

Contents

1. Limits of Current Acc. Technology

2. AWAKE and Phases

3. AWAKE Phase C, Injector Design

4. Results and Simulations

1.1 Electrostatic Accelerators

Cockcroft-Walton Accelerator-1928

1932-400 keV

1.1 Electrostatic Accelerators

1.2 RF Accelerators

1.2 RF Accelerators

In the same years, Hansen at MIT built the first electron Linac (1947, 4.5 MeV, 3 GHz disk-loaded structure).

1.2 RF Accelerators

1.2 RF Accelerators

1.3 Necessity for a Novel Technology

1.3 Necessity for a Novel Technology

2.1 Plasma and Wakes

2.2 Wake Excitation

Metal vapor plasma sources (like rubidium), ionized with lasers, routinely (500cc-1at) reach plasma densities of this order and even more

2.2 Wake Excitation

2.2 Wake Excitation

2.3 Self Modulation Instability

3.1 AWAKE Experiment

3.1 AWAKE Experiment

structure

CNGS: CERN Neutrinos to Gran Sasso

3.2 AWAKE Run I

RUN 1: 2016-2018: Proof-of-concept experiment. Successful electron acceleration in wakefield driven by a self-modulated proton beam.

3.3 AWAKE Run II

RUN 2: 2021 : Accelerate electrons to high energies (~10GeV) while preserving the beam quality and demonstrate the scalability in order to have first high energy physics applications.

3.4 IPM Collaboration

3.5 AWAKE Phases C

Run 2c: Demonstrate Electron Acceleration and Emittance Preservation

need to be done now to be ready for Run 2

4.1 E-Source Layout

Injection of a compact and high-quality electron bunch at a right phase allows for a propagation over long distances with no emittance growth (apart from the head of the bunch)

4.2 E-Source Requirements

			Beam Characteristics				
Туре	Bunch Charge	Bunch Length	Energy Spread	Emittance	Beam Size	Energy	
1st	100 – 600 p <i>C</i>	2 – 3ps	< 1%	< 5 µm	< 190µm	15 – 20 <i>MeV</i>	
2nd	100 p <i>C</i>	50 – 300 <i>fs</i>	< 1%	< 2 µm	< 5.75µm	80 – 160 <i>MeV</i>	

	Parameter	RF Gun	Buncher	Acc. I	Acc. II
RF Characteristics	Frequency	3.0	3 - 12.0	3 - 12.0	3 - 12.0
	Gradient	120 <i>MV/m</i>	20-50 MV/m	20 - 80 MV/m	20 - 80 MV/m
	N. Cell	1.5	30	120	120

	$\lambda[nm]$	w[ev]	r[mm]	t[ps]	q[pc]
Laser					
Characteristics	262	4.31	1.0-2.0	1.0	100-600

4.3 E-Source Structure

4.3 E-Source Structure

120 cell, X-Band, Swiss FEL Str.

VACUUM INTERFACES

5.1 Ray Equations

$$\begin{array}{c}
 Internator is consistent in the second state in the second state is consistent in the se$$

5.2 Envelope Equations

5.3 Space Charge Forces

Туре	$\rho(r, z, \sigma_r, \sigma_z)$
GG	$\frac{q_b e^{-\left(\frac{z}{\sqrt{2}\sigma_z}\right)^2} e^{-\left(\frac{r}{\sigma_r}\right)^2}}{\pi\sqrt{2\pi}\sigma_r^2\sigma_z}$
GU	$\frac{q_b e^{-\left(\frac{r}{\sigma_r}\right)^2}}{2\sqrt{3}\pi\sigma_r^2\sigma_z} \times \begin{cases} 0 & Else\\ 1 & z \le \sqrt{3}\sigma_z \end{cases}$
US	$\frac{3q_b}{10\sqrt{5}\pi\sigma_r^2\sigma_z} \times \begin{cases} 0 & Else \\ 1 & \left(\frac{\sqrt{2}r}{\sqrt{5}\sigma_r}\right)^2 + \left(\frac{z}{\sqrt{5}\sigma_z}\right)^2 \le 1 \end{cases}$
UG	$\frac{q_{b}e^{-\left(\frac{z}{\sqrt{2}\sigma_{z}}\right)^{2}}}{2\pi\sqrt{2\pi}\sigma_{r}^{2}\sigma_{z}} \times \begin{cases} 0 & Else\\ 1 & r \leq \sqrt{2}a \end{cases}$
UC	$\frac{q_b}{4\sqrt{3}\pi\sigma_r^2\sigma_z} \times \begin{cases} 0 & Else \\ 1 & z \le \sqrt{3}\sigma_z \text{ , } r \le \sqrt{2}\sigma_r \end{cases}$

We can consider a few simple cases where their calculations are more straightforward and fully analytic

$$\langle E_{Z}^{s} z \hat{z} + E_{Z}^{s} r \hat{r} \rangle = -\frac{1}{4\pi\epsilon_{0}q_{b}} \int_{-\infty}^{+\infty} \int_{0}^{\infty} \int_{0}^{2\pi} \rho(r, z, \sigma_{r}, \sigma_{z}) r dr d\emptyset dz$$

$$\times \lim_{\substack{z \to \gamma_{0}\delta_{z} \\ \sigma_{z} \to \gamma_{0}\sigma_{z}}} \left(\hat{z} \frac{\partial}{\partial z} + \gamma_{0}\hat{r} \frac{\partial}{\partial r} \right) \int_{-\infty}^{+\infty} \int_{0}^{\infty} \int_{0}^{2\pi} \frac{\rho(r', z', \sigma_{r}, \sigma_{z}) r' dr' d\emptyset' dz'}{\left((z - z')^{2} + r^{2} + r'^{2} - 2rr' Cos(\emptyset') \right)^{1/2}}$$

$$\langle E_z^s z \rangle = \frac{q_b \sqrt{3}\sigma_z}{2\pi\epsilon_0 \sigma_r^2} \int_0^\infty \frac{J_1\left(\sqrt{\frac{2}{3}}\mu u\right)^2 e^{-u}\left(uCosh(u) - Sinh(u)\right)}{u^4} du$$
$$\langle E_r^s r \rangle = \frac{q_b}{8\pi\sqrt{3}\epsilon_0 \sigma_z} \left(1 - \frac{4\sqrt{6}}{\mu} \int_0^\infty \frac{J_1\left(\sqrt{\frac{2}{3}}\mu u\right) J_2\left(\sqrt{\frac{2}{3}}\mu u\right) e^{-u}Sinh(u)}{u^3} du\right)$$
$$\mu = \frac{\sigma_r}{\gamma_0 \sigma_z}$$

Туре	$\alpha_r(\mu)$
GG	$\sqrt{\pi}\mu^2\int_0^\infty u^2 e^{u^2}e^{-\left(rac{\mu u}{\sqrt{2}} ight)^2}Erfc(u)du$
GU	$\frac{\mu^2}{3}\int_0^\infty e^{-\left(\frac{\mu u}{\sqrt{6}}\right)^2} (u - e^{-u}\sinh(u)) du$
US	$2A_r\left(\frac{1}{2}\mu^2 - 1\right)$
UG	$\frac{16}{\sqrt{2\pi}\mu} \int_0^\infty \frac{e^{-\left(\frac{u}{\sqrt{2}}\right)^2} K_1(\mu u) I_2(\mu u)}{u} du$
UC	$1 - \frac{4\sqrt{6}}{\mu} \int_0^\infty \frac{J_1(\sqrt{2/3}\mu u) J_2(\sqrt{2/3}\mu u) e^{-u} \sinh(u)}{u^3} du$
Туре	$\alpha_z(\mu)$
GG	$\mu^2 \int_0^\infty u \left(1 - \sqrt{\pi} u e^{u^2} Erfc(u) \right) e^{-\left(\frac{\mu u}{\sqrt{2}}\right)^2} du$
GU	$\mu^2 \int_0^\infty \frac{e^{-\left(\frac{\mu u}{\sqrt{6}}\right)^2} (e^{-u}[u\cosh(u)-\sinh(u)])}{u^2} du$
US	$A_z\left(\frac{1}{2}\mu^2 - 1\right)$
UG	$1 - \frac{4}{\sqrt{2\pi}} \int_0^\infty e^{-\left(\frac{u}{\sqrt{2}}\right)^2} I_1(\mu u) K_1(\mu u) du$
UC	$6\int_0^\infty \frac{J_1\left(\sqrt{\frac{2}{3}}\mu u\right)J_1\left(\sqrt{\frac{2}{3}}\mu u\right)}{u^4}e^{-u}\left(u\cosh(u)-\sinh(u)\right)du$

6. Results and Simulations

6.1 Design

6. Results and Simulations

6.1 Design

6. Results and Simulations

6.3 More Considerations

Thanks for Attention

