x2
〉
(1 ± α). The authors use the average of both values for the

reconstruction of the ellipses. A more sophisticated algorithm, developed at
KEK [342], does not assume that the measured profiles have a special form, as,
for example, Gaussian. The only assumption is that each percentage emittance
area can be described by an ellipse with a uniform particle distribution. The
algorithm is rather complex but described in detail by the authors. A com-
parison with the usual method (based on a Gaussian profile approximation)
shows deviations of the order of some percent up to some 10%, depending on
the percentage level under consideration.

The Multigrid Method

Assuming very high precision in the profile determination, the method can be
performed with only three profile measurement devices along a drift space. As
shown in [295,343], best accuracy is achieved if a waist can be transformed to
the profile measuring device in the middle, and the spacing L to the upstream
and downstream measuring devices is just L =

√
3βwaist. To improve the accu-

racy, profile measurements at five equidistant positions should be preferred. In
this case, a spacing of L = 0.73βwaist has been figured out [333,334,343]. But
the optimal conditions, mentioned above, will probably not often be found at
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an accelerator facility, if not especially foreseen for emittance determination
by this method. Applying the method in a section, containing quadrupoles be-
tween unequally spaced profile measuring devices, a waist must occur within
the section.

The Gradient Variation Method

Due to the possibility of varying profile widths in a wide range, this method
is more flexible and results mostly in higher accuracy. Before varying the
transfer matrix, the beam should be aligned carefully to avoid steering effects
that can falsify the results. The scheme of a typical section suitable for beam
alignment is shown in Fig. 4.43 and the equations for setting of the steerers
are given in Chap. 4, Sect. 4.7 (4.38–4.47).

After the beam has been aligned, the emittance can be measured. Experi-
ence has shown that the implementation of a semiautomatic algorithm offers
more control for the operators and physicist than a fully automatic procedure.
This holds, for example, with respect to the range of profile variation, to pre-
vent too large profiles from covering the range of the profile measuring device.
With a semiautomatic algorithm, the operator can determine the range of
gradient variation by a first inspection of the profiles. This can be performed
by setting the quadrupoles manually via potiboard, which usually is available
for manual fine-tuning of beam transport elements. Once the range of gradi-
ent variation has been fixed and the number of quadrupole settings has been
specified, measurement and evaluation of data can be performed automat-
ically by an appropriate computer program. Taking advantage of advanced
techniques to describe the measured profile by mathematical functions, as
discussed above, the evaluation of emittance data is straightforward. Figure
6.45 shows two examples of profiles, measured at the UNILAC. In the large
picture, the solid curve results from the least squares fit and shows excellent
agreement with the measured profiles. But, as shown in the small inset, such
an excellent agreement does not always occur by far. The deviations increase
in case

• of very low beam currents diminishing the accuracy of profile determina-
tion,

• of strongly asymmetric profiles, and

of strange emittances resulting from aberrations and higher order effects by
the action of beam transport elements.

The examples of Fig. 6.45 show that the location of the minimum profile
width with respect to the corresponding quadrupole gradient (scale on the
abscissa) can give one more independent equation for the determination of the
Twiss parameters. The location of the minimum can be obtained by inspection
of the Pm = f(km) diagram or even by manual variation of the quadrupole
gradient observing the displayed profiles. In the waist position, ∂P/∂k = 0.
From (6.76), it follows immediately that
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Fig. 6.45. Two examples of measured profile widths applying the gradient variation
method. The solid curves in the large picture and the small inset are determined
from the least squares fit according to (6.78–6.80)

[
a11

∂a11

∂k

]
β0 −

[
a12

∂a11

∂k
+ a11

∂a12

∂k

]
α0 +

[
a12

∂a12

∂k

]
γ0 = 0 . (6.84)

Assuming the waist is generated by a focusing quadrupole in front of the
profile measuring device with a drift space of length D between leads to

∂a11

∂k
= −l sin (k l) − Dsin (k l) − D k l cos (k l) (6.85)

∂a12

∂k
= − 1

k2
sin (k l) +

l
k

sin (k l) − D l sin (k l) . (6.86)

Inserting ∂a11/∂k and ∂a12/∂k, as given in (6.85) and (6.86), into (6.84) and
the k value, known from the location of the waist, one of the three unknown
parameters α0, β0, or γ0 can be determined and removed from (6.76). Because
the success of the procedure depends on many parameters, it is difficult to
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Fig. 6.46. Graphical determination of the emittance ellipse by inverse mapping to
the reference point (located at the front of the quadrupole)

decide on the best choice of this parameter. The best recommendation is to
apply the well-known “trial and error” strategy.

In some cases, a graphical method for the determination of the emittance
ellipse, as discussed in the literature [6, 28, 295] can also be useful. Figure
6.46 illustrates the method taking the relevant data belonging to the example
shown in Fig. 6.45. Here the straight lines, generated from the inverse mapping
of the points [

√
εβ]m and x′

m, form the boundary of the ellipse. Whereas
[
√

εβ]m is determined by the mth profile measurement, the divergence angle x′
m

is unknown and has to be considered as a parametrization of the corresponding
straight lines in Fig. 6.46.

Combination of Both Methods

A transport channel, equipped with some quadrupoles, magnets, and profile
measuring devices, offers the possibility of combining the multigrid method
with the gradient variation method. Figure 6.47 gives an example from the
transfer channel UNILAC→SIS. Applying a least squares fit according to
(6.76), the extracted emittance ε and the Twiss parameters correspond to an
average over the whole channel, as demonstrated impressively by the calcu-
lated envelopes.
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Fig. 6.47. Combination of the two emittance measuring methods discussed in the
transfer channel from the UNILAC to the SIS [240]. The emittance and the calcu-
lated envelope have been determined from six profile measurements and the readout
of the transfer matrices by the computer. The arrows indicate the position of the
profile grids as well as the measured profiles. As usual, F and D mark the focusing
and defocusing elements in the horizontal plane. The routine for emittance determi-
nation was implemented as a subroutine of the MIRKO program [345]

6.3 Computer-Aided Optimization and Operation

Modern accelerators are operated setting calculated data or stored data from
earlier runs to the beam transport elements and accelerating structures. How-
ever, these settings hardly ever result in sufficient beam transmission, mass
separation, or charge state separation. The reasons are manifold: nonrepro-
ducible emittances from different ion sources, respectively, different settings
of ion source parameters, tolerances of geometrical dimensions, disabled el-
ements, and misalignments. With regard to the various types of accelerator
facilities in operation around the world, the required effort for subsequent op-
timization differs from machine to machine. From the long-term experience of
operators, shift leaders, and supervisors at GSI, who have operated, the UNI-
LAC, the heavy ion synchrotron SIS, the experimental storage ring ESR, as
well as numerous complex beam lines, some admittedly subjective, comments
may be given for further discussions and scrutiny of the arguments.

• Linear accelerators can deliver a beam to a target, even when there are
considerable losses in the machine.

• The same holds for beam transport lines, where the beam can go through
with considerable losses along the line.

• This does not hold for circular machines, such as synchrotrons, and storage
rings. Due to the large number of revolutions, normally all particles are
lost, if there is only a small beam loss at one location.
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• The elaboration of optimum data sets for accelerator facilities provided
for acceleration and delivery of a limited species of light particles such as
electrons, protons, deuterons converges faster than for universal machines
delivering all kind of ions with various energies. This is proved by the rather
high number of different ions and also by the great variety of emittances
from various ion sources that inevitably have to be used.

• The correct determination and separation of undesirable masses and iso-
topes, as well as charge state identification and separation, requires addi-
tional effort in operating heavy ion accelerators.

• It is much more cumbersome to optimize the performance of very slowly
pulsed machines in comparison to dc-machines or machines with high duty
cycles.

An important postulate for the application of computer-aided optimization
and operation is that the transport system is computable. That can require
time-consuming activities to bring all the components to their design status.
The effort has to include checkup of calibration curves for all magnets, steer-
ers, and quadrupoles. Precise and reproducible reaction of the corresponding
power supplies to the command signals transmitted from the control com-
puter has to be proved, too. Furthermore, the geometric distances between all
components, including the beam diagnostic elements, have to be determined
precisely. Based on this work, either fully automatic programs [243, 346–349]
for beam optimization in the transverse phase planes or programs for on-
line manipulations of the beam transport elements during accelerator exper-
iments can be implemented. Computer-aided manipulations are done mostly
by skilled operators or with the support of accelerator physicists to improve
the performance of a machine. Figure 6.48 shows part of an interactive graphic
display, provided for on-line optimization of the displayed beam transport sec-
tion.

Two emittance measuring devices of the slit-sandwich detector type were
installed at that time within this section. The envelopes, calculated from emit-
tance measurements at both places, show excellent agreement, confirming the
computability of this section. The same holds with respect to the measured
beam profile widths, marked as stars. The program package offers various op-
tions for interactive manipulations, which can be activated by a cursor (the
corresponding command fields are not shown in the Figure). The actions and
subroutines, which can be activated by a skilled operator, are illustrated in the
schematic diagram of Fig. 6.49. The box “subroutines for options” contains
the command fields mentioned that are available in the interactive graphic
display. As illustrated in the diagram, the subroutines for options are divided
into three classes: on-line only, on-line or off-line, off-line only. Some of the
features implemented may stimulate physicists and programmers to develop
similar tools for transverse beam optimization. Therefore, a short description
of the actions, triggered by cursor movement in the corresponding command
fields, may be helpful.
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Fig. 6.48. Interactive graphic display provided for computer-aided optimization.
The picture shows the section between ion source and the first Wideroe section of
the UNILAC. The picture was taken in the main control room of GSI. See text for
details

On-line only:
1 × L Readout of actual quadrupole gradients,

calculation of envelopes and their display
AUTO same as 1 × L, refresh time ca. 1–3 s

(depending on the length and complexity
of the displayed section)

STOP Stops AUTO-mode, done by
an independent program

SOLL/IST (toggle) Switching between real quadrupole gradients
(IST) and data transmitted to the power
supplies by computer (SOLL)
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Start emittance
measurement
from interactive
graphic display

Measurement
and evaluation
of emittance
data

Graphic display
of data, output
for plotter, printer

Initialization of the
envelope program,
profile grid program,
simulation program

MAIN PROGRAM
Processing of display refresh buffer,
data concentration and management,
for various input media and
intertask data transfer

Data base,
Temporarily
files

Subroutines
for Options
On-line only
On-line or off-line
Off-line only

Subroutines

Parameter
processing

Physical
parameters

and

Specific
data of
devices

Fig. 6.49. Simplified scheme of a computer program [348] for computer-aided trans-
verse beam optimization. See text for detailed explanations of the available subrou-
tines and options

On-line or Off-line:
SAVE Start of savefile-handling program offering the

possibility for save-allocation, file read-back
and printout of file data

PRINT Printout of all data from beam transport
elements on a line printer

ELLIP Calculation of emittance ellipses at a selected
position along the displayed section and
display of the results as an insert

BETA Update of β = v/c by readout of relevant
devices (terminal voltage, extraction voltage. . . )
Additionally: Possibility for change of β by
direct input from the keyboard

UPDT Readout of actual quadrupole gradients and
save on a temporary file. This function is
automatically done when the program is started

ENVD Return to last SAVE or SET-values on
temporary file
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RESET Return to data before a fit procedure has
taken place

KURZ ZOOM function to shorten the displayed
section

ORIG Return to original beam transport section
(PAN function)

PROF Measurement and display of beam profile
width (FWHM of profile grid data)

SLIT Measurement of slit positions
ERROR Error diagnostic on demand from the operator,

explaining combinations of options not allowed
ENABLE Security switch for options such as SET, PROF,

Off-line only:

SET Setting of quadrupole gradients after manipulation
on the envelopes

QUVA Variation of quadrupole gradients by cursor
(percentage of change ∼ to distance of cursor
from the beam center line) or direct input
of quadrupole gradients from the potiboard

CFIT Manipulation on the envelope by cursor
using a special mathematical procedure [345]

SFIT Optimization of larger sectors using “TRANSPORT”
INTG Numerical integration of measured quadrupole

gradients [B′(s)] instead using hard-edge model
HELP+option Explanations of the specified option (menu-filed,

dedicated areas on display etc.) on a separate display

Taking advantage of a database, containing

• all beam transport elements and their characteristics (mostly called “prop-
erties”),

• the relevant apertures determined by those elements, vacuum chambers,
and limiting apertures, and

• the exact location of all relevant elements with respect to reference point,
optimization programs, such as the example discussed, can be applied at
different locations along the machines, including beam lines in the exper-
imental halls. Once a skilled operator has selected a certain section, the
computer can automatically display the arrangement of the elements.

6.A Dimensioning Motor Driven Feedthroughs

Motor driven UHV feedthroughs and compressed air actuators are often used
to move detectors and other components , such as emittance detectors, slits,
Faraday cups, and scrapers controlled inside a vacuum system. Compressed
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Fig. 6.50. Schematic drawing and picture of a motor driven feedthrough [299]

air actuators are used mostly for a pure IN/OUT motion and are available
commercially in great variety. Motor driven feedthroughs are more flexible,
and special demands can result designing such a device.

For the system designer as well as the user, the following questions are of
interest:

• maximum load and their maximum size that have to be moved in a vertical
or horizontal motion;

• required stroke and accuracy of positioning;
• required acceleration and speed for the specified load, respectively, the

total time to move the load with a given stroke;
• the required torque (M) and power (M ω) of a motor to fulfill the specifi-

cations.

It is the aim of this Appendix, to give the designer some hints, which can
be helpful for the design of other moving mechanical systems, too.

Consider a feedthrough as shown in Fig. 6.50, provided to displace a load in
vertical direction. That means that the load has to be moved against the force
of gravity, when it has to be lifted. An important part of the feedthrough is a
ball bearing spindle, with the load attached at its end. The spindle is displaced
by a stepping motor or a dc-motor, outside the vacuum, via tooth wheels and
a belt. A membrane bellows seals the spindle against the vacuum. A magnetic
brake prevents movement of the load due to the vacuum counterpressure in
case of power failure or the power on the motor is switched off.
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Because there are parts that move in a linear axial motion as well as
parts that rotate at various angular velocities, it is advantageous to apply the
Lagrange formalism (see e.g. [350], [351]) to find the corresponding differential
equation of motion. To determine the Lagrange function L = T − U , with T
as the sum of all kinetic energies and U as the sum of all potential energies,
the following contributions to L have to be considered (see Fig. 6.50):

• Axial movement of
– the load itself;
– the supporting plate, driven by the ball screw nut; and
– diverse small parts such as the slider of the linear potentiometer, cool-

ing pipes, and connectors; and
• Rotary motion of

– the rotor of the motor;
– the moving part of the magnetic brake, attached to the motor;
– tooth wheel 1 on the gear;
– the belt, coupling this tooth wheel to the driving screw nut on the ball

bearing spindle;
– tooth wheel 2 on the screw driving nut; and
– the ball bearing spindle itself.

• Furthermore, the counterpressure of the vacuum has to be considered.
Because it acts like an additional mass, it can be taken into account by
mV = Aeff×1 kg/cm2 , with Aeff as the effective area

[
cm2
]

of the membrane
bellows, resulting in a force FV = mV g = [N].

• Moreover, the force of the membrane bellows, acting like a spring, has to
be taken into account. This force is defined by Fm = km x, with
– km as the spring constant, normally given in the data sheets for the

bellows, and
– x as the coordinate, describing the axial displacement, with x = 0 de-

fined by the so-called “free length” (BFL) of the bellows, as illustrated
schematically in Fig. 6.51.

6.A.1 Estimations

Required Motor Power

Referring to a feedthrough, as shown in Fig. 6.50, one can neglect the rotating
parts and estimate the required motor power P from

P =
∑

µ

Fµ ẋnom , (6.87)

where ẋnom is the specified nominal velocity for the movement of the load
and Fµ are the main forces, acting against the motion. Assuming a lifting,
vertical motion, the most important contributions are



6.A Dimensioning Motor Driven Feedthroughs 277

x= 0 
F

re
e 

le
n

g
th

M
ax

im
u

m
 s

tr
o

ke

M
in

im
u

m
 le

n
g

th

Fig. 6.51. Definition of the origin of the axial x-coordinate system by the so-called
free length of the membrane bellows

• The mass of the load itself, given by F1 = mL g (g = 9.81m/s2).
• The counterpressure of the vacuum caused by the membrane bellows seal-

ing and given by F2 = mV g. In many cases, this will be the largest con-
tribution.

• The maximum counterforce of the membrane bellows given by F3 =
kmxmax. For the lifting motion, xmax is determined by the free length (BFL)
and the minimum length of the membrane bellows Bm to xmax = BFL−Bm

(see Fig. 6.51).

For the feedthrough shown in Fig. 6.51, the relevant parameters are given in
Table 6.5

Table 6.5. Relevant parameters of the motor driven feedthrough, as shown in the
example of Figure 6.51

mL =5 kg Moving load

S =0.2 m Stroke of the feedthrough

BFL = 0.140 m Free length of the membrane bellows

Bm =0.03 m Minimum length of the membrane bellows

k0 =49× 103 N/m Spring constant per membrane pair

Nm =50 Number of membrane pairs

km =49/50× 103 N/m Resulting total spring constant of the bellows

Aeff =28 cm2 Relevant area of the membrane bellows

mV =28 kg Mass related to the vacuum counterpressure

Summing up the contributions to Fµ, as defined in (6.87), one gets for the
example (g � 10m/s2):

∑

µ

Fµ = F � 50 + 280 + 108 = 438N . (6.88)



278 6 Measurements in Phase Spaces

The velocity was specified as ẋ = 8mm/s, which leads immediately from
(6.87) to the required motor power P � 438 · 8 × 10−3 Nm/s � 3.5W.

Required Torque, Revolution Frequency, and Gear Ratio

For a motor rotating at an angular frequency ωN = 2πfN (fN is the nominal
revolution frequency), the power is given by P = MN ωN (MN is the torque at
frequency fN). Because parts, are rotating at different revolution frequencies,
we define

• ϕ0(t), which describes the rotation of the driving motor with ϕ̇0(t) =
dϕ0(t)/dt = ω0(t) = 2πf0, with f0 as the frequency of revolution in [1/s].

• ϕ1(t) describes the rotation of the belt driving tooth wheel 1 (see Fig. 6.50)
on the gear box, attached to the motor.

• ϕ2(t) is the angle of rotation of tooth wheel 2 (see Fig. 6.50) driven by the
belt and driving the screw nut on the ball bearing spindle.

Of course, ω1(t) and ω2(t) are related to ϕ1(t) and ϕ2(t), and this holds
for the relation between ω0(t) and ϕ̇0(t). To determine the required nominal
torque of the motor, the law of conservation of energy F δx = MN δϕ leads to
MN = F δx/δϕ. The ratio δx/δϕ can be determined from x(ϕ0) = psϕ0/2πG
giving δx/δϕ = ps/2πG. Here ps is the displacement per revolution of wheel
2 and G is the total gear ratio, determined by the ratio of the teeth on the
two wheels N1, N2, and the gear box.

For the example (see Fig. 6.50), ps = 5mm and G = Gr/S, with Gr =
20.25, S = 25/40. With G � 32, this leads to the required torque MN = 438 ·
5×10−3/64π [Nm] � 0.011Nm. To achieve the required speed of ẋ = 8mm/s,
the required nominal revolution frequency from fN = Gẋ/ps � 51/s.

In the example, a motor with MN = 0.02Nm and fN = 50/s was selected
to take friction and the efficiency η = 0.81 of the gear box into account. The
estimations given here are confirmed by the solution of the corresponding
differential equation applying the Lagrange formalism.

6.A.2 The Lagrange Function

Determination of Potential Energies (U)

Summing up all masses to mg, including mV and considering the contribution
to the potential energy from the membrane bellows:

U(x) = Ug(x) + Ub(x) = mggx +
km

2
x2 . (6.89)
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Determination of Kinetic Energies (T )

The kinetic energy from axial motion is given by

T (ẋ) =
mg

2

(
dx

dt

)2

=
mg

2
v2 =

mg

2
ẋ2 . (6.90)

On the other hand, the kinetic energy of all rotating parts has to be deter-
mined from I/2 ϕ̇2, where I is the moment of inertia, defined as I =

∫
r2dm.

Keeping in mind the various angular velocities of the rotating parts, one has to
sum up the moments of inertia with respect to the angular velocities ϕ̇0, ϕ̇1, ϕ̇2.

T (ϕ̇0) =
I0

2
ϕ̇2

0, with I0 =
∑

I(ϕ0) (6.91)

T (ϕ̇1) =
I1

2
ϕ̇2

1, with I1 =
∑

I(ϕ1) (6.92)

T (ϕ̇2) =
I0

2
ϕ̇2

2, with I2 =
∑

I(ϕ2) . (6.93)

For the Lagrange function L = T − U ,

L(x, ẋ, ϕ̇0, ϕ̇1, ϕ̇2) = T (ẋ) + T (ϕ̇0) + T (ϕ̇1) + T (ϕ̇2) − U(x) . (6.94)

Now a differential equation can be derived from the well-known relation:

d

dt

ϑL

ϑq̇k
− ϑL

ϑqk
= Fqk , (6.95)

where qk, q̇k represent all relevant coordinates and Fqk represents the external
forces in the corresponding coordinates. In the case considered, the external
force is the torque of the driving motor. Performing the procedure according
to (6.95), one obtains a system of differential equations in the coordinates
x, ϕ0,ϕ1,ϕ2. However, from the practical point of view, it is of much more
interest to know the movement of the load as a function of time in the x-
coordinate. This means that the solution should be determined for x(t). This
can be done in different ways, the simplest is to transform L(x, ẋ, ϕ̇0, ϕ̇1, ϕ̇2)
to L(x, ẋ).

Transformation of Coordinates

With S = N1/N2 and Gr as the gear ratio of the gear box, one obtains

x(ϕ0) =
S

Gr

ps

2π
ϕ0 (6.96)

x(ϕ1) = S
ps

2π
ϕ1 (6.97)

x(ϕ2) =
ps

2π
ϕ2 . (6.98)
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The kinetic energy of the rotating parts becomes

TI(ϕ̇µ) =
I0

2
ϕ̇2

0 +
I1

2
ϕ̇2

1 +
I2

2
ϕ̇2

2, µ = 1 . . . 3,→

TI(ẋ) =
1
2

[

I0

(
2π

ps

Gr

S

)2

+ I1

(
2π

ps

1
S

)2

+ I2

(
2π

ps

)2
]

ẋ2 (6.99)

TI(ẋ) =
mI

2
ẋ2 (6.100)

where a fictitious mass mI has been introduced, defined by

mI =

[

I0

(
2π

ps

Gr

S

)2

+ I1

(
2π

ps

1
S

)2

+ I2

(
2π

ps

)2
]

. (6.101)

Remark. Because the kinetic energy of relatively fast rotating masses is now
determined by a velocity of the order of mm/s, the fictitious mass can become
very large.

Transformation of Torque M

Usually the torque of a motor depends on the revolution frequency and is
specified as torque MN at the nominal frequency fN and the so-called “start
torque” MS at ω0 = 0, which in general is higher than MN. In a good ap-
proximation, the dependency of M on the angular velocity ω0 = ϕ̇0 can be
assumed to be linear in the range 0 ≤ ϕ̇0 ≤ 2πfN. Thus, we set

M(ϕ̇0) = M∗
S − bϕ̇0, with b =

M∗
S − M∗

N

2πfN
. (6.102)

Remark. To consider the efficiency of the gear box η in (6.102), the specified
motor torques MS,MN are replaced by M∗

S = ηMS and M∗
N = ηMN.

To transform torque M in the x-coordinate system, the work F ∆x of a
force F in the x-coordinate system can be compared with the work M ∆ϕ0

done by M in the ϕ0-coordinate system. From F ∆x = M ∆ϕ0 and (6.96), it
follows immediately

FM =
2π

ps

Gr

S
M∗

S − b
2π

ps

Gr

S
ẋ = FMS − γẋ , (6.103)

with the definitions xϕ = 2πGr/psS, FMS = xϕM∗
S , and γ = x2

ϕb.

The Differential Equation of Motion

With m = mg + mI, the transformed Lagrange function is

L(x, ẋ) =
m

2
ẋ2 +

km

2
x2 − mgg x , (6.104)
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and the differential equation results from

d

dt

ϑL

ϑẋ
− ϑL

ϑx
= FM , (6.105)

leading to
mẍ + kmx + mgg = FMS − γẋ. (6.106)

It is practical to set this second-order differential equation in a mathemat-
ical standard form:

ẍ(t) + pẋ(t) + qx(t) = k (6.107)

with

k =
FMS − mgg

m
(6.108)

p =
γ

m
(6.109)

q =
km

m
. (6.110)

The homogeneous part of (6.107) ẍ(t) + pẋ(t) + qx(t) = 0 is typical for
damped oscillations, and the “Ansatz” x(t) = e−λt leads to the characteristic
equation

λ2 − pλ + q = 0 , (6.111)

with the solutions

λ1 =
p

2
+

1
2

√
p2 − 4q (6.112)

λ2 =
p

2
− 1

2

√
p2 − 4q . (6.113)

As it is well known from the damped oscillator, there are three possible
modes of movement:

• damped oscillation when p2 − 4q < 0,
• “creeping motion” when p2 − 4q > 0 ,
• “aperiodic limited case” if p2 − 4q = 0 .

In the first two cases, the solution of the homogeneous equation is

x(t) = C1e
−λ1t + C2e

−λ2t. (6.114)

Keeping in mind the well-known relation eix = cos(x) + isin(x), we arrive at
two expressions for damped oscillation:

x1(t) = C1e
− p

2 xsin
(

1
2

√
p2 − 4qx

)
(6.115)

x2(t) = C2e
− p

2 xcos
(

1
2

√
p2 − 4qx

)
. (6.116)
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For the aperiodic case with p2 − 4q = 0 and λ1 = λ2, the solution is

x(t) = C1e
−λt + C2te

−λt . (6.117)

For the first two cases, which are the probable ones, a solution of the
inhomogeneous equation is x(t) = k/q. Therefore, the solution of (6.107) is
given by

x(t) = C1e
−λ1t + C2e

−λ2t +
k

q
. (6.118)

The constants C1 and C2 have to be determined from the initial conditions
x(0) and ẋ(0). Assuming x(0) = P0 and ẋ(0) = 0,

C1 =
P0 − k

q

1 − λ1
λ2

(6.119)

C2 =
−λ1

λ2
C1 . (6.120)

For the example of Fig. 6.50, p2−4q � 4. 7 > 0 and, therefore the solution
represents a “creeping motion,” described by the coordinate x(t), the velocity
ẋ(t), and the acceleration ẍ(t) as follows:

x(t) = C1e
−λ1t + C2e

−λ2t +
k

q
(6.121)

ẋ(t) = −
(
C1λ1e

−λ1t + C2λ2e
−λ2t

)
(6.122)

ẍ(t) = C1λ
2
1e

−λ1t + C2λ
2
2e

−λ2t . (6.123)

Because the solutions do not “know” the limitation ϕ̇0 ≤ 2πfN coming from
(6.102), they hold only up to the time tN, when the nominal frequency fN is
achieved. Normally, the revolution frequency is electronically controlled after-
ward to hold the nominal revolution frequency for all times t > tN. Movement
then takes place at constant velocity determined by ϕ̇0 = 2πfN, corresponding
to ẋnom = S ps fN/Gr (7.7mm/s in the example). The time tN, where the fre-
quency achieves fN, can be determined from the relation f(t) = ẋ(t)Gr/S ps.

Some Results from the Example

Figure 6.52 shows the main characteristics of motion during the first two
seconds. From the plot of f(t) versus t, one obtains tN � 1.2 s.

Of course, the initial position of P0 = −90mm chosen has an influence on
the time tN, because this starting position results in a force on the membrane
bellows, which tries to lift the load. The direction of this force changes, when
the load passes the position x = 0, related to the so-called “free length”
(see Table 6.5). This can be demonstrated by calculating the value of tN
for a positive initial position. Taking, for example, P0 = +90mm results in
tN = 1.47 s.
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Fig. 6.52. Top left: Revolution frequency dependent on time. After 1.18 s, the
nominal revolution frequency of 50/s is reached and further acceleration is stopped.
Top right: Position of the load starting at P0 = −90 mm. Bottom left: Velocity versus
time, taking into account the limitation in the revolution frequency at fN = 50/s.
Bottom right: Acceleration versus time, stopped at t = tN

Conclusion

The estimations given in the first part of this appendix are confirmed by the
equations of movement. Therefore, in most cases, the dimensioning of similar
mechanical systems can be based on the given estimations. On the other hand,
the application of the Lagrange formalism may be helpful for dimensioning
more complex mechanical systems.



7

The Longitudinal Phase Plane

Referring to (6.2) (Chap. 6) and keeping in mind that the particles are moving
along the z-axis, the longitudinal phase plane is defined by Az =

∫ ∫
dz dpz.

But, because the longitudinal coordinate z itself does not give very much
practical information, it is usual to define a fictitious reference particle moving
at v = β c, which corresponds to a kinetic energy of W = muc2(γ−1). Inserting
mu = 931.5016MeV/c2 for ions and mu = 0.511 MeV/c2 for electrons leads
to the energy per mass unit in MeV/u. Therefore, the total energy of the
reference particle is AW with A as the mass number of the ion and A = 1 for
electrons. Considering rf accelerators, particles moving in a bunch along the
z-axis

• can have the correct kinetic energy but may be a small time ∆t ahead of
or behind the reference particle,

• can be in phase with the reference particle but have a deviation in energy
∆W ,

• or may even have deviations in ∆t and ∆W .

Because φ = ωt and dz = βc∆t = βc∆φ/ω, ∆t or ∆ω can be taken as
the abscissa in the longitudinal phase plane, where ω = 2πf (f , accelerating
frequency). Because d pz/pz ∼ dW/W , it has proven very practical to define
the longitudinal emittance as

εz = Az/π =
1
π

∫ ∫
dφ dW . (7.1)

However, accelerator physicists are mostly interested in the energy or momen-
tum spread of particles, and therefore it is usual to take ∆W/W (or sometimes
∆p/p) as the ordinate in the phase plane diagram. Of course, the reference
particle is always located at the origin of the ∆φ − ∆W/W , respectively,
∆t − ∆W/W diagram. Thus, assuming an elliptical shape of the intensity
distribution in the longitudinal phase plane and referring to Fig. 6.5, point 2
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represents the bunch width, and point 3 is determined by the maximum en-
ergy or momentum spread. Obviously, for dc-beams, the definition of a phase
deviation does not make sense.

Remark. For practical reasons, some computer codes for the design of ac-
celerator structures and beam transport systems use the same dimensions for
the longitudinal emittance as for the transverse ones, e.g. mm·mrad. Because
pz = γmuβc and ∆pz/p ∼ ∆p/p can be expressed in the dimensionless unit
“mrad,” one finds for the normalized longitudinal emittance,

εn [kev/u · ns] = m0c · εn [mm · mrad] = 3.107 · εn [mm · mrad] (7.2)

with mu = 931.5016 MeV/c2 and c = 299.7925 mm/ns; the factor 3.107 can
be easily determined from m0c

2/c (see also [352]).

7.1 Emittance Measurements
in the Longitudinal Phase Plane

7.1.1 Destructive Measurements

Determination of density distributions in the longitudinal phase plane is more
complicated than those for transverse planes. A sophisticated scheme to de-
termine the longitudinal emittance of a H− beam has been described in [353].
Negatively charged ions are deflected by a bending magnet. A laser installed
in front of the magnet delivers very short (30 ps) strobe pulses. The H− ions
hit by the laser pulses are neutralized and therefore go straight ahead through
the magnet. The short neutralized pulses are analyzed with respect to their
energy by a semiconductor detector installed behind the magnet. Moving
of the bunches through the mode-locked laser pulse results in sampling the
bunch in 30-ps time slices. Referring to the slit-detector method applied in
the transverse phase planes, this can be compared with the movement of the
slit through the beam (see also Fig. 7.2).

A simplified scheme of a destructive measurement is shown in Fig. 7.1.
Here a slit-magnet-slit combination defines a small momentum spread ∆p
around the momentum p, determined by the setting of the bending magnet.
The particles going through the second slit are deflected by a rf-synchronous
sweep of the deflecting device (cavity, deflecting plates), installed behind the
slit. Therefore, the intensity profile in time is transformed into a transverse
profile that can be detected with a profile measuring device. By changing the
magnetic field strength, the density distribution in the ∆t−∆p/p, respectively,
∆t − ∆W/W diagram can be determined. In this scheme, a change in the
magnetic field strength moves a small window of width ∆p ∼ ∆W ∼ ∆W/W
along the ∆W/W -axis parallel to the ∆φ,∆t - axis. The two schemes discussed
are illustrated and compared in Fig. 7.2.
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Fig. 7.1. Simplified scheme to measure longitudinal emittance
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Fig. 7.2. The figure explains two methods of longitudinal emittance measuring. In
one scheme, a small “window” in time is moved along the t-axis (abscissa). In the
other scheme, a small “window” in W or ∆W/W is moved along the ordinate

Modern particle detectors, such as scintillation counters, semiconductor
devices, multichannel plates (MCP) with anodes in 50-Ω geometry, and dia-
mond detectors [133,138,143,267,354] can deliver fast signal pulses if hit by a
particle. The scheme of a versatile setup is shown in Fig. 7.3. The system has
been developed to study the influence of space charge on bunch shape and
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Diamond counter 1 and 2
on compressed air actuators Diamond counter 3

fixed on a flange

Fig. 7.3. Schematic sketch showing the arrangement of components in an experi-
mental setup to measure intensity distributions in the longitudinal phase plane. See
text for details

longitudinal emittance at high currents [258,267]. A long experimental cham-
ber is equipped with three diamond counters and one MCP to generate fast
pulses. Due to saturation effects and pile-up, the counting rates have to be
limited to some hundred kHz. This reduction in counting rate can be achieved
by Rutherford scattering in a thin foil. There are two possible modes for using
the system:

• Measurement of bunch shape along a drift space. This corresponds to a
projection of the density distribution in the phase plane onto the time
axis.

• Measurement of the longitudinal emittance.

Bunch Shape Measurement

In this application, the MCP and the second thin foil are moved out of the
beam. The bunches hit the first thin foil. A small part of particles is scat-
tered by Rutherford scattering in a small solid angle ∆Ωlab, well defined by
the collimator system. The scattered particles hit the first diamond counter
generating a fast signal. The signal is amplified and shaped by a discrimina-
tor, shown schematically in Fig. 7.4. The signal from the discriminator starts
(start 1) a time to digital converter (TDC) with a resolution of at least 25 ps
(least significant bit, LSB). Since the stop signal for the TDC is derived from
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-A

Fig. 7.4. Scheme of signal processing to determine intensity distributions in the
longitudinal phase plane. In bunch shape measurements, only the signal generating
start 1 is relevant (see text)

the accelerating rf, the measured counting rate reflects the bunch shape along
the time axis. Repeating the measurement with the second and third diamond
counter allows visualization of the dispersion of the bunches along the drift
spaces of about 400mm between each of them. Figure 7.5 shows the results
from commissioning [267] a 120-keV/u RFQ. A thin gold foil has been used as
a target for Rutherford scattering. The resolution achieved was 48 ps per bin.
The three diagrams on the left-hand side of the picture correspond about to
the shapes expected from numerical simulations [355]. The two side peaks ob-
served at diamond 1 are smeared out due to the energy spread after a drift of
about 800mm. The usefulness of bunch shape measurements is demonstrated
in the three diagrams on the right-hand side of Fig. 7.5, measuring the depen-
dency of the bunch shape on the rf amplitude of the RFQ with one diamond
detector.

Measurement of Longitudinal Emittance

In this case, a second thin aluminum foil (15 µg/cm2 ∼ 50 nm) and the MCP
are moved in, and diamonds 1 and 2 are moved out. A scattered particle hits
the aluminum foil behind the collimator. The secondary electrons arising are
accelerated by a 1-kV/cm electric field toward the MCP with a 50-Ω anode,
delivering fast output signals, shaped to the start 2 signal of the TDC. The
same particle is stopped in diamond detector 3 located about 800 mm behind
the MCP. Therefore, the time of flight of the particle between the MCP and
the diamond detector determines the energy of that particle. This leads to
the density distribution in the longitudinal phase plane. In an accelerator
experiment, the system was installed in the stripper section of the UNILAC to
study space charge effects on the size and shape of the longitudinal emittance
of the high current injector. An example of a measurement is given in Fig. 7.6.
Here the phase space plot on the left-hand side corresponds to a low current
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Fig. 7.5. Observed bunch shapes during commissioning [267] of a RFQ section
with 120-keV/u output energy. The measurements on the left-hand side show the
dispersion of the bunches along a drift space of about 800 mm. The bunch shape
signals on the right-hand side, measured with only one diamond detector, show the
dependency of bunch shape on the rf amplitude

Ar beam of 0.1mA; the diagram on the right-hand side corresponds to a high
current beam of 5 mA. The emittance is asymmetrically broadened due to the
action of space charge forces. In the diagrams, the abscissa gives the arrival
time of a scattered particle at the MCP, measured relative to a certain phase of
the accelerating rf (see Fig. 7.4). The ordinate shows the time of flight (TOF)
between the MCP and the diamond detector. Taking into account the rather
low energy W = 1.4MeV/u of the particles in this section, which corresponds
to β = v/c = 0.055, the energy spread of each particle can be determined
from the nonrelativistic relation

∆W

W
= 2

∆t

t
(7.3)

t =
800 [mm]

0.055 · 300 [mm/ns]
= 48.5 ns (7.4)

∆W

W
= 2

0.42
48.5

= 1.73% (FWHM, diagram on left) (7.5)

∆W

W
= 2

0.68
48.5

= 2.80% (FWHM, diagram on right). (7.6)
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Fig. 7.6. Phase space plots measured at low (left) and high (right) beam current in
the stripper section of the UNILAC [356]. Note that the measured energy spread
might be too large. See text for details

The measured values are larger by about a factor of 2 in comparison to tracking
calculations [356]. Several reasons are discussed:

• errors due to imperfections in the measuring system,
• possible problems inside the stripper [357] due to inhomogeneity of the gas

jet.

In fact, considering the complexity of the system, the design parameters
have to be studied very carefully to achieve the expected performance.

Study and Discussion of the Design Parameters

When designing such a system, the following points have to be considered:

• required attenuation by Rutherford scattering with respect to the maxi-
mum counting rates of the detectors, as well as the limitations from the
TDC;

• transfer of energy in the elastic scattering process, leading to uncertainties
in time of flight measurements that take the finite solid angle into account;

• thermal effects, considering the energy loss of the particles in the scattering
foil;

• energy spread due to the energy loss in the foils;
• achievable accuracy in time determination, due to the limited drift space

between various detectors;
• achievable time resolution with the TDC.
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Rutherford Scattering

The Rutherford scattering formula has been derived to determine the de-
flection of protons, considering a heavy nucleus as scatterer. In the original
version [46], the formula is nonrelativistic and refers to a fixed center, neglect-
ing the finite mass of the scatterer. The differential scattering cross section
for the number of protons deflected through an angle between θ and θ + dθ
has been determined by [45]

dσ

dω
=

1
4

(
e2Z

mv2

)2 1
sin4 (θ/2)

. (7.7)

Here dω is the solid angle, included between the two cones of aperture θ and
θ+dθ, Z is the atomic number of the scatterer, and m and v are the mass and
velocity of a proton. The concept of cross section σ was introduced in nuclear
physics as a very practical proportionality factor for calculating the number
of events in a certain nuclear reaction:

NE
Time

=
NP

Area × Time
σ NT (7.8)

with

NE = number of events
NP = number of projectiles
NT = number of nuclei (scatterer) in the target.

To apply (7.7) to the problem under consideration, two important correc-
tions have to be made:

• consider projectiles of any type,
• take the finite mass of the target nuclei into account.

The extension to other particles beside the proton can be done by replacing
Z with Zz, where z is the atomic number of the projectile. Of course, m then
stands for the mass of the projectile instead of the mass of the proton. To
consider the finite mass of the target, one has to transform (7.7) to center of
mass coordinates. This can be performed by replacing the laboratory angle θ
by the angle Θ defined in the center of mass system. To calculate the kinetic
energy in the center of mass frame, the concept of reduced mass is introduced.
The transformation of (7.8) gives

NE
NP

= NT dσ(Θ)∆ω
∆Ω

∆ω
. (7.9)

Introducing practical units and taking the corrections discussed into account,
dσ(Θ) is given by
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dσ(Θ) = FAC

(
Z z

Ared muc2

)2 1
β4

1
4 (sinΘ

2 )4
(7.10)

FAC =
e

4πε0
= 1.44 × 10−13 MeV cm (7.11)

Ared =
AP AT

AP + AT
, reduced mass number. (7.12)

In (7.12), AP stands for the mass number of the projectile, and AT is the
mass number of the target nuclei. Using these units, muc2 has to be inserted
in MeV. As usual, the number of target nuclei NT is determined from

NT[1/cm2] = ρ ∆x NA = ρ∆x
6 × 1023

AT
, (7.13)

where NA is Avogadro’s number (also Loschmidt’s number).
The solid angle in the laboratory system ∆ω = sin θ dθ dφ is defined by the

limiting aperture of the collimator system, which simplifies to ∆ω = πR2/D2

for a round hole with radius R, located at distance D behind the target.
The transformation ∆Ω/∆ω between the solid angles in the center of mass

system and the laboratory system remains, which is a classical exercise in
nuclear physics [45,358]:

∆Ω

∆ω
=

sin3Θ
sin3θ

1
(
1 + AP

AT
cosΘ

) , with (7.14)

θ = arctan

(
sinΘ

AP
AT

+ cosΘ

)

. (7.15)

Equation (7.15) gives the transformation of the scattering angle Θ into the
scattering angle of the laboratory system, which is more relevant for the design
of a system. This is shown at the left-hand side of Fig. 7.7 for small angles;
the diagram on the right gives the ratio of the solid angles ∆Ω/∆ω, according
to (7.14).

The rf-accelerating frequency of the GSI high current linac is 36MHz.
Therefore, to reduce the counting rate to less than one event per rf period,
rather high attenuation is required. Due to the proportionality of the cross
section to 1/sin4 (Θ/2), increasing the scattering angle is most effective in this
respect. Furthermore, taking the proportionality of the cross section to Z, the
atomic number of the target nuclei into account, at first glance, the designer
may prefer targets with low Z. But, beside the attenuation factor, one also
has to consider the energy spread from the finite solid angle.

Energy Spread from Scattering

In nonrelativistic approximation, the total energy of the projectile and the
recoil energy of the target nucleus after the collision are given by
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Fig. 7.7. Left: Angle in the laboratory system as a function of the angle in the
center of mass system. The parameter APT is the mass ratio of the projectile to the
target (AP/AT in 7.15). Right: Ratio of the solid angles ∆Ω/∆ω, according to 7.14
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with WP0 = 1
2APm0c

2β2 as the kinetic energy before the collision. The energy
spread due to the finite solid angle follows immediately from

dWP =
dWP
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δθ (7.18)
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The quantity δθ is determined by the finite solid angle in the laboratory
system. The distribution of particles over ∆W/W is derived from time of
flight measurements, with ∆t referenced to the particle having energy WP

[see (7.3)]. Therefore, the relative energy spread due to the finite solid angle

∆WP

WP
= −

4sinΘ
2 cosΘ

2
Ared

AP+AT

1 − 4sin2
(

Θ
2

)
Ared

AP+AT

1 +
(

AP
AT

)2

+ 2AP
AT

cosΘ
AP
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δθ (7.21)

should be small in comparison to the required resolution in ∆WP0/WP0 . Con-
trary to the arguments for large scattering angles and low mass targets, this
requires small scattering angles θ and high mass targets.

Example: To illustrate the dependencies, we assume the following parameters:



7.1 Emittance Measurements in the Longitudinal Phase Plane 295

Fig. 7.8. Attenuation factor NE/NP. Left: dependence on Θ, the angle in the center
of mass system. Right: dependence on θ, the angle in the laboratory system

Projectile: Ar (AP = 40, z = 18, WP0 = 1.4MeV/u, β = 5.5%)
Target 1: C-foil (AT = 12, Z = 6, thickness 25 nm, ρ = 2g/cm3)
Target 2: Ta-foil (AT = 181, Z = 73, thickness 126.5 nm, ρ = 16.6 g/cm3)
Scattering angle: 2.5◦ in the laboratory system
Limiting aperture: hole of 0.25mm radius in a distance of 160mm
Resulting ∆θ: 1.56 × 10−3

Resulting solid angle ∆ω: 7.7 × 10−6

Target 1 gives ρ∆x = 5 µg/cm2 and NT= 2.5 × 1017/cm2, Target 2 gives
ρ∆x = 210 µg/cm2 and NT= 3.66× 1017/cm2. Figure 7.8 shows the attenua-
tion factor NE/NP for both targets dependent on the scattering angles in the
center of mass system (left), as well as in the laboratory system (right). Figure
7.9 shows the energy spread due to the finite solid angle, demonstrating the
advantage of the target with the larger mass. Comparing the energy spread
for the chosen scattering angle of θ = 2.5◦ leads to ∆W/WC ≈ −0.046% and
∆W/WTa ≈ −0.003%, which is a factor of 15.25 in favor of the Ta target.

Remark. The finite solid angle also leads to an uncertainty in θ (δ =
0.25mm/160 mm= 1.56 × 10−3 ≈ 0.09◦, in the example), which results in
a spread of the time of flight. In the nonrelativistic approximation, one finds
∆L/L = 1/2 ∆θ2 and ∆W/W = ∆θ2, which can be neglected.

Energy Spread from Electronic Stopping in the Foil

On the other hand, considering the contributions to the energy spread from
electronic stopping in the foil, the C target shows much lower values of energy
straggling. The energy distribution of transmitted particles for both targets
has been calculated with the well-known and practical TRIM program [359].
Tracking about 10.000 argon ions with a total energy of 56MeV (≈1.4 MeV/u)
through the 210 µg/cm2 Ta foil, the remaining energy of each particle is one
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Fig. 7.9. Energy spread from the finite solid angle. Left: dependent on Θ, the
scattering angle in the center of mass system. Right: dependent on θ, the scattering
angle in the laboratory system

option in the program outputs. Collecting the particles in bins with a width of
0.01MeV leads to the distribution shown on the left-hand side of Fig. 7.10: the
new peak energy at 54.33MeV has a half-width (FWHM) of about 0.155MeV,
resulting in a relative energy spread of about 0.28%. This is confirmed in the
diagram on the right-hand side of Fig. 7.10, where the particles are sorted in
bins of 0.1% width referenced to the mean value of energy loss.

Remark. Sorting the particles in bins of an appropriate width in energy and
refering the percentages to the mean value of energy loss gives results, which
differ slightly from calculation of the rms values of the original data. Due to
the high weights of large deviations from the average, the rms values tend to
be somewhat larger (see Table 7.1).

Fig. 7.10. Calculated energy spread from electronic stopping of 1.4-MeV/u Ar-ions
passing a 210-µg/cm2 Ta foil. Left: energy distribution. Right: relative energy spread
referenced to the new peak energy of 54.3 MeV
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Fig. 7.11. Calculated energy spread from electronic stopping of 1.4-MeV/u Ar-ions
passing a 5-µg/cm2 C foil. Left: energy distribution. Right: relative energy spread
referenced to the new peak energy of 55.867MeV

The results for the 5 µg/cm2 C foil are displayed in Fig. 7.11. The peak
energy after passing the C foil is 55.87MeV, leading to a relative energy
spread of about 0.017%. Taking the much lower values of energy loss and
straggling into account, the bin widths have been changed in Fig. 7.11 to
0.001MeV and 0.005%, respectively. Clearly, considering the energy spread
due to straggling in the foil, one would prefer a lower mass target. On the other
hand, inhomogeneities in the foil thickness can lead to a larger contribution
to the energy spread for the very thin C target.

The numerical calculation with the TRIM program can be compared with
an analytical formula given by Bohr [360]:

σ(t) = 10−3

√

4π FAC z Z2 t
NA

AT

1 − β2/2
1 − β2 (7.22)

where t is the target thickness in units of µg/cm2. Table 7.1 shows the results
in comparison to the evaluation of the TRIM data.

Table 7.1. Comparison of calculated energy spread, applying various methods.
Method 1: rms-values and FWHM directly from the TRIM output energies. Method
2: FWHM and σ determined from sorting into bins (see text for details). Method 3:
rms values and FWHM calculated from (7.22).

Target Ta 210 µg/cm2 C 5 µg/cm2

Method σ [MeV] FWHM [%] σ [MeV] FWHM [%]

1 0.076 0.33 0.0057 0.024
2 0.065 0.28 0.004 0.017
3 0.132 0.56 0.011 0.046
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Thermal Heating of Scattering Foils

Although the Al foil provided to deliver the start signal via the MCP (see Fig.
7.3) is hit only by scattered particles, the scattering foils have to withstand
the full power density of the beam. Thermal heating of thin foils arises in
many experimental setups of nuclear and high energy physics. Because of very
poor heat conductivity in the radial direction and nearly no heat transfer
by convection in a vacuum, cooling of thin foils takes place exclusively by
radiation. Due to the manifold parameters such as foil thickness, foil material,
beam power density, beam energy, kind of ions hitting the target, duty cycle
if pulsed, the problem is very complicated. Although cooling by radiation is
discussed in Chap. 3, some simple estimations will be discussed with respect
to the example discussed.

Let’s assume the following beam parameters additionally to those already
known (some parameters are repeated for the sake of review):

Beam energy: W = 1.4 MeV/u, Ar1-ions (AP = 40, z = 18, ζ = 1)
rf accelerating frequency: f = 36MHz
Macropulse length: Tp = 200 µs
Macropulse current: Ip = 5mA
Beam spot size: Rb = 5mm
Repetition frequency of the macropulse: fp = 2/s

The energy loss is well defined by the TRIM calculation, but it may be
of interest to compare this with data on electronic stopping power (ESP),
available in the literature. For the projectile–target combination, argon (W =
1.4MeV/u)–carbon, one gets from the TRIM-calculation

ESPA→C =
56−55.867 [MeV]

5 µg/cm2 = 26.6
MeV

mg/cm2 , (7.23)

and the combination argon–tantalum leads to

ESPA→Ta =
56 − 54.326MeV

210 µg/cm2 = 7.971
MeV

mg/cm2 . (7.24)

Programming formulas given in the “Handbook of Stopping Cross Sections
for Energetic Ions in All Elements” [122], taking also into account nu-
clear stopping, lead to ESPA→C = 24.552MeV/mg cm−2 and ESPA→Ta =
8.078MeV/mg/cm−2.

From the tables given in [124], one finds ESPA→C = 24.6MeV/mg/cm−2

and ESPA→Ta = 7.41MeV/mg/cm−2. Keeping in mind the complexity of
the problem, as well as the manifold processes involved, the agreement is
respectable and in each case sufficient, considering the example under discus-
sion.

To estimate the thermal load on scattering foils, the energy deposited in
the foil within one macropulse should be compared with the required energy
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for melting the volume, where the energy is deposited. The deposited energy
Wd follows immediately from the following relations:

Nm e =
I T

ζAr

= 5 × 10−3 · 200 × 10−6 = 1 × 10−6 (7.25)

WAr→C = Nme∆WAr→C = (56 − 55.867) = 0.133Ws (7.26)
WAr→Ta = Nmacro ∆WAr→Ta = (56 − 54.326) = 1.674 Ws. (7.27)

The volumes where the energy is deposited are VC = π R2
b × 25 nm = 1.96×

10−3 mm3 and VTa = π R2
b × 126.5 nm= 9.94 × 10−3 mm3. From Table 3.1 in

Chap. 3, the energy required to melt a volume of 1mm3 of carbon is WC = 8.05
Ws and for tantalum it is WTa = 10.95 Ws. Therefore, the energy required to
melt VC within only one macropulse is 0.016Ws and to melt VTa it is 0.109Ws.
In both cases the deposited energy per macropulse is much higher. Thus, the
foils will not withstand the total beam power density. Use of thinner foils does
not solve the problem due to the linear proportionality of target thickness
and energy loss in the target. One possibility of reducing the power density
is transverse defocusing of the beam. However, because the measuring system
was provided to study space charge effects in the longitudinal phase space,
this has to be considered in more detail.

Counting Rates

Due to the disadvantageous mass ratio Ar–C, the experiment has been per-
formed with the Ta target. Assuming all particles hit the scattering foil results
in a counting rate CR of

CR = fm Nmacro

(
NE
NP

)

θ=2.50

(7.28)

= 2 · 6.25 × 1012 · 1.69 × 10−5 = 2.113 × 108, (7.29)

which of course is too high. A factor of 100 in the reduction of the counting rate
results from the small aperture in front of the target to define the scattering
angle with the required accuracy. Figure 7.3 shows schematically this limiting
aperture consisting of a copper plate with a small hole (∅ = 0.5mm). Of
course, this does not solve the thermal problems arising with a beam radius
of 5mm. The defocusing required to avoid melting the foil can be estimated
from the ratio of the deposited energy to the required energy. This requires a
defocusing factor >1.674/0.109 ≈ 15. Taking a factor of 20 results in a beam
radius between 22 and 23 mm. As a consequence, the expected counting rate
goes down to about 100 kHz.

Conclusion

The measuring system can be a powerful tool for studying intensity distrib-
utions in longitudinal phase space. It has been discussed in detail. But, it is
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Fig. 7.12. Scheme to use secondary electrons emitted from a thin wire to observe
bunch structure [361,362]

suitable to discuss manifold physical problems as well as to derive important
relations, which are also relevant for the design of other beam diagnostic de-
vices. On the other hand, based on the parameters and problems discussed, it
should be possible to design and optimize similar systems, provided for mea-
surements with completely other parameters, as discussed in the example.

7.1.2 Non-destructive Measurements

Detection of Secondary Electrons

A nearly non-destructive device for bunch structure observation, reported
in [361, 362] is based on the scheme of Fig. 7.12. It is used in several low
energy proton and heavy ion linacs. The beam hits a thin wire (∅ ca. 0.1mm)
and generates secondary electrons. The wire is at a potential of about −10 kV.
In consequence, electrons are accelerated perpendicularly to the beam pipe,
pass a slit and, are deflected rf-synchronously by a rf deflector. This results in
transformation of the longitudinal density distribution within the bunch into
a profile distribution (in principle, it compares to an analog oscilloscope). The
profile can be detected with a SEM or a particle counter. To focus the electrons
onto the detector, a constant dc-voltage applied to the deflector plates acts as
an electrostatic lens. The sweep over the bunch length is performed by shifting
the phase of the deflecting rf. If the HV wire is mounted onto a movable
feedthrough, the bunch shape can be measured at different positions across
the bunch. Because the emission of secondary electrons is a fast process, the
resolution of the device is of the order of some pecoseconds. Thus the method
can be applied to various linac types. For the two-dimensional longitudinal
phase plane, the device is a powerful tool for determining the one-dimensional
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projection on the time axis. By combining the device with a bunch length
detector [363,364], the energy spread of the particles in the beam can also be
obtained. On the other hand, by proposing elliptically shaped emittances in
the longitudinal phase plane, procedures similar to the methods for emittance
determination in transverse phase planes by beam profile measurements can
be performed.

Three effects can restrict the application of the device to intense beams:

• Heating of the wire, leading to strong deformations and even melting of
the wire.

• As a consequence of heating, the electron current arising from emission
according to Richardson-Dushmann’s law [365] can be comparable or even
larger than the current from secondary electron emission.

• Strong space charge forces of the moving bunch can deflect the electrons
considerably, diminishing the resolution of the device. The effects of space
charge for the monitor type under discussion have been considered in [366].
A more general study of space charge effects is postponed to a later section
in this chapter.

To estimate the electron emission according to the Richardson-Dushmann
law, calculation of wire heating is desired. As in case of thin scattering foils
discussed above, cooling of the wire takes place mainly by radiation. Referring
to Chap. 3, where the relevant tools for performing such calculations are
discussed, heating of the wire is illustrated, taking the beam parameters of
the previous example:

Beam energy: W = 1.4 MeV/u, Ar1+-ions (AP = 40, z = 18, ζ = 1)
rf accelerating frequency: f = 36MHz
Macropulse length: Tp = 200 µs
Macropulse current: Ip = 5mA
Beam spot size: Rb = 5mm
Repetition frequency of the macropulse: fp = 2/s

In a wire with a diameter of 0.1mm, most Ar-ions are stopped because
the range at 1.4MeV/u is only the order of some µm. The total macropulse
power is 280 kW (WAPImacro/ζ). To calculate the steady state (deposited
power equal to the radiated power), one needs the power density on the wire.
Supposing Rbeam = 5mm is the FWHM value of a Gaussian distribution,
the maximum power density at the center of the beam is 9.84 kW/mm2. A
first calculation shows that even a tungsten wire 0.1 mm in diameter does
not withstand this high power density, although the duty cycle is very low
(Tp = 200 µs, fp = 2/s). Fortunately, power density can be reduced by de-
focusing or by positioning the wire at the beam edge. Figure 7.13 shows a
calculation of the steady state (see Chap. 3, Sect. 3.4), assuming a power
density of 1.5 kW/mm2. Although a temperature of about 3000K is well be-
low the melting temperature of tungsten, the electron emission according to
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Fig. 7.13. Estimation of the maximum steady-state temperature below the melting
temperature of tungsten. In the calculation, a power density of 1.5 kW/mm2 was
assumed. The small inset shows a calculation assuming a reduced power density of
400W/mm2 to end up with a maximum temperature of about 1800K. See text for
details

Richardson-Dushmann’s law is much too high at this temperature and, there-
fore does not allow operating the device at this level of power density. To
estimate the electron current from the wire from the emission of secondary
electrons, one needs the efficiency, defined in the literature as

ηse =
Number of emitted electrons

Number of incident charged ions
× 100% (7.30)

The efficiency ηse is a function of many factors, mainly,

• the nature of the emitting material;
• the surface conditions;
• the characteristics of the incident ion such as atomic number, mass num-

ber, and energy; and
• the angle of incidence.

One way to estimate ηse is to measure the beam current with a Faraday
cup consisting of a similar material dependent on the suppression voltage, as
illustrated in Chap. 2. Experience has shown that for heavy ions of relatively
low energies (≈ 0.1−15 MeV/u), the efficiency can be some 100% which means
that more than one electron per incident ion will be emitted. Let us define
SE = ηse/100 which is just the number of emitted electrons per incident ion.
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Then, coming back to the example discussed, the electron current within one
macropulse from secondary electron emission ISE is given by

ISE = SE
1

2πσxσy

∫ 0.05

−0.05

∫ 20

−20

Imacro e
1
2

[

( x
σx )2

+
(

y
σy

)2
]

dy dx (7.31)

ISE = 93.7 µA × SE (7.32)

for a wire of 0.1mm ∅ and 40 mm long. On the other hand, the thermal emis-
sion can be figured out from the Richardson-Dushmann law

JTE = B T 2 e−
A

kT (7.33)

with B = 60.2A/cm2K2. A is the electronic work function and the Boltzmann
constant k = 8.614×10−5eV/K. Figure 7.14 gives the results for tantalum and
tungsten as the emitting materials. Based on these data, the determination
of the electron current emitted from a tungsten wire 0.05 cm in radius and
2 cm long is straightforward. Taking the maximum temperature T = 3000K
(see Fig. 7.13), one obtains ITE = 804mA, which of course is much too high.
Therefore, to end up well below ISE given by (7.31) and (7.32), only some
microamperes can be accepted. This requirement limits the maximum tem-
perature of the wire to less than about T = 1900 K, as shown in the small
inset of Fig. 7.14. Due to the strong dependency of radiation on temperature
in the Stefan-Boltzmann law (Chap. 3, Sect. 3.4), it is not trivial to determine

Fig. 7.14. Thermal electron current according to the Richardson-Dushmann law
dependent on temperature. The inset shows the electron current in the temperature
range of interest. See text for details
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the power density allowed on the wire. A new calculation leads to a value of
about 400W/mm2 (see the small inset in Fig. 4.2). Therefore, comparing this
with the maximum power density of 9.84 kW/mm2 at the center of the beam,
considerable reduction of the beam power density is required.

Remark. The calculated electron currents due to secondary electron emission
and thermal emission are reduced by the small aperture of about 0.1mm in
front of the deflecting system (see Fig. 7.12). However, the reduction holds
for both and, therefore, is not relevant in the estimation of the ratio between
them.

Detection of Electrons from Residual Gas Ionization

A drawback of all methods inserting material, such as thin foils and thin
wires, in a beam is the required attenuation of highly intense beams. At
GSI, a system is in development [367, 368], which adapts the principle of
the monitor according to the scheme of Fig. 7.12, but detects electrons freed
from the residual gas. The layout of such a system is shown schematically
in Fig. 7.15. Electrons from residual gas ionization within the moving bunch
are extracted by an electric field. After passing a fixed aperture, they pass
a variable slit of width ∆z=0.1–2 mm, moving then into an electrostatic an-
alyzer system. The reason to install two 90◦ systems is to come away from
the beam pipe with the required installations behind the analyzer systems.
Especially the λ/4- resonator deflecting system requires roughly 800mm (λ/4
of 108MHz≈ 750mm). The resolution of the analyzing system determines
the range ∆x within the bunch, from which the electrons can be collected.
Due to synchronization between deflection and accelerating rf, the moment of
creation of a certain electron is transformed into a spatial profile. The phase
shifter is used only at the beginning of the measurement to adjust the phase of
the third harmonic with respect to a reference electron, passing the resonator
without deflection. In the example, the detector consists of a multichannel
plate (MCP), a viewing screen, and a CCD camera. Although the device con-
sists of components that are often used at accelerator facilities, the design of
each component requires careful optimization of the parameters of the phys-
ical processes involved. Similar systems and ideas were already discussed by
Zieher in 1971 [369].

Considering the system, shown schematically in Fig. 7.15, the physical and
technical questions arising during the design of the system can illustrate the
variety of accelerator physics and techniques. Therefore, it may be of interest
to discuss the physical questions and problems in the layout of such a versatile,
but complex measuring system. Let us start with a summary of the relevant
parameters:

Beam energy: W = 1.4MeV/u (→ β = 0.055)
Accelerating frequency: f = 36MHz
Repetition frequency: fp = 2/s−50/s
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Fig. 7.15. Scheme of a device analyzing bunch shapes by detection of electrons
arising in the bunch by residual gas ionization

Macropulse length: Tp = 200 µs –10ms
Bunch length: ∆t ∼ 0.5–1 ns (FWHM)
Required resolution: ∆t < 100 ps
Beam radius: Rb = 5mm
Vacuum pressure: p = 10−7 mbar

Expected Number of Electrons

From the required resolution of 100 ps and the velocity of the moving bunch, it
follows immediately that ∆z = 0.1·0.055·300mm= 1.65mm. Thus, to achieve
a resolution better than 100 ps, electrons have to be collected on a distance of
about 1–1.5 mm along the z-axis. Beside ionization, other complex processes
are involved in the emission of electrons from the [370–372]
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• ionization of the target atoms by
– binary encounter electron emission due to collisions between the nuclei

of the projectile and the electrons of the target atom;
– electron emission due to collisions between the nuclei of the projectile,

the nuclei of the target, and the electrons of the target atom;
• Auger electron emission of the multiple excited target atoms;
• Auger electron emission from the projectile; and
• ionization of the projectile.

It is important to notice that the emission is not isotropic. The liberated
electrons escape with different energies and different angles, where energies in
the electronic Volts – region and angles ϑ = 0◦ are preferred. The expected
electron current can be estimated by applying the concept of the cross section.
Residual gas analysis has shown that the residual gas in the stripper section of
the UNILAC consists mostly of N2 and H2. The ratio of the partial pressures of
N2/H2 varies from 80/20 to 50/50. For target combinations of N2 and H2 and
heavy ions with β in the percentage– region, the total cross sections σe are of
the order of some 10−16cm2, and the differential cross sections d 2σe / dE dΩ
are around some 10−17cm2/ eV sr [372]. On the other hand, there are detailed
tables and diagrams about the stopping power of various ions of H2 and N2

available in the literature [122] (W = 200 keV/u−100MeV/u), [225] (W = 1–
15 keV/u). Taking advantage of such diagrams and tables, it is more practical
to estimate the number of electrons collected by a sufficiently high electric
field in the following way:

• determination of the loss in the gas target;
• taking into account a mean energy ∆e ≈ 36.5 eV required to generate one

electron–ion pair (for H2 and N2 about the same, [206]);
• calculation of the total number of electrons generated within one macro-

pulse;
• calculation of the number of electrons generated within a single bunch;
• determination of the limitations of ∆z and ∆x (see Fig. 7.15) with respect

to the time required; and
• determination of the number of electrons collected, assuming a three-

dimensional Gaussian density distribution of the ions in the bunch.

This estimation neglects the nonisotropic angular distribution of electrons,
as well as the dependency of the differential cross section on the energy of
the emitted electrons. On the other hand, a strong electric collecting field
reduces the errors arising from both effects. For the system designer, this
rough estimation should be sufficient to fix the relevant system parameters.

Taking over the proposed procedure, calculation of electrons freed from
the residual gas is straightforward. The stopping power of H2 and N2 for Ar
and U ions taken from diagrams given in [122] is displayed in Fig. 7.16 in the
energy range from W = 0.5 − 100MeV/u.
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Fig. 7.16. Stopping power of H2 and N2 for Ar and U ions in the energy range from
0.5–100 MeV/u. Taken from diagrams given in [122]

Taking the parameters from the previous example (secondary electrons
from a wire in the beam, see Fig. 7.12), we deal with Ar1+-ions and a macro-
pulse length of 200 µs. From the diagrams of Fig. 7.16, one obtains the stop-
ping powers [∆W/ρ∆z]Ar→H2

= 67MeV/(mg/cm2) and [∆W/ρ∆z]Ar→N2
=

24MeV/(mg/cm2). The target thickness is

[ρ ∆z]H,N = ρH,N ∆z
p

pn
(7.34)

ρH = 0.08989mg/cm3 at p = Pn (7.35)

ρN = 1.2506 mg/cm3 at p = Pn (7.36)
pn = 1013mbar (7.37)

[ρ ∆z]H = 8.874 × 10−13 mg/cm2 (7.38)

[ρ ∆z]H = 1.235 × 10−11 mg/cm2
. (7.39)

Due to the required resolution, the target thickness has to be limited to ∆z =
1mm. Taking ∆e = 36.5 eV as the average energy to create one electron-ion
pair and the total number of Ar-ions within one macropulse Nm = 6.25x 1012

(equation 7.25) leads immediately to the total number of electrons freed in a
single macropulse:

Ne
H = Nm

[∆W /ρ∆z]Ar→H2
[ρ∆z]H

∆e
= 1.02 × 107 (7.40)

Ne
N = Nm

[∆W /ρ∆z]Ar→N [ρ ∆z]N
∆e

= 5.07 × 107 . (7.41)

Because the ratio N2/H2 does not influence the final result very much, it is
reasonable to continue the estimation with Ne

m = 0.6Ne
N+0.4Ne

H = 3.45×107.
Finally, we are interested on the number of Ar1+-ions and electrons per bunch
NAr

b , N e
b. This follows immediately from the number of bunches within one

macropulse:
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Nb = Tm f = 200 × 10−6 · 36 × 106 = 7.2 × 103 (7.42)

NAr
b =

Nm

Nb
= 8.68 × 108 (7.43)

N e
b =

N�e
m

Nb
= 4.79 × 103 . (7.44)

Thus, � 4.8 × 103 electrons would reach the resonant deflector within a
time just corresponding to the time of flight over one bunch length, if all
particles would gain the same energy in the Eext field. Evidently, that’s not
true. Otherwise, one would not need the electrostatic analyzer. To estimate
the fraction of electrons reaching the detector, a reference electron is defined.
It starts at a potential Vref = V/2 in the middle (∆x = 0) of the deflecting
condenser with a width of 2 × 35mm = 2 R (see Fig. 7.15). Furthermore, we
assume that the reference electron starts at vx = 0 and does not experience
any space charge force. In the chosen right - handed coordinate system, the
positive x-axis points in the direction of the accelerated electrons, and the
positive z-axis points in the direction of the moving bunches. Hence, electrons
starting at ∆x < 0 will gain more energy but have to travel a longer way
down to the grounded plate of the extraction condenser at x = R = 35mm
(see Fig. 7.15). On the other hand, electrons with ∆x > 0 are accelerated over
a shorter distance, resulting in lower energy gain, but having a shorter path.
After passing the small slit in the grounded plate, all electrons travel without
any acceleration. As a consequence, there must be a distance sf (time focus),
where the faster particles pass the slower ones. To find sf dependent on the
parameters, it is practical to work in the following units:

c = 300mm/ns (velocity of light, correct would be 299.7925)
mec

2 = 511 × 103eV (me is the rest mass of the electron)
b = eEext

x /m (acceleration by the electric field, Eext
x [V/mm]→b [mm/ns2])

In a nonrelativistic approximation, ẍ(t), ẋ(t), and x(t) follow immediately
from Newton’s famous formulas:

ẍ = bx (7.45)
ẋ(t) = b t + ẋ0 (7.46)

x(t) =
b

2
t2 + ẋ0 t + x0 . (7.47)

For the reference particle (ẋ0 = x0 = 0), the time of flight down to the
grounded plate is t0 =

√
2R/b and its velocity is v0 =

√
2 bR. The design

value for the voltage between the plates is V = 30 kV, leading to the following
values:
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∣
∣Eext

x

∣
∣ = 428.6V/mm (7.48)

b = 75.5mm/ns2 (7.49)
t0 = 0.96 ns (7.50)
v0 = 72.69mm/ns (7.51)

β0 =
v0

c
= 0.242 . (7.52)

From (7.46) and (7.47), the difference in the flight time of an electron,
starting at ∆x < 0 and an electron starting at ∆x > 0 is given by

∆t(s) = ∆t0s + ∆ts (7.53)

∆t0s =

√
2
b

[√
R + ∆x −

√
R − ∆x

]
(7.54)

∆ts =
s√
2b

[
1√

R + ∆x
− 1√

R − ∆x

]
, (7.55)

where s counts from the grounded plate of the extractor. Arriving at this
point, the electrons move with constant velocity. Looking for the focus in
time, we expand ∆t(s):

∆t(s) ≈
√

2R

b

[
∆x

R
− 1

4

(
∆x

R

)2
]

− s√
2bR

∆x

R
(7.56)

∆t(s) ≈
√

2
b

[
√

R

(
∆x

R
− 1

4

(
∆x

R

)2
)

− s

2
√

R

∆x

R

]

(7.57)

and find sf from

0 =
√

R

(
∆x

R
− 1

4

(
∆x

R

)2
)

− sf

2
√

R

∆x

R
(7.58)

sf = 2R − 1
2
∆x . (7.59)

Behind the time focus, the difference in the flight time of electrons with
∆x �= 0 increases linearly. The diagram in Fig. 7.17 confirms the location of
the time focus at sf ≈ 2R = 70mm and leads to the conclusion that ∆x has
to be limited to |∆x| ≤ 1 mm by the electrostatic analyzer.

Due to the existence of a focus in time, one could imagine removing the
electrostatic analyzer and replacing the resonant deflector near the time fo-
cus. Two important reasons are in opposition to such a simplification of the
measuring system:
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Fig. 7.17. Difference in the time of flight between the reference particle ∆x = 0 and
particles starting at ∆x �= 0. The focus in time occurs approximately at 2R = 70 mm.
Remark: According to the definition of the coordinate system, ∆x < 0 corresponds
to an electron starting at a potential > than the potential seen by the reference
particle. See text for details

• Electrons that pass the time focus nearly at the same time have different
energies, which in turn leads to different deflection angles and in conse-
quence to complex profiles on the detector.

• H+
2 and N+

2 -ions, accelerated to a high voltage plate on the opposite side
of the grounded plate, hit the plate and generate secondary electrons,
which are accelerated toward the grounded plate, too. Because the heavy
ions are much slower than the electrons, these secondary electrons cannot
falsify the results, belonging to the bunch from where they are coming.
However, comparing the flight times of a H+

2 -ion tH2 = 58.15 ns and a N+
2

ion tN2 = 217.6 ns with the rf period of T = 27.78 ns, it is evident that
many secondary electrons may disturb the measurement of the following
bunches. This has been confirmed by experiments.

Thus, the analyzing system is an essential part of the measuring system
and cannot be omitted.

To figure out the number of electrons remaining in spite of the limitations
in ∆z and ∆x, we define a three-dimensional Gaussian distribution

f(x, y, z) =
1

2π
√

2πσxσy σz

e
− 1

2

[

( x
σx )2

+
(

y
σy

)2
+( z

σz )2
]

(7.60)
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with σx = σy = Rb / 2.35 = 2.13mm and σz = 16.5/2.35 = 7.02 mm. The
σz value results from the bunch length of ∆t = 1ns (FWHM) and βc∆t =
16.5mm. Taking ∆x = 1 mm, the number of electrons collected from one
bunch reduces to

NRe
b = Ne

b

∫ z=∞

z=−∞

∫ y=20

y=−20

∫ x=0.5

x=−0.5

f(x, y, z) dx dy dz (7.61)

NRe
b ≈ 889 (7.62)

The distribution over the z-coordinate follows from

Ne(z) = Ne
bunch

∫ z+0.5

z−0.5

∫ 20

−20

∫ 0.5

−0.5

f(x, y, z) dx dy dz (7.63)

and is displayed in Fig. 7.18.
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Fig. 7.18. Estimated number of electrons collected from one moving bunch

In practice, measurements are performed over one macropulse and, there-
fore many more electrons are collected. As a consequence, the measured bunch
shapes correspond to an average over one macropulse. The volume from which
electrons are collected, can be further reduced by the first aperture, which is
a double slit, limiting the extension in the y-direction, too.

Remark. Introducing a second, slow deflection system behind the rf resonator
offers the possibility of separating the profiles from different macropulses by
an additional deflection perpendicular to the first one [368].

Figure. 7.19 shows part of the monitor looking in the beam direction
through the extraction plates. The plate on high voltage is on the bottom,
and the grounded plate with a small slit in the y-direction is on top of the
rectangular chamber. The resistors on the left and right, connected to rods in
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Fig. 7.19. View in beam direction through the extraction plates installed in the
rectangular experimental chamber. The extracting Ex field points from bottom to
top (charge of the electron assumed to be >0). GSI Foto [373]

parallel with the z-axis, are provided to homogenize the electric field in the
x-direction (pointing from bottom to top). Apertures 1 and 2 are adjustable
by stepping motors. The corresponding, small feedthroughs are seen on the
left and right above the resistors.

Systematic test measurements were performed in the transfer channel from
the UNILAC to the SIS. As a consequence, a 5-mm thick steel shielding has
been installed behind the energy analyzer to avoid background from X rays,
produced from secondary electrons accelerated by the electric field and hit-
ting the housing. As discussed in more detail in Sect. 7.1.2 of this chapter,
the longitudinal emittance can be determined by varying the bunch length
dependent on the focusing strength of a rebuncher. Figure 7.20 shows the re-
sults from a measurement with a 2-mA Ni14+-beam at 11.4MeV/u [368]. A
single gap resonator, acting as a buncher was operated at 108MHz. Due to
the relatively high beam current of 2mA, the data have been averaged over
only four macropulses of 200 µs duration. The solid line in Fig. 7.20 results
from a fitting procedure, which is described in more detail in Sect. 7.1.2 of
this chapter.

Space Charge Effects

When the number of charges increases within a bunch, electrons are distorted
during their accelerated flight by the space charge field of the moving bunch.
As shown in Chap. 8, the electric field strength can be up to 100V/mm, which
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Fig. 7.20. Measurement [368] of the bunch width (one standard deviation) depen-
dent on the buncher gap-voltage located about 31m upstream from the detector
system. The data hold for a 11.4-MeV/u Ni14+-beam with an intensity of about
2mA

cannot be neglected in comparison to the accelerating Eext field (≈ 428V/mm
in the example discussed). An analytical estimation of the effect has to take
the following effects into account:

• moving of the bunches along the z-axis with v = βc;
• accelerated motion of the electrons along the x-axis;
• shape of the bunches; and
• distribution of the charged ions within a bunch, which of course influences

only the potential and field strength inside the bunch.

Remark. In the first estimation of the space charge effects, the action of the
magnetic field in parallel to the E field (see Fig. 7.15) is not considered.

The first two effects lead to a permanent change in the
−→
E vector and,

taking into account the external field Eext
x , this results in a permanent change

in the components Ex, Ey, Ez acting on the electron. In Chap. 8, the Laplace –
and Poisson equations are solved considering four cases of bunch shape and
distribution within

• a homogeneously charged sphere,
• a sphere with parabolic charge distribution,
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Fig. 7.21. Left: parabolic intensity distribution in a bunch of spherical shape. Right:
electrical field strength inside and outside the bunch. See Chap. 8 for details of
calculation

• a homogeneously charged ellipsoid, and
• an ellipsoid with parabolic charge distribution.

In the example considered here, the bunch has about the dimensions (2×
FWHM): −5mm≤ ∆x ≤ 5mm, −5mm≤ ∆y ≤ 5mm, and −16.5mm≤
∆z ≤ 16.5mm. Therefore, the best approximation would be the rotational
symmetrical ellipsoid with a parabolic charge distribution. However, consid-
ering the complex formulas (see Chap. 8, App. 8.A), the estimation is based
on a sphere with parabolic charge distribution. Due to the moderate ratio be-
tween the half-axis ∆x, ∆y, and ∆z, this simplification will not have a large
effect on the result. Therefore, we approximate the bunch shape by a sphere
with Rs = 1

2
3
√

∆x ∆y ∆z = 7.44mm. Referring to Chap. 8, the electric field
strength in a nonrelativistic approximation is given by

Er =
NAr

b ζe

4πε0

r

2R3

(
5 − 3

r2

R2

)
. (7.64)

The parabolic charge density distribution and the radial component of the
electric field strength according to (7.64) are displayed in Fig. 7.21. The max-
imum field strength occurs at r =

√
5R/3 (see Chap. 8). Inserting this into

(7.64) leads to

Emax
r =

NAr
b ζe

4πε0

1
R2

5
√

5
9

= 27.98V/mm. (7.65)

Taking the proportionality of Emax
r ∼ Nb ζ/R2 into account leads to a prac-

tical formula:
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Fig. 7.22. Definition of two Cartesian coordinate systems. The motion of the elec-
tron is referenced to the fixed x, y, z-system which has its origin at the center of the
extraction system. The origin of the x′, y′, z′- system is fixed at the center of the
bunch and therefore moves with v = βc along the z-axis. Note: To make the drawing
clearer both systems have been rotated 90◦ around the z, z′-axes (see Fig. 7.15 for
comparison)

Emax
r [V/mm] =

1.79 × 10−6Nb ζ

R2
, R [mm] . (7.66)

Due to the external extraction field, no space charge compensation can
take place within the bunch and therefore one cannot expect any reduction
of space charge forces. On the other hand, during the short flight time of
the electrons over a distance of about 35mm down to the grounded plate in
roughly 1ns, the bunch moves about 16.5mm. Because the distance to the
next bunch is of the order of 457mm, only the space charge field of one bunch
has to be considered here. This situation changes drastically if N+

2 and H+
2

ions are collected, as discussed in Chap. 4, Sect. 4.1.
To calculate the motion of the electron in the combination of the extrac-

tion field with the space charge field, we introduce two Cartesian coordinate
systems, as illustrated in Fig. 7.22. The origin of the fixed reference system
with coordinates x, y, z is exactly at the center of the extraction plates. The
movement of the electron is referred to that system. The origin of the sec-
ond system with coordinates x′, y′, z′ is fixed at the center of the bunch and
therefore moves with v = βc in the direction of the positive z-axis. Both sys-
tems coincide exactly at t = 0, the moment when the center of the bunch
passes the center of the extraction plates. The magnitude of the E field in
the x, y, z-system is given by (7.64) replacing r by r′. Keeping in mind that
x = x′, y = y′, and z′ = z − βct r′ =

√
x2 + y2 + (z − βct)2, the decomposi-

tion of the E vector into its components can by performed by the well-known
transformation of spherical coordinates to Cartesian coordinates:
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Fig. 7.23. Simplified flow diagram to illustrate the most important steps of a pro-
gram to evaluate the distortion of the extracted electron by the space charge of a
moving bunch

Ex(t) = Er(t)sinϑ(t)sinϕ(t) (7.67)
Ey(t) = Er(t)sinϑ(t)cosϕ(t) (7.68)
Ez(t) = Er(t)cosϑ(t) (7.69)

cosϑ(t) =
z′

r′
=

z − βct
√

x2 + y2 + (z − βct)2
(7.70)

ϑ(t) = arccos
z − βct

√
x2 + y2 + (z − βct)2

(7.71)

cosϕ(t) =
x

r′sinϑ
→ ϕ(t) = arccos

x

r′sinϑ
(7.72)

sinϕ(t) =
y

r′sinϑ
→ ϕ(t) = arcsin

y

r′sinϑ
. (7.73)

The constant extraction field component Eext
x has to be added to the x-

component. Due to the movement of the bunch, the magnitude of the com-
ponents change permanently. Therefore, a mathematical algorithm has to be
performed in small steps of ∆t, according to the scheme shown in Fig. 7.23.
The algorithm may be programmed in each modern programming language.
From experience with the prototype, the following variables should be included
in the program algorithm:

• β = v/c of the moving bunch;
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• the number of charges within the bunch;
• the shape and size of the bunch;
• the distribution of charges within the bunch;
• the starting coordinates of the electron x0, y0, z0;
• the initial velocity of the created electron ẋ0, ẏ0, ż0;
• the strength of the electric extraction field;
• the spacing between the plate on high voltage and the grounded one; and
• the magnetic field strength.

Remark. For the shape of the bunch and the distribution of charges within
the bunch, analytical solutions for the electric space charge fields can be
adapted from the four cases discussed in Chap. 8. Maybe there is also a
suitable program for single particle interaction available, allowing ray tracing
or Monte Carlo calculations.

Nevertheless, the approximation of the bunch by a sphere with parabolic
charge density distribution, resulting in a relatively simple analytical solution
of the electric space charge field, gives a good impression of the space charge
effects.

The program used to calculate the most important dependencies on the
variables, given above, has the following output options:

• coordinate x, y, z and velocity ẋ, ẏ, ż of the electron dependent on flight
time,

• magnitude of the electric field components of space charge Ex, Ey, Ez de-
pendent on time.

Some Examples Considering the reference particle, it is of interest to what
extent the extraction field will be diminished during the flight time of the
electron down to the grounded plate. Figure 7.24 gives the result showing also
the z-component of the bunch field. Since the reference particle starts exactly
at time t = 0 at the center of the bunch, both field components are zero. Due
to the relatively fast movement of the bunch, the electron never experiences
the maximum magnitude of Emax

r ≈ 28V/mm (see 7.65). In the program, a
step width in time of 0.01 ns has been chosen to recalculate the permanently
changing field components. The next four diagrams show the field components
Ex and Ez “seen” by electrons, starting near the boundaries of the bunch in
the z- and x-directions. Due to symmetry, Ey(y0 = +7mm) compares with
Ex(x0 = +7mm), and Ey(y0 = −7mm) compares with −Ex(x0 = +7mm).
From the diagrams, one concludes that the space charge tends to diminish the
dimensions of the bunch. This becomes very clear from Fig. 7.26 showing the
z-coordinate at x = 35 mm with and without space charge forces. The same
holds for the transverse coordinate y. Electrons, starting with y = ±7mm,
arrive at y = ±5.95mm. Due to the high extraction field, the effect does
not occur so clearly in the x-direction. From Fig. 7.26, one concludes that
the deviations in the z-coordinate at x = 35mm can be more than 1 mm,
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Fig. 7.24. Electrical field components Ex and Ez of the bunch field “seen” by the
electron during the flight time of roughly 1 ns down to the grounded plate. Note: For
reasons of convenience the charge of the electron has assumed to be +e. Therefore,
the extraction voltage Eext

x = +428.56 V

Fig. 7.25. Bunch field components Ex and Ez “seen” by the electron during the
flight time down to the grounded plate. Top left: electron starts at z0 = −7 mm. Top
right: electron starts at z0 = +7 mm. Bottom left: electron starts at x0 = −7 mm.
Bottom right: electron starts at x0 = +7 mm. All other remaining initial values are
the same as those for the reference particle

which cannot be tolerated based on the resolution required. For this reason,
a magnetic field has been introduced in the concept of the monitor, forcing
the electrons into a spiral orbit. In the magnetic field, the bending radius ρe

of the electrons can be derived from the well-known relation,
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Fig. 7.26. The z-coordinate of the arrival at x = 35mm with and without space
charge forces of electrons starting along the z-axis of the bunch. Due to the motion
of the bunch in the z-direction, the two straight lines do not conicide at z = 0

mev
2

ρe

= e(−→v x
−→
B ) , (7.74)

which results in

ρe =
mev

eB
≈ 5.68

v [mm/ns]
B [mT]

[mm] . (7.75)

Unfortunately, the relevant components vy, vz (B = Bx !) change permanently
due to the motion of the electron in the external E field and also due to
the motion of the bunch. Therefore, (7.75) can be used only to estimates
the expected bending radius dependent on v and B. From Fig. 7.26 and the
flight time of about 1ns down to the grounded plate, one estimates vz, vy of
the order of 1–1.5 mm/ns. Assuming a reasonable magnetic field strength of
30mT (= 300Gauss), the bending radius is well below 1mm, which should be
sufficient to reduce the deviations in the arrival coordinates to the specified
tolerances. Taking the magnetic field into account leads to the well-known
equation,

me
−→̈
r (x, y, z) = e

(−→
E + −→v x

−→
B
)

.

Supposing again positively charged electrons and a positive B field, the field
components given in (7.68) and (7.69) have to be supplemented by

Ey → Ey + vzBx = Ey(t) + ż(t)Bx (7.76)
Ez → Ez − vyBx = Ez(t) − ẏ(t)Bx . (7.77)

Obviously, the calculation of ż(t) and ẏ(t) can be included very easily in the
numerical procedure, according to the simplified flow diagram of Fig. 7.23.
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Fig. 7.27. Deviation of the arrival coordinate from the starting coordinate as a
function of the starting coordinate. Note that the scale of the ordinate is 1/100mm

The effect of of the magnetic field is illustrated in Fig. 7.27, which can be
compared with Fig. 7.26. The deviations go down to less than about 0.2mm,
which is confirmed by (7.75) inserting B = 30mT and v = 1–1.5 mm/ns.

So far, the problem seems to be solved by the introduction of a magnetic
field of the order of some 100 gauss. However, beside the realization of a ho-
mogeneously magnetic field that confronts the designer with many technical
problems, the divergence angles of the electrons arriving at the grounded plate
and the apertures behind are changed by the action of the magnetic field. This
is demonstrated in Fig. 7.28. The divergence dy/dx (B = 0) is < 10−4 and
thus not shown in the diagram. The effect of an arising divergence dy/dx on
the analyzing system has to be studied.

The Analyzing System

The Electrostatic Analyzer The bending radius ρ and the total deflecting angle
ϕ are fixed to ρ = 30 mm and ϕ = 90◦ = π/2. The required voltages on the
bent plates can be derived from the potential of a cylinder capacitor (see Fig.
7.29), resulting from the Laplace equation ∆φ = 0. In cylindrical coordinates,
this simplifies to (

1
r

∂

∂r
+

∂2

∂r2

)
φ = 0 , (7.78)

taking into account that ∂2/∂ϕ2 = ∂2/∂z2 = 0. In the orbit of the refer-
ence electron with radius r0 (≡ ρ), the potential must vanish. Therefore, an
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Fig. 7.28. Divergences dz/dx, dy/dx at x = 35 mm with and without a magnetic
field. Note: dy/dx (B = 0) < 10−4 mrad

Fig. 7.29. Scheme of a cylinder capacitor ( [367]) to derive the required electrical
field of the electrostatic analyzer

“Ansatz” φ(r) = A×ln(r/r0) is reasonable. The constant A = 2φi/ln(ri/ra)
follows from the conditions φ(ri) = φi and φ(ra) = φa = −φi. To guide the
reference electron on the radius r = r0, φi > 0. The condition φa = −φi also
leads to a relation between r0, ri, and ra:

2 ln r0 = ln ra + ln ri (7.79)
r2
0 = rari (7.80)

from which ra and ri can be determined by specifying an appropriate spacing
ra − ri between the bent plates. In the example, with r0 ≡ ρ = 30 mm,
ri = 25mm and ra = 36mm were chosen. The height h (in parallel to the
ys-coordinate) was chosen at h = 40mm. The determination of φi and φa

remains. This can be easily derived from the balance between the force FE of
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the electric field and the centrifugal force FC:

FE = −e∆φ/ln(ri/r0 )
r

with ∆φ = φi − φa = 2φi (7.81)

FC =
mev

2

r
(7.82)

FE = FC → mev
2 = − e∆φ

ln(ri/ra)
(7.83)

mev
2 = 2eU → ∆φ = −2U ln(ri/ra) . (7.84)

With U = 15 kV holding for the reference electron, ∆φ = 10.940 kV, φi =
∆φ/2 = 5.47 kV, and φa = −∆φ/2 = −5.47 kV.

The rf Deflector After passing the two electrostatic analyzers, the time in-
formation is converted to a spatial profile by the rf deflector. The deflector
is a λ/4 resonator [361, 374] operating at 108MHz, in the example, the third
harmonic of the accelerating frequency. The factor of merit Q is about 100. An
input power of 30W and an impedance of 50Ω leads to a maximum voltage
U0 > 5000V of the sine wave excitation. To avoid nonlinearities, only about
± 30◦ of the sine wave can be used. The resulting maximum deflection angle
is then of the order of ± 50mrad. After a drift of about 600mm, the profile
width on the MCP detector is of the order of centimeters. It is evident that a
theoretical determination of the conversion factor, time→ spatial coordinate,
has to be approved and, possibly has to be corrected by experiment. The cor-
rect phase setting of the input voltage to the rf resonator can probably be
fixed only by experiment.

The Transfer Matrices To transfer an electron through an electrostatic ana-
lyzing system, as shown in Fig. 7.15, the well-known matrix formalism can be
applied. The coordinates of a specific electron are described by the vector,

−→r =







xs

x′
s

ys

y′
s

l
∆







. (7.85)

To be consistent with the conventions in the literature [326, 330], one has to
substitute for the coordinate system x, y, z, defined in Fig. 7.22, for a new
one xs, ys, s, moving at the velocity of the reference electron v0 along the
trajectory s:

−z → xs (7.86)
y → ys (7.87)
x → s . (7.88)
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Therefore, xs now defines the “horizontal” plane of the analyzer and is de-
termined by the deviation of the arriving particle in the z-coordinate, and x′

s

has to be derived from −vz/vx = −ż/ẋ = −dz/dx. In the “vertical” plane,
y′
s = vy/vx = ẏ/ẋ = dy/dx. As usual, s is the longitudinal coordinate in the

matrix formalism for bending magnets. This coordinate is fixed on the refer-
ence electron. Defining l as the local deviation of a specific electron against
the reference electron gives l = −v0(t − t0). On the other hand, ∆ is defined
as the relative deviation in the velocity ∆ = (vs − v0)/v0. Taking the small
slit in the grounded plate of the extraction system as reference, t0 and v0 are
given by (7.50) and (7.51), respectively. The coordinate transformation of an
electron starting at the grounded plate is determined by the transfer matrices
of the following elements:

1. drift D1 → aperture A1

2. drift D2 → A2

3. drift D3 → left analyzer
4. left analyzer
5. drift D4 → right analyzer
6. drift D5 → aperture A3

7. drift D6 → rf deflector
8. thin lens (realized by an additional dc-voltage on the deflecting plates).

Behind the deflector is another drift space D7 up to the stop at the MCP
detector. But keeping in mind that the arrival time at the rf deflector deter-
mines the spatial profile at the MCP, it is sufficient to transform the electrons
up to the thin lens. In the transformation matrices, the apertures as well as
the thin lens do not have an extension in the s-direction. In the following, the
transfer matrices A11 . . . A66 are given for the interested system designer and
programmer:

Drift(L) =







1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L
0 0 0 0 0 1







. (7.89)

Thin lens, focusing in the horizontal plane (x-direction);

Lensx(f) =







1 0 0 0 0 0
−1/f 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







. (7.90)

To get the matrix for a thin lens focusing in the vertical plane (y-direction),
one has to replace the elements A21 by 0 and A43 by −1/f .
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The matrix for the electrostatic analyzer, deflecting to the left with bend-
ing radius ρ and total deflecting angle ϕ is

Al =







cos
√

2ϕ ρ√
2
sin

√
2ϕ 0 0 0 −ρ(1−cos

√
2ϕ)

− ρ√
2
sin

√
2ϕ cos

√
2ϕ 0 0 0 −

√
2sin

√
2ϕ

0 0 1 ρϕ 0 0
0 0 0 1 0 0

−
√

2sin
√

2ϕ ρ(1−cos
√

2ϕ) 0 0 1 ρ(ϕ−
√

2sin
√

2ϕ)
0 0 0 0 0 1







.

(7.91)
To construct the matrix for the analyzer deflecting to the right, one has

to replace A16 → −A16, A26 → −A26, A51 → −A51, A52 → −A52, which can
also be done by replacing ρ with −ρ and ϕ with −ϕ.

The results from single particle transformations with somewhat typical ini-
tial conditions for the starting coordinates of the electron can be summarized
as follows:

• Due to the space charge, the resolution of the whole system is diminished.
• The influence of the space charge forces can be reduced by a magnetic field

parallel to the electric extraction field as long as the spatial resolution up
to the exit of the second analyzer is considered.

• However, the magnetic field has an influence on the resolution of the system
for the energy spread of the electrons collected. Considering the vector
product

W = P∆t = (−→v · −→F )∆t = (−→v · (−→v x
−→
B ))∆t = 0 , (7.92)

it follows, that normally a magnetic field
−→
B parallel to the vector of the

velocity −→v cannot transfer energy. Of course, the calculated change in
energy is caused by the combination of space charge force and the magnetic
field. In the calculations, this is confirmed by the transformation of an
electron created at the front of the bunch. Such an electron experiences
the space charge force for a long time due to the spiraled motion.

• Because the emittance of the electron beam is not changed by the magnetic
field, the divergences increase.

Problems in the Technical Design

Beside extensive studies of particle dynamics, space charge forces, and the
behavior of a rather complex analyzing and detection system, the design and
manufacturing of a similar monitor confronts the engineer with some addi-
tional technical problems:

• To avoid distortions from the fringing field of the extraction condenser, ho-
mogenization of the edge fields has to be provided. This can be achieved
by installing so-called “Herzog apertures” [367, 375] on a well-defined po-
tential in front and behind the condenser.
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• Furthermore, the electric field well inside the condenser has to be homog-
enized. Experiments with ceramic plates on both sides, coated with a thin
layer of a resistive material, ended up with high voltage breakdowns. Fi-
nally, the problem has been solved by installing rods connected to chains
of resistors along both sides of the condenser (see Fig. 7.19).

• The realization of a sufficient homogeneous magnetic field parallel to the
electric field, especially near the extraction slit, confronts the designer with
some other problems.

• As first experiments have shown, there are many secondary electrons gen-
erated somewhere in the system, leading to nearly constant noise in the
output of the MCP. This noise has to be reduced by installing additional
apertures and baffles.

• Considering beams with relatively low stiffness, the deflection of the pri-
mary beam by the electric extraction field may be intolerable and, therefore
has to be compensated for by additional steerers in front of and behind
the monitor.

Conclusion

A monitor, detecting secondary electrons from a thin wire in the beam or
electrons from residual gas ionization, allows a nearly non-destructive mea-
surement of longitudinal intensity distributions. However, both types of mon-
itors are rather complex in technical design as well as in the interpretation
of data in the presence of space charge forces. Nevertheless, considering the
physical effects that have to be taken into account and the technical problems
that have to be solved, design and operation of similar monitors can be an
interesting challenge for engineers and physicists.

Determination of Longitudinal Emittances
from Bunch Length Measurements

Approximating the particle distribution in the ∆W, ∆φ – plane by ellipses,
algorithms analog to the algorithms, discussed in Sect. 6.2.4, can be applied
[376]. The simplest method is to measure the bunch length at least at three
pickups along a drift space.

Transfer Matrix for Drift Spaces

Taking the deviation in phase ∆φ and the energy spread ∆W/W of a certain
particle against the reference particle (∆φ = 0, ∆W = 0) as the variables in
the longitudinal phase plane, the coordinates after a drift L are determined
from the matrix transformation,

(
∆φ1

∆W1/W0

)
=
(

1 k
0 1

)(
∆φ0

∆W0/W0

)
. (7.93)
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In a nonrelativistic approximation, the coefficient k is easily derived from

∆φ = ω∆t = −2πf L

∆v
= −2πf L

∆βc
(7.94)

∆β

β
=

1
2

∆W

W
→ k [rad] = −πf L

βc
. (7.95)

In practice, the bunch length is measured on the timescale. Measuring the
drift space in [meters] and using [nanoseconds] as the unit on the timescale,
(7.93) can be converted to

(
∆t1

∆W1/W0

)
=
(

1 k∗

0 1

)(
∆t0

∆W0/W0

)
(7.96)

k∗ [ns] = − 1000L [m]
2βc [mm/ns]

. (7.97)

Referring to (6.74) (Sect. 6.2.4), the bunch length ∆t1 at position “1” is
determined from the length ∆t0 at position “0”:

∆t1 =
√

εβ1 =
√

a2
11 εβ0 − 2 a11a12 εα0 + a2

12 εγ0 , (7.98)

with a11 = 1, a12 = k∗, a21 = 0, and a22 = 1. Thus, to determine the Twiss
parameters from three or more measured bunch lengths along a drift space,
the algorithms discussed in Sect. 6.2.4 can be applied.

Use of a rf Cavity to Vary the Bunch Length

Considering the action of a rf cavity, like a single gap resonator or all kinds
of bunchers, on the particles leads to a further analogy to the transverse case.
To illustrate this, Fig. 7.30 shows an ellipse in the longitudinal phase plane,
representing a bunch in the center of a rf cavity. The particle at the center
of the bunch arrives at the center of the cavity at t = 0, which is also the
reference time of the corresponding sine wave. Particles arriving at t < 0 are
earlier than the reference particle and, therefore are decelerated by the rf. On
the other hand, particles arriving at t > 0 are later than the reference particle
and are accelerated. From Fig. 7.30, it becomes clear that most of the particles
arriving at t < 0 have higher energy than the reference particle and most of
the particles with t > 0 have lower energy than the reference particle. Thus,
the action of the cavity results in a reduction of the energy spread. Because
the area of the ellipse remains constant, the bunch length will increase. This is
a typical application of a debuncher, used mostly behind a linear accelerator
as an injector into a circular machine, where a low energy spread is much more
important than a short bunch length. Switching the phase of the sine wave
sin ωt to sin(ωt + π) changes deceleration to acceleration. A typical example
for this phase setting is a rebuncher, used mostly in front of a linear accelerator
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Fig. 7.30. Simplified scheme to explain the determination of longitudinal emit-
tances, changing the bunch length by means of a rf-cavity. Note: The diagram
is drawn in the longitudinal phase plane and, therefore the scale of the ordinate
holds only for the ellipse with TWISS parameters: ε = 0.8 %ns, β = 1.25 ns / %,
γ = 2.6 %/ ns and α = 1.5. The amplitude of the sine-wave as well as the displayed
particle density distribution in the bunch are drawn in arbitrarily units

section requiring short bunches. Obviously, the phase setting of the rf cavity
can be compared with the action of a focusing and defocusing quadrupole in
the transverse phase plane. Figure 7.31 illustrates the change in energy spread
dependent on the phase setting of the rf cavity.

Remark. Consider the ellipse, shown in Fig. 7.30. At a certain point without
any action of a rf cavity, it becomes clear that the ellipse rotates counter-
clockwise along a drift. Thus, the particles have their focus in times already
passed. The location of the focus in time in front of the observation point
can be derived from the condition α = 0. For the example of Fig. 7.30 with
β = v/c = 0.1 and γ = 2.6 [% / ns], this leads to

−α + k∗/ γ = 0 (7.99)

L = −α

γ

2βc

1000
→ −3.46m (7.100)

∆t(FWHM) : 1 ns → 0.555 ns . (7.101)

According to the transfer matrices (7.93) and (7.96), the energy spread does
not change during drift.

Transfer Matrix of a rf Cavity

Customarily, in accelerator physics, the reference phase φs is defined by φs = 0
on top of a sine wave. Therefore, the maximum energy that a particle travers-



328 7 The Longitudinal Phase Plane

Fig. 7.31. Change of energy spread ∆W/W due to the action of a rf cavity

ing the cavity can gain is given by

∆W = ζeTtransitU0cosφs. (7.102)

The so-called transit time factor Ttransit takes into account the finite crossing
time through the cavity. For a rf cavity with uniform field and a gap length g,
Ttransit = sin(πg/λ)/(πg/λ) with λ as the wavelength of the accelerating rf.
Referring to Fig. 7.30, the rf cavity has to be operated at φs = ∓π

2 to change
the bunch length (φs = −π/2 corresponds to the example of Fig. 7.30). Thus,
particles with small ∆φ around the reference particle gain energy:

∆W = ζeTtransitU0 sin ∆φ ≈ ζeTtransitU0∆φ, −π/2 (7.103)
∆W = −ζeTtransitU0 sin ∆φ ≈ −ζeTtransitU0∆φ, π/2 (7.104)

Equations. (7.103) and (7.104) between the change in energy and phase devi-
ation determine the transfer matrix. Considering especially (7.103), one gets

∆W

W
=

1
W

ζe

A
TtransitU0∆φ, (7.105)

where W and ∆W usually are in units of MeV/u.
In most cases, the transit time factor as well as the exact absolute value

of U0 are not known to the operator. Performing a measurement requires a
well-known change in U0 to vary the bunch length. Usually, this is done by
changing a computer-controlled reference voltage (mostly from 0–10V). To
observe the change in bunch length, the corresponding detector (capacitive
pickup, or semiconductor) has to be installed at an appropriate distance L
behind the cavity. This offers the possibility of determining the unknown
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factors in 7.105 by switching the rf phases to values, different from φs = ±π/2
(e.g., φs = ±30◦, ±60◦) and measuring the change in time of flight. Defining
D = ζeTtransit/WA, one obtains an equation to calibrate the product DU0:

∆W

W
= D U0 cos φs = DU0 sin φ . (7.106)

Here, φ = φs+π/2 has been introduced, since most phase shifters define φ = 0
at φs = −π/2. In a nonrelativistic approximation, ∆W/W can be evaluated
from 2 ∆t/t0 with t0 = L/βc as the time of flight from the cavity to the
detector switching the cavity off (U0 = 0). By measuring ∆t for various phase
settings, the constant D can be determined with high precision from the slope
in a diagram ∆W/W = f(sinφ). Then the transfer matrix is given by

(
∆φ1

∆W1/W0

)
=
(

1 0
DU0 1

)(
∆φ0

∆W0/W0

)
. (7.107)

By determining ∆W/W in percent and measuring the reference voltage U0

in Volts, the constant D comes out in the dimension [% / V rad]. Conversion
to a phase plane with ∆t as the variable of the abscissa is straightforward by
replacing sin φ by sinφ/2πf . A practical dimension of D is [%/V ns] and the
transformation matrix is

(
∆t1

∆W1/W0

)
=
(

1 0
DU0 1

)(
∆t0

∆W0/W0

)
. (7.108)

D is determined by the characteristics of the cavity, by the conversion of the
reference voltage to the voltage over the gap, and the charge over mass ratio
A/ζ. Therefore, D has to be measured only once, introducing a normalized
constant of the cavity Dn = A/ζ D. Table 7.2 gives the results of a calibra-
tion procedure performed on a debuncher cavity with the following relevant
parameters:

Beam energy: 11.44MeV/u (→ β = v/c = 0.155)
Ion: Ne (A = 20, ζ = 10)
rf-frequency: f = 108.2MHz
Drift space from the debuncher to the capacitive pickup: 51.434m
Reference voltage: U0 = 0.54V

With the given parameters, ∆W/W is obtained in a nonrelativistic ap-
proximation from

TOFU0=0 =
51.434 × 103 mm
0.155 · 300mm/ns

= 1.11 µs (7.109)

∆W

W
[%] = 200

∆tTOF

TOFU0=0
. (7.110)

Figure 7.32 illustrates the determination of D from the slope in the dia-
gram ∆W/W = f(sinφ/2πf) = f(∆t). Figure 7.33 displays the results of a
longitudinal emittance measurement, observing the change in bunch length
by varying the cavity reference voltage.
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Fig. 7.32. Determination of the characteristic cavity constant D from the slope
∆W/W = f(∆t)

Fig. 7.33. Example of a longitudinal emittance measurement in the transfer channel
of the UNILAC to the SIS
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Table 7.2. Calibration of a debuncher cavity for longitudinal emittance measure-
ments. The characteristic constant D is determined from the slope ∆W/W =
f(sinφ)/(2πf), as illustrated in Fig. 7.32

φ [0] ∆tTOF[ns] ∆W/W [%] sin φ/2πf [ns]

60 2.2 0.398 1.274

30 1.1 0.199 0.735

20 0.7 0.127 0.503

10 0.3 0.054 0.255

0 0 0 0

−10 −0.4 −0.072 −0.255

−20 −0.7 −0.127 −0.503

−30 −1.1 −0.199 −0.735

−60 −2.1 −0.38 −1.274

Combination of Drift Spaces and rf Cavity

Beam transport sections may be equipped with a certain number of capacitive
pickups and bunchers or rebunchers in between. With the knowledge of all dis-
tances between the relevant elements and the reference voltage settings of the
rf cavities, determination of the longitudinal emittance is possible without any
change in the reference voltages. An example is taken from the long transfer
channel between the end of the UNILAC and the SIS. Figure 7.34 shows the
result of such a measurement. Here, the operator has tried to optimize the rf
setting of a debuncher to obtain minimum energy spread for injection into the
synchrotron. After the longitudinal emittance has been measured, it is very
easy to check operator effort by

• transforming the Twiss parameters along the drift space up to the location
of the debuncher (= 36.11 m from the first capacitive pickup) and

• determining ∆W/W dependent on the reference voltage of the debuncher
from

M(U0) =
(

1 0
DU0 1

)(
β −α
−α γ

)

Deb

(
1 0

DU0 1

)T

, (7.111)

with the result ∆W/W (U) =
√

εM(U0)22.

Figure 7.35 shows that the setting of the operator could be improved by
nearly a factor of 2.
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Fig. 7.34. Determination of longitudinal emittance by measuring the bunch length
at five capacitive pickups, including the action of a debuncher

7.1.3 Measurements in the Phase Planes of Circular Machines

Basics

In circular machines, particles pass any detector system with the revolution
frequency f0. The corresponding revolution time T0 depends mainly on the
circumference of the machine, on the energy of the particles, and on the kind
of ions. Revolution times 100 ns< T0 < 100 µs can be considered typical.
Thus, most methods discussed above to determine parameters in phase planes
cannot be applied. On the other hand, periodically repeated signals open
interesting new possibilities for beam diagnostics. Let us first recall some
important formulas of accelerator physics in circular machines:

∆L

Lc
= α

∆p

p0
α, compaction factor (7.112)

γ2
t =

1
α

γt = γ − transition (7.113)

Wt = γtm0c
2 energy (7.114)

∆f

f0
= −∆T

T0
= η

∆p

p0
frequency dispersion (7.115)
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Fig. 7.35. Optimization of a debuncher setting to obtain the mimimum energy
spread. The ellipse inserted on the left-hand side with ∆W/Wmax = 0.51% corre-
sponds to the output of the linac. The ellipse in the middle of the diagram with
∆W/Wmax = 0.22% shows the change by the debuncher due to the setting of the
operator, and the optimum with ∆W/Wmax = 0.12% corresponds to a higher set-
ting of the debuncher reference voltage as a result from a longitudinal emittance
measurement

η =
1
γ2

− 1
γ2

t

=
1
γ2

− α (7.116)

∆Q

Q0
= ξ

∆p

p0
ξ, chromaticity (7.117)

fs =
c

Lc

√
ζe

A

n |η|Urf

2πγ m0c2
synchrotron frequency (7.118)

Where L0 is the circumference of the machine, p0 the momentum and
Q0 tune for the reference particle, γ the relativistic factor 1/

√
1 − β2, c the

velocity of light, A the number of particles with charge ζe and rest mass m0, n
the harmonic number, and Urf the amplitude of the accelerating rf. Equation
7.118 holds for small amplitudes of synchrotron oscillations at constant rf.

Various methods of beam diagnostics in the longitudinal phase space of
circular machines are discussed in the literature (see, e.g., [1, 6, 28, 285, 329,
377–379].

Measurements, based on evaluating the so-called beam transfer function
(BTF) require longitudinal excitation of the beam by a cavity. Because this
results in collective modulation of the particles, the signals are relatively high
in amplitude and therefore the achievable statistical accuracy can be high.

On the other hand, the observation and analysis of Schottky noise signals is
another powerful tool for studying the behavior of a beam in longitudinal and
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Fig. 7.36. Simplified scheme to illustrate BTF and Schottky signal measurements
in circular machines

transversal phase planes. The beam current in a circular machine is generated
by a finite number of circulating charged ions, which always are subjected to
statistical fluctuations. This leads to noise even from a dc-current. Because the
effect was first investigated by Schottky in old-fashioned electron tubes [380],
this noise is called Schottky noise, and the term Schottky signals has been
introduced in accelerator physics. Because Schottky noise arises from an inco-
herent intrinsic modulation of the beam, the signals are small in comparison
to BTF signals, but do not require any excitation. Figure 7.36 is a simplified
scheme to illustrate both methods. In the scheme, longitudinal excitation can
be performed by a cavity, as well as by the 50-Ω strip-line kicker. Using the
kicker, the power amplifiers have to be in phase (Σ). Excitation in the trans-
verse plane requires a difference of π in phase (∆). Figure 7.37 shows the main
parts of a Schottky pickup, designed to perform Schottky scans in the SIS. To
avoid distortions of the signals via the beam pipe, the signal ground is isolated
from the grounded beam pipe. Taking advantage of the 50-Ω N-connectors on
both ends of the electrodes, the pickup can be operated as an electrostatic
monitor (open end) as well as in strip-line mode (50-Ω resistor at the end).

For interpretation and evaluation of BTF and Schottky signals, the beam
circulating in a machine has to be classified according to the following char-
acteristics:

• longitudinal
– unbunched beam (dc, respectively, coasting beam),
– bunched beam.



7.1 Emittance Measurements in the Longitudinal Phase Plane 335

Fig. 7.37. Main parts of a construction drawing of a Schottky pickup. Top left: look
into the chamber showing the horizontal and vertical pickup electrodes arranged one
system behind the other one. The pickup can be used for longitudinal as well as
transverse Schottky scans

• transversal
– unbunched beam,
– bunched beam.

Schottky, Longitudinal, Unbunched Beam

Assuming a charge of 1e, the current in a circular machine is given by isp =
e f0. Now, if there are N charged particles (j = 1 . . . N) with frequencies fj

(around f0), the current of the jth-particle can be written as

ij(t) = efj

+∞∑

m=−∞
eimωjt i is the imaginary unit . (7.119)

Obviously, the term
∑+∞

m=−∞ eimωjt represents the δ function. Assuming pos-
itive frequencies (ωj > 0) because a detector can detect only positive frequen-
cies, (7.119) can be written as

ij(t) = efj + 2efj

∞∑

m=1

cosmωjt . (7.120)
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Fig. 7.38. Typical frequency spectrum of longitudinal Schottky noise (from [381])

Averaging over all N particles leads immediately to the dc-current iDC =
N e f0 (〈cosmωjt〉 = 0 ), where f0 now is the average of the revolution fre-
quencies. However, looking for the rms current per band, one gets

〈i2〉 = [2ef0]
2
N 〈cosΘj〉2 , Θj = mωjt (7.121)

irms = 2ef0

√
N

2
= ef0

√
2N. (7.122)

Thus, the rms current per band from incoherent statistical fluctuations is
independent of m and proportional only to

√
N and not to N , as holds for

coherent modulations. This proportionality to
√

N confirms the statistical
character of Schottky signals. Considering the frequency domain, one finds an
infinitely narrow line at frequency mfj for a specific single charged particle.
Therefore, many particles having slightly different fj are represented by a band
of frequencies (Schottky band), whose width can be derived from (7.115) as

∆f = m∆fj = mf0η
∆p

p
. (7.123)

The spectral power density dP/df is proportional to 〈i2〉/∆f and, because
the total power in a band is constant, in a diagram of dP/df as a function of
frequency f , one expects peaks, centered at frequencies mf0, (m+1) f0, (m+
2) f0, . . . , decreasing in amplitude ∼ 1/f and increasing in width ∼ m as
shown in the example of Fig. 7.38. Longitudinal Schottky signals of a coasting
beam lead to relatively simple spectra in the frequency domain. Thus, the
momentum spread ∆p/p can be determined by measuring the width of a
peak ∆fm at the harmonic m. Equation 7.115 leads immediately to

∆p

p
=

1
η

∆fm

mf0
. (7.124)

Figure 7.39 shows two Schottky signals measured in the storage ring ESR.

Schottky, Transversal, Unbunched Beam

Due to the betatron oscillations around the beam center, the transverse Schot-
tky signal of a coasting beam becomes more complicated. Because the signals
represent the dipole moment and, therefore are gained from the difference of
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Fig. 7.39. Longitudinal Schottky signals [381], taken at the 10th harmonic from an
Ar18+-beam circulating in the ESR. The momentum spread of the uncooled beam is
about ∆p/p = 1× 10−3. The improvement due to cooling down to ∆p/p = 2× 10−5

is illustrated very nicely

a horizontal or vertical pair of electrodes, the signals are smaller (up to two
orders of magnitude) than longitudinal sum signals. For the jth particle, the
amplitude of sinusoidal oscillation is

aj(t) = aj cos(qjωjt + ϕj) (7.125)

with qj as the nonintegral part of the betatron tune Q. In the frequency
domain representation, the dipole moment of the jth particle follows from
dj(t) = aj(t)ij(ω) [6], [285]:

dj(t) = aj cos(qjωjt + ϕj)efj

+∞∑

m=−∞
eimωjt i is the imaginary unit .

(7.126)
Expressing cos(qjωjt+ϕj) by (ei(qjωjt+ϕj)+e−i(qjωjt+ϕj))/2 shows immediately
that the spectrum consists of a series of lines, spaced by f0, but shifted in
frequency (imωj → i(m + qj)ωj). This becomes even clearer by evaluation of
(7.126) keeping in mind that cosx cos y = cos (x − y) cos (x + y)/2:

dj(t) = efjaj(1 +
m=∞∑

m=1

cos
[
(m − q)ωjt + ϕj

]
cos
[
(m + q)ωjt + ϕj

]
. (7.127)

Equation 7.127 describes a frequency modulation, splitting the lines in the
longitudinal of a coasting beam at fm = mf0, into two lines fm+ = (m +
q) f0 and fm+ = (m − q) f0. Therefore, measuring the separation of lines
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Fig. 7.40. Calculated transverse Schottky spectra ( [120]) for m = 30 and 31. Top:
For a value of q = 0.3, the lines are close to the longitudinal peak. Bottom: For a
value of q = 0.7, the lines are widely separated from the longitudinal peak which
in this case leads even to an interchange of the order. Parameters of calculation:
f0 = 1 MHz, ∆p/p = 2 × 10−3, η = 1, ξ = −1, and Q = 4.3 and 4.7

corresponding to the same harmonic number “little q,”the nonintegral part of
the tune, can be determined from

q = m
f +
m − f −

m

f +
m + f −

m
. (7.128)

Remembering that Schottky signals can be obtained without any excitation
of the beam, the q value, derived from (7.128) is the incoherent value of
the tune. This value can differ from a BTF measurement, which due to the
required beam excitation, delivers the coherent value of the tune. Figure 7.40
shows two calculated transverse Schottky spectra to illustrate the powerful
method for determining q. At the same time, it demonstrates that one has to
be careful in the interpretation of such spectra. The correct order of lines can
be checked by a small variation of the tune and observing the shift of the lines.
From the width of the sidebands, it is possible to deduce further information.
Differentiation of f ±

m = (m ± q)f0, applying the results in

∆f ±
m = (m ± q)∆f0 + ∆q f0 , (7.129)

and with ∆q = Qξ ∆p/p from (7.117),

∆f ±
m

f0
=

∆p

p
[(m ± q) η ± Q ξ] . (7.130)

This offers the possibility of determining ξ from a transverse Schottky scan
without beam excitation, if the other parameters can be measured indepen-
dently or are known from the design of the machine.
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Fig. 7.41. Longitudinal Schottky spectrum [381] of a beam bunched and cooled in
the experimental storage ring (ESR) of GSI. Parameters: W = 164 MeV / u, 40Ar18+

ions, measured at the 10th harmonic, mixer frequency f = 14.49 MHz

Schottky, Longitudinal, Bunched Beam

As in linear accelerators, bunches are formed from the action of a rf cavity in a
circular machine. If an individual particle does not cross the accelerating gap
at a stable angle, defined by ∆W = ζe cos φs, then it will execute synchrotron
oscillations around the phase φs of the synchronous particle, circulating with
frequency f0. This results in a modulation in time for the passage of particles
through a pickup. This modulation adds to the ∆p effect according to (7.123).
In (7.119), t has to be replaced by t + tj(sin ωst + ϕj) to derive the equivalent
to (7.120). The evaluation of the resulting equation

ij(t) = efj

+∞∑

m=−∞
eimωj[t+tj(sinωst+ϕ0

j )] (7.131)

ωs = 2πfs fs → (7.118) (7.132)

is straightforward [6, 285] and leads to a series of Bessel functions Jp. Con-
sidering the Schottky signals, each line at frequencies mf0 in the longitudinal
spectrum of a coasting beam splits into an infinite series of lines spaced by fs.
Figure 7.41 shows a spectrum observed at a bunched and cooled Ar-beam in
the ESR. Due to the statistic character of the starting phases ϕ0

j , the spread
∆p/p cannot be determined directly from the width of the peak, as of a coast-
ing beam. But, taking advantage of the relation [285,381]
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∆p

p
=

1
η

∆f

f0
=

2πn

η
fs ∆tb , (7.133)

the momentum spread can be determined by performing an additional mea-
surement of the width in time ∆tb.

Schottky, Transversal, Bunched Beam

The transverse Schottky spectra of a bunched beam arise from a combina-
tion of betatron oscillations, corresponding to an amplitude modulation and
synchrotron oscillations, corresponding to a modulation in time. This leads to
quite complex formulas [6,285]. Each betatron line splits now into an infinite
number of synchrotron satellites, and the spectra become rather complex. In
consequence, their interpretation and evaluation requires much more effort,
as in the three cases discussed. Additionally, the signal-to-noise ratio becomes
quite low. Therefore, probably most applications of Schottky scans are based
on the measurement of longitudinal spectra. An application of Schottky noise
analysis for diagnosis of intense beams in linacs is given in [382].

Remark: No space charge effects have been considered in the discussion of
Schottky signals in circular machines. Space charge forces can lead to changes
in the relation (7.117) and, therefore, other methods of evaluation are required
[383]. Another effect, not considered here, is the deforming and splitting of
longitudinal Schottky signals due to plasma waves in highly cooled beams
[379].
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The Electromagnetic Fields of Bunches

8.1 Introduction

For many problems arising in the field of beam diagnostics, it is sufficient
to derive influenced or induced signals considering a one-dimensional density
distribution of the particles within a bunch or even macropulse. In most cases,
the corresponding coordinate is the z-coordinate, respectively, the time t,
related to each other by z = βct. Typical examples are

• the calculation and interpretation of bunch signals detected with capacitive
or inductive pickups, as discussed in Chap. 5;

• the determination of intensity distributions along the time axis from signals
measured with coaxial Faraday cups (see Chap. 2); and

• the measurement of the beam intensity with beam current transformers
(see Chap. 2).

But, to consider, for example, the effect of space charge on measured sig-
nals or a possible space charge compensation within bunches, it becomes es-
sential to take the spatial extensions of bunches into account, as already briefly
discussed in Chap. 7.

Although there are computer programs [301–307] for to calculating space
charge effects in bunched beams by summing up the interactions of many
single particles, analytical solutions have some advantages:

• The dependencies of all parameters become immediately evident.
• The potentials and field strengths generated by a bunch are known at any

geometric position within and outside the bunches.
• Once the potentials and electromagnetic fields are known for a single bunch

at rest, the evaluation of time-dependent potentials and fields generated
by a moving chain of bunches is straightforward.

• The understanding of space charge effects may become clearer by consider-
ing a single particle in the potential and electromagnetic fields of a moving
bunch.
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• The effects of any partial space charge compensation can be easily taken
into account mathematically by lowering the number of charges within the
bunches.

• There is no need for large computing power to obtain rough estimations
of space charge effects.

In the following, relativistic effects and the magnetic fields of bunches will
be neglected, which means we consider, first of all, low energy rf accelerators
accelerating particles up to β values � 0.5.

If necessary, relativistic effects can be taken into account by applying the
well-known transformation laws [39,245,351] of the four vectors, respectively,
of the second-rank, antisymmetric field strength tensor. A discussion of the
relevant transformation laws as well as the relativistic effects arising is post-
poned to Appendix 8.B at the end of this chapter.

Considering rf accelerators, the geometric dimensions of a bunch are
mostly similar in the two transverse directions. Therefore, it is reasonable
to assume rotational symmetry of the bunches about the longitudinal axis.
Hence, the bunch shape may be approximated by rotational symmetrical el-
lipsoids [395, 396]. Their shape then depends only on the ratio of the two
half-axes a and b. Obviously, the special case a = b = R leads to a spherical
bunch resulting in relatively simple expressions for the potential as well as the
electrical field strength.

To determine potentials and fields, one has to find analytical solutions of
the Poisson equation

∆φ = −ρ(x, y, z)
ε0

(8.1)

ε0 = 8.85 × 10−12 Vs/Am , (8.2)

assuming reasonable density distributions ρ(x, y, z) of the particles within
bunches. From the mathematical point of view, the simplest case is a homo-
geneous distribution with ρ = ρ0 = const, which of course can be only a
very rough approximation for ρ(x, y, z). A better approach is achieved with a
parabolic density distribution.

8.2 Bunches with a Spherical Shape

8.2.1 Charge Distributions

Homogeneously Charged Sphere

For bunches of spherical shape with radius R and a homogeneous charge
density, ρ(x, y, z) is constant and is given by

ρ0 =
3Nζe

4πR3
(8.3)



8.2 Bunches with a Spherical Shape 343

within the limits 0 ≤ r ≤ R, where N is the number of particles within the
bunch, ζ is their charge, and e = 1.602 × 10−19As. For continuous beams,
this corresponds to the well-known distribution function of Kapchinskij-
Vladimirskij (KV) [384].

Parabolic Density Distribution

For continuous beams, a parabolic density distribution known as the
“waterbag” distribution (WB) [308,309], is described by

ρp(r) =
5
2

ρ0

(
1 − r2

R2

)
, (8.4)

within the bunch (0 ≤ r ≤ R). Of course, ρ p(r) = 0 for r ≥ R.

8.2.2 The Potentials

Homogeneously Charged Sphere

The solution of the Poisson equation for a homogeneously charged sphere (8.3)
leads to

φ(r)r ≤R = ρ0

R2

2ε0

(
1 − r2

3R2

)
(8.5)

φ(r)r ≥R = ρ0

R3

3 ε0

1
r

, (8.6)

where (8.5) describes the potential inside the spherical bunch and (8.6) gives
the potential outside the bunch (r > R). In the solution, the influence of the
beam pipe boundary has been neglected.

Sphere with a Parabolic Charge Distribution

For the parabolic distribution according to (8.4), the potential inside the
sphere becomes

φ(r)r ≤R =
5
8

R2

ε0
ρ0

(
1 − 2r2

3R2
+

r4

5R4

)
. (8.7)

Of course, there is no difference in the potential outside the sphere from the
homogeneous charge distribution, given by (8.6).

As an example, the potentials for the two cases are compared in Fig. 8.1
assuming N = 1 × 109, ζ = 4, and R = 10mm.
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Fig. 8.1. Potential of a homogeneously charged sphere in comparison with a
parabolic charge distribution. The data hold for radius R = 10 mm and N =
109 U4+-ions in the sphere

8.2.3 Electric Field Strength

Homogeneously Charged Sphere

There is only a radial component Er of the electric field, which results from :

−−→
E(r) = −−→∇φ(r) = − d

dr
φ(r) .

Inside the sphere, one obtains from (8.5)

E(r)r≤R =
1

3 ε0
ρ0 r , (8.8)

and outside, the field has to be proportional to 1/r2, which immediately fol-
lows from (8.6):

E(r)r≥R =
R3

3 ε0
ρ0

1
r2

. (8.9)

8.2.4 Sphere with a Parabolic Charge Distribution

From (8.7), for the field inside the bunch,
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Fig. 8.2. Electrical field strength of a homogeneously charged sphere in comparison
with a parabolic charge distribution. The data hold for a radius of R = 10 mm and
N = 109 U4+-ions in the sphere

E(r)
r ≤ R

=
5

6 ε0
ρ0 r

(
1 − 3

5
r2

R2

)
. (8.10)

Of course, the field outside the bunch is the same as given by (8.9). In Fig. 8.2,
the two cases are compared. For a homogeneous charge distribution, the
maximum field strength occurs at the surface at r = R; For the parabolic
distribution, the maximum is inside the sphere at rm =

√
5R/3, and the cor-

responding field strength is E(rm) = 5
√

5ρ0 R/(27ε0). For the example, one
obtains rm = 7.454mm and E(rm) = 71.46V/mm.

8.3 Bunches with an Elliptical Shape

8.3.1 Charge Distributions

Here we consider two cases, too:

Homogeneously Charged Ellipsoid

A rotational symmetrical ellipsoid with a homogeneous charge distribution is
comparable to the distribution given by (8.3):

ρe
0 =

3Nζe

4πab2
= ρ0

R3

ab2
. (8.11)
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Fig. 8.3. Illustration of a bunch with an elliptical shape (left). In the
x, y, z-coordinate system, the r-coordinate is given by r =

√
x2 + y2. The figure

on the right-hand side illustrates a parabolic density distribution of the charged
particles within the ellipsoid

Ellipsoid with a Parabolic Charge Distribution

Figure 8.3 illustrates the shape of a rotational symmetrical ellipsoid (left) with
a parabolic distribution in the r- and z-directions, where r =

√
x2 + y2. Here

we have defined x, y as the transverse coordinates and z as the longitudinal
one. The distribution is described by

ρ(r, z) =
5
2
ρe
0

(
1 − r2

b2
− z2

a2

)
. (8.12)

In (8.12), r and z have to fulfill the relation

r2

b2
+

z2

a2
= 1 (8.13)

at the surface of the ellipsoid.
Even in a homogeneous distribution, the boundary conditions at the sur-

face of the ellipsoid lead to very complex expressions in the solution of the
Poisson equation. Therefore, it is practical to introduce a system of confocal
elliptical coordinates [385, 386], which is more adapted to the problem. But,
even in this coordinate system, one arrives at lengthy complex expressions.
The solutions are given in Appendix 8.A of this chapter.

8.3.2 Comparison of Potentials

The potential of a homogeneously charged ellipsoid is given by (8.66) and
(8.67), and the potential of a parabolically charged ellipsoid is described by
(8.83) and (8.82) (see Appendix 8.A).

To compare with the potentials of a sphere, we assume the same number of
particles N = 1×109 with ζ = 4 within an elliptical bunch of the same volume
as the sphere with R = 10mm. In the example, we assume a relatively long,
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Fig. 8.4. Potentials of an elliptical shaped bunch. Left: Potentials along the z-axis.
Right: Potentials along the small axis (η = 0). In the solution, the influence of the
beam pipe boundary has been neglected

slim bunch with a = 5b, leading to b = R/ 3
√

5 = 5.85mm and a = 29.2mm,
which, for example, would correspond to a bunch with ∆t ≈ 500 ps at β =
0.2. Figure 8.4 shows the potentials of homogeneously and the parabolically
charged ellipsoids along the z-axis and along the small axis at the center of
the ellipsoid (η = 0).

8.3.3 Comparison of Electric Fields

It is also of interest to compare the components of electric field strength
between the homogeneously charged ellipsoid and the parabolically charged
one with each other, as well as to compare them with the fields of the charged
sphere. Figure 8.5 shows the field components along the z-axis and along the
small axis with η = 0. The calculation of the fields from (8.99)–(8.101) (see
Appendix 8.A) has been performed with MATHCAD.

Fig. 8.5. Left: Field components for the elliptical bunches in z-direction. Right:
Field components in r-direction
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Conclusion

The equations derived for potentials and field strengths are rather complex,
especially for the more realistic elliptical bunch shapes. Comparing the po-
tentials and fields inside spherically shaped bunches and elliptically shaped
bunches, one finds that the radial components of the field strength do not
differ very much, if the number of charges within the bunches as well as their
volume are comparable. On the other hand, the axial component of the field
strength inside elliptical bunches is reduced, depending on the ratio of the
axes. Due to the complexity of the expressions describing potentials and fields
within elliptically shaped bunches, analytical estimations of space charge ef-
fects are very laborious. But, as experience has shown, in many cases, such
estimations can be approximated well using reasonably scaled potentials and
fields derived for spherically shaped bunches. In some cases, it is even possible
to derive simpler, reasonable approximations of potentials and fields inside
of bunches by considering a dc-beam.

8.4 Comparison with a DC-Beam

8.4.1 The Potentials

For a dc-beam with a homogeneous charge distribution along the longitudinal
z-coordinate and the transverse r-coordinate, the Poisson equation reduces to

1
r

d

dr

[
r

d

dr
Vih(r)

]
= −ρ(r)

ε0
. (8.14)

For a homogeneous charge distribution, the well-known relation i · z = q · v
leads immediately to

ρ(r) = const. = ρ0 =
q

z πR2
=

i

βc πR2
(nonrelativistic) . (8.15)

For the potential inside a beam, a solution of the differential equation (8.14)
is given by

Vh(r)r ≤R = − ρ0

4ε0
r2 . (8.16)

Outside the beam, we have the well-known potential of a line charge given by

V (r)r ≥R =
ρ0R

2

2ε0
ln
(

Rp

r

)
, (8.17)

with Vh(Rp) = 0 and Rp as the pipe radius. The adaptation of the potential
given by (8.16) at r = R to the solution given by (8.17) leads to

Vh(r)r ≤R =
ρ0 R2

4ε0

[
1 + 2 ln

(
Rp

R

)
− r2

R2

]
. (8.18)
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For a parabolic density distribution in the transverse coordinate r,

ρp(r) = 2 ρ0

(
1 − r2

R2

)
,

and as a solution for the potential inside a beam,

Vp(r)r ≤R =
ρ0

2 ε0
r2

(
r2

4R2
− 1
)

. (8.19)

In this case, the adaptation of the potential given by (8.19) at r = R to the
solution given by (8.17) leads to

Vp(r)r ≤R =
ρ0R

2

2ε0

[
3
4

+ ln
(

Rp

R

)
− r2

R2
+

r4

4R4

]
. (8.20)

8.4.2 The Radial Fields

Determination of the radial electric field strength is straightforward and leads
to

Eh(r)r ≤R =
ρ0

2ε0
r (8.21)

for the homogeneous case inside a beam and to

Ep(r)r ≤R =
ρ0

ε0
r

(
1 − r2

2R2

)
(8.22)

for the parabolic distribution inside a beam. Of course, the field outside a
beam is the same in both cases:

E(r)r ≥R =
ρ0

2ε0

R2

r
. (8.23)

Remark. In contrast to the potentials of bunches with spherical and elliptical
shapes, the influence of the beam pipe boundary has been considered in (8.18)
and (8.19) by setting the potentials at the beam pipe radius Rp to zero. But,
as follows immediately from (8.21–8.23), this has no influence on the electric
field strengths. The radial electric field outside a beam may also be derived
from the well-known relation

q =
∫

ρdV = ε0

∫
div E dV = ε0

∮
Er dA → (8.24)

q = 2πr z ε0Er → (8.25)

E(r)r ≥R =
q

z

1
2πε0r

=
ρ0

2ε0

R2

r
. (8.26)

To consider the relativistic effect, (8.15) has to be replaced by ρ0 = i/γβc πR2.
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Fig. 8.6. Radial electrical field strength of a dc-beam with homogeneous and par-
abolic intensity distribution over the radial coordinate. Parameters: R = 10 mm,
i = 23 mA

8.4.3 Comparison with Bunched Beams

Comparison with a Spherical Bunch

To compare the fields of a dc-beam with those of a bunched beam, one has
to specify the electric dc-current i and a ß-value. For a given accelerating
frequency f , the dc-beam current is

i = N f ζ e .

For N = 109, ζ = 4, and f = 36MHz, i = 23mA. Concerning the β value,
it is reasonable to determine β from the relation βc∆t = R. Figure 8.6 shows
the electric field strength for a dc-beam with R = 10mm, β = 0.056 (W =
1.44MeV/u), and ∆t = 0.6 ns (FWHM). To compare the field strength of the
dc-beam (Fig. 8.6), with the field strength of the spherical bunches (Fig. 8.2),
one has to consider the “geometric duty factor” of a bunched beam, which is
given by

D =
2R

βλ
=

2Rf

βc
= 0.043 . (8.27)

Multiplying the values of Fig. 8.6 by 1/D = 23.3, one finds good agreement
between the dc-beam and the spherically shaped bunch.

Comparison with Elliptically Shaped Bunches

Due to the dependency of the r-component on the z-coordinate in an ellipti-
cally shaped bunch, a comparison with a dc-beam is more complex. Because
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Fig. 8.7. Comparison of the radial components along the surface of elliptically
shaped bunches with the maximum field strength of a dc-beam. The line marked 1
corresponds to the maximum field strength of the dc-beam at the surface multiplied
by 1/D, the line marked 2 corresponds to the maximum field strength (×1/D) for
the dc-beam with a parabolic radial intensity distribution. See text for details

the charge density of a dc-beam ρ(r) is proportional to 1/β (8.15), β = 0.055.
On the other hand, the long axis a of the ellipsoid is determined by a = β c∆t.
In the example, a = 29.2 mm, which leads to ∆t = 1.74 ns. Because the small
axis b, is 5.85mm in the example, for the comparison, the radius of the dc-
beam has to be changed to R = 5.85mm. Replacing 2R by 2a in (8.27) results
in D = 0.125. Figure 8.7 shows the radial field component Er for elliptical
bunches at the surface along the z-axis (ξ = ξ0, −1 ≤ η ≤ 1). For comparison,
the line marked 1 gives the radial field strength at the surface of the dc-beam
(R = 5.85mm) multiplied by 1/D = 8, the line marked 2 corresponds to
the maximum field strength at r =

√
2/3R for the dc-beam with a parabolic

radial density distribution, also multiplied by 1/D.

Conclusion

Taking the duty factor of bunched beams into account, the mean electric
field strength within bunches of spherical and elliptical shape can be roughly
estimated from the fields of a dc-beam.

8.5 Estimations of Space Charge Effects

Space charge effects and space charge neutralization are considered in numer-
ous publications. The fundamentals were already discussed in some older basic
works, e.g., [387–394], considering theoretical and practical aspects.
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8.5.1 Electrons or Ions in the Field of Moving Bunches

With respect to beam diagnostics, the movement of electrons in the field of
bunches is of interest for the following reasons:

• To estimate partial neutralization within a bunch by capture of electrons
freed by residual gas ionization which, for example, can reduce the signal of
capacitive pickups, beam transformers, and Faraday cups or even change
the required settings for focusing devices.

• To calculate the distortion of beam profile measurements based on residual
gas ionization caused by deflection of the liberated electrons and ions in
the electric field of moving bunches (see Chap. 4 for a detailed discussion
of this matter).

Capture of Electrons

To discuss the problem and derive the dependencies, the movement of electrons
in the potential of a spherical bunch will be considered. Furthermore, the an-
alytical consideration will be restricted to movement of the electrons in the
z-direction, which is the direction in which the bunches are moving. Some
examples of the three-dimensional case are given from numerical calculations.

The differential equation for the movement of an electron inside a homo-
geneously charged sphere can be derived directly from (8.8):

me
d2

dt2
= me z̈ = −E(r → z)z ≤R =

−Nζe2

4πε0R3
(z − βct) (8.28)

with me as the mass of the electron. Introducing ω2 = Nζe2/4πε0meR
3, (8.28)

becomes
z̈ = −ω2(z − βct), (8.29)

which has the solution,

z(t) =
vz(0) − βc

ω
sin(ωt) + z(0)cos(ωt) + βct (8.30)

and
ż(t) = (vz(0) − βc)cos(ωt) + z(0)sin(ωt) + βc . (8.31)

As an example, we take parameters already used: N = 1 × 109, ζ = 4,
R = 10mm, and β = 0.055. Figure 8.8 shows the movement of an electron
created at the center of the bunch (z(0) = 0) with vz(0) = ż(0) = 0.

From the oscillating motion with a maximum amplitude of about 15mm
(see Fig. 8.8), it seems that the electron would be captured and moving with
the bunch. But the decreasing electric field strength for z > R (see Fig. 8.2)
is not considered in (8.29). Therefore, the electron is lost because the space
charge force is too weak to catch the electron within the bunch.
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Fig. 8.8. Calculated z-coordinate and velocity dz/dt from the solution of the differ-
ential equation (8.29). The electron starts at the coordinate z(0) = 0 and velocity
ż(0) = 0 at the center of the bunch

To derive a condition for the capture of the electron within the bunch
(zmax = R), we consider (8.29) for β = 0 in the phase plane z, ż:

z̈ = −ω2z

ż = y

ẏ = −ω2z

ẏ

ż
=

dy

dz
= −ω2 z

y

ydy = −ω2zdz

y2 = −ω2z2 + C1

y = ż = ±
√

C1 − ω2z2 . (8.32)

The dependency ż = y = f(z) (8.32) describes oscillation in the phase
plane. Figure 8.9 shows the corresponding phase plane plot with C1 as a
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Fig. 8.9. Phase plane plot according to (8.32)

parameter. Obviously, the electron remains inside the bunch if zmax ≤ R =
10mm and żmax ≤ βc = 16.5mm/ns, which leads immediately to C1 ≤ (βc)2.
Therefore, the condition for stable oscillation within the bunch can be derived
from the relation:

(βc)2 = ω2R2, (8.33)

which leads immediately to the required number of charges:

Nh
min =

4πε0 R (βc)2 me

ζe
. (8.34)

This estimation is confirmed by the solution of (8.29). Figure 8.10 shows the
result of increasing the number of particles in the bunch from N = 109 (see
Fig. 8.8) to Nh

min = 2.7 × 109.
It is of interest to see the effect of a parabolic density distribution inside

the spherical bunch on the required number of charges. For the sphere with a
parabolic density distribution according to (8.10), (8.29) changes to

z̈ = −ω2

(
5
2
z − 3

2
z3

R2

)
(8.35)

which is known as the nonlinear differential equation for an oscillator or pen-
dulum.
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Fig. 8.10. Same as Fig. 8.8, but increasing the number of charges within the bunch;
see text

Analogously to (8.32), for the movement in the phase plane,

y = ż = ±

√

C2 − ω2
0

(
z2 − b

z4

2

)
, (8.36)

with ω0 =
√

5/2ω and b = 3 / 5R2. Figure 8.11 shows the corresponding
phase plot reducing the number of particles in a first guess to N = 0.6Nh

min �
1.6 × 109.

Obviously, to estimate Np
min for the parabolically charged sphere, one has

to replace (8.33) by

(βc)2 = ω2
0

(
z2
max − b

z4
max

2

)
. (8.37)

There are two changes in comparison to (8.33):

• The oscillation frequency becomes higher because ω → ω0 =
√

5/2ω.
• R → zmax < R.
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Fig. 8.11. Phase plane plot according to (8.36), see text for details

Comparing the electric field strengths in Fig. 8.2, which represent the at-
tractive forces, it seems reasonable to assume a value between R and

√
5R/3

for zmax, where the maximum of the field strengths occurs. Quadratic aver-
aging according to

z2
max =

∫ R√
5R/3

z2(z2 − b z4

2 )
∫ R√

5R/3
(z2 − b z4

2 )
(8.38)

leads to zmax =
√

41/54R, in good agreement with zmax ∼

√
4/5R from a

numerical solution of (8.35). Inserting b = 3/5R2, ω0 =
√

5/2ω, and zmax �√
4/5R into (8.36),

Np
min ∼ 0.68Nh

min . (8.39)

Of course, there is also a solution of (8.35) in the z-t- plane. Usually this
kind of nonlinear differential equation is solved by successive approximation
with a Fourier series. Figure 8.12 shows the time dependence of z(t) and ż(t)
from an approximation up to the third harmonic, taking N = 1.84 × 109 =
0.68Nh

min. The result confirms the estimation given in (8.39).
Up to now, the simplest case possible has been considered by assuming

• movement of the electron in only one dimension;
• initial coordinates of the electron z(0) = 0, respectively, z(0) = R, ż(0) =

0;
• no attracting field outside of the bunch (|z| > R); and
• no effect of other bunches within a chain of moving bunches.
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Fig. 8.12. Approximate solution of the differential equation (8.35) up to the third
order of a Fourier series. The solution holds for z(0) = R = 10 mm, ż(0) = 0, and
N = 1.8 × 109

Because the field outside the bunch always results in an attractive force,
electrons can move in closed orbits outside the bunch in the phase plane. This
can be shown by taking into account the external field according to (8.9),
which leads to

z̈ = −R3ω2

z2
. (8.40)

ż = y (8.41)
ẏ

ż
=

dy

dz
= −R3ω2

z2y
(8.42)

y dy = −R3ω2 dz

z2
(8.43)

1
2
y2 = R3ω2 1

z
+

1
2
C3 (8.44)

y = ±
√

2R3ω2

z
+ C3 . (8.45)

The solution for y = ż holds outside the bunch and has to be matched at
z = R to solutions of (8.32) for a homogeneously charged spherical bunch and
to (8.36) for a parabolically charged one. The solutions are straightforward in
both cases and the results are shown in Fig. 8.13.

In both diagrams of Fig. 8.13, the inner curves correspond to the movement
within the bunch, the outer ones correspond to electrons moving also in the
external field. Because these electrons move at high speed through the bunch,
they will not contribute to neutralization.

Numerous numerical calculations [395,396] have been performed to study
the conditions that hold electrons with various starting coordinates inside a
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Fig. 8.13. Movement of an electron in the phase plane, considering also the external
field. Left: homogeneously charged spherical bunch with 2.7 × 109 U4+-ions. Right:
spherical bunch with a parabolic charge density distribution and 1.8×109 U4+ ions.
See text for details

bunch. Special attention was given to the initial velocity of electrons. Electrons
are freed from the residual gas by interaction with ions in bunches. Due to
the kinematics, the distribution of the velocity is peaked forward and the
maximum velocity in the z-direction is just two times the velocity of the
bunch. Referring to measured data [397] and calculations for the design of
a bunch shape monitor based on detection of electrons freed by residual gas
ionization (see Chap. 7), the calculated distribution of the velocities for the
z-direction is shown in Fig. 8.14. The maximum is located at about 3% of βc
which in the example corresponds to about 0.5mm/ns.

Figure 8.15 is a phase plane plot obtained from the numerical integration of
(8.29) for |z| < R and (8.40) for |z| > R assuming starting parameters z(0) =
0, vz(0) = +5mm/ns, vz(0) = 2βc (33 mm/ns), and vz(0) = −5mm/ns.
Consistent with analytical considerations, the electron with vz(0) = 2βc just
oscillates inside the bunch and of course an electron starting at vz(0) = βc
gives just one point at z = 0, ż = 0 in the phase plane. Therefore, with the
parameters of the example, all electrons with 0 < vz(0) < 2βc remain in the
bunch, whereas electrons with vz(0) < 0 are lost.

The calculations have shown that the estimations by (8.34), (8.37), and
(8.39) give the right order of magnitude to determine the number N of charges
in a bunch of spherical shape, where neutralization by capture of electrons
in the space charge field just starts. For a bunch with the parameters of the
example, this leads to 109 up to about 1010 U4+-ions. The differences between
the homogeneous density distribution and the parabolic one are marginal and
may be neglected in rough estimations. Estimating N for elliptically shaped
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Fig. 8.14. Calculated velocity distribution of electrons freed by residual gas ioniza-
tion. The data hold for U4+-ions with β = 0.055 onto N2 molecules

Fig. 8.15. Phase plane plot from the numerical solution of (8.29) and (8.40) with
N = 2.7 × 109 U4+-ions in the bunch. Inner curve: vz(0) = 5 mm/ns; middle :
vz(0) = 2βc; outer curve: vz(0) = −5 mm/ns
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Fig. 8.16. Effect of bunch neutralization observed with a capacitive pickup. See
text for details

bunches is more complicated. Reasonable values for N should be estimated
very roughly by calculation of N for a spherical bunch and scaling with the
ratio of the bunch volume.

Example of a Measurement

A capacitive pickup is installed directly behind the gas stripper at the UNI-
LAC. In an accelerator experiment, an Ar1+-beam with a maximum intensity
of about 6mA (macropulse current) was delivered to the stripper. The stripper
works at nearly atmospheric pressure and therefore there should be enough
electrons, which can be captured by the bunches crossing the stripper. Because
the charge of the Ar-ions goes up from 1+ to a spectrum with a maximum
of intensity at 10+ by passing the stripper and charge separation has not yet
taken place at the position of the capacitive pickup, the effect of neutraliza-
tion on the signal amplitude of the capacitive pickup should be observable.
Figure 8.16 shows the pickup signal dependent on beam intensity, measured
with a beam transformer in front of the stripper. Because charge state sepa-
ration has not yet taken place, the number of particles within the bunch can
be calculated from the current measured by the beam current transformer
in front of the stripper. Taking the rf period of T = 27.7 ns and ζ = 1, the
number of Ar-particles in one bunch in front of the stripper can be calculated
from

NAr =
imacro T

ζ e
,

which leads to 1.73×108 U1+-ions per mA of macropulse current. On the other
hand, from the shape of the stripper spectrum, it is reasonable to assume
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ζ = 10 as the mean charge state behind the stripper. With R = 10mm
for a spherically shaped bunch, which seems to be very reasonable at the
stripper position, (8.34) with β = 0.055 leads to Nh

min = 1.08 × 109 for the
homogeneously charged bunch and Np

min = 6.45×108 for the parabolic charge
density distribution. Considering the complexity of the process, the relations
derived for the determination of Nh

min (8.34) and Np
min (8.39) seem to be usable

for rough estimations.

The Ions in Their Field

It is also of interest to estimate the effect of the space charge on ions in
the bunch itself. Of course, exact calculations can be done by considering the
action of all particles on each other, as performed in the well-known numerical
codes of particle dynamics. Using analytical solutions, the momentum spread
of particles due to the action of the space charge force as well as the arising
transverse divergence can be estimated.

Momentum Spread

The change of momentum ∆p/p by the space charge force is given (non-
relativistic) by

∆p

p
=

ζe
∫ t

0

−→
E (−→r , t) dt

Amu βc
. (8.46)

For the estimation, ions on the beam axis (x = 0, y = 0, z �= 0) moving at the
same speed βc as the bunch at t = 0 are considered. Of course, the estimation
using the analytical formulas for the description of the space charge effects
holds only as long as the change of position with respect to the start position
is small compared to the size of the bunch. This means that there will be no
remarkable change in the non-self-consistent charge density distribution [398]
within the bunch. Figure 8.17 shows the results for ß-values of 1.6% and
5.5%. In both cases, a parabolic charge density distribution in spherically
shaped bunches was assumed. Of course, the calculations hold only if no other
forces act on the bunches. The diagrams at the bottom of Fig. 8.17, which
correspond to z(t) = βct, give an estimate of the drift space that may be
tolerated with respect to the increase of the spread by the space charge. The
diagrams at the center of Fig. 8.17 show the displacement ∆z of particles
due to space charge forces. This becomes clear keeping in mind that (non-
relativistic) ∆v = v ∆p/p and ∆z = ∆v t.

Divergence

Considering bunches of spherical shape, estimation of the arising divergence
by the space charge can be taken over from the estimation of ∆p/p in (8.46).
In the nonrelativistic case,
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Fig. 8.17. Top: calculated momentum spread ∆p/p due to the space charge forces
within a sperically shaped bunch with a parabolic density distribution. Center: cal-
culated displacement of the particle due to the change of momentum. Bottom: Drift
of the bunch dependent on time. For all diagrams, left: β = 1.6% right: β = 5.5%

∆p⊥
p

=
∆β⊥

β
=

ẋ

ż
=

dx/dt

dz/dt
= x′, resp, (y′) , (8.47)

where ⊥ holds for the transverse directions x, y. Therefore, the diagrams
of Fig. 8.17 hold also for the estimation of the arising divergence replacing
[10−3] by [mrad]. Similar estimations can be performed for bunches of ellipti-
cal shape. Obviously, in this case, the ∆p values in the longitudinal direction
will differ from the values in the transverse directions, depending on the shape
of the ellipsoid. For an ellipsoid with a > b, we will find ∆p⊥ > ∆pz, whereas
∆pz > ∆p⊥ holds for an ellipsoid with b > a.

8.6 Special Effects of Moving Charged Particles

A charged particle performing a rectilinear motion at constant velocity does
not emit electromagnetic radiation. But this changes if the particle is acceler-
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ated or moves through a medium with changing electromagnetic properties.
Electromagnetic radiation is emitted because the adaptation of the Coulomb
field, moving together with the charge, to the changing boundary conditions
is only possible in this way.

8.6.1 Synchrotron Radiation

In the emission of radiation by acceleration of charged particles, there is a
big difference between linear accelerators and circular machines. For a one-
dimensional accelerated linear motion of an electron, the radiated power is
given by [39]

Ps =
e2c

6πε0(m0c2)2

(
dp

dt

)2

. (8.48)

Taking into account dW = v dp [358] and dW/dx = vdp/dx = dp/dt, one
obtains

Ps =
e2c

6πε0(m0c2)2

(
dW

dx

)2

. (8.49)

For typical values of dW/dx of 15MeV/m, one finds that radiated power is
negligible. This becomes completely different for circular machines. Remem-
bering that dp/dt = pω = p v/R, the equivalent to (8.49) is

Ps =
e2c

6πε0(m0c2)4
W 4

R2
. (8.50)

Comparing electrons with protons leads to

P e
s

P p
s

=
[
931MeV
511 keV

]4
≈ 1.1 × 1013 . (8.51)

For applications in beam diagnostics, the angular distribution is important:

• For nonrelativistic particles, the radiation is ⊥ to dp/dt.
• For relativistic particles, the radiation becomes forward peaked.

Measuring the angular distribution, intensity, and time structure of the
emitted synchrotron radiation allows the determination of many parameters
in beam diagnostics. A drawback is that the application – with the exception
of some very special cases – is limited to circular electron machines.

Example of an Application in Beam Diagnostics

A very sophisticated setup to monitor the particle density distribution in three
dimensions in space has been developed for the large electron-positron storage
ring (LEP) [399].
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Fig. 8.18. Optical setup of a synchrotron light monitoring system. See Figure 8.19
for details of the streak camera. (From Rossa, E., AIP Conference Proceedings 333
(1995), p. 148. With Permission)

Synchrotron radiation is produced by small dipole magnets in the LEP,
so-called miniwiggler. The light generated by the electrons and positrons is col-
lected by two beryllium mirrors inside the beam pipe and guided to a system
of optical components consisting of lenses, attenuators, a splitter, and a delay
line. A Dove prism decomposes the light into two polarization planes to allow
top and side views of the synchrotron light bunches. Figure 8.18 illustrates the
synoptic of the setup. A special double sweep streak camera [399] is used as a
detector, allowing sweep in the horizontal and vertical directions. Figure 8.19
illustrates the operating principle of this device. The measuring system has
been used in many accelerator experiments to improve the performance of
the machine. Figure 8.20 demonstrates the capability of the system showing
longitudinal oscillations of the bunches in the LEP. Because the measuring
system is a non-intercepting device, it is also very suitable for routine oper-
ation of a circular machine. Synchrotron light interferometry is used at the
Jefferson Lab to measure and continuously monitor the energy spread with
high resolution [400].

8.6.2 Cherenkov Radiation

A charged relativistic particle moving at constant velocity βc through a
medium with a refractive index, where the velocity of light with c/n is smaller
than the velocity of the particle, emits Cherenkov radiation (see, e.g., [39]).
For the number N of quanta radiated per unit length with frequencies between
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Fig. 8.19. Working principle of the double sweep streak camera. (From Rossa, E.,
AIP Conference Proceedings 333 (1995), p. 148. With Permission)

Fig. 8.20. Longitudinal oscillations of the electron and positron bunches when the
longitudinal feedback is switched off. (From Rossa, E., AIP Conference Proceedings
333 (1995), p. 148. With Permission)

f and f + df [39, 45],

dN =
πζ2e2

ε0hc

(
1 − 1

n2β2

)
df

c
. (8.52)

Because the relation cos θ = 1/nβ holds between the angle θ of the light rays
and nβ and 1 − cos2θ = sin2 θ, (8.52) can be rewritten as
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dN =
πζ2e2

ε0hc
sin2 θ

df

c
. (8.53)

The measure of the angle θ of emitted Cherenkov light can be used to de-
termine the ß-value of the particles and their energy. The combination of a
transparent Cherenkov radiator coupled via a light guide to a photo-cathode
and a multiplier, known as a Cherenkov counter [360, 401], is often used for
monitoring beam intensities.

8.6.3 Wake Fields

The transport of charged particle bunches through a vacuum system with
changing aperture, respectively, geometry leads to the generation of wake
fields, which is a consequence of the changing impedance. The effect is used
in advanced accelerator technique to accelerate particles [402].

8.6.4 Optical Transition Radiation

Charged particles emit optical transmission radiation (OTR) while traveling
from a medium with dielectric constant ε1 into a medium with dielectric
constant ε2 [403]. The phenomenon is well established within electromagnetic
theory and its application to beam diagnostics was first demonstrated in 1975
[404].

The general expression for the twofold energy distribution of the radiated
energy d2W/dω dΩ is rather complex (see, e.g., [405–407,409], but simplifies
when a particle moving in vacuum with ε1 = 1 hits a target, respectively, this
particle leaves from the target into the vacuum. Hence, crossing such a single
boundary, the charged particle emits radiation into the backward and forward
hemisphere of the target. For a target of metal with ε2 → ∞ [407],

d2W

dω dΩ
=

1
4πε0

ζ2e2

π2c

β2sin2θ
(
γ−2 − β2sin2θ

) =
1

4πε0

ζ2e2

π2c
f(θ) , (8.54)

which holds at a sufficiently large distance between the observation point and
the source of radiation. The angle θ is defined in the forward and backward
hemisphere according to the scheme of Fig. 8.21. The maximum occurs at
θ � 1/γ and, therefore, the separation of the two lobes in each hemisphere
is θ � 2/γ. The radiation is strictly proportional to the beam intensity and
contains information about energy and divergence (→ emittance). Because
the radiation is generated at the boundary between two different media, the
intensity of the emitted radiation is largely independent of the thickness and
material of the foil.

Transition radiation opens a large field of applications, especially,

• Determination of transverse emittances by applying the gradient varying
method (see Chap. 6) for beams with very small radial dimensions typical
of high energy electron machines [408].
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Fig. 8.21. Scheme to illustrate the emission of optical radiation transition with
respect to the angle θ, according to (8.54). The diagram on the right-hand side shows
the dependency f(θ) according to (8.54) for γ = 10 (→ β = 0.995 → 8.4 GeV/u)

• Determination of the energy spread by measuring the size of bunches in a
dispersive section of a beam line [408].

• Bunch length measurements in the picosecond-range. In this application,
one takes advantage of the coherence of OTR in a region where the wave-
length is comparable to the bunch length and applies an auto-correlation
technique [407,408].

• Measurement of bunch shapes and density distributions in the longitudinal
phase space by interferometric spectroscopy (see, e.g., [407] and further
references given there).

8.6.5 Diffraction Radiation

The radiation produced when a particle goes through a limiting aperture, such
as a slit or hole, or passes near the border of a device, such as a screen or
scraper, is known as diffraction radiation [405]. Optical diffraction radiation is
a special case of transition radiation and wake field generation. The relation-
ship to OTR becomes evident if one considers the twofold energy distribution
of the radiated energy d2W/dω dΩ for a charged particle passing through a
hole with radius rh [409]:

d2W

dω dΩ
=

1
4πε0

ζ2e2

π2c

β2 sin2 θ
(
γ−2 − β2 sin2 θ

) [1 − J0(k rh) sin θ]2 (8.55)

=
[

d2W

dω dΩ

]

OTR

× [1 − J0(krh) sin θ]2 . (8.56)

Here k is the wave vector and J0 is the Bessel function. Optical diffraction
radiation may be used for beam diagnostic purposes [410,411] instead of OTR,
if the energy loss in thin foils cannot be tolerated due to thermal heating.
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8.A Solution of the Poisson Equation in the Elliptical
Coordinate System

8.A.1 The Elliptical Coordinate System

The elliptical coordinate system uses two variables ξ, η, defined by

z(ξ, η) = c ξ η (8.57)

ρ(ξ, η) = c

√
(ξ2 − 1)(1 − η2) . (8.58)

Here c is defined by the two focal points and is related to the two half-axes of
the ellipsoid by

c =
√

a2 − b2 . (8.59)

The elliptical coordinates are limited to 1 ≤ ξ ≤ ∞ and −1 ≤ η ≤ 1. The
surface of the ellipsoid is defined by ξ = ξ0 = a/c with the x, y, z-coordinates

x = c

√
(1 − η2) (ξ2

0 − 1) sin t , − π ≤ t ≤ π ,

y = c

√
(1 − η2) (ξ2

0 − 1) cos t ,

z = c η ξ0 .

Figure 8.22 illustrates the dependencies on the parameters ξ and η of an
ellipsoid with b = 5mm and a = 2b = 10mm.

In the newly defined coordinate system, the Laplace-operator is trans-
formed to [385,386]:

∆φ(ξ, η) =
1

c2(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂φ(ξ, η)
∂ξ

+
∂

∂η
(1 − η2)

∂φ(ξ, η)
∂η

]
.

(8.60)
Due to the rotational symmetry, there is no dependence of φ in (8.60). Equa-
tion (8.12) transforms to

ρ(ξ, η) =
5
2

a2

b2
ρe

o

(
1 − ξ2

ξ2
0

)(
1 − η2

ξ2
0

)
. (8.61)

Introducing the definitions,

s1 =
5
2

ρe
0

a2

b2
(8.62)

s2 = −5
2

ρe
0

c2

b2
(8.63)

s3 =
5
2

ρe
0

c4

a2 b2
, (8.64)

and rearranging (8.61) in terms of ξ and η results in
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Fig. 8.22. Example to illustrate the dependencies on the elliptical parameters ξ
and η. In case ξ =const, η varies from −1 · · · + 1, while ξ varies from 1 . . . 2 for the
lines with η =const

ρ(ξ, η) = s1 + s2 (ξ2 + η2) + s3 ξ2 η2 . (8.65)

Remark: In an attempt to generalize the charge distribution inside an ellip-
tical bunch of the type of ρ(ξ, η) = f [(1 − ξ2

ξ2
0
)(1 − η2

ξ2
0
)], with an arbitrary

function f , it has been found that there are only two separable cases: homo-
geneous and parabolic spatial distributions. In all other cases an “Ansatz” in
elliptical coordinates will fail [412].

8.A.2 The Potentials

The Homogeneously Charged Ellipsoid

The solution of the Poisson equation can be adapted from [385]. The poten-
tials inside and outside the ellipsoid are expressed by a series of polynomials,
functions, and their derivatives:

φ(ξ, η)ξ ≤ ξ0
= c0 + c2P2(ξ)P2(η) − 3

2
σ(ξ2 + η2) (8.66)

φ(ξ, η)ξ ≥ ξ0
= a0Q0(ξ) + a2Q2(ξ)P2(η) . (8.67)

Equation (8.66) holds for the potential inside the ellipsoid where ξ can vary
from 1 to ξ0; the potential outside the ellipsoid is described by (8.67) with
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ξ ≥ ξ0. The Pn(x) are the well-known Legendre polynomials with Qn(x)
derived from the recursion formula [386]

Qn+1(x) =
[
(2n + 1)x Qn(x) − nQn−1

n + 1

]
(8.68)

Q0(x) =
1
2
ln
(

x + 1
x − 1

)
(8.69)

Q1(x) =
x

2
ln
(

x + 1
x − 1

)
− 1 . (8.70)

From the boundary condition for the potential and its derivative at ξ = ξ0,
the coefficients are determined [385]:

σ = ρeh

c2

9ε0
(8.71)

a0 = −σ
P ′

2(ξ0)
Q′

0(ξ0)
(8.72)

a2 = σ
P ′

2(ξ0)
Q′

2(ξ0)P2(ξ0) − Q2(ξ0)P ′
2(ξ0)

(8.73)

c0 = σ

[
P2(ξ0)Q′

0(ξ0) − P ′
2(ξ0)Q0(ξ0)

Q′
0(ξ0)

+ 1
]

(8.74)

c2 = σ

[
Q′

2(ξ0)
Q′

2(ξ0)P2(ξ0) − Q2(ξ0)P ′
2(ξ0)

]
. (8.75)

P ′
n(ξ) and Q′

n(ξ) are the derivatives (d/dξ) of Pn(ξ) and Qn(ξ).

The Ellipsoid with a Parabolic Charge Distribution

Referring to the definitions in (8.62), a solution of the Poisson equation (8.1)
has been found for an “Ansatz” of the type of

φ(ξ, η) = A (ξ2 + η2) + B (ξ4 + η4) + C ξ4 η4 (8.76)

with

A = − c2

2ε0

(
s1

3
+

s2

5

)
(8.77)

B = − s2 c2

20 ε0
(8.78)

C = − s3 c2

12 ε0
(8.79)

where s1, s2, s3 are defined by (8.62–8.64). In the coordinate system used,
the boundary conditions at ξ = ξ0 are
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φ(ξ, η)ξ ≤ ξ0
= φ(ξ, η)ξ ≥ ξ0

(8.80)

and [
∂φ(ξ, η)ξ ≤ ξ0

∂ξ

]
=
[
∂φ(ξ, η)ξ ≥ ξ0

∂ξ

]
(8.81)

which have to be fulfilled for all η.
The solution outside the parabolic ellipsoid compares to the solution (8.67)

of the homogeneous ellipsoid adding a term proportional to Q4 P4 to fulfill the
boundary conditions at ξ = ξ0. This leads to

φξ ≥ ξ0
(ξ, η) = A0 Q0(ξ) + A2 Q2(ξ)P2(η) + A4 Q4(ξ)P4(η) . (8.82)

To determine the unknown coefficients A0, A2, and A4, one can add to the
“Ansatz” for φ(ξ, η) of (8.76) any solution of the homogeneous differential
equation, which is regular inside the ellipsoid and, therefore, given by poly-
nomials Pn(ξ) and Pn(η). This leads to

φξ ≤ ξ0
(ξ, η) = φ(ξ, η)ξ ≥ ξ0

+ C0 + C2 P2(ξ)P2(η) + C4 P4(ξ)P4(η) . (8.83)

Now the coefficients C0, C2, C4 can be determined together with A0, A2, A4

from the boundary conditions by comparing the coefficients of equal power in
η. The evaluation of the resulting equations is rather laborious but straight-
forward. Beginning with the A4, C4 coefficients, one gets

A4 =
8

35PQ4

[
P ′

4(ξ0) (B + C ξ4
0) − 4C ξ3

0 P4(ξ0)
]

(8.84)

C4 =
1

P ′
4(ξ0)

[
A4 Q′

4(ξ0) −
32
35

C ξ3
0

]
(8.85)

with
PQ4 = Q4(ξ0)P

′
4(ξ0) − Q′

4(ξ0)P4(ξ0) . (8.86)

Next A2 and C2 are determined as

A2 =
2

3PQ2

[
P ′

2(ξ0)
(

A +
15
4

AC4

)
− P2(ξ0)

15
4

AC4S

]
(8.87)

C2 =
1

P ′
2(ξ0)

[
A2 Q′

2(ξ0) −
5
2

AC4S

]
(8.88)

with

PQ2 = Q2(ξ0)P ′
2(ξ0) − Q′

2(ξ0)P2(ξ0) (8.89)
AC4 = A4 Q4(ξ0) − C2 P2(ξ0) (8.90)

AC4S = A4 Q′
4(ξ0) − C4 P ′

4(ξ0) . (8.91)

Finally A0, C0 are obtained:
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A0 =
1

Q′
0(ξ0)

(
2Aξ0 + 4B ξ3

0 +
1
2

AC2S − 3
8

AC4S

)
(8.92)

C0 = A0 Q0(ξ0) − Aξ2
0 − B ξ4

0 −
1
2

AC2 +
3
8

AC4 (8.93)

with

AC2 = A2 Q2(ξ0) − C2 P2(ξ0) (8.94)
AC2S = A2 Q′

2(ξ0) − C2 P ′
2(ξ0) . (8.95)

The coefficients A,B, and C were already defined in (8.77–8.79). Of course,
the dimension of all coefficients is [V].

8.A.3 The Electric Fields

In the system of elliptical coordinates (ξ, η), the absolute values of the electric
fields can be determined from [386]

∣∣∣
−→∇φ(ξ, η)

∣∣∣ =
1

c ·
√

ξ2 − η2

√
(
ξ2 − 1

) [∂φ(ξ, η)
∂ξ

]2
+ (1 − η2)

[
∂φ(ξ, η)

∂η

]2
.

(8.96)
Evaluation is straightforward but laborious. In most cases, the acceler-

ator physicist is much more interested in the components in the transverse
and longitudinal directions to estimate momentum spread, arising divergence,
emittance growth, and other effects due to space charge. To determine these
field components, one defines an orthonormal basis −→eξ and −→eη , taken from the
vector equation,

−→s = z −→ez + r−→er ,

where −→s is the vector from the origin of the cylindrical coordinates (which
is the center of the ellipsoid) to the point under consideration. With the unit
vectors in the z-and r-directions −→ez and −→er , −→s has the components z and r.
The unit vectors −→eξ and −→eη can be determined from

−→eξ =
∂−→s
∂ξ∣
∣∣∂

−→s
∂ξ

∣
∣∣

=
∂z
∂ξ
−→ez + ∂r

∂ξ
−→er

√
z2

ξ + r2
ξ

(8.97)

−→eη =
∂−→s
∂η∣
∣∣∂

−→s
∂η

∣
∣∣

=
∂z
∂η

−→ez + ∂r
∂η

−→er
√

z2
η + r2

η

, (8.98)

with zξ = ∂z/∂ξ, rξ = ∂r/∂ξ. Taking into account the relations (8.57) and
(8.58), one obtains

−→eξ =
η
√

ξ2 − 1
√

ξ2 − η2

−→ez +
ξ
√

1 − η2

√
ξ2 − η2

−→er (8.99)
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−→eη =
ξ
√

1 − η2

√
ξ2 − η2

−→ez +
η
√

ξ2 − 1
√

ξ2 − η2

−→er (8.100)

with the well-known relations of orthogonal unit vectors
−→eξ

−→eη = 0

and
|−→eξ | = |−→eη | = 1 .

For the gradient of the potentials in the system of confocal elliptical coor-
dinates, one obtains the vector equation

−→∇φ(ξ, η) =
1

√
z2

ξ + r2
ξ

∂φ(ξ, η)
∂ξ

−→eξ +
1

√
z2

η + r2
η

∂φ(ξ, η)
∂η

−→eη . (8.101)

Taking (8.99) and (8.100) into account, the field components in the z- and
r-directions can be derived from the potentials given in (8.66), (8.67) (homo-
geneously charged ellipsoid) and 8.83, 8.82 (parabolically charged ellipsoid).
The resulting analytical expressions become very complex and therefore are
not given here. To calculate the electric fields dependent on the parameters,
the use of programs [84–86] which allow fast numerical differentiation, is rec-
ommended.

8.B Relativistic Effects

As mentioned in the introduction of this chapter, the transformation of elec-
trodynamic quantities between moving coordinate systems and coordinate
systems at rest can be performed by use of four vectors to describe the quan-
tities. Using a notation which takes advantage of complex variables [351], the
relevant four vectors are defined as

−→
X4 = [x1, x2,x3, x4] = [x, y, z, ict] = [−→x , ict] (8.102)
−→
J4 =

[−→
j (−→x , t), icρ(−→x , t)

]
(8.103)

−→
A4 =

[
−→
A (−→x , t),

i

c
ϕ(−→x , t)

]
, (8.104)

with i as the imaginary unit,
−→
j as the current density,

−→
A as the vector poten-

tial, and the scalar potential ϕ. The interesting tensor of the field strengths
is defined as

F =






0 Bz −By − i
cEx

−Bz 0 Bx − i
cEy

By −Bx 0 − i
cEz

i
cEx

i
cEy

i
cEy 0






. (8.105)
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In the context of this treatise, the following transformations are important:

x′ =
x − vxt√
1 − (v

c )2
=

x − vxt√
1 − β2

(8.106)

ρ′ =
ρ − vx jx/c2

√
1 − β2

(8.107)

j′x =
jx − vxρ√

1 − β2
(8.108)

t′ =
t − xvx /c2

√
1 − β2

(8.109)

ϕ′ = γϕ [x → γ(x − vxt)] , γ = 1/
√

1 − β2 (8.110)

A′
x = γA [x → γ(x − vxt)] (8.111)

y = y′, y = y′, j′y = jy, j′z = jz (8.112)

To be consistent with the notation used mostly in the literature, movement
in the z-direction is supposed, giving the transformations of the four vectors
from the moving coordinate system

−→
X4, where

−→
J4 and

−→
A4 are defined in

the fixed coordinate system of the observer, respectively, detector. Assuming−→
A4 = [0, 0, 0, icρ(−→x , t)] in the rest frame of the charges, the fields transform
as follows [351]:

E′
x = Ex, B′

x = Bx (8.113)

E′
y = γ(Ey − vxBz), B′

y = γ

(
By +

vx

c2
Ez

)
(8.114)

E′
z = γ(Ez + vxBy), B′

z = γ

(
Bz −

vx

c2
Ey

)
, (8.115)

which simplifies for a moving point charge due to Bx = By = Bz = 0. Obvi-
ously, the most important consequences taking relativistic effect into account
are

• In comparison to the rest system of the charge, the electric field strength
becomes smaller proportional to 1/γ2 in the direction of the movement,
which means that the field lines are compressed due to the movement.

• On the other hand, the electric field strength will be enhanced ∼ γ per-
pendicularly to the direction of movement.

• Even for the moving point charge with Bx = By = Bz = 0, components of
the magnetic field strength arise as a necessary condition from the trans-
formations. As a consequence, the repulsive forces between two electrons
flying in parallel at the velocity of light c are canceled by the action of the
highly relativistic electromagnetic fields.
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• The same arguments hold when
−→
A4 = [0, 0, 0, icρ(−→x , t)] which means there

are no moving charges in the rest system. It follows from (8.108) that
a component arises in the system moving against the rest system of the
charges.
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Beam Loss Monitoring

Beam loss monitoring becomes essential if lost particles cause non-tolerable
activation of accelerator components by nuclear reactions. Moreover, compo-
nents can be destroyed by the radiation or due to thermal heating by lost
energetic particles. Sensitive beam loss monitoring can help the operator to
achieve high transmission through a machine up to the target, including the
optimization of complex beam transport systems. Beam loss monitors should
localize a particle loss and additionally give information about the time and
intensity of the loss. Beam loss monitoring can be based on

• direct detection of lost particles,
• detection of particles or radiation from nuclear reactions of lost particles

with the surrounding material (wall of beam pipe, slits, scrapers,. . . ). The
most important processes are [413,414,416]:
1. Bremsstrahlung: Because the creation of Bremsstrahlung is based on

the deceleration of moving charged particles in material, the process
can be compared with the generation of synchrotron radiation. Hence,
referring to (8.48) (Chap. 8, Sect. 8.6), the creation of Bremsstrahlung
will be significant only for electrons and dominates energy loss from
collisions above ∼100MeV. The high energy γ rays created can produce
particles by pair production. Depending on the ratio of the energy
between the high energy photons and the rest energy, particle pairs,
such as e±, µ±, π±, can be created. Furthermore, as a consequence
of the interaction of the high energy photons with the nuclei of the
stopping material, processes such as (γ, n), (γ, p), (γ, np) give rise to
further particles.

2. Direct nuclear interactions: If a lost high energy particle hits a target
with a thickness comparable to the range determined by electronic
stopping, nuclear processes become probable. For protons above 1GeV,
the probability is nearly 100%. As a consequence, many channels of
particle production are open. Most of the open channels include fast
neutron emission.
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3. Fragmentation and Fission: For heavy ions, the high energy projec-
tiles can be fragmented or fission can be induced. As a consequence,
radioactive nuclei are produced together with emission of fast protons
and neutrons.

Due to the kinematics of the primary interaction, all secondary particles
are emitted more or less in the forward direction. Emitted charged particles
can be stopped relatively quickly by the surrounding material. This does not
hold for fast neutrons, which can travel large distances through materials.
Overviews of the different types of monitors are given in [415–417]. The re-
liability of beam loss monitors for the LHC has been studied in [418] (see
also [419]).

9.1 Principles and Types of Beam Loss Monitors

9.1.1 Ionization Chamber (IC)

The output signal is proportional to the energy loss of ionizing particles.
The principle has been already discussed in Chap. 2, Sect. 2.6. An example
of a very short ionization chamber is shown in Fig. 2.45 (Chap. 2, Sect. 2.6).
Although ionization chambers of this type are more suitable for beam intensity
measurements, they can be used for beam loss detection, too. The IC is not
sensitive to neutrons and has a rather low efficiency for γ rays; efficiency
for charged particles is high. Concerning response time, one has to keep in
mind that the ions, created in the gas by the incident ionizing particles, need
some time to reach the electrode. The response time can be estimated from
the µ of positive and negative ions in gases. The mobility of the mostly used
gases Ar and CO2, at normal pressure and a temperature of 15◦C is from 0.8–
1.7 (cm/s)/V/cm) [45]. A big advantage of the IC is its very high radiation
hardness.

A well-known example is Panowski’s long ionization chamber (PLIC, [420])
installed at the Stanford Linear Accelerator Center (SLAC). It consists of a
3.5-km hollow coaxial cable, filled with Ar (95%) and CO2 (5%). The loss is
localized by measuring the time delay between direct and reflected signals.

9.1.2 Plastic Scintillators, Diamond Detectors

All devices, suitable for counting ionizing particles, as described in Chap.
2, Sect. 2.7, can be used to detect lost particles. Due to the better radiation
hardness of diamond in comparison to plastic scintillators, this type of detector
should be preferred. A very rough number of the destruction threshold for
plastic materials is 1Mrad= 104 Gy [120]. At this limit, light transmission
is reduced by a factor of 1/e = 0.37. The radiation hardness of diamond is
better by some orders of magnitude.
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Fig. 9.1. Scheme to illustrate beam loss monitoring with fiber optics [120,421]

9.1.3 Fiber Optic Radiation Sensing

A newly developed on-line monitor system for long and complex accelerators
is based on optical fibers, combined with an optical time domain reflectometer
(OTDR) [120, 421]. The principle is illustrated in Fig. 9.1. An optical fiber
is installed close to the beam pipe. Because the material is used manifold in
telecommunication, it can be fabricated in nearly arbitrary lengths at a low
price. Due to radiation destruction, optical fibers change light transmission
and reflection coefficients. As a standard technique in telecommunication, the
quality is tested with a optical time domain reflectometer using a nanoseconds-
laser pulse. A change in the optical properties of the fiber leads to a reflection.
Measuring the arrival time with respect to the start of the input pulse gives
the localization of the distortion, taking the well-known velocity of light in
the fiber into account. Because signal evaluation is performed by OTDR, the
system is not suitable for on-line monitoring, but can be very helpful during
the commissioning phase of a new large machine, such as the TESLA [421].
The detector can be partly repaired by heating the fiber up to about 150◦C.

9.1.4 Scintillation Liquids

A detector of this type consists of a tube, filled with a scintillation liquid,
coupled to a photomultiplier. Like plastic scintillators, the device is sensitive to
charged particles, γ rays, and neutrons. Applying modern techniques of pulse
shape discrimination [126] allows discrimination between different kinds of
particles. Due to the special chemical composition of the solvent, the radiation
hardness is about a factor of 10 better than that of plastic scintillators.

9.1.5 Cherenkov Counter

Taking advantage of the Cherenkov effect, discussed in Chap. 8, Sect. 8.6, the
loss of charged relativistic particles can be detected by a counter, designed
similarly to the liquid scintillator. Water can be used as a source of Cherenkov
radiation, but in most cases a special mixture is used. Depending on the
mixture, the radiation hardness can be very high.
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Fig. 9.2. PIN diode operated in coincidence for beam loss monitoring [120]

9.1.6 PIN Diode

Ionizing particles that cross the gap of a semiconductor create electron–hole
pairs, which can be separated by an applied voltage over the gap. The signal
is amplified by a charge sensitive amplifier and further analyzed. Studying
the pulse height distribution leads to coarse information about the energy of
the particles. In the application to beam loss monitoring, the corresponding
pulses are mostly counted. A beam loss monitor developed at DESY [415] uses
PIN diodes as the detector. A device consisting of two face-to-face mounted
PIN diodes including amplifier and counter is commercially available [95]. The
two PIN diodes are used in coincidence to suppress the signal created by low
energy photons emitted by synchrotron radiation. The principle is illustrated
in Fig. 9.2. Due to the low penetration depth, the photons are stopped at
the first diode and do not reach the other one. A drawback of this detector
system is the small size of PIN diodes, typically 1 cm2, which results in rather
low detection efficiency. This holds especially for application to heavy ion
machines because the solid angle of lost particles or secondary products is
very small for kinematic reasons.

9.1.7 BF3 Counter

Neutrons can be detected by the well known BF3 counter [126, 422]. The
detector is based on the reaction 10B+n → 7Li+α. For thermal neutrons,
the process has a cross section of the order of 1 kBarn (1 Barn= 10−24 cm2).
Figure 9.3 illustrates the principle. A glass tube is filled with BF3 gas and
surrounded by paraffin or concentric layers of polyethylene to moderate the
incident neutrons to thermal energies. A high electric field between a thin
wire in the center of the glass tube and the metallized surface of the tube
ionizes the particles. The fast signal is coupled via a capacitor, amplified
and fed to a counter. To increase the sensitivity with respect to the angle of
incidence, the paraffin or polyethylene moderator can be surrounded by two
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Paraffin, Polyethylen
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Fig. 9.3. Scheme of a BF3 counter for neutron detection

additional layers consisting of polyethylene doped with boron or B2O3 and
another paraffin/polyethylene layer [45, 422]. The counting rate is limited by
the time needed to recharge the wire inside the tube.

9.1.8 Example from Measurements at a Test Setup

Due to the great variety of accelerated ion species in the SIS, the setting of
the extraction system requires beam loss monitoring to optimize parameters
for beam losses. A setup of four suitable beam loss monitors, an IC, a liquid
scintillator, a plastic scintillator, and a BF3 counter has been installed around
the extraction system of the SIS and tested in accelerator experiments [424].
Figure 9.4 shows the results [423], comparing the counts from the different
types of beam loss monitors with the signal from a beam transformer and
data measured in the experiment.

9.1.9 Other Applications of Beam Loss Monitoring

Beam loss monitors are relatively cheap and do not require a complex signal
processing system. They can be installed outside the vacuum system, fixed
at critical locations along an accelerator and beam transport system, or even
moved on demand to positions that require surveillance of beam losses. Relat-
ing typical count rates to the primary particle flux, the sensitivity is very high
and in general cannot be achieved with other non-destructive beam diagnostic
devices. Referring to Fig. 9.4, a counting rate of some thousand counts per
spill allows optimization of the intensity in an experiment with 109–1010 par-
ticles per spill. Thus, beam loss monitoring can be a useful tool for operators
and accelerator physicists in applications such as:

• optimization of complex machine settings during the commissioning phase
of a new accelerator facility;

• quench protecting of superconducting parts, such as magnets, quadrupoles,
and cavities;

• optimization of extraction systems, septa parameters, and scraper posi-
tioning during routine machine operation;
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Fig. 9.4. Left: Counting rates/spill from different types of beam loss monitors
for an O18+-beam accelerated from about 11 to 800 MeV/u with up to 4 × 104

particles/spill. Right: output of the counters as a function of the intensity. The lines
are fits of straight lines to illustrate the linearity [424]

• fast failure detection of important beam transport systems, such as bend-
ing magnets and focusing elements; and

• recording beam loss at critical locations during a long period of machine
operation may be used as a criterion in kind of a high score, for parameter
optimization and machine operation.
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Some Interesting Specialized Aspects
of Beam Diagnostics

One may compare the fitting out of accelerator facilities with more and more
sophisticated diagnostic tools to the development in the car industry, where
ingenious computer-controlled electronic circuits are increasing in support of
the car driver. In both cases, this trend will continue and there will be no
limits for the engineers and physicists in the implementing new ideas. It is
beyond the scope of this book to cover all new developments and specialized
aspects of beam diagnostics. Nevertheless, some modern, specialized beam
diagnostic tools are discussed briefly in the following.

10.1 The Laserwire

For the newest developments in linear collider design, the expected beam
sizes in electron or positron machines are of the order of some micrometers
or even less. The performance of those machines depends very much on the
determination and control of the transverse beam size and emittance. An idea
for non-destructive measurement is based on Compton scattering between the
electrons (positrons) in a bunch and the photons of a laser beam. The theory
is based on the classical Thomson formula for scattering of radiation by a free
charge [425]. In this formula, the momentum of the incident photon has been
neglected. Applying two-body relativistic kinematics to the process leads to
the Compton formula [39,426,427],

λf − λi =
h

m0c
(1 − cos θ). (10.1)

Here θ is the scattering angle in the laboratory system, which is the rest frame
of the electron or positron, and λi, λf are the wavelengths of the photon before
and after scattering. The quantity h/m0c = 2.426 × 10−12 m is the Compton
wavelength. The interaction between a laser beam and an electron beam has
been studied more in general in [430].
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In practical application of a laserwire, a highly intense thin laser beam is
scanned horizontally and vertically across the electron beam. The Compton
scattered photons are detected downstream behind a deflecting magnet with a
photon detector system, e.g., a CsI scintillator. Obviously, the thin laser beam
takes over the role of a scanning wire in a conventional system. Applying
the method, an ultralow vertical emittance of ε = 1.18 × 10−11 mrad has
been determined at the accelerator test facility (KEK) (ATF) [431]. Recent
measurements with micron and submicron resolution using the laserwire are
reported in [432].

An international collaboration “Laser Beam Based Diagnostics” (LBBD)
has been established to study the feasibility of laser based diagnostic tools. The
principle of the laserwire, which is one possible application of lasers in beam
diagnostics (see, e.g., [433–435]), is shown schematically on the homepage of
LBBD [436]. Publications about the laserwire as a powerful diagnostic tool
are summarized in the “Laserwire Bibliography” [428].

10.2 The Fresnel Zone Plate Beam Profile Monitor

A newly developed real-time high-resolution monitor for the accelerator test
facility (KEK) (ATF) [437] is based on detecting synchrotron radiation, using
two Fresnel zone plates (FZP) to magnify monochromatized synchrotron light.
An X-ray CCD camera is used to detect synchrotron radiation (see also [438]).
The monitor takes real-time images of the electron beam with a resolution of
1 µm.

10.3 Beam Profile Monitor Based on a GEM Detector

A new type of beam profile monitor based on a gas electron multiplier (GEM)
is under development at CERN for the antiproton decelerator [439]. The prin-
ciple is similar to the multiwire proportional chambers (MWPC) but is more
suitable at low energies. Because at low energies (5.3-MeV antiprotons in the
case under discussion), MWPC’s are destructive to the beam and antiprotons
can be annihilated, the new monitors are considered as a possible replacement
of the MWPCs.

10.4 High-Resolution Bunch Shape
and Length Measurements

To measure the shape and length of electron bunches in the picosecond region,
a new technique combines the electro-optical detection of the Coulomb field of
an electron bunch and the single-shot cross-correlation of optical pulses [440].
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The measuring system works in real time and non-destructive. Single bunches
of 50-MeV electrons with a length of around 650 fs (FWHM) could be analyzed
by this method. The method takes advantage of the fact that the electric
field lines of a highly relativistic bunch is concentrated perpendicularly to the
direction of movement.

10.5 Electron Beam Scanner

A very thin scanning electron beam is proposed for beam profile determina-
tion [441]. The electrons crossing the beam are scattered by Rutherford scat-
tering, detected, and analyzed based on the Rutherford scattering formula.
The method has some advantages in comparison with residual gas ionization
monitors and can be applied in very high vacuum systems. High velocity and
low energy spread of the scattered electrons allow fast longitudinal bunch
shape measurements, too.

10.6 AC Modulation of System Parameters

Taking advantage of lock-in averaging techniques in signal analysis, the pre-
cision of measurements can be enhanced considerably. One application is k-
modulation, as described in Chap. 5, Sect. 5.4.6. The technique can be ex-
tended to measure other beam parameters by slow modulation of the relevant
accelerator components. An overview of very precise determination of various
beam parameters by ac-modulation is given in [442].
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Sohn Verlagsgesellschafta GmbH Braunschweig, 1981)
150. Strehl, P., Thermische Berechnungen zum Hochstrombetrieb, GSI-Report 94–

03, (1994)
151. Strehl, P., Thermal Aspects of Beam Intercepting Diagnostic Devices, Proc.

5th European Part. Acc. Conference, EPAC96, Sitges, Spain, 1996, p. 1603
152. Zienkiewicz, O. C., Cheung, Y. K., The Engineer, September 24, (1964)
153. Wilson, E. L., Nickell, R. E., Nucl. Eng. Design (Holland) 4, 276 (1966)
154. Zienkiewicz, O. C., The Finite Element Method in Engineering Science, 2nd

ed. (McGraw-Hill, New York, 1971)
155. Strang, G., Fix, G. J., An Analysis of the Finite Element Method (Prentice

Hall, Englewood Cliffs, NJ, 1973)
156. Polivka, R. M., Wilson, E. L., Finite Element Analysis of Nonlinear Heat Trans-

fer Problems, Structural Engineering and Structural Mechanics Department of
Civil Engineering, University of California, Berkeley

157. Hinton, E., Owen, D. R. J., Finite Element Programming Academic Press
London, 1977)

158. Link, M., Finite Elemente in der Statik und Dynamik, (B.G. Teubner Stuttgart,
1984)

159. Jordan-Engeln, G., Reutter, F., Numerische Mathematik für Ingenieure (Bib-
liographisches Institut (BI), Mannheim Wien Zuerich, 1982)

160. Großmann, Ch., Roos, H.-G., Numerik partieller Differentialgleichungen (B.
G. Teubner, Stuttgart, 1992)

161. Marsal, D., Die numerische Lösung partieller Differentialgleichungen in Wis-
senschaft und Technik (Bibliographisches Institut (BI), Mannheim Wien
Zuerich, 1976)

162. Rossi, B., High Energy Particles (Prentice Hall Physics Series, 1952)
163. Handbook of Chemistry and Physics, 56th ed. (CRC Press, Cleveland, OH

1975–1976)
164. Müller, R. W., Strehl, P., Protection of Storage Rings and Ion-Beam Devices

from Melting, Proc. of the 12th Int. Symposium on Heavy Ion Inertial Fusion,
Heidelberg, Germany, Sept. 1997, Nucl. Instrum. Methods Phys. Res. A 415,
305 (1998)
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Synchrotron COSY-Jülich, p. 140 in [25]

223. Venica, E., Utilisation d’un detecteur base sur le principe de l’ionisation d’un
gaz pour la mesure du profil d’un faisceau d’ions dans la domaine des hautes
energies, GSI-Darmstadt, Germany, Report (June 1993)

224. Schotmann, Th., Das Auflösungsvermögen der Restgas Ionisations Strahlprofil
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XVI, p. 1
387. Nezlin, M. V., Plasma Phys. 10, 337 (1968)
388. Evans, L. R., Warner, D. J., Space-charge Neutralisation of Intense Charged

Particle Beams: Some Theoretical Considerations, CERN/MPS/DIN. 71–2,
(August 1971)

389. Holmes, A. J. T., Phys. Rev. A 19 (1), 389 (1979)
390. Hofmann, I., Nucl. Instrum. Methods 187, 281 (1981)
391. Ramirez, J. J., Nucl. Instrum. Methods 187, 289 (1981)
392. Holmes, A. J. T., Neutralization of ion beams, CAS-CERN accelerator school,

Aarhus, Denmark, (Sept. 1986), CERN 87-10, 1987, p. 79
393. Schönlein, A., Emittanzwachstum und Raumladungskompensation beim

Transport intensiver Ionenstrahlen, GSI-Report, GSI-87–4, (Januar 1987)
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aberration 258, 267

abundance 145

ac part 48

accelerating

frequency 160

gap 188

acceleration cycle

cycle 199

accelerator

critical locations 381

experiments 381

frequency 171

heavy ion 271

linear 270, 326, 339, 363

section 258, 260

acceptance 260

accuracy 189, 190, 195, 197, 198, 219,
267

of positioning 275

of time measurements 185

of TOF 182, 184

statistical 333

activation 377

actuator 251, 274

ADC 206, 245

ADC-DAC 148

admittance

complex 161

imaginary part of 161

algorithm 231–233, 255, 257, 266, 325,
326

emittance mode 232

mathematical 316

semiautomatic 267
alignment 195, 251, 252

procedure 151, 153

aluminum foil 289
amplification 131, 226

broadband 192

narrowband 192
amplifier

broadband 169, 199

dynamic range 199
head 197
head, broadband 207

low impedance 22
magnetic 44
narrowband 51

operational 19, 41, 52, 114, 224
power 334
stage 192

tunable, narrowband 173
amplitude

of betatron oscillations 203

of harmonics 171
rf 186

analogy transversal-longitudinal 326
analytical

consideration 352, 358
solution 341
solution, E-field 317

analyzer 323
electrostatic 304, 308, 309, 322, 324
matrix 324

analyzing system 145, 148, 320
electrostatic 322
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angle
deflecting 324
deflection 127, 242, 264, 310, 320,

322
divergence 215
incidence 380
laboratory 292
of lost particles 380
of motion 215
of rotation 278
scattering 295
solid 291–293
steering 151

angular
distribution 306
frequency 278
profile 232, 237
velocity 276

anode
delay line 133, 141
plane 114
wedge, strip, resisitive 133

ansatz 281, 321, 369–371
aperiodic case 281
aperture 151, 194, 198, 312, 320, 323,

325, 366
limiting 274, 293, 299
segmented 157

approximation
bunch by dc-beam 137
bunch signal 195
by dc-beam 138
Fourier series 356
in cylindrical symmetry 98
in two dimensions 93
nonrelativistic 242, 295, 308, 314,

326, 329
of bunch shape 127
of current density 220
of emittance pattern 260
of integral 112
of intensity ratio 249
of temperature rise 95

argon 298
arithmetic average 203, 204
arrangement 152, 186
asymmetry parameter 266
atomic number 114, 118, 292, 293, 302
attenuation 291, 293

beam 304
factor 293

attenuator 364
autocorrelation 367
avalanche 115
averaging 356
Avogadro’s number 16, 79, 293

B field 131
background 312
baffles 325
ballistic galvanometer 51
bandpass filter 192
bandwidth 22, 23, 141, 160, 169, 170,

172, 190, 192, 195, 199, 210
of delay line 133

Barn 380
basic works 351
BCT 132, 192, 341, 352, 360, 381

ac-, dc-part 48
combined 47
design aspects 52
example 38
passive 37
physical model 34
specifications 47

beam
active correction 201
alignment 123, 150, 267
alignment section 151
axis 251
bunched 127, 137, 254, 340, 341
center 195
circulating 334
coasting 336, 337, 339
composition 146
cooled 205, 339, 340
cross section 116
current 1, 15, 334
current surveillance 192
current, absolute value 192
dc 73
diagnostic 44, 332, 341, 352, 363,

366, 367
displacement 177, 208
divergence 255
divergence distribution 235
edge 66, 261, 301
energy 3, 14, 179, 213
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envelopes 240
excitation 333, 338
extension 247
halo 261
highly intense 89
highly relativistic 218
incoherent modulation 334
intense, pulsed 72, 94
intensity 1, 123
intensity monitoring 366
kinetic energy 182
laser 252, 255, 256
loss 71, 99, 122, 151, 270
loss at critical locations 382
loss detection 378
loss monitoring 377, 380, 381
loss monitors 381
loss surveillance 381
main parameters 1
misaligned 217
neutral 32
offset 151, 152
optimization 271
orbit 201
partial 254
periodically pulsed 97
pipe 157, 159, 177, 194, 300, 304,

334, 364
pipe boundary 343
pipe radius 348
pipe wall 377
position 2, 151, 179
position monitoring 201
power 71, 228
power density 298, 304
power loss 118
profile 2, 105, 114, 127, 134, 232, 234,

301
pulse power 99
pulsed 72, 249
radius 221, 254
size 72, 77, 109, 219
spot size 74, 80, 117, 215, 252, 255
stopper 12, 13, 32
time structure of 107
transfer function 3, 205
transport elements 229, 240, 258,

260, 267, 270
transport lines 270

transport section 271
transport system 219, 271, 377
unattenuated, attenuated 187
uranium 89, 120
very intense 243
width 105

beamlet 249, 252, 253
bellows 276
belt 275, 278
bending

magnet 201, 286, 323
magnets 382
radius 318, 320, 324
radius of magnet 264
radius, electrons 14, 140, 319

beryllium 119
mirror 364
oxide 16

Bessel function 339, 367
betatron

frequency spread 204
line 340
oscillation 3, 337, 340
tune 337

Bethe-Bloch formula 28, 30
bin 296, 297
Biot-Savart’s law 36
block diagram 225
Bode plot 48
Bohr 297
Boltzmann constant 303
boundary 231, 366, 370

beam pipe 343, 349
condition 80, 84, 346, 363, 370, 371

BPM 2, 195, 197, 200, 202, 204
broadband electronics 206
minimum number of 204
narrowband signals 207
signal 205
signal processing 198
system 195

Bragg peak 74–76, 79, 82, 94, 99
bremsstrahlung 28, 377
brightness 255
broadband

amplifier system 64
FC 27
signal processing 156

broadening 254
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BTF 205, 333, 334, 338
bunch

arbitrary shape 164
boundaries 317
center 317, 326
chain 192, 341
change of length 200
composition 25
cosine squared 190
cosine squared shape 25, 195
dimensions 317
dimensions, transverse 25
elliptical 346, 351, 360
length 2, 300, 312, 326, 328
length detector 301
length determination 191
length in time 161
length measurement 325
length monitoring 42, 191
length, geometric 169
long 137, 163
microstructure 213
moving 305, 341
moving chain 356
number of 179
oscillation within 354
oscillation, longitudinal 364
oscillations 201
particles within 43, 354
periodic structure 179
relativistic 169
rotation 42
shape 3, 25, 127, 137, 160, 161, 300,

311, 313, 314
shape models 165
shape monitor 358
short 164
shrinking 199
signal 42, 186
size 367
spherical 127, 342, 352, 354
spherical shape 358
spherically shaped 350, 361
square pulse 162
square shape 25, 196
structure 192
structure observation 300
very short 165
volume 360

width 186, 340
width determination 190

buncher 185, 186, 189, 312, 326, 331
bunching factor 255
buttons 194

CAD 4
calibration 198, 252, 271

absolute 148
constant 197

calorimeter 32
calorimetric measurements 32
cancer

therapy 114, 115
treatment by irradiation 65

capacitance 24
stray 36, 39

capacitive
coupling 142
pickup 157

capacitor 380
capacity 159–161, 177

array 228
between strips 142
measuring bridge 198
minimizing of 197
of plates 197
switched 225

carbon 145, 298, 299
carriage 197
cathode planes 114, 115
cavity 329
CCD camera 120–122, 131, 133, 141,

249, 253, 304
center

of gravity 2, 115, 151
of mass 292, 293, 295

ceramic
insulation 34
plates 325

CERN 258
charge

state identification 271
density 137
density distribution 127, 161, 361
distribution 313
distribution, dc-beam 348
distribution, homogeneous 348
distribution, parabolic 138, 314
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exchange foil 187
in bunch 358
mean 187
normalized 164
number 3, 105
number assignment 149
point 164, 173, 174
required 170, 172, 354
separation 360
state 2, 11, 125, 254
state separation 3, 270

charge distribution
cosine squared 164
parabolic 164

charge state 149
assignment 149, 150
behind strippers 147
equilibrium distribution 147
separation 145
spectrum 144, 145

charging up 109
Cherenkov

counter 366, 379
effect 379
light 366
radiation 379
radiator 366

Chevron 131, 132, 140
chopper 252
chromaticity 2, 4, 338
Chromolux 121
circuit

resonant 51
circular machine 260, 270, 339, 340

basics 332
current in 335
energy spread 326
synchrotron radiation 363

circulating 339
circumference 333
classification

of peaks 145
profile measuring devices 105

clock frequency 199
closed orbit 2, 201
coaxial relays 182
coefficient 172, 326, 370, 371

dimensions of 372
in numerical equations 76

FFT 171
of photon-absorption 29
voltage reflection 22

coherence, OTR 367
coincide 315
coincidence 199, 200, 380
collecting

anode 137
data 198
electrons 123, 127
field 127, 137
lengths 135
strips 137
time 136

collector
current 223
rods 124, 134, 141
strip 217, 220, 223
strip width 221
strips 127, 137
time of flight to 130

collimator 151, 288, 289, 293
collision 293, 306
column 256
command field 271
commissioning 183, 188, 215, 258, 259,

379, 381
comparison

FD with FE method 87
of signal processing 199
screens with profile grids 122

complex variables 373
composition

chemical 379
of stopping device 74

compressed air actuator 107
computer

aided 260, 270
control 271
program 267

condenser 308, 324
confocal 373
conformal mapping 175, 177
consistence 358
consistency check 84
contour plot 234
control software 228
convection 298
convention 322
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convergence factor 84
conversion

factor 322
rate 107, 109, 126, 224–226, 228

convoluted spectrum 190
convolution 165
cooled backing 89
cooling 80, 98, 100, 111

by radiation 298
contact 16, 17
water 18

coordinate
conjugate pairs 213
cylindrical 77
longitudinal 161
longitudinal, transverse 2
transverse, longitudinal 346

coordinate system
Cartesian 167, 315
cylindrical 372
elliptical 368, 372
rectangular 2
right-handed 308

copper 75, 86, 89, 90, 253, 299
core

dimensions 37
ferromagnetic 52
lamination 38
material 34, 37, 38
material selection 46
modulated 45, 47
modulation 53
saturation 44
shielded 36
temperature 45
toroidal 47
vibrations of 39

correction 175
coils 201
factor 95

correlation phase 222
coulombic field 28, 363
coulombic field detection 384
counter 380

neutron 380
programmable 199
scintillation, diamond 66
veto 66

counting

rate 288
counting rate 299, 381
counts per spill 68
Courant-Snyder 221
creeping motion 281
cross section 111, 134, 135, 293

differential 306
differential scattering 292
ionization 124
neutron detection 380
total 306

crossover 182, 225
cryogenic environment 178
current

absolute measurement 27
average 2, 13
dc 350
density 373
displacement 155
eddy 38
false 248
image 52
in circular machine 335
influenced 24, 155, 160, 162, 167
leak 14, 15, 17, 18
maximum 111
minimum required 109
per band 336
ratio 248
to voltage conversion 107

cutoff frequency 159
cylinder capacitor 320

DAC 264
damage 99
damped oscillator 281
damping 160, 204

time constant 51
dc

average current 171
beam 13, 72, 176, 192, 225, 226, 228,

249, 255, 286, 348
beam current transformer 45
beam power 17, 84
component 44
component, FFT 171
current 2, 13, 170, 334, 336
machine 271
meter 2
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mode 189
motor 245, 275
SQUID 55
transformer 44, 261
voltage 300, 323

DC-
beam 138

debuncher 186, 326, 329
decay time 59, 121
decelerated 326
deceleration 186
deflecting

condenser 308
field strength 242
plates 242
steerer 151
system 304, 311
voltage 242

deflector
resonant 309

defocusing 153, 299, 301
deformation 301
degradation 217
delay line 115, 133, 141, 143, 364
delay time 200, 228
delta function 335
demodulation 192
density

distribution 286
distribution function 214
distributions 342
parabolic distribution 349

derivation 169, 173, 174, 182
design

emittance parameters 219
parameter, mechanical 243
status 271

destruction threshold 378
DESY 380
detection limit 109, 169
detector 329

array 224
CdTe 63
classification 11, 105
diamond 64, 287, 289
halo 66
harp 132, 217, 219, 228
particle 287
repair by heating 379

sandwich 105, 216, 219, 241
scintillation liquid 379
semiconductor 187, 299
width 223

deviation 296, 317, 319, 323
in energy 285

diagnostic components 274
diagnostic devices 71
diamond 96, 378

counter 288
differential equation 278, 281, 348,

354, 356
homogeneous 371

diode
avalanche 133
light sensitive 106
PIN 380
tunnel 193

dipole 140
dipole magnet 364
dipole moment 336
Dirac 205

function 162
pulse train 205

discriminator 288
dispersion 289

function 262
dispersive section 367
displacement

electric 155
distance determination 185
distortion 173, 192, 379

fringing field 324
distribution

parabolic 248
parabolic, Gaussian 249

divergence 220, 221, 320, 324
angle 269
arising 362, 372
behind slit 223
maximum 247
maximum measurable 219
transverse 361

doped 381
Dove prism 364
downstream 266
drawback 44, 216, 217, 249, 304, 363,

380
drift 323, 327
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drift space 151, 186, 190, 232, 263, 264,
266, 268, 288, 291, 323, 325, 326

droop 36
time constant 37, 38

drop 38
DSP 199
Duratherm R© 107, 116
duty cycle 111, 151, 271, 298, 301
duty factor 72–74, 171, 351

geometric 118
dynamic range 123, 220, 224

eccentric motion 245
efficiency 147, 278, 302, 378, 380

of secondary emission 56, 118
electric circuit diagram 158, 159

equivalent 37
of BCT 36

electric field 114, 167, 306
advanced 165, 168
collecting 123
components 167
dc-beam 350
extraction 324
homogenization 312
moving particles 155
of bunches 24
of moving bunches 352
radial component 177, 314
strength 127, 137, 138, 162, 312, 314,

342, 352, 356
electromagnet 116
electromagnetic

bunch fields 127
lifter 120
theory 366

electron
backscattered 31
beam scanner 385
bremsstrahlung 377
capture 352, 353, 358
catch 352
circular machine 363
classical radius 79
collected 311, 324
collecting 127, 140
created 58, 324, 352
current 301–303, 306
emission 301

emission due to collision 306
emission of secondary 13, 114, 300
emission, secondary 302, 304
energy of secondary 14
escape 306
escaping secondary 106
FC for 28
flying parallel 374
fraction of 308
freed 306, 358
high energy 28
in bunch field 352
liberated 352
lost 358
machine 133, 144
mass 352
movement 356
movement inside sphere 352
number of created 58
number of emitted 56, 302
oscillating 358
per bunch 307
radiated power 363
reference 308, 320, 322
secondary 14, 24, 110, 114, 289, 300,

310, 312, 325
thermal emission of 13
tubes 334
velocity distribution 358

electron machine 366
electron–hole pair 380
electron–ion pair 306, 307
electronic stopping 295, 298, 377
ellipse 221, 326

approximation 325
area 215
boundary 222, 269
fitted 259
parameters 221
parametric representation 221
reconstuction 266
shape, size, orientation 221, 263
Twiss parameters 221

ellipsoid 314, 362, 371
long axis 351
parabolic 371
rotational symmetric 137
rotational symmetrical 342, 345
surface 346, 368
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emission of protons, neutrons 378
emissivity 92, 102
emittance 3, 105, 151, 205, 213, 324

blow up 141
circular machines 218
continuous monitoring 241
data evaluation 267
deformed area 259
destructive measurement 219
ellipse 221, 269
elliptically shaped 301
evaluation modes 232
evaluation of data 224
fast measuring system 241
finite 256
graphical method 269
growth 372
horizontal, vertical 215
longitudinal 285, 312, 329, 331
measuring modes 228
measuring system 216, 246
non-destructive scan 241
nonreproducible 270
normalized 215
pattern 220, 230, 234, 247, 259, 260
reference values 232
rms 6
size, shape 232
transverse, OTR 366

encoder
absolute angular 227
absolute, incremental 219
angular, absolute 198

energy 29
analyzer 312
average 11
beam 149
critical 28
deposited 299
determination 179
deviation 328
distribution 295
distribution, OTR 366
fine-tuning 185
gain 308, 327
injection 135, 188
kinetic 71, 149, 285, 292, 294
kinetic, potential 276, 279
law of conservation 278

loss 28, 57, 147, 291, 296, 299, 306,
367, 377, 378

loss data 58, 126, 135
loss determination 187, 188
loss in matter 73
loss, specific 61, 62, 74, 96, 119
maximum achievable 135
radiated 367
radiated, OTR 366
range 306
recoil 137, 293
relativistic 124
required for 73
separation 183
spread 3, 186, 285, 290, 291, 293,

295, 297, 301, 324–327, 331
spread, OTR 367
straggling 295
thermal 129
to melt 299
to remove atom 63
transfer 324

enrichment 145
entropy 113
envelope 269, 271
equation

characteristic 281
homogeneous 281
inhomogeneous 282
partial, of heat 102

error 188, 265
estimation 246, 249
estimation, TOF 184
in distance 190
in energy 189
of integration 51
quadratic addition 184
systematic 197

ESR 270
BTF 205
layout 9
main features 9
Schottky signals 336

evaluation
method 234
software 240

event 292, 293
excitation 28, 202, 334

sine wave 322
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exploitation 257
exposure time 132
external forces 279
extraction system 323

optimization 381
setting 381

extractor 309

factor of merit 322
failure detection 382
Faraday cup 12, 89, 99, 105, 145, 302,

352
coaxial 23, 26, 341
contact cooled 16
for electrons 30
water cooled 19

FD method 73, 77
FE method 73
feedback

circuit 19
loop 50, 201
loop, active 44
winding 44

ferrites 34
FFT 171, 172, 204
field

accelerating 313
advanced 190
collecting 306
component 128, 317, 319, 347, 372
edge 324
electromagnetic 155, 341
external 313, 357
extraction 315–317
fringing 148, 324
gradient 264
inside, outside dc-beam 349
lines, compressed 374
magnetic 131, 140, 318, 319, 324, 325
magnetic strength 319
of moving particle 25
radial component 155, 351
stray 201
strength, enhanced 374
strength, maximum 356
strength, radial electric 349
strength, surface 345
transformation 374
uniform 328

wake 366
figure of merit 94, 252
file format 240
film boiling 85
fine-tuning 197, 198, 267
finite elements 73
fission 378
fitting procedure 312
fixed reference system 315
flexibility 243
flight time 130, 138, 309, 317, 319
flipping mechanism 120
flow diagram 319
fluctuation

during measurement 225
incoherent, statistical 336
intensity, emittance 249
statistical 334

fluorescence 59
flux quantum 53
fluxgate-sensor 44
flying wire 118
focal points 368
focusing 153

device 352
quadrupoles, sextupoles 150
strength 312

Foerstersonde 44
force 276

attractive 356, 357
centrifugal 322
of gravity 275
repulsive 374

fork 244
Fourier

analysis 171
discrete transform 206
series 356
spectrum 172, 186, 190, 192
transformation 171
transforms 114

free length 276, 282
frequency

accelerating 322
band, Schottky 336
dispersion 332
domain 204, 336, 337
oscillation 355

friction 278
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fringing field 150
FWHM 138, 161, 165, 166, 169, 190,

213, 296, 301, 311, 314, 350
FZP profile monitor 384

gain 114, 115, 132, 136, 224, 226
galvanic elements 19
gap 155, 329, 380

accelerating 339
insulation 19, 34
voltage 188–190

gas amplification 57, 115
gas jet 291
gate 199, 200
Gauss 319, 320
Gaussian

asymmetrical fit 266
density distribution 306
distribution 301
fitting 187
function 151, 258, 261, 266
intensity distribution 67, 110, 260
normal distribution 235
profile 266
shape of peaks 257
shaped charge distribution 115
three-dimensional distribution 310
truncated distribution 240

gear
box 278
ratio 227, 278, 279

GEM detector 384
geometric

parameters 255
relation 245

glass fiber 198
gradient of temperature 17
gradient procedure 204
gradient variation method 266
granite 197
grid, nonlinear 256
ground potential 157
grounded plate 308–311, 315, 317, 320
GSI 177, 183, 253, 258, 270, 293, 304
guard ring 194

half-axis 314, 342
half-life period 136
Hamilton

formalism 3, 213
function 213

handbook
MECL-design 142
stopping power 298

harmonic 44, 160, 172, 304, 322, 336,
356

component 171
first 192
number 173, 333

harp 105, 112, 217, 228
heat

conduction 74, 94
conductivity 16, 72, 74, 85, 89, 111,

298
conductivity, discontinuity 81
flow 84, 98
of fusion 72
specific 72, 73
transfer 74, 94, 96, 99, 111, 252, 298
transfer by conduction 94
transfer, equation of 81

heat transfer
basic laws 72
conduction 13
convection 13
partial equation of 72
time dependence 72

Heaviside
function 171
step function 97, 162

heavy ion 3, 106, 115, 119, 302, 306,
310, 378

accelerator 144, 241
beams, intense, pulsed 251
linac 300
machines 195
PIN diode detectors 380
pulse stability 258
synchrotrons 199

heavy ion fusion 99
hemisphere 366
Herzog apertures 324
high score 382
higher order effects 267
hints 275
hydrogen 131, 134
hyperemittance 249
hypervolume 214
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hysteresis 45

I/U converter 224
I/U-converter 109, 124, 126, 136
IC 378, 381

calibration 57
detection limits 58
maximum size 58
response time 378
saturation effects 58
scheme 57

identification 145, 146
IF 207
IH 183
image 257

current 155, 159
intensifier 131

imaginary
axis 176
unit 335, 337, 373

impedance 141, 142, 156, 170, 195, 322,
366

complex 160
high load 160, 195
low, system 195
matching 22, 157

imperfections 291
inductance 24, 36, 38, 160

stray 37, 39
induction

law of 155
remanent 140

initial condition 128, 324
injection 150, 331

multiturn 47
scheme 188

injector 289
high current 258

insertion length 253
integral part 188, 205
integration 112, 117, 138

time 108, 109, 114, 225
integrator

sample and hold 108
switched 107, 114

intensity
distribution 74, 77, 112
distribution within bunches 127
Gaussian distribution 20, 28

maximum 106
normalized 230
parabolic distribution 80, 82, 94,

220, 223, 252
variations, longitudinal 117
variations, transverse 117

interaction time 127
interactive 256, 271

graphic display 271
manipulations 271

interferometer 367
intermediate step 218, 229, 244
ion 332

charge 24
collecting 127, 315
in bunch 358, 361
incident 302
liberated 352
negative 106
number of 68, 128
positive 106
positive, negative 228
species 136, 144, 147, 219
strange 145
uranium, stripped 114

ion source 145, 215, 227, 230, 246, 249,
258, 270

diversity of 219
sputtering 241
terminal 188

ion-electron pairs 123
ionization 305

of gas 57
of residual gas 52
process 123

irradiation
area of 64
of patients 66
shielding against 197

ISO-center 115
isotope 3, 145, 146

separation 105, 144
isotropic 306
iteration 81, 83, 92, 93, 96, 98

time of 76

K lines 146
k modulation 210
Kapchinskij-Vladimirskij 343
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KEK 266
kick 204
kicker 199, 201, 334
kinematic 358, 378, 380

laboratory system 293–295
Lagrange

formalism 276, 278
function 276, 279, 280

Landau damping 204
Laplace

equation 313, 320
operator 72, 77, 78, 368
transformation 159
variable 37

laser 251, 252
applications 384
mode-locked 286
nanosecond-pulse 379
wire 383

lattice 63
layout 151, 304
least squares fit 147, 149, 150, 152,

202, 203, 257, 265, 267
Legendre polynomials 257, 370
lens 364

electrostatic 300
telescope 251
thin 263, 323
zoom 253

LEP 363, 364
lifetime 121
lifting motion 277
light

emitted 121, 131
fluorescence 131
guide 366
guiding systemj 131
pattern 131, 133
stray 121
transmission 379
UV- 131

light spot 249, 255, 257
line

charge 176
microstrip 64, 157
strip, microstrip 141

linear cut 194
linear potentiometer 219, 276

linearity 123, 175, 210
Liouville, theorem 215, 263

theorem of 214
liquid scintillator 381
little q 338
lobe 366
longitudinal

axis 342
density distribution 300

Loschmidt 293
loss

in signal 114
magnetic 37
ohmic 160

macropulse 298, 301, 304
current 170, 360
length 2, 72, 111
mode 189

magnet
analyzing 105
bending 286
correction 201
deflecting 183, 264
permanent 14
permanent, rare earth 140
steering 151
system 149

magnetic
alloy 140
brake 228, 275, 276
earth’s field 52
field off-set 150
field strength 286
focusing forces 218
hysteresis 148
rigidity 264
sensors 198

magnetostriction 52
magnification 256
magnitude 315, 317, 337
mapping 176, 215
mass

fictitious 280
number 3, 254, 285, 302, 333
ratio 299
reduced 292
rest 214, 254, 308
separation 3, 145
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spectrum 145
wrong 190

matching 215, 260
material

constants 94, 96
construction 15
degeneration 56
isolating 16
scintillating 59
selection 19
sputtered 14
sputtering 15
stopping 377
surrounding 378
thermal characteristics 32
thickness 158

MATHCAD 232, 347
program code 232

matrix
coefficient 265
data 231, 232, 234
elements 265
formalism 263, 322
of measured data 230
representation 223
transformation 325

Maxwell equations 155
MCP 132–134, 136, 137, 140, 141, 287,

289, 290, 298, 304, 322, 325
degradation 136

measuring time 218, 243, 249
medical application 114, 115
melting 243, 252, 299
membrane bellows 275, 276
mesh 76, 89, 90

points 76–79
spacing of lines 76
width 80

metallic sealing 34
MEVVA 7
microphone 39
microphonic

distortions 34
effects 52
noise 55

microstructure 3
mirror 252
misalignment 151, 195, 201, 210, 270
misinterpretations 112

mixer 207, 208
mixture 114
mobility 378
moderator

paraffin, polyethylene 380
modulation

amplitude 340
coherent 336
frequency 337
in time 339, 340
of system parameters 385

moment of inertia 279
momentum 3, 79, 261

change 361
compaction 332
spread 3, 285, 336, 339, 361, 372
transfer 123, 127, 137

monitor 129, 134, 136, 138, 140, 151,
304, 311, 324, 325, 358

capacitive 155
electrostatic 334
fluorescence 131
inductive 165
loop 157
overview 378
residual gas ionization 124, 131
ring-shaped 174
setup of beam loss 381
synchrotron radiation 363

Monte Carlo 317
motion 313, 315, 319

accelerated 363
differential equation of 276
linear, axial 276

Mu-metal 36
MUCIS 7
multigrid method 266
multiplier 366
multislit 258
MWPC 114, 115
Mylar R© 57

narrowband filter 193
negative square root 265
neon 136
network

analyzer 205
frequency 226

neutralization 357, 358, 360
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neutron
counter 380, 381
emission 377
fast 378
IC sensitivity 378
thermal 380

Newton’s formulas 308
niobium 54
nitrogen 131
noise 53, 157, 169, 172, 192, 199, 224,

230, 325
Barkhausen 45, 53
factor 169
figure 43
number 169, 170
power of resistor 170
thermal 40, 53

non-destructive 190–192, 300
non-self-consistent 361
nondestructive

beam diagnostic 381
nonintegral part 188, 205, 337
nonisotropic 306
nonlinearities 322
nonrelativistic 138, 183–185, 190, 290,

292, 293, 348, 361, 363
normalization 171, 196, 225, 264

ß 47
normalized 329

density distribution 166
difference signal 177

nuclear
interactions 377
processes 377
reaction 292, 377
stopping 298

numerical
calculation 357
differentiation 373
fit 204
integration 249, 358
solution 356

observation point 162, 176, 366
off-line, on-line 271
off-set 150, 152
offset 217–219, 230, 244
operator 228, 229, 231, 240, 255, 267,

270, 271, 328, 331, 377, 381

optical component 364
optical fiber 379
orbit 200, 320
order of lines 338
origin 315
orthonormal basis 372
oscillation

betatron 201
betatron, synchrotron 200
damped 39, 51
plasma 39

oscillator 354
oscilloscope 51, 170, 182, 185, 186, 190,

300
digital 171

OTDR 379
OTR 366, 367
overshoot 219
overview 225

pair production 28, 377
Panowski 378
parametrization 269
particle

arriving 323
counting 11, 12, 59, 378
deflection 124
density distribution of 105
distribution 325
distribution, uniform 266
energy 289
energy determination 366
fictitious 285
ionizing 378
loss 377
number of 11, 47, 56, 71
pairs 377
passing hole 367
per spill 381
production 377
reference 285, 308, 317, 325, 326, 333
scattered 288, 298
secondary 378
stopped 106
synchronous 339
velocity 199

path
length 187
of particles 201
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patients 115
pattern 249, 255

hole 249
light spot 250, 256

PC 249, 251, 253, 256
pellets 99
pendulum 354
penetration depth 72, 74, 79, 82, 84,

88–90, 98, 105, 106, 114, 218, 243,
252, 380

pepper-pot
design 258
holes 252, 256
plate 251, 252
principle 249

percentage 233, 234, 296
emittance area 266
hitting collector strips 221
of beam 221, 232
of emittance 232
of maximum intensity 232
of original data 232
passing slit 220

performance 198, 271
permeability 37, 38, 158
phase 186, 189

angle 339
change in 189
convention 185
deviation 325, 328
differences 179
longitudinal 186
plot 355
reference 327
setting 179, 183, 188, 322, 326, 329
shifter 304, 329
shifting 300
switching 326
wrong setting 258

phase plane 105, 214, 219, 230, 247,
249, 258, 332, 353

diagram 285
distribution 221
longitudinal 285, 300, 325
movement in 355
oscillation in 353
plot 353
projected 215
projection 232, 288

transverse 114, 243, 255, 258, 301,
327

transverse, longitudinal 214, 334

phase space 3, 213

coordinates 251

distribution 218

distributions 213

four-dimensional 255

longitudinal 299, 333, 367

plot 289

projections 214

six-dimensional 105, 214

phosphor screens 122

photo

cathode 131

multiplier 133

photocathode 366

photomultiplier 379

photon 377, 380

captured 131

pickup 165, 325, 334

capacitive 157, 177, 183, 185–188,
192, 328, 331, 352, 360

capacitive, inductive 341

circularly shaped 175

coherent signal 204

cylindrical 162

design 158

dimensions 190

electrode 159

important parameters 179

plates, rectangular 167

rectangular 174

segmented 174

segmented, ring-shaped 173

signal 360

signal processing 178

piecewise constant function 112

PIG 7, 144, 145, 241

pileup 288

pitch 227

pixels 257

plasma 252

plasma waves 340

plastic scintillator 379, 381

radiation sensitivity 379

PLL 207

point charge 374
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Poisson equation 74, 313, 342, 346,
348, 369, 370

polarization plane 364
polynomial 369, 371
position determination 194
poststripper 146, 173
potential 162, 300, 308, 313, 320,

341–343, 349, 370
electric 167
ellipsoid 369
gradient 373
inside dc beam 348, 349
inside sphere 343
line charge 348
of line charge 176
real part 176
scalar 373

potiboard 267
power

average 74
density 252, 301
deposition 101
failure 228, 275
flow 81, 84
in Schottky band 336
loss 81, 120
loss by radiation 90
loss, calculated 76
loss, specific 77, 80
macropulse 301
maximum flow 85
radiated 100, 301, 303, 363
rf- 145
spectral density 336
supply 264

preamplifier 182
prebuncher 188, 189
precision of TOF 180
pressure 124, 125, 135, 360

bump 131, 136, 141
normal 378
partial 306
vacuum counter 275

prestripper 173, 183, 251, 253
prestripper section 146
primary interaction 378
product rule 338
profile

asymmetrical 267

grid 105, 106, 112, 244, 246
variation 267
width 264

program
FE 73
numerical 74

programming language 316
projectile 292, 293, 298, 306

fragmented 378
projection 113, 258, 301
properties, scintillation materials 121
proportional region 57
proton 106

cancer therapy 115
linac 131, 300
machine 114, 119, 123, 144
mumber of 120
radiated power 363

prototype 316
of CCC 53
of CdTe detector 63
of RCT 51

proximity effect 173
pulse height

defect 187
distribution 380

pulse shape discrimination 379

Q value 3, 160, 204
quadrupole

constant 264
defocusing 263
focusing 187, 263, 268
focusing, defocusing 327
gradient 267
modulation 210
settings 152

quartz 120, 121
quench protection 381

radiation 90, 298
angular distribution 363
by acceleration 363
Cherenkov 364
cooling 13, 111
cooling by thermal 100
dangerous 151
destroying by 377
destruction 379
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diffraction 367
electromagnetic 362
hardness 62, 63, 67, 121, 378, 379
hardness, diamond 378
intensity 363
length 29, 79
source of, OTR 366
synchrotron 363, 364
time structure 363

radioactive nuclei 378
RAM 199
ramp 206, 261
range 301

dynamic 136
shifter 65
volume 94

rate
expected 136
slew 55
total 135

ratio 163, 174
charge over mass 145, 329
signal-to-noise 169

ray tracing 232
programs 240

rebuncher 186, 312, 326, 331
recoil 123
recombination 58
reference point 274
relativistic 144, 182, 185

correction 162
effect 214, 342, 374
electromagnetic fields 374
factor 333
mass increase 199, 214
particle 364
particles, radiation 363
transformation laws 342

reliability 152
repetition

frequency 171
rate 249

representation, three-dimensional 237
residual gas 123, 124, 127, 128, 134,

137, 304–306, 358
composition 125
electrons 141
fluorescence 131
ionization 127, 133, 140, 352

ionization monitor 105, 113, 266
resistor 160, 311

array 224
chain 325
load 40, 172

resolution 112, 117, 123, 129, 133, 137,
138, 140, 141, 148, 190, 191, 198,
227, 251, 294, 301, 304, 305, 318,
324

factor 295
in divergence 217, 219
of strange profiles 112
spatial 141, 143
time 133

resonance 172
resonant

circuit 51, 160, 171
current transformer 51

resonant deflector
deflector 308

resonator 304, 322
response 123

of monitors 61
time 117

rest
energy 377
frame 374
system 374, 375

revolution 270
frequency 278, 282, 332, 336
time 332

rf
accelerating 261, 304
accelerators 342
amplitude adjusting 186
capture 49
cavity 185, 326, 327, 331, 333, 334,

339
deflector 300, 322, 323
envelope 192
period 2, 189, 310
phase switching 329
resonator 311, 322
setting 331
stability of 180
synchronously 300
tank signals 178
transmitters 173

RFQ 183, 258
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Richardson-Dushmann’s law 13, 111,
301–303

rigidtidy 144
rise time 22, 27, 39, 50, 63, 117, 164
rms

current 336
emittance 240
value 151, 239, 258, 260
values 296

rotating
disk 244
parts 276

rotation of a harp 112
rotor 276
row 255, 256
rubber 231
Rutherford

scattering formula 292
Rutherford scattering 288, 289, 291

sample points 165
sampling 286
satellites 339, 340
saturation 121, 288
scanner 266

Hortig 117
ionization beam 123
rotating wire 116
spiral 117
wire 115

scanning
mode 116
motion 245
speed 116, 118, 119
wire 244, 245

scatterer 292
scattering

angle 213
angle transformation 293
Compton 28
elastic 291
foil 291, 299, 301
multiple 74, 77, 79, 80, 122
rms angle 79
Rutherford 56

Schottky
band 336
longitudinal signals 336
noise 3

noise analysis 340
noise signals 333
pickup 334
scan 334, 340
scan, transverse 338
signal classification 334
signals 205, 338
spectra, transverse 338, 340
transverse signal 336

scintillation material properties 59,
121

scintillator, inorganic 62
scraper 261, 377, 381
screen 228

material 121
phosphor 133, 141

SEM 106, 114, 300
calibration 55
principle 55

semiconductor 328
sensitivity 38, 63, 121, 131, 160, 193,

208
BCT 52
charge 50
current, CCC 54
loss by irradiation 63
of veto counters 68
position 175

separation 144
magnetic 144
mass, isotope 271
of electrode systems 194
of energies 183

septa 381
set-value 186, 263
Shapal M 16, 24
shielding 312

grid 26
shift

register 199
resonance frequency 160

sidebands 338
signal

amplification 107
amplitude 173, 360
broadening 26, 165, 190
composition 166, 168
difference 173, 175, 194
direct, reflected 378
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estimation 161
evaluation 113
evaluation by OTDR 379
extraction 155
extraction principles 155
from coaxial FC 25
inductive extraction 155
influenced 177, 194
maxima 182
maximum 175
maximum-minimum 190
multiplexing 109
non-destructive extraction 33
numerical calculation 165
on one segment 177
periodically repeated 332
processing 118, 133, 136, 141
processing channels 112
processing systems 381
ratio 156
reflected 24
rise time 63
shape 163
sum 173, 175, 194
to-noise ratio 40, 43, 63
transmission 182

signal
processing channel 109

signal processing
broadband 171, 173, 182, 199
channels 108
high impedance 158, 161
low impedance 161
narrowband 173, 178
resonant 171

signal to noise ratio 117
signal-to-noise ratio 160, 170–172, 174,

192, 217, 340
simulation 113

numerical 289
sine wave 326, 327
single gap resonator 185, 312, 326
SIS 108, 270

beam loss 381
beam properties 9
BPM calibration 197
BPM signals 199
bunch length 137
closed orbit 201

emittance measuring 262, 269
excited oscillations 204
injection 114
layout 9
profile monitor 134
revolution frequency 199
revolution time 135
Schottky scan 334
space charge limit 137
stripper in front of 146
transfer channel 131, 312, 331

skineffect 143
SLAC 378
slit 377

construction 89
cooled 228, 243
crosslike 243, 247, 249
extraction 325
geometry 248
jaws 228
pattern 258
position 219, 220, 224, 248
system 89
width 223

slope 138, 329
slow extraction 12
Smirnow formula 95
smoothing 257
software tools 257
solution 357

analytical 73
numerical 73, 77, 78, 101, 113
partial equation of heat 101
Poisson equation 368
regular 371

solvent 379
space charge 127, 128, 141, 253, 317,

361
arising divergence by 361
compensation 315, 341
defocusing effect 218
effect 4, 105, 127, 128, 137, 140, 227,

259, 289, 299, 301, 313, 317, 340,
341, 351, 361, 372

electric field 317
field 123, 312, 315, 358
force 127, 129, 130, 137, 139, 255,

290, 301, 308, 324, 340, 352, 361
limit 136–138
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limitation 51
neutralization 351

spacing 183, 185, 189, 253, 266
spatial 324

coordinate 322
distribution 115
limitations 153
profile 322

spectroscopy 367
spectrum 147

analyzer 207, 208
longitudinal 337
of uranium ions 147
Schottky signals 337
Schottky, coasting beam 339

speed 275, 278, 357, 361
sphere 313

parabolically charged 355
spill 64, 381
spindle 275

ball bearing 227, 278
spiral orbit 318
spiraled motion 324
spline fit 151
splitter 364
spot size 213, 251
spring constant 276
sputtered atoms

number of sputtered 15
sputtering 13, 14

rates 15
square pulse 171
SQUID 53

electronics 54
staircase

function 242
modulation 243

starting position 282
statistics 255
steady state 100, 101, 111, 119, 301
steerer 127, 152, 325
steering 124, 134, 150

effect 267
Stefan-Boltzmann

constant 102
law 90, 317

step function 37
stepping motor 197, 227, 245, 275, 312
stiffness 219, 325

stimulus 205
stopping power 187, 306
straggling 297
strange point 230
streak camera 364, 365
strip line 157, 334
stripline 142
stripper 3, 125, 127, 289, 291, 306, 360

foil 147
gas 147
position 361
spectrum 105, 149, 360

stripping 187
strobe pulses 286
stroke 247, 275
subspaces, phase space 105
substrate 143
superconducting 177, 381

shield 53
superlens 258
suppression of secondary electrons 14
surface condition 302
sweep 243, 300, 364

rf synchronous 286
switched integrator 124, 224, 228
synchronization 117, 249, 304
synchrotron

frequency 333
light bunches 364
oscillation 333, 339, 340
radiation 377, 380

Tables, range, stopping power 74
tantalum 90, 92, 100, 243, 298, 299, 303
target 123, 145, 187, 188, 213, 215, 270,

295, 297, 366, 377
atoms 306
carbon 295
combination 298, 306
copper 95
gas 146, 306
metal 366
nuclei 292, 293
region 94
scattering 292
section 79
tantalum 295, 299
temperature 103
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thickness 79, 102, 119, 188, 297, 299,
307

thin 101, 103
tungsten 104

Taylor series 77, 78
TDC 288, 289, 291
Teflon R© foil 54
telecommunication 44, 379
temperature

change in 32
dependence of heat conductivity 84
difference 82
distribution 93
distribution, stationary 72
gradient 84
initial distribution 82
maximum 85, 86, 89, 94, 96, 100,

111, 252
melting 72, 94, 301
of cooling water 81
rise 94, 252
rise of 94
swing in 101, 104, 111

tensor
of field strength 373
transformation laws 342

TESLA 379
test bench 183
thermal

aspects 19, 252
calculations 28
characteristics 252
characteristics of materials 73
destruction 255
effects 71
effects, estimation 72
emission 304
heating 367, 377
insulation 33
load 107, 118, 298
neutrons 380
point of view 252
problems 299

threshold 226, 230, 232
ticks 256
tilt 243, 252

angle 95
tilting 89, 93, 94, 198
time

arrival 379
axis 301
constant 192
delay 109, 142, 378
dependence 196
difference 189
domain 171, 186, 202
exposure 141
focus 186, 309, 310
integration 225, 228
measuring 229
of flight spectra 187
reference 326
resolution 291, 306
resolution CVD diamond 64
revolution 135, 139, 199
scale 138, 326
structure 124
structure of beam pulse 51

time domain 205
time of flight 289, 294, 308, 329
timing system 200
TOF 179, 183, 185, 196, 200

coarse measurement 183
energy change 185
measurement 182
prebuncher optimitation 188

tolerances 319
tomographic

data evaluation 124
technique 113

tooth wheel 275
toroid

ferrite 51
Vitrovac core 54

torque 275, 278
tracking 291, 295
trajectory 138, 200, 201, 261, 263, 322
transfer

channel 269, 312, 331
function 200
function, nonlinear 194
matrix 152, 264, 267, 322, 323, 327,

329
transformation

bilinear 175
coordinate 323
electrodynamic quantities 373
laws 263
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matrix 264, 265, 323, 329
single particle 324
single-particle 263

transients 121
transit time factor 328
transition energy 332
translation 245
transmission 241, 263, 377

line 24, 158
line, coaxial 23, 64
time 183, 200

transmission line
line 22

transparency 106, 123
TRANSPORT 223
transport

line 153
section 331

travel 308
traversing 327
trial and error 269
triangular shaped 195
trigger 200
TRIM 295, 297, 298
tune 2, 3, 200, 202, 337, 338

coherent value of 338
incoherent value of 338
spread 205
variation 338

tungsten 92, 99, 100, 104, 145, 243,
301, 303

turn-by-turn 199, 200
Twiss parameter 222, 223, 232, 235,

239, 240, 258, 259, 263, 264, 267,
269, 326, 331

UHV feedthrough 216, 217, 227, 274
Ultraperm 34, 38
uncertainty 183
UNILAC 146, 270

bunch length 127
capacitive pickups 177
emittance measuring 267
fluorescence monitor 131
gas stripper 360
harmonic observation 173
high current injector 251
parameters 5
space charge effect 137

stripper 125
stripper section 289, 306
TOF measurements 182
transfer channel 108, 131, 269, 312,

331
unit vector

components 372
orthogonal 373

units 308, 328
upstream 266
uranium 84, 114, 122, 134–136, 138,

147, 219

vector 172, 176, 313, 322, 324, 367
components 315
decomposition 315
equation 372, 373
four 342, 373, 374
potential 36, 373
unit 372

velocity 124, 127
components 128
constant 282
nominal 276
of light 364, 374

viewing
angle 112
screen 105, 120, 251, 266

visualization 228, 231, 240, 257, 289
Vitrovac 34, 54
voltage

between plates 308
breakdown 325
deflection 304
extraction 145
output 159
reference 328, 329, 331
standing wave ratio 23
suppression 302

W-value 125, 135
waist 186, 254, 267, 268
wake field 366, 367
water flow

laminar 85
turbulent 86

waterbag 343
wavelength 60, 121, 131, 189, 202, 367
Web 4
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weight 296
factor 265

weighted point charges 167
wiggler 364
winding

bifilar 34
calibration 33
feedback, Hereward 44
number of 40, 41, 48

window 286
wire 197, 303

break 111
flying 119
heating 301
melting 301
on HV 300

scan 266
scanner 105
secondary electrons from 300
thickness 119

work function 55, 303
Workshop

Beam Diagnostics 4
Beam Instrumentation 4

X-ray 312
spectroscopy 145

yield 56
of secondary electrons 106

zero-crossing 182, 185, 202, 204
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