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Preface

Since the 1920s, particle accelerators have played an important role in research
into the structure of matter, delivering particle beams with well defined proper-
ties to be used in experiments with atomic nuclei or elementary particles. The
machines developed for this purpose have become ever larger over time, driven
by the need for very high particle energies, and have grown to sizes of 10 km and
above. In circular electron-beam accelerators an intense form of electromagnetic
radiation, known as synchrotron radiation, is emitted at energies above a few
tens of MeV. This radiation has some very useful properties, and for the past
three decades has primarily been used in fixed target experiments. The impor-
tance of this synchrotron radiation has grown so much around the world that
today many machines are built exclusively for this purpose. :

This book sets out to explain systematically the key physical principles be-
hind particle accelerators and the basics of high-energy particle physics as well
as the production of synchrotron radiation. There are so many different kinds of
accelerator, with such a variety of different uses, that it is not possible to consider
all aspects of current accelerator technology here. Instead, after introducing the
fundamental principles common to all types of accelerators, we concentrate upon
the electron storage ring. This type of accelerator has proven to be extraordinar-
ily successful, both for elementary particle physics and for the production of syn-
chrotron radiation. The criteria used to optimize these machines for these two dif-
ferent uses are discussed extensively. Throughout the text the aim is to present all
derivations clearly and to carefully justify any approximations that are needed.
Wherever possible, the description is illustrated with figures and diagrams.

The first ideas for this book were developed over many years of building and
operating accelerators at the German Electron-Synchrotron Laboratory DESY
in Hamburg. It often proved difficult, in the short time available, to bring young
physicists and engineers up to speed with the physics of modern accelerators,
since hardly any suitable literature was available. Furthermore, there were al-
ways misunderstandings with the experimental groups using the accelerators,
due to a lack of understanding of how accelerators work. This was addressed
first by seminars and then by courses of lectures at autumn schools. From these
beginnings arose a special lecture course on the physics of particle accelerators,
which has been given since 1987 at the University of Dortmund. The experiences
gained from this, along with the comments of the students, have shaped the
treatment presented in this text.

This book is aimed at all students wishing either to become directly involved
in the development and construction of accelerators, or to use them to experiment
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in nuclear and particle physics or use synchrotron radiation in fixed target exper-
iments. In addition, it is recommended to all practising physicists and engineers
who wish to become familiar with the operation and physical limitations of the
particle accelerators at which they perform their experiments.

In putting together the various topics in this book, I benefited from numer-
ous suggestions and discussions with my colleagues, with whom I have enjoyed
many years of very fruitful collaboration. Particular thanks are due to the former
director of the accelerator division at the German Electron Synchrotron DESY,
Professor G. A. Voss, under whose leadership I gained much valuable experience.

Dortmund

January 1996 K. W.

Translator’s note

I am grateful to Dr Roman Walczak, who recommended the original edition of
this book to his students at Oxford University. I am even more grateful to the
students for rebelling because it was in German and demanding a translation!

J. McF.
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1
Introduction

1.1 The importance of high energy particles in fundamental
research

The study of the basic building blocks of matter and the forces which act be-
tween them is a fundamental area of physics. The structures under scrutiny are
extraordinarily small, sometimes well below 10~® m, and in order to perform
experiments at this scale probes with correspondingly high spatial resolution are
needed. Visible light, with a wavelength X = 500 nm, is wholly inadequate. In-
stead, high energy photon or particle beams have proven to be excellent tools,
and the results of elementary particle physics would be unimaginable without
them. High energy particle beams are thus essential to this field of experimental
physics. \

In general a microstructure may only be resolved by a probe, for example
electromagnetic radiation, if the wavelength is small compared to the size of
the structure. Thus wavelengths below A < 1071° m are required in elementary
particle physics. The photon energy of this radiation is

E,=hv= % =2x10710J. (1.1)

If these photons are produced via bremsstrahlung from energetic electron beams,
then particle energies of

E.,=eU  with E.>E, (1.2)

are required. To achieve such energies, the electrons in the beam must cross a
total electrical potential U > F,/e = 1.2 x 10° V. Similar considerations apply
to particle beams, for which the de Broglie wavelength must again be small
compared to the size of the structure. This wavelength is given by the relation
h  he

where p and E are the momentum and energy of the particle, respectively. Com-
paring this with relation (1.1) shows that similarly high particle energies are also
necessary here.

In physics, energy is usually measured in the unit of the Joule (J). However,
this unit is not very convenient when describing particle beams, and in general
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T II I Fig. 1.1 Definition of the eV. (1 keV = 103
= LI eV, 1 MeV = 10° eV, 1 GeV = 10° eV, 1 TeV
1 volt = 10'2 V).

the unit of the eV (electron volt) is preferred. This is the kinetic energy gained
by a particle of elementary charge e = 1.602 x 10~'° C as it crosses a potential
difference of AU = 1 V. The conversion factor is thus 1 eV = 1.602x 1071 J. To
describe higher particle energies the convenient units keV, MeV, GeV, and TeV
are also used (see Fig. 1.1). It should be noted at this point that the SI (MKSA)
system of units will generally be used in this book. Where different units are
used in particular cases, this will be clearly stated.

Another important aspect of elementary particle physics, as well as the res-
olution of the finest structures of matter, is the production of new, mostly very
short-lived, particles. The amount of energy needed to produce a particle follows
directly from the fundamental relation

E =mc’. (1.4)

Note that most particles can only be produced along with their antiparticles
in pairs; for example electrons and positrons are produced together from high-
energy v rays (Fig. 1.2).

As a result of the conservation of momentum, a reaction of this kind can
only take place in the vicinity of a heavy nucleus. The nucleus itself gains some

photon
ANNANANAN P @
nucleus .
Fig. 1.2 Production of an et e~ pair
e in the collision of a high-energy photon
with a heavy nucleus.

Forces used in particle acceleration 3

momentum, and hence also energy, which is then not available for particle pro-
duction. The ~y-ray energy needed for particle production is therefore always
higher than that given by relation (1.4}, namely

E, > 2mec® =1.637 x 10713 J = 1.02 MeV. 1.5
Y

This is the threshold energy for the production of electron—positron pairs, where
each particle has a mass m = 9.108 x 1073! kg, corresponding to a rest energy of
Ey = 511 keV. The rest energies of elementary particles investigated nowadays
are considerably higher. A few examples are:

proton P : Ey, = 938 MeV
b quark b : Ey = 4735 MeV
vector boson Zo : Ey = 91190 MeV
t quark t : Ey = 174000 MeV

In order to produce these particles, correspondingly high energies must be avail-
able.

1.2 Forces used in particle acceleration

Since the velocity v of elementary particles studied in collisions is generally close
to the velocity of light (¢ = 2.997925 x 108 m/s), the energy must be written in
the relativistically invariant form

E = y/m?ct + p2c?

Here the only free parameter is the momentum p of the particle. In the usual
notation 8 = v/c and v = (1 — 82)71/2, the relativistic particle momentum is
given by the relation

(mo = rest mass). (1.6)

P = Mmv = ymgv (1.7).
and the energy-dependent particle mass m = ymg. The increase in energy F in
(1.6) is the same as the increase in the particle momentum p. The momentum
can only be changed by the action of a force F on the particle, as described by
Newton'’s second law of motion

p=F. (1.8)
In order to reach high kinetic energies, a sufficiently strong force must be exerted
on the particle for a sufficient period of time. Nature offers us four different forces,
listed along with their most important properties in Table 1.1. Tt is clear that
forces with a range below 10715 m are of no practical use for particle acceleration.
The strong force, which might have been useful because of its relative strength,
is therefore ruled out, as of course is the weak force. Gravity is many orders of
magnitude too weak. The only possible choice left is the electromagnetic force.
When a particle of velocity v passes through a volume containing a magnetic
field B and an electric field E it is acted upon by the Lorentz force

IF:e(va+E).| (1.9)

As the particle moves from point 71 to r3, its energy changes by the amount
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Table 1.1 The four forces of nature

force relative strength range [m] particles
affected
gravity T 6x 10730 00 all particles

electromagnetism 1/137 . 00 charged
i particles

strong force ~ 1 10715 — 1016 hadrons
weak force 1075 < 10716 hadrons
& leptons

T2 T2
AE:/F-dr:e/(va+E)~dr. (1.10)
T1 T ‘

During the motion the path element dr is always parallel to the velocity vector
v. The vector v x B is thus perpendicular to dr, i.e. (vx B)-dr = 0. Hence
the magnetic field B does not change the energy of the particle. Acceleration
involving an increase in energy can thus only be achieved by the use of electric
fields. The gain in energy follows directly from (1.10) and is

T2
AE:e/E~dr=eU, (1.11)
T

where U is the voltage crossed by the particle.

Although magnetic fields do not contribute to the energy of the particle, they
play a very important role when forces are required which act perpendicular to
the particle’s direction of motion. Such forces are used to steer, bend and focus
particle beams.

Accelerator physics is concerned with these two problems: the acceleration
and steering of particle beams. Both processes rely on the electromagnetic
force and hence on the foundations of classical electrodynamics. Here Maxwell’s
equations are of fundamental importance. In addition, the most important results
of the special theory of relativity are required. A knowledge of these fundamen-
tals will be assumed in what follows; a summary of the most important relations
can be found in the appendices.

1.3 Overview of the development of accelerators

Since the 1920s various machines have been developed to accelerate particle
beams for experimental physics, always with the principal objective of reaching
ever higher energies. An overview of the most significant advances will be given in
this chapter, and the various types of accelerator which have played an important
part in physics so far will be introduced. A detailed description of the early
developments in accelerator physics can be found in Livingston and Blewett [1].

Overview of the development of accelerators 5

1.3.1 The direct-voltage accelerator

The simplest particle accelerators use a constant electric field between two elec-
trodes, produced by a high voltage generator. This principle is illustrated in
Fig. 1.3. One of the electrodes contains the particle source. In the case of elec-
tron beams this is a thermionic cathode, widely used in vacuum tube technology.
Protons, as well as light and heavy ions, are extracted from the gas phase by
using a further DC or high frequency voltage to ionize a very rarified gas and so
produce a plasma inside the particle source. Charged particles are then contin-
uously emitted from the plasma, and are accelerated by the electric field. In the
accelerating region there is a relatively good vacuum, in order to avoid particle
collisions with residual gas molecules. The particles are thus continuously accel-
erated without any loss of energy until they reach the second electrode. There
they exit the accelerator and usually traverse a further field-free drift region,
through which they travel at constant energy until they reach a target. This
principle is very widely employed in research and technology, and all modern
VDU screens and oscilloscopes are based upon it. The particle energies which
can be reached in this way are, however, very limited by modern standards.

In electrostatic accelerators the maximum achievable energy is directly pro-
portional to the maximum voltage which can be developed, and this gives the
energy limit. This may be seen from the curves in Fig. 1.4, which show the de-
pendence of current on voltage in electrostatic accelerators. The current may
be divided into essentially three components. Since the conductivity of an insu-
lator is never quite zero, there is always an ohmic component, which increases
in proportion to the voltage. This element can be made very small by a judi-
cious choice of materials and careful construction. The second component, arises
due to the ions which are always present in the residual gas. It very quickly
reaches a constant saturation level if the applied voltage is so high that space
charge effects become negligible and all the ions are sucked out. The acceler-
ated particle beam is also part of this component of the current. The third

particle source

. t
high voltage / E f}eld arget
generator / / ‘__JA-
U > .
- _— e — — — — —1 > H—
— [/ 5 12

3 L
Yoo

particle beam

Fig. 1.3 General principle of the electrostatic accelerator.
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A
I

corona
formation

ion
current

0 t -

u. U
Fig. 1.4 Dependence of the current on the applied high voltage in electrostatic accel-
erators.

component, corona formation, leads to the actual energy limit. At low voltages
it is completely unmeasurable, but at higher voltages the field strength close to
the electrodes grows so much that ions and electrons produced in this region
are accelerated to considerable energies. They collide with gas molecules and
so produce many more ions, which themselves undergo the same process. The
result is an avalanche of charge carriers causing spark discharge and the break-
down of the high voltage. The current grows expounentially in the region of the
corona formation. It is this effect which limits the maximum achievable energy.
Voltages of a few MV are technically possible, and hence particles of unit charge
can reach a maximum energy of a few MeV. This is the general limit for elec-
trostatic accelerators: substantially higher energies cannot be achieved with this
technology.

1.3.2 The Cockroft-Walton cascade generator

A significant problem for electrostatic accelerators is the production of suffi-
ciently high accelerating voltages. At the beginning of the 1930s, Cockroft and
Walton [2] developed a high voltage generator based on a system of multiple
rectifiers. At their first attempt they achieved a voltage of around 400000 V.
The operation of this generator [3, 4], also known as the Greinacker circuit, is
explained in Fig. 1.5. At point A a transformer produces a sinusoidally varying
voltage U(t) = Usinwt of frequency w. The first rectifying diode ensures that
at point B the voltage never goes negative. Thus the capacitor C'y charges up to
a potential U. At point B the voltage now oscillates between the values 0 and

2U. The capacitor C5 is then charged up via the second rectifier to a potential

Overview of the development of accelerators T

voltage

GU—~ o 7as —= s

transformer =

Fig. 1.5 Operation of the Cockroft—-Walton cascade generator.

of 2U. In the same way as before, the third diode ensures that the potential
at point C does not fall below 2U. Here it varies between 2U and 4U, and so
with the help of the fourth rectifier a voltage of 4U is generated. The pattern is
repeated, with many such rectifier stages arranged one after another. Without
loading, the maximum achievable voltage is then 2nU, where n is the number of
rectifier stages.

It must be noted here that a current I must always be drawn from the genera-
tor. This always discharges the capacitors slightly when the diodes are in reverse
bias, leading to a somewhat lower generated voltage than that expected simply
from the number of rectifier stages. The current-dependent voltage generated by
the cascade circuit is given more exactly by the relation
Ut = 2Un — %% (§n3 + in2 + %n) : (1.12)
It is immediately apparent that a high capacitance C' and a high operating
frequency w strongly reduce the dependence on the current.

In Cockroft—Walton accelerators, voltages up to about 4 MV can be reached.
By using pulsed particle beams with pulse lengths of a few us, beam currents of
several hundred mA have been achieved.

1.3.3 The Marx generator

An alternative way to produce high voltages for particle acceleration is that
used by the Marx generator. It too has a cascade design, but only delivers
short voltage pulses. However, this allows very high particle currents. As Fig. 1.6
shows, the Marx generator consists of a network of resistors and capacitors. The
capacitors C; to Cy4, which are connected quasi in parallel, are charged across the
resistors R up to a voltage U by a high voltage supply. As the applied voltage
increases it approaches the firing voltage of the spark gaps. When this firing
voltage is reached, spark discharge occurs and the spark gaps act as very low-
resistance switches. The value of the load resistors R is, however, very large. As
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high voltage .
power supply R R R R 4U %
| | SO | | IS} | IS | | S|
C, C,
- -

-+ S —p

\
VAR Ar A

—— spark gap spark gap spark gap

Fig. 1.6 The Marx generator.

the spark gap fires the capacitors become connected in series and the combined
voltage then reaches the value

Uiot = nU, (1.13)

where n is the number of capacitors used. Since this process takes place very
rapidly, lasting much less than 1 us, discharging of the capacitors is not significant
and may be neglected. Using 100 capacitors with capacitances of 2uF and an
applied voltage of U = 20 kV, pulse lengths of 40 ns and beam currents of up to
I =500 kA can be achieved. In 1932 peak voltages of around 6 MV were reached
using a Marx generator built by General Electric [5].

1.3.4 The Van de Graaff accelerator

In 1930 R.J. Van de Graaff [6] began development work on the high voltage
generator that was later named after him. The key element is a belt ‘'made of
isolating material looped around two rollers (Fig. 1.7), which is driven like a
conveyor belt by an electric motor. Charge produced in corona formation around
a sharp electrode is transferred onto the belt. The belt carries this charge up to an
isolated conducting dome, where it is then discharged through a second electrode.
The dome thus charges up continuously until the critical voltage limit is reached.
The dome is connected to the upper electrode of the particle accelerator proper,
which also contains the particle source. The accelerator consists of a large number
of circular electrodes arranged in a line and connected to one another by high-
value resistors. This design reduces the risk of spark discharge, since the voltage
between the individual electrodes is comparatively low, resulting in a relatively
even field distribution. In addition, the electrodes act as electrostatic lenses which
focus the beam to a certain extent.

Under normal circumstances Van de Graaff generators can produce voltages
of up to 2 MV. Considerably higher values, up to 10 MV, become possible if the
generator and accelerator section are placed in a tank filled with an insulating
gas, such as SFg, at a pressure of around 1 MPa.

By stripping charge from the ions during acceleration it is possible to make
use of the potential twice and hence produce particle beams with twice as much
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Fig. 1.7 The Van de Graaff accelerator.

energy. In 1936 Van de Graaff and collaborators built the first accelerator based
on this principle, also known as a tandem accelerator. Figure 1.8 shows the
basic layout. The ions, which are initially positive, come from an ion source and
pass into a charge exchange region where they gain electrons until they have
an excess and become negative ions.. A homogeneous magnetic field selects ions
with a particular e/m ratio which then enter the accelerator. The particles cross
the potential difference once and then collide with gas molecules and lose their
added electrons, so that when they leave this so-called ‘gas stripper’ they are once
again positive ions. Because their charge has been reversed they gain energy a
second time in the accelerating section as they cross back through the potential
difference down to earth. As the particles exit the accelerator a further bending
magnet selects out those with the requisite charge and energy. This principle
allows energies of up to 1000 MeV to be reached with multiply ionized ions.

1.3.5 The linear accelerator

All electrostatic accelerators which produce high voltages are limited by corona
formation and discharge, as described above. In 1925 the Swede Ising suggested
using rapidly changing high frequency voltages instead of direct voltages, in order
to avoid this problem [7]. Three years later Widerde performed the first successful
test of a linear accelerator based on this principle [8]. Illustrated in Fig. 1.9,
it consists of a series of metal drift tubes arranged along the beam axis and
connected, with alternating polarity, to a radiofrequency (RF) supply. The supply
delivers a high-frequency alternating voltage of the form U(t) = Upay sinwt.
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Fig. 1.8 The tandem accelerator.

During a half period the voltage applied to the first drift tube acts to accelerate
the particles leaving the ion source. The particles reach the first drift tube with a
velocity vy. They then pass through this drift tube, which acts as a Faraday cage
and shields them from external fields. Meanwhile the direction of the RF field
is reversed without the particles feeling any effect. When they reach the gap
between the first and second drift tubes, they again undergo an acceleration.
This process is repeated for each of the drift tubes. After the i-th drift tube the
particles of charge ¢ have reached an energy :

E,i = iquax sin \Ilo, (114)

where Wy is the average phase of the RF voltage that the particles see as they
cross the gaps. It is immediately evident that the energy is again proportional to
the number of stages i traversed by the particles. The important point, however,
is that the largest voltage in the entire system is never greater than Upyay. It is
therefore possible in principle to produce arbitrarily high particle energies with-
out encountering the problem of voltage discharge. This is the decisive advantage
RF accelerators have over electrostatic systems. For this reason almost all parti-
cle accelerators nowadays use high-frequency alternating voltages, produced by
powerful RF supplies.

During the acceleration the velocity increases monotonically, but the fre-
quency of the alternating voltage must remain constant, in order to keep the
costs of the already very expensive RF power supply to within reasonable lim-
its. This means that the size of the gaps between the drift tubes must increase.
In the ith drift tube the velocity v; is reached, which for a particle of mass m

corresponds to an energy

1
E;, = §mv§, (1.15)

assuming non-relativistic velocities (i.e. v < ¢). In addition, the RF voltage
moves through exactly half a period Trp/2 as the particle travels through one

jon source
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drift section. This immediately fixes the required separation between the ith and
(¢ + 1)th gaps to be

[ — UTRE _ Vi _ ViARF _ ﬂ.@ﬁ (1.16)
2T 2ugp 2c t2

Here we assume that the frequency vrp = ¢/AgrF is strictly constant. 5; is the
relative velocity v;/c. From (1.14) to (1.16) it then immediately follows that

L - 1 QU max 8in Uy

(1.17)
VRF 2m

The spacing of the accelerating gaps between the drift tubes must thus increase
in proportion with v/3.

In this high-frequency linear accelerator there is still one other problem to
solve, as can easily be seen from the relation (1.14). The energy transferred
to the particles depends critically on the voltage Upax and the nominal phase
Wy. When a very large number of stages are used, a small deviation from the
nominal voltage Umax means that the particle velocity no longer matches the
design velocity fixed by the length of the drift sections, so that the particles
undergo a phase shift relative to the RF voltage. The synchronization of the
particle motion and the RF field is then lost. A mechanism is thus required to
automatically bring the particles back to the nominal phase in the event of any
deviation.

Fortunately there is a very simple principle which satisfies this requirement,
which we will describe with the help of Fig. 1.10. The key principle is not to
use the phase Wy = 7/2 and hence the peak voltage Upyayx to accelerate the
particles, but instead to use a value ¥y < 7/2. The effective accelerating voltage
is then Uest < Upax. Let us assume that a particle has gained too much energy
in the preceding stage and so is travelling faster than an ideal particle and hence
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Fig. 1.10 Phase focusing in linear accelerators, based on the time-dependence of the
RF voltage between two drift sections.

arrives earlier. It sees an average RF phase ¥ = Uy — AU and is accelerated
by a voltage
Ulg = Upax sin(Wo — A¥) < Upay sin Uy, (1.18)

which is below the ideal voltage. The particle therefore gains less energy and
slows down again until it returns to the nominal velocity. The opposite happens
for particles whose energy is too low. In practice all particles oscillate about the
nominal phase Wg. This principle of phase focusing is of crucial importance in
the design of all accelerators using RF voltage.

Nowadays simple drift tubes are no longer used and have generally been re-
placed by cavity structures. The first studies of the use of cavities in linear accel-
erators were performed as early as 1933 and 1934 by J.W. Beams and co-workers
at the University of Virginia [9] and at around the same time by W.W. Hansen
at Stanford University [10]. Hansen used klystron tubes as drivers for the first
time, a technique which has been very successfully employed up to the present
day. These first cavity linacs (linac = linear accelerator) accelerated electrons ;
and exploited the fact that by energies of a few MeV the particles have already |
reached velocities very close to the speed of light (v & ¢). As they are accelerated
the electrons increase in mass but their velocity remains almost constant. This
allows cavity structures of the same size to be used along the whole length of
the linac, leading to relatively a simple design. Today the largest electron linac
is situated at the Stanford Linear Accelerator Center SLAC in California [11]. Tt
is over 3 km long and reaches final energies of about 50 GeV.

In the case of protons and heavy ions, however, the particles still have non-
relativistic velocities in the first few stages of a linac and so a. Widerde-type design
is required in which the length of the drift tubes increases in proportion to /3.
These drift tubes are nowadays arranged in a tank, made of a good conductor,
in which a cavity wave is induced. The drift tubes, which have no field inside

Overview of the development of accelerators 13

them, also contain the magnets required to focus the beam. The development of
this structure, nowadays termed the Alvarez structure, for proton and heavy-
jon linacs was begun by L. Alvarez and W.K.H. Panofsky [12] after the Second
World War. Today such systems are used to accelerate particles ranging from
protons up to the heaviest ions, reaching energies of up to 20 MeV per nucleon.

1.3.6 The cyclotron

Although linear accelerators can in principle reach arbitrarily high particle en-
ergies, the length and hence the cost of the machine grow with the energy. It is
therefore desirable to drive the particles around a circular path and so use the
same accelerating structure many times. The first circular accelerator to be de-
veloped according to this principle was the cyclotron, proposed by E.O. Lawrence
at the University of California in 1930 [13]. A year later Livingston succeeded
in demonstrating the operation of such a machine experimentally. In 1932 they
together built the first cyclotron suitable for experiments, with a peak energy of
1.2 MeV.

To make the particles follow a circular path the cyclotron uses an iron magnet
which produces a homogeneous field with a strength of B ~ 2 T between its two
round poles. The particles circulate in a plane between the poles. In order to
derive the equation of motion of the particles in a homogeneous field we will
choose, without loss of generality, a coordinate system in which the z- and y-
axes lie in the plane of the path. The magnetic field then has only one component,
perpendicular to these axes (Fig. 1.11) and may be written in the form

0
B=| 0 |. (1.19)
B,

We obtain the equation of motion from the expression for the Lorentz force (1.9),
setting the electric field to zero, E = 0. It then follows that

d
F=p= %(mv) =ev X B. (1.20)

Fig. 1.11 Coordinate system in the B-field.
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We assume that the motion is confined to the z-y plane. The particle momentum |
then has the form

Pz Uy
P=| py |=m| v, |. (1.21)
0 0

Using these expressions for B and p (or v) we may calculate the cross-product
in (1.20) and obtain

v, B, 1
I'):e “Usz 5 (122) ‘
0
or, written in terms of components,
Pz = mi, = evy B,
Dy = miy = —ev,B,. (1.23)

Differentiating these equations again with respect to time and combining the re-
sulting expressions with (1.23), we finally obtain the required equation of motion

R

Vg + WBZ'UQ; = 0

.. e? 2

’Uy + WBZ’Uy = 0 (124)
with solutions

ve(t) = wvgcoswyt

vy(t) = wosinw,t. (1.25)

The particles thus follow a circular orbit between the poles with a revolution

frequency .
w, = —B,, (1.26)
m

which is also known as the cyclotron frequency. Notice that w, does not depend
on the particle velocity at all. This is because as the energy increases, the orbit
radius and hence the circumference along which the particles travel increase
in proportion. A higher velocity is exactly compensated for by a larger radius,
provided that the mass m remains constant. This condition is of course only
satisfied for non-relativistic particles.

The cyclotron, shown in Fig. 1.12, relies on the fact that the cyclotron fre-
quency remains constant. It consists of a large H-shaped magnet with constant

current flowing through the coils. Between the poles of this magnet there is the :

vacuum chamber, which also contains the D-shaped electrodes, known as DEEs, |
which are needed for particle acceleration. They are shaped rather like a flat
tin can, cut through the middle. The RF voltage from a generator is applied
between these two halves. The particles are emitted from an ion source in the
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Fig. 1.12 The cyclotron.

centre, between the two poles. As their circular trajectory passes through the gap
between the two DEEs they are accelerated and continue along a new path with
a larger radius, until they arrive back at the gap half an orbit later. The high
frequency of the supply is chosen to be exactly equal to the cyclotron frequency,
i.e. wrr = w,. This value is usually around 10 MHz for an RF power of around
100 kW. This ensures that the particles always encounter an accelerating field
in the gap. As the particles gain energy, they spiral outwards until they reach
the edge of the magnet. There they are deflected by means of a small electrode
or small deflector magnet and are steered to the experiment.

Classical cyclotrons can accelerate protons, deuterons; and alpha particles
up to about 22 MeV per electron charge. At these energies the motion is still
sufficiently non-relativistic (v & 0.15¢) for the revolution frequency to remain
approximately constant during acceleration and hence to fulfil the cyclotron
condition.

At higher energies the cyclotron frequency decreases in inverse proportion to
the increasing particle mass m(FE). If the frequency of the RF supply is decreased
accordingly, much higher energies can be reached. This principle is employed in
the synchrocyclotron. It turns out that the high frequency is only ever optimal
for particles in a limited energy range, and so the beam may only be accelerated
in short pulses or bunches. Hence the beam intensity is lower.

A more effective method is adopted in the isocyclotron, in which the radial
magnetic field is increased in such a way that the cyclotron frequency remains
constant, namely 5

w, = q—%—(é(j)l = const, (1.27)
where r(F) is the orbit radius, F is the energy of a particle and ¢ is its charge.
However, this approach has the problem that the beam becomes defocused by the
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changing magnetic field. To resolve this, isocyclotrons use magnets with rather

complex pole shapes, which compensate for this loss of focusing with so-called
‘edge-focusing’. Isocyclosynchrotrons can reach energies of over 600 MeV.

1.3.7 The microtron

The principle of the cyclotron, which relies on the revolution frequency w, being
constant, cannot be directly applied to electrons because their very small rest
mass (mec® = 511 keV) means that they very quickly reach relativistic velocities,
i.e. v = c. As a result, their mass increases almost proportionally to their energy
and the cyclotron frequency w, decreases in inverse proportion. This effect cannot
be counterbalanced by varying the high frequency or shaping the magnetic field.
Strictly speaking it is not actually necessary for the revolution frequency to
be constant: it is sufficient merely for the particles to see the same phase of the
RF voltage on each revolution. This can be achieved by choosing a relatively high
accelerating frequency and correspondingly short wavelength — frequencies of
around vgr = 3 GHz are typical — and tuning the energy gain per revolution so
that the total circumference of the particle orbit always increases by an exactly
integer number of RF wavelengths. This principle is employed in the microtron,
a type of cyclotron for electrons [14]. We will use the example of the racetrack
microtron to explain its operation (Fig. 1.13). The name ‘racetrack’ refers to
the shape of the machine, which consists of two semicircles connected by two
straight sections. The electrons are emitted by a cathode and an injector magnet
then directs them into the accelerating region for the first time. At the end
of the accelerating section they encounter a bending magnet which turns them
through 180°. They travel in a straight line until they arrive at a second bending
magnet which turns them around and back into the same accelerating section.
This process is repeated a number of times with ever-increasing bending radii
in the magnets until the beam finally passes through an ejector magnet and
is deflected towards the experiment. Special focusing magnets are installed on
either side of the accelerating section to keep the transverse beam size small
during acceleration. If the two bending magnets have a separation [ and the
bending radius on the ith revolution through these magnets is R;, then electrons
travelling at a velocity v; complete the orbit in a time
fy = 2Bt D) (1.28)
(&
Since the centripetal force is equal to the Lorentz force, the bending radius is
given by
i = Um;icz = = E,
ec?B ec’B
where m; is the relativistic particle mass, F; is the energy and B is the strength of
the magnetic field. Inserting this result into (1.28) and calculating the difference
in the periods of the ith and (i + 1)th revolutions gives

2 27
" ec?B (Biv1 — E) = ec?B

(1.29)
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Fig. 1.13 Electron acceleration in the racetrack microtron. The name comes from the
shape of the path taken by the particles.

This difference must be an exact integer multiple k of the period of the RF
voltage, i.e. At = k/vgp. Imposing this condition we can calculate the amount
of energy the electron has to gain per revolution

ec’B

AE =k . (1.31)
27T1/RF

For a magnetic field of strength B = 1 T, a high frequency of vrr = 3 GHz
and with & = 1 we obtain AE = 4.78 MeV. This relatively high value is
nowadays obtained with a short linear accelerator section in which gradients
of dE/ds > 10 MeV m~! are possible.

The microtron — a compact design with only one bending magnet and cir-
cular paths with no straight sections — is nowadays used for energies up to 20
MeV or so, mostly in medical applications. To reach higher energies of up to
100 MeV or so, race-track microtrons are used. The largest machine of this type,
called ‘MAMTY, is located at the University of Mainz [15] and is designed to reach
energies up to £ = 820 MeV.

1.3.8 The betatron

In all the accelerators we have considered so far, the magnetic field remains
constant and the radius of the particle trajectory increases with energy. In the
betatron, on the other hand, the magnetic field is increased as the particles
accelerate so that the circular path remains the same size. The accelerating
electric field arises naturally from the magnetic field, which is changing very
rapidly with time, in accordance with the law of induction. It is therefore not
necessary to construct a special accelerating section. The betatron, illustrated in
Fig. 1.14, is in essence an AC transformer with the secondary winding replaced
by a circulating electron beam.
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Fig. 1.14 Cross-section through a betatron. The accelerator is rotationally symmetric
about the perpendicular axis. The electron beam travels in a circular vacuum chamber
between the poles of the AC magnet.

The first working accelerator based on this principle was built in 1940 by
D.W. Kerst at the University of Illinois [16]. It was able to accelerate electrons up
to an energy of 2.3 MeV. Just two years later Kerst and his co-workers succeeded
in building a 20 MeV betatron. Nowadays a series of betatrons operate in this
energy range, used mostly for medical applications.

It is crucial to the operation of the betatron that the particle trajectory
should on average remain constant during acceleration. A stability condition
must therefore be satisfied, which we will now derive. As mentioned above, the
betatron is based on the application of the law of induction

fE-dr:—//AB-ds. (1.32)

The magnetic field B(t) is produced by an alternating current through the pri-
mary winding and so has a sinusoidal time-dependence B(t) = Bgsinwt. Be-
tatrons have a simple rotationally symmetric geometry, and to a good approxi-
mation we may assume a circular trajectory of constant radius R, as shown in
Fig. 1.15. The surface enclosed by this path is A. Owing to the rotational symme-
try, the azimuthal distribution of the magnetic field is constant, i.e. dB/d© = 0.
The field does, however, vary with radial distance, B(r) # const. The average
magnetic field crossing perpendicular to the surface 4 is given by
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surface 4

particle
trajectory Fig. 1.15 Particle trajectory in a betatron.
(B|) = // B(r) - ds. (1.33)
7'('.R2 A

According to the law of induction (1.32) this field induces an electric field
E(r) along the particle trajectory. The rotational symmetry again ensures that
dE/d© = 0. With this symmetry (1.32) simplifies to

d R, -
27 R|E| = —szﬁ(]BD = |E| = -5 (Bl). (1.34)

The electrons thus experience an accelerating force
. eR .
|[F| = |pl = ~elE| = —=(|BI). (1.35)

Using p = E/c and v = c¢ it immediately follows from (1.29) that 1/R = ¢|B|/|p|
and hence that |p| = eR|B|. Comparing this expression with (1.35) yields the
simple relation |B| = (|B|)/2, and integrating with respect to time leads to the
important condition known as Widerée’s betatron condition [17]

|B(t)| = 5(|B(®)[) + |Bol. (1.36)

N} =

Widerde’s condition describes the circumstances under which stable particle mo-
tion may be achieved during acceleration, and the shape of the magnet pole must
thus be designed in accordance with it. The constant field |Bg|, which may be
fine-tuned by correcting coils, allows the particle trajectory to be adjusted. The
particles execute transverse oscillations, known as betatron oscillations, about
the nominal trajectory. Nowadays this name is used as a general term for all
transverse particle oscillations in accelerators.

1.3.9 The synchrotron

The advancement of elementary particle physics requires ever higher beam ener-
gies, which cannot be achieved with the relatively compact machines described
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so far. For relativistic particles (v = ¢) the orbit radius increases with energy, &

according to equation (1.29), as

_ FE
" ecB’

4

There is a technical limit to the magnetic field that can be produced in practice "

— currently around B = 1.5 T in conventional magnets and B =5 T in super-
conducting magnets. This means that at energies of E > 1 GeV the orbit radius
increases to several metres, and it is hardly feasible to produce a magnet of such

a size. Hence the concept was developed of a fixed particle orbit of arbitrary size §
but with constant radius R, passing through individual narrow bending magnets ,;
which only have a field in the region of the beam. Since the radius R is constant ]
it follows immediately from (1.37) that the ratio £/B must be constant. In other §

words the magnetic field B be must increase synchronously with the energy F.
This type of accelerator is hence also called the synchrotron. The principle of
the synchrotron was developed almost simultaneously in 1945 by E.M. McMillan
at the University of California [18] and by V. Veksler in the Soviet Union [19].
In that same year construction of the first 320 MeV electron synchrotron began
at the University of California. A year later, using a very small machine with a
maximum energy of 8 MeV, F.G. Gouard and D.E. Barnes [20] in England suc-
ceeded in confirming the theoretical predictions of the function of a synchrotron.
The first design studies for a proton synchrotron were produced in 1947 by
M.L. Oliphant et al. [21]. Then at the beginning of the fifties the cosmotron, a
3 GeV proton synchrotron [22], was built in Brookhaven. Following these early
successes a whole series of synchrotrons were designed and built at the end of the
fifties to accelerate protons as well as electrons. Figure 1.16 shows the structure
and important elements of a synchrotron. Individual narrow bending magnets
with pole separations of around 0.2 m and homogeneous fields are positioned
around the almost circular orbit. Since the particles circulate many thousands of
times, their unavoidable divergence makes it necessary to focus them using sep-
arate special magnets. The focusing was at one time integrated into the bending
magnets, using so-called combined function magnets, which resulted in relatively
simple magnet structures. This has the disadvantage, however, that the focusing
is fixed from the outset and cannot be adapted to special circumstances. As a
result, separate elements (separated function magnets) are nowadays chosen for
beam bending and focusing, especially in electron synchrotrons. The synchrotron
only needs a few accelerating regions — one is enough as a minimum — which
can be supplied by one or more RF generators. If the circumference L of the
machine is an exact multiple ¢ of the RF wavelength App, i.e. [ = gARF, the
particles always reach the accelerating structure with the phase Wy, and the
energy gain per turn is

AEbea,m = eUpax sin Yo — AFoss- (138)

In proton accelerators there are no losses (A Fjygs = 0) and so very high energies
over 1000 GeV can be reached. Here superconducting magnets are used in order

(1.37) f
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Fig. 1.16 Basic layout of a modern synchrotron. The particle trajectory is controlled
by bending magnets with homogeneous fields, while the beam focusing is performed
by specially designed magnets. The acceleration takes place in one or more short RF
structures. The particles are supplied by a pre-accelerator (linac or microtron).

to keep the radius of the accelerator to a reasonable size. In the case of electrons
there is the disadvantage of the emission of electromagnetic radiation, which
increases strongly with the beam energy. The energy lost due to this so-called
synchrotron radiation, described in Chapter 2, grows according to AEj,e o< E*
and for energies of order E =~ 10 GeV becomes so dominant that this must be
considered the approximate upper limit for electron synchrotrons. Such an energy
loss could only be compensated by providing considerably more RF power, which
would lead to disproportionately high construction and running costs.
Synchrotrons cannot accelerate particles from a starting energy E = 0. This
is because it is not possible, simply by using low currents in the magnets, to
produce a magnetic field that starts at exactly B = 0 and then increases linearly
and precisely enough. One source of problems is the coercive fields of the ferro-
magnets, which are strongly excitation-dependent. These cause significant and
uncontrollable deviations of the particle position from the ideal trajectory and
leads to beam losses. The magnetic field of the earth also causes disturbances.
As a result of these problems, synchrotrons start accelerating from a minimum
energy of not less than 20 MeV. As a general rule, the problems of acceleration
in synchrotrons lessen as the injection energy increases. In a 5-10 GeV electron
synchrotron an optimum solution, taking cost into account, is to inject at an
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Fig. 1.17 Inelastic electron—proton collision.

energy of around 200 MeV. This is why synchrotrons are always filled from a
linac or a microtron.

The particle beams delivered from a pre-accelerator must be deflected onto
the orbit around the synchrotron by a magnet. By the end of one revolution this
magnetic field must be removed or the particles will immediately be bent away
from the orbit again and into the walls of the vacuum chamber. To achieve this,
a very rapidly pulsed magnet called a kicker is employed, with a pulse duration
of around 1 ps. For the same reasons, this type of fast kicker magnet is also used
to deflect the beam out of the machine at the end of the accelerating cycle.

1.4 Particle production by colliding beams
1.4.1 The physics of particle collisions

A very basic way to produce heavy particles is by deep-inelastic collision of
highly energetic electron—positron pairs, as shown in Fig. 1.17. In this particle—
antiparticle reaction both are completely annihilated and a virtual photon is
produced which contains the entire energy of the process. This consists of the
rest energy of the two particles, 2m.c?, plus their kinetic energy before the colli-
sion, which in highly relativistic collisions is the dominant component. Because
the dynamics of this process are very clear, it is very well suited to the study of
complex particle structures. Among other topics, very significant research into
quark—antiquark systems has been undertaken using these et—e™ reactions, es-
pecially the charm and B-quark systems. One of the challenges of accelerator
physics is to develop machines which are optimized to produce particle interac-
tions of this kind at high event rates.

In principle, et—e™ collisions could be achieved very simply, as Fig. 1.18
shows. A particle accelerator is used to bring positrons up to the required energy
E;. The positrons may be produced by -decay or preferably by pair production.
If they are then fired against a fixed target of solid material they will collide
with the orbiting electrons in the atoms, giving the required et—e— collision.
The disadvantage of such a system is that, especially at extremely relativistic
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Fig. 1.18 et—e™ collision in a fixed target.

energies ¥ = E/mec? > 1, almost all the energy is lost through recoil. We will
now show this quantitatively.

We begin by choosing a frame of reference K, at rest in the laboratory, in
which the positron moving with velocity  has momentum p = mu. Let us list
the velocities, momenta and energies of both particles before the collision:

Laboratory frame K :

p v
et P = O e~ (at rest)
velocity ou = wu uy = 0
momentum T pr = P p = 0
energy : By = pe Ey = 0
By
7 MeC2

We now move to the centre of mass frame K’, in which the sum of the particle
momenta is by definition zero, i.e. } p; = 0. In this reference frame both particles
move with the same velocity v, but in opposing directions, towards one another.
In this frame our list before collision becomes:

Centre of mass frame K’ : o —
et P = = O e
velocity U = v up, = —v
momentum :opy o= ¢ ph = -
energy : Ef = 7P , = pc
, 5
v - 2
MeC

In this choice of reference frames the centre of mass system K’ moves with a
velocity v relative to the laboratory frame. In the frame K’ both particles come
to a complete rest at the point of collision and the energy transferred in the
collision

E* = E{ + E} = 2p'c = 2y'mec? (1.39)
is available for particle reactions. Part of the total energy, the kinetic energy of
the centre of mass system in the laboratory frame, is however wasted. In order
to calculate this portion, or alternatively the energy E* available to the reaction,
we need to determine . We calculate this by applying a Lorentz transformation
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to obtain the relativistically invariant momentum of the centre of mass in the
laboratory frame. Since the centre of mass moves in a straight line, we only need
to consider one spatial coordinate z. Using 3’ = v’/c we have

(5)-( T)C8) o

With p} = E/c we immediately obtain

p1=79'(8"+ 1)p}. (1.41)

For extremely relativistic particles 8/ = 1 to véry good approximation, and so

the momentum takes the form
p1=27'p] =29 (v'mec) = 29 mec. (1.42)

Using the general expression p; = ymec we finally obtain the relative energy of
the particles in the centre of mass system

1= 12
T =4/3 (1.43)
The fraction of useful energy E* available to the reaction out of the total supplied

particle energy F, is then
E*  2y'mec® 29 2 ‘
p= o = S MeC e =l:\/: (1.44)
By ymec Y gl
At relativistic energies with v > 1000 the relative effectiveness of the procedure
becomes very small. To put it another way, how large must the original particle

energy Ey be in order to achieve a particular reaction energy E*? Rearranging
equation (1.44) gives us the answer:

E*2

Fi=——.
! 2mec2

(1.45)
To produce B mesons a minimum energy of E* = 9.47 GeV is required. With
Mec?® = 5.11 x 107* GeV we immediately see that F; = 87 750 GeV (). An elec-
tron accelerator this powerful will most certainly not be built in the foreseeable
future! The solution to this problem is in principle very simple: two beams with
the same energy E are used, and fired at one another. The laboratory and centre
of mass frames are then identical, and the total energy of both beams is available
for particle production, namely
E E
et P = x = (O e
E* = 2F.

In this case B mesons can be produced by beams with an energy of around
E ~ 5 GeV, easily achievable in modern accelerators.
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1.4.2 The storage ring

The idea of firing two beams of the same energy against one another is simple in
principle, but is not so easy to achieve in practice. The particle density in highly
energetic beams is very low compared to solid matter, and so there is only a very
small interaction probability in colliding beams. The head-on collisions needed
for particle reactions are extremely rare. Consequently, strenuous efforts must
be made to produce a sufficiently high event rate for experiments. The number
of events per second is given by the relation

Ny = opL. (1.46)

The cross-section o of the particle reaction is given by the laws of nature, while
the factor £ is a measure of the interaction probability in the colliding beams.
This factor, called the luminosity, determines the performance of the accelerator.
It is calculated as follows:

ifreleNQ. (147)
4t 0.0,

It may be seen immediately that the luminosity £ increases in proportion to the
number of particles IV; per particle beam, and hence to the product Ny N, for two
beams. Reducing the horizontal and vertical size of the beam o, and ¢, in the
collision region also increases the luminosity. Furthermore, £ is proportional to
the frequency with which the beams are fired at one another. Particle accelerators
must therefore be designed both to achieve high energy beams and to collide them
with high luminosity. For this reason the storage ring has proven to be the most
successful accelerator design to date.

The storage ring consists of a circular accelerator, outwardly very similar to
the synchrotron, but with several key differences. The first is that two beams,
electrons and positrons, circulate in the accelerator at the same time. This relies
on the fact that electrons circulating clockwise through a magnetic field experi-
ence the same force as positrons circulating in the opposite direction, i.e.

F =e¢(v x B) = —e(—v X B). (1.48)

As a result, the same magnet structure and vacuum chamber can be used for
both beams. As the particles in a given experiment are required to collide at a
fixed energy, the beam energies must not vary during data-taking. This means,
for example, that the current levels in all the magnets must be kept constant
to within very narrow limits. Strictly speaking, the storage ring is therefore not
really an accelerator at all.

As mentioned above, only a few particles actually undergo inelastic collisions
in each beam crossing, and so the beam intensity is not significantly reduced by
these interactions. The same beams can circulate continuously in opposing direc-
tions for long periods and lifetimes of several hours are now common. Once in-
Jected into the storage ring the particles remain there at constant energy, without
refilling, for the duration of the data-taking run. They are stored, which explains
how this type of accelerator gets its name. In storage rings the low interaction
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probability between the colliding beams is partly compensated for by the high
frequency fre, of beam crossings, since the beams travel at close to the speed of
light. In a storage ring 300 m in circumference, for example, the frequency has
a value froy =1 MHz.

To achieve the very long beam lifetimes obtained in a storage ring compared
to those in a synchrotron, additional measures must be taken. Firstly, the vac-
uum pressure must be more than three orders of magnitude lower than in other
types of accelerator, in order to minimize the number of unwanted collisions with
residual gas molecules. Extreme ultra-high vacuum at a pressure below 10~7 Pa
is required. Secondly, the beam steering and focusing must be very carefully con
trolled, which places stringent requirements on the tolerance of the magnets and
their power supplies. The long lifetime of the beams means that even relatively
small uncertainties can have significant detrimental effects. Thirdly, in electron
storage rings it is still necessary to construct high frequency accelerating sections
even though the beams are not really being accelerated at all. This is because
the circulating electrons radiate electromagnetic energy which must be replaced.
These accelerating sections are designed for considerably higher beam currents
than are common in synchrotrons, in order to achieve the highest possible lumi-
nosities. ,

Since storage rings operate at fixed energies, the beams must be brought up
to the correct energy by a pre-accelerator, usually a synchrotron or linac. They
are then injected into the storage ring by means of a pulsed magnet, similar to
that found in a synchrotron. If new particles can be injected without the particles
already circulating inside the storage ring being lost, then the injection process
can in principle be repeated as often as desired, allowing very high beam currents
to be reached. This principle of accumulation is in fact a considerable advantage
of storage rings and allows the high particle numbers N; necessary from (1.47)
to be achieved.

The typical layout of an electron-positron storage ring is shown in Fig. 1.19.
The two semicircles are separated by two rather longer straight sections, each
with a collision region in the middle. Each collision region, also called an inter-
action region, is surrounded by a particle detector, which consists of a multitude
of different specialized subdetectors. These cover almost the entire solid angle, to
allow a complete analysis of the particle interactions. Powerful focusing magnets
are arranged on both sides of the detectors to produce very small beam cross-
sections o, and 0. In particular these can achieve extremely small vertical beam
sizes of less than o, = 25 pum. Depending on the beam energies, luminosities in
the range £ = 103 to 103 cm™2s~! are nowadays achieved in storage rings.

The idea of allowing particle beams to circulate at constant energy in a i}
ring accelerator without significant loss of intensity, thereby storing them, was
proposed as early as 1943 by Kollath, Touschek, and Widerse. However, 13 years
passed before Kerst in 1955 and soon afterwards also O’Neill [23] worked out a
detailed design for such a machine. In 1958 construction of storage rings began
in Stanford and Moscow. The first successful attempt to store an electron beam
for a long period was made in 1961 at the small storage ring A.d.A. [24] in Italy
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Fig. 1.19 Layout of an electron-positron storage ring with two interaction regions
surrounded by particle detectors. The very small beam sizes required in these inter-
action regions are achieved using special focusing magnets on either side of the de-
tectors. The beams (e™ and e™), which circulate in opposite directions, are supplied
by a pre-accelerator of appropriate energy, such as a synchrotron. Accelerating regions
replace the energy lost due to radiation of electromagnetic energy.

and at around the same time in the Soviet Union [25]. Many storage rings have
since been constructed around the world, most for electron—positron collisions.
In a few other machines protons are collided with protons or antiprotons, and
at the German Electron Synchrotron Laboratory DESY in Hamburg the double
ring HERA is the first machine in the world to collide electrons with high energy
protons [26]. In this machine, however, the two types of particles circulate in
separate rings because of their very different masses, and are only steered onto the
same path close to the interaction regions. The largest storage ring is currently
LEP at the European research centre CERN in Geneva [27]. Here electrons and
positrons are collided at energies of over 50 GeV, with an upper limit of around
100 GeV. This machine, situated underground, has a circumference of 27 km.

1.4.3 The linear collider

The rate at which electrons circulating in storage rings lose energy through elec-
tromagnetic radiation increases very steeply with particle energy, namely oc E4.
We will examine the characteristics of this radiation more closely in Chapter 2.
A correspondingly large amount of RF power is required to make up this energy

loss, and the technical and financial limit is reached at beam energies of a few

tens of GeV. If we wish to study et—e™ reactions at energies above 100 GeV then
the particles must be accelerated in a straight line in linacs, since the amount
of electromagnetic radiation induced by linear acceleration is negligible even for
very high energies. In the last few years ideas have therefore been developed
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to collide particles using linacs. These machines are therefore known as linear |

colliders.

The luminosity in linear colliders is given by the same relation (1.47) as for
storage rings. However, linacs have the disadvantage that the collision frequency
fo is generally very low, usually not more than a few hundred hertz. Furthermore,
the number of particles N; cannot be made very large because it is extremely

difficult to stably and reliably bring high-intensity beams all the way from an

energy E = 0 up to the final beam energy.

To overcome this disadvantage linear colliders have compared to storage rings,
it is of prime importance to drastically reduce the cross-section of the beam.
To achieve this, cathodes have recently been developed which produce electron
beams with extremely small dimensions and angular divergence. This process
cannot be used for positrons, however, which are created by pair production.
The transverse size and angular divergence of the positron beam are strongly
increased by collisions with nuclei inside the target after pair production. To
remedy this, the partly accelerated positrons are injected into a small storage
ring, where they circulate for a few ms. The transverse betatron oscillations of
the beam are damped by the emission of electromagnetic radiation, considerably
reducing the beam cross-section. Finally the particles are returned to the linac
and are accelerated up to the final beam energy. This use of a storage ring,
termed a damping ring, is necessary in order for a linear collider to deliver
sufficient luminosity.

The need for very small beam sizes, 0, , < 1um, places very strong demands
on the final focusing of the beam at the interaction point. All the imperfections
of the focusing system must be understood and compensated for, as must the
effect of energy loss in the beam. The reduction of all non-linear effects in the
beam optics up to higher orders requires very costly control systems. The final
focusing system in a linear collider is therefore considerably more expensive than
in a storage ring.

The very strong beam compression at the interaction point causes a strong
transverse force to be exerted on the beam particles as they cross, due to
the space charge effect. As a result, they are strongly deflected and so emit
bremsstrahlung radiation. This broadens the energy distribution within the beam
and of course also increases the level of background in the detectors. On the other
hand, computer simulations have shown that the space charge effect causes the
beams to be squeezed together during collision, very much like the pinch effect
observed, for example, in electric arc discharge. This effect, which should in-
crease the luminosity by a considerable factor, has so far only been investigated
theoretically.

The first linear collider began operation in Stanford at the end of the 1980s
and was called the Stanford Linear Collider SLC [28]. It used the existing 3 km
long linac, which has a maximum energy of 50 GeV. Electron and positron beams
were accelerated in the linac, one closely after the other, and separated by a mag-
net at the end. Each beam then travelled though one of two semicircular magnet
structures, moving apart and then back together again in the shape of a pair of
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pincers, arriving finally at the special focusing system. The SLC demonstrated
the principle of the linear collider, with all the elements working successfully
together for the first time. For future projects it will, however, be necessary
to increase the gradient of accelerating cavities from the present dE/ds ~ 15
MeVm™! to over 100 MeVm™, in order to keep the length of the linac, and
hence the costs, to within reasonable limits.
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Synchrotron radiation

According to the fundamental laws of classical electrodynamics, a charge under-
going acceleration will radiate energy in the form of electromagnetic waves. This
is of course also true of any charged particle moving in an accelerator. As we
shall see in what follows, this radiation plays an important role for electrons of
sufficiently high energy, while for protons and all other heavy particles it can in
general be neglected. Our aim in this chapter is to understand the key physi-
cal principles of this synchrotron radiation. A full theoretical treatment of the
physics of this radiation and its properties may be found in Jackson [29] and
Hofmann [30].

Consider first an accelerated particle of charge e, moving with momentum
P = myv. We assume the particle’s velocity is non-relativistic, i.e. v < ¢. The
total radiated power in this case was calculated by Larmor at the end of the
nineteenth century. He found the important relation

e? dp\?>
Ps - 67780777%03 (EZ) ’ (21)

where £y = 8.85419 x 107'2 AsV~1m™! is the permittivity of free space. One
immediately sees that electromagnetic energy is only emitted when the particle’s
momentum changes as a result of some applied force, i.e. dp/dt # 0. Here we are
not concerned with the details of this force and the resulting acceleration. The
azimuthal angular distribution of the radiation is identical to that of the Hertz

dipole, namely
dPS 62 dp 2 .. 92
E = ———1671-260/”?%03 (E) sin“ W, (22)

The radiation emitted by non-relativistic charged particles is completely de-
scribed by classical electrodynamics, and in any case is so weak that it may be
neglected. ’

2.1 Radiation from relativistic particles

Let us now consider this case where the particles reach velocities comparable
to that of light. Here the situation is fundamentally different. We require the
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Lorentz-invariant form of equation (2.1). This is most easily found by transform-
ing time according to

E 1
dr = —};dt with = = (2.3)

T omec? /1 32

and replacing the classical momentum p with the four-momentum P, of rela-
tivistic electrodynamics:

dP,\? dp\> 1 (dE\?
— — 1 -5l . 2.4
( dr ) - (dT T2 \dr (2:4)
Using this transformation we may rewrite (2.1) and obtain the relativistically
invariant form of the radiation equation

2 2 2
p=fc¢ 1 |fdp\" 1 [dENT (2.5)
6meg (moc?)2 | \ dr 2\ dr

The radiated power depends principally on the angle between the direction of
motion of the particle v and the direction of the acceleration dv/dr. We will
consider the following limiting cases:

dt —

. . dv
a. linear acceleration — || v
dr
. . dv
b. circular acceleration o 1l v

2.1.1 Linear acceleration

The relativistically invariant expression for the particle energy is
E? = (moc?)? + p2c? (2.6)
which, when differentiated with respect to 7, immediately gives the relation

E— =cp—. (2.7)

Using E = ymoc? and p = ymgv, (2.7) simplifies to

dE _ dp

— = . 2.8
dr vd’l’ (2:8)

Inserting this into the radiation equation (2.5), one obtains
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P () - @ ()]

ec 1 o [dp\?
= 5 1 - 7 2‘
671'80 (moc2)2( /B ) (dT) ( 9)
and using 1 — 3% = 1/42,
2 2 2 2
p=__%¢ (49N ___€ec (dp (2.10)
6meg(moc?)? \ vdr 6meg(moc?)?2 \ dt

immediately follows. In the case of linear acceleration, the energy gained per
unit distance is usually known. Using dp/d¢t = dE/dx we obtain the following
expression for the power radiated from linearly accelerated particles:

e2c dE\?®
_ ary 2.11
Fs 6meg(moc?)? ( dz ) (2.11)

In accelerators built today the energy gained per metre is approximately
dE/dx ~ 15MeVm™ = 2.4 x 10712 Jm~!, giving rise to a radiated power
Py =~ 4 x 10717 watts. Comparing the radiated power with the power delivered
by the accelerator gives

_ kR _ R & 1dE
~ dE/dt  vdE/dz ~ 6meo(moc?)? § dx

n (2.12)

Using the value of dE/dz given above we obtain a relative loss of n = 5.5 x 10~14
for extremely relativistic particles (v &~ ¢). The radiation of electromagnetic
cnergy during longitudinal acceleration is thus completely negligible.

2.1.2 Circular acceleration

The situation is quite different when particles are bent perpendicular to their
direction of motion and so travel in a circular path. In this case the particle
energy remains constant and the general radiation formula (2.5) reduces to

P ec 1 dp\? ey 1 dp 2 (2.13)
® " 6meg (moc2)2 \dr ) — 6meg (moc?)2 \dt ) )

During circular motion through an angle da the momentum of the particle

changes by an amount dp = pda. It follows immediately that

dp v

Here R is the bending radius of the particle orbit. We now insert this relation

into (2.13). The radiation of electromagnetic waves increases very strongly as a
function of the particle energy and so in this case it is sufficient to consider only
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extremely relativistic velocities, i.e. v = ¢. Under these circumstances E = pc.
Replacing v by E/moc? one obtains the following expression for the radiated
power during transverse acceleration:

e’c 1 E4

= 2.1
® 6meg (m002)4 R? ( 5)

This relation was discovered back at the end of the nineteenth century by Liénard
[31]. For particles of a given energy with elementary charge e, the radiated power
varies inversely with the fourth power of the rest mass mg. Comparing the power
radiated from an electron (mec? = 0.511 MeV) with that from a proton of the
same energy (mpc® = 938.19 MeV) gives

Pie mpc\* 13
s,p e

It is evident that in practice this radiation is only important in the case of elec-

" trons. With protons it can only be observed at energies of at least several hundred

GeV. In circular accelerators it is often important to know the energy loss AFE
that a particle undergoes during one complete revolution. Here it is assumed that
on average the radiation is emitted quasi-continuously at a constant rate in the
bending magnets, in which the bending radius R is the same everywhere. Un-
der these assumptions, which are generally very reliable, one obtains the rather

simple relation

AE:fpsdtzpstbzps?”C—R. (2.17)

Here ty, is the time per revolution that a particle spends in the bending magnets.
This time is less than the total period of a revolution. Here one must remember
that radiation is only emitted during transverse acceleration, i.e. during bending.
Inserting (2.15) into (2.17), one obtains

2 E4
AE=_—_°

B e ——, 2.18
3€O(MQC2)4 R ( )

Using the values for the electron and choosing convenient units gives the follow-
ing, easy to remember, formula

E* [GeVY]

AE [keV] = 885 R T

(2.19)

One sees that the radiation increases with the fourth power of the beam energy.
At low, virtually non-relativistic, particle energies this radiation is negligible and
only becomes significant when the electrons have energies of at least a few tens
of MeV. This is why it was not observed experimentally until circular electron
accelerators of sufficiently high energy were developed, namely the synchrotrons.
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Fig. 2.1 Electron energy loss per revolution as a function of particle energy. We assume
a circular accelerator in which the path through the bending magnets has a bending
radius R = 12.2 m.

Hence this form of electromagnetic radiation was given the name synchrotron
radiation. The first experimental observation came at the end of the 1940s at
General Electric’s 70-MeV synchrotron in the USA [32].

The strong increase in power of the synchrotron radiation with the particle

- energy, evident in equations (2.18) and (2.19), is illustrated in Fig. 2.1, in which

the energy loss per turn is plotted against the electron energy. Here the example
is taken of a circular accelerator with bending magnets of radius R = 12.2 m.
Varying the energy from 0.1 GeV to 5.0 GeV changes the energy loss by almost
seven orders of magnitude.

This strongly energy-dependent emission of synchrotron radiation has an
important consequence for the construction of circular electron accelerators, as
can be seen in Table 2.1. A few ring-shaped electron accelerators are listed, with
maximum energies between 0.8 and 70 GeV. It turns out that the maximum
field of the bending magnets used decreases with energy. Thus the storage ring
LEP in Geneva has the highest maximum energy, Eyax = 70 GeV, but by far
the weakest magnetic field, B = 0.078 T.

The power lost through synchrotron radiation must be replaced by the high-
frequency cavities, otherwise the beam will soon be lost. High-frequency power
is very expensive, so every effort must be made to minimize the energy loss
due to radiation. Since this loss is proportional to E*/R according to (2.18)

weaker bending magnets suffice. Hence the circumference of accelerators also

increases faster than the energy. As a general rule, at energies of around 100 GeV
the power loss due to synchrotron radiation becomes so high that it is no longer -

L
the bending radius must be increased faster than the energy, which means that -
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Table 2.1 A few important circular electron accelerators. L is the circumference of
the machine, E the maximum beam energy, R the bending radius, B the field in the
bending magnets and AE the energy loss per revolution.

accelerator L [m] E [GeV] R [m] B [T] AE [keV]
BESSY I (Berlin) 62.4 - 0.80 1.78 1.50 20.3
DELTA (Dortmund) 115 1.50 3.34 1.50 134.1
DORIS I (Hamburg) 288 5.00 12.2 1.37  4.53 x 103
ESRF (Grenoble) 844 6.00 234  0.855 4.90 x 10?

" PETRA (Hamburg) 2304 23.50° 195 0.40 1.38 x 10°
LEP (Geneva) 27 x 10° 70.00 3000 0.078 7.08 x 10°

practical to replace it. Consequently, accelerators at energies above 100 GeV
must use other particles, such as protons. If electrons are absolutely required

. then a linear accelerator must be employed.

2.2 Angular distribution of synchrotron radiation

The angular distribution of synchrotron radiation from relativistic electrons is
more complicated than the sin®® dependence (2.2) familiar from the Hertz
dipole. To calculate it we must first transform into a frame of reference K’ mov-
ing alongside the electron. In this frame the electron is only accelerated along
the z-axis and the radiation has the characteristics of a normal Hertz dipole
(Fig. 2.2). Of all possible directions in which synchrotron radiation may be emit-
ted, we will choose the particular case in which the radiation is perpendicular
to both the direction of acceleration and the direction of motion, in order to
simplify the calculation as far as possible. We thus observe a photon emitted

’

y
K' el@ctron
trajectory ¥ A o K’
Py = PO

7/=0 3 ,
2 N !
B=py ) I
© .

p,=YBp, z

Fig. 2.2 Transformation of the spatial intensity distribution of synchrotron radiation
from a co-moving frame of reference K’ into the laboratory frame K.
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exactly parallelb to the y-axis. This photon has the momentum

/

P,/ =Py = =m, (2.20)

where E! is the energy ‘of the photon and m is the direction of motion. The
four-momentum of this photon has the form

) Dt Eé/C
’ D _ 0
P, = pz = o . (2.21) ;
Pz 0

The photon’s direction of motion in the laboratory system is obtained by a
Lorentz transformation of this four-momentum:

v 0 0 By El/c vE¢/c
0 10 0 0 0

e w |- o . (2.22)
By 0 0 « 0 YBE{/c

Using the relationship (2.20) between the energy and momentum of the photon
we find that the angle © of the emitted photon relative to the electron beam
direction follows the relation

/
1
tan© = ¥ — —pL, ~ .
p= Bypo
Since O is very small tan © ~ © to a good approximation. The axially-symmetric
radiation distribution in the moving frame K’ transforms into a sharply forward-
peaked distribution in the laboratory frame, with a half opening-angle © = 1/7.

K , K

bending radius

(2.23)

bending radius

accelerating accelerating

force

electron
trajectory

electron trajectory

radiation field

a. b.

Fig. 2.3 Transformation of the axially symmetric radiation distribution in the centre

of mass frame (a) into the sharply forward peaked distribution in the laboratory frame -
K (b).
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This transformation is illustrated in Fig. 2.3. Electrons with energy E = 1 GeV,
i.e. with v = 1957, thus emit synchrotron radiation in a cone of half opening-
angle © = 0.5 mrad = 0.03°. This sharp peaking of the radiation is one of its
most useful features.

2.3 Time dependence and frequency spectrum of the radiation

We now turn to the frequency spectrum of synchrotron radiation. A complete
calculation is beyond the scope of this book, and the reader is referred to the
excellent treatments by Jackson [29] and Hofmann [30]. Here we confine ourselves
to an approximate calculation and collect together the most important relations
concerning electron accelerators.

The idea behind the calculation of the frequency spectrum is relatively simple.
During each revolution the electron emits an electromagnetic pulse of duration
At as it passes the observer. The pulses are periodic, with a frequency given by
the revolution frequency frev. The spectrum thus consists of harmonics of the
revolution frequency, the intensities of which may be determined by Fourier anal-

- ysis of the pulse. The width of the spectrum depends primarily on the length of

the pulse At, and this can be determined fairly easily with the help of the sketch
in Fig. 2.4. In this region the electron passes through a magnetic field, assumed
to be homogeneous, and so follows a curved path of bending radius R. Because
the radiation is strongly forward-peaked the observer first sees it when the edge

observer

- b

\

electron
trajectory R

|
t

Fig. 2.4 Estimate of the length of the electromagnetic pulse produced by a relativistic
electron as it flies past an observer.
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of the radiation cone reaches him. This edge has an angle © = —1/7 to the elec-
tron direction. At this moment the electron is at point A along its trajectory.

As it continues forward the emitted radiation passes across the observer until

the opposite edge of the cone is reached, at an angle © = +1/v (point B on the
electron’s trajectory). After that the observer does not see any more radiation
until the next revolution. The first photon to reach the observer is emitted at
point A, and the last at point B. The time difference between the arrival of the
two photons gives the length of the electromagnetic pulse, and this is the same

as the difference in the time taken by the photon and the electron to travel from

point A to point B:

2RO 2Rsin®
At = te—t, = R —
2R [(© e o ‘
7(5_&%5"ﬁ+”>' (2.24)

Since © ~ 1/ and 78 ~ v — 1/2v one obtains, to a good approximation

2.25
By v 693 (2.25)

C

2R (1 1 1 4R
aex 28 ( )~ s

This short electromagnetic pulse results in a broad spectrum with a characteristic
frequency :
2 3meyd
Wehar = ZZ =~ 3R

In general the critical frequency w, is used rather than the characteristic fre-
quency to describe the spectral region of the synchrotron radiation. This is de-
fined as

(2.26)

Wehar _ 30()/3

T 2R’
The exact formula describing the electromagnetic spectrum emitted from rela-
tivistic electrons following a curved path was first calculated by Schwinger [33].
He obtained the following expression for the spectral photon density:

dN PO w

— =g (=]. 2.2

defe  wch (wc) (2.28)
Here Py is the total power radiated from N electrons per revolution. This can
be obtained immediately with the help of equation (2.15):

We = (2.27)

e2cyt ey?
P = N = I . .
07 6reoR2 3R ™ (2.29)

Tveam is the electron beam current, which is usually more convenient to use in
calculations than the number of electrons. The spectral function S; in (2.28) has
the form
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Ss(8) = 9%?5/Ks/a(ﬁ)di- (2.30)
3

K3 is the modified Bessel function. The spectral function naturally satisfies
the normalization condition

Aw&®%=L (2.31)

as may be easily verified. Integrating up to the upper limit £ = 1, i.e. w = w,,
gives

1 .
1
/&@%=5 (2.32)
0
This result means that the critical frequency w,. divides the synchrotron radia-

tion into two regions of equal radiated power. A typical spectrum is shown in
Fig. 2.5, in which the photon density is plotted as a function of the photon energy

 E.,. The critical energy ¢, = hw, corresponding to the critical frequency is indi-

cated. It is easy to appreciate how the strong forward peaking, extremely high
intensity and very broad spectrum of synchrotron radiation have made it an ex-
ceedingly powerful tool for fundamental research and, increasingly, for industrial
applications.
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Fig. 2.5 Spectral photon density of synchrotron radiation as a function of photon
energy. In this example the electron beam passes through a bending magnet with a
bending radius R = 12.2 m at an energy E =5 GeV.
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2.4 Storage rings for synchrotron radiation

As already mentioned, the first experiments with synchrotron radiation were car-
ried out at synchrotrons. However, these accelerators could not keep pace with
the requirements of the increasingly refined experiments. During each accelerat
ing cycle the electron beam is injected at very low energy, and emits almost no
radiation at this stage. Only when the electron energy grows does the radiated
power increase according to the E* law. As a result, the full intensity of syn-
chrotron radiation is only available for a very short time, when the beam is at
maximum energy. The average yield of photons is thus not very large. In addition -
the energy spectrum changes constantly during the acceleration, since the critical
energy is proportional to 73, A further disadvantage is the limited beam focusing
in synchrotrons, which cannot achieve the very narrow beam cross-section desir
able for experiments. What is more, because the field strength in the individual
magnets does not increase exactly linearly, the electron beam oscillates during
certain stages of acceleration. Because of the long lever arm this can lead to large
variations in the position of the synchrotron beam in the experiment.

As a result, storage rings have taken the place of synchrotrons as sources of
synchrotron radiation. They operate at a fixed energy and the beams circulate
for several hours without interruption. In addition, very high beam currents can
be achieved by accumulation. Operating at a constant energy allows a very stable
well-behaved beam to be produced and also allows the electron beam to be very
strongly focused; such a beam could not be achieved in a synchrotron with very
rapidly changing magnetic fields. Specially optimized storage rings have a beam -
spot two orders of magnitude smaller than in a synchrotron, coming very close
to the ideal of a point-like radiation source. For these reasons storage rings are
nowadays the standard choice as powerful sources of synchrotron radiation. '

The first storage ring to be constructed exclusively for this purpose was
TANTALUS, designed and built by E. Rowe and co-workers in 1968 [34]. There-

radiation fan
electron beam \ mask

\ E

bending magnet

electron beam

Fig. 2.6 Horizontal fan of synchrotron radiation emitted from an electron beam as it
passes through a bending magnet.
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» Fig. 2.7 The wiggler or undulator, consisting of a periodic arrangement of short bend-

ing magnets of alternating polarity. The bending of the electron beam in the magnets
is exaggerated in the diagram.

after storage rings built for high energy physics were mostly used parasitically,
such as SPEAR at the Stanford Synchrotron Radiation Laboratory [35] and
DORIS at the German Electron Synchrotron Laboratory DESY in Hamburg
[36]. The accelerators developed for high energy physics are, however, not op-
timized for the use of synchrotron radiation. In general the beam dimensions
are far too large and do not allow the precise position resolution necessary for
many experiments. As a result, proposals were soon developed for storage rings
with extremely small beam sizes, to be used exclusively for the production of
synchrotron radiation. These ‘second generation’ synchrotron radiation sources
were developed during the mid-1970s, among them Aladdin in Madison (USA)
[37], Super-ACO in Orsay (France) [38], BESSY in Berlin [39], the National
Synchrotron Light Source in Brookhaven (USA) [40], and the Photon Factory in
Tsukuba (Japan) [41]. In these storage rings synchrotron radiation is produced
as the beam trajectory curves inside the bending magnets. A broad horizontal
fan of radiation results, as sketched in Fig. 2.6. Since the sample under illumina-
tion is usually small, much of the radiation hits the screen and is lost, especially
at large distances from the source. Furthermore the synchrotron beam does not
have sharp horizontal edges. Thus the extremely small opening angle © = 1/~
can only be exploited in the vertical plane. Because of this problem, attention
soon turned to how to achieve both high photon density and strong horizontal
bunching of the radiation. The solution nowadays is to use a periodic arrange-
ment of special magnets with poles of alternating polarity. The principle behind
these magnets, called wigglers or undulators, is illustrated in Fig. 2.7.
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Undulators and wigglers use the same basic principle and differ only in the
strength of their bending field, with the undulator generally being much weaker .
than the wiggler. A distinction is only made between the two versions because of -
the different characteristics of the radiation they produce. This question will be
discussed in detail in Chapter 8. Here it is sufficient to remark that the strong
wiggler produces a spectrum similar to that from a bending magnet, while in -
the-undulator, because of the weaker bending, constructive coherent radiation is
produced with very high intensity. It is precisely this property that makes the
undulator so useful. '

The intensity of radiation produced by the undulators and wigglers depends
essentially on their length and number of periods. Nowadays magnets of this kind
may be several metres in length. As they do not contribute to the bending of :
the beam in the storage ring, long straight sections must be provided within the
accelerator to accommodate them. In existing high energy machines such straight
sections are short or non-existent. As a result, special ‘third generation’ storage
rings were developed, with long sections kept free for wigglers and undulators.
Here the only purpose of the bending magnets is to steer the electron beam
along a closed path from one wiggler to the next (Fig. 2.8). Several storage rings

focusing

undulator
beam

Of injection
magnet

klystron
generator

accelerating
cavity

wiggler beam

Fig. 2.8 Layout of a ‘third generation’ storage ring with long straight sections to
accommodate wigglers and undulators.
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have been constructed which use wigglers and undulators. Some are smaller
machines with beam energies between 1.5 and 2 GeV, such as the Advanced
Light Source in Berkeley (USA) [42], the Trieste storage ring ELETTRA [43],
and the Dortmund storage ring DELTA [44]. Then there are large machines
with maximum energies of 6 to 8 GeV, which deliver radiation mainly in the
X-ray region. Some are being built through international collaboration, among
them the European Synchrotron Radiation Facility in Grenoble (France) [45],
the Advanced Photon Source at the Argonne National Laboratory (USA) [46]
and the SPring-8 project in Japan [47].
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Linear beam optics
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When an accelerator is constructed, the nominal trajectory of the particle beam
is fixed. This trajectory may simply be a straight line, as is the case in linear
accelerators. In circular machines such as storage rings, however, it may have
a very complicated shape consisting of numerous curves connected by straight
sections of various lengths. The particles follow the resulting closed path over
and over again and so cover an extremely large total path length within the
accelerator. On the other hand, the trajectories of individual particles within a
beam always have a certain angular divergence, and without further measures
the particles would eventually hit the wall of the vacuum chamber and be lost.

It is therefore necessary first of all to fix the particle trajectory, in general an
arbitrary curve, and then to repeatedly steer the diverging particles back onto the
ideal trajectory. In most general terms, this is done by means of electromagnetic
fields (E and B), in which particles of charge e and velocity v experience the
Lorentz force

F=eE+vxB)=p. (3.1)

At relativistic velocities electric fields E and magnetic fields B have the same
effect if E = cB. That is to say, a magnetic field of strength B = 1 T is equivalent
to an electric field of strength £ = 3 x 108 Vm~1. Nowadays it is relatively easy
to produce magnetic fields over 1 T by conventional means, whereas an electric
field of 3 x 108 Vm~! is far beyond technical limits. As a result, magnets are
almost always used to steer the beams in modern accelerators. Electric fields are
employed only at very low energies, or to separate particles according to their
charge.

The physical fundamentals of beam steering and focusing, which by analogy
with light are called beam optics, were developed by Courant and Snyder [48].
Further treatments and reviews may be found in Persico, Ferrari and Segre [49], ‘
Steffen [50], Sands [51], Kolomenski and Lebedev [52], Wilson [53] and Bruck |}
[54]. The reader is also referred to the Proceedings of the CERN Accelerator
School (CAS) [55].

3.1 Charged particle motion in a magnetic field

To describe the motion of a particle in the vicinity of the nominal trajectory
we introduce a Cartesian coordinate system K = (z,z,s) whose origin moves
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Fig. 3.1 Coordinate system to describe
the motion of particles in the vicinity of the
nominal trajectory.

along the trajectory of the beam (Fig. 3.1). The axis along the beam direction
is s, while the horizontal and vertical axes are labelled x and z respectively.
For simplicity we will assume that the particles move essentially parallel to the
s-direction, i.e. v = (0,0,vs), and that the magnetic field only has transverse
components and so has the form B = (Bj, B,,0). For a particle moving in the

. horizontal plane through the magnetic field there is then a balance between the

Lorentz force F, = —evs B, and the centrifugal force F, = mv?/R. Here m is the
particle mass and R is the radius of curvature of the trajectory. Using p = mus,
this balance of forces leads directly to the relation

1 e
—— = —-B,(z,2,s). 3.2
R(x’ z) 8) p Z( ’ ’ ) ( )
There is a corresponding expression for the vertical deflection. Since the trans-
verse dimensions of the beam are small compared to the radius of curvature of
the particle trajectory, we may expand the magnetic field in the vicinity of the
nominal trajectory:

dB, 1d°B, , 1d°B, ,

Bz(x)———Bzo-l-—E:-E—Z"‘i-i da:zx +a dz3x +.... (33)
Multiplying by e/p
e e e dB, 1l ed®B, , ledB, 4
E)Bz(x) N EBZO + pdz ’ Np da? © 3p dad © T
1 1, 1,
= R + kx + T + 37%% +....
dipole quadrupole sextupole octupole
(3.4)

The magnetic field around the beam may therefore be regarded as a sum of
multipoles, each of which has a different effect on the path of the particle. The
most important multipoles and their effects are listed in Table 3.1. If only the two
lowest multipoles are used for beam steering in an accelerator then one speaks
of linear beam optics, since the only bending forces present are either constant
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Table 3.1 The most important multipoles in beam steering and their principal eﬂ?ectsi
on the motion of the beam.

multipole definition effect
. 1 e .
dipole R= EBZO beam steering
dB
quadrupole k=° y 2 beam focusing
p dz
ed?B, .. .
sextupole m = 5 I chromaticity compensation
d’B
octupole o=1% 7 SZ field errors or field compensation
b ax” -
etc.

(dipole field, entering through the bending radius R) or increase linearly with |
the transverse displacement from the ideal trajectory (quadrupole field, described
by the quadrupole strength k). Higher multipoles (sextupole, octupole etc.) are
either unwanted field errors or are deliberately introduced for compensation or
field correction. We will begin by considering the physics of linear beam optics, '
since this is the foundation of all beam steering.

3.2 Equation of motion in a co-moving coordinate system

The transverse beam size is in general very small compared to the dimensions
of an accelerator. As a result it is useful to consider the motion of individual

ajectory

panicle tr

orbit

Fig. 3.2 Rotated co-moving coordinate system to describe the beam motion relative
to the orbit.
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a. b.

Fig. 3.3 Rotation of a Cartesian coordinate system (z, z, s) around the z-axis.

-particles only in the immediate vicinity of the ideal trajectory. This ideal trajec-

tory, which is fixed by the construction of the accelerator, is termed the orbit.
The trajectory of an individual particle is described using a coordinate system
K = (z,7;s) whose origin moves along the orbit and follows the longitudinal
motion of the particle (Fig. 3.2). In this system z is the horizontal and z the
vertical position of the particle relative to the orbit.

In regions where the beam is bent by a magnetic field, the coordinate system
must be rotated accordingly. Our first important task is to develop, in this rotated
coordinate system, a general equation of particle motion due to the Lorentz
force (3.1). Let us begin by collecting a few important properties of the rotated
coordinate system, which may easily be derived with the help of Fig. 3.3.

We start by noting that the beam steering only acts in the horizontal plane,
i.e. the coordinate system only rotates around the z-axis. Initially the system
is fixed in the z-s plane with unit vectors xpa and spa which, following a ro-
tation through the angle ¢, are transformed into the vectors &y and sg. This
transformation can be directly obtained by inspecting Fig. 3.3:

Toa COS P + SpA Sin@
Sy = —TpASinY+ Sga.co8p. (3.5)

To

Differentiating these vectors with respect to ¢ yields

dSo . diC() _

—_— = — — . 3.6
do o dp So ( )

The path element ds = Rdy of a curved trajectory immediately gives

dp 1ds

prial e (3.7)
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With the help of these relations we may calculate the time derivatives of the unit -
vectors:

go = Gmode 1.
0T dedt T R
. dsg dip 1. :
= ———— T — — 3.
%0 dp dt = RO (3.8)
Zo = 0.

The origin of coordinates moves along the orbit by dro = s¢ ds and it follows
that ¥y = § sg. The position vector r of the particle can be written in the general
form

r=179+T Ty + 2 20. (3.9

To formulate the equation of motion we also need the first and second time
derivatives, which we may easily obtain using equations (3.8):

o= $m0+2z0+(1+%).§30
o= {5&—<1+%>3—;] mg+2z0+[%dsé+(l+%>§]so. (3.10)

As the particle travels through the magnet structure, its position s is uniquely
defined for any time . This allows us to replace the time derivative by a derivative -
with respect to the spatial coordinate s as follows:

dz ds .

— - = §

ds dt

s+ s=a" 2+ 5.

i o= (3.11)"

Using these relations it follows from (3.10) that

3 /e /- Ty .
r = xswo—i—zszo—{—(l—i—ﬁ)sso
i = x"52+x'§—(1+3)§ o + (5% + 2'5)z (3.12)
2)R|® 0 . :
2 .5 T\ .
+[Ea:s +(1+ﬁ>5]30'

This is the general expression for the trajectory vector r in a co-moving rotated .
coordinate system. Substituting p = m # and v = 7 into (3.1), we obtain the
equation of motion of a charged particle in a pure magnetic field in the form
e ;

# = —(r x B). 3.13
Z (- x B) (3.13)
We now assume that only the transverse components of the magnetic field are

non-zero, i.e. B = (B, B, 0). This assumption is generally very closely satisfied
in particle accelerators. From (3.13) it then follows that
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particle trajectory v

Fig. 3.4 Comparison between the velocity
v of an individual particle and the velocity
$ of the co-moving coordinate system along
the orbit.
X
~(1+%)sB
(1+7) 5

(1+5)m

2'$B, — 2 $B,

P o= %(i'xB) - % (3.14)

Since the particles are moving with relativistic velocities, the effect of the mag-
netic field on their longitudinal velocity is negligible. In what follows we therefore
need to consider only the transverse components x and z. Equations (3.12) and
(3.14) then lead to the relations

N x\ §2 e x
"2 re - —--B 4+ 218
s rs (1 R) R m (1 R) 5
"2 /e € AW
-+ = —B, (1 + ———) . 3.15
2'$* + 2’8 7)) s (3.15)

We can simplify these relations by assuming that that the velocity of the particles
only varies very slowly as they pass through the magnetic field, and so § = 0.
Furthermore we set p = mv. As may be seen from Fig. 3.4, v # §. Instead simple
geometry gives

R+=x T
=3 =s(1+%). 3.16
v ’s R s( +R ( )
Using this expression, (3.15) yields

" 2)1 _ _Yep (1 z

T (1+R R sp * +R)
2 = %8B, (1+‘3). (3.17)

$p R

We now also assume that the particles have a well-defined momentum
P = po + Ap, where the momentum deviation Ap is very small compared to the
nominal momentum pg. This condition is very well satisfied in accelerators, with



50 Linear beam optics

the relative momentum deviation Ap/p in the beam generally being rather les
than 1%. We are therefore justified in writing, to first order:

) 1=i( ——Aﬁ). (3.18)

P Do Po

By analogy with (3.4) we describe the magnetic fields using the energy invariant
dipole strength 1/R and quadrupole strength k, and consider only these linear
terms in what follows. Let us now further assume that particles are only deflected
in the horizontal plane, i.e. only horizontally acting dipoles fields are present. We
then obtain

e 1 e
—B,=—=—-kzx —B, =—k 2. 3.19
Do R o (8:19)

The sign of the quadrupole strength k is arbitrary, and we choose a convention
in which k < 0 if the quadrupole is focusing and k& > 0, if it is defocusing
Substituting (3.18) and (3.19) into (3.17) and for simplicity writing pg as p, we

obtain
(37 = -0 ) (-5)
" *(1_{—%)2]%(1_%)2) .

We multiply out the brackets on the right hand side and neglect all terms con-
taining squares or products of z, z, and Ap/p. This is justified because z < R
z < R, and Ap/p < 1. With these simplifications we finally obtain the linear
equations of motion for a particle travelling through the magnetic structure o
an accelerator:

Il

®
Il

2" (s) + (RQL(S) - k(s)) 2(s) = E%;S%

2"(s)+ k(s)z(s) = 0.

(3.21)

These equations form the basis of calculations in linear beam optics.

3.3 Beam steering magnets

Before turning to the solution of the trajectory equations (3.21) we first consider
how the magnetic fields needed to bend and focus the beam are produced. We
will discuss how magnets must be shaped in order to produce a particular field,
such as a dipole field, quadrupole field and so on, with a strength 1/R, k, m etc.
We will only consider purely static fields here.
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Fig. 3.5 Calculation of the magnetic potential at

Y the boundary between a vacuum (u: = 1) and a
A highly permeable material with p, — co.

3.3.1 Calculation of magnetic fields for beam steering

The basis of all calculations of static magnetic fields H is Maxwell’s equation

VxH = j (3.22)

‘where 7 is the current density. In what follows, the field shape is important only

in the vicinity of the beam, where no current is flowing, and so

VxH = 0. (3.23)

c

In this case H may be written in terms of a scalar potential ¢ as follows
H = Vo, (3.24)

since V x Vo = 0 always holds. Fixing the potential ¢(z,z,s) defines the
field uniquely. For simplicity we will assume that the field only has transverse
components, and that the structure of the field does not change along the beam
axis s. This is true in general. The calculation of the magnetic field is thus reduced
to solving a two-dimensional problem in the z-z plane. To produce a particular
potential function ¢(z, z) it is necessary to fix the shape of the equipotentials
o(z,z) = const. Surfaces made of highly permeable materials are most suitable,
especially iron, which has a relative permeability p, > 1000. If one moves along
an arbitrary path from a point A outside the iron to a point B lying inside the
iron, and then back along another arbitrary path to point A (Fig. 3.5), the total
potential difference traversed is § H - ds = 0. If the two points of entry into
the surface of the iron are labelled X and Y, then one obtains

X B Y A
fHdS = /Ho'ds -+ /HFe'dS + /HFe’dS + /Ho'ds = 0. (325)
A X B Y

Here Hy is the field in the vacuum and H Fe 18 that in the iron. The relation
between the two at the surface is

|Hrpe| = ilHol- , (3.26)
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Since p, is generally very large in iron, the contribution to the potential from
Hp, may be neglected. It then follows from (3.25) that '

X Y
* /HO -ds = /HO - ds. (327)
A A ‘

The points X and Y thus lie on an surface of equal potential. Since we have made
no assumptions about the position of X and Y on the boundary surface, (3.27)
tells us that all points on this surface are at the same potential. The surface of
a highly permeable material such as iron therefore forms an equipotential. By
carefully choosing the shape of the magnet poles it is possible to fix the potential
©(z,z) and, as a consequence of (3.24), also the magnetic field H.
In what follows it is more convenient to use the magnetic flux density
B = o H rather than the magnetic field H. By analogy with (3.24) we define
a potential ®(z,2z) = prpop(z, z), from which the magnetic flux density may
be calculated according to
B = Vo. (3.28)

Using the Maxwell equation VB = 0 the Laplace equation immediately follows; .
Ve = 0. (3.29)

The equations (3.28) and (3.29) form the theoretical basis of the design of iron
pole magnets. Here the first task is to fix the shape of the transverse field required
for beam steering. It is sufficient to determine the form of just one field com-.
ponent along a particular axis, for example the vertical component G,(z) along
the z-axis (z = 0). This then uniquely determines the entire field distribution
B(z, z). Taking the case of G, we may use the following general expression for-
the form of the 2z component of the field

B,(z,2) = G,(z) + f(2). (3.30)

Here f(z) is an unknown function, which only describes that part of the ﬁeld;
which depends on the vertical coordinate z. The potential is then ‘

b(z, 2) =/Bz dz = G,(z) z + /f(z) dz. (3.31)’1,’ |

The unknown function f(z) can only be calculated by means of the Laplace
equation (3.29). This gives

2 920 d&C.(a) O
Ox? 022 dx? dz

from which it immediately follows that

f0) = - [ LoD gy = 1ECED)

V2o — 0, (3.32)

dx? 2 dx?
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Qubstituting this expression into (3.31), we finally obtain the potential

B(z,2) = Gy(z) # — é‘f%@ ] (3.34)

From this we can calculate the final field distribution using

d®(z, z)
dz
d®(z, z)

dz‘

B(z,z) = (3.35)

Using equations (3.34) and (3.35), the potential and the magnetic field in the
entire z-z plane can be calculated for any field shape G,(z) along the z-axis.

3.3.2 Conventional ferromagnets

We will now use the procedure we have just developed to describe the most

‘important types of conventional magnet, in which the poles are made of iron

and the field is generated by current flowing through windings.
To bend charged particles around a circular path, dipole magnets are used.
These have a constant field along the z-axis, which we determine as follows:
2G,(x)

Gz(fﬂ) = B(] = const — —‘m = 0. (336)

The required potential then follows immediately from (3.34)
b(z,z) = By 2. (3.37)

The equipotential line ®(z, z) = ®¢ = const is therefore a line running parallel
to the z-axis at a distance z from it. The dipole cousists of two parallel iron
poles of separation h = 2z (Fig. 3.6).

iron yoke
®= +<I>ol N | ™
parallel
__I_fz 1.1l | _,ironpoles
; /
1
D= - S I

Fig. 3.6 A ferromagnet consisting of two parallel iron poles.
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Fig. 3.7 Calculation of the relation between the-
current I and the magnetic field B of a dipole.
magnet.

The relationship between the current I and the resulting field B in the gap
between the poles may be calculated most simply by using the Maxwell equation.
$ H - ds = L. Let us assume that the coils have n windings in total, i.e.
Iiot = nl, where I signifies the current through the coils. (Fig. 3.7). For simplicity |
we further assume that the field Hy in the gap and Hg, — in the iron are always
constant. If we now notice that Hr, = Ho/py with p, > 1, it follows that :

nl = fH'ds = Hglwe + Hoh = Hyh. (338) i

The magnetic field in the gap is By = puoHy, since here p, = 1. We thus obtain 1
the following expression for the field of a dipole magnet:

nl

The dipole strength in (3.4) is then
1 e euo nl : q |
— = Sy = YT 3.40
R p ° ph (3.40)

In a realistic magnet there will be deviations from this ideal field. Firstly, a truly §
homogeneous field could only be produced by infinitely long poles and so is of
course unattainable. Instead one finds that beyond a certain horizontal distance
from the central axis of the magnet the field falls away, as the field lines at the
edge of the poles are pushed outwards (Fig. 3.8). This restricts the size of the
useful region of the field. The boundary of the field is generally taken to be the
distance at which the field has decreased by a factor AB/B = 2 x 10=%. The
decrease in the field may be partly compensated for by fitting flat iron strips:
called shims to the ends of the poles, so increasing the useful region of the field
for a given pole width. A further problem in ferromagnets is saturation, as can.
be seen from the excitation curve in Fig. 3.9. At low field strengths, i.e. B < 1T,
the relation between the magnetic field and the current is linear to a very good:
approximation. Above 1 T the field lags behind the current and levels off at a ' |
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Fig. 3.8 Limitation of the useful field region due to the edge field. The useful field
region can be extended somewhat by fitting iron shims to the edge of the poles.

constant value of around 2 T. It is then pointless to increase the current any
further. 2 T thus represents the absolute upper limit for ferromagnets, although
in practice they tend to be operated well below this value, not exceeding B =
1.5 T if possible. To focus the beams, quadrupole fields are used which, according
to (3.4), disappear along the beam axis and increase linearly with transverse
distance z. Their field shape may then be determined from the function

. 0B
G.(z) = gz with g¢g = =Z. (3.41)
Ox
A .
BT
S P — -
i //,
1
Fig. 3.9 Relation between magnetic field B
_ and coil current I at high field strengths.
Above B = 1 T saturation occurs, limiting
0 —» the maximum field in conventional magnets to
0 current / around 2 T.
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' Z iron yoke

hyperbolic
pole surface

Fig. 3.10 A quadrupole magnet with hyperbolic pole surfaces.

The second derivative of G, also disappears in this case. According to (3.34),
the required potential is then

U(z,z) = gz 2 (3.42)1;

It immediately follows that the equipotentials z(x) for a given value of ¥y are
hyperbolae of the form .
z2(z) = s (3.43)
For this reason, a quadrupole consists of four poles with hyperbolic sur-
faces, arranged with alternating polarity North-South-North-South, as shown
in Fig. 3.10. The four poles are excited by coils which surround them. The di
tribution of field lines between the poles causes a magnet which focuses in th
horizontal plane to defocus the beam in the vertical direction. To properly fo--
cus the beam it is therefore necessary to use at least two quadrupoles, rotated
through 90° relative to each other.
The relationship between the current I in the coils and the field gradie
g = OB, /0z may easily be determined by again calculating the integral § H -ds,
choosing an appropriate closed integration contour around the conductor in the
coil, as shown in Fig. 3.11. It begins on the beam axis (point 0) and runs through
the saddle point of the pole (point 1), through the iron yoke to the z-axis (point
2), and from there back to the starting point 0.
The integral may then be broken up into pieces as follows:

1 2 0
7{H~ds: /HO'ds+/HFe~ds+/H-ds:nI. (34
0 1 2

The only non-zero contribution to the right-hand side of the equation comes fronl'i
the integration from the beam axis to the pole (0 — 1). Within the iron yoke
the integral vanishes because p, > 1 means that Hp. is negligible. The 1ntegra1\
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along the z-axis is also zero, because here we always have H 1 s. We therefore
only need to consider the field between the beam axis and the pole. This field
may be obtained immediately from the expression for the potential (3.42) and
is given by By, = gz and B, = gx. The contribution of the magnetic field along
the path of integration 0 — 1 is then given by

H=9 /o2y 2= g\/_x——r (3.45)
Lo ko

Here we recognise that = z for this particular choice of path of integration
and so r gives the line of integration from the origin. The apex of the pole is at
r = a, allowing the integral (3.44) to be written as

/Hdr——/rdr———an. (3.46)

From this it immediately follows that

2pond
g = 5 (3.47)

Since g oc 1/a? it makes sense to keep the pole separation a as small as pos-
sible for high-strength quadrupoles, so that the current I and hence the power
consumption of the magnet are reduced. ‘

As a final example let us now consider the sextupole magnet, which is primar-
ily used to compensate for chromatic abberation in strongly focusing magnetic
structures. Along the z-axis this magnet has a field of the form

2
G,(z) = %g'mQ with 4—5;—2(96) = 4. (3.48)
Notice that here the second derivative of G (x) is not zero, as it is in cases of
the dipole and quadrupole. Equation (3.33) then means that the function which
describes the dependence of the field on the vertical coordinate 2 is non-zero, i.e.
f(2) # 0. In the sextupole the particle motion in the horizontal plane is coupled
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Fig. 3.12 Basic structure and equipotentials of a sextupole magnet.

to that in the vertical plane, and vice-versa. The same is true of all higher
multipoles, whereas dipole and quadrupole magnets do not have this coupling, -
This means that for linear beam optics, in which only dipoles and quadrupoles are
involved, we may calculate the particle motion in the two planes independent]
Inserting the quadratic field (3.48) into the expression for the potential (3.34
gives

1 , 9 23
O(z,2) = =g |z°2— 5. (3.49)
2 3
For a given constant potential ®¢, solving this equation for z(z) yields the equipo- .
tentials. In this case it is easier to fix the vertical coordinate z and to determin
the associated value of . For z # 0 it immediately follows that

20, 22
g,ZO + 5 (3.50).

z(z) =

This expression determines the shape of the six poles, which are arranged wit
alternating polarity, each at an angle of 60° to the next. The basic structure
a sextupole magnet and the path of the equipotentials are shown in Fig. 3.1
The field strength along the beam axis of a sextupole with n turns per coil an
a pole radius a is, for a given coil current I,

,_8ZBZ_6 nl
9= gz TG

This expression is derived using the same procedure as in the case of the:
quadrupole, described above.

(3.51

3.3.3 Superconducting magnets

The maximum field strength B = 2 T attainable with conventional iron magne
is not always sufficient for beam steering. In particular, proton accelerators
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energies above 100 GeV and synchrotrons producing extremely short wavelength
radiation require fields of over 5 T. Such fields can only be produced by air core
magnets, because the saturation effect means that iron may no longer be used.
Here there is also the problem, however, that the conductors in the coils must
carry an extremely high current density. If, for example, we want to produce a

field of 5 T at a distance of 5 cm from a conductor, a current of 7 = 1.25x 106 A is

required. If the conductor has a thickness of 3 cm this results in a current density
dl/da ~ 1700 Amm—2. Bearing in mind that even with very effective water
cooling the maximum tolerable current density in copper is around 100 A mm 2,
we immediately see that such a requirement cannot be satisfied using normal
conductors. The problem lies in the ohmic resistance of the material, which
above a certain current density results in such strong heating of the conductor
that cooling cannot prevent it from melting.

The solution to this problem lies in the use of superconductors, which were
discovered in 1911 by the Dutchman H. Kamerling Onnes. He observed that
when mercury is cooled to very low temperatures its ohmic resistance suddenly
disappears below a critical temperature T, = 4.2 K (Fig. 3.13). In this state the
current effectively flows without any losses. A whole series of materials were later
discovered which also exhibited superconductivity, and with higher critical tem-
peratures. However, it is striking that the best normal conductors such as copper
and silver do not become superconducting, however low the temperature. On the
other hand, some alloys which at normal temperatures are extremely bad con-
ductors are excellent superconductors. A widely used alloy is niobium-titanium,
which becomes superconducting below a critical temperature of T, ~ 10 K.

Superconductivity does not just depend on the temperature. It is also influ-
enced by external magnetic fields, as the curve in Fig. 3.14 shows. A supercon-
ductor cooled to below T, placed in an increasing magnetic field suddenly passes
back into the normal conducting state. Above a critical field strength B.(0),
superconductivity cannot be achieved, even at absolute zero. The dependence of
the critical field strength on temperature is given to a good approximation by

T\ 2
B.(T) = B.(0) [1— (T) (3.52)
C
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Fig. 3.14 Dependence of supercon
»  ductivity on the temperature and th
0 temperature I surrounding magnetic field.

As a result of the Meissner-Ochsenfeld effect the magnetic field is pushed out:
of the conductor at the onset of superconductivity. This means, however, that.
since V x B = ugj, the current itself can only flow near the surface of th
conductor. Away from the surface the current density falls off exponentially, wit
a penetration depth of around 50 nm. In the conductor surface very high loc
current densities and magnetic fields result, and these fields are superimposed o
the external field and push the conductor into the normal conducting state. Thi
transition from the superconducting to normally conducting state, which occur
abruptly above a particular field strength, is known as ‘quenching’. Quenchin
limits the maximum attainable field strength and is also one of the main problem
in constructing superconducting magnets which may be operated safely. We wi
not go further into the physics of superconductivity here, see W. Buckel [56] fo
more details.

For a superconductor to produce extremely high ficld strengths it it nece
sary for the conductors to have a very large surface area. This is achieved b
making the conductor out of a very large number of extremely fine filaments, as.
shown in Fig. 3.15. The individual niobium-titanium filaments have a thicknes
of around 10 pm. They are bundled into cords of several thousand filament
which are surrounded by a copper sleeve to provide mechanical strength an
good cooling. As copper does not act as a superconductor, it does not con
tribute to the flow of current, and acts almost as an insulator. Several of thes
copper-sleeved cords of filaments are then bundled into a cable, usually roughly .
rectangular in shape, which is held together by kapton and glass ribbon. Thes
cables, which are nowadays manufactured industrially, routinely allow curren
densities of dI/da ~ 1500 Amm~? to be achieved in the superconductor itsel
at an operating temperature of 4.6 K and within an external field of aroun
6 T. The overall current density in an assembly of superconducting strands wit
copper sleeves and insulators is of course considerably lower.

Using the superconductor technology described here it is possible to pass ver
high currents through comparatively thin cables and so produce the requisit
high magnetic fields. As we have seen for conventional magnets in the previou
section, the most important factor apart from the field strength is the field shap
i.e. the particular spatial distribution of the field in the region of the beam
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Fig. 3.15 Construction of a superconductor from niobium-titanium.

The challenge thus lies in arranging a particular number of current-carrying
filaments without an iron core to produce, for example, a pure quadrupole field.
We will begin by calculating the field around 'a single filament, assumed to be
infinitely thin, and then use the principle of superposition to determine the field
distribution resulting from an arrangement of many such filaments.

To calculate the static field around a conductor we start with the following
fundamental equations:

V-B =0 and VXxB = ppj. (3.53)
The field B can be described by a vector potential A as

B = VxA, (3.54)

- which is consistent with the first equation in (3.53) since V- (V x A) = 0 always

holds. Let the conductor be infinitely long and run parallel to the beam axis s
at a separation a = |a| (Fig. 3.16). The field B should be determined for any
point P in the z-z plane, described by the position vector r. Q is the point at
which the conductor passes through the z-z plane. The separation between the
conductor and the point P is given by the vector R = a — r. The vectors a, r
and R all lie in the z-z plane perpendicular to the beam axis and the conductor.
In the following we will also discuss the magnitudes of these vectors, which we
will denote by a, r, and R, respectively. The vector potential A has only one
component, in the s direction, since the field lines always run perpendicular to
the beam axis. By integrating equation (3.54) and rearranging, we obtain the
following form for the vector potential around a straight conductor carrying a
current |

0
A=1| o0 with A, =L R (3.55)
A, ; 27

We must now find an appropriate expression for In R. Using the law of cosines
we obtain the following expression for the magnitudes of the vectors:

=
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Fig. 3.16 Calculating the magnetic field around an infinitely thin, infinitely long con:
ductor running parallel to the beam axis.

2 ;
R? = a? + 1% — 2arcos(® — ©) = a? [1 + 25 - 22 cos(® — O)] . (3.56)

Using the relation cosz = cosh(iz) = (e 4+ ¢~*) this expression can be rear-
ranged to give

R= a\/l — Leite-0) \/1 — Le-i(a-0), (3.57)
a ,

a
The logarithm of this expression is

mR=Ina+—In (1 - fei@’—@)) PR (1 - fe—i@-@)) . (3.58
2 a 2 a

It will be useful later when we come to calculate multipole fields to expand this
logarithm as follows:

In(l—z) = — Z% (3.59:
n=1
This gives
11 K Il /7 _jo_e)\"
R = o=z 0 (G ) -5 L (G ?)
11 N (B
= Ina 525() (ein(@=0) 4 eminte ®) (3.60

S|
~~

= lna—i g)ncos[n(é—@)}.
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Fig. 3.17 Current along a cylindrical con-
ductor with a magnitude dependent on the
azimuthal angle ®.

Inserting this into (3.55) finally yields the required vector potential in cylindrical
coordinates

As(r,©) = HQ—(;—T{ g % <£)n <;>os [n(@ — @)] (3.61)

The constant term Ina is ignored here, since it does not contribute to the field.
To calculate the field configuration resulting from an arrangement of a large
number of conductors we will consider a conducting cylinder, in which current
flows parallel to the axis. This axis coincides with the beam axis (Fig. 3.17).
Let the current flowing along the cylinder surface have the following azimuthal
angular distribution:

dI(®) = Iycos(m®) dP m=1,23,.... (3.62)

Inserting this current distribution into (3.61) and integrating over all current
elements dI yields

27

Ay(r,0) = %—_ i% (—) /cos [n(cb - @)] cos(m®)dd. (3.63)

0

To calculate the integral we use the sum rule for trigonometric functions and
recall that f02 " sin(n®) cos(m®)d® = 0 and fOZﬂ cos(n®) cos(m®)d® = 7 when
7 =m and = 0 otherwise. We thus obtain

As(r,©) = MOTIO% (g)m cos(m®). (3.64)

This is an exact solution, and does not rely on any assumptions at all. We can
immediately use it along with the relation (3. 54) to calculate the field in polar
coordinates:
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roe ’  or

- Mg—io <£)mf1 (sin(m@) , cos(m@)). (3.65

B(re) = VxA = (15’48 —6‘43)

Il

When considering this field distribution we only need to know its form alon
one axis, for example the z-axis, since this is enough to uniquely determine the
distribution throughout all space. We must therefore find the component B, (z)
for z = 0. This is easily achieved by setting © = 0, so that r becomes x and the .
only non-vanishing field component is B, giving

B,(z) = —-’i‘% g™ 1, (3.66)

The multipole may be specified by the choice of index m, as can be seen in-
Table 3.2.
Thus there is in general a field distribution B, < ™! and hence a 2m pole

To produce a dipole field in practice we need to form shells of current, whos
thickness varies with azimuthal angle as cos(m®) at constant current density
The left-hand diagram in Fig. 3.18 illustrates this for a dipole. It is, however
not possible to build these ideal shells of current using available superconductors
and so the cos(m®) dependence must be approximated, as is shown in the right
hand diagram. As a result there will inevitably be deviations from a pure dipol
field near to the conductors, but in the region of the beam these difference
largely cancel out.
By arranging conductors in this way it is possible to build dipole, quadrupole
and sextupole magnets which, because they are superconducting, generate con:
siderably higher fields than conventional magnets. Superconducting magnets are
however, a great deal more expensive, since they must be completely enclose
within a cryostat which cools them down to the operating temperature of 4.6 K
using liquid helium. Here the electrical cables and mechanical support structure

Table 3.2 The multipoles produced by the azimuthal current distribution in a con
ducting cylinder.

index field distribution multipole
' I
m=1 B, = —M—gd—g = const dipole
_ polo
m=2 B, = —Wx quadrupole
I
m=3 B, = —%azz sextupole
etc.
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Fig. 3.18 Production of a pure dipole field by individual conductors with a current
distribution proportional to cos(m®).

pose a problem because they act as heat bridges. A further difficulty arises be-
cause the strong magnetic fields produce very strong forces of up to 10° N/m
between the conductors. In addition, great care must be taken to ensure that in
the event of a quench the entire coil immediately warms up and returns to the
normally conducting state. This is to make certain that the energy stored in the
magnet and converted to heat is evenly distributed over the entire coil rather
than concentrated in the region of the quench, which would destroy the coil. Be-
cause they are so technically complex and difficult to operate, superconducting
magnets are only used where it is really necessary to generate extremely high
fields. If there is any doubt then conventional technology should be preferred for
reasons of cost and reliability.

3.4 Particle trajectories and transfer matrices

We have shown in the preceding section how it is technically feasible to generate
magnetic fields in the region of the beam with particular multipole strengths
1/R, k, m, etc. We now turn to the solution of the trajectory equations (3.21).
As we have seen, in dipole and quadrupole magnets there is no coupling between
the horizontal and vertical motion of the particle. Hence it is sufficient to consider
only one plane. We will choose the horizontal plane, i.e. the z-s plane.

To simplify the problem further we assume that the fields begin and end
abruptly at the beginning and end of the magnets. Within the magnets we as-
sume the fields are constant along the beam axis, i.e. 1/R and k are constant
and independent of the s coordinate. The assumption of fields with this rectan-
gular shape gives results which agree very well with measurements and so this
hard-edge model is a very good approximation in calculations of the beam optics
of complex structures of magnets. Now let us also assume that all particles have
the nominal energy, i.e. Ap/p = 0. Using this set of assumptions we can solve
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the trajectory equation section by section, either within a magnet or within
so-called field-free drift region.

In principle it is possible to overlay different multipoles in one magnet. Thi
is done in the classical synchrotron, for example, where a bending dipole field
and a focusing quadrupole field are put together in a so-called combined functio
magnet. This very simple and cost-effective technique has the disadvantage, how
ever, that the bending radius R and quadrupole strength k are strongly couple
and so the magnet structure may only be used for one fixed focus setting. I
modern storage rings in particular, this restriction is unacceptable, and so th
beam bending and focusing are performed by different separated function mag
nets. In what follows we will consider the two functions separately, for the sak
of clarity.

We begin by solving for the particle trajectory in a quadrupole, which i
characterized only by its strength k£ and length I. There is no bending of th
beam (1/R = 0). The trajectory equation (3.21) thus simplifies to

z'"(s) — kz(s) =0 (k = const). (3.67

This homogeneous and linear second-order differential equation has the form o
a normal oscillation equation which may be directly solved analytically.

In the case of a horizontally defocusing magnet with £ > 0, we obtain th
solution

z(s) = Acoshvks+ BsinhVks
#'(s) = VkAsinhvks+ vVEB coshVks. (3.68
The constants of integration A and B are determined in the usual way by th
initial conditions. We assume that at the start of the magnet s = 0 the particl

trajectory has the displacement zo and gradient x, relative to the orbit. At thi
point the trajectory is thus defined by the trajectory vector

_( ®o\_( =0
xo- (%)= () oo
Inserting these initial conditions into the solution (3.68) immediately gives

xl
z = zgcosh Vks + —2 sinh Vks
(S) 0 \/E

#'(s) = zoVksinhvVks + zjcosh Vks. (3.70

These equations, which describe the evolution of the trajectory vector from th
start of a magnet to a point s within the magnet, may also be more elegantl
written in matrix notation:

1.
( a:,(s) ) _ cosh Q ﬁsmhﬂ ( 7o > with Q= VEs.
#(s) VEksinhQ  cosh® o
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Equation (3.67) may be solved in the same way for a horizontally focusing
quadrupole with k < 0 and for a zero-field drift region with & = 0. Depend-
ing on the choice of k we obtain the following transfer matrices, again with
Q= +/|kls:

( cos (2 1 sin Q
V% if k<0 (focusing)
—/|k|sinQ cosQ?
1 ]
M= if k=0 (drift section) (3.72)
0 1
cosh Q2 ! sinh
——sin
vk if k>0 (defocusing)
L vk sinh Q cosh )

Calculating the determinant of these matrices yields

detM = 1 (3.73)

in every case, and the same is true in general for all transfer matrices in linear
beam optics.

We now turn to the calculation of the particle trajectory in a dipole magnet of
constant bending radius R. We assume that the magnet has no gradient, namely
k = 0. It follows immediately from (3.21) that by simply replacing —k with 1/R?
in equation (3.67) we may calculate the trajectory function z(s) in the same way
as in a quadrupole. In this case the transfer matrix is

s .8
cos = Rsin =
Mdipole = 1 ] s . (374)
& sin = cos =

Comparing this matrix with the first matrix in (3.72), we immediately see that
it describes beam focusing. This may at first seem surprising, since the dipole has
no focusing field gradient. To understand this phenomenon let us consider the
distribution of trajectories within a magnet with a total bending angle of 180°,
as shown in Fig. 3.19. In this magnet all particle trajectories are semicircles with
the same radius R. Consider a trajectory lying outside the curved orbit with a
displacement +z at the point where it enters the magnet (point A). The particle
trajectory approaches the ideal orbit and crosses it at point B. It then runs inside
the orbit and has an eventual displacement of —z when it exits the magnet at
point C. If we plot the trajectory as a function of the distance travelled along the
ideal orbit, we immediately see that the particle is always bent in towards the
orbit — in other words it is focused. Compared to specially-designed quadrupoles
this focusing effect is, however, relatively weak, with 1 /R? < k in general. For
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Fig. 319 Weak focusing in a homogeneous dipole magnet.

this reason, the focusing effect caused by dipole magnets alone is also called weak
focusing. o .

Since the dipole magnets do not bend the beam in the vertical plane, they d
not cause any focusing in this plane either. The particles continue undeflected
just as in a zero-field drift region. To describe the vertical evolution of the tra
jectory we thus use the matrix for k¥ = 0 given in (3.72). In accelerators based
on weak focusing, such as synchrocyclotrons, it is however possible to focus th
beams in both planes simultaneously. By introducing a slight gradient in th
field of the bending magnet, part of the weak focusing effect in the horizontal
plane can be transferred to the vertical plane. Let us start with the equations o
motion which follow from (3.21) for particles of ideal energy (Ap/p = 0):

z’ + (% - k) x = 0 |
2" +kz = 0. (3.75

We define the field index
n=R*k with O<n<lL (3.76

We may then replace 1/R? with k/n > 0 in (3.75), i.e. we choose a gradien
which focuses in the vertical plane and defocuses in the horizontal plane. Thi
first equation in (3.75) then becomes

1_.
x"+(ﬁ—k)w=x"+ "kaz=o0. (3.77
n n
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Fig. 3.20 Edge focusing by tilting the face of a dipole magnet around the perpendic-
ular axis.

n is chosen such that (1 —n)/n > 0 — in general n &~ 0.5. As a result the beam

is also focused in the horizontal plane. This very simple principle of focusing in

both planes at once is nowadays very rarely used, however, because the effect is
relatively weak. '

When considering bending magnets we have assumed that the field begins
sharply at a particular point along the particle trajectory and ends sharply at
another point. We assume this for the field distribution outside the orbit as well,
i.e. the field begins and ends at the same time over the whole of the z-z plane.
The faces of the bending magnets must therefore be perpendicular to the orbit,
which due to the curvature of the trajectory requires the use of so-called sector
magnets, like those shown in Fig. 3.20.

Because they are easier to manufacture, many rectangular magnets are nowa-
days used. These differ from sector magnets in that the magnet face is effectively
tilted through an angle ¥ about the perpendicular axis (z-axis). The sign con-
vention is chosen such that the change from a sector magnet to a rectangular
magnet corresponds to a positive rotation (Fig. 3.20). The curvature of the or-
bit in the dipole is of course unaffected by this change, but the particles now
cross the face of the magnet at an angle. This results in a.special kind of focus-
ing known as edge focusing, an effect illustrated in the right-hand diagram of
Fig. 3.20. Consider a particle in the end region of the field, travelling parallel
to the orbit, at a separation xg from it. Comparing the particle trajectory with
that through a sector magnet, which does not cause any edge focusing, we find
that the trajectory through the rectangular magnet is shorter by a distance

Al =1zq tan V. (3.78)
As a result the particle is bent through a smaller angle, a difference of
Al tan ¥
Aa=— = 3.
o R Zo R ( 79)
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which corresponds to a horizontal defocusing of the beam. For simplicity the end
region of the field may be regarded as an infinitely thin lens, since Al is generally
a very short distance. The particle still crosses the end of the field at a transverse
position xg, but the angle of the trajectory is different before and after the field
boundary. Hence the trajectory transformation is

r = Xo

/

, tan U
r = xy+xo .

= (3.80)

This transformation may be rewritten in matrix form, namely

1 0
Medge = < tan ¥ 1 ) . (3.81)
R

Let us now briefly consider the effect of edge focusing on the vertical motion of
the particle. Recall that the field lines bend outwards at the end of the field, as is
shown for example in Fig. 3.8. As a result the field in this region has components
perpendicular to the magnet face. Along the orbit these components cancel out
because of the symmetry of the magnet, but above and below the plane of the
orbit they have finite values with opposite signs. In an ideal sector magnet these
field components are parallel to the s-axis and so have no effect on the particle
motion. The situation changes, however, if the magnet face is rotated by an angle
¥. The field components at the end of the field are now at the same angle ¥
to the s-axis, and so may be separated into an s- and an z-component. This z-
component, which increases with the angle of inclination, causes vertical focusing
of the beam which may be described to a good approximation by the transfer
matrix

1 0 F
Medge = ( tan U ) . (3.82)
— 1
R

Comparing this with (3.81) shows that inclining the face of a bending magnet
by an angle +W¥ causes horizontal defocusing and vertical focusing of the beam.

In general a particle travelling through a magnet structure moves in the z-s
as well as the z-s plane. As a result, four-dimensional trajectory vectors

(3.83)

Low 8w

are needed in order to completely describe the particle motion. This means that
at least one 4 x 4 matrix is required to describe the particle transformation. We
may immediately derive these matrices from the results in the preceding sections. -
We list them all here for reference, again with Q = /[&[ s.
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1. Horizontally focusing quadrupole (k < 0):

1
cos (2 —— m sin 0 0
Mo = —+/1k|sin Q cos 2 0 . 0 (3.84)
0 0 cosh ) — m sinh )
0 0 v/ |k| sinh © cosh Q)
2. Vertically focusing quadrupole (& > 0):
cosh Q2 = sinh €2 0 0
_ vk
Mop = VksinhQ  coshQ 0 . 0 (3.85)
0 0 cos ) —sin )
vk
0 0 —Vksin cos 2
3. Zero-field drift region (k = 0):
1 s 00
01 00
Maiw=| g o 1 (3.86)
0 0 0 1
4. Dipole magnet (k = 0, R > 0):
cos il Rsin il 0 0
R
_1 sin — cos il 0 0
Mipole = R R R (3.87)
0 0 1 s
0 0 0 1
5. Edge focusing:
1 0 0 0
v
ta; 1 0 0
Medge = 0 0 1 0 (388)
tan ¥
0 - 1
R
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3.5 Calculation of a particle trajectory through a system o
many beam steering magnets

So far we have only considered particle motion within one beam steering ele
ment, in which the field remains constant along the orbit. Using the transfe
matrices (3.84) to (3.88), it is possible to evolve the trajectory vector X from
the beginning to the end of the element, giving

Xrg = M X,. (3.89
By taking the evolved trajectory vector X at the end of the element and using
it as the starting vector for the next element, we can determine the particle
motion through an arbitrary number of elements by successive multiplication o
matrices. To illustrate this let us take as an example an arrangement of fou
quadrupoles, separated by zero-field drift sections. This arrangement is shown
in Fig. 3.21.

At the beginning (s = 0) the trajectory vector is Xo = (zo, (). The tra
jectory then traverses the drift section D1. The vector at this point is obtained
by a transfer matrix Mp; of the form of (3.86), in which s = [ is the length
of the first drift section. The next section of the trajectory, through the focus
ing quadrupole Q1, is obtained using the matrix Mg;. This has the form o
(3.84) and is uniquely defined by the length of the magnet and the quadrupole
strength. It is then followed by another drift section, then another magnet, and
so on. The trajectory vector at the end of this arrangement of magnets is given
by the product of a series of matrices

XE = MD5 . MQ4 . MD4 . MQ3 . MD3 . MQ2 . MD2 . MQl . MD1 . Xo. (3.90)

quadrupole
Q3 Q4
1 =7

[xo} DI D2 D3 | | D4 D5 (xEj
% i )
i | |
1 |
A ! i
3 | | |
x [mm] 5 : trajectory ! j
i |
|
1 | |
0 : | s
-2
-3
\)

Fig. 3.21 Calculation of particle motion through a structure of multiple beam steering
elements.

Dispersion and momentum compaction factor T3

Tt is sometimes also necessary to determine the trajectory vector within an
clement, especially in relatively long elements. In this case it is helpful to divide
the element into several identical shorter partial elements and to describe these
by separate matrices. Calculating the particle trajectory through a long beam
transport system thus involves a large number of individual matrices, ranging
from & few hundred to sometimes more than a thousand. In such cases it is
essential to perform the calculations by computer, and here the matrix formalism
proves to be particularly effective.

Let us now use this principle to calculate the transfer matrix for a rectan-
gular magnet. As Fig. 3.20 shows, a rectangular magnet may be described by
taking a sector magnet and adding edge focusing at both ends. The matrix for
s rectangular magnet is thus obtained by the matrix product

Mrectangle = Medge : Mdipole : Medgev (3.91)

The partial matrices for the sector magnet and the edge focusing are given in
(3.87) and (3.88). The bending angle of the dipole is determined by the ratio
of the magnet length [ and the bending radius R. The angle of inclination ¥ of
the faces of a rectangular magnet compared to a sector magnet is exactly half
the bending angle, i.e. ¥ = [/2R. For simplicity we will only consider bending
magnets with relatively small bending angles, i.e. magnets with {/R < 1. It then
follows immediately that
l

l .
tan¥ =~ ¥ = — and cos —=~1 or sin—~ —.

.92
2R R R R (3.92)

If we insert these approximations into (3.87) or (3.88), with x = I/2R?, equation
(3.91) then becomes

10 0 0 1 1 00 10 0 0
M k1 0 0 2 1 0 0 k1 0 0
rectangle = 00 1 0 0 0 1 1 00 1 0
0 0 —k 1 0 0 0 1 0 0 —x 1

(3.93)

After multiplying out the matrices we neglect all terms in [2/2R?, which accord-
ing to approximation (3.92) are much smaller than 1. We finally obtain

1 l 0 0
0 1 0 0

Mrect angle — 0 0 1 I (3 94)
0 0 —2xk 1

Comparing this with the matrix for a sector magnet we see that in rectangular
magnets the weak focusing disappears in the horizontal plane and the magnet
behaves like a drift region. However, the weak focusing in the vertical plane is
increased by the same amount. Hence it is possible to transfer the weak focusing
between the two planes by inclining the faces of the dipole magnet.
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3.6 Dispersion and momentum compaction factor

Let us now consider the motion of off-momentum particles, i.e. particles witk
Ap/p # 0. Equation (3.21) tells us that the momentum deviation only has 4
significant effect on the trajectory of the particle if 1/R # 0, and so we only
need to solve the equations of motion inside the bending magnets. We again
assume a homogeneous magnetic field with no gradient (k = 0). Equation (3.2
then becomes

1 1 Ap

o'+ = Ry (3.95)

It is useful to define a special trajectory D(s) for which Ap/p = 1. This functio
D(s) is called a dispersion function. Equation (3.95) then takes the form '

1 1 :
1" —_
D"(s) + £5D(s) = - (3.96)
This is an inhomogeneous differential equation, which we already solved in its
homogeneous form when we considered the particle motion through a bending
magnet. We therefore now only need to find a particular solution D, of the
inhomogeneous equation. Since the right hand side of (3.96) is a constant,

D, = C = const - (3.97)
is a valid solution. Inserting this into (3.96) immediately yields

1

The general solution of the trajectory equation for off-momentum particles is

thus

D(s) = Acos%—i—Bsin%-l—R

A s B s
/ frooend —_—— 1 — B —_—
D'(s) = Sin — + — cos —. (3.99)

The constants of integration A and B are determined by the initial conditions
at s=0

D(0)=Dy, and D'(0)= D). (3.100)

Inserting these into (3.99) we obtain
A=Dy—-R and B = RD|. (3.101)

Using this result we may finally write the dispersion function as
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D(s) = Dy cos% + D{)Rsin% IR (1 ~ cos %)
Dy . s s .8
D'(s) = _ESHlE-FDéCOSE —|~s1n§. (3.102)

This set of equations, restricted for the moment to the horizontal plane, can no
longer be written as a 2 X 2 matrix as in (3.74). Hence we must switch to a 3 x 3
matrix, and from (3.102) obtain the transformation

D(s) cos% Rsin—}s% R (1 — cos %) Do
, 1 s s .8 ,

D'(s) |=| —gsing cosp sin | Dy |. (3.103)
1 0 0 1 1

Where the dispersion is non-zero, a particle with a momentum difference of Ap/p
has a transverse position of

ap

zg(s) = z(s) + zp(s) = z(s) + D(s) » (3.104)

Here z(s) is the transverse position that a particle of nominal momentum would
have, and zp is the displacement which results from the momentum difference.
Hence the particle no longer follows the ideal orbit, instead following a dispersive
trajectory determined by Ap/p. The general evolution of this trajectory through
the magnet structure in the horizontal plane requires 3 x 3 matrices, by analogy
with (3.103). To determine these matrices, we assume for the time being that
the focusing is independent of the momentum deviation of the particle. Later we
will take account of this dependence, the so-called ‘chromaticity’, via a pertur-
bative calculation (see Section 3.16). We thus obtain the particle trajectory in
the horizontal plane

z(s) \ Zo
'(s) | =M- x . (3.105)
Ap/p Ap/p

Here M is a 3 x 3 matrix, which may be obtained for quadrupoles, drift sections,
and edge focusing by extending the 2 x 2 matrices (3.72) and (3.81) or (3.82) as
follows:
ain a1 O
M= az1 0422 0 . (3.106)
0 0 1

a; i, are the elements of the respective 2 x 2 matrices. In order to again transform
the particle motion in both planes simultaneously we must express the particle
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momenta in terms of a five-dimensional vector. The general transformation j
then

z(s) Zo

z'(s) xh

z(s) =M. 20 (3.107
2'(s) 2

Ap/p Ap/p

For quadrupoles, drift sections, and edge focusing we again have matrices of th
form

ail a12 0 0 0
a1 a22 0 0 0
M= 0 0 a3,3 0,3,4 0 (3 108
0 0 43 Q4.4 0
0 0 0 0 1

To evolve the trajectory in both planes through a dipole magnet, (3.103) wit
X = 8/R gives us

cos Y Rsiny 0 0 R(1-—cosy)
—(1/R)sinxy cosx O 0 sin x :
Mdipole = 0 0 1 S 0 . (3.109
0 0 0 1 0
0 0 0 0 1

Using these 5 x 5 matrices we can evolve all particle trajectories through an
arbitrary structure of magnets, taking into account deviations in momentum. A,
a result, these matrices are the most important tool in calculations of linear bea;
optics. In what follows we will sometimes also use partial matrices extracted fro
them, in particular if we are only considering motion in one plane.

As we have seen, off-momentum particles follow dispersive trajectorie
xp = D(s)Ap/p, which in general are not the same length as the ideal orbi
The path length is therefore a function of momentum. In circular accelerator
this leads to a dependence of the revolution period on the particle momentum
which plays an important role the longitudinal phase focusing of the circulatin;
particles. The ratio of the relative change in path length AL/L to the relativ
difference in momentum Ap/p is termed the momentum compaction factor

AL/L
a= .
Ap/p
It is easy to see that only bending magnets cause any significant change in th

path length. A particle travelling at a separation x from the orbit covers a
infinitesimal distance

_R+z

ds ds, (3.111

if the origin of the co-moving coordinate system moves through the path elemen
ds along the orbit. This relation follows from the simple geometry of simil:

Beta function and betatron oscillation 17

triangles, as may be seen from Fig. 3.4. In quadrupoles the orbit is straight and
any change in path length arises only through higher order effects, which may
pe neglected here. If the separation z in (3.111) is caused by the momentum
difference of the particle then the total path length may be written as

R+zp , &%B(s)
= ds—?{ds—}- » R(s)ds.

Here it should be noted that the bending radius R(s) may depend on the
position s along the trajectory through the magnet structure. The length of
the ideal orbit is Ly = ¢ ds, and so the change in length of the trajectory is

given by A D )
V] s

AL = -——f ds.
p J R(s)

Using the definition (3.110) we finally obtain the momentum compaction factor

(s)

R(s)

(3.113)

1

= 114
o= (3114)

3.7 Beta function and betatron oscillation

The matrix formalism developed so far allows us to calculate individual parti-
cle trajectories through an arbitrary structure of magnets and also to take into
account variations in particle momentum. However, it does not yield any infor-
mation about the properties of a beam of many particles. Since this is ultimately
the decisive factor in the development of a system of beam optics, we must ex-
tend our techniques to describe the behaviour of an entire composite beam. To
do this we go back to the fundamental equations (3.21) and assume only that
1/R =0 and Ap/p = 0. The quadrupole strength % is now a function of position
s, however. We obtain Hill’s differential equation of motion

z"(s) — k(s) =(s)

= 0. (3.115)

The trajectory function z(s) describes a transverse oscillation about the orbit,
known as a betatron oscillation, whose amplitude and phase depend on the
position s along the orbit. We therefore solve this equation using the trial solution

z(s) = Au(s) cos[T(s) + ¢]. (3.116)

The constant amplitude factor A and the phase ¢ are constants of integration
which are fixed by the initial conditions. Inserting the solution (3.116) and its
second derivative into (3.115) and writing u = u(s) and ¥ = U(s), we obtain

Alu” —ub” — k(s)u] cos(¥ + §) — A[20/ 8’ +ub”] sin(¥ + ¢) = 0. (3.117)
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Since the phase ¥(s) has a different value at every point around the orbit an
the amplitude A # 0, equation (3.117) can only be satisfied if

W —ul? —k(s)u = 0 (3.118
20/ +ul” = 0. (3.119
From (3.119) it follows that
u/ \y//
— — = {. 3.
2=+ =0 (3.120

This equation may be integrated directly, yielding

8

do
= | ——. 3.1
T(s) (o) (3.121
0
Inserting this result into (3.118) gives
1
u’ — i k(s)u = 0. (3.122

This non-linear differential equation has no general analytical solution and s
may only be evaluated by numerical methods. This is hardly practical, how
ever, in complicated magnet structures with many individual elements. In th
following sections we will develop a matrix method to allow us to calculate th
full beam optics in the same way as the particle trajectory, by means of matri:
transformations. We thus introduce the beta function 3(s), also known as th
amplitude function. It is defined as '

B(s) = u?(s). (3.123

In addition we replace the amplitude factor A in (3.116) by +/e. The constant
is termed the emittance, the meaning of which will be explained in the followin
sections. We finally write the solution of the trajectory equation (3.115) in th

form
z(s) = e/ B(s)cos[¥(s) + ¢] (3.124
with .
do
U(s) = 30) (3.125

0

Within the magnet structure, which has a net focusing effect, the particles per:
form betatron oscillations with a position-dependent amplitude given by

E(s) = /e B(s). (3.126

Here the beta function §(s) depends on the beam focusing, which varies wit
position. It is a measure of the beam cross-section at that point, whereas

The phase space ellipse and Liouville's theorem T9

E(s) = eB(s)

envelope

Fig. 3.22 Particle trajectories z(s) within the envelope E(s) of the beam. The upper
figure shows a single trajectory, while the lower figure shows 18 different trajectories
together. The beam is made up of a combination of all the individual trajectories.

remains constant throughout the whole beam transport system. We will prove
this statement in the sections which follow. To be precise the particles undergo
transverse motion about the orbit within a range marked out by the envelope
E(s), defined in (3.126). Since all particle trajectories lie inside this envelope, it
defines the transverse size of the beam, as illustrated in Fig. 3.22. We now see the
importance of the beta function 3(s). If it is possible to evolve 3(s) step-by-step
through the magnet structure, in the same way as the particle trajectory z(s),
then for a given emittance € we can determine the beam size at any point s.
Using (3.124) we calculate the second derivative of the trajectory function
z(s), which we will need several times in what follows. We write this in the form

Z'(s) = — \;i) [a(s) cos(\If(s) + qb) + sin(\Il(s) + ¢>] (3.127)
with ,
als) = — @ (3.128)

This optical function should not be confused with the momentum compaction
factor, which for historical reasons is also denoted by «. The functions 3(s)
and a(s), along with the dispersion D(s) and its derivative D’(s), fully describe
the linear beam optics in a plane. To these we add the phase ¥(s) of the beta
function, calculated from (3.125).




80 Linear beam optics

3.8 The phase space ellipse and Liouville’'s theorem

As we have seen in the previous chapter, the general solution of the trajector:
equation has the form

z(s) = \/5\/%005(\1/(5) + ¢) (3.129
z(s) = — Ve [oe(s) cos(\I/(s) + gb) +Sin(\If(s) + ¢)] (3.130

B(s)

phase space plane we must eliminate the terms which depend on the phase ¥
From (3.129) we immediately obtain

cos(\Il(s) + ¢) = m

Substituting this into (3.130) and rearranging yields

\/ﬂ(s)m’_F a(s)z .
Ve VeV B(s)

If we now use the general relation sin? © + cos? © = 1 we obtain

2 a(s) z s)z’ 2=
,3(5)+<\/,3(5) VA ) ©

If we now introduce the definition

sin (\Il(s) + ¢) -

1+ a?%(s)
B(s)

v(s)

(3.133) gives

7(s) 2%(s) +2 a(s) a(s) 2'(s) + B(s) 2%(s) =

This, as is shown in detail in appendix C, is the general equation of an ellipse 1
the z-2’-plane. It is plotted in Fig. 3.23. The emittance ¢, introduced originall
as a constant of integration, now has an obvious interpretation. It is, to withi
a factor m, the area of the phase ellipse, namely ¢ = F/w. Now according t
Louville’s theorem, which is deeply fundamental, every element of a volume o
phase space is constant with respect to time if the particles obey the canonica
equations of motion. This condition is generally satisfied in accelerators. Thi
means that the area of the phase ellipse and hence the beam emittance ar
invariants of the particle motion. As the particle moves along the orbit the shap
and position of the ellipse change according to the amplitude function S(s)
but the area remains constant. This result has important consequences for th
calculation of linear beam optics.
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Fig. 3.23 The phase space ellipse of particle motion in the z-z'-plane.

3.9 Beam cross-section and emittance

So far we have only applied the expression for the emittance and the associated
phase space ellipse to the motion of a single particle. If a single particle in a cir-
cular accelerator has the initial position s = sg and the trajectory Xo = (zo, ),
then with every new revolution ¢ the resulting trajectory vector X ; describes an
ellipse in the = — z’-surface of phase space, as is shown in Fig. 3.23. The particle
thus has a well-defined emittance associated with it, which is given directly by
the area of the phase space ellipse.

There are, however, very many particles in a beam, moving with various
amplitudes and each corresponding to a different ellipse in the phase space plane.
This raises the question of what we mean by the average emittance of a beam
consisting of an assembly of many particles. In particular; in the case of electrons
the emission of synchrotron radiation results in stochastic fluctuations in the
individual particle emittances. In order to provide a practical definition of the
emittance of a particle beam, let us start with the equilibrium distribution of
particles, which is constant over time. For electrons this is described to a very
good approximation by a Gaussian distribution

z? 2P
P ( 202 202) ’
which gives the transverse charge density distribution. Here IV is the number
of particles of charge e in the beam. The horizontal distribution p(x), which we
obtain by setting z = 0, is shown in Fig. 3.24. 0, and o, are the horizontal and
vertical beam sizes, specifically the distances from the beam axis within which the

charge density has decreased by exp(—%) = 0.607. This corresponds to exactly
one standard deviation of the statistical particle distribution. All particles which

p‘(x, z) = (3.136)

2M0,0,
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(1 STD)

_ Fig. 3.24 Horizontal charge distribution
an electron beam.

X

lie exactly one standard deviation o from the beam axis may be assigned a precis
emittance egtp via the relation

o(s) =

The value defined in this way

Vestp B(s).

(3.137

*(s)

B(s)

will henceforth be used to represent the emittance of the entire beam. We wi
omit the index STD and always use € to denote the emittance at one standar,
deviation.

When operating an accelerator it is important to ensure that the beam ha;
sufficient room available in the transverse phase space. Even particles undergoin
extremely large betatron oscillations can then still circulate stably. This raise
the question of how large the phase space ellipse of a particle is allowed to b
before it collides with the wall of the vacuum chamber and is lost. This limitin,
case is plotted in Fig. 3.25. Here we must keep in mind that the width of th
beam is proportional to 1/((s). This means that the aperture d of the vacuu
chamber is not a direct measure of the space available to the beam. As ca
be seen from Fig. 3.22, the beam is indeed very narrow at positions where th

ESTD = (3, 138

vacuum
|
chamber

ey, N
—

Fig. 3.25 The largest possible phas
space ellipse for a stably circulating pai
ticle. The limit is generally determin

by the size of the vacuum chamber.
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peta function is small, so here even a relatively narrow vacuum chamber does
not cause any restriction. Ultimately the decisive quantity is d/+/5(s), which
varies around the orbit. The narrowest regions of the beam optics coincide with
the points around the accelerator at which d/\/3(s) is smallest, resulting in a
reduction in the transverse phase space available to the beam. Of course similar
restrictions exist in both planes, but normally both do not occur at the same
point.

By analogy with the beam emittance we define the transverse acceptance
of the accelerator, which corresponds to the emittance of the particle with the
Jargest possible phase space ellipse. It is given by

d2
4 B (E) min ’

N

(3.139)

where d and [ are the values at the narrowest optical position. In order for the
beam to circulate without any losses the acceptance of the machine must be
definitely larger than the beam emittance. In the case of storage rings a par-
ticularly large value of A/e is required. If this value is not large enough then
over many revolutions too many particles with large oscillation amplitudes will
hit the wall of the vacuum chamber and be lost. In electron beams, synchrotron
radiation can cause the betatron amplitude of all the particles to vary stochasti-
cally and so each one has a certain probability of having a very large amplitude.
Ultimately this means that if the acceptance of the accelerator is too small then
each particle has a chance of being lost within a finite time, leading to very short
beam lifetimes. Consequently the narrowest point in the vacuum chamber of an
electron storage ring must be at least seven times the the beam width, and for
trouble-free operation considerably more space is in fact required, i.e. A > 50¢.

3.10 Evolution of the beta function through the magnet
structure

As we have seen in the preceding chapters, the beta function is an important
quantity in linear beam optics. From it we may for example calculate the beam
dimensions using (3.137) and the phase of the betatron oscillations using (3.125).
Here we will describe how to determine the evolution of the beta function itself
through the course of the magnet structure. We assume that the value of this
function at a given initial position s = s¢ is known. Starting from this initial
value the beta function may then be calculated step by step along the structure
of beam steering magnets by the use of an appropriate transformation. We will
introduce two different transformation methods.

3.10.1 Method 1

The trajectory of the particle may be described by a trajectory vector X, which
travels around the phase space ellipse during the motion of the particle around
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an orbit. At the beginning of the magnet structure, i.e. at s = 0, it has the valug
X = X . This vector may be formally expressed as a 2 x 1 matrix, namely

Xo = ( i? ) with the transposed matrix Xg = (zo z). (3.140)
0
In addition we define the beta matrix
B = ( Fo  —ao ) (3.141
—C0o 7o ;

with the determinant det By = 1. We then calculate the product

’ Yo Co . Zo
e (2 ) (%)
= vy 28+ 200 o ThH+ Bo :v62 (3.142
€.

X7 Byt X,

is position invariant. The trajectory vector may be calculated at any position s
using the known transfer matrices and the relation

This product corresponds to the beam emittance, according to (3.135), and SQ

X, = M X,. (3.143

Here the matrix M, which describes the transformation from a position sg to
another position s1, is in general the product of a large number of matrices. From
(3.142) and using M~*M = 1 and MT(M")~! = 1 we obtain the relation

e = X5 -By'-Xg
= Xg™MT(M") By (MTM)X, (3.144
= XgM"(M")™'B;'M™)MX,
with
ATBT = (BA)T  and
It follows that

A7'Bl = (BA)L (3.145

e = XgMT(MT)"H(MBy)"HMX, ,
= X{MT(MB,MT)"'MX, (3.146
= (MX)T(MBMT)"1MX,.

Using the transformation relation for the trajectory vector (3.143), we have
XT = (MX,)T.
Applying this to (3.146)ywe then obtain
e =X (MBMT)"1X,. | (3.147
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At the point s = s; the particle trajectory is given by the trajectory vector X
and the beta matrix is B;. From (3.142) it then follows that
e=X{B'X;. (3.148)
Comparing this expression with (3.147) we finally obtain

|B, = M-B,-M" | (3.149)

This is the relation we need to transform the known beta matrix By at the
position sg into the matrix B; at the point s;. The 2 x 2 matrices M are the
same as those used to describe the evolution of the particle trajectory.

Let us now consider a simple example to {llustrate the evolution of the beta
function. We will calculate the form of the beta function about a symmetry point
in a field-free drift section. This point, which we may arbitrarily take to be s = 0,
is the point at which the gradient of the beta function is zero, i.e. o* = 0. Let
the beta function itself have the value 8*. Using the transfer matrix for the drift
section (3.72) it follows from (3.149) that

2 = (01) (% v ) (2 1)

ﬂ* + i2_ S
= A (3.150)
g B

From this expression we immediately obtain the beta function around a point
of symmetry in a drift region

2

Bls) = Bt
a(s) - %, (3.151)

which is plotted in Fig. 3.26 for various values of g*. The beta function grows
quadratically with the distance s from the symmetry point and grows faster the
smaller the value of 5*. This is a direct consequence of Liouville’s theorem. Since
the area of the phase space ellipse cannot be reduced by focusing, any decrease
in the transverse size of the beam entails a corresponding increase in the angular
divergence. This fact is illustrated in Fig. 3.27.

3.10.2 Method 2

Let us now develop a second method of transforming the beta function , starting
with two trajectory vectors at different positions sp and s, which we write as

X0=<i2) and X:(f,). (3.152)

The optical functions at the two points are described by the quantities By, o,
and g or B, «, and «y respectively. For both vectors we can insert these quantities
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Fig. 3.26 Form of the beta function 3(s) around a symmetry point of the beam optic

s [m] 0.5

The parameter §* is the beta function at the symmetry point, s = 0.

into the function describing the phase space ellipse (3.135). Since the emittance
is invariant we then obtain the equation

e=pz%*+2az 2 +vz2 =0 x{)2+2a0 To T + Y0 Ta-

The two trajectory vectors are then related by the transfer matrix M as follows

(5)=m(3) wa m=(

Solving for X gives

(“’9):1\4—1( x,) with M-lz(
g z

or equivalently

o = M22 T —Mi2 z

U /
Ty = —M21 T+ M1 T

Inserting this result into (3.153), we obtain

ma2
—ma1

mi1 Mi2
ma1 Ma2

—Mmi2
mi
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= Bo(—marz + m11$')2

Fig,\3.27 Phase space ellipses at a sym-
metry point for a large and a small value
of 8*. As a consequence of Liouville’s
theorem, the angular divergence grows
with decreasing 3*.

+2ap(maez — maox’)(—maorz + my12)

+70(magx — m12xl)2

(3.157)

2
= (Bomi; — 200maama1 + Yom3y)z?

+2(—Bomarmi1 + ao(mazma1 + miamar) — Yomagmyz)ze'

+(Bom?, — 2a9miamyy + Yom3y)T

2

This relation must hold for any values of z and z’, so we may compare coefficients

t0 obtain
B m31 80 — 2maamiiag + misyo
a = —mamiifo + (Mmagmi1 +miamar)ag — magmizye  (3.158)
v = m3fo — 2mazmarag + M2y

or in matrix notation

2 : 2

g miy —2miimye mis Bo

a | = | —miimer Mi1Maog + Mi2Ma1 —MaaMia ag | .| (3.159)
2

v ma —2magamay m3, Yo

This second form of the transfer matrix may also be used to calculate the beta
function within any structure of magnets. It too uses the matrix elements which
were developed to describe the transformation of the particle trajectory. The
results of the two methods presented here are of course equivalent, and both
require similar amounts of computing power when used in a calculation.
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3.11 Determination of the transfer matrix from the beta
function

As we showed in the previous section, the elements of the transfer matrix M
can be used to uniquely determine the values of the optical functions 8, «, an
~ at the end of a magnet structure from the known initial values. The convers
is also true, namely if the values of 3, «, and 7 at the beginning and end of
magnetic structure are known then the transfer matrix is uniquely defined. Thy
elements of this matrix must therefore be expressible in terms of the values
the optical functions. This has the advantage that many of the characteristics
a beam transport system can be discussed without a detailed knowledge of th
magnet structure, and allows us to make some very general statements abou
beam optics.

We again start with the solution of the trajectory equation (3.129) an
(3.130). Using the rules of addition of trigonometric functions we cast this int

the form

z(s) = eV B(s) [cos U (s) cos ¢ — sin ¥(s) sin qb]
7'(s) = Ve {a(s) cos¥(s)cos¢p — afs)sin¥(s)sing (3.16

B(s)
+sin ¥(s) cos ¢ + cos ¥(s) sin ] .

With the initial conditions z(0) = xo, z'(0) = zp, 6(0) = Bo, a(0) = oo, an
¥(0) = 0 it immediately follows that

sh = Zo

©Se = R

. 1 Qoo

sing = ——\/-_—é ( Bo + \/ﬁ&) . (3.16

Inserting this into (3.160), we obtain

z(s) = % [cos U(s) + agsin \I’(S)} zo + /B(s)Bo sin ¥(s)

0

—a(s)) cos ¥(s) — (1 + apa(s)) sin \If(s)] Zo

,S = ——1'— (8 7})
N O (

+ [cos U(s) — a(s)sin \Il(s)] z{). (3.16

6()

These equations may again be expressed by a transfer matrix. Using the shor
hand 8 = 3(s), @ = a(s), and ¥ = ¥(s) we obtain the trajectory vector at t

point s. It has the form
z(s) Zo
3.16.
(Z5)-»(2) (
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with

v BBy sin ¥

\ 3 [ = (cos U + ag sin ¥)

g—a)cos\Il— (14 apar) sin ¥

VBB

£
I

%(cos ¥ — asin U)

(3.164)
Notice that as well as the values of the optical functions at the beginning and
end of the structure, the advance in phase ¥ of the betatron oscillation between
these two points must also be included in this matrix.
N
3.12 Matching of beam optics

In the development of a system of beam optics, the values of the optical functions
at the beginning of a beam transport system are often fixed in advance. They
may be defined by a pre-accelerator upstream or constrained by the requirements
of an experiment. The evolution of the optical functions through the magnet
structure may then be calculated using the matrix equations derived above. In
addition, it is usually necessary for the optical functions to be tuned to specific
values at the end of the structure. For example, it is extremely important to
ensure that the beta function stays within reasonable limits, otherwise the beam
dimensions will exceed the aperture of the vacuum chamber. A major task in
developing a system of beam optics therefore consists of choosing the strengths
k of the quadrupole magnets so that the optical functions have the desired form
and, above all, have the required final values at the end of the magnet structure.
This procedure-is called matching of beam optics. Figure 3.28 illustrates this
problem. Given the values By, g, and 7 at the beginning of the structure, the
quadrupole strengths kq, ko ...k, must be carefully chosen to produce the values
B, o, and g at the end. To achieve this we need to know the relationship
between the quadrupole strength k; and the values of the optical functions at an
arbitrary point s. We already have all the mathematical tools we need to hand.
The quadrupole strengths determine the matrix elements of the transfer matrices

magnet structure

&y o
YO kl k2 k3 k 'YE

m

Fig. 3.28 Matching of the optical function values Pe, oar, and g at the end of a
Mmagnet structure by appropriate choice of the quadrupole strengths k1, ko ... km.
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(3.84) and (3.85), and these in turn give the beta function and its gradient vi
(3.149) or (3.159). The dispersion D(s) and its gradient are also determined, lik
the particle trajectory, by the quadrupole strengths. If we wish for example
adjust the beta function B(s) at the point s to a particular value, we need tc

know the relation :
B(s) = f(kj), (3.165

where k; is the strength of the jth quadrupole. f(k;) may be any non-linear
function, and so it is not in general possible to find the solution of (3.165) wit
respect to k; by analytical methods. Instead a method must be developed whic
allows the solution to be found by numerical iteration.

3.12.1 The one-dimensional case

We first of all assume that only one function must be matched, for example 3
to the value Bigeai- We choose one particular quadrupole, which initially has th
arbitrary strength ko. At the end of the magnet structure the beta function hag
the resulting value Bg (ko). In general this will not equal the required value. Le
us denote the quadrupole strength needed to give the correct form of the bet
function by k. The difference between the ideal and actual values of the bet;
function may then be expanded as a function of the difference in the quadrupol
strength as follows ‘

1d%Bs
Bideal — Pr(ko) = %(k — ko) + 3 a2
The differential of the beta function with respect to k is always evaluated. a
k = ko. Of course this equation still cannot be solved exactly with respect to.
so we linearize it, neglecting all quadratic and higher-order terms. It then follow

that 48
Bideal — P (ko) = —J];b:(k — ko) (3.167

and the required quadrupole strength is approximately given by

Bideal — Pr (ko) ‘

(&)
dk ) pepo

This solution is of course not exact, since all the higher order terms in th
expansion have been neglected, but in general it will yield a better value tha:
the initial quadrupole strength kg. This improved value may then be inserte
back into equation (3.168) in place of ko, and the same process repeated to giv
an even better value. We have thus found a procedure which takes an inexac
solution k, and yields an improved solution k1, namely

Bideal — B (kp) '

(%@
dk ) .,

(k—ko)*+... . - (3.166

k=ko+

kp+1 = kp + (3169
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Table 3.3 Optical functions which can or must be matched by varying the quadrupole

~ strengths.

optical function horizontal vertical
beta function Bx(s) B.(s)
gradient of the beta function 0 (8) o (s)
betatron phase U, (s) U,(s)
dispersion Dy(s)

gradient of the dispersion D.(s)

N

This iterative process may be repeated as many times as necessary until the
required precision is reached. The starting value ko is obtained by trial-and-
error or by a rough analytical estimate. The derivative of the beta function is
calculated by taking the value of the beta function at the end of the magnet
structure for a quadrupole strength k,, namely Bg(k,), and then considering a
slight variation Ak in strength to determine the value fg(k, + Ak). Using this
value one obtains

(3.170)

dk ) jor, Ak '

For complicated structures of magnets this procedure involves considerable nu-
merical computation and the use of computers becomes essential.

3.12.2 The n-dimensional case

In practice it is very rare that just one optical function has to be matched.
What is more, with a single quadrupole it is not even possible to adjust only one
optical function, since varying the quadrupole strength will in general change
all the optical functions. When developing a system of beam optics it is almost
always necessary to match all the optical functions to particular values at the end
of the magnet structure, and to treat both planes simultaneously. Table 3.3 lists
all the optical functions which must be taken into account in a complete beam
optics calculation. Only certain of the optical functions in the table may need to
be optimized at once, depending on the situation. Sometimes it is not necessary
to pay particular attention to the dispersion. Alternatively, in a beam transport
system the form of the betatron phase is not critical and need not be considered.
We must develop a procedure for matching n arbitrarily chosen functions at the
end of a magnet structure. We denote these n functions by f1, fa,...fi,... fn,
as is shown in Fig. 3.29. To adjust the values of these functions we have m
quadrupoles available, of strengths ki, ka,...k;,...ky, where we require that
m > n. In the calculation we always choose exactly n of the m quadrupoles,
usually taking the most effective ones.
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[/,
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magnet structure <

—
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]

Fig. 3.29 Matching the n optical functions f; using the m quadrupole strengths k.

Each of the n optical functions f; depends on the strengths of all n of t
chosen quadrupoles, namely

fi = filky, Koy kjy .. En). (3.17

We write the arbitrary starting values of the quadrupole strengths together

the vector Ko = (k1,0, k2,0, .-kn,0). At the end of the magnet structure t
resulting values of the functions are then Fo = (f1,0, f2,0,-.-fn,0). The ide
values of the optical functions are written Fideal = (f1,5, f2,5,--- fn,s). We aga
expand to first order the difference between the ideal and current values of tl
functions and obtain

0 17} af
fis—fio = —a%(kl — ki) + a—]J::(kz — ko) +---+ 8—]%11(7% —kno)
d 0 af
fas—Jo0 = 3—£_(k1 —k1,0) + 8—@(’@ —koo)+---+ ﬁ(kn —kno) .
(3.17
Ofn Ofn Ofn
fos— oo = b—la(kl ~k1,0) + 8_k2(k2 kao) + -+ ok, (kn — kno)- :
Writing these equations in matrix notation we have
ok, Ok ok _
o T SO T B /A O I e
2.’8 - 2"0 =1 Oki Ok Ok, 2 ’ (3.17
Ok,  Oko Okn

The matrix only contains elements of the form Jf;/0k; and shows how sensitive
each optical function depends on each of the quadrupole strengths. It is know
as the response matrix A. (3.173) may also be written in simplified form as
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Fideal — Fo = A(K — K)) (3.174)
or, solving for the quadrupole strength k; we wish to determine
K = Ko+ A7 (Figeal — F). (3.175)

From this relation we immediately obtain the required iteration

Ky = Kp+ A (Figea — Fp). | (3.176)

The matrix elements of A are determined piece by piece. We choose the jth
quadrupole, whose strength is set to the value k;. We then use numerical meth-
ods to calculate the values f; to f, of all the optical functions. After varying
the quadrupole strength by a small amount Ak, all the optical functions are
recalculated. The elements of the jth partial vector are then given by

6fz _ fi(kl, I{:Q,..‘,kj-l'Ak,.‘.,k}n)—fi(kl, kz,...,kj,...,kn)

= Ak ,  (38.177)
3

where the index ¢ runs from 1 to n. It should be noted that this procedure does
not always yield a useful solution. The high degree of non-linearity can result in
the iterative process ‘getting stuck’ in a local minimum, i.e. the calculation does
not converge to a limiting value but instead oscillates around this local minimum.
Alternatively it may converge to a value that is not physically meaningful or is
not technically achievable. For example, the calculation may sometimes yield
unfeasibly high quadrupole strengths, or such huge values for the beta function
that the beam would no longer fit within the aperture of the vacuum chamber. In
such cases it is necessary to try again using better initial values for the quadrupole
strengths k; . If better values cannot be found then the magnet structure must
be modified.

3.13 Periodicity conditions in circular accelerators

In circular accelerators there is no definite beginning or end to the magnet struc-
ture. This means that in general there are no predefined values that the optical
functions must match at particular points along the orbit. On the other hand,
the orbit in a circular accelerator is closed, i.e. the optical functions must repeat
continuously after a complete orbit. Another common constraint comes from
the introduction of symmetry points through which the optical functions are
reflected. Both types of condition allow the optical functions to be defined at
particular points around the ring and hence all the way around the orbit.

3.13.1 The periodic solution

Let us choose an arbitrary point sy along the orbit, at which the optical functions
are initially unknown. We require that after a full revolution, i.e. at the point
Sg + L, where L is the circumference of the accelerator, the functions must
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have the same values as at the starting point so. This results in the followin
periodicity conditions for the optical functions:

B(so+L) = PB(so) =5
(

04(80 + L) = « 80) = Qg
D(so+L) = D(so)=Do (3.178
D'(so+ L) D'(s0) = Dy

Let us denote the transfer matrix for one full revolution by M;e,. We begin b
calculating the beta function, and define a beta matrix Bg at the point sg, b
analogy with (3.141). Applying the periodicity conditions to the transformatios
equation (3.149) gives us the following relation

By = Moy - BO . M;l;v

or explicitly

Bo —ao ) _ ( mi1 miz \, Bo —OZO)(mn le).(3.180
—o - 7o -\ ma1 Mo —0 Yo Mmi2 Mgz :

2 mi2
Bo = — =
V2 —miy — 2maama —mi,
o = LTz g (3.181
2ma2
1+ad
"= TR

Tt is clear that only one solution exists which satisfies these conditions, namel
when the expression under the square root is greater than zero, i.e.

2 —m2y — 2miamay — miy > 0. (3.182
The calculation of the periodic solution for the dispersion proceeds along th
same lines except that this time we use a 3 x 3 matrix to describe a full revolutio
The elements are determined in standard fashion by multiplying all the parti
matrices of the magnet structure, as shown in Section 3.6 in the calculation
the evolution of the dispersive trajectory. In this case the periodicity conditio
gives

Dyg mi1 Mz M3 Dy :
D6 = mo1 M2 Ma3 . D6 (3.183
1 0 0 1 1
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point of symmetry

Fig. 3.30 Division of a circular accelerator into four identical quadrants reflected
about the two lines of symmetry.

Solving for D and D’ yields

ma1mi3 + maz(1 — maq)
2 —my — ma2
7
m12D0 + mi3

Dy =

Dy = (3.184)

1—m11

Here there is almost always a periodic solution, ignoring the cases where
mi1 +mog =2 or mqy; = 1.

3.13.2 The symmetric solution

In circular accelerators attempts are always made to arrange the magnets accord-
ing to certain symmetries in order simplify the calculation of the beam optics
and to reduce the number of different magnet circuits. An example is shown in
Fig. 3.30 in which the accelerator is divided into four identical quadrants reflected
about the symmetry points A and B. The transfer matrix for one quadrant is
M. In this case it is only necessary to calculate the beam optics for one such

quadrant - the optics of the other quadrants are mirror-symmetric. In this ar-
rangement the beginning A and end B of each quadrant are symmetry points.
The derivatives of the optical functions must therefore vanish at these points,

namely

ap =
a =

D, = (3.185)

o o oo
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If B4 is the beta matrix at the beginning of each quadrant and Bg that at th,
end, then the transformation equation (3.149) again yields

Bp = Mq - Ba - M. (3.186

Imposing the symmetry condition (3.185) gives

ps 0 _(mua maz \ [ Ba O S mu man > (3.187
0 1/8s ma1 a2 0 1/Ba M1z M22
Multiplying out the product of matrices on the right-hand side and comparin

the resulting matrix elements with those of the matrix on the left-hand side, w
obtain

2
m
B = Bami + 2
Ba
0 = ﬂAmllmgl‘i‘ﬂé—@. (3188
A

These equations determine the beta function at the beginning and end of th
quadrant. Solving them yields the values

mi2M22
Ba = 4|2
ma1Mi1
1 mqo
= - ——— 3.189
be Ba may (

Recall that det Mg = mi1mgg — miama1 = 1. From these expressions we imme
diately obtain the conditions for the existence of a symmetric solution. Since th
beta function is always positive definite, we must have

2 _ g (3.190
ma1 :

and since the square root should only give real solutions we require

m2 0. (3.191
mii

To find the symmetric solution for the dispersion we again take the 3 x 3 matri
and form the transformation equation

Dy mi1 M2 M3 Dy
0 =| ma1 mo maz |- 0 )
1 0 0 1 1

which gives us the expressions

Dp = my1Da+mi3
0 = ma1Da + mos.
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Fig. 3.31 Example of a circular accelerator employing a FODO structure. The ring

consists of a number of identical cells, each consisting of two bending magnets, with
quadrupoles arranged with alternating polarity between them.

The values for the dispersion at the beginning and end of the quadrant are then

Dy = — 728
ma1

Dp = _M_le& (3‘194)
mai

Equations (3.189) and (3.194) allow us to evaluate the beta function and disper-
sion at the beginning and end of a quadrant, or indeed of any generalized magnet
structure with symmetry points, provided that it satisfies equations (3.190) and
(3.191). If they are not satisfied then no solution exists and the quadrupole
strengths must be altered until a solution can be found.

3.13.3 Worked example: beam optics of a circular accelerator with a
FODO structure

It is often necessary to transport beams over a long distance without the beam
cross-section becoming too large. This is the case, for example, in the machine
section which connects a pre-accelerator to a storage ring, or within a storage
ring, in order to steer the beam in a controlled way from one interaction point
to another. The simplest arrangement of magnets for this task is the FODO
structure, illustrated in Fig. 3.31. Since quadrupoles always focus only in one
plane while defocusing in the other plane, the magnets are arranged one after
another with alternating polarity. In between each pair is a bending magnet,
which bends the beam around the circular path. The quadrupoles and dipoles
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are usually placed a certain distance apart, so that field-free drift regions exig
between them. From the point of view of beam focusing, this arrangement con;
sists of a series of focusing and defocusing quadrupoles with a section betwee
them, indicated by 0, where there is no focusing (ignoring weak and edge focy,
ing.) We thus have an arrangement of the form: F 0 D 0 etc., hence the name o
this magnet structure.

The example shown in Fig. 3.31 consists of 16 dipoles in total plus an equ
number of quadrupoles. Rectangular magnets are used in the dipoles, so we mug
take account of the edge focusing at both ends. Together with the 32 drift section
this gives a total of 96 transfer matrices. This is already a large number, jus
for this small example ring, but they do not all need to be calculated becaus
the FODO structure means that the ring is symmetric. It consists of a total
eight cells, each of which begins in the middle of a focusing quadrupole (QF) an
ends in the middle of the next QF. In between there are two bending magnet
the defocusing quadrupole QD and four identical drift sections. One such cell.
shown in Fig. 3.31, labelled with the physical dimensions relating to this exampl
The middle of the quadrupole is always a symmetry point. Hence we only nee
to calculate the beam optics for one such cell, which satisfies the symmet
conditions outlined in the preceding sections. The optics of the complete ring a;
obtained by simply chaining together the appropriate number of FODO cells. Th,
actual number of cells making up a whole ring does not matter. The symmetr
conditions thus considerably reduce the amount of computation needed.

Let us now quantitatively calculate the optics of one of the FODO cells whic
makes up the simple circular accelerator shown in Fig. 3.31. We will assume th
following values for the individual elements of the structure:

Quadrupoles QF and QD :

QF QD
kQF = -120m™2 kQD = 1.20 m™2
lQF = 0.20 m lQD - 0.40 m
Dipole magnet B with edge focusing EB :
B ‘ EB
Ry = 38197m ¥p = 11.25°
Ig = 1.50m = 0.1964 rad
Drift section D : length Ip=0.55m

Using relations (3.84) to (3.88) and (3.109) we can explicitly calculate th
transfer matrices of the individual elements, based on these parameters:
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Focusing quadrupole:

0.9761 0.1984 0 0 0
—0.2381 0.9761 0 0 0
Mqgr = 0 0 1.0241 0.2106 0 (3.195)
0 0 0.2419 1.0241 0O
0 0 0 0 1
Defocusing quadrupole:
1.0975 0.4129 0 0 0
0.4955 1.0975 0 0 0
Mqgp = 0 0 0.9055 0.3873 0 (3.196)
0 0 —0.4648 0.9055 0
0 0 0 0 1
Dipole:
0.9239 14617 0 0 0.2908
—0.1002 0.9239 0 0 0.3827
Mg = 0 0 1 1.5000 0 (3.197)
0 0 0 1 0
0 0 0 0 1
Edge focusing:
1 0 0 0 0
0.0521 1 0 0 0
Mg = 0 0 1 0 0 (3.198)
0 0 -0.0521 1 0
0 0 0 0 1
Drift section:
1 05500 0 0 0
0 1 0 0 0
Mp=1] 0 0 1 0.5500 0 (3.199)
0 0 0 1 0
0 0 0 0 1

Finally we obtain the transfer matrix for the whole cell from these individual
matrices according to

Mz = MqgrMpMgesMpMegMpMqpMpMgsMgMggMpMqgr
0.0808 9.7855 0 0 3.1424
—0.1015 0.0808 0 0 0.3471
= 0 0  —04114 11280 0 (3.200)
0 0 —0.7365 —0.4114 0

0 0 0 0 1
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12 6

Fig. 3.32 Optical functions of the FODO cell in the example ring.

Using equations (3.189), these matrix elements allow us to calculate the bet
functions in the z- and z-planes at the beginning and end of the cell, namely

Bax = 4]—22T2 _ 98176 m
M21M11
1 mao
= — —= =9.8176 m 3.201
Po.x Bax ma1 (
and
Bag = 1344 _ 19376 m
143133
1 mgy
= — — =1.2376 m. 3.202
Pr.a Ba,z Mas3 (
From (3.194) we obtain the dispersion
Dax = ——2 -34187m
ma1
Dpx = -T2 4 0 =34187 m. (3.203

ma1

Owing to the symmetrical cell structure, the beta function and dispersion hav
the same values at the beginning and end of the cell. As a result they ca
be easily chained together, without changing the optics. The form of the bet
function within a cell can be calculated using the transformation relation (3.149
while the dispersion is simply treated just like a particle trajectory using (3.105
The result of these calculations for the FODO cell used in this example ring i
shown in in Fig. 3.32.
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3.14 Tune and optical resonances

In circular accelerators such as synchrotrons or storage rings the beam repeatedly
encounters the same magnet structure, once every full revolution. It therefore
undergoes forces which repeat periodically. Since the focusing magnets can cause
the beam particles to undergo transverse oscillations, under certain conditions
the magnetic structure may cause the circulating beam to resonate. This makes
the oscillation amplitude of the particles grow rapidly, causing the beam to blow
up or in extreme cases to be lost. This phenomenon is known as optical resonance,
and we will study it further in the following sections.

3.14.1 Periodic solution of Hill’s differential equation

In circular accelerators, as in all beam transport systems, the trajectory of par-
ticles with nominal momentum, i.e. Ap/p = 0, is given by Hill’s differential
equation

z'"(s) + K(s)z(s) = 0. (3.204)

In a circular machine the focusing function K(s) = 1/R(s) — k(s) is periodic

‘with the circumference of the ring:

K(s+ L) = K(s). (3.205)
Using Floquet’s theorem, we obtain the same solution as before
z(s) = e/ B(s) cos {\If(s) + ¢] : (3.206)

but this time the beta function [((s) is also periodic, with the same period
as K(s). The resonant behaviour depends crucially on the betatron phase
AV = V(s + L) — ¥(s) over one complete revolution. We thus define the tune
or () value of a circular accelerator as

ds 1 ds
m =5 % (3.207)

AV 1

Y

O
Il
Do
d
il
o
O ~—

Owing to the periodicity of 3(s), @ is independent of position s. The tune tells
us how many betatron oscillations a particle undergoes per revolution. The pe-
riodicity conditions 3(s + L) = B(s) and a(s + L) = a(s) allow us to simplify
the transfer matrix for a full revolution (3.164), namely

B(s)sin )

cosp — as)sinp

cos p + «(s) sin
M,_sir = (3.208)

—(s) sinp

with p = 27@Q. If we move an infinitesimal distance from the point s to s + ds,
(3.208) gives us
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ag .
(6 + gds) sin p

do .
cos i + a—l—zi—;ds sin
dry ) da }
Ed8> sing  cosp — (a + Egds) sin

Ms+ds—>s+ds+L =
(o

o/(s)sinpg  B(s)sinp
— M, + ( >ds. (3.209)

—v'(s)sinp  —a'(s)sinp

This matrix can also be expressed in another form. Let us consider two points s{
and sy along the orbit of a circular accelerator, chosen such that s > s5. USlng
Fig. 3.33 we immediately see that

80—8o+L M.91 — 89

Msl —82 +L : :
8182 M81—>81+L- (3'210)0

M
= M
From this we obtain

M32—>52+L Ms1-—>sz Ms_1—+32
= Msl_).gz Msl-—>31+L MS1—>82‘ (3.211)\:

M52 —sa+L

We may thus describe the transformation from the position s + ds to the end of
the next full revolution by the matrix

Ms+ds—+s+ds+L = Ms——>5+ds Ms—>s+L Ms__l,s+ds~ (3212)

The transformation along the path element ds can be described by the matnxl
for an infinitely thin lens

1 ds
Mstds = (3.213)
—K(s)ds 1 :

orbit Sy

Fig. 3.33 Calculating the transfer matrix in
a circular accelerator.
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which is easily derived from one of the relations (3.84) to (3.87) by setting the
variable s to the very small value ds. Inserting the matrices (3.213) and (3.208)
into (3.212), we obtain

Ms+ds—>s+ds+L

1 ds > <cosu—1—ozsinu Bsin p 1 —ds
- —K(s)ds 1 —ysing  cosp — asinpy K(s)ds 1

cos [t + asinp ‘

+ (BK(s) — 7)sinp ds Bsinu — 2asin u ds

I

cosp — asinpy

—vysinp — 2K (s)asinpy ds — (K(s)B - 7)sinp ds

cosp+ asinp Bsin p
= ( > (3.214)
—rysin p cosp — asin i
( (BK(s) —)sinp —2asinp
+ ds.
—2K(s)asing  —(8K(s) —~)sinpu )

Comparing this relation with (3.209) yields

a'(s) = PB(s)K(s) —(s)
B'(s) = —2a(s) (3.215)
Y(s) = 2a(s)K(s).

3.14.2 Floquet’s transformation

When considering optical resonances it is sometimes helpful to use a form of the
equation of motion (3.204) which is periodic with the machine circumference.
We therefore introduce the variable

M 1 ds

é(s) = 3.216
=70 =2/ m (3219
. .. dd 1
which changes value by exactly 27 per revolutlon. Its derivative is e Qﬁ—()

s s
We also replace the transverse particle amplitude z(s) by the normalized quantity
2(s) (3.217)

n(s) = o8
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Its derivatives with respect to the new variable ¢ are

dp _ dnds _ z(s)
dp ~ dsde ds< g())Qﬂ()

= ( agz.)s) z(s) + 1/B(s) z'(s)) Q (3.218)’

d>n _ d (dnp\ _ d (dn
i @(@—ds (w)w

and

Using (3.215) it follows that

&y _ 2(s)z"(s) + (s z(s) s M s)z(s 2
dez—{ﬁ (90"(6) + () ok + [K00) - =55 ]Vﬂ()()}@

= {ﬂ% (s) [a:"(s) + K(s):c(s)] \Zgi()_)} Q2. (3.220)

We can use these relations to obtain a convenient transformed version of the
equation of motion, which is also known 28 Floquet’s transformation. We multi
ply the equation of motion (3.204) by 8% (s)Q?, yielding

0 = [2"(s) + K(s)a(s)] B3 (5)Q?
- { B3 [ (s) + K(s)a(s)] —

z(s) 2 z(s) 2
e )}Q ﬂ(S)Q . (3.221

= d’n/d¢?

Using the definition (3.217) we finally arrive at the transformed equation o
motion

d2

it Q*n=0. (3.222

3.14.3 Optical resonances
In an ideal linear machine the magnetic field produced around the beam by th
magnet structure may be written according to (3.4) in the form

€ _¢ s E__dBZ(s)xs =—1— s)z(s

. By an ideal machine we mean a circular accelerator in whic

where — €= =% B’

the magnetic fields agree exactly with the theoretical predictions. In realisti
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accelerators, however, this is of course impossible. First of all the relative field
strengths vary from magnet to magnet by at least AB/B > 104, and secondly
the magnets have fringe fields which are not sufficiently well described by the
hard-edge model upon which the beam optics calculations are based. Under cer-
tain conditions these field errors can induce resonant betatron oscillations of the

articles, leading to beam instabilities. In order to study the effect of field errors
more closely let us introduce a realistic field, consisting of the ideal theoretical
field with field errors superimposed upon it. We assume a field distribution of
the form

B.(z,s) = + k(s)z(s) + %AB(:U, 5)

1
R(s)
1

where AB(z,s) describes the field errors. For particles of nominal momentum
this becomes the inhomogeneous form of Hill’s differential equation (3.204)

AB(z, s)

T (3.224)

2" (s) + K(s)z(s) = %{z’fl' (3.225)
Applying Floquet’s transformation immediately yields
d¢2 D Qi =p8 Q2 ZU. (3.226)
Using Floquet’s theorem we then obtain the periodic solution
P27
n(6) = %@- / 83 RAEi - cos [Q(ﬂ' +o+ 19)} 9. (3.227)
¢

We immediately see that the amplitude of the particle oscillations grows without
limit as the tune @Q of the accelerator approaches a whole number. Clearly the
beam cannot circulate stably under such conditions, and so the region close to an
integer value of @ is called an integer stopband. This integer resonance condition
may be visualized with the help of Fig. 3.34. For simplicity it is assumed that
all but one of the magnets are free of errors. A particle starts off exactly along
the orbit, i.e. = 0, and in an ideal machine would continue along this orbit.
In this case, however, it encounters the defective magnet and is deflected onto a
new trajectory, at a non-zero angle A« to the orbit. This angle is proportional to
the strength of the field error. The focusing system bends the trajectory of the
particle back towards the orbit and the particle continues, performing betatron
oscillations about the orbit. At the end of a full revolution the particle arrives
back at the faulty magnet and once again undergoes the same angular deflection
Aq. If the tune Q is a whole number then this change in the trajectory angle
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dipole magnet
with field error

Fig. 3.34 Resonant excitation of beta,
tron oscillations by a dipole field error a
an integer value of @ (integer stopband

always occurs at the same value of the betatron phase and so the angle increases
with each revolution. The oscillation amplitude thus grows linearly with the
number of revolutions until the particles hit the wall of the vacuum chamber.
This simple example illustrates the principle of optical resonance, but i
reality things are rather more complicated. Firstly, all magnets have field error
which may be stronger or weaker depending on their relative position and o
the particular beam optics. Furthermore, the focusing magnets cause the bear
cross-section to vary around the orbit, which changes the effect of the field error
In order to study this problem in more detail, let us expand the field error in
terms of its multipoles: '

dAB_ 1&AB , 1d&°AB ,
- Z 22
AB(z) = ABy + T2 Tt T T3 (3 8
Recalling that j‘% = %% with 2—2 = /B, it follows from (3.228) that
Z_\.B 3 d? AB
AB(n) = ABy + ﬁéd RN (3.229

Inserting this field expansion into (3.226), we obtain

d?n 2, Q? 4 dAB 5 d2AB 9 )

B o) .2
d¢2+Q R B ﬁA o+ B2 6 5N+ (3230
If, for Q = p (p = integer), the product 3 %AB contains a non-vanishing term o

the pth harmonic of a full revolution, the betatron oscillations will be resonantl
excited. This is the case of the integer stopband, which we have already seen. Fo
half-integer @ values, i.e. @ =n+ % with n an integer, 2Q) = p. In this case th

dAB . .
pth harmonic of 3 3 1 can excite resonances. The third term describes th

effect of sextupole fields. Here the resonance condition is satisfied for 3Q) = p
sd
G2

multipole fields can also induce resonances.

5 n? contains components of the pth harmonic. In the same way, highe
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Let us now look in more detail at the mechanism of resonant excitation of
petatron oscillations by higher multipoles of the beam steering fields. We will
look explicitly at the first three multipole components. We begin with the general
solution of the equations of motion (3.129) and (3.130), which we write with
X:III+¢in the form

z(s) = Ve/B(s)cosx(s)
z'(s) = - Ve a(s) cosx(s) + sin x(s
(s) o7 o) comx(s) o+ sinx(s)] (3.231)

Let a = z(0) be the amplitude of the betatron oscillation at the position s = 0.
Writing B0 = B(0) we have e = a/+/Bo! We can thus write the trajectory
function in the form

z(s) =a Bls) cos x(s). (3.232)
Bo
From the second equation of (3:231) it follows that
B(s)x'(s) = -—a Bls) [a(s) cos x(s) + sinx(s
\ 5o
= —a @cosx ——lsmx (3.233)
0 \/
= a;(s)
We now take this rearranged form and replace z’(s) by the new variable
y(s) = B(s)2'(s) + as)z(s) = —a % sin x(s). (3.234)
0

Using this choice of variables, the particle traces out an exact circle in the z-y
phase plane, with a radius equal to the amplitude a. Each field error AB(z, s),
which acts over a distance As, induces a change of angle of

AB(z, s)

(o) —
Az'(s) = Bo R

~§AB($, s) As = — As (3.235)

in the trajectory of the particle. The resulting change in the variable y(s) is
obtained by substitution into equation (3.234), yielding

AB(z,s)

Ay(s) = —8(5) =5 %

As. (3.236)

Alternatively the change in the variables # and y may be written in the general
form
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Ax = %Aa—i— Z—isz ”g{;[cosx Aa — asiny AxJ =0

(3.237’)

dy dy B.
= —ZAa+—Ax=—|7 Aa+ Ax| =— A
Ay T Aa ax Ax e [sm X Aa+acosx X] ﬂ s.

When the particle traverses a short magnetic field the angle of its motion change
but its position does not, since Az = 0 in the first equation. Both these equa
tions are linear in Aa and Ay and may be directly solved with respect to thes'
quantities. We set x(s) = 9+¥(s) = 9+Q ¢(s), where the phase ¢(s) = [ & m
again increases by 27 during each revolution. It then follows that

Aa vV Bof(s )_?(mR_s) sin [19 +Q gb(s)] As
Ax = \/,6(;,6(3) Agoxl,%s .

o8 [19 +0Q ¢(s)] As. (3.238

From the first equation we may directly calculate the change per revolution i
the betatron oscillation amplitude by integrating Aa over a full revolution. We
obtain

dn

where AB(z,s) describes an arbitrary field distribution. If da/dn # 0 the am
plitude of the betatron oscillations increases steadily with each revolution, i.e
the oscillation is resonantly excited. In the following sections we explicitly stud
this process for the three most important multipole fields.

da _ \/ﬁ_o j{\/ﬁ(S'AB(w s Sm[gw (s )]ds, (3.239

The integer resonance ¢} = n

To begin with let us assume a dipole field error which is constant in the horizonta

plane and only varies along the beam axis, namely
AB(z,s) = ABy(s). (3.240

Inserting this into (3.239), we obtain

gll% - > R VB(s)ABy(s) sin[9 + Q¢(s)]ds

(3.241

= \/’6_0 ]4 VB(s)ABo(s) [311119 cos Q¢(s) + cos I sin Qqﬁ(s)] ds.

The function F(s) = /B(s)ABy(s) is periodic, with a period of one revolutio
and may always be written as a Fourier series. Since the phase ¢(s) ranges fro
0 — 27 per revolution, it makes sense to expand F'(s) as a function of ¢, name
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F(s)=Fy+ Z [ap cos(pg(s)) + by sin(qu(s))] . (3.242)

p=1

We insert this expansmn into (3.241) and multiply out the trigonometric func-
tions, recalling that fo cosmz sinnz dr = 0. This yields

da

- (3.243)

\/ﬁ—(l)% { ]{ Fy [sin 9 cos Q¢ + cos ¥ sin ng)] ds

+ f Z [ap sin 9 cos pg cos Q¢ + by, cos ¥ sin pe sin Qd)] ds}.
p=1

The first integral, with the constant term Fp, makes no contribution on average
to the change in amplitude of the betatron oscillation. Since the integral

2T 27
/ cos mx cos nrdr and / sin maz sin nxdx
0 0

is non-zero only when m = n, only terms with p = @ contribute in (3.243). If

the tune of the circular accelerator is is a whole number, i.e.

Q=p  with p = integer, (3.244)
the change in amplitude
g% \/BE jé ag sind cos® Qo + bg cos ¥ sin Q¢) (3.245)

has a non-zero value. We have already encountered this integer resonance, caused
by a dipole magnet error. It is the strongest of all optical resonances, and if the
machine is to operate stably then the tune must be chosen to be sufficiently far
from any integer value.

. 1
The half-integer resonance @ = n + 3

Let us now consider the resonances which can be caused by errors in quadrupole
fields, given by

AB(z,s) = g(s) z(s). (3.246)

The trajectory function z(s) may be determined from (3.232) by again setting
the phase to ¥ + Q¢(s):

(3.247)

WG]
z(s) = 3

-~ cos [9+ Qo(s)].
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Using (3.239) we obtain

S = o $ A cos[9+ Qo)) sinfo+ Qo) ds

(3:249)

= QB 7 7{6 )g(s) {sm 219 cos 2Q¢(s) + cos 2¢ sin 2Q¢(s)]
B(s)g(s) is again a periodic function, with a period of one revolution, and so
in general also contains a term of the pth harmonic, where p = 2@Q. This term
relates to the quadrupole field. Multiplied by sin 2Q¢ or cos 2Q¢ in the integral
it again leads to a non-vanishing change of amplitude. Hence quadrupoles can
induce half-integer resonances.

The one-third integer resonance QQ = n -+ %

As a final example let us study the effect of a sextupole magnet on the resonance
condition for a circulating particle. The sextupole field has the form

AB(xz,s) = =g¢'(s)x*(s), (3.249)

or, substituting into the trajectory (3.232)

2P0

1
AB(z,5) = 50'(s)a” 5

cos [19 + Q¢(s)] . (3.250)

Under these conditions the change in amplitude is given by

%Z 5B R\/— %,6’ (s)g'(s) cos [19 + Qqﬁ(s)] sin [19 + Qg/)(s)] ds. (3251)

Using cos? zsinz = (sin 3z + sinz) it follows that

2
;l_z _ m {fﬁ%(s)g’(s) [sinfﬂcos Qa(s) + cos ¥ sin Q(b(s)] ds

+ f B2 (5)g'(s) [sin 3 cos 3Q(s) + cos 39 sin 3Qq§(s)} ds} (3252)

The first integral again gives an integer resonance, which we have already dis-
cussed in the preceding sections. Let us now consider the second integral. If the
tune fulfills the condltlon 3@ = p the beam can resonate with the pth harmonic
of the function 8% (s) '(s). This condition is met when @ has a one-third integer
value, i.e. Q =n + . Sextupoles thus induce third-integer resonances.
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Table 3.4 Optical resonances and the multipole fields which drive them.

driving field condition
dipole Q=09
quadrupole 2Q = p
sextupole 3Q =1p
octupole 4Q = p
etc. :

The Q,-@, diagram (tune diagram)

Multipole fields of even higher order induce correspondingly higher resonances,
for example an octupole field can produce a fourth order betatron oscillation res-
onance. The calculation proceeds along the same lines as before, using (3.239).
In reality, however, it is very difficult to determine the strength of the resonances
exactly, since the field errors are usually known only very imprecisely, if at all.
This means that the Fourier coefficients in (3.242) are usually not known. How-
ever it is a general rule that the strength of a resonance decreases sharply with
the order. Table 3.4 summarizes the optical resonances and the multipole fields
which drive them.

The finite mechanical tolerance and the limited pole width of the magnets
mean that in principle all possible multipole fields are present in an accelerator.
As a result there are always resonances when m@Q) = p, where m and.p are inte-
gers. We must bear in mind that every accelerator has two tune values, namely
Q. in the horizontal and @), in the vertical plane. In general these are differ-
ent, and so there are resonance conditions in both planes. For higher multipole

- fields the strenth in one plane depends on the beam position in the other, which

leads to coupling between between the betatron oscillations in the two planes
and hence to coupled resonances. The condition for optical resonance in both
planes may thus be expressed as

|m Qr: + nQ; =0 (m, n,p = integers). ‘ (3.253)

The sum |m| + |n| is called the order of the resonance. For stable operation a
pair of values for @, and @, must be chosen which avoid optical resonances.
This pair of values is termed the working point. The strength of the resonance
decreases rapidly with the order, and so when choosing a working point we are
generally only concerned about resonances up to 5th order.

The optical resonances given by (3.253) are shown up to third order for
both planes as lines in the diagram in Fig. 3.35. Care must be taken to choose
a working point that is sufficiently far from these lines. This is particularly
important in storage rings, because the long beam lifetimes mean that even
relatively weak multipole fields can cause significant resonant beam disturbances.

i
.
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m+1 -

tune

n Q, 1

Fig. 3.35 Optical resonances up to 3rd order in both planes of oscillation. A possibii
choice of working point is indicated in the diagram.

Hence the working point must be carefully chosen in advance when the beam
optics are designed.

3.15 The effect of magnetic field errors on beam optics

Ideal magnets, which agree exactly with the hard-edge model used in calculation:
of linear optics, cannot be achieved in practice. Because of finite manufacturing
tolerances and the effects of pole ends there are always non-negligible deviations
from the ideal field, which we will call field errors. In the previous section on
optical resonances we met an important example of the effect of field errors on
the stability of the particle dynamics. In the following sections we will cons1de
the effect of dipole and quadrupole field errors on the beam optics.

3.15.1 Effect of dipole kicks

We assume a dipole field error of strength AB acts over a length [. This field
changes the angle of the particle trajectory by the amount :

Az = ;% AB 1. (3.254

If [ is not too long, the disturbance may be described by a localized angular kick
right in the middle of the disturbing field at [/2. We may therefore approximate
it to an infinitesimally short field disturbance, which considerably simplifies the
calculation. Consider a particle travelling exactly along the orbit in front o
the disturbing field, i.e. with the trajectory vector (z,z’) = (0,0). This particle
therefore has zero emittance. Immediately after the field disturbance the particle
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Fig. 3.36 The effect of a constant field error on the beam at two points with different
beta functions. The change in angle Az’ is the same in both cases. When the beta
function is large (left) the angular acceptance is relatively small, and so as a consequence
of Liouville’s theorem the angular deviation Az’ gives rise to a relatively large phase
space ellipse. When the beta function is small (right) the corresponding ellipse is small.

now travels at an angle Az’ with respect to the orbit. The trajectory vector is
now & = (0, Az’). This deflection will lead to betatron oscillations, as a result
of the beam focusing. Inserting this trajectory vector into the ellipse equation
(3.135) gives a non-zero emittance

Eerror = 3 Az’ (3.255)

It should be noted that for a given field error the increase in emittance is propor-

- tional to the beta function at the point of the disturbance. This fact is illustrated

in Fig. 3.36. It is a fundamental property of beam optics that the effect of a field
error increases with the beta function. This means that special care must be
taken in the construction of the magnets to be used at points where the beta
function is large. In a circular accelerator the beam passes through the same field

disturbance again during each revolution, and so is deflected through the same

angle each time. After many revolutions a stable equilibrium is established, re-
sulting in a new distorted orbit, consisting of a static betatron oscillation about
the unperturbed ideal orbit, with a phase or angular shift at the point of the
error, as Fig. 3.37 shows. In equilibrium the perturbed orbit has a displacement
z from the ideal orbit at the point sg. The angle is 2’ — Az’ immediately before
the disturbance and z’ immediately after it. Hence the trajectory begins at the
point sq with the trajectory vector (z,z’). After a full revolution it again passes
through the field disturbance, assumed to be infinitesimally short, this time with
the trajectory vector (z,z’ — Az’). The distorted orbit may therefore be evolved

using
T Z
( z — Az ) :Mrev( ! )

(3.256)
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X dipole error

x-AxE

distorted orbit

ideal orbit.
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Fig. 3.37 The distorted orbit resulting from a dipole kick at the point so. The stati
trajectory is bent through an angle Az’ at the point so.

Here M, is the transfer matrix for a full revolution. This matrix can be easil
determined from (3.164) by replacing the betatron phase for a revolution b
¥ = 27(Q) where @ is the tune, and by realizing that the periodicity conditiong
imply that the beta function and its derivative are the same at the beginnin,
and end of a revolution, i.e. 8(sg) = Bo and a(sg) = ag. It then follows that

cos 2@ + a(sp) sin 27 Q) B(sp) sin 27Q :
M;e, = . (3.257)
—(80) sin 27Q) cos 27Q) — a(sp) sin 27Q)

Using this matrix, (3.256) yields the equations which determine the compone
z and z’ of the distorted orbit vectors immediately after the disturbance

[Coszﬂ'Q + a(so) sin27@ — 1] z + B(so)sin27Q '’ = 0

—v(s0)sin27Q = + [cos 2@ — a(sp) sin 27Q — 1] ¥ = —-Ax.

After a little manipulation of the trigonometric functions, the solution of th
two equations finally yields the required result

, B(s0)
¢ = Az 2 tannw@ (
» (3.259
, Az also :
T (1 tan WQ) ’

From this initial vector we may calculate the distorted orbit at any point around
the ring, using the known transfer matrices. We immediately see that the orbit
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beam axis

magnet axis Fig. 3.38 Orbit distortion caused by a
transversely misaligned quadrupole. The
quadrupole axis lies parallel to the orbit but
' has a displacement Az = (Az, Az).

distortion grows without bound if the tune @) approaches an integer. This is the
result of the integer resonance, which we have already encountered. In general
there are many such disturbances around the ring, which must be individually

- calculated and then summed together. This can lead to considerable shifts in

the orbit, which must be compensated for by specially arranged small correcting
magnets.

3.15.2 Effect of quadrupole field errors

The simplest case of a field error caused by a quadrupole is a transverse mis-
alignment, in which the axis of the quadrupole correctly lies parallel to the line
of the orbit but has a displacement, as shown in Fig. 3.38. If the quadrupole has
a gradient ¢ = 0B,/0x then at the orbit there is a field

( ﬁgz ) =g< 2; ) (3.260)

This leads to a deflection in both planes of

Az’ e AB, e Az Az

Like a dipole field error, this misalignment thus causes an angular deflection
of the trajectory in both planes. This again leads to an orbit distortion, which
may be calculated by inserting the angular deflection from (3.261) into (3.259).
The orbit distortion is proportional to the size of the misalignment and also
proportional to the beta function at the quadrupole.

An error in the gradient g in a quadrupole changes the focusing and hence
the tune in a circular accelerator. It also changes the beta function around the

ring. We will study this problem using a perturbative calculation in which the
gradient error Ag is assumed to be very small compared to the gradient itself. The
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Fig. 3.39 Circular accelerator with
separate infinitesimal quadrupole section

gradient deviation or alternatively the deviation in quadrupole strength are the
written in the form

Ag<g

g = Gideal + Ag with §
Ak < . (3.262

k = ke + Ak with

is
cos 2@ + o sin 2w Q) Bo sin 2mQ) T
Miey = ) : (3263

—vo sin 27Q) €08 27Q — g sin 27 Q) '

where @ is the tune, ¥ = 27(QQ is the betatron phase shift per revolution, and
and ag are the optical functions at the point sg. :
To determine the effect of the gradient error we cut an infinitesim
quadrupole section of length ds out of the magnet structure at the point s
as shown in Fig. 3.39. We will assume, without any loss of generality, that thi
segment is a focusing quadrupole. Mg is the transfer matrix for the quadrupol
section and My that for the rest of the ring. The revolution matrix may thus b
written in the form
Moy = MQMR- (326
For a short error-free quadrupole section of length ds it immediately follows fro
(3.84) that ‘

1 ds '
Mg = ( b 1 ) (3.265

When there is a quadrupole error this becomes

. 1 ds ;
Mo = ( —(k+Ak)ds 1 ) (3.268

The matrix product

1 0. 1 ds \ _ 1 ds (32”
~Akds 1 —kds 1 )\ —(k+Ak)ds 1— Ak ds? :
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gives the distorted matrix M, since |Ak ds?| < 1, and so the distorted matrix

may be written as

. 10
My, = ( Abds 1 )MQ. (3.268)

From (3.264), the perturbation to the revolution matrix resulting from the gra-
dient error is thus

. 1 0
Mrev - ( —Ak dS 1 )Mrev
(3.269)
€08 2@ + g sin 27w Q) Bo sin 27w Q
- —Akds (cos2mQ —Akds By sin 27 Q

—ap sin 2w Q)) — 7yp sin 2wQ "t cos 27@Q — ap sin 27w Q

The quadrupole error Ak causes a change in the beam focusing and hence a tune
shift d@. The distorted revolution matrix may also be expressed in terms of this
shift by replacing @ by @ + d@Q in the undistorted revolution matrix (3.263).
Using x = 27(Q + dQ) gives

€os X + apg sin Bo sin x
Mo (@ + dQ) = (3.270)
—Yp siny €cosSx — o siny
The matrices M, and M,e, (Q + dQ) are two different representations of the
same physical quantities. Since they do not necessarily use the same coordinate

" system, the simple matrix identity MY, = M, (Q + dQ), i.e. equating the

individual matrix elements, does not lead to the desired result. We require a
matrix identity which describes the same spatial transformation for any choice
of coordinate system. The identity we need is that of similarity of matrices. The
rules of linear algebra state that matrices are similar if their traces (the sum of
the diagonal elements) are the same. Imposing this requirement one obtains

trace My, = trace Moy (Q + dQ). (3.271)
Using (3.269) and (3.270) it then follows immediately that
2 cos 2mQ — Ak By sin27Q ds = 2 cos 27(Q + dQ). (3.272)

Because the shift in Q is very small, cos 2rdQ ~ 1 and sin 2mdQ) =~ 27dQ, and

(3.272) then reduces to

4 dQ = Ak B ds. (3.273)
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observation
N o\

distortion

Fig. 3.40 Calculating the deviation in th
beta function at the point so due to
quadrupole error at the point s1 in a circuls
accelerator.

From this we may calculate the tune shift AQ due to a quadrupole of ﬁnif
length ! with an error Ak by simply integrating over the length of the magnet

So+l

AQ = % / Ak B(s) ds. (3.274

S0

It is important to note that this formula is only valid for very small quadrupol

errors Ak. ‘
As well as causing a tune shift, a quadrupole error also has. an effect o

the beta function. Let us calculate its value at the point s¢ in the ring when:
quadrupole error, again assumed to be infinitesimally short, is acting at anothe
point sy (Fig. 3.40). Between sg and s; the betatron phase changes by the amoun
U. The matrix A describes the magnet structure between the points sg an
s1, and the matrix B describes the structure from s; to so. The unperturbe
revolution matrix at the point sq is ‘

_f M1y M2 \ _ .
Mrev(SO) - ( Moy Moo ) =B-A (327

with

A o 012 B= bii b2 (3.27
a1 Az ba1  boa

As in (3.268), we again introduce the perturbation by multiplying by the disto

tion matrix, giving

. m¥, m? 1 0 :
Mie(50) = ( mi, m;§> =B ( “Akds 1 ) A (8.27

In what follows it is sufficient to consider only the matrix elements m2 or m}‘
Using the relation (3.164) and writing 8o = B(s0), we may write m12 in the for

mig = ,30 sin 27!'Q. (327
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The quadrupole error changes the tune by a small amount and also induces a
small change in the beta function. By analogy with (3.278), the distorted matrix
clement M, may thus be written in the general form

miy = (Bo + dB) sin2n(Q + dQ). (3.279)
Alternatively we may obtain mJ, from the matrix product (3.277)

mi, = biiaiz + bizags —a12b12Ak ds
————
= Mg
= ,60 sin 27TQ e (1,12b12Ak2 ds. (3280)

If we now set (3.279) and (3.280) to be equal and again use the approximations
cos 2md@ ~ 1 and sin 27dQ ~ 27d() we obtain

(Bo + dB)[sin 27Q + 27dQ cos 2w Q] = Bysin 27Q — a12b12Ak ds. (3.281)

As dQ and df3 are infinitesimally small quantities we may neglect terms contain-
ing products dQdg, giving

2mdQBo cos 2 Q + dBsin 2w Q = —aq12b12 Ak ds. (3.282)

Using the expression for the tune shift (3.273) we may further rearrange this
expression to give

1
Eﬁoﬂ(sl)Ak ds cos2mQ + dfBsin2wQ = —aj9b13Ak ds. (3.283)

Solving with respect to df finally yields

dg = [2(112612 + BofB(s1) cos 27rQ] Ak ds. (3.284)

1
 2sin 27Q
We still have to calculate the matrix elements a5 and b;2. Here we use the values
of the beta function at the points s and s; and denote the advance in phase
along the section (so,s1) by ¥ and that along the section (s;,s¢) by 27Q — .
Inserting these terms into (3.164) gives

a1z = +/fBo B(s1)sin¥

b12 = ,80 ,3(.5'1) sin(27rQ - \I/) (3.285)
Using (3.284) it follows that
dg = —% l2 sin Usin(2mQ — ¥) + cos 27Q] Ak ds. (3.286)

= cos(QCIf' —27Q)

Let us‘label the betatron phase at the point sy by ¥y. The phase difference at
the point s, is then given by ¥ = ¥(s1) — ¥y. In a real machine a quadrupole




St =ML ,
w?‘%; i ‘
i

W‘W

il
e
[

120 Linear beam optics

error is always distributed over a finite length, which we will take to run from
s1 to s; + 1. The change in the beta function at the point sg due to the error A

is then

s+l

AB(sp) = —2—8,1-?;—#@- / B(s) Ak(s) 005[2(\11(5) - \Iio> - 27rQ] ds. (3.287

S1

We again see that AJ grows without bounds if sin27r@ — 0. The tune mus
therefore not have integer or half-integer values. This phenomenon, which wi
have already seen leads to optical resonances, also leads to unlimited growth
the beta functions and hence the beam size. Stable operation of the accelerat
is then impossible.

We must once again note that the formulae derived in this section are only.
really applicable to very small errors Ak, for which the beta functions remain
essentially unchanged. Larger deviations change the entire beam optics and t J
assumptions used here are no longer valid. In this case it becomes necessary
completely recalculate the machine optics. Similarly, when operating a circular
accelerator it is important to bear in mind that a large variation in the individual
quadrupole strengths can considerably change the beam optics.

3.16 Chromaticity of beam optics and its compensation

Beam optics are always calculated starting with particles of nominal momentum
po. A real particle beam, however, always has a certain momentum distribution
about this nominal value and so it is important to investigate how the b
optics change for off-momentum particles with a deviation Ap. We may assu
that the momentum deviations are very small, Ap < po, since the Gaussi
distribution function of a particle beam is generally not much broader tha

Ap/po = 10-3. Instead of the nominal beam optics, particles with a momentuﬁr
p = po + Ap see the modified quadrupole strength '

e e e Ap)
kp)= ——g=———-—g~——|1—-— = ko — Ak.
(®) Pg po + Apg Do ( Do g 0
One may thus treat the effect of a momentum deviation as a a quadrupole errb
Ak, given by
A
Ak = —fko. (3.289

According to (3.273), this quadrupole error induces a tune shift per path eleme

ds of Ap 1
e
dQ.= > In ko B(s) ds. (3.29

Since the particle maintains the same momentum deviation for many revolution
it appears to this particle that all the quadrupoles in the ring have a quadrupo
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erTor proportional to Ap/p. To calculate the resulting tune shift we must thus

integrate over all the quadrupoles. It then follows from (3.290)

A
= Z})% = 21-1-7; fk(s) B(s) ds. (3.291)

This dimensionless quantity is called the chromaticity of the beam optics, by
analogy with the chromatic distortion of light in classical optics. It increases
with the strength of the beam focusing, with particularly large contributions
coming from strong quadrupoles in which the beta functions reach large values.

Storage rings in particular suffer from large chromaticities £, and £, in both
planes, as a result of their size and their usually relatively strong focusing. Due to
AQ=¢ %2 this leads to considerable tune shifts even for small momentum devi-
ations, with these particles then encountering damaging optical resonances and
being lost. A further limiting effect is the so-called head-tail instability, which
always arises when the value of the chromaticity is negative. This is generally
the case in all circular accelerators, as may be seen from the formula (3.291)
since the beam focusing means that k(s) has predominantly negative values?
This instability restricts the beam current to relatively low values. It is there-
fore essential to compensate for the chromaticity, particularly in strong focusing
machines.

The compensation is performed at points where the particles are naturally
sorted according to their momentum, namely anywhere where the dispersion is
non-zero. Here the particles travel on average along dispersive trajectories

2p(s) = D(s)—i—p, (3.202)

depending on their momenta. At these points additional magnets are installed
with a focusing strength which depends on the transverse beam position, i.e.
k « z. Sextupole magnets have exactly this property. Their field may be calcu-
lated from the potential (3.49), namely

o®

B, = —=¢
8$ g Tz
0% 1
B, = —==2 P22
5, —39 (&%) (3.293)

From this we immediately obtain the gradients along the z- and z-axes

oB,

ox =97 e

o5, ksext = ’ g z=mz. (3.294)
oz 7 ’

The procedure of chromaticity compensation is illustrated in Fig. 3.41. Parti-
cles with nommal momentum Ap/p = 0 have the correct focusing. They follow
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focal length

A dispersion
\ - D=#0
quadrupole

Fig. 3.41 Use of a sextupole to compensate for chromaticity resulting from

quadrupole magnet.

the nominal orbit, with = 0, and so are not influenced by the sextupole si
uated behind the quadrupole, since its field gradient is zero on the axis. Hen
the sextupoles do not affect particles with nominal momentum. When the par-
ticle momentum is too large, however, i.e. Ap/p > 0, the focusing effect of the
quadrupole is too weak. The particle travels along a dispersive trajectory zp > 0
and hence passes through the sextupole with a displacement z = 22D >0.B
cause of this non-zero displacement the sextupole field contributes an addition.
quadrupole strength of

A
Koy = m D _:E)B (3.295)
with the sextupole strength m chosen such that the chromatic effect of t]
quadrupole vanishes. For particles with lower than nominal momentum the co
pensation proceeds in exactly the same way, but with the signs reversed.
With sextupoles distributed around the ring, the total chromaticity consis

of the sum of the momentum-dependent quadrupole errors Ak = —% pl
the effect of the sextupoles kgext = m D -‘;—p ko. Since all the quadrupoles and
sextupoles in the ring contribute, we must once again integrate over a whole
revolution. Using (3.291), the effective total chromaticity becomes ‘

fror = 2117; 7{ [m(s) D(s) + k(s)] B(s)ds. (3.200)

In principle it is always possible to choose the number, positions and strengths
m of the sextupoles so that this integral vanishes. In practice, however, it tur ‘
out to be useful to over-compensate for the chromaticity to a certain degree in
order to obtain small positive values

gtot ~ +1 ‘e + 3. (329
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Fig. 3.42 Calculating the trajectory of a particle through a magnet structure with
individual sextupoles, assumed to be infinitely thin.

This prevents any small variation in the optics from driving the chromaticity
negative again. In addition, a positive value of &, leads to head-tail damping.

{

3.17 Restriction of the dynamic aperture by sextupoles

The sextupole magnets needed to compensate for the chromaticity unfortunately
also have negative effects on the dynamic behaviour of the beam. This is essen-
tially due to the fact that the quadratic field distribution in the sextupole means
that it exerts non-linear forces on the particle which lead to anharmonic betatron
oscillations. Their frequency and hence also the tune are then dependent on the
amplitude of the oscillations. Non-linear resonances may thus arise, leading to
sudden particle loss above a certain betatron amplitude. Particles with nomi-
nal momentum po but large oscillation amplitudes will thus be deflected by the
sextupole fields and it will no longer be possible to find a trajectory which is
stable over many revolutions. Here one faces the phenomenon of chaotic particle

~ dynamics.

It is not possible to treat this non-linear problem analytically, and one is
forced to use numerical methods instead. The simplest method can be explained
with the help of Fig. 3.42. We make the realistic approximation that the magnet
structure of a ring consists of linear sections separated by individual sextupole
magnets. These sections are described in the usual way by their transfer ma-
trices M;. The sextupoles may then be approximated by thin lenses with no
longitudinal extent.

At the beginning of the structure we start with a four-dimensional trajectory
vector

Zo
o
20
2

Xo= , (3.298)

whose components are chosen at random from within the acceptance ellipse.
The trajectory vector immediately before the first sextupole S; is obtained by
the transformation

W meeo
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Z1

/

7
The particle travels through the sextupole with a displacement z1 and z;. A
cording to (3.293) the sextupole field at the position of the particle is

B 1 g o ( "
= 3.300)
3 g (@% =) )
If [ is the effective length of the sextupole then the change in trajectory angle
induced by the sextuple field in the two planes is given by

Az = B,l= % (ml) (z3 — 23)

WIos |0

Az, = = Byl=(ml) z1 2. (3.301)
The evolution of the trajectory through the sextupole cannot be described by
the usual matrix formalism because the matrix elements would then themselves
depend on the starting values of the trajectory vectors. The changes in angle
induced by the sextupole must be explicitly added to the traJectory vect
Beyond the sextupole we thus obtain the new vector

T1
/ A ’ .
X,=| ™ 4;1,561 , (3.302)

2 + Az

which is then evolved as far as the next sextupole Sy using the matrix M. Here
the changes in angle of the particle trajectory are calculated in the same W
as before. This procedure, which is termed particle tracking, is repeated un
sufficiently many revolutions have been calculated, usually several thousan
The result of a computation of this kind is shown in Fig. 3.43 for the horizon
plane. We immediately see from this example that the sextupoles reduce t
stable region of phase space. Stable particle motion is only possible for sm.
oscillation amplitudes. If the amplitude exceeds a certain value, which may be
very much smaller than the physical acceptance given by the size of the vacuu
chamber, then the particle is lost. Hence the space available to the beam
considerably less than that given by the mechanical aperture. The non-linear
particle dynamics limit the effective aperture available for the particle motio
and hence this reduced space is termed the dynamic aperture.

For stable and reliable operation of the accelerator it is important to have
large a dynamic aperture as possible. This means that the sextupoles must
carefully arranged, but unfortunately the non-linearity means that the optim
arrangement cannot be calculated analytically. In principle one starts with
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without with
sextupoles sextupoles

particle loss

Fig. 3.43 Particle tracking through a circular \z’iccelera,tor (left without sextupoles,
right with sextupoles). In this example only the horizontal phase plane is shown. For
each revolution the transverse position of the particle at a particular point s is plotted
as a small circle on the phase diagram. The resulting ellipse marks the acceptance
of the ring. Without any sextupoles the expected elliptical shape is obtained. With
sextupoles present the particle motion is much more complex and in this example leads
to a sudden growth in the betatron amplitude and hence to the loss of the beam.

particular distribution of sextupoles and then calculates the size of the dynamic
aperture by particle tracking. If this is not sufficient then one must try another
arrangement and repeat the particle tracking. In this way the dynamic aperture
can be increased step by step. If it proves impossible to achieve the required
aperture then the linear optics or even the entire magnet structure must be
modified.

Although no analytic solution has yet been found for the optimal distribution
of sextupoles in circular accelerators, there are a few general empirical rules

“to guide us which we will discuss with reference to the model ring accelerator

described in Section 3.13.3. The linear beam optics used here have a chromaticity
in both planes of £, = —2.35 and £, = —2.36, which must be reduced to &, =
&, = +1 by the insertion of sextupoles.

In principle two sextupoles will suffice, one for the horizontal and one for the
vertical plane, as shown in the left-hand diagram of Fig. 3.44. The sextupoles
are installed immediately after a horizontally (QF) and vertically (QD) focusing
quadrupole. Here the beta functions in the respective planes are rather large
and so the chromaticity compensation by the sextupoles is very effective, as can
be seen from (3.296). In the second case, shown in the right-hand diagram of
Fig. 3.44, many sextupoles are equally spaced around the ring. The horizon-
tally acting sextupoles (SF) are again arranged next to the horizontally focusing
quadrupoles, and similarly the vertically acting sextupoles (SD) are next to the
vertically focusing quadrupoles. Here it is assumed that all the horizontally-
acting sextupoles are of equal strength, and likewise that the vertically-acting
sextupoles are all equal. If only two sextupoles are used, the integrated sextupole
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distributed
sextupoles

Fig. 3.44 Possible distributions of sextupoles for chromaticity compensation in
model ring. In the case on the left only one sextupole is inserted for each plane, while
the example on the right every space next to a quadrupole around the ring is occupie
by a sextupole. In both cases the compensated chromaticity is £, = . = +1.

strengths required are (m [)sr = —2.34 m~2 and (m [)sp = 3.81 m~2. The fiel
must be rather stronger in the vertical plane because of the smaller dispersion
the position SD, as may be seen from the optical functions in Fig. 3.32. Partic
tracking is performed over some 500 revolutions with this arrangement, in whic
the emittance of the phase ellipse associated with the trajectory vector Xy
varied in small steps in both the horizontal and vertical planes. This proce
explores the whole aperture of the beam pipe. After each tracking calculation
is determined whether the particle is already lost or whether its motion is st;
stable. In this way the range of stable particle motion may be determined. ]
the case of just two sextupoles this range is extremely narrow, with a horizont.
limit of only 15 mm and a vertical range of only 4 mm (Fig. 3.45). It is ne
possible to operate an accelerator within such narrow limits.

The situation is very different when many evenly distributed sextupoles a
employed. Here the required sextupole strengths reduce to (m I)sp = —0.29 m”
and (m l)sp = 0.48 m~2. Furthermore, the perturbations caused by the se
tupoles largely cancel out due to the phase differences in the betatron oscillatio
between the individual sextupoles. As Fig. 3.45 shows, the dynamic aperture
now considerably larger, and indeed is only slightly smaller than the mechanic
limit of the vacuum chamber. With this sextupole configuration the accelerat
can operate without any problem. :

We immediately see from this example that it is always important to di
tribute as many correspondingly weak sextupoles evenly around the ring as po
sible. A further advantage comes from connecting the sextupoles acting in o
plane into several circuits or sextupole families of different strengths. Numeric
particle tracking is again required to determine how many families are needs
and which sextupole strengths give the largest dynamic aperture. :
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two individual sextupoles

. \l<' ' ' ‘f/

0 50 X [mm] 100
Fig. 3.45 Determination of the dynamic aperture by means of numerical particle
tracking for the model ring. The mechanical aperture is shown by the dashed line. The
two curves give the limits of stable particle motion for two individual sextupoles and
for many evenly distributed sextupoles.

It is worth stressing that this problem of aperture limitation due to non-linear
particle dynamics is one of the most difficult and important current problems in
particle optics. All higher multiple fields, not just sextupole fields, are involved.

3.18 Local orbit bumps

It is often necessary to deliberately shift the transverse position of the beam
within a limited region. This is done using so called orbit bumps, which move

~ the beam in a well-defined way without affecting the rest of the ring. The basic

principle of the orbit bump is illustrated in Fig. 3.46, which shows the simplest
possible case. The beam displacement is always performed using small additional
dipole magnets inserted into the ring, known as steering or correcting coils. These
are labelled HK1 and HK2. The beam, which initially lies exactly along the axis,
travels from the left through the correcting coil HK1 installed at position s; and
is deflected through an angle k1. As a result of the beam focusing it then begins
to perform oscillations about the beam axis, and after an advance in phase of
¥ = m it crosses the orbit again at an angle z, at the point s,. A second steering
coil HK2 is installed at exactly this point, which bends the beam through an
angle ky = —z% and so brings it back onto the orbit. The beam then continues
exactly along the nominal orbit. Using this principle it is possible to change the
position of the circulating particle beam just in the isolated region from s; to
S9.

This kind of closed orbit bump requires the strengths of the two coils ki and
k2 to be in a strict ratio to one another. This is calculated using the transfer
matrix M from s; to sz, which according to (3.164) is uniquely defined by the
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Fig. 3.46 The simplest example of an isolated orbit bump. Two correcting coils HK1
and HK2 are used. The phase difference of the betatron oscillation between the two

coils is exactly 180°.

optical functions at these two points, i.e. 81, a1 and Bz, as. Since the phase;is;f
exactly ¥ = 7, the trajectory vector at the point sg is '

_ \/E 0 0 0 |
X, = hr .t = . (3.303)
% _’6_1 K1 —\/E K1 ‘
Vb1 B2 B2 Pz
In order for the correcting coil HK2 to exactly compensate for the angle of th
trajectory it must have a bending angle

kg = & \/_g_‘: k. 9\ (3.304):

This matching condition for the two steering coils gives a closed orbit bumy
which is often also called a 180° bump because of the particular choice of th
phase U. '

This simplest form of the local orbit bump is not often used in practice, since:
in general it is not possible to fix the exact phase difference between the steerin
coils. Instead the principle is extended to three coils HK1, HK2 and HK3,
shown in Fig. 3.47. The first steering coil HK1 bends the beam through th
angle k1. At the point s3 the trajectory thus has the vector

X1H3:M1_»3‘< 0 ) (3.30

K1

where M;_,3 gives the evolution from s; to s3. Since the positions of the steerin,
coils may in principle be freely chosen, the resulting trajectory at s3 in gener
has both a separation zz and an angle z5 with respect to the ideal orbit.
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—

. )/
Fig. 3.47 An orbit bump formed from three correcting coils. In this case matching is
always possible, regardless of the phase between the individual coils.

second steering coil HK2 is thus used to induce a further shift in the trajectory,
which on its own would give a trajectory vector at the point s3 of

0
Xs 3 =My .3- ( Ko ) . (3.306)

Here My_,3 is the transfer matrix from ss to s3. These two corrections to the
trajectory are arranged so that at s3 the separation goes to zero again and the

remaining trajectory angle is compensated for by the bending angle k3 of the
steering coil HK3. We thus obtain the following relation

0
X3 = M1—>3'< >+M2—>3'(0)
K1 \ ke
_ a1 a2 \ (O b1 by 0
( a1 a2 ) ( K1 >+( bar by )\ k2 (3.307)
_ aizk1 + bigka
a22k1 + bagky )

With the condition

0 ,
X3 = ( s ) (3.308)
we obtain the equations
a12k1 +bigke = 0
agak1 +bagky = —Kg, (3.309)

which determine the strengths of the correcting coils. For a given value of xq,
the strengths of the two other coils may be calculated. We again use the matrix




(O
i "
Wi

130 Linear beam optics

Fig. 3.48 An orbit bump with four correcting coils. This design allows one to simul-
taneously control both the displacement x, and the angle z, at the point P.

(3.164) to obtain the elements a;; and b;; from the optical functions at the
positions s1, sz, and s3. It follows that

_ a1a_ [Pusin(¥5— ) k
Ko = b12 K1 = ﬂz Sin(\Ifg _ \Ifg)ﬁl (3.310)

K3 = —agak1 — baaka

61 Sin(l:[fg — \Ifl)
\/;{tan(\lig ~ ) cos(Ts \Ill)} (3.31 )
We see that matching is almost always possible in an orbit bump using three
steering coils, regardless of the position of the coils.

The most universal form of orbit bump consists of four steering coils. Here if
is possible to choose both the position x;, and the angle z;, of the shifted beam
at the chosen point s,. Such a system is used, for example to precisely contro
the photon beam from an undulator. This type of orbit bump is illustrated it
Fig. 3.48. The two steering coils HK1 and HK2 of strengths x; and ko result
a trajectory vector at the point s, of

. Zp 0 .
x = () =M (o) ()
_ [ o a2 > 0 )+ bin bz ) (O (3.312
az;y a2 K1 bay  bao K2

_ aizk1 + biako
agak1 + bazka

and
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The equations determining the field strengths immediately follow

Tp = aiak1 +bigka
!

mp = a22/~;1+b22m2. (3313)

Since =, and z;, are now fixed, these relations immediately give us the required
bending angle of the steering coils

baoxy — biax!
nl — 22 P 12$p
a12b2y — a2bio

y
( .
algxp — G22%p
hy = B (3.314)
a12bas — ag2b12

We now once again express the matrix elements a;; and b;; in terms of the optical
functions at the points s1, sz, and sp. This gives

1 cos(¥p, — Wy) — ap sin(¥, — Uy)

K1 =
VB Bp sin(¥y — ‘1’1) e
By sin(¥, - 0,)
Br sin(Ty —07) z, (3.315)
and
kg = 1 cos(¥, — W) — ap sin(¥, — U;)

A /,82 ﬂp sin(\I/2 — \IJI) Tp
Bp sin(¥, — ¥y)
+1 [CR e T U (3,
By sim(Up —Ty) z,. (3.316)
The bending angles required in the steering coils HK3 and HK4 for correct
matching of the closed bump may be obtained from (3.315) and (3.316) by simply
reflecting the problem about the point P, i.e. by replacing 3; by 8y, 32 by s,
¥; by ¥4 and ¥y by U3. The signs of the beta function gradients and the orbit

displacements are also reversed, i.e. a;, becomes —ay, and z, becomes —z,. We
thus obtain

1 cos(Wy—T,) + apsin(Ty — ¥)

B VB3 Bp sin(Vy — ¥3) T

B & sin(¥y —T,)
\/; (T, — ) ‘D‘;) z, (3.317)

R3 =
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and

1 cos(¥s— Up) + apsin(¥z — U,)
2 Zp

\/m sin(\I/4 — \Ifg)
+ & s%n(\Ifg — \Pp) .’1:, .
By sin(¥y — Tg) P
In general a solution always exists for this type of orbit bump too. There are
however, practical limits: if the calculated bending angle exceeds the technica
limit of one or more of the steering coils; or if the beam bump causes such
large displacement of the trajectory at a particular point that the beam scrape

against the side of the vacuum chamber. In such cases a different combinatio
of coils must be found.

(3.318)

3.18.1 Examples of local orbit bumps

Since the transverse beam displacement for a given bending angle x varies i
proportion to 1/A(s), the actual shape of an orbit bump is more complicate
than is shown in the simplified diagrams of Figs. 3.46 to 3.48. Here we will giw
two fully worked examples using realistic values. ,

We start with the model accelerator with its FODO structure, as describe
in Section 3.13.3, and restrict ourselves exclusively to horizontal orbit shifts. Le
the steering coils required to form the orbit bump each be mounted exactly in the
middle of the zero-field drift section between the quadrupole and dipole magnets
In choosing this position we must ensure that there are sufficiently large chang
in betatron phase between the steering coils, otherwise the effect of the coils wi
be relatively weak. As a rule of thumb, a phase separation of about /2 shoul
be chosen. We start with a bump in which the three correctors, HK1, HK2 an
HKS3, are installed with a separation of 1% FODO cells; as shown in Fig. 3.49.
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Fig. 3.49 Example of a local orbit bump consisting of three steering coils HK1, HK
and HKS.
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Table 3.5 Optical functions at the positions of the three steering coils in a closed orbit
pbump in the model ring.

optical function HK1 HK2 HK3
Bi [m] 8.16328 2.43100 8.16328

o; [rad] 2.08209 0.76732 -2.08209
U, [rad] 0.05217 2.01063 4.41756

Table 3.6 Bending angles for the orbit bump steering coils. The bending angle of the

‘first steering coil is arbitrarily set to 1 = 1.000.

steering coil angle ; [mrad]

HK1 1.00000
HK2 2.57075
HK3 1.38109

The values of the optical functions at the three coil positions are summarized
in Table 3.5. Inserting these values into equations (3.310) and (3.311), we can
calculate the bending angles of the coils HK2 and HK3 required to close the
bump. The value of the first steering coil HK1 is arbitrarily chosen to be k1 =
1.000 mrad. The results of this calculation are given in Table 3.6.

The calculation of the full trajectory of the orbit bump proceeds using the
usual matrix formalism. The angular changes induced by the steering coils at
the points s1, s2, and sz are simply added to the trajectory vector. The result is
shown by the curve in Fig. 3.49.

By introducing a fourth steering coil, HK4, into the ring we may fix the
displacement and angle of the beam at a point P, which we are free to choose
within the region between the two innermost coils. This is illustrated in Fig. 3.50.
Here P is chosen to be the position s, exactly in the centre of a bending magnet.
The required optical functions at all the steering coils and at the point P are
listed in Table 3.7.

First of all the beam is only displaced transversely at the point P, without
changing its angle with respect to the ideal orbit. This bump thus causes a pure
offset in the orbit; it is usually known simply as an orbit bump.

The resulting trajectory vector at point P is thus

T 10 mm
x=(2)-("")

With these values and the optical functions in Table 3.7 we can use equations
(3.315) to (3.318) to calculate the bending angles in the steering coils required
for matching. These are listed in Table 3.8.
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Table 3.7 Values of the optical functions at the four steering coils HK1 to HK4 and QF 5 QD p QF 5 Q0 p QF , Q0 5 QF , QD p OF oD
- =3 _-..._-.-..- [ s I I B reens | 1 I R e B I N oy | —B
at the freely-chosen point P. E'. BrEat e be==4y :lEI ==2-0-E=-h- ':B‘.;
e HK1 HK2 HK3 HKA4
optical function HK1 ~ HK2  HK3  HK4 P w0 | nElebump ; ™\ orbit bump
3 : P . ‘
B [m] 8.16328 2.43100 8.16328 2.43100 4.81931 § § §
a; [rad] 2.08209 0.76732 -2.08209 0.76732 1.42471 10 '
¥, [rad] 0.05217 2.01063 4.41756 6.48037 3.19624 :
H hY
0 2
s,
Table 3.8 Bending angles required in the four steering coils in order to shift the beam -10 - '
by a particular amount z, = 10 mm at the point P, without changing its angle at this
. point. 20 4
i
i
i ;:’i“ steering coil angle k; [mrad]
,l’ 4" }]h Fig. 3.50 Example of a local orbit bump using four steering coils. Two different bumps
e 0 o HK1 -1.62667 - are illustrated, both of which use the same coils. In one case the beam is displaced by
HK2 3.14459 a distance x, = 10 mm at point P without any change in angle. In the other case the
HK3 2.15661 transverse position of the beam is unaltered, but the angle is changed by an amount
HK4 5.57203 zj, = —3 mrad.

Table 3.9 Bending angles required in the four steering coils in order to deflect thé .
beam at the point P through a particular angle z, = —3 mrad, without changing its
transverse position, i.e. xp = 0.

steering coil angle k; [mrad]
HK1 2.30738
HK2 0.01130
HK3 -0.37150
HKA4 -4.50274

The resulting shifted orbit near the bump is plotted in Fig. 3.50. The same
calculation is now repeated, this time requiring only a change in angle at the point
P, without any transverse displacement of the beam. The required trajectory

vector is now
_{ o ) _ 0
Xp_(x;) )_(—3mrad)'

The calculation now yields another orbit bump, made using the same steering
coils. The bending angle of the steering coils are found in Table 3.9. This example
of a pure angle bump is also illustrated in Fig. 3.50.
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Injection and extraction

4.1 The process of injection and extraction

In circular accelerators, particularly storage rings, the particles follow a rather -
complicated path from source to experiment. This path may be traced in the
diagram of Fig. 4.1. A particle source, depending on its type, produces either
electrons or ions with very low initial energies. A pre-accelerator — a linac or a -
microtron — is then used to bring the particles up to sufficiently high energy to
allow injection into the circular main accelerator with as few losses as possible.
Here they are raised to the required final energy and then ejected out of the:
ring, at which point they are either sent straight to the experiment or injected
into a storage ring. In storage rings this process is repeated many times in order
to accumulate large beam currents, as we have seen in Section 1.4.2. :

The complicated beam transport system must inject the particle beam into
the circular accelerator and then extract it again after a certain time, avoiding

SYNCHROTRON (]
%

Fig. 4.1 Layout of a storage ring. The particles are emitted from a source and ar
then brought up to their final energy in a pre-accelerator and a main accelerator (syn
chrotron) before being injected into the storage ring.

Particle sources 137

filament insolator
|
1 ' beam
filament | T 100 keV
| T

thyratron

charging
voltage

T T TcT

pulse'-formiﬁg network
(PFN)

trigger-
pulse I

pulse transformer cathode oll

-U,

-3

Fig. 4.2 Layout of a diode gun electron source. The voltage between the cathode and
anode is produced by discharging the LC network in pulses across the thyratron.

particle losses as far as possible. The process of injection and ejection is non-

“trivial, since any particle lying outside the vacuum chamber also lies outside the

acceptance of the accelerator, as a consequence of Liouville’s theorem. Without
further assistance it would inevitably hit the wall of the vacuum chamber some-
where and be lost. A procedure must be therefore found to deflect the beam so
that the path of the incoming beam joins onto (or at least passes close to) the
orbit of the circular accelerator, without significantly disturbing the circulating
high velocity beam. Above all there must be no deflection of the beam during
acceleration in a synchrotron or during stable orbiting in a storage ring. In this
chapter we will describe the key principles of injection and ejection, along with
the fundamental associated problems. We will confine our attention to injection
because ejection is essentially only the reverse of injection; it is based on the same
principles and uses the same techniques. Before doing so, let us turn briefly to the
production of particle beams and consider a few of the most important particle
sources.

4.2 Particle sources

With a few exceptions, electron beams are almost always produced using
themionic cathodes. In order to achieve the high beam currents required in
accelerators, large round cathodes of the type used in high-power tubes such
as klystrons are employed. The simplest electron source is the diode, shown in
Fig. 4.2. The round cathode is mounted in a vacuum and is heated by an electrical
filament until sufficient numbers of electrons are emitted. A short distance from
the cathode is the earthed anode, which has a hole bored in its centre through
which the beam passes. The source is operated with a voltage of U = 100-150 kV
between the cathode and anode, which drives a current of a few amperes. To a
good approximation the relationship between the current and voltage is given by

T x U8, ' (4.1)
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which follows from the space charge law of Langmuir and Schottky. Because of the'
high currents, the space charge effect must also be taken into account in guiding
the beam between the cathode and anode. Specially designed electrodes are used
in the so-called Pierce system [57], which exactly compensate for the distortions
in the potential surface due to the space charge effect. Electron sources, often
known as diode guns, are usually built according to the Pierce principle.

High currents can only be produced in short pulses in diode guns, due to
their very high power requirement. However, this is not a real disadvantage
since the linac (for example) which follows the injection stage also operates in
pulsed mode. The important components of the pulsed power supply, which
produces pulses lasting a few us, are an LC pulse-forming network with a high-
voltage supply, a thyratron which acts as a fast high-current switch, and a pulse
transformer. At rest the capacitors in the pulse-forming network are charged
to a voltage Uj, = 10-20 kV. The thyratron, a gas discharge tube, is then fired
with a trigger pulse, causing the pulse-forming network to discharge abruptly
through the primary winding of the pulse transformer. The circuit is arranged
so that the length of the current pulse is exactly double the time constant of
the LC-chain. With a suitable choice of winding ratio in the pulse transformer
(e.g. 1:10), the requisite high voltage is produced in the secondary coil, which
is directly connected to the cathode. In order to avoid electrical breakdown, the
pulse transformer and the parts of the cathode carrying high voltages are placed
in an oil-filled tank. The cathode itself is of course in a vacuum.

The diode gun has a relatively simple construction, but has the disadvantage
of not being able to produce pulses shorter than 7y, &= 1 us. This is due to its
high power requirement, which can only be satisfied by having a high capacitan
in the pulse-forming network, and to the limited bandwidth of the pulse tran
former. What is more, the oil tank makes it considerably more difficult to repla
the cathode, which is necessary from time to time during normal operation.

In order to produce electron beams with pulses lasting in the region of 1 n
triode guns are nowadays used. These have a grid of fine wire mesh mounte
between the cathode and anode. The layout of this type of electron source is
shown in Fig. 4.3. In this case there is a constant voltage between the anode and
the electrode holding the grid, which is usually not higher than around 50 k
to avoid risk of discharge. The grid electrode is housed in a conducting casin;
which acts as a Faraday cage. The cathode is situated closely behind the gri
which shields out the external fields very effectively. At rest the cathode si
at a potential of about U, = +50 V relative to the grid, so that virtually n
electrons are able to escape from the region near the cathode surface. Using a
fast transistor switch or an amplifier tube this cathode voltage is briefly switched
back to 0 V, at which point the electrons are able to pass through the grid into
the high-field region and are then accelerated in the direction of the anode
short pulse-forming cable ensures that the cathode potential very quickly retur
to the rest value and arrests the electron emission. The required pulse amplifi
and trigger electronics are well shielded within the cathode housing. The extern
trigger pulse is carried by an isolating transformer or light guide, in order to safe

phototransistor

~
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Fig. 4.3 Outline of a triode gun electron source. At rest, a potential of +50 V be-
tween the cathode and the grid blocks the flow of electrons. A very short pulse, with
a duration determined by the length of the pulse-forming cable, briefly removes this
barrier potential so that electrons are able to pass through the grid into the accelerating
volume.

Since the triode gun only needs to switch through a voltage of around 50 V,

compared to around 100 kV in the diode gun, it is clear that this device is able
to produce electron pulses that are orders of magnitude shorter. Of course this
design also allows the production of much longer pulses if desired: it is merely
necessary to use a different pulse amplifier or pulse-forming cable. Thanks to its
greater flexibility, the triode gun is nowadays the most commonly used design.

Without going into details, let us also mention that laser guns are sometimes

used as electron sources. An intense laser beam is shone on the cathode, which
18 made of metal or semiconductor (such as gallium arsenide), causing a kind
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-Gauge) based on the well-known Penning principle [58]. The cathode and the
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Fig. 4.4 Cross-section through a PIG ion source based on the Penning principle.

of plasma to form on its surface. Very high currents of up to several hundred
amperes are achievable, with the pulse length given by the duration of the laser
pulse. This can be as low as a few tens to a hundred ps. Another special feature
of laser guns is that the well-defined polarization of the electromagnetic waves
from the laser leads to the production of polarized electron beams.

Positrons are produced using intense electron beams of sufficiently high en-
ergy to allow pair production (Fig. 1.2). The electrons are accelerated up to the
optimal energy of E, = 200 MeV in a linac and are then fired at a tungsten tar-
get. High energy photons are emitted by bremsstrahlung, and are then largely
re-absorbed in the same tungsten target via the process of pair production. Sig-
nificant multiple scattering also occurs within the material of the target. The
resulting et—e™ pairs finally exit the target with a broad energy spectrum from
0 to 30 MeV. They are fed into a linac, whose field is arranged so that only th
positrons are accelerated. ,

Proton beams and beams of light and heavy ions are produced in ion sources:
The simplest such source, shown in Fig. 4.4, is the PIG-source (Philips Ton

cylindrical anode are situated inside an ionization chamber and have a potential
difference of several hundred volts between them. In addition two magnetic poles
produce a static magnetic field of around 0.01 T, perpendicular to the electric
field. A gas, for example Hs, is pumped into this chamber at a pressure of a
few tens to a hundred Pa and is then ionized. The material in the ionization
chamber is chosen to ensure that the electrons and positrons recombine as little
as possible. Some of the ions exit through an opening on the axis of the cham-
ber, and are then accelerated by an external electric field in the direction of the
extraction electrode.

Modern ion sources can be considerably more complicated, especially if spe-
cific ions with a well-defined charge or fixed e/m ratio are to be produced. High
frequency fields are often used for ionization, usually coupled through coils.
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Fig. 4.5 Injection into a circular accelerator. The injected beam lies outside the ac-
ceptance ellipse of the accelerator, and must be deflected into the orbit by means of a
pulsed magnet.

4.3 The fundamental problem of injection

"The task of injection consists of taking a particle beam of well-defined energy

from a pre-accelerator and introducing it into a circular accelerator without
significant loss of particles. Special measures are required to achieve this, since
an external particle beam always lies outside the acceptance of an an accelerator,
as shown in Fig. 4.5. Just before it enters the vacuum chamber the beam is at
a separation a > d from the orbit, where d is the size of the aperture of the
vacuum chamber. The lower limit of the acceptance, given by (3.139), is then

a®?  d?

Ainj 2 E > —,8_,
where 3 denotes the amplitude function of the circular accelerator at this point.
The actual value of the acceptance is in general much larger, since the injected
beam enters the accelerator at a considerable angle, which is not taken into ac-
count at all in (4.2). The injected beam would thus cross the orbit and at a
certain distance beyond the injection point would hit the wall of the vacuum
chamber and be lost. It is therefore necessary to install a bending magnet imme-
diately behind the injection point. The position and strength of this magnet are
carefully chosen so that the incoming beam is deflected as precisely as possible
into the orbit. The magnet pushes the acceptance ellipse away from its nominal
position so that its centre coincides with that of the injected beam. Unfortu-
nately this is not the end of the problem, for once the beam has completed one
full revolution it will encounter this field again and will be deflected through the
same angle away from the orbit and into the wall of the vacuum chamber. It is
therefore not possible to use a static magnetic field for this task.

If instead a very rapidly pulsed magnet is used, a so-called kicker magnet
whose field builds up in less than one revolution and then disappears during
the revolution following injection, then loss-free injection becomes possible. The
incoming beam in deflected only once, as it enters the circular accelerator. By

(4.2)
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the end of the first revolution the field of the kicker magnet has died away, and
so the beam is not deflected a second time. The duration of the kicker magnet
pulse must therefore be less that twice the period of revolution of the particles in
the ring. In a synchrotron with a circumference of L = 150 m the kicker’s pulse
length is thus 7yick < 1 ps.

To achieve the high currents needed in storage rings, repeated injection of
particles is required. This cannot be achieved with the set-up shown in Fig. 4.5,
however, because when the kicker magnet is switched on for the second injection
all the particles travelling along the beam orbit from the first injection will be
deflected outwards and lost again.

This is an example of a general problem in particle injection, when particles
must be injected over several orbits or in several injection stages with arbitrary
intervals. The injected beam takes up & finite volume in phase space, which
consists of four transverse and two longitudinal dimensions. This phase volume
may be expressed in the usual coordinates as follows:

empty
beam phase volume

Fig. 4.6 Injection with stacking in longitudinal phase space.

N\

space in the accelerator is completely filled with particles. The total circulating
current is now n times as large as that from a single injection.

The difficulty with this process is that the kicker magnet must produce a
square pulse not longer than 79 whose rising and falling edges must be very
short compared to the pulse length. Under no circumstances must the kicker
be allowed to disturb the particles circulating in the two neighbouring phase
volumes. This problem is generally easier to solve in very large accelerators,
where even with a large number of phase volumes the time 77 is relatively long.
In very small machines, on the other hand, this procedure is not very useful.
Instead of using the longitudinal phase space, stacking can also be performed
in the transverse phase volume, as Fig. 4.7 shows. Here a local closed orbit bump
is produced for a short time by means of two or three kicker magnets, using the
procedure described in Section 3.18, and the strengths of the kickers are varied
from one injection to another.

A bending magnet called a septum bends the injected beam approximately
parallel to the orbit, so that it falls within the acceptance ellipse of the accelerator
and follows a path which then exactly crosses the orbit in kicker 2. In the first
injection the strength of this kicker is chosen such that the beam is bent exactly
onto the orbit, which it then follows. In the second injection the strength of the
two kickers is reduced so that the resulting orbit bump brings the beam as close
as possible to the septum without losing any particles. With the beam in this
position a second beam can now be injected through the septum, very close to
the first. Using this bump arrangement the injection procedure may be repeated
many times, depending on the choice of working point ). With each revolution
the betatron oscillations cause the centre of mass of the injected beam to move
through a particular phase angle about the ideal orbit, so that there is always
another free phase volume available to be filled with particles.

Once this ‘shell’ becomes full a new one can be started and filled by further
reducing the kicker strength and hence the bump amplitude. Hence the total
. available aperture of the accelerator is gradually filled with particles, and very
high beam currents can eventually be achieved.

It should be noted that instead of using a variable-amplitude kicker bump,

AVzAx-Ax’~Az-Az’~%-As

This brings us to a fundamental rule of particle injection:

Fundamental rule of injection:

It is not possible to reinject particles into an already occupied
volume of phase space without losing the particles already present.

4.4 Injection of high proton and ion currents by ‘stacking’

A technique which allows the production of high beams currents in circula
accelerators by repeated injection, is that of ‘stacking’, most widely used
protons and heavy ions. As we have scen in Chapter 2, these particles produ'c;
virtually no synchrotron radiation. They therefore do not lose energy durin
each revolution, and the betatron oscillations induced during injection continue
undamped. Stacking may be employed when the phase volume occupied by t
injected beam is less than the total phase space available in the accelerator. Th‘
available phase space may be divided up into individual small volumes, which
adjacent but separate, and are filled with particles one after another during eact
injection. The individually injected beams are literally stacked into the separ. ;
sections of phase space until all are filled.

Let us illustrate this process using two examples. In the first case the cir
cumference L of the circular accelerator is divided into n equal sections, each
length AL = 79 v, where 79 is the time taken by a particle of velocity v to trave
a distance AL. T his gives n empty phase volumes, shown in Fig. 4.6. Now le
us assume that the injected beam is rather shorter than AL, allowing one phas
volume to be filled with particles during the first injection. In the next inject
the timing is shifted by 70, so that the neighbouring volume is now filled. Al
gether this process is repeated exactly n times, after which the available phas
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Fig. 4.7 Injection with stacking in transverse phase space. The first injection is per-
formed along the orbit, with all successive ones in close proximity.
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transverse stacking can also be performed by varying the particle energy, pro-
vided that the dispersion D at the injection point is sufficiently large. By varyin
their momenta, particles may be injected along different dispersive trajectories
with a separation xp = D=* 2P from the orbit. Apart from this the injection process
proceeds exactly as in the case of the kicker bump.

4.5 Injection of proton beams using stripping foils

A very elegant method of almost continuous injection into a ring accelerator
involves the use of a thin so-called ‘stripping’ foil. This process, which cannot be
used in the case of electron beams, is mostly employed in proton injection. It is
based on a very simple principle, illustrated in Fig. 4.8.

H~ ions enriched with electrons are produced in an ion source and then
brought up to high energies in a pre-accelerator. After entering the circular
accelerator they travel through a bending magnet which bends them onto the
orbit. They then encounter a foil, which strips the electrons from the H™ ions as
result of interactions with the material. Positively charged protons thus exit the
foil. When, after a full revolution, these particles again reach the first bending
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Fig. 4.8 Injection of proton beams by means of a stripping foil.

magnet they are bent in exactly the opposite direction since they now have the
opposite charge. The injected and circulating beams are thus automatically kept
apart, and so it is not necessary to use pulsed kicker magnets.

This example clearly illustrates how the fundamental rule of injection stated
above only applies when charge is conserved. Particles of different charges can
indeed be injected into the same phase volume without inducing losses.

4.6

In electron storage rings another technique is used to repeatedly inject particles
into a given phase volume of the accelerator without significant particle losses.
This relies on the fact that the betatron oscillations of the electrons are damped
by the emission of synchrotron radiation. We will consider this phenomenon in
detail in Section 6.2. For now we will just remark that all transverse particle
oscillations die away with a particular time constant in the focusing field of
the electron ring, since energy is removed from the system by the radiation of
photons. Obviously this technique is not applicable to protons and ions.

The principle behind this method of building up high particle currents in
electron storage rings is illustrated in Fig. 4.9. A local orbit bump is again
used, produced for a short time using fast kicker magnets with a pulse length
which is generally about equal to one period of revolution. In this case let us
assume that a stored beam is already circulating in the ring, requiring a total
transverse aperture of at least 7o in order to guarantee long beam lifetimes. The

Injection into an electron storage ring

- acceptance ellipse is of course rather larger, extending right to the edge of the

vacuum chamber, which here is formed by the so-called septum sheet. This is a
metal sheet, made as thin as possible, which shields the stored beam from the
bending field of the septum. Injection is not possible in this state.

During injection the kicker bump is turned off and for a brief instant the
beam is pushed as close to the septum as is possible without inducing significant
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Fig. 4.9 Electron accumulation. The phase volume filled with the injected beaﬁj
freed up due to beam damping and becomes available again for the next injection. (5)

is the phase diagram in the initial state before injection, (b) shows the state during
injection, and (c) the state during the revolutions which follow. »

particle loss. The phase ellipse filled with particles is thus pushed a distance Az
in the direction of the septum, which in general also causes a further change
in the path angle. The key point is that the whole acceptance ellipse shifts
the phase diagram by the same amount as the orbit. It now juts out beyor
the septum sheet and is able to receive the injected beam, capturing it near the
stored beam. By the next revolution the kicker pulses have died away again a
the stored beam is returned to its nominal position on the orbit. ‘

The newly injected beam performs large betatron oscillations around the
stored beam, but these oscillations are stable because they lie within the a
ceptance of the storage ring. As a result of the damping mentioned above, the
amplitude of these oscillations decays away with time and the new particles move
in a spiral inside the phase ellipse towards the orbit. After a few damping pe
ods, lasting from 1 ms to a few tens of ms, the injected particles are incorporat
into the stored beam, increasing its intensity. The phase volume occupied during
the injection is now free again. This procedure may in principle be repeated
often as desired, yielding very high beam currents, until technical or physic
limits are reached. L

This injection technique circumvents the fundamental rule of injection stated
above because energy is lost by radiation, and so Liouville’s theorem no long
holds.
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Fig. 4.10 A pulsed kicker magnet consisting of four parallel conductors. The current
pulse is produced by discharging a capacitor across a thyratron.

4.7 Kicker and septum magnets

Apart from the special case of the stripping foil, the injection methods described

here all make use of very fast pulsed magnets, the kickers. These are the most

important technical components of the injection stage, and so we will describe
the fundamentals of their construction and operation here.

The duration of the kicker pulse depends upon the circumference of the ac-
celerator and on the layout of the injection system, but typically lies in the
region of 1 us. Such short pulses can only be achieved using magnets with a very
small inductance, since otherwise higher voltages are required than are techni-
cally possible. In the simplest case a coil with just a few turns and without an
iron core is used, as illustrated in Fig. 4.10. In the example shown, the kicker
magnet consists of four parallel conductors with a horizontal separation b and a
vertical separation a. They are arranged symmetrically about the orbit and so
are separated from it by a distance

1
r= é‘ \V4 (I2 + bz. (44)
The field due to a wire at this separation is simply calculated by
ol = }(Bdr = 27r|B| — |Bl = /L—OI. (4.5)
27r

The symmetrical arrangement means that the z-components of the fields due to
the four conductors all cancel out along the orbit. The resulting net field acts in
the z-direction with a strength

4/.t0b

z = m . (4.6)

Here we assume that the kicker length is much greater than its width, so that
the end effects of the longitudinal fields may be neglected. The inductance of the
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kicker may be determined simply by calculating the voltage generated by th,
time-varying magnetic field. Using (4.6) this is given by

4pgb®l . .
_n/ Bdf =n @ 2+b2)I (4.7’

Here ! is the length of the kicker magnet, A = [ x b is its cross-sectional area, anc
n = 2 is the number of current turns. The inductance is immediately obtainec
from (4.7) as
U 8110b°1 :
L= I m(a®+b?) (48
The expressions given here for the kicker field and inductance are of course onl:
rather rough approximations, due to the simplifying assumptions we have. mads
about the geometry. However, they are generally sufficient for a rough order-of.
magnitude calculation. In many cases it must also be borne in mind that th
conductors which make up the kicker magnet are installed in a vacuum, and s
are surrounded by a vacuum chamber, which has a certain shielding effect o1
the field. The field is therefore weaker than that given by (4.6). This effect i
very well described using an empirical correction factor, where it is assumed tha
the surrounding vacuum chamber is a round cylinder of radius Ry. The effectiv
kicker field at the orbit is then
. ab
Beﬁ' = kch with kc =1- - a = (49
4 arctan 3 R2
As an example let us calculate the dimensions of a typical kicker magnet, ignorin
the vacuum chamber. Here the bending angle x to be produced by the kicke
is fixed, and may be calculated from the magnetic ﬁeld and the particle energ
with the help of equation (3.4), giving
l

= = =

R

with E in [GeV]. (4.10
The other values follow immediately from (4.6) and (4.8):

kicker properties: calculated values :

x = 3 mrad wE

a =0.04 m B, = =0.06T
[=10m I=3127TA

E =5.0GeV L =256 uH

Since there are only a few conductors, a current pulse of several thousand ampere
is required. This is most easily obtained by charging a capacitor to a high voltag
and then discharging it through the kicker magnet. The basic circuit diagram i
shown in Fig. 4.10. The capacitor C is charged through a resistor R up to th
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voltage Up and then at the moment of injection is discharged using a thyratron.
Thyratrons are gas discharge tubes which act as very high current switches at
high voltages. After the thyratron fires we have an LC-oscillator circuit in which
a time varying current I(t) flows. This current obeys the well-known relation

. 1
It)+wl(t)=0  with w=—t, 4.11
| Vic (410
which has the general solution
I(t) = I, coswt + I sin wt. (4.12)

At time t = 0 we have I(0) = 0, so it immediately follows that Iy = 0. We thus
have I(t) = Ipsinwt. Hence the current varies sinusoidally, with a maximum
value given by Io. After half a period of oscillation the process stops, because
the thyratron cannot carry negative current. The result is a half-wave pulse of
duration

T Tkick | 2 1
Tkick*;—7r LC - C:( - ) E (413)

In order to reach a given maximum current ., = I3, the capacitor must be
charged to a certain voltage Up at time ¢ = 0. The voltage varies according to
(4.12) as

U(t) = LI = wLIyay coswt. (4.14)

The required initial voltage is thus

7 ,
Up = whlpax = ,/Efmax. (4.15)

If we require the kicker magnet in this example to have a pulse length 7c = 1 ps
then we may use (4.13) and (4.15) to calculate the required value of the capaci-
tance and the initial voltage. In this example we obtain

_ (k)21
c = ( : ) =396 nF
7
Up = 1 Flmax =251 kV.  (4.16)

If very short pulses are required, then the kicker magnets must be operated at
high voltages, despite their relatively small inductance.

In addition to the kicker, another special type of magnet used in injection
is the septum. As we have seen, it has the task of bending the injected beam
immediately before it enters the circular accelerator so that it comes as close as
possible to the already circulating beam and also at a very small angle to it. The
septum is thus a bending magnet whose field only acts within the gap between
its poles, and so only deflects the injected beam. The circulating beam stored in
the ring, which passes by just outside the septum, is not affected.
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Fig. 4.11 Septum magnet with current sheet and eddy current field. On the left th
field inside the gap in the septum is shielded by a thin current sheet. This magnet
may be operated in pulsed or continuous mode. The septum on the right uses &
eddy-current shield made from a good conductor. This type of septum can only bé
operated in pulsed mode.

A simple magnet with an open gap, such as the one shown in Fig. 3.8,
not suitable for this purpose because its stray field extends far beyond the gap
and so would of course also deflect the circulating beam. In some cases th :
would cause considerable distortion of the orbit. One way to shield this fie
is to cover the open side of the gap with a current sheet carrying the sam
current as in the conductors which produce the field, but in the opposite direction
(Fig. 4.11). Since the separation between the injected and circulating beams mu
be very small during injection, the current sheet is very thin and generally has
thickness of only a few mm. Owing to the very high currents, this leads to very
high current densities, which in continuous operation would require expensive
cooling. However, the septum is only ever required during the very brief mome
of injection. It therefore makes sense to operate the septum using short curre
pulses, in the same way as the kicker magnets. The time-integrated avera
power is thus very much smaller, and a cooling system is not required. The
current pulses in the septum do not need to be quite as short as in the kicker
and the pulse length typically ranges from a few tens of us to 1 ms.

Another very interesting way to shield out the stray field from the septum
the eddy-current shield, which closes off the open side of the septum (right-hand
example in Fig. 4.11). This consists of a sheet of a good-conducting material;
such as copper. When the magnet is operated with a half-wave pulse of duration
7, eddy currents arise in the sheet which oppose and so weaken the magnet
field which is trying to penetrate it. If the pulse length 7 is short, the stray fie
can be very effectively suppressed by a thick enough shield.

To make a coarse estimate of the shielding effect, let us start with a ha
wave pulse of length 7, for which the lowest significant Fourier component h
the frequency '

™
= e, 41
w= - (

Kicker and septum magnets 151

The current density and hence the field distribution in the copper sheet are
determined by the skin effect

i(z) = ig exp (—di), (4.18)

S

do—= .2
* Vwopuruo (4.19)

gives the penetration depth. It is immediately evident that a high frequency
w and good conductivity in the eddy-current shield will give the best shield-
ing effect. If we take a pulse length of 7 = 50 us, then from (4.17) the lowest
frequency component is w = 6.3 x 10* s~!. Using the conductivity of copper

cu=5.9x107 Q7! m~! and the relative permeabﬂlty M = 1, equation (4.19)
gives ds = 0.66 mm. For a 2 mm thick eddy-current shield, equation (4.18) pre-
dicts a reduction of the stray field to 5% of the unshielded value. In reality, mea-

where

surements have shown the shielding to be considerably better than this, mainly

because the geometrical distribution of the stray field is far more complicated
than we have assumed in the calculation of the skin depth. As a first approxi-
mation, however, and staying a factor 2 to 3 on the safe side, this calculation is
perfectly valid.
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RF systems for particle
acceleration

In Chapter 1 we showed that the fundamental limitations to the final bear
energy achievable in static accelerators may be overcome by the use of high
frequency voltages. Virtually all modern accelerators use powerful radiofrequenc
systems to produce the requisite strong electric fields, with frequencies rangin
from a few hundred MHz to several GHz. In such systems waveguides are pre
ferred as resonators and to conduct the beam, since they have low losses and ca
deliver very high power. We will begin by considering the physics of waveguide;
and resonant cavities, and will discuss their most important properties. Furthe
details may be found, for example, in references [59], [110] and [109].

5.1 Waveguides and their properties

The propagation of an electromagnetic wave in a waveguide is described by th
general wave equation

AE—%E:&
c

In the discussion which follows we are only interested in the spatial distributié
of the wave. We separate out the periodic time dependence which has a frequenc
w, and write

E(r,t) = E(r)e™  with  r=(z,y,2).

Here the coordinate system has been chosen so that x and y represent the hor
zontal and vertical coordinates and z the propagation direction along the wave
uide (Fig. 5.1). Substituting into (5.1) yields the time-independent wave equatio

AE(r) +K*E(r) =0 (5.
with the wavenumber 5
w T :
k=—=— 5.
c A (

0’E, O0°E, n 0’E,

g2 4
or2 | 9y | 022 = —k°E, (5.
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which we may solve using the trial solution

E.(z,y,2) = fa(2) fy(y) f=(2). (5.6)
From (5.5) it then follows that

1" " "

e
LR (57)
Defining \
" [ 1"
k2 =-—% = g2 =12
fm Y fy | z fz (58)
equation (5.7) yields the relation
K2+ K2+ k2 = k2, (5.9)
Uwhich, if we set
k3 +kp =k (5.10)

then becomes

k. = k% — k2. (5.11)
Using (5.8), the wave propagation along the waveguide is described by the equa-
tion

fl+E f.=0. (5.12)

Multi'pl.ying this by f; x f, and using (5.6) results in a differential equation
describing the electrical field component along the axis of the waveguide, namely
0’E

37; +k E.=0. ‘ (5.13)

The solution to this equation is the function
E, = Ey =7, (5.14)

as may easily be seen by substitution. If the wavenumber k, is complex, then
the amplitude of the wave travelling through the waveguide falls off exponen-
tially, i.e. loss-free wave propagation is not possible. Loss-free propagation occurs
only when k, is real. Using (5.11), it is thus possible to define two regimes for
waveguide operation, namely

k2 > k2
k2 < k2

(damping)

(propagation) (5.15)

b — { complex  if
. = .
real if
T}N_a special value of the wavenumber k. is termed the cut-off wavenumber and
divides waveguide operation into the regimes of free propagation and damping.
For practical purposes it is therefore crucial whether the wavenumber k of the
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electromagnetic wave propagating in free space is larger or smaller than thig
cut-off value. Using

ke = (5.16)

then follows that
(5. 17

or, solving for A,,

p WA S— (5.18)

Tt is worth noting that in the regime of loss-free wave propagation in the Waveg;
uide, the wavelength A, is always larger than the wavelength in free space. This
means that the phase velocity of the wave within the waveguide is greater than

the speed of light:

Az 2
Vp = w27r >c. (5.19

Re-expressing (5.17) using w = 2mc/A and solving for the frequency, we obtain
the important dispersion relation for waveguides

2 &
w=cq/k:+ (i_w) . (5.20)

5.1.1 Rectangular waveguides

Having established the general features of wave propagation in a waveguide,
us now take a closer look at the two most important designs used in acce

tors. To transport the wave from the transmitter to the accelerator, rectangul
waveguides (Fig. 5.1) used in communications systems are employed. As we ha
seen, a knowledge of the cut-off wavelength is crucial in choosing the dimensio
of a waveguide. To calculate this wavelength for a rectangular waveguide, let u
start with the following equations which result from (5.8):

;/"i‘k:% fx = 0
4k fy

The general solution has the form

|
(o=
—
o
[ o]

fo(x) = Asin(k;x) 4 Bcos(kg x) ,
fy(y) = Csin(kyy) + Dcos(kyy). (5.2

The constants of integration A, B, C and D are fixed by the boundary con
tions of wave propagation in the waveguide. These state that all electric fiel
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Fig. 5.1 Rectangular waveguide with TE;o wave.

perpendicular to the conducting walls of the waveguide vanish at the surface of
the walls, i.e. fz(0) = 0 and f,(0) = 0. From this it immediately follows that

- B=D =0.If a is the width and b the height of the waveguide, then we also

have f,(a) =0 and fy(b) = 0. This condition is satisfied when
kea = mm
with ~ m,n = integers. (5.23)
kyo = nw
Inserting this into the definition of the cut-off wavenumber (5.10) gives
o (mm\2 n m\2
2= (m)'+ (10) oo
and the cut-off wavelength

2
Ac = : (5.25)

(2 +G)

- Applying the boundary conditions on the electric field plus the additional con-

dition that all magnetic field lines perpendicular to the conducting walls must
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vanish at the surface due to the production of eddy currents, we can calculs;
the possible field configurations for waves in the cavity. As is clear from (5.23
the are an unlimited number of configurations, which we call waveguide mode
Only a few, however, are of practical use. The field line diagram for the mo
important mode in the rectangular waveguide is shown in Fig. 5.1. Since f
this mode the electric field lines only run perpendicular to the direction of wa
motion, it is termed a TE;g mode (transverse electric) or Hyg wave, since th
magnetic field lines run in the waveguide direction. The indices in TE;q give t
number of nodes in the waveguide cross-section in the horizontal and vertic
direction. The individual electric and magnetic field components of this mo
are:

E, = 0
] 77_"1‘1 —ikzz

£, = Esm( . )e
E, = 0

_ E A TI\ ik
Hx = zgSln(—a") (52
H, = 0

_ CE A TEI\ ik
H, = —zZ—Q—acos<—c—l—)e

Here E is an arbitrary amplitude and Z; is the impedance of the waveguid :
Further details of various types of waveguides and their characteristics can be
found, for example, in [59], [110] and [109].

5.1.2 Cylindrical waveguides

Electromagnetic waves may of course also be carried by cylindrical waveguide
To calculate the form of the wave we move to a cylindrical coordinate syste:
(©,r,2), as shown in Fig. 5.2. In these coordinates the solution of the wave equ
tion is given in terms of Bessel functions J,,(z) instead of trigonometric function
Apart from this, the same boundary conditions apply at the surface of the cor
ducting cylinder wall as in rectangular waveguides. In cylindrical waveguides t
most important mode for accelerator physics applications is the TMp; mod
in which only transverse magnetic field lines are present. This means that t
electrical field runs parallel to the cylinder axis and can accelerate charged part
cles as they travel through the waveguide. The field configuration for this TM
wave, which is sometimes also called the Eg; wave because of the longitudin
electric field, is illustrated in Fig. 5.2. The calculation of the field componen
yields the analogous result to (5.26):

.k .
E, = —i Ek—z T (ker)e k=%
C
Eeg = 0
E, = EJy(ker)e k=
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)
e

E k .
H. - _y = 7 —ik, 2
) [ Zo Jo(ker)e
H, = 0

Using these relations we may now obtain the important cut-off wavenumber
k.. As already mentioned, the electrical field components running parallel to
the conducting cylinder must vanish at its surface. If D is the diameter of the
cylinder it then follows that

D

E, (~2-> =0. (5.28)

From (5.27) we see that this condition can only be satisfied if the Bessel function
completely vanishes, i.e.

D
Jo (kc5> =0. (5.29)
If z; is the first zero of the Bessel function, then

21 .
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The corresponding cut-off wavelength is then

T D
.’131.

e (5.31)

5.2 Resonant cavities

The general solution of the wave equation (5.1) can always be written in the

form '
W(r,t) = Aeiwttkr) | peitt—km), (5.32

This describes a sum of two waves, one moving in one direction and another i
the opposite direction, with arbitrary amplitudes A and B. If a wave is totall
reflected at a surface then both amplitudes are the same, i.e. A= B and (5.32
yields

W(T,t) — Aeiwt (eik-’r 4 e*ik“l‘)
= 2Acos(k-r) et (5.33

The field configuration resulting from the superposition of a forwards- and
backwards-travelling wave has a static amplitude 2A cosk -, i.e. it is a standin,
wave. Hence there are positions at which the amplitude is zero, namely whe
k-r = (n+ 3)m If metal walls are introduced at these positions the fiel
configuration does not change. The same is true in a waveguide if its entranc
and exit are closed off by two perpendicular conducting sheets a distance [ apart
A stable standing wave can always form in this fully closed cavity if the conditio
Az . ,

l= Y with g=0,1,2,... (5.34

is satisfied. Hence only certain well-defined wavelengths A, are present in th

cavity. These are termed resonant wavelengths. Inserting (5.34) into (5.17) gives
the general resonance condition for a resonant cavity

rei® o

Near to the resonant wavelength a resonant cavity behaves like an electrical oscil
lator, but with a very much higher quality factor (Q-value) and correspondin
lower losses than resonators made of individual coils and capacitors. It is thi
key advantage which is exploited to generate high accelerating voltages.

5.2.1 Rectangular waveguides as resonant cavities

We take the cut-off wavelength in a rectangular waveguide directly from (5.25
namely
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2 2 N (m 2 n\ 2

) =2 +G) (5.30)
By simply inserting this expression into the resonance condition (5.35) we obtain
the resonant wavelength

2
/\r = Wlth

\/ (m )2 n\ 2 g\ 2
) ~G) ()
The integers m,n and g again define the various modes in the resonant cavity.
The number of modes is once again virtually unlimited, but only a few of them

are used in practical applications, namely those with m,n and ¢ between 0 and
2.

m,n,q = integers. (5.37)

5.2.2 Cylindrical resonant cavities

In the same way, resonators can also be built from cylindrical waveguides, and
indeed this is the preferred design for producing accelerating voltages. In the

following discussion we will again only consider the TMy; wave. The resonant

wavelength may be immediately obtained by inserting the expression for the
cut-off wavelength (5.31) into the general resonance condition (5.35), yielding

L@ e

r

7=0,1,2,... (5.38)

or alternatively
1
Ar = : (5.39)

T 2 1 q 2
V) 450
z1 = 2.40483 is again the first zero of the Bessel function. In the cylindrical
resonators used in accelerators the mode with ¢ = 0 is used, termed the TMy1g

mode. The calculation of the resonant wavelength thus reduces to the simple
form

_wD
=
For this TMg10 mode the length ! does not affect the resonant wavelength. !
may thus be chosen relatively freely. As an example of this type of cavity let
us consider the single-cell accelerating structure developed for the storage ring
DORIS at the German Electron Synchrotron laboratory, DESY. This cavity is
illustrated in Fig. 5.3.

The inner diameter measures D = 462 mm and the length ! = 276 mm.
Inserting these values into (5.40), we obtain the resonant wavelength and corre-
sponding frequency

Ar (5.40)

A: = 0.60354 m
£ = XC~=496.7 MHz.

This frequency is somewhat lower than the operating frequency of f = 500 MHz.
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Fig. 5.3 Example of a single-cell cavity. It
chosen to have the dimensions D = 462 m
276.0 and ! = 276 mm used in the accelerating stru
ture developed for the storage ring DORI
designed for a resonant frequency of 500 MHy,;:

This difference is quite intentional, however, since the exact frequency is adjusted:
using a tuning plunger which is inserted radially through a round opening in th
resonator (Fig. 5.4). This reduces the volume in the cavity and so increases th
resonant frequency. In a cylindrical cavity, operated in the TMg1p mode, the
magnetic field lines run in concentric circles around the beam axis, with th ,
field strength increasing with radius and reaching a maximum at the wall. Th
means that an inductive loop can couple very effectively to the field at this poin
The loop is excited via a coaxial cable. Using this arrangement the accelerating.
TMg10 wave can be generated in the cavity.

When there is a large distance between the power generator and the cavity,
when very high power over 100 kW is transmitted, it no longer makes sense to use:
coaxial cables to transport the RF power. The non-negligible ohmic resistance
of the relatively thin inner conductor leads to large losses, which for extreme
high loads can lead to critical heating. Instead rectangular cavities are use
operated in the TE ¢ mode. Because of their large surface area these waveguide
have considerably lower losses, and if necessary they can easily be external
cooled. Only a very short section of coaxial cable, with a specially cooled inne
conductor, is then used to connect directly to the cavity,

The connection between the waveguide and the coaxial cable is perform
using a standard technique in communications engineering. The end of the cavi
is closed off by a conducting wall, so that a standing wave forms with an ant
node (electric field maximum) at a distance A/4 from the wall. The coaxial cab
is connected to the waveguide at this point, as Fig. 5.4 shows. Specially shap
connectors ensure that no reflections are produced and that the wave passe
from the waveguide to the coaxial cable with virtually no losses. A ceram
window inside the coaxial cable separates the waveguide section, which is
normal pressure, from the ultra-high vacuum inside the cavity, without impeding
the passage of the RF wave. This cavity window is a critical component whose
importance should not be overlooked. Very high power and high voltages ar
produced in an extremely small volume, and if spontaneous gas emission fro
the surface of the cavity should occur at high RF power, then there is the risk.
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Fig. 5.4 Design of a single-cell accelerating structure using the TMgio mode. The
exact resonant frequency is adjusted using a tuning plunger. The resonator is excited
by an inductive coupling loop.

of sudden glow discharge resulting in overheating of this window.

A stable standing wave can only exist in the cavity if the resonance condition
(5.39) or (5.40) is strictly satisfied. If the coupled wavelength deviates even very
slightly from this precise value there is a marked reduction in amplitude. The
cavity thus behaves like an electrical oscillator, but with a very high quality
factor R,

Q= Aw = (5.41)
Here w, is the resonant frequency and Aw is the frequency shift at which the
amplitude is reduced by —3 dB relative to the resonance peak. The electrical
response of a cavity may thus be described by a parallel circuit containing C, L
and Rg, as illustrated in Fig. 5.4. On resonance the impedance has the value

1
Z=wlL=
w "ol (5.42)

and R; is the so-called shunt impedance, which describes the ohmic loss in the
cavity. On resonance the entire average coupled RF power Prp is converted to
heat in the shunt impedance. Thus the peak voltage produced in the cavity is

Ucav = V/2PrrRs. (5.43)

As an example of the cavity voltages routinely achieved today, let us again con-

sider the single-cell DORIS cavities (Fig. 5.3), constructed entirely from copper:

[

b
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Fig. 5.5 Layout of a five-cell accelerating structure. The power feed is coupled to the
middle cell and two tuning plungers are sufficient for the entire structure. ;

= 500 MHz

f‘}i = 3.0x10°Q Pre = S0kW
Z = 809

o — 38000 Uy = 548 kV

Much higher voltages of up to several hundred MV are required in today’s elec-
tron accelerators, which have final beam energies well above 10 GeV, as may be
seen for example in Table 2.1 in Chapter 2. Several hundred single-cell acceler.
ating sections are then required, and sufficient free space must be provided f
these in the accelerator. To reduce the resources and space required, compat
units have been designed in which three or five individual cells are combine:
As an example, Fig. 5.5 shows the five-cell cavity [60] developed for the storage
ring PETRA at the German Electron Synchrotron laboratory DESY. The h
frequency power is supplied to the middle cell via an inductive loop, just as in
single cell. The neighbouring cells are connected by suitably sized coupling slo
in the dividing walls between the cells. The drift sections inside the dividin
walls are longer around the beam axis, so that RF waves cannot pass throug
It is thus possible to design the channel through which the beam passes to su
the requirements of the beam optics, without having to worry about the RF co
pling between the cells. The RF coupling is achieved completely independent
by means of the coupling slots.

Only two tuning plungers, installed in the second and fourth cells, are required
to tune all five cells. The other cells are tuned at the same time because of t
coupling between them. It turns out that in this case the tuning is more difficu
than in a single-cell cavity, since it is first necessary to set the resonant frequenc
and then to ensure that the RF power is evenly distributed over the five cell
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Overall, however, this design is considerably less complex technically than five
individual structures.

As an example of a five-cell accelerating section, let us look at the key pa-
rameters of the PETRA cavities (Fig. 5.5), which were again constructed from
copper:

JRF 500 MHz Ppr = 125 kW

Ry = 180x106Q Ug = 212MV

It should be noted here that at full power the shunt impedance is lower than
that measured at low power in the laboratory. This is due to the strong heating
of the cavity walls, which reduces the conductivity of the copper. In continuous
operation at 125 kW a value of Rs &~ 14.5 x 10® Q results and the cavity voltage
reduces to Ueyy = 1.90 MV.

5.3 Accelerating structures for linacs

In linacs, cylindrical waveguides may be used. A TMy; wave is generated, which
has a longitudinal electric field which reaches a maximumalong the beam axis.
Particle acceleration is not yet possible with this arrangement, however, since
according to (5.19) the phase velocity of the wave exceeds that of light. The
particles, which are travelling more slowly, thus undergo acceleration from the
passing wave for half a period but then experience an equal deceleration. Aver-
aged over a long time interval, there is no net transfer of energy to the particles.
The phase velocity of the wave must therefore be matched to the velocity of the
particle in order to continuously supply power to the beam over long sections.
It is thus necessary to modify the waveguide to reduce the phase velocity of
the wave to a value v, < c. This is achieved using iris-shaped screens, which in
normal linac structures are installed at a constant separation in the waveguide.
The cross-section of this structure, sometimes called a ‘disc-loaded structure’ is
shown in Fig. 5.6. The effect of the irises can be seen in Fig. 5.7, which shows
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Fig. 5.6 Cross-section through a typical linac structure. The phase velocity of the RF
wave is reduced to the particle velocity by the insertion of irises.
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" together at the very beginning of all linacs, since here the particles still ha
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Fig. 5.7 Dispersion curve for a cylindrical waveguide, with and without irises. The
frequency w is plotted as a function of the wavenumber k. of the waveguide.

the relationship between the wavenumber k. and the frequency w. From (5.20 o
the dispersion relation in a waveguide is ‘

om\?
- 2 _
w—cﬂkz—%- (/\C>

and the curve always lies in the region v, > c. With the installation of irises th
curve flattens off and crosses the boundary line v, = ¢ at the point k, = 7/
where d is the separation of the irises. Above this value the phase velocity of t}
wave is below the velocity of light. This is the domain in which particle accele
ation is possible. With a suitable choice of iris separation d the phase veloci
can in principle be set to any value. Hence the irises are arranged very clo

non-relativistic velocities (8 = v/c < 1). The phase velocity v, is then matche
to the velocity of the accelerated particle (‘beta matching’) by continuously i
creasing the separation d, in the same way as we saw in the Widerde linac
Section 1.3.5. Once the particles are travelling at close to the speed of ligh
waveguide structures with a constant iris separation are used.

The standard operation of a linac structure is in the S-band, namely :
a wavelength of exactly A = 0.100 m, which corresponds to a frequency -
frr = 2.998 GHz. As in radar technology, for example, the RF power is usual
provided by pulsed power tubes such as klystrons and is then fed into the lin
structure by means of a TE;o wave in a rectangular waveguide. At the interfas
the rectangular TE;o waveguide is connected perpendicular to the cylindric
TMjy; cavity, as shown in Fig. 5.8.
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Fig. 5.8 Coupling of the TE;¢ waveguide to the linac structure. The transfer of the
wave is achieved without reflections via an appropriately sized coupling slot.

It is evident that in this arrangement both waves have essentially the same
field configuration at the interface, and so the wave is able to pass easily from
one mode to the other. As the geometry is not completely identical, however,
reflections arise at the interface which must be compensated for by a coupling
slot of suitable size.

Linac structures can be operated using both travelling waves and standing
waves. The choice depends only on whether the structure is closed by a reflection-
free boundary or not. The two modes of operation are illustrated in Fig. 5.9. In
the more common case there is another coupler at the end of the structure which
leads the wave out into an absorber. With correct matching there is no reflection
and the solution to the wave equation yields only a travelling wave. In the other
case the wave is reflected with virtually no losses at the end of the structure and
overlaps with the incoming wave to produce a standing wave.

In smooth waveguides, waves with a wide range of frequencies can propagate
without losses, provided that the wavelength lies below the cut-off wavelength.
This is no longer the case in a linac structure. The irises form a periodic structure
within the cavity, reflecting the wave as it passes through and causing interfer-
ence. This process is analogous to the interference of light in a diffraction grating.
Loss-free wave propagation can only occur if the wavelength is an integer multiple
of the iris separation d, namely

A=pd with p=12,3,.... (5.44)

It immediately follows that
~2—7—r~=2—7rd:kzd ‘with
p Az

Hence the irises only allow certain wavelengths, characterized by the number p,
to travel in the longitudinal direction. These fixed wave configurations are also

p=1,23,.... (5.45)
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Fig. 5.9 The two modes of operation of the linac structure. The upper diagram shows
the more commonly used travelling wave mode in which an absorber is installed at
the end of the structure to prevent reflections. In the second case the wave is reflected:
virtually without losses, resulting in a standing wave. )

termed modes. In principle there are arbitrarily many such modes, but only the
following three are actually used for acceleration:

7 (7w mode ie A, =2d) it p=2

2m . i , A
k,d= = (27/3 mode ie. A, = 3d) if p=3 (5.46)

g (r/2 mode ie. A\, =4d) if p=4

‘The 7 mode requires relatively long settling time, i.e. it takes a relatively lon
time for the transient oscillations to die away and a stationary state to be reached.:
This mode is therefore not suitable for fast pulsed operation. The 7 /2 wave has:
a relatively low shunt impedance per unit length, and so for fixed RF power the
energy gain per structure is rather small. The best compromise between short:
settling time and high shunt impedance is the 27/3 mode, which is preferred:
in modern linacs. The field configurations for these three modes are sketched i
Fig. 5.10. An important quantity in a linac structure is the maximum possible:
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Fig. 5.10 The field configurations of the three most important modes in linac
structures.

energy gain of a particle as it travels a distance [ through the structure. This
value depends only on the potential difference crossed by the particle, which is
calculated from

U=K \/PRFZ’I’(J.

(5.47)

Here Prr is the supplied RF power, ! the length of the structure, r¢ the shunt
impedance per metre and K a correction factor, which generally has a value of
around K = 0.8. The shunt impedance per metre can be estimated to reasonable
accuracy using the following empirical formula:

B.(1 —n)? (sinD/2)2 (5.48)

ro=5.12 x 108
0 p+2618,(1—n) \ D/2
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with (see Fig. 5.6)

B, = v—: phase velocity
h ' .
= 3 (h = thickness, d = iris separation)
p = number of irises per wavelength (equal to the mode number)
2m
= e 1 —_—
5 (L=

As an example let us calculate the value for the SLAC structure, a now standard
structure developed at the Stanford Linear Accelerator Center in California and

employed in the 3 km long linac there. It has the design shown in Fig. 5.6 with
the following dimensions

20 = 82474 mm
2a = 22.606 mm
h = 5.842 mm
d = 35.001 mm

We set the phase velocity 3, = 1 and use the 27/3 mode (i.e. p = 3). Putting

these values into equation (5.48), we find that the shunt impedance per metre of |
the SLAC structure is Q

ro = 53 x 108 =
m

The total accelerating voltage for a structure of length [ = 3 m is given by (5.47 )

U=K \/Prp l 179 =59.7T MV,

if the supplied power is Prrp = 35 MW. Such high power can of course only
be maintained in pulsed operation for a duration of a few us, otherwise it is "
no longer possible to deal with the amount of heat which is generated. In any
case the linac structure must be operated at a well-defined temperature, and -
so a control system is required to keep the temperature constant to within the .
narrow range AT = £0.1°. This is necessary because it is not technically feasible
to mechanically align so many individual cells during operation.

The gradient, i.e. the energy gain per metre, in the SLAC structure is in thls :

l /

Today gradients of between 15 MeV/m and 20 MeV/m are routinely achieved, -
and values of over 100 MeV/m have been measured in laboratory tests using.
very short structures. It will be necessary to develop extremely high-gradient
linac structures if we wish to build linacs with energies of several hundred GeV
or even a few TeV. For this reason, intensive work in this field is underwa;
in several major research institutes. A thorough treatment of the physics and
technology of linacs may be found for example in [61].
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5.4 Klystrons as power generators for accelerators

Cavities installed in circular accelerators and linac structures require RF power
of at least a few tens of kW and as much as several MW in large high-energy
accelerators or linacs. The klystron has proven to be the most effective power
generator for accelerator applications, and we will very briefly describe the prin-
ciple behind this device here. A comprehensive treatment of the fundamental
principles and the technology of klystrons can be found, for example, in [62].

The principle of this classical power tube is outlined in Fig. 5.11. Electrons
are emitted from a round cathode with large surface area, and are accelerated by
a voltage of a few tens of kV. This yields a round beam, with a current ranging
from a few amperes up to more than 10 amperes, dependmg on the power of the
tube. Suitably shaped electrodes near the cathode are used to focus the beam in
the same way as we saw for electron sources in Section 4.2. Sometimes several
solenoids are added along the tube to ensure good collimation of the beam.

The beam comes out of the cathode with a very well-defined particle veloc-
ity and passes through a first cylindrical cavity, which is operated not in the
familiar TMg19 mode but instead in the TMg1; or even TMg;2 mode, in order to
achieve a better coupling to the beam. A wave is excited in this resonator by an
external preamplifier with a power output of a few tens of watts, which, depend-
ing on the phase, will accelerate, brake, or simply not influence the particles in
the beam. The velocity of the particles through the cavity is thus modulated,
with a frequency exactly equal to the resonant frequency. In the zero-field drift
section which follows, the faster particles move ahead, while the slower ones lag
behind. This leads to a change in the hitherto uniform particle density distribu-
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Fig. 5.11 The classical microwave klystron, operating in the ten centimetre region.
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tion within the beam. After a certain distance bunches of particles are formed;
with a separation given by the wavelength of the driving wave.

The continuous current from the cathode thus becomes a pulsed current,
with a frequency equal to the frequency of the coupled driving supply. A second
cavity mounted at this point is resonantly excited by the pulsed current, and the’
RF wave generated in this cavity can then be coupled out. In an optimal design
the beam is almost completely stopped by the RF field it excites in the second
cavity, leaving just a small residual energy, i.e. the kinetic energy stored in the
beam is transformed into RF energy. The output power of the klystron can be7
written in the simple generalized form

Pklystron =1 Uy Iheam- (549 ;
Here Uy is the supply voltage of the klystron, Ipeam the beam current and 7 the
efficiency of the klystron, which nowadays ranges from 45% and 65%. A typical
accelerator klystron of average power operates at a voltage of Uy = 45 kV and
has a beam current of Ipeam = 12.5 A and an efficiency of 7 = 0.45. From (5.49)
the resulting high-frequency power output is Piystron = 253 kW. Peak values of
up to 1.2 MW per tube are now achieved in continuous wave mode. These tubes:
mostly operate in the frequency range between 350 and 500 MHz.

A better coupling of the beam to the output cavity can be achieved by in-
serting two or three further resonators between those shown in Fig. 5.11, each
tuned to frequencies close to the operating frequency. All modern high—powerf
klystrons use an arrangement of several resonators.

As we have already seen, higher power output can only be achieved by gen-:
erating a higher voltage in the output cavity. Since this can never significantly
exceed the accelerating voltage at the cathode, this accelerating voltage must be-
increased. In particular, klystrons used to drive linac structures operating in the-
S-band at the commonly-used frequency of 2.998 GHz require voltages between
250 and 300 kV, traversed by beam currents of around 250 A. For an efficiency
of n = 45% this yields a power output of Pgq = 30— 35 MW. Naturally such high
power can only be handled in pulsed operation. The pulse length in linacs is a
few ps with a repetition rate of a few hundred Hz. This yields an average power
output of a few tens of kW, which is relatively easy to manage. ,

A sensitive klystron utilizing considerably higher beam energies of a few MeV |
is currently under development, but such energies can no longer be produced.-
by a simple high voltage. Because of their high energy the electrons travel at.
relativistic velocities, and so this device is also called the relativistic klystron.-
The basic principle is outlined in Fig. 5.12. The electrons emitted from the high
current cathode are accelerated in several steps up to the required energy of a fe
MeV. Due to the high beam current of several thousand amperes this acceleration
can no longer be achieved using resonators, and inductive accelerating sections
are used instead. These have a very low impedance and in fact just consist of a
single winding around a ferrite core. Using very strong pulsed currents a voltage:
of a few hundred kV is generated for short periods, which accelerates the particle
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Fig. 5.12 The relativistic klystron. An inductive high-current linac accelerates the

. electrons up to an energy of a few MeV, with currents as high as a few thousand

amperes. The energy modulation is performed in the usual way using a modulating
cavity, which is followed by a dispersive section to bunch the beams. The beam now has
a high-frequency structure and traverses several output cavities, with re-acceleration
performed between each one to replace the lost energy.

as they cross. A whole series of these inductive accelerating sections, arranged
one after another, are needed to reach the required final energy.

Modulator cavities are then used to modulate the energy of the electrons in
the same way as before, although their velocity hardly changes. The beam must
therefore be passed through a dispersive section consisting of a series of bending
magnets, in which the particles of different energies follow different paths. This
results in a bunching of the beam, as we saw in the drift region in the classical
klystron. This section is followed by the output cavities, with further accelerating
sections between the cavities to replace the particle energy lost as RF power. This
method can achieve extremely high output power, and a few laboratories have
successfully performed initial trials of such klystrons.

5.5 The klystron modulator

The electrical power used by high-power klystrons in storage rings comes from
power supplies regulated by thyristors which provide a constant high voltage.
This technology is also employed in electron synchrotrons, in which the klystron
power must be increased with every accelerating cycle to match the particle
energy. A completely different approach is needed for linac klystrons operating
in pulsed mode, however. Here a voltage of up to 300 kV and a current of around
250 A must be supplied for a period of a few us, corresponding to a pulsed power
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Fig. 5.13 The pulsed power generator used in the klystron modulator. The energy
required for a single pulse is stored in the capacitors of the pulse-forming network
(PFN). The pulse generated when the network is discharged is raised to the high
voltage required for the klystron by means of a transformer. E

of up to 80 MW. S-band klystrons with this level of pulsed electrical power use
power supplies called klystron modulators, which we will now describe.

Short pulses of extremely high power are produced, usually by cha,rging car
pacitors up to high voltages and then using a suitable switch to discharge them
through a very low-resistance load. This process is also used in the klystr
modulator, whose basic layout is shown in Fig. 5.13. If P denotes the input
power needed by the klystron then for a pulse of of duration 7y an energy
W = Pymot is required. Before the pulse starts, this energy is stored in the
capacitors Cy, Cy to Cy of the pulse-forming network, which are charged to
voltage Ur,. A pulse-forming network built from inductors and capacitors has the
advantage over a simple capacitor that when it is discharged a relatively go
rectangular pulse with steep rising and falling edges is formed. It behaves just
like an unterminated cable which is charged up and then suddenly discharg
at one end, ideally through a load resistor. The wavefront produced during ,thé
discharge travels to the end of the cable where it is reflected and eventually
returns to the start, at which point the discharge current is interrupted. With
this form of discharge the pulse lasts exactly twice the time it takes the wave
travel from the start of the cable to the end. In the LC pulse-forming network
does not in principle matter over how many elements the total capacitance and
inductance are distributed. In general the sharpness of the pulse edges increases
with more LC' elements in the chain, i.e. if the individual values of L and C are
smaller. The energy stored in a pulse-forming network of this kind is therefor

i=1

(@Al

1 .
E = Pthot == §CtotUE Wlth C’cot =
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The total capacitance immediately follows

(5.51)

To choose the other parameters of the pulse-forming network we need to calculate
the inductances L;, which we will here set to be all equal, and likewise the
capacitances C;. When the PFN is discharged the current pulse flows through a
load Ry, which we will assume to be real. To achieve optimal energy matching the
load which terminjgutes the chain must exactly match its impedance Zy, namely

Li Ltot
Z = — = = .
"“=yVe Ve, -

Ry, thus has exactly half the load voltage Uy, /2 across it. The power delivered to
the load is then

UL\ 1 U2
b (2) Ry, = 1a

(5.52)

(5.53)

Thus we have fixed the size of the load. Since Zy = Ry, the total inductance
required follows immediately from (5.52)

Liot = Z§Chot. (5.54)
The transit time along the network is thus
-
PPN = v/ LiotCror = ZoClor = —2, (5.55)

2

as mentioned above. To discharge the network a thyratron is used, a gas discharge
tube which can switch voltages of several tens of kV and currents of several kA.
This tube is fired by sending a trigger pulse to its control grid. This switching
process lasts less than a ps. The current discharged from the PFN then flows
through the load Ry,, which in reality is the primary coil of a pulse transformer
with between four and six windings. The transformer has two identical bifilar coils
as secondaries, each with about 70 windings. The high voltage for the klystron
heating is supplied via these two windings, which are isolated from each other.
An additional filament transformer is usually installed at this point so that the
secondary winding of the pulse transformer does not have to carry too high a
filament current.

The secondary current and secondary voltage are monitored by a ring-core
transformer or a capacitive voltage divider. Since the secondary side of the pulse
transformer and everything connected to it are at voltages of up to-300 kV rela-
tive to earth, this section is placed in an oil-filled tank, as is usual in high-voltage
transformers. As an example, the parameters of a typical klystron modulator are
given in Table 5.1.

The PFN can in principle be charged up to Uy, using a suitable power supply
with the requisite supply voltage. However, a much more elegant and also more
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Table 5.1 Parameters of a typical klystron modulator.

parameter value
pulse power P =80 MW
charging voltage Uy, =40kV
pulse length Trot = 3 1S
impedance of PFN Zog=5%Q
total capacitance Ciot = 300 nF
total inductance Loy = 7.5 pH
pulse transformer
number of primary windings p =05
number of secondary windings ng = 72
primary voltage U, =20 kV
primary current I, = 4000 A
secondary voltage Us =288 kV
secondary current I, =278 A

economical method in terms of energy usage is to use the principle of resonant
charging, illustrated in Fig. 5.14. Here a power supply is used which only gen-
erates half the charging voltage, i.e. Uy = U, /2. An inductance L is connected
between the power supply and the PFN. This is very much larger than the in:
ductances L; in the network, and so to a good approximation we can assume
the capacitances C; to be simply connected in parallel. The inductance L at the
end of the network has the total capacitance Cio; of the PFN as its load. T
voltage in this capacitance depends on the charging current I(t) and has the

general form
1 1
I(t) dt =
Ctot / ( ) Ctot

The supply current flows through the inductance L, with ohmic losses cha;
acterized by the resistors R, connected in series with the inductor. Usi
= [ I(t)dt, the equation describing the charging process then follows

Uc (t) =

)- (5.5

£(t) + ——S(t) + (t) = — = const. (5.57)
This inhomogeneous equation has the solution

w = wi —¢?

B 1
U(t) = (Acoswt + Bsinwt)e ™ + Uy with o= it

- v

¢ =3

(5.5
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Fig. 5.14 Resonant charging of a pulse-forming network. A precisely defined voltage
is maintained by the ‘deQing’ circuit.

If we assume very slight damping, i.e. ( < wp, the initial conditions then yield

UC(O) =0 N A = -0

For this virtually undamped oscillator the voltage on the capacitors has the form
Ue(t) =

Half an oscillation period after the discharge of the PFN, the voltage on the
capacitors reaches the maximum value Upyax = 2 Up. We thus obtain a charging

Uo(1 — coswt). (5.59)

- voltage which is twice the value delivered by the power supply. The diode con-

nected in series with the inductance L prevents the oscillation from continuing
once the peak value has been reached and discharging the pulse-forming network
again.

The maximum voltage achieved by resonant charging is inherently rather
variable. This is because fluctuations in the power supply, which is usually not
regulated, propagate through to the output. Precise regulation of this supply
would be rather costly, due to the high voltage, and in any case would not re-
move fluctuations caused by temperature drifts in the other components involved
in the resonant charging process. A principle known as ‘deQing’ has therefore
been developed, which is illustrated in Fig. 5.14. It is based on the idea of first
of all of raising the input voltage Up and so increasing the maximum charging
voltage to create a voltage surplus. The voltage in the pulse-forming network is
constantly monitored during the resonant charging procedure. After a certain
time the charging voltage reaches the nominal level, at which point the charging
process is immediately stopped and the remaining energy stored in the induc-
tance L is rapidly converted into heat. The chargmg process is thus halted at a
well-defined voltage.
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Fig. 5.15 Phase focusing of relativistic particles in circular accelerators.

In the simplest case a resistor and a thyratron are connected in parallel
with the inductance L. When the nominal voltage is reached, the initially open
thyratron switch closes and the relatively low resistance induces large losses
from the oscillating system, resulting in virtually adiabatic damping. The quality
factor @ of the oscillator is drastically reduced to a value of around @ = 1,
hence the name ‘deQing’ switch. Because of the poor quality factor, the resonant
charging stops immediately.

As is shown in Fig. 5.14, the same effect can be achieved by fitting the indu
tance L with a secondary coil Ls and adding a capacitor Cq and resistance Rq
connected in parallel, thus creating a strongly damped oscillator. The advantage
of this arrangement lies in the low voltage, which allows semiconductor switches
(thyristors) to be used. The monitoring of the charging voltage is performed
by the voltage dividers R; and Ry at the low voltage potential. The voltage
is compared with a threshold reference voltage, which when reached fires tt
trigger and switches the thyristor. Using this system the charging voltage in the
pulse-forming network can be stabilized to within an accuracy of about 0.1%.

5.6 Phase focusing and synchrotron frequency

In a circular accelerator, just as in a linac, it is important to ensure that the:
circulating particles maintain a well-defined fixed average phase relative to the
accelerating high-frequency voltage. It is therefore necessary to perform phase
focusing, the principle of which we will now outline with the help of Fig. 5.15
For the sake of simplicity we assume that the particles have relativistic velocities
(v = ¢). An ideal on-momentum particle (Ap/p = 0) travels along the nominal
trajectory fixed by the comnstruction of the ring and has the nominal phase ¥y
relative to the RF voltage when it passes through the RF cavity. Here the e
ergy required by the particle, for acceleration and to compensate for losses from
synchrotron radiation, is supplied exactly. A particle whose momentum is too
low (Ap/p < 0) will travel along an inner dispersive trajectory, shorter than the
nominal trajectory. Hence it will arrive at the cavity somewhat earlier, with a
smaller phase ¥ = ¥y — AV, and so will see a correspondingly larger voltage.
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As a result it is more strongly accelerated than an ideal particle and so catches
up with the nominal phase. The opposite happens to a particle with too much
energy. In reality the particles oscillate about the ideal phase and so are kept
stable within the accelerator. This periodic longitudinal particle motion about
the nominal phase is called synchrotron oscillation.

In order to study this motion quantitatively, let us calculate the energy sum
for a particle over a full revolution. For a nominal particle (Ap/p = 0) we have

Ey = elUysin Uy — Wy, (5.60)

Here Uy is the peak voltage in the cavity and W) is the energy requirement per
revolution of the particle. We choose an arbitrary particle which has a slight
momentum deviation and a phase deviation of AV. In this case the energy

balance is
E = elUpsin(¥o + AT) — W, (5.61)

where we write the energy requirement to linear approximation in the form

aw

W =Wy+ EAE' (5.62)
Taking the difference between (5.60) and (5.61) gives
AE = E — Ey = el [sin(\Ilo + A¥) —sin qxo] - %AE. (5.63)

The duration of the synchrotron oscillation is very long compared to the period
of revolution, with one oscillation period generally lasting for a few hundred
revolutions. This means that instead of differentiating with respect to time we
can simply divide by the revolution time Tj, giving
_AE  ely

AE = T To[sm(% + AT) - sm‘I’o] -

dW AE

—&E‘ ’_ﬁ . (5.64)

The phase deviation AU is due to the different revolution time of the off-
momentum particle. The revolution time of an ideal particle is

Ly
Vo ’

Ty (5.65)
where Lg is the length of the ideal path and vg is the nominal particle velocity.
Of course the particles usually have very small deviations AL and Av from these
nominal values, so the general revolution time for an arbitrary particle is

L0+AL "UO""A’U 1
T=2"T"" 5 (Lo+ AL~ S (L AL - LoAv). (5.
vo + Av (Lo + AL) 02 vg( 0% + Vo 0lAw).  (5.66)
The time difference is thus
— LA
AT =T —Tp = WAL — LyAv (5.67)

v
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or, rearranging,

AT AL Av 6
To L() Vo 08
Using the momentum compaction factor « defined in (3.110) we have
AL Ap
— =0 5.69
Lo P (

and from (B.11) (see appendix) we obtain the relativistic relation

Av_ 1 4p

= : 5.70
Vo Y p ( .
This leads to the relative time deviation for an arbitrary relativistic particle from
(5.68)
AT Ap
— =la-—= 5.71
To ( 72> P (

Since the accelerating frequency has the period Ty, we can immediately calcu
late the resulting phase shift, namely

AT =
AV =271 — = wRFAT. (5.72
Trp
As the ideal particle exactly encounters the RF voltage at exactly the nominal
phase on each revolution, the RF frequency wgrr must be an integer multiple ¢

the revolution frequency wyey, namely
q= WRE with

wrev

q = integer. (5.73

This ratio g is called the harmonic number of the ring. It thus follows from (5.71
and (5.72) that

AT 1) Ap
AV = qu,o AT = 27rq—TB— = 2mq (a — 7—2) > (5.74
Now let us again use (B.16) to substitute for the momentum

Ap 1 AE
p B E
to obtain the following equation for the phase varlatlon of an arbitrary particl
as it circulates around the ring

2mq AE
AV = 3 ( —¥> R (5.76

which when differentiated with respect to time gives the expression
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. AV 2mq AFE
AV = -, .
T, BT, ( ’)’2) E (5.77)

We first calculate the particle motion for very small deviations from the nominal
phase, i.e. AU < Wy. In this case the trigonometric functions in (5.64) may be
simplified using

sin(Wo + AV) — sin Uy = sin Uy cos AV + cos ¥gsin AV — sin Uy =~ AV cos ¥,
(5.78)

and we obtain

- el dW AFE
AE =20 Aw ey
A cos ¥y ¥ . (5.79)

To obtain the equation of motion we differentiate this expression again with
respect to time

. CUO aw AE
AE = 2 AV cos Oy — 22 .
To °T4E T, (5.80)

’Inserting (5.77) back into the above, we immediately obtain

|AE +2a, AE+ Q2 AE =0 (5.81)
with
o= LW 5.89
® 2Ty dE (582)
and
_ _elogcos ¥ 1
Q = Wrev \/ o PE (a 72). (5.83)

This equation describes a harmonic oscillation, and may be solved using the
general expression

AE(t) = AEy e“t. (5.84)

Inserting this gives the characteristic equation w? + 2a,w + Q2 = 0, from which
the unknown w = —as & /a2 — Q? is obtained. The damping is in general very
small, i.e. as < €, so as a solution of (5.81) we obtain the weakly damped
oscillation

E(t) = AEy e %t ¢, (5.85)

The expression (5.83) for Q gives the frequency of this synchrotron oscillation.
It is immediately apparent that stable oscillations can only exist if

1
(a - %5) cos ¥y < 0. (5.86)
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Depending on the particle energy there are thus two distinct regions for the
nominal phase, namely

3 . 1
—2~<‘IJ()<7 if a>$
T cwy<Z if oz<i
2 0>9 2’

The transition energy involved in crossing from one region to the other is thus

given by
1

T = Ja
Here the synchrotron frequency goes to zero (2 — 0) and the phase focusi
effect vanishes with it, and so stable machine operation can no longer be main-
tained. Where possible it is important to avoid crossing the transition energy
during accelerator operation, or to take special measures to ensure that the par-
ticles only spend a very short time in this region. This is not difficult in electron
accelerators, since the electrons almost always have relativistic energies far above
~s- Proton synchrotrons are a different matter however, and here it is often ini-
possible to avoid crossing the transition energy.

(5.88)

5.7 Region of phase stability (separatrix)

In the previous section the phase oscillation or, equivalently, the energy oscilla-
tion was only calculated for very small amplitudes for which the motion is linea;
to a good approximation. In circular accelerators, however, quite a number
particles in the beam always have such large phase amplitudes that they beha
non-linearly, due to the shape of the potential produced by the sinusoidal
voltage. For very large amplitudes they may even escape from the stable regi
leading to particle losses. The boundary between the stable and unstable regions
in the AE-A¥ phase plane is called the separatrix. It allows the phase and en:
ergy acceptance of the accelerator to be directly determined. In this section we
will calculate the non-linear oscillator potential and the separatrix of the syn:
chrotron oscillation. We start from equations (5.64) and (5.77) but neglect the
damping, which is in any case very weak:

AE = o [sm(\llo + AW) — sin \IIO]
T
. 2mq )
AV = T B (a 2 > AE. (5.89

It can be seen immediately from the second equation in (5.89) that the angu
velocity is proportional to the energy deviation. Differentiating this equation
once again with respect to time and inserting the result into the first equation
yields
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e 2mq 1
AV = - =
PT.E (a 7 )AE
2mwqely 1 . .
= PTE ( - :y—z) [sm(\Ilo + AW) —sin \IJO}. (5.90)
The non-linear equation of motion thus has the form
AF(t) +x [sin(¥o + AU(H)) — sin xpo] =0 (5.91)
with
2mwqely 1

This cannot be solved by analytical means, and instead numerical methods must
be used to calculate the particle motion in the accelerating potential. It is gen-
erally useful to take the values at time ¢ = 0 for the angular deviation A¥(0)
and the energy offset AE(0) as initial conditions for the calculation. The angular
velocity AW(0) may then be calculated directly from these values using (5.89).
Figure 5.17 shows a few particle trajectories with different initial conditions in
the A¥-AF phase plane, calculated using (5.91).

Despite the non-linearity of the particle motion in the accelerating RF field,
the oscillator potential and the equation of the separatrix can be calculated
analytically. Here we again start with the equations (5.89) and cross-multiply
them. This gives

. B2eUoE - T
ABAE = — 00 [ AW sin(Wy + AT) ~ Al sin wo].

- [ (5.93)
=4 (AE)? mq (Ct - 72_) =—4 cos(¥o+AT)

In this form the equation can be integrated analytically with respect to time,
yielding

B2eUoE

_’7Tq (Ol 1)
,-YZ

The constant of integration H is the Hamiltonian function of the oscillation,
(AE)? is the kinetic energy and

,82€U0E

™q (O& ! )
,-YZ

is the potential energy. Figure 5.16 shows the form of this potential. For small
amplitudes AU < 7 it is almost identical to the potential of a simple harmonic

(AE)? = [cos(\Ilo + AT) + AV sin \Ilg] +H (5.94)

V(AD) = [cos(\Ilg + AT) + AT sin \po} (5.95)
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Fig. 5.16 Form of the potential produced by the accelerating RE voltage. The maxi.
mum region of phase stability is marked by the points A and B.

oscillator. If the amplitudes grow larger and larger, however, one moves more anc
more into the non-linear region, in which the potential also becomes asymmetric
The maximum region of phase stability is marked by the points A and B. Outside
this region the particles can no longer be contained and travel out of time with
the RF phase of the accelerating field. Point A marks one turning point of th
potential function. Its position can be easily found using the condition

dv o ﬂ26UoE . . _ ;
TaT = ( - ) [- sin(Wo + AT) + sin \1:0] =0. (596
g\ — —
Y

The trivial solution AW = 0 is of no interest here. A further solution may be

found by rewriting the sine function in the form
sin Wy = sin(m — W) = sin(Vp + 7 — 2W) (6.97
AT :

i.e. there is a second solution
AV ax = T — 2W. (5.98

For AE = 0 this phase fixes the phase limits of the oscillation. Oscillations with
AV < AV, are stable, all others are unstable. The boundary between th
stable and unstable regions is marked by the separatrix mentioned above. Thi
is calculated by setting the energy deviation AE = 0 for the maximum phas
AV = AU, = 7 — 2¥; in equation (5.94). This yields the Hamiltonian =~

,BzerE

o(-5)
vafa L
,},2

H= [cos(ﬂ' — W) + (1 — 2Wp) sin \110], (5.99
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which determines the particle motion at the boundary of the stable region. In-
serting this into (5.94) gives the equation of the separatrix

2elpE
(AE)® + _ﬁo—l [cos(\IJo + AV) + cos Uy + (2¥¢ + AV — ) sin \Ilo} =0,
(o)
(5.100)
or
2eloE
AE =+ __,30—1 [cos(\Ilo +A¥) +cos Uy + (2¥g + A¥ — ) sin\I'OJ.
™q <a - —2)
0
(5.101)

We again see from this relation that a real solution is only possible if ¥y lies in
a particular phase range, namely
5 <Wo< 37“ i oa> ;15
(5.102)
Telo<l i a<t
3 <Y<y v2'
The separatrix calculated from (5.101) is plotted in a AW-AFE diagram in
Fig. 5.17. Notice that the periodicity of the accelerating voltage results in a
series of stable regions, with a phase separation of 27. Altogether an accelerator
has a total of g such regions around the circumference, within which the particles
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Fig. 5.17 Particle motion in an accelerating RF field. The separatrix marks the bound-
ary between stable synchrotron oscillations and unstable ones, for which acceleration
is not possible.
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undergo synchrotron oscillations and from which they cannot escape. They ar
trapped, rather like drops of water in a bucket. For this reason these regions ¢
phase stability within a separatrix are also termed buckets. In Fig. 5.17 sever,
particle trajectories calculated using (5.91) are plotted, both inside and outsid,
the separatrix. Using the equation of the separatrix (5.101) we can directly cal:
culate the energy acceptance of the accelerator, in so far as it is limited by th
RF acceleration.’ This is the maximum energy deviation a stably circulating
particle with exactly the nominal phase (i.e. AV = 0) may have, namely

2,826U()E
T R —
q 42

One immediately sees that the energy acceptance increases with increasing R
voltage, and that this dependence goes as

AF =+ [cos U, + (\Ifg — —g) sin ‘Ilo]. (5.103

AFEpax < A/ Up. (5.104

This relation does not hold strictly, since when the RF voltage Uy increases
the nominal phase ¥q also changes. Since this effect is rather weaker, howeve;
(5.104) may be reliably used to make estimates. In any case it makes sense to use
sufficiently large overvoltage to provide a large energy acceptance. Alternativel
if the maximum energy variation in the beam is known, (5.103) can be used t
calculate the minimum total voltage that the accelerating sections must produc

IThe energy acceptance can of course also be limited by the magnet structure if, for exampl
large dispersion or large chromaticity arise.

6
Radiative effects

In Chapter 2 we showed that electron beams of sufficiently high energy emit

synchrotron radiation according to (2.15) with a power

e 1 E¢
® 6meg (moc?)t R2'

Because of their high rest mass, this effect is negligible for protons until they
reach extremely high energies of at least 1 TeV. In this chapter we will consider
how the emission of synchrotron radiation determines many of the properties of
electron beams, in particular by damping synchrotron and betatron oscillations.
In what follows it is helpful to replace the bending radius R by the magnetic
field in (2.15), as follows

% - ]E)B - %B = g—z = e2c2B2. (6.1)
Following this substitution we obtain
etct
P,=CE’B?> with C= T (6.2)

We will use this radiation formula in the treatment of radiative effects which
follows.

6.1 Damping of synchrotron oscillations

The loss of energy in the form of synchrotron radiation results in a damping of
the particle oscillations. Let us first of all consider synchrotron oscillations. We
begin with the equation of motion (5.81)

AE +20,AE + Q*AE =0
in which the damping term has the form

1 aw

ag = ﬁaﬁ (63)

To evaluate this term we need to determine the ratio dW/dE. We consider the
radiation from a particle with an energy deviation and use the fact that this
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dB _dBD

particle follows a dispersive trajectory. The path element ds’ through a bending: =2 (6.12)
magnet of bending radius R, along a dispersive trajectory with a displacement dE  dz E
Az, may be found using similar triangles and is Inserting this expression into (6.10), we obtain

Az dw 1 1 D dB D

ds' = (]- =+ —) ds, 64 — = f 2P, -

R (64 dE ETBE& ) RE| %
where ds is the corresponding path element along the ideal orbit. Using _ }{ P, ds -l— j{ DP ( 2 dB i) ds. (6.13)
ds' /dt = c, the energy loss per revolution may be written as R

E

7 ds' 1 Az
W=/Psdt=?{Ps—f—=—%P <1—|——-—)ds (6.
c c R
0 .

The transverse beam displacement due to the energy deviation at a point of
dispersion D is

This relation, along with the relation (6.3), yields the required damping constant

1AW W 2dB 1
% T Oy dE T 2TLE [ W ]{D <_ E) dSJ : (6.14)

or alternatively

AE

W= - fP(—l—QA—E—)ds. 6

_ W
T 2THE

which gives s (2+ D) (6.15)

© with
D= L DP, 2 dB + L d
Differentiating with respect to energy finally yields the required expression W “\Bdz ' R)*
dw 1 dP, D (dP,AE 1 The integral may be further simplified by replacing dB/dz by the quadrupole
dE " ¢ % [EE T R (E“E’ + 5 SE)} ds. (6.8) strength k£ and the magnetic field B by the associated bending radius R:

Since the energy deviation AFE varies periodically about the nominal value, on k= ecdB = fiE - k_E_
average we have (AE/E) = 0. Hence this term does not contribute to the total E dx dr  ec N 1dB _ LR, (6.16)
and we may write _— i DP 1 ec 1 ec B dx

aw _ s | Zis R E B E

E“cf{[dEJrRE]ds' (6

Furthermore, the radiated power P can be written, according to (2.15) and (6.2),

In this expression, dP;s/dF is still unknown. It may be determined by differen in the form

ating (6.2), yielding Cc E*
7 5 = 2CEB®+2CE’B 1B The integral in (6.15) then becomes

CEQB2 CE232 dB 2 dB 1 CE4 D
= — 6.10 _
2( 5t dE) (6.10) j{DP ( ﬁ> ds = 5 27(}22 <2kR+ R) ds

1 1dB CEL (D 1 '
o (L 142, e
E " BdE 23 7{ { = <2k+ R2>] ds.  (6.18)

In quadrupole magnets with non-zero dispersion the magnetic field varies with The energy radiated by a particle travelling along the ideal orbit is
energy according to

I

dB _ dB dx Ty

— . 6.11 4

dE dx dE ( ) WO:/PSdt ]{PdS“CE
Since dz = DAE/E, it follows that

= (6.19)
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Inserting this into (6.15) yields the expression for the damping of synchrotron
oscillations in the form:

Wo
as = 2T0E(2+D)
}[ Dlok+ L) as (6.20)
. R R2
with D= s
$

Notice that the damping of synchrotron oscillations at a given beam energy E
is entirely determined by the magnet structure, since apart from the bendin'g
radius R and the quadrupole strength &, (6.20) only contains the dispersion
which is itself completely determined by the magnet structure. :

In circular accelerators with separate bending magnets and quadrupoles (sep-
arated function magnets) we never have both k # 0 and 1/R # 0 at the same
time. This means that in general |D| < 1 in machines of this type. In this cas
the damping constant a, is a positive quantity and the synchrotron oscillation:
are damped. The situation can be very different when dipole and quadrupol
fields are combined in one magnet and D reaches very large values, sometimes
with a negative sign. For D < —2 the damping constant becomes negative and
the synchrotron oscillations are enhanced and grow with time. Naturally it is
impossible to operate an electron storage ring under such conditions.

6.2 Damping of betatron oscillations

Synchrotron radiation also has a damping effect on transverse particle oscil
lations. We will now study this effect, considering for simplicity the vertical
oscillations in a planar accelerator with no vertical dispersion. We further as
sume that the beta function is relatively constant, i.e. a« = —f'(s)/2 ~ 0. Th
displacement z of the particle may then be written in the form

AN Tl SIELVED R, e
7z = ———=sin = Z = ———sin
B(s) B(s)

It immediately follows that

2
A% = A%cos? p+ A%sin® ¢ = 22 + [ﬁ(s) z'} ) (6.22
This expression allows us to calculate the amplitude A from z and z’. The sym
chrotron radiation is emitted in the direction of motion of the electron and so th
particle’s momentum p changes by dp but its direction is unaltered (Fig. 6.1)

After emitting a photon the electron has the momentum
p*=p—p.

The longitudinal component ps is restored to its nominal value by acceleratior
in the cavities, while the transverse component remains uncorrected. This mean
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momentum
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trajectory

|~ s

Fig. 6.1 Damping of betatron oscillations by the emission of a photon and restoration
of the longitudinal momentum ps by re-acceleration.

7

that the angle 2’ between the particle momentum and the s-axis, which is gen-
erally very small, is reduced by the amount

op1

07 = —=—.
|p|

(6.24)

The change in energy of the particle, which is extremely relativistic (8 = 1), is

2
0B = —ép. (6.25)
or with v = 2’¢ c
5 = Zdp.. (6.26)
With E = ¢|p| we finally obtain
OF
87 = —Ez’. (6.27)

The momentum of the emitted photon changes the amplitude A of the betatron
oscillation. This change may be immediately obtained from (6.22):

5(4%) = @ +3(76%(s)) = 5%(5)8(2").
=0

(6.28)

Here 6(2%) = 0, since 2’ changes but z does not. If follows that

2A0A = 2°%(s5)2' 64 = ASA = B%(s)2/ 62 (6.29)
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6.3 The Robinson theorem
Collecting together the damping constants calculated in (6.20), (6.35) and (6.36)

Inserting (6.27) into this expression gives

AdA = —,82(3)2'2@. we have:
E W, W,
o : Gy = s (2+D) = —2J,  with J,=2+4D
Since 7z’ is oscillating we must average over 2’2, with 2’ given in (6.21). Thig 2ET, 2ET,
average is calculated as follows Wo Wi '
. Q, = 2ET0 : = 2—E‘T;Jz with JS =1 (637)
< /2> A2 / - 2¢ dd’ A2 WO WO
2%y = ———— [ sin = —. _ _ : _
27 32(s) / 2/2(s) Oy = 2ET0(1 -D) = m.]gc with J.=1-D.
The important theorem discovered by K.W. Robinson|[63] immediately follows:
From (6.30) we thus obtain
| Je +J. + Js = 4] (6.38)
A2, OE A% 6E
AbA) = =558 ) =—%57%" The sum of the damping constants is an invariant quantity. In a planar machine
2032(s) E 2 E

J. and J, (or equivalently a, and as) may vary according to the value of D, but
the condition (6.38) is always strictly respected.

Machines with separated function magnets generally have D <« 1 and one
talks about a natural damping distribution, ie. J, = 1, J, = 1 and J, = 2.
Such machines always have oscillation damping in all three planes. Traditional
synchrotrons with a magnet structure consisting of combined bending magnets
and alternating-gradient quadrupoles, on the other hand, have D ~ 1. In this
situation Robinson’s theorem implies that the damping constants have values of
Js & 3 and J, = 0. The horizontal betatron oscillation is thus no longer damped,
and may even be amplified. As a result, machines of this type are not suitable

Over a full revolution the averaged individual energy losses sum together ‘o
give the total loss Wy. The average change in amplitude per revolution is then
ST(6A) = AA. Using this expression it follows from (6.32) that

AA Wo
—_— = 6.33
The amplitude thus decreases, i.e. the vertical betatron oscillations are damped.
The vertical damping constant a, may be immediately obtained from the general

relation for use as electron storage rings.
dA dt It is possible to vary the damping distribution in a circular electron machine
a - —Qz Gt by deflecting the beam onto a dispersive trajectory of slightly higher energy.

When the beam passes through the quadrupoles its centre of mass is then off
axis by a distance Azp = D Ap/p, causing each dipole to act like a superposition
of a dipole and a quadrupole. As the energy increases, the machine behaves more
and more like a combined function accelerator, changing the value of D and hence
also the damping distribution.

The beam can be deliberately pushed onto a dispersive trajectory by varying
the frequency of the accelerator RF system. This changes the wavelength and
hence also the circumference of the path. The circumference must always be an
integer multiple of the RF wavelength, which means that the harmonic number
¢ remains fixed as the frequency is varied, giving

Over a revolution period At = Ty the damping constant is then

_AA W
A At 2ET,’

Ay =

For a given particle energy E the damping constant depends only on the amount
of energy Wy radiated per revolution in the form of photons.

The damping constant a, of horizontal betatron oscillations may be calcu-
lated in the same way, but here the effect of the dispersion must also be taken
into account. For further details see, for example, the treatment by M. Sands

[51]. The result of this calculation yields the value L=gi=gq ¢ — dL — — ch_J;‘ (6.39)
W JRF f ’
0
= 1-D i i
;=5 ETO( ), It immediately follows that

where D is defined in (6.20). =Ty = (6.40)
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per second. It is useful to define the energy interval to be a range of 0.1% of the

________________________ 4 - k_ . useful photon energies (0-1% BW) The flux F of photons in this energy range
is usually normalized to a beam current of 1 A, leading to the definition
=
o =t
o S_X _____________ N i 8 - photons
= = -
5= ° 5 T 501%BWA (6:43)
c‘::n § J N %0 ,‘:‘F; A%
8 N * -= . cps
g N A N AR R--— g 8-~ This definition is not always sufficient, however, for example in experiments
E g NI g req}m"}ng high pc.)si’ci.on resolution. Such experiments rely on the fact that the
o 2 N 1 N9 = radiation source is virtually point-like, i.e. the transverse extent and divergence
- - B B -- E -- of the radiation should be extremely small. The quality of the beam is described
% by the brightness and the brilliance. The brightness only describes the angular
B divergence of the beam, which is given by oy, , = V/€z,2/Be.2- It is defined as
0 éz :
f S = F — F \4 ﬁa: ﬁz
2m ol o, 27 \Jfe, €,
Fig. 6.2 Changing the damping distribution by altering the frequency of the acceler- photons
ating system. = 5 0.1% BW mrad® A (6.44)
The relation between the change in path length and the energy shift is given by' The brilliance also relates to the transverse beam dimensions
the momentum compaction factor(3.110):
AL AE AE ]. AL 1 Af . . Ua:,z = vV Ez,z ﬂx,z-
T %F —  E &l ai (6.41)
. The definition of the brilliance, based on that of the brightness, is
The relative change in the frequency thus pushes the orbit onto the dispersive
trajectory A , B - F . F
:ED(S) —D( )1 f 472 6, o, ol.a’ T 42 €z €4
F : _ photons
The relationship between the frequency shift A f/f and the damping distributio; T 50.1% BW mm?2 mrad® A (6.45)

between J, and J, is shown in the curves in Fig. 6.2.

: It should be pointed out that these definitions refer only to Gaussian-shaped
electron beams. Furthermore, the definitions found in the literature do not al-
ways agree. The important point, however, is that both the brilliance and the
brightness are essentially determined by the beam emittance. As a result, storage
rings designed for the production of synchrotron radiation usually have as small
an emittance €, , as possible.

The situation is very different in storage rings used for high energy physics
experiments, in which two particle beam circulate in opposite directions and
collide at an interaction point. The maximum current is limited by the space
charge forces which the beams exert on each other as they cross. This effect
will be studied quantitatively in Chapter 7. One consequence is that in order to
achieve the maximum event rate in the detectors the emittances must be very
large, practically filling the available aperture of the ring.

It is thus clear that high-energy experiments and experiments using syn-
chrotron radiation cannot be conducted simultaneously at the same storage ring,

6.4 The beam emittance

The beam cross-section is given by the expression o = /¢ §, as was shown in
Chapter 3. Here 3 is a position-dependent quantity which describes the beam
focusing at that point. It can be varied over a wide range according to the choice
of magnet structure and the strength of the quadrupoles. We have already met
the emittance, ¢, as the area of the phase ellipse which, as a consequence
Liouville’s theorem, has the same value at every point in a beam transport syste
or circular accelerator. At the time we treated the emittance as a predefine
constant and did not discuss how it arises or what determines its value. Let us
now consider this question.

First of all we will briefly outline the implications of the emittance for expe
iments at storage rings, beginning with synchrotron radiation sources. For most
experiments which use this type of radiation, an important quantity is the m-;
tensity, namely the number of photons emitted within a particular energy range
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Fig. 6.3 The origin of natural emittance due to photon emission in a bending magneﬁ

Fig. 6.4 The phase ellipse around the dispersive trajectory, resulting from photon
‘emission.

that the electron is travelling exactly along the orbit with nominal momentum
po before it enters the magnet. It thus has zero initial emittance ¢; = 0. After
travelling a certain distance through the magnet it spontaneously emits a photon
- of momentum Ap. The particle thus continues with the reduced momentum
po — Ap and is no longer able to remain in the ideal orbit. The new equilibrium
trajectory is displaced from the ideal orbit by a distance

since the two disciplines place conflicting demands on the beam.! We will there-
fore not consider the emittance of proton and heavy ion beams any further. . -

In electron beams, on the other hand, the amplitude of the betatron oscil
lations is damped by the emission of synchrotron radiation, as we have already
seen in this chapter. If this damping were the only effect, then after a while the
oscillation amplitude would reduce to zero and the beam would have a negligibly
small emittance. This is not the case, however, because synchrotron radiation i
not emitted continuously in arbitrarily small packets of energy. Instead it is r
diated stochastically, as can be seen from the very broad spectrum, sometim
in rather large energy bursts. This has the effect of constantly exciting betatror
oscillations. The emittance is determined by the balance between excitation ane
damping of the betatron oscillations. As we will see, this ultimately depend;
upon the magnet structure. The properties of proton and heavy-ion beams are
fixed by their history, but electrons on the other hand will ‘forget’ everything
their past if they undergo a period of damping. This is a great advantage ¢

dz =D op and angle 6z’ =D’ @, (6.46)

p b
where D is the dispersion at the point at which the photon is emitted and D’ is its
gradient. During the revolutions which follow, the focusing and bending magnets
cause the particle to perform oscillations about this new path, and clearly it now
has a non-zero emittance. The corresponding phase ellipse is shown in Fig. 6.4
and can be calculated by simply inserting (6.46) into (3.135). The emittance of
an individual particle is given by

means that the emittance in electron storage rings can be controlled witho e = 0> +2a bz dx + B oz
worrying about the conditions in the pre-accelerator. 50\ 2
In order to understand the origins of the intrinsic emittance, i.e. the emittance = ( _p) (7 D*4+2aDD +8D 2) (6.47)
P .

due only to the magnet structure, it is important to clarify the mechanism
which photon emission excites transverse particle oscillations. This is illustrat
in Fig. 6.3. Since synchrotron radiation is only emitted in bending magnets
may restrict ourselves to this region of the accelerator. For simplicity we assum

(5)

; The optical functions 3, « and + are evaluated at the point of photon emission.
fI‘he function H(s), which has the form of the ellipse equation, is clearly important

In determining the emittance.

We now know the emittance of an individual particle after it has emitted a

photon of well-defined energy. To calculate the emittance of an entire beam we

1This statement is not strictly correct, as the emittance may slowly increase due to effe
such as collisions of the particles with residual gas atoms in the vacuum chamber. In addition
there are techniques which dramatically reduce the emittance of proton or heavy-ion beams il
a storage ring by so-called stochastic cooling or by electron cooling.
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Fig. 6.5 Dependence of the horizontal emittance on the quadrupole strength k in a,',
model FODO ring.

must average over all possible photon energies and emission probabilities. Thi
a rather lengthy calculation which we will omit here, but a good derivation ca;
be found in M. Sands [51], for example. This calculation ultimately yields th
general expression for the horizontal emittance of an electron beam, assummg
ring with bending only in the horizontal plane:

55 ho <7%1"§H(s)>

w L (a)
T R2

Ex =

Here J, =1 —D. The average (...) only needs to be calculated along the lengt
of the bending magnet, since the bending radius R is non-zero only in this regior
Since most storage rings use bending magnets of identical radius, and strong;
focusing machines generally have J, ~ 1, we can usually rewrite the expressio
(6.48) in the more convenient form

- =147 x 10" ———/’H(s ds,

where the energy E is given in GeV, the bending radius R in m, and the emittanc
¢, in mrad. We immediately see that a large bending radius and small value ¢
the function H(s) lead to a small emittance. Looking more closely at H(s) i
(6.47), we see that the dispersion and the beta function in the magnet should b
kept as small as possible.

Varying the quadrupole strengths in a ring will change the beta function an
dispersion, and with them the emittance. The effect is relatively strong, sinc
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Fig. 6.6 Dependence of the horizontal chromaticities £;,, on the quadrupole strength
k in a model FODO ring.

the dispersion enters quadratically into the expression for the emittance. We
can show this effect quantitatively, using our model ring with the simple FODO
structure (Section 3.13.3) as an example. If both quadrupole sections QF and
QD are chosen to have the same strength (apart from the sign) then the range
04m™2 < k < 1.55 m~2 gives stable beam-optical conditions, i.e. symmetric
solutions exist. If we use (6.48) or (6.49) to calculate the emittance e, for various
values of k, we obtain the dependence shown in Fig. 6.5. It is noticeable that
gz 18 reduced by almost two orders of magnitude as the quadrupole strength is.
increased from the lowest stable value up to the maximum. Relatively strong
quadrupoles are thus required in order to achieve small emittances.

The minimization of the emittance by the use of strong quadrupoles reaches
a hard limit, as may be seen from Fig. 6.6, which shows the behaviour of the hor-
izontal and vertical chromaticities. Above k& = 1.3 m~2 the vertical chromaticity
increases sharply. To compensate for this effect, strong sextupoles are then re-
quired which drastically reduce the dynamic aperture. It clearly makes no sense
to continue to reduce the emittance by increasing the quadrupole strength still
further. ,

Modern storage rings with extremely small emittances, specially designed as
sources of synchrotron radiation, all operate at this emittance limit imposed by
the chromaticity. Very expensive arrangements of sextupole magnets are some-
times used in order to extend this limit as far as possible.

6.4.1 The lower limit of the beam emittance: the low emittance
lattice

Although increasing the quadrupole strength generally results in smaller emit-
tances, it is far from clear that this approach leads to the lowest achievable value.
In the following section we will calculate the theoretical minimum emittance, us-
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bending magnet

Fig. 6.7 Form of the optical functions in a bending magnet for given initial values
Bo, ao, Do and Dy.

ing a few necessary boundary conditions. It is sufficient to consider the beam
optics in only one bending magnet, assuming for the sake of simplicity that the
optical functions have the same form in every other bending magnet. This as-
sumption is justified by the symmetrical design of most extremely low emittance
storage rings. We will also consider only planar machines, which restricts the -
problem to the horizontal plane. :
The bending magnet is fully described optically by its bending radius R and
its length [. If at the point sp = 0 at the beginning of the magnet the amplitude
function is given by the values By and ag and the dispersion by Dy and Dy,
then the evolution of these functions through the rest of the dipole is uniquely
defined (Fig. 6.7). According to (6.48), the emittance is then also uniquely fixed.
The minimum beam emittance can be determined simply by varying the starting
values of the optical functions until the minimum emittance value is found. I
principle it is possible to vary all four initial values Gy, ag, Do, and Dj. It
however, useful to insert a straight section on one side of the magnet, in which
the dispersion and its gradient go to zero. The undulator or wiggler magnet
is then installed on this side. As these magnets produce intense synchrotron
radiation, a non-zero dispersion in this region would significantly increase the
emittance. Requiring a zero-dispersion section imposes the initial values Dy =0
and Djj = 0. The equations (3.102) then give the evolution of these functions in
the dipole magnet:

s s
D(s) = R (1 — cos E) ~ 3R
D'(s) = sm% % (6.50)

The above approximations are generally justified, since the length of the magnet
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is small compared to the bending radius and so the condition s/R < 1 virtually
always holds. Only the initial values of the beta function may now be varied in
order to minimize the emittance. For simplicity we will neglect weak focusing,
which in general only has a very small effect on the emittance. From the point of
view of beam focusing, the dipole magnet effectively behaves like a drift region,
the transfer matrix M of which is given in in (3.72). Using the initial values 3,
and ao, (3.149) yields the transformation
—Q 1 0
) (1), e

(G ) = (o) (5 3

7(s)
from which we directly obtain the form of the optical functions:

Bls) = fo—2a0s+08’
a(s) = oap—s (6.52)
v(s) = 7o = const.

Using the dispersion function (6.50) and the beta function (6.52), equation (6.48)
allows us to specify the function H(s), important for calculating the emittance:

H(s)

I

¥(s)D?(s) + 20(s)D(s) D' (s) + B(s) D" (s)

1;2 ('y s* — s +ﬂos)

If

(6.53)

If we again assume that all the bending magnets in the ring are identical and
that the damping number J, = 1, it then follows from (6.48) and (6.53) that

l

3
o 1 l Yl o  Po
founedd —_— d = —_— - N
Rl_/ s=0" (R) (20 FEREEY (6:54)
8]
with P
C,=——— =3832x10"13
T 324/3mec m

Recognising that the ratio /R = © corresponds to the bending angle per dipole
magnet, we may write the emittance in the form

Yol o | B
%zqf@<%—f+£)

(6.55)

Since © enters this expression raised to the third power, it is clearly better to
use many periodic cells with short bending magnets, rather than fewer cells with
relatively long dipoles, if the aim is to keep the emittance small. The relation
€ o ©3 holds for all possible periodic magnet structures.

Since the magnet structure and the beam energy are fixed, the emittance
in (6.55) is now only a function of the initial values By and oy of the optical
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functions. The theoretical minimum allowed by these optical functions is then
obtained in the usual way using the conditions

Bee _ , 0 (140l a0 fo
dog \ By 20 4 3
Oe, 1+a? 12 1)
B

80[() -
5 A (5w
with 4 = C,v203. Solving these two equations yields the initial values corre

sponding to the minimum possible emittance for given bending magnets. The
solutions have the very simple form o

3
24/=1=1.5491
J3-remt
V15 = 3.873

Using this principle, R. Chasman and K.G. Green have suggested a magnet -
structure specially developed for synchrotron radiation sources with extremel
small emittances [64]. This is shown in Fig. 6.8, together with the associ-
ated optical functions. The example shown here is taken from the planned -
Japanese project HiSOR [65], which has beam energies of up to Fnax = 1.5
GeV. In this design the minimum possible number of quadrupoles are used.
The 12 bending magnets each have a length of [ = 2.18 m and a bending an
gle of ® = 0.5236 rad. These values give a minimum theoretical emittance o
Esheor. = 6.68 x 1078 mrad. The actual emittance of the planned beam optics i
somewhat larger, namely ;a1 = 7.89 x 1078 m rad. The difference arises from
the use of different initial values, namely ag = 1.54 and By = 2.82 m, instead o
the optimal values given by (6.58). ‘

This modification is used because a system of beam optics developed in strict -
accordance with the conditions (6.58) would have an extremely high chromaticity.
Mainly as a result of the large value of g, the beta function is strongly divergent -
outside the bending magnets, necessitating very strong quadrupoles for focusin
and also leading to large beta functions. Together these effects result in high
chromaticity, which cannot be compensated for by the use of sextupoles withou
drastically reducing the dynamic aperture. A further difficulty arises from the
need for zero-dispersion sections to house wigglers and undulators, which mean
that there are few suitable places available for sextupoles.

Because of these complications, there are no existing or planned storage rings.
which strictly satisfy the conditions given in (6.58). Compromises must be found
in order to achieve long beam lifetimes and stable, reliable operation, and these -
almost always entail some reduction in op. Fortunately the dependence of the
minimum emittance upon «q is relatively flat, and so reducing its value only
causes a very small increase in the emittance, as can be seen in the example .
shown.

and

(6.57)
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(6.58)
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Fig. 6.8 One cell of a magnet structure based on the principle of R. Chasman and
K.G. Green. The optics are symmetric about the centre of Q3 and there are disper-
sion-free sections at either end. The beta functions 8, and (. are shown, along with
the dispersion Dy,. ‘

Nowadays electron storage rings designed especially to produce synchrotron
light are almost always based on the Chasman-Green principle, but with the
following modification: in general more quadrupoles are used per cell than are
shown in Fig. 6.8, to give greater flexibility in the beam optics and to allow a
variety of choices of wigglers and undulators to be installed, depending on the
particular requirements of the experiment. A modern example is the European
Synchrotron Radiation Facility ESRF in Grenoble, which can reach beam ener-
gies of up to 6 GeV and contains a total of 32 straight sections, 30 of which can
be used to house wigglers and undulators [45].
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In Section 1.4.2 we saw that for a high-energy physics experiment at a colliding-
beam storage ring, the rate of particle production is given by the simple expres-
sion )
N, =0y, L. (7.1)

Here oy, is the interaction cross-section of the physical process under study. This
- is a property of nature and so is fixed. £ is the luminosity, which describes how"
effectively the accelerator performs. The luminosity of course depends on the
machine parameters, and so can be varied in different regions of the accelerato

The unit of luminosity is defined as

1 10%] N,
c[ch s] _['[;fl—)“s_] oy

(7.2)
Nowadays processes with extremely small cross-sections are studied, namely
op < 1 nb. This means that high luminosities are required in order to complete
a measurement within a reasonable time. The total number of events collected
during a data-taking run is

Ny =o0p Ldt=o0p,T
run
The expression
7= / L dt
run

is called the integrated luminosity, often expressed in units of nb~!. In order to
get a feel for the quantities involved, let us consider as an example the luminosity
produced by the storage ring DORIS II at energies of around E = 5.3 GeV.
Average luminosities of (£) = 2.27 x 103! em™2 s~! were achieved over long

data-taking periods. The integrated luminosity per day is then

[ea -

day

(L) tday = (L) x 24 x 3600

(7.5)

To calculate the luminosity we project the particles, which are all distributed in

= 1.961 x 10%® cm~2 = 1961 nb~%.
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orbit-

Fig. 7.1 Particle bunches colliding at the interaction point (IP).

the longitudinal direction within a bunch, onto a cross-sectional plane (Fig. 7.1).
This reduces the problem to two dimensions. Since the charge distribution within
a bunch is Gaussian in all directions, the surface density of positrons on this
transverse plane is given by

_ 82N2 _ N2 .’EZ 22

- 0z0z  2moior P (nﬁ B W) )
Here N is the total number of positrons in a bunch and o7 , is the horizontal or
vertical cross-section at the interaction point (IP). Because the collisions occur
in a narrow region around the interaction point, in what follows we will be
interested in the values of the beam cross-section and optical functions only at
that point. For clarity we will follow the general convention and label values at
the IP with *. The probability that an electron in a surface element dA = dz dz

of the beam cross-section in one bunch will collide with a positron in the other
bunch is

Na (7.6)

no dx dz
dA

If we assume that the electron and positron beams have the same cross-section

at the IP!, then the number of electrons crossing the surface dA of the positron

bunch per unit time is

aw = oy (7.7)

= 0Op N2.

- bfrele $2 22
AN = ——— — —
1= 35 - :exp 2022 2 ¥ dz dz, (7.8)

where b equally-spaced bunches circulate with a frequency fre.. N7 is the number
of electrons in a bunch. Hence we obtain the differential event rate

——~——bfrevN1N2 exp (—12— — Z—z) dr dz
(2m)20%20%? o of? ’

de =0 dNyng = op (7.9)

1This condition is automatically satisfied in storage rings in which the two particle beams
bpth travel in the same beam pipe. There may be differences in machines with two separate
rings, each with different beam optics.
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which may be integrated using

“+o00

2 :
/ exp (—%) dy = /7o (7.10)
to give the total rate
- - bfreleNZ E
N, =o0p pr—— (7.11)

Comparing this with (7.1) yields the expression for the luminosity

N-
ﬁ_bN12

7.12)
dn ot o} ( 12)

freva
which we have seen already in Section 1.4.2. Because they are easy to measure

it is usually more convenient to use the average beam currents I; = N;efieyb
rather than the number of particles. The luminosity then takes the form

1 Lb
C4Amel freyb orok’

We immediately see that the essential requirements for high luminosity are high
currents and very small transverse beam dimensions. Note that the probability -
of collision in each bunch crossing is extremely small, and only a few particle
in each bunch will interact. The beam cross-section is therefore usually chose
to be at least an order of magnitude smaller at the IP than at other point
around the ring. At the IP the beta functions lie in the centimetre range, wherea:
elsewhere values up to tens of metres are common. In order to achieve such tin;
beam dimensions, a special focusing system is needed on both sides of the IP.
Nowadays this powerful focusing is relatively easy to achieve using the method
developed in Chapter 3. The key problem is the restriction of the beam currents
which is the subject of the following section.

7.1 Beam current restriction due to the space charge effect -

Electrons lose a certain amount of energy AFE, per revolution in the form of
synchrotron radiation. This lost energy must be replaced by an average RF.
voltage U = AE, /e. For an average beam current Ipeam the power required i
Prr = Ipeam U. The RF supply to an accelerator is always limited by cost, and .
this restricts the maximum attainable currents. Once this limit is reached, it ca
in principle be extended further by installing additional power generators an
cavities.

Another limit can arise, due to beam instabilities in which the electromagneti
field induced by the beam in the vacuum chamber and accelerating sections the
acts upon the beam itself. A type of feedback can occur, leading to rapidly
growing oscillations which result in partial or total beam loss. These fields gro
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Fig. 7.2 Deflection of an electron due to the space charge of an oncoming bunch.

in proportion to the beam current and reach a critical strength when the current
exceeds a certain threshold. Stable operation is possible only below this critical
threshold, which in many cases can be raised by careful design of the vacuum
chambers and by active and passive damping mechanisms.

The third and most significant current limitation is due to the space charge
effect. During collision, the electromagnetic field around one bunch acts upon
the particles in the other bunch, deflecting them out of orbit by an amount
proportional to the beam current. Above a certain value the motion of the most
strongly deflected particles becomes unstable and they are lost against the wall
of the vacuum chamber. This current limitation in colliding beams due to space
charge was first studied by F. Amman and D. Ritson [66] and is also known as
the Amman-Ritson effect. To look at this effect quantitatively, let us consider a
single electron in a bunch, travelling at a separation r» = (=, z) from the orbit
through an oncoming bunch. The electron is deflected by the field due to this
bunch (Fig. 7.2).

In order to calculate the space charge forces we move to the centre of mass
frame K’ of the electron bunch. Here there is of course only an electric field
E' produced by the electrons, which are at rest in this frame. If we move to the
laboratory frame K, then the Lorentz transformation now gives both electric and
magnetic fields. We thus separate the field components B, , E| perpendicular to
the direction of particle motion from the components By, E) which run parallel
to it. The fields in the laboratory frame are then

E, =

TEL E| = E|
o ’
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Only the transverse fields B, and E, are involved in the space charge effect,
since they are the only components which change the focusing of the beam. Ag
the electron travels through the positron bunch it feels a focusing force

F, = —e(EJ_‘i_'UlXB_L)
= —¢ {'yE'l + v ¥ (012 vy X El)] (7.15)"

= —e(l + ﬂlﬂz) E,.

Since the particles used in experiments are extremely relativistic, 81 = [y &~ 1
and hence

4\
® Y

F, =-2F,. (7.16)

The electrical and magnetic fields therefore contribute equally to the focusing,y
To continue the calculation let us again assume a Gaussian charge distribution
inside the bunch and write the charge density in the centre of mass frame K’ in
the three-dimensional form

Y cylinder of radius r.

, "o eN B x? B 22 (8" = sp)? coordinates. Using Fig. 7.3 we may then directly calculate the charge
p(x,2,8)=rmmm———ep|l 55553 |- (7.1
(2m)3/20,0,0), 202 202 20",

dg=p'(r,s)2r odods
Here it should be noted that o7, , = 0, , and o = 0. 5 is an arbitrary reference ’

point on the beam axis. In the centre of mass frame the bunch length o} = vo, is.
much greater than its transverse size, and so we can effectively regard the bunch:
as an infinitely long charge distribution, with the charge density varying only
very slowly along the beam axis s'. It is then useful to rewrite the expression for
the charge density (7.17) in the form

P (z,2,8) = A(s') exp (_ A ) | (7.

202 202

A = 2y (_(5;30)_2) .

(27)3/20,0,0", 202
Using this charge density we can then calculate the field strength at the pos
tion of the electron, and hence determine the strength of the focusing force. If;
however, we start from the general case of a beam with an oval cross-section
at the IP, i.e. 0 # 0, then the Gaussian distribution function in (7.18) makes
the computation of the integral very time-consuming. We will therefore make a
considerable simplification and assume here that the beam is circular. This is
certainly not true in general, but it allows us to explain more simply the impor-
tant physical ideas behind the method. If we insert the value 0 = 0, = o, for’
the transverse cross-section of the beam into (7.18), then using r? = 22 + 22 we
obtain

r to be

T

2
Aq(s') =21 A(S) As'/exp <~'Q—) odo.
0

202
Integrating by substitution we obtain
with 2
Ag(s') = 27 A(s') 0° [1 — exp (—2—7'—5)] As'.
o

Applying Gauss’s theorem over the surface of the cylinder gives

/
E\(r)2rrAs’ = ——AQ(S ),
=)

which yields the electrical field strength at the surface

Ag(s")
E =
1) 2wegr As’

Inserting (7.19) and (7.23) into this expression gives

N I )2 2
By =—N (_(8_80)_) [1_exp <_27"_2
g

(2m)3/2eq 7 o, 20é2

p(r,s') = A(s') exp <—£—2) .
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Fig. 7.3 Calculating the charge within a

Since we have assumed the beam is circular it is convenient to work in polar

(7.21)

contained within a cylindrical shell of radius ¢ and thickness dg. From this we
may immediately calculate the charge within a cylinder of length As’ and radius

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)
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Using the relations s’ = v s and o}, = yos we now transform this field strength
into the laboratory frame and obtain

eNN. ' s—s50)2\ 1 r?
BL(r,) = 7B (r5) = (s oy P <_( 20_53) ) : [1 —exp <_W>] ,
(7.27)
In what follows we will calculate the influence of the space charge effect to first
order only. We therefore only consider electrons travelling at a very small distance
from the beam axis as they pass through the positron bunch. If r < ¢ we can
expand the exponential as

2 2 1/ r2\2
oo () = - (Y
202 202 2! \ 202
2
r
1-—. 7.2

%52 (7.28)

Under this approximation we finally obtain the following expression for the trans-

verse electrical field strength

Bi(rs)= —N2 o (—wﬁ) L (7.29)

(2m)3/2¢q o 2042 202" g

The electron is accelerated by this field and its transverse momentum changes

by the amount

d
dp, = Fidt = F, 2.
2c

The factor 2 in the ratio ds/2¢ comes from the fact that the two relativistic
bunches are travelling with equal velocity towards one another. If we now in-

sert the force (7.16) into (7.30) and use the field strength (7.29), we obtain the

momentum shift
eF 1

dpJ_ = c ds :
e? Ny 1 (s —80)? :

= - ———F ] ds. 7.31)
dregco? oo, exp( 2042 5 (7.31)

To obtain the total change in momentum we must integrate over the whole orbit.

Since the Gaussian distribution dies away very rapidly for large |s — so], we allow,

the integral to run to +oco. The integral gives the simple result

(5 50)
— =5 - 2 83 *
/ eXp( i ) ds=V2ro (7

which finally yields the total change in transverse momentum

e2Ny T

Ap(r) = C 2megc 202

— (7.33)
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Ay = BP_ N2 o
P 2w peeg 202

Ay = BP__ €Nz (7.34)
P 2mpeey 202’ '

where p is the particle momentum. Comparing this result with the change in
angle Az’ = klz undergone by a particle at a separation z from the beam axis
passing through a quadrupole of length I, we see that the space charge of the
positron bunch has the same focusing effect on the electron as a quadrupole of
integrated strength 2y 1

€” Vg

2w pceg 202° (7.35)
Naturally the electron bunch also acts on the positrons in exactly the same way.
This added quadrupole effect changes the focusing and hence also the tune @ ,
of the ring. The beam-beam interaction, due to the electromagnetic interaction
between the bunches as they cross, has the same effect. If we remove the minus
sign in (7.35) the electron trajectory will be bent towards the orbit, that is to
say the beam will be focused, which according to (3.274) leads to the positive
tune shift

kol = —

- 62 Ng ,6*
A iz = T,z krl P T,z . .
@, 4 812 pceg 202 (7.36)

Here the beta functions have the value ; . in the interaction region, which we
assume to be nearly constant over the length of the bunch. As the number of
particles IV; in the bunch (i = 1, 2) increases, so the tune shift increases until the
particles encounter a stronger optical resonance and are lost. This is the ultimate
limiting effect of the space charge.

If we drop the simplifying assumption that the beam is circular and allow
the horizontal and vertical beam dimensions to differ, i.e. o # o, then a rather
lengthier calculation leads to effectively the same result. In (7.36) we must simply
replace 202 by the appropriate expression, namely

oi(or +0%) horizontal
202 — (7.37)
o3(oy+0%) vertical.
For colliding beams of arbitrary cross-section the tune shift due to the space
charge effect is then

e’ Ny Bz

AQ, = z
@ 8n2pcey ok(ok + o)

e N, B

8m2pceg ox(ok 4+ 0%)’

In what follows we will again replace the number of particles by the beam current
using N = I5/(bfreve) and express the beam cross-section as o , = /4,05 .-
Recalling that E = pc and €9 = 1/uoc?, it then follows from (7.38) that

The horizontal and vertical components are obtained simply by replacing r by 2
or z. The resulting changes in angle of the electron trajectory are
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Ex0 _ k€w0

poec?I, B

AQ _ Ep = and €, = . (7.43)
z 812b frev B \/5—90_( /Ea:,B; + Szﬁ:) 1+ k& 1+k
Inserting these expressions into (7.41), we obtain the upper limits to the current
due to the space charge effect in both planes:
poectly B ’
AQ, = (7.39)

I X,y = e A m;
' . ’ max,x MOeCQ(l n k) ﬁ; Q ax,z
For very large values of AQ the particles encounter optical resonances (Sec- )
tion 3.14) and are lost. This reduces the beam lifetime and causes the back- 87%b frev EezoVk (\/ By + kﬂ;)
grounds in the particle detectors to increase drastically. Experience in electron- Tinax, AQmasx,z- (7.44)

Hoe(1+ k)/B

Naturally the current limits are not usually the same in the two planes. The
vertical limit is generally lower and it is this which defines the maximum attain-
able beam current. Hence we will only use the second equation of (7.44) in what
follows.

The maximum current depends strongly on the particle energy E, but this
dependence is not yet manifest in (7.44) because the emittance is also energy-
dependent. We therefore introduce a normalized emittance & which corresponds
to the value of the emittance at Ey = moc®. For any value of the energy and
hence v = E/Fy, the emittance is then given by (6.48)

positron storage rings has shown that the tune shift should not be much greater
than '

| AQumax ~ 0.025.

Values up to AQ = 0.04 have been achieved in very carefully configured storage
rings, but these conditions tend to be rather unstable and difficult to reproduce
According to (7.39), the space charge effect between two interacting beams thus
restricts the maximum current per bunch to the value

872D frow By /5 (/22 + /o)
Imax,:c = AQmax,z‘
poec?+/ B
872b frow B/Ez (/23 + /2255 )
Imax,z = AQmax,z
poec? /3%

At this point we must remember the vertical emittance ¢,. In an ideal planar
machine this would in theory be zero, but in practice there is no such thing-
a perfectly planar beam, and when calculating the luminosity we must assun
a non-zero value. For one thing, the horizontal betatron oscillations are coupled
to the vertical plane due to higher-order multipole fields or to slight rotations
of the quadrupoles about the beam axis. Hence the beam always has a certain
vertical extent. In addition, vertical disturbances of the orbit can produce vertical
dispersion, which in the bending magnets gives rise to betatron oscillations due
to quantum emission.

The term emittance coupling is usually used to describe all these effects which
can increase the vertical beam size. It is expressed quantitatively through the
coupling factor?

€x,2 =V E0,z. (7.45)

(7.41) Replacing E by ymgc? in (7.44) we obtain

87rzbm0frev73éw0\/g(\/@ + V kﬁ:) A
poe(1 + k)\/BZ S

Maximum luminosity is of course achieved when both colliding beams reach the
maximum current allowed by the space charge limit, i.e. I; = Iy = Ipax. Inserting
the expression for the maximum current (7.46) into the definition of luminosity
(7.13), we thus obtain the maximum possible luminosity for a particular system
of beam optics at a given beam energy

(7.46)

Imax =

2
167°b vy Es0V/E (/i + /R )
24 T AQR,. (7.47)
poet(1+k)\/B; B

['max =

k=2
€x For practical purposes it is more convenient to express the energy in units of

GeV and the beam current in mA. It is also usual to express the luminosity in

em™2s~!. With this in mind let us also define the emittance €0 normalized to

the energy F =1 GeV, so that the emittance at an arbitrary energy is given by

If an ideal machine with zero vertical emittance has a theoretical horizontal value
of €40, then a finite coupling 0 < k < 1 will result in emittances of

2In the USA the coupling is often defined as the ratio of the beam dimensions rather th
of the emittances.

€z0 = E? é40, with E in GeV. (7.48)
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Fig. 7.4 Double logarithmic plot of the energy dependence of the maximum luminosit
allowed by the space charge effect. Above a particular limit (in this example above 5
GeV) the RF supply is no longer powerful enough to maintain the required high currents
and the luminosity falls off sharply.

If we now collect all the physical constants into one number, we obtain the;:
following more convenient forms of (7.46) and (7.47): ;

bfrevE?’éacO\/E(\/B—;:‘{“ kﬁ;) A
(1+k)y/B:

Iax [mA] = 699.06 with E in GeV

maxy

(7.49
and

2
bfrevE*00VE( /s + /KB o
o Son ( = )AQ2 (7.50
(L+k)y/B; 85

max*

In the formulae (7.47) or (7.50) we see the very strong energy dependence of th
luminosity, £ o< E*, which can also be seen from the curve in Fig. 7.4. Her
should be kept in mind that the current must also increase with the third powe
of the energy, as formula (7.46) shows. Once the maximum energy of the storag
ring is reached it is no longer possible to increase the beam currents further, since
the RF power supply is already operating at maximum capacity. Indeed since the:
rate of energy loss through synchrotron radiation increases with E*, any furth
increase in beam energy necessitates a sharp reduction in beam currents.
luminosity falls off sharply as a result, as can be seen in Fig. 7.4.

In the luminosity formula (7.47) the emittance coupling & is in principle a fre
parameter. This raises the question of whether there is an optimal value of th
coupling for a given system of beam optics, that is to say for given beta function:

Lax [cm™2571] = 1.515x10%2

The ‘mini-beta’ principle 213
B: and B;. We can answer this question if we assume that the maximum tune
shift is the same in both planes, i.e. AQmax » = AQmax,-- The optimal luminosity
is then achieved when the current limitations due to the space charge effect are
reached simultaneously in the two planes. We simply set the limiting currents
Imax,z and Inax . to be equal in (7.44) to obtain the optimal emittance coupling

'6— (7.51)

x

kopt =

Inserting this into (7.44) and using €,0 = ¥2&,0 we obtain the maximum current

872b frovmo Y é.
Imax = f ev0Y F20 AC?max (752)
Loe
In this situation the beam cross-section at the interaction point is
. «_ Bzl
Oy 0y = " €20 7.53
z -z ,8; + ﬁz zUs ( )

which along with the maximum current (7.52) gives a maximum luminosity from
(7.13) of

1673b frou iy 20 (5 + 55 )

1e* B33

The beam energy is not a parameter which can be tuned to optimize the lumi-
nosity, since it is prescribed by the physics of the process under study. In order
to achieve the highest possible luminosities, the emittance €9 should first of all
be large, limited only by the available aperture in the vacuum chamber. In addi-
tion, the maximum value of the tune shift AQ .« can be optimized within certain
limits by careful adjustment of the beams. Finally, the luminosity depends very
strongly on the vertical beta function 3}, which can be made extremely small

by suitable beam focusing, and in fact this method has proven to be by far the
most effective.

AQ%.

‘Cmax =

(7.54)

7.2 The ‘mini-beta’ principle

As already mentioned, it is relatively easy to achieve very small vertical beta
functions at the interaction point (IP) using the established principles of beam
optics (Chapter 3). Values as low as 8 < 3 are used to operate experiments
in electron storage rings. When developing a system of optics and a magnet
structure, it is simplest to fix the beta functions at the IP and then arrange
the magnets and the beam optics so that the optical functions remain within
workable limits. In doing so it is important to remember that in order to fully
measure a physical process we need to surround the IP with a particle detector
which covers as much of the solid angle as possible. Such detectors, which contain
a variety of counters and sub-detectors, are nowadays several metres in size
in each dimension. To minimize any interference between the detector and the
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Fig. 7.5 Standard arrangement of focusing magnets around the interaction point (IP).','
A space is kept free for the particle detector, in order to avoid interference with the

accelerator. In this arrangement the separation is a > 2.5 m.

accelerator, a space around the IP is kept completely free for the experiment, as

shown in Fig. 7.5.

In this standard configuration with a separation of ¢ > 2.5 m between the
IP and the first vertically focusing magnets, beta functions of 5} ~ 10 cm are
achievable, giving sufficient luminosities for current needs. However, any further

reduction of the beta function below 10 cm creates major problems.

From the point of view of beam optics, the empty interaction region between
the two quadrupoles Q1 is a pure drift section with a symmetry point at the’\*
IP. If the vertical beta function has the value 3; at the IP then, according to

(3.151), by the beginning of the first quadrupole (s = a) it reaches the value -
2

Bulo) = 62 + 7.
z

Extremely small amplitude functions at the IP will result in correspondingly larg
values at the first quadrupoles. Besides the aperture restriction, the chromaticit;
is again the major problem. The first quadrupoles Q1 must have a focal poit
at the IP and so must be relatively strong. If at the same time the beta functio
in the quadrupole is large then it makes a correspondingly large contr1but1on b
the chromaticity of

(7.55

- E/ﬁz(s)kds.
o

Reducing (3 therefore strongly increases the chromaticity induced by th
quadrupoles nearest to the interaction region. The lower limit of 8} is reach
when the increase in chromaticity is no longer offset by the associated reductio
in the dynamic aperture. A numerical example is given in Table 7.1. In this ex
ample, safe operation of the storage ring is no longer possible at values beloy
B: = 10 cm. In order to reach even smaller values and hence from (7.47) t
achieve significantly higher luminosities, the sharp division between experimen
and accelerator must be abandoned and the first vertically focusing quadrupol
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Table 7.1 (] dependence of the vertical beta function in the quadrupole Q1 and of
the resulting contribution to the chromaticity. In this example the separation a = 2.6
m and Q1 has a strength £ = 0.6 m~2 and a length [ =1 m.

f; [m] f(a) [m] AL,
1.00 6.8 -0.32
0.50 13.5 -0.65
0.30 22.5 -1.08
0.10 67.6 -3.23
0.05 135.2 -6.46
0.03 225.3 -10.77 (1)

moved considerably closer to the interaction point. This means that the beams
are focused earlier and the beta functions are prevented from growing to critical
values, keeping the chromaticity within manageable bounds. Placing the first
quadrupoles about 1 metre from the IP allows minimum beta functions as low

a8 (3; =~ 3 cm. Because of these small values, this technique of arranging the

magnets near the interaction point is termed the “mini-beta’ principle.

This concept was first tried successfully in the DORIS storage ring, and the
luminosity increased by more than an order of magnitude compared to the stan-
dard layout. The arrangement used within the ARGUS particle detector is shown
in Fig. 7.6. The two ‘mini-beta quadrupoles’ are integrated into the iron yoke of
the detector, reducing their separation from the IP to ¢ = 1.28 m. To allow the
measurement of particle momenta the detector is equipped with a large solenoid
which generates a magnetic field parallel to the beam axis with a strength of
B =0.8T. Of course the quadrupoles must not be exposed to this field, which
would completely saturate them and considerably reduce their focusing power.
They are therefore surrounded by compensating coils which produce a field ex-
actly equal and opposite to that in the detector, thus keeping them in a region
of effectively zero field.

A poss1b111ty currently being considered is to use superconducting
quadrupoles placed even closer to the IP — separations of ¢ = 0.5 to 0.7 m
have been discussed — and hence reduce the beta function at the IP to values
of 37 = 1 cm and below. It must be borne in mind, however, that according to
(7.55) this would result in a clear variation in the beta function over the bunch
length of a few centimetres. If the bunch length is only ¢, = 1 cm, for exam-
ple, then for 87 = 1 cm the value at the head and tail of the bunch is already
B.(0s) = 2 cm. The effective beta function which determines the space charge
limitation is therefore considerably larger than 8%. It clearly does not make sense
to go to even smaller values. A rule of thumb for the smallest reasonable beta
function at the IP is

B; > 1.5 X o,. (7.57)

Shorter bunches can be achieved by using higher voltages in the accelerating
sections, although this of course means higher costs.
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EL J:rLﬁJ-ﬂ— """" It was mentioned in Chapter 2 that particularly intense and tightly collimated
$ : synchrotron radiation can be produced by special magnets consisting of a peri-
— odic series of short bending magnets (Fig. 2.7). Such magnets are termed ‘wig-
compensating vertex detector glers’ and ‘undulators’. In Section 8.2 we will discuss when a magnet of this kind
coils ' is a wiggler and when it is an undulator, but to begin with we will not make any
g distinction between the two types and will talk generally about W/U magnets.
™~ drift chamber
: : 8.1 The wiggler or undulator field
ironyoke ~ | N ﬁU oot i Tuonomp : The field of a W/U magnet is periodic along the beam axis, with a period length
! Au. The potential may thus be written in the form

s

o (s, z) = f(2)cos (27—) = f(2) cos(kys). (8.1)
Fig. 7.6 ‘Mini-beta’ arrangement of the DORIS storage ring in the ARGUS particle Au
detector. The two vertically focusing ‘mini-beta quadrupoles’ are integrated into the
yoke of the detector magnet. Special compensating coils maintain a field-free region

around the quadrupoles.

For simplicity it is assumed here that the magnet extends to infinity in the z
direction, i.e. p(x) = const. The unknown function f(z) describes the vertical
distribution of the field. Once again, this potential must satisfy the Laplace
equation

VZp(s,z) = 0. (8.2)
From this it immediately follows that
d*f(2) 2
with the solution
f(2) = Asinh(kyz2). (8.4)
Inserting this into (8.1), we obtain the potential
@(s, z) = Asinh(kyz) cos(kys) (8.5)
and the vertical field component
B,(s,2z) = -g—f = kyA cosh(kyz) cos(kys). (8.6)

To determine the constant of integration A, let us start with the flux density Bo
in the middle of the poletip (Fig. 8.1). This point has the coordinates (s, z) =
(Au/4, g/2). It then follows from (8.6) that
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Fig. 8.1 Determination of the constants of
integration from the field value By in the
middle of the poletip. o

g) = k,Acosh (k‘ug) = k,Acosh (w)\iu)

By = B, (0 (8.

' 2

and B,

A - —‘g—.
ky cosh (71'-5\—1;)

Inserting this into (8.6) yields

B.(s,z) = B cosh(kyz) cos(kys)
cosh (ﬁ%)
and similarly -
Bi(s,2) = Bo sinh(ky z) sin(kys). (8.1

cosh (7(%)

Along the beam axis the periodically varying field thus has the peak value

(8.11)

which critically depends on the ratio g/Ay. This dependence is shown by t
curve in Fig. 8.2. If, for a given period length A,, the gap height g between
the poles of the magnet increases, then the field at the beam falls rapidly. For
very short period lengths it is therefore necessary to make the gap between the
magnet poles small as well. The minimurh allowed size of this gap is of course
determined by the transverse size of the beam. In what follows we will only really
be interested in the field along the axis (z = 0). From (8.9) and (8.11) we can
write this field in the simple form

B.(s) = Bcos(kys).
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Fig. 8.2 Dependence of the peak field along the beam axis on the ratio g /.

u

Most W /U magnets are designed to produce approximately this field shape.! For
more information about the theory, use, and design of W/U magnets the reader
is referred to the review articles by H. Winick et al. [67, 68, 69] and G. Brown
et al. [70].

There are essentially three different designs of W/U magnets: electromag-
nets, permanent magnets, and hybrid magnets. These are sketched in Fig. 8.3.
The simplest type of W/U magnet uses conventional soft iron poles excited by
current-carrying coils (Fig. 8.3 a). The magnet strength can be easily varied by
changing the applied current, giving maximum fields of up to B ~ 2 T. However,
this design only allows relatively long periods of at least X, ~ 25 cm. For smaller
periods the space available for the coils between the poles becomes ever nar-
rower and the current density required becomes ever higher. The ohmic heating
increases rapidly and it becomes difficult to cool the coils.

In order to achieve field values along the beam of significantly more than 2 T,
superconducting magnets must be used. Normally high-field magnets of this type
only have a few periods and achieve field strengths of up to B ~ 6 T along the
central plane. This results in an electron trajectory with a very small bending
radius R. Equation (2.27) gives the critical wavelength

A= dm R dme(mec?)® 1 (8.13)
3 43 3eE?2 B

For a given beam energy it is thus possible to use a high field B to push the
critical wavelength of the synchrotron radiation spectrum down to smaller val-
ues. Of course, this is especially effective if superconductors are used. For this

1Asymm_etric W/U magnets with a more complicated field shape are also sometimes used.
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Fig. 8.3 The various designs used to construct W/U magnets. (a) shows a cross-section
through a classical electromagnet with conventional iron poles; (b) illustrates the pro- -

duction of a periodic field by an arrangement of alternating permanent magnets and (c)
shows a ‘hybrid’ magnet, a combination of iron poles excited by permanent magnets.

reason, such superconducting W/U magnets are often called wavelengthshifters.
Magnets of this kind are routinely used in electron storage rings [71, 72].
Nowadays W/U magnets with period lengths of only a few cm are used.

This is not possible using electromagnets, for the reasons given above. In recent.

years permanent magnets have instead been employed with great success, with
samarium—cobalt (SmCos) widely used. This has a remnant field of B, ~ 0.8 —
1.0 T. In a magnetic field samarium—cobalt behaves almost as a non-magnetic
material with p, = 1, and so it may be used inside other magnets without any
problems.

W/U magnets are constructed from square-ended blocks of this material in
which the field runs parallel to the face of the block. Four such magnet blocks

are needed to form each W/U pole (Fig. 8.3 b). The sinusoidal field is produced

by arranging them such that the field direction of each individual block, shown
by the arrows, is rotated by 90° relative to the previous one. Very long magnets
with many periods may be constructed in this way, making use of the fact that
the field in the gap remains constant if the dimensions of the magnet are scaled
linearly. B

Since the pole strength is constant for a permanent magnet of fixed geometry.
the field strength of a W/U magnet built in this way can only be altered by
varying the size of the gap g, as (8.11) shows. To allow this, the two rows of
permanent magnet poles are mounted on supports which may be moved in or
out by stepper motors. This mechanism must be very sturdy because the forces
acting between the magnet poles are relatively strong, often as great as sever
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10* N. The first samarium-cobalt W/U magnet was built and successfully used
at the Lawrence Berkeley Laboratory [73]. Nowadays this type of magnet is
commercially available and can be built to the customer’s specification.

A very interesting and flexible variant is the hybrid magnet, illustrated in
Fig. 8.3 (c). Here the poles mostly consist of highly permeable iron, and the
permanent magnet blocks are arranged with alternating polarity between them.
If several such magnet blocks are arranged on top of one another, the flux from
each one accumulates in the iron poles, resulting in considerably higher fields
than can be achieved using the permanent magnets alone. If we assume a mag-
net with poles made of highly-permeable iron, using samarium—cobalt with a
remnant field of 0.9 T as a magnetic material, the peak field in a hybrid magnet
is given to a good approximation by the expression

Bo [T] = 3.33 exp {—i (5.47 ~18 i)J . (8.14)
Au Au
Field strengths of up to By > 2 T can be achieved using this technology.

The W/U magnets are installed in specially reserved straight sections of
the storage ring (Chapter 2), often termed insertions. If there is a non-zero
dispersion in such a section, then according to (6.47) the function H is also non-
zero, as explained in Section 6.4. Switching on the W/U magnet, which is of
course a bending magnet, thus has the undesirable effect of increasing the beam
emittance. Consequently, the insertions must have zero dispersion.

Furthermore, the W/U magnet must not cause any bending of the beam or-
bit, even though its field strength can vary widely during machine operation.
Otherwise, any variation in the magnetic field would also change the beam po-
sition, which is unacceptable for experiments with high position resolution. For
this reason, every W/U magnet must satisfy the condition

/ B.(s)ds =B / cos(kys)ds = 0 (8.15)

W/U
as strif:tly as possible. This is the case when

Au
52 =NAu + —- (8.16)

s1=0 and
2

with n = 1,2,.... The particle trajectory is shown in Fig. 8.4. The condition
(8.16) is fulfilled by inserting a half-length pole at the beginning and end of the
W/U magnet.? Since the poles are never all identical, they must be corrected
individually with thin iron sheets after the magnet has been completed. This
must be done to ensure that the condition (8.15) is satisfied over every individual
period as well as for the whole magnet.

2Tt is also possible to use half-strength poles but it is better to adjust the length, especially
for permanent magnets.
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Fig. 8.4 Arrangement of a W/U magnet in a straight section (insertion) of a stor-
age ring. The condition [ B.(s)ds = 0 is achieved by means of the half-poles at the
beginning and end of the magnet.

8.2 Equation of motion in a wiggler or undulator

As it moves through the W/U magnet, the electron is acted upon by the Lorentz
force

F=p=myv=cvxB. (8.17)

Since the magnet is assumed to have infinite horizontal extent, the magnetic
field has no B, component. In addition, we neglect the vertical component of
the electron’s velocity. Both these approximations are adequately satisfied in
most cases, allowing us to write '

0 Vg
B=| B, and wv=| 0 (8.18)
B, Vs

and it follows from (8.17) that

. —vsB, .
D= —0, B . (8.19)
me?y vy B,

If we again neglect the vertical component of the velocity (v, = 0), then using
i = v, and § = v, we obtain the following set of equations describing the coupled
motion in the s-z plane:

& = ———B,(s)
me?y
. (8.20)
. B,
3 mme’y (s)
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The electrons travel along the s-axis through the W/U magnet and encounter
the periodic field B,(s), which induces a horizontal oscillatory motion. The re-
sulting horizontal particle velocity v, in combination with the same magnetic
field, causes a periodic change in the longitudinal velocity. This is superimposed
upon the original particle motion along the s-axis and so has a further effect
on the horizontal bending. The problem of solving this coupled set of equations
can, however, be considerably simplified, since for relativistic particles the veloc-
ity vs along the s-axis totally dominates. We may start by directly calculating
the horizontal motion from this component, assuming v, to be constant and ig-
noring the modulation of the longitudinal motion. This modulation may then be
determined in a second step by calculating it directly from v, as a perturbation.
To form a picture of the basic features of particle motion in W/U magnets,
let us begin by calculating only the horizontal particle motion. Since to a good
approximation & = v, < ¢ and § = v; = B¢ = const, we only need to consider
the first equation of (8.20) in this case. Using (8.12) it follows that
= P8 o). (8.21)
Me7Y
As in the beam optics calculation, we again replace the time derivative by the
spatial derivative with respect to s via & = 2’8c and & = 2" 3?c?, and obtain

eB eB s

= - cos(kys) = — cos (271'—) . (8.22)
mefcy mefBcy Au

This equation may be solved by simple integration, in which we arbitrarily set

the constants of integration to zero, since the particular initial conditions do not

concern us. It then follows from (8.22) with 8 = 1 that

AweB

/ u .

z'(s) D sin(kys) (8.23)
\2eB

.’L'(S) = m COS(k?uS).

The maximum angle, which the particle reaches as it crosses the ideal orbit,

0,

s
\ /\’S—‘\\ [
T— Fig. 8.5 Particle trajectory in a W/U
magnet.

particle trajectory

is O, (Fig. 8.5). For s = nA, with n = 0,1,2,... it then follows directly from
(8.23) that

Ow = Thpay = — . (8.24)
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The dimensionless quantity

)\ueB
K = p— (8.25)

is called the wiggler or undulator parameter. The maximum trajectory a,nglé
thus has the form

O = —. (8.26)

In a W/U magnet with K = 1, the maximum angle the electron trajectory
makes with respect to the orbit is Oy = 1/v. This exactly corresponds to the
natural opening angle of the synchrotron radiation (Chapter 2). Until now we
have not drawn any distinction between wigglers and undulators, since they are
essentially built in the same way. The difference lies in the bending strength,
which we can now quantify using the convenient parameter K. Following the
general convention, we use the definition:

undulator if K <1 ie ©,<1/y ,
W/U magnet = (8.27)
wiggler fK>1 ie Of>1/y.

In undulators the bending is very weak, so all the radiation is emitted virtually

in parallel, with a very small opening angle. Wigglers, which are considerably

stronger, emit a fan of radiation. This fan is of course particularly broad in the
extremely strong superconducting wigglers inserted as ‘wavelength shifters’. Here
the wiggler parameter may be as high as K = 100 or above.

After this rather general introduction we now return to the set of equations-
(8.20), from which we wish to calculate the particle motion in a co-moving refer-

ence frame. Since the longitudinal velocity has a periodic modulation due to the
changes in motion caused by the v, component, we will choose a fixed average

velocity @, = ($) for the co-moving system. To calculate this we start with (8.23)
and (8.25) and write the horizontal particle motion in the form

2(s) = %sin(kus) — 0, sin(kus). (8.28)

Using & = Bcz’ and s = fBct gives
2(t) = BcOy sin(wyt) = ﬁc—v— sin(wyt)  with  wy = kyfe. (8.29)

For a finite horizontal velocity #, the longitudinal velocity component 5 is the
projection onto the orbit of the arbitrary but constant partlcle veloc1ty ﬂc,
shown in Fig. 8.6. This may be calculated according to 32 = (Bc)? — 4%, and
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Q)C

b
- Fig. 8.6 Projection of the particle ve-
S locity onto the orbit.
using 32 = 1 — 1/4? we finally obtain
) 1 32
5(t)=cy/1— (7 + 02> . (8.30)

The expression in brackets under the root is very small compared to 1, so to a
good approximation we may expand the root in the form

0 - pob(32)

= c{l—Z—;<1+Z—§¢2)]. (8.31)

We now insert the exphc1t expression for the horizontal velocity from (8.29) and

transform using sin?(z) = —(1 —cos 2z). The velocity projection along the beam
axis thus becomes
. 1 ﬂZ K2
s(t)y=c {1 ~ 57 [1 + 5 (1 — cos(2wut))] } , (8.32)
which consists of the average velocity
L 1 ,82 K2
and a small perturbing oscillation
cB?K?
As(t) = poe: cos(2wyt). (8.34)
The average relative velocity ,
. 8 1 K?
e 1
AT = 32 [1 + ] (8.35)

follows from (8.33), where to a good approximation we may set 5 = 1. From
(8.29) and (8.33) to (8.35) we obtain the components of the particle velocity in
the s-z plane

z(t) = ,Bc%{— sin(wyt)
. ; 2K2
) = Bfe+ poe: cos(2wyt). (8.36)
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From these expressions the coordinates of the particle in the laboratory frame
may be calculated by simple integration. The initial conditions are of no rele :
vance, and may be set to z(0) = s(0) = 0. With wy = kuyfc and 8 =1 we
obtain

K
t) = ——— cos(wyt)
=(t) kuy (
2
s(t) = Bret+ Sk’ sin(2wyt). (8.37) :

This motion is most striking when viewed from the electron centre of mass frame ‘
K*, which moves with the average velocity 3* relative to the rest frame. We thus
apply the transformation

T = T

s* = ~(s—fct) (8.38)

to (8.37) and obtain the equations for the particle motion viewed in a co-moving
reference frame

cos(wyt)
u
2

K= ,
() = Sk’ sin(2wyt). - (8.39)

These describe a closed path in the shape of a figure ‘8’, as shown in Fig. 8.7.
For very small values of K the extent along the s*-axis is very small, and es
sentially the only effect is a simple horizontal oscillation. As K increases the"i
horizontal amplitude increases linearly, but the modulation of the longitudinal
motion increases quadratically. Thus the ‘8’ becomes ever broader.

10°m

K=1.5

5
K=1.0
K=05

0

-5 | @

i Fig. 8.7 Particle motion in an undulator viewed :
-5 0 10°m 2 in a co-moving reference frame.
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8.3 Undulator radiation

As they pass through the undulator the electrons perform transverse oscillations
as a result of the periodic magnetic field. The oscillations have a well-defined
frequency, determined by the period length of the undulator. In the laboratory
frame this frequency is given by

Q== =25 g e (8.40)

For K < 1 the modulation of the longitudinal particle velocity may be neglected,
and we effectively have a pure oscillation in the z direction. In a co-moving frame
with the average velocity B* this frequency transforms according to

w* =" Q. (8.41)

In this reference frame the electron thus emits monochromatic radiation with
a frequency w*. This monochromatic radiation, which overlays the spontaneous
synchrotron radiation which is always present, is typical of undulators. For a
sufficiently large number of periods it can be several orders of magnitude more
intense than the normal synchrotron radiation. The production of this relatively
narrow-band monochromatic radiation at high intensity is one of the special
features of undulators. Wigglers with very large K values have almost none of
this radiation. This is because the strong bending causes the radiation to be
emitted in a broad fan, preventing the coherent superposition of the radiation
produced in each individual period.

The undulator radiation can of course only be observed experimentally in
the laboratory frame. Hence it is necessary to transform it from the co-moving
frame into the laboratory frame, using the relativistic Doppler effect. We consider
a photon of momentum p, emitted in the laboratory frame at an angle O to the
s-axis, as shown in Fig. 8.8. In the laboratory frame the energy and momentum
of the photon may be written in the form

X

y 2

@0 Fig. 8.8 Emission of a pho-
P> ton of momentum p in the
p s A - laboratory frame.
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E = hw
p = h_w’ (8.42)
c

where w is the radiation frequency. Using these expressions we can immediately
write down the photon four-momentum:

E/c E/c
| P | _| psin®o 3
Po=| 70 | = 0 : (8.43)
Ds pcosOg

This four-momentum transforms via a Lorentz transformation into a co-moving
frame with velocity §* and energy v* according to the relation

;i _ 0 10 0 | psin®g 8.44)
|1 o o1 o 0 (8.44)
Ps g 0 0 pcos Og

From this we immediately obtain the expression for the transformed photon
energy

E* FE By,
—=7"= =6 =y —(1-5 : 8.45)
- =77 B*y*pcosOp =y 2 (1 16} cos@o) (8.45)
With E* = hw* this becomes
hw* hw
=~ —Y(1—-4* . 8.46
5 v p (1 Iéj cos@o) ( )

Solving this equation with respect to w yields the required expression for the :

frequency transformation through the relativistic Doppler effect

(8.47)

w*

T 4*(1 = B*cos Q)

Wy

We now insert the frequency w* from (8.41) into this transformation equation

and obtain

Qw Wy Au 1

= - :> —_— = 8.48)
1~ B*cos©q ( :

Wy

2

w 3\;: 1—f*cos®q’

where : '

Aw = Au(1 — B* cos ©p) (8.49)

is the wavelength of the undulator radiation in the laboratory frame. In this .

expression we now replace 5* by the expression (8.35) and use the approximation
cos O & 1 — ©2/2, which is valid here since g ~ 1/v < 1. From (8.49) it then
follows that
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(1= cosO0) = Aq [1*(1—‘1ﬂ) (1_9_%

22 2
_ 02 1+K?/2
= A [1 (1 T3 T a2 + - (8.50)
2 2
2 22

This approximation is almost always well satisfied. In conjunction with (8.49) it
leads to the very important coherence condition for undulator radiation.

Au K2
Aw = W (1 + 7 + ’}’263) . (851)

The wavelength of the radiation is principally determined by the undulator pe-
riod Ay, the beam energy <, and the undulator parameter K. The wavelength
becomes longer with increasing angle ©y, i.e. there is a red-shift behind the
undulator as the distance from the beam axis increases.

For many experiments which use undulator radiation, the line width of the
undulator spectrum is very important. This is principally determined by the
number of undulator periods N,, with the length of a period denoted by Ay.
The total length of the undulator is thus L, = Ny Ay. The electrons enter the
undulator at the point so— Ly /2 and continuously emit radiation with a frequency
wy until they leave the undulator again at the point sp + L, /2 (Fig. 8.9). The
point sg marks the centre of the undulator. A wave train of radiation is emitted,
which may be described by the time-dependent function

r
2

u(wy,t) =

Wyt if T <t<
{ 0 €XP iy, if -5 <35, (8.52)

otherwise

viewed from a fixed position. The duration of the wave train is given by
T = Ny Aw/c. A finite-length wave such as this does not have a sharply defined

undulator

NA,

- \\ N, ‘ r >\
SR 15 O 1 JHWWNW\J _____ -

wave train

Sy - L2 So s,+LJ/2

Fig. 8.9 Finite wave-train of coherent radiation from an undulator.
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Fig. 8.10 Intensity distribution of the undulator radiation.

frequency, but instead consists of a continuous spectrum of partial waves whose
amplitudes are given by the Fourier integral

+o00

Alw) = T/v_;;f / w(wy, t) exp(—iwt) dt. (8.53)

Inserting (8.52) into (8.53) and noting that the wave u(wy, t) is only non-zero in

the interval [-T'/2,+T/2], it follows that

+T/2 . T
o ‘ 9q Sin(w — wW)E 4
Alw) = ToaT / exp [~z (w — wy) t} dt = or — . (8.54);

-T/2

Writing Aw = w — wy, with wy, T = 27 Ny, yields the partial wave amplitude in
the form

a sin (TFN %u_))
A = LAy 8.55) "
(w) \/ﬁ ,R.N _é_("i ( )
Wy

The intensity of the coherent radiation from the undulator is proportional to the

square of the partial wave amplitudes. The intensity distribution thus has the

form

2
sin <77Nu%)
I(Aw) x | —— %/ (8.56)

which is illustrated in Fig. 8.10. The full width half maximum of the line can
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Fig. 8.11 A typical spectrum of coherent radiation emitted from an undulator. In the
centre of mass frame only sharp lines are present, while in the laboratory frame the

frequencies are broadened by the relativistic Doppler effect.

immediately be calculated from this relation using the condition

. 2
1
(51”) =5 with a=7N, Aw (8.57)

x Wy

With x = 1.392 we end up with the simple expression

20w 22 _0.886 1

- e (8.58)

The sharpness of the spectral lines radiated from an undulator thus increases
linearly with the number of undulator periods N.

In reality we are not dealing with exactly sinusoidal partlcle motion and
higher order oscillations are also present. As a result the spectrum also contains
higher harmonics whose intensity decreases with increasing order. A typical un-
dulator spectrum is shown in Fig. 8.11. In the centre of mass frame this spectrum
consists of sharp lines, which are, however, broadened in the laboratory frame
due to the relativistic Doppler effect. From (8.51) we see that this broadening
is caused by the photons emitted at angles less than ©g. If we also want sharp
lines in the laboratory frame, the transverse size of the photon beam must be
restricted by the use of collimators. In the spectrum in Fig. 8.11, the broadband
spontaneous synchrotron radiation is not shown, as it is generally several orders
of magnitude weaker than the undulator radiation. As a result, undulators are
nowadays one of the most important sources of coherent radiation in electron
storage rings.
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The free electron laser (FEL)

In a laser, a wave travels through an energy reservoir (which may be a solid, lig-
uid, or gas) and induces stimulated emission, so that when it leaves the reservoir
it has the same frequency but has been amplified. External energy is supplied to -
the medium, either by methods such as optical pumping or by chemical processes
(Fig. 9.1). In the free electron laser the medium is replaced by a high energy
electron beam. In this case the exchange of energy does not occur via quantum-
transitions of bound electrons but instead by electromagnetic interactions with
the beam electrons, which are moving freely in a magnetic field. This is where
the free electron laser (FEL) gets its name. Because there is no dependence on
atomic energy levels, the FEL can in principle operate over a very broad range
of wavelengths. There are two types of FEL: the Compton and the Raman FEL.
In the Raman FEL the interaction between the electrons dominates, which is the
case at low beam energies. In relativistic particle beams this interaction becomes
negligible, and we instead have a Compton FEL. Since accelerators generally
operate at relatively high particle energies, we will only discuss the Compton
FEL.

There are three different ways to consider the FEL principle. The first 1nvolv
the construction of the Hamiltonian in the moving centre of mass frame, a
was first developed by A. Renieri et al. [74, 75, 76, 77]. The second approach is
based on an analysis of the Lorentz force in the laboratory frame and leads to
the pendulum equation. The foundation of this method was the work of W.B.
Colson in particular [78, 79, 80]. This approach is very clear and pedagogical
and we will follow it in this chapter. C. Pellegrini and S. Krinsky have pursued
a third approach, that of a coupled system of Vlasov and Maxwell equations;
concentrating particularly on the high-gain region. [81, 82].

In discussing the FEL principle it is important to determine whether the
gain G of the electromagnetic field is only a few percent per crossing (low-gain
regime) or much larger (G > 1, i.e. the high-gain regime). In the first case the -
laser field may be regarded as essentially constant, which considerably simplifies
the calculation of the gain. In the second case the rapid and generally non-linear -
growth of the field within the FEL must be taken into account, which can usually
only be done using numerical methods.

The possibility of using an FEL as a particle accelerator was first suggested -
by R.B. Palmer [83]. In 1976 L.R. Elias et al. in Stanford performed the first suc-
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Fig. 9.1 Comparison of the classical laser (upper picture) with the FEL. The medium
used as an energy reservoir in the laser is replaced by the beam of free electrons in the
FEL.

cessful experiments with stimulated emission[84]. A year later the FEL principle
was first extended experimentally to oscillator operation by D.A.G. Deacon et al.
[85] Further studies were mainly performed at linear accelerators with relatively
low beam energies. In storage rings only the special form of the optical klystron
has so far been used. Further detailed reviews of the theory and development of
the free electron laser may be found in [76, 92, 93, 94, 95].

9.1 Conditions for energy transfer in the FEL

In a free electron laser the electron and laser beam must travel along the same
axis in order to maximize the length of the interaction region and so allow suffi-
cient exchange of energy per beam crossing. The electric field Ey, and the velocity
v of the electrons are then perpendicular to one another. The energy gained in
this case is

AW:—e/EL-ds:—e/v-ELdtzﬂ (v L Ey). (9.1)

Direct exchange of energy between the electron and laser beams is thus not

possible. An undulator is therefore inserted, which gives the beam a horizontal

velocity component according to (8.29)
K

Vp =3 = ﬂc? sin{wyt) with

wy = kyfe. (9.2)

The electric field of the FEL beam can couple to this horizontal component. A
positive energy yield is, however, only possible if the phase between the undulator
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Fig. 9.2 Phase condition between the laser field and the electron beam oscillating

in an undulator. Since the laser field has a higher velocity than the electrons there

is a phase shift, shown for three positions of the laser field. The broad arrow always

indicates the same phase.

period and the laser field satisfies certain conditions. We will introduce these
with the help of Fig. 9.2, considering just a single electron. We assume that at

a particular point in time the electron crosses the orbit and has a transverse

velocity v,. If this time and position coincides with a maximum of the electric
field Ey, of the laser wave travelling alongside the beam, and this field acts in the

same direction as v, then the negatively charged electron will be decelerated by
this field and hence energy will be transferred to the laser field.
After half an undulator period the electron again crosses the orbit and this

time has the velocity component —uv,. Since the electron always moves more

slowly than the electromagnetic field of the laser, and also since the bending in
the undulator forces the electron to travel further, the laser field moves ahead
of it. If the system is set up correctly this phase shift will be exactly AV = 7,
and the electric field acting on the electron will now have the value —FEy,. In this
case the electron again loses energy, which is transferred to the laser field. This
process is repeated every time the electron crosses the orbit, until it reaches the

end of the undulator. The result is thus an overall gain in energy by the laser

field.
Having looked qualitatively at the energy transfer in the FEL, let us now
consider the phase condition in quantitative detail. If Ey, is the electric field of

the laser wave, then the change in energy of the electrons travelling along with

it is given by the general relation
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AW:—e/EL-ds=—e/v~ELdt. (9.3)

To a good approximation, the z-component of the laser field may be regarded
here as a plane wave of the form

By = Epp cos(kLs — wrt + ¢o), (9.4)

where ky, = 27/, is the wavenumber, wy, the frequency of the laser wave and ¢q
is an arbitrary initial phase. The horizontal component of the electron velocity

K
Vg = 67 sin(kys) (9.5)

may be obtained for # = 1 directly from (8.29) for the undulator parameter
K and the undulator wavenumber k. Inserting (9.4) and (9.5) into (9.3), the
change in the electron energy is given by

Er oK
AW = — Ee_% /COS(]CLS —wrt+ (p@) Sin(k:us) dt
Er oK
_ _cernoft 21“7’0 /{sin {(kL +ky)s —wit + 500} (9.6)

—sin [(kL —ky)s —wrt + ‘PO} } dt.

On average, it is only possible to transfer energy between the electron and the
laser field if the phase

U,y = (kL + ku)§ —wrt + g (97)

between the electron and the electromagnetic wave of the FEL only varies very
slowly with time and remains virtually constant within the undulator. Thus the
time derivative
dv .
d—ti = (kp % ky)§ — wp, ~ 0 (9.8)

must vanish. Here § is the average velocity of the electron along the s-axis. With
wr, = krc and § = B*c it follows that

ldll’:l:

~ = (k£ k) B — by = 0. 9.9)
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Inserting the average relative velocity from (8.35) and realizing that ky, < ki,

(9.9) yields

1 K?

kL K?
5 (1 + 7) + ky. (9.10)

Q

It is clear that only the solution with the positive sign can exist, namely

2

o (145) o

=32

If we now replace ki, and k, by the corresponding wavelengths, we finally obtain

the coherence condition familiar from (8.51)

Au K? :
AL = 2—72 (1 + —2"‘) (9,12)

for a radiation angle @y = 0. In the energy equation (9.6) only the phase

U, = (kL + ku)3 — wit + o =~ const (9.13)

contributes to the energy exchange, while the term with the phase

v_ = (kL —ky)s —wrLt + o (9.14)

oscillates rapidly and so on average has no effect on the total transferred energy.

Oy does not appear at all in formula (9.12) because for simplicity we have only -
considered the problem in one dimension. Transverse effects, such as the finite -
sizes of the electron and laser beams and overlapping of the two beams, are.
neglected here. However, it turns out that the most important features of the

FEL are very well described by this simplified treatment.

- 9.2 Equation of motion for electrons in the FEL (pendulurﬁ ;

equation)

Electrons of energy v = E/mec? interact with the electromagnetic field of the

FEL and undergo a change in energy A~y and a phase shift AY relative to the

laser field. The functions A+y(s) and AV¥(s) within the undulator give a complete

description of the particle motion through the FEL. The relative change in energ
per path element ds = cdt may be written as

b _aw 1
ds  cdt mec?’

(9.15)‘,i
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Inserting the differential energy dW from (9.6) gives

d’)’ . eEL,OK

& W{Sin[(’%%u)“%”%]

—sin [(ky, — ku) s — wrt + (,00] } (9.16)
Rearranging this expression using the relation
sinz = —§R(i exp(i :1:))

we obtain

d_’y _ 6EL,0K
ds  2ymec?

R <z exp {z [, + o) 5(6) = wr, + @0 }
—i exp {z‘[(kL — ) 8(t) — wp, + cpg] }) (9.17)

Using (8.32) to (8.34), the position variable s(¢) may be calculated from

. . cK?
S(t) == ,6 c+ "ny—‘? cos(Qwut). (9.18)
Simple integration yields
P cK?
s(t) =B ct + S0, sin(2wyt), (9.19)

where we again set § = 1 because the velocities involved are highly relativistic.
In what follows we also insert the average velocity § = 3*ct. Combining (9.19)
and (9.17), and noting that kg, > k,, we may write

dy  eBpgK ) ckLK? . _
B = ez (e i, k) (020

x{exp{i[(kL+ku)§—wL+<po]}—exp{i [(kLku)§—wL+<p0]}}).

Here we have used 2k, 5 = 2wyt in the argument of the sine function. To rearrange
this expression we use the identity from Abramowitz-Stegun [96]

+oo
exp ('L:c sin‘IJ) = Z Jn(x) exp (in@), (9.21)

n=—oo

where J,,(z) is the nth-order Bessel function. We obtain
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Z 7. (ckLK

n=—0od

(9.22)

d’)’ _ eEL,gK
ds 2'ymec2

) exp(i2nk,3)

{exp { [(kL + ku)s — wrt + o] } —exp {z [(kL — k)5 — wLt + @] }})

We now collect together the individual terms in this expression with the same
wavenumber nk,, replacing the index n by another integer index N. The energy
change per wavelength is now

dr)/ eEL,OK too
Eg = Q'YmeCQ NZZ_OO I:J% (NT]) — J% (Nn):l
><§R{ i exp {z (kL + Nky)5 — wit + o }}
eFrLoK & |
= — Iy mec? N;OO [JN—I (Nn) — In4a (Nn)] (9'23)

X sin [(kL + Nky)s —wit + @0}
with
. CkLK 2 _ kLK 2
= 8Ny2w, 8N~2ky’
By analogy with the undulator parameter K we introduce the d1men51on1essf
parameter

(9.24)

E
Ky = eLiL0

' (9.25)
kumec?’ (9.25) ~

which describes the effect of the laser field and leads to the expression

dvy koKUK <%

& = o Z [J¥(Nn)~J¥(N77)]

X sin [(k,‘L + Nky)§ —wrt + <p0] . (9.26)

In order to achieve a non-zero overall energy transfer over the path through the
undulator, the phase g

= (k1 + Nky)5 — wit + @0 (9.27)
between the Nth harmonic of the electron oscillation and the laser wave must

be effectively constant over time. This was shown above for the first harmonic
(N = 1), and we now extend this to all harmonics. We thus have the condition -

d¥
dt

into which we insert (8.35). Since k1, > Nky, we can reduce this expression to
the form

= (k + Nky)s — wp, = (kp, + Nky)f*c — wp, = 0, (9.28)
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av CkL K2
prii (1+-) +cNky =0

in the same way as in the derivation of (9.12). It immediately follows that

ky, K?
b= (1455,

or if we again replace the wavenumbers by the corresponding wavelengths

Au K?
ey (HT)'

The is the generalized coherence condition for any harmonic N. Wavelengths
are always positive definite quantities, and we see immediately from equation
(9.31) that the case N < 0 is not physically meaningful. Moreover, in most cases
only one particular harmonic is considered in an FEL, rather than the sum of
all possible harmonics. Thus from (9.26) we finally obtain the change in energy
per path element for the Nth harmonic

(9.29)

(9.30)

(9.31)

koKL K

dr\y kKK
ds / x 2y

72022 (W) = Tisga (N

X sin [(kL + Nko)5 — wit + goo] (9.32)

with N=1, 3,5, ...

‘The change in energy dry /ds is proportional to the field parameter K7, and so from

(9.25) is also proportional to the laser field strength FEi,o. Clearly the exchange
of energy can only occur when a laser field is present. This is precisely the same
as the key process of stimulated emission in the laser.

In order to describe the complete motion of the electrons in the FEL, we also
need to know the change in the phase per path element. According to (9.26), the
phase between the Nth harmonic of the electron oscillation and the laser wave
is

U = (kL + Nky) 3§ — wrt + ¢o. (9.33)

The time derivative of this phase was already calculated i in (9.29), from which

we immediately obtain

dv  1d¥ kr, K?

—=—-—=Nky—— (1+—]. 9.34
ds ¢ dt Y2y ( + ) (0:34)

The resonance energy is defined as the energy at which there is no phase shift rel-

ative to the laser field, i.e. d¥/ds = 0. Using this condition we may immediately

calculate the resonance energy from (9.34), giving

i, K?
2 _ —_
T 9Nk, (1+ 2 )

(9.35)
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Inserting this expression for the resonance energy back into (9.34) yields the
change in phase per path element
W _ Nk, (1 - 3’L> : ' (9.36)
ds ~2

The FEL is always operated at electron energies very close to the resonance
energy. It is thus useful to use the difference A~y from the resonance energy as
an energy variable with

v=7+ Ay and Ay L Y. (9.37)

Under this condition we have

2 2 _ A2
L et AN o oAy (9.38)
7 W W
and from (9.36) we finally obtain
d¥(s) _ 2% Ax(s). (9.39)
ds T

It is also useful to relate the total energy transfer to the resonance energy and
to consider only the energy difference Ay from (9.37). It then follows from the
energy relation (9.32) and the phase function (9.33) that

day _dy _dv _ RELK s Gnw(s) (9.40)

ds ds ds 29,
with ) i
F(Ny) = [Tazs (Nn) = Jugs (V)] (9.41)

In a uniform undulator the resonance energy -, is constant and so the derivative

dry;/ds vanishes. The change in energy per path element is then

4290) __ RSO /) sinw(s), (9.42)
S r ‘

We now differentiate (9.39) once again with respect to s and insert it into (9.42),

giving ‘ ,
2 2 :
@U(s) _  Nhko dAv(s) _ NEKLK s n (). (9.43)
ds? Ve ds 2 ,

This relation leads directly to the general equation of a pendulum
T (s) + QF sin¥(s) =0 (9.44)

with a frequency

NEk2KLK ;
02 = ——72—L- F(N7). (9.45)

The length of an oscillation along the s-axis is Ly, = 2m/Qr, and fL =c /Ly, is ‘chei

frequency with which the electron oscillates in the potential of the laser ﬁeld
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Fig. 9.3 Electron motion in the FEL field. The phase shift relative to the laser wave is
plotted along the horizontal axis, and the energy difference from the resonance energy
is plotted vertically. Two different types of electron motion are plotted and may be
visualized in terms of the corresponding pendulum-like motion.

This corresponds to the synchrotron frequency in circular accelerators. Since
Ay o< ¥ according to (9.39), the functions Avy(s) and AU(s) are orthogonal.
Hence we can depict the electron motion in a ¥-A~y diagram, as shown in Fig. 9.3.
At small amplitudes and with strong laser fields the electron performs stable
oscillations, which to a good approximation would be represented by an ellipse
in this diagram. As the amplitude increases the frequency decreases and reaches
zero in the limiting case W,,,, — 7 for Ay = 0. This represents the limit between
stable particle oscillation and the unstable region in which the particles can no
longer be contained within the potential of the laser field. This limit corresponds
to the separatrix for synchrotron oscillations.

9.3 Amplification of the FEL (low gain approximation)
Let the energy gain in the laser field be

AW, = —mec?Ay. (9.46)

The minus sign comes from the fact that the energy loss A~ from the electrons
leads to a corresponding gain in energy in the laser field. The energy stored in
the laser field is c

WL = -29 E2,V, (9.47)

where V is the volume occupied by the laser field. The amplification of the FEL
due to a single electron is defined as
AW, 2mec?

Gr= WL oBL oV A (9.48)
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We now replace Ay by the expression (9.39) and obtain

m CZ,Y .
=_———°"1_ AV, 9.49
Gl €0EL’0VN]€U ( )
Here
AV = \Illend - \I};tart (950)

is the difference in U’ that the electron undergoes from the beginning of the

undulator (¥, .) to the end (¥, ,). Using the definitions of the frequency Qy,

start end

in (9.45) and the field parameter K1, in (9.25) we can rewrite (9.49) in the form o

e?Nk,K? AT

Gy = F(ND) G (9.51)

goVmec?y3

Virtually all the electrons in a bunch contribute to the laser amplification, and
we will assume that they are homogeneously distributed within the bunch. We
thus need to sum the amplification induced by each electron and average over
all initial phases of the electrons relative to the laser wave as they enter the
undulator. This gives the total amplification of the FEL

(Av)

2Nk, K? ny
o

G=-—
eomec? 2

F(Nn) (9.52)

for an electron density ny, = n/V in a bunch and with

(AT = % 3 A, (9.53)
i=1 )

To average over the phase ¥(s) through the undulator and hence obtain the

value of (AT’) we must solve the equation of motion (9.44)
T (s) + Q% sin ¥(s) = 0.
Multiplying by 2¥’(s) gives
20" 4+ 202 W sin ¥ = 0,
which may be integrated directly to give the result
% — 202 cos ¥ = C,

where C is the constant of integration. We again start with the case of a single

electron, which enters the undulator with an initial phase Wgtare. It then follows:

from (9.55) that

v oy, 2= 202 (cos ¥ — cos Ugpart)-

start

(9.55)
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Using (9.39) we can express the initial condition in the form

NEk
II';t;art = 2_;3('7start - 'Yr) (9.57)

T

and obtain

_ 4N2R2

\11,2 = (’YStart - ’Yr)z +2 Q% (COS ¥ — cos \Ilstart)' (958)

r
To simplify the calculation let us define the variable

2NNy
w =
Y

(sttart - ’Yr), (959)

where N is the harmonic number and N, is the number of undulator periods of
length A,. Integrating the equation of motion (9.44) once gives

U'(s) =

2w N2 202
Nu/\u \/1 + 2_11}2— [COS lI’(S) — COS ‘Ilstart] . (960)

Once again this equation cannot in general be solved analytically, and one must
make approximations or use numerical methods.

For relatively weak laser fields Ey, o the field parameter K7, is very small, and
so too is the frequency €, according (9.45). From (9.42) the amplification due
to each electron passing through the undulator is also small. Thus the intensity
of the laser field only changes slightly and may be assumed to be effectively
constant during each pass. This is the so-called low-gain regime of the FEL.
Here the laser field is so weak that virtually all the electrons lie outside the
separatrix (Fig. 9.3) and do not perform stable oscillations in the laser field.

In the low-gain regime the second term under the square root in (9.60) is
small compared to 1 and so the square root may be expanded as

1 1
m:1+§x—§x2+ N

giving

1 N2X20¢

U'(s) = {1 + 3 —“;;TL [cos ¥(s) — cos lIIStm]
1/ N2202\° 2

-3 (_UZQ_I‘;_Z_L> [COS U(s) — cos ‘I’start] + ... } (9.61)

Let us calculate the average value of U’ using this equation to first order. To do
so we need to determine the phase ¥(s) in the argument of the cosine, which we
calculate from (9.61) to zeroth order. We then have
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2w 2w
o(s) = Now = U(s) = Now s

The phase difference between the beginning and end of the undulator is then

2w

AU = —— [, = 2w, (9.63) ;

NyAu

where L, = Ny)u is the total length of the undulator. From (9.61) we thus ‘

obtain the difference to first order

N2
!yl 7 us “L,
AV, = W(sp+ Ly) = W'(s0) = — 0 == [

where sq denotes the beginning of the undulator. As the electrons are uniformly

distributed within the bunch and the bunch is very long compared to the wave-
length of the laser, the initial phases of the electrons are also uniformly dis-
tributed over the range 0 < Wy < 27. We must therefore average over all
initial phases and obtain

2T

/ cos(2w + Wgpart) — COS \Ilstart] d¥gtare = 0. (9.65)
0

(AT = N>\ QL

To first order the energy contributions from all the electrons average out and -
there is no net energy exchange between the electron beam and the laser field. -

Amplification of the FEL is thus only a higher-order effect.
To confirm this let us repeat the calculation, this time to second order. This

requires us to expand the argument ¥(s) of the cosine to first order. We go back -

(9.62)

c08(2w + Wgtars) — COS \Ilstart] , (9.64) o

to (9.61) and, using (9.62), write

Nudu Q2

2w
A‘Pi (S) = ( ) \I]/(SO) 20 [COS (N )\ s+ lI"start) — CO8 \Ijstart] .

(9.66)

From this we again obtain the phase difference

L. :

NyA 02 2 :

Ap, = Mot / 08 [ =22 54 Worare ) d8 — Nudacos Uapars ¢ (9.67)
2’w Nu/‘\u

0

by integrating over the length of the undulator. The phase difference is then

given to first order by

N2x202

AU, =
! 42

[sin(2w + Wstart) — Sin Yepary — 2w cOS \Ilstart] . (9.68)
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From (9.61), the difference to second order in the first derivative of the phase
U(s) has the form

A NN [ sw?
2 16w3 | N2X2Q2

[COS(A“III + 2w + \I[sta,rt) — CO8 lI"st;art]

2
— [cos(2w + Ugtart) — €OS \Ilstart] } (9.69)

We can further simplify this expression by noting that in the low-gain regime
the changes in phase are very small, i.e. A¥; < 1. We may thus write

COS(A\Pl + 2w + \I’start) — COs \I’Start
& c08(2w + Wgtart) — €08 Ugpary — AWy sin(2w + Wggart ). (9.70)

Inserting this expression together with the phase (9.68) into (9.69) we obtain

AV, =

[COS(QUJ + Wstart) — cos ‘I’start]

N3X3QA [ 8w?
16wd | N2X2Q2

—25in(2w + Uyary) [sm(2w + Ugars) — sin Uggare — 2w cos \I/Start]

2
- [cos(2w + Wstart) — COS \I/start} } (9.71)

In order to determine the effect of all the electrons on the laser field we must
again average over all initial phases Ugt,,t. The following initial values are used:

(cos(2w + Wspart) — cos Ygpary) = 0

<Sin2 2w + Yetar)) = <COSZ (2w + Ustart)) = <COSQ Ustars) = %

(sin(2w + Wgpart) sin Ugparg) (cos(2w + Wgtars) €08 Ugpary) = % cos(2w)

. 1
(sm(Qw -+ ‘Ijstart) COS qjstart) = ‘2— SlIl(2T,U) (972)
Equation (9.71) then simplifies to
N3X3QE 1
(AT,) = — %L 3 [1 — cos(2w) — w sin(Qw)]. (9.73)

It is easy to show that

% (Sh;w)z — —$ [1 = cos(2w) — w sin(2w)]. (9.74)
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Fig. 9.4 Amplification or gain curve of the FEL.

Equation (9.73) thus becomes
N3X3Q4 d [sinw)®
ry o ZTuButPL P . 9.7
<A\IJ2> 8 dw ( w ) (9.75)

We insert this average value into the amplification relation (9.52) and obtain the
required FEL amplification factor in the low-gain regime for the Nth harmonic:

T2 NKZN3)\2 ny d (sinw)\?
= TR Tutu b opeary @
G degmec? o3 (Nn) dw \ w
with
2
F(Nn) = [Juza(Nn) = Juga (N)]
 kK?
T T 8N4k,
27N N,
w = (’Ystart _'71‘)
Yr
N = 1,35 ....

This amplification function strongly depends on the injection energy of the elec-
trons. Plotting G as a function of the injection energy A<y results in a curve,

shown qualitatively in Fig. 9.4, which is typical of an FEL. At the resonance
energy, v = 7, the curve passes through zero, i.e. there is no amplification. -
Hence it is important to tune the electron energy to be slightly higher than that

required by the coherence condition (9.31). If on the other hand Ay < 0, the

electron beam gains energy at the expense of the laser field, i.e. the particles
are accelerated by the laser field. In this regime it is thus possible to accelerate

particles by means of the ‘inverse free electron laser’ principle.

(016
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9.4 The Madey theorem

In Chapter 8 we showed that the intensity distribution of spontaneous undulator
radiation is described by the function

(9.77)

Wy

In this representation the electron energy is constant and the intensity of the
radiation is considered as a function of its frequency. It is of course also possible
to keep the frequency or wavelength constant and vary the electron beam energy,
which in principle will give a similar intensity distribution. To calculate this we
return to the coherence condition (9.31), from which the frequency

2rc 4cN~?
== .78
B W WS <)) (07%)
of the Nth harmonic of the undulator radiation immediately follows. Differenti-
ating with respect to energy gives

dw 4reN 2
—_ = 2 = b .
By~ Koy 2= New D (9.79)

where wy, refers to the first harmonic of the undulator wave. The relative change
in frequency can thus also be expressed in terms of the relative change in energy

Aw _ 2NAy (9.80)
o S .
Using Ay = — =, we obtain the relation
Aw 27NN,
WNuT = 5 u(’}/ —_ ")/r) (9.81)

This is exactly the same as the definition of the variable w in (9.59), if we set
the electron energy « in the undulator equal to the initial energy. Any difference
may certainly be neglected, since in the low-gain regime the change in electron
energy per pass through the undulator is very small. The intensity distribution
of the undulator radiation line may thus also be written in the form

I(Ay) (Si‘;w)z . (9.82)

Comparing this expression with the amplification function (9.76) of an FEL
we see that this amplification function is proportional to the differential of the
intensity distribution of the spontaneous undulator radiation along the beam
axis. This fundamental relation in the theory of free electron lasers was first
demonstrated in a very general form by J.M.J. Madey [86], and is known as the
Madey theorem. This relation is illustrated in Fig. 9.5.
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Fig. 9.5 Illustration of the Madey theorem. The lower amplification curve of the FEL
is obtained by differentiating the intensity function of the undulator radiation line af. .

a fixed wavelength A.

9.5 FEL amplification in the high-gain regime

For very strong FEL fields the separatrix shown in Fig. 9.3 is very broad along
the direction of the energy axis. A relatively large number of electrons therefore

lie inside this broadened separatrix and perform stable pendulum-like oscilla-

tions. Very strong amplification results and one talks of a high-gain regime. The " i
laser field can no longer be assumed to be constant inside the undulator, and

in calculating the FEL amplification one must take into account the evolution

of the electromagnetic wave. The frequency Qy, of the electron motion in the ; -
FEL-field is very high in this regime, and the approximations we made in the

low-gain regime in order to solve the root in

2w N2X202
/ _ u’tu
Vi) =y V1t ~oue

[cos ¥(s) — cos \I’star'c] (983) ,
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are no longer valid. As a result it is no longer possible to integrate this relation
analytically, and numerical methods such as the Runge-Kutta method must be
employed to find the solution. It then becomes possible to calculate the course of
individual electrons through the laser field for arbitrary initial values vg;ary and
Ustare- Here we must take into account the fact that the particles in the electron
beam are approximately evenly distributed along the length of the bunch, i.e.
as they enter the FEL undulator they completely fill the available phase range
per period —m < ¥ < +7. We now assume that the incoming particles all have
the same energy Ystart, so that they form a horizontal line in the ¥-A~y plane
(Fig. 9.6). The electron beam with n particles thus has the initial energy

Egtore = n')’stalrﬂnec2 = n('}/r + A'Ystart)mec2v (9'84)

with Ystart = 7r + A7y. Since we have assumed that the electrons are uniformly
distributed, we can take each small phase volume containing an electron and
associate it with a particular phase, i.e. the ith electron has the initial phase
Wstart,i- The relative initial energy, denoted by Avstar, i, is the same for all elec-
trons. Using the equations of motion (9.39) and (9.42) we may now calculate the
path of each electron and hence also its final energy Avyend;-

As we have seen, this calculation may only be performed numerically and,
since the number of electrons in the beam is very large, would require unreal-
istically long computation times. We thus take large numbers of electrons lying
close together in phase space and combine them into a single macro-particle,
and then calculate the FEL amplification using a relatively small number (100
to 1000) of such macro-particles. This calculation may then be performed within
a reasonable amount of computing time.

The final energy of the total assembly of electrons (or macro-particles) as
they leave the FEL undulator is

N N
Eend = mec2 Z('}/r + A"Yend,'i) = Estart + 777/ec2 Z A’)’end,i- (985)
i=1 ‘ i=1
Defining
Ay = EN: A (9.86)
Y= N i Yend,i .

as the average final energy of all the electrons, the net change in energy of the
entire electron beam as it leaves the FEL is then given by

AE = FEgtart — Eena = Nmec?(Ay — A7). (9.87)

If we start at the resonance energy (i.e. Ay = 0) then it is clear from Fig. 9.6 (a)
that for every electron with an initial phase +¥ there is another with the phase
—V, which by symmetry will exactly compensate for it in the energy sum. In
this situation the total change of energy of the laser field is

AE=0 i  Avgas =0 (9.88)
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Fig. 9.6 Motion of electrons with a flat phase distribution as they pass through the '

FEL. (a) shows the motion when ~start = v+ and (b) the motion when Ystart > Yr.

and there is no FEL amplification. This is the same result as in the low-gain

regime. The situation changes, however, if the particles are injected at an en-
ergy "Ystare Which is higher than the resonance energy. Then the average energy i
¥ = v + Ay of the outgoing electrons at the end of the FEL undulator is lower

than the injection energy, as Fig. 9.6(b) shows. The laser field thus gains energy.

The calculation may be repeated for various initial energies to obtain, in each -

case, the average energy of the electrons as they leave the FEL. The relation

Tstart =7 _ (9.89)

Ystart

again leads to the amplification or gain curve of FEL, as plotted in Fig. 9.4.
In general the undulator is so short and the frequency Qr, so low that only

a small part of a full ellipse in phase space will be covered. As the undulator

length increases, the energy transfer at first rises but then declines again and

reaches a certain saturation level when the trajectory of the particle in phase

space becomes closed. This saturated state is, however, only reached in high gain
FELs, if at all.

9.6 The FEL amplifier and FEL oscillator

As we have seen above, coherent electromagnetic radiation can be amplified l
by means of the FEL principle, using a high-energy electron beam as an energy

reservoir. The wave enters an undulator, with the wavelength X and the undulator
parameter K chosen to satisfy the coherence condition (9.12). In order to amplify
laser field, the energy v of the electron beam must be tuned to slightly above the

resonance energy 7y, The basic layout of this kind of FEL amplifier is shown in
the upper diagram of Fig. 9.7. This amplifier is of little practical use, however, -
since in general the amplification achieved in one pass through the undulator is -

well below G < 1. The gain in energy

AE = Nmec2 (A'Ystart - A_’Y) (990) ";
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Fig. 9.7 The FEL amplifier (upper diagram) and FEL oscillator with optical resonator.

is relatively small in standard undulators of limited length. It is only possible to
achieve sufficient amplification to reach FEL saturation and deliver high output
power in the so-called high-gain regime by using very long undulators with many
periods [87].

The FEL principle becomes considerably more efficient if an optical resonator
is used, in which the laser wave is reflected many times between two spherical
mirrors and energy is transferred each time the laser field passes through the
electron beam. This arrangement is shown in the lower diagram in Fig. 9.7. The
repeated recirculation of the FEL wave results in a type of feedback, and so this
system is called an FEL oscillator. Here the energy transfer per pass is

AEose = Nmec®(Avssars — A7) — 2A Ejogs. (9.91)

The losses arise due to the fact that the mirrors are not perfect reflectors, with
a factor 2 due to the fact that the wave is reflected off both mirrors on each
pass through the oscillator. If the energy of the FEL wave stored in the optical
resonator is Fr, then the loss from the mirrors is

AEjoss = Er(1- R), (9.92)

where R is the average reflectance of the mirror at the wavelength used. In
the visible and infrared regions there are mirrors with a reflectance of only just
less than 1. In this case the amplification only needs to reach a few percent
in order for the FEL amplifier to be usable. The first time the electron beam
passes through the FEL-undulator it emits undulator radiation which, because
the coherence condition has been carefully satisfied, has the same wavelength as
the laser radiation. This undulator radiation is now reflected between the mirrors
and steadily gains in intensity, because of the FEL amplification, until saturation



252  The free electron laser (FEL)

100 nm 10 nm 1nm 0.1 nm
1.0 T T T T
8 planned
§ multilayer
3 natural
& crystals
8 Ty
g
&0
05 F E i
=)
multilayer
Au
0 1 1 ] 1
10eV 100eV 1keV 10keV

Fig. 9.8 Reflectance of various mirror materials for wavelengths below the visible

range.

is reached. Part of this radiation is allowed to exit, either by making one or both
mirrors slightly transparent or by using an additional deflector mirror, and is
then transported to an experiment.

With an appropriate choice of undulator parameter and beam energy it is =

in principle possible to satisfy the coherence condition for relatively short wave-

lengths of well below A < 100 nm. The FEL principle thus offers the possibility =~

of producing intensive coherent radiation ranging from the UV region up to soft

X-rays. There is, however, the problem that for wavelengths below A = 100 nm;- kv
the reflectance of the currently available mirrors falls off sharply, as shown by G

the curve in Fig. 9.8. In this wavelength region low-gain FELs may no longer be

safely used, since an amplification of G >> 1 is required per pass through the un- i
dulator. This necessitates the use of very long undulators (I > 10 m) and places e
extremely stringent demands on the beam quality. The amplification increases
with the number of electrons within the phase volume, or in other words with =
the particle density within the bunch. This means that very low beam emittance =

and very short bunches are needed.

9.7 The optical klystron

As a rule the total phase range —7m < ¥ < +7 is filled with particles and the ,
amplification factor is given by the average energy transfer of all the particles, L
a non-negligible fraction of which actually take energy out of the laser field

(Section 9.3). If, however, we only fill the phase range 0 < ¥ + 7 with particles,

all of which give energy to the FEL field, and leave the range —m < ¥ < 0 empty, .-
then the amplification per wavelength is considerably higher than in a normal |
FEL. This principle was suggested by N.A. Vinokurov and A.N. Skrinsky and
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micro-bunches

Ay>0
Fig. 9.9 Phase space distribution of electrons in the laser field of the optical klystron.

is known as the optical klystron [88]. Here it is necessary to divide the electron
beam up into micro-bunches which travel with a separation equal to the laser
wavelength Ar, and are separated by regions of very low particle density (Fig. 9.9).

The practical implementation of the optical klystron is illustrated in Fig. 9.10.
The arrangement consists of two identical undulators, arranged one after another
with a dispersive section between them. This device functions in a similar way
to the microwave klystron (Fig. 5.11), hence the name used for this type of FEL.

The first undulator has the task of modulating the energy of the electron
beam using the laser wave. We refer back to Fig. 9.6(a), which illustrates the
motion of the electrons in the FEL. Initially all particles have the same energy
Vstarts DUt because of their interaction with the laser field they leave the undulator
with varying energies. The average energy is the same as before, but the final
energy of each individual particle varies according to its initial phase in the FEL
field. This is exactly what happens in the first undulator of the optical klystron.

In an RF klystron the bunching then takes place in a pure drift section, due
to the varying velocities of the particles. In the optical klystron, however, one
is dealing with relativistic particles which all have practically the same velocity.
Short bending magnets are thus used to produce a dispersive section, in which
particles of different energies follow trajectories of different lengths. This section
can also be produced within the normal periodic structure of the undulator,
simply by exciting the poles more strongly for a few periods. The electrons leave
the dispersive section grouped into the required micro-bunches, as shown in
Fig. 9.9. The actual amplification then takes place in the second undulator of the
optical klystron. This procedure is so effective that even relatively short systems
can reach higher values than normal FELs of the same length. The disadvantage
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Fig. 9.10 Basic layout of an optical klystron. The first undulator modulates the parti-
cle energy, so that micro-bunches are produced in the dispersive section which follows,
The actual FEL amplification then takes place in the second undulator. The dispersive
section can also be produced within a few periods of a single undulator by exciting the
poles in this region more strongly.

of optical klystrons, however, is their considerably lower power output.
Optical klystrons may again be used as amplifiers and oscillators. This prin-
ciple has been successfully demonstrated at the ACO storage ring in Orsay

(France) [89, 90] and VEPP III in Novosibirsk (Russia) [91], with laser frequen-

cies essentially in the visible region.

0.8 Time structure of the FEL radiation

The quality and usefulness of the laser radiation depends not only on its inten-

sity and the range of wavelengths available, but also on its time structure. The
shortest time interval is the length of an individual micropulse produced from one

electron bunch. This directly determines the line width of the radiation, an im-

portant quantity. The length of the laser pulse is determined by two effects. The

distance d between the mirrors of the optical resonator is very large compared to

the wavelength Ar, of the laser radiation (e.g. d ~ 10 m and A, ~ 10~7 m). Thus :
there are very many resonator modes of the wavelength Ay, ;, with integer j in-

the region j ~ 108, which satisfy the resonance condition

d=jA;. ” (9.93)

In order for energy to be transferred from the electron beam to the laser wave,
the wavelength must fulfil the coherence condition
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Fig. 9.11 Excitation of multiple modes in the FEL optical resonator due to the finite
energy spread in the bunch.

A K?
M =55 (1 + —2-) : (9.94)
J

The electrons do not, of course, all have a single sharp energy but instead follow
a Gaussian distribution across a broad energy range, due to quantum fluctu-
ations in the emission of synchrotron radiation and the resulting synchrotron
oscillations. This means that there are particles in the beam with energies vj
corresponding to a large number of resonator modes (Fig. 9.11). As a result,
a great many modes with wavelengths AL ; and frequencies wr,; = 2mc/\L
are amplified by the FEL in the optical resonator. These all lie relatively close
together and overlap according to

I(t) =) ajetit. (9.95)
J

This gives a short pulse with a typical duration of between 71, =1 ps and
7L, = 10 ps. The energy spread of the line then follows immediately from the

uncertainty relation
h

AE = —. (9.96)

L
If the FEL is used in a linac, then as well as the very short micropulse duration
there is the considerably longer timescale of the pulse rate of the accelerator,
which usually has a repetition frequency of a few hundred Hz. If, on the other
hand, the FEL is used in a storage ring, then the next largest unit of time is the
revolution time in the accelerator, which is of the order of MHz. However, the
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Fig. 9.12 Form of the FEL power, energy spread, and FEL amplification as a function
of the number of revolutions in a storage ring.

FEL wave radiated per revolution certainly does not have a constant intensity,
but instead has a relatively complicated behaviour over the timescale of a few
revolutions, as in the example shown in Fig. 9.12.

When the FEL starts up, the amplitude of the radiation grows exponentially
for the first few revolutions. As a result the field strength increases and the
energy spread in the particle beam grows through interactions of the electrons
with the laser field. A continually increasing fraction of the electrons end up with
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such a strong energy deviation that they can no longer contribute to the FEL
amplification. The amplification falls off rapidly and finally drops below zero. at
which point the laser effect ends and the FEL power decays away rapidly. 7

The electron beam, which now has a broad spread of energies, is then cooled
by damping of the synchrotron oscillations and the energy spread is reduced
As the energy spread decreases, the FEL amplification grows again until the:
laser threshold is reached and the FEL radiation again grows exponentially. The
energy spread then increases again until the amplification once again falls below
zero. The peak power output of the FEL is much lower in the second pulse than
in the first because the quality of the beam is much poorer by the start of thig
second pulse.

This process is repeated several times until a state of equilibrium is reached.
The intensity at equilibrium is well below that of the first pulse. A. Renieri has
found an approximation for the FEL power output in this equilibrium state [97]
given by ’

1
B =~ 2—]\TuPSy“’ (9.97)

where Py, is the total power radiated through synchrotron radiation and N
is the number of undulator periods. This leads to the Renieri criterion, whicﬁ
states that in equilibrium the radiated FEL power is proportional to the total
power Wy emitted as synchrotron radiation.
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Diagnostics

The beam circulating inside a closed vacuum chamber is not visible from outside.
Furthermore, no-one is usually allowed near the accelerator while it is in opera-

tion. In order to establish first of all whether a beam is present in the machine,

and then to measure the physical parameters of that beam, the accelerator must

therefore be equipped with a wide range of measuring instruments, often termed

monitors. In this chapter we will discuss the most common beam monitors used

in accelerators and introduce various diagnostics used to measure the key beam '

parameters.

10.1 Observation of the beam and measurement of the beam

current

10.1.1 The fluorescent screen

The simplest way to observe a charged particle beam is to use a fluorescent screen,
either fixed at the end of a beam transport line or mounted on a movable support
which can be inserted into the path of the beam when required (Fig. 10.1). Zinc

sulphide (ZnS) has proven to be an effective fluorescent material. Mixed with ...
sodium silicate or some other suitable binder it is applied in thin layers onto -
glass, ceramic, or metal. The resulting screens emit green light with a high light
yield. However, they cannot be used in cases where an extremely high vacuum is . -
required. In addition they only have a limited lifetime and burn out at the beam '~

spot after extended exposure.

To avoid this problem, thicker screens made of Al;O3 doped with chrome and .
called ‘chromox-screens’ are more commonly used nowadays [98]. These screens
give off a predominantly red light and are characterized by their high tolerance .
to exposure to the beam. They also have an extremely low degassing rate and :

so may also be used in ultra high vacuum (UHV).

The emitted light is viewed using a television camera in the control room. 5
Nowadays very compact CCD cameras are available for this purpose. Since these .

cameras are relatively susceptible to radiation damage, care must be taken during
installation to ensure that they are well protected by lead shielding and are
positioned where the radiation level is as low as possible. It is useful to mark the
fluorescent screen with calibrated cross-hairs, allowing the position and size of ;

the beam to be measured with reasonable accuracy.
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Fig. 10.1 The fluorescent monitor. The figure on the left shows a fixed version used,
for example, at the end of a linac, while the diagram on the right shows a screen which
may be moved in and out of the beam line.

As well as determining the beam position, a fluorescent screen can in principle
be used to measure the beam profile and intensity. In practice, however, there
are restrictions. First of all, there is not always a linear relation between the light
yield and the beam intensity, which reduces the accuracy of the measurement.
Furthermore, usually only a very small region of the screen is illuminated by the
beam, with the rest remaining dark. The brightness adjustment of the camera
is usually tuned for the regions of average light yield, so that the relatively few
light pixels are overemphasized. As a result one must either adjust the tuning
to pick out only the peak values or illuminate the fluorescent screen externally
to lighten the background. This reduces the difference between the lightest and
darkest regions enough for both to be within the range detectable by the camera.
This latter method is simple to implement and also allows a much improved view
of the cross-hairs on the screen.

Fluorescent screens have a relatively long afterglow ranging from several mil-
liseconds to more than a second. They are thus not able to resolve the time
structure of the beam, which typically lies in the region of nanoseconds and
below, due to the generally very high frequency of the accelerator.

10.1.2 The Faraday cup

The simplest way to measure the current or intensity of a beam of charged
particles is to completely absorb the beam in a block of conducting material and
find the amount of captured charge by measuring the resulting current. This was
the first method used to measure particle beams. Although the principle is very
simple, it does have problems and significant limits. However, it does allow the
intensity to be quantitatively determined to high accuracy, and so is often used
for calibrations. One possible design, often called the ‘Faraday cup’, is shown in
Fig. 10.2.
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beam

Fig. 10.2 Outline of a Faraday cup with a coaxial structure.

For an exact measurement it is necessary to completely absorb all the particles
in the block of material. Since at high energies the penetration depth is large, the
block of material must be very thick. Moreover, at high beam energies the amount
of energy transferred to the block is naturally also very high, leading to strong
heating of the absorber. Above all, however, there is the problem of multiple

scattering in the absorber, resulting in very strong transverse broadening of the

beam and hence in particle losses. A further uncertainty in the measurement
comes from the production of secondary particles by pair production, the rate

of which increases strongly at high energies. As a result, the use of the Faraday

cup is restricted to measuring the current of low-energy beams.
To minimize the error due to the emission of secondary electrons, the ab-

sorber is raised to a positive potential, in order to prevent electron emission.

Alternatively the absorber can be surrounded by a negatively charged cage.
As well as providing a fairly precise absolute measurement of the beam cur-

rent, Faraday cups offer a further advantage: if carefully designed they can

achieve a very high bandwidth of many GHz, allowing the measurement of the

time structure of the particle current. This is of particular interest in linacs op- -
erating in the S-band region. A prerequisite for high bandwidth is a consistent
coaxial structure in which the ratio of the diameter D of the outer conductor to

the diameter d of the inner conductor, and with it the impedance

1 Mol_D_

Z= o nd

remains constant from the beginning of the cup to the readout electronics con-
nected to the end of the coaxial cable. This avoids the production of reflections,
which can strongly distort the time-varying voltage signal. Distortions can also-

arise due to the fact that the bandwidth of this device is nevertheless only finite,

resulting in a measured current pulse Imeas(f) which is markedly longer t‘han‘::

the original current pulse in the beam, especially for very short particle bunches

with pulse lengths in the sub-nanosecond region. In this case the area under thew

pulses [ Ieas(t) dt is a useful measure of the number of particles absorbed.

(10.1):: e
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10.1.3 The wall current monitor

The two monitors considered so far either absorb the beam totally (Faraday
cup) or at least partially, as well as causing a transverse broadening of the beam
(fuorescent screen). These types of monitors are thus only usable in linacs or at
the end of beam transport lines running to an experiment. They are not suitable
for measuring the current of a beam circulating in a cyclic accelerator. Here
monitors must be employed which measure the current without disturbing the
beam. An example is the wall current monitor [99)].

Outside the metal vacuum chamber through which the beam travels there is
no measured magnetic field, i.e. if one travels around a closed path outside the
vacuum chamber and measures the magnetic field along it one finds

fBextemal -dr = 0. (10.2)

Within the vacuum chamber, however, one finds that around the beam

1
- Bbeam -dr = Ibeam, (103)
Ho

i.e. there must be a wall current I,y flowing in the vacuum chamber, where
Ibeam = _Iwall- (104)

The beam current may thus be determined by instead measuring the current in
the wall of the vacuum chamber. To do this, the chamber wall is broken at a

R

wall current

Z

ceramic ring

Fig. 10.3 Layout of the wall current monitor.
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certain point and the gap filled with an insulating material, usually ceramic. The
gap is bridged by an ohmic resistance R, across which the voltage

UR = R Iheam = -R Iwall- (105)

is developed. This voltage can be measured directly. The layout of the wall
current monitor is sketched in Fig. 10.3. If instead of only one resistor a large
number are used, connected in parallel around the vacuum chamber, and if care
is taken to keep the inductance low, then this current monitor can also achieve
very high bandwidths of several GHz. In practice is has proven successful to
choose a resistance of R~ 1) .

10.1.4 The beam transformer

A relativistic bunch of length o, containing N particles of elementary charge e,
travelling past an observer at time tg, produces a beam current pulse

Ne t—tg)? . o
Iheam(t) = \/ZETGXP (—%—g—) with T = ?S (10.6)

A magnetic field is induced around the beam which varies very rapidly with time. -
If we now surround the beam with a ring-shaped iron core (assumed ideal) with

a mean radius Reore, 88 shown in Fig. 10.4, then inside the core the field

Mot
B(t) = K 1ot 10.7
(*) 27 Reore beam (%) ( )

is produced. A coil is wound evenly around this iron core, which has a cross-
sectional area A. A voltage

. rnA . :
Una(t) = nAB@) = B2 f () (10.8)

2m Reore

is induced in the coil, which has a total of n windings. This arrangement acts

like a transformer, in which the beam is the primary winding and the inductive
coil is the secondary winding. Hence it is known as a beam transformer [100]. o

An older name, Rogowski coil, is also sometimes used.

particle beam.

Fig. 10.4 Ideal iron core around a
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From (10.8) we expect a signal that is proportional to the first time derivative
of the beam current. In fact the relationship is more complicated, because the
iron core is not ideal. The losses which occur in the coil grow proportionally with
the square of the frequency, which means that the high frequency components are
strongly suppressed. The inductive coil also has a stray capacitance, which again
weakens the high frequency signals in particular. A wound tape core consisting
of thin layers of iron is often used, because it has a high permeability . and
hence gives a high degree of sensitivity. The eddy currents in such a core are
low, but still non-negligible. Overall this current monitor behaves like a low-pass
filter with a threshold frequency of a few tens of MHz, considerably lower than
the spectral range of the bunch of several GHz. A real beam transformer can
thus be simply described by the equivalent circuit shown in Fig. 10.5.

The output voltage of the beam transformer is then, to a good approximation,

Uout(t) = CiT / I(t)dt, (10.9)

where the current I(t) through the inductive coil is given by the relation

1 _ Uind

i)+ oo 10 = 7

(10.10)

As already mentioned, the bandwidth of a real beam transformer is very small
compared to the frequency spectrum of the beam current. In other words, the
time constant CtRr is long compared to the duration 7 of the bunch pulses.
Hence the contribution from the term I(t) /CpRr is almost zero and may be
neglected. From (10.10) it then follows that

; Uind Uind

+Cy. (10.11)

For simplicity we set the constant of integration C; = 0. According to (10.9) the
secondary voltage takes the following form

1

1
Uout(t) = C—T/I(t) dt = m/Uinddt. (1012)

Referring again to (10.8) and once again setting the constant of integration to
zero, it immediately follows that

1 popurnA
—— | t).
CTRT 2m Rcore beam( )

Uout(t) = (10.13)
This relation tells us that the time dependence of the output voltage Uoy;(t) is
proportional to the beam current Iheam(%). In fact by using an oscilloscope, for
example, one again sees an almost Gaussian pulse and not a differentiated signal
such as one might expect from (10.8). It turns out that the signal is only roughly
proportional to the beam current, and even that is only true for relatively long
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Uu(®

© circuit corresponding to a real
beam transformer.

bunches with limited frequency components. For short bunches the signal Uy (t)
is considerably longer than the current pulse. In this case the simple equivalent
circuit shown in Fig 10.5 is far from sufficient. Here, however, the area under the
voltage pulse

’ /Uout(t) dt « Ne (10.14)

can be used as a good measure of the number of particles. In any case, it.is
always necessary to calibrate the monitor, which may be done either using a test
beam and a Faraday cup, for example, or by replacing the beam through the
device by a wire and passing a known current through it.

Equation (10.14) does not actually contribute, since the transformer is not

able to deliver a DC component. The zero line shifts until the integral vanishes.

It is therefore necessary to relate the integral to the shift in the zero line. This:
effect can lead to errors, especially for beams with unevenly spaced bunches.

10.1.5 The current transformer

In order to measure the average current in a circulating beam or the DC current -

of a beam with no RF structure, as is sometimes found for proton or heavy-ion

beams, the principle of the current transformer [101] is employed. The operation

of this device is best described with the help of Fig. 10.6.

The current transformer again consists of an iron core around the beam, :
but with a primary coil wound around it. A periodically varying current - -
I(t) = Ipsinwt is passed through the coil. The coil is sufficiently strongly

excited for the transformer to be driven around a significant part of the hys-

teresis loop (Fig. 10.7). Let us begin by assuming that no beam is present, i.e.
Iheamm(t) = 0. The hysteresis curve is then symmetric about zero. A periodic
magnetic field B(t) is generated in the iron core which, because of the non-
linearity of the hysteresis curve, contains higher harmonics in addition to the

frequency w. As a consequence of the symmetry, only odd-numbered frequency
components of the form (2§ — 1)w are present, with j =1,2,....
Using a second winding, which acts as an induction coil, voltages of these

frequencies can be selectively measured. By doubling the frequency of the signal -

generator the second harmonic 2w is produced. This serves as a reference signal

Fig. 10.5 Simplified equivalent - -
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Fig. 10.6 The current transformer, used to measure the DC component of the beam
current.

for the detector, which is very sensitive to phase shifts. The detector thus picks
out these very small-bandwidth and largely noise-free components from the in-
duced voltage. None are present in the symmetric case, and so the detector gives
no output.

This situation changes if direct current from the beam also flows though the
ring. The hysteresis curve is then shifted horizontally (Fig. 10.8) and so is no
longer symmetric about the origin. As a result, even-numbered harmonics 25 w
are now also present and the phase detector, which is sensitive to the second
harmonic, gives a non-zero output.

This signal is used to produce a direct current in a wire running though the
coil parallel to the beam, which exactly compensates for the effect of the beam
current. The second harmonic thus disappears from the frequency spectrum. The
compensating current is therefore practically identical to the beam current and
can be measured very simply, for example through a resistor.
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10.1.6 The measurement cavity

A beam accelerated by a high-frequency field has a periodic time structure. The
beam current may thus be written in the form

I(t) = Z [a; cos(j wt) + b; sin(j wt)]. (10.15)

Jj=1

The lowest frequency present, w, is the revolution frequency in cyclic accelerators.
The Fourier coefficients a; and b; are proportional to the beam current. If we filter
out one harmonic (which in principle may be freely chosen) from this frequency
spectrum and measure its intensity, we have a further measure of the beam
intensity. This is most successful if a round cavity is used, operating in the

TMop10 mode at the chosen frequency (Fig: 10.9). This system closely resembles C

an accelerating cavity, as described in Chapter 5.
As the beam passes along the axis of the resonant cavity, the accompany-
ing electric field generates a high-frequency wave. Once the transient compo-
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nents have died away, after many passes through the cavity, a stationary state is
reached which depends on the beam current. This corresponds to the resonant
excitation of an electric oscillator by a periodic current.

In order to make a measurement, part of the field energy must be extracted
from the cavity and then measured electronically. This may be done either in-
ductively using a coupling loop or capacitively across a coupling antenna. It does
not matter in principle which method is chosen. As an example let us consider
the capacitive coupling antenna in more detail. This carries the signal via a
coaxial cable to a terminating resistance, which in practice is always given by
the input impedance of the readout electronics which follow. This arrangement
is illustrated in Fig. 10.10.

Due to the additional coupling capacitance C,. and the real load resistance
R., the total capacitance and effective shunt impedance RS of the oscillator
change. Let us assume that the coupling is sufficiently weak, i.e. the value of the
AC resistance 1/w C,; and the shunt impedance with no load R of the cavity are
large compared to the load resistance R.. We then have wC, R, < 1. Under
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1
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Fig. 10.9 Cavity for measuring beam current. Its electrical behaviour is described by
the equivalent circuit.

these assumptions it follows that

Ry

Reﬁ —
s 1+ w?C2 Re R
and the effective capacitance of the circuit
cf = Cc+C. = C (10.17)

The detuning of the circuit is therefore small, but the quality factor (Q-value)

w  RE o [C I o
Q—E—wL*Rs I (w=1/VLC) (10.18)

can be considerably reduced by the coupling, compared to the unloaded case.

Rearranging yields

R C R,CL
— S = — =, 10.19 s
@= T+ RR) VI CLt+CIR.E (10.19):

i.e. the Q-value decreases sharply as the coupling capacitance increases. This

is, however, desirable. Cavity resonators typically have very high Q-values and

correspondingly narrow, sharp resonance peaks. This means that even slight

variations in temperature are sufficient to shift the resonance curve and distort

the measurement, requiring the use of an expensive frequency control system.

In this case, however, the coupling means that the resonator is considerably
damped, and a suitably-sized cavity will have such a large bandwidth that the
sensitivity to temperature variation becomes negligible. Frequency regulation is -

thus no longer necessary.

In the simplest case, the coupled signal can be rectified using a diode and then S

directly measured (Fig. 10.10). Here it must be remembered that diodes have a

strongly non-linear behaviour, especially for low signals, and this measurement is :

(10.16)
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Fig. 10.10 Signal extraction from a measurement cavity using a capacitive coupling
antenna. The equivalent circuit contains the coupling capacitance C. and the load
resistance R..

hence rather imprecise. For a high-precision measurement, a technique common
in communications engineering must be used in which the signal is overlaid on a
low-frequency reference signal, amplified, and then rectified. This allows a highly
linear measurement over the entire range.

In cyclic machines, such as storage rings, a stationary and hence well-defined
state is always achieved. In linacs with short beam pulses, however, the transient
oscillations are more significant since of course they do not die away during a
single pass of the beam. The measured output thus depends on the duration
of the pulse rather than the number of particles and so is difficult to interpret.
In this case the pickup cavity delivers a perfectly usable relative signal, but if
absolute measurements are required then it must first be accurately calibrated
using other methods, such as the Faraday cup.

10.2 Determination of the beam lifetime in a storage ring

A beam circulating in a storage ring decays in intensity due to collisions with
residual gas atoms, occasional large energy losses through synchrotron radiation
in the case of electrons, and non-linear resonances. In the simplest description
the decline in intensity has the exponential form

I(t) = Ipexp (— ) (10.20)

Here Tpeam is the so-called lifetime of the beam and the relation (10.20) may be
regarded as a definition of beam lifetime. Differentiating this relation immedi-

ately yields
dal(t 1 t I(t :
do b (——) Sl (10.21)
dt Theam Theam Tbeam

Theam
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Fig. 10.11 Time dependence of the beam current and lifetime. The lower curve shows
that the lifetime increases with decreasing current.

and hence
I(t)

R (10.22) 2

Tbeam — dI/dt.

In addition, the lifetime often does not remain constant during machine opera- : ::
tion. For electron beams in particular the lifetime is often relatively short at the
beginning, when the intensity is high, because the intense synchrotron radiation

causes a high level of gas desorption on the surface of the vacuum chamber and
so reduces the vacuum pressure. As the beam current decreases the vacuum im-
proves and the lifetime increases. Hence the lifetime is itself a function of time
(Fig. 10.11).

The instantaneous lifetime at a particular time £g is given by (10.22). Using

one of the current monitors described in the preceding section, the current is

continuously monitored, with measurements repeated at frequent intervals. A
straight line is fitted to each measurement falling in the time interval At about

to, and from this the gradient AI/At is obtained. The average instantaneous
current (I(%p)) is also calculated from the measured values. From (10.22) the

instantaneous lifetime is then

S (D (1023)

AT

Since the beam lifetime can range from a few seconds to many hours, depending

on the operating conditions, it is useful to be able to vary the time interval - =
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between measurements. For short lifetimes the beam current varies rapidly and
only a few measurements are required for a reliable lifetime measurement. In
this case a short time interval is chosen, which is often also necessary because
the rapid decrease in the beam intensity does not allow a long measurement. For
very long beam lifetimes of several hours, the individual current measurements
must last sufficiently long for the statistical fluctuations in the measured values
not to cause large errors in the lifetime measurement.

10.3 Measurement of the momentum and energy of a particle
beam

10.3.1 The magnetic spectrometer

The simplest way to measure the momentum and hence also the energy of a
particular charged particle is to measure the angle of deflection in a known
magnetic field. As we saw in Chapter 3, the angle of deflection in the z-s plane
is given by (Fig. 10.12)

da(r) = ng (r) ds, (10.24)

where the vertical field component at the position r is given by B,(r). Homoge-
neous magnetic fields are generally used, as these greatly simplify the measure-
ment. The total bending angle aio as the particle passes through a particular
magnet is obtained by integrating equation (10.24) along the particle path, i.e.
beginning at a point of zero field before the magnet and then ending at another
zero-field point behind the magnet. The particle momentum is then

p = — / B, ds. (10.25)
ot
path

For a particle of known type the energy is then immediately given by

E = /p?c% 4+ (mpc?)2. (10.26)

Fig. 10.12 Deflection of a charged particle
in a magnetic field.
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For extremely relativistic beams with v > 1, as is almost always the case for
electrons, we obtain the simplified expression

ec

Qltot
path

Figure 10.13 shows the design of a simple spectrometer, such as might be installed
after a linac to determine the final beam energy.

The angle of the incoming beam must be precisely defined. This can be
achieved by using precisely aligned screens to fix the beam position accurately.
After deflection the position of the beam and hence the bending angle can be
measured using a fluorescent screen, for example. To determine the energy the
field integral [ B, ds is again required, which is obtained by a careful measure-
ment of the field as a function of coil current. It is also important to remember
that iron magnets undergo hysteresis, which can distort the measurement. In
order to avoid this, it is important to travel several times around the hysteresis
curve of the magnet, in a careful and well-defined way. This is necessary both
when measuring the field and during the energy measurement, in order to define

a reproducible magnet ‘history’. By convention the required field value is then

approached from below.

In cyclic accelerators such as storage rings the total bending angle of all the
dipole magnets must of course be aor = 2. It then immediately follows from
(10.27) that

E =& f B, ds. (10.28)
2w
dipole

The relation between the field integral and the magnet current must again be
found by measuring the field. In storage rings it has proven useful to connect an

bending magnet
7 %
é é
% beam %
—
masks

screen

Fig. 10.13 Simplest implementation of a magnetic spectrometer to measure particle

energy.
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additional identical dipole in series with the accelerator dipoles and to install a
precise field gauge within it, such as a nuclear magnetic resonance (NMR) probe.
The field and hence also the beam energy can then be continuously monitored,
usually to very high accuracy. In this way it is possible to measure the beam
energy with a very small uncertainty of AE/E ~ 2 x 1074

10.3.2 Energy measurement by spin depolarization

By far the most precise method of measuring the beam energy in an electron
storage ring is based upon spin depolarization. A full treatment of this technique
is beyond the scope of this chapter, and here we will only outline the most
important steps. For an exact treatment and further details of this method, the
reader is referred to the literature cited below.

The electrons injected into a storage ring have their spins uniformly dis-
tributed in all directions and so are unpolarized. As they circulate they precess
in the vertical field of the bending magnets. In 1963 A.A. Sokolov and I.M.
Ternov first showed [102] that after a period of time the electron spins align
themselves anti-parallel to the magnetic field (parallel in the case of positrons)
as a result of emitting synchrotron radiation. Hence they become polarized. The
polarization P builds up over time according to

P(t) = Py [1 — exp (-3)] (10.29)

-
where 1 1 1 0.924
S=—4+—  and Pp=-—io . (10.30)
T T, ™ 1+ 1/m™
The polarization time in seconds due to synchrotron radiation is
R® (R)
Tp = 98 - (10.31)

R is the bending radius in metres of the magnets, and (R) is the average radius
of the machine. The energy F is given in GeV. The polarization time ranges from
a few minutes to many hours, depending on the size of the storage ring and the
energy of the electrons. The quadrupole and higher multipole magnets and other
fields acting on the beam can disturb the spins again, at least partly, leading to
depolarization over an approximate depolarization time mp [103]. As a result of
this depolarization, the maximum achievable polarization is generally limited to
P < 94%. In order to maintain sufficient polarization we require o > 7.

Once the polarization has built up we may then perturb it, for example using
a weak transverse magnetic field which oscillates rapidly at a precise frequency
Wdepol [104, 105]. Such a field can be easily produced using a fast kicker magnet.
The angle of the precession axis then increases with each revolution in a resonant
fashion until it is perpendicular to the direction of the dipole field, at which point
the polarization vanishes. The depolarization frequency wepol is given by

Wdepol = |7a £ 1| Wrey with n = integer. (10.32)
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Here

= %(g —2) = 1159652193103 (10.33)

is the anomalous magnetic moment of the electron, which is known to great
precision. Note that apart from the particle energy <y, (10.32) contains only the
revolution frequency wye, and the depolarization frequency wgepot, both of which
can be measured to very high precision. The details of the magnet structure
and the field strength, which is known only to a few parts per thousand, do not
matter. Hence it is necessary only to measure the depolarization frequency as
accurately as possible in order to determine the beam energy 7 from (10.32).
This is performed by changing the frequency of the transverse perturbing kicker
field in small steps and observing the variation of the polarization level. In this
way it is possible to observe the very sharp resonance at which the polarization
completely disappears. :

To measure the energy a polarimeter is also required in the storage ring,
in order to observe the polarization building up and then being deliberately
destroyed by the rapidly oscillating transverse magnetic field. There are a variety
of spin-dependent effects which may be exploited to make this measurement
[106, 107].

As an example we will briefly describe the method of Compton backscat-
tering, which has been successfully used in several experiments [108]. A laser
beam is fired at a very small angle to the electron beam, and a few photons
are scattered back off the electrons. Due to the highly relativistic velocity of the

electrons, the photons reach relatively high energies, in the X-ray region. They -

are scattered in the direction of the beam, at a very small angle to it. These
back-scattered photons may be observed above and below the electron beam by
~ detectors such as scintillation counters.

If the electron beam is unpolarized, two detectors arranged symmetrlcally on

either side of the beam axis will record the same rate of backscattered photons. -

When the beam is polarized, however, one direction will be slightly favoured and

the counting rates will become unequal. Comparing the two counting rates yields -~

a measure of the instantaneous polarization of the electron beam as it circulates
in the storage ring.

10.4 Measurement and correction of the beam position

For efficient accelerator operation with few particle losses it is necessary for the

centre of the beam always to lie as close as possible to the ideal orbit, usually -

defined by the axes of the quadrupoles. The required tolerances are particularly

tight in the case of very low emittance storage rings, such as those used to :
produce synchrotron radiation. Here the transverse deviation of the circulating
beam from the orbit must not exceed 100 to 150 pm. It is therefore essential

to measure the transverse position of the beam at as many points around the
accelerator as possible and to correct it where necessary.
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10.4.1 Transverse beam position measurement

A whole series of different devices exist for measuring the beam position in
accelerators and transport lines, collectively known as Beam Position Monitors
(BPMs). A good review of these may be found in [109]. In a beam transport
line the beam position can simply be measured using a fluorescent screen, as
described above, which is inserted into the beam line when necessary. Of course
this device is not suitable for cyclic accelerators.

Another very simple way to determine the beam position is to move a blade
transversely towards the beam until it begins to scrape against it and remove
particles. The beam loss from this scraper can then be measured, for example
using ~y-counters mounted downstream in the vacuum chamber. Since the beam
always has a finite thickness which is not always known beforehand, a pair of
scrapers must be used, one on either side of the the beam. The central point
between the two scraper positions then gives the beam position, assuming a
reasonably symmetric density distribution within the beam. This position mea-
surement is relatively accurate, since the scraper positions may be very precisely
controlled using micrometer screws. Scrapers may also be used in storage rings,
with some restrictions: in particular, the considerable beam losses do not allow
this technique to be routinely used to control the beam position.

Magnetic beam position monitor

To continuously monitor the beam position, techniques must be chosen which
measure the magnetic field due to the beam and so avoid particle losses. A modi-
fied form of the beam transformer described above (Section 10.1.4) is well suited
to this task. If the beam does not travel close to the centre of the transformer
core, then a stronger field is induced in the region of the iron core near to the
beam than on the opposite side. If two separate short coils are wound at op-
posite points around the core, then the off-centre beam will generate signals of
differing strengths in these coils. The beam position can then be obtained sim-
ply by measuring this difference. In order to measure the position in both planes
simultaneously, four coils are arranged at 90° intervals around the transformer
core, as shown in Fig. 10.14.

Close to the beam axis, this monitor gives an output signal for each plane
which increases linearly with the beam displacement. For very large displace-
ments there are strong deviations from linearity, but this does not present any
problem since the beam should in general lie along the ideal orbit, and exact
position measurements are only of interest close to this orbit.

Monitor with four electrodes

The most successful type of position monitor in storage rings has proven over
time to be one which couples to the electric field. It consists of four electrodes
(electrical pickups) arranged symmetrically around the beam axis, as shown in
Fig. 10.15.

If this arrangement is compared with the magnetic monitor in Fig. 10.14 it
is noticeable that the electrodes are rotated through around 45° with respect
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Fig. 10.14 Magnetic beam position monitor. It operates in the same way as a beam
transformer. The difference in signals from the two opposite coils within each pair gives
a measure of the beam position in that plane.

to the beam axis. This is necessary in electron accelerators to prevent the elec-
trodes being directly struck by synchrotron radiation. The high power of the
radiation could destroy the isolated electrodes, and in addition the secondary
electrons produced by the photo-electric effect could cause a systematic error in

the measurement. A further reason for the tilted arrangement is the geometry

of the vacuum chamber. In almost all modern storage rings this is broad and

flat, as is clearly seen in Fig. 10.15. The electrodes in the horizontal plane would -

otherwise be very far from the beam, and hence less sensitive.

The signal at an individual electrode results from the displacement current
and so is proportional to the second time derivative of the bunch current. A

certain smearing of the signals again occurs due to the finite bandwidth of the
electrodes, even though this is relatively high at a frequency of several GHz. The

intensity Ipickup Of the signal depends on the distance from the beam, where this !

dependence is a relatively complicated function Ipickup(r). To a good approxima-

tion we may assume Ipiciup(7) o< 1/7. In the region near the beam the separation - :
in both planes may be very precisely determined using the following relations -

(Is+ I3) — (I1 + 1)
a 1 N
P
j=1
Az = ot - Ustle) (10.34)
> I
=1

Azr =

where I; (j = 1,2,3,4) denotes the signal intensity in each of the four elec-
trodes. The numbering of the electrodes is as illustrated in Fig. 10.15. The
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pick-up
electrode

Fig. 10.15 Beam position monitor with four electrodes. The electrodes are tilted away
from the beam axis by about 45° in order to reduce the amount of synchrotron radiation
hitting them directly, among other reasons.

monitor constant a is determined empirically by calibrating the device in the
laboratory.

If the beam lies exactly in the middle of the monitors, then ideally all the
signals will have the same intensity, namely I; = Ij. In reality, however, there
are variations in signal sizes due to tolerances in the electrodes, the vacuum
chamber geometry, the cables, and the electronics which follow. If a signal has
an intensity Iy + Al, then according to (10.34) this results in a position error of

Al

AZerror = am-

(10.35)
A typical value for the monitor constant is ¢ = 35 mm. If the absolute mea-
surement accuracy required is AZeror < 0.1 mm then the relative error in an
electrode signal may not be larger than

AI 4A error
- = < 12% (10.36)
0 a

The four electronic channels connected to the electrodes must be very nearly
identical, which is rather difficult to achieve because of their broad dynamic
range. The orbit measurement must give reliable results for beam currents be-
low 1 mA, but must also operate reliably with currents of several hundred mA.
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Fig. 10.16 Block diagram of the readout electronics from a beam position monitor,
The signals from the four electrodes are switched into the circuit via a multiplexer and
after digitization are multiplexed to the four data storage lines.

An expensive regulation system would be necessary to ensure that the channels
behave similarly over the whole dynamic range. On the other hand, the measure-

ment does not need to be performed particularly quickly; it is usually sufﬁc'ient if V
the measurements are completed within one second. This allows all four signals |
to be read out one after another using a single channel. Figure 10.16 shows the

basic circuit diagram of the readout electronics. _ . ‘
The bunches induce a periodic signal in the electrodes which consists of a

combination of many harmonics of the revolution frequency fiev. In order to

measure this signal with a narrow bandwidth and hence with low noise, a singl.e ~
harmonic is chosen from this spectrum. It does not in principle matteF wh1ch.1s b
chosen, but there are a few important criteria. Since the electrodes yield a dif- -

ferentiated signal, the intensity of the harmonic is proportional to its frequency,
and so a relatively high harmonic is desirable. However, the frequency should I'lOt
be so high that it exceeds the cut-off frequency of the vacuum chamber, which

results in propagating waves in the cavity which distort the result. It has proven :
successful simply to use the frequency of the accelerating cavity frr = ¢ frev OF.

a value close to it.

First of all a rough selection of the harmonic is performed by a filter aut~ the
beginning of the circuit. This harmonic is mixed with a much lower intern'ledlat?—
frequency signal from a local oscillator, e.g. finy = 10.7 MHz. The signal is
then passed through a very narrow-bandwidth quartz filter of a type com-
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monly used in communications, tuned very precisely to the chosen harmonic. An
adjustable-gain amplifier (AGC) then raises the output signal to a well-defined
level, depending on the beam current . After rectification and suppression of the
high-frequency components by a low-pass filter, the analogue signal is digitized
and stored.

A centrally generated clock drives the multiplexers at the input and output
of the circuit, which select the input from the electrodes one after another and
write the resulting digital value to one of four data lines. The clock also sends a
signal to start the analogue-to-digital converter at the right moment.

The intermediate-frequency amplifier has a very long time constant compared
to the period of the central clock. Hence the amplifier gain does not change if
the four channels are selected one after another. It is thus possible to arrive at
an amplified level corresponding to the average of all four signals. The output
signals due to this automatic gain control amplifier are independent of the beam
current and effectively correspond to the individual signals divided by the sum.
Equation (10.34) then simplifies to

A.’l? = a' [(Iz + 13) — (Il + 14)]
Az = a' [(I]_ + IQ) - (13 + 14)] . (1037)

The intensities I; are now the digitized values stored in the four memories and
a’ is a monitor constant associated with the electronics.

Position monitors based on this principle have successfully achieved the re-
quired precision of AZepor < 150 pm, and relative beam shifts down to below
10 pm can even be measured. There is, however, an intrinsic problem in mea-
suring the absolute beam position, which we must not ignore. Fundamentally,
it is not possible to define with arbitrary precision the point relative to which
the beam position is being measured. The monitor electrodes are connected to
the vacuum chamber and this is generally fixed to the magnets. However, the
magnets can only be positioned with a tolerance of about + 0.2 mm. Moreover,
the alignment errors of the quadrupoles also create orbit distortions, as described
in Section 3.15. Even if the beam position is adjusted so that it has no offset
in any of the monitors, this will not necessarily correspond to the real ideal or-
bit. Empirical corrections are sometimes necessary to optimize the important
parameters of the beam, such as the emittance.

Position measurement with a resonant cavity

The beam position may also be measured using a resonant cavity, in a similar
way to the current measurement described in Section 10.1.6. Here a mode must
be chosen for which the electric field component along the beam direction is
zero. If the beam lies exactly along the orbit then its field cannot induce any
oscillation in the resonator, and so there is no output signal. The TMy;y mode
satisfies this condition in a rectangular cavity. An outline of the device is shown
in Fig. 10.17.

From the derivation in Chapter 5 or in the literature (e.g. [59], [110]) it can
be seen that the electric field component in a rectangular resonant cavity has
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Fig. 10.17 Position measurement with a rectangular cavity in the TMsio mode. The
z-axis of the resonant cavity runs parallel to the beam direction. In the centre of the
beam (z = a/2) the electric field component E. vanishes.

the form '
E, = Co(k2 + k;) sink, z sinkyy cosk, z (10.38)
with '
mm
ke = 8
a

nmw
k, = - (10.39)

.

k, = T

The TMa;o mode is obtained by setting m = 2, n = 1 and ¢ = 0. The form of

the electric field is illustrated in Fig. 10.18.
Away from the beam axis the field increases, with opposing sign on either

side. To a good approximation E,(z) may be assumed to be linear near the point k

at which it passes through zero. A horizontally displaced beam can therefore

couple to this mode, with the amplitude of the induced oscillation being roughly
proportional to the offset in position, for a constant beam current. The direction -
of the displacement may be determined from the phase of the oscillation, which
changes by 180° as the orbit is crossed. The oscillating signal is coupled out using
a short capacitive coupling antenna, and its amplitude and phase measured using

a phase detector. The reference phase for this measurement may be obtained,

for example, from the accelerator master clock. The basic arrangement is shown F

in Fig. 10.19.
From (5.37), the resonant frequency of a rectangular cavity is given by

i (O RO R
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Fig. 10.18 Form of the electric field E, parallel to the beam axis for the TMa1¢ mode
in a rectangular resonant cavity.

If we take a resonant cavity with @ = 141 mm, b = 71 mm, and { = 50 mm and
set m = 2, n =1, and ¢ = 0 to give the TM219 mode, we obtain a resonant
frequency of f; = 2.998 GHz. This lies exactly in the range used for S-band
linacs. Due to the convenient size of the cavity for this frequency range, this
type of monitor is preferred for use in linear accelerators.

In order to measure both the horizontal and vertical beam position, two
separate cavities are actually required, with one rotated through 90° relative
to the other. However, it is also possible to use a single resonator chosen such
that a = b. The TMgjp mode is then degenerate and two waves are excited
at the same frequency, each with the field distribution shown in Fig. 10.18 but
rotated through an angle 90° relative to one another. Hence one wave crosses
through zero in the horizontal direction, the other in the vertical direction. This
means that one wave is excited by a horizontal beam displacement, the other
by a vertical displacement. To selectively read out the two waves, the coupling
antennae must also be arranged at 90° to one another.

10.4.2 Correction of the transverse field position

Due to field errors and misalignments of the steering magnets, the actual beam
position is offset from the ideal orbit, as described in Section 3.15. A new station-
ary beam trajectory results which includes partial betatron oscillations about the
ideal orbit in the regions between the individual transverse field disturbances. In
order to determine the complete path of the beam in the accelerator, these dis-
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Fig. 10.19 Layout of a position monitor using a resonant cavity in the TMai0 mode.
The oscillating signal induced by the beam is measured by a phase detector.

placements must be measured using beam position monitors (BPMs) described
above, placed at sufficiently many points along the beam to give the required pre-
cision. According to a general theorem, at least four measurements are required
per period, at approximately equal phase separations, in order to unambigu-
ously reconstruct the first harmonic of an oscillation. This means that in order
‘to measure the path of the beam, about four BPMs are required per betatron os-
cillation. In circular accelerators at least Ngpy > 4 () monitors must be arranged
around the circumference, with a separation chosen according to the betatron
phase U rather than the geometric position s around the ring. A compromise is
always necessary, since the phase generally evolves differently in the horizontal
and vertical planes. ;
The main purpose of measuring the beam position is to correct the orbit,
since the best beam conditions are achieved when the particles travel as closely
as possible along the ideal orbit. Large orbit deviations lead in extreme cases to
particle losses or to problems such as increased emittance. This is particularly
important in electron storage rings used to produce synchrotron radiation, which
have extremely strong focusing and require sextupole magnets for chromaticity
compensation. :
In linear accelerators and beam transport lines, orbit correction is in prin-
ciple easy due to simple causality. Starting at the point of entry of the beam,
the displacement at the first monitor is corrected using a steering coil installed
before this monitor, at a phase separation of about A¥ =~ 7 /2. The process is
then repeated at the next monitor, and so on. The correction procedure is more
complicated in cyclic accelerators, since each disturbance always affects the en-

tire machine (Section 3.15). In the following sections we will outline the principal -

techniques used in this case.
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coil i

“Pj Fig. 10.20 Position of the ith steering

. coil and jth position monitor around the
B PM] ring.

Most effective corrector method

An orbit shift is often caused by a particularly strong disturbance at a single
point. In such a case it is useful to correct this distortion using a steering coil
at-or close to this point. The problem, however, is that the disturbance and its
position are not known. Hence one attempts to apply a correction with each of the
steering coils installed around the ring and measures the remaining error using
the individual position monitors. The steering coil with the smallest residual
error is chosen. Thus the most effective corrector is found.

To describe this method more closely, let us consider a steering coil at a
position s; with the optical parameters 3;, a;, and ¥; and some kind of position
monitor at the point s; with parameters 38;, «;, and ¥; (Fig. 10.20). In total
there are n steering coils and m position monitors installed around the ring.

At the various monitors the separations

u = (ul,U2, . um) (1041)

are measured. The steering coil of strength r; = Az)(s;) results in a beam
displacement of z;; at the jth monitor. The coil strength is adjusted to minimize
the measured beam offset. To calculate this offset, we first use (3.259) to calculate
the beam displacement at the coil. We obtain

Bi
Ti | _ ki tan 7
()-2( ®2 ) e
tan TQ)
The resulting displacement in the monitor installed at the point s; is then
. Bi
g = M [T = B t
tan ()

Using the transfer matrix (3.164) and making the substitutions Bo =B =0
and AV¥;; = ¥; — ¥; this becomes '
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CI?z'j("éz') = Ky

\/,Bi,@j [COS A‘I’” — Oy SlnA\I/ij —i—sinA‘Ilij (1 (o7} ):l .

2 tan Q) " tanwQ
(10.44)
or simplified
:L'ij(lii) = R hij (10.45)
with
VBiB; [cos AW,;; — 20, sin AU,;
hij = 5 J ”tan wé 2 4 sin AT, | . (10.46)

The best correction is obtained for a strength x;, for which the error function
m m '
2
Fulse) = 37 (uj — mij(s))* = ) (uy = Kihig) (10.47)
j=1 j=1

is a minimum. This means that the sum of the quadratic errors between the
measured displacements u; and the corrections z;; is minimized. This is achieved
when

dfi (1) -
_d%,i_ = —2;(1@- — Hihij) hij = 0. (10.48)

The required optimal corrector strength is then fixed, and has the value

3

Uj hij

<,

s~

- (10.49)

2
h2

Il

j=1

The value of the residual quadratic errors may be immediately obtained by in-

serting (10.49) into (10.47). The measured orbit displacement has thus been
approximated by the effect of one single steering coil. This process is repeated
for all the steering coils, and the one which gives the smallest quadratic error
is chosen. This is the most effective corrector and the orbit displacement is
compensated for by changing the strength of this steering coil by —x;. )

By its very nature, this procedure is typically not able to completely correct
the beam trajectory. The only rare exceptions are those cases where the orbit
displacement really is due only to a single localized disturbance with a correct-
ing coil situated nearby. Very often, however, this process takes a big first step
towards the ideal orbit and so offers a good start in correcting the orbit. It can
also happen, however, that there are many small disturbances that distort the
orbit, and no steering coil is found to give a significantly better improvement
than the others. In this case the most effective corrector method cannot be used.

Matrix inversion method

If the most effective corrector method cannot be used, or if it has already been
used and further fine-tuning of the orbit is required, then one must try to correct
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the deviatior%s from the ideal orbit by simultaneously tuning all n steering coils
around the ring. The error function in (10.47) is then extended and becomes

f(f@1,'i2, N = Z (Uj - Z%‘j(&)) = Z (Uj - Zﬂz’hz‘j .
j=1 i=1 j=1 i=1
. (10.50
The tgsk now consists of finding the set of ecorrector strengths kq, kg, ... ,nz

wl}ich again minimize the error function. A necessary, and in this case also suf-
ficient, condition for this to be true is that all partial derivatives

0

%f("fl,ﬁz, coykp) =0 with  p=1,2,...n (10.51)

should vanish. This condition immediately leads to

6f m n
j=1 i=1
and hence

Z (Ujhpj - Z/‘?ihijhpj> =0 (10.53)

g=1 i=1
Writing this expression in the form

ZUjhpj = Z thjhij Ks (10.54)
Jj=1

i=1 \j=1

and setting

Up = Y ushy
j=1
. ;
Hy = Z hypjhi; (10.55)
i=1
leads to the following matrix equation
Up = > Hyi ;. (10.56)
i=1 :
This may be written in the alternative form
Uy K1 h11 h12 s hap
U, Ko | h ‘ :
| =H| . with H = 21
U, K hpi o ee- hnn

(10.57)
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The required set of corrector strengths is immediately obtained by matrix inver-
sion

K1 Ul

U.
A S R (10.58)
R Un

This is the basic principle of the technique. In practice, however, therg are (?f-
ten further conditions to be taken into account. Often the various steering coils
vary in their effectiveness because their performance depends on the v.alue of the
beta function, and this can vary greatly. In addition the mathema,‘?lcal proce-
dure yields arbitrary corrector strengths without any regard fgr their tech.m(‘:al
feasibility. The maximum possible value of «; should thus be v1ewed.a;s a limit.

The corrector strengths calculated from (10.58) are applied again Wlth‘ the
opposite sign, which leads to the minimum possible level of orb}t errors in a
system of purely linear optics, as we have assumed here. In fact.th1s as'sumptlon
is not completely valid, since the non-linear field components, in partlcular th'e
sextupoles installed for chromaticity correction, lead tp errors. Thl‘S problerp is
easily solved, however, by repeating the orbit correction several times until it
converges to a minimum error. As a rule this is achieved after three to five
iterations.

Correction with local orbit bumps

In very large accelerators with a-correspondingly large number of position moni-
tors and corrector coils the limitations of the matrix inversion method are some-
times reached. These are not due to the demand for computing power, which
today’s workstations can easily provide, but instead to the finite resolution' of
the monitors and to the finite precision of the corrector alignment. When using

this procedure these uncertainties can sum to give large errors, until a usable or-

bit correction is no longer possible. In addition, it also happens that beam shifts
are sometimes deliberately introduced at particular points in the accelerator, .for
example in the injection region and near to the experiments, and t]f‘lese sh%fts
should be preserved. A solution in such cases is to apply local ?orrectlons using
closed orbit bumps, as described in Section 3.18. ) .

If a beam displacement ., is required at a particular position monitor, the?n
the three corrector coils nearest to the monitor are chosen, as illustrated in
Fig. 10.21. In this example the monitor lies between the first and second coils.i,
but this is not an obligatory condition. In this case a strength &, in the first coil
causes a transverse beam displacement at the monitor of

T = K1V P1Bm sin(¥,, — ¥q). (10.59)
It is now always possible to apply a corrector strength x; so that thg beam dis-
placement at the position monitor disappears, namely T, = —Uy,. This corrector

strength is
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Fig. 10.21 Orbit correction with a beam bump using three corrector coils. Here the
position monitor lies between the first and second coils.

—U

VBB sin(Tr, — Uy)”

The strengths x5 and k3 of the two other corrector coils are obtained from the
matching condition for beam bumps given by (3.310) and (3.311). Once the
displacement at the monitor m has been compensated for, one proceeds to the
next monitor and repeats the process until all the beam shifts have been corrected
in turn.

It might seem that that this method allows orbit errors to be almost com-
pletely corrected, since the beam position at the monitor can be shifted back
onto the ideal orbit to within the measurement accuracy. However, this is only
true for the single monitor under consideration. The beam bump extends over a
betatron phase of approximately 7, while the separation of the position monitors
is generally not more than /2. Hence on average at least two monitors will lie
in a bump, but complete trajectory matching can in general only be performed
for one monitor. As a result this correction procedure also leads to a non-zero
residual error, comparable to that achieved by matrix inversion.

Ky = (10.60)

10.5 Measurement of the betatron frequency and the tune Q

As we saw in Section 3.14, the tune Q of a cyclic accelerator is a very important
parameter of the beam optics. Once a particular set of beam optics has been
installed, the working point, or tune, must be measured in order to check that it
lies far enough away from any strong optical resonances. Conversely, measuring
the tune allows the detection of any changes in focusing, for example due to a
magnetic field imperfection or to the space charge effect in the case of colliding
beams. It is thus possible to use the tune to monitor very precisely the stability
of the beam focusing during machine operation. Since the tune is defined as the
number of betatron oscillations per revolution, measuring it ultimately amounts
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to measuring the frequency of the transverse beam oscillations. We will now

describe this technique. . .
Consider a particle of nominal momentum, i.e. Ap/p = 0. Usmg K (3) =
1/R2(s) — k(s), the optical equations (3.21) yield the equation of motion in the

form |

2" (s) + K(s)x(s) = 0. (10.61)
If we transform this position-dependent equation into a time-dependenju one and
also take into account a weak damping effect from synchrotron radiation we

obtain )
#(t) + ;dz(t) + K (t)z(t) = 0. (10.62)

Let the damping time 7 be very long compared to the duration of a betatron
oscillation. The solution of this equation is again found to be

z(t) = exp (—E) VeV B(t) cos [¥(t) + ©]. (10.63)

T

As the damping is very slight, all terms with derivatives of exp(—t/T) may be
neglected. The first time derivative of (t) then becomes

s = _OVE X N a(t) cos O] +sin [T(t) + O] . (10.64)
() = ~-Aeexp (1 ) {a®)con [10) + 6] +sin [¥(0) + 6]

The constants of integration € and © are fixed by the initial conditions for ¢ = 0.
Using

ooy = w(0) = m |
a(0) = o and #0) = o (10.65)
¥() = 0
substitution into (10.63) and (10.64) yields
= 0 (10.66)
e =
. 1 Bo o |, Qo To
sin® = _ﬁ ( " + \/ﬁ_) .

The transverse motion of the centre of mass of the beam is, as a function of time,

2(t) = exp (-é) \/’g) {xo cos U (t) + (9"—0’”’9 +ag 3:0) sin\Il(t)}. (10.67)

This equation describes the motion of the beam along its trajectory. For practical

reasons the instantaneous offset in position can only be measured with a fast

position monitor at a few points along the orbit, and usually only at one point
sp. If the optical parameters at this point are again Sy and ao, and we start
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from the initial conditions z¢ and g, then by the nth revolution the measured
displacement is

s
T, )
Ty, = exp (—RT) {:1:0 cos(2n@n) + (,306900 + g xo> sin(QWQn)} . (10.68)
withn =0,1,2,.... If we now write the tune in the form
_ . q = integer
Q =q+a  with 0 < a<1 (10.69)
then it immediately follows that
cos(2m@n) = cos(2ran) (10.70)
sin(27Qn) = sin(2man).

This means that because of the ambiguity of the trigonometric functions, a mea-
surement at one fixed point around the orbit is only able to determine the frac-
tional part a of the tune. This uncertainty is termed the stroboscope effect. This
is understandable, since the monitor only measures the phase shift from one
revolution to the next and is unable to to determine how many oscillations take
place during the course of a revolution. What is more, there is another ambiguity

in the measurement. Using the elementary trigonometric relations one can easily
show that ;

cos2m(1 — a)n] = cos(2mwan) (10.71)
sin2r(1 —a)n] = sin(2wan).

If we assume that 0 < a < 0.5, it is not possible to determine from the frequency
measurement in the position monitor whether the tune lies above or below an
integer value. Hence the tune values Q; = 3.18 and Q = 3.82 will give the same
frequency at the monitor.

The monitor only ever measures a pulse-like position signal for a brief period
of time as the bunch flies past. This type of signal is hard to measure and so the
bandwidth of the readout electronics is chosen such that a low-pass filter may
be used to smooth out the signal first. This results in a roughly constant signal,
with an approximately linear phase dependence. The discrete time points and
phases in (10.68) correspond to

nT, =t 2Qn = 27!'@,14‘ (10.72)
u

The time dependence of the signal from the monitor thus takes the form

z(t) = exp (—;) {mo cos (Qwa%;) 4 [ﬁoc:i:o +ap fvo] sin (QWaTiu)}.

(10.73)
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This is once again the solution of the oscillation equation, assuming very weak
damping,

() + 2a(t) + Qalt) = 0 (10.74)
T
with 9
Q:%azwua 0<a<05. (10.75)

If the beam undergoes coherent betatron oscillations, then the frequency Q is
measured at the fast position monitor. Since the circumference of the machine
and hence the revolution frequency w, are fixed, (10.75) may be used.to deter-
mine the fractional part a of the tune. The integer part g is best detern%med from
a position measurement. First of all the beam position is measgre;d using all the
position monitors as a reference. The strength of a steering coil is then altered,
which causes a standing betatron oscillation about the reference orbit. A second
set of position measurements are made and the difference from the referen(;e
orbit then gives the betatron oscillations, which are simply counte'd to obtain
the integer ¢. The only remaining uncertainty is whether the tunef lies a,‘pove or
below this integer. However, this may be determined simply by increasing the
strength of a focusing quadrupole slightly, which always causes the value of @ to
increase. If a also increases, then Q lies above the integer value; if a decreases,
then @ is below the integer value.

To measure the tune it is thus necessary to excite the beam into coherent
transverse oscillations. This may best be achieved using a fast bending magnet,
which produces a periodic field B(t) = By sinwgen t. The magnet is driven by a
power amplifier controlled by a sine-wave generator. The Lorentz force

Fo(t) = ecB,(t) = pz(t) = TgenMe (10.76)
acts upon the beam, giving an acceleration

Fgen = — Bo sinwgen t. (10.77)
Me

Usually the driving magnet is not situated at the same point as the fast position

monitor. Furthermore it is very short compared to the circumference of the ma-

chine, and so from revolution to revolution it has a pulse-like effect on the bea‘m.

This can be described using an effective strength keg. The resulting perturbation

of the beam is again described by the equation

B() + 2a(t) + Q2a(t) = Aot Sinwgen L. (10.78)
T

This is the equation of a forced oscillation. As the damping is very weak, res-
onance occurs if the generator frequency wgen = 2. An arrangement used to
measure the tune in this way is shown in Fig. 10.22.

The fast bending magnet used to drive the betatron oscillations does not
need to be very strong, since the low damping and high quality-factor of the
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Fig. 10.22 Arrangement used to measure the tune of a cyclic accelerator. A fast kicker
magnet stimulates the beam at a frequency wgen, which is varied until the resonance’

is found. The amplitude of the induced betatron oscillation is measured using a fast
position monitor.

system mean that the amplitude grows very rapidly at resonance. As a rule, an
integrated field strength of around { Bds ~ 10~* Tm is sufficient. The magnet
is supplied with current by a power amplifier, fed by a sine-wave signal generator
with a frequency which may be varied in the range 0 < Wgen < 0.5wrey. A special
position monitor with fast electronics records the variation in the position, which
in the simplest case may be viewed with an oscilloscope. The resonance can also
be viewed by observing the synchrotron radiation with a camera. More elegant
techniques combine the stimulation and measurement of the oscillations in a
spectrum analyser which automatically reads out and displays the resonances.

10.6 Measurement of the synchrotron frequency

As equation (5.81) in Section 5.6 shows, particles in the accelerating field of a
cyclic machine perform longitudinal oscillations at the synchrotron frequency €.
For small amplitudes these oscillations are harmonic, to a good approximation.
Hence the frequency may again be measured by resonant excitation of the particle
beam. This is done by modulating the phase of the RF generator with a periodic
time-dependent function of the form

‘Il(t) = ¥y + A‘I/mod(t) with A\Ifmod(t) =¥ Sin Wmeoq t. (10.79)

If we again assume small phase oscillations and weak excitation, i.e. AV « ¥
and AVy,0q < Wy, then (5.64) may be extended to give

. U
Af =20 [sm [Wo + ATp0a(t) + AT — sin \IJO] - 3AE. (10.80)
TO 70
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From this we obtain, in the same way as (5.79)

. elUy cos ¥y 2
= od(t) + AU — —AE. (10.81)
AB =0 [A@m a(t) + ] ~

For ~ > 1 it follows from (5.77) that

_ETy .

AE AV. (10.82)
2rqo

Using this relation we can substitute for AE and AE in (10.81) and obtain the
inhomogeneous phase oscillation equation in the form

AY 4+ 2 AT + QPAT = —Q2ATpoq(t) = — P sinwimoa t (10.83)
To
with 2mqaely cos Ug
B ET?

The resonant excitation of the beam is again achieved with wmed = Q. We see
that coherent synchrotron oscillations can be excited by modulation of t.he ghase
of the generator. A method must now be found to observe thes«'% osm.llatlon's.
The electromagnetic field associated with the beam induces electrical signals in
electrodes or measurement cavities, which describe the intensity of the bearr} and
the phase oscillations. These signals consist of a large number of harmonics of
the revolution frequency wyey. If we choose a particular harmonic w, = NWrev,
the signal in the electrodes can be written in the form

Q* = (10.84)

U(t) = Usin [wnt + ¥ sin(wmodt)]. (10.85)

Using the relations (see, for example, Abramowitz-Stegun [96])

“+oo
cos [\i/ sin(wmodt)} = Z Jn () cos(nwmoat) (10’.86)
+oo .
sin [\if sin(wmodt)] = Z Jn (W) sin(nwmodt)
it follows that oo
Ut)=0 > Ju(¥) sin(wnt + nwmoat)- (10.87)
n=—oo

We thus have a typical phase modulated signal with the Bessel sidebands nwmod,
which can be demodulated and analysed using standard techniques from com-
munications engineering.
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Fig. 10.23 Arrangement used to measure the synchrotron frequency. The oscillations
are excited by phase modulation of the generator and measured using a phase detector,
which obtains a signal from from an electrode or a measuring cavity.

The basic arrangement used to measure the synchrotron frequency is illus-
trated in Fig. 10.23. The high-frequency signal supplied by the master generator
is modulated with the tunable Jfrequency Wmod Using an electronic phase shifter.
The periodic modulation signal comes from a signal generator whose frequency
is measured by a meter.

As shown above, this phase-modulated RF voltage excites longitudinal oscil-
lations of the beam only if the modulating frequency wyoq lies sufficiently close
to the synchrotron frequency. A phase modulated signal, described by (10.85),
can be read out using an electrode or a measuring cavity. Demodulation is per-
formed by a phase detector whose output signal may then be displayed on an
oscilloscope, for example. The frequency of the signal generator is varied until the
resonance of the phase oscillation is found, and this frequency wmoq can then be
read out using a meter. This yields the required synchrotron frequency directly.
Since this is much smaller than the revolution frequency, there is no ambiguity
in this case such as we saw in the measurement of the tune, above.

The phase demodulation shown in Fig. 10.23 always requires a reference signal
from a master generator, which must be matched to the phase of the measured
signal. In very large accelerators in particular, this requires long cables which
can cause the phase to vary with temperature. It it therefore better to measure
the phase modulation in some other way without relying on a reference phase.
According to (10.85) the time dependence of the phase of the measured signal is

\Ilrneas(t) = wnt + ] Sin(wmodt). (]_088)
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The instantaneous frequency of the signal is simply the time derivative of the
phase, namely

= wn + Wmoa ¥ cos(Wodt)- (10.89)

Hence we have a frequency modulated signal, with a carrier frequency w;, and
modulation weq ¥ c08(Wmodt). It is thus possible to use the technique of fre-
quency demodulation, which does not require a reference signal, instead of phase
demodulation. One must simply bear in mind that in (10.89) the frequency shift
increases in proportion to the modulation frequency. In order to obtain an out-
put signal which is independent of this frequency a suitable low-pass filter or
integrator must be employed, with a frequency response proportional to 1/wmod,
as is commonly used in communications systems. The synchrotron oscillations
may then be observed merely using an FM radio tuned to the right frequency.

10.7 Measurement of the optical parameters of the beam

The monitors described above also allow other optical parameters of the beam
to be indirectly measured. We conclude this chapter by describing the most
important examples.

10.7.1 Measurement of the dispersion

The dispersion can be determined from position measurements at several points
around the orbit. Let us assume that position monitors are installed at the
points s; with 4 = 1,2,...m, and these yield m corresponding values of the
beam displacement u%(s;). The momentum of the circulating particles is then
varied by a small amount Ap, while the strengths of the machine magnets remain
constant. The beam position thus shifts a distance Az(s) = D(s) Ap/p onto a
dispersive trajectory. The position measurement is now repeated and gives the
new displacements u(s;) at the m monitors. The dispersion at the monitors is
then simply calculated from

_ Ax(sy)
Disd) = R

By comparing these local dispersion values at the discrete points s; with the
calculated dispersion function it is possible to check how closely the actual beam
optics agree with the calculated design.

The difficulty with this essentially very simple measurement lies in varying
the beam momentum p without adjusting the magnets. This is done by altering
the frequency vgy of the accelerating voltage by a small amount Av, which causes
a corresponding change in the wavelength Arp. Since the phase focusing means
that the harmonic number ¢ remains constant, the circumference of the particle
trajectory changes and hence no longer matches the orbit. The stable particle
path thus shifts onto a dispersive trajectory, which entails a corresponding change
in momentum Ap.

with Ax(s;) = ul(s;) — u®(sq). (10.90)
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From the definition of the momentum compaction factor a in equation

(3.110),. the relation between the relative change in momentum and relative
change in path length is given by

& 1AL

» al (10.91)
The path length is an integer multiple of the wavelength of the RF generator, i.e.
L = q\gr. It follows immediately that AL/L = A)gp /Arr. Working in terms
of the frequency, which is easer to measure,
1
el L w1 AL A
VRF dvrp Viw L VRF

(10.92)

we obtain the required relation between the change in radiofrequencyr and the
change in momentum

% _ 1 AVRF

p @ VRp
The momentum compaction factor « is well known from optical calculations. In
practice o has proven to be very insensitive to variations in the magnet structure
with field errors largely cancelling out. The calculated value is thus very reliable,
Tl'le frequency of the accelerating voltage vgp can be measured very preciseb;
using a frequency monitor, as of course can the change in frequency Avgp. Thus
the relative change in momentum produced by varying the frequency may be
calculated using (10.93) and inserted into (10.90) to quantify the dispersion.

(10.93)

10.7.2 Measurement of the beta function

As we saw in Sef:tion 3.15, if the strength of a quadrupole changes by an amount
Ak then according to (3.274) the tune of a cyclic machine shifts by

S()+l

1
’AQ: o / Ak B(s) ds.

So

The size of t}}e shift is proportional to the value of the beta function in the
guadrupole. Since as a rule the variation of the beta function in the quadrupole
is small and the quadrupole strength k is constant along the magnet axis, we

may to a good approximation use the average value of the beta function in the
quadrupole, namely :

so+!
Ak
AQ = e / B(s)ds =~

S0

Ak
47

(B) 1. (10.94)

If we sta.mrt from a particular set-up of the beam optics and impose a well-defined
change in quadrupole strength Ak, then by measuring the tune Q before and
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after the change the average beta function in the quadrupole may be immediately
calculated using i AQ
™

(B) = NS (10.95)
Tt is essential to ensure that the quadrupole in question is only adjusted very
slightly: as a rule the change should not exceed Ak/k < 1%. If the change is
any larger, then the beta function itself can sometimes vary considerably, and
a misleading measurement could be obtained. The best method is to vary the
quadrupole strength in small steps around the nominal value. By making a large
number of measurements the function AQ(Ak) can be traced out. The gradient
of the curve at the nominal value gives the most reliable value for the required
quantity AQ/Ak.

In general k is varied by changing the current from the power supply con-
nected to the quadrupole. Often several quadrupoles are connected in series,
reflecting the symmetry of the machine, which means that the shift in @ is pro-
portional to the number of quadrupoles. The value calculated from (10.95) must
thus be divided by the number of quadrupoles. In this case the quantity ob-
tained is merely the average value of the beta function in all the quadrupoles
involved. Hence effects such as asymmetries in the beam optics cannot be identi-
fied by this method. For a careful measurement of the complete beam optics of a
cyclic accelerator additional, separate ‘piggy-back’ power supplies are required.
Alternatively a variable ‘shunt’ resistor connected in parallel can be used.

10.7.3 Measurement of the chromaticity
The chromaticity, described in Section 3.16, is defined in (3.291) as

¢= Ap/p’

which immediately suggests how it should be measured. One must simply vary
the momentum of the circulating particles and measure the value of @ in the
usual way before and after the change. The momentum is varied according to
(10.93) by changing the RF frequency vrp, in exactly the same way as in the dis-
persion measurement. Since the relationship between the change in momentum
and the tune is far from linear, especially in very strongly focusing accelerators,
it is again desirable to measure a function AQ(Ap/p), whose value in the region
around the nominal value directly yields the chromaticity.

A chromaticity measurement is essential for correct tuning of the sextupoles.
The calculation of the chromaticity compensation in Section 3.16 is actually only
partially correct, since it does not take into account the sextupole components
of the higher multipoles. Furthermore, any variation in a quadrupole leads to a
corresponding change in the beta function, which in turn also affects the sex-
tupole compensation. Hence the chromaticity should also be regularly checked
during operation, especially in storage rings with strong focusing.

3

A
Maxwell’s equations

Charged particles are accelerated by electric fields E and steered and focused by
magnetic fields B. These fields may also vary with time. A particle beam consists
of a spatial distribution of charge, with a charge density p(r). The relationships
between charge and electromagnetic fields are described by Maxwell’s equations
which‘ are the fundamental theoretical basis of accelerator physics. Ma,xwell’s’
equations may be written both in integral and differential form, and both are
used where appropriate in the text. For convenience we give both forms here, in
ST units. In integral form Maxwell’s equations are ,

]{E.dA - / P_av
Er€o
A 1%
fBHA==O (A1)
A

fE.ds = —/B.dA
A

j{B -ds = /ur,uo(i + & eoE) -dA.
A

The integrals on the left-hand side run over a closed surface or closed path, while
those on the right-hand side run over the enclosed volume V or the enclosed

area A respectively. ¢ denotes the current density. In differential form, Maxwell’s
equations are written as

v.E = P . _p

Er €0 dive = Er €0
V-B = 0 divB = 0 (A2)
VxE = —-B curlE = —-B

VxB = puoli+e k) curlB = ppo(i + & 60 E).
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If we consider the time-dependent fields in free space, i.e. p = 0 and i = 0, the
last two equations of (A.2) take the form

VxE = -B

VxB = ,ur,uosreoE. (A.3)

We again apply the operator Vx to the first of these equations and'diﬁerentiate
the second with respect to time. These relations then combine to give

Vx(VxE)+ ,urugsreoE =0. (A4)

Since p = 0, the divergence of E is zero according to the first equation of (A.2).
Using the vector relation

V x (V x E) = V(VE) — V’E
(A.4) then yields the wave equation

V2E - %E =0 (A.5)
v

with phase velocity )

_. (A.6)
vV HrhoErEQ

A charge Q moving in an electric field E and magnetic field B experiences the
Lorentz force

F=Q(E+vxB). (A7)

For a detailed treatment of electrodynamics the reader is referred, for example,

to the book by J.D. Jackson [29].

B

Some important relations in
special relativity

An inertial frame is a frame of reference in which a body which is not acted on by
a force will move at constant velocity. If a particular reference frame is moving at
a constant velocity relative to an inertial frame, then it too is an inertial frame.
In any such coordinate system four quantities are needed to specify the position
at which a physical event occurs, namely the three spatial coordinates s, z and
z plus the time ¢. If we consider a reference frame K which is at rest and an
inertial frame K’ moving with a velocity v relative to it, these four quantities
transform between the two {rames according to the Lorentz transformation

d = s—uvt
I F

¥ = =z

! z
t——v—x

{ o= (B.1)
VP

s+t

z = x

z = 2
t'-!—%x’

t =

where = v/c and c is the speed of light. Here it is assumed, without any loss
of generality, that the corresponding axes of the coordinate systems are parallel
to one another and that the motion is along the s-axis.
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If a particle in the rest frame K has the four-momentum

p}L — bs (B.Q)

¥y 0 0 —pBv
0 1 0 O
=l o o1 o |' .
—By 0 0 v
with
1

(B.4)

Due to the Lorentz invariance of electrodynamics, a static magnet at rest in a
frame K will produce an electric field as well as a magnetic field in a moving
frame K'. If we label the individual field components in these two systems as
Es, Ey, E, and B,, By, B,, or Ej, E, E! and B,, B, B, respectively, the
transformation equations for the field components are

E; - Es
B = E,—vB,
T /1 _ /82
Ez Bw
g - iU (B.5)
V1= 52
B; = Bs
B + ’%Ez
B, = —/—%
T 1 _ ﬂz
B, — = E,
B, = £

z /1 _ 62
A particle of rest mass mg and velocity v has the relativistic energy

E

mo 02 ’

y= (B.6)

We may therefore express the momentum and energy of a particle in the form
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p = Ymov
E = ymoc?. (B.7)
The relation between energy and momentum is then |
c
g

The relationship between a relative change in momentum and the corresponding

rela(x}t?)ive) change in velocity my be obtained by differentiating the momentum p
in (B.7):

E= (B.8)

dp d
i m()%(fyv) = ymo(1 + %4%). (B.9)

According to (B.4) we have v* = 1 + 3242, Substituting this into (B.9) yields
dp = 73m0dv. (B.10)
Dividing by p = ymqv, we finally obtain

@ _ odv .
We also‘require the relation between the relative change in energy and the cor-
respondu}g relative change in momentum. We obtain this by differentiating the
energy with respect to the momentum in (B.7), namely

dE m o dry
—dp = 0oC Ep? (B.12)
and replacing v by p/mov
dE od (p

Using (B.10) this expression gives

d /p 1 1 1
(5= (1 - ?> =7 (B-14)

Substituting this into (B.13) yields

2
c
dE = < g?
,Bdp (B.15)
which when divided by FE = ¢p/f finally gives

AE _ dp.

= ; (B.16)
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General equation of an ellipse
in phase space

To describe an ellipse in the transverse plane z-z’ of phase space we need the
general equation of an arbirtrarily rotated ellipse, as shown in Fig. C.1. We
therefore move to a rotated coordinate system Z-Z’ in which the principal axes
a and b of the ellipse correspond to the axes of the coordinate system. In this
new coordinate system Z-Z’ the ellipse is described by

(ST
!

a cos
¥ = bsing, (C.1)

where the parameter ¢ lies within the range 0 < ¢ < 2m. The transformation
into the z-z’ coordinate system, which is rotated by an angle ¥, proceeds using
the relations

z = a cosp cosW+Db singp sin¥
/

' = —a cosp sin¥+b sing cosV. (C.2)

We now eliminate the free parameter ¢ by solving these equations with respect to
sin ¢ or cos ¢ and using the general relation sin? ¢+ cos? p = 1. We immediately
obtain

Fig. C.1 Generalized ellipse rotated by an
* arbitrary angle ¥ in the coordinate system
z-z'. The reference coordinate system -’ is
rotated by the same angle ¥ as the ellipse.
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0 = b?(zcosV — 2’ sin W)? + o2(zsin ¥ + 2’ cos )2 |
= (b*sin® ¥ + a%cos? U) 22 + 2(a® — %) cos ¥ sin¥ z 2’ (C.3)
+(b% cos® ¥ + a? sin? W) 2.

We divide these equations by a b and define

b

B = —Sin2‘11+gcos2\11
a b

_ f(a b .

a = {(3-~ cos ¥ sin ¥ (C.4)
b

O -coszlll+gsin2\1f.
a b

Using the expression for the ellipse area A = 7 a b, the required general equation
of an ellipse is then given by

A
;zﬁx’2+2axw'+’yx2=s. (C.5)

It is easy to show by substitution of the definitions (C.4) that

1+ o?
v = 7 (C.6)
The ellipse is thus uniquely defined by the parameters «, 3, and ¢. Let us now
dgtermme a few important locations on the ellipse. The points of intersection
with the coordinate axes are immediately obtained by setting £ = 0 or 2/ = 0,

namely
€
r = \/j for 2'=0
Y

z = £ f =0
or z=0.

To find the extreme edges of the ellipse we now solve (C.5) for z or z':

—ax’ £ \/ve —x'?
Y
, —ax + /B — z2

o = 5 . (C.8)

Differentiating these expressions immediately yields the extrema

Textr = = vV 5,8 for dz =0

x

dx’
dz’
m:extr = :‘:V57 for Zl; =0. (Cg)




Bibliography

1]

ERE RS RENCIENE

[10]

—
N}

M.S. Livingston, J.P. Blewett, Particle Accelerators (McGraw-Hill, New
York, 1962)

1.D. Cockeroft and E.T.S. Walton, Proc. Roy. Soc. (London), A136, 619
(1932), A137, 229 (1932), and A144, 704 (1934)

Schenkel, Elektrotech. Z., 40, 333 (1919)

H. Greinacher, Z. Physik, 4, 195 (1921)

Bellaschi, Trans. AIEE, 51, 936 (1932)

R.J. Van de Graaff, Phys. Rev., 38, 1919A (1931)

G. Ising, Ark. Math. Astron. Phys., 18, No. 30, Part 4, 45 (1925)

R. Widerde, Arch. Elektrotech., 21, 387 (1928)

J.W. Beams, L.B. Snoddy, Phys. Rev., 44, 784 (1933);
J.W. Beams, H. Trotter, Phys. Rev., 45, 849 (1933)

E.L. Ginzton, W.W. Hansen, W.R. Kennedy, Rev. Sci. Instrum., 19, 89

(1948);
M. Chodorow, E.L. Ginzton, W.W. Hansen, R.L. Kyhl, R.B. Neal,

W.K.H. Panofsky, Rev. Sci. Instrum., 26, 134 (1955)

R.H. Helm, G.A. Loew, W.K.H. Panofsky, The Stanford Two-Mile Accel-
erator (W.A. Benjamin, Inc., New York, 1968), chapter 7

L.W. Alvarez, H. Bradner,J.V. Franck, H. Gordon, J.D. Gow, L.C. Mar-
shall et al., Rev. Sci. Instrum., 26, 111 (1955)

E.O. Lawrence, N.E. Edlefsen, Science, 72, 376 (1930)

S. Rosander, The Development of the Microtron, Nucl. Instrum. & Meth-

ods, 177, 411-416 (1980)

B. Schoch, The MAMI Project, Proc. Electron and Photon Interactions
at Intermediate Energies, Bad Honnef 1984, 440-446 (1986);
T. Walcher, The Mainz Microtron Facility MAMI, Proc. The Nature of
Hadrons and Nuclei by Electron Scattering, Erice 1989, 189-203 (1989)

D.W. Kerst, Phys. Rev., 58, 841 (1940), and 60, 47 (1941)

R. Widerde, Arch. Elektrotech., 21, 400 (1928)

E.M. McMillan, Phys. Rev., 68, 143 (1945)

V. Veksler, J. Phys. (U.S.S.R.), 9, 1563 (1945)

F.G. Gouard and D.E. Barnes, Nature, 158, 413 (1946)

M.L. Oliphant, J.S. Gooden, G.S. Hide, Proc. Phys. Soc. (London), 59,
666 (1947) '

[22]

(23]

(24]

[25]

[26]

[28]

[29]
[30]

[31]
[32]

Bibliography 305

M.H. Blewett (ed.), Cosmotron Staff, Rev. Sci. Instrum., 24, 723-870
(1953)

G.K. O’Neill, Component Design and Testing for the Princeton-Stanford
Colliding-Beam Experiment, Proc. Int. Conf. on High Energy Accelera-
tors, Brookhaven (1961)

C. Bernadini, U. Bizzarri, G.F. Corrazza, G. Ghigo, R. Querzoli, and
B. Touschek, A 250 MeV Electron-Positron Storage Ring: The ”A a A”,
Proc. Int. Conf. on High Energy Accelerators, Brookhaven (1961)

G.I. Budger et al., Status Report on Electron Storage Ring VEPP I, Proc.
5th Int. Conf. on High Energy Accelerators, Frascati (1965)

B.H. Wiik et al., Study for the Project of the Proton electron Storage Ring
HERA, DESY HERA 80-01, (1980);

V. Soergel, The HERA Project, Proc. High Energy Spin Physics, 575—
581, (1986)

G.A. Voss, Status of the HERA Project, Proc. Lepton and Photon Inter-

actions at High Energies, 525-552 (1987)

E. Keil, The Large European et e~ Collider Project LEP, Proc. Particle
Accelerator Conference, Washington, March 11-13, (1981);

H. Schopper, The LEP Project, Proc. Conf. on High Energy Accelerators,

Novosibirsk 1986, Vol. 1, 39-43 (1986) '

H. Wiedemann, The SLAC Linac Collider (SLC) Project, Proc. Particle
Accelerator Conference, Washington, March 11-13 (1981)

J.D. Jackson, Classical Electrodynamics, (Wiley, New York, 1975)

A. Hofmann, Theory of Synchrotron Radiation, 38, SSRL ACD-Note
(1986)

A. Liénard, L’Eclairage Elect., 16, 5 (1898)
F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, and H.D. Pollack, Phys.

Rev. 71, 829-830 (1947) J. Appl. Phys., 18, 810 (1947); F.R. Elder,
R.V. Langmuir, and H.D. Pollack, Phys. Rev. 74, 52 (1948)

J. Schwinger, Phys. Rev. 70, 798 (1946), Phys. Rev., 75, 1012-1025 (1949),
and Proc. Natl. Acad. Sci. USA, 40, 132 (1954)

E.M. Rowe and F.E. Mills, Part. Accel. 4, 211-227 (1973)
H. Winick, IEEE Trans. Nucl. Sci., 20, 984-988 (1973) and Proceedings of

the 9th International Conference on High Energy Accelerators, Stanford,
California, 685688 (1974)

E.E. Koch, C. Kunz, and E.-W. Weiner, Optik (Stuttgart), 45, 395-410
(1976)

E.M. Rowe et al., Status of the ALADDIN Project, IEEE Trans. Nucl.
Sci., 28, 3145-3146 (1981)

M. Barthes et al., Magnet System for Super ACO, the new Orsay Syn-
chrotron Radiation Source, Proc. Magnet Technology, Ziirich, 114-117,
(1985)




j44]

Bibliography

G. Miilhaupt et al., Status of BESSY, an 800-MeV Storage Ring Dedicated
to Synchrotron Radlatlon, IEEE Trans. Nucl. Sci. 30, 3094-3096 (1983)

M.R. Howells, Progress and Prospects at the National Synchrotron Light
Source (NSLS), Nucl. Instrum. & Methods 195, 17-27 (1982)

J. Tanaka et al., Design and Status of Photon Factory, Proc. High Energy
Accelerators, Geneva, 242-246 (1980)

A.L. Robinson, A.S. Schlachter, The ALS: A High Brightness Synchrotron
Radiation Source, Proc. Particle Accelerator Conference, San Francisco,
May 5-6 (1991)

L. Fonda, M. Puglisi, R. Rosei, A. Wrulich, The ELETTRA Project, Helv.
Phys. Acta, 62, 633-644, (1989)

DELTA Collaboration, Status Report of the Dortmund Storage Ring
Project DELTA, University of Dortmund (1990)

B. Buras and S. Tazzari, European Synchrotron Radiation Facility, Report
of the ESRP, CERN, Geneva (1984)

Y. Cho et al., Conceptual Design of the Argonne 6-GeV Synchrotron Light
Source, Proc. Particle Accelerator Conference IEEE, 3383 (1985)

SPring-8 Project Team, Spring-8 Project, Jaeri-Riken, Japan (1991)

E.B. Courant, H.S. Snyder, Theory of the Alternating Gradient Syn-
chrotron, Ann. Phys. 3, 1-48 (1958)

E. Persico, E. Ferrari, S.E. Segre, Principles of Particle Acce]erators,
(W.A. Benjamin, Inc., New York, 1968)

K.G. Steffen, High Energy Beam Optics (Interscience, New York, 1965)

M. Sands, The Physics of Electron Storage Rings. An Introduction. Proc.
International School of Physics Enrico Fermi, (ed. B. Touschek) (1971)

A.A. Kolomenski, A.N. Lebedev, Theory of Cyclic Accelerators (North
Holland, Amsterdam, 1966)

E.J.N. Wilson, Proton Synchrotron Accelerator Theory, CERN 77-07
(1977)

H. Bruck, Circular Particle Accelerators (Translated from the French),
LA-TR-72-10 Rev (Los Alamos National Laboratory, 1966)

S. Turner (ed.), CAS CERN Accelerator School, Fifth General Accelerator
Physics Course, CERN 94-01, Vol. I and II (26 January 1994)

W. Buckel, Supraleitung - Grundlagen und Anwendungen (Physik Verlag,

Weinheim, 1977)

Pierce, J. App. Phys., 11, 548 (1940)

F.M. Penning, Physica, 4, 71 (1937)

O. Zinke and A. Vlcek, Lehrbuch der Hochfrequenztechnik, Vol. 1,
(Springer-Verlag, Heidelberg, New York, Tokyo, 1986)

H. Gerke, H. Musfeld, The Radiofrequency System for the PETRA Storage
Ring, DESY M-79/33 (1979)

P.M. Lapostolle, A.L. Septier (ed.), Linear Accelerators, (North Holland,
Amsterdam, 1970)

[62]

[80]
[81]
(82]

(83]
[84]

Bibliography 307

M. Chodorow and C. Susskind, Fundamentals of Microwave Electronics
(McGraw-Hill, New York, 1964)

K.W. Robinson, Phys. Rev., 111, 373 (1958)
R. Chasman and K. Green, BNL Report, BNL 50505 (1980)

H. Winick, Present and Future Synchrotron Raidation Facilities in J apan,
Nucl. Instr. & Meth. A152: 177-196 (1998)

F. Amman and D. Ritson, Proc. Int. Conf. on High-Energy Accelerators
Brookhaven, 262 (1961) ,

H. Winick and T. Knight (ed.), Wiggler Ma,
gnets, Wiggler Worksh
SLAC; SSRP Report No. 77/05 (1977) g8 orkshop,

J. Spencer and H. Winick, Synchrotron Radiation Research, ed. H. Winick
and S. Doniach (Plenum Press, New York, 1980) Chapter 21, Wiggler
systems as sources of electromagnetic radiation.

I-I(.l\gRgiln)ick, G. Brown, K. Halbach, and J. Harris, Physics Today, 34, 50-63

G. Brown, K. Halbach, J. Harris, and H. Winick, Wiggler and Undulator
Magnets - a Review, Nucl. Instrum. & Methods, 208, 65-77 (1983)

D.E. Baynham and B.E. Wyborn, A 5 Tesla Su
perconductive Wiggler
Magnet, IEEE Trans. Magn., MAG-17, 1595 (1981) 5

M.W. Poole, V.P. Suller, and S.L. Thomson, A Second Superconducting

Wiggler Magnet for the Daresbury SRS, Pre
print, Daresbury Lab., D
SCI / P630A (1989) e v

K. Halbach, J. Chin, E. Hoyer, H. Winick, R. Cronin, and J. Yang, IEEE
Trans. Nucl. Sci., NS-28, 3136-3138 (1981)

G. Dattoli and A. Renieri, Nuovo Cimento, B59, 1 (1980)
G. Dattoli and A. Renieri, Nuovo Cimento, B61, 153 (1981)

G. Dattoli and A. Renieri, The Laser Handbook, Vol. IV (North Holland
Amsterdam, 1985) 1 ,

F. Ciocci et al., Phys. Reps., 141, 1 (1986)
W.B. Colson, Phys. Lett., A64, 190 (1977)

W.B. Colson, Qne-body analysis of free electron lasers, in Novel Sources of
Coherent Radiation, ed. S.F. Jacobs, M. Sargent, M.O. Scully (Addison-
Wesley, Reading, Mass. 1978)

W.B. Colson, Nucl. Instr. & Meth., A237, 1 (1985) W.B. Colson and
A. Sessler, Ann Rev. Nucl. Part. Sc1 25 (1985)

C. Pellegrini and J. Murphy, Introduction to the physics of the FEL, Proc.
Conf. South Padre Island, Springer, 163 (1986)

S. Krinsky, Introduction to the Theory of Free Electron Lasers, AIP 153
1016 (1987) ,

R.B. Palmer, J. Appl. Phys., 43, 3014 (1972)

L.R. Elifls, W.M. Fairbank, J.M.J. Madey, H.A. Schwettman, and
T.I. Smith, Phys. Rev. Lett., 36, 710 (1976)




308
[85]

(86]
(87]

[90]

[100]

[101]

Bibliography

D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman,
and T.I Smith, Phys. Rev. Lett., 38, 892 (1977)

J.M.J. Madey, Nuovo Cimento, B50, 64 (1979)

J. Bisognano, S. Chattopadhyay, M. Cornacchia, A. Garren, A. Jackson,
K. Halbach et al., Feasibility Study of a Storage Ring for a High Power
XUV Free Electron Laser, Lawrence Berkeley Lab. LBL-19771 (June
1985)

N.A. Vinokurov and A.N. Skrinsky, Institute of Nuclear Physics, Novosi-
birsk, USSR, Preprint (1977)

M. Billardon, P. Elleaume, J.M. Ortega, C. Bazin, M. Bergher, M. Velghe,
et al., IEEE J. Quantum Electron., 21, 805 (1985)

M.E. Couprie, C. Bazin, M. Billardon, and M. Velghe, Nucl. Instr. &
Meth., A285, 31 (1989)

I.B. Drobyazko, G.N. Kulipanov, V.N. Litvinenko, 1.V. Pinayev,
V.M. Popik, L.G. Silvestrov et al., Proc. 11th Int. FEL Conf., Naples,
U.S.A. (1989)

T.C. Marshall, Free Electron Lasers (MacMillan Publishing Company,
New York, 1985) :
Charles A. Brau, Free-Electron Lasers (Academic Press, 1990)
Free-Electron Generators of Coherent Radiation, Physics of Quantum
Electronics, Vol. 8, ed. S.F. Jacobs, G.T. Moore, H.S. Pilloff, M. Sar-
gent ITT, M.O. Scully, R. Spitzer (Addison-Wesley, 1982)

W.B. Colson, C. Pellegrini, A. Renieri, The Laser Handbook, Vol. VI,
(North Holland, Amsterdam, 1990)

M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions
(Dover, New York, 1965)

A. Renieri, Nuovo Cimento, 53B, 160 (1979)

R.W. Allison, R.W. Brokloff, R.L. McLaughlin, R.M. Richter, M. Tekawa,
J.R. Woodyard, UCLR-19270, Berkeley (1969);

S. Yencho, D.R. Walz, Proc. Particle Accelerator Conference, IEEE
Trans. Nucl. Sci., NS-32, No. 5, Vancouver (1985);
C.D. Johnson, CERN/PS/90-42 (AR) (1990)

R.T. Avery, A. Faltens, E.C. Hartwig, Part. Acc. Conference, IEEE Trans.
Nucl. Sci., NS-18, No. 3, Chicago (1971);

T. Naito, H. Akiyama, J. Urakawa, T. Shintake, M. Yoshika, 8th Symp.
on Ace. Science and Technology, Wako, Saitama (1991)

F. Loyer, T. André, B. Ducodret, J P. Rataud, Part. Acc. Conference,
IEEE Trans. Nucl. Sci., NS-32, No. 5, Vancouver (1985)

K. Unser, Part. Acc. Conference, IEEE Trans. Nucl. Sci., NS-28, No. 3,
Washington (1981);

G. Burtin, R.J. Colchester, C. Fischer, J.Y. Hemery, R. Jung, M. Vanden
Eynden, J.M. Voillot, 2nd Europ. Part. Acc. Conf., (EPAC 90), Nice
(1990)

[102]
[103]

[104]

[105]
[106]

[107]

[108]
[109]

[110]

Bibliography 309

A.A. Sokolov and I.M. Ternov, On Polarization and Spin Effects in the
Theory of Synchrotron Radiation, Sov. Phys. Doklady 8, 1203 (1964)
V.N. Baier, Radiative Polarisation of Electrons in Storage Rings, Sov.

Phys. Uspekhi, 14, 695 (1972)

S.If. Sliarefd{nyakov, A N. Skrinskii, G.M. Tumaikin, Yu.M. Shatunov, Study

of the Radiative Polarisation of Beams in the VEPP-2M S ¢ Ri
- t
JETP, 44, 1063 (1976) crege fng

R. N.eumann and R. Rossmanith, A Fast Depolarizer for Large Electron-
Positron Storage Rings Nucl. Instrum. & Methods, 204, 29 (1982)

V.N.. Baier, Proceedings of the Workshop on Advanced Beam Instrumen-
tation, KEK, Tsukuba, Japan, 365 (1991)

A N. Skrinskii and Yu.M. Shatunov, Precision Measurements of Masses
of Elementary Particles Using Storage Rings with Polarized Beams, Sov.
Phys. Uspekhi, 32, 548 (1989) ‘ ’ ‘

D.P. Barber.et al. A Precision Measurement of the Y’ M i

eson M
Letters, bf 135B, (1984) n s, Physies

D.A. Goldberg, G.R. Lambertson, US Particle Accelera
' ’ tor School, 1
AIP Conf. Proc., 249 (1992) chool, 1991,

G. Lehner, Elektromagnetische Feldtheorie, (Spri i i
s , (Springer-Verlag, Berlin, Hei-
delberg, New York, 1994) (Sprins & e, e




Index

180°-bump, 128

27/3 mode, 166

Q value (tune), 101, 287
Q4-Q, diagram, 111
/2 mode, 166

7 mode, 166

acceptance ellipse, 143
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air core, 59

alignment error, 279

Alvarez structure, 13

Amman-Ritson effect, 205

amplitude function, 78

angle bump, 134

angle of deflection, 271

angular distribution of synchrotron
radiation, 35

anharmonic betatron oscillations,
123

antiparticle, 22

automatic gain control amplifier,
279

average emittance, 81

beam emittance, 82
beam instabilities, 204
beam lifetime, 145
beam momentum, 294
beam optics, 44
beam perturbation, 290
beam position, 259
measurement, 275
monitor, 275, 282
beam profile, 259
beam size, 79, 81
beam steering, 44

magnet, 50
beam transformer, 262, 275
bending radius, 46
Bessel sidebands, 292
beta function, 78
average, 296
evolution, 85
measurement, 295
beta matrix, 84
betatron, 17
betatron oscillation, 77
damping, 188
BPM, 275
brightness, 193
brightness adjustment, 259
brilliance, 193
bucket, 184

canonical equations of motion, 80

carrier frequency, 294

cavity, 158, 266

cavity linac, 12

cavity window, 160

CCD camera, 258

centre of mass frame, 23

change in path length, 76

chaotic particle dynamics, 123

Chasman-Green structure, 200

chromaticity, 75, 121
compensation, 121
measurement, 296

chromox, 258

closed orbit bump, 286

co-moving coordinate system, 47

coaxial structure, 260

Cockroft-Walton cascade generator,

6

coherence condition, 229, 236, 239

colliding beams, 22

collision region, 26

combined function magnet, 20, 66

Compton backscattering, 274

Compton FEL, 232

conventional magnet, 53

corona formation, 6

correcting coil, 127

corrector strength, 284

cosmotron, 20

coupled particle motion, 58

coupled resonances, 111

coupling, 111 |

coupling antenna, 267
capacitive, 267

coupling capacitance, 267

coupling loop, 267

coupling slot, 165

critical field strength, 59

critical frequency, 38

critical temperature, 59

cross-section, 25

current density, 51, 59

current shells, 64

current transformer, 264

cut-off wavelength, 154

cut-off wavenumber, 153

cylindrical waveguide, 156

damping constant, 187, 190
damping of betatron oscillations,
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damping of synchrotron oscillations,
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damping ring, 28
de Broglie wavelength, 1
depolarization, 273
frequency, 273
time, 273
deQing, 175
determinant, 67
differential event rate, 203
diode gun, 138
dipole magnet, 53
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dipole strength, 50, 54
direct voltage accelerator, 5
disc-loaded structure, 163
dispersion, 75
measurement, 294
dispersive section, 253
dispersive trajectory, 74, 122
distorted matrix, 117
distorted orbit, 113
distortion matrix, 118
distributed sextupoles, 126
distribution function, 120
drift region, 66
dynamic aperture, 124
dynamic range, 278

eddy-current shield, 150
edge focusing, 69, 73
effective kicker field, 148
ejection, 136

electric field component, 279

~ electromagnetic pulse, 38

electron beams, production of, 137
electron synchrotron, 20
electron volt, 2
electron-positron storage ring, 26
electrons, polarized, 273
electrostatic accelerator, 5
ellipse equation, 80
emittance, 78, 80, 192
coupling, 210
due to field error, 113
increase, 282
end region of field, 70
energy, 271
acceptance, 180, 184
determination, 272
oscillation, 180
relativistic, 3
envelope, 79
equations of motion, 50
equilibrium distribution of particles,
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equipotential, 51, 52
error function, 284, 285
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evolution of the beta function, 85

excitation curve, 54

excitation of particle oscillations,
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extraction electrode, 140

Faraday cup, 259

FEL (free electron laser), 230
amplification curve, 250
amplifier, 251
oscillator, 251
saturation, 250
time structure, 254

field error, 46, 106, 112, 281

field gradient, 56

field index, 68

field integral, 272

field shape, 51, 60

filament, 137

five-cell cavity, 162

Floquet’s theorem, 101, 105

Floquet’s transformation, 104, 105

fluorescence monitor, 258

fluorescent screen, 275

FODO cell, 98

FODO structure, 97

forced oscillation, 290

forces, 3

four-dimensional trajectory vector,

70

four-momentum, 31, 36

Fourier integral, 230

free electron laser, 232

frequency demodulation, 294

frequency modulated signal, 294

fringe field, 105

full width half maximum of undula-

tor radiation, 230
fundamental rule of injection, 142

gas desorption, 270

gas stripper, 9

Gauss’s theorem, 207
Gaussian distribution, 81
gradient error, 115

Greinacker circuit, 6
grid, 138

Hig wave, 156

half-integer resonance, 109
Hamiltonian function, 181
hard-edge model, 65, 112
harmonic number, 178
head-tail damping, 123
head-tail instability, 121
Hertz dipole, 35

high-gain regime, 248
Hill’s differential equation, 77, 101
hybrid magnet, 219
hysteresis, 272

ideal machine, 104

impedance, 260

inductive accelerating section, 170

inductive coupling loop, 160

inelastic collision, 22

injection, 136

insertions, 221

integer resonance, 108

integer stopband, 105

integrated luminosity, 202

intensity, 259

intensity distribution of undulator
radiation, 230

interaction cross-section, 202

interaction point, 203

interaction region, 26, 214

invariants of particle motion, 80

ion sources, 140

ionization chamber, 140

irises, 163

iteration, 93

iterative process, 91

kicker magnet, 22, 141, 147
klystron, 169
klystron modulator, 172

laboratory frame, 23
Laplace equation, 52, 217
laser, 232

laser gun, 139

law of induction, 18

lifetime, 25, 269

light yield, 259

linac, 12, 28

linac structure, 163

linear accelerator, 9

linear beam optics, 45

linear collider, 28

Liouville’s theorem, 80, 85, 137
Lorentz force, 3, 44

Lorentz transformation, 24, 36, 205
low-gain regime, 243
luminosity, 25, 202

macro-particle, 249
Madey theorem, 247
magnetic flux density, 52
Marx generator, 7
matching condition, 128
matching of beam optics, 89
matching of optical functions, 91
matrix inversion, 285, 286
matrix multiplication, 72
maximum luminosity, 211
Maxwell’s equations, 51
measurement cavity, 266
Meissner-Ochsenfeld effect, 60
micropulse, 254
microtron, 16
mini-beta principle, 215
mini-beta quadrupole, 215
minimum emittance, 197
mirror reflectance, 251
mirror, loss from, 251
misalignment, 115, 281
momentum, 271
deviation, 49, 120
distribution, 120
momentum compaction factor, 76,
178
monitor, 258
constant, 277
most effective corrector, 283
multipole, 45, 64
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natural damping distribution, 191
nominal momentum, 49

nominal phase, 176

non-linear particle dynamics, 127
non-linear resonances, 123
normalization condition, 39
normalized emittance, 211

nuclear magnetic resonance probe,
273

one-third integer resonance, 110
opening angle, 37
optical klystron, 253
optical resonance, 101, 106
orbit, 47 ’

bump, 127, 133

correction, 282

distortion, 113

ideal, 274
order of a resonance, 111
oscillation equation, 66
oscillator potential, 180
over-compensation of chromaticity,

122

overvoltage, 184

pair production, 22, 140

particle detector, 26

particle momentum, 49

particle oscillations, excitation of,
194

particle source, 136

particle tracking, 124

particle trajectory, 45

path element, 47

peak voltage in cavity, 161

pendulum equation, 240

Penning principle, 140

periodicity conditions, 94

permanent magnet, 219

perturbative calculation, 115

PFN, 172

phase detector, 280, 293

phase ellipse, 80

phase focusing, 12, 176
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phase modulated signal, 292

phase oscillation, 180, 291

phase space plane, 80

phase velocity, 154

photon flux, 193

photon four-momentum, 228

photon yield, 40

Pierce cathode, 138

PIG-source, 140

pinch effect, 28

pixel, 259

polarimeter, 274

polarization time, 273

position error, 277

position measurement, 279

position monitor, electric, 275

production of electron beams, 137

proton synchrotron, 20

pulse length of synchrotron radia-
tion, 37

pulse transformer, 138, 173

pulse-forming cable, 138

pulse-forming network, 138, 172

Q-value of an oscillator, 268

quadratic errors, 284

quadrupole error, 120

quadrupole field, 55

quadrupole strength, 46, 50

quality factor of an electrical oscil-
lator, 161

quenching, 60

racetrack microtron, 16
radiation distribution, 36
radiation equation, 31
radiation fan, 41

radiative effects, 185

Raman FEL, 232

recoil, 23

rectangular magnet, 69, 73
rectangular resonant cavity, 280
rectangular waveguide, 154
relative signal, 269

relativistic Doppler effect, 228

relativistic klystron, 170
resonance condition, 158
resonance energy, 239
resonant cavity, 152, 158, 279
resonant charging, 174
resonant wavelength, 158
response matrix, 92

RF accelerator, 10
Robinson’s theorem, 191
Rogowski coil, 262

rotated coordinate system, 47

S-band, 164
saturation of magnetic field, 54
scalar potential, 51
scraper, 279
secondary electrons, 260
secondary particles, 260
sector magnet, 69
separated function magnet, 20, 66
separatrix, 180, 248
septum, 143, 149
sextupole, 123

families, 126

magnet, 57
shells of current, 64
shunt impedance, 161, 167
signal, frequency modulated, 294
similarity of matrices, 117
single-cell cavity, 159
skin effect, 151
solution of the trajectory equation,

78

solution of the wave equation, 158
space charge effect, 205
space charge forces, 205
space charge law, 138
space charge limit, 211
spectral function, 38
spectrometer, 272
spectrum analyser, 291
spin depolarization, 273
stacking, 142
standard deviation, 81
standing wave, 158, 165

static magnetic field, 51
steering coil, 127
stimulated emission, 232, 239
storage ring, 25
for synchrotron radiation, 40
stroboscope effect, 289
superconducting dipole, 64
superconducting quadrupole, 64
superconducting sextupole, 64
superconductors, 59
symmetric solution, 95
symmetry point, 85, 93, 98
synchrotron, 20
frequency, measurement, 291
oscillation, 177
damping of, 185
radiation, 21, 30
frequency spectrum, 37

tandem accelerator, 9
TE o wave, 154
television camera, 258
thermionic cathode, 137
thin lens, 70, 123
thyratron, 138, 149, 173
thyristor-regulated power supply,
171
time structure, 260, 266
total chromaticity, 122
trace of a matrix, 117
trajectory equations, 65
trajectory vector, 66, 81, 113
trajectory vector, four-dimensional,
70
transfer matrix, 67, 76, 88
transition energy, 180

Index 315

transverse acceptance, 83
travelling wave, 165
triode-gun, 138
tune, 101, 111, 287
diagram, 111
shift, 120, 209
tuning plunger, 160

ultra-high vacuum, 26

uncertainty relation, 255

undulator, 41, 217
definition, 224
parameter, 224
radiation, 227
spectrum, 231

Van de Graaff accelerator, 8

wall current, 261
monitor, 262
wave equation, 152
waveguide, 152
cylindrical, 156
dispersion relation, 154
mode, 156, 166
rectangular, 154
wavelength shifter, 220, 224
wavenumber, 152
weak focusing, 68, 73
Wideroe’s betatron condition, 19
wiggler, 41, 217
definition, 224
working point, 111
wound tape core, 263

zinc sulphide, 258




