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Do you design and build vacuum electron devices, or work with the systems that 
use them? Quickly develop a solid understanding of how these devices work with 
this authoritative guide, written by an author with over 50 years of experience in 
the field. Rigorous in its approach, it focuses on the theory and design of com-
mercially significant types of gridded, linear- beam, crossed- field, and fast- wave 
tubes. Essential components such as waveguides, resonators, slow- wave structures, 
electron guns, beams, magnets, and collectors are also covered, as well as the inte-
gration and reliable operation of devices in microwave and RF systems. Complex 
mathematical analysis is kept to a minimum, and Mathcad worksheets supporting 
the book online aid understanding of key concepts and connect the theory with 
practice. Including coverage of primary sources and current research trends, this is 
essential reading for researchers, practitioners, and graduate students working on 
vacuum electron devices.
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Lancaster University, and a Fellow of the IET.
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‘Vacuum electronic devices are marvels of technology that achieve amazing performance 
advantages by a sophisticated combination of a vast diversity of physics, materials, compo-
nents, and engineering principles. This book finds a worthy value- add role in the pantheon of 
great vacuum electronics (VE) literature by masterfully marrying a comprehensive treatment 
with carefully crafted choices of appropriate— but not excessive— depth.  Thus it informs, 
provides rigor, but is extremely accessible to many levels of expertise. The background treat-
ment of electromagnetics is especially noteworthy— with its mapping of structure proper-
ties to equivalent circuit models— since the start for understanding VE is the science and 
design principles of electromagnetic fields in waveguides and resonators. The coverage of 
VE devices and critical materials is current and thus state- of- the- art, which is important 
since research discovery advances keep pushing the limits of the performance capabilities of 
modern VE. I wholeheartedly recommend this book to VE design engineers, and especially 
anyone who is new to this exciting field, as well as experts who are seeking new ways to teach 
its fundamental principles.’

John H. Booske, University of Wisconsin- Madison

‘In spite of significant progress with solid state power amplifiers during the last decades, 
large zones in parameter space remain inaccessible by this technology and will continue to be 
the realm of vacuum electronics. Vacuum electronics however seems to have the undeserved 
reputation of being less “modern” and thus often is given less attention in University classes. 
The book Microwave and RF Vacuum Electronic Power Sources responds to the urgent need 
to keep and build expertise in this field. Carter accomplishes the difficult task to present the 
matter well- structured didactically and in sufficient depth to make this an excellent textbook, 
both for self- education and to accompany lectures. At the same time and thanks to its com-
pleteness, accomplished experts would certainly want it in their bookshelves as a modern 
reference.’

Erk Jensen, Head of RF group, CERN

‘This book is a tour de force on the subject of high- power vacuum electronic devices and a 
“must have” for anyone in the field. Professor Carter is a leading authority on the subject 
and has spent his career in equal parts developing the technology and teaching it in clear 
and intuitive style. The book contains a comprehensive review of the principles and conven-
tions of all types of vacuum tubes with detailed explanations and examples of the most 
common varieties. Part history lesson, part “how to” guide this book will be as useful to 
newcomers entering the field as it will be to the most experienced practitioners. The Mathcad 
Worksheets available online will be invaluable for those new to the subject and a starting off  
point for further development.’

Robert Rimmer, JLab

‘Combining pedagogy, science and practice, Professor Carter brings up step by step deeper 
in the detailed understanding and design methods of all types of RF & Microwave Electron 
Devices.

A precious book for students, designers and system users who will acquire practical theory 
based on most advanced analytical formulas and supported by a huge list of references, as 
well as Mathcad worksheets.  Enjoy this journey in electromagnetics and vacuum.’

Philippe Thouvenin, Thales –  Microwave & Imaging  
Sub- Systems, Technical Director –  Microwave Sub- Systems

‘Vacuum Electronics is a dynamic and exciting field and Vacuum Electron Devices in par-
ticular remain vital building blocks in numerous critical electromagnetic systems. The new 
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book by Professor Richard Carter provides a solid mathematical and technological founda-
tion for students in the field and a large knowledge base for seasoned professionals. The 
book includes relativistic formulations of many basic working equations, online Mathcad 
worksheets for instructional and practical use, and device performance characteristics help-
ful to systems engineers and other users.’

Richard True, L3 Technologies (Retired)

‘In high- power and high- frequency systems for telecommunication, radar, remote sensing, 
broadcasting, processing of materials and scientific applications, vacuum electronic devices 
(tubes) are the only radiofrequency (RF), microwave, and millimeter- wave sources. This 
excellent and comprehensive monograph focuses on the theory, design, state- of- the- art and 
current research trends of commercially important types of gridded tubes (triodes, tetrodes, 
inductive output tubes), linear electron beam tubes (single- , multi-  and sheet beam klystrons, 
travelling wave tubes), crossed field tubes (magnetrons, crossed- field amplifiers), and fast- 
wave microwave devices (gyro- oscillators and amplifiers, free electron masers). It is devoted 
to researchers, practitioners and graduate students working in the fields of R&D and appli-
cation of vacuum electron devices. After the introduction of essential tube components such 
as electron guns, electron beam guiding systems, waveguide and slow- wave structures, reso-
nators, output couplers, dielectric windows, and electron collectors, beam- wave interaction 
and the different types of microwave and RF vacuum electronic power sources are discussed 
in detail. Well- selected case studies for the various types of tubes and Mathcad worksheets 
supporting the book online (can be downloaded from the publisher’s website) aid under-
standing of key concepts and link theory with practice. Concluding chapters on emission 
and breakdown phenomena, different types of magnets and system integration may help to 
achieve reliable operation of microwave and RF systems.’

Manfred Thumm, Karlsruhe Institute of Technology (KIT)

‘This book is the author’s life- long contribution to the microwave tubes’ community; it is 
a comprehensive and systematic book including passive components and all kinds of RF 
vacuum devices with the analysis of cathodes, electron optics, reliability, and the system 
integration. This book gives both clear physical imaging, deep understanding, the author’s 
new insight of the high frequency structure and beam- wave interaction as well as concise 
physical models and worksheet for engineering design with both circuit and field method 
using modern computer facility.’

Jinjun Feng, Tsinghua University

‘Richard Carter’s fifty years of internationally leading expertise is distilled in this essential 
reading for everyone working on high power microwave and RF sources. Researchers, gradu-
ate students and practitioners will find this monograph indispensable. 

Not only does it provide an in- depth understanding of the many subtleties of the subject 
that will satisfy the experienced practitioner, its careful construction and clarity of expres-
sion offers the student entering this field an excellent introduction that they will continue to 
value and retain on their shelves as their own expertise develops.

To achieve a worthwhile understanding of this field some use of mathematics is essential 
and this text very thoughtfully employs the necessary mathematics to support the theoretical 
discussions in ways that are accessible to science and engineering graduates.

The coverage includes the most significant families of vacuum electronic microwave and 
RF power oscillators and amplifiers that both those working on research and development 
of the sources, or needing to use these sources in applications are most likely to encounter. 
This comprehensive list includes slow- wave sources, gridded tubes, triodes, tetrodes, induc-
tive output tubes (IOTs), klystrons, travelling- wave tubes (TWTs), magnetrons, crossed- field 
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amplifiers as well as fast- wave sources such as electron cyclotron masers, gyrotrons, cyclo-
tron auto- resonance masers, gyro- amplifers, peniotrons, ubitrons and free electron lasers. 
The treatments of the slow- wave devices tend to be more extensive than some of the fast- 
wave devices. For example although electron cyclotron masers and gyrotrons are covered in 
some detail the author intentionally leaves a detailed treatment of free electron lasers to the 
referencing of some existing publications. This balance of the coverage is well- justified, as 
it reflects the fact that the majority of the commercial applications of microwave and RF 
vacuum electronic power sources presently use, and are likely to continue to use, slow- wave 
devices. Consequently the students, researchers and practitioners in this field tend to be well- 
motivated to study and understand the range of sources that are covered in this book. 

This is a “stand- alone” book since it does not assume that the reader is familiar with all of 
the specialized components from which vacuum electronic microwave and RF power sources 
are constructed. The main components such as waveguides, resonators, slow- wave structures, 
electron guns, beams, magnets and collectors are expertly covered in dedicated sections that 
add extra value. The coverage of multipactor discharges and system integration will be found 
to be especially useful to those interested in applying these sources. 

This text is highly recommended for graduate students, practising scientists and engineers 
and for libraries.’

Alan D. R. Phelps, FRSE (Prof), University of Strathclyde

‘This book by Richard Carter is a comprehensive, complete, and excellent exploration of 
the microwave and RF vacuum electronic power source field. The content of the book has 
been refined and enhanced by invited lectures given in many relevant international institutes. 
The subject matter is not only important in its own right but also provides a splendid insight 
to comprehending the wider literature in the field. The mathematical analyses are kept to a 
minimum which encourages the reader to master the principles and establish the basis for 
advanced developments. The reader’s understanding is enhanced by the accessibility to the 
worksheets used for the calculations throughout the book. Unusually if  not uniquely, the 
author uses Mathcad as a powerful and flexible tool for modelling problems in vacuum elec-
tronics. These models are made available to the readers.

In summary, this work is an indispensable reference handbook in the field of microwaves 
and RF power, both for beginners and experienced professionals alike.’

Stephen Myers, Executive Chair ADAM SA, Former CERN Director of 
Accelerators and Technology

‘Destined to be a classic reference in the field of RF vacuum electronic device analysis and 
design. From density modulated power grid and induction output tubes, to slow wave linear 
and crossed field devices and fast wave high power gyrotrons, and their key components, 
every subject is treated with technical rigor interspersed with sage practical advice obtained 
over the course of Prof. Carter’s distinguished career in the field. Notable features include 
the strong use of transmission line analysis for device modelling providing insight not always 
available with standard field analysis or computer simulation, a detailed list of references at 
the end of every chapter for advanced reading, and online worksheets for invaluable hands- 
on experience with the physics behind the equations bringing home the necessary design 
trades that always need to be made –  an excellent learning tool. Enthusiastically recommend 
for both the intern/ new hire as well as the seasoned RF vacuum electronics engineer and 
researcher. 

Professor Carter says in the Introduction that the book can be considered to be fifty years 
in the making. I would add that it was well worth the wait –  a monumental achievement.’

Carter M. Armstrong, L3 Technologies
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Preface

It could be said that it has taken me fifty years to write this book. I entered the field 
of vacuum electronics as a PhD student in 1965 at the University College of North 
Wales, Bangor. That date coincided with the end of what I think of as the heroic 
period of the field. The years from 1939 to 1965 saw contributions to the sub-
ject from people whose names are well- known to those who followed them. Their 
achievements in the exploration of a new technology were remarkable, especially 
when one considers that nearly everything had to be done by theory and experi-
ment. Computer modelling was in its infancy. The period since 1965 has seen an 
explosion in the power of computers and what can be achieved with them. I took 
my first steps in computer programming on the EDSAC II vacuum tube computer 
at Cambridge University using a very primitive autocode. The point has now been 
reached where computing power is not only sufficient to model devices in great 
detail, but also to permit automatic optimisation of them. During my career com-
puter modelling of tubes became increasingly important, and that was the main 
focus of my own work, and of those who worked with me.

From Bangor I moved to what was then the English Electric Valve Company 
(now Teledyne e2v) in Chelmsford. The culture of the company at that period has 
been well- described by Norman Pond in his book The Tube Guys. There was no 
separation between development and production so that we were always conscious 
that the tubes we were developing had to be made by the people alongside whom 
we worked. I was fortunate to be seconded to a development project at the Services 
Electronics Research Laboratory, where, under the able guidance of Robin King, 
I undertook the detailed design of most parts of a C- band coupled- cavity TWT. 
Most of the design calculations were carried out on an electro- mechanical calcu-
lator on my desk. But I did take over some FORTRAN programs for modelling 
TWTs, which had been written by Harold Curnow. Those programs had to be run 
via an unreliable landline, using a chattering teletype, on a mainframe computer 50 
miles away.

After three years I  moved to the newly formed Engineering Department at 
Lancaster University. The Department was based on the idea that engineering is 
a single discipline, which fitted the multidisciplinary nature of vacuum electronics 
rather well. I was encouraged to continue work in the field when I was offered an 
appointment as a consultant by EEV. That remained an important relationship 
for nearly thirty years, keeping me in touch with the problems that mattered to my 
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colleagues in industry. The relationship led to the creation of an innovative under-
graduate course in Physical Electronic Engineering, sponsored by EEV. I developed 
and taught a module on vacuum electronics for this course. The students undertook 
industrial placements with the company and my role in setting up, and monitoring, 
those activities gave me contacts in nearly every department there. The creation 
of the course was ably supported by Dr John Whitmore (at that time Manager of 
the Light Conversion Division). John also encouraged me to start to build my own 
research group, which became a major focus of my life until I retired in 2009. In 
1989 I was invited by the company to prepare a set of twenty videotaped lectures to 
be used for training purposes. The project was the brainchild of Maurice Esterson 
and I  was given invaluable practical help by F.J. (Peter) Weaver. Those lectures 
could be said to be the true foundation of the present book.

Over time my research group flourished. I  was especially grateful to Maurice 
Esterson and Brian Cooper of EEV who supported research projects, and made a 
point of involving me in the technical problems of their staff. Over the period until 
I retired nearly fifty research students, assistants, and fellows worked with me, and 
I owe a debt of gratitude to them for the way they forced me to try to think clearly 
about their work in order to guide them. There were collaborative projects with 
CEERI in India and with BVERI, and a number of other institutions, in China. It 
is a matter of pride to me that several of the people who were members of the group 
have since occupied senior positions in laboratories overseas. The material which 
has gone on to form the content of this book was honed through lectures I was 
invited to give at around sixteen institutions, in nine countries, on three continents. 
These included contributions to five CERN Accelerator Schools to which I was 
introduced by colleagues at the Daresbury Laboratory. I also contributed lectures, 
with colleagues at the universities of Lancaster and Strathclyde, to a joint MSc in 
High Power Radiofrequency Engineering.

The idea of trying to collect my thoughts on vacuum electronics into the form 
of a book has been around for a long time. But I was unable to find time to devote 
to the task until after I retired. Throughout my career my interest has been in the 
modelling and conceptual design of tubes. In teaching I have always tried to keep 
close to a physical understanding of how tubes operate. And I have been interested 
in developing simple models as an aid to understanding in the conceptual phase 
of design, following the example of the pioneers in the field. I  have been influ-
enced, especially, by the books by Pierce, Slater, Gittins, Beck, and Gewartowski 
and Watson. The literature in the field is now too extensive for any one person to 
master. The references cited in this book are the sources which I consulted while 
writing it. My aim was to try to bring this material together to give a comprehensive 
and consistent account of the subject. The topics I have chosen to include are those 
I have found useful. I hope that readers will find that this material is not only useful 
in its own right but also provides a route to understanding the wider literature in 
the field.

Microwave engineering has often been a happy hunting ground for those who 
love advanced mathematics. Although it is not possible to discuss the topics in this 
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book without some use of mathematics I have tried to make the treatment acces-
sible. I  am impressed by the thought that engineers generally try to find simple 
ways of modelling complex problems. We use ‘j- notation’ to allow us to apply DC 
circuit theory to AC problems. And we use transmission line, and equivalent circuit 
methods to model problems involving electromagnetic fields. This way of thinking 
about vacuum electronics remains as useful today as it was when I entered the field 
fifty years ago. It provides insight into the physics of devices which cannot readily 
be gained in any other way. I believe it to be an essential foundation for training new 
entrants to the field whose knowledge will, otherwise, come largely from computer 
simulation using general purpose electromagnetics software and particle- in- cell 
codes. After writing in FORTRAN for many years I became an enthusiast for the 
possibilities of modelling with software such as Mathcad. Although this approach 
is not suitable for all problems it does provide a remarkably powerful and flex-
ible way of modelling problems in vacuum electronics. Over time I have developed 
Mathcad models for many aspects of tube design and I have used these extensively 
whilst writing this book. The models which I used are listed in the Appendix, and 
can be downloaded from the publisher’s website. I would like to encourage my read-
ers to use those models to explore aspects of tube design. The use of Mathcad 
makes it easy for the user to modify the models, and to add diagnostic features, as 
part of their own learning process.

I have been grateful to many people for help, advice, and inspiration at different 
stages of my career. There are too many to name them all, but I particularly want to 
mention: Rob Newton, my PhD supervisor, from whom I learnt the value of space- 
charge wave theory and coupled- mode analysis; Dudley Perring from ESTEC who 
introduced me to the world of space TWTs, becoming simultaneously a project 
sponsor and a research student until his untimely death; and Rodney Vaughan, 
from whom I learnt that good mathematical models of tubes were best kept close 
to the underlying physics. I would also like to acknowledge the colleagues at EEV, 
TMD technologies, Thales at Ulm and Vélizy, CERN, DESY, and the Daresbury 
Laboratory who generously gave time to advise on research projects. There have 
been many fruitful discussions with my colleagues at Lancaster, especially Graeme 
Burt, Amos Dexter, Claudio Paoloni, and Robin Tucker.

During the writing of this book I  have been most grateful to colleagues who 
reviewed chapters in draft and made many helpful comments and suggestions. In 
alphabetical order: Carter Armstrong, Heinz Bohlen, Bruce Carlsten, Jim Dayton, 
Amos Dexter, Tushar Ghosh, Dan Goebel, Michel Grézaud, Neil Marks, John 
Ospechuk, Alan Phelps, Alan Sangster, Manfred Thumm, Mike Tracy, Todd 
Treado, and Dick True. I hope they will forgive me if  I have not always taken their 
advice. The book, as it stands, is entirely my responsibility. I would like to thank 
Lancaster University for appointing me as an Emeritus Professor when I retired. 
That gave me continued access to the information and computer resources of the 
University. I am also grateful to Julie Lancashire and her colleagues at Cambridge 
University Press who have supported me consistently in a project that has taken 
much longer than either they or I expected.
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Finally, I owe an immense debt of gratitude to my wife Dr Awena Carter, whose 
name means ‘inspiration’ in Welsh, for her unstinting love and support throughout 
the whole of my career. She has accompanied me to conferences, and on visits to 
institutions, and is known to many of my colleagues in the field. She has borne 
patiently (most of the time) with the long hours I have spent working on the book, 
and she brought her considerable expertise in writing to bear by reading the whole 
text in draft and pointing out where its clarity could be improved.
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A Magnetic vector potential

A Amplification (voltage gain)
Area

a Waveguide width
Tunnel radius
Grid spacing

B Magnetic flux density = µH

BB Brillouin field

B0 Characteristic field

B Susceptance
Bandwidth

Bb Beam loading susceptance

b Waveguide height
Beam radius
Pierce velocity parameter

C Capacitance
Pierce gain parameter

c Velocity of light = 0.2998 × 109 m s−1

D Electric displacement = εE

d Dielectric radius
Distance

E Electric field

EF Fermi energy

Em Space harmonic amplitude

e Elementary charge = 1.602 × 10−19 C
Base of natural logarithms = 2.718

f Frequency

G Conductance = 1 R
Power gain

GdB Gain in decibels = 10 lnG

Gb Beam loading conductance

G I V0 0 0= Beam conductance

g Gap length

Principal Roman Symbols
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H Magnetic field
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I Electric current
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I zn ( ) Modified Bessel function of the first kind
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JC Child- Langmuir current density

JS Schottky current density

K Bessel function
Coupling factor
Perveance
Ratio of flux linkages = −1 1 2m

K zn ( ) Modified Bessel function of the second kind
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1

1 Overview

1.1 Introduction

Sources of power in the radiofrequency, microwave, and millimetre wave regions 
of the electromagnetic spectrum are essential components in a wide range of sys-
tems for telecommunications, broadcasting, remote sensing, and processing of  
materials1. Current research is extending the frequency range into the sub- millimetre 
region. These sources employ either vacuum electronic, or solid state, technologies. 
At the higher frequencies and power levels, vacuum electronic devices (tubes2) are 
the only sources available (see Section 1.2).

The purpose of this book is to provide a comprehensive introduction to the the-
ory and conceptual design of the types of tubes which are of continuing impor-
tance. The design and operation of vacuum tubes requires knowledge and skills 
drawn both from electrical and electronic engineering and from physics. The treat-
ment here is intended to be accessible to those whose training has been in either 
discipline. The use of advanced mathematics has been avoided as far as possible 
with considerable emphasis on the use of simple numerical methods. The book is 
designed to be a reference text for designers and users of vacuum tubes, and a text-
book for people who are new to the field.

This is a mature field in which much has been published since its first beginnings 
in 1904 [1]. The sources cited here are those which have been used as the basis for 
the book. They are believed to comprise most of the most important sources in the 
field and the reader is invited to consult them for further information. References 
have been included to sources that provide additional information on many of the 
topics, but no attempt has been made to provide a comprehensive bibliography of 
the subject and longer lists of references are to be found elsewhere [2]. A further aim 
of this book is to provide the reader with the background necessary to read with 
understanding other papers in the field.

In any book it is necessary to make choices about what should be included and 
what excluded. The subjects covered are those the author believes to be important 
for the practical business of designing and using vacuum tubes. Because the focus 

1 For convenience, the term RF is used throughout this book to refer to all frequencies in the range 30 kHz to 
300 GHz.

2 We shall call these devices (vacuum) tubes because that terminology is familiar and concise.
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is on theory and conceptual design very little has been said about the technology 
of tube construction, which is well treated elsewhere [3, 4]. Similarly, little has been 
said specifically about vacuum tubes for use at sub- millimetre wavelengths since 
they employ the same principles as those at lower frequencies, and most of the chal-
lenges are in the technology of their construction.

This chapter provides an overview of the subject of the book. The next section 
compares vacuum tubes with solid- state devices to show how the technologies are 
complementary. Section 1.3 provides an overview of the physical principles on 
which vacuum tubes are based and definitions of the key terms used to describe 
their performance. A tube converts the DC power in the initial electron stream into 
RF output power by interaction with electromagnetic structures. These structures 
support standing (resonant), or travelling, electromagnetic waves. Coupled- mode 
theory is introduced as a valuable conceptual tool for understanding the interac-
tions between electron streams and travelling electromagnetic waves. The section 
concludes with a classification of the principal types of vacuum tube based on 
the preceding discussion. The principal applications of vacuum tubes are reviewed 
in Section 1.4 together with some of the factors which govern the availability of 
tubes of different types. That leads, in Section 1.5 to consideration of the com-
munication between the designers and users of tubes in the form of a Statement of 
Requirements. This statement specifies both the electrical performance required, 
and the factors which constrain the design. Many tubes are required to amplify 
modulated carrier signals whose properties are not normally familiar to people 
whose primary discipline is Physics. An introduction to analogue and digital modu-
lation, noise and multiplexing is provided in Section 1.6. Finally, Section 1.7 consid-
ers some of the principles of the engineering design of tubes including dimensional 
analysis and scaling, and the use of computer modelling.

The remainder of the book comprises four sections:

i) Chapters 2– 4 deal with the properties of the passive electromagnetic compo-
nents employed in vacuum tubes.

ii) Chapters 5– 11 are concerned with aspects of electron dynamics in vacuum that 
are employed in tubes in a variety of ways. Chapter 10 also includes a discus-
sion of methods of cooling.

iii) Chapters 12– 17 show how the fundamental principles introduced earlier in the 
book are applied to specific types of tube, and their conceptual design.

iv) Chapters 18– 20 provide an introduction to some technological issues which are 
common to most types of tube and their successful use in systems.

1.2 Vacuum Electronic and Solid- State Technologies

The characteristic size of any active RF device is determined by the distance travelled 
by the charge carriers in one RF cycle. Thus the size of a device decreases as the fre-
quency increases and as the velocity of the charge carriers decreases. The application 
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of any electronic technology is limited, ultimately, by temperature since the oper-
ation of a device generates heat. Hence, the maximum continuous, or average, RF 
power which can be generated by a single device is determined by the power dissi-
pation within it. At low power levels semiconductor devices have the advantages of 
small size, and low voltage operation. But these become disadvantages at high power 
levels because the current passing through the device is high. Thus there are large 
conduction losses, generating heat, within a small volume. They can be reduced, to 
some extent, by operating the device as a switch rather than in its active mode.

Transistors can currently deliver around 100 W of continuous power or 1 kW of 
pulsed power at frequencies in the region of 1 GHz [5– 7]. Further developments, 
including transistors using diamond as a semiconducting material, may increase 
the power to several kW [8, 9]. High power amplifiers can be made by operating 
many transistors in parallel but the penalties of increased complexity set limits to 
this. The power combining can take place in space, as in active phased- array radar, 
where average powers up to tens of kilowatts can be achieved [10]. Alternatively, 
a power combining network may be used as in the 190 kW, 352 MHz, amplifier at 
Synchrotron SOLEIL [11]. This amplifier combines the power from four 50 kW 
towers each containing twenty 2.5 kW units. A unit comprises eight 315 W modules 
each having a pair of transistors operated in push- pull. This arrangement means 
that the loss of power from the failure of an individual transistor is small, and the 
degradation of the amplifier from this cause is gradual. However, the power output 
is still almost an order of magnitude less than that achieved by vacuum tubes at the 
same frequency, and the frequency is at the lower end of the range for which vac-
uum tubes have been developed. The use of low DC voltages reduces problems of 
reliability caused by voltage breakdown. But the consequent need for high currents 
leads to DC losses in the connecting bus- bars. A review of high power semicon-
ductor RF power technology is given in [12].

Vacuum tubes, in contrast, operate at high voltages and low currents. The charge 
carriers have a much higher velocity than in a semiconducting material, and they 
are not subject to energy loss through collisions as they pass through it. Thus the 
active volume can be large with only RF losses within it. In many cases, the greater 
part of the heat generated is dissipated on electrodes which are separate from the 
active region, and whose size can be increased to reduce the power density. There 
is a common misconception that vacuum tubes are fragile, short- lived, unreliable, 
and inefficient. In fact, modern vacuum devices are mechanically robust and able 
to survive short- term electrical overloads without damage. They have demonstrated 
outstanding reliability and lifetimes in the very demanding environment of space. 
Vacuum tube amplifiers can have maximum conversion efficiencies of up to 70%, 
and 90% has been achieved in oscillators. However, the most reliable performance 
of any technology is achieved by allowing generous design margins and operating 
well within their limits. Vacuum tubes can be operated in parallel, in the same way 
as semiconductor devices, but the number of parallel devices is usually quite small 
[13, 14]. An exception to this is in phased- array radar where the output from a larger 
number of microwave power modules (see Section 20.1) is combined in space [15].
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Figure 1.1 shows a comparison between the performances of individual vacuum 
and semiconductor RF power devices [16]. There have been advances in both tech-
nologies since that figure was drawn, but the general picture remains valid. A more 
recent, but less detailed, figure is to be found in [17]. For further discussion of the 
relative merits of vacuum tube and solid- state RF power amplifiers see [18, 19]

1.3 Principles of Operation

The tubes which are the subject of this book are all power amplifiers and oscillators. 
For our present purpose it is sufficient to regard oscillators as amplifiers in which 
the RF input is provided by internal feedback. All vacuum tube amplifiers can be 
understood in terms of the block diagram shown in Figure 1.2. A uniform stream 
of electrons is emitted into the vacuum from the electron source and modulated 
by the RF input voltage3. Radiofrequency energy is extracted from the modulated 
stream of electrons, and their remaining energy is dissipated as heat on a collecting 
electrode. The arrows show the direction of motion of the electrons; the conven-
tional current is, of course, in the opposite direction. The functions of the blocks 
may be combined in various ways in different devices but the overall process is 
essentially the same. The basic RF performance of an amplifier is defined in terms 
of its gain, output power, efficiency, and instantaneous or tuneable bandwidth.

Figure 1.1: Comparison of the performance of single vacuum electronic and solid state RF 
power devices
(copyright 1999, IEEE, reproduced, with permission, from [16]).

3	 The	word	‘stream’	is	used	here	as	being	more	general	than	the	term	electron	beam	which	is	used	for	specific	
types of tube.
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1.3.1 Geometry

The majority of practical vacuum tubes have geometries which are cylindrically 
symmetrical, or close approximations to it. The flow of the DC current is radial or 
axial, and driven by a static electric field in the same direction (see Chapters 5, 8, 
and 9).

1.3.2 Electron Dynamics

The voltages employed in vacuum tubes are high enough, in many cases, for the 
velocities of the electrons to be at least mildly relativistic. The kinetic energy of a 
relativistic electron is [20]:

 T mc m c= −2
0

2 , (1.1)

where m c0
2 is the rest energy of the electron and the relativistic mass is

 m
m

u c
m=

−
=0

2 2
0

1
γ , (1.2)

where u is the velocity of the electron and c the velocity of light. If  an electron starts 
from rest at the cathode then its velocity at a point where the potential is V, relative 
to the cathode,4 is found by using the principle of conservation of energy:

 eV m c
u c

=
−

−








0

2

2 2

1

1
1 . (1.3)

This equation can be rearranged as

 u c
V VR

= −
+ ( ) 













1
1

1
2

1
2

, (1.4)

Figure 1.2: Block diagram of a vacuum tube amplifier.

4 In this book voltages are referred to the cathode unless otherwise stated. In practice the tube body is nor-
mally at earth potential and the cathode potential is negative with respect to it.
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where V m c eR = =0
2 511 kV  is the rest energy of the electron expressed in electron 

volts. When V VR 1 the fraction can be expanded by the Binomial Theorem to 
give the approximate expression:

 u c
V

VR

=
2

. (1.5)

Figure 1.3 shows a comparison between the velocities calculated using the exact 
and approximate equations. The error in the approximate velocity is 1% at 7 kV so 
that the exact formula should be used for voltages higher than this.

The force acting on an electron is equal to the rate of change of momentum

 F u
u

u= ( ) = +
d
dt

m m
d
dt

dm
dt

. (1.6)

If  the force acts in the direction of the motion of the electrons then

 F
m

u c
a m a=

−( )
⋅ =0

2 2 3 2
3

0
1

γ ,  (1.7)

where a is the acceleration and γ 3
0m  is sometimes called the longitudinal mass. 

When the force acts at right angles to the direction of motion then

 F
m

u c
a m a=

−( )
⋅ =0

2 2 1 2 0
1

γ , (1.8)

where γ m0 is the transverse mass. If  the longitudinal velocity is approximately con-
stant and much greater than the transverse velocity then it is possible to use the clas-
sical equations of motion with relativistic corrections to the mass of the electron.

The DC electron current in a tube may be collimated by a magnetic field which 
is either parallel to the direction of the DC current or perpendicular to it (see 
Chapters 7 and 8). Tubes in which the field is parallel to the current are described as 
‘Type O’ and those in which it is perpendicular as ‘Type M’. The current may also 
be collimated by a static electric field but this is rather rare.

Figure 1.3: Comparison between exact and approximate electron velocities as a function of 
the accelerating potential.
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1.3.3 Modulation of the Electron Current

For the present we will assume that the input RF voltage is purely sinusoidal with 
amplitude V1 and frequency ω. Practical input signals are discussed in Section 1.6. 
It can be shown that the three possible methods of modulation of the current by 
the RF input voltage are [21]:

• Emission density modulation in which the current emitted from the source is varied.
• Deflection and concentration modulation in which the electrons are deflected 

sideways.
• Transit- time modulation in which the electron velocity is varied.

The effect of any of these methods of modulation, or combinations of them, is to 
produce a bunched stream of electrons whose current varies with time at the frequency 
of the input signal. Because the process is non- linear the time variation of the current 
is not sinusoidal but can be represented by a Fourier series. The amplitudes and phases 
of the harmonic components depend upon the amplitude of the input voltage, and on 
the distance from the source. The modulation may be either in the same direction as 
the DC current flow, or normal to it. Thus the current at some point z can be written

 I z t I I V z jn tn in
n

, , exp ,( ) = + ( ) ( )
=

∞

∑0
1

ω  (1.9)

where I0  is the current in the unmodulated stream, I V zn in ,( ) are complex ampli-
tudes, and modulation in the axial direction has been assumed. The DC and time- 
varying parts of the current may be in different directions in space. We note that the 
real current cannot be negative. Its maximum value, relative to I0, is determined by 
the process of modulation, or by the maximum current which can be drawn from 
the source. The ratio I0/I0 cannot exceed 2.0 (see sections 11.8.4 and 13.3.4).

1.3.4 Amplification, Gain, and Linearity

The RF output voltage is obtained by passing the modulated stream through a region 
at an effective position z2 where energy is removed from the electron bunches by an 
RF electric field. This can be represented by an impedance Z Vn in( ) which depends 
on frequency and on the magnitude of the input signal. Thus the output voltage is

 V t I V z Z V jn tout n in
n

n in( ) = ( ) ( ) ( )










=

∞

∑Re , exp ,2
1

ω  (1.10)

where, for simplicity we assume that the characteristic impedances of the input and 
output waveguides are the same. The impedance Zn is effectively zero above some 
value of the harmonic number n determined by the nature of the output section. 
Thus the number of harmonics at which there is appreciable output power is small 
and, in some cases, limited to the fundamental. If  the output power is to be radi-
ated it may be necessary to filter out the harmonics to comply with the regulations 
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determining the bandwidth available to the system, as specified by international  
agreement and national regulations [22, 23]. The transfer characteristic of the ampli-
fier at the frequency ω is then

 V t A V t Vout in inω ω( ) = ( ) + ( )( )cos ,Φ  (1.11)

where A Vin( ) is the AM/ AM (amplitude modulation) characteristic which is usually 
plotted on decibel scales and Φ Vin( ) is the AM/ PM (phase modulation) character-
istic of the amplifier.

The details of the transfer characteristics depend upon the type of amplifier but 
many of them show the same features. Figure 1.4 shows, as an example, a typical 
AM/ AM curve of a travelling- wave tube (TWT). The output power is proportional 
to the input power at low drive levels (slope 1 dB/  dB) but reaches saturation as the 
input is increased. In the figure the input and output powers have been normalised 
to their values at saturation. The gain of the amplifier in decibels is given by

 G
P
PdB

out

in

= 10 log , (1.12)

where Pin and Pout are, respectively, the input and output power. Since we have 
assumed that the input and output waveguides have the same characteristic imped-
ances we can write

 G
A V

VdB
in

in

=
( )





20 log . (1.13)

The difference between the linear (small- signal) and the saturated gain is the gain 
compression which may be used as a measure of non- linearity. It is common for a 
tube to be described in terms of its saturated output power, but the output power 
available under normal operating conditions may be less than this. For example the 
tubes used in particle accelerators are normally operated ‘backed- off’ from satu-
ration to provide a control margin for the operation of the accelerator. In a TWT 
there is normally some output at second, and higher, harmonic frequencies. This 
also depends on the input drive level as shown in Figure 1.4. At low drive levels the 
second harmonic output is proportional to the square of the input power, giving 
a slope of 2 dB/ dB. The maximum second harmonic power does not necessarily 
occur at the drive level that saturates the fundamental. The intersection between 
the projections of the linear parts of the fundamental and second harmonic curves, 
known as the second-order intercept point, is a measure of the second-order distor-
tion of the amplifier.

The corresponding AM/ PM curve for a TWT is shown in Figure 1.5. The phase 
is plotted relative to the phase at low drive levels, and the input power is normal-
ised to the input power at saturation. The phase of the output signal relative to the 
input is constant at low drive levels but changes as the drive level is increased. Both 
the amplitude and phase of the output depend on frequency, and on the operating 
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conditions of the amplifier, including the voltages applied and the external RF 
matches. Thus any ripple in the voltages applied may result in amplitude and phase 
modulation of the output signal. In an oscillator, voltage ripple may also produce 
frequency modulation.

1.3.5 Power Output and Efficiency

An important consideration for many applications of tubes is the efficiency with 
which the DC input power is converted into useful RF power. The principle of 
conservation of energy requires that, in the steady state, the total input and output 
powers must balance, that is

 P P P PRF in DC in RF out Heat+ = + . (1.14)

The DC input power includes the power in the electron stream, the cathode heater, 
and electromagnets. If  the tube has a depressed collector (see Section 10.3) the 

Figure 1.4: Typical curves of fundamental and second harmonic output power of an RF 
amplifier plotted against the input power, normalised to saturation.

Figure 1.5: Typical curve of the phase of the output voltage of an RF amplifier against input 
power normalised to saturation.
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DC power is reduced by the power recovered by the collector. When a comparison 
is made between alternative tube types, or between vacuum tube and solid- state 
amplifiers, then the DC input power should be specified at the input to the power 
supply to allow for losses in it. Any power required for cooling fans or pumps must 
also be included. The RF output power comprises power at the fundamental fre-
quency and its harmonics. Heat is generated by the impact of electrons on the col-
lector and the tube body and by RF losses in the tube body, connecting waveguides 
and windows.

A number of different definitions of efficiency are in use and it is important to 
distinguish between them. The overall efficiency is defined here as the ratio of the 
fundamental RF output power P2( ) to the total input power to the tube

 ηO
P

P PDC RF in

=
+

2 . (1.15)

If  the gain of the amplifier is high, the RF input power is much smaller than the DC 
input power so that approximately

 ηO
P

PDC

≈ 2 . (1.16)

The heater and electromagnet powers are typically much smaller than the stream power 
in continuous wave (CW) tubes but they can be comparable with the stream power in 
pulsed tubes. The power added efficiency, sometimes used when the gain is small, is

 ηA
P P

P
RF in

DC

=
−2 . (1.17)

This efficiency is effectively identical to that in (1.16) if  the gain is 20 dB or more. 
The efficiency of tubes with depressed collectors is discussed in Section 10.3. The RF  
efficiency is defined here as the ratio of the useful RF output power to the power input 
to the electron stream (less any recovered by the collector) plus the RF input power.

 ηrf
stream RF in

P
P P P

=
− +

2

recovered

. (1.18)

The electronic efficiency is the efficiency with which power is transferred from the 
electron stream to the RF electric field of the output circuit.

 ηe
RF out loss

stream

P P

P
=

+
, (1.19)

where Ploss  is the total RF power loss in the output circuit. If  the output circuit is 
resonant so that only power at the fundamental frequency is included

 ηe
loss

stream

P P

P
=

+2 2, , (1.20)
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where P2,loss is the RF loss at the fundamental frequency. Then the circuit efficiency 
can be defined by

 ηc
loss

P
P P

=
+

2

2 2,

. (1.21)

If, in addition, the RF input power is small enough to be neglected, and the tube 
does not have a depressed collector then the RF efficiency is

 η η ηrf e c= . (1.22)

1.3.6 Bandwidth

The AM/AM, and AM/PM, curves depend upon the frequency of the input signal. 
Then the transfer function of the amplifier may be written H Vinω,( ). Figure 1.6 shows 
a typical graph of the RF output power of an amplifier as a function of frequency. 
This graph may be plotted at constant input power, or showing the saturated output 
power at each frequency. The bandwidth is defined in terms of the frequencies at which 
the power falls below the maximum by a specified amount (e.g. 1 dB bandwidth). This 
may be expressed in absolute terms or as a percentage of the centre frequency. The 
figure also shows that the output power may vary within the band and this can affect 
the system in which the tube is employed. These ripples are normally greatest when the 
tube is not saturated and are reduced at saturation by the effects of gain compression. 
The custom of using a decibel scale for this graph can be misleading. It is important 
to remember that a change of −1 dB represents a reduction in power by 20% and a 
change of −3 dB a reduction of 50%. Similar graphs of efficiency, small- signal gain, 
and saturated gain against frequency can also be plotted. The bandwidth specified for 
a tube may be to permit rapid changes in frequency (as in frequency- agile radar), or to 
enable it to be used with multiple and modulated signals (see Section 1.6).

In addition to power at harmonics of the input frequency the output of a tube 
may also include non- harmonic power under some operating conditions (for 
example during the rise and fall of the pulse during pulsed operation). These out- 
of- band emissions are undesirable, and limits are usually specified to avoid interfer-
ence with other systems. For example it has been known for out- of- band emissions 
from marine radar, and from industrial microwave ovens, to interfere with micro-
wave communication links. The tube also contributes to the noise in the system as 
discussed in Section 1.6.1.

1.3.7 The Electromagnetic Structure

The electromagnetic structures used to modulate the electron stream, and to extract 
power from it, can be divided into three groups:

• Fast- wave structures in which the phase velocity of travelling waves is greater 
than the velocity of light (Chapter 2).
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• Resonant (standing wave) structures in which the RF electric field profile is time- 
varying but fixed in space (Chapter 3).

• Slow- wave structures which employ the field of a travelling electromagnetic wave 
whose phase velocity is less than the velocity of light (Chapter 4).

The bandwidth of a tube using a resonant structure is typically restricted to a few 
percent by the loaded Q of  the resonance (see Section 3.2.2). If  the higher-order 
modes of the structure do not coincide with harmonics of the input frequency then 
the harmonic output of the tube is small.

The bandwidths of tubes using travelling- wave structures can be broad because 
the phase velocity and the impedance presented to the electron current by the struc-
ture vary slowly with frequency. The interaction is distributed so that the bunch-
ing section and the output section of the tube are effectively combined. For useful 
interaction to take place the mean electron velocity must be approximately syn-
chronous with the phase velocity of the wave. There may be interaction at harmon-
ics of the input frequency leading to appreciable output power at the second and 
higher harmonics as shown in Figure 1.4.

1.3.8 Coupled- Mode Theory

Useful insights into the properties of travelling- wave structures and their inter-
actions with electron streams under small- signal (linear) conditions are given by 
coupled- mode theory [24– 28]. For this purpose the small- signal modulation of the 
electron stream is described by a pair of normal modes whose impedances have 
opposite signs. The properties of space- charge waves on electron beams are dis-
cussed in detail in Chapter 11.

The properties of a wave propagating as exp j t zω β−( ) are the solutions to the 
dispersion equation

 D ω β, ,( ) = 0  (1.23)

Figure 1.6: Typical graph of the output power of an RF amplifier plotted against frequency.
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where the frequency (w) and the propagation constant (β) are real if  there is no 
attenuation.5 The solutions of the dispersion equation can be plotted on a disper-
sion ω β,( ) diagram. In this diagram the phase velocity of the wave is

 vp =
ω
β

 (1.24)

and the group velocity, which is taken to be the velocity of propagation of energy, is

 v
d
dg =
ω
β

. (1.25)

The phase velocity is positive in the first quadrant of the ω β,( ) diagram and nega-
tive in the second quadrant. The group velocity can be either positive or negative 
depending upon the properties of the mode. We shall see in Chapter 4 that waves 
having positive phase velocities and negative group velocities occur in periodic 
structures.

Where two waves propagate in the same region of space they may interact to 
produce coupled modes if  their dispersion curves intersect as shown in Figure 1.7. 
The dispersion equation for the coupled modes can then be written in the form

 D D1 2ω β ω β κ ω β, , , ,( ) ( ) = ( )  (1.26)

where κ ω β,( ) represents the coupling between the modes. The coupled modes are 
the solutions to this equation. In order to investigate the properties of cou pling 
under different conditions we will redefine ω and β so that the two uncoupled 
modes intersect at the origin. This transformation does not change the group veloc-
ities of the modes.

The properties of the different possible kinds of mode coupling can be illustrated 
by assuming that the uncoupled dispersion curves are straight lines so that

 D vgω β ω β, .( ) = −( ) = 0  (1.27)

The dispersion equation for the coupled modes is then

 ω β ω β κ−( ) −( ) =v vg g1 2 0 , (1.28)

where κ0 is regarded as a constant close to the origin. This equation can be expanded 
to give

 ω ωβ β κ2
1 2 1 2

2
0 0− +( ) + − =v v v vg g g g , (1.29)

which is quadratic in both ω and β. Solving for ω gives

5 The symbol β used by engineers is employed in this book in place of the symbol k normally used by 
physicists.
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 ω β β κ= +( ) ± −( ) +{ }1
2

41 2 1 2

2
2

0v v v vg g g g  (1.30)

and for β gives

 β ω ω κ= +( ) ± −( ) +{ }1
2

4
1 2

1 2 1 2

2
2

1 2 0v v
v v v v v v

g g
g g g g g g . (1.31)

The constant κ0 is positive if  the signs of the impedances of the uncoupled waves are 
the same, and negative if  they are opposite. Likewise the signs of the group velocities 
of the waves may be the same, or opposite. Hence all possible combinations are cov-
ered by four cases, which can be explored using Worksheet 1.1. It can be shown that 
the properties of the coupled modes can be revealed by considering the solutions of 
(1.30) when β is real and the solutions of (1.31) when ω is real as follows [26, 29]:

Case A: The group velocities and the impedances have the same sign  v vg g1 2 00 0> >( ), κ .
When β is real the solutions of (1.30) are always two real values of ω and, when 

ω is real, the solutions of (1.31) are two real values of β. These solutions represent 
travelling waves with the modified dispersion diagram shown in Figure  1.8. In 
Figures 1.8 to 1.11 the uncoupled modes are shown by dotted lines, the real parts 
of the solutions by solid lines and the imaginary parts by dashed lines.

Case B: The group velocities have opposite signs and the impedances have the same 
sign  v vg g1 2 00 0< >( ), κ .

When β is real the solutions of (1.30) are always two real values of ω but, when ω 
is real and close to the origin, the solutions of (1.31) are complex conjugate pairs of 
values of β, as shown in Figure 1.9(b). Physically, the complex values of β represent 
travelling waves whose amplitudes decay exponentially with distance. For example 
see Figure 4.28(a) where the forward and backward waves in a waveguide are cou-
pled to one another by periodic discontinuities to produce frequency stop- bands in 
which there are decaying (evanescent) waves.

Figure 1.7: Dispersion diagram for two modes of propagation.
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Case C: The group velocities have the same sign and the impedances have opposite 
signs  v vg g1 2 00 0> <( ), κ .

The solutions for both ω and β, close to the origin, are complex conjugate pairs,  
as shown in Figure 1.10. It can be shown that the complex solution for β corre-
sponds to a convective instability in which the waves grow and decay exponentially 
in space (see Figure 1.10(b)) [26, 29]. An example of this type of coupling is the 
growth of waves in a travelling- wave tube as shown in Figure 11.19.

Case D: The group velocities and the impedances have opposite signs 
v vg g1 2 00 0< <( ), κ .

Figure 1.8: Coupling between two forward waves with impedances having the same sign:  
(a) ω for real β, and (b) β for real ω.

Figure 1.9: Coupling between a forward wave and a backward wave with impedances having 
the same sign: (a) ω for real β, and (b) β for real ω.
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When β is real and close to the origin the solutions of (1.30) are a complex con-
jugate pair of values of ω and, when ω is real, the solutions of (1.31) are always 
two real values of β, as shown in Figure 1.11. The solution with complex ω is a 
non- convective, or absolute, instability in which the two solutions grow and decay 
exponentially in time. The condition for this instability to exist is that there is at 
least one value ω ω= s  in the upper half  of the complex plane for which there are  
coincident roots in βs [29]. For the case considered here the condition for the exis-
tence of coincident roots is found from (1.31)

 ω
κ

s

g g

g g

j
v v

v v
= ±

+
2

1 2 0

1 2

. (1.32)

The condition is satisfied in this case when κ0 0=  and ω = 0 so that an absolute 
instability exists for all negative values of κ0. The corresponding values of β can be 
found from (1.31):

 β ωs
g g

g g
s

v v

v v
=

−1 2

1 22
. (1.33)

Thus βs is complex when ωs is complex. In general the start- oscillation condition 
can be found by finding the least magnitude of the coupling for which coincident 
roots of β exist when ω is real (see Figures  17.5 and 17.6) [30]. If  the coupling 
is increased beyond this point both the frequency and the propagation constant 
are complex (see Section 11.7). Examples of this kind of instability are backward- 
wave oscillations in a travelling- wave tube (Section 11.7) and gyrotron oscillators 
(Section 17.3).

Figure 1.10: Coupling between two forward waves with impedances having opposite 
signs: (a) ω for real β, and (b) β for real ω.
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The properties of coupled modes remain the same in more general cases where 
the uncoupled dispersion diagrams are not straight lines, κ  is a function of ω and β, 
and more than two modes are involved in the coupling. Thus a qualitative descrip-
tion of the properties of the coupled system can be derived from an examination 
of the dispersion diagram of the uncoupled modes and the form of the dispersion 
equation for the coupled system [29].

1.3.9 Classification of Vacuum Tubes

The preceding sections have reviewed the different ways in which the functional 
blocks in Figure 1.2 can be realised, and that can be used as a basis for classifying 
tubes. The discussion in this book is restricted to the types of tube which are of 
continuing practical importance. A summary of their principal features is given in 
Table 1.1. A few variations on the main types of tube exist, for example: triodes and 
tetrodes with DC and RF current flow in the axial direction, and hybrid tubes in 
which the bunching section resembles a klystron and the output section a travelling- 
wave tube. It is possible to think of the inductive output tube as a hybrid tube with 
a triode bunching section and a klystron output section. Many other possible types 
of tube can be envisaged [31– 33].

1.4 Applications of Vacuum Tubes

High- power vacuum tubes have found applications in many fields as summarised 
in Table 1.2 [17]. A comprehensive summary of the historical development of tubes 
for the microwave and millimetre- wave region of the spectrum can be found in  
[34, 35]. For the history of power gridded tubes and their applications see [36].

Figure 1.11: Coupling between forward and backward waves with impedances having 
opposite signs: (a) ω for real β, and (b) β for real ω.
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In general, the development of  high power vacuum tubes has been driven by 
the requirements of  particular applications. The number of  tubes of  each type 
needed has not been great enough to allow the use of  high volume manufacturing 
methods. The exception to this rule is the domestic microwave oven magnetron 
where very large numbers have been made. The cost per tube is then dramatically 
reduced when compared with magnetrons of  other types. In some cases tubes, 
which have been developed for one purpose, have found applications elsewhere. 
For example high power tetrodes for radio transmitters and klystrons for tele-
vision and radar transmitters have been used in particle accelerators. However, 
if  the primary market declines, the manufacturers may not continue to produce 
tubes for low- volume secondary applications. This was a major motivation for 
the development of  high power solid state amplifiers for the SOLEIL synchro-
tron [11]. Thus the nature of  the market for high power vacuum tubes dictates 
the need for close communication between the engineers developing a tube and 
those working on the system in which it will be used. This pattern, which is typ-
ical of  other markets for low- volume, high- technology, products is quite different 
from that for high- volume products. The successful incorporation of  complex 
components, such as tubes, into a system requires the systems engineers to have 
a detailed understanding of  how they work. It is not sufficient to regard tubes as 
‘black boxes’ whose performance can be described completely by characteristics 
defined at their terminals. Tube engineers must, likewise, have a detailed under-
standing of  the issues which are important for the systems in which their products 
are used. Some of  these are reviewed in this chapter and in Chapter 20. For fur-
ther information see [37].

Table 1.1: Classification of the principal types of vacuum tube

Type
(Chapter)

Class DC 
current

RF current Magnetic 
field

Electro- magnetic 
structure

Bunching

Triode and  
tetrode (12)

Gridded Radial Radial None Resonant Radial

Inductive output  
tube (12)

Gridded Axial Axial Axial Resonant Axial

Klystron (13) Linear- 
beam (O)

Axial Axial Axial Resonant Axial

Travelling- wave  
tube (14)

Linear- 
beam (O)

Axial Axial Axial Slow- wave Axial

Magnetron (15) Crossed- 
field (M)

Radial Tangential Axial Resonant Tangential

Crossed- field 
amplifier (16)

Crossed- 
field (M)

Radial Tangential Axial Slow- wave Tangential

Gyrotron (17) Fast- wave Axial Tangential Axial Fast- wave Tangential
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1.5 The Statement of Requirements

A fundamental document for communication between the customers and the 
contractors for any engineering product is the Statement of  Requirements (also 
known as a Requirements Specification or a Statement of  Work). It is the source 
from which two further documents are derived: the Manufacturing Specification 
(or Manufacturing Data Package), which provides all the information required 
to manufacture the product; and the Test Specification, which gives details of 

Table 1.2: The principal applications of vacuum tubes

Field of application Principal applications Principal tube types

Broadcasting Radio Triodes
Tetrodes

Television Inductive output tubes
Klystrons

Direct broadcasting from satellites Helix travelling-wave tubes

Telecommunications Point to point links Helix travelling-wave tubes

Satellite communications Helix travelling-wave tubes
Klystrons

Deep space communications Coupled- cavity travelling-wave tubes

Civilian radar Marine radar Magnetrons

Airborne radar Magnetrons

Weather radar Magnetrons

Air traffic control Magnetrons
Coupled- cavity travelling-wave tubes

Military Early warning radar Klystrons

Target identification radar Magnetrons
Klystrons
Travelling-wave tubes
Crossed- field amplifiers

Electronic countermeasures Helix travelling-wave tubes

Industrial Industrial heating Triodes
Magnetrons

Domestic ovens Magnetrons

Scientific Scientific particle accelerators Tetrodes,
Inductive output tubes
Klystrons

Medical accelerators Klystrons
Magnetrons

Thermonuclear fusion reactors Tetrodes, Klystrons
Gyrotrons
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the tests that the product must undergo to demonstrate its compliance with the 
requirements. It is self- evident that any omissions or ambiguities in these docu-
ments will potentially lead to failure to achieve the outcome desired. Thus it is 
essential that the Statement of  Requirements and the Test Specification are pro-
duced by an open dialogue between representatives of  the customer and the con-
tractor, both of  whom fully understand the issues involved. For this purpose it is 
helpful to have a checklist of  the issues to be discussed [37, 38]. These issues fall 
into two main groups: the performance requirements; and the design constraints. 
Typical top- level requirements are shown in Tables 1.3 and 1.4. The following sec-
tions discuss some of  the issues which are important in the specification of  per-
formance requirements.

1.6 Signals and Noise

In order to transmit information for telecommunications (one to one) or broadcast-
ing (one to many) it is necessary for the properties of the sinusoidal carrier wave to 
be modulated by varying them with time. The properties of the input signal which 
may be varied are amplitude, phase, and frequency. Many different methods of 
modulation are in use and only a brief  summary is given here of the factors that are 
important in the specification of vacuum tube amplifiers [39– 41]. The methods fall 
into two classes: analogue modulation in which the properties of the carrier vary 
continuously with time; and digital modulation in which they are switched between 
a number of states.

The baseband input signal is typically defined as a time- varying voltage. This 
could represent a continuously varying, analogue, source such as a speech or music 
waveform. Alternatively it could represent a digital source such as a computer data  
file, or the digitised form of an analogue waveform. It is common, for conve nience 
of analysis, to assume that the input signal is random when observed over an 
extended period of time, though this is frequently not the case. The frequency spec-
trum of the signal is obtained by taking the Fourier transform of the waveform. 
Theoretically this spectrum extends to infinity but, in practice, it is assumed to be 
restricted to a bandwidth that extends from DC up to some maximum frequency. 
The upper limit may be somewhat arbitrary and be defined as the point at which 
the power density in the spectrum falls below a certain limit. This still applies if  the 
bandwidth of the signal has been limited by a filter, since no practical filter has an 
infinitely sharp cut- off.

The basic digital signal is binary in which the voltage switches between two states 
at a fixed clock rate. However, it is often useful to convert this into a form in which a 
greater number of states is employed. This can be illustrated by considering Table 1.5, 
which shows different possible representations of the symbols in a sixteen charac-
ter set. Let us suppose that we wish to transmit a message made up of the 16 characters 
in the first column at a rate of 1 symbol/ sec. It is helpful to think of these characters  
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as representing 16 different voltage levels in a stepwise approximation to an ana-
logue waveform. A little thought shows that the highest frequency is obtained when 
any pair of symbols is repeated alternately (e.g. ABABABA). The Fourier trans-
form of all other sequences has a lower maximum frequency.

If  we now wish to transmit the same information in binary form we must send 
four binary digits (bits) per second. The highest frequency is obtained when the 
symbols 0 and 1 are repeated alternately (e.g. FFFF, or KKKK). Finally we can 
represent the 16 symbols by a four- symbol set by grouping the binary digits in pairs 
as shown in the third column. Now the highest frequency is obtained when any pair 
of symbols is repeated alternately (e.g. WXWX = BB). From this it can be seen that 
the bandwidth required to transmit the same message depends upon the number 
of symbols in the set used to represent it. Alternatively, we see that the maximum 
data rate for a fixed bandwidth is increased by a factor of two if  a four- symbol set is 
used, and by a factor of four with a 16- character set. Now an ideal low- pass chan-
nel of bandwidth B can transmit 2B pulses per second. Thus the maximum rate at 
which data can be transmitted over this channel is given by Hartley’s law

 R B m= 2 2log bits s ,1−  (1.34)

where m is the number of symbols used.

Table 1.3: Typical performance requirements for vacuum tube amplifiers

Frequency
Bandwidth (instantaneous, tuneable)
Power output (peak, mean)
Gain
Linearity (amplitude, phase)
Noise and spurious emissions
Efficiency
RF matches

Table 1.4: Typical design constraints for vacuum tube amplifiers

High- voltage power supply
 (voltage, current, pulse shape)
Auxiliary power supplies
Size and weight
Cooling
Temperature range (storage, operation)
Shock and vibration
Atmosphere (pressure, humidity)
Reliability
Repairability
Lifetime cost
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1.6.1 Noise

Any communications system adds white noise to the input signal so that the signal 
received is corrupted to some extent [39]. The thermal noise power in watts caused 
by the random motion of charge carriers in resistive materials that is delivered to a 
matched load is

 N kT Bp = , (1.35)

where k is Boltzmann’s constant k = ×( )−1 380 10 23. J K 1− , T is the absolute tempera-
ture and B is the bandwidth of the system in Hz. The effectiveness of an analogue 
communication system is measured by the signal to noise ratio S Np p( ) where Sp is 
the average signal power. This is commonly expressed in decibels as

 SNR
S

N
p

p

=






10 10log . (1.36)

The minimum acceptable SNR for reliable communication is generally taken to be 
about 10 dB.

For digital communications the corruption of the signal may result in some of the 
bits being received incorrectly. Shannon’s theorem states that a noisy channel will 
theoretically support error- free data transmission at a channel capacity given by

 C B
S

N
p

p

= +






log .2 1  (1.37)

Table 1.5: Representation of digital signals

16 symbols 2 symbols (binary) 4 symbols

A 0000 00 00 (WW)

B 0001 00 01 (WX)

C 0010 00 10 (WY)

D 0011 00 11 (WZ)

E 0100 01 00 (XW)

F 0101 01 01 (XX)

G 0110 01 10 (XY)

H 0111 01 11 (XZ)

I 1000 10 00 (YW)

J 1001 10 01 (YX)

K 1010 10 10 (YY)

L 1011 10 11 (YZ)

M 1100 11 00 (ZW)

N 1101 11 01 (ZX)

O 1110 11 10 (ZY)

P 1111 11 11 (ZZ)
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This can be expressed alternatively as

 C B
E
N

R
B

b= + ⋅






log ,2
0

1  (1.38)

where Eb is the energy per bit, R is the mean bit rate, and N0 is the spectral energy 
density of the noise. Shannon’s law represents an ideal which cannot be achieved 
in practice, but it remains useful for comparison with practical systems. In a digital  
transmission system the energy per bit, which is related to the bit error rate, is  
commonly used in place of the signal to noise ratio [40]. A second performance 
measure is the bandwidth efficiency R B( ) in bits s−1 Hz−1.

Each part of a communications channel contributes some noise to the system. 
Here we are concerned specifically with the contribution from the final power 
ampli fier. The noise generated by an amplifier can be described by its noise figure, 
which is the ratio of the signal to noise ratio at the input to that at the output

 F
SNR
SNR

i

o

= . (1.39)

If  an amplifier has a power gain Ap then the signal to noise ratio at the output is

 SNR
A S

A N No
p i

p i a

=
+

, (1.40)

where Si  and Ni are the signal and noise powers at the input and Na is the noise 
power added by the amplifier. Thus

 F
A N N

A N
p i a

p i

=
+

. (1.41)

The noise figure is standardised by fixing the input noise power as that given by 
(1.35) when T = 290 K. The noise added by the amplifier can be described by an 
equivalent noise source at its input such that

 N kT BAa e p= , (1.42)

where Te  is the effective noise temperature of the amplifier. The noise performance 
can also be described by the total noise power at the output, or by the noise power 
density (noise power per Hz).

1.6.2 Analogue Modulation

In order to transmit the baseband signal over a wireless channel it must be super-
imposed upon an RF carrier wave by a modulator. The properties of the carrier 
wave which can be varied by the modulator are its amplitude, frequency, and phase, 
or some combination of them. In general the modulated signal at the input to the 
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power amplifier can be described by a sinusoidal carrier whose amplitude and phase 
are functions of time [42, 43]. Thus

 V t r t t t1 0( ) = ( ) + ( )( )cos ,ω ψ  (1.43)

where ω0 is the carrier frequency. The rates of change with time of the amplitude 
r t( )( ) and phase ψ t( )( ) are normally much slower than that of the carrier wave so 

that it is permissible to regard the instantaneous response of the amplifier as being 
that for a single unmodulated carrier wave. The response to more complex signals 
can therefore be deduced from the steady- state, single- carrier, transfer character-
istics. Figure  1.12 shows examples of simple analogue modulation schemes. For 
purposes of illustration the modulation frequency has been taken to be one eighth 
of the carrier frequency although the ratio is normally much smaller than that.

The simplest example to understand is the amplitude modulation shown in 
Figure 1.12(a). The envelope of the carrier carries information such as an audio 
waveform. In the time domain the modulated waveform is given by

 f t K S t t( ) = + ( )  ( )cos ,ω0  (1.44)

where K is the amplitude of the unmodulated carrier and S t( ) is the signal wave-
form. When the signal is sinusoidal with frequency ωm the Fourier transform of 
f t( ) yields the spectrum in the frequency domain shown in Figure 1.12(b). This 
representation shows the amplitudes, but not the phases, of the components of the 
signal. The central line at the carrier frequency is flanked by two sidebands at fre-
quencies ω ω0 ±( )m . This is known as double sideband amplitude modulation. For a 
more general modulating waveform the sidebands are the frequency- shifted Fourier 
transforms of the baseband waveform. Faithful transmission of the modulated 
waveform requires the bandwidth of the amplifier to be at least 2B (the Nyquist 
limit) where B is the baseband bandwidth. The instantaneous power in the modu-
lated signal varies with time, as can be seen from Figure 1.12(a). Faithful transmis-
sion of the signal requires the amplifier to be linear up to the highest instantaneous 
power. Any non- linearity of the amplifier produces a distortion of the signal in the 
time domain which is reflected in changes in its spectrum (see Section 1.6.4).

Figures  1.12(c) and (d) show double sideband suppressed carrier modulation. 
The modulated waveform is

 f t S t t( ) = ( ) ( )cos .ω0  (1.45)

The spectrum differs from that in Figure 1.12(b) in the absence of the carrier fre-
quency. The bandwidth requirements for the amplifier are the same as in the previ-
ous case and the dynamic range is greater. However, this modulation scheme is less 
susceptible to interference from noise than the previous case because all the power 
is in the sidebands.

Figures  1.12(e) and (f) show phase modulation. The amplitude envelope of 
the signal is constant in the time domain so that the instantaneous power is con-
stant. This has the advantage that the working point of the amplifier is virtually  

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.002
https://www.cambridge.org/core


Signals and Noise 25

25

Figure 1.12: Time and frequency domain representations of analogue modulated carriers: (a) 
and (b) double sideband amplitude modulation; (c) and (d) double sideband suppressed carrier 
amplitude modulation; (e) and (f) phase modulation.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.002
https://www.cambridge.org/core


Overview26

26

constant, so that the output signal is only affected by the frequency dependence 
of the gain and phase of the amplifier. The modulated signal, assuming unity 
amplitude, is

 f t t S t( ) = + ( )( )cos ,ω0  (1.46)

so that the dependence of the modulated signal on the modulation is non- linear. 
For sinusoidal modulation at frequency ωm (1.46) can be written

 f t t tm( ) = +( )cos sin ,ω β ω0  (1.47)

where β is the modulation index. The spectrum for this waveform, shown in 
Figure  1.12(f) for β = 1, has additional lines at frequencies ω ω0 ±( )n m  where 
n = 1 2 3, , ,. Thus the bandwidth required for faithful amplification is greater than 
for amplitude modulation schemes. A  rule of thumb for the transmission band-
width is Carson’s rule [40]

 BT m= +( )2 1β ω . (1.48)

Frequency modulation can also be represented by (1.47) so that its properties are 
similar to those of phase modulation. The properties of analogue modulation 
schemes can be explored using Worksheet 1.2.

1.6.3 Digital Modulation

The simplest digital modulation schemes are amplitude shift keyed (ASK), phase 
shift keyed (PSK), and frequency shift keyed (FSK) modulation [39]. Figure 1.13 
shows time and frequency domain representations of these methods of modulation, 
using the same carrier and modulation frequencies as before. It may be observed 
that the bandwidths of these signals are greater than those for the equivalent ana-
logue modulation, with the exception of binary FSK modulation, which may be 
considered a special case of frequency modulation. The properties of binary digital 
modulation schemes can be explored using Worksheet 1.2.

We saw in Section 1.6.1 that the bit rate in a digital system having fixed bandwidth 
can be increased by using a greater number of symbols. Two common implementa-
tions of this principle are illustrated in Figure 1.14 which shows the positions of 
the symbols on phasor diagrams known as constellation plots. Figure 1.14(a) shows 
binary phase- shift keyed (BPSK) modulation with a phase shift of 180° correspond-
ing to Figure 1.13(c) and (d). Quadrature phase- shift keyed (QPSK) modulation is 
shown in Figure 1.14(b), and quadrature amplitude modulation with 16 symbols 
(16- QAM) is shown in Figure 1.14(c). The effect of noise in the transmission chan-
nel is to produce a scatter of points around the desired constellation points at the 
receiver. If  the scatter is too great then the receiver will fail to identify the symbols 
correctly leading to errors in transmission. Table 1.6 shows the bandwidth efficien-
cies and E Nb 0  figures for these three channels at a bit error rate of 10 6− . These 
figures assume coherent modulation so that the clock signals at the transmitter and 
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Figure 1.13: Time and frequency domain representations of simple digitally- modulated carriers: (a) and 
(b) binary ASK; (c) and (d) binary PSK; (e) and (f) binary FSK.
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the receiver are locked to one another. It can be seen that the bandwidth efficiency 
increases with the number of symbols according to (1.34) as expected.

From the point of view of the design of the power amplifier it is important to note 
that BPSK and QPSK are constant envelope schemes which allow the efficiency of 
the power amplifier to be high, subject only to the need to maintain adequate linear-
ity. On the other hand the amplitude variation in 16- QAM means that the amplifier 
is only working at the highest power conversion efficiency at four of the constellation 
points. In addition, the overall transmitter power must be high enough to achieve an 
acceptable bit error rate for the innermost constellation points where the transmit-
ted power is least. If  all constellation points are equally probable then the average 
efficiency is about half of that at the outermost points. This makes 16- QAM unsuit-
able for applications such as satellite downlinks where high efficiency is important.

1.6.4 Multiplexing

It is commonly the case that one telecommunications channel carries data from 
multiple sources. The interleaving of the different data streams, known as multi-
plexing, can be achieved in many different ways [44]. Of these, the method which 
has implications for the design of a vacuum tube amplifier is frequency domain 
multiplexing (FDM) in which the input to the tube comprises a number of carriers 
each of which is modulated by a separate data stream [42]. In a typical scheme the 
available bandwidth is occupied by N carriers at frequency intervals 2∆ω. If  the 
centre frequency is ω0 then the channel frequencies are

 ω ω ωn n n= + = ± ± ±0 1 3 5∆ for  , , ,  (1.49)

Figure 1.14: Examples of constellation diagrams for digitally- modulated carriers: (a) binary 
phase- shift keyed (BPSK), (b) quadrature phase- shift keyed (QPSK), and (c) quadrature 
amplitude modulation with 16 symbols (16- QAM).

Table 1.6: Comparison between examples of coherent digital modulation schemes [40]

Modulation type Bandwidth efficiency
(bits s−1 Hz−1)

E Nb 0

BPSK 0.5 10.6 dB

QPSK 1.0 10.6 dB

16- QAM 2.0 14.3 dB
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where each of these sub- carriers is frequency- modulated. The non- linearity of the 
final power amplifier produces mixing between the carriers leading to co- channel 
interference. It is therefore necessary to have some way of calculating this interfer-
ence and specifying the maximum acceptable level.

The simplest approach is to consider the central pair of carriers at frequencies 
ω ω ω= ±0 ∆  with equal amplitudes. The two carriers each contribute half  of the 
RF input power so that their amplitudes are related to that of a single carrier hav-
ing the same total power by V Vc = 1 2. The input to the final power amplifier can 
be written in the form given in (1.43)

 V t V t t r t tin c( ) = ( ) ( ) = ( ) ( )2 0 0cos cos cos ,∆ω ω ω  (1.50)

where r t( ) is the time- varying amplitude. Then, from (1.11), the output of the 
amplifier is

 V t A r t t r t2 0( ) = ( )  + ( ) ( )cos .ω Φ  (1.51)

The non- linearity of the amplifier produces signals at frequencies given by

 ω ω ω ω ωm n m n, ,= +( ) ± −( )0 0∆ ∆  (1.52)

where m n, , ,= 0 1 2. The amplitudes of the signals at these frequencies can be 
found by Fourier analysis [45]. Thus, setting m = 1 and n = 0 gives the carrier fre-
quency ω ω ω1 0 0, = + ∆  at which the amplitude is

 V V A r r d1 0 1

0

1
, cos sin ,( ) = ( )  ( ) { }∫π

φ φ φ φ
π

Φ  (1.53)

where φ ω= ∆ t . The analysis is conveniently carried out in the base band. Since the 
AM/ AM and AM/ PM characteristics of  the amplifier normally vary only slowly 
with frequency it is possible to assume that they are constant, so that the amplitude 
of  the other carrier V0 1,( ) is the same. Hence the total RF output power at the fre-
quencies of  the two carriers is given by replacing Vc in (1.50) by the equivalent sin-
gle carrier amplitude V1. This power can be plotted against the RF input power for 
comparison with the single- carrier AM/ AM characteristic as shown in Figure 1.15. 
At small input powers the amplifier is linear and the power gain is identical to that 
with one carrier. However, as the input power approaches the single- carrier satu-
ration level the output power is less with two carriers than with one. The reason 
for this is illustrated in Figure 1.16 which shows typical two- tone input and out-
put waveforms for an amplifier, normalised to the saturated output voltage of  the 
amplifier. For clarity of  explanation the carrier frequency shown is much lower rel-
ative to the frequency of  the envelope than would normally be the case. The output  
voltage is reduced when the instantaneous amplitude of  the signal exceeds the sat-
uration level of  the amplifier. Thus the saturated output power under multi- carrier 
operation is less than that for a single carrier at the same input power. Figure 1.15 
also compares the effects of  AM/ AM conversion alone (typical of  klystrons) with 
those in which AM/ PM conversion is also included (typical of  TWTs) [45].
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Figure 1.15: Typical AM/ AM transfer characteristics for two- carrier operation showing 
third-order (IM3) and fifth-order (IM5) intermodulation products.

Figure 1.16: Typical waveforms for two- carrier operation of a non- linear amplifier: (a) input, 
and (b) output.
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When we set m = 2 and n = 1 in (1.52) we obtain a third-order intermodulation 
product at frequency ω ω ω2 1 0 3, = + ∆  whose amplitude is

 V V A V V dc c2 1 1

0

1
2 2 3, cos cos cos sin .( ) = ( ) ( ) ∫π

φ φ φ φ
π

Φ  (1.54)

In the same way, setting m = 3 and n = 2 gives a fifth-order intermodulation product 
at ω ω ω3 2 0 5, = + ∆  whose amplitude is

 V V A V V dc c3 2 1

0

1
2 2 5, cos cos cos sin .( ) = ( ) ( ) ∫π

φ φ φ φ
π

Φ  (1.55)

The amplitudes of the other intermodulation products at ω1 2,  and ω2 3,  are the same. 
Then the total third-order (IM3) and fifth-order (IM5) intermodulation powers 
can be plotted as shown in Figure 1.15. The frequencies of these signals coincide 
with those of possible adjacent carriers resulting in co- channel interference. The 
acceptable level of interference is commonly expressed as the ratio C I3( ) of  the 
fundamental power to that of the third-order intermodulation product, expressed 
in decibels. At low drive levels the slope of the graph of the third- order product is 
3 dB/ dB and that of the fifth- order product is 5 dB/ dB. Thus the ratio C I3 can 
be increased by operating the amplifier at a reduced drive level. This is commonly 
expressed in terms of the output back- off  from saturation (in dB) necessary to 
achieve an acceptable value of C I3. The linear parts of the curves for the inter-
modulation products can be extrapolated in the same manner as in Figure 1.4 to 
meet the extrapolation of the fundamental curve at the third- order and fifth- order 
intercept points. These may also be used to specify the linearity of the amplifier.

The functions A and Φ required for the evaluation of the integrals in (1.53) to 
(1.55) may be specified numerically using interpolation on data points which have 
been determined experimentally or by large- signal modelling [45]. Alternatively a 
suitable function may be fitted to the data points [42, 43, 46]. Polynomial expansions 
do not give a good fit to the data unless a large number of terms is used. In par-
ticular these models fail for drive levels approaching saturation. They do, however, 
reveal that the fundamental, and intermodulation, amplitudes depend only on the 
odd terms of the series. These can be specified independently of the terms describing 
the dependence of the even harmonics on the input RF power [46]. Simple functions 
which are a good fit to experimental data for TWTs have been proposed by Saleh [43]:

 A r
r
r

a

a

( ) =
+
α
β1 2

 (1.56)

and

 Φ r
r

r
( ) =

+
α

β
φ

φ

2

21
, (1.57)

where αa, βa , αφ and βφ are empirical constants. If  the amplifier has unity gain at 
saturation, so that A 1 1( ) = , it can be shown that αa = 2 and βa = 1. These values are 
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close to the empirical figures so that it is possible to use them as a useful approxima-
tion. In the same way it may be tentatively suggested that the function required to 
generate the even harmonics might be written

 B r
r

r
h

h

( ) =
+( )
α
β

2

2 2
1

. (1.58)

The curves shown in Figures  1.4 and 1.15 were generated using this non- linear 
model (see Worksheet 1.3).

The ratio C I3 is commonly used for specifying the intermodulation distortion 
in an amplifier, not least because it is straightforward to measure it experimentally. 
However, it is at best, a proxy for the intermodulation effects because, when there 
are more than two carriers, the overall performance depends upon the signal levels 
of all the carriers. Since the phases of the phase- modulated carriers vary in a quasi- 
random manner it may be assumed that all phase combinations are equally prob-
able. Where only two carriers are used it is sufficient to consider unmodulated sine 
waves because all possible phases arise in one period of the difference frequency. 
Then the peak power is twice the mean power. However, with three or more carriers 
this is not the case, and it is necessary to use Monte Carlo methods to examine all 
possible phases [47]. As the number of carriers increases, the probability that all the 
signals will be in phase simultaneously decreases. In the limit, a large number of 
uncorrelated phase- modulated carriers can be represented by band- limited white 
noise [45, 48]. This leads to an alternative measure of intermodulation distortion in 
which the input to the amplifier is band- limited white noise from which the portion 
in a small frequency range has been removed by a notch filter. The non- linearity of 
the amplifier causes some signals to be generated in this frequency range. The ratio 
of the amplitude of these to that of the white noise at the output of the amplifier is 
the Noise Power Ratio (in dB). This is a measure of the level of interference which 
would be experienced by a signal at the centre of the notch [49, 50]. An approxima-
tion to this can be achieved experimentally, or in simulations, by using a comb of 
carriers at equal frequency intervals such that one carrier has been omitted from 
the centre of the set as shown in Figure 1.17(a) [47, 51]. Figure 17(b) shows a typi-
cal output spectrum and the definition of the noise power ratio. Intermodulation 
products are also generated on the edges of the input spectrum so increasing its 
bandwidth. If  the power in these is great enough then it may cause interference with 
other systems operating in adjacent frequency bands. For this reason the permitted 
bandwidth may be expressed as a spectrum envelope [52].

1.7 Engineering Design

The design of any engineering product can be divided into three phases:

i) Conceptual design, in which the principal dimensions and operating param-
eters are established.
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ii) Detailed design, involving refinement of the conceptual design by prototyping 
and advanced modelling, leading to the preparation of the manufacturing data 
package and the test specification.

iii) Design consolidation, incorporating further refinements suggested by product 
testing and field experience.

The costs that are committed, and incurred, increase at each stage. It is therefore 
desirable to produce a conceptual design which does not require further modifica-
tion at the detailed design stage; and a detailed design which does not have to be 
modified as a result of unsatisfactory performance in the field. It should be noted 
that performance and environmental testing is normally carried out under labora-
tory conditions, and care must be taken to ensure that tubes which pass these tests 
do also perform well in the field. Differences between the testing and the real envi-
ronments, such as the impedances of power supplies and matches of RF compo-
nents, can affect how a tube performs.

1.7.1 Dimensionless Parameters and Scaling

Nearly all tubes are developed in organisations in which the design process can be 
based upon accumulated knowledge and expertise. Many tubes are designed by 
scaling from existing designs, or by other modifications to them, rather than start-
ing from a clean sheet of paper. It is, however, important that this process should be 
underpinned by fundamental understanding.

Figure 1.17: Amplification of multiple carriers: (a) input spectrum, and (b) output spectrum.
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The basis for scaling is dimensional analysis [53, 54]. Let us suppose that some 
aspect of the performance of a tube is governed by an equation which can be writ-
ten in the general form

 F Q Q Q r rn1 2 0, , , , ′ ′′( ) =  (1.59)

where Q Q1 2, .etc  are dimensional variables and ′ ′′r r, .etc  are dimensionless ratios. 
Very commonly these are the ratios of the leading dimensions of the tube to a single 
dimension or to a dimensional variable such as the free- space wavelength. If  two 
tubes are described by the same set of dimensionless ratios, so that all dimensions 
are changed by the same multiplying factor, they are said to be geometrically similar 
to one another. If  geometrical similarity is assumed then the ratios are constants 
and (1.59) can be written

 F Q Q Qn1 2 0, .( ) =  (1.60)

This equation is a complete description of  the problem, provided that none of 
the variables required has been overlooked. The choice of  variable for inclusion 
is based upon an understanding of  the physics of  the problem. When it involves 
electromagnetics then the primary electric and magnetic constants ε0 and µ0 may 
have to be included in the list. The ratio of  the charge to the rest mass of  an 
electron e m0( ) is also required when the dynamics of  electrons are part of  the 
problem. Equation (1.60) remains valid even if  the algebraic form of  the func-
tion is unknown. The dimensions of  the variables Q can be expressed in terms 
of  the fundamental dimensions mass [M] , length [L], and time [T], together with 
voltage [V] or charge for electrical problems. Thus there are, at most, four funda-
mental dimensions. Table 1.7 shows the dimensions of  some quantities relevant 
to vacuum tubes.

The variables Q may be combined together to form dimensionless groups denoted 
by Π so that (1.60) can be written

 ψ Π Π Π1 2 0, , . i( ) =  (1.61)

The number of groups required is related to the number of variables by

 i n k= − , (1.62)

where k is the number of dimensions required. This is known as Buckingham’s 
theorem. An immediate effect of using dimensionless variables (or dimensionless 
groups) is that the number of variables required to define the problem has been 
reduced. Now let us choose one of the groups to be a dependent variable whose 
value is determined by the values of the others. Then (1.61) becomes

 Π Ψ Π Π Π1 2 3= ( ), , . i  (1.63)
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If  the values of the independent variables Π Π Π2 3, , i( ) are fixed then so is the value 
of the dependent variable Π1. Two tubes which are described by the same values of 
the dimensionless variables are said to be dynamically similar to one another. Thus 
the basis of scaling is the maintenance of both geometrical and dynamic similarity.

The process of forming dimensionless groups is aided by choosing normalisa-
tions which are based on the underlying physics of the problem. Some examples are 
shown in Table 1.8.

A simple illustration is provided by the calculation of the velocity of an electron 
u0( ) from an applied voltage Va( ) and the dimensional constants. The dependent 

dimensionless group is

 Π1
0=

u
c

 (1.64)

and the independent dimensionless group is

 Π2
0

2
=

eV
m c

a . (1.65)

Table 1.7: Typical independent and dependent parameters for vacuum tubes

Parameter Dimensions

Constants Velocity of light in free space (c)
0.299792 × 109 m s−1

LT 1−[ ]

Primary electric constant  ε0( )
8.854187 × 10−12 F m−1

MLT V2 2− −[ ]

Primary magnetic constant  µ0( )
1.256637 × 10−6 H m−1

M L T V1 3 4 2− −[ ]

Elementary charge (e)
1.602176 × 10−19 C

ML T V2 12 − −[ ]

Rest mass of the electron (m0)
9.109382 × 10−31 kg
0.510998 MeV

M[ ]

Electron charge to mass ratio  e m0( )
1.758820 × 1011 C kg−1

L T V2 2 1− −[ ]

Parameters Length L[ ]
Voltage V[ ]
Magnetic flux density L TV2−[ ]
Frequency T 1−[ ]
R.F. power ML T2 3−[ ]
Current ML T V2 3 1− −[ ]
Electron velocity LT 1−[ ]
Charge density ML T V1 2 1− − −[ ]
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In this case there are five parameters and three independent dimensions: M[ ], V[ ] 
and LT 1−[ ] so that the problem is completely described by the two dimensionless 
groups which have been formed. Note that in this case the dimensions L[ ] and T[ ] 
do not occur separately so that the number of independent dimensions is reduced 
by one. It follows that we can write

 Π Ψ Π1 2= ( ), (1.66)

where Ψ is an unknown function which can be determined empirically, even if  its 
form cannot be found by mathematical analysis. The value of the reduction of the 
description of a problem to the form in (1.63) is greater than just that of scaling. If  
the form of the function Ψ is known, even over a limited range of variation of the 
variables then it can be used to explore the effects of design choices on Π1. In cases 
where geometrical similarity is not maintained then one, or more, of the ratios r are 
added as dimensionless variables. Examples of the application of this method to 
particular problems in tube design are given later in this book.

1.7.2 Modelling

The trend in tube design is towards achieving near- ideal RF performance coupled 
with high reliability and low cost of ownership. For this reason, the design of a state- 
of- the- art vacuum tube is a complex business which involves considerable use of 
computer simulations to achieve right- first- time design [55, 56]. The advanced com-
puter codes used for detailed design can take many hours to run, even on the most 
powerful computers available. They are invaluable tools for accurate modelling, but 
are not well- suited to the conceptual design stage which is the focus of this book. For 
that, the engineers must have a sound understanding of the theory of vacuum tubes, 
together with simple computer models which can be used for rapid design iterations.

Table 1.8: Examples of the formation of dimensionless groups

Variable Normalising quantity Dimensionless 
group

Dimension (d) Wavelength  λ( )
Propagation constant β( ) d

λ
 or βd

Velocity (u) Velocity of light (c)
Phase velocity vp( )

u
c

 or 
u
vp

Voltage (V) Rest energy of the electron in eV V m c e0 0
2=( ) eV

m c0
2

Electron plasma frequency  ω p( )
Electron cyclotron frequency ωc( )

Frequency ω( ) ω
ω

p  and 
ω
ω

c
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The availability of advanced computer modelling tools such as Particle in Cell (PIC) 
codes can mislead the unwary into supposing that the best way of modelling a tube 
is to create a complete model in such a code. This approach is wrong on two counts:

 i) A PIC code finds a self- consistent numerical solution of Maxwell’s equations 
and the equations of motion in a series of time steps. However, the solution is 
linear in the part of the problem space which is not occupied by electrons. It is 
therefore more efficient to compute that part of the solution once and store it for 
future use. The problem is then reduced to the solution of the non- linear model 
in the space containing electrons, subject to matching the stored solution on the 
boundary. This is the method used in the large- signal models of tubes which are 
described later in this book.

 ii) Even the best computer codes cannot be wholly accurate models of reality 
because the complexity of the problem is too great, so that some parts of it may 
not be known precisely. Assumptions and approximations are always required. 
For this reason the mathematical modelling of tubes is as much an art as it 
is a science [57]. The best results are obtained when the physics of the prob-
lem are well understood so that the assumptions and approximations are valid. 
Any model is only useful when it has been validated by comparison with experi-
mental results. Even then it can only be used with caution outside the range of 
parameters for which it has been validated.

A large number of simple models were created in Mathcad14® during the writing 
of the book and used to generate many of the figures. These models can be used to 
explore the behaviour of different aspects of tubes by changing the parameters. They 
are available in electronic form (see the list of worksheets in the Appendix, availa-
ble online at www.cambridge.org/9780521198622). The comments included in them 
should be sufficient for users to create their own models using other software if they 
wish. The models are intended as educational tools and have not been validated for 
use in tube design.
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2 Waveguides

2.1 Introduction

Modern vacuum tubes are power amplifiers and oscillators which require the use 
of waveguides or coaxial lines to convey RF power into and out of them. The pur-
pose of this chapter is to provide a summary of those topics which are important 
for the design of vacuum tubes. It also provides a foundation for the discussions of 
resonators in Chapter 3, and of slow- wave structures in Chapter 4. Section 2.2 sum-
marises the theory of hollow metal waveguides, and two- conductor transmission 
lines, having uniform cross- sections. This leads to a discussion of practical coaxial 
lines, and rectangular, ridged and circular waveguides in Section 2.3. The properties 
of simple discontinuities in rectangular waveguides are considered in Section 2.4 
followed by a discussion of matching techniques in Section 2.5. Sections 2.6 and 
2.7 examine methods of coupling between waveguides of different cross- sections 
without, and with, changes in the mode of propagation. The final section reviews 
the different kinds of vacuum windows which are used in coaxial lines and rect-
angular waveguides. The theory and practice of waveguides and waveguide com-
ponents is covered by many books and the reader is referred to them for detailed 
information [1– 5].

2.2 Waveguide Theory

The propagation of electromagnetic waves in a source- free region, filled with a 
uniform material of permittivity ε  and permeability µ, is governed by the wave 
equations

 ∇ −
∂
∂

=2
2

2
0E

Eεµ
t  (2.1)

and

 ∇ −
∂
∂

=2
2

2
0H

Hεµ
t

, (2.2)

where E is the electric field and H is the magnetic field [1]. We shall assume that 
the waves are guided in the z direction by conducting boundaries whose shape 
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does not vary with z. The vector operator can be decomposed into transverse and 
longitudinal parts

 ∇ = ∇ +
∂
∂T z

ˆ ,z  (2.3)

where ẑ  is the unit vector in the z direction. We also assume the propagation of har-
monic waves with frequency ω in the z direction so that

 E E= −( )0 exp j t zgω β  (2.4)

and

 H H= −( )0 exp ,j t zgω β  (2.5)

where the vector amplitudes depend only upon the spatial variables normal to the z 
axis. Substituting for E and H in (2.1) and (2.2) yields

 ∇ + −( ) =T w g
2

0
2 2

0 0E Eβ β  (2.6)

and

 ∇ + −( ) =T w g
2

0
2 2

0 0H Hβ β , (2.7)

where

 β εµωw
2 2=  (2.8)

is the propagation constant of plane electromagnetic waves in the material filling 
the waveguide. We are only interested in the cases where the waveguide is empty, or  
filled with a low- loss dielectric material so that, effectively, µ µ= 0. The phase  
velocity of plane waves is

 vp
w

0
1

= =
ω
β εµ

. (2.9)

If  the waveguide is empty then v cp0 = , the velocity of  light in free space, and the 
propagation constant is β ωw c= . The solutions of  (2.6) and (2.7) are eigenfunc-
tions which satisfy the boundary conditions on the conducting surfaces. There is 
an infinity of  such solutions and each has a corresponding eigenvalue βC  such that

 β β βC w g
2 2 2= −  (2.10)

or

 β β βg w C
2 2 2= − . (2.11)

It is evident, from (2.11), that waves can only propagate when bg is real, that is, 
when β βw C

2 2> . But, from (2.8), βw is proportional to the frequency of the waves 
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and, therefore, waves can propagate only at frequencies above the cut- off  frequency 
given by

 ω βC C pv= 0 . (2.12)

Equation (2.11) can also be written

 ω ω β= +C g pv2 2
0

2 . (2.13)

Every mode in a waveguide obeys (2.13) and has its own cut- off  frequency. The 
plot of this curve, shown in normalised form in Figure 2.1, is the dispersion ω β−( ) 
diagram of the waveguide mode. We shall see that dispersion diagrams are valuable 
tools for understanding the properties of wave guiding systems in general.

The phase velocity of the wave in the waveguide is

 vp
g

=
ω
β  (2.14)

and this is represented by the slope of the line joining a point on the dispersion 
curve to the origin. The dashed line shows the dispersion curve for plane waves in 
unbounded material for which the phase velocity is vp0. It can be seen that for guided 
waves v vp p> 0 at all frequencies. The group velocity, which is the velocity of propa-
gation of information along the waveguide, is the slope of the dispersion curve, i.e.

 v
d
dg

g

=
ω
β  (2.15)

Figure 2.1: Normalised dispersion diagram for waves in a uniform waveguide.
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and we see that v vg p< 0 and that vg → 0 at cut- off. An important special case, which 
is discussed below, occurs when βC = 0 and the dispersion curve is the straight 
dashed line through the origin.

When ω ω< C the waveguide is cut off  and (2.11) can be written

 β β ω ωg w Cj= ± ( ) −2
1, (2.16)

where the negative sign is taken for waves travelling in the positive z direction. The mode 
is then an evanescent mode and the amplitude of the wave then decays exponentially 
with z. The attenuation of the cut- off mode in decibels per free- space wavelength is

 20
2

40 1
2

log exp log .−












= − ( ) ( ) −β π
β

π ω ωg
w

Ce  (2.17)

Thus, for example, if  ω ωC = 1 05.  the attenuation in one free- space wavelength is 
17.5 dB. We shall explore the significance of this result when discussing higher- 
order mode effects in waveguides.

It is convenient to express the vector amplitudes of the waves as the sum of lon-
gitudinal and transverse vectors [3] so that

 
E E z
H H z

0

0

= +
= +

T z

T z

E
H

ˆ
ˆ , 

(2.18)

where E HT Tand  only have transverse components. By substituting these expressions 
into Maxwell’s equations and making use of vector identities it can be shown that

 E zT
g

C
T z

C
T z

j
E

j
H= − ∇( ) + ∧ ∇( )β

β
ωµ
β2 2

ˆ  (2.19)

and, similarly,

 H zT
C

T z
g

C
T z

j
E

j
H= − ∧ ∇( ) − ∇( )ωε

β
β

β2 2
ˆ . (2.20)

This pair of equations shows that the transverse field components can be determined 
if  the axial components are known. Furthermore they are expressed as the sum of 
two terms, one of which depends only on the axial electric field, and the other only 
on the axial magnetic field. It can be shown that a waveguide supports an infinite 
set of normal modes of propagation which are orthogonal to one another so that 
any general configuration of the fields can be expressed as a sum of normal modes. 
For every waveguide mode it can be shown that the electric and magnetic fields are 
mutually orthogonal. The time- average power flow can be found by integrating the 
longitudinal component of the Poynting vector over a plane normal to the z axis

 P dS
z

= ∧( )∫∫
1
2

E H . (2.21)

Three distinct cases are considered in the sections which follow.
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2.2.1 The Transverse Electric and Magnetic Mode

If  βC = 0 then (2.19) and (2.20) permit the existence of non- zero solutions for the 
transverse field components when the longitudinal field components are both zero. 
The wave is then a plane electromagnetic wave which satisfies the boundary condi-
tions and whose phase velocity is vp0. This is the transverse electric and magnetic 
(TEM) mode shown by the dashed line in Figure  2.1. It can be shown that the 
transverse electric field can be found from the gradient of a scalar electric potential 
which is a solution of Laplace’s equation in two dimensions. Since Laplace’s equa-
tion can only have a non- zero solution in a closed region in which there are at least 
two independent boundaries it follows that TEM waves can only be supported by 
waveguides comprising two or more conductors, for example coaxial lines. The fact 
that the cut- off  frequency is zero means that the waveguide must be able to support 
an electric field under DC conditions. This confirms the requirement that it must 
have at least two independent conductors. Figure 2.2(a) shows the field pattern of 
the TEM wave in a coaxial line.

The properties of each mode of a uniform waveguide can be represented by a 
lumped- element equivalent circuit constructed by representing displacement cur-
rents by capacitors, and conduction currents by inductors. Equivalent circuits, con-
structed in this way, are also valuable aids to understanding the properties of cavity 
resonators and slow- wave structures. The displacement current in a TEM line is in 
the transverse direction. The conduction current is normal to the direction of the 
tangential magnetic field at the wall and is, therefore, in the longitudinal direction. 
Thus the equivalent Tee circuit of a short length dz  of  the line can be constructed as 
shown in Figure 2.2(b) where C  and L are, respectively, the capacitance and induc-
tance per unit length. Analysis of this circuit shows that the propagation constant is

 β ωg LC= ± . (2.22)

But, from (2.11), we see that β βg w= , the propagation constant for plane waves in 
the material filling the space between the conductors, so the phase velocity is

 v
LC

vp p= = =
1 1

0εµ
. 

(2.23)

Figure 2.2: Coaxial line TEM mode: (a) field pattern, and (b) equivalent circuit for the mode.
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The line is non- dispersive because the phase velocity is constant. The characteristic 
impedance is defined as

 Z
V

Pc =
2

2  (2.24)

where V  is the magnitude of the potential difference between the conductors, and P is 
the power flow. The value of Zc can be calculated from any pair of: the magnitude of 
the voltage; the magnitude of the current; and the power flow, yielding identical results.

In terms of the equivalent circuit

 Z
L
Cc = . (2.25)

The capacitance per unit length of any TEM line can be found from the solution of 
the two- dimensional Laplace equation, and the inductance per unit length can then 
be calculated from (2.22).

2.2.2 Transverse Electric Modes

Modes in which the longitudinal component of the electric field is zero are known 
as Transverse Electric (or TE) modes. They are also sometimes known as H modes 
because they have a longitudinal component of the magnetic field. The longitudinal 
magnetic field is a solution of

 ∇ + =T z C zH H2 2 0β , (2.26)

subject to the condition that ∇ =T zH 0 on the conducting boundaries. Each solu-
tion comprises an eigenfunction Hz of  the transverse coordinates, which is inde-
pendent of frequency, with an associated eigenvalue βC . Once these are known the 
corresponding transverse field components can be found directly from (2.19) and 
(2.20). Figure 2.3 shows the arrangement of a rectangular waveguide. The field pat-
terns of some TE modes are shown in Figure 2.4. The transverse components of the 

Figure 2.3: Arrangement of a rectangular waveguide.
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Figure 2.4: Field patterns of TE modes in a rectangular waveguide
(reproduced, with permission from [5]).
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electric and magnetic fields are always at right angles to one another. The ratio of 
their amplitudes is the wave impedance which is found from (2.19) and (2.20) to be

 Z
E
H

ZTE
T

T g

w

g
w= = =

ωµ
β

β
β

, (2.27)

where Zw = µ ε  is the wave impedance of plane waves in the material filling the wave-
guide. Equation (2.27) is valid for all TE modes and it has been assumed that the mater-
ial filling the guide, if any, is non- magnetic. It can be seen that Z ZTE w→  as ω → ∞.

It is common to use transmission line methods to solve waveguide problems with 
the guide wavelength defined by

 λ π
βg

g

=
2

. (2.28)

The characteristic impedance is not unique, as it is for TEM waves. This arises 
because the electric and magnetic fields are not uniform over the surface of the wave-
guide so that the voltage and current can be defined in different ways [1]. Typically:

• The voltage V is defined as the maximum voltage between opposite sides of the 
waveguide.

• The current I is defined as the amplitude of the total axial current in the walls of 
the waveguide.

However, the power calculated from the voltage and current defined in this way is 
not equal the power flow P( ) calculated from the Poynting vector. Thus the charac-
teristic impedance can be defined by

 Z
V

PPV =
2

2
, (2.29)

 Z
P

IPI =
2

2
, (2.30)

or

 Z
V
IVI =  (2.31)

and these equations give different results. To make matters more complicated, the 
relationship between them is not fixed but depends upon the shape of the wave-
guide. For problems where only one propagating mode is concerned (e.g. a change 
in the height of a rectangular waveguide) it does not matter which definition is used 
because the scaling factors are the same for waveguides having the same shape. 
There is no consensus in the literature about which definition of the characteristic 
impedance should be used for any given problem.

From Figure 2.4 it can be seen that the simplest TE mode TE10( ) has displacement 
current in the vertical direction. Axial and tangential conduction currents flow in 
the walls, corresponding to the transverse and axial components of the magnetic 
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field. (The notation used to describe the modes is explained in Section 2.3.2.) The 
equivalent circuit is therefore as shown in Figure 2.5. From analysis of the circuit 
for a section of waveguide which is short compared with the wavelength we find 
that the dispersion equation is

 β ωg
L
L

L C2 2

1

2
1 1= −( ). (2.32)

Comparing (2.32) with (2.11) shows that

 β ωw L C2 2
2=  (2.33)

and

 βC
L
L

2 2

1

=  (2.34)

so that the cut- off  frequency is

 ωC
L C

=
1

1

. 
(2.35)

The iterative impedance of the network is

 Z
L
Cg

w

g

=
β
β

2 . (2.36)

It is important to understand that the component values in this equivalent circuit 
are not the same as those which would be found from static analysis; though, in 
some cases, they can be calculated from the dimensions of the waveguide in a simi-
lar manner. Moreover, they are not unique but depend upon the way in which the 
impedance is defined. The properties of the waveguide are completely determined 
by any two of the parameters since the third is then fixed.

2.2.3 Transverse Magnetic Modes

In transverse magnetic (TM) modes, also known as E modes, the longitudinal com-
ponent of the magnetic field is zero. The longitudinal electric field is a solution of

 ∇ + =T z C zE E2 2 0β , (2.37)

Figure 2.5: Equivalent circuit of the TE10 mode in a rectangular waveguide.
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subject to the condition that Ez = 0 on the conducting boundaries. The full solution 
for each mode can then be obtained as before. Figure 2.6 shows examples of the 
field patterns of TM modes in a rectangular waveguide. The tangential electric field 
and the normal magnetic field are zero at the walls to satisfy the boundary condi-
tions. The tangential magnetic field at the wall only has transverse components and 
the conduction current in the walls is longitudinal. The wave impedance for TM 
modes can be derived in the same way as for the TE modes with the result

 Z
E
H

ZTM
T

T

g g

w
w= = =

β
ωε

β
β

. (2.38)

As in the case of TE waves, Z ZTM w→  as ω → ∞. We also note from (2.27) and 
(2.38) that

 Z Z ZTE TM w= 2 . (2.39)

The equivalent circuit of the TM11 mode is shown in Figure 2.7. It should be 
noted that the lower line represents the wall of the waveguide and the upper line 
the centre of the waveguide. From analysis of this circuit the dispersion equation is

 β ωg
C
C

LC2 1

2

2
2 1= −( ). (2.40)

Comparing this equation with (2.11) we see that

 β ωw LC2 2
1=  (2.41)

and

 βC
C
C

2 1

2

=  (2.42)

so that the cut- off  frequency is

 ωC
LC

=
1

2

. (2.43)

The iterative impedance is

 Z
L
Cg

g

w

=
β
β 1

. (2.44)

In this case the potential difference between opposite sides of the guide is zero and 
it is necessary to define the potential between the wall and the axis. But, because 
the axial current flow in the walls is non- zero, it is more natural to choose ZPI as the 
definition of characteristic impedance.
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Figure 2.6: Field patterns of TM modes in a rectangular waveguide
(reproduced, with permission, from [5]).
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2.3 Practical Waveguides

Waveguides of all kinds are normally operated in the frequency band between the 
lowest two cut- off  frequencies so that only one mode can propagate. When, excep-
tionally, the frequency is such that there are two, or more, modes which are not 
cut- off, then the waveguide is said to be overmoded. We shall see that the effect of 
any discontinuity in a waveguide is to scatter power into modes other than the one 
which has been excited. It follows that, when an overmoded guide is used it is neces-
sary to take great care to avoid this possibility.

The maximum power which can be handled by a waveguide is determined by elec-
tric breakdown in air, or dielectric materials, and by multipactor discharges in vac-
uum (see Section 18.8). Air- filled waveguides are normally operated under a small 
positive pressure of dry air, or dry nitrogen, to prevent condensation and to exclude 
dust, both of which lead to breakdown at lower powers [6, 7]. The power handling 
capability outside the vacuum envelope can be increased by pressurisation of the 
waveguide (see Section 18.7.2). Increasing the pressure requires the waveguide to be 
gas- tight and reinforced to avoid distortion by the gas pressure. It may also require 
pressure vessel rules to be followed. The breakdown voltage can also be increased 
by filling the waveguide with an electron attaching gas such as sulphur hexafluoride 
(SF6). This gas is chemically inert but when it is decomposed by an electrical dis-
charge the products are corrosive and highly toxic [8]. The type and size of the wave-
guide external to the tube is generally specified by the system in which it is installed. 
Dielectric waveguide windows are required to separate sections of waveguide at dif-
ferent pressures, especially between the vacuum inside a tube and the atmospheric, 
or higher, pressure outside and these are discussed in Section 2.8. Knowledge of the 
properties of waveguides is important for understanding the properties of cavity 
resonators and slow- wave structures (see Chapters 3 and 4). It is also necessary for 
the design of the input and output coupling structures of tubes. We shall assume 
that waveguides are evacuated or air- filled unless otherwise stated.

2.3.1 Coaxial Lines

The geometry of a coaxial line is shown in Figure 2.8(a). The space between the 
conductors may be filled with dielectric material to locate and support the inner 

Figure 2.7: Equivalent circuit of the TM11 mode in a rectangular waveguide.
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conductor. For high powers it is usual to use air-  or vacuum- spaced lines to mini-
mise the dielectric losses. The inner conductor is then supported by dielectric 
spacers as shown in Figure  2.8(b) [9]. Standard coaxial cables in small sizes are 
commonly used for the RF input connections of high power amplifiers. The high 
power output connection is frequently a coaxial line, either directly, or as a means 
of coupling RF power to some other kind of waveguide.

The lowest mode of a coaxial transmission line is the TEM mode in which the 
electric field is radial and the magnetic field azimuthal, as shown in Figure 2.2(a). 
Since this field pattern must be the same at all frequencies it can be derived by static 
analysis [10]. The results are

 E
V
b a r

j t zr g= ( ) ⋅ ⋅ −( ) 
0 1

ln
exp ,ω β  (2.45)

where V0 is the magnitude of the RF potential difference between the inner and 
outer conductors, and

 H Erθ
ε
µ

= . (2.46)

The capacitance per unit length is

 C
b a

= ( )
2πε

ln  (2.47)

and the inductance per unit length is

 L b a= ⋅ ( )µ
π2

ln . (2.48)

Figure 2.8: Arrangement of a coaxial line with (a) a uniform dielectric, and (b) dielectric 
spacers.
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Then the phase velocity is

 v
LC

p = =
1 1

εµ  (2.49)

and the characteristic impedance is

 Z
L
C

b ac = = ( )1
2π

µ
ε

ln . (2.50)

Coaxial lines for high- power transmission are available with 50 Ω and 75 Ω charac-
teristic impedances. The former represents a compromise between breakdown field 
strength and power handling capacity, and the latter is chosen for minimum attenu-
ation. The ratio b a is fixed by the characteristic impedance of the line and the rela-
tive permittivity of the medium between the conductors. It is easy to see from the 
equivalent circuit and equations (2.49) and (2.50) what the effects of changes in the 
dimensions and dielectric material will be.

The wave on an air- spaced coaxial line loses power through conduction losses in 
the conductors so that its amplitude decays as exp −( )αz  where α is the loss param-
eter is given by

 α = ( ) +





1
2 0Z b a

R
a

R
b

a b

ln
. (2.51)

Here Ra and Rb are the surface resistances of the inner and outer conductors respec-
tively (see Section 3.3) and Z0 0 0= µ ε  is the wave impedance of free space [6]. It 
can be seen that the greater part of the loss is contributed by the inner conductor 
because the current density is higher there than on the outer conductor. One of the 
problems with the use of coaxial lines at high power levels is the need to remove heat 
from the inner conductor. Large coaxial lines for high- power RF transmission may 
use copper for the inner conductor and aluminium for the outer conductor to save 
weight. The use of aluminium as the outer conductor increases the transmission 
losses by about 10%. The average power being carried on a coaxial line is given by

 P
V
Zc

=
1
2

0
2

. (2.52)

Now from (2.45) the magnitude of the RF electric field is

 E
V
b a rr = ( ) ⋅0 1

ln
, (2.53)

which is maximum when r a= . Substituting in (2.52) from (2.50) and (2.53) gives 
the relationship between the power and the maximum electric field

 P
a E
Z

b aa

w
max ln .= ( )π 2 2

 (2.54)
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It is customary to assume that the peak electric field in an air- filled line is the break-
down electric field strength in dry air at standard pressure and temperature (3 MV/ m). 
It must be remembered that this figure provides no margin of safety, and that allow-
ances must be made for changes with altitude, humidity, and the presence of dust par-
ticles in the air. For this reason the breakdown voltage is often an order of magnitude, 
and the maximum power two orders of magnitude, below the theoretical limit [11].

When the line is evacuated, breakdown is caused by a multipactor discharge. 
It should be noted that this does not apply only within the vacuum envelope of 
the tube but is also the cause of breakdown in waveguides used in space [12]. The 
maximum power can be increased by the use of anti- multipactor coatings and 
by the application of a DC bias between the inner and outer conductors [13, 14]. 
Multipactor discharges are discussed in Section 18.8.

Higher- order TE and TM modes can propagate in a coaxial line at higher fre-
quencies. In general they are to be avoided because mode conversion from the TEM 
mode to TE or TM modes represents a source of power loss. The cut- off  frequen-
cies for these modes are found from (2.26) and (2.37). In polar co- ordinates the 
transverse vector operator is

 ∇ =
∂
∂

∂
∂







+
∂

∂T r r
r

r r
2

2

2

2

1 1
θ

. (2.55)

For TE modes the variables can be separated by writing

 H r R r mz , cos ,θ θ( ) = ( ) ( )  (2.56)

where m = 0 1 2, , . Substituting in (2.26) we find that

 
1

02
2

2r r
r

R
r

m
r

RC
∂
∂

∂
∂







+ −





=β . (2.57)

This form of Bessel’s equation has the general solution

 R AJ r BY rm C m C= ( ) + ( )β β , (2.58)

where Jm and Ym are Bessel functions of the first and second kinds [15]. The value of βC  
is found by applying the boundary conditions ∂ ∂ =R r 0 when r a=  and r b=  so that

 J a Y b J b Y am C m C m C m C′ ( ) ′ ( ) − ′ ( ) ′ ( ) =β β β β 0, (2.59)

where the prime represents differentiation with respect to the argument. This equa-
tion has a doubly infinite set of solutions β βC m n= ,  where n = 1 2, , is the number 
of zeroes of R between the conductors. The corresponding modes are denoted by 
TEmn. Figures  2.9 and 2.10 show examples of the field patterns of TE and TM 
modes in a coaxial line. The lowest mode is the TE11 mode whose cut- off  wavelength 
is given very nearly by

 λ π
β

πC
C

a b= = +( )2
 (2.60)
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Figure 2.9: Field patterns of TE modes is coaxial waveguide
(reproduced, with permission, from [5]).
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Figure 2.10: Field patterns of TM modes is coaxial waveguide
(reproduced, with permission, from [5]).
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over the range 1 4< <a b . Thus cut- off  occurs when there is a standing wave in 
the azimuthal direction. The cut- off  wavelengths for other TE modes and for TM 
modes can be found from (2.59). Detailed information about the higher-order 
modes in a coaxial line, including diagrams of the field patterns and the equations 
for the field components, can be found in [1, 5].

2.3.2 Rectangular Waveguides

Rectangular waveguides are the usually used for transmission of RF power at 300 
MHz and above where their power handling and attenuation are better than those 
of coaxial lines [6]. Figure 2.3 shows the arrangement of a rectangular waveguide in 
which a and b are the internal width and height. Standard rectangular waveguides 
have aspect ratios that are close to 2:1 but reduced height waveguides are sometimes 
used for special purposes.

The cut- off  frequencies for the modes are found from (2.26) and (2.37). In rectan-
gular Cartesian co- ordinates the transverse vector operator is

 ∇ =
∂

∂
+

∂
∂T x y

2
2

2

2

2
. (2.61)

For TE modes the variables can be separated by writing

 H x y H
m x

a
n y

bz z, cos cos ,( ) = 









0

π π
 (2.62)

where m n, , ,= 0 1 2. It should be noted that this choice automatically satisfies 
the boundary conditions on the walls of the waveguide. Substituting in (2.26) we 
find that

 β π π
C

m
a

n
b

2

2 2

= 





+ 





. (2.63)

The modes are denoted by TEmn and the lowest mode when a b>  is the TE10 mode in 
which the electric field is normal to the broad wall and the magnetic field is parallel to 
the broad wall as shown in Figure 2.4. This field pattern can be generated by superim-
posing plane TEM waves whose directions of propagation are at equal positive and 
negative angles with respect to the z axis [16]. At cut- off this angle is π 2 so that there is 
a standing wave across the guide and no power propagates along it. The equations for 
the components of the electric and magnetic fields can be found by substituting (2.62) 
in (2.19) and (2.20). Table 2.1 shows the cut- off frequencies of the lowest modes of a 
waveguide for which a b= 2 , normalised to the frequency of the TE10 mode.

The power flow in the guide is found by integrating the z component of the 
Poynting vector across a transverse plane with the result

 P
ab E

Z
g

w

x

w

= ⋅ ⋅
4

2β
β

, (2.64)
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where |Ex| is the magnitude of the electric field at the centre of the guide. The char-
acteristic impedance is conveniently defined by (2.29) where V bEx= . Substituting 
for P from (2.64) gives

 Z
b

a
ZPV

w

g
w= ⋅

2 β
β

, (2.65)

which can be seen to have the same form as (2.36). The impedance of an empty 
waveguide having a 2:1 aspect ratio ranges from around 630Ω at the bottom of the 
useful frequency band to 440Ω at the top. Assuming that b = a/ 2 the attenuation 
constant of an empty rectangular waveguide is found to be [1]

 α
ω ω

µ ε ω ω
=

+[ ]
−[ ]

2 1

1

2

0 0
2 0 5

R

a

s C

C

( )

( )
,.  

(2.66)

where Rs is the surface resistance (see Section 3.3). The theoretical maximum power 
in an air, or gas, filled waveguide is

 P
E ab

Cmax
max ( ) .= −
2

0 0

2

4
1

µ ε
ω ω  (2.67)

where Emax is the breakdown field.
The values of the components in the equivalent circuit of the TE10 mode of an 

empty waveguide which are consistent with the definition of impedance in terms of 
power and voltage ZPV( ) can be found by comparing (2.65) with (2.36). The result is

 
L
C

b
a

2 0

0

2
=

µ
ε

. 
(2.68)

Then from (2.33), (2.34) and (2.68)

 C
a
b

=
2 0ε  (2.69)

Table 2.1: Relative cut- off frequencies of TE modes in 
a rectangular waveguide (a = 2b)

m n fc

1 0 1.000

0 1 2.000

2 0 2.000

1 1 2.236

2 1 2.828

3 0 3.000

3 1 3.606

0 2 4.000
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 L
ab

1 2 0
2

=
π

µ  (2.70)

 L
b

a2 0
2

= µ . (2.71)

We recall that it is not possible to determine these component values using static 
field analysis as in the case of the TEM mode. Instead they are chosen so that the 
network has the correct values of the cut- off  frequency, the high- frequency asymp-
tote for the phase velocity and the characteristic impedance [16].

Higher- order waveguide modes determine the useful bandwidth of  rectangu-
lar waveguide. For the conventional choice of  a 2 to 1 aspect ratio in the trans-
verse dimensions, the first higher- order mode is the TE20 mode (H20 mode), for 
which the cut- off  frequency is just twice the cut- off  frequency of  the TE10 mode 
(see Table 2.1). The useable frequency band of  a rectangular waveguide is usu-
ally taken to be from 1.25 fc to 1.90 fc. Reference to Figure 2.1 shows that below 
the minimum frequency the dispersion of  the waveguide increases rapidly. At 
the maximum frequency the attenuation of  the next higher-order mode is found 
from (2.17) to be 18 dB in one free- space wavelength. The wavelength of  the 
propagating TE10 mode at a frequency 1.90 fc is 1.18 times the free- space wave-
length so that the attenuation of  the TE20 mode in one guide wavelength of  the 
TE10 mode is 21 dB. Thus any higher- order mode fields generated by discontinui-
ties in the waveguide are of  short range. The equations for the field components 
of  the TE modes are given in [1, 5]. Figure 2.4 shows examples of  the field pat-
terns TE modes.

The cut- off  frequencies for the TM modes can be determined from (2.37) in a 
similar manner by assuming that

 E x y E
m x

a
n y

bz , sin sin .( ) = 









0

π π
 (2.72)

This choice ensures that the boundary conditions are satisfied. The cut- off  condition 
is again given by (2.63) but we note that modes in which either m or n is zero cannot 
exist because then Ez = 0 everywhere. Thus the lowest TM mode is the TM11 mode. 
The equations for the field components of these modes are to be found in [1, 5].  
Figure 2.6 shows examples of the field patterns of TM modes. The dimensions and 
properties of standard rectangular waveguides can be found in reference books [4] 
and are also available from manufacturers [17].

2.3.3 Ridged Waveguides

In the previous section we saw that the useful bandwidth of a rectangular waveguide 
is limited to around 1.5:1. For some purposes this is inconvenient. In order to increase 
the useful bandwidth it is necessary to increase the separation between the cut- off  
frequencies of the TE10 and TE20 modes. The equivalent circuit shown in Figure 2.5 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.003
https://www.cambridge.org/core


Practical Waveguides 61

61

suggests a possible way. If  a ridge is added to the centre of one, or both, of the 
broad walls of the waveguide, as shown in Figure 2.11, then the effect on the TE10 
mode is to increase the capacitance C. As a result, the cut- off  frequency of this 
mode is depressed. The TE20 mode, however, is little affected because the ridges are 
in regions of weak electric field for that mode. The price paid for the increase in 
bandwidth is a reduction in power handling capability because of the concentration 
of electric field produced by the ridges. At low power levels coaxial lines provide 
a more compact means of broad- band signal transmission, but ridged waveguides 
are useful where a combination of broad- bandwidth and moderately high power is 
required.

Because the shunt capacitance is increased by the addition of the ridges the char-
acteristic impedance is reduced, as can be seen from (2.36). This is useful for match-
ing between coaxial lines and waveguides because the characteristic impedance is 
intermediate between those of the other two types of waveguide. The notation for 
modes in ridged waveguide is the same as that used for rectangular waveguides  
[2, 4, 18, 19]. Detailed information about ridged waveguides is to be found in [18]. 
The dimensions and other properties of standard WRD series double- ridged wave-
guides are available from manufacturers [20].

Figure 2.11: (a) Single ridged waveguide, (b) double ridged waveguide and   
(c) the equivalent circuit.
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The cut- off  frequency of the TE10 mode of a ridged waveguide can be calculated 
by recalling that, at cut- off, there is a standing TEM wave across the guide [19]. The 
problem may therefore be considered as comprising two parallel plate transmission 
lines having differing characteristic impedances as shown in Figure 2.11(c). It is 
easy to show that the capacitance and inductance per unit length of a parallel plate 
transmission line having unit width and separation b are

 C
b

=
ε0

 (2.73)

and

 L b= µ0 , (2.74)

where fringing fields have been ignored. Thus the phase velocity and characteristic 
admittance are

 v cp = =
1

0 0ε µ  (2.75)

and

 Y
bg =
1 0

0

ε
µ

. (2.76)

The admittance presented at the step by the outer region of the guide is found using 
the equation for the transformation of admittance on a transmission line

 Y
Y jY z

Y jY z
YL g w

g L w
g1

1

1
1=

+
+

⋅
tan

tan
,

β
β  (2.77)

where β ωw c= . Setting z a s= −( ) 2 and letting the terminating admittance YL tend 
to infinity gives

 Y j
w
b

a sw1
0

0

2= − −( )( )ε
µ

βcot . (2.78)

The admittance presented at the step by the inner region of the guide is found, simi-
larly, by setting z s= 2 and YL = 0

 Y j
w
d

sw2
0

0

2= ( )ε
µ

βtan . (2.79)

The effect of  the fringing electric field at the step is represented in the equiva-
lent circuit by the lumped susceptance B. If  the height of  the waveguide is small 
compared with the free- space wavelength, and the fringing field of  the step does 
not extend to the outer wall of  the waveguide, the determination of  B may be 
treated as a quasi- static problem. The field between a pair of  parallel plates 
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with a step can be determined by conformal mapping, with the result shown 
in Figure 2.12. The fringing field can be represented by a lumped capacitance. 
This is the difference between the capacitance calculated from the field pattern 
shown and that calculated if  it is assumed that all the field lines go straight 
across from one plate to the other. The resulting shunt susceptance for a double- 
ridged guide is [21]:

 B
d
b

b
d

d b
d b

d b
d b

w= ⋅ +





+
−







−
−







β
π

ε
µ2

1
1

2
4

1
0

0
2 2

ln ln






 . (2.80)

At cut- off  βC  is the value of βw for which

 Y Y jB1 2 0+ + = . (2.81)

Figure  2.13 shows a plot of λc a against s a with d b as a parameter when 
b a = 0 5. . A single- ridged guide can be considered as the part of a double- ridged 
guide above the mid plane. The normalised cut- off  wavelength is therefore the 
same as that of a double- ridged guide of double the height. The same result can be 
obtained by doubling the susceptance given by (2.80).

Hopfer calculated the characteristic impedance of a ridged waveguide by first 
finding the transverse voltage distribution at cut- off, using transmission line theory, 
and then computing the stored electric energy including that in the fringing field [18]. 
The power flow in the waveguide was computed by multiplying the stored energy   
by the group velocity, and the characteristic impedance found from the power flow 
and the voltage across the centre of the waveguide. More accurate solutions have been   

Figure 2.12: Field pattern around a step in a parallel plate transmission line (d/b = 0.5)
(copyright 1946 IEE; reproduced, with permission, from [21]).
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obtained using variational methods [22, 23] and finite element methods [24, 25]. 
Montgomery found that, for the dimensions he examined, Hopfer’s value of the 
cut- off  wavelength was accurate to better than 1%, and his figure for the impedance 
accurate to better than 5%. Approximate closed form expressions for the param-
eters of ridged waveguides are given in [26]. The properties of ridged waveguides 
can be explored using Worksheet 2.1.

2.3.4 Circular Waveguides

The fourth type of  waveguide which is important in vacuum tube engineering is 
the circular waveguide. The field solutions are obtained using cylindrical polar 
coordinates so that, for TE modes, the transverse variation of  the axial mag-
netic field is given by (2.56) in the same manner as for a coaxial line. The radial 
variation is given by (2.58) but with the difference that the coefficient B must 
be zero because the Bessel function of  the second kind tends to infinity on the 
axis. Thus

 R AJ rm C= ( )β . (2.82)

Figure 2.13: Normalised cut- off  wavelength of a double- ridged waveguide (b/a = 0.5)
(copyright 1955 IEEE; reproduced, with permission, from [18]).
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The radial boundary condition requires that

 J am C′ ( ) =β 0, (2.83)

where a is the internal radius of the waveguide. The solutions to this equation are 
given in [5]. The notation used for the modes is the same as that in coaxial lines. 
Figure 2.14 shows the field patterns for examples of TE modes [5]. The mode with 
the lowest cut- off  frequency in a circular waveguide is the TE H11 11( ) mode. This 
mode resembles the TE10 mode in a rectangular waveguide, and it is used in pill- box 
windows (see Section 2.8.2). The TE modes, especially the higher-order ones, are 
important because of their use in gyrotrons (see Chapter 17). Modes in which the 
plane of polarisation is rotating can be formed by combining modes with planes of 
polarisation at right angles to one another with a phase difference of 90° between 
them. For example the azimuthal variation of a rotating TE11 mode is given by

 cos cos sin sin cos ,φ ω φ ω φ ωt t t+ = −( )  (2.84)

so that the direction of the electric field is rotating with angular velocity ω.
The TM modes in circular waveguides are important because the longitudinal 

component of the electric field is non- zero and can be used to interact with a longi-
tudinal stream of electrons. These modes are the foundation for many of the cavity 
resonators and slow- wave structures which are discussed in Chapters 3 and 4. These 
are used in slow- wave tubes such as klystrons and TWTs. The TM modes satisfy 
(2.37), subject to the boundary condition Ez = 0 when r a= . This requires that

 J am Cβ( ) = 0. (2.85)

The solutions to this equation are tabulated in [15] and examples of the field pat-
terns are shown in Figure 2.15 [5]. The characteristic impedances of circular wave-
guide modes can be calculated in the same way as those for rectangular waveguides 
(see Table 2.1).

2.3.5 Summary of Waveguide Impedances

Table 2.2 shows the characteristic impedances for the lowest modes in some com-
mon waveguides.

2.4 Waveguide Discontinuities

Coupling between waveguides involves some kind of discontinuity in the wave- 
guiding structure leading to reflection of microwave power. This section examines 
the cause of this reflection and considers ways of modelling a few examples of dis-
continuities in rectangular waveguides. A general discussion of the problem of the 
junctions between two waveguides propagating TE modes is given by Farmer [27]. 
It is shown that, if  the field patterns in the two guides are similar to one another, it 
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Figure 2.14: Field patterns for TE modes in circular waveguide
(reproduced, with permission, from [5]).
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Figure 2.15: Field patterns for TM modes in circular waveguide
(reproduced, with permission, from [5]).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.003
https://www.cambridge.org/core


Waveguides68

68

is possible to represent the waveguide junction by an abrupt transition between two 
transmission lines, together with a lumped susceptance at the transition. In order 
for this to be possible it is necessary for the characteristic impedances of the two 
transmission lines to be in the ratio

 
Z

Z

E dS

E dS

E dA

E dA

g

g

g

g

d

d

d

d

′
=

′
⋅

′ ′
⋅

′
∫∫
∫∫

∫∫
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λ
λ

2

2

2

2
,
 

(2.86)

where the unprimed and primed variables refer to the two waveguides, Ed  is the 
transverse electric field of the dominant mode in a waveguide, S is the cross- section 
of a waveguide and A is the area of the aperture coupling the two guides. This def-
inition is not necessarily consistent with the ratio calculated using any of the usual 
definitions of impedance, though it may be so in certain cases.

Figure 2.16 shows a thin iris which partially obstructs the width of a waveguide. 
At the plane of the iris the fields must satisfy the boundary conditions. The electric 
field distribution at the plane of the iris is approximately a compressed TE10 mode, 
as shown by the solid line in Figure 2.17(a) with Ey = 0 outside the gap. The field in 
the waveguide adjacent to the diaphragm must match that at the diaphragm at every 
point. The field of the incident TE10 wave shown by the solid line in Figure 2.17(b) 
plainly does not obey this requirement. In order to match the boundary condi-
tions correctly it is necessary for higher-order modes to be excited. Because the 
diaphragm is symmetrical the next mode which can be excited is the TE30 mode 
shown by the dashed line in Figure 2.17(b). When these two modes are superim-
posed with amplitudes 0.65 and 0.35 the result is the dashed line in Figure 2.17(b). 
This is much closer to satisfying the boundary conditions than the original TE10 
mode. The addition of further higher-order modes (TE50, TE70, etc.) produces a 
better match, but an infinite series is needed to match the fields exactly at the plane 
of the diaphragm [28]. Within the normal working band of the waveguide all these 
higher-order modes are cut off  and their fields are confined to a short distance 

Table 2.2: Characteristic impedances of waveguide modes

Waveguide Mode ZPV ZVI ZPI

Coaxial TEM ln b a
Zw

( )
2π

ln b a
Zw

( )
2π

ln b a
Zw

( )
2π

Rectangular TE01 2
b
a

ZTE
π
2

⋅
b
a

ZTE
π2

8
⋅
b
a

ZTE

TM11 π2

2 264
ab

a b
ZTM+







Circular TE11 2 018. ZTE 1 376. ZTE 0 938. ZTE

TM01 0 0796. ZTM
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Figure 2.16: Symmetrical inductive iris in a rectangular waveguide.

Figure 2.17: Electric field amplitudes at an inductive iris in rectangular waveguide: (a) Ey in 
the plane of the iris (A) and a two mode approximation (B); (b) transverse variation of Ey 
for the TE10 mode (C) and the TE30 mode (D).
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either side of the diaphragm. These evanescent modes store energy and their effect 
can therefore be represented by a lumped reactance. Bearing in mind the earlier 
discussion of equivalent circuits, we note that the iris has a greater effect on the 
conduction current than on the displacement current. The discontinuity can there-
fore be represented by a lumped inductance. It is also possible to create an inductive 
discontinuity by placing one or two posts between the broad walls of the waveguide.

If  the iris changes the height of the guide, instead of its width, as shown in 
Figure 2.18, a different set of higher-order modes is excited. Once again these are 
normally cut off. The discontinuity mainly affects the electric field distribution so 
the shunt reactance is capacitive. An alternative way of introducing a shunt capaci-
tance is by inserting a screw through the broad wall of the waveguide. This arrange-
ment is useful for matching purposes because the capacitance is easily adjusted, 
but is not suitable for use at high power levels. In fact capacitive obstacles are best 
avoided in high- power waveguides because they introduce concentrations of elec-
tric field and reduce the peak power which can be carried. Formulae and graphs for 
the susceptances of a wide range of capacitive and inductive discontinuities in rec-
tangular, circular, and coaxial waveguides are given in [5, 21]. These susceptances 
depend on both the dimensions and the guide wavelength. Although this data is 
useful for design purposes it has been superseded to some extent by the availability 
of computer codes for modelling problems in electromagnetics. Additional insight 
is provided by equivalent circuit models as illustrated in the sections which follow.

2.4.1 Height Step in a Rectangular Waveguide

Figure 2.19 shows a symmetrical height step in a rectangular waveguide. This can be 
modelled by the junction between two transmission lines having the same propagation 
constant but differing characteristic impedances, together with a lumped susceptance 
at the junction. The related problem of a step change in the height of a parallel plate 
transmission line was considered in Section 2.3.3. The electrostatic field in the vicin-
ity of the junction is shown in Figure 2.12. It can be seen that the field only differs 
from that in the unperturbed transmission lines over a small region close to the junc-
tion. If the higher-order modes excited by a waveguide step are strongly cut off, their 
fields are, similarly, confined to a small region close to the junction. Therefore, in the 
first approximation, they can be regarded as quasi- static fields which are solutions to 
Laplace’s equation on the mid- plane of the waveguide. This enables the susceptance 
of the waveguide step to be deduced directly from (2.80). If the width of the transmis-
sion line is a then, from (2.76), the characteristic admittance of the transmission line is

 Y
a
b

Yg = 0 (2.87)

and the susceptance of a symmetrical transmission line step can be written
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The susceptance of the symmetrical waveguide step is found by substituting βg for 
βw and YPV for Yg  [21]. The result, in normalised form, is

 
B

Y b
d
b

b
d

d b
d b

d b
d bPV

g⋅ = +





+
−







−
−







λ
ln ln .

1
1

2
4

1 2 2  (2.89)

We note that the expression on the right- hand side of this equation depends only 
on the dimensions of the step and is independent of frequency. Close to cut- off  
this expression is exact. A more detailed analysis includes additional terms on the 
right- hand side which are functions of b gλ [5]. However, b gλ < 0 4.  throughout 
the working band of a standard rectangular waveguide, and the error introduced 
by ignoring this correction is less than 7.5% for all values of d b. If  the change in 
height is achieved by a step in one broad wall (an asymmetrical step) then the sus-
ceptance is twice that given by (2.89).

To develop a simple equivalent circuit model let us suppose that the reactive 
effects of the higher-order modes excited by the step can be represented by a short 
length δ of  a waveguide having height d where δ depends only upon the geometry of 
the problem. The step is therefore represented by the equivalent circuit in Figure 2.5 
with shunt capacitance Cs and shunt inductance and Ls. Since we expect δ to be 

Figure 2.18: Symmetrical capacitive iris in a rectangular waveguide.

Figure 2.19: Symmetrical height step in a rectangular waveguide.
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small we will neglect the effect of the series inductance L2. The susceptance of this 
network is

 B C
L Cs

s s

= −






ω δ
ω

1
1

2
. (2.90)

Both sections of the waveguide have the same width and, therefore, both have the 
same cut- off  frequency. Hence

 
B

C
cCs

c s
g

w

= −( ) =
δ

ω
ω ω

β
β

2 2
2

δ ,
 (2.91)

where β ωw c=  and c is the velocity of light. The susceptance added by the step is 
found by subtracting the susceptance of a section of waveguide having the same 
length for which d b=  and shunt capacitance is C so that

 B cC
C
Cs

s g

w

= −





δ
β
β

1
2

. (2.92)

It is reasonable to suppose that the capacitances are inversely proportional to the 
heights of the guides, so that

 B cC
b
ds

g

w

= −





δ
β
β

1
2

 (2.93)

and, from (2.36), the characteristic admittance of the waveguide can be written

 Y cCg
g

w

=
β
β

. (2.94)

Thus, the normalised susceptance of the step is

 
B
Y b

b
d b

s

g

g⋅ = −





λ
π δ

2 1 . (2.95)

This equation has the same form as (2.89) so that δ b can be calculated as a func-
tion of d b, as shown in Figure 2.20. It can be seen that δ b ≤ 0 125.  confirming the 
initial assumption that this quantity is small. We note that the shunt capacitance 
and inductance in this model depend only upon the dimensions, so that the depend-
ence of the susceptance on frequency arises from the topology of the network.

2.4.2 Capacitive Iris in a Rectangular Waveguide

The susceptance of the symmetric capacitive iris shown in Figure  2.18 can be 
deduced in a similar manner. The electrostatic field around a capacitive iris in a 
parallel plate transmission line, obtained by conformal mapping, is shown in 
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Figure 2.21. The normalised susceptance of the waveguide iris is given, in the first 
approximation, by [21]

 
B
Y b

d
b

i

g

g⋅ = − 











λ π
4

2
ln sin . 

(2.96)

Comparison between Figures 2.12 and 2.21 shows that the fringing fields of the 
step, and of the iris, are very similar to one another. Thus the susceptance of a 
symmetrical iris is approximately twice that of a symmetrical step having the same 
height. The comparison between the two results in Figure 2.20 shows that result 

Figure 2.20: Normalised susceptance of a symmetrical capacitive step in a rectangular 
waveguide (with the susceptance of a symmetrical capacitive iris for comparison), and the 
normalised length of an equivalent section of reduced height waveguide.

Figure 2.21: Field pattern around a thin iris in a parallel- plate transmission line  d b =( )0 5.
(copyright IEE 1946; reproduced, with permission, from [21]).
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for the iris can be used as an approximation to that of a step. More exact formulae 
for the susceptance of a capacitive iris in a waveguide are given in [5]. The suscep-
tance of an iris having finite thickness can be estimated using the equivalent circuit 
method in the previous section by adding the thickness of the iris to δ. The proper-
ties of a capacitive iris can be explored using Worksheet 2.2.

2.4.3 Inductive Iris in a Rectangular Waveguide

The normalised susceptance of the symmetrical inductive iris shown in Figure 2.16 
has been found, to a first approximation, to be [21, 30]

 
B

Y
a w

ag g

⋅ = − 



λ

π
cot .2

2  (2.97)

A more accurate expression is given by Marcuvitz [5]. This iris can also be modelled 
using an equivalent circuit. In this case the shunt susceptance is

 B cCi
i

w

= δ β
β

2

, (2.98)

where Ci is the capacitance per unit length of a waveguide of height b and width w 
and β πi w=  is the cut- off  propagation constant of the iris. As before, we subtract 
the shunt susceptance of the length δ of  the waveguide to give the susceptance 
added by the iris
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1 . (2.99)

Normalising to the characteristic admittance of the waveguide, and assuming that 
C C w ai = , gives
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(2.100)

By neglecting the series inductance we have implicitly assumed that the waveguide 
is close to cut- off  so that β πw a→  and
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π δ
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(2.101)

We note that the susceptance is negative and, therefore, inductive. Now the fraction 
of the longitudinal current in the waveguide that is intercepted by the aperture is

 k
w
aa = 





sin .
π
2  (2.102)
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But the representation of the iris by a shunt susceptance across an equivalent trans-
mission line means that susceptance in (2.101) must be increased by dividing it by 
ka. Hence, finally,
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The normalised susceptance depends only on the dimensions of the iris and the 
value of δ can be found by comparison with (2.97). It is found that, to a good 
approximation
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(2.104)

The properties of an inductive iris can be explored using Worksheet 2.3. The related 
problem of a step change in the width of a waveguide can be treated in the same 
way but it is no longer the case that the dominant electric field patterns in the two 
waveguides are similar and the use of a two- port equivalent circuit model is only 
approximate [5, 27].

2.5 Matching Techniques

The input and output connections of a vacuum tube amplifier must be well- matched 
at all frequencies within the operating band of the tube. This is important because 
reflected power:

• Reduces the useful power output of the tube.
• Leads the periodic variation with frequency in the gain, and output power, 

because of the effects of multiple reflections.
• Increases the risk of voltage breakdown, and failure of windows, through the 

increased peak electric field in a standing wave.
• Can cause a tube to become unstable.

It may also be important to consider the effects of mismatches at harmonic fre-
quencies since these can also affect the behaviour of the tube. These issues are dis-
cussed further in the chapters dealing with particular types of tube. There are many 
well- established matching techniques in microwave engineering [3]. The basic meth-
ods which are used singly, or in combination, are reviewed briefly below.

2.5.1 Stub Matching

Reactive elements (stubs) can be arranged so that the signal reflected by them more 
or less cancels out the reflection from the component to be matched. We recall that, 
when a waveguide having characteristic admittance Yg  is terminated by a load YL 
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the impedance perceived at a plane which is closer to the source by a distance l  is 
given by

 
Y
Y

Y jY l

Y jY l
L

g

L g g

g L g

′
=

+ ( )
+ ( )

tan

tan
,

β
β  

(2.105)

where βg is the propagation constant in the waveguide. This equation has been 
quoted in terms of admittances because the matching stubs normally used in a 
waveguide present shunt reactances, as in the examples in the previous section. 
Because the losses in waveguides are small it is usual to treat them as lossless when 
carrying out matching calculations so that the characteristic impedance is real. It is 
often useful to visualise the transformation of impedances using a Smith chart, and 
Vector Network Analysers offer this as a display option.

The simplest matching technique uses (2.105) to find a plane in the waveguide at 
which the real part of YL′ is equal to Yg. The insertion of a stub at that plane, whose 
susceptance is equal and opposite to the imaginary part of YL′, cancels the susceptance 
of the load. This ensures that the combination of load and stub appears matched at 
all planes which are closer to the source. However, because βg depends on frequency, 
the electrical length βgl( ) of the section of waveguide between the load and the stub 
is not constant. Thus, this technique can only give a good match at a single frequency 
(or, strictly speaking, the set of frequencies at which tan βgl( ) has the same value).

2.5.2 Broad- band Matching

To increase the band of  frequencies over which there is a good match it is neces-
sary to use a number of  stubs at intervals along the waveguide. If  the stubs are 
at least a quarter of  a guide wavelength apart the evanescent higher-order modes 
excited by one stub have negligible effects at a neighbouring stub. It is therefore 
possible to treat the stubs as lumped reactances. The properties of  a system com-
prising a number of  matching elements can be illustrated simply by considering 
the arrangement shown in Figure 2.22. Four reactive elements are equally spaced 
on a transmission line with a matched termination. The reflection coefficients 
are ρ1 and ρ2 as shown, and the electrical length of  the line between them is φ. 
We will assume that the reflection coefficients are small so that the amplitude of 
the incident wave is hardly affected by the reflections. Now suppose that D is the 
obstacle to be matched and A, B and C are the matching elements. The apparent 
reflection coefficient at A is

 
ρ ρ ρ ρ ρ

ρ φ ρ φ
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φ φ
= + + +
= +

− − −

− −
1 2

2
2
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1
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j j j

j jcos cos . (2.106)

In practical terms it is usually the magnitude of the reflection which is significant, 
that is

 ρ ρ φ ρ ρ φ= + −( )8 2 31
3

2 1cos cos . (2.107)

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.003
https://www.cambridge.org/core


Matching Techniques 77

77

which may be written

 ρ ρ ρ ρ= + −( )8 2 31
3

2 1x x , (2.108)

where, for convenience, x = cos φ. Now φ is a function of frequency and, therefore, 
so is x. Equation (2.108) describes the variation of the reflection coefficient with 
frequency. Clearly the shape of this cubic curve can be changed by making different 
choices of ρ2. One possibility is to set ρ ρ2 13= . The result is

 ρ ρ= 8 1
3x , (2.109)

shown as the continuous curve in Figure 2.23. The curve is normalised to the reflec-
tion coefficient when x = 1. A polynomial, in which only the coefficient of the high-
est power of x is non- zero, has the property that the highest possible number of 
derivatives of the function is zero at the origin. The curve is therefore as flat as 
possible close to the origin. A match having this frequency dependence is called a 
maximally flat or Butterworth response. It is the best possible match over a narrow 
band using a given number of matching elements.

For a given maximum reflection coefficient ρm the bandwidth ∆x( ) is the distance 
between the two points on the curve at which ρ ρ= m so that, from (2.109)

 ∆x x m m= =






=






2 2
8 1

1
3

1

1
3ρ

ρ
ρ
ρ

. (2.110)

This shows that, as one would expect, it is possible to achieve a greater bandwidth 
by accepting a poorer match. For broad- band matching it is better to sacrifice 
some of  the excellence of  the match close to the origin in order to gain greater 
bandwidth. The broken curve in Figure 2.23 shows such a possibility. There is, of 
course, an infinite number of  possible polynomials but of  special interest are the 
Tchebychev1 polynomials [3, 31]. The first six polynomials are listed in Table 2.3.

Figure 2.22: Arrangement of four regularly- spaced discontinuities on a transmission line.

1 Other spellings of this name in the Latin alphabet include Chebyshev, Tchebycheff, Teschebyscheff, and 
Tchebichef.
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These polynomials have the property that, over the range − < <1 1x , the magni-
tude is always less than or equal to 1. The Tchebychev polynomial has the broadest 
bandwidth of all possible polynomials of a given order and specified in- band rip-
ple. To design a broad band match using Tchebychev polynomials we introduce the 
scaling factors ρm and xm. The third-order polynomial can then be written

 
ρ

ρm m m

x
x

x
x







=






−






4 3
3

. (2.111)

The response curve has an in- band ripple equal to ρm as shown in Figure 2.23. 
Equating coefficients of x3 in (2.108) and (2.111) we obtain

 4 83
1ρ ρm mx =  (2.112)

so that

 xm
m3

12
=

ρ
ρ

. (2.113)

Table 2.3: Tchebychev polynomials

n T xn( )

0 1

1 x

2 2 12x −
3 4 33x x−
4 8 8 14 2x x− +
5 16 20 55 3x x x− +

Figure 2.23: Third- order Butterworth (maximally flat) and Tchebychev (equal- ripple) 
reflection characteristics.
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Now ρ1 is the reflection coefficient of the termination to be matched and ρm is the 
maximum acceptable in- band match. Therefore, from (2.113), the bandwidth which 
can be achieved in this way using three matching elements is

 ∆x xm
m m= =







=






2 2
2

2
1

1
3 2

3

1

1
3ρ

ρ
ρ
ρ

. (2.114)

Comparing (2.114) with (2.110) we see that, when three matching elements are 
used, the bandwidth of the Tchebychev match is wider than that of the Butterworth 
match by a factor of 2 1 592 3 = . .

To complete the design of the Tchebychev matching network the coefficients of 
x in (2.108) and (2.111) are equated to give

 2 3 32 1ρ ρ ρ−( ) = − m mx  (2.115)

so that

 ρ ρ ρ2 13 3 2= − m mx . (2.116)

Since ρ1, ρm and xm are all known ρ2 can be calculated.

2.5.3 Stepped Impedance Transformers

Another basic matching technique employs sections of waveguide having different 
characteristic impedances. If the length of a section of line is one quarter of a guide 
wavelength β πgl =( )2  then from (2.105) the admittance at the entrance to the line is

 Y
Y

YL
g

L

′ =
2

. (2.117)

Thus, if  the admittance of the load is real, it can be matched to a source whose 
admittance is also real by using a section of waveguide (a quarter- wave transformer) 
whose characteristic impedance is Y Y Yg L L= ′ . The method can be extended to 
match loads which have non- zero susceptance by first using a section of line to trans-
form the admittance to a plane where it is real. The match achieved by a quarter- 
wave transformer is only exact at frequencies where the length is an odd number 
of quarter wavelengths. Broad- band matching is achieved by using a number of 
sections in series to give either a Butterworth or a Tchebychev response. This simple 
theory ignores the susceptances of the steps. It is possible to compensate for these 
by making slight changes to the lengths of each section of waveguide. Further infor-
mation and tables for the design of multi- step transformers can be found in [32– 34].

2.6 Coupling without Change of Mode

Microwave circuits involve bends and junctions in the waveguides that introduce 
discontinuities into the system. Some of these junctions do not involve any change 
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in the mode of propagation. These are discussed here, and those in which a change 
of mode is involved are discussed in the next section.

One of the simplest waveguide components is the bend. Provided that the bend is 
gradual the mismatch is slight and no problems arise. This is normally the case with 
coaxial lines. Sometimes, however, it is necessary to arrange a change of direction 
in a small space and the design of the bend then becomes important.

Waveguide bends are often made in the form of circular arcs, as shown in 
Figure  2.24a. The direction of the bend can either be in the E plane or in the  
H plane. It has been shown that the minimum radius for a satisfactory match  
is 1.5 times the width of the waveguide in the plane of the bend [4]. Thus for the  
E- plane bend shown in Figure 2.24(a) the minimum value of R is 1.5b. Because 
very accurate manufacturing is necessary to avoid increased reflections, tight bends 
are usually electro- formed. More gentle bends can be made by bending a straight 
waveguide using special equipment.

Radiused waveguide bends are expensive so it is sometimes better to use fabri-
cated mitred bends instead. Figure 2.24(b) shows a simple right- angle bend. Clearly 
the field patterns within the bend do not match those in the connecting waveguides 
so an appreciable reactive mismatch can be expected. Equivalent circuits can be 
developed for right- angled bends in a manner similar to that used above for wave-
guide discontinuities [5]. An improvement on the simple right- angled bend, shown 
in Figure 2.24(c), chamfers the outside of the bend to make the effective height of 
the waveguide the same as that of the connecting waveguides. Better still, if  space 
allows, is to use a double- mitred bend as shown in Figure 2.24(d). If  the separation 
(L) between the two joints is chosen correctly, then the mismatches caused by the 
junctions cancel each other out at one frequency and produce near cancellation 
over a useful band of frequencies.

Figure 2.24: E- plane waveguide bends: (a) radiused bend, (b) mitred bend, (c) chamfered 
bend, and (d) double mitred bend.
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It is common in microwave tube engineering to use reduced- height waveguides to 
make connections into cavity resonators and coupled- cavity slow- wave structures. 
The most straightforward way to make a transition to a reduced- height waveguide  
is to use a linear taper [35]. However, the taper must be around three guide wave-
lengths long to achieve a broad- band match having a return loss greater than 
30 dB. An alternative method is to use one, or more, quarter- wave transformers  
[32, 33, 36, 37]. A very good broad- band match can be achieved in this way, using 
three or four steps, and such a transformer is considerably shorter than a linear 
taper having the same performance. To get the best results it is necessary to adjust 
the lengths of  the steps slightly to compensate for their shunt capacitances. Good 
results can also be obtained using non- uniform transitions [38, 39]. For further 
information see [3, 4].

2.7 Coupling with Change of Mode

In the previous section we considered examples of  coupling between waveguides 
which were propagating the same mode. Very often it is necessary to couple power 
from one mode to another. Examples of  this are transitions from a coaxial line 
to a waveguide, and from one waveguide mode to another. The general principle 
is to match the field patterns of  the modes in the two waveguides to one another. 
In many cases this cannot be done exactly and it is necessary to find some way of 
matching the field patterns as closely as possible. In that way a high proportion of 
the power is coupled into the desired mode, and relatively little into other modes. 
An example of  this is the transition from the TE10 rectangular waveguide mode 
to the TM01 circular waveguide mode. Figure 2.25(a) shows the field patterns in 
the two waveguides. It is immediately evident that the magnetic field patterns are 
similar if  the waveguides are arranged at right angles to each other as shown. 
The electric fields are not so well matched because the removal of  part of  the 
broad wall of  the rectangular guide means that the field lines have to be radi-
cally redistributed. One solution is to put a post at the centre of  the transition as 
shown in Figure 2.25(b). Additional matching elements may be needed to match 
the transition completely over a band of  frequencies. This transition is known as 
a ‘Door- Knob’ transition. Further information about mode transducers can be 
found in [4, 40].

As a second example we will consider the problems of making a good broad- 
band match from a coaxial line to a waveguide. A standard coaxial line has a char-
acteristic impedance of 50 ohms. The characteristic impedance of a rectangular 
waveguide in terms of voltage and power is given by (2.65). Standard waveguides 
have an aspect ratio a b( ) of  about 2:1 and are used over a range of λ λg 0( ) of  
about 1.7 to 1.2. The impedance to be matched therefore ranges from 630 ohms to 
440 ohms, roughly ten times that of the coaxial line. A component providing a well 
matched connection is called a coaxial to waveguide transformer.
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Consideration of  the field patterns in the two waveguides suggests that a door- 
knob transition, similar to that shown in Figure 2.25(b), might be used. The field 
patterns are shown in Figure 2.26(a). A quarter wavelength of  waveguide behind 
the transition is used to transform the short circuit at the end of  the waveguide 
into an open circuit at the plane of  the transition. Provided that the diameter of 
the door- knob is not less than 0 15. a  it is possible to neglect its series inductance so 
that the impedance of  the coaxial line is presented directly to the waveguide [41]. 
Cohn found that this type of  junction is best modelled by using ZVI  as the charac-
teristic impedance of  the waveguide but other authors have used ZPI [42]. One of 
the difficulties of  the door- knob transition is that it has to cope with the change 
from a low- voltage, high-  current wave in the coaxial line to a high- voltage, low- 
current wave in the waveguide. The existence of  a direct current path makes this 
difficult. Two solutions to this problem suggest themselves: one is to make use of 
a lower impedance waveguide; the other is to avoid a direct current path.

To reduce the waveguide impedance we must reduce its height. But the reduction 
to, perhaps, one tenth of the height of a standard waveguide presents new problems 
for the transformation between the two. A better solution is to use a ridged wave-
guide which can have an impedance of 50 ohms without needing such narrow gaps. 
Figure 2.26(b) shows a transition to a coaxial line using a ridged waveguide, with a 

Figure 2.25: TE10 rectangular waveguide to TM01 circular waveguide junction:  
(a) arrangements of the fields in the waveguides, and (b) a cross- sectional view of a  
‘door- knob’ transition showing the field patterns.
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quarter wave section of short circuited waveguide behind it, and a stepped imped-
ance transformer to a standard waveguide [41– 43].

The third approach is to couple into the waveguide using displacement current 
rather than conduction current. Figure 2.26(c) shows how this is achieved. The free 
end of the centre conductor is, in effect, an antenna radiating into the waveguide. 
The use of an expanded end to the centre conductor provides the necessary imped-
ance transformation. Many other kinds of transition have been invented, some of 
which are in common use [4, 40]. The three described here have been included to 
illustrate the principles involved in coupling between different modes.

2.8 Windows

Dielectric windows form an essential part of any microwave tube because of the 
need for RF power to pass into, and out of, the vacuum envelope. It is obviously 
important that they should have low insertion loss and be well- matched at all fre-
quencies of importance. In addition the output window is commonly one of the 
most critical components in a tube because it is subject to high thermal and electri-
cal stresses. If  a window fails then the tube loses its vacuum and is useless [44– 47].

Electrical stresses are caused by high RF electric fields in the region of the win-
dow, and these may be increased by the presence of a standing wave in the out-
put waveguide. The RF electric fields can also cause single- surface multipactor 
discharges on the vacuum side of the window (see Section 18.8) [48]. The bom-
bardment by multipacting electrons causes heat dissipation and increased thermal 

Figure 2.26: Coaxial line to waveguide transformers using: (a) a door- knob, (b) a ridged 
waveguide, and (c) a probe.
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stresses. A multipactor discharge also generates RF noise and changes the match of 
the window. It is therefore important to reduce the risk of multipactor when design-
ing the window and it is common to use anti- multipactor coatings such as titanium 
nitride. Window failure can be caused by a waveguide arc on the air side of the win-
dow, either because of the increased standing wave, or because of the direct impact 
of the arc on the window surface [49]. In some tubes the window may be subject to 
bombardment by stray electrons from the interaction region, and by X- rays gener-
ated within the tube. Even in the absence of any other electrical causes the dielectric 
material of the window is heated directly by dielectric losses. These dielectric losses 
commonly increase with temperature, leading to the possibility of thermal run- 
away. The output window of a high power tube can be protected by monitoring its 
temperature, or by the use of an arc detector, so that the tube can be switched off  
rapidly in the event of abnormal heating, or the presence of an arc [47].

The mechanical failure of a window may be caused directly by mechanical 
stresses, including those caused by thermal expansion, or by dielectric breakdown 
caused by the build- up of surface charge [44]. The window is subject to mechani-
cal stresses in any case because of the pressure differential across it and these are 
increased if  the external waveguide is pressurised. In addition, the tube must with-
stand the temperature changes which occur during processing and during use. The 
coefficients of thermal expansion of the dielectric materials commonly used in 
windows differ from those of the metals used in tube construction. Thus appreci-
able thermal stresses can be caused by changes in temperature and the mechanical 
design of a window is as important as the electrical design [44].

Various dielectric materials have been used in microwave windows. Glass was 
used in the earliest tubes but has now generally been supplanted by ceramics. The 
commonest of these is high purity alumina which has low dielectric losses and is 
readily metallised for brazing to metal components. Beryllia has sometimes been 
used for windows to carry high average powers because its thermal conductivity is 
an order of magnitude higher than that of alumina. However, it is a highly toxic  
material when in powder form and is now generally avoided. A much better mate-
rial is chemical- vapour- deposited (CVD) diamond which has excellent electrical 
and mechanical properties. Table 2.4 shows a comparison between the properties 
of a number of dielectric materials for use in windows [46].

The simplest form of window is a sheet of dielectric material inserted in a wave-
guide having uniform cross- section, as shown in Figure 2.27. The figure shows a 
rectangular waveguide for convenience, but the discussion which follows applies 
to a waveguide of any cross- section. The same mode can propagate in both the 
empty waveguide and the window, though the cut- off  frequency in the window 
is less than that of the waveguide by a factor of εr  where εr is the relative per-
mittivity of the dielectric. Because there is no change of mode, the match of the 
window can be calculated by using the wave impedances of the waveguide and the 
window. The window always introduces a mismatch except when it is an integral 
number of half- wavelengths thick. This condition only holds at specific frequencies, 
and a half- wavelength window typically has a bandwidth of around 10 to 15% [47, 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.003
https://www.cambridge.org/core


Windows 85

85

51]. The bandwidth decreases as the relative permittivity of the dielectric increases. 
Although this type of window can handle high mean powers it has not been widely 
used except in gyrotrons. It is useful at millimetre wavelengths where other types of 
window become too thin to have good mechanical strength [52].

If the window is less than a half- wavelength thick it will always cause a mismatch 
which becomes smaller as the thickness of the window is reduced. It is therefore desir-
able to make the window as thin as possible consistent with sufficient mechanical 
strength [53]. A good match can be achieved by adding reactive elements to provide 
either a maximally- flat or equal ripple response. The bandwidth of half- wavelength 
windows can be increased in the same way [52]. Other techniques which have been 
suggested include the use of a self- matched pair of windows, tapered or stepped die-
lectrics, and multi- layer dielectrics [50, 54]. The design of broad- band windows is 
discussed further in the following sections.

Because the phase velocity of electromagnetic waves is reduced in the dielectric 
it is possible for the cut- off  frequencies of higher- order modes to fall within the 

Table 2.4: Comparison of typical dielectric material properties at 25°C [46, 50]

Property 99.5% Alumina Beryllia CVD Diamond

Density (g cm−3) 3.90 2.90 3.51

Specific heat (J g−1 K−1) 0.88 1.02 0.517

Thermal conductivity (W m−1 K−1) 35 250 1800

Coefficient of thermal expansion 6.9 × 10−6 6.4 × 10– 6 1.5 × 10– 6

Young’s modulus (GPa) 370 344 1220

Poisson ratio 0.22 0.21 0.2

Tensile strength (MPa) 262 75−150 200−500

Relative permittivity 9.4 6.7 5.67

Loss tangent 9 × 10−5 4 × 10– 4 2 × 10– 5

Figure 2.27: A dielectric window in a uniform waveguide.
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working band of the window. These modes are cut- off  in the adjacent waveguide 
and their fields are therefore confined to the region close to the window and are 
hard to detect. They are therefore known as ghost or trapped modes [55]. In an 
ideal window they would not be coupled to the propagating mode, but slight asym-
metries in the construction of the window, or of the properties of the dielectric, are 
sufficient to cause coupling of power into them. Ghost modes have high Q factors 
and it is easy for the fields associated with them to become strong enough to cause 
failure of the window. Thus it is important to ensure that no ghost modes fall within 
the working frequency band of the window. They can be divided into even and odd 
modes depending upon whether their fields are symmetrical or anti- symmetrical 
about the mid- plane of the window. For windows having the arrangement shown in 
Figure 2.27 the ghost mode resonances are the solutions of

 tan ′( ) =
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for modes whose tangential electric field is zero at the mid- plane, and
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for modes whose tangential magnetic field is zero at the mid- plane. In these equa-
tions the upper and lower expressions within the braces refer to TE and TM modes 
respectively, the primed variables refer to the region within the dielectric, and the 
propagation constants for the nth mode are determined from (2.11) [55]. Ghost 
modes can be a problem in any kind of window but they are most troublesome in 
half- wavelength windows.

2.8.1 Windows in Coaxial Lines

The characteristic impedances of the TEM mode of empty, and dielectric- filled, sec-
tions of a coaxial line can be calculated from (2.50). If the impedance of the dielectric- 
filled section is made equal to that of the air- filled section, the ratio of the diameters 
of the inner and outer conductors must be increased. Figure 2.28(a) shows a typical 
arrangement in which the diameter of the inner conductor has been decreased [45, 56]. 
The window can be modelled using the equivalent circuit, shown in Figure 2.28(b), 
comprising sections of transmission line in series, together with lumped capacitances 
to represent the reactances of step changes in the diameter of the inner conductor 
[57]. In an alternative design the diameters of both conductors differ from those of 
the connecting coaxial line and inductive chokes are used to improve the match [58].

Windows of the kind illustrated in Figure 2.28(a) have a partial standing wave 
within the dielectric window because the design has focused on the overall match, 
rather than the detailed internal fields. The electric field in the window can be 
reduced by using external reactive elements to match the impedances at the sur-
faces of the dielectric [59]. It has been shown that the use of a travelling-wave design 
can reduce the maximum field in the dielectric by a factor of four, compared with 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.003
https://www.cambridge.org/core


Windows 87

87

a half- wave window. A travelling-wave coaxial window in which the electric field in 
the dielectric was only 25% of that in the external coaxial line, successfully carried a 
peak power of 1 MW at 1.3 GHz for several months [60]. After initial conditioning 
it showed no signs of multipactor discharges.

2.8.2 Windows in Rectangular Waveguide

Although rectangular windows have been used in rectangular waveguide, they suf-
fer from the disadvantage of being difficult to seal and of having stress concen-
trations at the corners. There is, therefore, a general preference for using circular 
windows in connection with rectangular waveguides.

The simplest technique is to use a circular window set in a transverse metal wall, 
as shown in Figure 2.29. The TE11 circular waveguide mode is excited in the window 
and its diameter is chosen so that it is resonant at the desired centre frequency. The 
diameter of the window can be less than the height of the waveguide if  the rela-
tive permittivity of the dielectric is great enough. Otherwise the window may take 
the form of a disk whose top and bottom have been cropped to fit the waveguide. 
Because this kind of window is resonant it is inherently narrow band, but the band-
width can be increased by adding reactive elements [61, 62]. When the resonant 
diameter of the window is greater than the height of the waveguide it is possible 
to use a circular disk if  the matching elements take the form of inductive chokes 
similar to those used in waveguide choke flanges [44, 45]. It is also possible to design 
self- resonant windows with a pure travelling wave in the dielectric [63– 65].

Self- resonant waveguide windows suffer from the disadvantage that the diameter 
of the window is set by the resonant condition. Thus it is not possible to reduce the 
power density in the window by increasing its diameter. This problem is overcome by 
setting the window in a section of circular waveguide carrying the TE11 mode, with 
mode transformers at either end to connect it to the TE10 mode in the rectangular 

Figure 2.28: A dielectric window in coaxial line: (a) typical arrangement, and (b) equivalent 
circuit.
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waveguide. The simplest form is the widely used pill- box window shown in Figure 2.30  
which has a bandwidth of around 30% [47, 66]. The design of pill- box windows has 
been described in [45, 67, 68]. The electrical length of the circular section is chosen 
to be a half- wavelength when the effects of the dielectric are included. The diameter 
of the circular waveguide must be greater than the diagonal of the rectangular wave-
guide, and it is usual to make its cut- off frequency close to that of the rectangular 
waveguide. This type of window has ghost mode resonances associated with reflec-
tions between the transitions between the waveguides. The diameter of the circular 
guide is adjusted to ensure that none of these resonances falls within the working 
frequency band. The equivalent circuit of this window is shown in Figure 2.28(b), 
but some care is needed in defining the characteristic impedances in the circular 
section. The use of this equivalent circuit is justified by the close similarity between 
the electric field distributions over the aperture connecting the two waveguides. The 
correct relationship between their characteristic impedances can be found using the 
method described by Farmer [27]. An electromagnetic analysis of a pill- box window 
that includes full dimensions of the window is given in [69]. Pill- box windows can 
be designed to have travelling- wave fields in the dielectric by the use of inductive 
irises at the waveguide transitions [70]. Alternatively the transitions can be made 
using tapers, or other wide- band mode converters [50, 71]. Windows have also been 
described which use other modes in the circular waveguide [72, 73].

Figure 2.29: Arrangement of a resonant waveguide window.

Figure 2.30: Arrangement of a pill- box window.
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3 Resonators

3.1 Introduction

Resonant cavities are important components in many microwave tubes because of 
their frequency selective properties and because they store electromagnetic energy. 
The purpose of this chapter is to describe the features which are common to all 
types of microwave resonator and to examine the properties of a few important 
types in more detail.

Any closed metal cavity supports an infinite number of electromagnetic reso-
nances. In each of these the fields satisfy Maxwell’s equations and the boundary 
conditions on the metal surface. If  resistive losses associated with currents in the 
walls of the cavity are neglected then the electric and magnetic fields are in phase 
quadrature. The losses in metallic cavity resonators are usually small so that the 
fields differ very little from those in a loss- less cavity. The losses can then be cal-
culated to a good approximation from the currents flowing in the walls when the 
losses are neglected.

The cavity resonators used in microwave tubes have simple shapes and are  
commonly cylindrically symmetrical around the axis of the electron beam. The 
modes which are chiefly of interest are those having a strong axial component of 
the electric field in the region of the beam. The simplest example is the pill- box 
cavity whose TM010 resonance is illustrated in Figure 3.1. This mode can be derived 
from the TM01 mode of a circular waveguide by inserting a pair of conducting 
planes normal to the axis. The resonant frequency for the lowest mode is the cut- 
off  frequency of the waveguide where there is no axial variation of the electric 
field. Figure 3.1 shows, schematically, the fields, charges and currents in the cavity 
at intervals of a quarter of the resonant period T0. The properties of this cavity are 
discussed in detail in Section 3.3.

For many purposes it is convenient to represent the properties of a cavity resona-
tor by its equivalent circuit. This can be derived by representing conduction current 
paths by inductors, and displacement current paths by capacitors, as described in 
Chapter 2. Figure 3.2a shows the derivation of the equivalent circuit for the TM010 
mode of a pill- box cavity. The series resistor r represents the conduction losses in the 
cavity walls. The analysis of this equivalent circuit is discussed in the next section.
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The properties of  pill- box cavity resonators and rectangular cavity resonators 
are discussed in Sections 3.3 and 3.4. Cylindrical re- entrant cavities, which are 
commonly used in vacuum tubes, are considered in Section 3.5. Section 3.6 dis-
cusses external coupling to cavity resonators from coaxial lines and waveguides. 
The last section of  the chapter describes methods for measuring the properties of 
cavities.

3.2 Resonant Circuits

The properties of parallel resonant circuits are well- known and they are only sum-
marised here [1]. We shall concentrate on those issues which are important when 
using equivalent circuits to model cavity resonators in microwave tubes.

Figure 3.1: Fields, charges and currents in a pill- box cavity resonator.

Figure 3.2: Equivalent circuits of a cavity resonator with conduction losses represented by 
(a) a series resistor, and (b) a parallel resistor.
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3.2.1 The Properties of Resonant Circuits

The equivalent circuit shown in Figure 3.2(a) is derived from the physics of the res-
onator. Analysis of this circuit shows that the input impedance is given by
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where the resonant frequency is
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the unloaded Q factor is

 Q
rC

L
rU = =

1

0

0

ω
ω

, (3.3)

and
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L
CU = . (3.4)

Microwave resonators commonly have unloaded Q factors of at least 1000. They 
can be made with values as high as 30,000 by careful design and manufacture. The 
second term in the numerator of (3.1) is therefore small compared with unity and 
can be neglected without serious error. The equation which results is then identical 
to that for the parallel resonant circuit shown in Figure 3.2(b).
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where the ‘R over Q’ R Q( ) is defined by
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The parallel resonant circuit is generally used in preference to that in Figure 3.2(a) 
because it is simpler to analyse. At microwave frequencies it is difficult to assign 
meanings to the circuit parameters C, L and Rc and it is usual to use the parameters 
ω0, R Qc U  and QU to describe the resonator. Equations (3.2), (3.6) and (3.7) enable 
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these parameters to be calculated from the circuit parameters and vice versa. It 
should be noted that QU is the only parameter which depends upon the properties 
of the material from which the cavity is constructed. The resonant frequency and 
the R Q of  a cavity resonator therefore depend only upon its geometry.

The amplitude of the cavity impedance Z is readily derived from (3.5) as
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Figure 3.3 shows the amplitude of the normalised impedance Z Rc  in decibels 
as a function of normalised frequency and QU (see Worksheet 3.1). When the fre-
quency of the signal applied to the circuit is equal to the resonant frequency the 
impedance is purely resistive and equal to Rc. It is clear from (3.8) that Z Rc<  at 
all other frequencies and that the width of the curve decreases as QU increases. This 
relationship is usually expressed in terms of the width of the curve at the points 
which are 3 dB below the peak amplitude. Then found that

 QU =
ω

ω
0

2∆
, (3.9)

where Z R= 2 when ω ω ω= ±0 ∆  provided that ∆ω ω 0. Modern test equipment 
can display the response curve with the vertical scale in decibels as shown in Figure 3.3. 
This makes it easy to measure the unloaded Q factor of a resonator (see also Section 3.7).

From (3.7) we see that to obtain a high unloaded Q factor the circuit must have 
a high shunt resistance (i.e low loss) and that leads to a useful alternative definition 
of QU. When an alternating voltage V V t= 0 cos ω  is applied to the terminals of the 
circuit shown in Figure 3.2(b) the maximum energy stored in the capacitor is

 W CV=
1
2 0

2 . (3.10)

Figure 3.3: Amplitude of the impedance of a parallel resonant circuit as a function of 
normalised frequency and QU.
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This energy is transferred backwards and forwards between the capacitor and the 
inductor during each cycle and the total stored energy remains constant, provided 
that the amplitude of the voltage at the terminals is held constant. The mean rate 
of dissipation of energy through resistive losses is

 P
V
RL

c

= 0
2

2
. (3.11)

Eliminating V0 between (3.10) and (3.11) and substituting for RcC in (3.7) gives

 Q
W

P
W

U
L

= =
ω π0 2

∆W
, (3.12)

where ∆W  is the energy dissipated per cycle. The rate of dissipation of energy is 
therefore

 dW
dt

W
T Q

W
U

= − = −
∆

0

0ω
, (3.13)

where T0 is the resonant period of the circuit. Equation (3.13) can readily be inte-
grated to show that, when the external excitation is removed, the stored energy 
decays exponentially with a time constant τ ω= QU 0 . The physical significance of 
the parameter R Q is revealed by substituting for PL  from (3.11) into (3.12) to give

 R
Q

V
W

c

U







= 0
2

02ω
. (3.14)

Thus R Q is a measure of the relationship between the voltage across the terminals 
of the circuit and the energy stored in it.

To complete our review of the theory of parallel resonant circuits we must exam-
ine the phase of Z given by

 ∠ = −














Z QUarctan .

ω
ω

ω
ω

0

0

 (3.15)

Figure 3.4 shows how the phase of the cavity impedance varies with normalised 
frequency and QU. At resonance the impedance is purely resistive and the phase 
of Z is zero. At lower frequencies the behaviour of the circuit is dominated by the 
reactance of the inductor and ∠ →Z 90. At higher frequencies the capacitor has 
the greater effect and ∠ → −Z 90. At the 3 dB points

 ω
ω

ω
ω

0

0

1
− = ±

QU

 (3.16)

and ∠ =Z 45.
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3.2.2 External Loading of Resonant Circuits

When resonant structures are used in microwave tubes their properties are usually 
modified by the presence of electrons within them, by connections to external wave-
guides, or both. The ways in which these effects influence the behaviour of a tube 
differ somewhat between different types of tubes. We will therefore defer a detailed 
examination of electron loading and external loading effects to the discussions of 
particular types of tube. For our present purposes it is sufficient to consider the 
effect on a resonator when it is connected to an external circuit comprising a resis-
tor and a reactor in parallel as shown in Figure 3.5. This circuit can represent the 
combined effects of electron loading and external loading, including any imped-
ance transformer between the resonator and the external circuit. The admittance of 
this circuit, measured at its terminals, is

 Y
R

j C
j L R

jB
c E

E= + + + +
1 1 1ω

ω
. (3.17)

At resonance the sum of the susceptances is zero. Thus the susceptance jBE of  
the load modifies the resonant frequency. This effect is usually quite small and it can 
generally be compensated for, if  necessary, by provision of an adjustable tuning ele-
ment in the resonator. It manifests itself  in klystrons as a small shift in the frequency 
of the cavities when the beam is turned on, and in magnetrons as frequency pushing 
and pulling (see Chapters 13 and 15). The effect of the load resistance is usually 
more significant because it may alter the Q of the circuit considerably. If we assume 
that the resonant frequency is unchanged then the Q factor is now

 1 1 1 1 1
0Q
L

R R Q QL c E U E

= +






= +ω , (3.18)

where QL is the loaded Q of  the resonator, and QU is the unloaded Q given by (3.7). 
QE, known as the external Q, is the Q factor which would be measured if  the only 

Figure 3.4: Phase of the impedance of a parallel resonant circuit as a function of normalised 
frequency and QU.
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loss were that provided by the external resistance. If  the external resistance is equal 
the resistance of the circuit at resonance then Q QL U= 2.

We may define a coupling factor K by

 K
R
R

Q
Q

c

E

U

E

= =  (3.19)

so that

 Q Q KU L= +( )1 . (3.20)

This effect is important in klystrons because both the beam loading and the exter-
nal loading increase the bandwidths of the cavities and, therefore, of the tube. In 
addition we shall see that variation of the external match presented to the output 
of a klystron has an important effect upon the output gap voltage and on the effi-
ciency of the tube. In magnetrons, changes in the match of the load lead to changes 
in the frequency of oscillation, and of the output power, through frequency pulling.

3.2.3 Excitation of Resonant Circuits

Figure 3.6 shows the equivalent circuit of a resonator connected to a source whose 
resistance is RS . The rate of change with time of the current drawn from the source is

 dI
dt

C
d V
dt R

dV
dt

V
L

= +
′

+
2

2

1
, (3.21)

where ′R  represents the parallel combination of Rc with RS  so that

 1 1 1 1
′

= + =
+

R R R
K

KRc S S

, (3.22)

where K is defined by (3.19). The voltage across the terminals of the resonant circuit 
therefore obeys the differential equation

 d V
dt Q

dV
dt

V
R

Q
I t

L L

2

2

0
0
2 0

0+ + = − ′ ( )ω ω ω ω ωsin  (3.23)

in which the equivalent circuit parameters have been replaced by their microwave 
equivalents. The general solution of this equation for the case where the source 

Figure 3.5: Parallel resonant circuit with an external load.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.004
https://www.cambridge.org/core


Resonators100

100

frequency is the resonant frequency of the circuit, and the source is connected to 
the circuit at t = 0, is

 V I R t
I R

Q
t

t
I R

L

= − ′ ( ) + ′ ( )





−





+ ′0 0
0

0 02
cos sin exp cosω ω

τ
ω00t( ), (3.24)

where

 τ
ω ω

=
+( ) =

2
1

2

0 0

Q
K

QU L . (3.25)

The derivation of this equation has assumed that QL
2 1 . The loaded Q fac-

tors of microwave resonators are typically greater than 100 so that (3.24) can be 
approximated as

 V I R
t

t= ′ − −











 ( )0 01 exp cos .

τ
ω  (3.26)

We note that, if  QL 1, the voltage is in phase with the current.
The energy stored in the circuit is equal to the maximum energy stored in the 

capacitor, namely

 W t C V C I R
t( ) = = ′( ) − −













1
2

1
2

1
2

0
2

2

exp .
τ

 (3.27)

When the source is delivering power into a matched load, the forward power is

 P I RS+ =
1
8 0

2 , (3.28)

so that, making use of (3.7), (3.19) and (3.28), we can write (3.27) as

 W t P
Q K

K

tU( ) =
+( )

− −











+ ω τ0

2

2
4

1
1 exp . (3.29)

This expression is maximum when K = 1 (i.e. R Rc S= ) so that the resonator is 
matched to the source. It is then said to be critically coupled to the source and the 
final stored energy is

 W P
QU

0
0

= + ω
. (3.30)

Figure 3.6: Equivalent circuit of a resonator connected to a source.
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Then (3.29) can be written

 W t W
K

K

t( ) =
+( )

− −











0 2

2
4

1
1 exp .

τ
 (3.31)

When K < 1 the resonator is under- coupled and when K > 1 it is over- coupled. The 
time taken to accumulate the energy in the resonator, known as the filling time, can 
be estimated by noting that when t Q TL= 0 the stored energy is 91.5% of its final value. 
When K is either much greater than, or much less than, unity the stored energy is low 
because most of the power supplied by the source is reflected back into it. Figure 3.7 
shows the normalised stored energy W t W( ) 0  as a function of time for three values of 
K (see Worksheet 3.1). These results are relevant both when a resonator is excited by 
an external waveguide and when it is excited by a modulated electron beam.

As the stored energy builds up in the resonator the impedance presented to the 
source changes. When the source is connected to a matched load the magnitude of 
the load voltage in the steady state is

 V I RS0 0
1
2

= . (3.32)

The magnitude of the voltage in the general case is found from (3.22), (3.26) and 
(3.32) to be

 
V

V
K
K

t

0

2
1

1=
+

− −











exp .

τ
 (3.33)

Since the voltage and current are in phase with each other at resonance, the volt-
age reflection coefficient of the resonator is given by

 S
V V

V
K
K

t
11

0

0

2
1

1 1=
−

=
+

− −











 −exp .

τ
 (3.34)

Figure 3.7: Normalised energy stored in a cavity resonator as a function of time for three 
coupling factors.
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Figure 3.8 shows how S11 varies with time for three values of K. When the output 
power from a pulsed microwave tube is supplied to a resonant cavity or structure 
then a time- varying mismatch is seen by the tube. As the reflected power may mod-
ify the behaviour of the tube it is necessary to place a circulator between the tube 
and the resonator to prevent this. When the source frequency differs from the res-
onant frequency the voltage and current are no longer in phase with each other and 
the analysis above must be modified accordingly.

3.2.4 Coupled Resonators

The bandwidth of a cavity resonator can be increased by coating its surfaces with 
a lossy material, by connecting it to an external resistive load, or by increasing 
the electron loading. These methods of reducing Q are often unsuitable because 
they increase the RF losses. An alternative technique is to couple two resonators 
together. This method is used, for example, to achieve the bandwidth required in the 
inductive output tubes (IOTs) used for television broadcasting (see Section 12.6). 
The properties of coupled- cavity slow- wave structures are considered in Section 
4.6. Here we restrict our attention to a pair of identical parallel resonant circuits 
which are coupled by a mutual inductance, as shown in Figure 3.9. The impedance 
matrix for this network is

 
V j C j C

j C Z j kL

j kL Z

i

i

i

1 1

20

0

1 1 0

1

0

















=
−

− −
−

















ω ω
ω ω

ω 33
















, (3.35)

where

 Z
j C

r j L= + +
1
ω

ω . (3.36)

Figure 3.8: Input match of a resonant circuit as a function of time for three coupling factors.
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From the last line of this equation

 j kLi Z iω 2 3= . (3.37)

Substituting for i3 in (3.35) gives

 
V j C j C

j C Z

i

i
1 1

20

1 1

1








 =

−
− ′





















ω ω
ω

, (3.38)

where

 ′ = +Z Z
k L
Z

ω2 2 2

. (3.39)

When the frequency is equal to the resonant frequency of either resonator

 ′ = +





= +( )Z r
k L
r

r k QU1 10
2 2 2

2
2 2ω

. (3.40)

If  kQU = 1 the second circuit is matched to the first and the circuits are said to be 
critically coupled. The input impedance and phase of this circuit can be computed 
as a function of frequency and of the coupling factor k (see Worksheet 3.1).

Figure 3.10 shows the magnitude of the input impedance of coupled resonators 
whose uncoupled Q is 1000 as a function of frequency and coupling factor. When 

Figure 3.9: Parallel resonant circuits coupled by a mutual inductance.

Figure 3.10: Amplitude response of two identical resonators coupled by a mutual inductance.
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k = 0 the response is identical to that shown in Figure 3.3, as would be expected. 
As k is increased the peak of the curve first flattens and then divides into two 
peaks. When the resonators are critically coupled the curve resembles a Tchebychev 
response. The bandwidth is then increased in comparison with a single resonator 
having the same maximum impedance. The phase of the input impedance of the 
coupled resonators is shown in Figure 3.11. When k is close to zero the curve is very 
similar to that for a single resonator with a single frequency at which the phase is 
zero. This continues as k increases until there is a point of inflection when k QU= 1 . 
For greater values of k there are three points at which the phase is zero. The behav-
iour of resonators which are coupled in other ways is similar to that shown here.

3.3 Pill- Box Cavity Resonators

The resonant circuits used at frequencies greater than about 100 MHz are invariably 
cavity resonators. These resonators can take many forms but all support an infinite 
number of resonant modes. The simplest resonant cavities are formed by placing a 
pair of metallic walls across a metal waveguide having a uniform cross- section. These 
reflect the propagating modes in the waveguide and create resonances whenever there 
is a standing wave. This is illustrated in this section for cavities based on circular 
waveguides and in the following section for those based on rectangular waveguides.

Figure 3.1 shows schematically the TM010 mode of a resonator based on a cir-
cular waveguide. The possible resonant modes are derived from the TE and TM  
modes of the waveguide by applying the appropriate boundary conditions in the z 
direction. The TM n0,  modes are of greatest interest because they have a longitudinal 
component of the electric field on the axis that can interact with an electron beam. 
The tangential component of the electric field must be zero on all the metal surfaces 
and the resonant condition is therefore

 β πm nh p, ,=  (3.41)

Figure 3.11: Phase response of two identical resonators coupled by a mutual inductance.
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where p = 0 1 2, ,  and βm n,  is the propagation constant of the TMm n,  mode of the 
circular waveguide found using (2.11) and (2.85). The resonant mode which satisfies 
(3.41) is the TMm n p, ,  mode of the cavity. The z component of the magnetic field is 
zero for all these modes and the field patterns can be deduced from Figure 2.15 by 
placing the end walls of the cavity at planes where the transverse component of the 
electric field is zero.

The lowest mode is the TM010 mode where the frequency is equal to the cut- off  
frequency of the TM01  circular waveguide mode, and the electric field has only a z 
component that does not vary with z. The field components are

 E E J r j tz C= ( ) ( )0 0 β ωexp  (3.42)

and, from (2.20),

 H j E J r j tCθ
ε
µ

β ω= ( ) ( )0

0
0 1 exp , (3.43)

where βC a = 2 405. . Thus the resonant frequency is

 ω0 2 405= . .
c
a

 (3.44)

The stored energy in the cavity can be calculated from the maximum values of 
either the electric or magnetic field. Thus

 W rhE drz

a

= ∫
ε π0 2

02
2 . (3.45)

Substituting for Ez from (3.42) gives

 W h E J r r drC

a

= ( )∫π ε β0 0
2

0
2

0

.  (3.46)

Evaluating the integral gives [2]

 W ha E J ha E= ( )⋅ ( ) =ε π ε0
2

0
2

1
2

0
2

0
2

2
2 405 0 423. . . (3.47)

If  the terminals of the equivalent circuit are chosen to be at the centres of the two 
flat faces then the voltage across the cavity is

 V E h0 0= , (3.48)

so that, from (3.14), (3.44), (3.47), and (3.48)

 R
Q

h
a

h
a

c

U







= =0 491 1850

0

. .
µ
ε

Ω  (3.49)
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The theoretical value of the shunt resistance of a high Q cavity can be calculated by 
assuming that the current density in the walls of the cavity is the same as in a loss- 
less cavity, and that the surface resistance is given by

 Rs = =
1

2
0

σδ
ωµ

σ
, (3.50)

where σ is the conductivity of the walls of the cavity and δ is the skin depth [3]. 
Some investigators have reported measurements of anomalous surface resistance 
at millimetre wavelengths that cause the surface resistance to be appreciably higher 
than that obtained from (3.50). However, a careful review of the experimental evi-
dence concluded that these results are probably erroneous [4]. At frequencies up 
to several THz the surface resistance can be calculated correctly from the classical 
relaxation- effect (or Drude dispersion) model [5]

 Rs = + ( ) −





ωµ
σ

ωτ ωτ0 2

2
1  (3.51)

where τ  is the relaxation time of the metal. Using the material constants for copper 
( σ = ×5 959 107. S m 1−  and τ = 25 018. fs [4]) it is found that the error in using (3.50) 
is less than 1% at 100 GHz.

The current density is equal to the tangential magnetic field on the cavity wall 
and at right angles to it. Thus the current flow is radial in the flat ends of the cavity 
and axial in the curved walls. The power dissipated in the walls is

 P ahR H a R H r r drL s s

a

= ( ) + ( )∫π πθ θ
2 2

0

2 . (3.52)

Substituting for Hθ from (3.43) gives

 P R E ahJ J r r drL s C

a

= ( ) + ( )







∫π ε

µ
β0

2 0

0
1

2
1

2

0

2 405 2.  (3.53)

and, evaluating the integral,

 P R E a a h JL s= +( ) ( )π ε
µ0

2 0

0
1

2
2 405. . (3.54)

Then, from (3.12), (3.44), (3.47), and (3.54)

 Q
h

R a hU
s

=
+( )

2 405
2

0

0

.
.

µ
ε

 (3.55)

It is helpful to illustrate these equations by numerical examples. Table 3.1 shows 
the theoretical parameters of copper cavities for which a h= . It can be seen that the 
skin depth is small compared with the radius of the cavity in every case, so the effect 
of the finite conductivity on the resonant frequency is negligible compared with 
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manufacturing tolerances and the effects of thermal expansion. The values of QU 
are high enough to permit the representation of the cavity losses by a shunt resistor.

3.3.1 Effects of Surface Roughness

The Q factors achieved in practice are commonly less than the theoretical values 
in Table 3.1 because the effective lengths of the current paths are increased by sur-
face roughness. This problem has been studied theoretically by considering surfaces 
in which there are periodic grooves normal to the current flow [6, 7]. If  the skin 
depth is small compared with the surface roughness then the resistance is increased 
by the ratio of the actual path length to the ideal path length [7]. When the skin 
depth is comparable to, or greater than, the surface roughness the resistance is less 
than that calculated from the path length and tends to the theoretical resistance as 
the skin depth increases. The resistance depends on the shape and the spacing of 
the grooves. Similar results have been obtained by modelling surfaces with random 
roughness [8]. It was found that the additional loss depends upon the RMS rough-
ness, the correlation length and the correlation function. Grooves parallel to the 
current flow have a similar, but somewhat smaller, effect to those normal to the cur-
rent flow. The resistance rises rapidly as the skin depth decreases and then reaches 
a value which is approximately constant [7].

An empirical formula for the effect of surface roughness is

 R
R

r

s

= + 

















1
2

1 4
2

π δ
arctan . ,

∆  (3.56)

where Rs is given by (3.50), δ is the skin depth, and Rr is the surface resistance of 
a surface having RMS roughness ∆ [8– 10]. Figure 3.12 shows the variation of nor-
malised surface resistance with ∆ δ given by (3.56). While this figure indicates in 
general how the surface resistance varies with the surface roughness it is clear from 
the discussion above that it cannot represent all possible surface conditions.

Experimental measurements of the losses in copper waveguides at 24 GHz 
showed normalised loss ranging from 1.09 for a machined surface to 1.8 for an elec-
troplated surface [11]. It was shown that the loss could be increased by increasing 

Table 3.1: Theoretical parameters of copper pill- box cavity resonators (Worksheet 3.2)  ( , . )a h= = ×σ 5 959 107 S m 1−

Frequency (GHz) 1.0 3.0 10.0 30.0

a (mm) 114.7 38.25 11.47 3.82

δ (μm) 2.06 1.19 0.65 0.38

Rc/ QU (Ω) 185 185 185 185

QU 27,800 16,100 8,800 5,100

Rc (MΩ) 5.15 2.97 1.63 0.94
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the roughness of the surface. Waveguide measurements at 9.4 GHz were made by 
Benson and his co- workers, who also made measurements of the surface roughness 
of the experimental samples [12– 14]. It was found that the effects of surface rough-
ness could be reduced by electro- polishing or chemical polishing. Table 3.2 shows 
the normalised surface resistance of copper waveguides. Formulae were derived 
for waveguide losses which included the effects of surface roughness defined by 
the ratio of the actual length of the surface to the ideal length. Three different fac-
tors were included to account for the differences in the roughness of the walls of 
the waveguide normal to each component of the current flow. The values of these 
factors were measured for the waveguides studied and it was concluded that the 
increased loss could be explained solely by the increased path length when the skin 
depth was small compared with the roughness. For example a 3 GHz brass wave-
guide in which the surface roughness was about an order of magnitude greater than 
the skin depth was found to have normalised path lengths in the range 1.10 to 1.73 
with an average value of 1.34.

Measurements at different frequencies made using copper waveguides are sum-
marised in Table 3.3 [13, 15]. The theoretical surface resistance was calculated from 
measured values of the bulk DC conductivity. The effects of surface roughness 
were calculated and it was concluded that the additional loss could be explained 
in this way at 10 GHz but not at 35 GHz. It seems likely that the difference is to be 
explained by the neglect of factors other than the additional path length in the cal-
culated values. It was found that the surface resistance could be reduced by anneal-
ing and this was explained in terms of the modification of the conductivity of a 
surface layer of material which had been work- hardened during manufacture [15].

Measurements of conduction losses have been made using resonators with arti-
ficially roughened surfaces at 35 GHz [16], and between 0.4 and 0.85 THz [17]. The 
variation of surface resistance with RMS surface roughness can be described by 
(3.56) if  Δ/δ ≥ 1. The asymptotic value corresponds to the increase in the surface 
area as expected. When Δ/δ < 1 the agreement with theory is poor. It was suggested 

Figure 3.12: Empirical relationship between surface resistance and surface roughness.
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in [16] that the difference could be explained by an anomalous skin effect but this 
conclusion has been challenged by Lucyszyn [4]. 

From the preceding discussion it can be concluded that the effects of surface 
roughness may be represented by a modified surface resistance. The nature of the 
surface roughness and the direction of scratches and machining marks are impor-
tant and it is not easy to calculate the effective surface resistance in general. When 
the surface roughness is appreciably greater than the skin depth the effective resis-
tance can be calculated if  the effective path length is known. The unloaded Q fac-
tor of a cavity resonator therefore depends on the manufacturing process as well 
as on the material from which it is made. In the case of the pill- box cavity azi-
muthal machining marks caused by turning the cavity parts on a lathe would have 
the greatest effect. The reduction in QU caused by surface roughness is not easy to 
quantify on theoretical grounds and estimates must be made from previous experi-
ence. In one case where the surface roughness was comparable with the skin depth 
at 3.2 GHz it was found that the measured Q was 72% of the theoretical value [18].

3.3.2 Higher-Order Modes

In addition to the fundamental resonance a pill- box cavity has an infinite set of 
higher-order resonances. The circularly symmetrical TM n0 0 modes correspond to 
the solutions of J aC0 0β( ) =  which occur at βC a = 2 405 5 520 8 654. , . , . , [2]. When 
m > 0  the radial variation of the electric field is as J rm Cβ( ) and the resonances of 

Table 3.2: Ratio of measured to calculated surface resistance  
for copper waveguides at about 10 GHz [12]

Copper R Rr s

Bright electroplate 1.001

Electro- polished 1.002

Chemically polished 1.003

Precision drawn 1.012

Table 3.3: Ratio of measured to calculated surface resistance 
for drawn copper waveguides [11, 13, 15]

Frequency (GHz) Rr /Rs

9.375 1.034

24 1.37

35 1.55– 1.57

70 1.7– 2.5

140 2.1– 2.5
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the TMmn0 modes are the zeroes of J am Cβ( ). The electric field of these modes is 
weak close to the axis and therefore they do not interact strongly with an electron 
beam located there. Other higher-order modes (TMmnp and TEmnp with p ≥ 1) exist 
in which E has components other than Ez but these modes are not usually excited. 
However, because a modulated electron beam has currents which are harmonics 
of the signal frequency it is necessary to check that the cavities do not have higher-
order resonances at these frequencies.

3.4 Rectangular Cavity Resonators

A rectangular cavity resonator can be developed from a rectangular waveguide as 
shown in Figure 3.13. The lowest TM  mode in a rectangular waveguide is the TM11 
mode shown in Figure 2.6. The z component of the electric field of the TM110 res-
onance of the cavity is

 E E
x

a
y

b
j tz = 









 ( )0 sin sin exp .

π π ω  (3.57)

Substituting this expression in (2.36) we obtain

 β π π
C a b
2

2 2

= 





+ 





. (3.58)

The components of the magnetic field in an empty waveguide are found from 
(2.20) to be

 H j
a

a b
E

x
a

y
b

j tx =
+











 ( )ε

µ
π π ω0

0
2 2

0 sin cos exp  (3.59)

 H j
b

a b
E

x
a

y
b

j ty = −
+











 ( )ε

µ
π π ω0

0
2 2

0 cos sin exp . (3.60)

Figure 3.13: Arrangement of a rectangular cavity resonator.
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The stored energy is

 W
h

E
x

a
y

b
dy dx

b
a

= 























⌠
⌡
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2 0 0

2 2 2

0
0

ε π π
sin sin ,, (3.61)

which can be integrated to give

 W abhE=
ε0

0
2

8
. (3.62)

Then, since V E h0 0=

 R
Q

h

a b
= ⋅

+
4

2 2

0

0π
µ
ε

. (3.63)

The Q of the cavity can be found in the same way as that for the pill- box cavity [3].  
The result in our notation is

 Q
R

h a b

ab a b h a bs

=
+( )

+( ) + +( )












π µ
ε4

2

2
0

0

2 2 3 2

2 2 3 3
. (3.64)

Rectangular cavities support higher- order modes similar to those of the pill- box cavity.

3.5 Re- entrant Cavities

Pill- box cavities are not commonly used in microwave tubes. The reason for this can 
be understood by considering the time t g u=( )0  taken for an electron travelling 
with velocity u0 to cross a cavity gap of length g. The change in the phase of the 
electric field in the cavity during this time is ωt and it is desirable that this should 
have a value of less than, say, π 3 to ensure that the field seen by each electron is 
approximately constant as it crosses the cavity. Thus

 ω π
u g0 3

≤ . (3.65)

Combining this equation with (3.44) for a pill- box cavity where g h= , we find that, 
in order to keep the transit angle within the limits specified,

 h
a

u
c

≤ 0 435 0. . (3.66)

Most linear- beam tubes operate in the region from 5 to 100 kV and the corre-
sponding range of u c0  is 0.1 to 0.5. Table 3.4 shows the theoretical parameters of 
a copper pill- box cavity at 3 GHz for a range of beam voltages. The cavity radius 
is 38.2 mm and the skin depth is 1.22 μm in each case. It can be seen that the low 
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values of h a required by (3.66) leads to very low unloaded Q factors and shunt 
impedances. For this reason simple cavities are only used in high- power (forward- 
fundamental) coupled- cavity TWTs, where the cavity performance is acceptable, 
and in high frequency (millimetre wave) tubes where constructional difficulties rule 
out the use of cavities having other shapes.

The cavities used in microwave tubes usually have the re- entrant cylindrical shape 
shown in Figure 3.14. Consider the comparison between a pill- box cavity and a re- 
entrant cavity which have the same resonant frequency and interaction gap length. 
The capacitance across the interaction gap is smaller in the re- entrant cavity than 
it is in the pill- box cavity. Therefore the inductance of the re- entrant cavity must be 
greater than that of the pill- box cavity to keep the resonant frequency constant. As 
a result the R Q of  the re- entrant cavity is greater than that of the pill- box cavity.

3.5.1 Method of Moments Model of Re- entrant Cavities

The properties of a re- entrant cavity having the general shape shown in Figure 3.14 
can be calculated with great accuracy using the method of moments. The outline 
of the method is described in [19] and further information is given in [20, 21]. The 
cavity is divided into three concentric regions I II III, and( ), each having constant 
axial length, whose outer radii are a, a’ and A respectively. The axial component of 
the electric field and the azimuthal component of the magnetic field are expanded 
in Fourier series of basis functions on r a=  and r a= ′ so that

 
E

H

e

h
m z

g
z m

II

m
II

mθ

π



=












=

∞

∑
0

cos  (3.67)

in region II and similarly for the other regions, with the number of terms in the sum-
mations chosen independently for each region. The (unknown) amplitudes are writ-
ten as e, h on r a=  and ee, hh on r a= ′. The requirement that the fields should satisfy 
Maxwell’s equations and the boundary conditions in region I can be expressed as

 h G k eI I I[ ] = ( ) [ ], (3.68)

Table 3.4: Theoretical parameters of copper pill- box cavities at 3 GHz

u c0 0.1 0.3 0.5

V0 (kV) 2.6 25 80

h a 0.044 0.131 0.218

a (mm) 38.3 38.3 38.3

h (mm) 1.68 5.01 8.34

QU 1354 3722 5751

Rc/ QU (Ω) 8.14 24.2 40.3

Rc (kΩ) 11.0 90.2 232.0
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where k c= ω  and the diagonal matrix GI is defined in [20]. Similarly in region III

 hh G k eeIII III III[ ] = ( ) [ ]. (3.69)

The constants at the inner and outer boundaries of region II are related to one 
another because the fields are solutions of Maxwell’s equations and this can be 
expressed as

 
h

hh
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ee
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II m
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II
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II









 = ( ) 









 . (3.70)

Equation (3.70) can be rearranged as a partitioned matrix
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e

ee

II
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… . (3.71)

Expansion of Ez in region II in terms of the basis functions in regions I and III yields

 e P eI II[ ] = [ ][ ]1  (3.72)

and

 ee P eeIII II[ ] = [ ][ ]2 . (3.73)

Expansion of Hθ in regions I and III in terms of the basis functions in region 
II yields

 h Q hII I[ ] = [ ][ ]1  (3.74)

Figure 3.14: Arrangement of a cylindrical re- entrant cavity resonator.
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and

 hh Q hhII III[ ] = [ ][ ]2 . (3.75)

The forms of the connection matrices P[ ] and Q[ ] are given in [20]. Using (3.68), 
(3.69), (3.71), and (3.72) to (3.75) all the coefficients except eII and eeII can be elimi-
nated to give

 W k

e

ee

II

II

( ) 

















= 0, (3.76)

so that the resonant frequency is given by the solution of

 W k( ) = 0. (3.77)

The eigenvector containing the electric field amplitudes in region II can also be 
found and, from them, the electric and magnetic fields throughout the cavity. Once 
these are known the stored energy and power dissipation can be calculated for any 
given gap voltage and, hence, the QU and R Qc U  can be found. This method is 
implemented in Worksheet 3.3. The termination of the beam hole by a conducting 
boundary has no effect on the results if  the depth of the beam hole is large enough.

It can be shown that, if  the number of terms in the series in region II is finite, 
while the number of terms in regions I and III tend to infinity, then the solution is 
an upper bound on the frequency. The reverse procedure leads to a lower bound 
so that the accuracy of the solution is known. It is also found that, if  the numbers 
of terms in the series are chosen so that the smallest wavelength in each region is 
approximately the same, then the result converges very rapidly with increasing num-
bers of terms to a very accurate figure. When this method was used with 8 terms in 
the series representation of the fields within the gap it was found that the resonant 
frequency, R Qc U and QU could be computed to accuracy better than 0.01% for a 
wide range of cavity shapes [20]. When the same cavities were modelled using a 
commercial electromagnetics code it was found that considerable care, and much 
greater computational time, were needed to achieve the same accuracy. Thus the 
method of moments is valuable for rapid computation of the properties of cavi-
ties with the shape shown in Figure 3.14, and for benchmarking calculations using 
computational electromagnetics.

Figure 3.15 shows the results obtained when Worksheet 3.3 was used to investi-
gate the properties of re- entrant cavities having a resonant frequency of 3 GHz and 
an interaction gap of 5 mm. These can be compared with the results for a pill- box 
cavity with u c0 0 3= .  in the third column of Table 3.4. The inner and outer radii of 
the drift tube were chosen to be 5 mm and 7 mm respectively. These values are typi-
cal of those encountered in practice. The height of the cavity (h) was increased in 
steps and the outer radius A( ) adjusted so that the correct frequency was obtained. 
Because the increase in height increases the inductance more than it decreases the 
capacitance it is found that the outer radius decreases steadily. From Figure 3.15 
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we see that, as the height of the cavity increases, R Qc U  increases initially as the 
capacitance is reduced, and the inductance increased, to maintain the correct fre-
quency. However, when the normalised height of the cavity is greater than 5, R Qc U  
decreases because the side wall is close enough to the drift tube to increase the 
capacitance. This is not desirable because the increased radial component of the 
electric field reduces the axial component available for interaction with electrons 
passing through the cavity. The unloaded Q and the shunt resistance of the cavity 
show similar behaviour with an initial increase followed by a decrease. Figure 3.16 
shows the electric field distribution in one quarter of a transverse plane of a cavity 
for which h g= 4 .

Table 3.5 shows the comparison between the properties of a pill- box cavity with, 
and without, a beam hole, and a re- entrant cavity whose height is four times the 
interaction gap. These results need to be interpreted with a little caution. In the first 
place they only illustrate the behaviour of cavities having the dimensions chosen. 
Results similar to these but with differences in detail may be expected for cavities 
designed for other electron velocities and other frequencies. Secondly, no account 
has been taken of the effects of surface roughness which will reduce both QU and 
Rc in practice.

3.5.2 Fujisawa’s Model of Re- entrant Cavities

The design of klystrons and inductive output tubes requires the design of cavity 
resonators which have a given frequency, interaction gap length, and drift tube 
radius. As can be seen from Figure 3.15 the height, or the radius of the cavity, may 
be chosen freely. The remaining parameter is then fixed by the resonant frequency. 
The method of moments model described in the preceding section provides a quick 
way of calculating the properties of a cavity. However, for parametric studies it 
may be faster to use an approximate equivalent circuit model [22]. In this method 
a doubly re- entrant cavity without a beam hole is modelled by the circuit shown in 

Figure 3.15: Variation in the theoretical properties of a re- entrant cavity resonator with h g 
normalised to those of a pill- box cavity  h g=( ).
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Figure 3.2b. The capacitor is made up of three capacitors in parallel C C CI II III, ,( ) 
which represent the contribution to the capacitance from charge on the inside, the 
end, and the outside of the drift tube, respectively.

The capacitance associated with charge on the inside of the drift tube can be cal-
culated to sufficient accuracy by quasi- static analysis. To do this we assume that the 
axial component of the electric field is constant in the gap when r a= . This field can 
be expressed in terms of an infinite set of components having sinusoidal variation 
exp j zβ( ) in the axial direction by taking the Fourier transform of the field at r a=

 Γ β β
β

β
( ) = −( ) =

( )



−

⌠
⌡


V

g
j z dz V

g

g
g

g

g

gexp
sin

,

2

2 2

2
 (3.78)

where Vg is the gap voltage. Since we have assumed that the electric field inside 
the drift tube satisfies Laplace’s equation we know that the radial variation of Ez 
is as I r0 β( ) so that, taking the inverse Fourier Transform, we find that, within the 
drift tube

 E r z
V I r

I a

g

g
j z dz

g,
sin

exp .( ) =
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( ) ⋅
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−( )
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2

2
0

0π
β
β

β
β

β β  (3.79)

Figure 3.16: Electric field in a re- entrant cavity resonator for which h g= 4 .

Table 3.5: Theoretical properties of copper cavities at 3 GHz (u0/c = 0.3)

Pill- box Pill- box with beam hole Re- entrant

a mm( ) – 5.00 5.00

′ ( )a mm – – 7.00

A mm( ) 38.25 38.61 26.11

g mm( ) 5.00 5.00 5.00

h mm( ) 5.00 5.00 20.00

QU 3715 3712 7959

Rc/ QU (Ω) 24.2 23.5 103.3

Rc (kΩ) 89.9 87.2 822.1
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The total charge within one drift tube can be found by finding the total charge on a 
conducting sheet at z = 0 for r a≤

 Q r E r drz

a

= ( )∫ε π0

0

2 0, . (3.80)

Substituting for Ez from (3.79) and performing the integration we find that the 
capacitance in region I is

 C
aI a

I a

g

g
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( ) ⋅
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∞
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2
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. (3.81)

It can be shown that this capacitance is the same as that given in Figure 19 of [22]. 
Since we have assumed that the field in the gap is uniform the capacitance in region 
II is simply

 C
a a

gII =
′ −( )ε

π
0

2 2

. (3.82)

The capacitance in region III is [22]

 C a
e A a h

gIII = ′
− ′( ) + ( )











2
2

0

2 2

ε ln . (3.83)

Thus the total capacitance is

 C C C CI II III= + + . (3.84)

The inductance is calculated by assuming that the azimuthal magnetic field is gen-
erated by a uniform axial current I at r a= ′, and is negligible when r a< ′, so that

 H r
I

rθ π
( ) =

2
. (3.85)

Then the self- inductance is

 L
h A

a
=

′






µ
π
0

2
ln . (3.86)

The resonant frequency and the R Q of  the cavity can then be calculated using (3.2) 
and (3.6).

The stored energy is estimated from the magnetic field

 W
h

I
A
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=
′







µ
π
0 2

4
ln . (3.87)
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The power dissipated on the surface of the cavity is also calculated from the 
magnetic field

 P I R
h
A

h g

a
A
aL s= +

−( )
′

+
′















1
4

22

π
ln , (3.88)

so that the unloaded Q can be calculated using (3.12).
Table 3.6 shows a comparison between the theoretical properties of re- entrant 

copper cavities with, and without, a beam hole calculated using the method of 
moments and Fujisawa’s method (see Worksheet 3.4). It can be seen from these 
examples that, using Fujisawa’s method, the accuracy of the frequency is of the 
order of 1% and, of the other parameters, approximately 5%. A detailed study of 
a wide range of cavities without beam holes showed that the accuracy of the fre-
quency computed using Fujisawa’s method is better than 5% provided that A a′ < 5 
and z z3 2 12< . For cavities whose shapes are typical of those used in microwave 
tubes the accuracy can be expected to be better than this as indicated by Table 3.6.

3.5.3 The Interaction Field

An electron beam passing along the axis of a circularly symmetrical cavity interacts 
with the fringing electric field of the gap in the drift tube. In the previous section it 
was assumed, for simplicity, that the axial component of the electric field at r a=  
was constant. However, it is clear from Figure 3.16 that this is not true because 
there are field concentrations close to the drift tube noses. The field distribution 
depends upon the shapes of the drift tube noses as well as upon the gap length and 
drift tube radius. However, in order to avoid interception of electrons on the drift 
tube, the radius of the electron beam is normally not greater than 2 3a . Within that 
radius it is found that the variation of the axial component of the electric field does 

Table 3.6: Theoretical properties of re- entrant copper cavities at 3 GHz ( = 0.3)0v c

Without beam hole With beam hole

Method of moments Fujisawa (error %) Method of moments Fujisawa (error %)

a mm( ) 5.0 0 5.0 5.0

′ ( )a mm 7.0 7.0 7.0 7.0

A mm( ) 24.39 24.39 26.11 26.11

g mm( ) 5.0 5.0 5.0 5.0

h mm( ) 20.0 20.0 20.0 20.0

f (GHz) 3.000 2.987 (−0.4) 3.000 2.964 (− 1.2)

Rc/ QU (Ω) 99.7 93.7 (−6.4) 103.3 98.1 (− 5.3)

QU 7499 7666 (+2.2) 7959 7934 (− 0.3)

Rc (kΩ) 747.7 718.3 (−4.1) 822.1 778.1 (− 5.7)
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not depend strongly on the field profile at r a= . It is therefore possible to draw use-
ful conclusions about the interaction field by comparing a number of approximate 
field profiles. In addition to the uniform field discussed above two other profiles 
may be considered [23]. If  the drift tube noses are knife edged then

 E a z

V

g z
z g

z g

z

g

, ,( ) = ( ) −
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π 2
2

0 2

2 2  (3.89)

where Vg is the gap voltage. A useful approximate profile is
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where k is chosen to match the field to that determined for the actual gap by com-
putation or measurement. This field tends to the uniform field when k → 0 and it 
leads to an interaction field which is very close to that given by knife- edged drift 
tubes when k g= 4 . The dependence of the interaction field on the field profile and 
the normalised gap length can be investigated using Worksheet 3.5. Because quasi- 
static fields have been assumed it is possible to normalise all dimensions to the drift 
tube radius. Figure 3.17 compares some typical results when g a = 1 for a uniform 
field at r a= , a knife- edge field, and one which is intermediate between them. It can 
be seen that, in the region of space occupied by the electron beam, there is very 
little difference between the fields resulting from the different choices of profile. 
At r a= 2 the axial field at the centre of the gap is slightly greater than that on the 
axis, and it falls off  a little more rapidly with increasing z. When the normalised 
gap length is g a = 0 5.  it is found that the differences between the results using the 
three profiles are negligible, but that there is a greater difference between the fields 
on the axis and at r a= 2. When the normalised gap length is 2.0 there is a greater 

Figure 3.17: Axial variation of Ez in a gap in a drift tube when g a=  for three different 
field profiles at r a= : (A) uniform field, (B) hyperbolic cosine field k g=( )2 , and 
(C) knife- edge field.
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difference between the fields for the different profiles but smaller radial variation. 
Overall, setting g a = 1 gives a good compromise between field uniformity in the 
radial direction and insensitivity to the field profile in the gap.

3.5.4 Practical Re- entrant Cavities

In the cavities used in practical tubes it is common for all, or part, of the outside 
of the drift tube to be conical, and for the tips of the drift tubes to be rounded to 
reduce the peak electric field on the surface. The gap length is often approximately 
equal to the inner radius of the drift tube but the actual dimensions are chosen to 
achieve a compromise between:

• the electrical properties of the cavity;
• the axial space available;
• avoiding voltage breakdown in the gap and multipactor discharges;
• thermal conduction and mechanical strength of the cavity.

The multipactor discharge is discussed in Section 18.8. The risk of gap breakdown 
may be further reduced by changes to the shape of the drift tube noses and by the 
application of coatings having low secondary electron emission coefficients [24].

If  it is necessary to be able to change the frequency of a cavity this can be done 
by adding a tuner. This typically takes the form of a metal plate parallel to the 
drift tube whose position can be changed so that the capacitance between it and 
the drift tubes can be varied as shown in Figure 3.18(a) [25]. In some UHF kly-
strons and inductive output tubes the drift tube is surrounded by a ceramic cylinder, 
which forms the vacuum envelope of the tube as shown in Figure 3.18(b). The outer 
part of the cavity is then formed in two halves, which are bolted around the tube. 
Because the outer part of the cavity is at atmospheric pressure it is possible to make 
parts of the cavity wall moveable with spring fingers to maintain good electrical 
contact. This type of cavity is called an external cavity.

3.6 External Coupling to Cavities

The external connections to cavity resonators used in tubes can be made using 
either coaxial lines or metallic waveguides. The strength of the coupling is adjusted 
to achieve the desired external Q.

A coaxial line may be terminated in either an electric, or a magnetic, antenna. 
An electric antenna is made by removing a short section of the outer conductor 
and the insulation so that the exposed central conductor couples to the electric 
field in the cavity. A  magnetic antenna is made in a similar manner by forming 
the exposed central conductor into a loop which may be connected to the outer 
conductor (see Figure 3.19(a) and (b)). The loop is inductively coupled to the com-
ponent of the magnetic field in the cavity that is normal to the plane of the loop. 
Both of these techniques are used to make probes for experimental measurements 
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on cavity resonators. The strength of the coupling between the antenna and the 
mode is affected by

• the size of the antenna;
• the depth of insertion of the antenna into the cavity;
• the angle between the plane of the loop of a magnetic antenna, and the direction 

of the local magnetic field.

Figure 3.18: The arrangement of cavity tuners in: (a) internal cavities and (b) external 
cavities.

Figure 3.19: Loop- coupled cavity: (a) arrangement with a closed loop, (b) arrangement with 
an open loop, and (c) equivalent circuit.
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Electric antennas are unsuitable for coupling into the fundamental TM010 mode 
of a cavity in a tube because the region of greatest electric field is inaccessible, and 
because the electric field concentration on the antenna could cause electric break-
down. Coupling using a loop (magnetic antenna) is discussed in Section 3.6.1.

When the external connection to a cavity is made using a waveguide it is arranged 
so that the field of the fundamental mode in the waveguide couples strongly to the 
cavity mode which is to be excited. Thus the broad walls of a rectangular waveguide 
are normally perpendicular to the axis of the cavity (see Figure 3.22). The strength 
of the coupling is adjusted by changing the size of the aperture (iris) where the 
waveguide meets the cavity. Iris coupling is discussed in Section 3.6.2.

3.6.1 Loop Coupling

Figure 3.19 shows the general arrangement of a cavity with a coupling loop. The loop 
may either be closed as shown in Figure 3.19(a) or open as shown in Figure 3.19(b). 
The loop is coupled inductively to the magnetic field in the cavity and the cou-
pling may be adjusted by rotating the loop around the axis of the coaxial line. The 
equivalent circuit of a loop- coupled cavity is shown in Figure 3.19(c) where the 
parameters of the cavity have suffix c. The mutual inductance between the cavity 
and the loop is kLc where k is the fraction of the magnetic flux within the cavity 
which is coupled to the loop. The self  inductance of the loop is LL. Analysis of the 
equivalent circuit shows that the input impedance is

 Z j L
k R

jQ
in L

c

U

= +
+ −







ω
ω
ω

ω
ω

2

0

01

, (3.91)

where, from (3.6), R Q rc U c= 2 . Comparison between this result and (3.5) shows that, 
apart from the effect of the loop inductance, the coupling can be represented by an 
ideal transformer having ratio k :1.

The coupling factor k can be calculated to good accuracy, if  the distribution of 
the magnetic field in the cavity is known, by finding the fraction of the flux which is 
linked to the loop [26]. The self  inductance of the loop can be calculated by static 
analysis if  the dimensions of the loop are small compared with the free- space wave-
length. Formulae for the self  inductance of a loop in free space have been given 
for a rectangular loop [26] and for a circular loop [3]. The self- inductance can also 
be calculated by treating the loop as a short- circuited two- wire line. The results 
obtained in these ways agree with one another to around 20%. The self  inductance 
of a loop can be measured by noting that the second term in (3.91) is negligible at 
a frequency remote from the resonant frequency of the cavity. It is found that the 
inductance measured in this way is up to an order of magnitude smaller than the 
free- space inductance. This is because the magnetic field of the loop is confined 
within the cavity which increases the reluctance of the flux path and reduces the 
flux generated by unit current. A very crude estimate of this effect can be made by 
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supposing that the flux line passing through the centre of a circular loop forms a 
circle having the same radius as the loop. The flux density at the centre of the loop 
is then reduced by a factor of π compared with that of the same loop in free space.

The model described above is implemented in Worksheet 3.4 which can be used to 
explore the properties of re- entrant cavities with loop coupling. Figure 3.20 shows 
the reflection coefficient S11 for a typical cavity if  the loop inductance is neglected, 
and when it is reduced by a factor of π from the value calculated by treating the 
loop as a short- circuited two- wire line. This estimate of the loop inductance gave 
good agreement with experimental results in a particular case. It can be seen that 
the effect of the loop inductance is to shift the resonant frequency of the cavity 
slightly and also to change the magnitude of Zin at resonance. To investigate this 
effect we assume that the unloaded Q of  the cavity is high so that the bandwidth is 
narrow, and the loop reactance can be assumed to be constant. Figure 3.21 shows 
the equivalent circuit redrawn with an ideal transformer and constant loop react-
ance X LL= ω0  connected to a source with impedance RS . This circuit can be put in 
the form shown in Figure 3.5 by writing

 1 2

2 2
2

R
jB

k
R jX

R jX
R X

k
E

E
S

S

S

+ =
+( ) =

−
+( ) . (3.92)

Figure 3.20: Reflection coefficient of a loop- coupled cavity Q QU E= =( )7800 330, :  
(a) ignoring the loop inductance, and (b) including the loop inductance.

Figure 3.21: Equivalent circuit of a loop- coupled cavity with an external resistance.
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so that

 R
R X

k RE
S

S

=
+( )2 2

2
 (3.93)

and

 B
k X

R XE
S

= −
+( )
2

2 2
. (3.94)

The external Q of  the cavity and the coupling factor K can then be found from 
(3.18) and (3.19). The condition for resonance is that the sum of the reactances 
should be zero. Thus the resonant frequency of the cavity with external loading is 
the solution of

 ω
ω

C
L

k X
R Xc

c S

− −
+( ) =

1
0

2

2 2
. (3.95)

3.6.2 Iris Coupling

Figure 3.22 shows the arrangement of a cavity coupled to a rectangular waveguide 
through an iris. The width of the waveguide is normally that of a standard wave-
guide, but the height may be reduced. The coupling factor is generally adjusted by 
changing the width of the aperture to obtain the desired external Q.

The coupling between a waveguide and a cavity can be modelled using the the-
ory of coupling by small holes [27– 30]. In this theory the effect of a small hole is 
represented by an electric dipole whose magnitude is proportional to the normal 
component of the electric field on the iris, and by two magnetic dipoles whose mag-
nitudes are proportional to the transverse components of the magnetic field. It is 

Figure 3.22: Arrangement of an iris- coupled cavity.
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convenient to consider the case in which power is transferred from the cavity to the 
waveguide through the aperture. In the case of the TM010 mode in the cavity shown 
in Figure 3.22 the only non- zero field component at the iris is the magnetic field 
parallel to the broad wall of the waveguide. The magnetic dipole moment is then

 M Hm= α 1, (3.96)

where H1 is the tangential magnetic field of the cavity at the centre of the aperture 
and αm is the magnetic polarisability of the aperture that depends only upon its 
shape and size. Since the hole has been assumed to be small the polarisability can 
be determined by quasi- static analysis. Analytical expressions for αm are available 
for circular and elliptical apertures [30], and graphs for apertures of other shapes 
have been found experimentally [31]. The amplitude of the transverse magnetic 
field induced in the waveguide is given by

 H
ab

Hg
m0 1

2
=

β
α  (3.97)

if  the coupling hole is aligned with the centre of the waveguide [30]. The amplitude 
of the voltage between the centres of the broad walls of the waveguide is

 V E b Z H bw

g
w0 0 0= =

β
β

 (3.98)

from (2.38) where β ωw c=  and Zw = µ ε0 0 . Now the coupling factor can be 
written

 K
P
P

V
Z P

E

L g L

= = 0
2

2
, (3.99)

where PE  and PL  are the powers dissipated in the external resistance and in the cav-
ity walls. Then, substituting from (3.97) and (3.98) we obtain

 K
Z

Z
a

H

Pg

w w m

L

= 





( )2
2

1
2β α

. (3.100)

Since we are working in terms of power and voltage the appropriate waveguide 
impedance is ZPV  given by

 Z
b
a

ZPV
w

g
w= ⋅2

β
β

 (3.101)

so that

 K
ab

H Z
P

g w w

L
m= ⋅

β β
α1

2
2 . (3.102)
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Substituting for the power loss in the cavity from (3.12)

 K
ab

H Q
W

g U
m= ⋅ ⋅

2

2
0 1

2
2

β µ α . (3.103)

The coupling factor is seen to be the product of three terms: the first depends only 
on the properties of the waveguide; the second only on the properties of the cavity; 
and the third depends only on the properties of the aperture. The first term can be 
written as 4π λab g  which is just 4π divided by the volume of the waveguide in one 
guide wavelength. The second term relates the magnitude of the tangential mag-
netic field at the aperture to the stored energy in the cavity. For a pill- box cavity H1 
and W are given by (3.43) and (3.47) so that

 µ
π

0 1
2

22
1H

W r hC







=
Pill box

, (3.104)

where rC  is the radius of the cavity. We note that the right- hand side of (3.104) is 
the reciprocal of the volume of the cavity. Similarly, for a rectangular cavity whose 
width is dx and length is dy,H1 and W are given by (3.59) and (3.62), and

 µ0 1
2 2

2 22
4H

W d d h
d

d dx y

x

x y







=
+






Rectangular

. (3.105)

When the cavity is square the right- hand side of (3.105) reduces to 2 divided by the 
volume of the cavity. In general we note that the ratio 2 0 1

2W Hµ  is the volume in 
which the stored magnetic energy of a uniform field H1 is equal to the stored energy 
in the cavity [32].

For a small circular aperture of radius rA

 αm Ar=
4
3

3, (3.106)

which is the volume of a sphere which fills the aperture divided by π [28]. Thus the 
coupling factor can be expressed as

 K
ab

r
H
W

r Q
g

A A U= ⋅






⋅ ⋅





4 4
3 2

4
3

3 0 1
2

3π
λ

µ
. (3.107)

The first bracket can be interpreted as the shunt reactance of a circular iris in a rect-
angular waveguide and the second as the coupling coefficient when two identical 
resonators are coupled though a circular iris. Both brackets are expressed as ratios 
of effective volumes [32].

It is helpful to consider a numerical example. Suppose that a pill- box cavity 
whose resonant frequency is 3 GHz, having the properties given in Table 3.1, is cou-
pled to standard WR284 waveguide by a circular hole. The internal dimensions of 
the waveguide are 72 mm × 34 mm. The hole is taken to have radius 7.2 mm, which  
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is about as large is it can be while satisfying the assumption that it is small enough 
for the tangential magnetic field to be constant over it. The guide wavelength is 
138 mm if  the slight detuning of the cavity by the coupling is neglected. Hence

 Q
ab r h

rE
g C

A

= ⋅ ⋅






=
λ

π
π

2 2
3

4
18700

2

3

2

. (3.108)

Now QU = 16100 so the coupling factor is 0.86. The use of this method to calculate 
the coupling coefficient between a cavity and a waveguide in the range 0 to 1.1 is 
described in [29]. The input and output couplings used in microwave tubes are gen-
erally strongly over- coupled so that the external Q is much less than the unloaded 
Q. For output coupling this is necessary to minimise the proportion of the output 
power which is dissipated in the cavity losses. Thus the coupling apertures which 
are required cannot be regarded as small. In particular their properties are modified 
from those of ideal, isolated, apertures by the proximity of the walls of the cavity 
and the waveguide and by the finite time taken for waves to propagate across them.

Useful insight can be gained into the properties of a rectangular cavity coupled 
to a waveguide by a large inductive iris by studying the arrangement shown in 
Figure 3.23(a). Inductive irises are commonly used because the risk of voltage break-
down is less than with capacitive irises. This problem can be modelled by the nor-
malised transmission line circuit shown in Figure 3.23(b). The losses in the cavity are 
represented by a normalised lumped conductance g at the centre of the cavity where

 g
Z

R Q Q
g

U

= ( ) . (3.109)

It can be shown that this corresponds to the usual definition of R Q if  the wave-
guide impedance is taken to be ZPV . The susceptance of the iris is modelled to suf-
ficient accuracy for illustration by (2.97)

 b
a

w
ag

= − 





2
2

2π
β

π
cot . (3.110)

Figure 3.23: (a) Arrangement of a rectangular cavity coupled to a waveguide by an inductive 
iris, and (b) transmission line equivalent circuit.
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The input impedance of this circuit can be found using standard transmission line 
theory and the perturbed resonant frequency is given by the minimum of S11. The  
plot of the input impedance on a Smith chart is a perfect circle and the coupling para-
meter and loaded Q can be found using the method described by Kajfez [33]. When 
the unloaded Q is computed from these results it is found to be very close to that 
set in (3.109) so confirming the self- consistency of the model (see Worksheet 3.6).  
Figure 3.24 shows a typical plot with markers set to the resonant frequency and to 
the 3dB points of the loaded resonator.

We saw in Section 2.4.3 that an inductive iris of any width can be modelled by an 
equivalent circuit. The normalised shunt reactance of the iris, in ratio of volumes 
form, is found from (2.103) and (2.104) to be

 x
ab

w b

w a

w a

w ag

= ⋅ ⋅
−( )

( )1
4

4

4 1

2

2

2

2 2 2

π
λ

π π
π

sin
. (3.111)

Comparing this expression with the first bracket in (3.107) we see that the polarisa-
bility of a wide aperture which occupies the full height of the waveguide is given by

 α π π
πm

w b

w a

w a

w a
= ⋅

−( )
⋅

( )1
4 4 1

2

2

2

2 2 2

sin
. (3.112)

When w a << 1 this reduces to

 α π
m

w b
= ⋅

1
4 4

2

, (3.113)

Figure 3.24: Polar plot (Smith chart) of the reflection coefficient of a rectangular cavity 
coupled to a waveguide by an inductive iris showing the resonant frequency (♦) and the  
3 dB points (▲).
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agreeing with the formula for a narrow aperture in [32]. Substituting in (3.107) from 
(3.105) and (3.112) gives a closed- form expression for the coupling factor.

 K a
w a

w a
w a

a
d

a
a d

Qg U=
−( )

⋅ ( )








 ⋅

+






1
2 2 1

2
2 2 2

2
2

2 2
β πsin . (3.114)

The coupling factor computed from the distributed circuit model is almost exactly 
proportional to w a( )4

 up to w a = 0 6. . The results computed from (3.114) agree 
with this very closely up to w a = 0 4.  (see Model 1 in Worksheet 3.6). In principle 
this method can be used to find the loaded Q of  any cavity but formulae are not 
available, in general, for the polarizability of rectangular apertures taking account 
of adjacent boundaries.

The lumped- element equivalent circuit of an iris- coupled cavity is shown in 
Figure 3.25 where the components with suffix c represent the properties of the cav-
ity. The waveguide has characteristic impedance Zg  and is terminated by an exter-
nal load which we shall assume is matched to the waveguide. The iris is represented 
by the reactance XA, computed using (3.110). By comparing the input impedance of 
this network when ω ω= 0 with that of the distributed circuit in Figure 3.23(b) it can 
be shown that, when the cavity is square, k = 1 π. This result is independent of the 
reactance of the aperture, or of the choice of characteristic impedance of the wave-
guide. It is tempting to interpret k as the fraction of the circulating current which 
is intercepted by the aperture. But considerations of symmetry would then require 
k = 1 4 (since the reactance of the aperture has already been adjusted for the frac-
tion of the longitudinal current in the waveguide intercepted by it). It is found that 
there is good agreement between this model with k = 1 π (Model 2 in Worksheet 
3.6) and the distributed circuit model described above. The equivalent circuit model 
is useful because it is valid for any cavity if  the values of k and XA can be found.

3.7 Measurement of Cavity Parameters

Although it is possible to compute the properties of any microwave cavity to good 
accuracy using computational electromagnetics, it is desirable to confirm the results 
by cold test measurements. The parameters to be measured include the resonant 
frequency, R/Q, unloaded Q and external Q. In addition it may be useful to map 
the electric field intensity and to identify higher-order modes. The measurements 

Figure 3.25: Equivalent circuit of an iris- coupled cavity.
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may be made on cavities at full scale or scaled up to a larger size for convenience. 
The cavities may be made of copper or brass. If  the cavities are bolted together, 
rather than being brazed, it is necessary to ensure that there is a good electrical 
contact on all joints that intercept the current circulating within the cavity. It is 
therefore important to ensure that the mating surfaces are a close fit to one another. 
The author has obtained good results using inexpensive aluminium cavities with 
conducting grease (obtainable from car accessory shops) on the mating surfaces.

The resonant frequency is measured by coupling into the cavity with small elec-
tric or magnetic probes and examining either the reflection S11( ) or transmission 
S21( ) using a vector, or scalar, analyser. The transmission measurement is to be pre-

ferred because it is easier to detect the frequency of the resonant peak accurately. 
Probes are readily made from prefabricated lengths of semi- rigid coaxial cable with 
SMA connectors at each end. The cable is cut in half  and a short length of the outer 
conductor and the insulation removed to make an electric probe. A magnetic probe 
is made in a similar manner by exposing a greater length of the central conductor, 
bending it to form a loop and soldering the free end to the outer conductor of the 
line. We saw in Section 3.6.1 that the resonant frequency of the cavity is perturbed 
by external coupling. It is therefore very important to make the coupling as weak 
as possible to avoid this effect. The positions of the probes are adjusted to give the 
greatest response for which there is no measurable perturbation of the frequency. If  
necessary the frequency can be measured as the probes are gradually inserted and 
the results extrapolated to zero insertion depth.

The R Q can be determined by measuring the change in frequency when a thin 
dielectric rod is inserted on the axis of the cavity [34]. This method was originally 
proposed by Slater [35]. It is assumed that, if  the perturbation is small, then the 
fields in the cavity outside the perturbing rod are unchanged. If  a pill- box cavity of 
height h is perturbed by a rod having radius r and relative permittivity εr then the 
change in the capacitance of the cavity caused by the rod is

 ∆C
r

h
r=

−( )ε ε π0
21

. (3.115)

The perturbed resonant frequency is then

 ω ω=
+( )

= −





1
1

20
L C C

C
C∆

∆
. (3.116)

Now the stored energy in the cavity can be written

 W CV=
1
2

2 , (3.117)

where V is the effective voltage across the cavity. Hence the frequency perturbation 
can be written

 ω ω
ε ε π ω

− = −
−( )

0
0

2
0

21

4
r r

h
V
W

. (3.118)
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Making use of the definition of R Q in (3.14)

 ω ω
ε ε π ω

− = −
−( ) 



0

0
2

0
21

2
r r

h
R
Q

, (3.119)

enabling R Q to be found from a measurement of the frequency perturbation. This 
measurement requires accurate knowledge of the relative permittivity of the per-
turbing rod. That can be determined by using the rod to perturb a cavity whose 
properties are known theoretically. It is obviously important for the frequency shift 
to be large enough to be measured accurately. There is, therefore, a conflict between 
the requirements for the perturbation to be small enough for the theory to be valid 
and for it to be large enough to be measured accurately. Equation (3.118) can be 
rewritten as

 ω ω
ε ω π ε

− = −
−( )

⋅0
0

2
0

21

2 2
r z

W
r h E  (3.120)

in which the second term can be recognised as the stored electric energy in the vol-
ume occupied by the rod. More generally, Slater’s perturbation theorem states that 
the change in the resonant frequency is proportional to the change in the stored 
energy and, thus, to the square of the magnitude of the local electric field. That 
makes it possible for the electric field to be mapped within a cavity by measuring 
the perturbation caused by a small bead. The electric field components can be mea-
sured individually by using a bead in the shape of a thin rod. A study of the accu-
racy of perturbation methods showed that the assumptions on which they are based 
cease to be valid for quite small perturbing objects [36]. However, the errors from 
different sources are of opposite signs so that the method gives useful accuracy even 
when the rod is not very small. The frequency of a pill- box cavity perturbed by a 
dielectric rod was calculated exactly and compared with the result from (3.119). It 
was found that the error in the method was about 0.3% when the ratio of the radius 
of the rod to that of the cavity was 0.05 and εr = 10. The same paper also examined 
the perturbation of the frequency of a pill- box cavity by a small dielectric sphere.

Higher-order modes can be identified by probing the field of the cavity with a 
small dielectric rod inserted through holes drilled in the cavity wall. The strength of 
the perturbation produced by a given depth of insertion of the rod provides an indi-
cation of the local strength of the electric field. It is therefore possible to detect the 
zeroes and the maxima of the magnitude of the electric field, and hence to identify 
the mode for each resonant frequency.

The loaded and unloaded Q of  a cavity resonator can be measured accurately 
using the methods described by Kajfez [33]. The input impedance of the cavity is 
determined using a vector analyser with a result similar to that shown in Figure 3.24. 
The coupling factor is given by

 K
D

D
=

−2
, (3.121)
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where D 0 2≤ ≤( )D  is the diameter of the circle which is the locus of the impedance 
on the Smith chart. The frequencies ω1 2,( ) are found at the two points indicated 
by triangular markers in Figure 3.24 which subtend an angle of 90° at the anti- 
resonant point and then

 QL =
−

ω
ω ω

0

1 2

. (3.122)

The unloaded Q of  the cavity can then be determined using (3.20).
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4 Slow- Wave Structures

4.1 Introduction

The useful bandwidth of tubes based on the resonators described in the previous 
chapter is limited to a few percent. The electric field which interacts with the elec-
tron beam is essentially a standing wave restricted to a small region of space. The 
R Q of  the resonators is typically of the order of 100 Ω and the shunt impedance 
is proportional to Q. Thus if  Q is reduced to increase the bandwidth, the gap volt-
age induced by a given RF beam current decreases. It eventually falls to a point 
where the interaction with the beam is of no practical value. When wide band-
width is required it is necessary to adopt a different approach and arrange for the 
interacting electric field to be in the form of a travelling wave whose phase velocity 
is approximately synchronous with the electron velocity. The interaction field is 
smaller than is the case with a resonator but a strong interaction can be achieved 
by maintaining synchronism over a much longer distance that the interaction gap 
of a cavity resonator. This chapter deals with electromagnetic structures that sup-
port electromagnetic waves having the properties required for interaction with an 
electron beam. These are known as slow- wave structures. Many types of slow- wave 
structure are used in microwave tubes and many more types have been considered 
for potential use [1, 2]. There is a very extensive literature on the subject: these two 
papers cite over 300 references. It is therefore only possible to consider the general 
principles, and some of the more important types of structure, in the space avail-
able in this book. The basic principles of uniform and periodic structures are dis-
cussed in the subsections of this section. Practical slow- wave structures of various 
types are considered in Sections 4.2 to 4.6. The final section deals with methods for 
measuring the properties of slow- wave structures.

4.1.1 Uniform Slow- Wave Structures

The essential property of any useful slow- wave structure is that it should support 
an electromagnetic wave having a longitudinal component of the electric field and 
a phase velocity rather smaller than the velocity of light. Figure 4.1 shows the gen-
eral arrangement of a cylindrical slow- wave structure. The diagram is divided into 
two concentric regions: the inner region r a<  is empty and allows for the passage 
of an electron beam; the outer region r a≥  supports the propagation of a slow 
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electromagnetic wave having a z- component of electric field that is non- zero on 
the axis. These requirements are satisfied if  the structure supports a TM01 mode. 
The z component of the electric field in the inner region must then satisfy the wave 
equation

 ∇ −
∂
∂

=2
2

2

2

1
0E

c
E
tz

z . (4.1)

In cylindrical polar coordinates this becomes
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when azimuthal symmetry is assumed. Now let the electric field on the axis be 
given by

 E E j t zz = −( )0 0exp ,ω β  (4.3)

where β ω0 = vp  and vp is the phase velocity of the wave. Substituting for Ez in 
(4.2) gives

 1
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2r r
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E
r c

Ez
z

∂
∂

∂
∂







− −





=β ω
. (4.4)

This is a form of Bessel’s equation [3] whose solutions are modified Bessel func-
tions. Thus the electric field within the inner region is given by

 E E I r j t zz = ( ) −( )0 0 0 0γ ω βexp , (4.5)

where γ β ω0 0
2 2 2= − c  is a real quantity because β ω0 > c for a slow wave. The Bessel 

function I0 increases rapidly as its argument increases, as shown in Figure 4.2. It is 
therefore necessary for the electron beam to be as close as possible to the surface 
of the slow- wave structure to obtain a strong interaction. When the electron beam 
is a solid cylinder which is coaxial with the structure it is usual to choose γ 0 1a ≤  to 
minimise the variation of the electric field over the cross- sectional area of the beam. 
It can be seen from (4.5) that Ez is non- zero when r a=  and, therefore, the structure 
in the outer region must be able to support a longitudinal electric field at its surface. 

Figure 4.1: Generic slow- wave structure.
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Similar conclusions are obtained when the structure has a planar geometry and the 
transverse variation of the electric field is a hyperbolic cosine, hyperbolic sine, or 
exponential function, depending upon the boundary conditions.

Further insight into the general properties of  slow- wave structures can be 
obtained from an equivalent uniform transmission line having series induct-
ance, and shunt capacitance, as shown in Figure 2.2(b). At a given frequency 
the inductance and capacitance can be chosen so that the phase velocity and 
the characteristic impedance have the desired values. This is the equivalent 
circuit of  a two- wire line propagating a TEM  wave whose phase velocity is 
given by

 v
LC

c
p

r

= =
1

ε
, (4.6)

where L and C are the inductance and capacitance per unit length and εr is the rela-
tive permittivity of the dielectric separating the conductors. Although (4.6) shows 
that this line can have a phase velocity less than the velocity of light it is not useful 
as a slow- wave structure because the longitudinal electric field is zero everywhere. 
The phase velocity can be reduced from that given by (4.6) by increasing the induct-
ance per unit length. This is achieved most simply by making the inner conductor 
of a coaxial line in the form of a helical wire. The properties of this important 
type of slow- wave structure are considered in detail in Section 4.3. For our present 
purposes it is sufficient to note that all methods of increasing the series inductance 
lead to structures in which the current flow has other components besides the axial 
component. The magnetic field is then no longer purely transverse and the mode is 
not a TEM  mode.

The characteristic impedance of the modified line is

 Z
V

Pc =
2

2
, (4.7)

Figure 4.2: The Bessel function I0(z).
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where V is the voltage between the conductors and P is the power flow along the 
line. In general, the inductance and capacitance per unit length of the modified line 
depend on frequency so that the line is dispersive. In that case

 Z
V

Wvc
g

=
2

2
, (4.8)

where W is the stored energy per unit length and vg is the group velocity. The char-
acteristic impedance can then be written
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p

g p

p

g

p

g
c= ⋅ = =

2

02
, (4.9)

where vp is the phase velocity and Zc0 is the characteristic impedance of a non- 
dispersive line having the same inductance and capacitance per unit length. From 
(4.9) it can be seen that it is desirable for the characteristic impedance to be as high 
as possible because that gives a larger voltage for a given power flow. Hence it is 
best to modify the line by increasing the inductance while keeping the capacitance 
small. That, in turn, means that the relative permittivity of the dielectric should 
also be small.

It is commonly stated that the axial electric field on the surface of the slow- wave 
structure is given by [4, 5]

 E a
V
z

j Vz ( ) = −
∂
∂

= β0 . (4.10)

However, this equation cannot be correct as it stands, because the axial component 
of the electric field is zero in the unmodified structure. The reason is that (4.10) does 
not include the contribution to the electric field from the time- varying magnetic 
field. When this is taken in to account we find that

 E a
V
z

A
tz
z( ) = −

∂
∂

−
∂
∂

, (4.11)

where Az is the magnetic vector potential which is related to the axial compo-
nent of  the current [6]. The magnetic vector potential also satisfies the Lorentz 
condition

 ∇⋅ = −
∂
∂

A εµ V
t

. (4.12)

Now the components of A are associated with components of the current density in 
the same directions. If  the radial component of the current density is zero and the 
mode of propagation is azimuthally symmetric then (4.12) becomes

 ∂
∂

= −
∂
∂

A
z

V
t

z εµ . (4.13)
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Making use of the variation with z and t defined in (4.3)

 A
v

Vz
p

=
ω

β0 0
2

, (4.14)

where vp0 is the phase velocity of the TEM  wave on the unmodified structure. 
Substituting for Az in (4.11) gives

 E a j
v

v
Vz

p

p

( ) = −






β0

2

0
2

1 . (4.15)

It is usually the case that v vp p 0 and then (4.10) is a satisfactory approximation. 
We can define an impedance which relates the strength of the electric field to the 
power flow in the structure  P( ) by
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z p

p
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= −
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2
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2

2

2
1

β
. (4.16)

This impedance, which we will call the surface impedance, is the impedance pre-
sented to the current that is induced in the slow- wave structure by the beam. When 
v vp p 0 the surface impedance is equal to the characteristic impedance of the struc-
ture. An indication of the strength of the interaction between the wave on the struc-
ture and an electron beam is provided by the Pierce Impedance defined in terms of 
the electric field on the axis by

 Z
E

P
Z

I a
P

z S=
( )

=
( )

0

2

2

0
2

0 0
2β γ

. (4.17)

A simple slow- wave structure supporting the TM01 mode can be made by lining a 
circular metallic waveguide with dielectric. Then, referring to Figure 4.1, it is neces-
sary for the outer (dielectric) region to support a travelling electromagnetic wave. 
Because the velocity of this wave is less than that of light the fields in the inner 
(vacuum) region are evanescent and decay towards the axis as shown in Figure 4.2. 
Experimental devices incorporating this kind of slow- wave structure have been con-
structed [7]. The threshold velocity for a growing wave (Cerenkov) interaction is c rε  
so that a device with a relative permittivity of the order of 10 gave maximum gain at 
a beam voltage of 160 kV. A device using a multi- layer photonic band- gap structure 
with a beam voltage of 110 kV is described in [8, 9]. This type of slow- wave structure 
has poor thermal dissipation making it unsuitable for continuous high power oper-
ation. There is also the possibility that static charge may accumulate on the dielectric 
surface leading to electric breakdown or disruption of the electron beam.

Another type of uniform slow- wave structure is the sheath helix in which dielec-
tric material in the outer region supports a helically conducting surface at r a= .  
Such a material could be manufactured by arranging insulated metal wires side by 
side in a strip and then winding the strip helically around a cylindrical mandrel. 
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This structure, which is a useful model for the helix slow- wave structure, is dis-
cussed in detail in Section 4.3.1.

4.1.2 Periodic Slow- Wave Structures

The previous section has shown that uniform slow- wave structures are of limited 
use. All the types of slow- wave structure which are used in microwave tubes are 
periodic and the interaction space is bounded by sections of metal separated by 
gaps as shown in Figure 4.3. The gaps have length g, the period of the structure is 
p, and the electric fields in the gaps are determined by the wave propagating in the 
structure to which they are coupled. The details of practical slow- wave structures 
are discussed in later sections. Here we restrict our attention to the general prop-
erties of structures of this kind. Thus no assumptions are made about the region 
outside the conducting rings other than that it is capable of supporting a travelling 
electromagnetic wave with a propagation constant β0 at frequency ω.

Any periodic structure can be represented at a single frequency by a uniform trans-
mission line, having propagation constant β0 and characteristic impedance Zc, which 
is tapped at regular intervals p as shown in Figure 4.4(a). A general external connec-
tion to the line can be represented by an ideal transformer whose ratio is 1: N together 
with a lumped susceptance Z3 which represents the storage of electromagnetic energy 
in the junction [10]. Figure 4.4(b) shows a single junction in this structure in which 
the signs of the voltages and currents on the transmission line are chosen so that the 
cells can be cascaded. It is convenient to represent this by the hybrid transfer matrix
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1 0 0

1
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= −






























= [ ]
II3














, (4.18)

where Y Z3 31= . In this representation the circuit is driven by the voltage and cur-
rent at port 1 and the current induced by the electron beam at port 3. The outputs 
are the voltage and current at port 2 and the voltage acting on the beam at port 3.

Figure 4.3: Arrangement of a periodic slow- wave structure.
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The properties of a single cell of the structure, such as that between the planes 1 
and 2 in Figure 4.4(a), can be found by noting that the voltage and current on the 
line are related to the amplitudes of the forward and backward waves by

 V
I Y Y

V
Vc c

f

b







=
−

















1 1
. (4.19)

The inverse of this equation is
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Then, from (4.18), (4.19), and (4.20)
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which can be evaluated as
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The matrix representing the propagation of waves on a length p 2 of  the transmis-
sion line is
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Thus the hybrid wave matrix for a single cell of the structure is
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Figure 4.4: Periodic slow- wave structure: (a) general equivalent circuit, and (b) a single 
junction (after Figure 4.24 in [10]).
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This can be evaluated as
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We note that, if port 3 is open circuit I3 0=( ) then (4.25) shows that the forward and 
backward waves are coupled by the shunt admittance Y3. Furthermore the off- diagonal 
terms 1 2,( ) and 2 1,( ) have opposite signs so, from the coupled- mode theory reviewed 
in Section 1.3.8, we recognise this as Case B coupling between the forward and the 
backward wave. Thus the presence of a periodic discontinuity in the line leads to the 
presence of a stop band, as is well- known from the theory of filters [10]. In cases where 
Y3 0=  there is no stop band but the periodic coupling to the transmission line remains.

By analogy with the surface impedance of a uniform structure we can define the 
total impedance of  a periodic structure by

 Z
V

PT = 3
2

2
, (4.26)

where P is the power flow on the line. But for a forward wave

 P
V

Z
f

c

=
2

2
 (4.27)

and therefore the turns ratio N  is found from the element at the bottom of the first 
column of the matrix in (4.25) to be

 N Z ZT c= . (4.28)

4.1.3 Space Harmonics

Let us assume, for simplicity, that the field in each gap is uniform (which is permis-
sible if the opposing edges are blunt) and varies sinusoidally with time with frequency 
ω. The phases of the fields in adjacent gaps are not independent but are related by

 φ φ β πi i j p m+ = − +( )1 0 2exp , (4.29)

where φi is the phase in the ith gap and m = ± ±0 1 2, , , The additional term in the 
brackets in (4.29) arises because the exact phase relationship is indeterminate to a 
multiple of 2π. We also note that, at a fixed time, the field along the wall is a peri-
odic function in space whose wavelength is

 λ π β= 2 0 . (4.30)

Figure 4.5 shows an illustration of the way in which the field at r a=  varies with 
time. It can be seen that the gap fields are samples of a wave which is travelling in 
the positive z direction.
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If  we define propagation constants

 β β π
m

m
p

= ± +




0

2  (4.31)

Figure 4.5: Electric field of a periodic slow- wave structure at r a=  for β0 50p = : (a) ωt = 0, 
(b) ωt = 60, and (c) ωt = 120.
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which have periodicity p then, by virtue of Floquet’s Theorem [11], the electric field 
along the wall can be expanded as a Fourier series in space

 E z a E j zz m m
m

, exp ,( ) = −( )
= −∞

∞

∑ β  (4.32)

where Em is the amplitude of the mth space harmonic of the field and sinusoidal 
time dependency as exp j tω( ) is assumed. To find the amplitudes of the individual 
harmonics we multiply both sides of (4.32) by exp j znβ( ) and integrate from − p 2 
to p 2. The result is
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Now

 exp exp− −( )( ) = − −( )





j z j
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m nm nβ β π2  (4.34)

is zero except when m n= . Then, if  E z a Ez ,( ) = 0 when − ≤ ≤g z g2 2 and 
E z az ,( ) = 0 elsewhere, (4.33) becomes
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which may be integrated to give
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and rearranged as
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If  we suppose that the gaps are connected to a dispersionless transmission line, 
then the dispersion diagram of the wave in the gaps is as shown in Figure 4.6. The 
notation in this figure is consistent with (4.31) but differs from that used by some 
other authors. The advantage of  the notation used here is that the space harmonics 
of  the forward and backward waves having the same index m( ) have the same nor-
malised amplitudes. From Figure 4.6 it is evident that the group velocities ∂ ∂( )ω β  
of  all the space harmonics are the same at a given frequency but that their phase 
velocities ω β( ) differ. The significance of  this will become apparent later on. It is 
important to recognise that the amplitudes of  the space harmonics are linked by 
(4.37) so that they cannot be excited independently of  each other. An alternative 
way of  thinking about space harmonics is to note that an electron passing along 
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the wall experiences the instantaneous field in each gap as it passes it. The phase 
relationship between the gaps is therefore perceived as that of  the space harmonic 
whose phase velocity is equal to the velocity of  the electron. This is an example of 
the aliasing that occurs when waveforms which are periodic in time are sampled 
periodically [12].

In Figure  4.6 the range − ≤ ≤π β πp p is known as the First Brillouin Zone, 
while π β πp p≤ ≤ 2  is the Second Brillouin Zone, and so on. It can be seen that 
the dispersion diagram in the range 0 ≤ ≤β π p is repeated periodically in both 
directions. Thus it is often sufficient to plot the dispersion diagram only in this 
range. A diagram of this kind is called a reduced zone diagram. We have seen that if  
the transmission line has periodic discontinuities with spacing p then the forward 
and backward waves are coupled together and stop bands occur. It is easy to see 
that these are caused by the cumulative addition of waves reflected from the discon-
tinuities when the electrical length from one discontinuity to the next, and back, is 
equal to a whole number of wavelengths. Thus coupling between the modes can 
occur when β π= ± n p where n is an integer. Examples of this will be shown in later 
sections.

It is common in the literature to find references to ‘forbidden regions’ in the 
dispersion diagrams. These occur when a slow- wave structure is not surrounded 
by a conducting wall. It then radiates energy into space when the phase velocity 
of a space harmonic exceeds the velocity of light, as it may at some frequencies. 
When the structure is contained within a conducting wall, waves that propagate 
with phase velocities greater than c do not radiate energy and there are no forbid-
den regions. All the structures to be discussed in this chapter are contained within 
metal walls.

Figure 4.6: Dispersion diagram for space harmonic waves on a dispersionless periodic slow- 
wave structure.
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4.2 Planar Slow- Wave Structures

Planar slow- wave structures find some use in crossed- field amplifiers, and are of 
interest for their potential use in millimetre wave travelling- wave tubes. We shall see 
below that the concepts are helpful for the understanding of helix and helix- derived 
structures. All the planar structures to be discussed are based on a microstrip array, 
as shown in the cross- section in Figure 4.7. At a height h2  above the ground plane 
there may be another earthed conducting plane or a symmetry boundary. The strips 
have finite thickness, as shown, and the array is assumed to be of infinite extent in 
the x z,( ) plane. If  there is a dielectric present it is normally in contact with the strips 
to provide mechanical support and a path for the conduction of heat. However, the 
theory to be described can also be applied to cases where the dielectric layer does 
not make contact with the strips. In many practical structures the dielectric is not 
continuous but comprises an array of rods at right angles to the strips. It is found 
that such an array of dielectric rods may be replaced, for modelling purposes, by an 
equivalent uniform dielectric without serious loss of accuracy.

We wish to investigate the case where the lines propagate a TEM  wave in the x 
direction such that there is a phase difference φ between adjacent strips. Strictly 
speaking, a pure TEM wave cannot exist because of the shear caused by the diffe-
rence between the phase velocities in the dielectric and in free space. However, in 
many cases, this effect is small and it is possible to assume that there is a quasi- TEM 
wave [13]. Figure  4.8 shows the self  capacitance of one line, the mutual capaci-
tances coupling it to the adjacent lines, and the voltage on each line. Consider, first, 
the case where there is no dielectric substrate [14]. The charge per unit length on 
the line is

 q C V C V jn jnn
n

N

= + − −( ) − ( )( )
=

∑0
1

2 exp expφ φ  (4.38)

so that the effective capacitance per unit length of the line is

 C C C nn
n

N

φ φ( ) = + − ( )( )
=

∑0
1

2 1 cos , (4.39)

Figure 4.7: Cross- section of a microstrip array.
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where the summation is taken to include as many terms as are needed to ensure 
good accuracy. The coefficients of capacitance can readily be found from finite dif-
ference solutions of Laplace’s equation (see Worksheet 4.1). The use of quasi- static 
analysis is justified because the phase velocity of propagation in the z direction is 
normally much less than the velocity of light. In practice it is found that satisfac-
tory results can normally be obtained with N = 2.

The effective inductance per unit length can be found in a similar way. The mag-
netic flux linked to one line is

 Λ = + ( ) + −( )( )
=

∑L i M i jn jns n
n

N

exp exp ,φ φ
1

 (4.40)

where i is the magnitude of the current in each line, Ls is the self- inductance per unit 
length of the line, and Mn are the mutual inductances coupling it to the other lines 
in the array. Thus the effective inductance per unit length is

 L L M ns n
n

N

φ φ( ) = + ( )
=

∑2
1

cos . (4.41)

Now let L0 be the inductance per unit length when φ = 0. Then (4.41) can be written

 L L M nn
n

N

φ φ( ) = − − ( )( )
=

∑0
1

2 1 cos . (4.42)

It is not necessary to find explicit expressions for the coefficients of inductance 
because the line supports a TEM  wave with phase velocity c so that

 L
c C

φ
φ

( ) = ( )
1

2
. (4.43)

However we shall find (4.42) useful in understanding the difference between the 
properties of different types of slow- wave structure.

When there is a dielectric substrate present with relative permittivity ε2 the effect-
ive capacitance per unit length is

 C C C nK K Kn
n

N

φ φ( ) = + − ( )( )
=

∑0
1

2 1 cos , (4.44)

where the coefficients of capacitance can be found using finite difference calcula-
tions as before. This method can be used when the strip conductors have finite 
thickness, whereas analytical methods are restricted to strips having zero thickness 
[13, 14]. We note that, approximately

 C CK 0 2 0= ε  (4.45)

and

 C CKn n= +( )1
2

1 2ε . (4.46)
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It is convenient to define the effective relative permittivity by

 ε φ
φ

φeff
KC

C
( ) =

( )
( ) . (4.47)

The effective permittivity calculated in this way with N = 2 agrees closely with that 
computed by Weiss [15] if  it is assumed that there is a symmetry boundary at y h= 2 
(see Worksheet 4.2).

The inductance per unit length is not changed by the presence of the dielectric so 
the phase velocity of waves on the line with dielectric loading is

 v
L C

c
pe

K eff

φ
φ φ ε φ

( ) =
( ) ( )

=
( )

1
, (4.48)

the propagation constant in the x direction is

 β φ ω
φx

pev
( ) = ( ) , (4.49)

and the characteristic impedance is

 Z
L

Cc
K

φ
φ
φ

( ) =
( )
( ) . (4.50)

The results of this calculation also agree closely with those given by Weiss [15].
This basic formulation can be used to find the properties of  several of  different 

types of  planar slow- wave structures [14]. The procedure is to consider a length 
l of  the lines in the x direction and to apply boundary conditions as illustrated 
in Figure 4.9. In all practical cases the lines must be enclosed by a metal bound-
ary. The region above the line may be terminated by a conducting plane, or two 
identical lines may be placed opposite one another. The electrons which interact 

Figure 4.8: Equivalent circuit for the capacitance of one line in the microstrip array.
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with the fields of  the line move in the z direction. They may either pass close to 
the surface of  the line or, if  the strips are sufficiently thick, through holes bored 
through them.

4.2.1 Ladder Line

A ladder line is created by connecting all the strips together at each end as shown in 
Figure 4.9(b). The boundary conditions are

 
V l V l

V l V l
1 2

1 2

2 2 0

2 2 0
( ) = ( ) =
−( ) = −( ) =





, (4.51)

where V1 and V2 are the voltages on two adjacent lines. These conditions require that 
there is a standing wave on each line such that

 β φ πx l( ) =  (4.52)

for all φ. Then the dispersion equation is

 ω π φ π
ε φ

= ( ) = ⋅
( )l

v
c
lp

eff

1
. (4.53)

The short circuits at the ends of the lines can be provided by the side walls of the 
enclosing waveguide so no dielectric is necessary to support them. However, the 
circuit is resonant at ω π= c l  when there is no dielectric loading, so it is then of 
little use as a slow- wave structure. The structure becomes useful if  the ladder line is 
enclosed by a ridged waveguide (the Karp structure) or by a cruciform waveguide 
(the Anti- Karp structure) [16, 17]. Figure 4.10 shows examples of ladder line slow- 
wave structures and their dispersion curves [1].

Figure 4.9: Planar slow- wave structures: (a) Finite array of parallel lines, (b) Ladder line, 
(c) Meander line, and (d) Inter-digital line.
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4.2.2 Meander Line

The boundary conditions for the meander line structure shown in Figure 4.9(c), are [15]

 

V l V l

I l I l

V l V l j

I l

1 2

1 2

1 2

1

2

2 2

2 2 2

2

( ) = ( )
( ) = − ( )
−( ) = −( ) ( )
−( ) = −

exp φ
II l j2 2 2−( ) ( )








 exp

.

φ

 (4.54)

In order to satisfy these conditions four propagating modes are required. Two are 
provided by the even mode propagating in the ±x directions with a propagation 
constant given by (4.49). The other two waves are those of the odd mode for which 
the phase is π φ+( ) [14, 18]. The voltages on two adjacent lines are given by

 V A x jB x je o1 2 2 2 2, cos sin exp ,= ( ) ( )  ±( )β β φ  (4.55)

where β β φe x= ( ) and β β φ πo x= +( ) are the propagation constants in the x direction 
of the even and odd modes, and A and B are the amplitudes of the even and odd 
modes whose ratio is

 B
A

Z
Z

l

l
o

e

e

o

= ⋅
( )
( )













sin

sin
,

β
β

1
2

 (4.56)

Figure 4.10: Propagation along ladder lines, (a) Cross sections of lines, (b) dispersion curves 
with ladder detail
(copyright IEEE 1960, reproduced, with permission, from [1]).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.005
https://www.cambridge.org/core


Slow-Wave Structures150

150

where Z Ze c= ( )φ  and Z Zo c= +( )φ π . The dispersion equation obtained is

 tan
tan tan

cot cot
.2 2

2 2

2 2
φ

β β
β β( ) =

( ) ( )
( ) ( )





Z
Z

l l

l l
o

e

e o

e o

 (4.57)

The upper line in (4.57) applies to the first pass- band of the structure and the lower 
line to the second pass- band. The dispersion diagram for the case presented in 
[15, 19] is shown in Figure 4.11. In this figure the lines are calculated from (4.57) 
assuming that l is the full length of the line in the x direction. The dashed lines 
assume TEM propagation along a folded line whose length is l with phase velocity 
determined by the approximate effective relative permittivity 1 22+( )ε  [13]. The 
experimental points are taken from [19] (see Worksheet 4.2). It can be seen that the 
periodic discontinuities in the line produce a stop band when φ β π= =0 p . Note that 
in [15] the phase ϕ is that for a complete period 2p( ) of  the structure so that ϕ φ= 2 .

To find the coupling impedance of the structure we note that the energy stored 
per line in the even modes is

 W C A x dxe K

l

l

eφ φ β( ) = ( ) ( )
−
∫

1
2

4 2

2

2

2cos  (4.58)

and in the odd modes is

 W C B x dxo K

l

l

oφ φ π β( ) = +( ) ( )
−
∫

1
2

4 2

2

2

2sin . (4.59)

Hence the power flow in the z direction is

 P
l A

p
v

v Z
l

l v Z
B
A

l
z g

e e

e

e o o

oφ β
β

β( ) = +






+ 





−
2 1

1
1

1
2 2

sin sin
ββol



















 (4.60)

where the group velocity v d dg = ω β0  is obtained from the dispersion curve. The 
magnitude of the electric field in the gaps can be shown to be

 E x
A
g

x
B
A

xg e o, cos sin sin cos .φ β φ β φ( ) = ( ) ( ) + ( ) ( )







4
2 2  (4.61)

Figure 4.12 shows how the magnitude of the field on the meander line, whose 
dimensions are given in [15], varies with x for various values of φ. The phase of 
the field is constant in each gap and the phase difference between the gaps is φ. The 
folding of the line means that the curves in Figure 4.12 are reflected about the plane 
x = 0 in alternate gaps. This property means that the calculation of the space har-
monics and of the coupling impedance is complicated. For the special case where 
x = 0 the magnitude of the fundamental space harmonic is obtained from (4.37) as

 E E
g

g
g
pg0

0

0

0 0
2

2
, ,

sin
.φ φ

β
β

( ) = ( ) ( )





⋅  (4.62)
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where β φ0 p = . The surface impedance of the line at x = 0 is given by

 
Z

E

PS
z

=
( )0

2

0
2

0

2

,
.

φ
β  

(4.63)

The results obtained from this equation are of  the same magnitude as those 
in [15] but the curve given there is probably wrong. The results of  experi-
mental measurements made on the same structure by covering it with a thin 
dielectric sheet are rather different but difficult to reproduce theoretically (see 
Worksheet 4.2) [19]. Practical examples of  meander line slow- wave structures 
are given in [20– 23].

Figure 4.11: Dispersion diagram of a meander line slow- wave structure showing propagation 
along uncoupled lines (dashed) and experimental points for comparison
(copyright 1974 IEEE, reproduced, with permission, from [15]).

Figure 4.12: Distribution of the z component of the electric field in a meander line slow- wave 
structure.
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4.2.3 Inter-digital Line

The boundary conditions for the inter-digital line shown in Figure 4.9(d) are [24]

 

V l V l

I l I l
1 2

1 2

2 2 0

2 2 0
( ) = −( ) =
−( ) = ( ) =





.
 

(4.64)

The period of the inter-digital line is 2p like that of the meander line. The disper-
sion equation is the same as that for a meander line if  the widths of the strips 
and the gaps are interchanged. This is because the two structures are duals of one 
another so that the electric field lines in one case correspond to the magnetic field 
lines in the other and vice- versa. This is an application of Babinet’s principle [6]. 
The interdigital line does not require dielectric support [25, 26].

4.3 Helix Slow- Wave Structures

The planar structures discussed in the previous section are useful for interaction 
with sheet beams, and in crossed- field devices, but their arrangement is not ideal for 
interaction with the cylindrical beams used in most linear- beam tubes. Also, because 
they are periodic structures, they are dispersive and have limited bandwidth. These 
problems are avoided in the helix slow- wave structure shown in Figure 4.13. In this 
structure a helical conducting tape is held within a metal shield by three dielectric 
support rods. The support rods also provide a path for heat to flow from the helix 
to the shield. This structure can be regarded as a coaxial line with a helical inner 
conductor. Thus the series inductance is increased and the phase velocity decreased 
as discussed in Section 4.1.1. The dielectric loading is kept as small as possible, 
consistent with adequate thermal conduction, to avoid increasing the shunt cap-
acitance and thereby reducing the characteristic impedance. The support rods are 
usually made of materials such as anisotropic boron nitride and CVD diamond 
[27]. Beryllia, which has high thermal conductivity, is toxic and its use is now gener-
ally avoided. The helix is made of tungsten or molybdenum to ensure dimensional 

Figure 4.13: Arrangement of a helix slow- wave structure.
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stability at high temperatures. It is important to maintain good thermal contact 
between the support rods and the helix. This can be achieved by using assembly 
methods which ensure that the rods exert a compressive force on the helix, or by 
brazing the helix to the rods [4, 28]. The thermal analysis of rod supported helix 
slow- wave structures is discussed in [29, 30].

The basic properties of the helix slow- wave structure can be understood using 
the methods of the previous section. Figure 4.14 shows two adjacent strips from a 
developed (opened out) helix. From the geometry of the structure the pitch angle 
ψ is given by

 tan .ψ
π

=
p
a2

 (4.65)

The boundary conditions are now just

 
V l V l

I l I l
1 2

1 2

2 2

2 2
( ) = −( )
( ) = −( )





 (4.66)

and the structure supports an azimuthal TEM wave whose phase velocity is deter-
mined by the effective permittivity. If  the helix is supported by a material whose 
relative permittivity is unity then the axial phase velocity is expected to be

 v cp = sin .ψ  (4.67)

It is found that this is not quite accurate for reasons which are explored below.

Figure 4.14: The geometry of the helix slow- wave structure.
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4.3.1 The Sheath Helix Model

Although the helix is geometrically simple it is very difficult to analyse mathem-
atically. The simplest analytical model treats the helix as a thin cylinder in which 
conduction is only possible at an angle ψ to transverse planes, where ψ is the pitch 
angle of the helix shown, in Figure 4.13 [10]. The region between the cylinder and 
the shield is assumed to be filled with uniform dielectric material having relative 
permittivity ε2. The component of the electric field in the direction in which the 
cylinder conducts must be zero and therefore, in region 1  r a≤( ),

 E Ezθ ψ ψ1 1 0cos sin+ =  (4.68)

and, in region 2 a r s≤ ≤( ),
 E Ezθ ψ ψ2 2 0cos sin .+ =  (4.69)

The tangential electric field normal to the direction of conduction must be continu-
ous so that

 E E E Ez z1 1 2 2cos sin cos sin .ψ ψ ψ ψθ θ− = −  (4.70)

The current flow in the cylinder is in the direction of conduction and therefore the 
tangential magnetic field must be continuous in this direction

 H H H Hz zθ θψ ψ ψ ψ1 1 2 2cos sin cos sin .+ = +  (4.71)

These four equations define the boundary conditions at r a= . The boundary con-
dition at r s=  is E Ezθ = = 0. The axial components of both the electric and mag-
netic field are non- zero. Therefore the wave propagating on the structure cannot be 
a pure TM  or TE mode but is a hybrid of the two linked by the conduction angle 
of the cylinder. A cylindrically- symmetrical solution to this problem can be found 
by assuming that all quantities vary in the z direction as exp j t zω β−( )0 . The radial 
propagation constants are then

 
γ β ω

γ β ε ω

0 0
2 2

2 0
2

2
2

0= − ( ) ≤ ≤( )
= − ( ) ≤ ≤( )

c r a

c a r s .
 (4.72)

In practice β0
2 is normally much greater than ω c( )2

 and it is possible to use the 
approximations γ γ β0 2 0= =  without serious error. For the TM  fields

 
E A I r

E
A

K s
I r K s I s K r

z

z

1 1 0 0

2
2

0 2
0 2 0 2 0 2 0 2

= ( )
= ( ) ( ) ( ) − ( ) ( ) 

γ

γ
γ γ γ γ  ,

 (4.73)

where A1 and A2 are constants, since the z component of tangential electric field 
must be zero when r s= . Similarly for the TE fields

 
H B I r

H B I r C K r
z

z

1 1 1 0

2 2 1 2 2 1 2

= ( )
= ( ) + ( )

γ
γ γ ,

 (4.74)
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where B1, B2 and C2 are constants. The transverse field components Hθ and Eθ 
can be found from (2.19) and (2.20) expressed in cylindrical polar co- ordinates. 
Applying the boundary condition on Eθ at r s=  gives C2 in terms of B2 so that all 
the field components can be expressed as functions of r and the four constants A1, A2,  
B1 and B2. Substituting these expressions into the equations for the four boundary 
conditions at r a= ((4.68) to (4.71)) leads to the dispersion equation for the struc-
ture. The equations obtained in this way are rather complicated so we will simply 
summarise the results.

If  the sheath helix is in free space and s → ∞ the dispersion equation is [10]

 
γ

ψ
γ γ
γ γ

0
2

2
2 1 0 1 0

0 0 0 0

a

ka

I a K a

I a K a
( )
( )

=
( ) ( )
( ) ( )tan . (4.75)

The effects of the finite shield radius and the supporting dielectric material can 
conveniently be expressed using the methods described in [31]. Equation (4.75) is 
first expressed in terms of equivalent circuit parameters by

 L I a K a0
0

1 0 1 0
0

0

2

2

2
= 



 ( ) ( )( )





µ
π

γ γ β
γ

ψcot  (4.76)

and

 C
I a K a0

0

0 0 0 0

2
= ( ) ( )

πε
γ γ

. (4.77)

Substitution of L0 and C0 into the equation for the propagation constant of a trans-
mission line (2.21) gives the dispersion equation (4.75). It should be noted that the 
inductance and capacitance are functions of frequency.

If  the sheath helix is surrounded by a shield then the inductance and capacitance 
become [31]

 L L
I a K s

I s K a
= −

( ) ( )
( ) ( )









0

1 0 1 0

1 0 1 0

1
γ γ
γ γ

 (4.78)

and

 C C
I a K s

I s K a
= −

( ) ( )
( ) ( )











−

0
0 0 0 0

0 0 0 0

1

1
γ γ
γ γ

 (4.79)

The diameter of the shield is normally chosen so that higher- order modes, espe-
cially the TE11 coaxial waveguide mode, are cut off. If  this is not so then the higher-
order modes can provide an unwanted feedback path when the structure is used in 
a travelling- wave tube [32].
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The addition of a uniform dielectric supporting medium between the helix and 
the shield does not affect the inductance, but it multiplies the capacitance by the 
effective relative permittivity [33]

 ε γ γ ε γ γ γ
γ γ

eff a s a I a K a
I a K s

I0 0 2 0 0 0 1 0
1 0 0 01 1 1,( ) = + −( )( ) ( ) ( ) +
( ) ( )

00 0 1 0γ γb K a( ) ( )











. (4.80)

where it has been assumed that γ γ2 0= . Note that this expression differs from that 
given in [31] which does not take account of the radial boundary conditions cor-
rectly. The effect of the additional term (in braces) is most important if  s a is close 
to unity. When the dielectric loading is included (4.79) becomes

 C C a s
I a K s

I s K aeff= ( ) −
( ) ( )
( ) ( )











−

0 0 0
0 0 0 0

0 0 0 0

1

1ε γ γ
γ γ
γ γ

,  (4.81)

In the derivation of these equations it was assumed that the phase velocity was small 
enough for the quasi- static approximation to be valid so that γ β0 0  everywhere.

The characteristic impedance of the slow- wave structure is found by substitut-
ing the values of L and C into (4.9). An alternative, and much more complicated, 
expression for the characteristic impedance of a helix in free space can be derived 
by integrating the Poynting vector to obtain the power flow [34]. The two methods 
give identical numerical results.

In practical slow- wave structures the helix is supported within the shield by 
dielectric support rods, as shown in Figure 4.13. If  these are wedge- shaped then 
relative permittivity of the equivalent uniform dielectric is given by [31, 35]

 ε θ
π

ε2 1
2

1= + −( )N
r , (4.82)

where there are N rods having relative permittivity εr each subtending an angle θ on 
the axis. This equation can be derived by considering a coaxial line in which the cen-
tral conductor is supported by wedge- shaped rods. The problem is a quasi- static one 
in which the equipotentials are concentric circles. The capacitance between the two 
conductors is therefore the parallel combination of the capacitances of the vacuum 
and the dielectric regions. That leads directly to (4.82). When the rods have some other 
shape, such as the ‘T’ shaped rods shown in Figure 4.15(a), the effective relative per-
mittivity can still be determined from the capacitance. It is commonly assumed that 
this can be done by separating the region between the helix and the shield into two or 
more layers, and then finding the effective relative permittivity for each, using (4.82) 
[36]. This method, which assumes that the equipotentials remain concentric circles, 
actually leads to an upper bound of the capacitance and, therefore, of the effective 
relative permittivity. It can be shown that a lower bound can be found by assuming 
that the flux lines remain radial. This is an example of the method of Tubes and Slices 
in which upper and lower bounds to the capacitance are calculated from the stored 
energy using approximations to the field [37]. An alternative method for calculating 
the effective relative permittivity from the stored energy is described in [38].

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.005
https://www.cambridge.org/core


Helix Slow-Wave Structures 157

157

Figure 4.16(a) shows typical dispersion curves obtained from the sheath helix 
model. It is useful to consider the asymptotic behaviour of these in the limits ω → 0 
and ω → ∞. In the low frequency limit it can be shown that the inductance and 
capacitance per unit length tend to

 L
a
s00

0
2

2
2

4
1= −





µ
π

ψcot  (4.83)

and

 C
s a00 2

0 22ε πε ε( ) = ( )ln
, (4.84)

which is the capacitance per unit length of a coaxial line (see (2.47)). Thus the low- 
frequency limit of the phase velocity is

 v
L C

c s a

a sp0

00 00 2
2 2

1 2

1
= = ⋅

( )
−

tan ln
.

ψ
ε

 (4.85)

In the high frequency limit we note that the modified Bessel functions are given 
approximately by [3]

 I z
e

z
n

z

( ) =
2π

 (4.86)

and

 K z
z

en
z( ) = −π

2
. (4.87)

Then from (4.78) and (4.79) we find that L L→ 0 and C C→ 0 because the fields are 
confined to the region close to the helix and are not dependent on the dimensions 
of the shield. Hence the high frequency limits are

 L
a0

0

0

2

4
1

→ 





µ
π γ

ψcot  (4.88)

Figure 4.15: Different arrangements for helix slow- wave structures: (a) T- shaped support 
rods, (b) vane loading for dispersion shaping, and (c) theoretical model of vane loading.
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since β γ0 0  for a slow wave, and

 C a0 0 04→ ( )πε γ . (4.89)

From (4.80) we find that the effective relative permittivity tends to

 ε γ γ εeff a s0 0 2
1
2

1, ,( ) → +( )  (4.90)

which is the average of the values of relative permittivity inside and outside the 
helix. Thus the asymptotic value of the phase velocity is

 v
c

p →
+( )
tan

.
ψ

ε1 22

 (4.91)

We note that this differs from the result previously obtained in (4.67). The asymp-
tote of the phase velocity is shown in Figure 4.16(a) The curves of phase velocity 
do indeed tend to the asymptote if  the plot is extended to higher values of β0 p. 
Figure 4.16(b) shows the Pierce impedance, calculated using (4.17), as a function of 
the phase shift per turn.

4.3.2 Dispersion Shaping

The dispersion characteristics of a helix can be modified by placing longitudinal 
vanes between the support rods, as shown in Figure 4.15(b). The effect of the vanes 
is represented by the model shown in Figure 4.15(c). The tips of the vanes define the 
radial boundary as far as the electric field is concerned, whilst the magnetic fields 
are bounded by the outer shield. Thus s is replaced by v in (4.81). Figure 4.17 shows 
the effect of the vane loading on the dispersion and the Pierce impedance of a typi-
cal sheath helix slow- wave structure. The addition of the vanes changes the shape 

Figure 4.16: Typical properties of a sheath helix slow- wave structure: (a) normalised 
phase velocity, and (b) Pierce impedance, as functions of the phase shift per 
turn  ψ ε= =( )10 2 52

; . .
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of the dispersion curve so that the phase velocity is constant over a wider range of 
phase shift per turn. However, the Pierce impedance falls as the useful bandwidth 
is increased. The properties of the sheath helix model can be explored further using 
Worksheet 4.3.

4.3.3 Tape Helix Slow- Wave Structures

When the sheath helix model is used to calculate the properties of a real tape helix 
slow- wave structure it is found that there are appreciable errors. In principle a tape 
helix slow- wave structure could be modelled using the method of moments in a 
manner similar to that described in Section 3.5.1. However the tape helix problem 
is much more difficult than the re- entrant cavity, and the efforts of many people 
over a period of more than sixty years have not yet produced good agreement with 
experimental results. A great many papers have been published on this subject, and 
only the more significant ones are reviewed here.

In addition to the fundamental mode described above the sheath helix supports 
higher-order modes which satisfy the free space dispersion relation [39]

 
I a K a

I a K a

a n a

ka a

n n

n n

′ ( ) ′ ( )
( ) ( ) = −

+( )
( ) ( )

γ γ
γ γ

γ β ψ
γ ψ

2 2 2

2 2 2

cot

cot
.. (4.92)

It is therefore possible to model the fields of a tape helix by superimposing space- 
harmonic waves which satisfy (4.92) and the boundary conditions. It is important 
to understand that, unlike the space- harmonics discussed earlier, these harmonics 
have azimuthal variation. In order to make the problem tractable one or more of 
the following assumptions are made:

• The tape has negligible thickness, so that it is only necessary to consider the fields 
in the inner and outer regions.

• The region between the helix and the shield is filled with a uniform dielectric.

Figure 4.17: The effect of vane loading on a typical sheath helix slow- wave structure:  
(a) normalised phase velocity, and (b) Pierce impedance  s a = = =( )2 10 2 52; ; .ψ ε .
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• The current in the helix flows in the direction of the tape and is distributed in a 
prescribed fashion.

• The differences between β0 and γ 0, and between the values of γ  in dielectric and in 
vacuum, are neglected (this is the quasi- static approximation).

The earliest work on this subject was that of Sensiper [39, 40] who studied the 
properties of a thin helix in free space. Two approximations were considered: nar-
row tapes on which the current density was taken to be constant; and narrow gaps 
in which the electric field was taken to be uniform. The dispersion equation for the 
case of a narrow tape was

 M N
w

wm m
m

m

m

+( ) ( )





=
= −∞

∞

∑ sin
,

β
β

2

2
0  (4.93)

where w  is the width of the tape,

 M a m I a K am m
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m m m m= −













( ) ( )γ β
γ

ψ γ γcot ,
2

 (4.94)

where γ βm m k2 2 2= − , and

 N k a I a K am m m m m= ( ) ′ ( ) ′ ( )2 2 2cot .ψ γ γ  (4.95)

The dispersion equation for the sheath helix is obtained if  only the terms in m = 0 
are considered. The same equations were obtained for the case of a wide helix with 
narrow gaps except that the last term in (4.93) was replaced by J wm0 2β( ).

The propagation of  waves on a narrow tape helix supported within a metal 
cylinder by a uniform dielectric was considered by Stark [41]. A dispersion rela-
tion similar to that for the sheath helix (4.75) was obtained with the numerator 
and denominator on the right- hand side multiplied, respectively, by the term in 
square brackets in (4.78) and the reciprocal of  the term in square brackets in 
(4.79). The effects of  the tape width were represented by the addition of  the term 
sin lnψ π( ) ( )2p w  to both the numerator and the denominator. This approach 

does not seem to have been taken up by subsequent authors. The same problem 
was considered by Tsutaki [32] who assumed that the current density distribution 
on the tape could be described by a hyperbolic cosine function. It was found that 
when w p > 0 4.  the results converged if  only the n = ±0 1,  space harmonics were 
considered. For tapes with w p ~ .0 1 it was necessary to include harmonics up 
to n = ±3. It was concluded that in the range 0 4 0 8. .< <w p  the solutions were 
not sensitive to the current distribution assumed. The phase velocities calculated 
were said to be accurate to with ±2 % but there was no detailed comparison with 
experiment. The use of  a helix as a backward- wave structure was discussed in 
[42]. It should be noted that as a consequence of  (4.92) the axial component of 
the electric field of  the higher space- harmonics, which have azimuthal variation, 
is zero on the axis.
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The effect of the finite thickness of the tape was modelled in [43] using a thin 
tape at the mean radius of the helix, separated from the dielectric by an air gap 
equal to half  the thickness of the tape. This followed the work of Swift- Hook [44] 
who carried out a careful theoretical and experimental study of round wire helices 
inside glass tubes having different wall thicknesses, but no outer metal boundary. 
It was found that the use of an air gap having a thickness equal to one tenth of the 
helix radius gave the best results in this case. The justification for the use of the 
same technique with tape helices, and with a gap equal to half  the tape thickness is 
not clear. Nevertheless this method of representing the effects of tape thickness has 
been widely used by subsequent authors.

A simplified approach to the modelling of tape helix slow- wave structures was 
described in [45]. This was based upon Sensiper’s dispersion equation for a helix in 
free space (4.93). Following the method in [31] the effects of the radial boundary 
and dielectric loading were introduced by multiplying the individual terms of the 
summation by correction factors similar to (4.78) and (4.79). The effects of dielec-
tric loading were included by assuming that the helix was surrounded by a number 
of concentric dielectric layers. The effective permittivity of each layer was deter-
mined from the relative permittivity of the support rods and the fraction of each 
layer which was occupied by the rods. This approach was first proposed in [33, 43]. 
Although there are doubts about the validity of this method, since the boundary 
conditions are not correctly maintained, it has been widely used by other authors. 
The results of the simplified model of the tape helix were compared with a small 
number of experimental results. The agreement was marginally better than that 
given by the sheath helix model.

Further developments in the modelling of tape helix slow- wave structures 
included:  removal of the assumption that the radial and axial propagation con-
stants were equal [46]; calculation of the constants in the field expansions by suc-
cessive approximations [47]; removal of the need to assume the current distribution 
on the tape [48– 51]; use of a perturbation technique to evaluate the effects of the 
azimuthal distribution of the dielectric loading [52]; and an exact theory which 
included the finite thickness of the helix and the shapes of support rods and vanes 
by matching radial admittances (but which was only implemented in a simplified 
form) [53]. All these methods involve very complicated equations and do not add 
much to understanding of these structures. Where comparisons have been made 
with experimental results the agreement is generally of the order of 1% for the 
phase velocity and of the order of 10% or more for the interaction impedance. On 
the whole the accuracy obtained does not justify the complexity of the analysis 
involved. Unfortunately only a limited range of experimental data is available in 
the literature and some of the measurements are old and of doubtful accuracy. 
The problems of making accurate experimental measurements on helix slow- wave 
structures are discussed in Section 4.7.

The alternative to the complicated mathematical analysis discussed above is to 
compute the properties of structures using computational electromagnetics [54– 
58]. These methods also present some difficulties because the structure does not 
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normally conform to the boundaries of a regular mesh, and because a very large 
number of mesh elements is required to ensure good accuracy. The accuracies 
reported are comparable with those of the best analytical methods.

4.3.4 Equivalent Circuit of Helix Slow- Wave Structures

In Section 4.3 we briefly considered a model comprising parallel strips. In its simple 
form this model does not predict the dispersion correctly [14]. The reason for this is 
that in the limit of low frequencies the phase velocity does not correspond to an azi-
muthal TEM wave between the helix and the shield. The presence of an axial magnetic 
flux inside the helix causes the inductance per turn to be less than it would be for a 
TEM wave and the phase velocity is therefore increased. However, a variation of this 
approach does give insight, and useful accuracy, as we shall see. A developed model of 
the helix as a set of parallel metal strips supported over a ground plane by dielectric 
strips has been used to study the effects of the loading of the structure by vanes simi-
lar to those illustrated in Figure 4.15(b) [59]. Empirical approximations to the capaci-
tances were used. Comparisons with four sets of experimental data showed agreement 
to ±1 % for the phase velocity. The use of empirical approximations can be avoided by 
using a method similar to that described for planar structures in Section 4.2.

The electrical properties of helix slow- wave structures can be modelled using the 
same equivalent circuit as that for planar structures [60, 61]. The effective capaci-
tance per unit axial distance is given by (4.39) without dielectric loading and (4.44) 
with dielectric loading, The direct computation of the capacitances and induct-
ances from the dimensions of the circuit is difficult but this problem can be avoided 
by making use of the properties of the sheath helix model. Comparison with the 
results of experimental measurements shows that the properties of a tape helix 
structure can be calculated to good accuracy if  the capacitance and inductance per 
unit length for a sheath helix are multiplied, respectively, by constants αC and αL 
whose values depend only upon the dimensions, and dielectric loading, of the struc-
ture. The best results are obtained when the radius of the sheath helix is taken to be 
the mean radius of the tape helix.

We consider, first, a structure without dielectric loading. The capacitance per 
unit length given by (4.39) can be calculated from a two- dimensional finite diffe-
rence solution for the field between an array of conducting rings and a concentric 
conducting cylinder as shown in Figure 4.18. The solution is computed between 
the planes A– A and B– B (see Worksheet 4.4) for β π π0 0 2p = , and  to give the first 
three terms of the series. The ratio of the capacitance per unit length of the array 
of rings, when the phase difference between them is zero, to that of an air- spaced 
coaxial line having the same dimensions is

 αC

C

C0
00

0

1
=

( )
( ) , (4.96)

where C00 is given by (4.84). Figure 4.19 shows how αC 0 varies with w p for three 
values of s p and typical values of a p and t p when C00 is calculated using the 
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outer radius of the tape helix. As the tape width is increased the capacitance tends 
to that of the coaxial line as would be expected.

The value of αL could be calculated from a numerical solution for the low- 
frequency inductance per unit length of the tape helix surrounded by a shield. 
However, this can be avoided by noting that when β π0 p =  a helical TEM wave 
propagates with phase velocity c. The value of αL can then be calculated directly 
since the phase velocity is given by

 v
LC

cp

L C

= =
1

0α α
ψsin , (4.97)

where L and C are given by (4.78) and (4.79) using the mean radius of the helix. It 
can be shown that the values of C are close to those computed from (4.39) except 
close to β π0 p = .

Figure 4.18: Array of rings used to model the capacitance of a tape helix.

Figure 4.19: Variation of the capacitance between the helix and the shield with tape width, 
and shield radius, for typical values of helix radius and tape width  a p t p= =( )1 0 1; . .
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The Pierce impedance is calculated by assuming that the potential difference 
between adjacent turns is the potential difference between the points A and B in 
Figure 4.14. Thus

 
V V j p j p

V p
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where Vg is the magnitude of the voltage between the helix and the shield. It is 
assumed that the magnitude of the electric field in the gap is constant so that
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Then the magnitude of the fundamental space- harmonic is from (4.37)

 E
V p

g

g

g
g
p

g
0

0 2

1

0

0

2 2 2

2
=

( ) ( )





⋅ ⋅
sin sin

cos .
β β

β
ψ  (4.100)

This can be written as
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and, from (4.17), the Pierce impedance is
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where a1 is the inner radius of the helix and Zc is the characteristic impedance of the 
tape helix slow- wave structure given by (4.9) so that

 Z
v

v
L
Cc

p

g

L

C

=
α
α 0

. (4.103)

This model is found to agree with experimental data within the limits of experimen-
tal error. Figure 4.20 shows a comparison between the calculated and measured 
values of the phase velocity and the Pierce impedance (measured by three different 
methods) for a typical structure (see Worksheet 4.5).

Tape helix slow- wave structures with dielectric loading can be modelled by con-
sidering the effect of the dielectric rods on the shunt capacitance. The structure is 
first modelled without the dielectric as described above. It is assumed that the value 
of αL is unchanged by the addition of the dielectric. The effect of dielectric loading 
on the shunt capacitance cannot be computed by multiplying C 0( ) by ε2 because 
the presence of the dielectric causes the charges on the surfaces to be redistributed. 
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Instead, the shunt capacitance per unit length C pK β0( )( ), given by (4.44), can be cal-
culated using finite difference solutions at β π π0 0 2p = , and  to find the first three 
terms of the series (see Worksheet 4.4). Wedge shaped support rods are treated as a 
uniform dielectric of effective permittivity ε2 given by (4.82). Values of capacitance 
calculated in this way are unsatisfactory close to β π0 p =  where the quasi- static 
approximation starts to break down. Thus it is better to use the capacitance of the 
sheath helix given by (4.81) with a correcting factor αC given by

 α
εC

KC

C
=

( )
( )

0

00 2

. (4.104)

The effective permittivity is given by (4.47) and the phase velocity and Pierce 
impedance are calculated as before. Figure 4.21 shows the comparison between the 
results of calculations and experimental data for SWS- 2 in [47]. This structure had 
rectangular support rods that may only been in contact with the helix along narrow 
lines. The best agreement between calculations and measurements was obtained by 
assuming wedge- shaped rods occupying the same fraction of the perimeter of the 
shield as the rectangular rods. The accuracy obtained using this model is compar-
able with that given by the much more complicated analytical method in [47]. Thus 
the equivalent circuit gives insight into the properties of helix slow- wave structure, 
and a simple method for calculating them with useful accuracy. For example, it can 
be shown that, if  the support rods are not in good contact with the surface of the 
helix, there can be a marked change in the phase velocity and the impedance. In one 
case an air gap between the helix and the dielectric equal to 5% of the helix radius 
was found to reduce the shunt capacitance by a factor of 0.75.

4.3.5 Couplers and Attenuators

When a helix slow- wave structure is used in a travelling- wave tube it is important 
that the terminations of the structure are correctly matched. The transition between 

Figure 4.20: Comparisons between calculated and measured properties of a typical tape helix 
slow- wave structure without dielectric loading: (a) phase velocity, and (b) Pierce impedance. 
(a = 4.7 mm, p = 6.0 mm, s = 14.0 mm, w = 2.4 mm, t = 1 mm).
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the helix and an external waveguide is normally made through the direct connec-
tion of the helix to a coaxial line. At low power levels this is connected directly to 
an external coaxial line. At high power levels it may be coupled outside the vacuum 
envelope to a rectangular, or ridge, waveguide. The characteristic impedance of 
the helix slow- wave structure can be computed from (4.103), if  the effects of the 
support rods are included, and this can be used to design a broad- band transition 
to the coaxial line [60, 61]. A method for the detailed design and optimisation of 
coaxial couplers is discussed in [62].

Where the helix is divided (severed) into two or more sections (see Chapter 14) 
it is necessary to achieve a good match at each sever. This is achieved by placing a 
graduated attenuating coating on the support rods [63– 67]. The helix may be sev-
ered physically but this is not necessary if  sufficient attenuation can be introduced 
to prevent the passage of signals through the attenuator.

4.4 Ring- Bar and Ring- Loop Structures

The helix slow- wave structure is not suitable for use at high beam voltages because 
the interaction impedance falls rapidly as the pitch angle is increased. There is 
also an increased tendency to backward- wave oscillation. Better impedance can 
be obtained, at the expense of reduced bandwidth, using helix- derived structures 
such as the ring- bar structure shown in Figure 4.22. This structure evolved from 
a contra- wound bifilar helix [68, 69]. It comprises a series of rings which are con-
nected by bars placed alternately at diametrically opposed positions, and can readily 
be constructed by making transverse cuts in a metal tube. The structure is sup-
ported within a concentric metal tube by two, three or four dielectric support rods 
[18, 70, 71]. The interaction impedance of the ring- bar structure in the fundamental 
mode is greater than that of a single helix, while that in the space harmonics is less. 

Figure 4.21: Comparisons between calculated and measured properties of a tape helix slow- 
wave structure with dielectric loading: (a) phase velocity, and (b) Pierce impedance.
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Thus the tendency to backward- wave oscillations in the space- harmonic modes is 
reduced. The thermal performance of this structure is similar to that of the helix 
structure so its chief  use is in pulsed tubes.

Most analytical models of the ring- bar structure have been based on the methods 
for tape helix slow- wave structures described above [70– 72]. Like the helix models 
from which they are derived these models involve considerable mathematical com-
plexity but do not achieve close agreement with experimental results. The dielectric 
support rods are replaced by an equivalent uniform dielectric as before. A different 
approach, described by Ash et al. [18], is based on an analysis of a developed struc-
ture in which parallel metal strips are supported on dielectric bars, at right angles 
to them, in a manner similar to that used for the tape helix by Onodera and Raub 
[59]. This model showed useful agreement with experimental results but it does not 
seem to have been pursued by other authors. The ring- bar structure has also been 
modelled successfully using electromagnetics software [70, 73].

The main mode of propagation of the ring- bar structure is symmetrical about 
the longitudinal plane passing through the centres of the bars. The current passing 
along a bar is divided equally between the two halves of the structure which are 
therefore in parallel with one another [68]. A footnote in [18] observes that each 
half  of the structure can be regarded as a meander line, but this approach does 
not seem to have been used elsewhere. It does, however, provide a simple method 
for modelling this structure using the theory of Section 4.2.2. The coefficients of 
capacitance in (4.39) and (4.44) can be found using a finite- difference model of 
isolated rings, both with and without uniform dielectric loading, in the same man-
ner as for the tape helix (see Worksheet 4.4). The capacitance per unit axial length 
is converted to capacitance per unit azimuthal distance by multiplying the results 
of the finite- difference calculations by p a2π  where p is the pitch of the rings and 
a their mean radius. The dispersion diagram of the structure can then be com-
puted directly from the equations in Section 4.2.2 with results similar to those in 
Figure 4.11 (see Worksheet 4.6). Figure 4.23(a) shows a comparison between the 

Figure 4.22: The ring- bar structure.
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phase velocity computed in this way and the experimental results reported in [70]. 
In this calculation it has been assumed that the effective azimuthal length of each 
half  ring is πa. The agreement between calculation and measurement is comparable 
with the analytical results in [70, 71].

To compute the Pierce impedance of this structure we regard it as a pair of mean-
der lines connected in parallel. The power flow in each line is given by (4.60) where 
the lengths of the lines are given by l a= π  and the ratio B A is given by (4.56). The 
electric field in the gaps between the lines is given by (4.61). This may be expressed 
as a set of azimuthal harmonics of which only the fundamental has non- zero field 
on the axis. The mean amplitude of the field in the gaps is then

 E
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E x dxg g
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The magnitude of the fundamental space harmonic field on the axis is obtained 
using (4.37) as
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where γ β ω0 0
2 2 2= − c . Finally, from (4.17) the Pierce impedance is
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where Pz is the total power flow in the structure. Figure 4.23(b) shows a comparison 
between the Pierce impedance calculated in this way with the experimental results 
given in [70]. Further experimental results are given in [18, 74].

Although this simple model gives good agreement with experimental results, it 
does not take account of the widths of the bars and the capacitance between the 
bars and the shield. That capacitance is affected by the positions of the support 
rods relative to the bars resulting in changes in the Pierce impedance of the struc-
ture [18]. The properties of the structure can also be changed by changing the shape 
of the bars as in the ring- loop structure, shown in Figure 4.24. This structure has 
increased interaction impedance in the fundamental mode, while that of the back-
ward wave mode decreases or even vanishes [75, 76]. It can be manufactured by 
making the rings and connecting loops from sheet and then folding them using 
a mandrel to ensure alignment [77]. The method outlined above can be used to 
model this structure if  the short- circuiting bars are replaced by series inductances 
[75]. Other, related, structures are the stub- supported ring- bar structure [68] and 
the ring- plane structure [78]. In both cases the rings are supported by metal stubs 
or planes which are connected to the shield. When stubs are used they are chosen 
to have an electrical length of 90° so that they present an open circuit to the rings. 
Compared with the ring- bar structure these structures have improved thermal per-
formance at the expense of greater dispersion.
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4.5 Waveguide Slow- Wave Structures

The structures which have been described so far are not suitable for use at high aver-
age power levels because of their poor thermal performance. Structures which are 
based on metallic waveguides are much better from that point of view, even though 
they have greater dispersion than helix and helix- derived structures. The ladder line 
structure discussed in Section 4.2.1 can be considered to fall into this category if  the 
bars are thick and the electron beam passes through holes in them.

4.5.1 The Folded Waveguide Structure

A slow- wave structure can be made using a serpentine rectangular waveguide, 
as shown in Figure 4.25 [79]. A simple analysis of  this structure supposes that a 
TE01 rectangular waveguide mode propagates along the mid- line of  the waveguide 

Figure 4.23: Computed properties of a ring- bar slow- wave structure both with and without 
dielectric loading compared with the experimental results in [70]: (a) dispersion curves, and 
(b) Pierce impedance.

Figure 4.24: The ring- loop slow- wave structure.
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(shown by the chain dotted line). At the cut- off  frequency of  the waveguide the 
phase is the same everywhere. However, the folding of  the waveguide means that 
the phases in successive gaps are in anti- phase with one another. Thus the phase 
shift between successive gaps is π  plus the phase shift along the serpentine path 
at the same frequency. The length of  the serpentine path between adjacent gaps 
is h p+( )π 2  so that the phase shift perceived by an electron moving along the 
axis is

 β β π πn gp h p n= +( ) + +( )2 2 1 , (4.108)

where βg is the propagation constant for the guide and n is an integer. Making use 
of (2.11) we have

 β β ω
ω

π πn C
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p h p n= −






+( ) + +( )
2

2

1
2

1 2 2 1 , (4.109)

where β ω πC C c w= = . Figure 4.26 shows typical dispersion curves of  the space 
harmonics of  this structure in the first four Brillouin zones. It can be seen that 
the n = 0 curve represents a backward wave in the first Brillouin zone. Thus the 
electron velocity must be chosen to be synchronous with the wave on the structure 
in the second Brillouin zone for forward- wave interaction. The total impedance 
of  this structure is equal to the impedance ZPV  of  the waveguide which can be 
calculated using (2.64), noting that a in that equation is the width of  the wave-
guide denoted here by w. The ratio of  the height of  the waveguide to the pitch of 
the structure b p( ) can be chosen to maximise the impedance of  the first space 
harmonic.

The derivation of (4.109) assumed that the bends do not present mismatches 
to the wave. In practice both the bends, and the beam holes, introduce small mis-
matches that cause stop bands to occur wherever the dispersion curves cross [79]. 

Figure 4.25: Arrangement of a serpentine (folded) waveguide slow- wave structure with 
swept bends.
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At the edges of a stop band there is a standing wave in the serpentine waveguide 
and the group velocity is zero. At one edge of the stop band the electric field is 
maximum on the axis, and at the other edge it is zero. Thus the total impedance is 
infinite at one band edge and zero at the other.

An alternative form of the folded waveguide structure in which the height of the 
waveguide can be different in different sections is shown in Figure 4.27(a). This 
can be modelled using the equivalent circuit in Figure 4.27(b) which represents the 
structure between the centres of adjacent gaps. The straight lengths of waveguide 
are represented by transmission lines having characteristic impedances Zg g1 2,  and 
electrical lengths θ1 2, . The bends are represented by an equivalent network B [80, 
81]. The parameters of this network can be computed simply using quasi- static 
analysis. The basic properties of the structure can be illustrated using a model that 
ignores the impedances of the bends. Then the electrical lengths of the two sections 
of waveguide are

 θ β θ β1 22= =g gh pand . (4.110)

The value of βg is the same in each case because we have assumed that both sections 
have the same width w( ). The transfer matrix for a section of waveguide is

 V
I

jZ

jY
V
I

T
V
I

g

g

2

2

1

1

1

1







=
















= [ ]cos sin

sin cos

θ θ
θ θ 



. (4.111)

Using this definition we may write the transfer matrix for the section of the struc-
ture between the centres of adjacent gaps as

 T T T T[ ] = [ ][ ][ ]1 2 1 . (4.112)

Figure 4.26: Dispersion curves of the serpentine (folded) waveguide structure shown in 
Figure 4.25.
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The numerical values of the elements of [T ] can be computed from these equa-
tions and the properties of the structure are given by

 φ = arccosT11 (4.113)

and

 Z
T
TT = 12

21

. (4.114)

Figures 4.28(a) and (b) show the dispersion and impedance curves for a struc-
ture in which the impedance of  the longitudinal waveguides is higher than that of 
the transverse waveguides b b2 1>( ). The impedance of  the lowest pass- band tends 
to infinity at the upper cut- off  frequency whilst that of  the next higher band tends 
to zero at its lower cut- off. Thus the standing wave maximum is at the centre of 

Figure 4.27: Folded waveguide structure with right- angle bends: (a) cross- sectional view, and 
(b) equivalent circuit.

Figure 4.28: Characteristics of a typical folded waveguide structure b b2 1 1 2=( ). : (a) 
dispersion, and (b) total impedance.
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the beam hole at the top of  the first pass- band and at the centre of  the longi-
tudinal waveguide at the bottom of the second pass- band. When the impedance 
of  the slots is made less than that of  the cavities then the situation is reversed. 
The properties of  folded waveguide slow- wave structures can be explored using 
Worksheet 4.7.

Folded waveguide structures are usually designed so that Z Zg g2 1>  because this 
gives the best interaction impedance in the lowest pass- band. Such structures are 
sometimes referred to as normal structures. When Z Zg g2 1<  the structure is said to 
be inverted. In both cases the cold bandwidth of the lowest mode is similar, and the 
usable hot bandwidth is always somewhat less than this. If Z Zg g1 2=  then, at least 
in theory, the stop bands between the modes vanish [82]. Such a structure, called a 
coalesced mode structure, would appear to offer the possibility of making a tube with 
a much greater bandwidth. But, because of the discontinuities caused by the bends 
and the beam holes, and because of the effects of manufacturing tolerances, it is very 
difficult to make a structure which does not have any stop bands. Even a very narrow 
stop band would tend to cause a dip in the gain of the tube at that frequency with 
the risk of oscillation because of the very high interaction impedance at one of the 
band edges.

4.5.2 Helical Waveguides

By analogy with the tape helix slow- wave structure it would appear that a circular 
waveguide having a helical groove on its inner surface should be a wide- band high- 
power slow- wave structure. Structures of this type have been studied by a number of 
authors (see for example [83– 86] and the references therein). Helical waveguides are 
employed in gyro- TWTs but do not appear to have been used in conventional TWTs.

4.6 Coupled- Cavity Slow- Wave Structures

The rectangular folded waveguide structure shown in Figure 4.27(a) can, alterna-
tively, be regarded as a structure in which rectangular cavity resonators are coupled 
together by slots in the walls which separate them. The folded waveguide struc-
ture is chiefly of interest for use at millimetre wavelengths where the dimensions 
are very small. At microwave frequencies improved performance can be achieved 
using structures having more complex geometries. These can be divided into two 
classes: space harmonic structures, and forward fundamental structures. Space har-
monic structures that resemble the folded waveguide structure cannot achieve the 
highest power levels because operation in the first space harmonic limits the beam 
voltage that can be used. To achieve higher power levels it is necessary to use struc-
tures in which there is an additional phase reversal between the cavities so that the 
fundamental space harmonic is forward wave.

The properties of coupled- cavity structures can be found by measurement as 
described in Section 4.7.1, or by modelling using computational electromagnetics 
software [87– 90]. Modern software allows the use of periodic boundary conditions 
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so that it is sufficient to model a single period of the structure, and its properties can 
be determined for any value of the phase change per cavity. Computer modelling also 
provides detailed information about the fields within the structure so that the cou-
pling impedance can be calculated. Further insight into the properties of some of the 
more important types of coupled- cavity structure can be obtained from equivalent 
circuit models as described below. These circuits may be used for interpolation on 
computed, or measured data. They are also useful for rapid parametric calculations.

4.6.1 Space Harmonic Structures

Figure 4.29 shows the arrangement of a typical space harmonic (‘Hughes’) struc-
ture for use at microwave frequencies. The cavities are circular and re- entrant in 
shape and are coupled together by large kidney- shaped slots. The slots are arranged 
alternately on either side of the axis in successive coupling plates. Although this 
structure can be considered as a somewhat distorted folded waveguide, the usual 
conceptual approach is to consider the effects of coupling on the properties of a 
chain of identical resonant cavities.

The space- harmonic slow- wave structure can be represented by the equivalent 
circuit shown in Figure 4.30 [64, 92]. Ports 1 and 2 are connected to the adjacent 
cavities whilst port 3 is connected to the electron beam. The cavity inductance Lc is 
divided into three parts so that a fraction k of  the current circulating in the cavity is 
intercepted by each slot. When the fields in adjacent cavities are in phase with one 
another the net current intercepted by the slots is zero and the frequency is equal to 
the resonant frequency of an isolated cavity. When the fields in adjacent cavities are 
in antiphase a net current is intercepted by the slots. If  the frequency is below the 
resonant frequency of the slots they present an inductive reactance to the current 
and so reduce the frequency of the mode. This is consistent with a backward- wave 
characteristic in the first Brillouin zone.

Figure 4.29: Arrangement of a space- harmonic slow- wave structure
(copyright1983 IEE, reproduced, with permission, from [91]).
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The equivalent circuit in Figure 4.30 models the lowest mode quite accurately 
[91] but fails for the higher modes. The reason is easily understood if  the figure 
is redrawn in the form of sections of the equivalent circuit of the TE01 waveguide 
mode in series with each other. These sections are valid only when the phase change 
per section is small, and that assumption is less valid as the frequency rises. Analysis 
of the equivalent circuit results in the dispersion equation

 cos φ ω
ω

ω
ω

= − −

















+ −


















1

1
1 1

2 2

ka
a

k c
k

s

,, (4.115)

where

 ωc c cL C= 1  (4.116)

 ωs s sL C= 1  (4.117)

 a k L Lk s c= ( )2  (4.118)

and the subscripts c and s refer to the cavity and the slots, respectively. The frequen-
cies at the edges of the stop band are the solutions of (4.115) when φ = 0

 ω ω ω ω= = +( )c k saand 1
1
2 . (4.119)

The total impedance of the slow- wave structure is given by

 Z
R Q

ka
aT

c

k c
k s=

( )
⋅ + − ( )





2
1

2

sinφ
ω
ω

ω ω  (4.120)

where R Q
c( )  is the R Q of  the cavity, p is the structure pitch and vg is the group 

velocity. Equations (4.115) and (4.120) can be fitted to experimental data.

Figure 4.30: Equivalent circuit of a space- harmonic slow- wave structure
(copyright 1983 IEE, reproduced, with permission, from [91]).
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The parameters of the circuit can be calculated with useful accuracy from the dimen-
sions of the structure. The resonant frequency and R Q of the cavity are obtained 
using the method of moments (see Section 3.5.1 and Worksheet 3.3) or, with less accu-
racy, using Fujisawa’s formulae [93] (see Section 3.5.2 and Worksheet 3.4). The effec-
tive slot length is defined as the area of the slot divided by its width (see Figure 4.29)

 l R
r

s = +α π
2

 (4.121)

and the slot is assumed to be resonant when it is a half- wavelength long so that

 f c ls s= 2 . (4.122)

The slot is treated as a short length of waveguide carrying the TE01 mode. In order 
to find the R Q of  the slot it is necessary to define its effective thickness. This is 
increased beyond the physical thickness by the fringing of the fields around the slot. 
It is found that a useful approximation to the effective slot thickness is

 t p h rs = − + 2  (4.123)

and then

 R Q
r
ts

s

( ) = ⋅
µ
ε π

0

0

2
. (4.124)

The coupling factor is defined by

 k
l

R
s=

2π
. (4.125)

The dispersion curve and the total impedance can then be calculated using (4.115) 
and (4.120). Figure 4.31 shows typical dispersion curves, and impedance plots, cal-
culated for two different slot angles with experimental results for comparison (see 
Worksheet 4.8). This model is a simplification and an improvement of the one pre-
viously described by the author, but alternative assumptions about the slot length 
and thickness are possible [94]. The bandwidth of the structure increases as the slot 
angle α( ) is increased. However, if  α is too great the structure becomes inverted and 
the coupling impedance is reduced. It might be thought that the coupling between 
the cavities could be increased, without inverting the structure, by using two slots 
per cavity in place of one. The result, known as the Chodorow- Nalos structure 
when the slots are in line with each other, actually has a narrow bandwidth because 
of direct coupling between the slots [95]. This is a form of ladder- line which is some-
times useful at millimetre wave frequencies. An alternative in which the slots are 
staggered by rotating successive coupling plates by 90° has better bandwidth [96].

4.6.2 The Cloverleaf Structure

At very high powers it is desirable to use a structure in which the fundamental mode is 
forward wave. One such is the cloverleaf structure in which the cavities have the shape 
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with four or more noses, shown in Figure 4.32 [97]. Successive cavities are rotated 
with respect to each other so that the noses in one cavity correspond to the gaps in the 
next. The cavities are coupled by radial slots that lie close to the noses, as shown. If  
the cavities are excited in phase with each other, then the magnetic field lines circulate 
in the same direction in adjacent cavities, as shown by the solid and dashed arrows. 
The associated azimuthal current components are in the same direction, and the 

Figure 4.31: Typical results for a space- harmonic slow- wave structure: (a) dispersion, and 
(b) total admittance.

Figure 4.32: General arrangement of a cloverleaf slow- wave structure
(copyright 1983 IEE, reproduced, with permission, from [91]).
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current intercepted by each slot is non zero. The slot inductances are then effectively 
in series with the inductance of the cavity, and the resonant frequency is reduced. 
When the fields in adjacent cavities are in antiphase, the intercepted currents cancel, 
and the resonant frequency is close to that of the cavity. Hence the fundamental mode 
of the structure is a forward wave in the first Brillouin zone.

The cloverleaf structure can be represented by the equivalent circuit in Figure 4.33 
which is very like that in Figure 4.30 [92]. This time a fraction k of  the current in 
each cavity is intercepted by all the slots because they are in line with one another. 
The crossing of the connections on the right- hand side of the figure represents the 
phase reversal brought about by the geometry. Analysis of this circuit produces

 cos φ
ω ω ω ω

ω ω
( ) = − −

− ( )



 − ( )





− − ( )





1
1 1

1

2 2

2
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k ca k
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The phase change per cavity is π when ω ω= c and ω ω= s. The cavities have proper-
ties similar to those of the pill- box resonator shown in Figure 2.2. The cavity resonant 
frequency is approximately that of a pill- box whose diameter is 1.1 times that of the 
diameter across the noses. The R Q is slightly less than that of a pill- box cavity because 
of the additional energy storage in the lobes of the cavity between the noses. The 
slots resonate when their lengths are close to half of a free- space wavelength. They 
are weakly coupled to each other by the cavities so that the slot band is narrow. This 
structure has higher-order modes corresponding to the higher-order TM  modes of the 
cavity. These are weakly coupled to the slots and therefore have narrow bandwidth, 
and low group velocity. The TM02 mode is potentially troublesome because Ez is non 
zero on the axis, and the mode has high interaction impedance. Because of the shape 

Figure 4.33: Equivalent circuit of a cloverleaf slow- wave structure
(copyright 1983 IEE, reproduced, with permission, from [91]).
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of the cavity the outer maximum of this mode may break up into a set of individual 
maxima at the centres of the lobes between the cloverleaf noses [64].

4.6.3 The Centipede Structure

Another forward- fundamental structure is the centipede structure shown in 
Figure 4.34 [97– 100]. In this structure there is inductive coupling between the loops 
and the cavities.

The structure can be represented by the equivalent circuit shown in Figure 4.35 
[91]. Note that it is necessary to include direct loop to loop coupling in the model. 
The connections on the right- hand side of the diagram are reversed to account for 
the phase reversal produced by the shape of the loops. An alternative equivalent 
circuit is described in [101].

Analysis of the circuit in Figure 4.35 results in the dispersion equation

 cos ,φ
ω ω ω ω

ω ω
= − + ⋅

( ) −



 ( ) + −





+ ( ) −
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2
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2

1
2

2
2

c l

c

k

k k
 (4.128)

Figure 4.34: General arrangement of a centipede slow- wave structure
(copyright 1983 IEE, reproduced, with permission, from [91]).

Figure 4.35: Equivalent circuit of a centipede slow- wave structure
(copyright 1983 IEE, reproduced, with permission, from [91]).
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where the subscripts c and l refer to the cavity and the loops, respectively,

 k L L Mc l lc1 =  (4.129)

and

 k L Ml ll2 = . (4.130)

The band edges at φ π=  are related to the cavity and loop resonant frequencies by

 ω ω ω ω= = −c l kand 1 2 2 . (4.131)

The cavity parameters are close to those for a pill- box cavity having the same dimen-
sions as the cavities of the structure. The parameters of the loops must generally be 
determined by fitting the model to experimental data. The dispersion diagram of 
the centipede structure is rich in higher- order modes with varying rotational sym-
metries. The uniform distribution of the loops around the edge of the cavity allows 
modes such as the TM11 loop mode to exist. Pairs of cavity and loop modes having 
the same rotational symmetry are normal (inverted) depending on whether the lower 
cut- off frequency of the loop mode lies above (below) the corresponding resonant 
frequency of the cavities. The total impedance of the centipede structure is given by
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Figure  4.36 shows a typical dispersion diagram for a centipede structure cal-
culated using (4.128). It has been assumed that the dispersion diagrams for the 
higher-order modes obey the same equation with the appropriate cavity resonant 
frequency. The loop frequencies of the TM11 and TM21 modes were increased from 
that for the TM01 mode by factors of 1.2 and 1.3, respectively, to achieve a better 
match with experimental results. The centipede structure is smaller than a clover-
leaf structure designed to operate at the same frequency but its heat transfer prop-
erties are inferior.

4.6.4 Termination of Coupled- Cavity Slow- Wave Structures

The input and output connections to coupled- cavity slow- wave structures are com-
monly made using coupling loops, or inductive irises, as described in Section 3.6. 
Additional elements may be used to achieve a good match over the intended work-
ing band of the tube [4, 64, 102]. The use of transition cavities to obtain a good 
match is discussed in [103]. Direct coupling, from reduced height waveguide, is an 
obvious choice for folded waveguide structures, space harmonic structures and clo-
verleaf structures [104]. An alternative is to make use of a door- knob transition 
(Figure 2.25) since a circular TM01 mode is to be launched in the structure [98].
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In coupled- cavity travelling- wave tubes it is usual for there to be a break in the 
structure at each sever. There may be a transition to an external waveguide, allow-
ing the sever power to be dissipated in waveguide loads either inside, or outside, the 
vacuum envelope. This arrangement adds to the size and complexity of the tube. 
Alternatively the structure may be terminated internally by adding lossy ceramics 
to one or more cavities [4].

4.7 Measurement of the Properties of Slow- Wave Structures

Although the properties of slow- wave structures can usually be calculated to good 
accuracy using computational electromagnetics, it is still desirable to be able to 
check the results by comparison with cold test measurements on actual, or scaled, 
slow- wave structures. It is normally possible to measure the phase velocity with 
good accuracy, but accurate measurement of the coupling impedance presents 
greater difficulties.

4.7.1 Measurements on Coupled- Cavity Slow- Wave Structures

Measurements on coupled- cavity slow- wave structures are made using resonant 
sections [64, 105]. The short- circuit planes must coincide with planes of  symme-
try. For some structures (e.g. cloverleaf, centipede) the mid- plane of  the cavity 

Figure 4.36: Typical mode diagram of a centipede slow- wave structure  k k1 20 3 0 1= =( ). , . .
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can be used, giving a stack with half- height end cavities. For space harmonic 
structures the symmetry planes are at the centres of  the slots. The structure may 
be at full- scale, or a scaled- up version may be made to make the measurements 
easier. Experimental measurements only yield figures for particular points on 
the dispersion curve. Five or six cavities are usually sufficient, and the proper-
ties at intermediate points are then found by numerical interpolation. One way 
to achieve this is to fit an equivalent circuit model to the experimental data [91]. 
The method of  measurement is the same as that used for single cavities (see 
Section 3.7) with the difference that many more resonant modes exist. These 
can usually be identified by careful probing of  the structure with a dielectric or 
metal rod through small holes drilled in the ends, or the sides, of  the structure. 
If  the resonances are displayed using a swept frequency source, the extent of  the 
perturbation of  a resonance by probing at different positions can be observed. 
Since the change in frequency is proportional to the stored electric energy it is 
possible to find the positions of  field maxima and zeroes. The axial variation 
of  modes for which Ez ≠ 0 on the axis can also be determined by observing 
the frequency shifts as a small dielectric bead is moved along the axis of  the 
structure. In some cases it is not possible to measure the band- edge frequencies 
directly and they must be deduced by extrapolation from the data points avail-
able. A suitable formula is

 f f f f0 1 2 30 1 15 6 . ,− +( )  (4.133)

where f0 is the frequency at the band edge and f1 2 3, ,  are the frequencies of three 
resonances such that all four frequencies are determined at equal intervals in φ. This 
equation fits an even, fourth-order, polynomial to the data points.

The interaction impedance is measured experimentally by perturbing the reson-
ant stack with a dielectric rod on its axis. A simple formula can be obtained for the 
calculation of the Pierce impedance [64] based upon the change in the capacitance 
resulting from the presence of the rod,

 Z
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−( ) ⋅ ⋅ ⋅

∂
∂

4
10

2 2 2ε ε π φ
φ∆

, (4.134)

where d is the rod diameter, εr its relative permittivity and ∆f  the change in the 
resonant frequency when the rod is inserted. The last term is inversely proportional 
to the group velocity. This equation is only strictly valid in the limit of a vanish-
ingly small rod. The measurement accuracy is limited by the need to use a rod which 
is large enough for the change in frequency to be measured accurately. Equation 
(4.134) also ignores the effects of space- harmonic fields which become more impor-
tant as the rod diameter is increased. A more accurate formula which includes these 
effects is given in [106, 107]. Similar methods can be used for all other structures, 
such as ladder lines and ring- bar structures, which possess transverse symmetry 
planes.
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4.7.2 Measurements on Helix Slow- Wave Structures

Helix slow- wave structures do not possess any planes of symmetry and it is there-
fore necessary to use non- resonant methods. The one end of the structure under 
test is connected to an external termination, and the other end is similarly termi-
nated or fitted with an internal load. It is very important that there should be good 
matches at both terminations [108]. The input to the helix is connected to a vector 
network analyser. A perturbing object is passed through the helix and the rate of 
change of the phase of the reflected signal with the position of the object is just 
twice the phase shift per unit length of the structure. The perturbing object may be 
a bead or rod made from metal or dielectric material, or it may be small helix hav-
ing a small number of turns [109– 112]. The measurements are normally made on a 
full- scale section of helix. The helix diameter is typically a few millimetres or less, 
and that makes it more difficult to obtain accurate results. The equipment is nor-
mally automated so that a large number of measurements can be made to increase 
the accuracy of the results.

To measure the coupling impedance of  the helix it is necessary to measure the 
change in the propagation constant produced by perturbation with a dielectric 
or metal rod. One way of  doing this is to mount a bead, or a small helix, on 
a dielectric rod which passes through the whole length of  the structure, and to 
measure the phase of  the reflected signal [109– 112]. The impedance can be calcu-
lated from the difference between the wavelengths measured with, and without, 
the rod. To get reasonable accuracy with this method it is necessary to measure 
the wavelengths very accurately. Lagerstrom [113] measured the Pierce imped-
ance by observing the change in the phase of  the signal transmitted through the 
helix when a dielectric rod was inserted in it. The measurement is subject to some 
uncertainty because end effects mean that it is not possible to determine the pre-
cise length of  the rod in the helix. This difficulty can be overcome by progressively 
advancing the rod into the helix, and observing the rate of  change of  the phase of 
the transmitted signal with the position of  the rod. It is necessary to correct the 
results for the effects of  space- harmonic fields and transverse field components 
[108]. Since the diameter of  the rod is normally smaller than the internal diameter 
of  the helix it is very important to ensure that it is accurately aligned with the axis 
of  the helix. A metal rod was used in place of  the dielectric rod by Kino [114]. The 
perturbations are larger with this method, but the end effects are more serious. 
The phase velocity and interaction impedance can be measured simultaneously, 
using this method, by observing the phases of  both the reflected and transmitted 
signals as functions of  the position of  the rod. The phase velocity, and interac-
tion impedance, can also be determined from the amplitude and phase of  the 
signal reflected by a spherical dielectric bead placed within the helix [110]. This 
(S- parameter) method makes use of  the fact that the amplitude of  the reflected 
signal is proportional to the local change in stored electric energy produced by the 
bead. The accuracy achieved is comparable with that obtained by other methods 
(see Figure 4.20).
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5 Thermionic Diodes

5.1 Introduction

The simplest vacuum electron device is the plane parallel diode shown in 
Figure 5.1(a). The diode comprises a cathode, from which electrons are emitted, and 
an anode within the same vacuum envelope. If  the anode is positive with respect to 
the cathode, and there is no electron emission, the electrostatic potential varies lin-
early between the cathode and the anode as shown by the solid line in Figure 5.1(b). 
Now suppose that electrons are emitted from the cathode with negligible velocity 
and a current density which can be controlled in some way. The electrons are drawn 
towards the anode by the electric field between the electrodes, and the negative 
space- charge associated with the electron current depresses the potential in the 
space between the electrodes, as shown by the dashed line in Figure 5.1(b). If  the 
electric field at the surface of the cathode is negative all the electrons which are 
supplied by the cathode can flow to the anode. The current through the diode is 
then determined by the properties of the cathode. When the potential difference 
between the electrodes is reversed no electrons can reach the anode. Thus the device 
is a diode which only permits the flow of electrons from the cathode to the anode. 
It should be noted that the conventional current of electric circuit theory assumes 
that the charge carriers are positive so that the conventional current flows from the 
anode to the cathode.

As the emitted current density is increased the potential depression increases 
until the electric field is zero at the cathode surface. The current through the diode 
is then determined by the geometry of the device and the potential difference across 
it, and not by the current density available at the cathode. The diode is then said to 
be space- charge limited and the current cannot be increased any further by increas-
ing the cathode emission.

This chapter discusses the steady- state properties of planar, cylindrical and spher-
ical space- charge limited diodes, including the effects of the initial energies of the 
electrons and of relativity. When the potential difference across a diode varies with 
time the static relationship continues to hold until the time taken for electrons to 
cross the diode becomes comparable with the time in which the voltage is changing. 
It is shown that this sets a limit to the maximum frequency of operation of a diode. 
Section 5.8 discusses the injection of electrons into a planar diode and Section 5.9 
reviews the properties of diodes in which the current flow is two- dimensional.
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An important form of diode is the electron gun in which the shapes of the elec-
trodes are chosen in such a way that the electrons do not strike the anode but pass 
through a hole in it and are projected into the region beyond. The electron gun is 
a fundamental component of many microwave tubes and the theory and design of 
the principal types are reviewed in Chapter 9.

5.1.1 Dimensional Analysis of Thermionic Diodes

Useful insights into the properties of thermionic diodes are provided by the use of 
dimensional analysis (see Section 1.7.1.). The objective is to discover how the cur-
rent flowing through a diode depends upon the applied voltage and the dimensions 
of the diode. The shape of the diode may be quite complicated but, for the present, 
we will assume that it can be described by the distance between the electrodes and 
by the area of the cathode. Since this is a problem concerning the dynamics of 
charged particles we expect that it will involve the charge/ mass ratio of the electron 
and the primary electric constant ε0. When thermal velocities or relativistic effects 
are important it is necessary to introduce a reference voltage Vr related to their mag-
nitude. The dimensional quantities required to specify the problem are summarised 
in Table 5.1 together with their dimensions.

The problem has seven parameters and four dimensions. The application of 
Buckingham’s theorem shows that it can be specified by three dimensionless groups. 
Two dimensionless groups can readily be formed as

 Π1 =
V
V

a

r

 (5.1)

and

 Π2 2
=

A
d

. (5.2)

Figure 5.1: Planar vacuum diode showing: (a) general arrangement, and (b) the electrostatic 
potential within the diode showing the potential depression caused by space- charge 
(dashed line).
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The remaining group is found by assuming that

 I V L e mr= ( )α β γ δε0  (5.3)

where the indices are to be determined. Then, examining the powers of the dimen-
sions, we find that

 

M
L
T
V

:
:
:
: .

1
2 2

3 2 2
1 2

=
= + +

− = − −
− = − −

γ
β γ δ

γ δ
α γ δ

 (5.4)

The solution to these equations is α = 1; β = 0; γ = 3/ 2; δ = ½ and therefore the third 
dimensionless group is

 Π3

0
3

=
( )











I

e m Vrε
. (5.5)

Any one of the dimensionless groups can then be expressed as a function of the 
remaining groups, for example

 Π Π Π3 1 2= ( )f , , (5.6)

where f is a function, to be determined, which is the same for all diodes which are 
geometrically similar, that is they can be scaled from one another.

If  neither thermal velocities nor relativistic effects are important then Π1 is not 
required. Then Vr can be replaced by Va in (5.5) so that (5.6) becomes

 Π Π3 2= ( )f . (5.7)

For any set of geometrically similar diodes Π2 is constant so that Π3 is also con-
stant. Equation (5.5) shows that the current in the diode is proportional to the  
3/ 2 power of the applied voltage. Thus dimensional analysis shows that all diodes 
which do not require a reference voltage must obey the 3/ 2 power law regardless of 

Table 5.1: Parameters of a thermionic diode

Quantity Symbol Dimensions

Current I [ML2T− 3V− 1]

Anode voltage Va [V] 

Reference voltage Vr [V] 

Electrode separation d [L] 

Area A [L2]

Primary electric constant ε0 [MLT− 2V− 2]

Charge/ mass ratio of the electron e m0 [L2T− 2V− 1]
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geometry. The same result was obtained in different ways by Langmuir [1] and by 
Tsimring [2].

Because many electron tubes obey the 3/ 2 power law it is convenient to describe 
a diode by its perveance (K) defined by

 K
I

Va

=
3 2

, (5.8)

which depends only on the geometry of the diode. It follows that all diodes whose 
dimensions can be scaled from one another have the same perveance. Because the 
perveance is typically of the order of 10– 6 A V−1.5 it is usual to use micro- perveance 
µ µP = A V 1.5−( ). We shall see below that when thermal velocities, or relativistic 

effects, are important the description of the problem requires a reference voltage 
and the current does not obey the 3/ 2 power law.

5.1.2 Current Limitation

Virtually all power vacuum tubes use thermionic cathodes whose emitted current 
increases with temperature (see Section 18.5). Figure 5.2 shows a typical I- V plot 
for a thermionic diode. At low voltages the diode is space- charge limited and the 
curve follows the 3/ 2 power law. As the current increases, it becomes equal to the 
maximum current available from the cathode, as described by the Schottky equa-
tion (18.10). This current depends on the temperature and work function of the 
cathode, and only increases slowly with increasing anode voltage. The diode is then 
said to be temperature limited.

Vaughan [3] suggested an empirical model for the transition from space- charge 
limitation to temperature limitation of the current:

 1 1 1
J J JC S

α α α
= + , (5.9)

where JC  is the space- charge limited current density given by the Child- Langmuir 
equation (5.16), JS is the current density given by the Schottky equation (18.10), and 
α is an empirical constant. It was found that the value of α was typically in the range 
6– 10 for well- designed diodes (electron guns). However, for diodes with uneven emis-
sion, caused by surface defects or uneven heating, the value could be in the range 2– 5.

The diodes used in power vacuum tubes are usually designed to be operated in 
the space- charge limited region because it ensures that:

• The current depends only on the cathode voltage, and the geometry of the diode, 
and not on the condition of the cathode.

• The cathode surface is not damaged by the impact of positive ions caused by the 
presence of a strong electric field there.

If  it is suspected that the cathode emission is failing, an I- V plot can be drawn to 
check that the operating point is below the knee of the curve. There is a trade- off, for 
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a particular cathode, between the current density and the life of the cathode. Thus 
tubes which are required to have very long working lives (such as those for use in 
satellites) are designed to have low cathode current density. However, temperature- 
limited diodes are used in gyrotrons so that the electron current can be controlled 
by the cathode temperature.

5.2 The Planar Space- Charge Limited Diode

Consider a diode comprising two plane parallel electrodes separated by distance d 
as shown in Figure 5.1. The electrostatic potential V( ) is zero at the cathode at x = 0 
and V Va=  at the anode at x d= . For the moment we will assume that electrons 
are emitted with zero energy from the cathode and that relativistic effects can be 
neglected. The theory of this diode was first studied by Child [4] and Langmuir [1]. 
The velocity of an electron at any point is found from the principle of conservation 
of energy to be

 u e m V= ( )2 0 , (5.10)

where V is the potential with respect to the cathode. In the steady state the current 
density is constant and given by

 J u= ρ , (5.11)

where ρ is the charge density. The potential is related to the space- charge density by 
Poisson’s equation in one dimension,

 d V
dx

2

2
0

= −
ρ
ε

. (5.12)

Figure 5.2: Plot of current against voltage for a thermionic diode showing the Child- 
Langmuir (space- charge limited) and Schottky (temperature limited) regions.
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Combining equations (5.10) to (5.12) gives

 d V
dx

J

e m V

2

2
0 02

= −
( )ε

. (5.13)

Equation (5.13) can be integrated by multiplying both sides by 2 dV dx( ), and inte-
grating with respect to x to give

 dV
dx

J

e m
V C





= −
( )

+
2

0 0

4

2ε
, (5.14)

where C is a constant. Applying the boundary conditions to (5.14) gives

 E E
J

e m
Va k a

2 2

0 0

4

2
− = −

( )
⋅

ε
, (5.15)

where Va is the potential of the anode with respect to the cathode and Ea and Ek  are, 
respectively, the electric field at the anode and the cathode. The current density is 
maximum when the left- hand side of (5.15) is maximum. From Figure 5.1(b) we see 
that, as the space- charge density increases Ea increases and Ek decreases. Thus the 
maximum possible current density is obtained when Ek = 0 and this is the condition 
for space- charge limitation of the current. When the current is space- charge limited 
C = 0 and (5.14) may be integrated a second time to give

 J
e m

x
V K

V
xC = − ⋅

( )
⋅ = −

4
9

20 0

2

3
2

3
2

2

ε
, (5.16)

the well- known Child– Langmuir law where K = × − −2 334 10 6 1 5. .A V . Note that the 
current density in (5.16) is negative because the conventional current flows from 
the anode to the cathode in the negative x direction. A simple physical derivation 
of this equation which gives insight into the reason for the power law was given by 
Umstattd et al. [5].

Equation (5.16) can be rearranged, using dimensionless groups, to be in the form (5.6)

 I

e m V

V
V

A
d

r

a

rε0
3

3
2

22

4
9( )











= −












, (5.17)

where I AJC= , A is the cross- sectional area of the diode, and the factor 2 has been 
included in the term on the left- hand side of the equation. In this case it is conveni-
ent to choose a reference voltage of 1.0 V.

The transit time of electrons in a space- charge- limited diode may be calculated 
by noting that the potential in the diode is given by

 V V
x
da= 





4
3
 (5.18)
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so that the velocity of an electron which starts from rest at the cathode is

 u
eV
m

x
d

a= 





2

0

2
3

. (5.19)

The time taken for this electron to reach the anode is

 τ = 





=⌠
⌡


1 3

0

2
3

u
d
x

dx
d

ua

d

a

, (5.20)

where u eV ma a= 2 0  is the velocity of the electron when it reaches the anode. 
The transit time calculated in (5.20) can be compared with the result for the space- 
charge free case where the acceleration is uniform and the transit time is τ0 2= d ua .  
Equation (5.20) can also be written as

 τ =






K

e m

d
JC

1
3

0

1
3

3 2
. (5.21)

5.3 The Planar Diode Including the Effects of Thermal Velocities

The analysis in the previous section is non- physical, strictly speaking, because no 
electrons can leave the cathode when the electric field there is zero, and because the 
solution implies that the charge density at the cathode surface is infinite. In practice 
the electrons have thermal velocities as they leave the cathode so that they can move 
away from it. Two approaches to this problem were discussed by Langmuir [6– 7].

The first method assumes that all the electrons have the same initial velocity 
when they leave the cathode. This enables them to move towards the anode in the 
presence of an opposing electric field. There must, therefore, be a plane between 
the cathode and the anode at which the gradient of the potential is zero as shown 
in Figure 5.3. At this plane the electrons come to rest, a virtual cathode exists, and 
the charge density is infinite. Thus this model suffers from the same objections as 
before. It is assumed that the current density at the cathode is equal to the satura-
tion (Schottky) current density at a given temperature. Then some of the electrons 
must be reflected by the virtual cathode, and some pass it to reach the anode. This 
analysis can be criticised on the ground that there is no reason why electrons, which 
have the same initial velocities, should behave in different ways in the steady state. 
There is also the difficulty of knowing how to define the initial velocity in terms of 
the cathode temperature [6]. This approach is therefore not valid when the initial 
velocities are thermal. It is, however, the basis of the discussion of space- charge 
limitation of the current when a mono- energetic beam of electrons is injected into 
a diode as discussed in Section 5.8.

The second method assumes that the electrons emitted from the cathode have 
a Maxwell– Boltzmann energy spectrum. Consider a source of electrons at zero 
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potential with temperature T which has saturation current density JS. The current 
density collected on an electrode at a potential – V with respect to the source is

 J J
V
VS

T

= −






exp , (5.22)

where V kT eT =  is the volt equivalent of temperature [6]. The current density emit-
ted from the cathode in the energy range  V V dV, +( ) is

 dJ
J
V

V
V

dVS

T T

= −






⋅exp . (5.23)

When the current is space- charge- limited there is a virtual cathode between the 
cathode and the anode with potential is – Vm relative to the cathode. The current 
collected by the anode (Ja) comprises those electrons which have sufficient energy 
to pass the virtual cathode. Thus

 J J
V
Va S

m

T

= −






exp . (5.24)

The electron flow in the regions on either side of the virtual cathode must be con-
sidered separately.

5.3.1 Electron Flow between the Potential Minimum and the Anode

Consider electrons launched with initial energy Vi at the potential minimum. At a 
plane where the potential relative to the minimum is V they have velocity

 u e m V Vi i= ( ) +( )2 0 . (5.25)

Figure 5.3: Potential variation in a planar space- charge- limited diode with non- zero emission 
velocities.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.006
https://www.cambridge.org/core


Thermionic Diodes198

198

From (5.23) the current density of these electrons is

 dJ
J
V

V
V

dVi
a

T

i

T
i= −







⋅exp  (5.26)

so that the contribution to the charge density at this plane is, from (5.11)

 d
dJ
v

J

V e m V V

V
V

dVi
i

i

a

T i

i

T
iρ = =

( ) +( )
−







⋅
2 0

exp . (5.27)

Integrating this expression over all possible values of Vi the charge density at a 
plane where the potential relative to the minimum is V is given by

 ρ V
J
V e m V V

V
V

dVa

T i

i

T
i( ) =

( ) +( )
⋅ −







⋅
∞

⌠

⌡


1

2 00

exp . (5.28)

Equation (5.28) can be written

 ρ υ
υ υ

υ υ( ) =
( ) +

⋅ −( )⋅
∞

⌠
⌡


J

e m V
da

T i

i i
2

1

0 0

exp , (5.29)

where υ = V VT  and υi i TV V= . Substituting for ρ in Poisson’s equation (5.12) gives

 d
dX

d
i

i i

2

2
0

1υ
υ υ

υ υ=
+

⋅ −( )⋅
∞

⌠
⌡
 exp , (5.30)

where the normalised position X  is defined by

 X
J

e m V
xa

T

=
−

( )
⋅

ε0 0
32

. (5.31)

For convenience let

 y i
2 = +υ υ . (5.32)

Then (5.30) may be written

 d
dX

y dy
υ υ

υ

2

2
22= ⋅ ( )⋅ −( )⋅

∞

∫exp exp . (5.33)

Now the probability function, defined as

 P x t dt
x( ) = −( )⋅∫

2 2

0π
exp  (5.34)

tends to unity as x → ∞ so that (5.33) may be written

 d
dX

P
2

2
1

υ π υ υ= ⋅ − ( )( )⋅ ( )exp . (5.35)
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Equation (5.35) can be integrated by multiplying both sides by 2(dU/dX ) to give

 d
dX

P d
υ π υ υ υ





= − ( )



 ⋅ ( )⋅∫

2

2 1 exp . (5.36)

Integrating by parts and noting that d dXυ( ) = 0 when υ = 0 we obtain

 d
dX

P
υ π υ υ υ

π
υ





= ⋅ ( ) − − ( ) ( ) +





2

2 1
2

exp exp . (5.37)

This expression agrees with the term in brackets in equation (11) in [6], taking the 
lower signs. The constant on the right- hand side agrees with that in equation (6) in 
[6] when the difference in the units is allowed for by setting ε π0 1 4=  (see equation 
(4) in [6]). Langmuir’s variables are related to those used here by

 ξ π= ⋅2 X  (5.38)

and

 η υ= . (5.39)

5.3.2 Electron Flow between the Cathode and the Potential Minimum

In the region between the cathode and the potential minimum we must consider 
the flow in two parts. Those electrons with energies greater than or equal to Vm are 
able to pass the minimum and reach the anode with a total current density Ja. The 
charge density due to these electrons at a plane where the potential is V relative to 
the minimum is, from (5.29)

 ρ υ
υ υ

υ υ1

0 02

1( ) =
( ) +

⋅ −( )⋅
∞

⌠
⌡


J

e m V
da

T i

i iexp , (5.40)

where υ = V VT .
Those electrons which start with energies less than Vm are reflected by the field 

at the point where their initial energy is equal to the potential. The potential at any 
point relative to the cathode is V Vm−( ) so that the velocity of an electron whose 
energy at the cathode is Vi is

 u e m V V Vi i m= ( ) + −( )2 0 . (5.41)

Thus at the virtual cathode, where V = 0, an electron whose initial energy is V Vi m=  
is just brought to rest. Because electrons whose initial energies are less than Vm are 
reflected, they contribute twice to the charge density. The contribution to the charge 
density at a plane is therefore

 d
dJ
v

J

V e m V V V

V
V

dVi
i

i

S

T i m

i

T
iρ = =

( ) + −( )
−







⋅
2 2

2 0

exp . (5.42)
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At any plane this must be integrated to cover all electrons whose initial energy allows 
them to reach that plane, but does not permit them to pass the minimum. Thus

 ρ2

0

2 1

2
V

J
V e m V V V

V
V

dVS

T i mV V

V

i

T
i

m

m

( ) =
( ) + −( )

−






⋅
−

⌠

⌡
 exp . (5.43)

Substituting for JS from (5.24)

 ρ2

0

0

2 1

2
V

J
V e m V V

V
V

dVa

T
iV

i

T
i( ) =

( ) + ′( )
−

′







 ⋅ ′

−

⌠

⌡



exp , (5.44)

where ′= −V V Vi i m. Then (5.44) can be written

 ρ υ
υ υ

υ υ
υ

2

0

0
2

2

1( ) =
( ) +

⋅ −( )⋅
−

⌠
⌡


J

e m V
da

T i

i iexp , (5.45)

where the prime on the variable of integration can be omitted without loss of gen-
erality. The total charge density at a plane where the normalised potential with 
respect to the minimum is υ is then the sum of ρ ρ1 2and . Substituting for the charge 
density from (5.40) and (5.45) in Poisson’s equation (5.13) and making use of (5.31) 
we obtain

 d
dX

d d
i

i i

i

i i

2

2
0

0
1

2
1υ

υ υ
υ υ

υ υ
υ υ

υ

=
+

⋅ −( )⋅ + ⋅
+

⋅ −( )⋅
∞

−

⌠
⌡


⌠
⌡
exp exp . (5.46)

Equation (5.46) can be expressed in terms of the probability function as

 d
dX

P
2

2
1

υ π υ υ= ⋅ ( ) + ( )



exp . (5.47)

As before this may be integrated to give

 d
dX

P
υ π υ υ υ

π
υ





= ⋅ ( ) − + ( ) ( ) −





2

2 1
2

exp exp  (5.48)

that agrees with (11) in [6].
The formal solution to (5.37) and (5.48) is

 X
d

P

= ( ) ⋅

( ) − ± ( ) ( )





−
⌠

⌡




4

1 2

1
4

1
2

0

π υ

υ υ υ υ π

υ

exp exp

,



 (5.49)

which is, essentially, (11) in [6]. In this equation the upper signs are taken between 
the cathode and the minimum, and the lower signs between the minimum and the 
anode. The distance between the cathode and the minimum is obtained by using the 
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upper signs and setting V Vm= . The distance between the minimum and the anode 
is obtained by using the lower signs and setting V V Vm ak= + . For comparison equa-
tion (5.16) can be rewritten in the form

 
−

( )
= ⋅

J x

e m V

C

T

2

0 0

3
2

3
2

2

4
9

ε
υ  (5.50)

or

 X = ⋅
2
3

3
4υ . (5.51)

Figure 5.4 shows the solutions of (5.49) and (5.51). The curves are identical to 
those in Figure 42 in [7] apart from the change in the scale of the horizontal axis. In 
this figure the cathode is to the left of the origin and the anode to the right.

5.3.3 Numerical Evaluation

It is not possible to evaluate the integral in (5.49) by analytical methods. Tables of 
the solutions found using numerical methods are given in [6]. The presence of the 
exponential functions can cause numerical overflows for large values of U. In the 
region between the potential minimum and the anode (5.49) can be approximated 
without loss of accuracy, when U > 50, by

 X
d

= ( ) ⋅
− 

−
⌠

⌡



4

2 1

1
4

1
20

π υ

υ π

υ

. (5.52)

Figure 5.4: Dependence of normalised potential against normalised position in a space- 
charge- limited diode with thermal initial velocities showing the Child- Langmuir curve 
(dashed) for comparison
(copyright 1931, The American Physical Society, reproduced, with permission, from [7]).
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Between the cathode and the minimum X → 1.3565 when υ > 20. The solutions 
shown in Figure 5.4 were obtained in this way (see Worksheet 5.1). Alternatively, 
equations (5.30) and (5.46) can be integrated directly using the Runge- Kutta 
method. Both methods give identical results.

To calculate the current- voltage characteristic of a thermionic diode we note first 
that the potential at the minimum is given by (5.22) as

 V V
J
Jm T

a

S

=






ln . (5.53)

For the purposes of illustration we will assume that the cathode temperature is 1300 
°K, which is typical of the temperature of the cathodes used in microwave tubes, so 
that VT = 0 112. V. When the ratio of the anode current to the saturation current is 
10– 6 the potential at the minimum is about 1.5 V which is small compared with typ-
ical potential differences between the electrodes. The distance of the minimum from 
the cathode can be computed using (5.49) for typical values of the parameters. The 
results are shown in Figure 5.5 where the distance between the minimum and the 
cathode is plotted against the normalised anode current. It can be seen that the dis-
tance is much less than 1 mm, except when the saturation current is small and when 
the anode current is a small fraction of the saturation current. Hence we expect that 
the effects of thermal velocities will be negligible except for small diode spacings, and 
low potential differences. Thus in Figure 5.2 d1 is normally much smaller than d2.

Once d1 has been found then d2 is given by

 d d d2 1= −  (5.54)

and (5.49) can be solved for the potential at the anode relative to the minimum as 
a function of the anode current. Finally the potential difference between the anode 
and the cathode is found by subtracting the potential at the minimum relative to 
the cathode.

Figure 5.5: Distance between the potential minimum and the cathode, in a space- charge- 
limited diode with thermal velocities, plotted against normalised current density.
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As the anode current drops, the potential difference between the minimum and 
the cathode increases and X tends to a constant, as has been noted. But, from 
(5.31), we see that x Ja∝ −  and therefore the distance between the cathode and 
the minimum increases without limit. Thus, in any diode, the minimum will reach 
the anode if  the anode current is small enough. When the minimum just reaches 
the anode the potential of the anode is negative with respect to the cathode and 
equal to the potential at the minimum. For smaller anode currents d2 is negative 
and the relationship between the anode current and the anode- cathode voltage is 
obtained from (5.22). The results of these calculations for a range of parameter 
values are shown in Figure 5.6. The normalised current J Ja S( ) is plotted against 
the anode- cathode voltage, normalised to the voltage at the saturation current for 
a diode without thermal velocities, given by (5.16). The graphs are plotted with the 
saturation current as a parameter for four different diode spacings. In each case 
the curve given by (5.16) is included for comparison. In microwave tubes the satur-
ation current is typically in the range 1.0 to 10 A cm−2 (see Chapter 18). It is clear 

Figure 5.6: Normalised current in a planar space- charge limited diode with thermal 
velocities plotted against the anode voltage, normalised to the voltage at the saturation 
current in a diode without thermal velocities.
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from Figure 5.6 that there is very little error in using (5.16) when the diode spacing 
is greater than 1.0 mm. For example, when JS = 1 0. A cm2 and d = 1 mm the max-
imum anode voltage is 264 V so thermal effects can be neglected if  the anode volt-
age is much greater than this. In general, thermal effects are not important in many 
power vacuum tubes. The exceptions are gridded tubes, and gridded electron guns, 
where the spacing between the control grid and the cathode may be much less than 
1 mm, and also vacuum micro- electronic devices.

5.4 The Planar Diode Including the Effects of Relativity

In many electron tubes the potential difference between the anode and the cathode 
is high enough for relativistic effects to be important. In that case (5.10) is replaced 
by (1.4)

 u c
V VR

= −
+( )













1
1

1
2

1
2

, (5.55)

where V m c eR = ( ) =0
2 511kV is the rest energy of an electron in electron volts  

[8– 10]. Following the same method as before we find that, for space- charge limited 
flow, (5.14) is replaced by

 dV
dx

J
c

V V VR






= − ⋅ +
2

0

22
2

ε
, (5.56)

where the constant C is zero. It is convenient to introduce the normalised variables

 U
V
VR

=  (5.57)

and

 X
J
cV

x
R

=
−

⋅
2 0ε

. (5.58)

Note that these are not the same as the normalised variables used in the previous 
section. Equation (5.56) then becomes

 dU
dX

U U





= +
2

24 2 , (5.59)

whose solution can be written formally as

 X U U dU
U

= +( ) ⋅∫
−1

2
2 2

0

1
4 . (5.60)
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This equation cannot be integrated analytically. Acton [8] and Boers and Kelleher 
[9] derived solutions as power series. An alternative solution expressed in terms of 
elliptic integrals given in [10] was used by Zhang et al. [11] to derive an approximate 
equation for the space- charge limited current density in a relativistic planar diode

 J
m c

ed
= ⋅

−( )
−( ) +−

2 1

3 1 1
0 0

2

2

0
2 3 3 2

0
0 392

ε γ

γ .
, (5.61)

where γ 0 0
21= +( )eV m ca . The error in this equation is less than 1% for any voltage.

The series given in [9] can be written

X U U U U U
n nn= +( ) + +

⋅
⋅

+ −( ) ⋅ ⋅ −( ) −(− +2
1
4 2 3 1

2
2
3

1
21

1 3
21 11

1
1 3 5 2 5 2 3

�
� ))

⋅ ⋅ −( ) −( )





21 11 15 4 5 4 1… n n
U n

(5.62)

Alternatively (5.60) can be evaluated directly using numerical methods. When volt-
age is small the terms in U 2 and higher powers in (5.60) can be neglected, and the 
integral evaluated analytically, to give

 X U= ( )1
3

2
3
4 . (5.63)

It is easy to show that this equation is identical to (5.16). Figure 5.7 shows a com-
parison between curves calculated using (5.63), the numerical evaluation of (5.60), 
and the first three terms of (5.62). It can be seen that, for a given U, the effect of 
relativity is to reduce the value of X and, therefore, the current for a given diode 
spacing. The series solution is a good approximation to the exact result with an 
error of less than 1% in X when U < 1 3.  if  three terms are taken (see Worksheet 5.1).

For a fixed diode spacing the current is proportional to X 2. The ratio of the rela-
tivistic current computed from (5.60) to the non- relativistic current computed from 

Figure 5.7: Normalised potential in a planar space- charge- limited diode plotted against 
normalised position both with, and without, relativistic effects and using the series 
approximation in (5.62).
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(5.63) is shown in Figure 5.8. It can be seen that equation (5.63) over- estimates the 
current by around 9% when U = 1.

5.5 The Cylindrical Space- Charge Limited Diode

The problem of space- charge limited flow between coaxial cylinders when the ini-
tial electron velocity is zero is discussed in [12] for the non- relativistic case, and in 
[8] for the relativistic case. For symmetrical flow in a cylindrical diode Poisson’s 
equation is

 1

0r r
r

V
r

∂
∂

∂
∂







= −
ρ
ε

. (5.64)

The total current per unit length IL is independent of radius so the current density is

 J
I

r
L=

2π
. (5.65)

Then, from equations (5.11), (5.55) and (5.64)

 1
2

1
1

10
2

1
2

r r
r

V
r

I
cr V V

L

R

∂
∂

∂
∂







= − −
+( )













−

πε
. (5.66)

Let R r rc= , where rc is the radius of the cathode, and U V VR=  so that (5.66) can 
be written

 d U
dR R

dU
dR

k
R

U

U U

2

2

1

2

1 1

2
+ =

+
+







, (5.67)

Figure 5.8: Relativistic correction to the current in a planar space- charge- limited diode 
plotted against normalised anode voltage.
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where

 k
I r

cV
L c

R
1

02
=

−
πε

. (5.68)

Equation (5.67) can be integrated by numerical methods with the initial conditions 
U = 0 and dU dR = 0 when R = 1.

A power series solution for the non- relativistic case can be derived by setting

 γ = lnR (5.69)

and assuming that the current obeys the 3/ 2 power law so that (in SI units)

 I
e m V

rL =
( )

⋅ ( )
8 2

9
0 0

3
2

2

πε
β

. (5.70)

Where V is the potential at radius r relative to the cathode, and β is a function of R 
[12]. Two series expansions for β have been found:

 β γ=
=

∞

∑An
n

n 0

 (5.71)

and

 β γ γ= −





⋅
=

∞

∑exp ,
2 0

Bn
n

n

 (5.72)

where the coefficients are given in Table 5.2. The second series generally converges 
faster than the first except when R < 0 05.  when γ  is negative and the exponential 
function in (5.72) becomes very large.

Acton [8] obtained the following power series solution for the non- relativistic case:

 U a= + + + + +( )γ γ γ γ γ
4
3 2 3 41 0 1333 0 02444 0 0039236 0 00052966. . . . ,  (5.73)

Table 5.2: Coefficients for equations (5.71) and (5.72)

n An Bn

0 0.0 0.0

1 +1.0 +1.0

2 −0.40 +0.10

3 +0.916667 +0.016667

4 −0.014242 +0.002424

5 +0.001679 +0.000266

6 −0.000161 +0.000026
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where

 a
I r

cV
kL

R

3 0

0

2

1
281

32 2
81
32

=






=
πε

. (5.74)

Equation (5.70) can be written in the same notation as

 U a R= ( )2 4
1
3β . (5.75)

It can be shown that (5.73) and (5.75) give identical results. Both equations are writ-
ten in a dimensionless form similar to (5.6). We note that, when R is constant, U is 
proportional to a and, therefore, the current is proportional to the 3/ 2 power of the 
voltage. Langmuir showed that the solution in series was identical to that obtained 
by direct integration of (5.67).

For the relativistic case Acton [8] obtained the power series solution

 U a a= + + +





+ + +





γ γ γ γ γ
4
3 2 2

8
31

2
15

11
450

1
14

6
175

  , (5.76)

which is valid when U < 2. The first series on the right- hand side of (5.76) is identi-
cal to the series in (5.73) so it follows that the effects of relativity are represented 
by the second series on the right- hand side. It would appear from (5.76) that, if  the 
difference between the relativistic and non- relativistic values of U is divided by a2,  
the result should be a function of R only. Calculations show that this is only true 
for a < 0 1.  and we conclude that (5.76) is an approximation to a double power series 
expansion of U in terms of a and γ . Zhang et al. [11] derived an approximate expres-
sion for this case in the same manner as that for the planar diode

 J
m c

r r
c

c a

=
−( )

⋅
−( )

−( ) +−

2

2

1

3 1 1
0 0

2

2

0
2 3 3 2

0
0 392

ε γ

γ .
, (5.77)

where γ 0 0
21= +( )eV m ca , Jc is the current density on the surface of the cathode 

and rc and ra are the radii of the cathode and the anode respectively. The relativistic 
term is identical to that in (5.61) and the error is less than 5% for all voltages and 
less than 1% for mildly relativistic voltages. The accuracy is best when the ratio of 
the anode radius to the cathode radius is close to unity.

When the results from (5.76) are compared with those obtained by direct integra-
tion it is found that the agreement is good when a ≤ 1 and R > 1(see Worksheet 5.2). 
When R < 1 the agreement is not so good. For example, when R = 0 5.  and a = 1 the 
value of U given by (5.76) is about 5% greater than that obtained by direct integra-
tion. It appears that the series in (5.76) do not contain enough terms to give good 
accuracy. This equation also shows that U is not proportional to a in the relativistic 
case and that, therefore, the current does not obey the 3/ 2 power law when relativ-
istic effects are important.

Figure 5.9 shows, as an example, comparisons between the relativistic and non- 
relativistic solutions when a = 1 and the anode is outside, and inside, the cathode. 
It can be seen that, for a given value of R, the effect of relativity is to increase U. 
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Thus, for a given geometry and applied voltage, the current is reduced by relativistic 
effects. It is found that U decreases when a decreases so that relativistic effects only 
become important for more extreme values of R.

5.6 The Spherical Space- Charge Limited Diode

The problem of space- charge limited flow between concentric spheres when the initial 
electron velocity is zero is discussed in [13] for the non- relativistic case and in [8] for 
the relativistic case. For symmetrical flow in a spherical diode Poisson’s equation is

 1
2

2

0r r
r

V
r

∂
∂

∂
∂







= −
ρ
ε

. (5.78)

The total current I is independent of the radius so the current density is

 J
I
r

=
4 2π

. (5.79)

Then, from equations (5.11), (5.55) and (5.78)

 1
4

1
1

12
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0
2 2

1
2

r r
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V
r

I
cr V VR

∂
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∂
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= − −
+( )













−

πε
. (5.80)

Again we set R r rc= , where rc is the radius of the cathode, and U V VR=  so that 
(5.80) can be written

 d U
dR R

dU
dR

k
R

U

U U

2

2

2

2 2

2 1

2
+ ⋅ = ⋅

+
+

, (5.81)

Figure 5.9: Comparisons between the relativistic and non- relativistic solutions for a 
cylindrical space- charge- limited diode when a = 1 and the anode is: (a) outside, and 
(b) inside, the cathode.
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where

 k
I
cVR

2
04

=
−

πε
. (5.82)

Equation (5.81) can be integrated by numerical methods with the initial conditions 
U = 0 and dU dR = 0 when R = 1.

A power series solution for the non- relativistic case can be found by setting

 γ = lnR (5.83)

and assuming that the current obeys the 3/ 2 power law so that (in SI units)

 I
e m V

=
( )

⋅
16 2

9
0 0

3
2

2

πε
α

, (5.84)

where α is a function of R [13]. The following series expansion for α was found:

 α γ γ γ γ γ γ= − + − + − +0 3 0 075 0 0143182 0 0021609 0 000267912 3 4 5 6. . . . . 

 (5.85)

Equation (5.84) can be written like (5.75) as

 U a= α
4
3 , (5.86)

where

 a
k3 2

281
32

= . (5.87)

Comparison between (5.86) and the results of direct integration shows excellent 
agreement when 0 2 5. < <R  (see Worksheet 5.3). For values of R outside this range 
Langmuir used direct integration.

Acton [8] obtained power series solutions in a similar manner. For the 
non- relativistic case

 U a= − + +





γ γ γ
4
3 21

2
5

3
25

 . (5.88)

And, for the relativistic case when U < 2

 U a a= − +
×

+





+ − +
×

+





γ γ γ γ γ
4
3 2 2

8
31

2
5

417
25 144

1
14

5
7 72

  . (5.89)

Here the first term on the right- hand side is similar, but not identical, to that in 
equation (5.88) so it appears that it is not permissible to regard the second term 
as a relativistic correction. These series do not contain enough terms to give good 
accuracy outside the range 0 5 2. < <R .

Figure 5.10 shows, as an example, comparisons between the relativistic and non- 
relativistic solutions when a = 1 with the anode outside, and inside, the cathode. As  
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before, the effect of relativity is to increase U. Thus, for a given geometry and 
applied voltage, the current is reduced by relativistic effects. It is found that U 
decreases when a decreases so that relativistic effects only become important for 
more extreme values of R.

5.7 Transit- Time Effects in a Planar Diode

The analyses of the properties of space- charge- limited diodes in the preceding sec-
tions have assumed that the diodes are in the steady state. When the voltage across 
a diode varies with time this will no longer be the case if  the transit time of an 
electron is comparable with the time during which the voltage changes. The high- 
frequency properties of a space- charge limited diode, when a small high- frequency 
voltage is superimposed upon a large DC voltage, are described by the Llewellyn- 
Peterson equations [14]. This can be important for low- power diodes but these are 
now of limited importance. High power diodes, however, are generally operated in 
the large- signal regime and it is usual to employ their static characteristics in design 
calculations. It is therefore important to know the conditions under which the static 
characteristics are a valid approximation to the dynamic behaviour.

It can be shown [15] that, when an electron current is flowing in a region with a 
number of electrodes,

 V i
t

dvk k
k

n

= +
∂
∂







⋅⌠
⌡

⌠
⌡

⌠
⌡


=
∑ ρ εv

E
E0

1

, (5.90)

where Vk is the potential of the kth electrode, ik is the current flowing to it from the 
external circuit and the integral is taken over the whole volume occupied by the field 

Figure 5.10: Comparisons between the relativistic and non- relativistic solutions for a 
spherical space- charge- limited diode when a = 1 and the anode is: (a) outside, and 
(b) inside, the cathode.
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of the electrodes. This equation can be understood as a statement of the principle 
of conservation of energy. The left- hand side represents the instantaneous power 
flowing into the region and the two terms in the integral represent, respectively, the 
rate of change of the kinetic energy of the electrons and of the potential energy 
stored in the electric field. When this equation is applied to a planar diode that has 
one electrode earthed then

 Vi A v
E
t

E dx= +
∂
∂







⌠
⌡
 ρ ε0 , (5.91)

where A is the area of each electrode. This equation shows that, under dynamic con-
ditions, the current flowing to an electrode is not necessarily equal to the electron 
current landing on it. In particular, an induced current can start to flow before any 
electrons reach the anode. The term in the brackets in (5.91) is the total current whose 
divergence is zero. Thus the flux of the total current through any transverse plane 
is constant and depends only on time. To find the relationship between the external 
current and voltage under large- signal conditions it is necessary to start from the 
equations of motion of the electrons and apply the appropriate boundary conditions.

The large- signal high- frequency characteristics of vacuum tubes were studied by 
Wang [16] who investigated the behaviour of a diode when subjected to a short, 
parabolic, voltage pulse of amplitude Vpk and duration 2 0t  given by

 V t
t
t

t
t

V t tpk( ) = −






≤ ≤( )
0 0

2 0 2
0

. (5.92)

This pulse approximates to a single cycle of a tube in class B or class C operation. 
When t ≤ 0 there are no electrons between the electrodes. When t > 0 electrons are 
emitted from the surface of the cathode at a rate sufficient to ensure that the electric 
field is zero there. When t t> 0 the voltage starts to drop and, at some point the emis-
sion ceases because the field of the electrodes is no longer sufficient to overcome 
the retarding field due to space- charge. The analysis assumes that the electrodes are 
close enough together for the propagation delay of the electromagnetic field to be 
negligible. Figure 5.11 shows plots of the positions of electrons as a function of 
time. Each curve is specified by the time τ  at which the electron is emitted. A num-
ber of times which are of interest are marked:

t1 = the time at which an electron emitted at t = 0 reaches the anode;
t2 = the time at which the cathode stops emitting electrons;
t3 = the time at which the last electron reaches the anode;
t4 = the time at which the last electron leaves the space between the electrodes.

Four cases are shown in Figure 5.14:

 (a) The transit time is negligible compared with the duration of the voltage pulse 
and the behaviour of the diode is quasi- static.

 (b) The transit time is an appreciable fraction of the pulse duration, not all of 
the electrons are able to reach the anode, and the current pulse is appreciably 
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shorter than the voltage pulse. Electrons remain in the space between the elec-
trodes for some time after the cathode stops emitting.

 (c) The transit time of the electron emitted at t = 0 is a substantial fraction of the 
pulse duration and the cathode stops emitting electrons before the first electron 
reaches the anode.

 (d) The reversal of the voltage is so fast that no electrons are able to reach the anode.

For our purposes it is case (a) which is of interest. When the transit time is small 
the diode is completely filled with electrons throughout the pulse. The transit time 
is greatest at the start and end of the pulse when the voltage is small. Wang pro-
vides a detailed analysis of this case and shows that, when second-order terms are 
included, the convection current at the anode is given by

 J t
e

m

V t

d d

dV t

dt
( ) = ⋅

( )
− ⋅

( )4
9

2 2
5

0

0

3
2

2

0ε ε
. (5.93)

The first term on the right hand side of this equation is identical to (5.16) and the 
second term is 40% of the reactive current flowing in the capacitance of the diode, 
but with the sign reversed. To investigate the point at which transit time effects first 
become important we consider a diode subjected to a sinusoidal voltage given by

 V t V ta( ) = ( )sin .ω  (5.94)

Figure 5.11. Electron trajectories in a diode when the applied voltage is given by (5.92)
(copyright 1941, IEEE, reproduced, with permission, from [16]).
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The first term in (5.93) is non- zero only during the positive half- cycle. This wave-
form can be expanded as a Fourier series. If  only the first harmonic term is retained 
then substitution in (5.93) gives the approximation

 
J t

V u
d

t d t

V u
d

a
e

a

( ) ( ) − ⋅ ( )









4
9
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9

10

5

0 0

2

0 0

2

ε ω β ω

ε

. sin cos

ssin cos ,ω β ωt d te( ) − ⋅ ( ) 2
 

(5.95)

where β ωed d u= 0  and u eV ma0 02= . The transit time effects are represented 
by the second term in the brackets whose magnitude depends on βed . This factor 
increases with frequency, and with the diode spacing, and decreases as the peak 
voltage applied to the diode is increased. Transit time effects therefore increase 
the magnitude of  the current by a factor of  approximately 1 2

2+ ( )βed  and retard 
its phase by 2βed . The condition that transit time effects should be negligible is 
therefore βed 1 2. This can be used as a guide to the spacings required between 
electrodes if  transit time effects are to be avoided. It is important to note that 
(5.95) can only be used to calculate the convection current when transit time effects 
are small.

5.8 Injection of Electrons into a Planar Diode

We saw in Section 5.3 that it is not possible to use a single initial velocity to model 
the emission from a thermionic cathode. However, there are other cases where this 
problem is of interest. Consider, for example, a plane- parallel diode in which the 
electrodes are conducting grids that are perfectly transparent to the electrons. Let a 
stream of electrons having uniform current density Ji and velocity u0 normal to the 
grids be injected into the space between them as shown in Figure 5.12. This prob-
lem has been studied by many authors (see [17] and the references cited therein). 
Here we follow the treatment in [18].

If  relativistic effects are neglected, the initial velocity of the electrons is given  
by (5.10) as

 u e m Vk0 02= ( ) , (5.96)

where the source of electrons is at potential −Vk relative to the electrode at x = 0, 
then the velocity at a plane where the potential is V is

 u u V Vk= +0 1 . (5.97)

Making use of (5.11) and (5.12) we obtain

 d V
dx

J

u V V
i

k

2

2
0 0 1

= −
+ε

. (5.98)
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Multiplication by 2 dV dx( ) as before and integrating yields

 dV
dx

J V
u

V V Ci s
k







= − ⋅ + +
2

0 0
1

4
1

ε
, (5.99)

where C1 is a constant. It is convenient to introduce normalised variables  U V Vk=  and

 X
J

u V
xi

k

=
−

⋅
4

0 0ε
. (5.100)

Substitution in (5.99) gives

 dU
dX

U= ± + +( )1 1

1
2α , (5.101)

where α1 is a dimensionless constant. Setting W U= +1  and integrating a second 
time gives

 4
3

2 1 1

1
2 2W W X−( ) +( ) = ± +α α α , (5.102)

where α2 is a second constant of integration. We note that (5.101) implies that the 
gradient of the potential may be either positive or negative. If  the gradient is posi-
tive then the potential will increase monotonically through the diode whereas, if  
the gradient is initially negative there will be a potential minimum followed by a 
monotonic increase.

 a) Monotonic increase (Branch I)

Let X Xa=  correspond to x d=  and let

 W U V Va a a k= + = +1 1  (5.103)

so that W = 1 when x = 0. Substituting these boundary conditions in (5.102) and 
taking the plus sign gives

Figure 5.12: Injection of electrons into a diode formed by parallel conducting grids.
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 4
3

1 2 11 1

1
2 2−( ) +( ) =α α α  (5.104)

and

 4
3

2 1 1

1
2 2W W Xa a a−( ) +( ) = +α α α . (5.105)

The constants α1 and α2 can then be determined and, hence, the potential distribu-
tion from (5.102) (taking the positive sign).

 b) Negative potential minimum (Branch II)

Let the position of the minimum be X X m= . In the range 0 ≤ ≤X X m

 4
3

2 1 1

1
2 3W W X−( ) +( ) = − +α α α  (5.106)

and, in the range X X m≥

 4
3

2 1 1

1
2 4W W X−( ) +( ) = +α α α , (5.107)

where α3 and α4 are new constants of integration. Since W is continuous we find, 
from (5.101), that W + =α1 0 when X X m=  so that

 α α3 4= = −X Xm mand . (5.108)

Substituting for α3 in (5.106) and setting W = 1 when X = 0 gives

 4
3

1 2 11 1

1
2−( ) +( ) =α α X m (5.109)

and setting W Wa=  when X Xa=  equation (5.107) becomes

 4
3

2 1 1

1
2W W X Xa a a m−( ) +( ) = −α α . (5.110)

The properties of a diode with injected current can be determined from equations 
(5.104), (5.105), (5.109) and (5.110) (see Worksheet 5.4). We note that α1 1≥ −  for 
both branches because α2 and Xm are real. Equation (5.101) requires α1 0≤  for 
branch II because otherwise it is not possible for the gradient of the potential to 
be zero. The solution has two branches corresponding to the two cases described 
above. It is convenient to plot graphs of Xa against α1 with Ua as a parameter, as 
shown in Figure 5.13. Branch I solutions are plotted as solid curves and branch II 
solutions as dashed curves in this figure.

Solutions for given values of Xa and Ua are found from the intersections between 
lines of constant Xa and Ua. It can be seen from the figure that the number of inter-
sections can be zero, one, or two. If  the diode spacing is fixed and the diode voltage, 
and the injection voltage, are held constant then Ua is constant. When the injected 
current is gradually increased then Xa increases from zero. Initially there is only a 
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single intersection with branch I for a large value of α1, and the potential in the 
diode increases monotonically with x. As Xa increases a point is reached where two 
solutions are possible: one in branch I, and the other in branch II. It can be shown 
that the branch II solution has higher potential energy and is therefore unstable. 
Eventually at α1 1= −  the space charge becomes sufficient to generate a potential 
minimum and there are two solutions on branch II of which the one corresponding 
to the more negative value of α1 is stable. Finally the two solutions coalesce at the 
maximum of the curve of constant Ua, the current is space- charge limited and can-
not increase any further. It is straightforward to show that at the maximum

 α1 1
= −

+
W

W
a

a

. (5.111)

Substituting in (5.110) from (5.109) and (5.111) gives the maximum value of Xa for 
a given value of Wa

 X Wamax .= +( )4
3

1
3
2  (5.112)

This equation can be expressed in terms of physical variables in the form

 J
e m

x
V V V V Vi a k a k a= − ⋅

( )
+ +( )4

9

2
1

0 0

2
3 2

3ε
, (5.113)

which can be compared directly with the Child– Langmuir Law given by (5.16). It 
can be seen that the two equations become identical when Vk → 0. For non- zero 
values of the injection potential the last term in the equation is greater than unity 
and the maximum current which can flow through the diode is therefore increased 
as a result of the finite injection velocity. We note that the potential at the minimum 
is always greater than that at the source of electrons, and that there is no plane 
within the diode at which the electrons come to rest.

Figure 5.13: Dependence of the normalised diode spacing Xa on α1 with the normalised 
potential difference Ua as a parameter
(copyright 1944, The American Physical Society, reproduced, with permission, from [18]).
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When the electrons are injected into the diode, the current is usually deter-
mined externally. It is therefore of  interest to enquire what happens if  we 
attempt to inject a current greater than that given by (5.113). This problem was 
studied by Langmuir [7]. The additional space charge depresses the potential 
at the minimum so that a virtual cathode is formed at which V Vk= −  and the 
electrons come to rest. We have to assume that the electrons do not all have 
the same injection velocity, but that there is a small velocity spread caused by 
their emission from a thermionic cathode. As a consequence some electrons are 
reflected by the virtual cathode while others pass onwards and are collected by 
the anode. We saw in Section 3.2.1 that, for a small spread of  velocities, the 
behaviour of  the diode is described by the Child– Langmuir Law. It is therefore 
justifiable to assume partial reflection of  the electrons while ignoring the vel-
ocity spread. We assume that the injected current density is Ji, that the current 
density at the anode is Ja , and that the virtual cathode forms at x xm= . In the 
region 0 ≤ ≤x xm the effective current density is 2J Ji a−( ) since the space- charge 
density is not affected by the direction of  motion of  the electrons. Then, from 
(5.16) we have

 2
4
9

20 0

2

3
2J J

e m

x x
V Vi a

m

k− = − ⋅
( )
−( )

⋅ +( )ε
. (5.114)

Equation (5.114) can be written

 X X
J

J J
Wm

a

i a

= − ⋅
−

⋅
4
3 2

3
2 , (5.115)

where

 X
J

u V
xa

k

=
−

⋅
4

0 0ε
 (5.116)

and

 W
V
Vk

= +1 . (5.117)

When X = 0, W = 1 , and therefore

 X
J

J Jm
a

i a

= ⋅
−

4
3 2

. (5.118)

Substituting in (5.115) gives for the region 0 ≤ ≤x xm

 X
J

J J
Wa

i a

= ⋅
−

⋅ −





4
3 2

1
3
2 . (5.119)
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Similarly in the region x x dm ≤ ≤

 J
e m

x x
V Va

m

k= − ⋅
( )

−( )
⋅ +( )4

9

20 0

2

3
2

ε
, (5.120)

which becomes

 X W
J

J J
a

i a

= ⋅ + ⋅
−

4
3

4
3 2

3
2 . (5.121)

If  there is no reflection the anode current is equal to the injected current and, at 
the anode,

 X Wa a= +






4
3

1
3
2 . (5.122)

This is identical to the result obtained by setting α1 0=  in (5.110). We note that this 
is less than the space- charge limited value of X given by (5.112). If  the injected cur-
rent is increased, at constant electron velocity and anode voltage, then the last term 
in (5.121) decreases and, therefore, so does the anode current. In particular, it is 
observed experimentally that, if  the injected current is increased slightly above the 
space- charge limit, then there is an abrupt reduction in the anode current [19– 20]. 
Thus the behaviour of such a diode is chaotic. This behaviour is exploited in virtual 
cathode oscillators [21]. Further information about diodes with injected current is 
to be found in [17] and [22].

5.9 Diodes with Two- Dimensional Flow of Current

In many cases the electron flow in a diode can be regarded as one dimensional. 
However, the emitting surface necessarily has a finite area, and it is usual to provide 
focusing electrodes at the edges which are designed to compensate for edge effects 
to produce near- uniform current density on the cathode surface. This technique is 
discussed in detail in Chapter 9.

If  no focusing electrodes are used then the electron flow becomes two, or three, 
dimensional according to the geometry. Problems of this nature have been studied 
by a number of authors using Particle in Cell (PIC) codes. Two- dimensional flow 
between planar electrodes, when the electrons are emitted from a narrow strip on 
the surface of one of them, was studied in [23] using two different simulations. 
The results from both simulations showed good agreement. The current density 
across the emitting surface was assumed to be uniform and increased until oscil-
latory behaviour was observed. This was taken to define the limiting current in 
two- dimensional flow. The current was limited by the formation of a virtual cath-
ode at the centre of the emitting strip. Simulations were carried out both with, 
and without, a uniform magnetic field normal to the electrodes. It was found that 
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the limiting current was almost independent of the intensity of the magnetic field. 
The results obtained were generalised as an empirical geometrical correction to the 
Child– Langmuir law (5.16) given by

 J
J

d
w

d
w

D

D

2

1

2

0 3145 0 0004= 





− 





. . , (5.123)

where d is the distance between the electrodes, w is the width of the emitting strip, 
J D2  is the limiting current density and J D1  is the one- dimensional Child– Langmuir 
current density given by (5.16). Equation (5.123) was found to be valid to an accur-
acy of 5% in the range 0 1 8. < <w d , and for magnetic fields in the range 0 to 100 T.

Further studies of this problem showed that, when the current density emitted 
from the cathode was allowed to be non- uniform, there was a sharp rise in the 
current density at the edges of the strip as shown in Figure 5.14 [24]. This is to be 
expected because the absence of space- charge in the vacuum region immediately 
outside the strip reduces the space- charge potential depression that limits the cur-
rent. When the strip is wide compared with the gap, the current density is given by 
the one- dimensional Child– Langmuir law over the greater part of the width of the 
strip, only rising at the extreme edges. When w d= 2  the current density is greater 
than that given by the one- dimensional law, except at the centre of the strip. For 
narrower normalised strip widths the current density everywhere exceeds that given 
by the one- dimensional law.

When a step was introduced in the gap between the electrodes, opposite the cen-
tre of the emitting strip, it was found that the emitted current density closely fol-
lowed the square of the local vacuum electric field, except at the edges of the strip. 
It was also found that a very slight change in the electric field at the edge of the 
strip, such as that produced by a small non- emitting focus electrode, could have a 
significant effect on the emitted current density.

Figure 5.14: Simulated normalized current density emitted at cathode versus position 
(normalized to gap distance) for a variety of emission strip widths (w) and gap distances (d) 
in cm; each trace is labeled with its corresponding w d( ) value
(copyright 2001, The American Physical Society, reproduced, with permission, from [24]).
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The scaling of the equations governing space- charge limited emission showed 
that the ratio J JD D2 1  is a universal function of w d for zero emission velocity [23]. 
This universal function was derived in [25] where it was shown that, to first order,

 J
J

d
w

d
w

D

D

2

1

1 1 0 318≅ + = +
π

. . (5.124)

This expression is very close to the empirical expression in (5.123). The same 
method was also used to find the geometrical correction when the electrons are 
emitted from a circular patch on the cathode of radius R

 J
J

d
R

D

D

2

1

1
4

= + . (5.125)

It was stressed that neither (5.124) nor (5.125) give the correct limits as W and 
R tend to zero. A review of  these results was given in [26]. The method in [25] 
was extended in [27] to a number of  other cases with plane parallel electrodes 
and finite emitting patches of  varying shapes including squares, rectangles, and 
polygons.

The space- charge limited current flow between concentric cylinders, when elec-
trons are emitted from a band on one of them, was studied in [28]. The simulations 
ignored the self  magnetic field of the electron flow and assumed that the current 
density was uniform on the surface of the emitter. Both convergent flow (anode 
inside the cathode) and divergent flow were considered. It was found that both cases 
were described by the same empirical correction factor

 I
I

R
L

R
L

D

LB

2
2

1 0 1536 0 0183= + 





+ 





. . , (5.126)

where R is the radius of the outer electrode, L is the length of the emitting band 
and ILB is the current calculated for a length L using (5.70). Equation (5.126) was 
found to be valid to an accuracy of 2.5% for R r = 3 10and  (where r is the radius 
of the inner electrode) and 0 2 5. < <L R . The reason why (5.126) does not depend 
upon R r is that the value of β in (5.70) rapidly approaches an asymptotic value 
when R 3 3> . When R r < 3 this is no longer the case and (5.126) ceases to be valid. 
A theoretical expression for this case takes the form

 I
I

R r

L
F R rD

LB

2 1
4

= +
−( ) ( )

π
, (5.127)

where F R r( ) is a function (plotted in [27]) that takes different values for conver-
gent and divergent flow. In the limit R r F→ →1 1 4, , which is approximately the 
average of the values for convergent and divergent flow for R r > 1. It is shown that 
(5.126) and (5.127) give similar results for R r = 3 10and  when L R > 1 but that they 
differ for smaller values of R r where (5.126) does not tend to the planar limit as it 
should. Neither method is accurate for L R < 1 because the enhanced emission at 
the edges of the emitting band has not been included.
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6 Triodes and Tetrodes

6.1 Introduction

A triode is constructed by placing a conducting control grid between the cath-
ode and the anode of  a vacuum diode, as shown schematically in Figure 6.1(a). 
The current drawn from the cathode depends on the potentials of  the grid and 
the anode with respect to the cathode. The anode is known as the plate in the 
USA. The grid potential can therefore be used to control the current flowing to the 
anode. The electron flow between the cathode and the grid is space- charge limited, 
and it is found experimentally that the properties of  many tubes can be described 
by the equation

 I K V Va g a= +( )µ
3
2 , (6.1)

where Ia is the anode current, Vg and Va are the potentials of the grid and the anode 
with respect to the cathode, and K and µ are constants. In some tubes the power of 
the term in the brackets is greater than 1.5 when the grid voltage is negative, and 
it may be as high as 2.5 for reasons which are explained later. It is also found that 
K and µ are not precisely constant but may vary somewhat with the conditions of 
operation. The parameter K is the perveance by analogy with the perveance of a 
diode and µ is known as the amplification factor from its role in the small- signal 
theory of triode amplifiers in which [1]

 µ =
∂
∂







V
V I

a

g
a

. (6.2)

This parameter is typically in the range from 5 to 200 depending upon the pur-
pose for which the tube has been designed [2]. The penetration factor, defined by 
D = 1 µ is more useful when the physics of  the device are under consideration. The 
symbol D( ) comes from the German for penetration (Durchgriff), Other param-
eters used in small- signal theory are the mutual conductance (or transconduct-
ance) defined by

 g
I
V

V
m

a

g
a

=
∂
∂







 (6.3)
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and the dynamic anode resistance (or anode slope resistance) defined by

 r
V
I V

a
a

a
g

=
∂
∂







. (6.4)

From these definitions it follows that

 µ = g rm a . (6.5)

It must be emphasised that the values of these parameters depend on the quiescent 
point chosen for operation of the tube. They are therefore of limited value in dealing 
with the operation of triodes under large- signal conditions. They are mentioned here 
for completeness because their values are sometimes given in manufacturers’ catalogues.

Figure 6.1(b) shows a schematic diagram of a tetrode in which a second grid (the 
screen grid) has been placed between the control grid and the anode. The screen 
grid is maintained at a constant positive potential so that it screens the cathode 
from the varying voltage of the anode. The characteristics of a tetrode are given 
approximately by

 I K V
V V

a g
s

s

a

a

= + +




µ µ

3
2

, (6.6)

where Vs is the potential of the screen grid with respect to the cathode. Typically 
µs ∼ 5 10−  and µa ∼ 100 200− . The basic theory of triodes and tetrodes is dis-
cussed in this chapter whilst practical devices are dealt with in Chapter 12.

6.2 Electrostatic Models of Triodes

The accurate calculation of the performance of triodes and tetrodes requires 
detailed modelling of the electron trajectories under the influence of the electrode 

Figure 6.1: Schematic diagrams of (a) the triode, and (b) the tetrode.
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potentials, space- charge, and secondary electron emission. This can be achieved 
with a particle in cell (PIC) code [3]. The objective, here, is to provide the reader 
with simple models which provide insight into the properties of gridded tubes and 
the means to make conceptual design calculations. This is approached through the 
use of electrostatic models from which the large- signal behaviour, including the 
effects of space- charge, can be inferred.

Figure 6.2 shows the arrangement of a planar triode whose geometry is defined by 
the parameters d1, d2, r, a. The geometrical screening factor is defined by S r a= 2 .  
In the absence of space- charge, the normal component of the electric field on the 
surface of the cathode is linearly dependent on the potentials of the grid and the 
anode with respect to the cathode. Thus we may write

 E y
V

d y
V

d yx
g

g

a

a

0, ,( ) = − ( ) − ( )  (6.7)

where d y d yg a( ) ( )and  are unknown functions of y which have the dimensions of 
distance. Equation (6.7) can be rewritten as

 E y
V D y V

d yx
g a

g

0, ,( ) = −
+ ( )

( )  (6.8)

where D y( ) is the penetration factor which, in general, varies over the surface of the 
cathode. Now consider the case where the grid is thin and biased to the potential 
which would exist at that plane if  the grid were removed. Thus

 V
d

d d
Vg a=

+
1

1 2

. (6.9)

Then, substituting in (6.8)

 E y
d D y d d

d y
V

d dx
g

a0 1 1 2

1 2

, .( ) = −
+ ( ) +( )

( ) ⋅
+

 (6.10)

Figure 6.2: Arrangement of a planar triode.
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But, in the absence of the grid, the electric field on the cathode surface is uniform and

 E
V

d dx
a0

1 2

( ) =
+

. (6.11)

Thus

 d y d D y d dg ( ) = + ( ) +( )1 1 2  (6.12)

and, substituting in (6.8),

 E y
V D y V

d D y d dx
g a0

1 1 2

, .( ) = −
+ ( )

+ ( ) +( )  (6.13)

In many cases, as we shall see, the electric field is uniform over the surface of the 
cathode and then (6.13) reduces to

 E
V DV

d D d dx
g a0

1 1 2

( ) = −
+

+ +( ) , (6.14)

where D is a constant. The same argument can be used to derive the corresponding 
equations for cylindrical triodes. These are not required here, however, because the 
distances between the electrodes in coaxial high power triodes are small compared 
with their diameters so that the expressions for planar geometry may be used.

It is useful to investigate the relationship between the expressions derived, and 
the inter- electrode capacitances shown in Figure 6.3. It should be noted that these 
capacitances are not normally the same as those measured at the external terminals 
of the tube because of the capacitances of the connections between the internal 
electrodes and the terminals. The charge per unit length on the section of the cath-
ode associated with one grid wire is given by

 q C V C Vc cg g ca a= − +( ). (6.15)

If  the charge density on the cathode is uniform then electric field normal to the 
cathode is

 E
q

a a
C V C Vc

c
cg g ca a= = − +( )ε ε0 0

1
, (6.16)

Figure 6.3: Inter- electrode capacitances in a triode.
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where a is the width of the strip of cathode between two adjacent grid wires. 
Comparing (6.16) with (6.14) we see that

 C
a

d D d dcg =
+ +( )

ε0

1 1 2

 (6.17)

and

 C
Da

d D d d
DCca cg=

+ +( ) =
ε0

1 1 2

 (6.18)

so that

 D C Cca cg= . (6.19)

Equation (6.17) can be rewritten as

 C
a

d d D
d d

cg =
+ +











ε0

1 2
1 2

1
1 1

. (6.20)

This can be interpreted as the capacitance of a parallel plate capacitor whose spacing 
is modified by the term in brackets which represents the difference between the grid 
and a metal sheet. The modification should be independent of the position of the 
grid, provided that the distances between it and the other electrodes are greater than 
a. Thus the quantity d D2  should depend only upon the dimensions of the grid. We 
shall see later that this conclusion is confirmed by field theory. Similarly, the capaci-
tance between the grid and the anode is obtained by interchanging d d1 2and  to give

 C
a

d d D
d d

d
d

Cga cg=
+ +











=
ε0

2 2
1 2

1

21
1 1

. (6.21)

The conclusions drawn from this analysis are valid as long as the grid wires are 
small compared with the other dimensions.

6.3 Penetration Factor in a Planar Triode

The potential distribution in a planar triode can be found by placing a line charge 
at the centre of each grid wire. This problem was first solved by Maxwell using con-
formal mapping [4]. The solution is derived from that of a transformed problem in 
which two line charges are placed within a conducting cylinder [5]. The potential of 
a grid of equally spaced wires is given by

 V x y
q x

a
y

a
Cg, ln cosh cos ,( ) = − −











 +

4
2

2 2

0πε
π π  (6.22)
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where qg is the charge per unit length on each wire and C is a constant. If  the grid is 
located at x d= 1 and a second grid carrying charge −qg  is located at x d= − 1 then the 
potential on the plane x = 0 is zero and that plane can be taken to be the cathode. 
Adding a linear variation of potential, for the effect of the anode, gives

 V x y
a

f x y q xqg g a, , ,( ) = ( ) +( )1

0ε
 (6.23)

where

 f x y
a x d a y a

x d a y ag , ln
cosh cos

cosh cos
( ) =

+( ) −
−( ) −




4

2 2

2 2
1

1π
π π
π π




 (6.24)

and qa is the charge per unit length on a strip of the anode of width a. On the grid 
V V d rg = ( )1,  so that

 V
a

f d r q d qg g g a= ( ) +( )1

0
1 1ε
, . (6.25)

The anode must be an equipotential surface and, therefore, when x d d= +1 2 the 
hyperbolic cosines must be much greater than unity. This condition is satisfied if  
d a2 1≥  (when cosh 2 2682πd a( ) ≥ ) and then, to a good approximation,

 f d d y
a d d a

d a
dg 1 2

1 2

2
14

2 2

2
+( ) =

+( )







 =, ln

exp

exp
.

π
π

π
 (6.26)

Thus

 V
a

d q d d qa g a= + +( )( )1

0
1 1 2ε

. (6.27)

Equations (6.27) and (6.25) can be written as

 
V

V a

f d r d

d d d

q

q
g

a

g g

a









 = ( )

+




















1

0

1 1

1 1 2ε
,

. (6.28)

Inverting this equation we obtain

 
q

q
C

d d d

d f d r

V

V
g

a g

g

a









 =

+ −
− ( )



















1

1 2 1

1 1,
. (6.29)

where

 C
a

d d f d r dg
1

0

1 2 1 1
2

=
+( ) ( ) −

ε
,

. (6.30)
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6.3.1 A Triode with Uniform Electric Field on the Cathode

If  d a1 1≥  the potential is independent of y close to the cathode and, to a good 
approximation,

 
f d r

a d a

r a

d
a r

a

g 1
1

1

4

4

2 2 2
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 (6.31)

and f x y xg ,( ) →  as x → 0. The normal component of the electric field on the cath-
ode is given by
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1 2 1

,
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+ ( ) −( )
+( ) ( ) −ε 11

2
. (6.32)

Comparing (6.32) with (6.14) we see that

 d D f d r dg2 1 1= ( ) −,  (6.33)

so, from (6.31),

 D
a
d

r
a

= − 











2

2
2π

π
ln sin  (6.34)

and d D2  depends only on r and a as required by (6.20).
The validity of (6.34) has been confirmed experimentally when r a = 0 025. , 

d a1 0 97= .  and 0 86 8 82. .< <d a  [5]. Substituting in (6.30) we find that

 C
a

d d D d d
1

0

2 1 1 2

=
+ +( )( )

ε
. (6.35)

The potential at any point within a planar triode may be calculated using 
(6.23), (6.24) and (6.29). The potential contours for a typical geometry are 
shown in Figure 6.4 for Va = 100V and a range of  grid voltages (see Worksheet 
6.1). The triode is close to cut off  when Vg = −12 V. The electric field on the 
surface of  the cathode is independent of  position in every case. The equipoten-
tial surfaces close to the grid wires are approximately circles centred on the 
line charges representing the grid. Thus the model represents the potentials 
correctly if  r a is small. However, as the radius of  the equipotential surface 
increases, it is found that it is no longer centred on the line charge. A  num-
ber of  authors have presented formulae for calculating the penetration factor 
for larger screening factors. These formulae are based on the addition of  line, 
dipole, and multipole, charges to ensure that the surfaces of  the grids wire are 
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equipotential surfaces. Equation (6.34) is valid if  r/a ≤ 0.05. For r/a ≤ 0.08 it 
has been shown [6] that

 D

r
a

d
a

r
a

=













− 











ln coth

ln cosh
.

2

2 22

π

π π
 (6.36)

We note that d D2  is not now a function of r and a only because the diameters of 
the grid wires are no longer small compared with the other dimensions. Further 
formulae which are valid up to r a = 0 16.  are given in [7, 8]. These expressions are 
somewhat complicated and do not give additional insight into the properties of 
triodes. In addition, they are of limited relevance to modern high power triodes in 
which the grid ‘wires’ are usually rectangular in cross- section.

6.3.2 A Triode with Non- Uniform Electric Field on the Cathode

When d a1 1<  the x component of the electric field is found by differentiating (6.23)

 E x y
V
x a

f x y q qz g g a, , ,( ) = −
∂
∂

= − ′ ( ) +( )1

0ε
 (6.37)

where
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In the limit x → 0
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 (6.39)

so that, on the surface of the cathode

 E y
a

f y q qz g g a0
1

0
0

, , .( ) = − ′( ) +( )ε
 (6.40)

Substituting for q qg aand  from (6.29)
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The electric field depends linearly on the grid and anode potentials and therefore, 
following Fremlin, we define the electrostatic penetration factor by
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E
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E
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. (6.42)
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From (6.41)
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∂
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, . (6.43)
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so that
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, (6.45)

which is valid when r a ≤ 0 05. . In the limit d a1   ′ ( ) →f yg 0 1,  and D y Dg ( ) →  as 
expected. It can be shown, by substitution, that

 E y
V D y V

d D y d dz
g g a

g

0
1 1 2

, ,( ) = −
+ ( )

+ ( ) +( )  (6.46)

which was previously derived as (6.13).
Figure 6.5 shows how the normalised penetration factor D y Dg ( )( ) varies with y 

for a number of grid- cathode spacings. This figure confirms that the emission from 

Figure 6.5: Variation of normalised penetration factor with position 
( , , , . )d a r a V V Da g2 5 1 14 100 2 0 026= = = = − =V V, .
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the cathode is uniform when d a1 1≥  (see Worksheet 6.1). A different method for 
calculating the potential when d a1 0 4≥ .  using theta functions gives essentially the 
same results [9].

6.3.3 Calculation of Penetration Factors Using Numerical Methods

We have seen that the analytical solutions for the penetration factor are restricted 
to grids composed of circular wires whose diameter is small compared with their 
spacing. For wires of other shapes and for general dimensions it is necessary to use 
numerical methods. It is sufficient to calculate the potentials in two cases:

 i) V Vg a= =1 0,
 ii) V Vg a= =0 1, ,

since all other cases can be found by superposition. The penetration factor is then 
the ratio of the electric field at the surface of the cathode computed in (ii) to that 
computed in (i).

6.4 Static Characteristics of Triodes

The accurate calculation of  the static characteristic curves of  a triode requires 
the simultaneous solution of  the equations of  motion of  the electrons, and 
Poisson’s equation for the electrostatic potential in the presence of  space charge. 
This is a difficult task, and a number of  authors have offered expressions for 
the current based on equivalent diodes derived from the electrostatic solution. 
When the electric field at the cathode is uniform and given by equation (6.14) 
we can write

 E y
V
dx

e

e

0, ,( ) =  (6.47)

where the equivalent voltage is

 V A V DVe g a= +( ), (6.48)

and the spacing of the equivalent diode is

 d A d D d de = + +( )( )1 1 2 , (6.49)

where A is a constant whose value is to be chosen so that the current dens-
ity in the triode is equal to the space- charge- limited current in the equivalent 
diode. Thus

 J K
V
d

e

e

=

3
2

2
 (6.50)
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or

 J
K

A

V DV

d D d d

g a= ⋅
+( )

+ +( )( )

3
2

1 1 2

2 . (6.51)

To find an expression for A we consider two limiting cases:

 i) The distance between the anode and the grid is increased d a2 → ∞( ) keeping all 
other parameters constant. Then
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 (6.52)

from (6.34) since D d→ 0 1 2as . We note that the denominator in (6.52) is con-
stant and slightly greater then d1 reflecting the fact that there is some penetration 
of the electric field through the array of grid wires. If  we now reduce the spac-
ing between the grid wires, while keeping r a constant, then the current density 
should tend to that of a diode in which there is a continuous electrode at the 
plane of the grid. This requires  A D→ →1 0as .

 ii) The normalised grid wire radius r a is small, so that the current intercepted by 
the grid is negligible. Then, from (6.34), D → ∞ as r → 0 and

 J
K

AD

V

d d
a→ ⋅

+( )

3
2

1 2
2 . (6.53)

This must be the current density in a diode with voltage Va and spacing d d1 2+( ) 
which requires  AD D→ → ∞1 as .

These two limits are satisfied correctly if  A D= +( )1 1 . Then

 V
V DV

De
g a=

+
+1

 (6.54)

and

 d
d D d d

D
d

Dd
De =

+ +( )
+

= +
+

1 1 2
1

2

1 1
. (6.55)

It can be seen from (6.55) that this definition of the equivalent diode places the 
equivalent anode at a plane whose distance from the grid is independent of d1 [10]. 
Then the current density in the triode is given by

 J K D
V DV

d D d d

g a= + ⋅
+( )

+ +( )( )
1

3
2

1 1 2

2 . (6.56)
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This equation was proposed by Walker [11] but does not appear to have been gen-
erally adopted.

Two other definitions of the equivalent diode appear in the literature:

• The equivalent voltage at the plane of the grid is given by (6.14) [9, 10] so that the 
current density is given by

 J
K
d

V DV

D d d
g a=

+
+ +( )






1
2

2 1

3
2

1 1
. (6.57)

• The numerator of (6.14) is taken to be the equivalent voltage, and the denomin-
ator to be the equivalent spacing [8, 9] with the result that

 J K
V DV

d D d d

g a=
+( )

+ +( )( )

1 5

1 1 2

2

.

. (6.58)

Neither of these expressions has the correct behaviour at both the limits discussed 
above. It has been argued that (6.57) should be modified so that the potential gradi-
ent close to the grid corresponds to that in a space- charge- limited diode [10, 12– 14] 
to give

 J
K
d

V DV

D d d
g a=

+
+ + ( ) ( )( )











1
2

2 1

3
2

1 1 4 3
. (6.59)

The adoption of this expression by industry suggests that it has been found useful 
in tube design [15]. However, it fails to tend to the correct limit as D → ∞.

The equivalent diode approach has been criticised on the grounds that the 
assumptions made are somewhat arbitrary [5]. As an alternative, it was proposed 
that the perveance of the triode should be determined by setting Vg to the poten-
tial which would exist in the resulting space- charge- limited diode if  the grid were 
removed [5, 16] with the result that

 J
K
d

V DV

D d d

g a=
+

+ +( )











1

2

2 1

4
3

3
2

1 1
. (6.60)

It appears, therefore, that (6.56) is the only equation that can be fully justified. 
However (6.59) has been widely used, presumably because it was found to give use-
ful agreement with experimental results. It has been shown that (6.60) agrees with 
experiment for a limited range of cases. Figure 6.6 shows a comparison between 
the values of Jd K1

2  calculated from these three equations, normalised to the value 
when D → 0. For values of D which are of practical importance there is good agree-
ment between (6.56) and (6.59). As a further test Figure 6.7 shows a comparison 
between the experimental points from Figure 7 in [5], and a curve calculated using 
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(6.56) (see Worksheet 6.2). There is excellent agreement between the theoretical and 
experimental curves confirming that (6.56) is correct.

The effective diode voltage may be affected by the thermal velocities of the elec-
trons, and by the electrode contact potentials. Fremlin included a correction of 
about 1.2 V for thermal velocities when comparing his calculated curve with exper-
imental results. In this case the effect of thermal velocities, calculated using the 
methods described in Chapter 3, can be represented by adding 0.1 V to the equiva-
lent voltage. It therefore appears that the correction applied by Fremlin was too big. 
The contact potential depends on the materials from which the electrodes are made 
and upon surface contamination, and must therefore be determined experimentally. 
The potential may be positive or negative but is usually less than 0.5 V [11]. Both 

Figure 6.6: Comparison between normalised values of perveance calculated from (6.56), 
(6.59) and (6.60) when d d2 1 10= .

Figure 6.7: Variation of current density with grid potential at an anode potential 
of 200 volts. Experimental points from Figure 7 of [5] and curve calculated using 
(6.56). d d r a1 21 7 5 03 0 0445 1 75= = = =. , . , . , .mm mm mm mm.
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these effects are small compared with the voltages used in large power tubes, and 
they may normally be neglected.

6.4.1 Grid Current

When the grid potential is positive with respect to the cathode then some of the 
primary electrons are collected by the grid, so reducing the anode current. The situ-
ation is complicated by the possibility of secondary electron emission, and thermi-
onic emission, from the grid. Thus any calculations based on primary grid current 
can only be approximate. However, as the energies of secondary and thermionic 
electrons are small, the primary current is useful in calculating the power deposited 
on the grid. This problem is discussed in [8, 11, 17].

If  the effects of space- charge are ignored, then the trajectories of non- relativistic 
electrons remain unchanged when the ratio of the anode voltage to the grid volt-
age is constant. Since the trajectories depend on the velocities of the electrons, we 
expect that the ratio I Ig a  is a function only of V Vg a . It is found experimentally 
in many cases that when V Va g≥  the ratio of the anode current to the grid current is 
given to useful accuracy by

 I
I

V
V

a

g

a

g

= δ , (6.61)

where δ is the current division factor which is a constant of the tube [8]. The value 
of δ can be found by considering the electron trajectories when V Va g= . The trajec-
tory which just grazes the surface of the grid provides a boundary between those 
electrons which are collected by the grid, and those which are collected by the 
anode. The approximate primary current division factor is [17]

 δ

π

=

+( ) ⋅ 



 +

−
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a
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r
d

ed
r

r
1 2

4
2

1

1

1ln
. (6.62)

An alternative approach is described in [11, 12]. An electron which just grazes the 
grid wire starts from the cathode at a distance x1 from the centre line of a grid wire. 
The electron enters the deflecting field around the grid wire with energy given by an 
equivalent grid voltage obtained from (6.14) as

 V d Eeg x= − ( )1 0 , (6.63)

which can be expressed in terms of V Vg a  for a given anode voltage. The angular 
momentum of the electron is conserved as it moves through the deflecting field 
so that

 x r
V

V
g

eg
1 = . (6.64)
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The ratio of the anode current to the grid current is then

 I
I

a
r

V

V
a

g

eg

g

= −
2

1. (6.65)

This equation assumes that the grid- cathode spacing is large enough for the current 
density on the cathode surface to be uniform. The effects of space charge, and ther-
mal velocities, are neglected. An improved expression, based on a more accurate 
representation of the field between the grid and the cathode, is [11]

 I
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a
r

V

V

V a r

V a r V V
a

g

eg

g

eg

eg g eg

=
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( ) + −( )











−

2

2 2

2 2
1

ln

ln

π
π

.. (6.66)

A third way of calculating the grid current uses numerical integration of the equa-
tions of motion of the electrons in the electrostatic field of the triode. The effects of 
space charge are neglected. Figure 6.8 shows the trajectories corresponding to the 
potential maps in Figure 6.4. The grid current can be computed by finding the tra-
jectory which just touches the edge of the grid (see Worksheet 6.1). Figure 6.9 shows 
a plot of I Ig a  against V Vg a  obtained in this way with curves given by (6.61), (6.65) 
and (6.66) for comparison. The computed grid current is zero for small positive grid 
voltages because the electrons are steered away from the grid by the field. It can be 
seen that (6.61) only gives a very rough guide to the magnitude of the grid current 
and that the assumption of a constant current division factor is not justified. The 
best agreement is given by (6.66).

Figure 6.8: Electron trajectories without space charge corresponding to the potential 
distributions shown in Figure 6.4  d a d a r a Va1 21 1 5 0 05 100= = = =( ), . , . , V .
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6.4.2 Triodes with Island Formation

We saw in Section 6.3.2 that, when r a < 1, the electric field at the surface of the 
cathode depends on the transverse position in the absence of electrons. In particu-
lar, as the grid is made more negative with respect to the cathode, the polarity of 
the electric field is reversed on the section of the cathode immediately opposite the 
grid. In that case only the part of the cathode on which the vacuum electric field is 
accelerating can emit electrons, the current density is non- uniform and parts of the 
cathode may cease to contribute to the current. This condition is known as island 
formation [5, 9, 18, 19].

The current in a triode, when there is island formation, can be calculated by sum-
ming the currents contributed by elementary strips of the cathode. From (6.46) and 
(6.56) the average current density is given by

 J
K
a

D y
V D y V

d D y d d
dyg

g g a

g

a

= + ( ) ⋅
+ ( )( )

+ ( ) +( )( )
⋅

⌠

⌡




1

3
2

1 1 2

2

0

. (6.67)

where the integrand is zero if  the effective voltage in the numerator is negative. The 
current is cut off  when the effective voltage is less than or equal to zero for all values 
of y. It can be seen from Figure 6.5 that the penetration factor is greatest when 
y a= 2, thus the grid voltage at cut- off  is given by

 V D a Vg g a0 2= − ( ) . (6.68)

The magnitude of  this voltage increases as d1 is reduced. As the grid voltage 
is increased a point is reached at which electrons are emitted from the whole 
cathode surface. For higher grid voltages the effects of  non- uniform cathode 

Figure 6.9: Dependence of grid current fraction on the normalised grid 
voltage  d a d a r a Va1 21 1 5 0 05 100= = = =( ), . , . , V .
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emission tend to average out and it may be expected that the current will obey 
the 3/ 2 power law. This can be revealed by plotting J 2 3 against the grid voltage, 
as shown in Figure 6.10, for a range of  values of  d1 (see Worksheet 6.1). The 
effects of  island formation are shown in the curvature when the grid voltage is 
negative. This curvature is not present when d a1 =  and is barely perceptible, for 
the parameters illustrated, when d a1 0 5= . . For smaller spacings, the grid volt-
age required to reduce the current to zero is increasingly negative and the rate 
of  change of  current with grid voltage is reduced. Some authors have suggested 
that, when there is island formation, the behaviour of  the triode can still be rep-
resented by (6.56) if  the power law is increased [9, 16]. This model is only appro-
priate when the grid voltage is negative because it does not represent the 3/ 2 
power law behaviour when the grid voltage is positive. It is therefore preferable to 
regard the 3/ 2 power law as the norm and consider the effects of  island formation 
as a modification of  it for negative grid voltages and small electrode spacings. 
As the grid voltage increases all the curves tend to the straight lines calculated 
from (6.56). The agreement is exact for d a1 0 5≥ .  and is a good approximation for 
d a1 0 2= . . Figure 6.11 shows the variation of  the current density across the cath-
ode for a variety of  grid voltages when d a1 0 2= . . The current density is normally 
far from uniform. It is least under the grid wires for negative grid voltages, and 
greatest under the grid wires for positive grid voltages. This non- uniform emis-
sion means that the grid current is increased. There is also a possibility that the 
emission saturates in regions of  high current density, so that the electron flow 
ceases to be space- charge limited everywhere. Saturation would be revealed, in a 
plot like that in Figure 6.10, by current densities below the asymptotic straight 
line at high positive grid voltages.

Figure 6.10: Variation of cathode current density to the power 2/ 3 with grid 
voltage showing the effects of island formation in triodes with a range of values 
of d1  a r d Va= = = =( )1 0 05 5 1002mm mm mm V, . , , .
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6.5 Electrostatic Models of Tetrodes

Figure 6.12 shows the arrangement of a planar tetrode. It has been assumed, for 
convenience, that the spacings of both grids are the same. The electrostatic analysis 
of the tetrode proceeds in exactly the same manner as that for the triode. By ana-
logy with (6.7) the electric field on the surface of the cathode is linearly dependent 
on the potentials of the electrodes with respect to the cathode

 E y
V

d y
V

d y
V

d yx
g

g

s

s

a

a

0, .( ) = − ( ) − ( ) − ( )  (6.69)

This equation can be re- written as

 E y
V D V D V

dx
g s a

g

0 1 2, ,( ) = −
+ +

 (6.70)

where the dependence on y has been omitted for simplicity, and

 D y
d

d
D y

d

d
g

s

g

a
1 2( ) = ( ) =and . (6.71)

Now, assume that the grids are thin and their potentials are set to

 V
d

d d d
V V

d d
d d d

Vg a s a=
+ +

=
+

+ +
1

1 2 3

1 2

1 2 3

and . (6.72)

Then, substituting for Vg and Vs and noting that E y V d d dx a0 1 2 3,( ) = − + +( ), we 
obtain

 d y d D d d D d d dg ( ) = + +( ) + + +( )1 1 1 2 2 1 2 3  (6.73)

Figure 6.11: Variation of current density across the cathode surface for a range of grid voltages  
showing island formation a r d d Va= = = = =( )1 0 05 0 2 5 1001 2mm mm mm mm V, . , . , , .
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so that, substituting in (6.70),

 E y
V D V D V

d D d d D d d dx
g s a0 1 2

1 1 1 2 2 1 2 3

, .( ) = −
+ +

+ +( ) + + +( )  (6.74)

6.6 Penetration Factors in Tetrodes

To find the penetration factors in a planar tetrode, we use the principle of super-
position to add the potential of the screen grid to the expression for the potential 
previously developed for the triode [20]. The potential within the tetrode is then, 
from (6.23)

 V x y
a

f x y q f x y q xqg g s s a, , , ,( ) = ( ) + ( ) +( )1

0ε
 (6.75)

where qs is the charge per unit length on a screen grid wire, f x yg ,( ) is defined by 
equation (6.24), the equivalent expression for the screen grid is

 f x y
a x d d a y a

x d d as , ln
cosh cos

cosh cos
( ) =

+ +( ) −
− −( ) −4

2 2

2 2
1 2

1 2π
π π
π ππy a









 , (6.76)

and it has been assumed that both grids have the same spacing. We will also 
assume, for simplicity, that the distances between the electrodes are all greater 
than or equal to a so that the potential at the plane of  each electrode is inde-
pendent of  y. Then

 D
a
d

r
as

s= − 











2

2
3π

π
ln sin  (6.77)

Figure 6.12: Arrangement of a planar tetrode.
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V
a

f d r q d q d q

V
a

d q f d d r q d

g g g g s a

s g s s s

= ( ) + +( )
= + +( ) +

1

1
0

1 1 1

0
1 1 2

ε

ε

,

, 11 2

0
1 1 2 1 2 3

1

+( )( )

= + +( ) + + +( )( )

d q

V
a

d q d d q d d d q

a

a g s aε
,

 (6.78)

where, from (6.33)

 f d r d d Dg g g1 1 2, ,( ) = +  (6.79)

and

 f d d r d d d Ds s s1 2 1 2 3+( ) = + +, , (6.80)

with

 D
a
d

r

ag
g= −















2

2
2π

π
ln sin . (6.81)

Substituting in (6.78) gives
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1 2 1 1
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a2 3

. (6.82)

This equation can be inverted to give
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(6.83)

where

 C
a

d d d D d d d D d d D d d ds g s

2
0

3 1 2 2 3 2 1 2 1 2 3

=
+ +( )( ) + + + + +( )( ) 

ε
. (6.84)

Now the electric field at the surface of the cathode is given by

 E y
q q q

ax
g s a

0
0

,( ) = −
+ +( )

ε
 (6.85)
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so that

 E y
d D d d V d D V D V

d d D d d d D
x

s g g s s a

s

0
2 2 3 2

1 2 2 3 2

,( ) =
+ +( )( ) + +( )

+ +( )( ) + gg sd d D d d d1 2 1 2 3+ + + +( )( ) , (6.86)

which can be rewritten as

 E y
V D V D V

d D d d D d d d
x

g g s s a

g s

0
1 1 2 1 2 3

, ,( ) =
+ ′ +( )

+ ′ + + + +( )( )  (6.87)

where

 ′ =
+ +( )D

D

D d dg
g

s1 1 3 2

. (6.88)

Comparing (6.87) with (6.74) we see that

 D D D D Dg g s1 2= ′ = ′and . (6.89)

Equation (6.87) can also be written

 E y
V D V

d D dx
g g e

g e

0
1

,( ) = −
+
+

 (6.90)

in which the tetrode has been replaced by an equivalent triode whose anode 
potential is

 V
V D V
D d de

s s a

s

=
+

+ +( )1 1 3 2

 (6.91)

and the position of the anode is

 d
d d D d d d

D d de
s

s

=
+ + + +( )

+ +( )
1 2 1 2 3

3 21 1
. (6.92)

This is similar, but not identical, to the expression for reducing a triode to an 
equivalent diode (see equation (6.55).

6.7 Static Characteristics of Tetrodes

The static characteristics of a tetrode may be calculated from the equivalent diode 
in exactly the same way as those of triodes. Thus from (6.90) we obtain

 J K D
V D V

d D d
g

g g e

g e

= + ⋅
+( )
+( )

1

3
2

1

2  (6.93)

by analogy with (6.56).
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Island formation occurs when d a1 1< . Since, normally, d a2 1≥  the variation 
of the vacuum electric field on the cathode surface depends only upon the control 
grid. Then the characteristics of the tetrode can be determined from the equivalent 
triode using (6.45) and (6.46) with

 D y
d f y d D

d d f y d
E

g e g

e g

( ) =
− ′ ( )( ) +

+( ) ′ ( ) −

1

1 1

1 0

0

,

,
, (6.94)

where f yg′ ( )0,  is given by (6.39) and

 E y
V D y V

d D y dz
g E e

E e

0
1

, .( ) = −
+ ( )
+ ( )  (6.95)

Then the characteristic curves can be computed using

 J
K
a

D y
V D y V

d D y d
dyE

g E e

E e

a

= + ( ) ⋅
+ ( )( )
+ ( )( )

⋅
⌠

⌡




1

3
2

1

2

0

. (6.96)

6.7.1 Grid Currents in Tetrodes

The current intercepted by the control grid in a tetrode may be estimated in exactly 
the same way as for a triode. The current is zero if  the grid is negative and increases 
with increasingly positive voltages. Theoretically, the screen grid should not inter-
cept any electrons because the wires are aligned with those of the control grid. 
Hence the fields should focus the electron trajectories so that they pass between 
the screen grid wires [21]. However, at high cathode current and low anode voltage, 
the accumulation of space charge between the screen grid and the anode causes the 
electron trajectories to move outwards so that they may be intercepted by the wires 
of the screen grid. There is no simple way of estimating the current intercepted by 
the screen grid but it is commonly a small fraction of the cathode current except 
when the anode voltage is low and the anode current is high. For a model of a pla-
nar tetrode see Worksheet (6.3).

6.7.2 Effect of Space- Charge between the Screen Grid and the Anode

The tetrode behaves approximately like an electron source whose current is con-
trolled by the control grid voltage and whose energy is controlled by the screen 
grid voltage. Thus the flow of current in the space between the screen grid and 
the anode approximates to that in a diode with injected current as described in 
Section 5.8. The potential of the anode must always be greater than that of the 
screen grid so that any secondary electrons emitted by the anode are returned to 
the anode. Therefore we are only interested in conditions in which there is a mono-
tonic increase in the potential between the screen grid and the anode, or where 
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there is a potential minimum which is not deep enough to form a virtual cathode. 
Using equations (5.96) and (5.100), and recalling that the potentials in Section 5.8 
are referred to the potential at the injection plane (in this case the screen grid), the 
normalised spacing between the screen grid and the anode is

 X
J

e m V
da

a

s

=
−

⋅
4

20 0
1 5 3ε .

, (6.97)

where Vs is the potential of the screen grid with respect to the cathode. The normal-
ised anode potential is

 W
V
Va

a

s

= . (6.98)

The parameter α1 can be then found by numerical solution of the equation

 X W Wa a a= −( ) +( ) −( ) +( )4
3

2
4
3

1 2 11 1
0 5

1 1
0 5α α α α. .

,  (6.99)

derived from (5.104) and (5.105) by eliminating α2, where the negative sign is taken 
if  there is no potential minimum between the screen grid and the anode. Then, from 
(3.90), the normalised potential gradient at the screen grid is

 dU
dX

= ± +( )1 1
0 5α .

. (6.100)

We assume that this potential gradient is produced by an equivalent vacuum anode 
voltage ′Va  so that

 dU
dX

V V
V X

a s

s a

= ′ −





⋅
1

. (6.101)

Since the effective anode voltage has been reduced, it is necessary for the control 
grid voltage to be increased to maintain constant anode current by

 ∆V D D V Vg g s a a= ′ − ′( ). (6.102)

As the space charge increases, the electric field at the screen grid is reduced, ′Va  
becomes smaller and, eventually, becomes negative as a potential minimum is 
formed. Thus this model predicts that the effects of space- charge are to increase the 
control grid voltage required to produce a given current. The space- charge effects 
are greatest when the current is maximum and the anode voltage is least, that is 
when Wa = 1. Then, taking the positive sign in (6.99) we find that the maximum 
possible value of Xa is 3.77 when α1 1 2= −  [22]. Thus, once the screen grid voltage 
and the maximum current have been specified there is a maximum permissible value 
of the spacing between the screen grid and the anode beyond which the current is 
space- charge limited. It is shown in Chapter 12 that this simple model is in quali-
tative agreement with the behaviour of real tetrodes. Equation (6.97) shows that 
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the effect of increasing the spacing between the screen grid and the anode is simi-
lar to that of increasing the injected current. Thus the space- charge effects can be 
reduced by decreasing that spacing. Equation (6.98) shows that the effects of space- 
charge at a given anode voltage are increased as the screen grid voltage is increased. 
However, the range of screen grid voltages over which a tube is operated is usually 
small, so this is less important.
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7 Linear Electron Beams

7.1 Introduction

In many vacuum electron devices the interaction between the electrons and RF 
electric fields takes place over an extended linear region. In order for this to be 
possible it is necessary to control the paths of the electrons to ensure that they are 
held in the correct relationship with the RF fields. This means that the electrons 
must be formed into an electron beam having a cross- section which is approxi-
mately constant. The charge density in the electron beams used in microwave tubes 
is high enough to cause them to spread out rapidly because of the mutual repulsion 
of the electrons. If  this were not controlled in some way, the electrons would be 
intercepted on the tube body. They would then be lost to the interaction, and would 
cause damaging dissipation of heat.

The greater part of this chapter deals with methods of controlling the cylindrical 
electron beams used in the majority of microwave tubes. The effects of external elec-
tric and magnetic fields are considered both with, and without, space- charge forces. 
The properties of simple electric and magnetic lenses are discussed. There is an exten-
sive treatment of the properties of cylindrical electron beams in the presence of a 
uniform axial magnetic field (solenoid focusing). The conditions for stable electron 
flow are discussed together with periodic variations of the beam radius (scalloping), 
and the changes in beam radius produced by modulation of the charge density (beam 
stiffness). This is followed by consideration of the spreading of electron beams, in the 
absence of a magnetic field, caused by space- charge, and centrifugal, forces. Next it 
is shown that stable electron flow can be achieved using periodic permanent magnets 
(PPM focusing), and periodic electrostatic fields. A brief summary is given of the 
properties of sheet beams and annular beams. Finally, there is a review of the imper-
fections introduced by thermal electron velocities and trapped ions.

7.2 Cylindrical Electron Beams

The majority of linear- beam tubes employ electron beams having circular symmetry 
about the axis of propagation. If  the beam has radius b and is located concentric-
ally within a cylindrical conducting drift tube of radius a as shown in Figure 7.1 
then the electric field produced by the electron space charge is everywhere radial.
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If  it is assumed that the charge density is uniform and the electrons are moving 
with uniform axial velocity u0 then the current carried by the beam is

 I b u0
2

0= π ρ , (7.1)

where ρ is the charge density, and u0 represents the axial component of the electron 
velocity, including the effects of relativity, unless otherwise stated. A simple application 
of Gauss’ Theorem shows that the radial component of the electric field, when r b≤ , is

 E r
I

b u
rr = =

ρ
ε π ε2 20

0

2
0 0

 (7.2)

and, when r > b

 E
I

u rr = ⋅0

0 02
1

πε
. (7.3)

The electrostatic potential within these two regions is found by integrating (7.2) and 
(7.3) with respect to r to give

 V
I

b u
r C= − +0

2
0 0

2
14π ε
 (7.4)

for r ≤ b, and

 V
I

u
r C= − +0

0 0
22πε

ln  (7.5)

for r b> , where C1 and C2 are constants. If  the potential is zero when r a=  then (7.5) 
becomes

 V
I

u
r a= − ( )0

0 02πε
ln . (7.6)

Equating the values of the potential at r b=  gives

 C
I

u
b a1

0

0 04
1 2= − ( ) πε

ln  (7.7)

so that, within the beam

 V
I

u
b a

r
b

= − ( ) −





0

0 0

2

22
1 2

πε
ln . (7.8)

Figure 7.1: A cylindrical electron beam.
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Since b a<  the logarithm is negative and the term within the brackets is always 
positive. The conventional current in the direction of  electron flow is nega-
tive and so the potential within the beam is negative with respect to the sur-
rounding drift tube. The properties of  electron beams can be calculated using 
Worksheet 7.1.

The effect of this space- charge potential depression is best illustrated by an 
example. Suppose that Va = 10 kV, I0 1= − A, b = 5 mm and a = 10 mm. Then the 
electron velocity at zero potential is 58.5 1 m s 1× 06 − . Substitution of these figures 
into (7.8) shows that the potential is −213 V with respect to the drift tube at the 
beam edge, and −367 V  on the axis. Strictly speaking, the small change in the elec-
tron velocity produced by this difference in potential should be used to recalculate 
the potential depression iteratively until mutually consistent values are found. In 
practice it is either ignored, or used to make a small correction to the velocity of 
all the electrons. The situation is complicated by the effect of the rotation of the 
electrons about the axis caused by the magnetic focusing field which is discussed 
in Section 7.4. In practical tubes the tunnel is not continuous, but interrupted by 
a series of gaps. The effect of the gaps can be represented by an effective tunnel 
radius, if  necessary [1].

7.3 Electron Optics without Space- Charge

Consider an electron which is moving in fields which are cylindrically symmet-
rical so that the tangential component of the electric field is zero. The equations of 
motion of an electron in cylindrical polar co- ordinates are from (1.6)

 d
dt

m
dr
dt

e E r B zB rr zγ θ θθ0
2





= − + −( ) +



  (7.9)

 d
dt

m r er rB zBz rγ θ0
2


 ( ) = −( ) (7.10)

 d
dt

m
dz
dt

eE e r B rBz rγ θ θ0






= − + −( )

 . (7.11)

We note that, from (1.3) we can write

 γ =
−

= +
1

1
1

2 2u c

V
VR

, (7.12)

where V m c eR = 0
2  and V is the electrostatic potential relative to the cathode.1

1 In developing the theory of vacuum tubes it is convenient take the cathode as the zero of electrostatic poten-
tial. However, it should be noted that, in practice, the body of the tube is normally at earth potential and the 
cathode is negative with respect to it.
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7.3.1 The Paraxial Ray Equation of Electrostatic Electron Optics

Consider an electron which is moving, without rotation, in a cylindrically symmet-
ric electric field [2]. From (7.9) the radial motion is determined by

 d
dt

dr
dt

eE
m

rγ





+ =
0

0. (7.13)

Substituting for γ  from (7.12) in (7.13) gives

 V V
d r
dt

dV
dt

dr
dt

eV
m

V
rR+( ) + ⋅ −

∂
∂

=
2

2

0

0

0. (7.14)

If  the electron is always close to the axis, so that its radial velocity is small com-
pared with its axial velocity, then, to a good approximation,

 dz
dt

u= , (7.15)

where u is the electron velocity determined from (1.4). Then we may write

 d
dt

u
d
dz

=  (7.16)

and

 d
dt

u
d
dz

u
u
z

d
dz

2

2
2

2

2
= +

∂
∂

⋅  (7.17)

so that (7.14) becomes

 V V u
d r
dz

V V u
u
z

dr
dz

u
V
z

dr
dz

c
V
rR R+( ) + +( ) ∂

∂
⋅ +

∂
∂

⋅ − ⋅
∂
∂

=2
2

2
2 2 0. (7.18)

If  space charge can be neglected, then the electric field satisfies Laplace’s equation

 1
0

2

2r r
r

V
r

V
z

∂
∂

∂
∂







+
∂
∂

= . (7.19)

When the trajectory of an electron lies close to the axis (a paraxial trajectory) the 
potential does not differ much from the potential on the axis (VA). Then (7.19) can 
be integrated with respect to r, to give the approximate relationship

 ∂
∂

= −
V
r

r
d V
dz

A1
2

2

2
. (7.20)

Equation (1.4) can be written in the form

 u c
V V V

V V

R

R

2 2
2

2
=

+( )
+( )

 (7.21)
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and differentiated with respect to z to give

 u
du
dz

V c

V V
R

R

=
+( )

2 2

3 . (7.22)

Then, substituting into (7.18) from (7.20) and (7.22) we obtain

 
V V V

V V
d r
dz

V
z

dr
dz

V
z

rA A R

A R

A A+( )
+( ) ⋅ +

∂
∂

⋅ + ⋅
∂
∂

=
2 1

2
0

2

2

2

2
. (7.23)

This is the paraxial ray equation of electrostatic electron optics. Its application to 
electrostatic lenses is discussed in the next section.

7.3.2 Thin Electrostatic Lenses

Figure  7.2 shows a short transition region, defined by the planes 1 and 2, 
between two regions in which the axial electric field is constant. Since ∇⋅ =E 0 
the radial component of  the electric field must be non- zero in this region. When 
an electron enters the transition region from the left moving parallel to the axis 
at a radius r1 its trajectory is perturbed. It then emerges on a trajectory that 
intersects the axis at a distance f2 from the region. The electric field in the tran-
sition region therefore acts as a lens. If  the lens is thin then the radial position 
of  the trajectory can be assumed to be the same on entering and on leaving the 
lens  r r r1 2= =( ).

In order to derive an expression for the focal length of a thin electrostatic lens it 
is convenient to express (7.23) in the form

 U
d
dz

U
dr
dz

V V
d V
dz

rR






= − +( )1
2

2

2
, (7.24)

where the subscript A has been dropped because the potential is understood to be 
defined on the axis relative to the potential of the cathode, and

 U V V VR= +( )2 . (7.25)

Figure 7.2: Geometry of an electrostatic electron lens.
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Because the electric field is constant, except between the two planes, it follows that 
d V dz2 2  is zero outside the transition region. Integration of (7.24) between planes 
1 and 2 produces

 U
dr
dz

V V
U

d V
dz

r dzR

z

z







= −
+

⋅⌠
⌡


1

2 2

2

1
2

1

2

. (7.26)

Now the gradient of the trajectory at plane 1 is zero and at plane 2 it is − r f2 , so 
the focal length of the lens is given by

 1 1
22 2

2

2
1

2

f U
V V

U
d V
dz

dzR

z

z

=
+

⋅⌠
⌡
 , (7.27)

where U2 is the value of U at plane 2. If  V z( ) is known, the focal length can be calcu-
lated from (7.27). Integration of the right- hand side of this equation by parts yields

 1 1
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1
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+
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⌠

⌡
 .. (7.28)

Equation (7.28) can be applied to the two simple lenses illustrated in Figure 7.3.
An Einzel lens (Figure  7.3(a)) has a central electrode at one potential within 

another electrode at a different potential (commonly zero). The electric field of the 
lens is confined between the planes 1 and 2, so that the gradient of the potential is 
zero at both planes, and the first term on the right- hand side of (7.28) is zero. Since 
the square of the electric field appears in the integral, the second term is positive for 

Figure 7.3: Electrostatic lenses: (a) an Einzel lens, and (b) an aperture lens.
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all potentials of the inner electrode and this type of lens is always converging. The 
application of this to the theory of periodic electrostatic focusing of electron beams 
is discussed in Section 7.6.3.

In an aperture lens (Figure 7.3(b)) the initial and final fields are not zero, and 
it is found that the first term in (7.28) is commonly much larger than the second. 
The potential does not change very much through the lens so that V V1 2≈ . The focal 
length of the lens is given by

 1
2 2 2 22

1 2

1

2

f
V V

V V V
dV
dz

V V E E

V V V
a R

a a R z

z
a R

a a R



+
+( )







=
+( ) −( )

+(( ) , (7.29)

where Va is the potential of the aperture. The focal length may be positive or nega-
tive (converging or diverging) depending upon the signs and the magnitudes of the 
fields on the two sides of the aperture. The application of (7.29) in the theory of the 
Pierce electron gun is discussed in Section 9.2.1. Further information on electro-
static lenses can be found in [3].

7.3.3 Busch’s Theorem

We now establish an important theorem relating to the motion of an electron 
through a cylindrically symmetrical magnetic field. The proof given here is based 
on [4] which is more general and rigorous than those published elsewhere. Consider 
an electron which is distant r from the axis. The magnetic flux linked to a circle of 
radius r is defined by

  2 rB dr
r

zΦ = ∫π
0

. (7.30)

The rate of change of the flux linked to a circle which travels with the electron is 
found by differentiating of (7.30) with respect to time

 d
dt r

r
z

z B rr z r
B
z
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z

r

Φ Φ Φ
=

∂
∂

+
∂
∂

= +
∂
∂













⌠
⌡
   2
0

π . (7.31)

Now the axial and radial components of the magnetic field are linked together by 
the requirement that ∇⋅ =B 0. In cylindrical polar coordinates this becomes

 1
0

r r
rB

B
rr

z∂
∂

( ) +
∂
∂

=  (7.32)

so the integral in (7.31) can be written

 r
B
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rB dr rBz
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r

r
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0 0

 (7.33)
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and (7.31) becomes

 d
dt

rrB rzBz r
Φ

= −( )2π   . (7.34)

Comparing (7.34) with (7.10) we observe that the right hand sides are identical 
apart from constants and, therefore

 d
dt

r
e
m

d
dt

2

02
0θ

πγ( ) − =Φ
, (7.35)

where it is assumed that the electrostatic potential is constant, so that the relativistic 
factor γ  is constant. When (7.35) is integrated with respect to time we obtain the 
important result that, for the motion of the electron,

 r
e
m

2

02
θ

πγ
− =Φ constant. (7.36)

Equation (7.36) is known as Busch’s theorem. It is used to calculate the angular 
velocity of electrons as they move through an axially symmetric magnetic field that 
varies with axial position. It remains valid when the effects of space- charge are 
important.

7.3.4 Magnetostatic Electron Optics without Space Charge

The equation of radial motion for an electron moving in a region of constant elec-
trostatic potential, and a magnetic field with cylindrical symmetry, is obtained from 
(7.9) as

 d r
dt

r
e
m

r Bz

2

2
2

0

= − θ
γ

θ . (7.37)

It is assumed that the space charge forces, and the magnetic field of the electron 
current, are negligible. The relativistic factor γ  is constant because the electrostatic 
potential is constant. Then, making use of (7.17) and, assuming paraxial motion, 
(7.37) becomes

 u
d r
dz

r
e
m

r Bz
2

2

2
2

0

= − θ
γ

θ . (7.38)

If  the electron has originated from a cathode shielded from the magnetic field, then 
the constant in (7.36) is zero. Also, since the electron remains close to the axis, we 
can write Φ = π r B2

0, where B0 is the flux density on the axis, so that, from (7.36)

 θ
γ

ω
γ

= =eB
m

L0

02
, (7.39)
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where ωL  is known as the Larmor frequency [5]. The right hand side of (7.38) is

 r
e
m

r B rz
L

 θ
γ

θ ω
γ

2

0

2

2
− = − . (7.40)

Substitution in (7.38) yields the magnetostatic paraxial ray equation

 d r
dz

rL
2

2

2

2
0+ =

β
γ

, (7.41)

where β ωL L u= .

7.3.5 Thin Magnetic Lenses

Magnetic electron lenses commonly take the form shown in Figure 7.4 where the 
magnetic field generated by a coil, or a permanent magnet, is confined axially by a 
pair of iron pole pieces. The magnetic field is therefore zero outside the lens. If  the 
lens is thin, r is constant within it, and the change of the slope of the trajectory is 
obtained by integrating (7.41) through the lens

 dr
dz

r
e
m u

B dz
z

z

1

2

0

2

0
2

2 1

2= −




 ∫γ

. (7.42)

The focal length of the lens is given by

 1
22 0

2

0
2

1

2

f
e
m u

B dz
z

z
=





 ∫γ

. (7.43)

Since the integral is always positive, a magnetic lens is always converging. Further 
information on magnetic lenses can be found in [3].

Figure 7.4: A magnetic electron lens.
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7.4 Electron Optics with Space- Charge

An uncontrolled cylindrical electron beam spreads out radially under the influence 
of its space charge. In order to create a beam with sufficient length and power for 
use in a vacuum tube it is necessary to control it so that the tendency to spread is 
eliminated. This is usually achieved by using either a uniform axial magnetic field or 
a periodic array of converging magnetic lenses. An alternative which is rarely used 
is a periodic array of converging electrostatic lenses.

In order to study the properties of electron beams under the influence of magnetic 
fields we make use of equation (7.9) for the radial motion of an electron on the edge 
of the beam. We will assume that the axial velocity of the electrons u0( ) is constant 
to a good approximation. The radial component of the electric field is given by (7.3) 
and the azimuthal component of the magnetic field caused by the beam current is

 B
I
rθ

µ
π

= 0 0

2
. (7.44)

Substituting in (7.9) gives
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0 0
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, (7.45)

where u0 is the relativistically correct velocity. This can be written
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where ω p is the electron plasma frequency [6] defined when r b=  so that

 ω ρ
ε ε πp

e
m

e
m

I
b u

2

0 0 0 0

0

2
0

= − = − ⋅ . (7.47)

We will assume that the beam is launched with zero angular velocity and radius rc from 
a cathode where the magnetic flux density is Bc. Then, by Busch’s theorem (7.36), the 
angular velocity at a position where the radius is r, and the flux density is Bz, is given by

 θ
γ

= −





e
m

B
r
r

Bz
c

c2 0

2

2
. (7.48)

Substituting for the angular velocity in (7.46) gives
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If  the flux density B B f zz = ( )0  then (7.49) can be written
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where ωL  is the Larmor frequency defined in (7.39), and

 K
B r
B b

c c=






2

0
2

2

. (7.51)

Finally we use (7.17) to change the independent variable from t to z, and introduce 
the normalised radius R r b=  so that

 d R
dz R
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R

f z Rp L L
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2
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2 3

2

2

2

2
1 1

= ⋅ + − ( )β
γ

β
γ

β
γ

, (7.52)

where β ωp p u= 0  and β ωL L u= 0 . This is the general differential equation govern-
ing the flow of a cylindrical electron beam through an axial magnetic field. The 
non- relativistic form is found by setting γ = 1 to give

 d R
dz R

K
R

f z Rp
L L

2

2

2
2

3
2 2

2
1 1

= ⋅ + − ( )β
β β . (7.53)

In the following sections the solutions of this equation are examined for a number 
of cases of interest. Non- relativistic analysis will be used because the effects of rela-
tivity can readily be included by adjusting the parameters β p and βL.

7.4.1 Solenoid Focusing

The simplest way to control a cylindrical electron beam is by using a uniform axial 
magnetic field B0( ). Such a field is usually produced by an electromagnet, though 
permanent magnets are sometimes used [7, 8]. The condition for smooth flow is 
that the radial electrostatic, magnetic and centrifugal forces should balance. Thus 
setting R = 1 and f z( ) = 1 in (7.52)

 β γβp L K2 22 1= −( ). (7.54)

Since β p, βL  and K are all positive this equation can only be satisfied when 0 1≤ ≤K .  
The smallest magnetic field for which smooth flow is possible occurs when the 
magnetic flux linked to the cathode is zero and, therefore, K = 0. This condition is 
known as Brillouin flow [9]. The Brillouin field BB( ) is given by

 β
γ

β
γ

ω
L p B

pB
e m

= = ⋅
1

2

2

0

or . (7.55)

If  the magnetic field is m times the Brillouin field then the relationship between the 
Larmor frequency and the plasma frequency is

 ω
γ

ωL p
m

=
2

. (7.56)
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Substituting for wL in (7.54) we find that the relationship between K and m can be 
written

 K
m

= −1
1

2
. (7.57)

When m → ∞ then K → 1 so that the flux linked to the cathode is equal to that 
linked to the beam. This condition, which is known as confined flow, is useful as a 
theoretical concept but would normally require too strong a magnetic field to be 
useful in practice. Equation (7.57) is important for the design of linear electron 
beams because it is a necessary, though not sufficient, condition for achieving uni-
form electron flow. The injection of the beam into the focusing field is discussed in 
Chapter 9. A detailed discussion of the magnetic focusing of relativistic beams is 
given in [10, 11].

When the current in a beam is modulated, the radius is perturbed to an extent 
that decreases as m increases (see Section 7.4.3). This radial perturbation is unde-
sirable and it is usual to select a value of m greater than unity to ensure adequate 
beam stiffness. Thus the beams in practical tubes generally operate in space- charge 
balanced flow in which m > 1. In order to select a suitable value of B0 the Brillouin 
field is computed from (7.55), m is chosen to give the desired beam stiffness, and 
(7.57) then gives the cathode flux required (see Worksheet 7.1). Alternatively, if  B0 
and the cathode flux are known, then an iterative calculation employing (7.55) and 
(7.57) can be used to find the equilibrium beam radius and the corresponding value 
of m. The design of the magnetic field in the beam entry region to achieve the cor-
rect initial conditions is described in Section 9.3.1, and the design of the solenoid 
and the magnetic circuit are described in Section 19.5.2.

The angular velocity of the electrons on the surface of a solenoid focused beam 
in smooth flow is found from (7.48) to be

 θ ω
γ

= −( )L K1 , (7.58)

which is in the right- hand corkscrew direction when B0 is in the positive z direction. 
Because a solenoid focused beam is rotating about its axis, the axial velocity of the 
electrons is reduced by the transfer of some of the kinetic energy into rotational 
motion. If  the charge density and the magnetic flux density are uniform across the 
beam, at a given plane, then the angular velocity of all the electrons is given by 
(7.58). The axial velocity of an electron at radius r is given by

 

z u r= −2 2 2θ , (7.59)

where u is determined from (1.4) by setting V to the local potential relative to the 
cathode, allowing for space- charge potential depression. Now the rotational kinetic 
energy is zero on the axis and increases with r, whilst the potential depression is 
greatest on the axis and decreases with r. Thus these two effects compensate for 
each other to some extent. For the special case of a beam in Brillouin flow it can be 
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shown that the two effects cancel each other exactly [7, 12]. The axial velocity of all 
the electrons is then the same as that of an electron on the axis. When the beam is 
not in Brillouin flow m >( )1  the angular velocity is smaller and the axial velocity of 
the electrons varies with radius. For example, if  m = 2, then the angular velocity is 
only 13% of the Brillouin value, and the variation in the axial velocity is determined 
almost entirely by the variation of potential. These corrections to the calculation 
of the axial velocity are small but can be important, especially when travelling-wave 
tubes (TWTs) are modelled, because the centre frequency is particularly sensitive 
to variations in the electron velocity. In many cases it is sufficient to use the veloc-
ity of an electron on the axis as an approximation to the mean axial velocity of the 
electron beam.

7.4.2 Scalloping

An electron beam will only flow smoothly through a uniform axial magnetic 
field if  it has the correct angular velocity, and if  the radial velocity is zero at 
the equilibrium beam radius r b=( ). When these conditions are not satisfied 
the force on an electron on the surface of  the beam is not zero, and the radial 
motion of  the electron is governed by equation (7.52). In general the solution 
of  this equation requires the use of  numerical methods (see Worksheet 7.2) 
but useful insight is provided by examining the approximate equation obtained 
by assuming that the radial perturbations are small and neglecting relativistic 
effects. To do this we assume that R x= +1  where x 1. The powers of  R are 
expanded using the Binomial Theorem, and powers of  x higher than the first 
are ignored. Then

 d x
dz

K K xp L L p L L

2

2
2 2 2 2 2 21

2
1
2

3= + −





− + +





β β β β β β . (7.60)

From (7.54) we find that the first bracket on the right- hand side of (7.60) is zero and 
that the equation can be rewritten as

 d x
dz

K xL

2

2
22 1= − +( )β . (7.61)

An alternative form of the equation can be found by substituting for βL  and K using 
(7.56) and (7.57) to give

 d x
dz

m xp

2

2
2 22 1= − −( )β . (7.62)

This is the equation of simple harmonic motion. Therefore the electrons at the edge 
of the beam execute a sinusoidal motion in the radial direction, with a wavelength 
which is equal to 2π β p  when m = 1. This wavelength decreases as m is increased. This 
motion is known as scalloping. We shall see in the Section 7.4.3 that the decrease in 
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the scalloping wavelength as the magnetic field increases is consistent with increas-
ing stiffness of the beam against radial perturbations. At the level of approximation 
we have used in this analysis, a beam which is launched into the focusing field at a 
radius b x−( ) will scallop between radii b x−( ) and b x+( ). It should be noted that 
a similar argument applies to electrons lying within the beam. It is necessary to 
ensure that the launching conditions are correct for all the electrons if  the beam is 
to be well- controlled. The behaviour of a beam when the initial conditions are var-
ied can be explored using Worksheet 7.2. The same worksheet can be used to study 
the effects of different assumptions about the axial variation of the magnetic field. 
If  the beam is initially in smooth flow then a step change in the magnetic field pro-
duces scalloping. If, on the other hand, there is a gradual increase in the field then 
the beam moves smoothly to a new equilibrium beam radius with little scalloping 
even for quite rapid changes in the field.

7.4.3 Beam Stiffness

In a linear- beam tube the electrons in the beam become bunched axially to produce 
a time- varying current. This bunching upsets the equilibrium of the beam so that 
it tends to expand in regions of high charge density, and to contract elsewhere. In 
order to estimate the magnitude of this effect we consider the way in which the 
equilibrium beam radius varies if  the beam current is increased, while keeping the 
magnetic field and the cathode flux constant. Since this calculation is only approxi-
mate we can safely ignore second-order effects resulting from changes in the space 
potential. We also assume that the wavelength on the beam is great enough for axial 
components of the RF electric field to be negligible.

The effect of changes in the local beam current on the behaviour of a solenoid 
focused beam can be explored using equation (7.52). We note that the beam current 
only affects the first term on the right hand side of the equation and that the square 
of the plasma frequency is proportional to the beam current. If  we assume that the 
current density varies as k z( ) then the effect of the changes in current density can 
be modelled by multiplying the space- charge term in equation (7.52) by this factor. 
The effect of different assumptions about k z( ) can be examined using Worksheet 
7.2. It is found that smooth changes in the beam current cause the beam to move 
to a new equilibrium radius with little scalloping and we are therefore justified in 
supposing that the effects of density modulation of the beam can be described quite 
accurately by the changes in the equilibrium beam radius. It should be noted that 
this differs from the approach used by other authors who assume that the modu-
lation of the beam leads to scalloping [7]. We shall see that the analysis presented 
here is consistent with the small- signal properties of magnetically- focused beams 
presented in Chapter 11. The equilibrium equation is obtained from (7.52) as
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γ
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where the instantaneous beam current is kI0. Multiplying through by R4, and sub-
stituting for β p and K using (7.56) and (7.57), gives

 m R kR m2 4 2 2 1 0− − −( ) = , (7.64)

which has the solution

 R
m

k k m m2
2

2 2 21
2

4 1= + + −( )( ). (7.65)

The solution is trivial when m = 1 because then R k2 =  so that a doubling of the 
current increases the beam radius by a factor of 2. Thus, in a Brillouin focused 
beam the current density is constant when the beam is bunched, and the modula-
tion takes the form of perturbation of the beam radius. For other values of m it is 
simple to compute the variation of R with k and the results are shown in Figure 7.5. 
It is evident that the radial perturbation of the beam boundary decreases sharply 
as m increases. Thus the stiffness of the beam increases with m, as suggested in the 
previous section. This is an important result because the power density in the elec-
tron beam in a microwave tube is high enough to cause damage to the surrounding 
metal structures if  an appreciable part of the beam current is intercepted by them.

It is therefore necessary to design the focusing system with the objective of redu-
cing the intercepted current as far as possible. The interception could, in theory, be 
reduced to zero by making the magnetic field very strong. This is sometimes assumed 
for purposes of calculation, but it is not a practical solution because of the size, 
weight, and cost of the focusing system that would be required. The use of Brillouin 
flow m =( )1  is also not practical because it generally leads to an unacceptably large 
intercepted current. In practice it is usual to use a value of m in the range 1.3 to 3.0 
where the electrons are in space- charge- balanced flow. To achieve the correct condi-
tions it is necessary to arrange for a portion of the focusing flux to be linked to the 
cathode to satisfy (7.57). Sometimes, for simplicity, the beam may be launched from 
a shielded cathode into a magnetic field which is stronger than the Brillouin field. 

Figure 7.5: Stiffness of a solenoid- focused beam.
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The beam then adopts the equilibrium radius given by (7.65) and will scallop, unless 
it is launched into Brillouin flow, and then compressed by a gradual increase of the 
field. Beams launched from non- shielded cathodes show similar behaviour [13– 17]. 
The behaviour of such a beam can be investigated using Worksheet 7.2.

In high- power linear- beam tubes the peak beam current is of the order 2– 4 times 
the DC current. We shall see that it is desirable to keep the diameter of the beam 
tunnel small, and the beam filling factor b a( ) as large as possible, in order to get a 
strong RF interaction between the beam and the surrounding structure. But the use 
of a small beam diameter requires a stronger magnetic field and, consequently, the 
dissipation of more power in the solenoid which supplies it. There is, thus, a trade- 
off  between the RF interaction and the size, weight, and cost of the solenoid and 
its power supply. Figure 7.5 shows that, with a filling factor of 0.67, there should 
be no interception when m is as low as 1.5. In practice the current density profile 
in an electron beam does not have a sharp cut- off  at the designed beam radius but 
commonly extends a little beyond it. Thus it may be necessary to use a higher value 
of m to provide a safety margin. We shall return to this issue when discussing the 
design principles for klystrons and TWTs. It is usual to use a computer model of 
the electron gun, and a portion of the focusing structure, to check that the beam is 
well- controlled and has the intended diameter [18].

The results shown in Figure 7.5 can be used to estimate the relative proportions 
of the RF beam current which are carried by modulation of the charge density 
(bulk current) and of the beam radius (surface current). If  we assume that the axial 
velocity of the electrons is u0 and that the RF current density J1( ) is uniform across 
the beam then we can write

 J
kI

r
I
b1

0

2

0

2
= −

π π
. (7.66)

The amplitude of the bulk current IB( ) is taken to be the RF current contained 
within the equilibrium beam diameter, so that

 I b J
b
r

k IB = = −





π 2
1

2

2 01 . (7.67)

Now the amplitude of the total RF current I1 is given by

 I k I1 01= −( )  (7.68)

so that the normalised bulk current is

 I
I k

b
r

kB

1

2

2

1
1

1=
−







−





. (7.69)

The RF surface current IS( ) is just I IB1 −( ). Figure 7.6 shows how the normalised 
bulk and surface currents vary with m for various values of k. Since the current 
density in a Brillouin focused beam is equal to the equilibrium current density, 
it follows that the whole of the RF current is surface current when m = 1. As the 
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magnetic field is increased the surface current falls and the body current increases 
but, even when m = 3 (which is the highest value normally used), there is still an 
appreciable surface current, especially at the higher values of k. We shall see in 
Section 11.3.1 that, in the limit of small modulation k →( )0 , this analysis agrees 
with the results of space- charge wave theory.

7.5 Beam Spreading

An uncontrolled electron beam spreads out through the influence of its own space- 
charge. If, in addition, the electrons are rotating about the axis of the beam then the 
rate at which the beam spreads is increased by the centrifugal force. It is necessary 
to be able to compute the spreading of an electron beam under these conditions, 
both to model its expansion into the collector as it leaves the end of the focusing 
system, and to understand the behaviour of focusing systems based on the use of 
magnetic or electrostatic lenses.

7.5.1 The Universal Beam- Spreading Curve

If  there is no magnetic field and the angular velocity of the electrons is zero, the 
equation of motion of an electron on the edge of a non- relativistic beam is obtained 
from (7.53) as [19]

 d R
dz Rp

2

2
21

2
1

= β . (7.70)

Figure 7.6: Bulk and surface currents in a modulated solenoid- focused beam.
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Multiplying both sides of equation (7.70) by 2 dR dz( ) and integrating with respect 
to z gives

 dR
dz

R Cp






= ( ) +
2

2β ln . (7.71)

If  we choose R = 1 when the electrons are moving parallel to the axis (the beam 
waist) the constant of integration C is zero. We recall that β p has been defined at 
this plane (see (7.47)). Then

 dR
dz

Rp= ( )β ln  (7.72)

so that

 β p

R

z
dR

R
=

( )
⌠

⌡


ln
.

1

 (7.73)

The integral can be evaluated numerically after first making the substitution 
x R2 = ( )ln  to give

 β p

R
z x dx= ( )( )

∫ 2 2

0
exp .

ln
 (7.74)

The result of the integration is the universal beam spreading curve shown in 
Figure 7.7. This curve is symmetrical about the R axis because the rate of conver-
gence is the same as the rate of expansion. An approximate analytical equation for 
the curve can be obtained by assuming that R x= +1  where x 1 and using the 
series expansion of the logarithm

 ln 1
2 3

2 3

+( ) = − + −x x
x x

 (7.75)

Figure 7.7: The universal beam spreading curve.
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so that (7.73) can be written approximately as

 β p

x

z
dx

x
= ⌠

⌡


0

, (7.76)

which can be integrated to give

 x zp= 





1
2

2

β  (7.77)

so that

 R zp≈ +1
1
4

2 2β . (7.78)

Figure 7.7 shows a comparison between the universal beam spreading curve and 
the approximation given by (7.78). It can be seen that the approximation is useful 
when β pz ≤ 2. The spreading of a relativistic beam can be found by replacing β p 
with β γp

1 5. .

7.5.2 Spreading of Rotating Beams

Consider a beam composed of  mono- energetic electrons emerging from a 
focusing field into an electron collector. If  the electrons are launched from a 
cathode which is shielded from magnetic flux then, by Busch’s theorem, they 
emerge from the magnetic field with no angular velocity and beam edge within 
the collector follows the universal beam spreading curve. In many cases, how-
ever, the beam is designed to be in space- charge balanced flow with magnetic 
flux linked to the cathode. When such a beam emerges into a region which is 
free from magnetic field its non- relativistic equation of  motion is obtained 
from (7.53) as [7]

 d R
dz R

K
Rp L

2

2
2 2

3

1
2

1 1
= +β β . (7.79)

The derivation now follows the same procedure as that for the universal beam 
spreading curve. Equation (7.79) is multiplied by 2 dR dz( ) and integrated with 
respect to z with the initial condition R = 1. The result is

 dR
dz

R K
Rp L







= ( ) + −





2

2 2
2

1
2

1
1β βln . (7.80)

Substituting for βL  and K using (7.56) and (7.57) gives

 dR
dz

R m
Rp







= ( ) + −( ) −













2

2 2
2

1
4

1 1
1β ln . (7.81)
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Equation (7.81) reduces to (7.72) when m = 1. As before we make the substitution 
x R2 = ln  so that

 β p

R

z
x x

x m x

dx=
( )

+ −( ) − −( )( )

⌠

⌡




2

1
4

1 1 2

2

2 2 2
0

exp

exp

.

ln

 (7.82)

Equation (7.82) can be integrated numerically (see Worksheet 7.3) and the results 
are shown in Figure 7.8 for a range of values of m. The trajectories spread more 
rapidly as m increases as a result of the increasing centrifugal force. An approxi-
mate solution to (7.81) can be found by assuming that, by analogy with (7.78), the 
beam radius varies with position as

 R z≈ +1 2 2α . (7.83)

Substituting in (7.80) yields

 α β β2 2 21
4

= +( )p LK  (7.84)

so that

 R K zp L≈ + +( )1
1
4

2 2 2β β . (7.85)

This reduces to (7.78) when K = 0. The spreading of relativistic beams can be found 
by making relativistic corrections to β p and βL.

7.6 Periodic Focusing

As an alternative to solenoid focusing it is possible to control an electron beam by 
passing it through a periodic array of converging lenses, as shown in Figure 7.9 

Figure 7.8: Spreading of rotating beams.
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[20– 22]. The beam converges as it leaves a lens in such a way that the space- charge 
forces produce an equal divergence as it enters the next lens. The edge of the beam 
therefore has a ripple with the periodicity of the lenses. Systems using magnetic 
lenses with permanent magnets, known as periodic permanent magnet (PPM) sys-
tems, are commonly used for TWTs and occasionally for klystrons. Periodic electro-
static focusing is sometimes used, but is usually more difficult to implement.

7.6.1 Periodic Permanent Magnet (PPM) Focusing

Figure  7.10(a) shows the general arrangement of a periodic permanent magnet 
system. The permanent magnets, in the form of rings, are magnetised axially and 
arranged so that their polarities alternate. The flux is conveyed to the region of the 
electron beam by iron pole pieces so that the field on the axis varies approximately 
sinusoidally with position, as shown in Figure 7.10(b). This arrangement has the 
advantage that the size and weight of the magnets is considerably less than would 
be required to produce an equivalent uniform magnetic field. The properties of a 
PPM system can be modelled by finding the solutions of (7.53) when the magnetic 
field profile is defined by

 f z
z

L
z( ) = 





= ( )cos cos .
2

0
π β  (7.86)

The differential equation to be solved is

 d R
dz R

K
R

z Rp L L

2

2
2 2

3
2 2

0
1
2

1 1
= + − ( )β β β βcos . (7.87)

If  we let θ β= 0z  then (7.87) becomes

 d R
d R

K
R

R
2

2 3
21

2
1

2
θ

β α α θ= + − ( )cos , (7.88)

where the magnetic field parameter

 α β
β

=
1
2

2

0
2

L , (7.89)

Figure 7.9: Focusing of a beam by an array of converging lenses.
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the space- charge parameter

 β
β
β

=
1
2

2

0
2

p , (7.90)

and the cathode flux parameter K  are defined at z = 0. This equation cannot be 
solved analytically but solutions using analogue computers are given in [22] for 
K = 0 and in [23] for K ≥ 0. The solution of (7.88) is readily achieved using numer-
ical methods, as shown in Worksheet 7.4, with results which agree with those in the 
literature. Figure 7.11 shows some typical solutions. The beam profile is approxi-
mately sinusoidal with a wavelength which is one half  of the wavelength of the 
magnetic field. This is because the focusing effect depends upon the square of the 
magnetic field and, therefore, there are two converging lenses in each wavelength 
of the magnetic field. If  the focusing conditions are correct then the electron tra-
jectories are perfectly periodic as shown in Figure 7.11(a). If, however, the focusing 
is not correct then scalloping is superimposed upon the PPM ripple as shown in 
Figures 7.11(b) and (c) in which β has been altered by ±20%.

When the beam has no scalloping (the minimum ripple solution) it is found 
that the value of β is completely determined when α and K  are fixed, as shown in 
Figure 7.12 [23]. The ripple in the beam edge defined by

 δ =
−
+

r r
r r
max min

max min

 (7.91)

also depends only on α and K , as shown in Figure 7.13 [23].
If  α is increased, with a fixed value of K, and β is adjusted to seek for a minimum 

ripple solution it is found that, beyond a certain value of α, no stable solutions can 
be found. For higher values of α the ripple may show a sinusoidal modulation but, 
for a further increase in α, the ripple increases exponentially with z. It has been 
shown experimentally that for a shielded cathode K =( )0  α < 0 57.  [24]. Theoretical 
analyses have suggested other values for this limit [23– 25]. In practice, however, the 

Figure 7.10: Periodic permanent magnet (PPM) focusing system: (a) sectioned elevation, and 
(b) the magnetic field profile.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.008
https://www.cambridge.org/core


Linear Electron Beams272

272

Figure 7.11: PPM focused beam profiles α = =( )0 3 0 1. , .K : (a) β = 0 187. , (b) β = 0 224. , 
and (c) β = 0 15. .
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requirement for the ripple to be small in a well- focused beam means that the value 
of α chosen is well below the limiting value.

Approximate analytical solutions to (7.88) have been described using Fourier 
expansion or successive approximations [23, 25, 26], but these are mathematically 

Figure 7.12: Dependence of β on α and K  for minimum ripple of a PPM focused beam
(copyright 1955, IEEE, reproduced, with permission, from [23]).

Figure 7.13: Dependence of ripple on α and K  for minimum ripple of a PPM focused beam
(copyright 1955, IEEE, reproduced, with permission, from [23]).
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difficult. A good approximation can be obtained, however, by assuming that the 
beam profile is

 R zm = + ( )1 2 0δ βcos , (7.92)

where Rm is the beam radius normalised to the mean radius. Following [26] we 
express (7.87) in terms of the mean beam radius as

 d R
dz R

K
R

z Rm
pm

m
Lm m

m
Lm m

2

2
2 2

3
2 2

0
1
2

1 1
2= + − ( )β β β βcos , (7.93)

where the suffix m denotes that the parameters are defined at the plane where the 
beam has its mean radius, that is when β π0 4z = . We note that the magnitude of the 
magnetic field at that plane is B0 2  which is the RMS value of the magnetic field. 
Substitution for Rm in (7.93) gives

 
− ( ) =

+ ( )( ) +
+ ( )( )

−

4 2
2 1 2 1 2

2

0
2

0

2

0

2

0

3β δ β
β

δ β
β

δ β
cos

cos cos
z

z

K

z

pm Lm

ββ β δ βLm z z2 2
0 01 2cos cos .( ) + ( )( )

 (7.94)

When β π0 4z =  (7.94) becomes

 
β

β βpm
Lm m LmK

2
2 2

2
0+ − =  (7.95)

or

 β β β
pm Lm m

LmK
m

2 2
2

2
2 1

2
= −( ) = . (7.96)

Comparing (7.96) with (7.54) we see that the equilibrium conditions for an electron 
beam, having a given mean beam radius and cathode flux, are the same for both 
solenoid and PPM focusing if  the RMS PPM field is equal to the solenoid field. 
Note that that (7.96) shows that there is a linear relationship between β pm and βLm 
for a given choice of Km within the range of validity of this analysis.

To find the amplitude of the ripple we set β π0 2z =  in (7.94) and obtain

 4
2 1 1

0
2

2 2

3β δ
β

δ
β

δ
=

−( ) +
−( )

pm Lm mK
. (7.97)

Substituting for β pm and rearranging gives

 α δ δ
δ

m mK= −( ) − −
−( )























−

2 1 1 1
1

1
2

1

, (7.98)

where αm, given by

 α β
β

αm
Lm= =

1
2

1
2

2

0
2

 (7.99)
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has been defined by analogy with (7.89). Now because a = 2am and it can easily be 
shown that

 K Km = +( )2 1
4δ  (7.100)

so we may calculate the dependence of α on δ for different values of K  for com-
parison with Figure 7.13. The comparison shows good agreement for α ≤ 0 4.  so this 
approximate theory is valid for a ripple of up to 15%. Also, since

 β
β

δ
p

pm2
2

2
1

=
+( )

, (7.101)

we can solve (7.98) numerically for δ in terms of αm, and then calculate β in terms of 
α and K  using (7.96). When the results are plotted and compared with Figure 7.12 
there is, again, good agreement for α ≤ 0 4.  (see Worksheet 7.4). This range of 
parameters covers the values which are generally used, so the approximate theory 
can be used for design calculations.

We have seen, in Figure 7.11, that when a PPM focused beam is launched incor-
rectly, scalloping is superimposed upon the PPM ripple. The stiffness of a PPM 
focused beam can be investigated in the same way as that for solenoid focusing 
by multiplying the space- charge coefficient β by a factor k I I= 0 . As before, we 
assume that the axial variation of charge density is slow so that it is possible to 
consider each part of the beam as being in equilibrium. It is then only necessary 
to calculate the equilibrium radius as a function of the space- charge and magnetic 
field parameters.

From (7.93) d R dm
2 2 0θ =  when θ π= 4 so the equilibrium radius is the 

solution of

 β α αm
m

m m
m

m mR
K

R
R

1
2

1
2 0

3
+ − = , (7.102)

which is identical in form to (7.63). The stiffness of a PPM focused beam is, there-
fore, the same as that of the equivalent solenoid- focused beam. Thus, a modulated 
PPM focused beam remains in equal ripple flow but with the mean radius deter-
mined locally by the instantaneous beam current. This can be confirmed by numeri-
cal integration of (7.87) in which the current increases linearly with distance (see 
Worksheet 7.4).

In some tubes the axial variation of the magnetic field is periodic but not sinusoidal 
[27]. The focusing in these cases can be investigated by the use of Worksheet 7.4, 
if  a suitable function for the field profile is defined. A particular case is the use of 
double period PPM focusing in which adjacent pairs of cells have the same polarity. 
This is used when it is necessary to fit the periodicity of the focusing to the period-
icity of the RF structure surrounding the beam [28]. Long period focusing in which 
the magnetic field is kept approximately constant in each of a series of sections 
separated by abrupt field reversals is described in [29, 30].
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7.6.2 Practical PPM Focusing Systems

PPM focusing systems are sensitive to variations from the ideal field. These may be 
caused by:

• variations in the strengths of the magnets caused by manufacturing tolerances or 
accidental demagnetisation when the stack is being assembled;

• variations in the strength of the field in the cells near the ends of the stack caused 
by end effects [31], or by the omission of magnets to allow input and output wave-
guides to pass through [32];

• variations in the azimuthal symmetry of the fields caused by tilting of the pole- 
pieces, misalignment of the magnets, or omission of magnets as already men-
tioned [32].

It is standard practice to make empirical adjustments to the magnetic field of a 
PPM focused tube by the addition of soft iron shunts that bridge the pole- pieces 
on the outside of the stack. In this way both the magnitude and the symmetry of 
the field can be adjusted until good beam transmission is obtained. The process is 
time- consuming and it is desirable to design PPM focusing systems in such a way 
that empirical adjustments are kept to a minimum.

Problems caused by end effects, or by the need to pass waveguides through the 
PPM structure can be dealt with, in principle, by adjusting the design of the cells 
near to ends of the stack to compensate for the departures from the ideal field. Kory, 
who examined the magnitudes of these effects for a helix TWT, found that the great-
est changes were caused by the omission of magnets to allow for the passage of 
waveguides [32]. The asymmetries in the field caused appreciable movement of the 
axis of the beam away from the axis of the stack. The effects of a simulated shunt 
were small, and those of misalignment of a magnet were found to be negligible.

The effects of random variations in the strengths of the magnets have been dis-
cussed by a number of authors [33– 36]. It was found that such variations cause the 
ripple in the beam to grow with distance. The growth can be reduced by increasing 
the strength of the magnetic field above the theoretical value. This is in qualita-
tive agreement with experimental observations. The most comprehensive study was 
carried out by MacGregor who examined the conditions for optimal beam trans-
mission with random variations in magnet strengths of 2.5% and 5%. Figure 7.14 
summarises his results using Harker’s parameters [33, 34]. McGregor also showed 
that good beam transmission would be difficult to obtain with values of α greater 
than 0.4, when the field variations were 2.5%, and 0.3 when they were 5%.

The design of a PPM focusing system starts from the desired current, voltage, 
and mean radius of the beam. It is also necessary to fix the maximum acceptable 
ripple in the beam and the value of m which will give adequate stiffness. The design 
calculations are:

 i) Calculate the Brillouin field using (7.55) and the peak field B mBB0 2= . In 
order to ensure good beam transmission it is usual to increase the magnetic field 
from this theoretical value as described above (see Figure 7.14).

 ii) Calculate Km using (7.57).
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 iii) Calculate αm using (7.98) and check that the value is less than 0.2.
 iv) Calculate β0 and then L using (7.99).
 v) Design the magnetic field in the beam entry region to achieve the correct initial 

conditions as described in Section 9.3.2.
 vi) Design the magnet stack as discussed in Section 19.7.3.

Finally, in nearly every case, it is necessary to make empirical adjustments to the 
field in each tube by adding shunts to the outside of the PPM stack to minimise the 
intercepted current.

7.6.3 Periodic Electrostatic Focusing

A periodic electrostatic focusing system can be constructed as shown in Figure 7.9 
using electrostatic lenses [21, 37]. If  cylindrical symmetry is assumed then the non- 
relativistic equations of motion are, from (7.9) and (7.11)

 d r
dt

e
m

Er

2

2
0

= −  (7.103)

Figure 7.14: Regions of acceptable beam transmission with 2.5% and 5% random variations 
of magnet strength compared with the minimum ripple solution (dashed): (a) K = 0, 
(b) K = 0.1, and (c) K = 0.2
(copyright 1986, A. MacGregor, reproduced, with permission from [34]).
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and

 d z
dt

e
m

Ez

2

2
0

= − . (7.104)

The angular velocity is zero in the absence of a magnetic field. Note that it is no 
longer possible to assume that the axial velocity is constant. Let us suppose that the 
electrostatic potential on the axis relative to the cathode is given by

 V z V V za0 11 0, cos .( ) = + − ( ) β  (7.105)

This potential could be provided by a series of equally spaced plates, with circular 
holes for the passage of the beam, that are held alternately at potentials Va and 
V Va +( )2 1  relative to the cathode. From the discussion of the Einzel lens in Section 
7.3.2 we expect this potential variation to correspond to a series of converging 
lenses. The higher-order terms in the Fourier expansion of the potential at the edge 
of the apertures decay rapidly with decreasing radius. Thus the potential variation 
close to the axis can be represented by a single term from the series. Substituting in 
Laplace’s equation (7.19) we obtain

 1
00

2

r r
r

V
r

V
∂
∂

∂
∂







− =β . (7.106)

This is a form of Bessel’s equation which has the general solution

 V r z V I r z, cos ,( ) = ( ) ( )1 0 0 0β β  (7.107)

where I r0 0β( ) is the modified Bessel function of the first kind [38]. If  β0 1r ≤  the 
Bessel function can be written to a good approximation as

 I r
r

0 0
0

2

1
4

β
β( ) +

( )
 . (7.108)

Then, in the paraxial ray approximation, the axial electric field is given by

 E
V
z

V zz = −
∂
∂

≈ − ( )β β0 1 0sin  (7.109)

and the radial electric field is given by

 E
V
r

V r zr = −
∂
∂

≈ ( )1
2 1 0

2
0β βcos . (7.110)

When the radial field component is added to the radial component of the space- 
charge field from (7.3) and substituted in (7.103) the result can be expressed as

 d R
d R

U R Z
2

2 1
1 1

4θ
β= − ( )cos , (7.111)
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where Va is the accelerating potential, R r b= , θ β= 0 0u t, Z z= β0 , β is defined by 
(7.90) and the strength of the lenses is represented by the normalised potential 
U V Va1 1= . Similarly (7.104) can be written as

 d Z
d

U Z
2

2 1
1
2θ

= ( )sin . (7.112)

This pair of equations corresponds to equation (7.88) for PPM focusing. The prop-
erties of this system can be investigated by the simultaneous numerical integra-
tion of (7.111) and (7.112) with the initial conditions R = 1, dR dθ = 0, Z = 0 and 
dZ d Uθ = −1 1 . Stable minimum ripple solutions can be found in the same man-
ner as for PPM focusing, as shown in Figure 7.15 (see Worksheet 7.5). In the case 
shown, the potentials of alternate electrodes are positive with respect to the poten-
tial at the input and the beam radius is always less than or equal to the initial radius. 
If  the potentials of those electrodes are made negative by reversing the sign of U1 
then minimum ripple solutions can be found in which the minimum radius is equal 
to the initial radius.

Figure 7.16 shows the relationship between β and U1 for minimum ripple, and 
Figure  7.17 shows the dependence of the ripple on the normalised potential. 
Figure  7.17 is similar to the curve for K = 0 in Figure  7.13. However, from the 
definition of the normalised potential U1( ), it can be seen that for 10% ripple   
the variation of potential on the axis is nearly 80% of the accelerating voltage. The 
voltage required on off- axis electrodes would be appreciably higher. Comparison 
between Figure 7.16 and Figure 7.12 shows that the value of β in a periodic elec-
trostatic system is much less than that in a PPM system with the same ripple. Thus, 
in the electrostatic system, the space- charge in the beam must be much less, and/ 
or the spacing between the lenses must be smaller, than in a PPM system. It should 
also be noted that the electrostatic system has only one converging lens per period 
of the field whereas a PPM system has two. Finally we note that, when alternate 
electrodes are positive, the mean velocity of the electrons is appreciably greater than 
the initial velocity. For further information see [39, 40]. In practice, the need to use 

Figure 7.15: Example of a minimum ripple solution for periodic electrostatic 
focusing:  β = =( )0 01 0 351. , .U .
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high voltages, and the difficulty of combining the lens electrodes with the radiofre-
quency structure of a tube has, meant that the method has only been used for a few 
low power tubes [8, 37].

7.7 Other Forms of Linear Electron Beam

Although most linear beam tubes use solid, cylindrical, electron beams, these 
suffer from the disadvantage that the diameter of  the beam must be kept small to 
minimise the variation in the field of  the radio- frequency structure over the beam. 
That, in turn means that the beam current is limited by the need to focus the 
beam. Two other arrangements, described below, are sometimes used that address 
this issue by concentrating the electrons in a region of  strong radio- frequency 
electric field.

Figure 7.16: Periodic electrostatic focusing parameters for minimum ripple solutions.

Figure 7.17: Periodic electrostatic focusing: dependence of the beam edge ripple on the 
normalised electrostatic potential.
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7.7.1 Sheet Electron Beams

A sheet electron beam provides an alternative way of achieving a high current with 
an acceptable current density. This type of beam has become the subject of intense 
interest in recent years because of its potential application in devices at frequencies 
higher than 100 GHz where the size of the radiofrequency structure becomes very 
small. It is then advantageous to employ the interaction between a planar struc-
ture and an electron beam in the form of a thin sheet passing close to its surface. 
Unfortunately, this kind of electron beam can become unstable [41] because the 
space- charge fields caused by perturbations of the sheet normal to its plane act to 
increase those perturbations. It is found that the edges of the sheet tend to curl so 
that the uniformity of the beam is destroyed [42]. This is a particular example of 
the diocotron instability which occurs when a thin electron beam is controlled by 
crossed electric and magnetic fields [12]. However, it is possible to achieve stable 
flow of a sheet beam by arranging that the shape of the beam tunnel is such that 
the forces tending to produce instability are minimised [42, 43]. Stable flow has also 
been produced by using periodically cusped magnetic fields [44, 45], or with peri-
odic permanent magnet fields [46].

7.7.2 Annular Electron Beams

An ideal annular beam has a uniform current density within an annulus centred on 
the axis. This type of beam has the advantage that it can concentrate the electrons 
in a region where the radio- frequency electric field of the surrounding structure is 
strong. It therefore strengthens the interaction between them. Like sheet beams, 
annular beams have a tendency to become unstable at high current densities [41, 
47, 48]. An annular beam can be thought of as equivalent to a sheet beam in which 
periodic boundary conditions are applied at the edges. Although annular beams 
have been used in high power klystrons [49] the additional complexities involved in 
creating them and focusing them are not generally worthwhile. It has been shown 
that PPM focused annular beams are inherently unstable [50]. An analysis by Lau 
[51], which included relativistic effects, showed that at high beam energies the nega-
tive mass and cyclotron maser instabilities are more important than the diocotron 
instability. These are exploited in fast- wave devices such as the gyrotron where it 
is found that stable transport of annular beams is possible when the space- charge 
density is small.

7.8 Imperfections in Electron Beams

The theory and design of microwave linear- beam tubes is usually based on the 
assumption that the electron beam has uniform axial velocity and current den-
sity, and that the electrons flow without scalloping. In practice, all real electron 
beams depart from these ideals to some extent, and the imperfections cause the 
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performance of the tube to depart from the predictions of theory. It is generally 
possible to produce an electron beam whose properties are close to the theoreti-
cal ideal by careful design of the electron gun and the beam entry conditions, as 
described in Chapter 9. Here we consider briefly the effects of thermal velocities, 
and ion trapping, which may be significant even when the beam is well collimated.

7.8.1 Thermal Velocities

Since the electrons in the beam are normally obtained from a thermionic cath-
ode, which is operated at a temperature of around 1000 °C, they are not actually 
mono- energetic but have an energy spectrum with a width of rather less than 1 eV. 
The variation in the axial velocity is, therefore, very small and it does not normally 
have much effect on the operation of the tube other than contributing to the noise 
signal at the output. The radial velocity components, though small, tend to cause 
the beam to have a ‘halo’ outside the theoretical beam edge. These electrons may 
be collected on the RF structure so that there is a small, but non- zero, body current 
even in a tube which should, theoretically, show no such interception [52– 55] (see 
Section 9.2.4). Further information can be found in [56].

7.8.2 Trapped Ions

The potential well, caused by the electronic space- charge, acts as a trap for any 
positive ions produced by collisions between the electrons and any residual gas mol-
ecules in the tube. This is not normally a problem in pulsed tubes because there is 
insufficient time for ions to accumulate during the pulse. Any ions which have been 
formed tend to drift to the tube walls between pulses. In continuous wave (CW) 
tubes the accumulation of ions can lead to:

• Disruption of  the focusing because the ionic space- charge tends to neutralise 
the electronic space charge. In extreme cases where the background gas pres-
sure is high it has been known for a tube to continue to operate without a 
magnetic focusing field. The trapping, and de- trapping, of  ions can lead to 
relaxation oscillations which modulate the output of  the tube at low frequen-
cies [57– 60].

• Ion plasma oscillations which are the result of a two- stream interaction between 
the electron beam and the stationary cloud of ions. The ion plasma frequency is 
much lower than the electron plasma frequency because of the greater masses of 
the ions. Ion plasma oscillations typically show themselves as a modulation of the 
output of the tube at a frequency of a few megahertz [61].

• Bombardment of the cathode by ions that drift back into the field of the electron 
gun and strike it with high energies. The result is usually seen as a damaged spot 
in the centre of the cathode. In some tubes a hole is provided in the centre of 
the cathode to allow any ions to pass through and be collected harmlessly on an 
electrode provided for the purpose. An alternative strategy is to provide an ion 
trapping electrode close to the electron gun which provides a potential barrier 
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to the flow of ions towards the gun. That has the disadvantage that the density 
of ions trapped in the beam region will increase resulting in the effects noted in 
(a) and (b) above.

On the whole the best solution to the problems caused by ions is to try to reduce their 
generation, as far as possible, by maintaining a low background gas pressure in the 
tube. This requires careful attention to the outgassing of the tube by baking it for a 
sufficient time when it is evacuated. In large tubes it is normal for one, or two, ion 
pumps to be permanently attached to the tube to maintain the gas pressure when it is 
in storage, and to enable gas bursts to be monitored. In a working tube the electrons 
tend to sweep ions into the collector where they become embedded in the surface. For 
this reason the gas pressure tends to drop when a tube is operated for a long period.
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8 Electron Flow in Crossed Fields

8.1 Introduction

This chapter reviews the theory of electron motion in crossed fields in both planar 
and cylindrical geometries. The effects of relativity are neglected because they are 
not normally important in commercial crossed- field devices. Relativistic magne-
trons, which are outside the scope of this book, are discussed in [1].

The equation of motion for a non- relativistic electron moving in electric and 
magnetic fields is

 
d
dt

e
m

d
dt

2

2
0

r
E

r
B= − + ×





. (8.1)

The force exerted by the magnetic field is always perpendicular both to the direc-
tion the magnetic field, and to the motion of the electron, as shown by the vector 
product. If  the term in brackets on the right- hand side of the equation is zero then 
the electron will move in a straight line with constant velocity. This can be achieved 
by arranging that the electric field (the sum of externally imposed and space- charge 
fields), the magnetic field, and the direction of motion of the electron, are mutu-
ally perpendicular. This method of controlling the flow of electrons, using crossed 
fields, provides an alternative to the use of a magnetic field parallel to the electron 
velocity, discussed in the previous chapter.

Electron flow in crossed fields falls into four categories, as shown in Figure 8.1. 
It can be seen that the electron motion is essentially two- dimensional, and that 
the beam is a sheet beam. The beam may be injected from an electron gun, similar 
to that in a linear beam tube, or emitted from the whole surface of the negative 
electrode (cathode). The geometry may either be planar, or cylindrical. In injected 
beam tubes, the potential of the negative electrode (sometimes known as the sole) 
may differ from that of the cathode from which the electrons are emitted (see 
Section 8.2.2). The positive electrode, incorporating the RF structure with which 
the electrons interact, is known as the anode (or sometimes the line). This chapter 
examines the conditions necessary to achieve uniform, stable, electron flow in both 
planar and cylindrical geometries of both kinds. A review of the experimental evi-
dence shows the limitations of the theoretical treatments.
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Crossed- field tubes include magnetron oscillators (see Chapter 15), and crossed- 
field amplifiers and oscillators (see Chapter  16). In the older literature they are 
sometimes referred to as ‘M- type’ tubes, from their description in French as ‘Tubes 
a Ondes Magnetique’. All tubes which are of continuing importance are of the 
cylindrical, emitting cathode, type. Planar geometry has only been used in a few 
experimental devices because cylindrical tubes are smaller, and lighter, for the same 
performance. Injected beams, which tend to be unstable, were used in some low 
power devices but are now, largely, obsolete.

8.2 Crossed- Field Electron Flow in Planar Geometry

Electron flow in planar geometry is considered in this section, and the following 
one, because it provides useful insights into the properties of electrons in crossed- 
field flow. The cylindrical case, which is of greater practical importance is discussed 
in Sections 8.4 and 8.5. Figure 8.2 shows a planar magnetron diode immersed in a 
uniform magnetic field normal to the plane of the paper. An electron emitted from 
the cathode is accelerated towards the anode by the electric field but the effect of the 
magnetic field is to bend the trajectory as shown. As the magnetic field is increased, 
at constant anode voltage, a point is reached where the electron can no longer reach 
the anode. The current through the diode is then zero and it is said to be cut- off or 
magnetically insulated. Alternatively, the current ceases to flow if  the anode voltage 
is reduced, at constant magnetic field. Then the electron just grazes the surface of 
the anode at the cut- off potential Vc.

Figure 8.1: Types of crossed- field device: (a) Planar injected beam, (b) Planar emitting 
cathode, (c) Cylindrical injected beam, and (d) Cylindrical emitting cathode.
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8.2.1 Electron Motion without Space- Charge

Let us suppose that the magnetic field is in the z direction and that the electron is 
moving in the x y,( ) plane. Then from (8.1) the equations of motion in Cartesian 
co- ordinates are

 d x
dt

e
m

dy
dt

B
dy
dtz c

2

2
0

= − = −ω  (8.2)

 
d y
dt

e
m

E
e

m
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dt
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By z c
y

z

2

2
0 0

= − + = −






ω , (8.3)

where ωc zeB m= 0  is the cyclotron frequency. It is easy to show by substitution that 
a solution of these equations, in the absence of an electric field, is

 
x r t

y r t
c

c

= − ( )
= ( )

sin

cos ,

ω
ω  (8.4)

when the initial position of the electron is x y r, ,( ) = ( )0 . Equations (8.4) are just 
the parametric form of a circle centred on the origin. The initial vector veloc-
ity is   x y r, ,( ) = −( )ω 0 .

When a uniform electric field is added in the y direction equation (8.3) shows that 
the centre of rotation, known as the guiding centre, moves with uniform velocity 
given by

 u
E

B
y

z
0 = . (8.5)

By extension of (8.4) the solution of (8.2) and (8.3) is
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ω
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 (8.6)

where the initial conditions are as before, and the initial velocity components are

 




x u r
y

c= −
=

0

0
ω ,

.  (8.7)

Figure 8.2: Crossed- field electron trajectory in planar geometry.
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The electron trajectories calculated from (8.6) are shown in Figure 8.3 for a number 
of different initial velocities. It can be seen that the choice of initial position of the 
electron with respect to the guiding centre (which lies on the x axis) determines the 
initial velocity and that the motion of the electron is cycloidal. Strictly speaking 
the trajectory in Figure 8.3(a) is a lengthened cycloid, 8.3(b) is a cycloid and 8.3(c) 
is a shortened cycloid [2]. When r = 0 then the electric and magnetic forces are bal-
anced, x u= 0, and the electron moves in a straight line parallel to the x axis. The 
solutions for other initial conditions can be derived from (8.6) by changes of origin 
(see Worksheet 8.1).

Figure 8.3: Electron trajectories in crossed fields in Cartesian geometry.
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Integrating (8.2) with respect to t gives

 x
e

m
B y yz c= − = −

0

ω , (8.8)

where it has been assumed that x = 0 when y = 0. It can be seen that x depends only 
on y and Bz . By the principle of conservation of energy the relationship between the 
electron velocity and the electric potential with respect to the cathode  V( ) is

 V
m

e
x y= +( )0 2 2

2
  . (8.9)

Substituting for x from (8.8) gives

 V
m

e
y yc= +( )0 2 2 2

2
 ω . (8.10)

When y = 0 the electron is moving parallel to the anode and (8.10) becomes

 V
m

e
yc= 0 2 2

2
ω . (8.11)

In particular, when the diode is just cut- off  y h= , and we obtain the Hull cut- off 
voltage VH( ) for a planar diode [3]

 V
e
m

B hH z=
2 0

2 2 . (8.12)

The derivation of this equation is independent of the space- charge density.
In order to use crossed fields to control the flow of electrons in a planar device 

we envisage an arrangement such as that shown in Figure 8.4. The electrons start 
from rest at a cathode at zero potential and are injected into a space in which 
there is a uniform electric field in the negative y direction. The field is provided 
by a planar anode at potential Va and a parallel electrode at a lower potential. To 
achieve crossed- field flow the magnetic field must be in the negative z direction. It is 
immediately obvious that the electron velocity at x = 0 is not constant because the 

Figure 8.4: Injection of a sheet electron beam into crossed- field flow.
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potential varies with y. In the absence of space- charge the electric field is uniform 
and, from the results of the preceding section, we see that motion in a straight line 
is only possible for those electrons which satisfy (8.5) and which therefore enter the 
focusing system at a particular value of y. All other electrons must exhibit cycloidal 
motion with guiding centre velocity u0.

8.2.2 Injected Beam with Space- Charge

When space- charge is taken into consideration the electric field is no longer inde-
pendent of y. We therefore wish to find whether a sheet electron beam can exist in 
which all quantities are independent of x [4– 5]. The x component of the electron 
velocity is given by (8.8). If  the flow is uniform, the electric and magnetic forces 
must balance, so that

 E xBy z=  . (8.13)

Eliminating x between (8.8) and (8.13) we obtain

 E
e

m
B yy z= −

0

2 . (8.14)

But the electric field must also satisfy the one- dimensional form of Gauss’ Law

 
∂
∂

=
E

y
y ρ

ε0

. 
(8.15)

Differentiating (8.14) with respect to y and combining it with (8.15) gives

 − =






e
m

e
m

Bz
ρ

ε0 0 0

2

, (8.16)

which may be written using (7.47) as

 ω ωp c
2 2= . (8.17)

This is the condition for smooth Brillouin flow in a planar crossed- field diode [6]. 
Note that, since the magnetic field is constant everywhere, (8.16) shows that the 
charge density must be constant within the electron beam. The electron velocity is 
not constant but depends upon y. The beam current density is

 J xx = ρ , (8.18)

where the x component of the velocity is obtained from (8.13) and (8.14) as

 x
e

m
B yz= −

0

, (8.19)
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hence

 J
e
m

B yx z= −
ρ
0

. (8.20)

Substituting for the charge density from (8.16) yields

 J
e

m
B yx z=







ε0
0

2

3 . (8.21)

Slater has pointed out that the current density can be substantial for quite 
modest values of the constants [4]. For example, if  Bz = 0 1. T and y = 10 mm, 
then  Jx = −277 A cm 2 .

To find the electrostatic potential within the beam we integrate (8.14) with respect 
to y to give

 V
e
m

B yz= +
2 0

2 2 const. (8.22)

This is identical to (8.11), which applies to all electrons moving parallel to the anode, 
and therefore the constant of integration is zero. Outside the beam the charge den-
sity is zero and, therefore, from (8.15) the electric field is constant. Now the electric 
field is continuous at the edges of the beam so that

 E
e

m
B d y dy z= − ≤ ≤( )

0

2
1 10  (8.23)

and

 E
e

m
B d d y hy z= − ≤ ≤( )

0

2 . (8.24)

Therefore the potential of the anode is given by

 

V
e
m

B d
e

m
B d h d

e
m

B d
h

d

a z z

z

= + −( )

= −





2

2
2

1

0

2 2

0

2

0

2 2 .  (8.25)

We note that this expression is independent of d1 and that it therefore applies to all 
cases including d1 0= . Thus it is theoretically possible to inject an electron beam 
into uniform flow in crossed electric and magnetic fields. The method by which 
this can be accomplished is discussed in the Section 9.6.1. In order for the electron 
velocity to be close to uniform it is necessary for the beam to be thin. However, it is 
found that a beam of this kind suffers from an instability known as the diocotron 
instability [7– 8]. Injected beam crossed- field devices are therefore not common, and 
tend to be of low power.
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The theory in this section can also be applied to devices with an emitting cathode 
(see Figure 8.1(b)). The potential variation within the beam given by (8.22) with 
the constant set to zero so that V = 0 when y = 0. Comparing (8.22) with (8.12) we 
see that the potential on the upper surface of the beam is equal to the Hull cut- off  
voltage. Thus it is apparently possible for Brillouin flow to exist in a planar crossed- 
field device with a space- charge layer close to the cathode. This raises the question 
of how this condition can be set up, because the electrons emitted from the cathode 
do not experience any force in the y direction.

8.3 The Planar Magnetron Diode

In a planar magnetron diode the whole of  the zero- potential electrode forms the 
cathode as illustrated in Figure  8.1(b). This resembles the planar space- charge 
limited diode, discussed in Chapter 5, with the addition of  a uniform transverse 
magnetic field. We will assume that the problem is one- dimensional so that all 
quantities depend only upon y. The properties of  the diode should tend to the 
Child– Langmuir solution as the magnetic field tends to zero. The difference is that 
the magnetron diode becomes cut- off  for sufficiently high magnetic fields. Two 
cases must therefore be examined depending on whether the diode is conducting 
or cut off.

8.3.1 The Diode Is Conducting

Poisson’s equation in one dimension is

 
d V
dy

2

2
0

= −
ρ
ε

, 
(8.26)

where the charge density ρ is related to the y component of the current density by

 J yy = ρ , (8.27)

provided that y ≥ 0 everywhere. Because all quantities only vary with y it follows 
from the continuity equation that Jy is constant. Substituting for V from (8.10), and 
for ρ from (8.27), in (8.26)

  



y
d
dy

y
dy
dy

y
eJ

mc
y





+ = −ω
ε

2

0 0

, (8.28)

which may be written

 
d y
dt

y
eJ

mc
y

2

2
2

0 0



+ = −ω
ε

. (8.29)
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This equation has the particular integral

 y
eJ

m
y

c

= −
ε ω0 0

2  (8.30)

and the complementary function

 y A t B tc c= ( ) + ( )sin cos ,ω ω  (8.31)

where A and B are constants. Thus the general solution of (8.29) is

 y A t B t
eJ

mc c
y

c

= ( ) + ( ) −sin cos .ω ω
ε ω0 0

2  (8.32)

Now y = 0 for an electron which leaves the cathode when t = 0 so

 B
eJ

m
y

c

=
ε ω0 0

2  (8.33)

and

 y
eJ

m
t A ty

c
c c= ( ) −( ) + ( )

ε ω
ω ω

0 0
2

1cos sin . (8.34)

For space- charge- limited flow the normal component of the electric field is zero at 
the surface of the cathode so that y = 0 when t = 0. Then A = 0 and

 y
eJ

m
ty

c
c= ( ) −( )

ε ω
ω

0 0
2

1cos . (8.35)

Integrating (8.35) with respect to t we obtain

 y
eJ

m
t ty

c
c c= ( ) −( )

ε ω
ω ω

0 0
3

sin , (8.36)

where y = 0 when t = 0. In the limit Bz → 0 the trigonometric functions in (8.35) and 
(8.36) can be expanded as power series to give

 y
e J

m
t

y→
−( )

6 0 0

3

ε  (8.37)

and

 y
e J

m
t

y→
−( )

2 0 0

2

ε
. 

(8.38)
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Substituting for t in (8.38) and then for y in (8.10) we recover the Child– Langmuir 
Law (5.16) which can be written in the form

 
eJ
m h

e
m

V
h

C

c

a

cε ω ω0 0
3

0
2 2

3
22

9
2

= − ⋅






, 
(8.39)

where JC  is the Child– Langmuir current density in a planar diode in the absence of 
a magnetic field and h is the distance between the cathode and the anode. It is not 
possible to find an explicit solution of this kind for the magnetron diode. However, 
eliminating Jy from (8.35) using (8.36), gives

 
y
y

t

t tc

c

c cω
ω

ω ω
=

− ( )
− ( )

1 cos

sin  
(8.40)

and, substituting for y ycω( ) from (8.10), we find that

 
2 1

1
0

2 2

2
e

m
V

h

t

t t
a

c

c a

c a c a

⋅ =
− ( )

− ( )






+

ω
ω

ω ω
cos

sin
, 

(8.41)

where ta is the transit time. Also, from (8.36) we find that

 
eJ

m h t t
y

c c a c aε ω ω ω0 0
3

1
= −

− ( )sin
. 

(8.42)

Thus, from (8.42), (8.39), and (8.41) we can compute the ratio J Jy C  as a function 
of the normalised transit time ωc at . At the Hull cut- off  condition y = 0 so that, from 
(8.40), ω πc at = 2  when y h=  and J Jy C → =9 4 0 716π . .

The ratio of the magnetic field to the cut- off  field BH( ) at constant anode poten-
tial Va( ) can be written, using (8.12), as

 
B
B

eV
m hH

a

c

2

2
0

2 2

1
2

=






−

ω
, 

(8.43)

which can be computed as a function of the normalised transit angle. We can there-
fore plot the normalised current against the normalised magnetic field as shown in 
Figure 8.5. At cut- off  the curve has infinite slope as the current drops abruptly to 
zero [9] (see Worksheet 8.2).

It is also interesting to enquire how the current varies with anode voltage at con-
stant magnetic field. From (8.10)

 
V
V

y
h

a

H

a

c

= +






1
2



ω
, (8.44)

so that, using (8.40) we can plot the normalised current against the normalised 
voltage, with ωc at  as a parameter, as shown in Figure 8.6. The current is zero until 
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the anode voltage rises above the cut- off  voltage. It then increases with increasing 
anode voltage and tends to the Child- Langmuir limit.

To find an electron trajectory we substitute for y in (8.8) using (8.36) to give

 x
eJ

m
t ty

c
c c= − ( ) −( )

ε ω
ω ω

0 0
2

sin . (8.45)

Integrating with respect to t gives

 x
eJ

m
t ty

c
c c= ( ) − +



ε ω

ω ω
0 0

3
2 21

1
2

cos , (8.46)

Figure 8.5: Variation of current with magnetic field in a planar crossed- field diode 
(copyright 1993, IEEE, reproduced, with permission, from [9]).

Figure 8.6: Variation of current with applied voltage in a planar crossed- field diode.
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where the constant of integration has been chosen so that the initial position of the 
electron is at the origin. Normalised x and y co- ordinates can be defined by

 X Y
m
eJ

x yc

y

, , .( ) = ( )ε ω0 0
3

 (8.47)

Figure  8.7 shows the normalised electron trajectory plotted using (8.36) and 
(8.46) with normalised transit time ωct( ) as a parameter. At the maximum tran-
sit time the diode is just cut off  and the trajectory is parallel to the x axis (see 
Worksheet 8.2).

8.3.2 The Diode Is Cut- Off

When the diode is cut- off  the net current in the y direction is zero. It is commonly 
assumed that the electrons are in Brillouin flow so that the electrons flow parallel to 
the cathode, as discussed in Section 8.2.2. There is then a space- charge layer in the 
range 0 ≤ ≤y d , where d h< , so that no electrons are able to reach the upper elec-
trode and the diode is cut off. Eliminating Bz  between (8.25) and (8.12) produces an 
expression for the position of the surface of the space- charge layer within the diode 
in terms of the cut- off  voltage, and the anode voltage

 
V
V

d
h

d
h

a

H

= −





2 . (8.48)

Equation (8.48) describes a parabola which passes through the origin and has a 
maximum when d h= . The equation can be rearranged to give the dependence of 
the height of the electron layer on the anode voltage

 
d
h

V
V

a

H

= − −1 1 . (8.49)

Figure 8.7: Normalised electron trajectory in a space- charge limited magnetron diode which 
is conducting.
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From equation (8.12) we know that, for fixed h, the cut- off  voltage increases with 
increasing magnetic field. It follows that the effect of increasing the magnetic field 
at constant anode voltage is to reduce d. All practical crossed field devices are oper-
ated below cut- off  with a ratio d h of  the order of 0.5.

Brillouin flow is not the only possible solution to this problem. If  it is supposed 
that the motion of the electrons is cycloidal, as in the space- charge- free case, then 
alternative solutions exist. The electron flow is treated as the superposition of elec-
tron currents having equal and opposite y components J+ and J− [4]. This is known 
as two- stream flow. Since the space- charge density is independent of the direction 
of motion of the electrons, each current component must be half  the current in a 
conducting diode. Thus (8.28) becomes

  



y
d
dy

y
dy
dy

y
eJ
mc







+ = − +ω
ε

2

0 0

2
, (8.50)

where J+ is y component of the outward flow of current. The solution to the prob-
lem can then be derived directly from that in the previous section by replacing Jy by 
2J+ in (8.34) to give

 y
eJ
m

t A t
c

c c= ( ) −( ) + ( )+2
1

0 0
2ε ω

ω ωcos sin , (8.51)

where we have, again, assumed that the electron starts from rest on the cathode 
surface. This type of solution was first discussed by Slater [4] who assumed space- 
charge limited emission from the cathode. Then the normal component of the elec-
tric field is zero at the cathode surface and A = 0. The normalised (Slater) electron 
orbits can then be obtained from (8.47) with the substitution of 2J+ for Jy as shown 
in Figure 8.8. The points of inflexion of the curve are branching points at which 
the trajectory may continue to move upwards, or follow a downwards path, which 
is the mirror image of the initial upward path. There is an infinity of such possi-
ble Slater orbits corresponding to transit angles from the cathode to the anode of 

Figure 8.8: Two- stream electron orbit in a cut- off  planar magnetron diode.
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2 4 2π π π, , , n , where n is a positive integer. In each case the maximum value of y 
is given by (8.12) so the trajectories become flatter with increasing n.

The charge density is found by substituting for y in (8.27) using (8.35) and the 
result can be written as

 ω ω
ωp

c

ct
2

2

1
=

− ( )cos
, (8.52)

which can be compared with (8.17) for Brillouin flow. Using ωct as a parameter 
in (8.36) we can plot the variation in normalised charge density ω ωp c

2 2( ) with Y, 
for two- stream flow, as shown in Figure 8.9. The charge is found to be in layers 
(described as striations by Slater [4]) with a minimum charge density half  that of 
Brillouin flow. The average charge density, found by integrating ρ with respect to 
y over a whole number of layers, is identical to that for Brillouin flow. It follows 
that the electric field between the top of the space- charge layer and the anode is the 
same in both cases. The fact that the charge density is infinite close to the cathode 
resembles the situation in a space- charge limited diode where it is necessary to sup-
pose that the thermal velocities of the electrons allow them to diffuse away from 
the cathode.

The current flowing from the cathode can be calculated in the same way as for a 
conducting diode. For the first Slater orbit this current is just one half  of that for a 
diode which is just conducting (see Figure 8.5). The results for the first few orbits 
are given in Table 8.1. Slater suggested that Brillouin flow might be seen as the limit-
ing case when n → ∞ and the current emitted from the cathode falls to zero. Thus, 
an infinite set of theoretical solutions exists for the electron flow in a cut- off  planar 
magnetron diode, and it is not apparent which of these is correct in any particular 
case. We shall see in Section 8.5 that the problems raised by two- stream flow are 
resolved when cylindrical geometry is considered.

Figure 8.9: Dependence of normalised charge density ω ωp c
2 2( ) on normalised position in a 

cut off  planar magnetron diode.
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8.4 Crossed- Field Electron Flow in Cylindrical Geometry

Figure 8.10 shows the arrangement of a cylindrical crossed- field diode in which the 
anode lies outside the cathode. The alternative arrangement with the anode inside 
the cathode is not much used and will not be discussed further here. When the diode 
is cut off  it is assumed that the space- charge is confined into a cylindrical layer (or 
hub) surrounding the cathode.

8.4.1 Electron Motion without Space- Charge

The analysis of a cylindrical, crossed- field diode, in which the outer electrode is the 
anode, proceeds in the same manner as that for a planar diode. The non- relativistic 
equations of motion of the electrons are (7.11) and (7.12)

 
d r
dt

e
m

E r
e

m
r Br z

2

2
0

2

0

= − + − θ θ
 (8.53)

and

 
d
dt

r
e

m
rrBz

2

0



θ( ) = .
 (8.54)

Table 8.1: Ratio of the injected current to the   
Child– Langmuir current for the first few Slater orbits

n J+ /  JC

1 0.358

2 0.179

3 0.119

4 0.090

Figure 8.10: Arrangement of a cylindrical magnetron diode.
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This equation can be integrated with respect to time to give

 m r eB rz0
2 21

2
θ = + const.  (8.55)

If  it is assumed that the electrons have zero angular velocity as they leave the 
cathode then

 
θ ω= −





1
2

1
2

2c
cr
r

,
 (8.56)

where rc is the cathode radius. Using the principle of conservation of energy, the 
relationship between the electron velocity and the electric potential with respect to 
the cathode is

 V
m

e
r r= +( )0 2 2 2

2


θ .  (8.57)

Substituting for θ  from (8.56) gives

 V
m

e
r r

r
rc
c= + −















0 2 2 2
2

2

2

2
1
4

1 ω . 
(8.58)

When the diode is just cut off  the electrons have zero radial velocity as they reach 
the anode. Then the relationship between the anode potential at cut- off  VH( ) and 
the magnetic field is

 V
e
m

B r
r
rH z a
c

a

= −




8

1
0

2 2
2

2

2

. (8.59)

This is the Hull cut- off  equation for a cylindrical diode (compare (8.12) for the 
planar diode). Note that the derivation of this equation is similarly unchanged by 
the presence of space charge.

To find the electron trajectories we note that, in the absence of space- charge,

 E
V

r r rr
a

a c

= − ( )ln
. (8.60)

Substituting for Er  and for θ  from (8.56) in (8.53) gives

 
d r
dt

e
m

V
r r r

r
r
r

a

a c
c

c
2

2
0

2
4

4

1
4

1= ⋅ ( ) + −



ln

.ω  (8.61)

Now, if  we define the normalised variables R r r A r r tc a c c= = =, , α ω  and 
U V Va H= , then (8.61) and (8.56) can be written

 
d R
d

A U
A A R

R
R

2

2

2

2

2

4

1
8

1
1 1 1

4
1

1
α

= ( ) −





+ −





ln  (8.62)

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.009
https://www.cambridge.org/core


Crossed-Field Electron Flow in Cylindrical Geometry 303

303

and

 
d
d R

θ
α

= −





1
2

1
1

2
. (8.63)

This pair of equations can be integrated numerically to find the trajectories of the 
electrons. The trajectories are epicycloidal in the counter- clockwise direction as 
shown in Figure 8.11 (see Worksheet 8.1).

8.4.2 Injected Beam with Space- Charge

We wish to find out whether Brillouin flow, in which all quantities are independent 
of θ, can exist in the space between the two electrodes, as shown in Figure 8.10. If  
the flow is uniform the radial acceleration of the electrons must be zero. Therefore, 
from (8.53)

 E
m
e

r r Br z= −0 2
 θ θ .  (8.64)

Substituting for the angular velocity from (8.56) and collecting terms gives

 E r
e
m

B r
r
rr z
c( ) = − −



4

1
0

2
4

4
. (8.65)

Now Gauss’ Law in cylindrical co- ordinates is

Figure 8.11: Typical electron trajectory in a cylindrical magnetron without space- 
charge  A U= =( )2 0 5, . .
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1

0r r
rEr

∂
∂

( ) =
ρ
ε

. (8.66)

Substitution of Er  from (8.65) into (8.66) gives

 ω ωp c
cr
r

2 2
4

4

1
2

1= +





. (8.67)

Comparison between (8.67) and the corresponding equation for a planar magne-
tron (8.17) shows that they are similar but that the charge density is not uniform in 
the cylindrical diode.

To find the electrostatic potential within the space- charge layer (8.65) is inte-
grated with respect to r to give

 V
e
m

B r
r
rz
c= −



8

1
0

2 2
2

2

2

, (8.68)

since V = 0 when r rc= . We note that when r ra=  this is identical to the Hull cut- off  
equation (8.59). The radial component of the electric field on the surface of the 
space- charge layer at r rb=  is obtained from (8.65) as

 E
e
m

B r
r
rr z b
c

b

= − −




4

1
0

2
4

4
. (8.69)

Now, the electric field is continuous at r rb=  and ∇ =.E 0 in the space between the 
surface of the space- charge layer and the anode. The electric field in this region is, 
therefore,

 E E r
r
r

r r rr r b
b

b a= ( ) ≤ ≤( ), (8.70)

where E rr b( ) is obtained from (8.65). The potential difference between the surface 
of the space- charge layer and the anode is

 V E r
r
r

dr E r r
r
rab r b

b

r

r

r b b
a

bb

a

= − ( ) = − ( ) 





⌠
⌡
 ln . (8.71)

The potential of the anode is, therefore,

 V
e
m

B r
r
r

r
r

e
m

B r
r
ra z b

c

b

a

b
z b

c

b

= −






⋅






+ −
4

1
8

1
0

2 2
4

4
0

2 2
2

ln
22

2






. (8.72)

This equation is equivalent to equation (8.25) for the planar diode. Because that 
equation is so much simpler than (8.72) it is commonly used instead with the sub-
stitutions d r rb c= −  and h r ra c= − . When the results of this substitution are exam-
ined it is found that the difference between the two equations is up to 10% when 
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r ra c = 1 1.  and that it increases as r ra c  increases. However, r ra c > 1 1.  in most crossed- 
field devices, so the use of the equation for planar geometry, as an approximation, 
is hardly ever valid.

8.5 The Cylindrical Magnetron Diode

The behaviour of a cylindrical magnetron diode close to cut- off  resembles that of 
the planar diode described in Section 8.3, but with some important differences. This 
problem was studied in [4, 10– 11]. The equation of motion (8.53) can be written 
using (8.56) in terms of normalised parameters as

 
d R
d R

R Er

2

2 3

1
τ

= − + ′, (8.73)

where R r rc= , τ ω= Lt, ω ωL c= 2 is the Larmor frequency, and the normalised 
electric field ′Er  is defined by

 ′ =E
e

m
E

rr
r

c L0
2ω

. (8.74)

When the diode is cut off  there are equal and opposite currents J+ and J− per unit 
surface area of the cathode. Gauss’ Law gives

 
1

0r
d
dr

rEr( ) =
ρ
ε

, (8.75)

where, as in Section 8.3.2, half  of the charge density is associated with each of the 
components of the current. Equation (8.75) can be written

 
d

dR
RE

r
Rr

c( ) =
ρ
ε0

. (8.76)

The continuity equation is

 
r
r

J
dr
dt

c
+ =

1
2

ρ , (8.77)

which can be written as

 J Rr
dR
dc L+ =

1
2

ρ ω
τ

. (8.78)

Combining (8.76) and (8.78) gives
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d

dR
RE

J
ur

L

( ) = +2

0ε ω
, (8.79)

where u dR d= τ, or

 
d
d

RE
J

r
Lτ ε ω

( ) = +2

0

. (8.80)

Then, integrating (8.79) along a trajectory

 RE E
J

dr c
L

R

R
− = +

=∫
2

0
1ε ω

τ, (8.81)

where Ec is the radial electric field on the surface of the cathode. Now, using the 
normalised electric field defined in (8.74), equation (8.81) becomes

 RE E Jr c′ − ′ = ′+ τ, (8.82)

where J+′ is the normalised cathode current density given by

 J
e m J

rL c
+

+′ = −
( )2 0

0
3ε ω

. (8.83)

Then, substituting for ′Er  from (8.82), equation (8.73) becomes

 
d R
d R

R
E
R

J
R

c
2

2 3

1
τ

τ
= − + ′ +

′+ . (8.84)

This equation can be solved numerically to give ′+J  as a function of  ′Ec  and 
R r ra a c= . It is found that, if  the normalised field at the cathode ′ =Ec 0, equation 

Figure 8.12: The relationship between the cathode current density and the electric field on 
the surface of the cathode in a cylindrical magnetron diode 
(copyright 1973, IEE, reproduced, with permission, from [10]).
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(8.84) has no solutions when Ra < 2 01. . This is the condition which normally exists 
in magnetron oscillators. Figure 8.12 shows the solutions of  (8.84) for first- order 
orbits, that is, those where the radial component of  the velocity is only zero on the 
surface of  the anode (see Worksheet 8.3). Higher- order solutions can exist to the 
left of  the dashed envelope curve but these exist only for values of  Ra greater than 
those usually found in magnetron oscillators [10]. This analysis suggests that the 
electrons in the space- charge layer of  a cut- off  cylindrical diode follow first-order 
Slater orbits, and that the electric field on the surface of  the cathode is greater than 
zero. Numerical modelling of  magnetrons supports this conclusion [12]. We saw, 
in Section 8.3.2, that the average charge density is the same for both zero-order, 
and first-order, space- charge layers in a planar diode. A comparison between the 
charge per unit length in the space- charge hub of  a cylindrical diode shows that 
they are the same to within ±5% in the range 1 2 2 0. .≤ ≤r ra c  (see Worksheet 8.3).

The current in a smooth bore magnetron diode is provided by thermionic emis-
sion. In a magnetron oscillator there is usually a combination of thermionic and 
secondary electron emission. In either case, provided that the available current is 
great enough, we expect that the operating point lies on the dashed envelope shown 
in Figure 8.12. It is interesting to compare the current density injected from the 
cathode with that in a diode obeying the Child– Langmuir Law where the current 
per unit length is given by (5.69)

 I
e m V

rC
a

a

=
( )

⋅ ( )
8 2

9
0 0

3
2

2

πε
β

, (8.85)

where β is a function of Ra. Using the same normalisations as before, and noting 
that the anode voltage is given by (8.68), we obtain

 ′ = − ⋅ −






J
R

RC
a

a

4
9

1
12

2 2

3

β
. 

(8.86)

Figure 8.13: Ratio of the injected current, for first-order Slater orbits, to the Child– Langmuir 
current in a cylindrical magnetron diode which is just cut off.
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Figure 8.13 shows the ratio J JC+ , plotted against the normalised anode radius, 
for a diode which is just cut off  (see Worksheet 8.3). When Ra → 1 the current ratio 
tends to the value 0.358 obtained for a planar diode (see Section 8.3.2). It can be 
seen that the current ratio varies by less than 10% over the whole range of Ra which 
has been plotted. If  the diode is more strongly cut off  then Ra is replaced by the 
normalised radius of the space- charge layer Rb. When the diode is just conducting 
then the current is doubled, as it is in a planar diode, with results very similar to 
those in Figure 8.6 [11].

Early numerical simulations by Hartree suggested that two- stream flow would 
tend to Brillouin flow within a short time [7]. More recent simulations show that 
two- stream flow is unstable, when subject to small perturbations, leading to a flow 
similar to Brillouin flow but with some turbulence [13]. Agafonov showed that 
Brillouin flow could be seen as the limiting case of two- stream flow [14]. These 
conclusions, however, cannot explain key features of the experimental behaviour 
of cut- off  magnetron diodes, which are reviewed in the next section. We shall see 
that the experimental results mean that the principle of conservation of energy can-
not apply to individual electrons and, therefore, that neither the Brillouin nor the 
two- stream model can be correct. However, it should be noted that these models 
are still of value in throwing light on the problem and also because the results are 
found to be useful for modelling magnetron oscillators and emitting sole CFAs (see 
Chapters 15 and 16).

8.6 Experimental Behaviour of Magnetron Diodes

When a magnetron diode is conducting the current is space- charge- limited, provided 
that the cathode emission is sufficient, and it decreases as cut- off  is approached, as 
predicted by theory [9, 11]. When the diode is cut- off, however, it is found that 
there are major effects which cannot be explained by the theories discussed in the 

Figure 8.14: Dependence of the current in a magnetron diode on the applied voltage, with 
the curve from Figure 8.6 (dashed) for comparison.
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previous sections. Very early in the study of magnetron diodes it was noticed that 
the cut- off  characteristic was not sharp as predicted by the theories reviewed above 
[3]. Appreciable current continues to flow below the cut- off  voltage, as shown in 
Figure 8.14, for a diode in which r ra c = 2 3.  [11]. It was found that this effect cannot 
be explained by the thermal velocities of the electrons.

All the early experiments employed diodes in which the cathode was a thin wire 
and the anode voltage was a few hundred volts. These conditions are not typical of 
the dimensions and voltages used in practical tubes. An important series of experi-
ments was carried out by Jepsen and Muller who observed that the currents in mag-
netron oscillators were often greater, by up to two orders of magnitude, than could 
be sustained by thermionic emission from the cathode [15]. It was thought that this 
was the result of secondary electron emission from the cathode. They constructed 
a series of experimental magnetron diodes with smooth anodes whose dimensions 
corresponded to those of an existing magnetron oscillator. In these diodes the cath-
ode was not heated but formed of one of a number of pure materials having dif-
ferent secondary electron emission properties. The temperature of the cathode was 
not sufficient to allow any appreciable thermionic emission. A  small thermionic 
priming cathode was included at one end of the main cathode. The results were 
displayed in the form of curves of anode voltage against anode current at constant 
magnetic field, as shown in Figure 8.15. These curves are very similar to those for 

Figure 8.15: Characteristic curves of a smooth- bore magnetron diode with a platinum 
cathode  r ra c =( )1 58.
(copyright 1951, AIP Publishing, reproduced, with permission, from [15]).
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an operating magnetron oscillator having similar dimensions. They curves reveal a 
number of important features:

• The anode current was tens of amps, even though the anode voltage was always 
less than the cut off  voltage for the magnetic field used. This current was much 
greater than that which could be supplied by the priming cathode, except when 
the main cathode was made of carbon (whose secondary electron emission coef-
ficient is less than unity). The current was always much smaller than the space- 
charge- limited current which would flow in the absence of the magnetic field.

• For each magnetic field it was found that, as the applied voltage was increased, 
the current increased until it reached a maximum. If  the voltage was increased 
further then the current fell abruptly to approximately that available from the 
thermionic priming cathode. This is a particular feature of tubes with pure metal 
cathodes. The maximum current boundary was approximately a straight line and 
depended on the dimensions of the tube and on the material of the cathode.

• The flow of current to the anode was accompanied by heating of the main cath-
ode caused by back- bombardment.

Figure 8.16 shows typical results for the dependence of the back- bombardment 
power, normalised to the power input to the diode, on the anode current. At low 
currents a high proportion of the input power is dissipated on the cathode, but that 
this falls as the anode current is increased. It was noted that the back- bombardment 
power was greater in the smooth- bore magnetron than in the equivalent magnetron 
oscillator by a factor of at least 2. The results shown in Figure 8.16 were obtained 
using a tube in which the ratio of anode diameter to cathode diameter was 1.58. It 
was found that the back- bombardment power decreased rapidly as this ratio was 
increased.

Measurements were made of the currents in the priming cathode, the main 
cathode, and the anode as a function of anode voltage, with the results shown in 

Figure 8.16: Back- bombardment power in a smooth- bore magnetron with a molybdenum 
cathode  r ra c =( )1 58. .
(copyright 1951, AIP Publishing, reproduced, with permission, from [15]).
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Figure 8.17. It can be seen that up to a critical anode voltage all the currents are 
small, and the main cathode current is negative, indicating that more electrons are 
landing on the cathode than are emitted by it. As the voltage is increased a point is 
reached at which the main cathode current changes sign and then increases rapidly. 
The zero of the main cathode current was interpreted as being the point at which 
the energy of the bombarding electrons corresponded to a secondary electron emis-
sion coefficient of unity. Thus, at higher voltages, the greater part of the anode cur-
rent is from secondary electron emission.

The maximum current boundary was explained qualitatively by observing that 
the total current emitted from the cathodes must always be greater than, or equal 
to, the anode current, that is

 I I Ip b e a+ −( ) ≥δ 1 , (8.87)

where I I Ip b a, and  are, respectively, the priming cathode current, the back- 
bombardment current, and the anode current. The effective secondary electron 
emission coefficient δe( ) takes account of the angles of incidence of the bombard-
ing electrons. The energy of the bombarding electrons increases as the anode volt-
age increases. However, as shown in Section 18.3, the secondary electron emission 
coefficient decreases with increasing primary electron energy, and eventually falls 
below unity. Thus, at some point, the inequality in (8.87) can no longer be satisfied, 
as the anode voltage is increased, and the anode current must fall to around that 
emitted by the priming cathode.

The work of Jepsen and Muller showed conclusively that the simple theory of the 
magnetron diode was inaccurate. It was noted, on the basis of a very rough calcula-
tion, that electron scattering based on collisions failed to explain the observations 

Figure 8.17: Division of current between the priming cathode and the main cathode of a 
smooth- bore magnetron diode.
(copyright 1951, AIP Publishing, reproduced, with permission, from [15]).
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of current striking the cathode by a factor of around 106. Because the experiments 
employed a diode in which the thermionic current was deliberately kept small 
they are not representative of the situation in most practical devices where ther-
mionic emission plays a larger role. However, the similarity between the curves in 
Figure 8.15, and the characteristic curves of a magnetron oscillator, suggest that 
there may be similarities between the electron dynamics in the two cases.

An important series of  measurements of  the noise in cut off  magnetrons was 
made by Glass et al. [16]. It was found that noise could be detected in fluctua-
tions of  the anode current, or in noise power radiated by the heater leads, when a 
magnetron oscillator was operated in its pre- oscillating state. This noise was found 
to contain clear frequency peaks whose amplitude and frequency depended on 
the anode voltage. Frequency peaks were detected in 3 GHz tubes in the range 
0.5 MHz to 4.0 GHz. Typical results are shown in Figure  8.18. The general 
conclusions were:

• The noise, including the peaks, increased as the anode voltage was increased.
• There was always a noise maximum near the oscillating voltage.
• A given peak moved to higher frequencies as the anode voltage was increased.

When the voltages at which the peaks occurred were plotted against frequency it 
was found that they lay on a series of curves diverging from the origin. Calculations 
suggested that these lines corresponded to azimuthal modes with differing periodic-
ity. The conclusion of this paper was:

Figure 8.18: Typical noise/ voltage curves measured, with uncalibrated probes in a cavity 
magnetron operated below oscillation
(copyright 1955, IEE, reproduced, with permission from [16]).
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‘The experimental results described above have shown the presence of oscillations in the 
space- charge cloud down to extremely low voltages. Thus for all practical purposes the 
space- charge can be considered as being always in a state of oscillation, and a true steady 
state therefore never really exists. The question of whether a single-  or double- stream steady 
state is present is thus largely an academic one (my emphasis)’

(copyright 1955, IEE, reproduced, with permission from [16]).

Despite this, authors have continued to argue the claims of these theoretical states 
to be the stable state existing in a magnetron diode. Further experimental evidence 
on oscillations in magnetron diodes was presented by Osepchuk [17] who noted 
that, although violation of cut- off  is not always accompanied by detectable oscilla-
tions, it was possible that oscillations were present under most conditions.

At the same period a number of authors reported measurements of the space- 
charge distribution between the cathode and the anode [18]. A very careful set of 
results was obtained by Nedderman [19] who used the radiation from low-  pres-
sure helium within the magnetron to calculate the charge density. A  representa-
tive set of results is shown in Figure 8.19 with the edge of the space- charge layer 
according to the Hull equation indicated by a dotted line for each anode voltage. 
The position of the cathode coincides with the left- hand edge of the figure. The 
method of measurement was unable to detect electrons having energies less than 
about 20 eV and, for that reason, the space- charge density appears to be very low 
close to the cathode. Nedderman estimated the charge which had been missed by 
the measurements and showed that it could mostly be accounted for by continuing 
the curves to the left of their peaks with constant charge density. It is evident from 
these results that the space- charge occupies most of the space between the edge 
of the theoretical space- charge layer and the anode. This is particularly noticeable 

Figure 8.19: Distribution of space- charge in a cut- off  magnetron diode for various voltages
(copyright 1955, AIP Publishing, reproduced, with permission, from [19]).
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when the diode is strongly cut off. Further measurements were made at a reduced 
cathode temperature and at voltages too low for secondary emission to occur. It 
was found that, though the space- charge was reduced by this process, it was still 
far from zero. The conclusion was drawn that electrons were being trapped by the 
field and unable to reach either the anode or the cathode. Such electrons might be 
expected to remain there for long periods and gradually drift out of the field under 
the influence of large numbers of small perturbations. It was concluded that the 
experimental results could not be explained by theories of the magnetron diode 
based on self- consistent fields with unique electron trajectories.

More recent experimental results were reported by Hirsch [20– 22] who studied 
strongly cut- off  magnetrons. It was shown that the anode current distribution was 
not uniform but was concentrated towards the ends of the anode, suggesting that 
any satisfactory theory would need to be three- dimensional. The effects of back-
ground gas pressure were investigated and it was shown that the anode current 
increased because of scattering from gas molecules at pressures greater than 10– 5 
Torr. At low currents oscillations were observed at very well- defined frequencies 
with very little noise. The frequency of each mode of oscillation was directly pro-
portional to the magnetic field, and independent of the anode voltage. Most of 
these measurements were made on a tube which had a filamentary cathode, and a 
large ratio of anode to cathode radius, at voltages of a few hundred volts and cur-
rents of a few microamps.

Direct measurements of the potential distribution in a strongly cut- off  magne-
tron showed the presence of space- charge outside the theoretical space- charge layer 
[23]. It was shown that the potential curve coincided with the theoretical curve for 
Brillouin flow close to the cathode, but diverged at greater distances. The radius at 
which the divergence commenced was around 40% of the theoretical radius of the 
space- charge cloud. The results of the measurements were said to be in agreement 
with those of Nedderman [19].

8.7 The Magnetron Problem

It is evident that the experimental results obtained with cut- off  magnetron diodes 
cannot be explained by the elementary theory developed above. This problem is the 
subject of an extensive literature with divided opinions. In the discussion below, 
the papers cited are those which appear most important in the development of the 
argument. According to the elementary theory it is impossible for any electrons to 
reach the anode when the diode is cut off. This is a consequence of the assumption 
that the principle of conservation of energy applies to each electron, and to the 
assumption that the flow does not vary with time. The electrons on the surface of 
the space- charge layer have no radial acceleration because the electric and magnetic 
forces are in balance. If  any of these electrons are to be able to reach the anode they 
must first lose energy so that the magnetic force is reduced. This can only happen if  
they exchange energy with other electrons which are speeded up, and so returned to 
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the cathode, which they strike with non- zero energy. This explains the simultaneous 
appearance of anode current and back- bombardment of the cathode. It follows 
that while energy and momentum must be conserved for the electron cloud, as a 
whole, these quantities cannot be conserved for individual electrons [24]. Thus it is 
impossible for any theory based on the conservation of energy by individual elec-
trons to explain the experimental results. Three possible causes of energy exchange 
have been proposed in the literature:

• two-  or three- body collisions between electrons [25– 28];
• cumulative effects of random thermal oscillations [25– 26, 29];
• oscillations of the whole electron cloud [7, 17, 21– 22, 24, 27, 30– 33].

The consensus appears to be that electron collisions are too rare, and random ther-
mal effects too small, to explain observed phenomena. The importance of collective 
instabilities is supported by the existence of peaks in the noise spectrum which can 
be explained in terms of azimuthal space- charge modes (see also Section 15.2.3). 
It may be noted that those authors who believe that collisions are important also 
refer to collective effects. The explanation of the behaviour of cut- off  magnetrons 
in terms of space- charge oscillations has been confirmed by PIC simulations [12, 
32– 33] which also showed the importance of non- stationary secondary electron 
emission from the cathode. In a 2D simulation, agreement was obtained with exper-
imental results to within 10% when the spacing between the cathode and the anode 
was small compared with their length [15, 33].
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9 Electron Guns

9.1 Introduction

Many high- power vacuum tubes depend for their operation on the interaction 
between an extended electron beam and an electromagnetic structure. In general 
the current density required in the beam is greater than that which can be obtained 
from the cathode. Thus the area of the cathode must be greater than that of the 
beam. Careful design of static electric and magnetic fields is needed to ensure that 
the electron flow converges smoothly from the cathode into the beam. The arrange-
ment of electrodes and magnetic materials used to achieve this is known as an elec-
tron gun. The objective of this chapter is to review the main types of electron gun 
and the principles of their design. The greater part of the chapter is devoted to 
Pierce electron guns which are used in inductive output tubes (IOTs) (Chapter 12), 
klystrons (Chapter 13) and travelling- wave tubes (TWTs) (Chapter 14). The discus-
sion includes the electrostatic design of the Pierce gun, and methods for launching 
the beam formed by the gun into uniform and periodic magnetic focusing fields. The 
remainder of the chapter introduces Kino guns, used in injected beam crossed- field 
tubes (Chapter 16), and magnetron injection guns, used in gyrotrons (Chapter 17). 
Most electron beams are cylindrically symmetrical about the direction of flow being 
either solid or hollow cylinders. However beams whose cross- sections are either flat 
sheets or flattened ellipses are of increasing interest. Multiple- beam tubes incorp-
orate several electron beams in parallel with one another and this raises special 
problems in the design of the electron guns.

Many electron guns are space- charge limited diodes whose perveance is defined 
by (5.8)

 K
I

Va

= 0

1 5.
, (9.1)

where I0 is the beam current and Va the potential of the anode with respect to the 
cathode. This ratio is typically in the order of 10 6− −A V 1.5  for electron guns and it 
is customary to express K in microperveance. The performance of an electron gun 
is limited by:

• The maximum current density available at the cathode. This must always be suf-
ficient to maintain space- charge- limited flow over the whole area of the cathode 
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to ensure that the current is not dependent on the properties of the cathode sur-
face or on its temperature. (But note that the magnetron injection guns used in 
gyrotrons are normally operated in the temperature- limited region (see Section 
9.6.2).)

• The ratio of the cross- sectional areas of the electron flow at the cathode and in 
the final beam (the Area Convergence of  the gun). If  this is too great it becomes 
impossible to ensure that the electron trajectories flow smoothly into the beam 
without crossovers. Most guns have area convergences less than 100:1.

• Electric breakdown between the focus electrode and the anode (see Section 
18.7.1).

9.2 The Pierce Electron Gun

The essential feature of the Pierce electron gun is rectilinear electron flow based on 
a simple space- charge limited diode together with the use of electrodes at cathode 
and anode potentials to maintain the correct boundary conditions along the edge 
of the beam [1]. The commonest form, used in most linear- beam tubes, is the coni-
cal convergent gun illustrated in Figure 9.1. This is based on the spherical diode, 
discussed in Section 5.6, and it is described in detail below. The purpose of the gun 
is to create a cylindrical electron beam having current I0, velocity u0, radius b and 
uniform current density, in which the electron trajectories do not cross over one 
another.

9.2.1 Electrostatic Theory of the Pierce Electron Gun

The electrons flow in a cone having half- angle θ from the cathode whose radius 
of curvature is Rc towards a concentric anode having radius of curvature Ra. For 
the present we will assume that the anode takes the form of a perfectly permeable 

Figure 9.1: Arrangement of a Pierce electron gun.
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conducting grid at potential Va with respect to the cathode. The fraction of the sur-
face area of the cathode sphere from which current is drawn is

 
2 1

4

2

2

π θ
π

R

R
c

c

−( )cos
 

(9.2)

and the space- charge- limited current is then derived from (5.84) as

 I
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0 0
1 5
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cos , (9.3)

where αa is the value of the function α of  R Rc  defined by (5.85) calculated at 
R Ra= . This equation neglects relativistic effects which can be included by making 
use of (5.89). Equation (9.3) can be written
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(9.4)

from which it can be seen that the angle of convergence required to produce a beam 
having a given perveance depends only upon αa and therefore upon the ratio R Rc a .   
It follows from (9.4) that all guns which are geometrically similar (i.e. scaled from 
one another) have the same perveance.

In practical electron guns it is not possible to use a grid at the anode because it 
would quickly be destroyed by the power dissipated by interception of electrons. 
Instead there must be an aperture in the anode sufficiently large for the beam to 
pass through without interception. Figure 9.2 shows the modification in the field 
of a spherical capacitor when a hole is bored through the inner electrode. It can 
be seen that the electric field lines penetrate into the hole and that the transverse 

Figure 9.2: Field distortion in a spherical capacitor due to a hole in the inner electrode
(copyright 1956, The IET, reproduced, with permission, from [2]).
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component of the electric field is no longer zero. The transverse field acts as a 
diverging lens so that the slope of the beam edge trajectory, as it leaves the anode 
region, is less than the initial angle of convergence [1].

The strength of this lens can be estimated by the using the aperture lens theory 
described in Section 7.3.2. The effects of space- charge may be neglected, in the first 
approximation, because the local fields due to the anode are much stronger than the 
space- charge field. The focal length of the anode lens is given by (7.29)

 
1

2 20

1 2

f

V V E E

V V V
a R

a a R

=
+( ) −( )

+( ) , 
(9.5)

where V m c eR = 0
2  and E1 and E2 are the axial electric fields before and after the 

anode so that E2 0=  in the drift region and f0 is positive for a converging lens. The 
electrostatic potential between the cathode and the anode can be written, using 
(9.3), in the form1
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If  the electric field at the surface of the ideal spherical anode is taken as an estimate 
of E1 then
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so that, substituting in (9.5) the focal length of the lens, normalised to the spherical 
radius of the anode, is given by
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In the non- relativistic limit (9.8) becomes
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. (9.9)

We note that, at a fixed anode voltage, R fa 0  is a function of R Rc a  only.
Figure 9.3 shows the geometry of the model of the Pierce electron gun including 

the effects of the anode aperture. From the lens equation

 
r
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r
R

r
f

a a

a

a

1 0 0

= +
cos

,
θ  (9.10)

which can be written as

1 Other authors express (9.6) and (9.7) in terms of α 2 because this function was tabulated by Langmuir in his 
1924 paper. As it is easy to calculate α directly the use of α 2 is unnecessary.
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 tan tan sin .θ θ θ1 0
0

0= +
R
f

a

 (9.11)

We note that θ1 is a function of R Rc a  and the perveance. Variations of this equa-
tion appear in the literature. Some authors assume that the angles are small so that 
θ θ θ≈ ≈sin tan  [1, 3, 4] Others have sinθ0 in place of tanθ0 as the first term on the 
right- hand side [5, 6]. This appears to be a consequence of the inconsistent choice 
of the position of the lens at the interception of the theoretical anode with the axis, 
whilst maintaining the point at which the angle of the trajectory changes, as shown 
in Figure  9.3. Others have sine functions throughout for reasons which are not 
stated [7, 8]. If  the initial angle of convergence is small it is possible for the second 
term on the right- hand side of (9.11) to be greater than the first so that θ1 is negative 
and the beam diverges after leaving the lens. Since the beam must be converging as 
it leaves the lens this sets a minimum value to θ0.

After the electrons have passed through the anode aperture they move into a 
region where the electrostatic potential on the boundaries of the beam tunnel is 
constant. The beam then obeys the universal beam spreading curve, discussed in 
Section 7.5.1, and has minimum radius b. It is necessary for the initial electron flow 
to be convergent so that the beam waist falls at a convenient distance beyond the 
anode. The magnetic or electrostatic focusing system for the beam is then designed 
to maintain this radius. The slope of the edge of the beam as it leaves the anode lens 
can be written, using (7.72) as

 tan ln ,θ β1 = ( )p ab r b  (9.12)

where β p includes the relativistic correction if  required. Rearranging this equation 
and making use of the geometry of the gun to eliminate ra  gives
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R
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c c

a p
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2

 (9.13)

We note again that, for given parameters of the electron beam, the ratio r bc  
depends only upon R Rc a  and the perveance. Thus, if  r bc  and the perveance are 

Figure 9.3: Geometry of the Pierce electron gun.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.010
https://www.cambridge.org/core


Electron Guns322

322

known, then the value of R Rc a  is fixed by (9.13) and the other parameters of the 
gun can be found by substitution.

9.2.2 The Focus Electrode and Anode Nose

In order to maintain the desired conical flow of the electrons it is necessary to 
choose the shapes of the focus electrode and of the anode in such a way that the 
electrostatic potential outside the beam is continuous with that defined by (9.6). 
It is possible to find the theoretical electrode shapes for conical flow Pierce guns 
[1, 9]. In practice the presence of the anode aperture distorts the field, as shown 
in Figure  9.2, and it is found that electrodes having the general form shown in 
Figure 9.4 are required to restore the equipotential surfaces close to the cathode to 
the desired spherical form [2, 10, 11]. Because of the concentration of equipotential 
surfaces close to the anode nose it is not possible to match the potential distribution 
along the whole of the beam edge from the cathode C to the theoretical position 
of the anode A. Instead the potentials are matched from C to the intersection of a 
surface such as B with the beam edge. Brewer noted that, if  B is too close to C, then 
the equipotential surfaces close to the cathode will be distorted, and that if  B is too 
close to A then the fields are strongly distorted at the edge of the beam close to the 
anode. He suggested that B should be approximately 0.6 of the distance between C 
and A [10]. For typical electron guns the potential at B is between 25% and 35% of 
Va and the electron velocity is, therefore, between 50% and 60% of u0.

Comparison between experimental results, and the simple theory of the Pierce 
electron gun presented in the previous section, shows that the strength of the anode 
lens is generally greater that that predicted by (9.9), especially as the angle of con-
vergence increases. Danielson et al. investigated this problem and suggested that the 
last term in (9.11) should be multiplied by a factor which was calculated to be 1.1 
for a 0.33 µPerv gun with R Rc a = 2 37. [12]. The correction factor was found to be 
close to V Va x  where Vx was approximately equal to the potential on the axis at its 
intersection with the theoretical anode. Müller used ray tracing through the field of 

Figure 9.4: Equipotential surfaces in a realistic Pierce electron gun
(copyright 1956, the IET, reproduced, with permission, from [2]).
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the pierced vacuum capacitor shown in Figure 9.2 and obtained a correction factor 
of 1 0cosθ  for θ0 20≥ ° [2]. Vaughan suggested an empirical correction factor of 
1.25 based the analysis of a number of guns [5]. An alternative approach was used 
by Yang et al. who fitted the results for θ0 of  a set of 30 electron guns to experi-
mental values by multiplying the last term in (9.4) by an empirical constant [13]. 
These empirical approaches are not very satisfactory and it is useful to consider the 
problem more closely.

In order to model the gun it is convenient to divide it into three regions as shown 
in Figure 9.4. Between C and B the equipotential surfaces are spherical and gov-
erned by (9.6) and the current is determined by the space- charge limited flow. The 
equipotential surfaces outside the beam in this region should be very similar to 
those determined theoretically [9]. The solution for conical flow is obtained in a 
plane containing the axis and expressed in polar coordinates centred on the centre 
of curvature of the cathode. The parameter γ defined in (5.83) is generalised as

 γ θ θ=






+ −( )ln
R
R

j
c

0  (9.14)

and the potential is given by

 V R k R, Re , ,θ α θ( ) = ( )







4
3  (9.15)

where k is a constant. The equipotential surfaces calculated in two dimensions 
remain solutions of Laplace’s equation when they are rotated about the axis of sym-
metry of the gun. Figure 9.5 shows the shapes of the equipotential surfaces which 
are obtained. It should be noted that these curves are plotted for the case where 
θ0 0=  with the cathode at the origin. The shapes for other angles of convergence are 

Figure 9.5: Normalised shapes of the beam- forming electrodes for a solid convergent 
conical beam
(copyright 1982, Elsevier, reproduced, with permission, from [9]).
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obtained by rotating the figure so that the horizontal axis coincides with the edge of 
the beam. The curve corresponding to the focus electrode makes an angle of 67.5° 
with the edge of the beam [1]. Comparison between Figures 9.4 and 9.5 shows the 
similarity between the equipotential surfaces in this region.

Beyond D the external potential is effectively equal to the anode potential and 
the beam drifts under the influence of space- charge forces alone and follows the 
universal beam spreading curve.

Between B and D the electrons continue to accelerate but gradually deviate from 
the initial conical flow under the influence of the transverse electric fields in the 
region of the anode. As the electron flow is space- charge limited the electric field at 
the cathode is zero and, thus, from Gauss’ Law we know that the flux of D out of 
the conical volume bounded by C and A must be equal to the charge enclosed. Now, 
the current is continuous, but the electron velocity increases as the electrons move 
from the cathode towards the anode. Therefore the flux of D is determined very 
largely by the charge close to the cathode. The simple model of the gun discussed 
in Section 9.2.1 assumes that the whole of this flux passes transversely through 
the beam edge as it passes through the anode. In the region between A and D the 
simple model assumes that the transverse electric field is determined by the local 
charge density in the beam. Thus the whole of the electric field which influences the 
transverse motion of the electrons is determined by the distribution of the space 
charge, and of the equipotential boundaries. Because the greater part of the charge 
is concentrated close to the cathode, the electric field associated with it is much 
greater than that due to the local space- charge in the region of the anode. An esti-
mate of the contribution from the local space charge shows that it is typically less 
than 10% of that from the charge close to the cathode [14]. Thus the effects of the 
local space- charge on the strength of the anode lens can be neglected in the first 
approximation [15]. We note that the region between B and D is not thin and that 
the electron velocity varies considerably within it. However, the transverse electric 
field is strongest in the part of it which is close to A. It is therefore an acceptable 
approximation to model the electron motion in this region as: conical flow from 
C to A; a thin electrostatic lens at A; and motion governed by the universal beam 
spreading curve beyond A. It is desirable, however, to include the effects of large 
angles of convergence and variation of the electron velocity in the model of the 
anode lens.

9.2.3 Improved Model of the Anode Lens

We have already noted that the modification of the electron trajectories as they 
pass through the anode aperture is a consequence of the transverse component of 
the electric field. Following [12] we note that the flux of the electric field within the 
beam which would have terminated on the theoretical anode is terminated on the 
anode aperture. This flux is

 Φ = −( )2 12
0 1π θR Ea cos , (9.16)
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where E1 is given by (9.7). Let us suppose that this transverse flux is confined to a 
short axial length 2δ of  the beam edge trajectory centred on the point at which it 
intersects the theoretical anode as shown in Figure 9.6. Thus we are assuming that 
the anode lens is thin. This is not strictly correct, but the detailed distribution of 
the electric field depends on the shape of the anode and, therefore, it is not possible 
to derive a simple general model which includes the spatial variation of the electric 
field. The area of conical surface is

 A Ra= 4 0π δ θsin . (9.17)

Then, because the flux must be conserved, the average of the normal component of 
the electric field over the element is
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Now consider an electron which enters the lens at an angle θ0 and passes through it 
with effective velocity ue  corresponding to a potential Ve. This is less than u0 because 
the penetration of the field into the aperture means that the average potential in the 
lens is less than Va. The impulse given to the electron is equal to the change in its 
momentum normal to the direction of motion. Thus
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But we have assumed that En is constant so (9.19) becomes

 ∆u
u c

u
e

m
Er

e

e
n= −

−
⋅

2 1 2 2

0

δ
 (9.20)

and, substituting for En from (9.18)

 ∆u
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Figure 9.6: Geometry of the anode lens.
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Thus the direction of the trajectory changes by an angle given by
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so that
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and, using (9.5), this may be written as
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When relativistic effects are not important this reduces to
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Hence the angle of the trajectory as it leaves the lens is given by
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Comparing (9.27) with (9.11) we see that the estimate of the focal length has been 
adjusted by two terms. The first recognises that the electron has not yet reached its 
full speed as it passes through the lens, and the second takes account of the finite 
angle between the trajectory and the axis. We note also the lens effect is shown 
in the addition of angles rather than their tangents. When inner trajectories are 
considered the effective voltage varies with the angle of convergence as can be seen 
from Figure 9.4. Thus the lens shows spherical aberration in which the focal length 
varies with the angle of the trajectory. Spherical aberration causes the current den-
sity in the beam to be non- uniform. This can be corrected by changing the shape of 
the cathode surface so that the spherical aberration is compensated by changes in 
the current density [5, 11, 16].

Examination of Figure 9.4 shows that the effective potential Ve depends upon the 
shape of the anode and upon the distance between the beam edge trajectory and the 
edge of the aperture. It is, therefore, not possible to find a theoretical expression for 
V Ve a . However, we may expect that this ratio will have a similar value for many elec-
tron guns and that the computed dimensions of the gun will not depend strongly on 
it. This was investigated by applying the revised theory to the data for electron guns 
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in [5, 13]. This includes guns with microperveances in the range 0.29 to 3.67 and area 
convergences from 5 to 300. In each case the ratio V Ve a  was adjusted so that the 
angle θ0 was the same as that tabulated. In all but six cases the ratio lay in the range 
0.6– 0.8 with a mean value of 0.7. This is consistent with the typical potential distri-
bution shown in Figure 9.4. Figure 9.7 shows how the normalised effective voltage 
depended upon the angle of convergence. The scatter may be explained by differ-
ences between the shape and position of the anode nose relative to the beam edge 
in different guns. The effective voltage tends to decrease as the angle of convergence 
increases. This can also be understood by reference to Figure 9.4 by noting that the 
ratio of the diameter of the anode aperture to the distance between the anode and 
the cathode increases as θ0 increases. Thus the field penetrates further into the beam 
tunnel and the effective potential at the theoretical anode decreases.

The angle θ0 was computed for the same data set, using the fixed ratio V Ve a = 0 7. ,   
with the results shown in Figure 9.8. It can be seen that there is a very strong correla-
tion between the computed and experimental results. A useful empirical expression 

Figure 9.7: Dependence of the normalised effective voltage on the angle of convergence.

Figure 9.8: Comparison between computed and experimental angles of convergence.
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for the relationship between the angle of convergence in degrees, the perveance and 
the area convergence has been given by True [17]

 θ µ0 12 9= × ( ). , P r bc  (9.28)

where µP is the microperveance. This expression is said to be valid for θ < 40, µP < 3 
and 2 8< <r bc . When (9.28) was applied to the subset of the data given in [13] that 
satisfies these criteria, the scatter of the points was very similar to that shown in 
Figure 9.8. It was found that the mean value of the ratio of the estimated, and 
experimental, angles of convergence was unity with a standard deviation of 0.14.

9.2.4 The Effects of Thermal Velocities

Because the electrons in a Pierce gun are obtained by thermionic emission from the 
cathode their random thermal velocities are superimposed on the overall motion. 
These thermal velocities mean that the edge of the electron beam is not abrupt, 
as has been assumed so far, but the current density falls off  more gradually. This 
problem was studied by Cutler and Hines who determined the effect of thermal 
velocities on the current density profile in the beam formed by a Pierce gun [18]. It 
was shown that the ratio of the current density at radius r to the idealised current 
density J0  can be expressed as
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where re is the expected beam radius, and the normalised value of σ is given by
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 B r ba= ( )erf ln  (9.32)

and

 C r be= ( )erf ln . (9.33)

Figure 9.9 shows the variation in current density with radius for a range of param-
eters. The fall- off  in current density takes place over a range r σ ∼ 5  centred on the 
value of re σ. Thus thermal velocity spreading of the beam is negligible when re σ is 
greater than 100. For a particular case the value of σ can be computed from (9.30) 
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where the negative sign is taken for points between the anode and the beam waist, 
and the positive sign for points beyond the beam waist.

At the anode, and at the beam waist, the right- hand side of (9.30) depends only 
on R Rc a , and the normalised value of σ on the left- hand side of (9.30) can be plot-
ted against R Rc a , as shown in Figure 9.10. This figure differs slightly from Figure 5 
in [18] because of the difference in the method of calculating the anode lens effect. 
It can be seen that the effects of thermal velocity are more pronounced at the beam 

Figure 9.9: Variation in current density with radius from (9.29)
(copyright 1955, IEEE, reproduced, with permission, from [18]).

Figure 9.10: Variation in the normalised value of σ at the anode and at the beam waist with 
R Rc a  from (9.30)
(copyright 1955, IEEE, reproduced, with permission, from [18]).
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waist than at the anode. In any given case the importance of thermal velocity effects 
can be computed from this graph or directly from (9.30).

In practice it is important that, in linear- beam tubes, as little of the beam cur-
rent should be intercepted by the structure of the tube as possible. If  we require the 
beam transmission to exceed 99% then the envelope enclosing 99% of the beam cur-
rent must be smaller than the diameter of the beam tunnel throughout its length. 
The fraction of the beam current within radius r is given by
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The beam radius within which any given proportion of the current is contained 
can be computed by solving this equation (see Worksheet 9.1). Figure 9.11 shows, 
as an example, the normalised beam tunnel radius a σ( ), for different transmission 
percentages, as a function of the normalised expected radius. It can be seen that the 
increase in the effective beam radius is greatest when re σ  is small.

Thermal velocity effects are greatest at low beam voltages, and for guns which 
have low perveance and high area convergence. The beam radius r99( ) enclosing 
99% of the beam current was computed at the beam waist, with an anode voltage 
of 10 kV, for the 30 guns in [13]. It was found that r b99  was more than 1.1 in about 
half  the cases, more than 1.2 in a third of them, and that the greatest value was 
1.6. Similar computations for the six guns in [5] all showed ratios of more than 1.1 
and the greatest ratio was 2.6. Thermal effects were dominant in all cases of this 

Figure 9.11: Normalised radius enclosing different percentages of the current
(copyright 1955, IEEE, reproduced, with permission, from [18]).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.010
https://www.cambridge.org/core


The Pierce Electron Gun 331

331

set except No. 4 and No. 5. When these two cases were recomputed, with the target 
value of the cold beam radius (b) reduced in proportion to the thermal increase, 
then r99 was found to be very close to the original target radius. A small increase 
of up to about 1° in the angle of convergence was also required. If  r b99  is greater 
than 1.2 then the position of the beam waist is closer to the anode than is predicted 
by calculations which ignore thermal velocities [18]. Thus for thermal increases in 
the beam radius greater than about 20% it is necessary to compute the full beam 
profile including the effects of thermal velocities in order to find the true position 
and radius of the beam waist.

9.2.5 Electrostatic Design of a Pierce Electron Gun

The theory given in the preceding sections is useful for the initial design of Pierce 
electron guns with conical flow. The starting point is to choose the beam voltage 
and current, the final beam radius, and the cathode current density. The cathode 
loading is determined by whether the operation of the gun is pulsed or continu-
ous, by the type of cathode chosen, and the intended lifetime of the cathode (see 
Section 18.5). In a typical electron gun it is found that the current density varies 
approximately as 1 2cos α over the surface of the cathode, where α is the angle from 
the centre of curvature to the point on the cathode surface [19]. The value of the 
normalised effective voltage at the anode lens can be chosen by reference to the 
results presented above, or from data for other electron guns similar to that to be 
designed. The scatter in Figure 9.8 suggests that setting this figure to 0.7 is likely to 
give a good starting point for the initial design. The problem is then one of find-
ing the value of R Rc a  using the equations above. Various authors have described 
the solution of this problem using graphical methods [1, 8], iterative methods [5] 
or direct methods [3, 13]. Modern computer software makes it very easy to seek 
the solutions of the equations directly by numerical methods. This is illustrated 
in Worksheet 9.1 which includes the improved model of the anode lens described 
above. Once the value of R Rc a  has been found the values of the other dimensions 
in Figure 9.3 follow directly.

Sufficient clearance must be left between the anode tunnel and the beam to 
ensure that electrons are not intercepted on it. Typically the diameter of the aper-
ture should be 20– 25% greater than the beam diameter at that plane [5]. The tip 
of the anode nose usually lies close to the theoretical spherical anode surface. The 
detailed shapes of the focus electrode and of the anode nose are found empirically. 
Originally this was achieved using an electrolytic tank in which a strip of dielectric 
material was placed along the beam edge. The shapes and positions of the external 
electrodes were adjusted until the potential distribution measured along this strip 
matched that required [10]. More recently the same task has been achieved using 
computer programs which model the whole electron gun [20– 26]. In high- voltage 
guns it is necessary to ensure that the surfaces are designed to avoid voltage break-
down (see Section 18.7.1) [27].
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As an example, let us consider the type 4A gun shown in Figure  9 of  [11] 
which has been used as an example by other authors [5, 24]. This was designed 
to have a microperveance of  1.9 and cathode radius 8.0  mm (0.316 in). The 
spherical radius of  the cathode was increased to improve the uniformity of 
the current density in the beam. The measured beam radius was 1.35 mm and 
the area convergence approximately 35:1. The leading dimensions of  this gun 
can be calculated using the method described above using Worksheet 9.1 with 
the normalised effective anode voltage set to 0 7. Va. Better agreement with the 
experimental data is obtained by increasing the effective anode voltage to 0 8. Va 
Table 9.1 shows a comparison between the dimensions of  the gun and the results 
of  the calculation.

Figure 9.12 shows the results of the calculations with V Ve a = 0 8.  superimposed 
upon the trajectories computed in [24]. The dashed lines show the positions of the 
theoretical anode, the focus electrode, and the anode nose. The choice of the higher 
value of V Ve a  can be justified by noting that the anode aperture is only about 11% 
greater than the computed diameter of the beam at that plane. It can be seen that 

Table 9.1: Parameters of a Pierce electron gun

Frost et al.   
Figure 9 [11]

Vaughan,    
example 2 [5]

Calculated 
Ve /Va = 0.7

Calculated 
Ve /Va = 0.8

b (mm) 1.35  1.35  1.35  1.35

Rc (mm) 12.8 12.5 11.6 12.9

Ra (mm) – – 4.39  5.24

θ0 (deg) 38.5 40.1 43.6 38.5

θ1 (deg) – – 12.2 12.7

zm (mm) 26.3 25.9 22.1 23.5

Figure 9.12: Theoretical and computed beam profiles for an electron gun
(copyright 1966, IEEE, reproduced, with permission, from [24]).
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the tip of the anode nose lies close to the theoretical spherical anode. The plane 
of the beam waist lies slightly closer to the cathode than the position determined 
experimentally. Overall the comparison shows that the simple calculation provides 
a good starting point for subsequent improvement of the design. A gun for a 50 
MW pulsed klystron is described in [28] and a detailed description of the design of 
a 0.52 µperv gun for a TWT is to be found in [29].

9.3 Magnetic Field Design for a Pierce Electron Gun

We have seen that a Pierce electron gun uses convergent flow of the electrons to 
form an electron beam in which the electrons at the beam waist are flowing parallel 
to the axis. In order for the beam to be useable in a linear- beam tube it must be con-
trolled by magnetic, or electric, fields as described in Chapter 7. Here we shall only 
consider magnetic focusing using either a solenoid field or a PPM field. We saw in 
Chapter 7 that, in order to ensure smooth flow of the beam, some of the magnetic 
flux must be linked to the cathode (see equations (7.54) and (7.96). This condition 
is necessary, but not sufficient, to achieve smooth flow. It is also necessary to ensure 
that the magnetic field between the cathode and the beam waist is not such as to 
cause the beam to scallop. The usual practice is to carry out the electrostatic design 
of the gun so that the beam waist radius is equal to the desired beam radius, and 
then to design the magnetic field in the beam entry region to ensure that that diam-
eter is maintained without scalloping.

9.3.1 Solenoid Focusing

The magnetic field of the solenoid for a linear- beam tube is normally terminated 
by a soft iron sheet (pole- piece). The purpose of this is to provide a return path for 
the magnetic flux so ensuring that the most efficient use is made of the electro-  or 
permanent magnets providing it. As there must be a hole in the pole- piece, which 
is at least big enough for the beam to pass through it, some of the magnetic flux 
leaks into the beam entry region. The magnetic field in the beam entry region is 
thus controlled primarily by the position of the pole- piece relative to the cathode 
and by the size of the aperture in it. A theoretical expression for the flux leakage 
caused by the hole in the pole- piece is obtained by assuming that the pole- piece can 
be represented by a thin sheet which is a perfect magnetic conductor coinciding 
with the inner face of the pole- piece [30]. The problem is rotationally symmetrical 
and described in ellipsoidal coordinates ξ ζ,( ) which are related to cylindrical polar 
coordinates r z,( ) by the equations
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and
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. (9.36)

It follows that

 z a= ζξ (9.37)

and

 r a= +( ) −( )1 12 2ζ ξ  (9.38)

where the sheet is in the z = 0 plane and the edge of the hole is at r a= . The solution 
of the analogue problem in electrostatics is found from Laplace’s equation in this 
system of co- ordinates subject to the boundary conditions E Ez → 0 when z → ∞ 
and Ez → 0 when z → −∞. The resulting scalar potential is

 V aE= − −( )





−
0

11
1ξ ζ

π
ζ ξcot . (9.39)

This is quite a good approximation provided that the material of the pole- piece is 
not close to saturation around the edge of the hole. The parametric equations of 
the flux lines are
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where a is the radius of the aperture, za is the axial position referred to the aperture, 
and r r→ → ∞0 as ζ . Figure  9.13 shows the flux lines calculated using equations 
(9.40) and (9.41). For a paraxial ray r a  and ζ = z a so that the flux density on 
the axis varies as
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(9.42)

as shown in Figure 9.14. It is evident that the flux is very close to its asymptotic 
values at z a= ± 2 .

The profile of the magnetic field in the beam entry region must be designed in 
such a way that the electrons flow without scalloping in a beam having the intended 
radius. That means that, at the electrostatic beam waist, the radial component 
of velocity must be zero and the angular velocity must have the correct value to 
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balance the space- charge forces. Thus at least two parameters are needed to specify 
the magnetic field profile. This can be achieved, in principle, by choosing the diam-
eter of the aperture in the pole- piece, and the distance of the inner face of the pole- 
piece from the cathode.

If  the beam is focused by a uniform magnetic field whose strength is m times the 
Brillouin field then the ratio of the flux linked to the cathode to that linked to the 
beam is given by (7.57)

 
B r
B b

K
m

c c
2

0
2 2

1
1

= = − . (9.43)

Thus the flux line which passes through the edge of the cathode is asymptotic within 
the solenoid to radius r0  given by

 r b
m0 2

1
4

1
1

= −





. (9.44)

Using this value of r0  we can find the value ζ ζ= c for which r rc=  in (9.40). The 
distance between the pole- piece and the cathode rim is then found, as a function of 
a, by substituting r rc=  and ζ ζ= c in (9.41). Hence the radius of the aperture and 

Figure 9.13: Magnetic flux lines in the region of an aperture in a pole- piece.

Figure 9.14: Flux density on the axis in the region of an aperture in a pole- piece.
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its distance from the cathode rim are not independent of each other. In order to 
complete the specification of the magnetic field we need some way of deciding how 
to choose one of these dimensions so that the flux varies smoothly through the gun. 
Now the differential equation governing the edge of the beam is (7.53)

 
d R
dz R

K
R

f z Rp L L

2

2
2 2

3
2 21

2
1 1

= + − ( )β β β , (9.45)

where β ωp p u= , β ωL L u= , f z( ) is the term in braces in (9.42), and u0 has been 
replaced by u because the electron velocity is not constant. Now let R R Re= + ∆ , 
where R r be =  is the normalised electrostatic beam edge, and ∆R the small pertur-
bation caused by the magnetic field. By definition
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Therefore, making use of (9.43)
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where it has been assumed that ∆R Re . At the edge of the cathode the term in 
square brackets is zero because from (9.40) R R r r f ze c c0

2 2
0
2 2= = ( ). In order to keep 

the perturbation as small as possible we wish to keep this term small by matching 
the flux line to the electrostatic beam edge as closely as possible [31]. It is particu-
larly important to do this close to the cathode where u is small and, therefore, βL  is 
large. Thus we expect that the best choice of the aperture dimensions will be close 
to those which make the slope of the flux line at the edge of the cathode equal 
to the angle of convergence of the beam [32]. Thus a good estimate of a can be 
obtained from

 
dr
d

dz
d

c
ζ ζ

θ





= − tan .0  (9.48)

To find how the choice of aperture dimensions affects the beam, it is necessary to 
integrate the equations of motion of the electrons under the combined influence of 
the potentials on the electrodes, the space- charge of the electrons, and the applied 
magnetic field. To do this properly requires the use of a computer program such as 
EGN2 [20] to find a self- consistent solution to the problem. However, the effects of 
the aperture dimensions on the beam can be illustrated by a simple model which 
assumes that the electron flow is conical between the cathode and the theoretical 
anode. Then (9.45) is integrated with the initial conditions r ra=  and dr dz = − tanθ1 
from that point onwards (see Worksheet 9.1). Since it has been assumed that the 
electrons follow paraxial paths, it is necessary to determine the effective position of 
the pole- piece by setting z a= ζ, rather than by using (9.41), to ensure that descrip-
tion of the magnetic field is self- consistent. Using the worksheet it can be shown that 
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there is a value of the pole- piece dimensions for which the electrons form a beam 
with minimum scalloping. It is found that the slope of the flux line passing through 
the edge of the cathode is then close to − tanθ0. It has also been found that the flux 
linked to the beam at the plane of the electrostatic beam waist is close to the cathode 
flux, a criterion which was proposed for PPM focusing by Legarra et al. [33].

Figure  9.15 shows the computed position of the pole- piece aperture, the flux 
line through the cathode edge, and the magnetically confined beam profile for the 
gun illustrated in Figure 9.12 when m = 2 and a is given by (9.48). The beam shows 
a small amount of scalloping which can be reduced, but not quite eliminated, by 
adjusting the diameter and axial position of the aperture. The gun has a large angle 
of convergence so the use of the paraxial ray approximation is not really valid. 
Nevertheless the model does show the way in which the beam is affected by the 
choice of the aperture parameters.

Once an initial design has been chosen it can be modelled accurately, and opti-
mised, using a gun simulation program [20– 22, 25, 26]. If  necessary, further control 
over the distribution of the magnetic field can be provided by placing a soft iron cyl-
inder around the gun, though this has little effect on the field at the cathode unless 
it is placed close to it [31]. It is sometimes also useful, at least for developmental 
purposes, to place a coil, known as a bucking coil, outside the tube in the plane of 
the cathode so that the cathode flux can be adjusted to give optimum beam trans-
mission. When a very small beam is required, as in some millimetre- wave tubes, a 
region of increasing magnetic field may be used to compress the beam [34– 36].

The method described above cannot be applied to a magnetically shielded gun 
because no flux passes through the cathode. An alternative approach is based upon 
an ideal field which is zero up to the beam waist and equal to the Brillouin field 
thereafter [37– 39]. Since this ideal field cannot be realised in practice we assume 
that there is a short transitional region where the field is given by

 B
B

= −( )0

2
1 cos ,α  (9.49)

Figure 9.15: Magnetic focusing of the beam in the gun illustrated in Figure 9.12.
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where 0 ≤ ≤α π. This expression is a good approximation to that given by (9.42). 
A  more accurate approximation is given in [40]. The hole in the pole- piece is 
assumed to be small so that the magnetic field is effectively zero at the plane of 
the cathode. The effects of  the real, and ideal, magnetic fields can therefore be 
computed from the equation for the focal length of  a magnetic lens (7.46). Since 
the beam radius is already close to its final value in the region where the mag-
netic field is changing we can assume that r is constant and remove it from the 
integral. The condition for the equivalence of  the real and ideal magnetic fields 
is then [39]

 B dz B dzreal ideal
2

1

2
2

1

2

∫ ∫= , (9.50)

where the field is changing between planes 1 and 2. This can be written in terms of α
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 (9.51)

where αw is the position of the beam waist. It is straightforward to show that this 
condition is satisfied when α πw = 5 8 and that, therefore, that the magnetic field 
should be 0 69 0. B  at the beam waist to achieve smooth Brillouin flow. It is found that 
this conclusion is insensitive to the exact form of the variation of magnetic field 
[38]. Worksheet 9.1 gives a similar result when m is close to unity.

9.3.2 PPM Focusing

The principles for designing the magnetic field for a beam entering a periodic per-
manent magnet (PPM) stack are the similar to those for solenoid focusing. It was 
shown in Chapter 7 that the equilibrium conditions for an electron beam, having 
a given mean beam radius and cathode flux, are the same for both solenoid and 
PPM focusing when the RMS PPM field is equal to the solenoid field. The maxi-
mum diameter of the PPM focused beam is then greater than that of the equivalent 
solenoid focused beam by the amplitude of the ripple. The diameter of the PPM 
focused beam is greatest when the magnitude of the axial magnetic flux density 
is greatest. Thus, in theory, the beam should be launched with the desired maxi-
mum radius, and with dr dz = 0, at a plane where the amplitude of magnetic field 
is greatest.

A method for designing the magnetic field in the entry region was described in 
[41] (see Worksheet 9.2). An ideal variation of the magnetic field was defined in 
which the electron trajectories followed the magnetic flux lines between the cathode 
and the electrostatic beam waist. At that plane the beam entered a cosinusoidally 
varying PPM field, as shown by the solid line in Figure 9.16. Thus, in the entry 
region, the flux linked to the beam is constant and equal to the cathode flux. The 
field profile in Figure 9.16 cannot be realised in practice. However, following an 
approach similar to that used in (9.50), it was shown that correct launching of the 
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beam can be achieved by the use of an equivalent magnetic flux density Be that 
satisfies the equation

 B dz B z dz B
z

L
dzea

L

a pk

L

2
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20

2 2
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4
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− −∫ ∫= ( ) + 
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 cos ,

π
 (9.52)

where B1 is the flux density between the theoretical anode z a= −( ) and the entrance 
plane of the PPM field, Bpk  is the peak PPM flux density, and the first zero of 
the flux density is at z L= 4. It should be noted that this equation assumes that 
the electron velocity is constant, and the beam radius is approximately constant, 
throughout the transition region. This equation imposes the criterion that the focal 
lengths of the magnetic lenses, represented by the real and ideal magnetic field pro-
files, should be the same. A field profile satisfying this equation is shown by the 
dashed curve in Figure 9.16. Rawls et al. showed that nearly identical beam profiles 
were produced using the real and ideal field profiles. Beam transmission of 98% was 
achieved in a tube designed in this way. The application of this method to the case 
where the cathode is shielded is described in [39].

An alternative method for designing the field in the entry region is shown in 
Figure 9.17 [33]. In region 1 the field is designed in the same way as for solenoid 
focusing with a target magnetic field B0. In region 3 the peak magnetic field is 2 0B ,   
and the beam has mean radius b with ripple δ. The transition region 2 can be 
regarded as a quarter section of a PPM stack in which the peak magnetic field 
is B0. At the end of the section the beam radius must be 1−( )δ b and the electron 
trajectories parallel to the axis. If  the beam radius is b at the start of region 2 there 
is no net inward force and the beam does not converge as required. Thus the beam 

Figure 9.16: Magnetic field for the entry of the beam from a Pierce gun into a PPM stack 
showing the ideal profile (solid curve) and a real profile (dashed curve)
(copyright 1967, IEEE, reproduced, with permission, from [41]).
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radius must be greater than b at the end of region 1 and the radius of the beam 
waist must be less than b so that there is a net outward force there leading to the 
necessary overshoot.

9.4 Other Pierce Guns

The methods used to design Pierce electron guns for cylindrical beams can also 
be used to design guns to produce beams having other cross- sections. Pierce guns 
for producing sheet electron beams have become of greater interest in recent years 
because of their potential for use in linear- beam tubes at frequencies of 100 GHz 
and above. Hollow beams have occasionally been used in klystrons and TWTs, but 
their principal use is in gyrotrons. Most high power tubes with hollow beams have 
magnetron injection guns as described in Section 9.5.2.

9.4.1 Guns for Sheet Beams

In principle the design of a Pierce gun to produce a sheet beam proceeds in exactly 
the same way as that described for a cylindrical beam, in Section 9.2 [42]. The cur-
rent is assumed to be drawn from a space- charge limited cathode which is a section 
of a circular cylinder given by (5.70). The focal length of the anode slit can be deter-
mined in a manner similar to that for a circular hole by considering the transverse 
impulse given to an electron passing through it. The universal beam spreading curve 
for a sheet beam can be derived in the same way as that for a cylindrical beam. The 
design, construction and testing of sheet- beam guns has been described in [43– 45].

9.4.2 Guns for Hollow Beams

Pierce guns for the production of hollow cylindrical beams are similar to those for solid 
beams, except that the electrons are emitted from a ring on the surface of the cathode. 

Figure 9.17: Magnetic field profile at the entry of a PPM stack
(copyright 1983, IEEE, reproduced, with permission, from [33]).
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The anode aperture may be a round hole [42, 46– 48] or a circular slot [49, 50]. In the 
former case the perveance is determined from the solution for a spherical space- charge- 
limited diode in a manner similar to that for a solid beam. In the latter, the solution for 
a toroidal space- charge- limited diode is used [51]. In each case focusing electrodes are 
required both inside, and outside, the beam. The anode lens effect for a circular hole 
is given by (9.5) and the equivalent expression for an annular hole is given in [51]. The 
spreading of a hollow beam under the influence of space- charge forces is identical to 
that for a solid beam having the same diameter, current, and voltage. However, because 
there is no space- charge in the centre of the beam, the trajectories of electrons on the 
inner edge of the beam do not spread. Thus the design of the gun must ensure that the 
outer electrons are converging towards the axis whilst the inner electrons are moving 
parallel to the axis as they leave the anode lens. Experimental results for toroidal elec-
tron guns having perveances of up to 15 µperv are described in [51].

9.5 Beam Control Electrodes

It is often desirable to be able to switch the electron beam on and off  electronically, 
or to control the current in the beam independently of the accelerating voltage. This 
requires the use of a third electrode so that the gun is a triode rather than a diode. 
It has the advantage that the voltage and power required to control the beam may 
be much less than if  the anode voltage is switched or controlled directly. Three tech-
niques described in the literature are discussed below: Modulating anode; Control 
focus electrode; and Control grid [6, 52, 53]. Their typical characteristics are sum-
marised in Table 9.2 [52, 53] where µ is the amplification factor as defined in (6.1) 
and µc is the ratio of the anode voltage to the negative grid voltage at cut- off.

9.5.1 Modulating Anode and Control Focus Electrode

When the anode of a diode electron gun is isolated from the body of the tube its 
potential can be varied independently. It is then known as a modulating anode. 

Table 9.2: Comparison of methods of beam modulation using control electrodes
(© 1994, Springer Nature. Reproduced, with permission, from [53]).

Parameter Modulating   
anode

Control focus 
electrode

Intercepting 
grid

Non- 
intercepting 
grid

µ 1 to 3 2 to 10 30 to 75

µc 1 to 3 2 to 10 30 to 150 30 to 250

Capacitance 30 pF 50 to 100 pF 10 to 20 pF 30 to 50 pF

Grid current 0% 0% 10 to 20% 0.1 to 1%

Maximum grid power n/ a n/ a 5 W 5 W
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The perveance of the diode gun is fixed by its geometry so that the current depends 
upon the potential difference between the cathode and the anode in the usual way. 
However, the velocity of the electrons in the interaction region is determined by the 
potential difference between the cathode and the body of the tube. Thus the beam 
current and the electron velocity can be varied independently of one another. It 
is necessary to take care that the beam is focused correctly over the desired range 
of voltages and currents. In a second method the focus electrode is isolated from 
the cathode so that its voltage can be varied independently. Because the focusing 
of the beam is seriously disrupted by changes in this voltage the technique is only 
suitable for switching the beam on and off. The negative voltage (with respect to the 
cathode) that is required to reduce the current density to zero at the centre of the 
cathode is comparable with the positive voltage applied to the anode. The negative 
voltage can be reduced somewhat by including a central pin at the same poten-
tial [32, 52]. In both of these methods the control voltage is large but the control 
power is small because the electrode can be designed to intercept very little current. 
Further information about the design of these two types of beam control electrode 
is given in [32].

9.5.2 Intercepting Control Grid

Control of the electron beam can be achieved with voltages much less than the anode 
voltage if a control grid is placed close to the cathode and at a uniform distance from 
it. The grid is manufactured from a refractory metal, such as molybdenum, or from 
pyrolitic graphite, which can withstand the high temperatures close to the cathode 
surface whilst maintaining very precise dimensions. The beam current then depends 
upon the voltage applied to the control grid in exactly the same way as in a triode 
(see Chapter 6). The current is cut off if the grid voltage is sufficiently negative with 
respect to the cathode. The negative grid voltage required to make the gun cut- off is 
typically 1– 3% of the anode voltage while a similar positive voltage is needed to turn 
the gun fully on [53]. To minimise interception the grid must have transparency (the 
ratio of the holes in the grid to the total grid area) in the range 80– 90% [32, 52]. If the 
grid voltage is positive then it intercepts 10– 20% of the beam current [53]. Intercepted 
electrons may liberate secondary electrons from the grid and there can also be ther-
mionic emission if the temperature of the grid is high enough [54]. For these reasons 
guns with intercepting grids are limited to low beam powers and to tubes, such as 
the IOT, in which the grid voltage is positive for only a small proportion of the time.

The arrangement of the apertures in the grid can take the form of an array of 
circular or hexagonal holes, or of the spaces between radial and concentric ‘wires’. 
The section of the cathode opposite each hole in the grid behaves like an individual 
electron gun, and it is desirable that these should all have similar characteristics so 
that their currents vary together. Where the grid takes the form of a ‘honeycomb’ 
array of circular holes it can be much more robust, though the transparency may 
be as low as 60%, and the cathode surface may be dimpled to improve the electron 
optics [32, 52].
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The properties of a gridded gun can be calculated as described for a triode in 
Chapter 6. Because the grid is very close to the cathode surface it is possible to con-
sider an equivalent planar geometry in which the spacing between the cathode and 
the anode is chosen to give the same electric field at the surface of the cathode in the 
absence of the grid (c.f. (6.11)) [54]. The dimensions of the actual grid can be con-
verted to those of an equivalent two- dimensional grid of round wires [19]. Hence the 
dependence of the beam current on the grid and anode voltages can be computed, 
as described in Section 6.4. In general, the current between the grid and the anode is 
not space- charge limited. It should be noted that the grid dimensions and spacings 
used in gridded guns are such that island formation usually occurs close to cut- off.

The electron trajectories in the region of the grid exhibit strong lens effects caused 
by the local fields in a manner similar to that shown in Figure 6.8. Thus, many of 
the electrons have appreciable transverse components of velocity at the beam waist, 
and the beam is less well- collimated than the beam from a well- designed diode gun. 
It may be necessary to remove the beam halo by passing the beam through a tunnel 
(a ‘beam scraper’) only slightly larger than the intended beam diameter.

9.5.3 Non- Intercepting Control Grid

The problems of intercepted current make a gun with an intercepting control grid 
unsuitable for use in high power tubes (with the exception of IOTs), and the col-
limation of the beam is unsatisfactory for TWTs. These problems can be greatly 
reduced by the introduction of a second grid (the shadow grid) very close to the 
cathode surface which is maintained at the cathode potential, or very close to it. 
The arrangement of this grid is such that it is a projection of the control grid so that 
any electrons which pass through the shadow grid also pass through the control 
grid without being intercepted by it. The intercepted grid current in such a gun can 
be 0.1% or less [6, 53, 55]. Figure 9.18 shows the computed electron trajectories in 

Figure 9.18: Electron trajectories in a shadow- gridded gun
(copyright 1984, IEEE, reproduced, with permission, from [56]).
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a shadow- gridded gun [56]. It can be seen that lens effects in the region of the grid 
produce an appreciable beam halo. Although these trajectories carry only a small 
fraction of the total beam current they are very difficult to focus. True has shown 
that (9.28) applies to gridded guns if  the beam radius is taken as that enclosing 95% 
of the beam current. He has also shown that the normalised radial component of 
the beam velocity can be calculated from the empirical relationship [56]

 
u
u

r

0
00 0015= ×. .θ 

 (9.53)

Thus the properties of the beam halo are determined to a large extent by the angle 
of convergence of the gun. It is desirable to keep this angle as small as possible to 
make the beam easier to focus. The procedure for coupling the design of a shadow 
gridded gun with PPM focusing is described in detail in [56]. Because the lens effects 
in the region of the grid depend upon the grid voltage and hence, the gun perve-
ance, it is found that good collimation of the beam is only achieved over a limited 
range of operating conditions.

A number of variants of the basic shadow- gridded gun have been found to give 
improved beam collimation [55, 57]. If  the shadow grid is placed in contact with the 
cathode the emitting area of the cathode is reduced, but it is found that the beam 
collimation is appreciably improved. The shadow grid may also be embedded in 
the surface of the cathode, or be formed by a thin patterned layer of non- emissive 
coating deposited on it. Improved beam collimation can also be achieved by isolat-
ing the shadow grid from the cathode and adjusting its potential independently in 
a tetrode gun [57]. An ultra- laminar gun with three grids is described in [55]. More 
complex grid structures are used in dual mode guns to enable beams with high and 
low powers to be produced by the same gun [6].

9.6 Crossed- Field Electron Guns

We saw in Section 8.2.2 that a stable sheet electron beam can exist in a region in 
which there are uniform static electric and magnetic fields which are perpendicular 
to each other and to the direction of electron motion. The variation in the electro-
static potential within the beam is given by (8.22). Now, useful interaction between 
an electron beam, and the RF field of an electromagnetic structure, requires that 
the spread of electron velocities should be small compared with their mean velocity. 
Therefore the thickness of a sheet beam in crossed fields must be small. A simple 
method for launching such a beam where the whole structure is immersed in a 
uniform magnetic field B Bz = − 0 is shown in Figure 9.19. An electron which starts 
from rest on the surface of the cathode has velocity u E Bx = 2 1 0  when it is moving 
parallel to the x axis. In order for it to continue to move in a straight line parallel to 
the x axis u E Bx = 0 0 . Thus a necessary condition for the launching of a sheet beam 
is E E1 0 2= . It is also necessary for the potential at the interface to be continuous, 
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and equal to that required by the conservation of energy [58]. This arrangement can 
produce a useful beam, but the width of the emitting strip of the cathode in the x 
direction must be small and, therefore, the current is limited by the current density 
available.

9.6.1 Kino Gun

A more practical arrangement is the Kino gun shown in Figure 9.20 [59]. The elec-
tron orbits in the gun (to the left of the plane A– A) are those for a space- charge 
limited magnetron diode given by (8.36) and (8.46) and shown in Figure 8.7. These 
trajectories are the correct ones to use because, although the diode is cut off, the 
electrons are extracted as a beam and do not return to the cathode. All the trajec-
tories within the gun have the same form apart from a shift in the direction parallel 
to the surface of the cathode. Because the top of the trajectory is fairly flat it is pos-
sible for the cathode to be have a finite length, though this must be short compared 
with the cyclotron wavelength λ π ωc x cu=( )2 . Thus, this type of gun is known as 
a ‘short gun’. The whole length of the gun from the centre of the cathode to the 
plane A– A is approximately λc 2. The shapes of the focus electrodes and the gun 
anode are used, as in the Pierce gun, to maintain the correct potential distribu-
tion along the edges of the beam. The design and testing of a gun of this type is 
described in [60].

The current which can be delivered by a short gun is limited by the maximum 
current which can be obtained from the cathode. Thus, if  greater beam current 

Figure 9.19: Arrangement of a simple crossed- field electron gun.

Figure 9.20: Arrangement of a Kino gun
(copyright 1960, IEEE, reproduced, with permission, from [59]).
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is required, it may be necessary to use a cathode which is several cyclotron wave-
lengths long. However, we have seen that there is then uncertainty as to which of 
the possible Slater orbits represents reality.

For this type of  gun Kino proposed a different solution for the flow of space- 
charge which assumed that the electrons are emitted from the cathode with finite 
velocity. The electron trajectories are then found to be parabolic. In certain cir-
cumstances the initial velocity required for this solution to be valid is of  the same 
order as the thermal velocities of  the electrons. This theory has been criticised by 
Vaughan [61] who showed that this solution only exists in specific circumstances 
which do not correspond to many practical cases. He investigated solutions in 
which the initial velocity of  the electrons was an additional parameter and showed 
that, in a typical case, a well- collimated beam could be formed in which some 
trajectories showed cycloidal motion. The design and testing of  an experimental 
‘long gun’ based on Kino’s theory is described in [62]. The gun gave the expected 
value of  the current but the beam thickness was greater than expected. This was 
attributed to RF instabilities in the gun. Reviews of  the literature on that subject 
are given in [63, 64]. It was found that the noise could be considerably reduced by 
operating the cathode in the temperature- limited regime; by tilting the cathode to 
a small angle so that there was a small normal component of  the magnetic field 
[65]; or by placing a grid in front of  the cathode [66] which could also be used for 
modulating the beam.

9.6.2 Magnetron Injection Gun

Figure 9.21 shows the arrangement of  a magnetron injection gun which produces 
a hollow cylindrical beam [8]. This gun bears a superficial resemblance to the Kino 
gun described in the previous section, rotated about an axis of  symmetry. But there 
is the important difference that the magnetic field is essentially parallel to the elec-
tron motion rather than perpendicular to it. The cathode takes the form of a trun-
cated cone, and the whole gun is immersed in a strong axial magnetic field. Thus 
the region around the cathode is essentially a cut- off  cylindrical magnetron diode 
whose space- charge layer forms a virtual cathode. The tapering of  the cathode and 
the anode produces an axial electric field which draws the electrons into the beam. 
Focus electrodes are used to maintain the correct potential distribution along the 
edge of  the beam in the gun region. In the transition region the radial electric 
field is gradually reduced to zero and the beam tends to its final dimensions. The 
area convergence which can be obtained is greater than that of  a hollow- beam 
Pierce gun.

The design principles for a magnetron injection gun can be illustrated by refer-
ence to Figure 9.21. As there is no space- charge inside the hollow beam it follows 
that the inner electrons must have no angular velocity. Therefore, by the application 
of Busch’s Theorem (7.39), the flux linked to the smaller end of the cathode must 
be equal to that linked to the inner electrons of the beam. If  it is assumed that 
the whole gun is immersed in a uniform axial magnetic field B0 then r ri a= . The 
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condition for space- charge balanced flow of the outer electrons is identical to that 
for a solid beam given by (7.54)

 β βp L K2 22 1= −( ), (9.54)

where β ωp p u= 0  is defined for a solid beam having the same current, velocity and 
outer radius, and βL eB m u= 0 0 02 . Hence from (7.52) and (9.54)

 K
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. (9.55)

Thus, given the desired parameters of the beam and the strength of the magnetic 
field, the larger radius of the cathode can be determined from (9.55). Now the sec-
ond term on the right- hand side of this equation is equal to unity for Brillouin 
focusing of the equivalent solid beam. But, since r rb i> , it follows that K r ri o> ( )4

.   
The ratio of the magnetic field to the Brillouin field given by (7.57) requires that

 m
B
B KB

= =
−

0 1

1
. (9.56)

Hence
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(9.57)

If, for example, r ri o = 0 9.  then m > 1 7. . It is evident that the minimum magnetic 
field required to focus a hollow beam is appreciably greater than for the equivalent 
solid beam. From the geometry of the cathode the beam current is

 I
r r

Jb a
c0

2 2

=
−( )π
φsin

, (9.58)

Figure 9.21: Arrangement of a magnetron injection gun
(copyright 1965, Elsevier, reproduced, with permission, from [8]).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.010
https://www.cambridge.org/core


Electron Guns348

348

where φ is the angle between the slope of the cathode and the axis and Jc is the 
cathode current density. This equation determines the angle φ and, hence, the slant 
length of the cathode. Methods for calculating the electron trajectories and the 
electrode shapes have been described in [67– 70].

Magnetron injection guns are occasionally used in high power linear- beam tubes 
but their main use is in gyrotrons (Chapter 17). Figure 9.22 shows the arrangement 
of a typical magnetron injection gun for use in a gyrotron [71]. Comparing this 
with Figure 9.21 it can be seen that the slant length of the cathode is small, that 
the anode is divided into two sections whose potentials can be adjusted separately, 
and that the magnetic field increases with distance so that the beam is compressed. 
A detailed description of the design methods for guns for gyrotrons, including two 
examples, is given in [72].
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10 Electron Collectors and Cooling

10.1 Introduction

Even the best vacuum tubes do not convert all of the DC input power into radio
frequency power. Therefore the electrons which emerge from the interaction region 
still carry appreciable power. This must be dissipated safely, in the form of heat, on 
the electrodes on which the spent electrons are collected. The maximum permissible 
temperature of the surface is limited by the need to avoid:

• physical damage including re crystallisation of the copper (at 700 C [1]), local 
melting, and fatigue fractures caused by cyclical heating in pulsed devices;

• liberation of adsorbed gasses by exceeding the bake out temperature (350– 550 °C)   
used during evacuation of the tube [2– 3]. It has been suggested that the surface 
temperature of copper should be limited to 300– 350 °C [4].

The maximum power density which can be tolerated on the surface depends 
on the heat transfer from the collector electrodes to some external heat sink, or 
heat exchanger, and on the method by which the heat is finally dissipated (see 
Section 10.5).

The impact of electrons on metallic surfaces (usually OHFC copper) results in 
the liberation of secondary electrons, and the generation of X rays (see Chapter 18). 
When the primary electron energies are small (a few keV) the X rays generated can
not penetrate through the metal wall of the tube, and there is no external hazard. 
At higher voltages X rays may escape and suitable shielding must be provided. It 
is also necessary to ensure that there is no path by which X rays can pass from the 
inner surface of the tube through insulators. This is because the attenuation of the 
X rays by the insulators (usually ceramics) is much less than that by metals. It is 
usually necessary to provide X ray shielding for tubes with an operating voltage 
greater than 15 kV [5– 6] (see Section 20.8).

In gridded tubes and magnetrons the spent electrons are collected directly on the 
anode of the tube. The dimensions of the anode are limited by the frequency of the 
tube and it is important to consider the power density on the anode surface during 
the design process. Because the anode is positive with respect to the rest of the tube 
any secondary electrons which may be liberated are re collected on the anode and 
do not cause any problems. The exception to this is when the potential of the anode 
of a tetrode falls below that of the screen grid so that secondary electrons from the 
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anode are then collected on the grid. This is undesirable in power tetrodes and that 
region of operation must be avoided (see Chapters 6 and 12).

In klystrons, travelling wave tubes (TWTs), inductive output tubes (IOTs), and 
gyrotrons the electrons are collected on an electrode, designed for the purpose 
known as the collector. Because this electrode does not form part of the RF inter
action structure of the tube it is possible to allow the beam to expand under the 
influence of its space charge so that the local power density is reduced. It is usual 
for the collector to be electrically isolated from the body of the tube so that the 
body current can be monitored separately to protect the tube. The power density on 
the surface of the collector can be reduced still further by operating the collector at 
a potential which is negative with respect to the tube body. This technique, known 
as collector depression, is discussed in Section 10.3. The advantages of collector 
depression are [7]:

• The DC input to the tube is reduced, and the overall efficiency is increased.
• The power which must be dissipated is reduced so that the cooling pumps and 

fans can be smaller, and less power is required to run them.
• The intensity and penetrating power of the X rays generated by high voltage 

tubes is reduced, so that less shielding is required.

However, it is more difficult to cool electrodes which are not at earth potential. In 
addition, great care must be taken to ensure that no primary electrons are reflected 
by the collector, and that any secondary electrons liberated are trapped within it. 
Electrons which flow back into the interaction region form an unwanted feedback 
path which may cause the tube to become unstable. The advantages of collector 
depression can be increased by the use of multi element depressed collectors. 
However, the use of many electrodes increases the complexity and cost of a tube 
and its power supply, and it is necessary to balance the advantages and disadvan
tages in determining the design of the collector. The development of multi element 
depressed collectors was stimulated especially by the need to achieve the highest 
possible overall efficiencies for tubes for use in satellites and spacecraft.

10.2 Linear Beam Tube Collectors

At the exit of a linear beam tube the spent beam is freed from the magnetic focusing 
field and allowed to spread out, as shown in Figure 7.8. The kinetic energy of the 
electrons can then be dissipated on the surface of a collector which typically has the 
form shown in Figure 10.1. The emission of secondary electrons in single stage col
lectors is not a problem, provided that they cannot pass out of the collector and flow 
back through the interaction region of the tube. For this reason it is important that 
the magnetic focusing field does not penetrate into the collector where it can serve 
to guide electrons back towards the interaction region. When the impact energies of 
the electrons on the surface of the collector are high (above about 1 keV) then the 
dominant effect is the elastic reflection of the primary electrons (see Section 18.3). 
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For this reason the collector usually has the form of a long tube with a conical end 
so that electrons which strike the walls cannot be reflected directly back towards the 
tube body. It is necessary to ensure that the collector does not have any resonant RF 
modes which coincide with the operating frequency of the tube, or its harmonics. 
If  any resonances are excited then the RF fields may perturb the electron paths in 
unexpected ways.

The interaction which takes place in any kind of linear beam tube results in a net 
transfer of energy from the electron beam to the RF output. Therefore the aver
age kinetic energy of the electrons in the spent beam is less than that at the input 
to the tube. The electrons in the spent beam do not all have the same velocity on 
leaving the tube, and some of them usually have velocities greater than the initial 
beam velocity. Figures 10.2 shows, schematically, the fraction of the beam current 
which would be collected on an electrode at a potential –Vc with respect to the tube 
body, normalised to the potential of the cathode −( )Va

1. This curve assumes that 
no primary electrons are reflected and that any secondary electrons generated are 
re collected by the electrode.

Figure 10.1: Arrangement of a liquid cooled collector.

Figure 10.2: Schematic spent beam distribution curve.

1 Note that in this Chapter the potentials of the electrodes are referred to the potential of the tube body rather 
than to the potential of the cathode.
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The detailed shape of the spent beam curve depends upon the type of tube, and 
the specific operating conditions. However, the spent beam curves for all tubes  
show the same features:

• As the potential of the collecting electrode is made more negative the whole of 
the beam current is collected until a potential – Vmin is reached. Thus all electrons 
have energies greater than Vmin electron volts.

• When V Vc > min  the fraction of current collected decreases monotonically as the 
collection potential is made more negative.

• For potentials beyond −Vmax  the collected current falls to zero indicating that no 
electrons have energies greater than Vmax  electron volts. It is common to find that 
V Vamax > 1, which shows that some of the electrons have been accelerated by the 
RF interaction.

It should be noted that a graph such as that shown in Figure 10.2 represents the 
time average of the velocity distribution. In practice the electron velocity distribu
tion varies during the RF cycle.

The power carried by electrons which enter the collector in an energy range (in 
electron volts) dV  at energy V  is V dI . It follows that the total power carried by the 
spent beam is represented by the area under the curve in Figure 10.2. The dashed 
rectangle shows the energy distribution in the unmodulated beam, and the area of 
the rectangle represents the DC beam power I Va0 . If  losses in the tube are neglected 
the difference between the area of the rectangle and the area under the spent beam 
curve represents the RF power output of the tube. Since the power in the spent 
beam is less than that in the initial beam it follows that the thermal dissipation in 
the collector is less than the initial beam power. In most cases, however, the collec
tor is designed to be able to dissipate the full DC beam power. If  this is not the case, 
it is essential that the DC input power to the tube is cut, whenever the RF input is 
removed, to avoid damaging the collector by overheating it.

In order to design a collector we need to know how the power is distributed on 
its surface. For simplicity let us consider an unmodulated beam of radius b, hav
ing uniform current density and electron velocity, emerging from a magnetic field 
mBB  into a concentric cylindrical collector whose wall radius is rw , as shown in 
Figure 10.3. Each electron within the beam will follow the same normalised path 
given by

 Z S R= ( ), (10.1)

where Z zp= β , R is the radius of  the trajectory normalised to its initial value, 
and the function S is defined by the right hand side of  (7.82). The axial position 
at which a trajectory whose initial radius is r strikes the wall of  the collector is 
given by

 Z S
r
r
w= 





. (10.2)
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The electrons in an annulus of radial thickness dr strike the collector along a sec
tion of normalised length dZ such that

 dZ
dr

d
dr

S
r
r
w= 





. (10.3)

The ratio of the power density at the wall of the collector to that in the initial beam 
is given by the ratio of the area of the element of the wall to that of the annulus. 
Thus, the normalised collector power density is

 P
r
r

dZ
dr

r
r

d
dr

S
r
rc

w w

w= = 













−1

. (10.4)

Since Z and Pc can be calculated as functions of r from (10.2) and (10.4) it is pos
sible to plot the variation in the power density, normalised to the power density in 
the initial beam, against axial position, as shown by the example in Figure 10.4 (see 
Worksheet 10.1). It is evident that the power density is greatest at the point where 

Figure 10.3: Expansion of the spent beam into the collector.

Figure 10.4: Power density on the surface of a collector.
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the beam first strikes the wall of the collector and it diminishes rapidly thereafter 
with increasing Z.

The power carried by the spent beam is less than that in the unmodulated beam 
by the RF power extracted from it. There are also two other factors which affect the 
power density on the collector wall when the beam is modulated:

• The beam is bunched so that the peak current is greater than the DC beam 
current I0. The extent of  the increase depends upon the type of  tube and the 
drive level. At saturation the peak current in klystrons and TWTs may be as 
high as 4 0I .

• The average velocity of the electrons in the bunch is less than the DC velocity.

A fuller discussion of these issues is to be found in Chapters 12, 13, and 14. For an 
IOT, only the second point applies because the peak current in the bunch is equal to 
the peak cathode current (see Chapter 12). As a consequence of both these factors 
the beam spreads more rapidly than it would if  it were not modulated. In addi
tion, the electrostatic potential within the beam is depressed by the increased space 
charge in the bunch, and by the increase in the radius of the conducting boundary 
surrounding the beam. The potential depression can be estimated from (7.8) with 
r = 0. If  we denote the multiplication factors for the current and the velocity by FI  
and Fu then (7.8) can be written in the form

 V
V

F
F

b r b
a

I

u
p w= + ( ) β2 2 1 2 ln , (10.5)

where rw is the inner radius of  the collector and relativistic effects have been 
ignored. So, for example, in a tube where FI = 2, Fu = 0 6. , β pb = 0 12.  and r bw = 10 
the ratio V Va = 0 27. . The reduction in the electron velocity caused by the poten
tial depression can, therefore, be big enough to be important. It increases the 
charge density and causes the potential to be still further depressed so that, in 
extreme cases the ratio can reach unity. A virtual cathode is then formed at the 
entrance to the collector and some of  the electrons are reflected by it. Because it 
is highly undesirable for any electrons to find their way back into the interaction 
region, the formation of  a virtual cathode must be avoided. The easiest way to 
achieve this is to arrange for the inner wall of  the collector to be conical in the 
region between its entrance and the point at which the electrons first strike it. It 
should be possible to keep the ratio r bw  to less than 4 in the critical region. In 
the example given above the voltage ratio could be reduced to around 0.18 in 
this way.

Particle in cell (PIC) code simulations of collectors show that, if  that the space 
potential depression is small compared with the beam voltage, the bunches spread 
out into the collector without diffusing very much in the axial direction. It is there
fore possible to estimate the power density distribution on the inside of the collec
tor wall at different points in the RF cycle by computations using the instantaneous 
values of the parameters.
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10.3 Collector Depression

Examination of the schematic spent beam distribution curve in Figure 10.2 shows 
that the collector can be biased negatively to potential Vmin with respect to the tube 
body without causing any of the electrons to be repelled. The electrons then strike 
the collector with reduced energies so that energy is recovered. This is achieved 
using the power supply arrangement shown in Figure 10.5. The collector is then 
said to be depressed and the net DC input power to the tube is

 P I V V I V I V I VDC in c a c b a a c c= −( ) + = −0 . (10.6)

where Ic is the collector current, Ib is the body current and the potential of the col
lector with respect to the tube body is −Vc. Substituting from (10.6) into (1.18) the 
RF efficiency is

 ηrf
a c c

P
I V I V

=
−
2

0

. (10.7)

where P2 is the useful RF output power at the fundamental frequency, and it has 
been assumed that the gain of the tube is great enough for the RF input power to 
be negligible. The RF efficiency without collector depression is

 ηrf
a

P
I V0

2

0

= , (10.8)

so the RF efficiency has been increased by depressing the collector. The depressed 
collector efficiency increases, as Vc is increased, up to the point at which electrons 
start to be reflected. An improvement in efficiency by a factor in the range 1.3 to 
1.4 is typical of what can be achieved by simple techniques. The improvement in 

Figure 10.5: Circuit diagram for a tube with a single stage depressed collector.
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efficiency is a result of the reduction in the heat dissipated, but the price paid is 
increased complexity of the power supply and the problem of cooling a high volt
age electrode. If  the potential depression is increased further then some of the 
slower electrons are reflected. They can be prevented from entering the tube body 
by including an earthed electrode between the magnetic pole piece and the collec
tor on which any reflected electrons can be collected [8]. The collector then has two 
electrodes, but it is known as a single stage depressed collector because only one 
electrode is depressed. The extent to which the efficiency of a tube can be increased 
is limited by the reflection of electrons.

Since the power dissipated in the collector is the integral under the spent beam 
curve it follows that the effect of depressing the collector is to reduce the integral by 
the shaded area shown in Figure 10.6. The power recovered is given by

 P I Vrec c c= . (10.9)

This increases until V =Vc min and decreases for greater potential depression because 
some electrons are reflected and collected at zero potential. The power carried by 
the spent beam entering the collector is

 P I Vent e a= −( )1 0η , (10.10)

where ηe is the electronic efficiency defined in (1.20) and RF losses within the tube 
are assumed to be negligible. Since the body current is typically of the order of 1% 
of the beam current we will assume that I Ic ≈ 0. The efficiency of the collector is 
defined as the ratio of the power recovered to the power entering the collector

 η
η ηcol

c

e a

c

e a

I V
I V

V
V

=
−( ) =

−( )
0

01 1
. (10.11)

Then from (10.7) the RF efficiency with a depressed collector can be written

 η
η ηrf

a col e

P

I V
=

− −( )( )
2

0 1 1
 (10.12)

Figure 10.6: Power recovered by a single stage depressed collector.
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so that, making use of (1.22)

 η η η
η ηrf

e c

col e

=
− −( )( )1 1

, (10.13)

where ηc is the circuit efficiency, and interception of current on the tube body has 
been neglected in this simplified derivation. This equation does not depend upon 
the details of the collector so it is also valid for the multi element collectors dis
cussed in the next section.

If  the effects of RF losses are ignored ηc = 1. Then the effectiveness of collec
tor depression can be shown by plotting ηrf  against ηe with ηcol  as a parameter. 
Figure 10.7 shows that, for a given electronic efficiency, the RF efficiency increases 
as the collector efficiency increases. The increase in the RF efficiency is greatest 
when the electronic efficiency is low.

10.3.1 Multi- Element Depressed Collectors

Consideration of Figure 10.6 shows that still greater improvements in efficiency can 
be achieved by using a multi element depressed collector, as shown in Figure 10.8. 
The electrons are sorted into energy ranges and collected on electrodes at potentials 
corresponding to the lowest energy in each range. The equation for the collector 
efficiency (10.11) now takes the form

 η
ηcol

cn cn
n

N

e c a

I V

I V
=

−( )
=

∑
1

1
. (10.14)

Figure 10.7: Dependence of the RF efficiency of a tube on electronic efficiency and collector 
efficiency
(copyright 1970, NASA, reproduced, with permission, from [9]).
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where Vcn is the potential of the nth collector electrode, Icn is the current collected 
by it and

 I Ic cn
n

= ∑ . (10.15)

The corresponding spent beam curve is shown in Figure 10.9 and it is clear that 
the shaded area, which represents the power recovered, is much greater than in 
Figure 10.6. Thus it is possible to increase the efficiency of  a collector by increas
ing the number of  electrodes. Note that Figure 10.9 assumes that no current is 
collected at earth potential. In practice it is usual for the potential of  the first 
electrode to be equal to that of  the tube body and a small current is collected by it 
even with a well designed collector. The potentials of  the electrodes do not need 
to be equally spaced as shown in Figure 10.9 but can be chosen to maximise the 
power recovered.

Figure 10.8: Circuit diagram for a tube with a three stage depressed collector.

Figure 10.9: Schematic spent beam diagram for a tube with a three stage depressed collector.
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Useful insight into the performance of a tube with a multi element depressed col
lector can be gained by considering a simplified model adapted from that described 
by Kosmahl [10]. Let us assume that the spent beam curve in Figure 10.9 can be 
approximated by a trapezium whose sloping side is defined by voltages Vmin and Vmax .   
The collector has N  depressed electrodes at equally spaced potentials which collect 
equal fractions of the beam current. The power entering the collector is

 P I V Vent = +( )1
2 0 max min , (10.16)

where it is assumed that the body current is zero. From the geometry of the diagram 
the power recovered is

 P P
N

I V Vrec ent= − −( )1
2 0 max min . (10.17)

Thus the collector efficiency is

 ηcol
rec

ent

P
P

V V

N V V
= = −

−( )
+( )1 max min

max min

. (10.18)

Now the electronic efficiency of the tube is

 ηe
DC in ent

DC in a

P P

P
V V

V
=

−
= −

+
1

2
max min  (10.19)

so that

 V V Va emax min+ = −( )2 1 η  (10.20)

and, substituting for V Vmax min+( ) in (10.18)

 η
ηcol

a eN
V

V
= −

−( ) −






1

1
1

1max . (10.21)

If  it is assumed that there are no accelerated electrons, so that V Vamax = , then (10.21) 
reduces to

 η η
ηcol

e

eN
= −

−( )1
1

. (10.22)

In the form of this equation given by Kosmahl the factor N  is replaced by N −( )1  
because of the presence of an additional electrode at potential Va which collects 
no current [10]. Equation (10.22) shows that the collector efficiency increases as 
N increases, as would be expected, but that it decreases as the electronic efficiency 
increases because the fraction of the power entering the collector which can be 
recovered decreases. Substituting for the collector efficiency from (10.22) in (10.13), 
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and ignoring circuit losses, we find that the efficiency of the tube with a depressed 
collector is

 ηrf
N

N
=

+1
. (10.23)

Thus, this simple model predicts that the efficiency of  the tube depends only on the 
number of  stages in the collector and is independent of  the electronic efficiency. 
The overall efficiency increases as the number of  stages increases but the improve
ment obtained by adding extra stages is small if  N is greater than 5. Thus, for most 
tubes, it is not worth using more than four or five stages because of  the additional 
cost and complexity of  the collector and of  the power supply for the tube.

The theoretical efficiency indicated by (10.23) is not achieved in practice because 
the spent beam curve is not normally a trapezium, and because no account has 
been taken of  the effect of  electrons which enter the collector with energies 
greater than Va. Equation (10.23) also assumes that each electron is collected as 
efficiently as possible. This is not always the case, as is shown in the next section. 
In particular, if  the electronic efficiency changes as a result of  changes in the 
drive level, then the minimum electron energy Vmin changes. With fixed electrode 
potentials the number of  stages which are effective changes, and the potentials 
are not generally optimal. In practice the electrode potentials are chosen to max
imise the shaded area below the spent beam curve. It is not necessarily the case 
that the best overall efficiency is obtained by designing a tube to achieve the best 
electronic efficiency and then adding a multi element depressed collector. This is 
because the shape of  the spent beam curve can vary considerably as the design 
of  the tube is changed. It is therefore necessary to ensure that the shape of  the 
spent beam curve is such that as much of  the energy as possible can be recovered 
by the collector [11]. Changes in the design of  the tube may also result in changes 
in the circuit efficiency.

10.3.2 Non- Ideal Multi- Element Depressed Collectors

In an ideal multi element collector each electron would be collected at the most 
negative potential possible for its energy. Thus all electrons for which V V Vn e n≥ > +1 
would be collected at potential Vn. It has been shown experimentally that this situa
tion can be approached quite closely, provided that the space charge density is very 
low [12]. However, as the space charge density is increased some of the electrons 
in this energy range continue to be collected at potential Vn−1 so that the collec
tion efficiency is reduced [12– 13]. To show how this affects the collector efficiency 
we will assume that the probability that an electron with energy Ve is collected at 
potential Vn is

 p V
V V

V Vn e
e n

n n

( ) =
−
−+1

 (10.24)
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and the probability that it is collected at potential Vn−1 is

 p V p Vn e n e− ( ) = − ( )1 1 . (10.25)

If  V Ve < 1 then the electrons are collected at potential V0 0=  so that p0 1= . It is also 
assumed that pN = 1 when V V Ve N N> − −2 1. Figure 10.10 shows the probability that 
electrons will be collected on each electrode of a five stage collector as a function of 
the normalised electron energy (see Worksheet 10.2). The dashed rectangles show 
the current collected by an ideal collector and the triangles show the current col
lected according to the model defined by (10.24) and (10.25).

Figure 10.10: Theoretical probabilities that an electron having energy Ve will be collected by 
the electrodes of a five stage depressed collector.
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The DC collector efficiency, that is the collector efficiency for mono energetic 
electrons, can be computed as a function of the normalised electron energy of the 
electrons from

 ηdc e
e

n e e
n

V
V

p V V( ) = ( )⋅∑1
. (10.26)

Figure  10.11 shows the DC collector efficiency for a five stage collector with 
equally spaced voltages. It is found that the shape of this curve varies very little 
if  the linear variation of probability is changed to a sine or sine squared curve 
(see Worksheet 10.2). The curve is similar to that computed for an experimental 
five stage collector [13]. The differences can be explained by the collection of some 
of the current on electrodes at less favourable potentials. This is caused partly by 
imperfections in the design, and partly by secondary electrons.

It has been shown that the RF collector efficiency can be computed to good accu
racy from the DC collector efficiency and the spent beam curve [13]. If  the current 
collected on a single depressed electrode at a potential Vc is Ic then the fraction of 
the total current in the small energy range dVe at energy Ve is

 dI
dI
dV

dVc
c

c V

e

e

=






 (10.27)

and the power entering the collector associated with this current is

 dP dI V
dI
dV

V dVent c e
c

c V

e e

e

= =






. (10.28)

Figure 10.11: Theoretical DC collector efficiency as a function of electron energy.
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Thus the total power entering the collector is given by

 P
dI
dV

V dVent
c

c V

e e

V

V

e

=






⌠

⌡


min

max

, (10.29)

where the integral is taken over the full range of electron energies in the spent beam. 
Now the fraction of the power entering the collector in the energy range dVe which 
is recovered is ηdc eV( ). Thus, the total power recovered is

 P
dI
dV

V V dVrec
c

c V

e dc e e

V

V

e

=






( )⌠

⌡
 η

min

max

. (10.30)

The collector efficiency with an RF modulated beam is found by dividing (10.30) 
by (10.29). Modern multi element depressed collectors have collector efficiencies 
exceeding 80% and therefore the majority of the electrons are being collected at the 
most favourable potential [14– 16] (see Worksheet 10.2).

10.4 Design of Multi- Element Depressed Collectors

The design of a multi element depressed collector begins with knowledge of the 
spent beam curve for the tube. The shape of the curve depends upon the type of 
tube, and upon the level of the RF input power (see Figures  12.19, 13.15, and 
14.16). It also depends on the frequency within the working bandwidth of the tube. 
Although the energy distribution in the spent beam can be determined experimen
tally, it is now usual to obtain the information from a large signal computer model. 
For this purpose a 2.5 dimensional model is needed since the radial and angular 
velocities of the electrons are important. The number of collector stages is chosen 
as a compromise between collector efficiency and complexity, and the potentials of 
the stages are chosen to maximise the energy recovered.

The task of designing a multi element depressed collector is one of arranging 
the electrodes in such a way that the electrons are sorted according to their initial 
energies, and collected with minimum impact energies. Since these impact energies 
may be of the order of a few hundred electron volts, the generation of second
ary electrons is more important than reflection of primary electrons, though both 
processes occur (see Section 18.3). It is important that any secondary electrons, 
or reflected primary electrons, are collected on the surface from which they were 
emitted to avoid degradation of the collector efficiency. It is also important that 
there should be no back streaming electrons flowing from the collector into the 
interaction region. In a multi element depressed collector the presence of a number 
of electrodes at different potentials means that, in general, the electrons are flow
ing through a succession of electrostatic lenses which may be either converging or 
diverging. Since the electrons have a range of initial vector velocities, and the effects 
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of the space charge field cannot be ignored, the problem of synthesising the design 
of the collector is a difficult one.

Multi element depressed collectors can be classified as either symmetric (that is 
axi symmetric) or asymmetric [17]. Efficient symmetric collectors have the general 
arrangement shown in Figure 10.12. The electrons are collected on the backs of 
the electrodes so that any secondary electrons are emitted into a retarding field and 
tend to be returned to the electrode from which they were emitted. Two essential 
features of collectors of this type are the conical shape of the last electrode, and 
the spike which protrudes from it along the axis of symmetry. The purpose of the 
spike is to provide a radial electric field to aid the dispersion of the beam in a region 
where the space charge forces are weak. It also opposes the motion of secondary 
electrons generated on the cone towards the axis. Ideally the potential of the cone 
and the spike should be −1 5. Va so that few, if  any, electrons would have sufficient 
energy to reach them. It is not always convenient to provide this potential from the 
power supply to the tube, and it is more usual for the final electrode to be at the 
potential of the cathode.

Kosmahl proposed a ‘Dispersive Lens collector’ in which the electrodes were 
placed along equipotential surfaces determined from a given variation of the 
potential along a boundary surrounding the collector [17– 18]. This choice of 
the  positions of the electrodes means that the electric fields within the collector 
are independent of the sizes of the apertures in the electrodes. The best aperture 
sizes are those which are just large enough to allow all the electron trajectories to 
pass through them. Since the field variation is smooth within the collector the lens 
effects are minimised. In principle it should be possible to design a collector of this 
type by finding mutually consistent solutions of Poisson’s equation, and the equa
tions of motion of the electrons, subject to a prescribed potential distribution on a 
cylindrical or spherical boundary surrounding the beam. A Dispersive Lens collec
tor built for a 200W 12 GHz coupled cavity TWT had a collector efficiency of 81% 
and it was thought that 90% should be achievable [17].

Figure 10.12: Arrangement of a symmetrical multi element depressed collector.
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An alternative approach is the ‘Individual Lens collector’ [17] which has a similar 
form, except that the potentials of the electrodes are not dependent on a prescribed 
boundary potential distribution, but may be chosen freely. The potential distribu
tion around each electrode can then form either a converging or a diverging lens 
and it is found that this can be beneficial to the operation of the collector. An 
Individual Lens collector is normally larger that a Dispersive Lens collector for the 
same tube but the collector efficiency which can be achieved is greater. The design 
of an Individual Lens collector for a dual mode TWT was described by Dayton 
et al. [19].

Most of the early work on efficient multi element depressed collectors concen
trated on symmetric designs because, at that time, no computer programs existed 
which could be used to study and optimise asymmetric collectors. Nevertheless, it 
was recognised that it was not possible to design a symmetric collector which was 
completely free from back streaming [18]. Hechtel pointed out that, if  space charge 
effects are ignored, the electric field between a pair of electrodes can be used as 
an electron velocity spectrometer [20]. He observed that some field distributions 
are inherently focusing whereas others are defocusing. Since electrons, having the 
same velocity, enter the collector with a range of angles relative to the axis it is 
desirable to employ a focusing field which causes electrons which start from a point 
with the same velocity, but at different angles, to arrive at a single point when they 
strike an electrode. In particular he showed that the fields in symmetric collectors of 
the types described above are inherently defocusing. However, collectors where the 
beam is not injected on the axis of symmetry the field can be made to be focusing. 
Hechtel showed that, of the types of collector he studied, the hyperbolic asym
metric collector (Figure  10.13) could be expected to have higher efficiency than 

Figure 10.13: Arrangement of Hechtel’s hyperbolic asymmetric collector
(copyright 1977, IEEE, reproduced, with permission, from [20]).
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a parabolic symmetric collector but this conclusion was challenged by Kosmahl 
[17]. The use of an asymmetric design also greatly reduces the possibility of back 
streaming. Hechtel’s hyperbolic collector is potentially rather bulky and the theo
retical electrode shapes must be approximated by planes and cones for simplicity 
of manufacture.

The wide variety of  possible configurations for symmetric and asymmetric col
lectors which can exist was classified by Mihran and Neugebauer [9]. The collec
tors which have been described so far have zero magnetic field and non uniform 
electric field. An alternative type of  collector which is commonly used because it 
is compact is illustrated in Figure 10.14. The collector elements are cylindrically 
symmetric but meet at planes which are at an angle to the axis. This produces 
a transverse component of  the electric field which sweeps secondary electrons 
sideways to avoid back streaming. An alternative way of  introducing asymmetry 
into a collector is by use of  a transverse magnetic field. This can conveniently be 
achieved empirically by placing a small permanent magnet alongside an axisym
metric collector. Some high efficiency collectors employ combinations of  tilted 
electric fields and magnetic fields, including continuation of  the PPM field into the 
collector [16].

The design and optimisation of  multi element depressed collectors requires 
the use of  three dimensional computer models which can take account of  space 
charge, reflected primary electrons, and secondary electrons [21– 24]. More 
recently, genetic algorithms have been used for efficient optimisation of  the shapes 
and potentials of  the electrodes of  both symmetric and asymmetric collectors   
[22, 25– 27].

10.4.1 Suppression of Secondary Electrons

Problems associated with secondary electrons can be reduced by ensuring that the 
secondary electron emission coefficient of the electrode surfaces is low (see Section 
18.3). This is achieved by using materials which have low secondary electron emis
sion coefficients, such as carbon and graphite, and/ or by creating a textured sur
face which tends to trap the secondary electrons. This was recognised very early 
in the development of depressed collectors, and tests were carried out with elec
trodes which were carbonised or coated with lamp black (carbon black) [8]. These 
coatings have very low secondary electron yield but are unsuitable for use in tubes 

Figure 10.14: Arrangement of an asymmetric multi element depressed collector.
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because of their poor adhesion [28]. Subsequently, several techniques have been 
developed [29– 30]:

• Oxygen free high conductivity copper is commonly selected for collector elec
trodes because of its high thermal and electrical conductivity and ease of fabrica
tion. However, the secondary electron yield of copper is greater than unity over 
a wide range of primary impact energies commonly found in depressed collec
tors. For this reason surface coatings of materials such as titanium carbide, and 
surface texturing by ion bombardment, have been used to reduce the secondary 
electron yield. A low cost technique for depositing carbon on copper electrodes 
is described in [31].

• Pyrolytic graphite is a strong, lightweight, material with low secondary electron 
emission yield. It was found in comparative tests that a collector with electrodes 
made of pyrolytic graphite had an efficiency which was several percentage points 
better than a collector having copper electrodes with the same dimensions. 
Pyrolytic graphite with a textured surface gave results which were better then 
those with a smooth surface and virtually identical to those obtained using car
bon black [28].

• High purity isotropic graphite has adequate strength for use in collectors and is 
readily machined. The secondary electron yield when there is a surface texture is 
close to that for carbon black and slightly lower than that for textured pyrolytic 
graphite [32].

10.4.2 Reconditioning the Spent Electron Beam

When a linear beam tube is operated at, or close to, saturation the spent electron 
beam is strongly bunched and the electrons can have appreciable radial veloci
ties. It is more difficult to collect such a beam efficiently than an unmodulated 
beam. That is because electrons, which start from the same point with different 
radial velocities, follow different paths through the collector. It has been found 
that, if  the spent beam does not emerge abruptly from the magnetic focusing 
field, but passes through a region where the beam is allowed to expand adi
abatically to a larger diameter, then the space charge and the radial velocities are 
reduced and the beam is easier to collect [17, 33– 34]. The magnetic field in this 
region typically includes a field reversal. Beam conditioning, in this way, is most 
useful for tubes with high electronic efficiencies and/ or high perveances, such as 
klystrons and coupled cavity TWTs, because the disorder in the spent beam is 
greatest. However, it has been shown that the use of  a refocusing region is not 
necessary for most helix TWTs. In that case it is sufficient to allow the beam to 
drift through a short length of  the PPM field after it has left the helix and before 
it enters the collector [35]. As the beam has not been allowed to expand, it is pos
sible for the collector to be smaller than is the case when a refocusing section is 
employed.
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10.5 Cooling

The greatest part of  the heat generated in a tube is in the collector of  a linear 
beam tube or gyrotron, or in the anode of  a magnetron or gridded tube. The 
body of  the tube is heated by interception of  electrons, and by RF losses in the 
interaction structure. Thus attention must be paid to adequate cooling of  all 
parts of  a tube. The different parts of  the tube may be cooled by conduction, by 
natural or forced convection of  air or liquid, or by boiling liquid. These meth
ods are reviewed briefly below. All are ways of  transferring heat from the very 
high power density at the tube surface to some surface where the surface area is 
larger, the power density is lower, and the heat can be dissipated more readily. It 
is necessary to take care that the efficiency of  the cooling system is not reduced 
by the accumulation of  dust, by contamination of  coolants, or by corrosion of 
the surfaces. It is also necessary to consider the ambient temperature conditions 
in which the equipment will be stored and used. If  the ambient temperatures fall 
below freezing then it is necessary to ensure that liquid coolants do not freeze, 
and have low enough viscosities for the cooling system to work properly when it 
is started up. If  the ambient temperatures are high then the efficiency of  air cool
ing systems is reduced and there is a risk that liquid coolants may boil, or that 
parts of  the collector may overheat. General information about cooling systems 
is to be found in [5– 6, 36].

10.5.1 Conduction Cooling

Low power tubes, such as helix TWTs, which generate not more than a few hundred 
watts of heat can be cooled by conduction from the tube to a suitable heat sink. In 
some mobile applications the heat sink can be the external surface of the vehicle 
(e.g. an aircraft or a ship). In spacecraft the heat must be radiated into space and 
heat pipes may be used to convey the heat from the tube to the radiating surface 
[37]. Alternatively, radiating fins can be mounted directly on the outside of the col
lector. The tube is then mounted so that these fins are on the outside of the space
craft and can radiate directly into space.

10.5.2 Air Cooling

Natural, or forced, convection of  air can be used to cool regions of  a tube where 
the power density is not too high. The usual method is to use an array of  cooling 
fins through which air can flow, or can be forced by a fan. This has the advantage 
that it is not necessary to provide liquid coolants. It is important that the air intake 
is fitted with an effective filter to prevent the accumulation of  dust on the cooling 
surfaces.
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10.5.3 Liquid Cooling

At higher power levels it is common to pump a coolant through suitably placed 
narrow channels, as shown in Figure 10.1. The coolant may be de ionised water, 
but other liquids (e.g. fluorocarbons) have been used. The channels must be small 
enough to ensure turbulent flow. There is a trade off  between the power required to 
pump the liquid around the system and the thermal power which can be removed. 
It is necessary to avoid cavitation and local boiling since those can cause hot spots. 
If, for example, the heat is conducted though a copper wall 1  cm thick, cooled 
by water at a maximum temperature of 100 °C, then the maximum power density 
is 700 W cm 2− . This figure can be increased to 2 kW cm 2−  by using very small 
pipes close to the surface to be cooled [4]. In multi phase cooling water is pumped 
through narrow tubes and permitted to boil locally. Power densities up to 2.5 kW 
cm–2 can be handled in this way [36]. The output water temperature is below 100 °C 
and the steam generated condenses back into the coolant.

10.5.4 Vapour Phase Cooling

In vapour phase cooling the part of the tube to be cooled is immersed in a liquid 
coolant (usually de ionised water) which is allowed to boil. The vapour is circu
lated by natural convection to a heat exchanger where it is condensed. Figure 10.15 
shows one possible arrangement. The effective surface area for heat transfer can 
be increased by arranging a number of large bore cooling channels around the 
collector. The method has the advantage that the temperature of the tube is kept 
constant. The power density is up to 150 W cm 2−  [36, 38].

In a development of this technique, known as Hypervapotron® cooling, the sur
face of the part to be cooled is provided with a large number of narrow bore blind 
channels into which the liquid flows. At high power densities the heat flux causes 
explosive local boiling which expels the heated liquid from the channels. Cooler 
liquid is sucked back in and the process is repeated [4, 38]. Power densities of up to 
2 kW cm 2−  are possible.

Figure 10.15: Vapour phase cooling of a power gridded tube
(copyright 1976, EEV, reproduced, with permission of Teledyne e2v, from [39]).
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11 Beam- Wave Interaction

11.1 Introduction

Microwave tubes depend for their operation on the interaction between an elec-
tron beam and an electromagnetic structure as shown in Figure  11.1. In the 
majority of  tubes the geometry is rotationally symmetric. The current in the beam 
is modulated by the RF electric field of  the structure. The RF current in the beam 
then induces currents in the structure which result in a transfer of  energy from 
the beam to the structure. The electromagnetic structure of  a klystron is made 
up of  cavity resonators (see Chapter 3), whilst in a travelling- wave tube (TWT) 
it is a slow- wave structure (see Chapter 4). This chapter develops the theory of 
these two types of  interaction as a foundation for the discussion of  klystrons 
(in Chapter  13), and TWTs (in Chapter  14). The theory of  crossed- field tubes 
is developed in Chapters  15 and 16, and the theory of  gyrotrons is covered in 
Chapter 17.

The equations describing beam- wave interactions are non- linear, and it is neces-
sary to use numerical methods to find solutions to them. However, useful insight 
can be gained by assuming that the modulation of the beam is small, compared 
with its DC properties. In small- signal theory the equations are replaced by lin-
earised approximations which can be solved more easily. In a further approxima-
tion ballistic theory ignores the space- charge forces that the electrons exert on each 
other. We shall begin by considering the ballistic theory of the interaction between 
an electron beam and the RF fields of a cavity resonator.

The effects of space- charge can be introduced by treating the electron beam as 
a compressible fluid. The space- charge waves which propagate on a linear electron 
beam were first studied by Hahn [1] and Ramo [2]. A considerable body of literature 
exists on this subject and the reader is referred to [3] and [4] for convenient summar-
ies of much of it. This chapter deals only with space- charge wave theory as far as it 
is needed to understand klystrons and TWTs. Many other possible types of space- 
charge wave devices have been studied in the past including resistive and inductive 
wall amplifiers, velocity jump amplifiers, double beam amplifiers, and beam- plasma 
amplifiers, but these are not of practical importance (see [3, 4] and [5] for further 
information). It is possible to develop a space- charge wave theory of crossed- field 
devices [3] but this is of limited value because, as will be seen in Chapters 15 and 16, 
the operation of these tubes is always non- linear.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.012
https://www.cambridge.org/core


Beam-Wave Interaction376

Under large- signal conditions electron overtaking can occur so that the electron 
velocities are no longer single- valued functions of position. Under these condi-
tions space- charge forces cannot be neglected and the interaction must be modelled 
numerically by tracking the motion of sample electrons under the influence of both 
circuit and space- charge fields. The large- signal theory of beam- wave interactions 
is discussed in Section 11.8.

The analysis of problems in beam- wave interaction presents a number of pitfalls 
which are a result of the negative charge on the electron. Referring to Figure 11.1 
we see that, for an electron beam, the convection current in the beam is in the 
negative z direction. That is, the conventional current in a linear- beam tube flows 
from the collector to the gun. The reversal of the direction of the current presents 
conceptual problems. The author has found that it is much easier to develop the 
analysis assuming that the electrons are positively charged, and this approach is 
followed in this book. The results for a beam of negatively charged electrons are 
easily recovered, if  necessary, by reversing the signs of all the currents and voltages. 
In many cases this makes no difference, as we shall see. For convenience, the charge 
carriers will be referred to as ‘electrons’ even though their charge has been assumed 
to be positive.

11.2 Ballistic Theory of Interaction with a Gap

In many microwave tubes the electron beam interacts with the electric field of one 
or more gaps in the surrounding drift tube. These are connected to external cavity 
resonators or other electromagnetic structures. In the region of the gap the RF 
electric field is usually much greater than the space- charge field. Useful information 
about the interaction between the electrons and the gap can therefore be obtained 
by ballistic analysis which neglects the space- charge forces.

11.2.1 Beam Modulation by a Gridded Gap

Figure 11.2 shows an unmodulated electron beam passing through a gridded inter-
action gap having an RF voltage across it. Gridded gaps are not used in tubes because 
the grids would rapidly be destroyed by the power of the electrons intercepted by 

Figure 11.1: Arrangement of a linear- beam tube.
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them. Nevertheless it is useful to begin by studying this case because the analysis is 
straightforward and provides insight into the interaction. The sign convention used 
is that the gap voltage is positive when charges are accelerated. The direction of the 
gap current ig is such that power is flowing from the gap to the beam.

The electric field of the gap is given by

 E
V

g
j tz

g= − ( )exp ,ω  (11.1)

where Vg is the amplitude of the RF voltage across the gap. The non- relativistic 
equation of motion of an electron is

 z
eV

m g
j tg= ( )

0

exp .ω  (11.2)

Multiplying (11.2) by z, and integrating with respect to time, gives the change in 
kinetic energy of an electron (in electron volts) produced by the gap
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In this equation the limits of integration are the times at which an electron enters 
and leaves the gap. Now, if  the RF component of the beam velocity is small com-
pared with the DC component u0( ), and the electron crosses the centre of the gap 
when t t= 0, then the time at which it reaches position z is given by

 t
z
u

t= +
0

0 . (11.4)

Substituting for t from (11.4) into (11.3) gives
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Figure 11.2: Modulation of an electron beam by the RF electric field in the gap between a 
pair of grids (electrons positive).
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where the electronic propagation constant is defined by

 β ω
e u

=
0

. (11.6)

Evaluating the integral we obtain

 V V j t MV j tg g1 0 0
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2
=

( ) ( ) = ( )sin
exp exp ,

θ
θ

ω ω  (11.7)

where θ β= e g is the gap transit angle and M is the gap coupling factor. Figure 11.3 
shows how the gap coupling factor varies with the transit angle (see Worksheet 
11.1). We note that M is always less than or equal to unity because the field changes 
during the finite transit time of the electrons across the gap. Since M tends to unity 
as the transit angle tends to zero it follows that the action of a finite gridded gap is 
equivalent to that of a very narrow gridded gap with gap voltage MVg. The beam is 
said to be velocity modulated.

11.2.2 Ballistic Electron Bunching

The kinetic energy of electrons leaving the gap can be written

 1
2 0

2
0 0m u e V MV j tg= + ( )( )exp ,ω  (11.8)

where V0 is the potential of the cathode relative to the drift region, including the effects 
of space- charge and beam rotation. V0 and Vg are both positive. As the electrons drift 
downstream from the gap the variation in velocity causes them to become bunched 
together so that the beam current is modulated. If the modulation is small we can 
neglect second- order quantities and the velocity of an electron leaving the gap is

 u u
MV

V
j tg= + ( )



0

0
01

2
exp .ω  (11.9)

Figure 11.3: Dependence of the coupling factor for a gridded gap on the electron transit angle.
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The electron reaches a plane z from the gap at time

 t t
z
u

MV

V
j tg= + − ( )



0

0 0
01

2
exp ,ω  (11.10)

as shown in Figure 11.4. Under small- signal conditions the electron trajectories do 
not cross and therefore the current at z is related to the current at z = 0 by

 I I dt I dt0 1 0 0+( ) = . (11.11)

Differentiating (11.10) with respect to t0 we obtain

 dt
dt

j z
MV

V
j te

g

0 0
01

2
= −







( )β ωexp . (11.12)

where βe is defined in (11.6). Substituting for dt dt0  in (11.11) gives the RF convec-
tion current at the plane z

 I j I
MV z

V
j t zg e

e1 0
02

=






−( )β
ω βexp , (11.13)

since ω ω βt t ze0 = − . Thus, in a frame of reference moving with uniform velocity u0,  
the phase of the charge bunches leads the phase of the gap voltage by 90°. This 
conclusion still holds when the charges are negative. However, because I0 is negative 
the conventional RF current I1 is maximum in the negative direction at the centre 
of the charge bunches.

It can be shown that, for longer drift lengths, the amplitudes of the harmonic 
currents in a bunched electron beam are given by [6– 8]

 I I J
nMV z

V
nn n

g e=






=2
2

1 20
0

β
, ,  (11.14)

Figure 11.4: Ballistic bunching of a velocity modulated electron beam.
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where Jn is the Bessel function of the first kind and order n. This equation, 
which ignores space- charge forces, is valid even when electron overtaking occurs. 
However, except in the special case of frequency- multiplier tubes, it is desirable 
to avoid electron overtaking as far as possible. Also, in practical tubes the drift 
length between interaction gaps is normally much less than the distance to the first 
maximum of (11.14) and space- charge forces are not negligible. The bunching of a 
velocity- modulated beam, including the effects of space- charge forces, is discussed 
in Section 11.4.

11.2.3 Beam Loading of a Gridded Gap

When (11.8) is integrated over one RF cycle it is found that the mean energy of the 
modulated beam is equal to the energy of the unmodulated beam. Thus first- order 
analysis suggests that no power is required to modulate the beam. This is a conse-
quence of the assumption that the electrons cross the gap without any change in 
velocity. In practice those electrons which are accelerated cross the gap in a shorter 
time, and the effective value of M is increased. Thus these electrons gain more 
energy than is shown in the first- order analysis. Similarly, those electrons which are 
retarded lose less energy than shown in the first- order analysis. Hence the power 
carried by the beam is increased by velocity modulation and this can be verified by 
numerical integration of the equations of motion (see Worksheet 11.3).

To calculate the power delivered to the beam by the gap we consider the gap to be 
made up of a series of elementary gaps whose position is z and whose length is dz . 
The transit angle of each elementary gap is small so that M = 1 and the gap voltage 
is V dz gg . Then from (11.13) the current at a remote plane z1 due to the modulation 
by an elementary gap is

 dI z G
V

g
j z z j z z dzg

e e1 1 0 1 1
1
2

( ) = −( ) − −( ) β βexp , (11.15)

where G I V0 0 0=  and the phase is referred to the phase of the gap voltage at z. 
Note that, for negative charges the signs of both I0 and V0 are reversed so that G0 is 
unchanged. Thus the RF current at z1 is

 I z G
V

g
j z z j z z dzg

e eg

z

1 1 0 1 12

1
2

1( ) =






−( ) − −( ) −∫ β βexp . (11.16)

Making the substitution α β= −( )e z z1 (11.16) becomes

 I z G
V

g
j j dg

e

z ge

1 1 0 0

21
2

1( ) =






−( )+( )
∫β

α α α
β

exp . (11.17)

Evaluating the integral gives

 I z G
V

g
z g jg

e
e

j z g j z ge e
1 1 0 1

2 21
2

2 1 1( ) =






− +( ) +− +( ) − +( )
β

β β βe e −− j . (11.18)
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The power flow from the gap to the beam is given by [9]

 P E z I z dz
V

g
I z dzzg

g g

g

g
= ( ) ( ) = ( )

− −∫ ∫
1
2 21 1 12

2

1 1 12

2

1
* *

, (11.19)

where the asterisk denotes the complex conjugate. Substituting for I1 from (11.18) 
and performing the integration we find that

 P G
V

jg=






− −





+ + −





1
2

1
2 2 20

2

θ
θ θ θ θ θ θ θcos sin cos sin






 , (11.20)

where θ β= e g. The real part of this expression is the active power required to modu-
late the beam

 P G
V

G
V

a
g

b
g= −







=
1
2

2
2

2
2

2
2 20

2 2sin sin
cos ,

θ
θ

θ
θ

θ  (11.21)

where Gb is the beam loading conductance. It is straightforward to show that

 G
G

d
d

M M
dM
d

b

0

21
4

1
2

= − ( )( ) = −θ
θ

θ θ
θ

. (11.22)

When relativistic effects are important (11.22) becomes [10]

 G
G

M
dM
d

b

R R0

1
1

= −
+( )γ γ

θ
θ

, (11.23)

where

 γ R
u c

=
−

1

1 0
2 2

. (11.24)

Note that the symbol γ R is used in this chapter for the relativistic factor to avoid 
confusion with the use of γ  for radial propagation constants. The reactive power 
transferred to the beam is given by the imaginary part of (11.20)

 P G
V

B
V

r
g

b
g= −

( ) ( )
− ( )





= −
1
2

2

2

2

2
2

2 20

2 2cos sin
cos ,

θ
θ

θ
θ

θ  (11.25)

where Bb is the beam loading susceptance. The negative sign in (11.25) arises because 
the reactive power flow into a susceptance B is given by

 P VI V jBV jB
V

r = = ( ) = −
1
2

1
2 2

2
* *

. (11.26)

Thus the presence of  the beam can be represented in an equivalent circuit by the 
admittance Y G jBb b b= + . Figure 11.5 shows how the beam loading conductance, 
and susceptance, of  a gridded gap vary with the transit angle. Because G Gb 0  is 
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normally less than 0.2 the power required to modulate the beam is only a small 
fraction of  the DC beam power. The beam loading conductance may be nega-
tive when the transit angle is greater than 2π. If  the sum of  the beam loading 
conductance and the conductance of  the external circuit connected to the gap 
is negative then the system is unstable and can break into self- oscillation (see 
Section 13.4.1).

11.2.4 Beam Modulation by a Gridless Gap

Figure 11.6 shows the arrangement of a gridless gap of the type generally used in 
microwave tubes. The axial component of  the electric field within the gap can be 
found using the method described in Section 3.5. It is assumed that Ez is known 
as a function of  z when r a=  as discussed in Section 3.5.3. The Fourier transform 
of  this function is

 Γ β β( ) = ( ) ( )
−∞

∞

∫ E a z j z dzz , exp . (11.27)

Figure 11.5: Beam loading conductance, and susceptance, of a gridded gap.

Figure 11.6: Arrangement of a gridless interaction gap (electrons positive).
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Since the fields must satisfy the wave equation in free space we know that Ez varies 
with radius as I r0 γ( ) where the radial propagation constant γ β ω= −2 2 2c . Thus 
the electric field within the gap is given by the inverse Fourier transform

 E r z
I r

I a
j z dz , exp .( ) =

( )
( ) ( ) −( )

−∞

∞

⌠

⌡


1
2

0

0π
γ
γ

β β βΓ  (11.28)

We saw, in Section 3.5.3, that the electric field distribution in the region occupied by 
the electron beam depends only weakly on the profile of the field at r a= . We shall 
therefore assume, for the moment, that E V gz g= −  when r a=  and z g≤ 2, and 
zero elsewhere, so that

 Γ β
β

β
( ) = −

( )
V

g

gg

sin
.

2

2
 (11.29)

It is convenient to remove the dependence on r by taking the average of the first 
term in the integral in (11.28) across the beam. We shall also assume that the elec-
tron beam is in confined flow and that the RF current is nearly constant across the 
beam. The average electric field acting on the electrons is then

 E z
V

b

I b

I a

g

g
j z dz

g( ) = − ⋅
( )
( ) ⋅

( )
−( )

−∞

∞

⌠

⌡
2

2 2

2
1

0π β
γ
γ

β
β

β β
sin

exp  (11.30)

and the magnitude of the effective gap voltage is

 V E z j z dzz e1 = − ( ) ( )
−∞

∞

∫ exp .β  (11.31)

Substituting for the field from (11.30) and exchanging the order of the 
integration gives

 V
V

b

I b

I a

g

g
j z dzg

e1
1

02
2 2

2
= ⋅

( )
( ) ⋅

( )
− −( )( )




−∞

∞

∫π β
γ
γ

β
β

β β
sin

exp







−∞

∞

⌠

⌡
 dβ. (11.32)

Following Branch [9] we note that

 exp ,− −( )( ) = −( )
−∞

∞

∫ j z dze eβ β π δ β β2  (11.33)

where δ z( ) is the Dirac delta function which is defined as a pulse having zero width, 
infinite height and unit area. Thus the integral with respect to z is zero except when 
β β= e and then

 V
b

I b

I a

g

g
V

e

e

e

e

e
g1

1

0

2 2

2
= ⋅

( )
( ) ⋅

( )
⋅

β
γ
γ

β
β

sin
, (11.34)
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where βe has been used in place of β in the calculation of γ . Then (11.34) can be 
written as

 V MV Vg c d g1 = = µ µ , (11.35)

where the axial coupling factor given by

 µ
β

βd
e

e

g

g
=

( )sin 2

2
 (11.36)

has exactly the same form as the coupling factor for a gridded gap given by (11.7). 
If  the electric field at r a=  is not uniform this expression must be replaced by the 
Fourier transform of the gap field for unit gap voltage. When the ends of  the drift 
tubes have knife edges so that the field in the gap is given by (3.89) then

 µ βd eJ g= ( )0 2 , (11.37)

where J0  is the Bessel function of the first kind [11].
The average of the radial variation of the field (known as the radial coupling 

 factor) is, for confined flow,

 µ
γ

γ
γc

e

e

eb

I b

I a
= ⋅

( )
( )

2 1

0

. (11.38)

An alternative average is based upon an analysis of the exchange of power between 
the field and the beam [9]

 µ
γ γ

γb
e e

e

I b I b

I a
=

( ) − ( )
( )

0
2

1
2

0

. (11.39)

In practical cases, the difference between the numerical values given by (11.38) and 
(11.39) is negligible and either expression may be used. For a beam in Brillouin flow 
the RF current is a surface current at r b=  (see Figure 7.6) so that the radial coup-
ling factor is

 µ
γ
γB

e

e

I b

I a
=

( )
( )

0

0

. (11.40)

Figure 11.7 shows curves of  the radial coupling factor for Brillouin flow, and 
confined flow, plotted against γ eb with b a as a parameter. It should be noted that 
(11.40) does not include the effect of  the radial component of  the electric field on 
the electron motion. However Brillouin flow is of  limited practical importance 
because it is normally necessary to use a magnetic field greater than the Brillouin 
field to ensure sufficient beam stiffness. We shall therefore assume that (11.38) is a 
satisfactory approximation if  m > 1 5. . The effects of  the radial component of  the 
electric field may be important if  the beam stiffness is small.
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11.3 Space Charge Waves on Linear Electron Beams

The RF properties of electron beams under small- signal conditions, including 
the effects of space charge, can be represented by space- charge waves. The non- 
relativistic equations which govern the motion of the electrons in a linear electron 
beam are the continuity equation

 ∇⋅ = −
∂
∂

J
ρ
t

. (11.41)

Newton’s second law of motion

 d
dt

e
m b c

u
E E= +( )

0

, (11.42)

where Eb is the electric field arising from the space charge of  the electrons and Ec  is 
the field applied to the beam by an external microwave structure. The convection 
current in the electron beam is related to the charge density and the velocity by

 J u= ρ  (11.43)

and, finally, the relationship between the charge density and the space- charge field 
is given by Poisson’s equation

 ∇⋅ =Eb
ρ
ε0

. (11.44)

These four equations involve four dependent variables so, in principle, they can be 
solved. The general solutions are rather complicated but the properties of space- 
charge waves can be understood from a simplified solution.

Figure 11.7: The radial gap coupling factor of an ungridded gap for: (a) Brillouin flow, and 
(b) confined flow.
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As a first stage of simplification let us assume that the electrons are moving par-
allel to the z axis and that the beam extends to infinity in the transverse direction. 
We will also assume that all quantities vary only with z and with time. The four 
equations (11.41) to (11.44) then become:

 ∂
∂

= −
∂
∂

J
z t

z ρ
, (11.45)

 du
dt

u
t

u
u
z

e
m

E Ez z
z

z
zb zc=

∂
∂

+
∂
∂

= +( )
0

, (11.46)

 J uz z= ρ , (11.47)

and

 ∂
∂

=
E
z
zb ρ

ε0

. (11.48)

The left- hand side of (11.46) is expanded as the sum of: the rate of change of the 
velocity with time at constant position, and the rate of change with position as the 
motion of the electron is followed. In these equations the vector quantities J, u and 
E are assumed to possess only z components. The set of equations is non- linear 
because (11.46) and (11.47) contain terms which are the product of two variables.

The next stage is to linearise the equations by assuming the propagation of waves 
so that all the dependent variables can be written in the form

 a a a j t z= + −( )0 1 exp ,ω β  (11.49)

where a a1 0  and ω and β are the same for all variables. It is then possible to sep-
arate each equation into constant and time- varying parts. The constant part of 
the solution does affect the velocities of  the electrons and it has been common 
to assume that it is cancelled out by the static field of  a background of positive 
ions. Although positive ions do sometimes accumulate in the region of  an electron 
beam, their effects are undesirable, and such accumulations are to be avoided. In 
the theory of  space- charge waves it is better to take account of  DC space- charge 
potential depression by including its effects as a correction to the DC electron 
velocity, as shown in Section 7.2. The small- signal equations for the time- varying 
quantities are

 β ωρJ1 1=  (11.50)

 j u u
e

m
E Eb cω β−( ) = +( )0 1

0
1 1  (11.51)

 J u u1 0 1 1 0= +ρ ρ  (11.52)

 − =j Ebβ ρ
ε1

1

0

. (11.53)
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For the moment we will assume that the RF field of the external circuit Ec1( ) is zero. 
Then Eb1 can be eliminated between (11.51) and (11.53) to give

 ω β
ε

ρ
β

−( ) = ⋅u u
e
m0 1

0 0

1 . (11.54)

Similarly J1 can be eliminated between (11.50) and (11.52) to give

 ω β ρ βρ−( ) =u u0 1 0 1. (11.55)

Equations (11.54) and (11.55) both relate u1 to ρ1 and they can be satisfied simul-
taneously only if

 ω β ρ
ε

−( ) =u
e

m0
2 0

0

. (11.56)

The terms in this equation have the dimensions of angular frequency squared and 
the expression on the right- hand side is recognised as the electron plasma frequency 
which was introduced in (7.47) and defined by

 ω ρ
εp
e

m
2 0

0 0

= . (11.57)

It should be noted that this remains a positive quantity if  the charge is negative 
because ρ0 is also negative. When the DC electron velocity is large enough for rela-
tivistic effects to be important the rest mass of the electron is replaced by the lon-
gitudinal mass γ 3

0m  (see (1.7) and [3]). The physical significance of the plasma 
frequency can be understood by considering the case when the electrons have no 
DC component of velocity so that the solution of (11.56) is

 ω ω= p . (11.58)

This is the natural frequency of oscillation of a stationary cloud of electrons which 
has been disturbed from equilibrium. The possible solutions to (11.56) can there-
fore be written

 β
ω ω

β β± = =




p
e pu0

. (11.59)

It is convenient to display these solutions in the form of a dispersion diagram, as 
shown in Figure 11.8. The slope of each line is equal to the DC beam velocity u0.  
The lines defined by (11.59) represent two possible wave solutions (β+ and β−) 
whose phase velocities ω β( ) are, respectively, greater than and less than u0. The 
waves are compression waves of charge density known as fast β+( ), and slow β−( ), 
space- charge waves. The properties of these waves will be examined in more detail 
in Section 11.3.3.

Since it has been assumed that the beam has infinite diameter and the electron 
motion is confined to the axial direction it follows that the RF electric field only 
has a longitudinal component, as shown in Figure  11.9(a). This field exerts the  
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forces on the electrons which cause the plasma oscillations. The displacement cur-
rent density within the beam is found, using (11.53), to be

 ∂
∂

= = −
D
t

j Ez
bωε ω

β
ρ0 1 1. (11.60)

Comparing (11.60) with (11.50) we see that the displacement current density is 
equal and opposite to the convection current density J1 so that the total RF current 
density is zero. It follows that there is no RF magnetic field in an infinite beam. We 
shall see in the next section that this conclusion is modified when the beam is finite 
in the transverse direction.

11.3.1 Effect of Radial Boundaries

Any practical electron beam must have finite dimensions normal to the direction of 
electron motion. The RF electric field is then able to spread out into the charge- free 

Figure 11.8: Dispersion diagram for space- charge waves neglecting the effects of radial 
boundaries.

Figure 11.9: Electric field due to space charge: (a) without radial boundaries and (b) with 
radial boundaries.
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region outside the beam, as shown in Figure 11.9(b). The space- charge forces act-
ing on the electrons are therefore less than those for the infinite beam illustrated in 
Figure 11.9(a). Thus the plasma frequency is lower, in finite beam, than it is in an 
infinite beam. This effect can be represented by multiplying the right- hand side of 
(11.53) by a factor p2 where 0 12≤ ≤p . The right- hand sides of equations (11.54) 
and (11.56) are, likewise, multiplied by p2. Thus the conclusions of the analysis in 
the previous section are unchanged, provided that the plasma frequency is replaced 
by the effective plasma frequency ωq( ) defined by

 ω ωq pp= , (11.61)

where p is known as the plasma frequency reduction factor.
We saw in Section 7.4.3 that the diameter of a magnetically focused electron 

beam increases as the beam current is increased, except in the limiting case when 
the magnetic field tends to infinity. Thus, in order to determine the value of p in any 
particular case it is necessary to solve Maxwell’s equations for a cylindrical electron 
beam within a concentric metal cylinder in the presence of a finite axial magnetic 
field. Under small- signal conditions the variations in the beam radius can be repre-
sented by charges on the surface of a beam whose radius is constant. This problem 
was studied by Brewer and Mackenzie [12, 13] who showed that the plasma fre-
quency reduction factor is the solution of the equation

 1
1 1 1

2

1

0

1 0 0 1

0

−






( )
( ) =

( ) ( ) + ( ) ( )
p b

I b

I b b

I b K a I a K b

Iτ
τ
τ β

β β β β
βbb K a I a K b( ) ( ) − ( ) ( )











0 0 0β β β  (11.62)

where a and b are the tunnel radius and the beam radius (see Figure 11.9(b)), I z0 ( ), 
I z1 ( ), K z0 ( ), and K z1 ( ) are modified Bessel functions of the first and second kinds, 
and β is the axial propagation constant of the waves. It is assumed that the phase 
velocity of the waves is small compared with the velocity of light so that the axial 
and radial propagation constants are identical in the region outside the beam. 
Inside the beam the radial propagation constant τ  is given by

 τ β
ω ω
ω ω

2 2
2 2

2
0
2

1

1
=

−
−












p q

p

, (11.63)

where ω0 is defined by

 ω ω
π0

2 2

0
2

2

4
2

= −




q

ke
m b
Φ  (11.64)

and Φk  is the magnetic flux linked to the cathode. Making use of (7.52) and (7.58) 
we can rewrite (11.64) as

 ω ω0
2 2 2 22 1= − −( ) p m p , (11.65)

where m is the ratio of the focusing field to the Brillouin field which was defined in 
(7.56). Equation (11.65) shows that ω0

2 is positive and equal to ωq
2 when m = 1, that it 
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passes through zero when m  1 02. , and is then negative for all higher values of m. 
The denominator in (11.63) is positive when m = 1 and has an infinity and changes 
sign as ω0 passes through zero. Thus τ  is real for values of m close to unity, and 
imaginary for higher values of m. The Bessel functions on the left- hand side of 
(11.62) are computed with real or imaginary arguments as appropriate. Equation 
(11.62) can be solved numerically for any desired values of βb, a b and m (see 
Worksheet 11.2). Since β is the propagation constant of the waves given by

 β β β± = e q , (11.66)

where β ωq q u= 0 , the value of p should be calculated separately for the fast and slow 
space- charge waves. An initial estimate can be found by setting β β= e and refined by 
iteration if necessary. Curves of p versus βb for typical values of b a and m are shown 
in Figure 11.10. When the effects of radial boundaries are taken into account the 
dispersion diagram for the fast and slow space- charge waves takes the form shown in 
Figure 11.11. Comparison with Figure 11.8 shows that negative values of ω do not 
normally occur and that the dispersion curves are asymptotic to those in Figure 11.8 
for large values of β. For beam voltages greater than about 20 kV the assumption 
that the phase velocity of the waves is small compared with the velocity of light is not 
valid. It is reasonable to suppose that β should then be replaced by γ β= −1 0

2 2u c  in 
(11.62) and (11.63), and in Figure 11.10. It was found that this correction was neces-
sary to obtain good results for the klystron discussed in Section 13.4.3.

Brewer [12] showed how the division of the RF beam current between beam 
radius modulation (surface current) and charge density modulation (body current) 
depends on the magnetic field. Figure 2 of that paper shows these currents as being 
in anti- phase with each other. There is apparently a value of the magnetic field for 
which there is zero net convection current. This must be wrong, on physical grounds, 
and seems to be a consequence of using different sign conventions for the charge 
in e m0  and ρ. When this error is corrected it is found, using Brewer’s normalisa-
tion, that the body current should be negative. The way in which these two currents 
vary with magnetic field is shown in Figure 11.12 when βb = 0 5.  and b a = 0 5. . The 
curves do not vary very much if  different parameter values are chosen. When this 
figure is compared with Figure 7.6 it can be seen that the two analyses give identical 
results in the limit of small RF currents.

11.3.2 Induced Current

When a space- charge wave is excited on an electron beam, which is surrounded by 
a continuous metal drift tube, the radial RF electric field must be terminated by 
induced charges on the wall of the drift tube (see Figure 11.9(b)). The movements 
of these charges constitute a longitudinal RF induced current in the wall. It is easy 
to see that this must be so by considering Maxwell’s equation

 H ds J
D

dS× = +
∂
∂







⋅⌠
⌡

⌠
⌡


⌠
⌡
 t

. (11.67)
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Figure 11.10: Plasma frequency reduction factor curves: (a) m = 1, (b) m = 1.5 and (c) m = 3
(Figure 11.4(a) copyright 1956, IEEE, reproduced, with permission, from [12]).

Figure 11.11: Dispersion diagram for space- charge waves including the effects of radial 
boundaries (nominal scales).
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If  the system is cylindrically symmetrical and the integral of H is taken in the θ dir-
ection along a line just inside the drift tube wall, then the boundary conditions at 
the wall require the current in the wall to be equal and opposite to the integral of 
H. The two terms on the right- hand side of (11.67) are, respectively, the convection 
current and the axial component of the displacement current within the drift tube. 
Thus (11.67) requires that the induced current in the wall should be

 i I IW C D= − +( ), (11.68)

where IC  and ID are the longitudinal convection and displacement currents within 
the drift tube. The convection current can be computed using the results of Brewer 
(with the sign of the body current reversed). The displacement current (using 
Brewer’s normalisation) given by

 I
I b

b

b I b K a I a K b

I b K aD norm( ) =
( )

+
− ⋅ ( ) ( ) + ( ) ( )

( )
1 1 0 0 1

0 0

1τ
τ

β β β β β
β β(( ) − ( ) ( )









 ⋅

( )
( )I a K b

I b

b0 0

0
2β β

τ
β

. (11.69)

is in antiphase with the convection current. The wall current can be computed 
using (11.69), or by integrating Hθ over the surface of the drift tube taking account 
of the sign of the convection current. The results obtained by these two methods 
agree with each other, confirming the correction to the sign of the body current. 
Figure 11.13 shows the ratio q( ) of  the magnitude of the wall current to the con-
vection current as a function of βb, and of the ratio b a, for m = 1, 1.5 and 3. The 
reduction in the normalised wall current is explained by the increase in the axial dis-
placement current as the separation between the beam edge and the wall increases, 
and as the wavelength on the electron beam decreases. The changes resulting from 
changes in the magnetic focusing field, and, therefore, in the proportions of surface 

Figure 11.12: Dependence of the RF surface and body currents in an electron beam on the 
magnetic field parameter m.
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and body current in the beam, are not so marked. The differences between the 
curves for m = 1 5.  and m = 3 0.  are almost indistinguishable and further increases in 
m make no difference. In a microwave linear- beam tube it is normally desirable that 
the coupling between the beam and the surrounding circuits should be as strong as 
possible. For this reason βb is normally not greater than 0.5, and b a is not less than 
0.5. It can be seen from Figure 11.13 that this choice is necessary to ensure that the 
induced wall current is high. It is also evident that, because the curves fall steeply 
with increasing βb, the coupling between the beam and the wall at harmonics of the 
fundamental frequency falls off  sharply with increasing order of harmonic. The 
curves in Figure 11.13(c) are identical to those in Figure 11.7(b) except that the 
horizontal axis is βb rather than γb because it has been assumed that the electron 
velocity is small compared with the velocity of light. If  this restriction is removed 
it is seen that the magnitude of the induced current in the wall is the product of the 
radial coupling factor and the convection current in the beam. Thus the use of γb in 
place of βb here, and in Figure 11.10, ensures the symmetry of the theory.

Figure 11.13: Ratio of the RF current in the wall of a drift tube to the RF convection current 
in a concentric electron beam: (a) m = 1, (b) m = 1.5 and (c) m = 3.

                    

khorshid
Highlight

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.012
https://www.cambridge.org/core


Beam-Wave Interaction394

In linear- beam tubes of  all kinds the drift tube enclosing the electron beam 
is not continuous, but is broken at intervals by interaction gaps. In the case of 
the klystron these gaps only occupy a small portion of  the total length of  the 
tube and it is satisfactory to ignore them when computing the reduced plasma 
frequency. In TWTs the gaps occupy a much greater proportion of  the length of 
the tube so that the assumption of  a continuous tunnel is no longer appropriate. 
A possible way of  compensating for this is to use an effective tunnel radius [14]. 
It should be understood that this correction to ωq is distinct from the interaction 
between the space- charge waves and the gapped tunnel which is dealt with in  
Section 11.6.

11.3.3 Transmission Line Representation of Space- Charge Waves

It is often useful to represent space- charge waves by equivalent transmission line 
modes. To do this we define an RF voltage, known as the beam kinetic voltage V1( ),  
by invoking the non- relativistic form of the principle of conservation of energy

 1
2 0 0 1

2

0 1m u u j t e V V j t+ ( )( ) = + ( )( )exp exp .ω ω  (11.70)

Note that V0 is the potential of the cathode relative to the drift space. It corres-
ponds to the DC beam velocity u0 allowing for the effects of space- charge potential 
depression and rotation in the magnetic field. For small signals the left- hand side of 
(11.70) can be expanded to give

 u u u j t
e

m
V V j t0

2
0 1

0
0 12

2
+ ( ) = + ( )( )exp exp ,ω ω  (11.71)

where the second- order term u1
2 has been neglected. This equation is true at all times 

and so the RF and DC terms must balance separately to give

 V
u u
e m1

0 1

0

=  (11.72)

and

 V
u
e m0

0
2

02
= ( ) . (11.73)

Dividing (11.72) by (11.73) we obtain

 V
V

u
u

1

0

1

0

2
= . (11.74)

Note that this equation remains the same if  the sign of the charge is reversed. The 
RF current density is obtained from (11.50) and (11.52) as

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.012
https://www.cambridge.org/core


Space Charge Waves on Linear Electron Beams 395

 J
u

u1
0

0
1=

−( )
ωρ

ω β
 (11.75)

so that, making use of (11.66) and (11.74), for the two space- charge waves

 J
J
V

V
q

± ±= ± ⋅
ω
ω2

0

0

. (11.76)

If  it is assumed that the DC and RF current densities are uniform then (11.76) can 
be integrated across the cross- section of the beam to give the RF convection cur-
rents of the space- charge waves

 I
I
V

V
q

± ±= ± ⋅
ω
ω2

0

0

. (11.77)

These waves can be represented in terms of an equivalent transmission line. The 
characteristic admittance, known as the electronic admittance, is

 Y
I
Ve

q

= ⋅
ω
ω2

0

0

, (11.78)

which is positive regardless of the sign of the electronic charge. The kinetic power 
flows in the waves are then

 P V Ye± ±= ±
1
2

2
, (11.79)

where the plus and minus signs refer to the fast and slow space- charge waves 
respectively. Equation (11.79) reveals the surprising fact that the slow space- charge 
wave carries negative power. The direction of the power flow is certainly positive 
because, as Figure 11.11 shows, the slow- wave has a positive group velocity. The 
explanation of this paradox is to be found in equation (11.76) which shows that, in 
the slow space- charge wave, the electron density and the velocity are in anti- phase 
with one another. Thus when u u> <0 0, ρ ρ , and when u u< >0 0, ρ ρ . It follows that 
the average kinetic energy of a beam carrying a slow space- charge wave is less than 
the kinetic energy of the unmodulated beam. In order to set up a slow space- charge 
wave, power must be removed from the beam. This unexpected feature of the slow 
space- charge wave provides the key to understanding all kinds of microwave linear- 
beam tubes. When the beam velocity is relativistic the results are qualitatively the 
same but the electronic admittance is given by [3]

 Y
I

Ve
R R q

=
+( )

ω
γ γ ω

0

01
, (11.80)

where the relativistic factor γ R is defined in (11.24) and ωq is calculated using the 
relativistic value of u0 but without other relativistic corrections.
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The analysis above ignores the electromagnetic power associated with space- 
charge waves. It can be shown that the ratio of the electromagnetic power to the 
kinetic power in a space- charge wave is of the order of ω ωq  [15]. For tubes having 
low space- charge this ratio is small and the effects of electromagnetic power can 
be ignored. In many high power tubes the ratio is around 10% and the electronic 
admittance should probably be corrected for this effect.

11.3.4 Space- Charge Waves on Non- Ideal Electron Beams

In general, the aim of the tube designer is to create an electron beam in which the cur-
rent density and the axial velocity are uniform throughout and there is no scalloping. 
In that way the properties of the beam are close to those of the ideal beam assumed 
by theory. In practice all beams are non- ideal to some extent but, provided the varia-
tions from the ideal are not too great, it is possible to use the theory developed above.

We saw in Chapter 7 that the effects of space- charge potential depression and 
beam rotation should be taken into account when calculating the mean axial vel-
ocity of the electrons. These effects also mean that there is a small variation in the 
electron velocities across the beam. This variation is normally ignored, but it could 
contribute to the noise carried by the beam through the two- stream instability (see 
[4]) and to the Landau damping of space- charge waves [16– 18]. These effects are 
not normally important in high power microwave tubes.

If  the current density is not uniform across the beam but does not vary along its 
length then that affects the calculation of the plasma frequency reduction factor. 
Some idea of the magnitude of the correction needed can be estimated from the 
curves for the plasma frequency reduction factors of hollow beams [19]. If  the beam 
is scalloping then both the plasma frequency and the plasma frequency reduction 
factor vary along the length of the beam. Where the beam radius is a maximum 
the local plasma frequency is a minimum and the two effects tend to cancel one 
another out. It has been shown that, when the variations are averaged along the 
beam, the mean value of ωq does not depart very much from the value for the uni-
form beam [20]. When the beam is focused by a periodic permanent magnet system 
there is always a periodic variation of the beam radius. The author has found that 
good results are generally obtained if  the equilibrium beam radius, calculated as 
described in Section 7.6.1, is taken to be the effective radius of the beam.

11.3.5 Higher-Order Modes

The analysis in Section 11.2.1 assumed that the waves which are excited on the 
electron beam are in the cylindrical TM01 mode. However, like circular waveguides, 
electron beams can also support higher-order space- charge modes such as those 
illustrated in Figure 11.14. These waves exist as pairs of fast and slow waves like the 
fundamental modes discussed above. The higher- order modes are usually ignored 
in the analysis of microwave tubes and only those with azimuthal symmetry could 
normally be excited by the fields of axially symmetrical structures. Further infor-
mation can be found in [3, 4].
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11.3.6 Cyclotron Waves

We have seen that when an electron beam is confined by an axial magnetic field Bz  
the electrons follow helical paths. The space- charge waves already discussed are 
associated with axial displacements of the electrons. Another set of modes exists 
for which the displacements are azimuthal. These modes, known as cyclotron 
waves, occur in fast and slow wave pairs in the same manner as the space- charge 
waves with propagation constants

 β ω ω
± =

 c

u0

, (11.81)

where the cyclotron frequency ωc zeB m= 0 . These waves are normally not excited 
in linear beam tubes because the azimuthal component of the electric field of the 
electromagnetic structure is usually zero. A  fuller discussion of cyclotron modes 
can be found in [4, 21].

11.4 Space- Charge Wave Theory of the Interaction between a Beam 
and a Gap

The interaction between an electron beam and a narrow, gridded, gap M =( )1  can 
be expressed in terms of the amplitudes of the transmission line analogue of space- 
charge waves. If  the beam is initially unmodulated the boundary conditions are

 V V Vg+ −+ =  (11.82)

and, because the convection current must be continuous at the gap,

 I I Y V Ve+ − + −+ = −( ) = 0, (11.83)

where time variation as exp j tω( ) has been assumed and the symbol I indicates a 
conventional current. The solution to (11.82) and (11.83) is

 V V Vg+ −= =
1
2

. (11.84)

Figure 11.14: Examples of higher- order space- charge wave modes: (a) TM11, (b) TM02 
and (c) TM21.
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At a plane which is z from the gap the beam kinetic voltage is

 
V V j z V j z

V z j zg q e

1 = −( ) + −( )
= ( ) −( )

+ + − −exp exp

cos exp ,

β β
β β

 
(11.85)

where time variation exp j tω( ) has been assumed. Similarly the RF current is

 
I I j z I j z

jY V z j ze g q e

1 = −( ) + −( )
= ( ) −( )

+ + − −exp exp

sin exp .

β β
β β

 
(11.86)

The corresponding equation derived using ballistic theory is (11.13). The two equa-
tions give the same result for short drift lengths. It can be seen that bunching of 
the beam can be thought of as beating between the fast and slow space- charge 
waves. When β πq z = 2 the velocity modulation is zero and the current modulation 
is maximum. Similarly, when β πq z =  the velocity modulation is maximum and the 
current modulation is zero. This pattern is repeated periodically.

The space- charge wave theory of  the interaction between a beam and a gridless 
gap can be developed following the same approach as in Section 11.2.4. A small 
element of  length dz at position z within the field of  the gap functions like a 
narrow gridded gap so that the change in the amplitude of  the kinetic voltage 
produced is

 dV E z dzz1 = − ( )  (11.87)

and the RF current leaving the elementary gap is zero. This can be expressed in 
terms of the amplitudes of the space- charge waves using (11.84)

 dV dV E z dzz± = = − ( )1
2

1
21 . (11.88)

The amplitudes of the space- charge waves at a plane z1 are found by superimposing 
the amplitudes produced by each element dz. Thus

 V z E z j z z dzz

z

± ±
−∞

( ) = − ( ) − −( )( )∫1 1
1
2

1

exp .β  (11.89)

Now the amplitudes of the waves do not depend on z1, provided that it lies beyond the 
point where the field of the gap has fallen to zero. We may therefore extend the upper 
limit of integration to infinity and write the amplitudes of the space- charge waves as

 V E z j z dzz± −∞

∞

±= − ( ) −( )∫
1
2

exp .β  (11.90)

Equation (11.90) has the same form as (11.31) so we conclude that

 V M V M Vg g± ± ±= ( ) =
1
2

1
2

β , (11.91)
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where β± has replaced βe in the calculation of the gap coupling factor. Hence the 
beam kinetic voltage at a plane outside the field of the gap which is distance z from 
the centre of the gap is

 V V M j z M j z j zg q q e1
1
2

= ( ) + −( )( ) −( )+ −exp exp exp .β β β  (11.92)

Similarly the RF convection current is

 I Y V M j z M j z j ze g q q e1
1
2

= ( ) − −( )( ) −( )+ −exp exp exp .β β β  (11.93)

11.4.1 Current Induced in a Gap by Space- Charge Waves

We saw, in Section 11.3.2, that the RF current of a space- charge wave induces a cur-
rent in a surrounding conducting drift tube. This current is determined by the need 
to satisfy the boundary condition for the azimuthal component of the RF magnetic 
field Hθ( ) on the surface of the drift tube. Figure 11.15 shows the coupling between 
a modulated beam and an external circuit through a gap in the drift tube. The sign 
convention used for the gap voltage and current is that they are positive when the 
gap field is accelerating, and power is flowing from the gap to the beam.

To first order, Hθ is unchanged by the presence of the gap and the boundary 
conditions require that the tangential magnetic field is continuous at the gap. Thus 
the RF magnetic field of the beam is a source which drives the current in the cir-
cuit external to the gap. In circuit terms this is represented by a current generator 
connected across the gap. The current of this generator must be the average of the 
induced wall current across the gap. Thus, for the two space- charge waves

 i
g

i j z dzg W

g

g

± ±
−

±= − −( )∫
1

2

2

exp ,β  (11.94)

Figure 11.15: Current induced in a gap by a modulated beam (electrons positive).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.012
https://www.cambridge.org/core


Beam-Wave Interaction400

where time variation at frequency ω has been assumed and iW  is in phase with RF 
convection current I1. Carrying out the integration we find that

 i
g

g
i ig W d W±

±

±
± ± ±= −

( )
= − ( )sin

.
β

β
µ β

2

2
 (11.95)

Thus the gap current is related to the induced current in the wall by the axial gap 
coupling factor µd . Now we saw, in Section 11.3.2, that the wall current is less than 
the convection current in the beam by a factor which is equal to the radial coupling 
factor defined by (11.38) for a beam in confined flow, and (11.40) for a Brillouin 
beam. Thus the current induced in the gap is given by

 i M I M I Y M M
V

Vg e= +( ) = −[ ]







+ + − − + −

+

−
. (11.96)

11.4.2 Beam Loading of a Gridless Gap

The power carried by a modulated beam is the sum of  the powers of  the fast and 
slow space- charge wave (we recall that the slow wave carries negative power). 
Equation (11.91) shows that the two space- charge waves excited by the gap do 
not have exactly equal amplitudes. Thus active power supplied to the beam by 
the gap is

 P
Y

V Vg
e= −( )+ −2

2 2
.  (11.97)

Substituting for the voltages from (11.91) we obtain

 P
Y

M M V G Vg
e

g b g= −( ) =+ −8
1
2

2 2
2 2

, (11.98)

where Gb is the beam loading conductance. This can be written

 G
G

Mb

0

21
4

= − θ
θ

∆
∆

, (11.99)

where G I V0 0 0= , θ β= e g, ∆M M M2 2 2= −+ − and ∆θ θ θ= −+ −. Equation (11.99), 
which is unchanged by changing the sign of the charge on the electron, may be com-
pared with (11.22) which was derived using ballistic analysis. It is found that the 
results given by these two equations are virtually identical if ω ωq < 0 1. , which is the 
situation in many linear- beam tubes. Thus it is usually satisfactory to ignore space- 
charge effects when calculating the gap coupling factor and the beam loading [22, 23].

The beam loading susceptance of a gridless gap can be calculated using the equa-
tions in [24]. In general

 Y Y I j g I j gb e av av= ′ ( ) − ′ ( )



− +

1
2

β β , (11.100)
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where Ye is given by (11.40) and the definition of Iav′ is given in the paper. For the 
special case where the electric field is uniform in the gap the real part of Iav′ is 
given by

 Re
sin

I j g
g

g

I b I b

I aav′ ( )



 =

( )
⋅

( ) − ( )
( )








β

β
β

γ γ
γ

1
2

2

2
0
2

1
2

0




= ( )

2

21
2

M β , (11.101)

where the definition of the radial coupling factor is given by (11.73) and the nota-
tion has been changed to be consistent with that used in this book. The real part of 
the beam loading admittance given by (11.100) is identical to (11.99). The imagin-
ary part of Iav′ for a uniform field is given by

 

Im
sin

I j g
g g

g

I b I b

I aav′ ( )



 = −

− ( )
⋅

( ) − ( ) 
( )β
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2
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2
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2
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=

∞
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.
 

(11.102)

In this equation

 r
g
a

a u
cn n

n

= −












λ β
λ

1
2

0
2

, (11.103)

where λn are the zeroes of the Bessel function J0 λ( ),
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a u c
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n n
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− ( ) ( )
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, (11.104)
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(11.105)

 x
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a

J b a

Jn
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=
( )

( )
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0
2

1
2

λ
λ

, (11.106)

 and y
g
a

J b a

Jn
n

n

= ⋅
( )

( )
2

2

1
2

1
2

λ
λ

. (11.107)

Then the beam loading susceptance can be calculated. The summation in (11.102) 
converges rapidly so that three terms are usually sufficient to give good accuracy 
(see Worksheet 11.1). Figure 11.16 shows examples of curves of beam loading con-
ductance and susceptance calculated in this way for a number of gridless gaps [10].
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11.4.3 Beam Interaction with a Passive Gridless Gap

Bers [22] showed that the effect of a gridless gap can conveniently be represented by 
two drift regions separated by an equivalent narrow gridded gap. The interaction 
between a beam and a passive gap can be represented by the equivalent circuit 
shown in Figure 11.17. The admittance YL represents the properties of the circuit 
connected to the gap. The voltage induced in the gap by a modulated beam is

 V
i

Y
Y
Y

M M
V

Vg
g

T

e

T

= − = − −[ ]







+ −

+

−

1

1

, (11.108)

where the initial modulation of the beam at the plane of the gap is represented by 
the amplitudes of the space- charge waves V1±( ) and Y Y YT b L= + . The negative sign 
in (11.108) is present because power must be transferred from the beam to a passive 
circuit. The modulation added to the beam by the gap voltage is given by (11.91). 
Thus the modulation of the beam leaving the gap is
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(11.109)

Figure 11.16: Beam- loading conductance and susceptance of gridless gaps of length 
g when b a = 0 7.
(copyright 1967, IEEE, reproduced, with permission, from [10]).
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The matrices for the drift regions take the form
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 (11.110)

and it is assumed that the drift regions extend outside the space occupied by 
the field of  the gap. Thus the interaction between an electron beam and a ser-
ies of  passive gaps can be represented by cascaded matrices (see Section 13.2). 
The interaction with a series of  gaps that are connected together is discussed in 
Section 11.6.

The relationship between the transmission line and space- charge wave param-
eters describing the modulation of the beam can be written
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Inverting this equation
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From (11.95) the modulation of a beam by a gap is
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After the gap, from (11.111) and (11.113),
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where

 M M M= +( )+ −
1
2

 (11.115)

Figure 11.17: Equivalent circuit for the interaction between an electron beam and a passive 
gap (electrons positive).
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and, from (11.98),

 G
Y

M Mb
e= −( )+ −4

2 2 . (11.116)

Similarly from (11.96) and (11.112) the induced current is
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where V1 and I1 describe the modulation of the beam entering the gap. The effect of 
the gap on a modulated beam is then given by
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Substituting for ig from (11.117) gives, after some rearrangement [25]
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This equation is unchanged if  the sign of the charge on the electron is reversed.

11.5 Continuous Interaction with a Slow- Wave Structure

Figure 11.18 shows, schematically, the continuous interaction between an electron 
beam and a uniform slow- wave structure (circuit). At any given frequency the cir-
cuit can be regarded as a transmission line having characteristic impedance Zc on 
which the propagation constant is β0. The potential difference between the surface 
of the structure and a surrounding earthed conductor is

 V V j t zc = −( )1 0exp .ω β  (11.120)

Figure 11.18: Interaction between an electron beam and a uniform slow- wave structure 
(electrons negative).
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The amplitude of the axial component of electric field at the surface of the circuit 
is given by (4.11). When the phase velocity is much less than the velocity of light 
this becomes

 E a
V
z

j Vz
c

c( ) = −
∂
∂

= β0 . (11.121)

If  it is assumed that the electron beam is in confined flow (which has been seen to 
be a good approximation if  m > 1.5) then the effective electric field acting on the 
electrons is the average over the cross- section of the beam so that

 E j Vz c c= ( )β µ γ0 0 , (11.122)

where the radial coupling factor µc is given by (11.38) and γ β ω0 0
2 2 2= − c . The 

relationship between the electric field acting on the beam and the power flow along 
the circuit can be written as
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2

2

2β
µ= = , (11.123)

where ZC  is the Coupling Impedance of  the circuit averaged over the cross- section 
of the beam. In the limiting case when the radius of the beam is vanishingly small 
then (11.123) becomes
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β γ
, (11.124)

where ZP  is known as the Pierce Impedance of  the circuit [26].
Now consider the interaction taking place in a short length dz, as shown in 

Figure 11.18. The changes in the amplitudes of the space- charge waves caused by 
the field of the circuit are given by (11.88). These must be added to those caused by 
the propagation of the waves already existing on the beam so that

 ∂
∂

= − +
∂±

± ±
V
z

j V
V
dzc

cβ µ1
2

. (11.125)

The signs in this equation assume that the charge on the electron is negative. This is 
essential for consistency with the conventional voltages and currents on the circuit. 
The amplitude of the wave on the circuit Vc( ) can be expressed as the sum of the 
amplitudes of the forward and backward waves so that (11.125) becomes

 ∂
∂

= − +
∂

+( )±
± ±

V
z

j V
dz

V Vc f bβ µ1
2

. (11.126)

Note that we have assumed here that the beam does not load the circuit appreciably 
so that the modulation of the beam can be expressed in terms of the circuit voltage. 
This is justified because the beam impedance is much greater than that of the circuit.
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The RF displacement current flowing from the beam into the element of the cir-
cuit can be found by applying the equation

 J
D

dS+
∂
∂







⋅ =⌠
⌡

⌠
⌡
 t
S

0 (11.127)

to the closed surface bounded by the planes z and z dz+  and the surface of the cir-
cuit at r a= . Then the radial displacement current flowing into the element of the 
circuit is

 di
z

I I dz
I
z

dzR C D c
C= −

∂
∂

+( ) = −
∂
∂

µ , (11.128)

where IC  and ID are the convection current and the axial displacement current, as 
defined in (11.68). The radial displacement current is divided equally between the 
forward and backward directions so that the increments in the forward and back-
ward waves on the circuit are

 dV Z
I
z

dzc c
C= −

∂
∂

1
2

µ . (11.129)

This increment is added to amplitudes of the waves which already exist on the cir-
cuit. The convection current can be expressed as the sum of the currents in the fast 
and slow space- charge waves so that the forward and backward waves on the circuit 
satisfy
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and
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∂
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. (11.131)

Note that we have assumed that the coupling is weak so that the characteristic 
impedances of  the modes are not significantly altered by it. We have also assumed 
that the coupling takes the form of induction of  current on the structure. This 
is justified because the impedance of  the beam is much higher than that of  the 
structure.

Equations (11.126), (11.130) and (11.131) can be rearranged as coupled- mode 
equations (see Section 1.3.8). The result is
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where

 A Z Yc c e=
1
2

µ  (11.133)

and

 B c=
1
2

µ . (11.134)

If  the voltages are normalised, following Louisell [21], by dividing them by the 
square root of the appropriate characteristic impedance, then the magnitudes of 
the coupling terms are typically of the order of 1% of the diagonal terms. This 
confirms the validity of the assumption that the coupling as weak, and that the 
propagation constants and characteristic impedances of the modes are not changed 
by it. The propagation constants of the four coupled modes are the eigenvalues of 
the matrix so that

 C I[ ]− [ ] =β 0, (11.135)

where C[ ] is the matrix in (11.132) and [ I ] is the unit matrix. Expanding the deter-
minant gives the dispersion equation of the coupled system

 β β β β β µ β β β0
2 2 2 2 2

0
2−[ ] − −( )



 = −q e c c e qZ Y . (11.136)

Substitution for Ye using (11.78) gives

 β β β β β µ β β β0
2 2 2 2 2

0 0
21

2
−[ ] − −( )



 = − ( )q e c c eZ G . (11.137)

where G I V0 0 0= . This is a quartic equation in β which therefore has four roots at 
any given frequency. The bracketed term on the right- hand side of this equation is 
the ratio of the coupling impedance defined by equation (11.123) to the DC imped-
ance of the beam. It may also be noted that the right- hand side of the equation is 
independent of ωq.

To examine the solutions of (11.137) let us consider first the case when the cou-
pling between the beam and the circuit is removed, by setting µc = 0. The solutions 
are then

 β β= ± 0 (11.138)

for the forward and backward waves modes on the circuit in the absence of the 
beam, and

 β β β= e q  (11.139)

for the fast and slow space- charge waves on the beam. Figure  11.19(a) shows 
the uncoupled modes defined by these equations. The axes are normalised to the 
synchronous point ω βs s,( )  which is defined here as the point of intersection of 
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the forward circuit wave, and the slow space- charge wave, curves in the absence 
of coupling.1 The parameter values are typical of those found in helix TWTs but 
for simplicity it has been assumed that the reduced plasma frequency is constant. 
Coupled- mode theory (see Section 1.3.8) leads us to expect type C coupling between 
the forward wave on the circuit, and the slow space- charge wave, in the region where 
they are close to synchronism. Figure 11.19(b) shows the coupled- mode diagram 
computed from (11.132). The coupling produces a region where a pair of complex 
conjugate solutions exists. These are known as the growing wave and the decaying 
wave. It is evident that the backward wave on the circuit is hardly affected by the 
coupling. Similarly, the fast space- charge wave is not much affected by the cou-
pling, especially if  the space- charge density is high.

The solutions of (11.137) were first derived by Pierce, who assumed that the 
backward wave was unchanged, and solved the resulting the cubic equation [26, 27].  
He employed normalised parameters which have remained part of the common 

Figure 11.19: Continuous interaction between an electron beam and a uniform slow- wave 
structure: (a) uncoupled modes and (b) coupled modes. The real parts are shown by 
solid and dashed lines. The imaginary parts multiplied by 50 by the dotted lines. At the 
synchronous point A = 0 0014. , B = 0 25. , and ω ωq = 0 1. .

1	 This	definition	differs	from	that	commonly	used	 β β0 =( )e 	but,	in	the	author’s	opinion	the	definition	used	
here	is	to	be	preferred.
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language of TWT theory although they are not an ideal choice. The Pierce param-
eters describing a loss- less tube are:

• The gain parameter

 C
I Z

V
G ZC C= = 





0

0

1
3

0

1
3

4 4
, (11.140)

which resembles the constant term on the right hand side of (11.137).
• The velocity parameter

 b
C

u
vp

= −






1

10 , (11.141)

where vp is the phase velocity of the waves on the circuit.
• The space- charge parameter

 QC
C

q

q

=
+







1

4 12

2
ω ω

ω ω
. (11.142)

Curves giving the solutions to the quartic equation (11.136) in terms of the Pierce 
parameters were published by [28, 29]. Today it is better to program a computer to 
find the eigenvalues of (11.132) directly (see Worksheet 11.4).

Useful insight can be obtained from the two- wave approximation which assumes 
that only coupling between the slow space- charge wave and the forward wave on the 
circuit is important. The approximate equation is obtained from (11.132) by drop-
ping the terms in Vb and V+ to give
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The eigenvalues of this matrix are the solutions of the quadratic dispersion equation

 β β β β µ β β2
0

2
01

1
4

0− +( ) + +





=− −c c eZ Y , (11.144)

which can be solved using the usual formula to give

 β β β β β β β µ= +( ) ± −( ) −− − −
1
2

1
20 0

2
0

2
c c eZ Y . (11.145)

This solution reveals a number of important things about the travelling-wave inter-
action. If  the term under the square root is negative then β has a pair of complex 
conjugate roots. These are the growing and decaying waves whose amplitudes vary 
with z as exp ±( )αz  where

 α µ β β β β= − −( )− −
1
2

2
0 0

2
c c eZ Y . (11.146)
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The real part of each of these roots is given by the first term of (11.145) which is 
the mean of the two uncoupled roots. The validity of the two- wave approximation 
increases as the plasma frequency increases because the coupling between the slow 
space- charge wave and the forward wave on the circuit is reduced. Table 11.1 shows 
a comparison between the values of the four propagation constants computed from 
(11.132), and the approximate values obtained from (11.145) (see Worksheet 11.4). 
The same parameter values are used as in Figure 11.18. The figures in brackets are 
those for the uncoupled modes. It can be seen that the difference between the two 
sets of values is small.

At the synchronous point (11.145) becomes

 β β µ
= ±



0 1

2
j Z Yc

c e , (11.147)

where the positive sign corresponds to the growing wave. This is very close to the 
condition that the imaginary part of β is greatest. Thus the maximum gain per cir-
cuit wavelength λ π β0 02=( ) is given by

 Gain dB 0
1= ( )



 =20 27 30log exp . .πµ µc c e c c eZ Y Z Y λ−  (11.148)

The parameter µc c eZ Y2  is typically in the range 0.01 to 0.02 corresponding to gain 
of around 3 to 4 dB per wavelength. It is not surprising that the gain increases 
with coupling impedance (corresponding to increasing interaction field for a given 
power flow), and with the electronic admittance of the beam (corresponding to 
increasing current and decreasing voltage).

If  we define x = −β β0 , y = 2 0α β  and ′ =C Z Yc c eµ2  then (11.146) can be written as

 y C x x= ′ − −( )1
2
. (11.149)

Figure 11.20 shows curves of y against x for a range of typical values of ′C . 
Careful examination of these curves shows that they are not quite symmetrical. 
The peak of the curve lies very close to x = 1 but moves gradually to the right as ′C  

Table 11.1: Comparison between 2- wave and 4- wave models of the continuous interaction between an 
electron beam and a slow- wave structure

ω ωs Model β β0 β β0 β β0 β β0

0.5 2 waves 1.010 1.076 (0.744) (–1.000)

4 waves 1.012 1.075 0.742 –1.000

1.0 2 waves 1.001+0.019i 1.001– 0.019i (0.829) (–1.000)

4 waves 1.001+0.019i 1.001– 0.019i 0.828 –1.000

1.5 2 waves 0.986+0.005i 0.986– 0.005i (0.858) (–1.000)

4 waves 0.988 0.985 0.856 –1.000

2.0 2 waves 0.996 0.962 (0.872) (–1.000)

4 waves 0.997 0.961 0.871 –1.000
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increases. The curves show that the gain per unit length is very nearly proportional 
to ′C . Figure 11.20 also shows that the bandwidth of the interaction increases 
as ′C  increases. Since the bandwidth has been defined in terms of the ratio β β− 0  
the bandwidth in terms of frequency depends also upon the angle of intersection 
between the dispersion curves for these two modes. The angle can be reduced by 
reducing the effective plasma frequency of the beam, and also by adjusting the 
shape of the dispersion curve of the slow- wave circuit. Although the curves in 
Figure  11.20 show the general properties of the travelling-wave interaction, it is 
important to remember that the gain curves for real TWTs differ from them in 
detail because of dependence of ωq, µc,Zc, and Ye on frequency.

The analysis presented so far has ignored the effect of losses in the slow- wave 
structure. In practice all real slow- wave structures have some transmission loss in 
the absence of the electron beam. Also it is common to introduce additional loss 
to ensure stability against oscillations. The effects of the cold loss of the circuit can 
be included in the theory by replacing β0 for the forward wave by β α0 0−( )j . The 
two- wave approximation to the solution of the dispersion equation (11.145) shows 
that the growing wave then grows as exp α α−( )0 2 . The effect of this is to reduce 
the overall gain of a section of slow- wave structure by half the cold loss in decibels. 
A more exact figure can be arrived at in particular cases by allowing for the cold loss 
when solving (11.132).

11.6 Discrete Interaction with a Slow- Wave Structure

In high- power TWTs the slow- wave structure is not continuous and the field act-
ing on the beam is the superposition of the fields of a series of gaps [30]. It is 
self- evident that this is true for coupled- cavity, ring- bar, and other similar periodic 
slow- wave structures (see Chapter 4). In fact the field of a helix should really also 
be considered in the same way, particularly for the space harmonic fields. Whilst it 

Figure 11.20: Illustration of the dependence of the bandwidth of a TWT calculated from 
(11.149) on  ′ =C Z Yc eµ2 .
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is possible to model the forward- wave interaction in a helix TWT as continuous, it 
does not provide an adequate description for backward wave interactions.

In order to model the interaction between an electron beam and a periodic slow- 
wave structure let us consider a single cell of the circuit whose pitch (length) is p, 
as shown in Figure 11.21. For consistency the polarity of the gap voltage has been 
reversed so that the electron charge is negative. Within this cell we will use the drift- 
gap- drift model described in Section 11.4.3. This model is satisfactory for the circuits 
used in space- harmonic TWTs because the gaps are small compared with the pitch 
of the circuit, and the fields of adjacent gaps do not overlap to any appreciable 
extent. There is a problem, however, if  the model is applied to forward- fundamental 
coupled- cavity TWTs because the length of the gap is then comparable with the 
pitch of the circuit and the fields of adjacent gaps do overlap. Any attempt to model 
the simultaneous interaction between an electron and the fields of two, or more, gaps 
results in great difficulties. The best solution seems to be to regard the total electric 
field within one cell of the circuit as ‘belonging’ to one gap. This approach results in 
discontinuities in the field at the junctions between the cells, and all the induced cur-
rent is regarded as ‘belonging’ to that cell rather than being divided between adjacent 
cells. Nevertheless, the results obtained show that the approximation is acceptable. 
These issues will not be pursued any further here and we will assume that overlap-
ping between the fields of adjacent gaps can be neglected.

The matrix describing the interaction between the beam and a localised gap is 
found, by reference to Figure 11.17, and using (11.91) and (11.96) to be
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. (11.150)

This matrix is unchanged when the signs of the currents and voltages are reversed. 
The term Yb is typically of the order of 4 10 6× −  which is very small compared with 
the other terms and can, therefore, be neglected. The physical explanation for this 
is that the beam impedance of several hundred kilohms is much greater than the 
total impedance of the circuit (a few hundred ohms) so that the beam does not load 
the circuit to an appreciable extent. This must be distinguished from the situation 

Figure 11.21: Interaction between an electron beam and a periodic slow- wave structure 
(electrons negative).
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which exists when the beam interacts with a resonant circuit where the beam and 
circuit impedances are comparable with each other. Equation (11.150) can be writ-
ten in partitioned form as
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 (11.151)

where v
V
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, I[ ] is the 2×2 unit matrix, B

M
M2

1
2

[ ] = 





+

−
 and  B Y M Me3[ ] = −[ ]+ − .

The generalised matrix for localised coupling to a transmission line, when there 
is no localised energy storage is, from (4.22),
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where Zc is the characteristic impedance of the line and N Z ZT c=  from (4.28). 
Equation (11.152) can be written in partitioned form as
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where V
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between (11.151) and (11.153) yields
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We will assume that the gap is at the centre of the cell so that the drift matrix D[ ] 
for half  the pitch is
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(11.155)

Thus the complete representation of the cell is

 V D G D V P V2 1 1[ ] = [ ][ ][ ][ ] = [ ][ ]. (11.156)

The normal modes of the coupled system are the eigenvalues of the matrix P[ ]. 
These are found in the usual way by requiring that V V2 1[ ] = [ ]λ  so that the values of 
λ are the solutions of the dispersion equation

 P I[ ] − [ ] =λ 0. (11.157)
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Since P[ ] is a 4 × 4 matrix, equation (11.157) has four roots which may be expressed 
in terms of the propagation constants of the coupled system using

 λ βn nj p= −( )exp . (11.158)

Thus (11.157) represents the properties of a discretely coupled system in the same 
way that (11.135) represents the properties of a continuously coupled system. For 
any particular combination of beam and circuit it is possible to find a numerical 
solution to (11.157) (see Worksheet 11.5). Figure 11.22 shows the coupled modes 
obtained for a typical case where ω and β are normalised to the synchronous values. 
The predicted region of gain is very similar to that seen in Figure 11.18(b). There 
is, however, one important difference because the periodic nature of the interaction 
also permits interactions with space- harmonic waves.

The interaction with the m = −1 space harmonic of the backward wave on the 
circuit is shown in more detail in Figure 11.23. This diagram shows Type B cou-
pling between the backward circuit wave and the fast space- charge wave, and Type 
D coupling between the backward circuit wave and the slow- space- charge wave 
(see Section 1.3.8). These interactions are predicted by coupled- mode theory. To 
understand their implications we must apply the correct boundary conditions. For 
coupling between the backward wave and the fast space- charge wave the only per-
mitted solutions are those in which the power in the forward wave is progressively 
reflected into the backward wave. Thus, for a sufficiently long region of coupling, 
the power in the forward wave is completely reflected leading, to a stop band in the 
dispersion diagram. For coupling between the backward wave and the slow space- 
charge wave, however, the transfer of power from the slow space- charge wave to the 
backward wave causes the amplitude of the space- charge wave to grow. It is there-
fore possible for a backward wave with finite amplitude at the input to be created 
by the injection of a very low noise power in the space- charge wave. The result is 
the possibility of backward- wave oscillation, which is discussed in the next section.

Figure 11.22: Dispersion diagram for coupling between an electron beam and a periodic 
slow- wave structure. The imaginary part ×( )50  is shown by the dotted line.
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11.7 Backward- Wave Interactions

It was shown in the previous section that the space- charge waves can interact with 
the m = −1 space harmonic of the backward wave on the structure. This leads to the 
possibility of amplification of the backward wave. Since energy must be conserved 
for the system comprising the beam and the slow- wave structure, it is not possi-
ble for any amplification to result from the interaction with the fast space- charge 
wave. The possibility of an interaction between the backward circuit wave and the 
slow space- charge wave has generally been studied using the theory of a continu-
ous interaction [3, 31– 33]. The equations are developed in exactly the same man-
ner as in Section 11.5 except that the sign of the characteristic impedance of the 
slow- wave structure is reversed because the power flow is in the negative direction. 
In order to understand the implications of this it is sufficient to use the two- wave 
approximation so that (11.144) becomes

 β β β β µ β β2
1

2
11

1
4

0− +( ) + −





=− − − −c c eZ Y , (11.159)

where β β π− = − +1 0 2 p and circuit impedance Zc is that for the appropriate space 
harmonic. The solutions to this equation are

 β β β β β β β µ= +( ) ± −( ) +− − − − − −
1
2

1
21 1

2
1

2
c c eZ Y  (11.160)

and we see at once that they are always real. At the synchronous point β β− −=1  and

 β β µ
= ±



−1 1

2
c

c eZ Y . (11.161)

Thus the amplitude of the backward wave must vary as

 V A j z Z Y B j z Z Y j zb c c e c c e= ( ) + −( )



 −( )− − −exp exp exp ,β µ β µ β1 1 12 2  

(11.162)

Figure 11.23: Detail of the dispersion diagram for coupling between an electron beam and a 
periodic slow- wave structure showing the interaction with the backward wave.
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where A and B are constants. If  a backward wave interaction takes place in a 
system of length L where the output end of the circuit is matched, then Vb must 
be finite when z = 0 and zero when z L= . The conditions for this are that A B=  
so that the amplitude of the backward wave varies as cos β µ−( )1 2z Z Yc c e  and 
β µ π− =1 2 2L Z Yc c e . Thus the oscillations are just possible when

 Y
L

Ye
c

c=




−

π
β µ1

2

. (11.163)

Substituting for Ye from (11.78) gives the least current for which oscillation can occur

 I
V

L
Yq

c
c0

0

1

2
2

=




−

ω
ω

π
β µ

. (11.164)

For helix slow- wave structures µc is calculated for the TM11 mode. More exact results 
for the start- oscillation current can be obtained by solving the full dispersion equa-
tion and applying the appropriate boundary conditions. Good agreement has been 
shown between the theoretical and experimental values of start- oscillation current 
[34]. If  the current is insufficient to permit oscillations to occur, and a backward 
wave is launched at the output end of the structure, then the boundary conditions 
are modified and an amplified wave appears at the input end. However, because the 
interaction produces a standing wave, the growth is sinusoidal rather than exponen-
tial, as in the case of the forward- wave interaction.

Equation (11.159) was derived assuming that all quantities varied sinusoidally 
with time. To examine the rate of growth of the oscillations with time it is necessary 
to allow the frequency to be complex [31]. We therefore replace ω by ω δ−( )j  so that

 β β δ
− −→ −1 1

j
vp

, (11.165)

where vp is the phase velocity of the wave on the circuit. The sign of the imaginary 
part is positive because the slope of the dispersion curve of the backward wave is 
negative. Similarly

 β β δ
− −→ +

j
u0

. (11.166)

It can be shown that, when there are no reflections at the output of the section, 
oscillations can only occur at the synchronous point [31]. Then (11.160) becomes

 β β δ µ β δ= + −






± − +







− −1

0

2
1

2 2

0

2

2
1 1 1

2
1 1j

v u
Z Y

v up
c c e

p

, (11.167)

where it is assumed that δ ω  so that second- order terms may be neglected. It 
can be seen that β is now complex. When the boundary conditions are applied it is 
found that δ increases as the beam current is increased beyond the start- oscillation 
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current. Thus, in general, both β and ω are complex when a backward wave inter-
action occurs, confirming the existence of an absolute instability. Their values are 
found by solving the dispersion equation subject to the appropriate boundary con-
ditions [33]. Once oscillation has commenced the amplitude increases with time 
until it is limited by non- linear effects.

11.8 Large- Signal Modelling of Beam- Wave Interactions

The fundamental equations for the interaction between an electron beam and an 
RF electric field in one dimension are (11.45) to (11.48). The theory of space- charge 
waves was developed by linearising these equations using the small- signal assump-
tion in (11.49). The result is an Eulerian analysis which treats the electron beam as 
a compressible fluid. It is possible to develop this analysis so that it applies under 
large- signal conditions [35– 37]. The method breaks down whenever electrons over-
take one another so that the properties of the beam at a given plane are no longer 
a single- valued function of position.

In general, large- signal theory must use Lagrangian analysis in which the elec-
tron beam is described by a set of sample electrons. The motions of these electrons 
are found by self- consistent numerical integration of the equations of motion, tak-
ing account of the space- charge field and the circuit field. It is possible to use com-
mercially available particle in cell (PIC) codes for this purpose [38]. These codes 
model the whole electromagnetic system of the tube, including the electron dynam-
ics, using either a finite difference or finite element method. The model can include 
the motion of large numbers of sample electrons in three dimensions so that it is 
possible to model a complete tube. This approach is very time consuming even with 
the fastest modern computers.

For many purposes it is better to use specially constructed models in which the 
properties of  the electromagnetic structure outside the interaction region are mod-
elled by equivalent circuits. This has the advantage that their properties are known 
and do not have to be re- computed at each time step. It is also possible to achieve 
good results using quite small numbers of  sample electrons each of  which is asso-
ciated with a disc, or ring, of  charge. The disc models divide the unmodulated 
beam into identical transverse slices and track the electron motion only in the axial 
direction using radially averaged values of  the electric field. The motion of  a disc 
is defined by two coordinates z z, ( ) which are functions of  time and the model is 
therefore one- dimensional. Ring models subdivide the discs into concentric rings 
of  charge which are able to move independently of  one another. In these models 
azimuthal symmetry is assumed, the motion of  a disc is defined by five coordinates 
r z r z, , , ,



θ( ), and they are therefore known as 2.5- dimensional models. It is usual to 
track the motion of  the set of  sample electrons which enter the interaction space 
in one RF cycle. In disc models 24 identical discs are usually sufficient.

The fundamental equations describing the problem ((11.45) to (11.48)) show that 
the variables depend on both distance and time. In order to carry out the numerical 
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integration of the equations it is necessary to choose one of these to be the inde-
pendent variable. When the independent variable is z (a distance stepping model) 
the coordinates of the electrons in a 1D model are t z, ( ). Conversely in a time step-
ping model their coordinates are z z, ( ). As the solution proceeds it is necessary to 
compute the current induced in the electromagnetic structure at intervals, and the 
electric field of the space- charge. Both of these are continuous functions which 
have to be reconstructed from the information available from the sample electrons. 
The convection current at a plane, which is strictly periodic in time, is determined 
from the times at which the sample electrons cross that plane. The electric field of 
the space- charge is found from the positions of the sample electrons at a given time. 
Thus the convection current can be computed directly in a distance stepping model, 
but the space- charge field must be calculated by interpolation. Conversely, in a time 
stepping model the space- charge field can be computed directly, but interpolation is 
necessary to find the induced current. Examples of computer programs using both 
methods are to be found in the literature (see, for example: time step [39, 40], and 
distance step [41, 42]).

The variation of the beam current with time at any plane is computed by asso-
ciating a periodically repeated pulse of current with each sample electron. This 
current can be expressed as a set of harmonic currents by Fourier analysis, and the 
results summed over all the electrons, to give the amplitude and phase of each har-
monic of the beam current. It might be thought that this method would be subject 
to numerical noise when the modulation of the beam is small, but that has not been 
found to be a problem.

The calculation of the space- charge field is more difficult because the distribution 
of charge density in space is not periodic. Thus, if  the time- step method is used, it is 
necessary either to assume an approximate periodic distribution, or to track more 
than a single wavelength of electrons so that the forces on the electrons at the ends 
of the group are calculated correctly. It is important to be able to model electrons 
which overtake one another, and also those which overtake those in an adjacent 
wavelength. With the distance- step method the positions of the electrons are found 
by interpolation on data from previous steps, or by extrapolation to future steps. 
This does not raise as many problems as might appear at first because the space- 
charge forces have short range, and those arising from discs at a distance greater 
than half  a wavelength are usually negligible. Also, as we shall see, it is necessary to 
make multiple passes through the interaction space to find a self- consistent solution 
so it is possible to store the arrival times of the electrons at each plane. Thus data 
from a previous iteration can be used when calculating the space- charge field of 
electrons whose positions are beyond the current plane. The actual calculation of 
the space- charge field from the positions of the electrons can be achieved by assign-
ing charges to the nearest nodes of a spatial grid and then solving Poisson’s equation 
numerically [40, 43]. However, the space- charge calculation forms the innermost of 
a number of nested loops in the computational algorithm and it therefore has a 
very important effect on the time taken by the computation. For this reason it is 
better to compute the field of a single disc, or ring, and store the results in a look- up 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.012
https://www.cambridge.org/core


Large-Signal Modelling of Beam-Wave Interactions 419

table [41, 44] (see Worksheet 11.6). The infinitely thin discs used in early models led 
to problems with singularities in the field as electrons passed each other. That prob-
lem is removed by using discs having finite thickness. In 1D models it is possible to 
use compressible discs defined by the charge between each pair of sample electrons 
[45] but the additional complexity is not justified by the results.

In order to find the motion of the electrons it is also necessary to know the self- 
consistent field of the electromagnetic structure surrounding the beam. If  the struc-
ture is excited from an external source then the initial field is known. However, 
the interaction between the beam and the structure changes that field, and it is 
necessary to make multiple passes through the structure in order to achieve a self- 
consistent solution. The self- consistency can be checked by computing the net flow 
of energy through a closed boundary surrounding the interaction space because 
that should be zero in the steady state. When the electromagnetic structure has no 
external source, but is driven by a modulated beam, iteration is again necessary to 
achieve a self- consistent solution. Many computer codes have been written for the 
simulation of klystrons and TWTs but, almost without exception, they are propri-
etary and not generally available outside the organisations which produced them. 
An exception to this is AJ- DISK which is a 1D large- signal klystron model [11]. 
Simple Mathcad models for klystrons and helix TWTs can be found in Worksheets 
13.3, 13.5, and 14.3.

11.8.1 Large- Signal Model of the Beam– Gap Interaction

The large- signal interaction between an electron beam and the RF field of an inter-
action gap can be investigated by numerical integration of the equations of motion 
of the electrons. To obtain accurate results it is necessary to use a three- dimensional 
model [46, 47]. However, the main features can be studied qualitatively using a 
one- dimensional disc model of the electron beam [48– 51]. In Worksheet 11.6 the 
motion of a single wavelength of electrons is tracked in time, and the space- charge 
forces are calculated by assuming that the positions of the electrons are periodic 
in space. This assumption is not strictly valid, but it is adequate for purposes of 
illustration. The results of such calculations are commonly displayed in the form 
of an Applegate diagram as shown in Figure 11.24 (c.f. Figure 11.4). The slopes 
of the electron trajectories are proportional to their velocities. It is convenient to 
normalise the time and position by plotting θ β= e z against φ ω= t because then 
electrons which have velocity u0 have unit slope. The figure shows the trajectories of 
12 electrons distributed through one RF period when gap centre is at z = 0, the nor-
malised effective RF voltage MV Vg 0 0 2= . , and space- charge forces are neglected. 
The maximum accelerating field is at ω πt = 2 and the formation of the bunch is 
clearly visible.

For many purposes it is convenient to use a modified Applegate diagram in which 
the axes are interchanged. The phase is plotted relative to that of an electron travel-
ling at constant velocity (i.e. ′ = −φ φ θ). In this diagram the trajectory of an electron 
whose velocity is u0 is horizontal, while increased (reduced) velocity is indicated by 
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a negative (positive) slope. Figure 11.25(a) shows a modified Applegate diagram, 
including space- charge effects, when ω ωq = 0 1.  and the beam is modulated by a 
gap at z = 0 with MV Vg 0 0 1= . . The relative phase of the gap voltage is π 2, so 
that it is accelerating when 0 < <φ π′  and retarding when − < ′ <π φ 0. Under these 
conditions the bunching is just in the small- signal regime and the diagram shows 
repeated plasma oscillations whose wavelength is approximately 10λe. These oscilla-
tions show that there is a periodic exchange of energy between the kinetic energy of 
the electrons and the potential energy stored in the bunch. At the plane of where the 
bunching is greatest the trajectories are almost parallel to the horizontal axis, indi-
cating that the electron velocities are approximately u0, as predicted by small- signal 
theory. The relative phase of the bunch is close to zero and it therefore leads the 
phase of the gap voltage by approximately 90°, as expected from (11.13). However 
the diagram is not quite symmetrical about ′ =φ 0 because a finite input gap has been 
modelled and second- order effects are not negligible. In Figure 11.25(b) MV Vg 0  
has been increased to 0.2, the bunching is more pronounced, and the plane of the 
bunch has moved closer to the input gap. There is now a visible spread in the elec-
tron velocities at the plane of the bunch, and the subsequent trajectories are only 
approximately periodic. When the gap voltage is increased further (Figure 11.25(c), 
MV Vg 0 0 4= . ) the electron trajectories cross one another so that the bunch is not 
well- defined and there is a considerable spread of velocities.

The harmonic components of the beam current, as a function of position, can be 
calculated from the arrival times of the sample electrons at successive planes in z, 
as described above. Figure 11.26 shows how the harmonic currents vary with axial 
position for three different values of the effective gap voltage. In Figure 11.26(a) 
MV Vg 0 0 02=( ).  the behaviour is very close to that predicted by small- signal the-

ory, and the amplitude of the first current harmonic is proportional to sin βq z( ).  
It should be noted, however, that even in this case the amplitudes of the higher har-
monic components are not zero. The remaining figures show that, as the effective 

Figure 11.24: Applegate diagram for ballistic bunching of an electron beam  MV Vg 0 0 2=( ). .
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Figure 11.25: Modified Applegate diagrams for bunching of an electron beam with space- 
charge ω ωq =( )0 1. : (a) MV Vg 0 0 1= . , (b) MV Vg 0 0 2= .  and, (c) MV Vg 0 0 4= . .

Figure 11.26: Normalised harmonic currents as a function of axial position for ω ωq = 0 1.  
and different values of the effective gap voltage: (a) MV Vg 0 0 02= . , (b) MV Vg 0 0 1= .  
and (c) MV Vg 0 0 2= . .
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gap voltage is increased, the maximum of the first harmonic increases, and moves 
closer to the bunching gap, whilst the amplitudes of the higher harmonics increase 
more rapidly, so that the behaviour is increasingly non- linear.

11.8.2 Modulation of an Electron Beam by a Gap

When an electron beam passes through an interaction gap the field of the gap is 
generally much greater than the space- charge field. It is therefore possible to neglect 
the space- charge field to a first approximation when investigating the interaction. 
Figure 11.27(a) shows the profile of the radially averaged axial electric field acting 
on the electrons for a typical case b a g a= =( )0 6. , . The dashed vertical lines show 
the positions of the edges of the gap in the beam tunnel. The gap used for this 
illustration has a small- signal gap coupling factor M = 0 79.  and the ratio of the gap 
voltage to the beam voltage is 1.52 corresponding to MV Vg 0 1 2= . . The modified 
Applegate diagram in Figure 11.27(b) shows that at this gap voltage the electrons 
which lose energy (moving upwards in the figure) remain in the gap much longer 
than those which gain energy. They therefore experience a much greater change in 

Figure 11.27: Modulation of an electron beam by a gap under large- signal conditions 
when space- charge is neglected: (a) variation of the axial electric field with 
position, (b) the modified Applegate diagram, (c) the variation of the electron 
velocities with position and (d) the dependence of the final electron energy on 
phase  β β βe e e ga g b MV V= = = =( )1 0 6 1 20; . ; . .
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the phase of the field. In extreme cases the phase of the field is reversed during the 
transit time of an electron. This behaviour is also illustrated in Figure  11.27(c), 
which shows the normalised velocities of 12 electrons as they pass through the gap. 
Only those electrons with the greatest final velocities are accelerated continuously, 
all the others stay in the gap long enough to experience a reversal of the field. The 
normalised velocities of the slowest and fastest electrons are approximately 0.45 
and 1.45 as they leave the gap. Figure 11.27(d) shows the ratio of the final electron 
energy to the initial electron energy as a function of the phase at which each electron 
would reach the centre of the gap if  the field of the gap were zero. It is evident that 
under these conditions there is asymmetry between those electrons which are accel-
erated and those which are retarded. The dotted line in the figure shows the electron 
energies computed using the small- signal approximation (11.8). That model gives 
poor results especially for the electrons which are retarded because it assumes that 
they pass through the gap with constant velocity. Examination of Figure 11.26(c) 
suggests that better results could be obtained assuming that an electron has its ini-
tial velocity ui( ) up to the centre of the gap, and its final velocity uf φ( )( ) thereafter. 
Then the final energy is given by

 V V M u M u Vf i f gφ φ φ( ) = + ( ) + ( )( )( ) ( )0
1
2

cos , (11.168)

which can be solved by iteration to find Vf . The results of this second approxi-
mation are shown by the solid line in Figure 11.27(d). This equation predicts the 
velocities of the fastest and slowest electrons quite well but fails to reproduce   
the phase shift calculated by the disc model. The accuracy of (11.168) increases as 
the gap voltage is reduced.

The beam loading conductance can be calculated by computing the change in the 
kinetic energy of an unmodulated beam produced by the field of the gap [52] (see 
Worksheet 11.3). Using this method it is found that the beam loading conductance 
is given by (11.23) up to MV Vg 0 0 6= . . The results are only slightly affected by the 
inclusion of space- charge forces, as has been shown by the similarity between the 
results of ballistic analysis (11.22) and space- charge wave theory (11.99).

11.8.3 Current Induced in a Passive Gap by a Modulated Beam

We have seen that, when a modulated beam passes through an interaction gap, a 
current is induced in the gap. Under small- signal conditions the induced current 
can be calculated by assuming that the magnitude of the RF current in the beam 
is constant within the gap. The gap voltage is the product of the induced current 
and the impedance presented to the gap by beam loading and by the external cir-
cuit. Under large- signal conditions this assumption is no longer valid and the cur-
rent must be calculated by finding self- consistent values of the induced current and 
the gap voltage [53]. It is normally the case that the external circuit is passive and 
therefore the time average of the power in the beam can only be reduced by the 
interaction.
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Figure 11.28 shows the interaction between the convection current J t( )( ) and the 
electric field of a gap in the wall of the surrounding drift tube E t( )( ). The sign con-
vention used for the gap voltage Vg( ) and the induced current ig( ) is the same as in 
Figure 11.15. The induced current is in antiphase with the conventional current of 
the electrons and, therefore, in phase with the convection current. The instantane-
ous power transferred to the beam from the gap is given by [54]

 i t V t t t dvg g( ) ( ) = − ( )⋅ ( )∫∫∫ J E


. (11.169)

In a one- dimensional model this becomes

 i t V t I z t E z t dzg g z

z

z

( ) ( ) = − ( ) ( )∫ , , ,
1

2

 (11.170)

where I  is the convection current in the beam, Ez is the axial component of the 
electric field averaged over the cross- section of the beam, and the integral is taken 
over the region in which Ez ≠ 0. Now the electric field is proportional to the gap 
voltage so we may write

 E z t
V t

g
f zz

g, .( ) = −
( ) ( )  (11.171)

Substituting in (11.170) gives the instantaneous induced current

 i t
g

I z t f z dzg

z

z

( ) = ( ) ( )∫
1

1

2

, . (11.172)

But the currents are harmonic in time so that they can be expressed as a Fourier 
series. Then, equating the harmonics on the two sides of the equation gives the 
complex amplitude of the nth harmonic of the induced current in terms of the com-
plex amplitude of the nth harmonic of the convection current

 i
g

f z I z dzgn z

z

n= ( ) ( )∫
1

1

2

. (11.173)

Figure 11.28: Field and circuit representations of the interaction between a modulated 
electron beam and a gap in the wall of the surrounding drift tube.
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In small- signal theory it is assumed that the induced current depends only on the 
modulation of the beam entering the gap. The gap current associated with the re- 
modulation of the beam by the field of the gap is represented by the beam loading 
admittance. In large- signal theory the gap current computed by numerical evalua-
tion of (11.173) includes both effects. The cavity resonator outside the gap presents 
impedance Zg  to the current. That impedance is negligible except close to the signal 
harmonic to which it has been tuned. Thus the gap voltage is

 V t Z n i jn tg g gn( ) = − ( ) ( )ω ωexp . (11.174)

Mutually consistent values of the complex induced current and the complex gap 
voltage can be found by iteration.

The impedance of the gap is real when the signal frequency harmonic is equal 
to the resonant frequency of the cavity ω0( ), it has positive (inductive) reactance 
when ω ω< 0, and negative (capacitive) reactance when ω ω> 0 (see Section 3.2.1). 
The phase angle of the impedance varies from π 2 to −π 2 as the signal frequency 
increases (see Figure 3.4). The interaction between the modulated beam and the 
cavity can be understood by considering the phasor diagrams in Figure 11.29. The 
phases are referred to the instant at which the centre of the bunch lies at the centre 
of the gap. The phase of the RF convection current I1( ) is −π, and the phase of the 
induced current in the gap is zero, as shown in Figure 11.29(a). Figure 11.29(b) 
shows the positions of the phasor representing the gap voltage at three values of 
the modulation frequency ω( ). The phase of the current modulation added to the 
beam by the gap ∆I1( ) lags the phase of the gap voltage by approximately π 2. 
The phases of the additional modulation for the three frequencies are shown in 
Figure 11.29(a). In many cases the additional modulation is the dominant modula-
tion downstream from the gap. The special case of the output gap of an IOT or a 
klystron is considered in more detail in the next section. The application to electron 

Figure 11.29: Phasor diagrams for the interaction between a modulated electron beam and a 
passive cavity resonator: (a) current phasors, and (b) gap voltage phasors.
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bunching in klystrons, by cavities whose resonant frequency differs from the modu-
lation frequency, is considered in section 13.3.3.

11.8.4 Power Transfer in an Output Gap

The resonant frequency of the output cavity of an IOT or a klystron is normally 
very close to the frequency of modulation. The impedance presented to the induced 
current in the gap is therefore largely resistive. It is dominated by the external load 
in order to minimise the loss of RF power in the cavity.

To investigate how the power transferred to the output gap depends upon the 
current waveform, and upon the properties of the gap, we will consider the set of 
idealised current waveforms. These have been constructed to give the greatest pos-
sible value of I I1 0  for a given number of harmonics, subject to the condition that 
the total current can never be negative. They are defined by

 I n
nφ π φ, cos ,( ) = +( )2 1  (11.175)

where n is an integer. These functions are maximally flat at the zeroes of current. 
The DC current is given by

 I I n d0
1

2
= ( )

−
∫π

φ φ
π

π

,  (11.176)

and the harmonic currents are

 I I n m dm = ( ) ( )
−
∫

1
2π

φ φ φ
π

π

, cos . (11.177)

Table 11.2 shows the peak currents, and the amplitudes of the harmonic currents, 
of these idealised waveforms normalised to the DC current. Figure 11.30 shows the 
first four waveforms of the set. As the number of harmonics is increased the ampli-
tude of the first harmonic increases and the width of the bunch decreases. For n ≥ 4 
very nearly all the electrons are grouped within a phase range of 180°.

Table 11.2: Peak currents and harmonic current components of idealised bunching waveforms

Number of harmonics 1 2 3 4 5 6

I Ipk 0 2.00 2.67 3.20 3.66 4.06 4.43

I I1 0 1.000 1.333 1.500 1.600 1.667 1.714

I I2 0 0.333 0.600 0.800 0.952 1.071

I I3 0 0.100 0.229 0.357 0.476

I I4 0 0.029 0.079 0.143

I I5 0 0.008 0.026

I I6 0 0.002
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The range of  usefulness of  these equations can be investigated by comparing 
the results with those obtained directly using the disc model, without space- 
charge, so that the effects of  potential energy are not considered. It is assumed 
that the electrons all enter the gap with velocity u0. This problem was studied 
by Hechtel [51] who showed that the optimum conversion efficiency decreased 
with increases of  the normalised tunnel radius γ ea( ) and the normalised gap 
length βe g( ). Detailed results were only obtained for I I1 0 1 44= .  and the wave-
form assumed was not given. The same problem can be studied using Worksheet 
11.6 with the waveforms given by (11.175) and very similar results are obtained. 
Under small- signal conditions the maximum power delivered to the gap is 
given by

 P MI Vgap g=
1
2 1 . (11.178)

If  the RF beam current and the gap voltage are fixed then the power is propor-
tional to the gap coupling factor M( ) so that it decreases as M decreases. That is the 
case when the normalised tunnel radius γ ea( ) and the normalised gap length βe g( ) 
increase, exactly as found by Hechtel.

The physical origin of the beam loading conductance of an unmodulated beam is 
the imbalance between the powers transferred to electrons which are accelerated or 
retarded. When the input beam is modulated, the proportions of electrons in these 
two classes change. Then the time- average transfer of power between the beam and 
the gap depends upon the magnitude of the modulation, and upon the phase differ-
ence between the bunch centre and the field of the gap. The power delivered to the 
gap is the time- average of the product of the current and the effective gap voltage. 
Making use of (11.168) this can be written approximately as

 P I M u M u V dgap f g= − ( ) ( ) + ( )( )( ) +( )
−
∫

1
4 0π

φ φ φ φ
π

π

cos ,Φ  (11.179)

Figure 11.30: Idealised current waveforms having the maximum possible amplitude of the 
first harmonic for different numbers of harmonic components.
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where φ ω= t, I φ( ) is the beam current at the centre of the gap, and Φ is the phase of the 
gap voltage when the bunch is at the centre of the gap. This equation is found to give 
good agreement with the power computed using the disc model when the bunch length 
is 180° or less. Figure 11.31(a) shows a comparison between the electronic efficiency 
calculated using the disk model, and that computed using (11.179), for extraction of 
energy from an idealised bunch with n = 6. The disk model shows that the transfer of 
energy is greatest when MV Vg 0 1 2= . . The electronic efficiency decreases for greater 
gap voltages because some electrons remain in the gap for a long time, so that they 
experience a large change of phase and are re- accelerated, taking energy from the gap. 
For the ideally bunched beam, and the one- dimensional model without space- charge, 
considered here, this effect that sets a limit on the electronic efficiency of the interac-
tion. The energy of the slowest electron leaving the gap is around V Vmin .= 0 15 0 when 
g a= . This figure decreases slowly as the length of the gap is reduced.

Figure 11.31(b) compares the results of the disc model with those from (11.179) 
for energy transfer from the bunch to the field when MV Vg 0 1 0= .  and the phase of 
the bunch relative to the field of the gap is varied. It is found that these results are 
almost independent of the normalised length of the gap.

By analogy with small- signal theory we can define an effective large- signal gap 
coupling factor by

 M
P

I Veff
gap

g

=
2

1

, (11.180)

where I1 is the first harmonic of the beam current under large- signal conditions. 
Then the efficiency of the transfer of power from the beam to the gap is

Figure 11.31: Efficiency of the extraction of energy from an ideally bunched electron beam 
comparing results from the disc model and equations (11.179) and (11.182): (a) with 
Φ = °180 , and (b) with MV Vg 0 1 0= .   β β βe e ea g b= = =( )1 0 6; . .
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 ηe
eff g eff gM I V

I V

M

M
I
I

MV

V
= = ⋅ ⋅ ⋅1

0 0

1

0 02
1
2

. (11.181)

The value of Meff  can be calculated using the disk model or, approximately, using 
(11.179). When the beam is tightly bunched the majority of the electrons cross the 
gap centre close to the phase of the maximum retarding field. Then the exit velocities 
of the electrons are approximately u ufmin = ( )π  and a useful approximation to Meff  is

 M M u M ueff ≈ ( ) + ( )( )1
2 0 min . (11.182)

The electronic efficiency calculated using (11.182) is close to that given by the disc 
model up to MV Vg 0 1 0= . , as shown in Figure 11.30(a) when V0 25= kV so that 
relativistic effects are not important.

The effective coupling factor that gives maximum efficiency was calculated using 
the disc model, without space- charge, for I I1 0  in the range 1.33 to 1.67; γ ea in 
the range 0.2 to 3.0; and βe g  in the range 0.1 to 5.0. When the results were plot-
ted against the small- signal coupling factor M( ) the result was the universal curve, 
shown in Figure 11.32. The symbols represent different combinations of the param-
eters. The curve is closely fitted by the empirical approximation

 M M Meff = +( )1
2

6 . (11.183)

The corresponding values of V Vg 0  were about 1.5 when M = 0 8. . They increased 
at varying rates, depending upon the parameters chosen, as M decreased. It is 
important to remember that this result was obtained using a one- dimensional disc 
model in which space- charge was ignored and a uniform electric field in the gap 
was assumed. The value of the effective gap coupling factor for understanding the 
large- signal operation of IOTs and klystrons, and the effects when the bunches are 

Figure 11.32: Dependence of the effective gap coupling factor giving maximum efficiency 
upon the small- signal coupling factor.
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not ideal, are explored in Chapters 12 and 13. The effects of space- charge on the 
maximum efficiency of energy transfer to the gap are discussed in Section 13.3.6.
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12 Gridded Tubes

12.1 Introduction

Gridded tubes include triodes, tetrodes, and inductive output tubes (IOTs). In these 
devices the current emitted by a thermionic cathode is modulated by the voltage 
applied to a control grid as discussed in Chapter 6. The time varying current deliv-
ers RF power to an output circuit. The technology of triodes and tetrodes is mature 
and most of the literature dates from 1960 or earlier. Up to that time small valves 
were still the dominant type of active electronic device, and much of the litera-
ture concentrates on them. The subject was fully discussed in a number of books 
which contain much greater detail than is possible here [1– 5]. The state of the art 
of high power triodes and tetrodes was reviewed in [6]. The principle of the IOT 
was known for many years, but this type of tube did not become commercially 
 important until the development of pyrolytic graphite grids [7, 8]. Triodes and 
 tetrodes are now mainly used in high power oscillators and amplifiers up to around 
200 MHz. Inductive output tubes are high power amplifiers in the range 200 MHz 
to 1.3 GHz [9, 10].

12.1.1 Gridded Tube Amplifiers

Before we proceed to examine the properties of gridded tubes in detail it is neces-
sary to understand how they are used in power amplifiers. Figure 12.1 shows the 
circuit of a common cathode tetrode amplifier with a tuned anode (tank) circuit. 
In UHF amplifiers this circuit takes the form of a cavity resonator, but at lower 
frequencies lumped components are used. At very low frequencies a resistive anode 
load may be used, but this is unsatisfactory in the VHF band and above because of 
the effects of parasitic capacitance. At the resonant frequency the load in the anode 
circuit comprises the shunt resistance of the resonator in parallel with the load 
resistance. If  the load impedance has a reactive component then it detunes the res-
onator and can be compensated for. The DC electrode potentials are maintained by 
the power supplies shown and the capacitors provide RF coupling and decoupling.

An alternative circuit which is frequently used is the common grid circuit shown 
in Figure 12.2. This circuit is easier to construct, using tubes with coaxial electrodes, 
and there is better isolation between the input and the output circuits because the 
RF voltage on both grids is zero. The other important difference is that in this 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.013
https://www.cambridge.org/core


Gridded Tubes434

circuit the full anode current flows in the input circuit with the result that the input 
impedance and the gain are both lower than for the grounded cathode circuit.

12.1.2 Classes of Amplification

Figure 12.3 shows typical characteristic curves of a tetrode. In the absence of an 
RF input the currents flowing to the electrodes are determined solely by the DC 
voltage applied to them. The tube is then said to be at its quiescent (Q) point. Tuned 
amplifiers are normally operated in one of three modes known as classes A, B, and 
C as described below. The difference between these lies in the choice of the Q point. 
The Q point marked in Figure 12.3 lies on the curve of zero anode current at an 
anode voltage of 10 kV. This is achieved by setting the control grid voltage to –240 
V. The screen grid is at RF ground and a DC potential of 900V.

Figure 12.1: Common cathode tetrode amplifier.
(copyright 1992, CERN, reproduced, with permission, from [11]).

Figure 12.2: Common grid tetrode amplifier
(copyright 1992, CERN, reproduced, with permission, from [11]).
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Figure 12.3: RS 2058 tetrode characteristic curves with load line
(copyright 1986, Siemens, reproduced, with permission of Thales Electron Devices, 
from [12]).
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When an RF input voltage is applied between the cathode and the control grid, 
the RF cathode current is in phase with the RF grid voltage. If  the anode load is 
tuned to resonance then it presents a pure resistance to the fundamental compo-
nent of the RF current. The tank circuit is not resonant at the higher harmonics of 
the anode current. Thus, the RF voltage on the anode is sinusoidal and in antiphase 
with the control grid voltage. The tube operates on a straight load line passing 
through the Q point whose slope is determined by the anode load resistance. A typi-
cal load line is shown in Figure 12.3. When the instantaneous control grid voltage is 
100 V the anode current is a little over 40 A and the anode voltage is 1.5 kV.

The operation of a gridded- tube power amplifier can be explored using a simple 
theory in which it is assumed that the tube obeys the 3 2 power law, and the grid 
currents are negligible. The analysis is presented here in terms of a triode, but tet-
rode amplifiers show the same behaviour. Let the control grid voltage be

 V t V V tg go g( ) = + ( )1 cos ,ω  (12.1)

where ω is the frequency of operation. The anode current is given by (6.1),

 I K V V
V

a go g
aθ θ

µ
( ) = + ( ) +





1

3
2

cos , (12.2)

when the term in brackets is positive. The conduction angleα is defined as the range 
of θ for which the anode current is non- zero. Thus from (12.2)

 V
V

Vgo
a

g+ = − 



µ

α
1 2
cos . (12.3)

Substituting into (12.2) gives

 I KVa gθ θ α( ) = ( ) − ( )( )1

3
2

3
22cos cos .  (12.4)

The peak anode current is

 I KVpk g= − ( )( )1

3
2

3
21 2cos ,α  (12.5)

so that the anode current may be written

 I Ia pkθ
θ α

α
( ) =

( ) − ( )
− ( )







cos cos

cos
.

2

1 2

3
2

 (12.6)

Figure  12.4 shows normalised anode current waveforms for some representative 
conduction angles. The classes of amplification are defined in terms of the conduc-
tion angle as shown in Table 12.1.

Using Fourier analysis, the anode current can be expressed as

 I t I I ta a a( ) = + ( ) +0 1 cos .ω   (12.7)
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If  it is assumed that the output circuit is resonant at the signal frequency, the anode 
voltage can be written

 V V V ta a a= − ( )0 1 cos ,ω  (12.8)

because Va1 is in antiphase with Ia1. The DC input power is

 P I Va a0 0 0=  (12.9)

and the RF output power is

 P I Va a2 1 1
1
2

= . (12.10)

Then the electronic efficiency is

 ηe
a a

a a

P
P

I V
I V

= =2

0

1 1

0 02
. (12.11)

Figure 12.4: Normalised anode current waveforms for representative conduction angles.

Table 12.1: Power amplifier classes

Class Conduction angle (degrees)

A 360

AB 180 to 360

B 180

C <180
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Because the amplifier is a power amplifier the amplitudes of the RF voltage and cur-
rent should be as great as possible. They are limited only by the need to ensure that 
the anode voltage is always greater than the grid voltage in a triode, or the screen 
grid voltage in a tetrode, and that the tube ratings are not exceeded. Figure 12.5(a) 
shows the efficiency as a function of the conduction angle and of V Va a1 0 . It can be 
seen that the efficiency increases as V Va a1 0  increases and as the conduction angle 
decreases. The reason for this can be seen in Figure 12.5(b), which shows the varia-
tion of the DC and RF currents with conduction angle. The peak current is limited 
by the ratings of the tube. Therefore the DC current, the RF current, and the power 
output of the amplifier, decrease as the conduction angle decreases. However, 
the DC current decreases more rapidly than the RF current so that the efficiency 
increases for a given ratio V Va a1 0  (see Worksheet 12.1).

The input power of a common cathode amplifier is

 P V Ig g1 1 1
1
2

= , (12.12)

where Ig1 is the RF current flowing to the control grid. For a common grid 
amplifier it is

 P V I I V Ig g a g a1 1 1 1 1 1
1
2

1
2

= +( ) ≈ . (12.13)

The grid current is zero except when the grid is positive so I Ig a1 1
 and the grid cur-

rent can be ignored in the first approximation. The gain of the amplifier in decibels

 G
P
PdB =







10 2

1

log dB. (12.14)

Thus the gain of a common cathode amplifier is always greater than that of a 
common grid amplifier having the same output power. As the conduction angle 

Figure 12.5: (a) Variation of electronic efficiency with conduction angle, and (b) variation of 
DC and RF current with conduction angle.
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decreases, the amplitude of the RF grid voltage must be increased to maintain 
the same peak anode current. Therefore the input power increases and the gain 
decreases.

The power dissipated on the anode is the difference between the DC input power 
and the RF output power. Therefore it decreases, as the conduction angle is reduced, 
at constant RF output power. In many cases the performance of a tube is limited by 
grid temperature raised by radiation from the cathode, electron bombardment, and 
RF power dissipation [13]. The RF power dissipation is proportional to the square 
of the RF anode current. It is therefore possible to increase the peak anode current, 
while maintaining constant RF anode current, as the conduction angle decreases. 
However, grid dissipation caused by electron bombardment increases as the peak 
anode current increases, and this sets a limit to the peak anode current. For many 
purposes class B operation offers a good compromise between high efficiency and 
high gain.

Two tubes driven in anti- phase can be connected to the same output circuit so 
that each conducts in turn to form a push- pull amplifier. The tubes are operated 
approximately in class B but the conduction angle is increased slightly to make 
the output waveform more nearly sinusoidal (reduction of ‘cross- over distortion’). 
Further information on this and other types of power amplifier can be found in 
[13– 16].

12.2 Triodes

Figure 12.6 shows a schematic view of a high power triode. The cathode, grid, and 
anode are usually in the form of concentric cylinders with the anode on the outside 
for ease of cooling. Triodes for use at microwave frequencies have planar geometry. 
The cathode may be an indirectly heated oxide cathode, or be made of thoriated 

Figure 12.6: Arrangement of a high power triode.
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tungsten wire which is heated directly by the passage of current through it. The 
grid is formed from metallic wire or sheet, or from pyrolytic graphite. The anode is 
made of oxygen- free high conductivity copper and cooled by forced convection of 
air or water or by vapour phase cooling (see Chapter 10). The insulators are usu-
ally alumina ceramics, though glass was used in older tubes. Further details of the 
construction of these tubes can be found in [6, 13, 17, 18].

Figure  12.7 shows the constant current characteristic curves of a typical high- 
power triode [19]. As long as the grid potential is negative with respect to the cathode 
no electrons are collected by the grid. However, when the grid potential is positive 
some of the electrons strike the grid and may liberate secondary electrons. The grid 
current shown is therefore a balance between the primary and secondary electron 
currents. The anode voltage must always exceed the grid voltage to avoid collection 
on the grid of secondary electrons emitted from the anode. The chief disadvantage of 
the triode is that the capacitance between the grid and the anode provides unwanted 
feedback between the input and output circuits. This limits the maximum operating 
frequency to around 200 MHz for coaxial triodes and 4 GHz for planar triodes.

Figure 12.7: Characteristic curves of the ML- 5681 high power triode
(copyright 1952, IEEE, reproduced, with permission, from [19]).
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12.2.1 Case Study: The ML- 5681 Triode

The theory of the triode developed in Chapter 6 can be illustrated by computing 
the characteristic curves of a triode for which data is available [19, 20]. This tube, 
designed to give 50 kW output power at up to 110 MHz, had coaxial geometry with 
a helical grid supported on 16 equally spaced longitudinal rods. The electron source 
was a thoriated tungsten filament comprising 16 parallel wires equally spaced in a 
circle and centred mid- way between the grid support rods. The characteristic curves 
of this tube are shown in Figure 12.7. Examination of the data in this figure reveals 
the following information:

• The anode current curves are approximately parallel throughout the region in 
which the grid current is zero. The slopes of these curves correspond to values 
of μ in the range 22– 25 with a stated design value of 23. The variation in μ is 
presumably the effect of space- charge between the grid and the anode, which has 
been ignored in the theory.

• The curves of constant cathode current, computed by adding the grid current to 
the anode current, are extensions of the straight sections of the anode current 
curves. From this it may be concluded that, if  there is emission from the grid, few 
electrons are collected by the cathode.

• A plot of total current to the power 2/ 3 against the grid voltage is close to being 
a straight line. Thus the tube is free from island formation (see Section 6.4.2). 
The departures from the straight line at higher currents are a consequence of the 
variations in μ.

• Figure 12.8 shows experimental data for the ratio of the grid current to the anode 
current for anode currents in the range 10A to 80A and grid currents in the range 
1A to 20A. The points are a good fit to the empirical line given by

 
I

I

V

V
g

a

g

a

= −0 67 0 2. . , (12.15)

showing that space- charge effects are not important. Figure 12.8 also shows 
lines derived from (6.61) and (6.66), neither of  which is a good fit to the 
experimental data (see Worksheet 12.2). The greater slope of  the line given 
by (12.15) may be the result of  the collection of  electrons on the grid support 
wires, and the offset may be caused by focusing effects of  the fields in three 
dimensions.

The approximate internal dimensions of the tube are given in the paper or may 
be found by measurements on the photographs in it. The results are summarised in 
Table 12.2. The amplification factor computed from the data in Table 12.2 using (6.36) 
is 23.9, which lies in the range found from the characteristic curves. The use of equations 
derived for planar triodes is justified because the distance between the filament and the 
anode is small compared with the inner radius of the anode. It has been found from 
experience that a filament of the kind used in this tube is equivalent to a continuous  
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cathode whose active sections have a width equal to twice the distance between the 
filament and the grid ([5] p.191). Thus the area of the equivalent cathode is

 A N d Leff s c= 2 1 . (12.16)

The effective area corresponds to only about one- third of the perimeter of the grid 
so it is safe to assume that the screening factor of the grid is not affected by the 
grid support rods. The cathode current can be computed for any values of the grid 
and anode voltages using (6.56) and (12.16). The normalised cathode- grid spacing 
is close to unity so there is virtually no island formation and this is confirmed by 
direct calculation. The characteristic curves computed using (12.15) for the grid 
current shown in Figure 12.9 are in good agreement with those in Figure 12.7.

The validity of these characteristic curves as a description of the tube at its maxi-
mum operating frequency can be established by examining the time taken for elec-
trons to move from the cathode to the grid since it is in that region where they are 
moving most slowly. For typical class B operation with a minimum anode voltage 
of 1.5 kV, and a maximum grid voltage of 515 V, the transit time given by (5.20) 

Table 12.2: Key dimensions of the ML- 5681 triode

Parameter Dimensions Normalised dimensions

Grid diameter 88 mm

Grid spacing (a) 3.5 mm 1.0

Grid wire radius (r) 0.3 mm 0.086

Cathode- grid spacing (d1) 3.18 mm 0.91

Grid- anode spacing (d2) 9.5 mm 2.72

Effective cathode length (Lc) 165 mm

Number of grid sections (Ns) 16

Figure 12.8: ML- 5681 triode: comparison between measured and calculated grid currents.
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using the effective diode voltage is 8% of an RF period. The increase in the mag-
nitude of the RF current computed using (5.95) is 5%. The conclusion that the 
use of the static characteristics is valid under these conditions is confirmed by the 
figures given for a class B amplifier in the tube data sheet. At the same frequency 
the effective length of the filament is 1 16 of  the free space wavelength. The overall 
conclusion is that the methods described above provide a good initial estimate of 
the properties of a tube. They are therefore useful for conceptual design calcula-
tions, and for gaining insight into the relationship between the dimensions of a tube 
and its electrical properties.

12.3 Tetrodes

Figure 12.10 shows the arrangement of a high- power tetrode in which a second 
grid (the screen grid) has been placed between the control grid and the anode. The 
characteristic curves of a typical high power tetrode are shown in Figure 12.3. They 
resemble the curves of a triode shown in Figure 12.7, but the dependence of the 
anode current on the anode voltage is much less because the screen grid keeps the 

Figure 12.9: ML- 5681 triode: theoretical characteristic curves.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.013
https://www.cambridge.org/core


Gridded Tubes444

effective anode voltage almost constant. It is important that the anode potential 
should not fall below that of the screen grid because then secondary electrons liber-
ated from the anode are collected on the screen grid and the thermal dissipation on 
that grid is increased. The collection of secondary electrons also distorts the char-
acteristic curves by reducing the anode current. The current collected by the control 
grid, when it is positive with respect to the cathode, is seen to be largely independent 
of the anode voltage. It is usual in tetrodes to arrange the position of the wires of 
the screen grid so that they are shielded, to some extent, by the wires of the control 
grid so that fewer electrons are intercepted by the screen grid.

12.3.1 Case Study: The RS 2058 Tetrode

The theory of the tetrode, described in Chapter 6, can be validated by comparison 
with experimental results in the same way as for a triode. If  the detailed dimensions 
are not available it is still possible to fit the model to experimental data and infer the 
dimensions of the tube. As an example we will consider the RS 2058 tetrode whose 
characteristic curves for one value of screen grid voltage are shown in Figure 12.3 
[12]. This tube is a coaxial tetrode with a directly heated thoriated tungsten cath-
ode. It is designed for use as an RF amplifier at frequencies up to 220 MHz with 
an output power of 64 kW CW and up to 150 kW pulsed. The ratings of this 
tube for operation as a class B, grounded grid, RF power amplifier are shown in 
Table 12.3 [12].

The first step is to analyse the characteristic curves to determine whether there 
is island formation. This can be done by plotting the 2/ 3 power of the total current 
against the control grid voltage when the anode and screen grid voltages are con-
stant. Figure 12.11 shows the plot for an anode voltage of 6 kV and various screen 
grid voltages. The lines are effectively straight for control grid voltages greater than 

Figure 12.10: Arrangement of a high- power tetrode.
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–100 V and have appreciable curvature for lower voltages, showing that island for-
mation is occurring. We saw in Section 6.4.2 that the straight portions of these 
curves correspond to an analysis in which island formation is ignored. Thus, setting 
Ex = 0 in (6.87), the intercept of the projection of the straight line on the horizontal 
axis is

 V D V D Vg g s s a= − ′ +( ). (12.17)

If  values of ′Dg  and Ds are assumed then Vg can be calculated for pairs of values 
of Vs and Va and compared with values calculated directly from the characteristic 
curves. Using iteration, values of ′Dg  and Ds can be found which minimise the RMS 
difference between the data and the theoretical model.

Next we note, from (6.46) and (6.87) that, at cut- off

 V D a V D Vg g s s a= − ′ ( )⋅ +( )2  (12.18)

Table 12.3: RS 2058 tetrode: Ratings for operation as a class B, 
grounded grid, power amplifier

Frequency 220 MHz

Anode voltage 12 kV

Screen grid voltage 1000 V

Control grid voltage –350 V

Peak RF control grid voltage 320 V

DC cathode current 35 A

Peak cathode current 100 A

Anode dissipation 90 kW

Figure 12.11: RS 2058 tetrode: graph of cathode current to the power 2/ 3 against grid voltage 
determined from the characteristic curves for 6 kV anode voltage and three screen grid 
voltages.
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where, from (6.88),

 ′ ( ) =
( )

+ +( )D y
D y

D d dg
g

s1 1 3 2

, (12.19)

where D yg ( ) is given by (6.45). Then ′ ( )D ag 2  can be calculated from the voltages 
at cut- off. These calculations were carried out for Vs = 700 900 1100V V and V,  and 
Va = 6 12kV and kV with the results shown in Table 12.4.

The same constants can be calculated from the dimensions of the tetrode using 
the theory described above. In the absence of information to the contrary we will 
assume that the spacings and wire diameters of the two grids are the same. We can 
take a = 1mm without loss of generality since all the equations involve ratios of 
the dimensions. The tube is then defined in terms of four constants: r d d d, ,1 2 3and  
which must be chosen so that the calculated values of the penetration factors are 
equal to the values given in Table 12.4. Since there are four unknowns, but only 
three equations, the solution obtained is not unique. However, it is found that, by 
using the results of the calculation as trial values, the process converges onto a sta-
ble solution after a few iterations. This solution has the property that the values are 
almost constant if  one of the trial values is altered slightly. The results were used 
to calculate the set of curves shown in Figure 12.12 for comparison with those in 
Figure 12.11. The area of the cathode was chosen so that the current calculated 
agreed with that in the characteristic curves. It can be seen that the two sets of 
curves are in good agreement with one another.

The characteristic curves can also be computed for comparison with Figure 12.3 
by first finding the current intercepted by the control grid, as described in Section 
6.4.1. The primary current division factor is calculated from (6.62) with D Dg= , 
and the ratio of the grid current to the anode current is found using (6.61) with Va 
replaced by Ve. This turns out to be quite a good approximation to the grid current 
in this case. Figure 12.13 shows the curves of constant anode current for compari-
son with Figure 12.3. The curves of constant control grid current (not shown) are 
very similar to those in Figure 12.3 (see Worksheet 12.3).

The agreement between the calculated and measured characteristic curves is 
good, apart from the curvature at low anode voltages caused by the collection 
of current on the screen grid. This current is a small fraction of the total current 
except at large positive control grid voltages and low anode voltages, when the 
space- charge between the screen grid and the anode becomes important in deter-
mining the trajectories of the electrons, as discussed in Section 6.7.2. Under other 
operating conditions the trajectories are focused between the wires of the screen 

Table 12.4: Constants of the RS 5058 tetrode determined from the characteristic curves

Ds ′Dg ′Dg ( /2)a

0.019 0.15 0.23
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Figure 12.12: RS 2058 tetrode: graph of cathode current to the power 2/ 3 against grid voltage 
computed for 6 kV anode voltage and three screen grid voltages.

Figure 12.13: Calculated characteristic curves of the RS 2058 tetrode  Vs =( )900V .
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grid by the electrostatic fields, and the intercepted current is small [21]. There is no 
simple way of estimating the screen grid current.

The final values of the normalised parameters for the tube are shown in Table 12.5. 
It must be emphasised that these have been obtained by fitting the model to the 
measured data and are not the actual parameters of the tube. The scaling of the 
parameters can be estimated from the transit angle for typical class B operation. If  
we assume that βed1 0 1= . , and that the amplitude of the RF control grid voltage is 
350 V, then d1 0 8= . mm  and all the other dimensions can be found by scaling from 
the normalised values.

If  the length of the active region is taken to be λ 16 85= mm then the diameter 
of the cathode is 37 mm, which is plausible for a thoriated tungsten mesh cathode 
that emits over its whole surface [13]. The internal diameter of the anode is then 
84 mm which can be compared with the external diameter of the anode water cool-
ing jacket (125 mm). The maximum cathode current density is 1 A cm–2 which is 
well within practical limits for this kind of cathode [13]. It may be concluded that 
the methods adopted have yielded a plausible set of dimensions for this tube.

12.4 Design of Triodes and Tetrodes

Information about design procedures for high power triodes and tetrodes is avail-
able in a number of sources [6, 13, 19, 22]. Triodes and tetrodes are used in power 
oscillators for industrial heating, FM and AM broadcast transmitters, SSB commu-
nications transmitters, pulsed radar transmitters and RF power sources for particle 
accelerators. They have also been used as high power switches. Because of limita-
tions of space we will only consider the design of tetrodes for use as CW power 
amplifiers operating in conditions close to class B.  The reader is referred to the 
sources cited for further information. To show how a tetrode might be designed we 
will consider the design of a tube similar to the RS 2074 tetrode which delivers up 
to 600 kW of CW output power at frequencies up to 110 MHz [12]. The steps in the 
design calculations are as follows:

Table 12.5: Computed dimensions for the RS 2058 tetrode

Parameter Possible dimensions Normalised dimensions

Grid spacing (a) 2.4 mm 1.0

Grid wire radius (r) 0.145 mm 0.06

Cathode- control grid spacing (d1) 0.8 mm 0.33

Control grid –  screen grid spacing (d2) 2.2 mm 0.92

Screen grid- anode spacing (d3) 20.7 mm 8.58

Cathode diameter 37 mm

Cathode length (Lc) 85 mm

Anode inner diamter 84 mm
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 i) From Figure 12.5(a) it is expected that the conversion efficiency of the tube 
operating in class B will be around 70%. For an output power of 600 kW the 
DC input power required is 860 kW. Tubes of this kind generally have thori-
ated tungsten cathodes and operate at anode voltages up to around 20 kV [13]. 
But high anode voltages lead to greater risk of voltage breakdown both inside 
and outside the tube and so we will choose a figure of 15 kV. (Note that, for 
purposes of illustration, the use of the exact figures in the data sheet has been 
avoided.) Then the DC current is 60 A and, from Figure 12.5(b), the peak cur-
rent is 204 A. It is desirable for the control grid voltage to be positive for only 
a small part of the cycle to minimise the control grid current, as shown by the 
load line in Figure 12.3. From that figure we see that the sum of the two grid 
currents is typically about 20% of the maximum anode current. Thus the cath-
ode must be able to deliver a peak current of 255 A.

 ii) Let us assume that the screen grid voltage is 10% of the DC anode voltage and 
that the penetration factor of the control grid Dg( ) is 0.2. Then the control grid 
voltage at cut- off  is approximately

 V D Vg g s0 300= = − V. (12.20)

Now the maximum positive control grid voltage in a class B amplifier must not 
be too great to avoid excessive interception of current on the control grid. We 
will assume that the maximum control grid voltage is 100 V so that the amp-
litude of the RF control grid voltage is Vg1 400= V. The spacing between the 
cathode and the control grid must be small enough to avoid transit time effects 
at the maximum operating frequency. Let us assume that βed1 0 05= .  and that 
β ωe geV m= ( )2 1 0  so that d1 0 86= . mm.

 iii) To avoid island formation let us choose a d= 1 and assume that d d2 1= . Then the 
radius of the control grid wires can be found by making the value of Dg  calcu-
lated from (6.36) equal to the figure assumed above. If  the grid is to be a tung-
sten or pyrolitic graphite mesh then the penetration factor can be calculated by 
using the geometrical screening factor in the calculations [23, 24].

 iv) Let us assume that the penetration factor of the screen grid Ds( ) is 0.02. The 
screen grid wire radius, and the distance between the screen grid and the anode, 
are adjusted to achieve this figure. It may be noted that the wires of the screen 
grid are often thicker than those of the control grid to make it more robust and 
that, typically, d d3 210∼ .

 v) The current density can now be calculated as a function of  the electrode 
voltages using (6.93). The area of  the cathode is computed from the peak 
current calculated above and, hence, the current density at the maximum 
control grid voltage with the chosen screen grid voltage and minimum anode 
voltage.

 vi) If  it is assumed that the active length of the tube is λ 16 then the diameter of 
the cathode and of the other electrodes can be calculated.

 vii) The control grid current can be calculated as described in Section 6.4.1 and 
then the characteristic curves can be plotted.
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The complete set of dimensions calculated in this way is shown in Table 12.6. The 
figures are comparable with those of the RCA 4648 tetrode [6] apart from the diam-
eters of the grid wires which may be too thin. The peak cathode current density is 
1.3 A cm− 2, which is within the practical range [13]. The perimeter of the anode is 
well below the value which would permit the excitation of the TE11 mode. The set of 
calculations described above can readily be incorporated in a worksheet which ena-
bles the effects of different design choices to be examined quickly (see Worksheet 
12.4). In practice the results of this calculation would be informed by experience 
and would then be confirmed by more detailed calculations [22].

The anode power density in class B operation is just under 1 kW cm− 2 which is 
comfortably within the limit for power dissipation with turbulent forced convection 
cooling [25] (see Section 10.5.3). The electrode spacings must be great enough to 
avoid voltage breakdown. Whilst it is difficult to calculate figures for the geometry 
of such a tube, it may be noted that the voltages and spacings are similar to those 
of the RCA 4648 tetrode [6]. The heater power required for the cathode can be esti-
mated using the method described in [18].

This section has discussed the principles of design of coaxial tetrodes and it could 
equally be applied to triodes and to planar tubes. Information about the technology 
used can be found in the literature [6, 13, 18]. A number of variants of the standard 
coaxial design exist including [6, 13, 26]:

• Tubes comprising multiple unit triodes or tetrodes connected in parallel within 
a single vacuum envelope. This system has the advantage that it can readily be 
scaled to higher power levels, provided that the diameter does not become so big 
that the TE11 mode can be excited.

• Tubes in which the cathode is outside the anode.
• Beam power tubes in which additional electrodes are used to focus the electrons, 

so that the interception of electrons by the grids is reduced.
• Tubes in which there is a second anode insulator, so that the coaxial space within 

the anode can be located in the centre of the external resonator, rather than at 

Table 12.6: Leading dimensions of a 600 kW, 110 MHz tetrode

Parameter Dimensions

Grid spacing (a) 0.86 mm

Control grid wire radius (rg) 0.04 mm

Screen grid wire radius (rs) 0.052 mm

Cathode- control grid spacing (d1) 0.86 mm

Control grid– screen grid spacing (d2) 0.86 mm

Screen grid- anode spacing d3( ) 6.9 mm

Cathode diameter 38 mm

Cathode length (Lc) 170 mm

Anode inner diameter 55 mm
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one end. It is then possible to arrange that the standing wave in the resonator has 
an anti- node of RF voltage at the centre of the anode, and a node of RF current. 
Thus the heat dissipation caused by RF currents in the screen grid is much less 
than in a conventional tetrode. This technique enables the RF power output to be 
doubled at a given frequency [26].

Figure  12.14 shows the state of the art of commercially available high power 
tetrodes.

12.5 Design of Triode and Tetrode Amplifiers

The process by which a tetrode amplifier can be designed is best explained by means 
of an example [27]. This is based upon a 62 kW, 200 MHz, amplifier used in the 
CERN SPS [28]. The example was chosen because sufficient information is avail-
able about the amplifier to verify the results of the calculations. The amplifier uses 
a single RS2058CJ tetrode [12] operating with a DC anode voltage of 10 kV, and 
900 V screen grid bias. The design procedure described below is based upon that 
given in [29, 30]. The actual amplifier is operated in class AB but quite close to class 
B. For simplicity class B operation is assumed in the calculations which follow.

 i) The first step is to estimate the probable efficiency of the amplifier. We will 
assume that the minimum anode voltage is 1.5 kV. Using the method described 
in Section 12.1.2 we expect that the efficiency of the amplifier will be around 
72% (see Figure 12.5(a)). This estimate can be adjusted later, if  necessary, when 
the actual efficiency has been calculated. Then the DC power input required to 
obtain the desired output power is

 P2 62 0 72 86= =/ . kW. (12.21)

Figure 12.14: State of the art of commercially available high power tetrodes (CW Class B 
operation).
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The DC anode voltage was chosen to be Va0 10= kV so the mean anode 
current is

 I Aa0 86 10 8 6= =/ . . (12.22)

 ii) The theoretical value of Ipk from the Fourier analysis is 3 6 0. Ia  but when other 
factors including island formation, space- charge effects and grid current are 
taken in to account it is found that this figure lies in the range 3.6 to 4.4. If  we 
take the factor to be 4.0 then

 I Apk = × =4 8 6 34. . (12.23)

 iii) Next we construct the load line on the characteristic curves for the tube, as 
shown in Figure 12.3, by joining the point (1.5 kV, 34 A) to the quiescent point 
(10 kV, 0 A). We note that this requires the control grid voltage to swing slightly 
positive with a maximum of +70 V.

 iv) The DC and RF currents are found by numerical Fourier analysis of the anode 
current waveform, using values read from Figure 12.3 at intervals of 15°. The 
anode voltages are given by

 Va = −10 8 5. cos ,θ  (12.24)

where θ is the phase angle. The results are shown in Table 12.7. Then using the 
formulae given in [30]

 I I I I I I Ia0 0 15 30 45 60 75
1

12
0 5= + + + + +( . )  (12.25)

and

 I I I I I I Ia1 0 15 30 45 60 75
1

12
1 93 1 73 1 41 0 52= + + + + +( . . . . ), (12.26)

where the subscripts refer to the phase angles in degrees. Using the data from 
Table 12.7 it is found that:

 Ia0 8 9= . A, (12.27)

 Ia1 15 0= . A. (12.28)

 v) The DC input power is

 P I Va a0 0 0 89= = kW. (12.29)

The amplitude of the RF voltage is

 Va1 10 0 1 5 8 5= − =. . . kV (12.30)

and the RF output power is

 P V Ia a2 1 1
1
2

64= = kW, (12.31)

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.013
https://www.cambridge.org/core


Design of Triode and Tetrode Amplifiers 453

which is very close to the desired value and gives an efficiency of 72%, as origi-
nally assumed.

 vi) The effective load resistance is

 R V IL a a= =1 1 570/ .Ω  (12.32)

The source impedance of the output of the amplifier can be found by noting 
that, if  the RF load resistance is zero and the anode voltage is constant, the 
peak anode current is 46 A for the same RF voltage on the control grid. Thus 
the short circuit RF current is 20 A and the anode source resistance Ra( ) is 
1.7 kΩ.

 vii) To find the input impedance of the amplifier we note that the amplitude of the 
RF control grid voltage is

 Vg1 245 70 315= + = V (12.33)

and that, for grounded grid operation, the amplitude of the RF input current 
is the sum of the RF anode and control grid currents

 I I I Ic a g a1 1 1 1= + ≈ . (12.34)

 viii) The amplitude of the RF control grid current Ig1( ) may be obtained by read-
ing the control grid currents off  Figure 12.3 at 15o intervals and employing Eq. 
(12.26). The result is 0.67 A, which is small compared with the RF anode cur-
rent, and can be neglected in the first approximation. The RF input resistance 
is then

 R V Ig a1 1 1 20= =/ .Ω  (12.35)

 ix) Finally, we note that the input power is

 P V Ig a1 1 1
1
2

2 5= = . kW (12.36)

and that the power gain of the amplifier is

 GdB = =10 64 2 5 14log ( / . ) dB. (12.37)

Table 12.8 shows a comparison between the figures calculated above and those 
reported in [31]. The differences between the two columns of Table 12.8 are 
attributable to the difference between the actual class AB operation and the 
class B operation assumed in the calculations.

Table 12.7: Anode currents at 15o phase intervals taken from Figure 12.3

Phase (degrees) 0 15 30 45 60 75 90

Va (kV) 1.5 1.8 2.6 4.0 5.7 7.8 10.0

Ia (A) 34 32.5 28 18 8 3 0
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12.5.1 Practical Details

Figure 12.15 shows a simplified diagram of a tetrode amplifier. The tube is oper-
ated in the grounded grid configuration with coaxial input and output circuits. The 
outer conductors of the coaxial lines are at ground potential and they are sepa-
rated from the grids by DC blocking capacitors. The anode resonator is a re- entrant 
coaxial cavity which is separated from the anode by a DC blocking capacitor. The 
output power is coupled through an impedance matching device to a coaxial line. 
The anode HT connection and cooling water pipes are brought in through the cen-
tre of the resonator.

The electrodes of the tube form coaxial lines with characteristic impedances of 
a few ohms. We have seen above that the input impedance of the amplifier is typ-
ically a few tens of ohms, and the output impedance a few hundred ohms. Thus 
the terminations of both the input and output lines are close to open- circuits. The 

Table 12.8: Comparison between actual, and calculated, parameters of the 
amplifier described in [31]

Parameter Actual Calculated

Anode voltage (kV) 10 10

Anode current (A) 9.4 8.9

Screen grid voltage (V) 900 900

Control grid voltage (V) –200 –245

RF output power (kW) 62 64

RF input power (kW) 1.8 2.5

Gain (dB) 15.4 14

Efficiency (%) 64 72

Figure 12.15: Arrangement of a tetrode amplifier
(copyright 2011, CERN, reproduced, with permission, from [10]).
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anode resonator therefore has one end open circuited and the other short circuited, 
and it must be an odd number of quarter wavelengths long at resonance. Typically 
the resonator is 3/ 4 of a wavelength long. In that case the point at which the output 
coaxial line is coupled into the resonator can be used to transform the impedance 
to provide a match. There is also a voltage node towards the lower end of the outer 
part of the resonator and this can be used to bring connections through to the 
anode. The higher- order modes of the cavity can be troublesome, and it is usually 
necessary to damp them by the selective placing of lossy material within the cavity, 
or by using coupling loops connected to external loads. The cathode heater con-
nections must incorporate some means of decoupling from the RF circuit. Further 
information about the design of gridded tube amplifiers can be found in [17, 28, 32].

12.6 Inductive Output Tubes (IOTs)

Tetrode amplifiers suffer from the disadvantage that the same electrode, the anode, 
is part of both the DC and the RF circuits. The output power is limited by screen 
grid and anode dissipation. In addition, the electron velocity is least when the cur-
rent is greatest because of the voltage drop across the output resonator. This means 
that the gap between the screen grid and the anode must be small to avoid transit 
time effects. To get high power at high frequencies it is necessary to employ high- 
velocity electrons, and to have a large collection area for them. This can be achieved 
by separating the electron collector from the RF output circuit. The possibility 
that this might be done was originally recognised by Haeff in 1939, but it was not 
until 1982 that the concept became practical, following the development of laser- 
machined pyrolytic graphite grids [7, 8]. Haeff called his invention the ‘Inductive 
Output Tube’ (IOT) but it is also known by the proprietary name Klystrode ®.

Figure 12.16 shows a schematic diagram of an IOT. The electron beam is formed 
by a gridded Pierce electron gun and confined by an axial magnetic field (not 
shown). The RF input circuit is formed by the cathode and the grid in a manner sim-
ilar to that in a tetrode amplifier. The gun is biased so that the conduction angle is 

Figure 12.16: Arrangement of an inductive output tube (IOT)
(copyright 2010, IEEE, reproduced, with permission, from [33]).
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approximately 180° and the electron bunches formed by the cathode and the grid are 
accelerated through the constant potential difference between the cathode and the 
anode. A detailed diagram of the input cavity resonator for an IOT is given in [34]. 
The bunched electron beam passes through a cavity resonator where the azimuthal 
magnetic field induces a current in the cavity, hence the name of the tube (see Section 
11.8.4). Because the cavity is tuned to the repetition frequency of the bunches the 
RF electric field in the interaction gap is maximum in the retarding sense when the 
centre of a bunch is at the centre of the gap. This resembles the operation of a class 
B amplifier with the important difference that the input electron velocity is constant 
throughout the RF cycle. Figure 12.17 shows a typical Applegate diagram for an 
IOT (see Worksheet 12.5). Because the electron velocity is high it is possible to use 
a much longer output gap than in a tetrode. Other advantages of the IOT over the 
tetrode are that it does not need a DC blocking capacitor in the RF output circuit, 
because the cavity is at ground potential, and that it has higher isolation between 
input and output and a longer life than an equivalent tetrode amplifier. These advan-
tages are offset to some extent by the need for a magnetic focusing field. The typical 
gain is 20– 23 dB which is appreciably higher than that of a tetrode amplifier and 
high enough for the input to a 60 kW tube to be supplied by a solid state driver stage.

IOTs have been designed for use in UHF TV transmitters, and for powering par-
ticle accelerators [35– 38]. For both these applications the linearity of the power 
transfer curve is a valuable asset (see Figure 12.22(a)). Where increased bandwidth 
is required (e.g. for digital TV transmission) a double- tuned output cavity is used 
[34, 37] (see Section 3.2.4). A general review of the principles and technology of 
IOTs and related devices is given in [39].

12.6.1 Bunch Formation

The beam current is given as a function of time by (12.6). To avoid transit time 
effects, and to minimise the RF voltage required to modulate the beam, the grid 

Figure 12.17: Electron trajectories in an IOT.
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must be placed very close to the cathode so that βed1 0 7 .  at the maximum effec-
tive diode voltage (see Section 5.7). Calculations based on the 1.3 GHz tube dis-
cussed in Section 12.6.5, for example, suggest that the separation between the grid 
and the cathode should be less than 0.3 mm when the amplitude of the RF grid 
voltage is 350 V. At lower forward voltages the transit angle is increased and tran-
sit time effects become important. The electron velocity at the grid is smaller at 
the start and the finish of each bunch than it is at the bunch centre. Hence the 
bunch waveform is distorted from that shown in Figure 12.4 because the currents 
at the start and the finish of the bunch are delayed with respect to the bunch centre 
[40]. The very small spacing between the cathode and the grid must be maintained 
accurately at the working temperature of the gun. It sets a limit on the maximum 
frequency of operation and means that island formation is likely to occur. The cath-
ode and the grid must be manufactured with high precision and have high thermal 
stability to ensure that the intended separation is maintained, and to avoid the risk 
of a short circuit between them.

The penetration factor of the grid may vary over its surface for two reasons. 
In the first place the electric field of the anode is not normally constant over the 
surface of the grid [41]. It may be necessary to compensate for that by varying the 
spacing of the grid wires and/ or the distance between the grid and the cathode. In 
the second place the diameter of the grid may be an appreciable fraction of the 
free- space wavelength. If  we use the same guidelines as in the design of triodes and 
tetrodes then the cathode diameter should be less than λ 8. For the example used 
above where the frequency is 1.3 GHz the cathode diameter should be less than 
30 mm. If  the penetration factor is not constant for any reason, or if  island forma-
tion exists, then the effective power law of the gun is greater than 3/ 2 (see Section 
6.4.2). The input circuit of an IOT is effectively that of a common grid amplifier so 
that the RF input power is given by (12.13).

Other ways of modulating the beam, which could permit operation at higher 
frequencies, have been investigated theoretically including: photo- cathodes [42– 44], 
gated field emission arrays [45], and deflection modulation [46].

12.6.2 Space- Charge Debunching

After the electrons have left the grid they are accelerated by the field between the 
grid and the anode, and space- charge forces are normally negligible. However, 
when the electron bunches have passed into the drift tube, then space- charge 
forces dominate. The radial space- charge forces are counteracted by the force 
of  the magnetic focusing field, but the axial space- charge forces tend to cause 
debunching so that the conduction angle increases. The effect of  space- charge 
forces can be calculated by numerical integration of  the equations of  motion of  a 
set of  electrons distributed within the bunch, as described in Section 11.8. Since 
any increase in the bunch length (conduction angle) causes a reduction in conver-
sion efficiency (see Figure12.5(a)) it is desirable to keep the drift length as short 
as possible.
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12.6.3 Power Transfer in the Output Gap

The extraction of power from the electron bunches in the output gap can be com-
puted using a disk model or by using the simplified theory in Section 11.8.4 (see 
Worksheet 12.5). If  the effective output load resistance, including the effects of 
losses in the output cavity, is RL then the minimum energy of electrons leaving 
the gap is

 V V M I Ra eff Lmin ,= − 2
1  (12.38)

where Va is the voltage of the anode relative to the cathode, and the effective gap 
coupling factor is given by (11.182). Self- consistent values of Vmin and umin can be 
found by iteration using (11.182) and (12.38). Then the electronic efficiency is

 ηe
eff g

a

M I V

I V
= 1

02
. (12.39)

The usefulness of this approach for modelling the performance of an IOT is dem-
onstrated in the case study in Section 12.6.5. For typical dimensions, and class B 
operation, I I1 0 1 65= . , M = 0 8. , Meff = 0 53.  and MV Vg a = 1 2.  when the gap volt-
age is adjusted to give the optimum efficiency. Inserting these figures in (12.39) gives 
an electronic efficiency of 66%. This is shown by the dashed line in Figure 12.18(a) 
for comparison with the efficiency of CW IOTs given in manufacturers’ data sheets. 
Figure 12.18(b) shows data from the same sources for CW output power.

The maximum output power of an IOT is limited by the DC current which 
can be drawn from the cathode, while avoiding excessive interception by the grid, 
and by the maximum voltages which can be applied without voltage breakdown. 
Information about the design of a 1.3 GHz, 100 kW CW, IOT is given in [47]. 
A 500 kW pulsed IOT at 425 MHz is described in [48]. The use of PIC codes to 
model IOTs has been described in [40, 49, 50]. The possibility of developing higher 
power IOTs with multiple beams, annular beams, or radial beams has been studied 
in [51– 56].

Figure 12.18: State of the art of commercial CW IOTs: (a) efficiency, and (b) output power.
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12.6.4 IOT Collectors

The conversion efficiency of a IOT at low drive levels can be improved considerably 
by the use of a multi- element depressed collector. The energy of the electrons in the 
spent beam can be expressed as a function of the phase angle as

 V V M Vs a eff gapθ θ( ) = − cos . (12.40)

The slowest electrons are those at the centre of the bunch where θ = 0. In the simple 
model used here the bunch profile is symmetrical, and the part of the beam current 
which has energy greater than Vs is given by

 I I ds θ
π

θ θ
θ

π

( ) = ( )∫
1

, (12.41)

where θ lies in the range 0 : π( ). The spent beam curves can be plotted, using 
these equations, for comparison with the results from the disc model, shown in 
Figure 12.19(a). These curves were obtained by adjusting the RF grid voltage to 
give an output power of 12 kW in each case. Figure 12.19(b) shows how the spent- 
beam curves computed using the simple model vary with output power. Although 
these are superficially similar to those for a klystron (see Section 13.3.7) there are 
some important differences. The IOT does not exhibit saturation because the maxi-
mum power is limited by the electron gun. The tube is typically operated in class 
AB so that the few electrons crossing the output gap in the accelerating phase of 
the gap field are only mildly accelerated. Thus there are fewer fast electrons than is 
normally the case for a klystron. In addition, the mean beam current drops as the 
output power is reduced so that the electronic efficiency remains high at low output 
power levels.

Figure  12.20 shows typical dependence of the RF efficiency of an IOT with 
a five- stage depressed collector on the normalised output power (see Worksheet 
12.6). Because the electronic efficiency is higher at low output power, than is the 

Figure 12.19: Spent- beam curves for an IOT: (a) comparison between different models, and 
(b) spent- beam curves for different output powers.
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case with a klystron, the overall efficiency is also high at low output powers. It has 
been shown that, with careful design of the collector, almost constant efficiency of 
around 65% can be achieved over the range from 25% to 100% of full output power 
[34, 57, 58]. This performance is very valuable for applications such as digital televi-
sion broadcasting where the signal has a high peak to average power ratio.

12.6.5 Case Study: The 116LS IOT

The 116LS IOT was designed to generate up to 16 kW CW at 1.3 GHz for power-
ing particle accelerators [59, 60]. This tube has been modelled, using the methods 
described above, for comparison with the published experimental data [33]. Where 
information about the tube is not available appropriate assumptions can be made 
as described below. The description that follows differs slightly from that previously 
published.

It is assumed that the properties of the electron gun can be described by (12.2) in 
which K, μ and the power law are treated as adjustable constants. The anode volt-
age is 25 kV and the DC grid bias voltage Vg0( ) is –105 V, as stated in [59]. Then 
the DC and fundamental RF currents I I0 1,( ) can be calculated as functions of the 
amplitude of the RF grid voltage Vg1( ). Since IOTs are operated as common grid 
amplifiers the RF input impedance is given by

 R
V

I V
in

g

g

= ( )
1

1 1

. (12.42)

If  the RF source impedance is Rs then the RF input power is given by

 P
R R

R

V

Rin
in s

in

g

s

=
+





1
8

2
1
2

. (12.43)

Figure 12.20: Dependence of the efficiency of an IOT with a five- stage depressed collector on 
normalised output power.
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It should be noted that I0 Rin and Pin are functions of Vg1 with Rs as a parameter. 
The input impedance and the DC beam current can therefore be plotted against the 
RF input power, as shown in Figure 12.21(a). If  the source impedance is assumed 
to be 220 Ω then a good fit to the experimental data can be obtained, as shown in 
Figure 12.21(b), by setting K = 0 42. mA.V 1.5− , µ = 150 and the power law to 1.5. 
The principles governing the design of the type of gun used in this tube were dis-
cussed in Section 12.6.1.

Since dimensions of the output gap are not given in [59] it is assumed 
that: β β βe e ea b g= = =1 0 0 6 1 0. , . , .and  where β ωe u= 0 , a is the drift tube radius, b 
is the beam radius and g is the length of the output gap. These parameters are typ-
ical of those used in IOTs and klystrons. The gap coupling factor can then be calcu-
lated as a function of the electron velocity. Starting from an initial guessed value of 
the velocity umin( ) of  the slowest electrons leaving the gap self- consistent values of 
umin and Vgap are found for each drive power level using (12.38), as described above. 
The load resistance RL is used as an adjustable parameter. Note that this procedure 
differs slightly from that described in [33]. The results using the modified procedure 
show better agreement with experiment. Graphs of the output power and efficiency 
against the input power were plotted (see Figure 12.22) and it was found that a 
good fit to experimental data could be achieved by setting RL = 28 kΩ. The 1 dB 
bandwidth of this tube was 3 MHz. If  it is assumed that this is determined by the 
properties of the output cavity then QL = 220 and R Q = 120.

The output power and efficiency were also calculated using the disc model with-
out space- charge. The values of Vgap were determined by iteration to give the correct 
load resistance at each input power level. The results of these calculations are shown 
in Figure 12.22 for comparison with the results of the simple model. It should be 
noted that the curve of output power against input power is very nearly a straight 

Figure 12.21: (a) Input impedance, and (b) DC beam current, of an IOT as functions of the 
RF input power
(copyright 2010 IEEE, reproduced, with permission, from [33]).
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line. The shape of this curve is found to depend upon the quiescent point selected, 
and it is most nearly linear when there is a small quiescent current. Thus an IOT 
has performance which is close to that of an ideal linear amplifier. Figure 12.23 
shows the gain, and the normalised minimum electron velocities, plotted against 
RF input power. The gain of this tube was a little lower than that typically achieved 
in IOTs (around 20 dB). It was increased to around 21 dB in an improved ver-
sion of the tube that showed evidence of island formation [60]. The minimum elec-
tron velocity in the spent beam, normalised to the DC beam velocity, is seen to be 
around 0.5 so that no electrons are reflected by the output gap. The comparison 
between the results from the simple model and the disc model shows that the per-
formance of an IOT can be modelled with good accuracy using the simple model, 
as described above.

Figure 12.22: (a) RF output power, and (b) electronic efficiency of an IOT as functions of 
RF input power.

Figure 12.23: (a) Gain, and (b) normalised minimum electron velocity of an IOT as functions 
of RF input power.
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The effects of space- charge can be included in the disc model if  the drift length 
is known. For example, the assumption of a drift length five times the length of the 
gap, gave a reduction in efficiency of five percentage points, and a reduction in gain 
of 1 dB at an input power of 300 W. Agreement with the measured data could be 
achieved by changing the load resistance assumed.

References

[1]  W. G. Dow, Fundamentals of Engineering Electronics. New York: John Wiley, 1937.
[2]  A. H. W. Beck, Thermionic Valves. Cambridge: Cambridge University Press, 1953.
[3]  R. S. Burnap, Electron Tube Design. Harrison, NJ: Radio Corporation of America, 1962.
[4]  J. W. Gewartowski and H. A. Watson, Principles of Electron Tubes. Princeton, NJ: D. van 

Nostrand Co. Inc., 1965.
[5]  K. R. Spangenberg, Vacuum Tubes. New York: McGraw- Hill, 1948.
[6]  T. E. Yingst et al., ‘High- power gridded tubes –  1972’, Proceedings of the IEEE, vol. 61, 

pp. 357– 381, 1973.
[7]  A. V. Haeff and L. S. Nergaard, ‘A wide- band inductive- output amplifier’, Proceedings 

of the IRE, vol. 28, pp. 126– 130, 1940.
[8]  D. Preist and M. Shrader, ‘The klystrode –  an unusual transmitting tube with potential 

for UHF- TV’, Proceedings of the IEEE, vol. 70, pp. 1318– 1325, 1982.
[9]  R. G. Carter, ‘Acceleration technologies for charged particles:  an introduction’, 

Contemporary Physics, vol. 52, pp. 15– 41, 2011.
[10] R. G. Carter, ‘R.F.  power generation’, in R. Bailey, ed., Proceedings of the CERN 

Accelerator School ‘RF for Accelerators’, 8– 17 June 2010, Ebeltoft, Denmark, Geneva: 
CERN, pp. 173– 207, 2011.

[11] R. G. Carter, ‘Review of RF power sources for particle accelerators’, in S. Turner, 
ed., CERN Accelerator School:  RF Engineering for Particle Accelerators, vol. 
1. Geneva: CERN, pp. 269– 300, 1992.

[12] Siemens, Transmitting Tubes Data Book 1986/ 87. Siemens AG, 1986.
[13] W. P. Bennett, ‘Large- power- tube design, processing and testing’, in R. S. Burnap, ed., 

Electron Tube Design. Harrison, NJ: RCA, pp. 763– 791, 1962.
[14] N. O. Sokal, ‘RF power amplifiers, classes A through S- how they operate, and when to 

use each’, in Electronics Industries Forum of New England, 1997. Professional Program 
Proceedings, pp. 179– 252, 1997.

[15] F. H. Raab et  al., ‘Power amplifiers and transmitters for RF and microwave’, IEEE 
Transactions on Microwave Theory and Techniques, vol. 50, pp. 814– 826, 2002.

[16] S. Kostic et al., ‘Increasing efficiency and output power of HFHPTA by injection of two 
harmonics’, IEEE Transactions on Broadcasting, vol. 47, pp. 32– 37, 2001.

[17] EIMAC, Care and Feeding of Power Grid Tubes, 5th ed. San Carlos, CA: CPI Inc. 
Eimac Division, 2003.

[18] P. Gerlach and C. Kalfon, ‘New technologies in power- grid tubes and their impact in 
high- power UHF- TV operation’, Proceedings of the IEEE, vol. 70, pp. 1335– 1345, 1982.

[19] R. H. Rheaume, ‘A coaxial power triode for 50- kW output up to 110 Mc’, Proceedings 
of the IRE, vol. 40, pp. 1033– 1037, 1952.

[20] Machlett Laboratories Inc., ‘ML- 5681 Data Sheet’, 1962.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.013
https://www.cambridge.org/core


Gridded Tubes464

[21] C. S. Bull, ‘The alignment of grids in thermionic valves’, Journal of the Institution 
of Electrical Engineers  –  Part III:  Radio and Communication Engineering, vol. 92,  
pp. 86– 92, 1945.

[22] S. G. McNees, ‘Two megawatts RF power tetrode’, IEEE Transactions on Nuclear 
Science, vol. NS- 20, pp. 422– 423, 1973.

[23] Y. Kusunose, ‘Calculation of characteristics and the design of triodes’, Proceedings of 
the Institute of Radio Engineers, vol. 17, pp. 1706– 1749, 1929.

[24] L. C. Scholz, ‘Calculation of fields and currents’, in R.S. Burnap, ed., Electron Tube 
Design. Harrison, NJ: Radio Corporation of America, pp. 159– 201, 1962.

[25] G. Faillon, ‘Technical and industrial overview of RF and microwave tubes for fusion’, 
Fusion Engineering and Design, vol. 46, pp. 371– 381, 1999.

[26] G. Clerc et al., ‘A new generation of gridded tubes for higher power and higher frequen-
cies’, in Particle Accelerator Conference, Vancouver, BC, pp. 2899– 2901, 1997.

[27] R. G. Carter, ‘R.F. Generation’, in R. Bailey, ed., High Power Hadron Machines: CERN- 
2013- 001. Geneva: CERN, pp. 45– 69, 2013.

[28] W. Herdrich and H. P. Kindermann, ‘RF power amplifier for the CERN SPS operating 
as LEP injector’, IEEE Transactions on Nuclear Science, vol. NS- 32, pp. 2794– 2796, 
October 1985.

[29] EIMAC, ‘Tube performance computer for RF amplifiers’, CPI Inc., 1969.
[30] EEV, ‘Preamble –  Tetrodes’. Chelmsford, UK: Teledyne e2v, 1976.
[31] H. P. Kindermann et  al., ‘The RF power plant of the SPS’, IEEE Transactions on 

Nuclear Science, vol. NS- 30, pp. 3414– 3416, August 1983.
[32] T. Fujisawa et al., ‘The radiofrequency system of the RIKEN ring cyclotron’, Nuclear 

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, 
Detectors and Associated Equipment, vol. 292, pp. 1– 11, 1990.

[33] R. G. Carter, ‘Simple model of an inductive output tube’, IEEE Transactions on Electron 
Devices, vol. ED- 57, pp. 720– 725, 2010.

[34] R. S. Symons, ‘The constant efficiency amplifier’, in Annual Broadcasting Engineering 
Conference, pp. 523– 530, 1997.

[35] H. Bohlen et al., ‘Inductive output tubes for particle accelerators’, in European Particle 
Accelerator Conference, Lucerne, Switzerland, pp. 1111–1113, 2004.

[36] H. Bohlen et al., ‘IOT RF power sources for pulsed and cw linacs’, in LINAC 2004, 
Luebeck, Germany, pp. 574– 577, 2004.

[37] R. Heppinstall and G. Clayworth, ‘The inductive output tube’, EBU Technical Review, 
pp. 43– 52, 1997.

[38] R. Heppinstall and G. Clayworth, ‘The inductive output tube –  a modern UHF ampli-
fier for the terrestrial television transmitter’, GEC Review, vol. 13, pp. 76– 85, 1998.

[39] E. G. Zaidman and M. A. Kodis, ‘Emission gated device issues’, IEEE Transactions on 
Electron Devices, vol. 38, pp. 2221– 2228, 1991.

[40] K. Nguyen et al., ‘Analysis of the 425- MHz klystrode’, IEEE Transactions on Electron 
Devices, vol. 38, pp. 2212– 2220, 1991.

[41] R. True, ‘Calculation and design of grids in Pierce guns’, in 1989 International Electron 
Devices Meeting, IEDM ‘89, pp. 215– 218, 1989.

[42] J. Welch, ‘Results from the SLAC Lasertron’, NASA STI/ Recon Technical Report N, vol. 
88, p. 26647, 1988.

[43] M. Shrader et al., ‘Pre- bunched beam devices: efficient sources of UHF and microwave 
power’, in International Electron Devices Meeting, pp. 342– 345, 1985.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.013
https://www.cambridge.org/core


References 465

[44] E. Garwin et al., ‘An experimental program to build a multimegawatt lasertron for super 
linear colliders’, IEEE Transactions on Nuclear Science, vol. 32, pp. 2906– 2908, 1985.

[45] M. A. Kodis et al., ‘Operation and optimization of gated field emission arrays in induct-
ive output amplifiers’, IEEE Transactions on Plasma Science, vol. 24, pp. 970– 981, 1996.

[46] C. Wilsen et al., ‘Gridless IOT for accelerator applications’, in IEEE Particle Accelerator 
Conference, pp. 2556– 2558, 2007.

[47] C. Yates et  al., ‘Performance results of a 1.3 GHz 100 kW CW IOT’, in IEEE 
International Vacuum Electronics Conference, Monterey, CA, pp. 107– 108, 2014.

[48] D. H. Preist and M. B. Shrader, ‘A high- power Klystrode with potential for space appli-
cation’, IEEE Transactions on Electron Devices, vol. 38, pp. 2205– 2211, 1991.

[49] P. Schütt et al., ‘Computer simulations of inductive output tubes’, in European Particle 
Accelerator Conference, pp. 1233– 1235, 1998.

[50] H. P. Freund et  al., ‘Time- domain simulation of inductive output tubes’, IEEE 
Transactions on Plasma Science, vol. 35, pp. 1081– 1088, 2007.

[51] D. Preist, ‘Prospects for very high power high efficiency RF generators’, in Microwave 
and Optical Generation and Amplification, Cambridge, UK, pp. 146– 150, 1966.

[52] H. Bohlen et  al., ‘Ways to decrease high- voltage requirements in high- power micro-
wave tubes’, in Displays and Vacuum Electronics, Garmisch- Partenkirchen, Germany, 
pp. 269– 273, 1998.

[53] H. Bohlen, ‘Inductive output tubes: history and present status’, in Displays and Vacuum 
Electronics, Garmisch- Partenkirchen, Germany, pp. 93– 98, 2001.

[54] H. S. Kim and H. S. Uhm, ‘Analytical calculations and comparison with numerical data 
for annular klystrode’, IEEE Transactions on Plasma Science, vol. 29, pp. 875– 880, 2001.

[55] L. Ives et al., ‘12.2: A 350 MHz, 200 kW CW, multiple beam IOT’, in IEEE International 
Vacuum Electronics Conference (IVEC), Monterey, CA, pp. 215– 216, 2010.

[56] E. Wright et al., ‘High- power multiple- beam IOT design’, in IEEE Thirteenth International 
Vacuum Electronics Conference (IVEC), Monterey, CA, pp. 143– 144, 2012.

[57] C. Yates et  al., ‘Performance characteristics of an MSDC IOT amplifier’, IEEE 
Transactions on Electron Devices, vol. 48, pp. 116– 121, 2001.

[58] R. Symons et  al., ‘Prototype constant- efficiency amplifiers’, IEEE Transactions on 
Broadcasting, vol. 47, pp. 147– 152, 2001.

[59] J. Orrett et al., ‘IOT testing at the ERLP’, in European Particle Accelerator Conference, 
Edinburgh, Scotland, pp. 1382– 1384, 2006.

[60] A. Wheelhouse, ‘Improved 1.3 GHz inductive output tube for particle accelerators’, in 
European Particle Accelerator Conference, Edinburgh, Scotland, pp. 1373– 1375, 2006.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.013
https://www.cambridge.org/core


13 Klystrons

13.1 Introduction

We saw in the previous chapter that the performance of  an IOT is limited in both 
power and frequency by the use of  a control grid to modulate the electron beam. 
At higher frequencies and powers it is necessary to modulate the beam in some 
other way. In the klystron this is achieved by velocity modulation of  an electron 
beam by a cavity resonator excited by an external RF source, as described in 
Section 11.2.1. When an output cavity, tuned to the signal frequency, is placed  
in the region where the beam is bunched the result is the simple two- cavity klystron 
illustrated in Figure 13.1. Radio frequency current is induced in the second cavity 
in exactly the same way as in an IOT. At resonance the cavity presents a resistive 
impedance to the induced current, and the phase of  the field across the gap is in 
anti- phase with the RF beam current. Electrons which cross the gap within ±90° 
of  the bunch centre are retarded and give up energy to the field of  the cavity. Since 
more electrons cross the second gap during the retarding phase, than the acceler-
ating phase, there is a net transfer of  energy to the RF field of  the cavity. Thus the 
klystron operates as an amplifier by converting some of  the DC power input into 
RF power in the output cavity.

In practice the gain and efficiency of  a two- cavity klystron are too low to be 
of  practical value. It is therefore usual to add further cavity resonators in order 
to increase the gain, efficiency and bandwidth of  the tube. Figure 13.2 shows 
the arrangement of  a multi- cavity klystron. The electron beam is formed by a 
diode electron gun whose perveance is typically in the range 0 5 2 0 1 5. . .− −µA V .  
The function of  all the cavities, except the last, is to form electron bunches from 
which RF power can be extracted by the output cavity. The first and last cav-
ities are tuned close to the centre frequency and have low Q factors determined 
largely by the coupling to the external waveguides. The intermediate (idler) 
cavities normally have high Q and are tuned to optimise the performance of 
the tube. The long electron beam is confined by an axial magnetic field to avoid 
interception of  electrons on the walls of  the drift tube. Radio frequency power 
passes into and out of  the vacuum envelope through ceramic windows, and 
the spent electrons are collected by a collector in exactly the same way as in  
an IOT.
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The tube illustrated in Figure 13.2, whose cavities are wholly within the vacuum 
envelope, is known as an integral cavity klystron. An alternative arrangement is to 
insert a cylindrical ceramic window in the cavity as shown in Figure 13.3 so that the 
outer portion is at atmospheric pressure. Tubes with this kind of cavity are known 
as external cavity klystrons [1– 3]. The external part of the cavity is made in two 
halves which are bolted around the tube body. A good electrical connection at the 
joint is ensured by the use of metallic spring fingers. The cavity can be tuned by 
sliding walls as shown. The tuning and coupling arrangements are made simpler by 
the use of external cavities because they are outside the vacuum envelope. A tun-
ing range of 50– 60% is possible with this arrangement. The advantages of external 
cavity klystrons are: easier tuning; easier coupling; and cheaper replacement tubes. 
However, they are limited to powers under 100 kW and frequencies less than 1 GHz 
by voltage breakdown in the part of the cavity at atmospheric pressure, and by the 
need to ensure good electrical contact at the junction between the external cavity 
and the tube body. The window is in line of sight with the electron beam and may be 
damaged by direct electron bombardment or a multipactor discharge (see Section 

Figure 13.2: Arrangement of a multi- cavity klystron.

Figure 13.1: Arrangement of a two- cavity klystron.
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18.8). The task of replacing a failed tube is made more difficult because of the need 
to transfer the external cavities to the new tube, but they should then need little or 
no retuning.

This chapter considers the theory and design of klystrons. Small signal models 
are based on the space- charge wave theory in Section 11.4, while large signal mod-
els represent the electron beam by discs, or rings, of charge as described in Section 
11.8. Klystrons fall into two main classes:

• Broadband tubes have bandwidths up to 10% at frequencies from UHF to around 
18 GHz. Their applications include radar, UHF television transmitters, satellite 
ground stations and tropospheric scatter systems. [1, 4].

• Narrow band, high efficiency, tubes are used chiefly in particle accelerators and 
plasma heating and in nuclear fusion experiments at frequencies below 4 GHz 
[5, 6].

The design of tubes in these classes is discussed in Section 13.4. There is a brief  
review of the principles of multiple beam and sheet beam klystrons. Further infor-
mation can be found in [3, 7– 10]

13.2 Small- Signal Klystron Theory

Under small- signal conditions a klystron can be modelled using the space- charge 
wave theory introduced in Chapter 11. The cavities are represented by equivalent 
circuits, as shown in Figure 13.4. The coupling factors, and beam loading admit-
tances, of the interaction gaps can be calculated using (11.36), (11.38), and (11.100). 
In practical cases they can be determined by cold and hot test measurements, or by 
numerical modelling [11, 12].

Figure 13.3: Arrangement of an external klystron cavity.
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The beam loading conductance Gb( ) is typically around 0.15 times the DC beam 
conductance G0( ) when g a= , and the gap transit angle is 1 radian (see Figure 11.16). 
Thus, for a non- relativistic beam, we can write

 G K Vb a~ . ,0 15  (13.1)

where K is the perveance and Va is the beam voltage. If  K = 0 5. µ −A V 1.5  and 
Va = 10 kV, both of which are at the lower end of the range of typical values, then 
Gb ~ .7 5 µS . The R Q of  a typical re- entrant cavity is of the order of 100 Ω. The 
practical unloaded Q is around 6000 at 1 GHz, and decreases by a factor of 4 for 
every decade increase in frequency, if  the surfaces of the cavity are smooth (see 
Chapter 3). Thus the shunt conductances of the cavities range from around 1 μS 
at 1 GHz, to 10 μS, or more, at 30 GHz. This is comparable with the beam loading 
conductance. The reactive component of the beam loading is normally negligible 
[13] but, if  necessary, it can be compensated for by slight adjustments to the tuning 
of the cavities.

13.2.1 Input Cavity

The equivalent circuit of the input cavity is shown in Figure 13.4(a). The source 
current and conductance are transformed from those for the external source by the 
input coupler (see Section 3.6). Then the input gap voltage is

 V
i

G Y Yg
s

s c b

=
+ +

, (13.2)

where the cavity admittance is obtained from (3.5) as

 Y G jQc c U= + −












1
0

0ω
ω

ω
ω

, (13.3)

where Gc is the shunt conductance. The forward power in the input waveguide is

 P
i
Gin
s

s

=
2

8
. (13.4)

Figure 13.4: Klystron equivalent circuits: (a) input cavity, and (b) idler and output cavities.
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Then, from (13.2) and (13.4) the input gap voltage is

 V
G

G Y Y
Pg

s

s c b

in1

2

2

8
=

+ +
. (13.5)

If  the input is matched at resonance then G G Gs b c + , where Gb is the real part of 
Yb, and the power transferred to the beam is

 P V G
G G

G jQ G

Pg b
s b

s U c

in1

2

0

2

1
2

4

2
2

= =

+ ∆ω
ω

, (13.6)

where ∆ω ω ω= − 0. But Q G Q GE s U c=  so that (13.6) becomes

 P
Q

G
G

P
E

b

s
in1 2

1

1
=

+ ( )( )
⋅

∆ω ω
 (13.7)

This equation shows that the gain of the input cavity is maximum at resonance and 
that it is reduced by losses in the cavity. Away from resonance the input is no longer 
matched and the gain is reduced by reflected power. The modulation of the beam 
by the input gap can be expressed in terms of the space- charge wave amplitudes 
using (11.91)
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+
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+
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 . (13.8)

The transformation of the RF beam voltage and current by a drift length d is given 
by (11.110)
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V
. (13.9)

13.2.2 Idler Cavities

Figure 13.4(b) shows the equivalent circuit for an idler cavity including the pos-
sibility of an external load (though this is unusual). The beam is represented by 
a current source having magnitude ig and admittance equal to the beam admit-
tance Yb( ). In small- signal analysis it is usual to use the beam- loading admittance 
of an unmodulated beam in all cavities, though this is not strictly correct [14, 15]. 
If  the imaginary part of Yb is small compared with the real part Gb( ) then Yb can be 
replaced by Gb without serious error. The cavity extracts power from the modulated 
beam and uses it to add fresh modulation to the beam. Because the cavity imped-
ance is high, a large gap voltage is produced by a small induced current. If  the cavity 
losses are neglected, the kinetic power in the beam leaving the cavity is equal to that 
entering. Analysis of the interaction between the beam and the cavity is represented 
by the transfer matrix in (11.109)
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where

 Y Y Y YT c b e= + +  (13.11)

is the admittance of the cavity, the beam, and the external circuit, in parallel with 
one another. If  the klystron has N cavities separated by N −( )1  drift spaces the volt-
age and current modulation at the output gap is given by
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N N g
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1
2 1 1 2 1 1 , (13.12)

where the properties of the gaps and of the drift spaces may differ from one another.

13.2.3 Output Cavity

The voltage induced in the output gap is given by (11.108) as

 V
Y
Y

M M
V

VgN
e

T

N

N

= − [ ]







+ −

+

−
. (13.13)

The output power is

 P Vout gN= ( )1
2

2
Re YE  (13.14)

so that, finally, the power gain in decibels is

 G
P
PdB

out

in

=






10 log . (13.15)

This method of calculation is incorporated in Worksheet 13.1.
An alternative formulation using the transmission line representation of the 

beam employs the cavity transfer matrix in (11.119) [13]
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The drift matrix is
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where time variation as exp j tω( ) has been assumed. At the input, from (11.114)
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  (13.18)

and, at the output, from (11.117)

 V
Y

G
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IgN
TN

b N

N
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1
. (13.19)

The small- signal can be computed by cascading the transfer matrices as before.
The voltage at the output combines contributions from the individual cavities so 

that there is a peak of voltage at the resonant frequency of each cavity. In addition 
the phasor addition of the contributions of the cavities produces maxima and min-
ima as the voltages add and subtract in phase. It can be shown that the complex 
gain can be written

 G s A
s z

s p

n
n

N

n
n

N( ) =
−( )

−( )
=

−

=

∏

∏
2

1

1

, (13.20)

where s is the complex frequency and A is a constant [3, 7]. This function has poles 
in the complex frequency plane when s pn=  and zeroes when s zn= .

The way in which the poles and zeroes arise can be illustrated by a simple approxi-
mate analysis based on cascaded matrices, as described above. The tube is considered 
to be made up of series of stages, each of which comprises one cavity with the follow-
ing drift length. As the modulation grows along the length of the tube the RF current 
in the beam increases while the electron velocity remains approximately constant. The 
RF current in the beam entering a stage drives the gap voltage of the cavity. The vel-
ocity modulation imposed by the gap is transformed into additional current modula-
tion by the drift region. Thus, to a first approximation, the current gain in a stage can 
be computed by ignoring the velocity modulation at its start. This analysis assumes 
that the contribution to the gain from cavities which are not adjacent is negligible. 
The overall gain of the tube is found by summing the gains of the stages in decibels.

The interaction with a gap derived from (13.16) is
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, (13.21)

where I1 is the RF beam current before the gap. The modulation of the beam after 
a drift length d is found by pre- multiplying (13.21) by the drift matrix in (13.17) so 
that the RF current at the end of a drift region of length d is given by

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.014
https://www.cambridge.org/core


Small-Signal Klystron Theory 473

 I j d j
Y
Y

M d
G
Y

d Ie
e

T
q

b

T
q3

2
11= −( ) − ( ) + −





 ( )








exp sin cosβ β β .. (13.22)

Then the current gain in decibels is
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If  there is no added loss, or external loading, then Y GT b≈  at the resonant frequency 
of the cavity. Then the second term is dominant and the gain contributed by the 
stage is approximately

 G
M Y

Y
ddB

e

T
q 20

2

log sin .β( )





 (13.24)

For typical values of the parameters this has a value in the range 20 to 40 dB. When 
the signal frequency is far from resonance YT  is dominated by the cavity susceptance 
so that

 Y j
Q
RT

U

c



2

0

∆ω
ω

. (13.25)

If  we now assume that Y GT b  then (13.22) becomes
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This expression is zero when

 ∆ω
ω

β
0

2

2
= ⋅ ( )Y R

Q
M de c

U
qtan , (13.27)

which shows that, when βqd < °90  the frequency of  the zero lies above the resonant 
frequency of  the cavity, and that it increases as βqd  increases. The frequency of 
the zero lies below the resonant frequency of  the cavity when βqd > °90 . These 
general conclusions are confirmed by more accurate calculations as illustrated, for 
typical parameters, in Figure 13.5. The maxima and minima of the curves corre-
spond to the poles and zeroes of  the transfer function of  the stage in the complex 
frequency plane. The transfer functions of  the input and output cavities, which do 
not have zeroes, only contribute poles to the overall transfer function. Hence, for 
a klystron with N cavities there are N poles and N − 2 zeroes. The zeroes produce 
dips in the gain, and an important part of  the design of  a klystron is the selection 
of  the cavity and drift- tube parameters in such a way that the variation in gain 
within the band is minimised. The design of  broad- band klystrons is discussed in 
Section 13.4.1.
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13.2.4 Simplified Small- Signal Model

A simplified small- signal model of a klystron can be constructed by assuming that 
the contribution to the RF beam current made by a gap is negligible so that (13.18) 
becomes

 V MVg1 1= . (13.28)

The RF beam current is given as a function of position by (11.86)

 I z jY M V z j ze g q e2 1 1( ) = ( ) −( )sin exp .β β  (13.29)

and the voltage induced in a cavity by this current is

 V
M I
Y

j
Y
Y

M M V d j dg
T

e

T
g q e2

2 2

2 2
1 2 1= − = − ( ) −( )sin exp ,β β  (13.30)

where d is the drift length between the cavities. The voltage induced in each cavity 
excites waves which, in turn, induce voltages in each of  the subsequent cavities, 
and so on. Because the analysis is linear, the final voltage induced in the output 
cavity is the phasor sum of  the voltages induced by all the waves which have been 
excited. This can be thought of  in terms of  a number of  signal paths in parallel, 
each of  which has its own gain and phase shift as a function of  frequency. These 
paths represent all the possible connections between the input and the output. 
Thus for a five- cavity tube, for example, we find:  one path which connects the 
input and the output directly; three which take in one intermediate cavity; three 
which take in different pairs of  cavities; and one which takes in all three inter-
mediate cavities –  a total of  eight paths [7, 16, 17]. This model is implemented in 
Worksheet 13.2.

Figure 13.5: Gain of a klystron stage (cavity plus drift length) as a function of frequency and 
drift length  R Q Q M Gb Ye= = = = =( )100 4000 0 79 10 2, , . , ,µS mS .
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13.2.5 Overall Performance

Figure 13.6 shows a comparison between the calculated and measured small- signal 
gain for a 3kW klystron for use in satellite ground stations. The cavities of this tube 
are tuneable and their exact frequencies in the experimental tube are not known. The 
frequencies of the experimental results were scaled by 1.25% to match the calculated 
results. The figure shows results from Worksheets 13.1 and 13.2. The gain was found 
to be quite sensitive to the beam radius. In the example shown, the best results were 
obtained when the radius was reduced by about 10% relative to the theoretical value. 
It is often difficult to obtain a reliable value for the beam radius, especially if  the 
current density is not uniform, though good results are usually given by using the 
equilibrium beam radius in the calculations. This tube has four stages (five cavities) 
so that the average small signal gain is about 11 dB per stage. The cavities are tuned 
for broad- band operation (see Section 13.4.1). If  the cavities in the model are all 
tuned to the same frequency the gain per stage at the band centre is increased to 19 
dB. However some tubes suffer from feedback oscillations if  they are synchronously 
tuned so it does not follow that this tube could be operated with synchronous tuning.

13.3 Large- Signal Behaviour of Klystrons

Unlike an IOT, the DC power input to a klystron is constant, regardless of the level 
of the RF output power. Therefore it is usually desirable to operate a tube with 
high RF power output to obtain the best conversion efficiency. Under large- signal 
conditions the behaviour of a tube becomes non- linear and the linearised theory in 
the previous section is not valid. It is therefore necessary to use a large- signal model 
as described in Section 11.8. Details of time- step and distance- step models, and 
of the application of PIC codes, can be found in the literature [18– 20]. The main 
features of the large- signal behaviour of a klystron can be illustrated using a simple 

Figure 13.6: Comparison between calculated and measured small- signal gain of a klystron.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.014
https://www.cambridge.org/core


Klystrons476

time- step disc model (see Worksheet 13.3). The power transferred to the output gap 
tends to be an over- estimate when computed by a one- dimensional model, because 
the radial variations of the space- charge field and the field of the gap, and the radial 
motion of electrons, have been neglected [21, 22].

We saw in Section 11.8.4 that the RF power extracted from a bunched beam by the 
output cavity increases with the first harmonic of the beam current I1( ). In the small- 
signal regime, the amplitude of I1 at a fixed plane varies linearly with the normalised 
input gap voltage (see (13.29)). When the RF power in the beam is small, the output 
gap voltage is small compared with Va so that the electrons cross the gap with aver-
age velocities close to u0. The gap coupling factor is then independent of the level 
of modulation, and the output power is proportional to the input power. As the RF 
power in the beam increases the behaviour of the tube becomes non- linear because:

• The amplitude of the fundamental RF current is not linearly dependent on the 
input gap voltage.

• The position at which the amplitude of the current is greatest varies with the drive 
level (see Figure 11.26).

• The effective coupling factor of the output gap decreases because the electrons at 
the centre of the bunch slow down as they pass through the gap.

The plot of Pout against Pin is then not linear at high drive levels but saturates as 
shown in Figure 13.7. The difference between the gain at saturation and the small- 
signal gain, known as the gain compression of  the tube, is typically in the region of 
5 to 7 dB. The output power of a klystron therefore depends on both the effective-
ness with which the beam is bunched, and on the power conversion efficiency in the 
output gap. When the frequency of the input signal is varied within the working 
band of the tube it is found that the saturated output power is constant to first 
order. However, the saturated gain and hence the input power required to saturate 
the tube, vary with frequency [13].

Figure 13.7: Typical non- linear power transfer characteristics of a klystron.
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13.3.1 Klystron Sections

It is convenient to consider the design of  a multi- cavity klystron, such as that 
illustrated in Figure  13.2, in terms of  three sections, as shown in Figure  13.8 
[23]. Each section is made up of  one, or more, stages each comprising a cavity 
with the following drift length. The cavities can be represented by the equiva-
lent circuits shown in Figure 13.4 if  the gap coupling factors are adjusted for 
large- signal effects where necessary. The purpose of  the first section is to provide 
sufficient gain to produce a strongly bunched beam over the working bandwidth 
of  the tube. The second section increases the fundamental RF current by com-
pressing the bunches to enable the maximum power to be extracted from them 
by the output section. The factors influencing the design of  each section are 
discussed below.

The objective of the bunching process is that the final value of I I1 0  should be 
as great as possible, with minimum velocity spread and few crossing trajectories. It 
has been suggested [24] that a useful figure of merit for bunching is

 F
I
I

u
u1

1

0 0

1
2

= min , (13.31)

where umin is the velocity of the slowest electron within the bunch. The maximum 
possible value of this figure of merit is F1 1= , and it decreases sharply when electron 
crossovers occur. It has been found to be a good predictor of efficiency at saturation 
and to be useful for the optimisation of the bunching [13, 25]. A definition based  
on the minimum electron energy in the input bunch could also be justified. However, 
the velocity of the slowest electron is not a good measure of the velocity spread in 
the bunch as a whole [26]. An improved figure of merit is

 F
I
I

u
u2

1

0 0

1
2

1= −






∆
, (13.32)

where ∆u is the root mean square of  the velocity spread in the bunch. The appli-
cation of  this figure of  merit to the design of  klystrons is discussed in Section 
13.3.3.

Figure 13.8: The sections of a klystron.
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13.3.2 Initial Bunching Section

The input cavity is normally working in the small- signal regime so that the analysis 
in Section 13.2.1 is valid. The resonant frequency of the cavity is often close to 
the centre frequency of the tube but it may be elsewhere in the working frequency 
band in a broadband klystron (see Section 13.4.1). The normalised voltage in the 
input gap can be estimated by recalling that the RF power transferred to the beam 
is given by (11.98)

 P G Vg b g=
1
2

2
, (13.33)

and that the output power of the tube is

 P I Vout e= η 0 0 . (13.34)

Thus the gain is

 G
I V

G V

G
G

V
V

e

b g

e

b g

= =
2 20 0

2
0 0

2
η η

. (13.35)

Now, typically for a broadband klystron, ηe ~ .0 5, G Gb 0 0 15~ .  and the power gain 
is 40 dB so that G = 104. Substituting these figures into (13.35) we obtain the nor-
malised input gap voltage

 
MV

V
g

0

0 02~ . , (13.36)

where it has been assumed that, typically, M ~ .0 8.
Klystron input cavities may be affected by multipactor discharge (see Section 

18.8), especially between the tips of the drift tubes. These discharges are usually 
of low power but they add loading to the cavity and introduce noise [27– 29]. The 
problem may be reduced or eliminated by coating the surface with a material having 
a low secondary electron emission coefficient, by castellation of the drift- tube tips, 
or by changing the surface topology in some other way [3].

The remaining cavities in the initial bunching section make a major contribution 
to the gain of the tube. Their parameters are chosen to equalise the gain over the 
bandwidth of the tube, and to create well- formed bunches for compression by the 
following section. Although small- signal theory is sometimes used to model bunch 
formation we shall see that the role of harmonic modulation of the beam can be 
important. The resonant frequencies of the cavities generally lie within the band-
width of the tube. Their Q factors may be adjusted by the addition of lossy coatings 
or by coupling to external loads [30]. In this section the RF power in the beam is 
small compared with the DC beam power. Thus, the power dissipated in the cavity 
losses is small and has a negligible effect on the overall efficiency of the tube. The 
gap voltage induced in a cavity is determined by the RF current in the input beam 
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so that, using small- signal theory, the amplitude of the velocity modulation added 
to the beam is

 V
M I

G G j
Q
Rb c

U

c

1

2
1

0

2
=

+ + ⋅ ∆ω
ω

, (13.37)

where ω0 is the resonant frequency of the cavity. Taking R Qc 0 100= Ω as a typical 
figure, it can be seen that the imaginary term in the denominator becomes compar-
able with the beam conductance estimated from (13.1) when the frequency devi-
ation is of the order of 1%. For greater frequency deviations the imaginary term is 
dominant and (13.37) can be written approximately as

 V
V

G M
R
Q

I
I

c

U

1

0
0

2 0 1

02














ω
ω∆

. (13.38)

Thus, if  large bandwidth is required, it is desirable to maximise the beam conduct-
ance by choosing a high beam perveance, and to maximise M R Qc

2
0( ) [13, 31]. 

This parameter depends essentially on the choice of the normalised radius of the 
drift tube and on the gap transit angle. It has been found that the optimum transit 
angle is 1.4 radians [13].

13.3.3 Final Bunching Section

The cavities in this section are tuned to frequencies above the working band of 
the tube so that the phase of  the gap voltage leads the phase of  the RF beam 
current by just under 90°. The centre of  the bunch crosses the gap when the RF 
field is zero and the bunch is compressed. The extent to which the bunch can be 
compressed in this way depends upon both the form of  the input bunch and the 
space- charge density in the beam. The influence of  these factors on bunch com-
pression by a single cavity can be explored using the disk model in Worksheet 
13.4. Figure 13.9 shows, as an example, the compression of  bunches in a 25 kV, 1 
μPerv, beam when the current waveform in the input beam is defined by (11.175) 
with n = 1 5.  so that I I1 0 1 2= . . The depression of  the potential by the space charge 
of  the bunches causes some of  the kinetic energy in the beam to be converted to 
potential energy. The initial electron velocity has been reduced to account for this. 
The figure of  merit F2 is greatest, at a distance z eλ = 0 845.  from the centre of  the 
gap, when the normalised gap voltage MV Vg a = 0 33. . The normalised RF cur-
rent at this plane is I I1 0 1 63= . . Figure 13.9(b) shows the computed current wave-
form with the ideal current waveform for n = 4 for comparison. The bunching 
can also be represented by plotting the relative phase at which sample electrons 
reach a plane against their initial phase, as shown in Figure 13.9(c) [32]. These 
results were obtained using the parameters β β βe e ea b g= = =0 5 0 3 0 5. , . , . . When 
the case in Figure 13.9 was recomputed with all the parameter values doubled 
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the maximum normalised RF current was 1.78 at z eλ = 1 005. . Thus the detailed 
results depend upon the choice of  parameters but it is to be expected that the 
general trends will be the same.

The effects of  perveance and of  the initial bunching of  a beam having the same 
parameters are shown in Figure  13.10. Figure  13.10(a) shows that the normal-
ised RF current in the final bunches increases, tending to a limit which depends 
upon the perveance, as the initial bunches become tighter. However, for perveance 
greater than 1.0, it is found that a point is reached where the initial bunches are 
already optimal and cannot be compressed further if  the maximisation of  F2 is 
used as the criterion. The figure also shows that, beyond a certain point, further 
tightening of  the input bunches yields only a marginal improvement in the final 
bunches. Figure 13.10(b) shows that the distance from the cavity to the plane of 
optimal bunching decreases as the output bunches get tighter, and also as the per-
veance increases.

Figure 13.9: Compression of a bunch by a cavity: (a) electron trajectories (b) current 
waveforms, and (c) phases of sample electrons.
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13.3.4 Output Section

The output cavity is normally tuned close to resonance at the band centre so that 
the gap field is in anti- phase with the bunches to remove as much energy from them 
as possible. From the discussion in Section 11.8.4 we know that the electronic effi-
ciency is given by

 ηe eff
gI

I
M

V

V
=

1
2

1

0 0

, (13.39)

where Vg is the output gap voltage and Meff  is the effective gap coupling factor 
defined by (11.180). The ratio I I1 0  is determined by the bunching in the previous 
sections. It has a theoretical maximum value of 2 for a delta- function bunch. The 
electronic efficiency which can be achieved is determined by a number of factors:

 i) The tendency for some electrons to be re- accelerated leads to an optimum value 
for energy transfer to the gap, as shown in Figure 11.31. In extreme cases some 
electrons may be reflected by the gap. If  these pass back down the drift tube 
towards the electron gun they may provide positive feedback causing the tube 
to break into oscillation. We saw in Section 11.8.4 that if  M = 0 8.  then the opti-
mum gap voltage is 1 5 0. V  and Meff ~ .0 55 so that M V Veff g 0 0 82~ . . This analysis 
neglected the effects of space- charge which are discussed in Section 13.3.6.

 ii) The electrons leaving the gap must have sufficient residual velocity to drift out of 
the field of the gap, without the formation of a virtual cathode at the entrance 
to the collector. For example, if M V Veff g 0 0 9= .  then the electrons leave the gap 
with about 10% of their initial energy and velocities around 30% of their ini-
tial velocity. This is probably close to the limit set by this requirement. We note 
that this limit may be greater than that set in (i) above but it is also influenced by  

Figure 13.10: (a) Variation of normalised RF current in compressed bunches, and 
(b) variation of the optimal drift length with the normalised RF current in the input beam 
and with beam perveance.
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potential depression caused by the high space- charge density just after the gap (see 
Section 13.3.6).

 iii) The velocity spread in the bunches as they enter the output gap tends to reduce 
the exit velocities of the slowest electrons and to increase the risk that they may 
be reflected. For this reason it is desirable for the velocity spread to be small.

 iv) Storage of potential energy in the bunches reduces the kinetic energy available 
for conversion to RF power. The increase in the space- charge density in the 
bunch entering the output gap leads to increased potential depression which can 
be estimated from (7.8) by replacing the mean beam current by the peak cur-
rent. Thus the velocity of the bunch is less than u0 and the effective gap voltage 
must be reduced accordingly. When the velocity of the bunch is reduced by the 
gap the space- charge density and the stored potential energy are increased. The 
power balance equation is

 P P P PDC RF KE PE= + + , (13.40)

where PRF  is the power transferred to the gap, PKE and PPE  are the kinetic and 
potential power in the spent beam, and the RF power used to modulate the 
beam is neglected. Thus the electronic efficiency is

 ηe
KE

DC

PE

DC

P
P

P
P

= − −1 . (13.41)

The importance of the potential energy term increases as the average charge 
density in the beam increases. It can lead to a reduction in efficiency computed 
from the kinetic power by several percentage points in beams with high perve-
ance [33]. This suggests a possible alternative figure of merit for bunching

 F
V
V

Fb

a
3 2= ⋅ , (13.42)

where Vb is the energy of the bunched beam in eV calculated from the kinetic 
energies of the electrons.

 v) It is essential to avoid voltage breakdown in the output gap (see Section 18.7.1). 
The calculations which have been presented so far assume that the gap voltage 
can be as large as necessary to obtain the optimum extraction of energy from 
the bunches. The breakdown condition for a radio- frequency gap is often taken 
to be given by Kilpatrick’s formula [34]

 f E E= −( )1 6 8 52. exp . ,max max  (13.43)

where f is the frequency in MHz and Emax is the maximum electric field on the sur-
faces of the gap in MV m− 1. The maximum electric field is much greater than the 
average field in the gap, defined by E V gg0 = , because of the concentration of 
the field on the tips of the drift tubes. These are commonly rounded to reduce the 
maximum field as far as possible. An example of the output gap design for a high 
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power klystron is given in [35]. In this 50 MW tube operating at 2856 MHz the out-
put gap voltage at saturation was 418 kV, corresponding to V Vg a = 1 32. . The maxi-
mum electric field was 36 MV m– 1 and the average gap field was 26 MV m– 1 giving a  
field enhancement factor of 1.4. Substitution of these figures into (13.43) gives 
the maximum safe frequency of operation of the gap as 1.6 GHz. However, it 
is known that fields up to twice this limit can be sustained if  the surfaces are 
clean and well- prepared [34]. Thus the criterion in (13.43) may be regarded as 
conservative.

Performance beyond that of a single output cavity can be achieved by using two 
or more coupled output cavities in which the gap field is less than it would be in 
an equivalent single cavity [36, 37]. This arrangement, known as an extended inter-
action output cavity, is usually operated in the π-mode  with the fields in adjacent 
cavities in antiphase. The cavity resembles a short section of coupled- cavity slow- 
wave structure with short- circuited ends. A description of a five- section, π-mode, 
extended interaction cavity is given in [38]. At very high powers it has been found 
better to operate the cavities in the 2π-mode so that adjacent cavities are in phase 
with one another [39].

The efficiency of klystrons decreases with increasing frequency, as shown by the 
data for CW klystrons in Figure 13.11(a). The decrease is the result of design com-
promises and the effects of increasing losses in the output cavity. The figure shows 
the trend line

 ηe f= −0 65 0 0225. . , (13.44)

where f is the frequency in GHz. Figure 13.11(b) shows the data for pulsed klys-
trons with the same trend line. The data follows the same trend apart from two 
outlying points.

Large- signal modelling of klystrons shows that, at saturation, the harmonic cur-
rents in the beam have large amplitudes and, in particular for the second har-
monic, I I2 0 1~ . However, because the output cavity is resonant, a low impedance 
is presented to the harmonic current, and the output power at harmonic frequencies 
is small. Measurements on a SLAC high power klystron at a fundamental power of 
31 MW showed second and third harmonic outputs of – 24 dBc and – 39 dBc respec-
tively [40]. Clearly this would not be the case if  any of the higher-order modes of 
the output cavity were to present appreciable impedance to the beam at harmonic 
frequencies. It is therefore important to check the frequencies of the higher-order 
modes as part of the design of the cavity.

13.3.5 Output Coupling

The discussion to this point has assumed that the coupling of the output cavity to 
the external load has been arranged so that it is matched. In practice it is not always 
possible to ensure that the load is perfectly matched to the output of the klystron 
even when a circulator is placed between them. It is therefore necessary to consider 
the effect on the performance of the tube if  the load is mismatched. For simplicity 
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we will assume that the current induced in the cavity is not affected by the change in 
the match and that the cavity is resonant. From Figure 13.4(b) we see that the load 
is driven by a current source ig whose source admittance is G Gc b+ . From (11.108) 
the gap voltage is

 V
i

G G Yg
g

b c L

=
+ +

, (13.45)

where Y G jBL L L= +  is the load admittance referred to the gap. When the load is 
correctly matched to the tube BL = 0, G G G GL L c b= = +0  and

 V
i

Gg
g

L
0

02
=  (13.46)

Figure 13.11: Efficiencies of klystrons from published data sheets plotted against 
frequency: (a) CW tubes, and (b) pulsed tubes.
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as expected. Dividing (13.45) by (13.46) gives

 
V

V
G

G G jB g jb
g

g

L

L L L L L0

0

0

2 2
1

=
+ +

=
+ +

, (13.47)

where the lower case symbols represent admittances which have been normalised to 
the source conductance. This can be written

 
V

V
jg

g0

1= + ( )ρ φexp , (13.48)

where ρ  is the magnitude of the voltage reflection coefficient of the load and φ is 
its phase. If  the tube is designed to give maximum efficiency with a matched load 
then the output power is reduced when the amplitude and phase of the load are 
changed (see Figure 11.31). Contours of constant load power can be plotted on a 
Smith chart of the normalised load admittance referred to the output flange of the 
tube. The result is known as a Rieke diagram (see Figure 13.12). The contours of 
constant power are not circles because the effective gap coupling factor depends on 
the gap voltage. This effect increases as the mismatch increases. The shaded area of 
the diagram represents a region in which the tube must not be operated because the 
gap voltage would be too great. The use of the output flange, rather than the gap, 
as the reference plane has caused the contours to be rotated about the centre of the 
chart relative to their theoretical positions.

13.3.6 Theoretical Limits to Efficiency

It has been observed by a number of authors that the maximum efficiency of a 
klystron decreases with increasing perveance [41– 44]. Taking the average of the 
empirical formulae suggested gives

Figure 13.12: Example of a Rieke diagram for a klystron
(courtesy of Thales Electron Devices and Georges Faillon).
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 ηe
a

I
V

= − ×( )−0 82 0 2 10 6 0

1 5
. . .

.
 (13.49)

Figure 13.13(a) shows points obtained from published data sheets for CW klystrons 
with the line given by (13.49) for comparison. It should be noted that this line does 
not take account of the decrease in efficiency with increasing frequency shown in 
Figure 13.11. The two effects can be combined to produce a general expression for 
the maximum possible efficiency

 ηe f GHz= − × − × ( )0 85 0 2 0 0225. . . .µPerv.  (13.50)

The data for pulsed klystrons is shown with the same trend line in Figure 13.13(b). It 
is clear that the efficiencies of pulsed tubes can be greater than predicted by (13.49). 

Figure 13.13: Efficiencies of klystrons from published data sheets plotted against perveance 
showing the trend line given by (13.43): (a) CW tubes (the triangles show points computed 
using Worksheet 13.4), and (b) pulsed tubes.
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The reason for this is that many pulsed tubes operate at higher beam voltages than 
CW tubes (see Tables 13.2 and 13.3). At these voltages relativistic effects become 
important and it is possible to remove more kinetic energy from the electrons.

The variation of efficiency with perveance can be explained by the effects of 
space- charge density. Thus we expect that the maximum attainable efficiency will be 
related to ω ωq

2 2 . If  relativistic effects are ignored then

 
ω
ω πε β

q

e a

p

e m b

I
V







= ⋅
( )

⋅
2

2

0 0
2

0

1 52 2

1
.

. (13.51)

Now, typically, βeb < 1 and b a ~ .0 6. In this parameter range p is approximately 
proportional to βeb for a magnetically focused electron beam, as can be seen from 
Figures 11.10(b) and (c). Thus ω ωq

2 2  is approximately proportional to the perve-
ance of the beam for all tubes.

The disc model in Worksheet 13.4 was used to explore the reasons for the 
dependence of  efficiency on perveance for non- relativistic electrons. The nor-
malised beam and gap parameters were taken to be β β βe e ea b g= = =0 5 0 3 0 5. ; . ; .  
giving a small signal gap coupling factor M = 0 945. . Thus the energy given up 
by the electrons was generally not limited by re- acceleration in the output gap. 
These parameters are similar to those used in tubes designed for high efficiency. 
The effective coupling factor taken from Figure 11.32 was 0.81. The beam enter-
ing the penultimate cavity was assumed to be ideally bunched, as described in 
Section 13.4.2. For each value of  the perveance the case giving the highest value 
of  I I1 0  in Figure 13.10(a) was chosen. The voltage across the penultimate gap 
was adjusted to maximise F2  and the output gap was placed at the plane where 
the figure of  merit was maximum. The amplitude of  the output gap voltage was 
then adjusted to minimise the final kinetic energy of  the electrons. The relative 
phase of  the output gap voltage was fixed at − 180° which is close to the phase 
at which the bunches experience the maximum retarding field. This procedure 
was found to give the best conversion efficiency. The results, shown as triangles 
on Figure 13.13(a), are similar to those given by (13.49). They are an indication 
of  the maximum efficiency which can be achieved when transverse motion of 
the electrons is not important, other design constraints do not apply, and the 
power loss in the output cavity is negligible. In all the cases examined, apart 
from 0.2 μPerv, the efficiency was found to be limited by the reflection of  slow 
electrons by a potential minimum after the output gap (see Figure 13.14). From 
these results it appears that the maximum efficiency of  non- relativistic tubes 
tends to 85% in the limit of  small perveance and low frequencies, as suggested 
in (13.50).

The space- charge density in the beam (which increases with increasing perve-
ance) limits the maximum RF current in the compressed bunches entering the 
output cavity. It also limits the energy which can be extracted from the bunches 
because of  the need to avoid reflection of  electrons by potential depression in 
the spent beam. In order to achieve the highest possible efficiency at a given 
perveance:
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• The beam entering the output cavity must be tightly bunched, with minimum 
velocity spread, and the fraction of electrons in the inter- bunch region must be 
as small as possible. The techniques used to reduce this fraction in high efficiency 
tubes are discussed in Section 13.4.2.

• The small- signal gap coupling factor of the output cavity must be increased to 
the point where reflection of electrons by potential depression in the spent beam 
is the limiting factor.

The theoretical limit may not be achieved in practice because of:

• The need to avoid voltage breakdown in the output gap.
• The effects of radial motion of electrons.
• Design compromises, especially in broad- band tubes.
• Losses in the output cavity, which increase as the frequency increases.

13.3.7 Electron Collection

In some cases the overall efficiency of a klystron can be increased by collector 
depression. The technique is not suited to high- power tubes because of the diffi-
culty of cooling multiple high- voltage electrodes (see Chapter 10). The distribution 
of the energies of the electrons in the spent beam can be computed using a disc 
model. However, it has been found that useful results can be obtained for a broad- 
band tube using an approximate method (see Worksheet 13.5). This can be illus-
trated by applying it to the tube described in [45] which had a saturated efficiency 
ηsat( ) of  51%. For such a tube the beam is not strongly bunched at the output cavity 

so it is reasonable to model the current waveform at saturation using (11.175) with 
n = 2. The waveform at other drive levels is assumed to be

 
I X

I
X X

θ
θ θ

,
. cos . cos

( )
= + +

0

21 1 33 0 33 2  (13.52)

Figure 13.14: Normalised electron velocities for maximum efficiency with a 1 μPerv beam.
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where θ ω= t and X is the ratio of the voltage at the input gap to the value at satur-
ation. Then the amplitude of the first harmonic current is

 I
I

X1

0

1 33= . . (13.53)

The normalised dimensions of the output gap are taken to be   β β βe e ea b g= = =1 0 6 1, . ,  
and the effective voltage of the output gap at saturation is given by

 
M V

V
I
I

eff g

a
sat= =2 0 770

1

η . . (13.54)

The normalised energy of the slowest electrons is V Vamin .= 0 23 and the effective 
gap coupling factor at saturation is found, from (11.182), to be Meff = 0 6. . Then the 
normalised resistance of the output load is

 R
I
V

V

V
I

M IL
a

g

a eff

0 0

1

= ⋅ , (13.55)

where losses in the output cavity have been neglected. For output levels below satu-
ration the effective gap voltage V Xeff ( ) can be computed as a function of X by itera-
tion. Then the energy of electrons in the spent beam as a function of the phase of 
the output gap voltage is given by

 V X V V Xs a effθ θ, cos .( ) = − ( ) ( )  (13.56)

Since the current waveform is symmetrical the current collected by an electrode 
whose potential is V Xs θ,( ) is

 I X I X dC θ
π

θ θ
θ

π
, , .( ) = ( )∫

1  (13.57)

The output backoff, in decibels, is given by

 OBO
M X

M
Xeff

eff

=
( )
( )







20

1
log . (13.58)

Figure 13.15 shows the spent- beam curves computed at saturation and three dif-
ferent levels of  output backoff. It should be noted that an appreciable fraction of 
the electrons have been accelerated so that V Vs a> . This is typical of  the proper-
ties of  the spent beam in a klystron and it limits the improvement in efficiency 
which can be achieved by collector depression. Despite the simplifications and 
approximations used to calculate them, these curves are very similar to those 
calculated using a disc model [45]. Note that their shapes are very different from 
the idealised curve in Figure  10.9, and from the typical curve for a TWT in 
Figure 14.16.
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The tube used in this example was designed for UHF TV transmission [45]. In 
analogue TV service it was operated close to saturation for brief  periods during 
the synchronising pulses. For the greater part of the time the average power was 
less than half  of that at saturation [46, 47]. Figure 13.15 shows that the range of 
energies in the spent beam is then relatively small so that an efficient multi- stage 
collector can be designed. In the two cases cited five- stage depressed collectors were 
used. The power required was then found to be less than half  that without col-
lector depression leading to a substantial reduction in the operating costs of the 
transmitter.

The other main use of  klystrons with depressed collectors is in space where 
high overall efficiency is essential. An experimental pulsed 5.3 GHz klystron 
for a satellite borne synthetic aperture radar, having an RF efficiency of  40%, 
achieved an overall efficiency of  nearly 50% with a four- stage collector (includ-
ing a spike at cathode potential) [48]. The spent- beam curve of  this tube is shown 
in Figure  7.4 in [3]. Experiments with a klystron having an RF efficiency of 
40– 50% gave an overall efficiency at saturation of  around 70% with a ten- stage 
collector [49].

13.3.8 Terminal Characteristics

The performance of a klystron is appreciably affected by variations in the beam 
voltage, signal frequency, and output match. Figure 13.7 shows that, when a klys-
tron is operated at or close to saturation, the output power is insensitive to varia-
tions of input power and, by extension, to variations of beam voltage. The effects 
on the phase of the output signal are more serious because of the distance from the 
input to the output. If  the distance from the centre of the input gap to the centre 
of the output gap is L then the phase difference between the input and the output 
is approximately

Figure 13.15: Typical spent- beam curves for a broad- band klystron at saturation, and three 
levels of output backoff.
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 φ ω
≈

L
u0

. (13.59)

Thus, if  the normal beam voltage is 90 kV, the tube length is 1.17 m, and the fre-
quency is 500 MHz, the sensitivity of phase to changes in the beam voltage is – 5.8 
degrees per kV.

The small- signal transfer function of a klystron contains both poles and zeroes 
as shown by (13.20). If the zeroes are outside the working band of the tube then the 
transfer function is essentially that of a multi- resonator filter. The performance of the 
klystron as a system element is governed by this. It is found that the filling times of  
the cavities are much greater than the electron transit time along the tube. Thus the 
transient behaviour is determined by the Q factors of the cavities. It can be determined 
to good accuracy from the characteristics of the tube in the frequency domain [50, 
51]. Under large- signal conditions the non- linearity of the tube leads to signal distor-
tion and the generation of inter- modulation products [52, 53] (see Section 1.6.4).

13.4 Klystron Design

The design of any klystron is likely to start from a statement of requirements which 
includes the frequency, output power, gain, and bandwidth. Although many tubes 
are designed by scaling from existing devices it is instructive to consider the con-
ceptual design process. Many of the design options are common to all tubes and 
the choices of parameters are usually constrained by physical factors. A  typical 
sequence of design decisions is:

 i) The DC beam power required is obtained from the RF output power using an 
estimate of the tube efficiency based upon previous experience (see Figures 13.11 
and 13.13). This estimate depends upon whether the primary design goal is high 
efficiency or broad bandwidth and it can be revised in the light of subsequent 
calculations. Thus

 P PDC RF rf= η . (13.60)

 ii) The beam current and voltage are selected to give acceptable perveance, conver-
gence and cathode loading in the gun. The choice is influenced by whether high 
gain or high efficiency is most important. If  the perveance is K then

 V
P
Ka
DC= 





0 4.

 (13.61)

and

 I P VDC a0 = . (13.62)

The beam voltage must be low enough to avoid voltage breakdown in the gun 
[41, 54].
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 iii) The normalised beam and tunnel radii γ γe eb aand( ) are chosen to achieve a 
compromise between strong coupling to the gaps and the strength of magnetic 
focusing field required for adequate beam stiffness. The beam filling factor b a( ) 
is typically in the range 0.5 to 0.6 to achieve low beam interception and γ ea ≤ 1 0. .  
The tunnel radius must be small enough to ensure that the beam tunnel is 
strongly cut- off  to avoid unwanted coupling between the cavities.

 iv) The cathode radius is chosen to achieve a compromise between low cathode 
loading (to achieve a long lifetime) and small area convergence (to get good 
beam optics).

 v) The choice of the number of cavities, their dimensions, and the drift lengths 
depends upon the desired gain, bandwidth and efficiency. This is discussed fur-
ther below. It may be necessary to make a compromise between the drift lengths 
and the cavity heights (which increase with increasing R Q).

The conceptual design process is best carried out using a spreadsheet, or other 
computer aid, which enables the results of design options to be investigated rapidly. 
The computer aids include simple small- signal and large- signal models of the kind 
illustrated in Worksheets 13.1, 13.2, and 13.3. Figure 13.16 shows the technological 
limits to the power of klystrons [55]. Further information about factors limiting the 
design of klystrons is given in [41].

Once a promising conceptual design has been found it is possible to proceed to 
detailed design in which every aspect is checked using computer models. Particular 
aspects include the design of the cavities and couplers; the electron optics of the 
gun, the focusing system and the collector; and the cooling system. The large- signal 
performance must be predicted more accurately by using a three- dimensional 
large- signal model.

Figure 13.16: Approximate technology limitations on klystron performance: (1) size (CW 
and pulsed); (2) Output window (CW); (3) output cavity power density and cyclical fatigue 
(CW); and (4) radio- frequency breakdown (pulsed)
(courtesy of H.P. Bohlen).
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13.4.1 Broad- band Klystrons

The design of broad- band klystrons for telecommunications, television broadcast-
ing, and radar has been discussed by a number of authors [2, 13, 30, 31, 56]. The 
general principles are to use stagger tuning of the cavities and a high perveance 
beam to reduce the Q of  the cavities by high beam loading. The cavities may also 
be loaded internally, or externally, to reduce their Q factors. A small- signal model 
may be used to find the best tuning of the cavities for broad bandwidth, but a 
large- signal model must be used to find the effects of cavity tuning on efficiency. 
The zeroes in the transfer function of the tube are arranged to give minimum rip-
ple in the gain of the tube, within its operating band, by suitable choice of the drift 
lengths (see Section 13.2.3). This can be achieved by placing cavity poles close to 
zeroes which fall within the band [3, 7, 17]. Good results have been obtained when 
the frequencies of the cavities increase progressively down the tube. The drift length 
preceding each cavity is adjusted so that the pole of one cavity is close to the zero 
of the previous one [30, 31]. It is usual to tune one or more final bunching cavities 
to frequencies lying above the operating band to increase the efficiency of the tube. 
Because the zeroes attributable to the individual sections of the tube generally lie 
above the cavity resonant frequencies, the gain usually falls more rapidly above the 
band than below it (see Figure 13.6). Some examples of tuning patterns are shown 
in Table 13.1.

The bandwidth of  the output cavity can be increased by coupling it to the out-
put waveguide by a filter, such as a second resonant cavity (see Section 3.2.4), or 
by using an extended interaction cavity [13, 47]. Extended interaction cavities may 
also be used elsewhere in place of  conventional cavities to produce an extended 
interaction klystron (EIK) [36]. Under some circumstances the current modulation 

Table 13.1: Examples of cavity tuning patterns for 
broad- band klystrons (relative frequencies)

Cavity
number

[13] [31] [30]

1 0.975 0.956 0.96

2 0.955 0.960 0.95

3 1.015 0.985 1.01

4 1.045 0.985 1.04

5 1.050 1.02 1.06

6 1.092 1.02 1.08

7 1.000 1.047 1.10

8 – 1.05 1.00

9 – 1.05 – 

10 – 1.067 – 

11 – 1.00 – 
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excited on the beam by one cavity can deliver power to the same cavity so that 
the beam loading conductance becomes negative and the cavity self- oscillates [57]. 
These are known as monotron oscillations and are the basis of  monotron and 
extended interaction oscillators [58– 61]. In the ultra- wide bandwidth Clustered- 
CavityTM klystron the individual cavities are replaced by closely- spaced clusters of 
cavities [17, 62].

13.4.2 High- Efficiency Klystrons

High- efficiency klystrons have been developed for powering particle accelerators 
and for plasma heating in nuclear fusion experiments [7, 35, 38, 39, 43, 63– 65]. To 
achieve high efficiency the fundamental RF beam current entering the output cavity 
and the effective gap coupling factor should both be as high as possible (see Section 
13.3.6). The initial bunching process should gather as many electrons as possible 
into a phase range of 180° while avoiding crossing trajectories. The bunches can 
then be compressed using several stages, if  necessary (see Figure 13.9).

Two techniques for achieving high efficiency were discussed in [23]. The paper 
does not give full details of the parameters of the tubes considered but the calcula-
tions can be made using Worksheet 13.4 if  some assumptions are made about the 
missing information. Figure 13.17 shows three stage bunching of a 1.0 μPerv beam. 
The first stage creates bunches with I I1 0 0 86= .  at z eλ = 2 28. . It can be seen that 
the inner trajectories start to diverge at that plane whilst the outer ones continue 
to converge. The phase focusing effect of the second cavity is greatest at ±90° with 
respect to the bunch centre. The best bunch compression is achieved by placing the 
second cavity after the plane for optimum bunching so that more of the electrons 
are captured into the bunch. The second stage of compression gives I I1 0 1 3= .  at 
z eλ = 5 4. . The third cavity, which is also placed a little beyond the plane of optimal 
bunching, gives I I1 0 1 8= .  at z eλ = 6 6. . The growth of the first and second harmon-
ics of the RF beam current along the tube is shown in Figure 13.18. Figures 13.17 
and 13.18 are similar to Figure 4 in [23]. The chief disadvantage of this method 
of achieving high efficiency is that the drift lengths are long and increase as the 

Figure 13.17: Trajectories in a high- efficiency klystron with long drift lengths.
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perveance decreases. The bandwidth of high- efficiency tubes designed in this way is 
comparable with that of conventional klystrons. An example of a tube of this type 
is discussed in Section 13.4.3. Further information can be found in [25, 32, 65, 66].

At an early date in the development of klystrons it was observed that much bet-
ter initial bunching could be achieved if  the gap field had a saw tooth waveform 
[67]. Although this cannot be achieved in practice, a useful approximation can be 
achieved by using one, or more, cavities tuned to the second harmonic of the signal 
frequency [23]. Such a cavity can be thought of as compensating for the astigma-
tism in the preceding fundamental mode cavity. Figure 13.19 shows the effect of a 
second harmonic cavity in a 0.5 μPerv tube, based on Lien’s data. The first cavity 
acting alone produces a bunch with I I1 0 0 9= .  at z eλ = 2 9. . A cavity tuned close 
to the second harmonic frequency is placed after the first cavity at z eλ = 1 03. . The 
tuning of the cavity is adjusted so that the outlying electrons are gathered into the 
bunch. Then I I1 0 0 95= .  at z eλ = 3 2.  while the amplitude of I I2 0  decreases. At 
this plane about 90% of the electrons are contained in a phase range of ±90° with 
respect to the bunch centre, as shown in Figure 13.20. The final bunching stage then 
comprises two cavities. The first, placed at z eλ = 1 8. , increases the bunching to 
give I I1 0 1 4= .  at z eλ = 3 6. . The second at z eλ = 3 2.  produces a final bunch with 
I I1 0 1 8= .  at z eλ = 3 9. . The growth in the first and second harmonics of the beam 
current is shown in Figure 13.21. Figures 13.19 and 13.21 show the same general 
features as  figures 2 and 3 in [23]. Comparison with Figure 13.17 shows that the use 
of a harmonic cavity greatly reduces the total drift length required to produce tight 
electron bunches. This technique is usually used in high efficiency tubes. Its chief  
disadvantage is that it is inherently narrow band.

Klystrons which have been developed specifically for use in accelerators are com-
monly known as super- power klystrons. Tables 13.2 and 13.3 summarise the state 
of the art for these tubes. The beam voltage is limited by the need to avoid voltage 
breakdown in the electron gun. It can be seen from the tables that the typical beam 
voltages are higher for pulsed tubes than for continuous wave tubes because the 
breakdown voltage is higher for short pulses than for steady voltages. The beam 

Figure 13.18: Growth in the first and second harmonic currents on the beam in a high- 
efficiency klystron with long drift lengths.
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Figure 13.19: Trajectories in a high efficiency klystron with a second harmonic cavity.

Figure 13.20: Bunching at z eλ = 3 in a high efficiency klystron with a second harmonic 
cavity: (a) arrival phase plotted against initial phase, and (b) current waveform.

Figure 13.21: Growth in the first and second harmonic currents on the beam in a high 
efficiency klystron with a second harmonic cavity.
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current is limited by the current density which is available at the cathode, and by 
the area of the cathode which decreases with frequency. The saturation current 
density of thermionic cathodes is greater for short (microsecond) pulses than for 
DC operation.

13.4.3 Case Study: The SLAC 5045 Klystron

The design of  the SLAC 5045 50 MW klystron has been described in detail and 
provides a convenient case study [35, 70]. The requirement was for a pulsed 
tube at 2856 MHz with 6 μs pulses at a pulse repetition frequency of  180 Hz. 
From Figure 13.13(b) it can be seen that an efficiency of  at least 45% should be 
attainable at a perveance of  2 0. µ −A V 1.5 . Although a higher efficiency could be 
obtained by reducing the perveance, a higher beam voltage would be required, 
leading to increased problems with voltage breakdown. The beam voltage could 
be reduced by choosing a higher perveance but the efficiency would be reduced 
and it would be more difficult to produce a well- collimated beam. The DC beam 
power required is 100 MW giving a voltage of  315 kV and current of  350 A for 
the perveance chosen (see (13.60) to (13.62)). If  the beam filling factor b a = 2 3 

Table 13.2: Characteristics of typical continuous wave super- power klystrons

Tube TH 2089 VKP- 7952 TH 2103C*

Manufacturer Thales CPI Thales

Frequency 352 700 3700 MHz

Beam voltage 100 95 73 kV

Beam current 20 21 22 A

RF output power 1.1 1.0 0.7 MW

Gain 40 40 50 dB

Efficiency 65 65 44 %

* This tube was developed for heating plasmas in nuclear fusion experiments

Table 13.3: Characteristics of typical pulsed super- power klystrons

Tube [39] [68] [69]

Frequency 2.87 3.0 11.4 GHz

Pulse length 1.0 1.0 1.6 μsec

Beam voltage 475 610 506 kV

Beam current 620 780 296 A

RF output power 150 213 75 MW

Gain 59 58 60 dB

Efficiency 51 44 50 %
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then the effective beam voltage is reduced to 290 kV by space- charge potential 
depression (see (7.8)).

The normalised beam and tunnel radii chosen were γ eb = 0 5.  and γ ea = 0 75.  
so that b = 10 mm and a = 15 mm. Using these beam parameters with Worksheet 
13.4, as described in Section 13.3.6, the theoretical maximum electronic efficiency 
was calculated to be 52%. This confirms that the limiting efficiency increases as 
the beam voltage increases as a result of relativistic effects. The plasma frequency 
including the effects of relativity is 790 MHz and the Brillouin field is 0.63 T. From 
Figure 13.10(a) we see that the maximum RF current at the output cavity is 1 5 0. I .  
From Table 11.2 and Figure 11.30 it is estimated that the peak current in the bunch 
is 3 2 0. I . Figure 7.5 shows that the stiffness of the beam should be adequate if  the 
solenoid field is greater than 1.75 times the Brillouin field. The power consumed by 
the solenoid produces a significant reduction in the overall efficiency of a pulsed 
tube. We therefore choose the minimum field ratio giving a solenoid field of 0.11 
T. The power required by the solenoid has been eliminated in some more recent 
tubes by using PPM focusing [43]. The tube has a Pierce electron gun of conven-
tional design with a dispenser cathode and an average loading of 5 6. A cm 2− .  
The product of the potential difference between the electrodes of the gun and the 
maximum electric field is 7 1 103. × kV mm2 1−  which is close to the maximum for 
this pulse length given in [54]. Careful selection of the electrode materials together 
with extensive polishing and careful conditioning resulted in satisfactory rates of 
voltage breakdown. Because the beam is strongly relativistic it is important to use 
γ β ωe e c= −2 2 2  rather than βe when calculating the plasma frequency reduction 
factor. The reduced plasma frequency is 210 MHz and the reduced plasma wave-
length is 1.08 m.

The details of the interaction structure of the tube are shown in Table 13.4. Most 
of the data is taken from [35] but the cavity frequencies are those given in [70]. 
The tube had been redesigned after the first paper to reduce its gain and increase 
its stability, but it is not clear whether the changes were restricted to retuning 
of the cavities. The coupling factors of the gaps were computed as described in  
Section 11.2.4 using the field profile given in (3.90) with kg = 4.

This tube was modelled using Worksheet 13.3 with beam voltage 315 kV, beam 
current 354 A, for comparison with the data given in [70]. The cavity voltages in 
the first four cavities were obtained using the small- signal model in Worksheet 13.1. 
The results obtained are shown in Table 13.5.

Figures 13.22 and 13.23 show the electron trajectories computed and the growth 
in the RF current along the tube. The first three drift angles are approximately 
βq z ≈ °18  so that the first four cavities and the drift lengths which follow them form 
the initial bunching section of the tube as described in Section 13.3.2. The long drift 
length after the fourth cavity serves to increase the bunching as described in Section 
13.4.2. The effective gap coupling factor calculated using (11.180) is 0.4. This is 
smaller than the optimum figure given in Figure 11.32 and suggests that the exter-
nal Q of  the output cavity may not be optimal. The differences between the results 
of measurement and calculation may be because radial motion of the electrons has 
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been ignored or because the current density in the beam is not uniform. Overall the 
results confirm the validity of Worksheet 13.3 as a means of studying the design of 
klystrons.

A tube of this kind can be designed by working forwards through the tube adjust-
ing the position and properties of each cavity in turn to optimise the bunching fig-
ure of merit for the next stage. It is difficult to achieve an optimum design by hand 
because of the large number of parameters which may be adjusted. If  a sufficiently 
reliable large signal computer model is available the overall performance can be 
optimised using a search algorithm [71].

13.5 Other Klystrons

A number of variants of the klystron are of importance for high- power, high- 
efficiency, high- frequency and broad- band operation. The multiple- beam klystron 
and the sheet beam klystron are discussed briefly below and further information 
can be found in [7]. The reflex klystron oscillator in which the electron beam passes 
twice through a single cavity, having been reflected by a negative electrode, is of 
renewed interest as a possible source of power at sub- millimetre wavelengths [72, 
73]. The electro- statically focused klystron has the attraction that it does not require 
a heavy focusing magnet, but the need to combine electrostatic focusing with the 

Table 13.4: Data for the SLAC 5045 klystron

Cavity No. Cavity frequency 
(MHz)

R /  Q 
(Ohms)

Q0 Qext Gap 
βeg

M Drift 
z qλ

1 2860 80 2000 200 0.53 0.879 0.052

2 2870 75 2000 0.56 0.878 0.051

3 2890 87 2000 0.64 0.873 0.051

4 2910 96 2000 0.86 0.856 0.257

5 2970 96 2000 0.90 0.852 0.102

6 2853 85 2000 21 1.26 0.814

Table 13.5: SLAC 5045 klystron: comparison between measured 
and calculated and results at saturation

Measured [70] Calculation

Power input (W) 500 50

Power output (MW) 50 47

Efficiency (%) 45 42

Gain (dB) 50 60
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interaction structure limits the value of this concept [3, 74]. The relativistic klys-
tron, in which powers in the gigawatt region are generated by a very intense, high 
energy, electron beam, lies outside the scope of this book [75].

13.5.1 Multiple- Beam Klystrons

We have seen that the efficiency of a klystron is determined by the perveance of the 
electron beam so that, to get high efficiency, it is necessary to use a high- voltage, 
low- current beam. The use of high voltages produces problems with voltage break-
down and it is therefore difficult to obtain very high power with high efficiency. One 
solution to this problem is to use several electron beams within the same vacuum 
envelope. A klystron designed in this way is known as a multiple- beam klystron 
(MBK). The individual beams have low perveance to give high efficiency whilst the 
output power is determined by the total power in all the beams.

The principle of the MBK has been known for many years [76] but, until recently, 
the only such tubes constructed were for military applications in the former Soviet 
Union [77– 79]. The first MBK designed specifically for use in particle accelerators 
was the Thales type TH1801 having seven beams whose performance is shown in 

Figure 13.22: Computed electron trajectories in the SLAC 5045 klystron.

Figure 13.23: Computed harmonic current growth in the SLAC 5045 klystron.
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Table 13.4 [80]. Figure 13.24 shows an example of a cavity similar to those used 
in that tube. Note that the need to accommodate the beams constrains the shape 
of the cavity. The gap coupling factor of the central gap differs from those of the 
other gaps because the fields are not identical. The drift tubes may be provided 
with noses to increase the fields in the interaction gaps though this can make the 
cavities more difficult to construct. Coaxial cavities may be used in place of simple 

Table 13.6: Characteristics of a multiple beam klystron

Type TH 1801

Frequency 1300 MHz

Beam voltage 115 kV

Beam current 133 A

Number of beams 7

Power 9.8 MW

Pulse length 1.5 msec

Efficiency 64 %

Gain 47 dB

Figure 13.24: Arrangement of a cavity for a multiple beam klystron.
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re- entrant cavities [81, 82]. One of the main design challenges for an MBK is in the 
electron optics, since only a slight non- uniformity in the magnetic field can cause 
the beams to be deflected sideways. Further information about multiple- beam klys-
trons is given in [7].

13.5.2 Sheet Beam Klystrons

Multiple- beam klystrons are not well- suited to high frequencies because of the dif-
ficult electron optics. An alternative way of combining high power with low perve-
ance is to use a sheet electron beam [7, 83, 84]. This approach is particularly of 
interest for devices operating at millimetre and sub- millimetre wavelengths.
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14 Travelling- Wave Tubes

14.1 Introduction

The output of a klystron or an IOT incorporates a resonant circuit so that it is 
effectively operating as a class B or C amplifier. The instantaneous bandwidth is 
therefore 10% or less. In order to get greater bandwidth the electron beam must 
interact with a travelling wave supported by a non- resonant structure. We saw in 
Section 11.5 that gain occurs when the slow space- charge wave on a beam interacts 
with the forward wave of a slow- wave structure. A device which operates in this 
way is known as a travelling- wave tube (TWT). TWTs can be divided into two main 
classes: those in which the interaction between the beam and the slow- wave struc-
ture can be regarded as continuous (e.g. helix TWTs, see Section 14.2.1); and those 
in which it is discontinuous (e.g. coupled- cavity TWTs, see Section 14.2.2). However, 
TWTs of all kinds have much in common so that it is convenient to discuss them 
together, while drawing attention to the differences where those are important. The 
next section discusses the small- signal theory of both types of TWT. This is fol-
lowed by a review of the properties of TWTs under large signal conditions and of 
various aspects of their design. The final section considers the design of TWTs for 
different applications requiring, respectively, wide bandwidth, high efficiency, high 
frequency, or high power.

The slow space- charge wave carries negative kinetic power and its amplitude 
increases as power is transferred to the slow- wave structure along the length of the 
tube. If  the match at the output of the tube is not perfect then the reflected signal 
passes back down the slow- wave structure, attenuated by the cold loss of the struc-
ture. A further reflection occurs if  the match at the input of the structure is not per-
fect, leading to the possibility of feedback oscillations. The maximum permissible 
gain in a section of a TWT can be found by considering the equivalent network for 
a single section shown in Figure 14.1. The RF terminations are matched ‘cold’ (in 
the absence of the beam) to achieve around 20 dB return loss. The matches in a ‘hot’ 
tube are affected by the beam loading [1]. If  the forward gain of the section is A, 
the voltage reflection coefficients of the terminations are ρ, and the cold loss of the 
structure is L then output voltage is

 V A V V Lout in out= ±( )ρ2  (14.1)
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in which the two signs represent the extreme cases where the reflected signal is in 
phase, and in anti- phase, with the input signal. Equation (14.1) can be re- written as

 V
A
A L

Vout in=
±1 2ρ

. (14.2)

If  the reflection is in anti- phase then (14.2) shows that it is possible for the loop gain 
to be greater than unity so that the tube will self- oscillate. For smaller loop gain the 
variation in the electrical length of the section with frequency means that a ripple 
is superimposed upon the gain curve of the tube as the phase of the reflected signal 
varies [1]. This discussion can be illustrated by some typical figures. Suppose that 
ρ = 0 1.  −( )20 dB , L = 0 5.  −( )6 dB  and the gain ripple should not exceed 1 dB peak 
to peak. Then A Lρ2 0 058≤ .  so that the maximum voltage gain of the section is  
11.5 21 dB( ). Thus the gain of a single section of a TWT must normally be restricted 
to 20– 23 dB to achieve acceptable gain ripple. To achieve greater overall gain the 
tube must comprise two or more sections which are separated by breaks (known as 
severs) in the slow- wave structure, or by attenuators which block the passage of the 
reflected wave.

14.1.1 Helix and Helix- Derived TWTs

The properties of slow- wave structures were discussed in Chapter 4 where we saw 
that the helix slow- wave structure provides the best approximation to a wide- band 
dispersion- free structure. TWTs incorporating helix slow- wave structures can 
achieve bandwidths up to three octaves or more. The output power is limited to a 
few hundred watts (depending on the frequency). Helix TWTs find applications in 
communications systems (especially satellite systems), electronic countermeasures 
and instrumentation [2– 5].

Figure 14.2 shows the general arrangement of a helix travelling- wave tube body. 
The electron beam is generated by a Pierce electron gun, it is PPM focused, and 
the spent beam is commonly collected by a multi- element depressed collector. The 
helix is usually formed from tungsten or molybdenum tape, having a rectangular 
cross- section to ensure good thermal contact with the support rods. The rods them-
selves are made of a ceramic such as anisotropic boron nitride (ABN) or synthetic 
diamond [6]. Beryllia is now usually avoided because of its toxicity. The helix may 
be brazed to the support rods to reduce the thermal resistance [7]. The input and 

Figure 14.1: Equivalent network for a single section of a TWT.
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output connections may be made using coaxial lines. The tube is normally divided 
into two sections by an attenuator created by spraying lossy material onto the sup-
port rods [5, 8, 9]. Meander- line structures (see Section 4.2.2) have been consid-
ered for use in low- cost planar TWTs and for micro- fabrication for millimetre wave 
TWTs [10].

Because the helix is supported by dielectric rods, through which all heat dissi-
pated on it must be conducted, the mean power of a helix TWT is limited by heat 
dissipation in the helix. In addition, the reduction in the coupling impedance as 
the pitch of the helix is increased makes them unsuitable for use at voltages above  
25 kV. Their performance can vary with time because of changes in the properties 
of the attenuators and support rods [11, 12]. They are also susceptible to ‘Power 
Holes’ which cause unexpected dips in output [13]. Higher powers can be obtained 
at the expense of bandwidth by using the ring- bar and ring- loop structures (see 
Section 4.4). Compared with the helix, ring- bar and ring- loop structures are disper-
sive, and therefore narrow band, but they are capable of higher voltage operation. 
The hot bandwidth is typically around 10%. Because these structures are supported 
by dielectric rods in the same way as a helix their mean power capability is similar 
and they are therefore used chiefly for medium power pulsed applications. Examples 
of such tubes are: a 200 kW pulsed ring- bar TWT with bandwidth 1.2 to 1.4 GHz 
and a 15kW pulsed ring- loop TWT with bandwidth 3.1 to 3.5 GHz.

14.1.2 Coupled- Cavity TWTs

TWTs able to generate high peak and mean powers employ all- metal structures 
such as the folded waveguide, and coupled- cavity, slow- wave structures described in 
Sections 4.5 and 4.6. Figure 14.3 shows the arrangement of the body of a coupled- 
cavity TWT. The interaction is discontinuous, like that in a klystron, rather than 
continuous as in a helix TWT. At each interaction gap the gap voltage adds to 
the beam modulation, and the beam modulation induces a current in the cavity. 
The cavity voltages are also linked via the forward and backward waves propagat-
ing on the structure. The structure is usually divided into two or more sections by 
severs. Each section may be terminated internally by sever loads made from lossy 

Figure 14.2: Arrangement of the body of a helix TWT. The Pierce electron gun, PPM 
focusing system, and the collector are not shown.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.015
https://www.cambridge.org/core


Travelling-Wave Tubes510

ceramic material as shown. Alternatively the sever power may be coupled out into 
waveguides and dissipated in microwave loads either inside, or outside, the vacuum 
envelope [14]. Coupled- cavity TWTs are used for high power communication links 
and frequency agile and pulse compression radar [2].

Figure 14.4 shows the power flows in a cavity which combine to determine the 
gap voltage, namely the forward and backward wave powers P+ and P−, and the 
power transferred from the beam Pb. The power transferred from the beam divides 
equally in the forward and backward directions, and the associated signal voltages 
are added as phasors to those of the forward and backward waves. The backward 
wave assumes a more important role than in helix tubes because the backward wave 
components do not cancel each other to the same extent. This effect is particularly 
important at small values of the phase shift per cavity.

14.1.3 Energy Conversion in a TWT

The process by which energy is transferred from the electron beam to the slow- 
wave structure of a TWT is essentially the same for TWTs of all kinds. For sim-
plicity we will consider a helix TWT where the dispersion diagram for uncoupled 
forward waves is shown schematically in Figure 14.5. We recall that the gain per 
unit length is greatest at the synchronous point where the slow- space- charge wave 

Figure 14.3: Arrangement of the body of a coupled- cavity TWT.

Figure 14.4: Power flows in one cavity of a coupled- cavity TWT.
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is synchronous with the forward wave on the helix (see Figure 11.20). This means 
that the DC beam velocity u0( ) represented by the slope of the dashed line must be 
greater than the phase velocity of the wave on the helix  vp =( )ω β0 0 .

The behaviour of the electrons as they move through the wave on the helix can 
be understood by considering a simple model in which space- charge forces and the 
spatial growth of the wave are ignored [15]. In the laboratory frame of reference the 
electrostatic potential at the synchronous point is

 V V t zc= −( )µ ω β0 0 0cos , (14.3)

where V0 is the amplitude of the wave on the helix. Now let us define a coordin-
ate system which is moving with the wave so that ′ = −z z v tp . In this system the 
potential is

 ′ = ′( )V V zcµ β0 0cos . (14.4)

If  an electron has velocity u in the laboratory frame then its velocity in the moving 
frame is

 ′ = −u u vp . (14.5)

Because the beam voltage in helix TWTs is less than 10 kV we can ignore relativistic 
effects so that the kinetic energy of the electron in the moving frame is

 ′ = ′ = −( ) = + −T m u m u v m u m v m uvp p p

1
2

1
2

1
2

1
20

2
0

2

0
2

0
2

0 . (14.6)

The total energy of the electron in the moving frame is the sum of the kinetic and 
potential energies

 ′ = + − − ′( )W m u m v m uv e V zp p c
1
2

1
20

2
0

2
0 0 0µ βcos . (14.7)

Figure 14.5: Schematic dispersion diagram of a helix TWT.
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This function does not vary with time and it must therefore be a constant for the 
electron. The constant can be determined by observing that u u= 0 when V0 0=  
so that

 u
v

u
v

A
u
v

u
vp p p p

2

2

0 02 2 0− − ( ) − −






=cos ,θ  (14.8)

where A eV m vc p= 2 0 0
2µ  is the normalised amplitude of the wave and θ β= ′0z . The 

parameter A can be expressed in terms of the beam voltage as

 A
V

V
u
v

c

a p

= ⋅
µ 0 0

2

2
. (14.9)

The solution of (14.8) is

 u
v

A
u
vp p

= ± ( ) + −






1 10

2

cos .θ  (14.10)

The right- hand side of (14.10) has real values for all θ when A A u vp≤ = −( )0 0

2
1 . 

For larger values of A, real values of u vp  only exist for a limited range of values 
of θ, indicating that the electron has been trapped by the wave. Figure 14.6 shows 
how the normalised velocity of the electron varies with θ for a range of values of 
A when u vp0 1 05= . . This figure, in which the trajectory of an electron is defined 
by the coordinates ′( )z u, , is known as a phase space diagram. It is a useful tool for 
understanding the operation of a TWT. From (14.9) we find that the normalised 
effective helix voltage at the point where trapping commences is given by

 µc

a

pV
V

v

u
0

0

2

1= −






. (14.11)

This has the numerical value 0.0023 for the case shown in Figure 14.6. Thus, up 
to the point at which the electrons begin to be trapped, the change in the mean 
electron velocity is small, and the transfer of energy to the wave is a small correc-
tion. Further information, including the relativistic form of (14.7) which applies to 
coupled- cavity TWTs, is given in [15].

In a travelling-wave tube the electrons enter the field of the wave with uniform 
velocity when the amplitude of the wave is small. They then follow a curve such as 
Orbit 2 in Figure 14.6 and move through the wave from left to right, being acceler-
ated on the left- hand side of the diagram and retarded on the right- hand side. The 
electrons tend to bunch together in the retarding phase of the wave. The phase of 
the bunch relative to the wave remains constant while individual electrons enter and 
leave the bunch, and the average kinetic energy of the electrons decreases. A helpful 
analogy is given by the behaviour of a steady stream of cars moving along a hilly 
road [5]. The energy lost by the electrons increases the power in the wave which 
therefore increases in amplitude. This process continues until the amplitude of the 
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wave is great enough to reduce the relative velocity of some electrons to zero so 
that they are trapped by the wave, as shown by Orbit 3. Any further increase in the 
amplitude of the wave (A) causes the trapped electrons to move in a closed orbit, 
such as that shown by Orbit 4, around which they move in a clockwise direction.

Figure 14.7 shows examples of phase space diagrams, for the same parameters, 
which have been computed by integrating the trajectories of sample electrons through 
the field of a helix when space- charge effects are ignored (see Worksheet 14.2).  
Figures 14.7(a) and (b) show the bunching of the electrons up to the point at which 
trapping commences. Although many of the electrons are in the retarding phase 
of the field 0 1≤ ≤( )φ π  a substantial proportion remain in the accelerating phase 
− ≤ ≤( )1 0φ π . The mean velocity of the electrons remains close to the initial value. 

Figure 14.7(c) shows the majority of electrons following an orbit such as Orbit 4 in 
Figure 14.6, but a few lie outside it. The electrons which are trapped in the retard-
ing field have lost appreciable energy, and the amplitude of the wave increases sub-
stantially. The slowest electrons are just about to move back into the accelerating 
phase of the field. Figure 14.7(d) corresponds to saturation of the output power. 
The electrons in the accelerating phase have begun to gain energy from the field 
but this is compensated by those in the retarding phase which have lost energy. The 
total kinetic energy is a minimum but there are still a few electrons whose velocity 
is greater than u0.

14.2 Small- Signal Theory

The basic theory of interaction between an electron beam and a slow- wave struc-
ture was considered in Chapter 11 for both continuous and discrete interactions. It 
was shown that the coupling between the normal modes of the slow- wave structure 

Figure 14.6: Phase space diagram for an electron for which u vp0 1 05= .  for various values of 
the normalised potential A showing trapping when A A≥ 0.
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and of the electron beam results in four waves, three in the forward direction and 
one in the opposite direction. In order to model a complete TWT the boundary 
conditions at the ends of each section of the tube are used to find the amplitudes 
of the four waves.

14.2.1 Small- Signal Theory of Helix TWTs

Figure 14.8 shows a section of a slow- wave structure of length L which is continu-
ously coupled to an electron beam. The two ends of the circuit are connected to 
external transmission lines having characteristic impedance Zc which is assumed to 
be the same as the characteristic impedance of the helix in the absence of the beam. 
The signal in the uncoupled regions can be expressed in terms of the voltages of 
the forward and backward waves on the transmission line V Vf b,( ), and the fast and 

Figure 14.7: Phase space diagrams computed from the electron trajectories for the same 
parameters as Figure 14.6  u vp0 1 05=( ). .
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slow space- charge waves on the electron beam V V+ −( ), . In the coupled region the 
signal is represented by the voltages on the helix of the four coupled modes Wn( ).  
At the interfaces between the coupled and uncoupled regions the helix voltage v, 
the helix current i, the beam kinetic voltage V, and the RF beam current I. must be 
continuous. To construct a small- signal model of a section of a helix TWT we must 
find the relationships between the mode voltages and the voltages and currents at 
the interfaces.

Consider, first, the relationships between the voltage and current on the transmis-
sion line and the amplitudes of the uncoupled forward and backward waves. These  
can conveniently be written as a matrix equation

 v
i Y Y

V
Vc c

f

b







=
−

















1 1
. (14.12)

Similarly for the electron beam

 V
I Y Y

V
Ve e







=
−

















+

−

1 1
. (14.13)

Where Ye is the electronic admittance of the beam. These two equations can be 
combined in the form

 

v
i
V
I

Y Y

Y Y

V
V
V
V

c c

e e

f

b



















=
−
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1 1 0 0

0 0

0 0 1 1

0 0 −−



















= [ ][ ]C U1 , (14.14)

where the column vector U[ ] contains the amplitudes of  the uncoupled 
normal waves.

To find the relationships for the coupled modes we express each variable in terms 
of the amplitudes of the normal mode voltages on the helix. Setting ∂ ∂ = −z jβ in 
(11.130) gives

 β β βµV V Z If f c c= +0
1
2

 (14.15)

Figure 14.8: External connections to a section of a TWT.
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since I V V Ye= −( )+ − . Similarly, from (11.131) we obtain

 β β βµV V Z Ib b c c= − −0
1
2

. (14.16)

Adding (14.15) to (14.16)

 β βv Z ic= 0  (14.17)

or

 i
Z

v
c

=
β

β0

. (14.18)

Subtracting (14.16) from (14.15) gives

 β β βµZ i v Z Ic c c= +0 . (14.19)

Then, substituting for i from (14.18) and re- arranging we obtain

 I
Z

v
c c

=
−β β

β βµ

2
0
2

0

. (14.20)

In the same way (11.126) yields

 β β βµV V vc+ + += +
1
2

 (14.21)

and

 β β βµV V vc− − −= +
1
2

. (14.22)

Subtracting (14.22) from (14.21) gives

 
β β β

β β β β
β β

Z I V V

V V

Z I V

e

e q e q

e e q

= −
= −( ) − +( )
= −

+ + − −

+ −  (14.23)

or

 V Z Ie

q
e=

−





β β

β
. (14.24)

Substituting for I from (14.20) gives

 V
Z
Z

ve

q

e

c c

=
−





−





β β
β

β β
β β µ

2
0
2

0

. (14.25)

The magnitude of each physical variable can then be expressed as the sum of the 
voltages of the coupled normal modes:

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.015
https://www.cambridge.org/core


Small-Signal Theory 517

 v Wn
n

=
=

∑
1

4

, (14.26)
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, (14.27)
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, (14.28)

and
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β β µ

2
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01
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, (14.29)

where Wn are the amplitudes of the helix voltages of the normal modes in a uni-
form coupled section, and βn  are the solutions of the dispersion equation (11.136). 
Equations (14.26) to (14.29) can be written in matrix form as

 

v
i
V
I

C

W

W

W

W



















= [ ]


















2

1

2

3

4

. (14.30)

Finally, equations (14.14) and (14.30) can be combined to give the connec-
tion matrix which relates the amplitudes of  the coupled modes to those of  the 
uncoupled waves

 W C C U C U[ ] = [ ] [ ][ ] = [ ][ ]−
2

1
1 . (14.31)

where W[ ] is the column vector on the right hand side of  (14.30) and C[ ] is 
the coupling matrix. Since the four coupled waves are normal modes, their 
propagation through the circuit can be expressed as a diagonal transfer matrix 
S[ ] where

 S z j z
nn n( ) = −( )exp .β  (14.32)

Then the vector at the output of the section is expressed in terms of the vector at 
the input by
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f

b

1

1

1

1

, (14.33)

where L is the length of the section. At the input of the first section of a TWT the 
forward wave is generally known, and the beam is unmodulated. The backward 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.015
https://www.cambridge.org/core


Travelling-Wave Tubes518

wave in the input transmission line is not known but, if  the output end of the cir-
cuit is well- matched, it can be assumed that there is no backward wave there. Thus 
the boundary conditions are mixed, with three specified at the input, and one at the 
output. The amplitude of the input wave can be set to 1 without loss of general-
ity since the analysis is linear and all other parameters will then be scaled to unity. 
Inserting the boundary conditions into (14.33) yields

 

V

V
V

T L
V

f

b

2

2

2

1
10

1

0
0

+

−



















= ( ) 



















, (14.34)

where L1 is the length of the section and V b1  is the backward wave in the input wave-
guide. The presence of the beam changes the match at the input of the section. 
Thus the backward wave is the sum of the wave reflected by that mismatch and 
the backward wave emerging from the tube. From the second row of the matrix we 
know that

 T L T L V b1 2 1 1 2 2 1 0( ) + ( ) =
, ,

 (14.35)

so that V b1  can be calculated and substituted into the right- hand side of (14.33). 
The output vector can then be calculated directly with the check that V b2 0= . For a 
single- section tube the gain is

 G VdB f1 2 220, log= . (14.36)

At any point within the section the wave amplitudes are given by

 W z S z C
V b( ) = ( )[ ]



















1

0
0

1  (14.37)

and the amplitude of the forward wave, in decibels, as a function of position is

 A z W zn
n

( ) = ( )∑20 log , (14.38)

where the summation excludes the backward wave. Figure 14.9 shows a typical plot 
of the forward wave amplitude in decibels against distance along the helix. After 
some distance the amplitude of the growing wave is much greater than that of the 
other two forward waves. The graph is then almost a straight line corresponding to 
exponential growth of the growing wave. The boundary conditions at z = 0 mean 
that some of the input wave is reflected and that all three forward waves have non- 
zero amplitudes. Thus, the projection of the graph back to z = 0 intercepts the verti-
cal axis at a negative value known as the launching loss whose value is typically in 
the range 3 to 6 dB.
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When a TWT is divided into two or more sections by severs, the signal is car-
ried between the sections by the space- charge waves on the beam. Since these are 
normal modes of the beam they propagate without change of amplitude, but their 
relative phase at the start of the next section depends upon the length of the sever. 
The uncoupled space- charge wave amplitudes at the end of a sever of length Ls are

 V
V

j L

j L
V
V

s

s

3

3

2

2

0

0
+

−

+

−

+

−







=
−

−
















exp

exp
.

β
β

 (14.39)

If  the terminations of the second section are matched then the amplitude of the 
forward wave at the input of the section, and the backward wave at its output, are 
both zero. Inserting these boundary conditions into (14.33), and denoting the input 
and output of the section by subscripts 3 and 4 respectively we obtain
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, (14.40)

where L2 is the length of the section. The value of the unknown parameter V b3  in the 
vector on the right- hand side of the equation can be determined from the second 
row of the matrix using

 T L V T L V T L Vb2 2 2 3 2 2 3 3 2 2 4 3 0( ) + ( ) + ( ) =+ −, , ,
 (14.41)

and inserted into the input vector to enable the output vector to be determined. 
The small- signal gain of  the whole tube is then found by assuming that V f1 1=  
so that

 G VdB f1 4 420, log .=  (14.42)

Figure 14.9: Signal growth along a two- section TWT.
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The wave amplitudes at the start of the second section can be determined using 
(14.31). Because the boundary conditions must be satisfied at the beginning of the 
section, the amplitude of the growing wave at the start of the section is less than 
that at the end of the previous section. This difference is the sever loss, shown in 
Figure 14.9 which is typically about 6 dB [16]. Like the launching loss this figure 
depends upon the parameters of the tube and the frequency of operation. This 
model is implemented in Worksheet 14.1.

The method can readily be extended to tubes with more than two sections, or 
those in which the parameters of the sections differ from one another. It can also 
be applied to tubes where the parameters of the helix are not constant throughout 
a section, if  each uniform sub- section is modelled by a separate transfer matrix and 
the results cascaded to represent the whole section. The same approach can be used 
if  a distributed attenuator is used in place of a physical sever, provided that the 
propagation constants of the sub- sections are adjusted to represent the cold loss 
profile of the attenuator.

14.2.2 Small- Signal Theory of Coupled- Cavity TWTs

In Chapter 11 it was shown that the transfer matrix for the interaction between the 
electron beam and a single cavity within a coupled- cavity slow- wave structure is 
given by (11.156)
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Thus the transfer matrix for a section of a TWT comprising N cavities is
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, (14.44)

which allows for the possibility that the cavities may not be identical to one another. 
Equation (14.44) takes the place of (14.33) for continuous coupling, and the 
boundary conditions can be applied in the same way as before. The chief diffe-
rence between continuous and discrete coupling is in the effect of the backward 
wave generated by the interaction. With continuous coupling the backward wave 
components induced in each element of the slow- wave structure tend to cancel one 
another out and the net backward wave is small. With discrete coupling, however, 
this does not happen if  the phase shift per cavity is small, that is, at frequencies 
below the synchronous point. If  the continuous interaction theory is used with 
the parameters of a coupled- cavity tube it is found that, in this region, the forward 
wave gain is overestimated and the backward wave amplitude is under- estimated 
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[17]. Thus, in a coupled- cavity TWT, appreciable power may appear at the input 
port of a section as a result of the interaction within it.

14.3 Large Signal Effects

At large signal levels a TWT becomes non- linear and exhibits power saturation 
like a klystron. The large- signal behaviour of  a TWT can be modelled with a 
Lagrangian model using discs or rings of  charge, as described in Section 11.8. 
Early work in the field used normalised variables based on the Pierce parameters 
[18– 20] but, on the whole, this makes the results difficult to interpret. More recent 
authors have used physical parameters [21– 25]. Eulerian models, which are exten-
sions of  small- signal methods, require less computational effort than Lagrangian 
models but have decreasing accuracy as saturation is approached [26, 27]. Some 
modelling has been carried out using three- dimensional PIC codes but very large 
computer resources are needed for this purpose [28– 30]. For most purposes one- 
dimensional disk models provide the best compromise between accuracy and 
computational efficiency. However, one- dimensional models become less accur-
ate when γ eb > 1 because radial variations in the electric field then mean that the 
motion of  an electron varies appreciably with its radial position. In addition, these 
models cannot predict radial motion of  the electrons and the current intercepted 
by the slow- wave structure.

The results presented below were generated using a one- dimensional model 
of  a helix TWT similar to that in [31]. In a model of  this kind it is necessary to 
track the electrons through a section of  the tube and then use iteration to achieve 
a self- consistent solution. The process is then repeated for subsequent sections. 
However, the author has found that results which closely resemble those given 
by such a model can be obtained using a single pass if  the voltage on the helix 
is first calculated using a small- signal model. As saturation is approached this 
method over- estimates the forward power on the helix which must therefore be 
calculated, instead, from the loss of  kinetic energy of  the sample electrons. The 
difference between the forward wave power assumed using small- signal theory 
and that calculated from the change in the kinetic energies of  the electrons means 
that the model does not represent a self- consistent solution. However, it is found 
that the results are generally very close to those obtained from a more accurate 
model. The only exception is that the harmonic currents in the beam are too 
great. This is because the excessive helix voltage close to the output confines the 
trapped bunches more tightly than if  the correct voltage profile were used. Better 
results are obtained if  the amplitude of  the wave on the helix is adjusted to show 
saturation, as described in Section 14.3.6. This model has been implemented in 
Worksheet 14.2. It has not been validated for use as a design tool, but it provides 
a simple way of  exploring the large- signal behaviour of a TWT.

Figure 14.10 shows the growth in the forward wave on a helix TWT which is 
operated at the synchronous point. The tube has a single uniform section and 
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parameters, similar to those used in X band space TWTs, as given in Table 14.1. 
They are identical to those in Figure 14.7, with the difference that space- charge 
effects have been included. The inclusion of space- charge forces reduces the satu-
rated efficiency computed from 21% to 17%.

It is convenient to think of the operation of a TWT in terms of four regions as 
shown by the vertical dividing lines in Figure 14.10:

 i) An initial region in which the interaction between the wave on the helix and the 
electron beam is established.

 ii) A region in which the tube is linear and obeys small- signal theory. This region 
may be taken to end at the point where the velocity of the slowest electrons is 
equal to the phase velocity of the growing wave on the helix vw( ) so that they 
are on the point of being trapped by the wave.

 iii) The non- linear region in which the electrons are increasingly trapped and the 
output power saturates.

 iv) The region beyond saturation in which the tube is overdriven.

The details of the interaction can be understood by considering further results from 
the model which were obtained under the same conditions.

Table 14.1: Parameters of the TWT used in the illustrations

Beam voltage 6.0 kV

Beam current 135 mA

Beam radius 0.34 mm

Helix radius 0.68 mm

Frequency 11.7 GHz

Propagation constant β0( ) 1700 m− 1

Pierce impedance 37 Ω

Figure 14.10: Non- linear signal growth in a single- section TWT.
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Figures 14.11 and 14.12 show the amplitudes of the first and second harmonics 
of the beam current, and the phase of the first harmonic relative to the phase of 
the wave on the helix, as functions of axial position. In the second region the amp-
litude of the current grows exponentially. The phase is almost constant, and close 
to the maximum retarding phase π 2( ). It should be noted that the amplitude of 
the second harmonic current is appreciable even in this region where the behaviour 
of the tube is apparently linear. The small- signal relative phase, calculated from 
(14.20) by assuming that the wave on the helix is dominated by the growing wave, is 
shown by the broken line in Figure 14.12. In the third region energy is taken from 
the bunches as more and more of the electrons are trapped, the phase of the first 
harmonic current moves away from the maximum retarding phase, and the magni-
tude of the current grows more slowly and eventually passes through a maximum. 

Figure 14.11: Amplitudes of the first and second harmonics of the beam current in a TWT 
as a function of axial position.

Figure 14.12: Phase of the first harmonic of the beam current in a TWT relative the wave on 
the helix as a function of axial position.
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As the output power saturates, the phase of the first harmonic current passes from 
the retarding to the accelerating phase of the wave on the helix.

Figure 14.13 shows the modified Applegate diagram for the section. In this dia-
gram the phase velocity of the growing wave on the helix vw( ) is used as the ref-
erence, and the trajectories of electrons whose velocities are greater than vw have 
positive slopes. In the first region, and most of the second region, the perturbation 
of the trajectories is imperceptible and the electrons move through the wave with 
almost constant velocity. By the end of the second region the bunching is visible 
and the electrons are just beginning to be trapped. More and more of the electrons 
are trapped by the wave as they move into the third region. It can be seen that the 
trapped electrons oscillate within the potential well, as described in Section 14.1.3. 
A detailed experimental study of electron trapping was reported in [32].

Figure 14.14 shows phase space diagrams at different points along the tube for 
comparison with Figure 14.7. At small- signal levels (Figures 14.7(a) and 14.14(a)) 
the figures are very similar, except that the effect of the space- charge forces is to 
move the bunch centre closer to the maximum retarding phase. It can be seen that 
the phase of the maximum charge density is close to that for the minimum veloc-
ity, as is the case for a slow space- charge wave. At the point at which trapping 
commences (Figures 14.7(b) and 14.14(b)) the normalised velocity of the slowest 
electron u vw = 1. The phase of the bunch has started to move towards the neutral 
phase, and the space- charge forces produce a distortion of the diagram. The plane 
at which trapping commences is very close to that for the zero space- charge case. 
When the slowest electron is just beginning to be re- accelerated (Figure 14.14(c)), 
the space- charge forces prevent the electrons at the front of the bunch from enter-
ing the trapped orbit, but they remain in the retarding phase of the helix wave. At 
saturation (Figure 14.14(d)), the effects of space- charge produce a much more dis-
ordered diagram in which the velocities of the slowest electrons are greater than in 
the space- charge free case. This explains the reduction in saturated efficiency caused 
by the space- charge forces.

Figure 14.13: Typical modified Applegate diagram for a single- section TWT.
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Finally, Figure 14.15 shows the variation in the mean velocity of the electrons, 
normalised to the phase velocity of the growing wave on the helix. In the first 
region, and for most of the second region, the mean electron velocity is constant 
and greater than the phase velocity of the wave. In the third region the electrons 
lose energy and, at saturation, the mean electron velocity is a minimum. Beyond 
saturation the electrons start to regain energy from the wave and the mean veloc-
ity increases. Figure 14.16 shows the spent- beam distribution curve at saturation. 
Comparing this to the idealised curve in Figure 10.9, we can see that the overall 
efficiency of this tube could be increased substantially by using a multi- element 
depressed collector.

The results which have been presented in Figures 14.10 to 14.16 all relate to oper-
ation at the synchronous point. The first three regions which have been described 
correspond approximately to the initial bunching, final bunching, and output 
regions in a klystron. The results show the typical behaviour of a helix TWT under 

Figure 14.14: Phase space diagrams computed from the electron trajectories for the same 
parameters as in Figure 14.7 with the inclusion of space- charge forces.
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Figure 14.15: Mean electron velocity, normalised to the helix phase velocity, as a function of 
axial position in a TWT.

Figure 14.16: A typical spent- beam distribution curve at saturation.

large- signal conditions but variations in detail are found when the operating point 
is changed (see Section 14.3.3).

14.3.1 Dimensionless Parameters

Although TWTs show complicated non- linear behaviour, the principles of dimen-
sional analysis can be applied to them (see Section 1.7.1) [33]. Thus efficiency, which 
is a dependent dimensionless parameter, is a function of the set of independent 
dimensionless parameters describing the tube. If  we restrict our attention to uni-
form tubes having a solid beam and cylindrical symmetry then the requirement 
for geometrical similarity is satisfied by fixing the value of b a. Since this is typi-
cally in the range 0.5 to 0.6 for many tubes we shall assume that it is constant. It is 
also necessary to assume that the length of the output section of the tube is large 
enough to ensure that the efficiency is not reduced and that the effects of harmon-
ics are negligible (see Sections 14.3.3 and 14.3.4). Then the scale of the tube can 
be defined by the single dimensionless parameter γ ea because the phase velocity, 
coupling impedance, and plasma frequency reduction factor are all functions of 
it. We will assume that the magnetic focusing field is strong enough to suppress 
radial motion of the electrons and that relativistic corrections can be ignored. The 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.015
https://www.cambridge.org/core


Large Signal Effects 527

remaining independent dimensionless parameters can be found by rewriting the 
small- signal determinantal equation (11.137) as

 Γ Γ Γ Γ Γ Γ Γ0
2 2 2 2

1 0
21

1
2

−[ ] − −( )  = −q , (14.45)

where

 Γ =
β
βe

 (14.46)

is a complex dependent parameter. The independent parameters (which can also be 
expressed in terms of the Pierce parameters) are:

 Γ0
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, (14.47)

where α0 defines the loss per unit length of the circuit. For a loss- less circuit this 
becomes the ratio of the initial electron velocity to the phase velocity of the slow- 
wave structure
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the ratio of the coupling impedance to the impedance of the beam
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and the ratio of the reduced plasma frequency to the signal frequency
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We saw in Section 13.3.6 that this parameter can also be expressed in terms of the 
dimensionless beam radius and the perveance of the electron beam. Thus an alter-
native dimensionless parameter to Γq is
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which is the perveance divided by a constant 33 0. .µ −A V 1.5( )  The presence of the 
parameter C in (14.47) to (14.50) means that the Pierce parameters are only inde-
pendent of one another when C is constant. The parameters defined here have 
the advantage that their physical significance is clearer and that it is easier to vary 
them independently. Two tubes which are described by the same set of independent 
dimensionless parameters are expected to have the same saturated efficiency and 
gain (apart from the effects of cold loss).
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Where full data is available for an existing tube it is possible to develop a new tube 
by scaling, if  the two tubes are described by the same set of independent dimension-
less parameters. Schindler [34] showed that if  γ ea and C are kept constant then QC 
is constant when both b a and the beam perveance are constant, and the velocity 
parameter is chosen to give either maximum gain or maximum efficiency. Thus it 
is possible to scale a tube in such a way that all the dimensionless parameters are 
simultaneously constant. There is limited scope for scaling a tube to higher power 
levels, at the same frequency, because of the need to keep the temperature of the 
slow- wave structure below an acceptable level.

14.3.2 Dependence of Efficiency on Normalised Parameters

 An approximate theory of the dependence of the efficiency of a TWT, with no cold 
loss, on its operating point was given by Slater [15]. It was assumed that, at satura-
tion, all the electrons were trapped having a velocity usat( ) as much below the phase 
velocity of the growing wave and the initial velocity was above it. Thus

 v u u vw sat w− ≈ −0 ,  (14.52)

where vw is the phase velocity of the growing wave. Strictly speaking this should be 
the phase velocity under large signal conditions but the error involved in using the 
small- signal phase velocity is small [32]. Then the efficiency is approximately

 ηe
sat wu

u
v
u

≈ − = − −






1 1
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2
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2
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2

.  (14.53)

When space- charge effects are included the small- signal propagation constant of 
the growing wave is given, in the two- wave approximation, by (11.145) so that
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. (14.54)

At the synchronous point  ω ω=( )s
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. (14.55)

Substituting from (14.55) into (14.53) gives

 η
ω ω
ω ωe

q s

q s

≈ −
−
+









1

1

1

2

.  (14.56)

Thus to a first approximation the efficiency should depend only on the normalised 
reduced plasma frequency. If  we assume that ω ωq s 1  then the term in brackets 
can be expanded to give
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 η
ω
ωe

q

s

≈ 4  (14.57)

so that the efficiency increases with increasing space- charge density. We note that 
this is the opposite to the case for klystrons.

Figure 14.14(d) shows the distribution of  the velocities of  sample electrons 
at saturation when the tube defined in Table 14.1 is operated at the synchron-
ous point and u vw0 1 063= . . It can be seen that, in this case at least, the assump-
tion made in (14.52) is fairly good. The electronic efficiency calculated from 
(14.56) is 22% which may be compared with the efficiency of  17.2% calcu-
lated using the disc model. The chief  error arises from the fact that only 20 
out of  24 sample electrons have been trapped, so that it would be reasonable 
to reduce the efficiency estimated from that equation by a capture ratio of 
20 24 0 83= . . The result is 18.5%. The remaining difference between the results 
can be explained by noting that the mean velocity of  the electrons which are 
not trapped is a little greater than the initial velocity. This reduces the effective 
capture ratio to 0.78.

In terms of the Pierce parameters (14.56) becomes

 
ηe

C
QC≈ 8 .  (14.58)

An experimental study of the factors affecting the efficiency of a TWT [35] 
assumed that

 
η θe

C
H≈ 4 ,  (14.59)

where θ is a function of the Pierce loss parameter d (defined in (14.47)) such that 
θ = 1 when the slow- wave structure is loss- less. The function H was obtained from 
an unpublished memorandum by Pierce and plotted as a graph of H against QC. 
Comparing (14.59) with (14.58) we see that H QC= 2  and this function is a found 
to be a very good fit to the curve in [35] when QC ≥ 0 25. . The discrepancy for small 
values of QC is not surprising because the two- wave approximation assumed in 
(14.54) is not valid when the space- charge is small. When experimental results were 
plotted against L C d= 54 5.  (where L is the cold loss in dB per circuit wavelength, C  
is the Pierce gain parameter, and d is the Pierce loss parameter) it was found that θ 
was given to a useful approximation by [35, 36]

 log . .10 25
2 18θ = − = −

L
C

d  (14.60)

Thus the efficiency of a TWT operating at the synchronous point can be estimated 
using (14.59), or (14.56) if  cold loss is neglected. If  the effects of space- charge 
potential depression are ignored (13.51) can be written at the synchronous point as
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33  (14.61)

so that the efficiency can be estimated from the perveance. Typically, the beam filling 
factor b a ~ .0 67 and βeb ~ .0 6, so that p beβ ~ .0 55 for many tubes. When the effi-
ciencies of over fifty TWTs of different types were plotted against 0 55 33. µPerv  it  
was found that nearly all the points lay between theoretical curves calculated using 
(14.56) with multiplying factors 0.3 and 0.7. The multiplying factor takes account 
of the capture ratio, and the effects of space- charge potential depression and the 
cold loss of the helix. Other factors affecting the efficiency include design choices 
such as the choice of synchronous point, and tapering of the slow- wave structure 
(see Section14.3.7). There was good correlation between points derived from the 
data in [37] and a theoretical curve with a multiplying factor of 0.7.

The space defined by the Pierce parameters was explored in a classic series of 
experiments by Cutler [38]. The results were summarised in two graphs showing 
contours of ηe C  plotted on the QC be,γ( ) plane for maximum gain per unit length 
(synchronism) and maximum output power. These graphs showed that:

 i) at synchronism ηe C > 3 when γ eb ~ . .0 6 0 05±  and QC ~ . .0 25 0 05± ;
 ii) at maximum efficiency ηe C > 3 5.  when γ eb ~ . .0 5 0 1±  and QC ~ . .0 2 0 05± .

It was assumed that ηe C  was constant when all the other parameters were 
constant. The Pierce parameters of the tube, defined in Table  14.1, are 
γ eb C QC= = =0 57 0 062 0 22. , . .and . Calculations using the model in Worksheet 
14.2 gave the results ηe C = 2 7.  at synchronism and ηe C = 3 4.  at maximum effi-
ciency, which are close to Cutler’s figures.

Cutler’s experimental results included phase space diagrams which closely 
resemble those in Figures  14.7 and 14.14. The graphs also included compari-
sons with the results of large- signal calculations which showed poor agreement 
because the radial variation of the field of the slow- wave structure had been 
neglected in them. Cutler concluded that there is a broad optimum in the region of 
γ eb C QC= ≤ =0 5 0 14 0 2. , . .and  where it should be possible to achieve efficiencies 
greater than 30%. The results in this paper have been widely used to guide the design 
of TWTs. However, the use of QC as a space- charge parameter, and the fact that 
H = 1 when QC = 0 25. , have led to the widespread assumption that the efficiency 
depends on C rather than on ω ωq  [8, 14, 39, 40]. This misunderstanding arose 
because Slater’s original work, which ignored the effects of space- charge, suggested 
that ηe C≈ 2 . Pierce and Cutler were aware that the correct expression should be 
ηe Cy≈ −4 1 where y1, which is the growing wave parameter, ranges between −1 2 
and – 2 depending upon the operating point and the value of the space- charge par-
ameter. With this correction the assumptions are exactly the same as have been 
made in the derivation of (14.56). Thus the assumption that the efficiency is pro-
portional to C assumes, wrongly, that y1 is constant.

Other experiments described in a less well- known paper by Caldwell and Hoch 
[41] covered similar ground though with a more restricted range of parameters. It 
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was concluded that there was no simple relationship between the efficiency and the 
Pierce parameters. The saturated efficiency at the synchronous point was found to 
be independent of the beam current but related to the normalised reduced plasma 
frequency. These results, therefore, tend to support the validity of (14.57) as an 
approximation.

14.3.3 Dependence of Efficiency on the Operating Point

Equation (14.53) shows that the efficiency of  a TWT with no circuit loss should 
be determined by the ratio u vw0  at the operating point. It is useful to note that 
u vw0  is always greater than unity when the tube has gain, whereas u vp0  can 
be less than unity. Thus, the efficiency given by (14.53) is always positive. The 
propagation constant of  the growing wave in the two- wave approximation is 
given by (11.145) as

 β β β= +( )−
1
2 0  (14.62)

so that
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0 0 0
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. (14.63)

Thus, the ratio u vw0  can be increased by one, or more of:

 i) reducing βe by increasing the beam voltage, keeping the frequency, the reduced 
plasma frequency and the pitch of the helix constant [42];

 ii) increasing β0 by increasing the frequency, keeping the beam voltage and helix 
pitch constant;

 iii) increasing β0 by reducing the pitch of the helix (and thus reducing vp), keeping 
the beam voltage and the frequency constant;

 iv) increasing βq  by increasing the beam current, keeping the beam voltage and the 
frequency constant.

It should be noted that the effect of changing u vw0  by different means does not 
yield exactly the same results, because other parameters may be changed also. Thus, 
the effects of increasing the beam voltage at constant DC power, constant perve-
ance, and constant current differ from one another. Similarly, when the frequency 
is changed, the impedance of the helix also changes. A simple helix has positive dis-
persion (i.e. vp decreases with frequency) and the slow space- charge wave has nega-
tive dispersion so that u vw0  increases with increasing frequency. When the helix is 
heavily loaded it may have negative dispersion and then the ratio u vw0  may be kept 
almost constant if  the dispersion of the helix is chosen correctly [43].

If  the beam voltage of a TWT is varied at constant perveance then all the nor-
malised parameters, except u vp0 , are almost constant. Curve (a)  in Figure 14.17 
shows how the small- signal growth rate Im β β( ) 0  varies with u vw0  as the beam 
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voltage is varied at constant perveance, using the same parameters as before. The 
normalised reduced plasma frequency is almost constant and equal to 0.06. Curve 
(b) in the figure shows the phase of the RF beam current relative to the wave on the 
slow- wave structure under small- signal conditions when the growing wave is fully 
established. The bunch is in the retarding phase of the field for all values of u vw0  
for which the gain per unit length is non- zero. When the gain is maximum the phase 
of the bunch is close to the maximum retarding field. As the ratio u vw0  decreases, 
the bunch moves towards the neutral phase where the forces acting on the bunch 
tend to compress it.

The dependence of the saturated efficiency, and of the maximum normalised 
RF beam current, on the velocity parameter u vw0  are shown in Figure 14.18. The 
graphs were computed for a uniform section of a TWT by changing the beam volt-
age at constant perveance, using Worksheet 14.2 and the parameters in Table 14.1. 
The Pierce parameters C QC= =( )0 06 0 22. . and  were approximately constant. 
Curve (a) shows that the saturated efficiency increases with u vw0 , as expected, and 
that it reaches a maximum close to the top of the range for which the tube has 
gain. Curve (b), obtained by multiplying the result from (14.53) by a capture ratio 
of 0.78, is a good fit to curve (a). Figure 14.11 shows that the RF beam current 
typically reaches a maximum somewhere between the plane at which the electrons 
begin to be trapped, and the plane of saturation. Curve (c) in Figure 14.18 shows 
the magnitude of the maximum value of the normalised RF beam current I I1 0( ) as 
a function of u vw0 . The maximum RF current increases as u vw0  decreases and the 
phase of the bunch moves closer to the neutral phase. The curve has a maximum 
towards the lower end of the range for which the tube has gain. We shall see that the 
conditions for maximum efficiency, and maximum RF current, have an important 
role in TWT design.

Figure 14.17: Effect of the velocity parameter u vw0  under small-signal conditions on (a) the 
normalised growth rate Im β β( )( )0  and, (b) the phase of the RF beam current relative to 
the helix voltage.
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The most comprehensive theoretical investigation of the effect of changes in the 
operating point of a TWT was carried out by Rowe using the Pierce parameters 
[19]. The difficulty with using these parameters is that changes in the operating 
point generally result in changes in two or more of the parameters. Thus it is not 
straightforward to use Rowe’s results to predict the behaviour of a tube when the 
operating point is changed. However it is found that the Pierce parameters C and 
QC are approximately constant when the beam voltage is changed at constant 
perveance. Rowe’s results show that the efficiency then increases linearly with the 
Pierce velocity parameter b and reaches a maximum close to b = 2 which lies just 
below the point where the gain falls to zero. Figure 14.19 shows curves of efficiency 
against u vw0 , obtained by re- plotting Rowe’s data [19]. The lowest point on each 
curve is the synchronous point. The figure also shows theoretical curves calculated 
using (14.53) for capture ratios of 0.8 and 0.6. The computed data shows the same 
trend as the theoretical curves. An increased value of C is needed to maintain the 
capture ratio as the space- charge is increased. Other results given by Rowe showed 
that the output power is reduced by 10 dB when the cold loss per circuit wavelength 
divided by the Pierce parameter C is increased by about 25 dB, in agreement with 
(14.60). These results, which were obtained using a ring model of the beam, also 
showed that the best efficiency was obtained with a beam filling factor b a( ) in the 
range 0.5 to 0.75 corresponding to an optimum value of γ eb in the range 0.75 to 1.0.

Further insight into the effects of variations in the operating point is given by 
Figures 14.20 and 14.21, which relate respectively to the conditions for maximum 
RF current and maximum efficiency (see also [44]). In the former, the RF current is 
greatest at saturation, only two of the sample electrons have not been captured by 
the wave and the velocities of the trapped electrons do not differ very much from vw.  

Figure 14.18: Variation of the large- signal properties of a TWT as the beam voltage is 
changed at constant perveance (u vw0 1 06= .  at the synchronous point): (a) saturated 
efficiency; (b) saturated efficiency estimated from (14.53) multiplied by 0.78 and; 
(c) maximum magnitude of the normalised RF beam current.
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In the latter the maximum RF current occurs just after the plane at which trapping 
commences, and fewer of the electrons have been trapped. The trapped electrons 
have a much greater variation of velocity and at least two of the slowest electrons 
have drifted into the following bunch. Thus the bunc hes are much better formed 
in the first case but the small change in energy when they are trapped by the wave 
means that the efficiency is low.

An experimental study by Gerchberg and Niclas [45] showed that, under condi-
tions for maximum gain, the phase of the circuit field is almost constant. Thus, the 
change in the relative phase seen in Figure 14.12 is almost entirely due to the chan-
ging phase of the RF beam current as the electrons lose energy. However, under 
conditions for maximum power output, the phases of both the current and the 
circuit wave changed with power level until the input power was a few dB below 
that required to saturate the tube. For greater drive levels the phase of the cur-
rent remained almost constant while the phase of the circuit voltage continued to 
change until the two were in quadrature at saturation. This behaviour is reflected in 
kink in the phase curve in Figure 14.21(d).

14.3.4 Effect of a Sever

The tube modelled in the preceding sections is impracticable because the gain is 
too high for a single- section tube to be stable. Thus, in practice, it would be divided 
into two, or more, sections by severs. The efficiency of a tube is not affected by a 
sever provided that the small- signal gain of the output section exceeds a critical 

Figure 14.19: Computed efficiency of a TWT as a function of u vw0  derived from data given 
in [19] with C and ω ωq  as parameters.
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value [46– 48]. When the gain falls below this value the efficiency is rapidly reduced. 
Thus Scott found that the efficiency of a particular tube was halved when the small- 
signal gain of the output section was 5 dB less than the critical value. The most 
important physical reason for the reduction in efficiency is the dispersion of the 
electron bunches in the sever, and in the initial part of the output section where the 
electric field of the circuit is weak. To avoid this it is necessary for the sever to be 
placed at a position where small- signal conditions apply [42]. If  the space- charge 
density in the beam is increased, then the length of the output section required to 
avoid a reduction in efficiency also increases [47]. From Figure 14.9 it can be seen 
that, for the tube modelled, the length of the output section required to re- establish 
the interaction after the sever corresponds to a small- signal gain of about 10 dB. 
Similarly, from Figure 14.10, we see that the small- signal gain from the plane at 
which trapping commences, to the plane of saturation, is about 15 dB. It seems 
reasonable to suppose that the efficiency will not be affected by the sever if  the 
interaction is fully re- established by the plane at which trapping commences. Thus, 
in this case, the small- signal gain should be at least 25 dB in the output section. This 

Figure 14.20: TWT behaviour at the working point at which the RF current is greatest 
u vw0 1 031=( ). : (a) modified Applegate diagram, (b) phase space plot at saturation, 

(c) normalised first and second harmonic currents, and (d) phase of the RF beam current 
relative to the wave.
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is comparable with the results in [47, 48]. If  the interaction is linear at the plane of 
the sever, then the reduction in efficiency caused by dissipation of power in the sever 
load, or in the attenuator, is negligible.

When the tube is operated away from the synchronous point, the small- signal 
gain of the output section decreases, and the efficiency may be reduced compared 
with that of a single- section tube. This effect is greater when u vw0  is greater than 
the value at the synchronous point. Thus, in broad- band tubes the position of the 
sever should be chosen to achieve satisfactory performance at the highest frequency 
[48, 49]. It has also been shown that the efficiency of a severed TWT can be greater 
than that of an unsevered tube if  the length of the section after the sever is slightly 
greater than the critical length [47, 49]. This is caused by a change in the phase of 
the bunches relative to the phase of the wave on the slow- wave structure after the 
sever. Overall, the length of the final section of a TWT is a compromise between 
the requirements to maximise the efficiency, and to minimise the gain ripples. This 
problem becomes more acute when the space- charge density is high.

Figure 14.21: TWT behaviour at the working point at which the efficiency is greatest 
u vw0 1 095=( ). : (a) modified Applegate diagram, (b) phase space plot at saturation, 

(c) normalised first and second harmonic currents, and (d) phase of the RF beam current 
relative to the wave.
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14.3.5 Harmonics

At high drive levels the output of a TWT contains appreciable harmonic power. 
Figure 14.22 shows typical beam current waveforms at saturation for three differ-
ent values of the velocity parameter u vw0 . The current waveforms were produced 
by superimposing the current pulses defined by the phases of successive pairs of 
electrons given by

 I
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j j
j jφ
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φ φ

φ φ φ
( ) = −

≤ <
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1

0

if

otherwise

. (14.64)

where φ ω= t and Q is the charge carried by one disc. It can be seen that all the 
bunches have a high harmonic content. As u vw0  increases the width of the bunch 

Figure 14.22: Typical beam current waveforms at saturation for (a) u vw0 1 031= . , 
(b) u vw0 1 063= . , and (c) u vw0 1 095= . .
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increases and it has a tendency to split into two parts, one in the accelerating, and 
one in the decelerating, phase of the field. The helix can propagate waves at harmon-
ics of the signal frequency and, although the coupling impedance decreases rapidly 
with increasing order of harmonic, some power is coupled to the helix. Thus there 
may be appreciable power output at the second, and higher, harmonic frequencies 
depending upon the dispersion and impedance characteristics of the helix.

There are special problems in broad- band helix tubes when the harmonics of 
signals at the low frequency end of  the band may lie within the operating range 
of  the tube. It is not unknown for the harmonic power to exceed the fundamental 
power [20, 50]. The total RF power at saturation is then approximately equal to 
the saturated output power of  an equivalent tube in which harmonic generation 
is negligible. The level of  harmonic generation is found to depend only slightly 
on the gain per unit length of  the tube. However, it is strongly affected by the 
ratio of  the phase velocities at the first and second harmonic frequencies v vp p2 1( ).  
There is strong second harmonic generation, with a corresponding reduction in 
the efficiency at the first harmonic frequency, when this parameter is slightly less 
than unity. However, when the ratio is reduced still further, the relative amplitude 
of  the second harmonic is much smaller and the efficiency at the first harmonic 
is only a little less than that calculated when the effects of  the second harmonic 
are ignored. Typically the increased level of  the second harmonic occurs in the 
range 0 94 1 02 1. .< <v vp p  [20]. The second harmonic power increases as the coup-
ling impedance at the second harmonic frequency increases. This behaviour can be 
explained in qualitative terms by the effect on the second harmonic beam current 
of  the interaction at both the first, and second, harmonic frequencies. If  these 
two processes are in anti- phase with one another, some degree of  cancellation will 
occur, and the amplitude of  the second harmonic wave on the helix is reduced. 
The output of  a tube is also affected by internal, and external, reflection of  sig-
nals at the second harmonic frequency. It has been observed that the perform-
ance of  a TWT can be altered by the injection of  a second harmonic signal [51]. 
Thus, in general, the effects of  the second harmonic (at least) must be included in 
large- signal simulations of  helix TWTs. However, the dispersion of  the helix in the 
tube modelled in the preceding sections is great enough for harmonic effects to be 
negligible.

14.3.6 Transfer Characteristics

In the previous sections the large- signal behaviour of a TWT has been considered 
as a function of distance along the tube at constant drive level. This is related to 
the terminal properties of the tube, represented by the amplitude and phase of the 
signal at the output relative to that at the input. Figure 14.23(a) shows a typical 
plot of output power against input power for a TWT (both in decibels relative to 
saturation) which is very similar to that for a klystron in Figure 13.7. At low drive 
levels the graph is a straight line having unit slope. The non- linearity in amplitude 
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is shown by the gain compression curve in Figure 14.23(b) which shows the gain 
relative to small- signal gain as a function of input power. The linear region of tube 
is often taken to extend up to the 1 dB compression point shown in Figure 14.23(a).

Because the mean electron velocity decreases as the power output is increased, 
the phase of the signal at the output of a TWT is a function of the input power, as 
illustrated in Figure 14.24. Under small- signal conditions the output phase must be 
independent of the input power. It can be seen from Figures 14.23 and 14.24 that 
the phase is a more sensitive indicator of non- linearity than the amplitude. This is 
confirmed by Figure 14.12 which shows that the phase of the current departs appre-
ciably from the small- signal value within the region where the amplitude variation is 
linear. It is common to specify the linearity of a TWT in terms of the derivatives of 
the curves in Figures 14.23(a) and 14.24, as shown in Figure 14.25(a) and (b). These 
are the amplitude modulation to amplitude modulation (AM/ AM) conversion 

Figure 14.23: Typical characteristics of a TWT: (a) amplitude transfer, and (b) gain 
compression.

Figure 14.24: Typical phase transfer characteristic of a TWT.
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expressed in dB/ dB, and the amplitude modulation to phase modulation (AM/ PM) 
conversion expressed in degrees/ dB. For telecommunications applications it is desir-
able that both these parameters should be as small as possible (see Section 1.6.4).

A good approximation to the graph of output power against position can be 
found by assuming that the tube is linear up to the plane at which electron trapping 
commences, and that the gain then follows a cubic curve until the slope is zero at the 
plane of saturation. In this region the gain in decibels is given by

 G e z z
z z

z z
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= ( ) −( ) −
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3

3

2α log , (14.65)

where α is the imaginary part of the small- signal propagation constant of the grow-
ing wave, zt  is the plane at which trapping commences, and zs is the plane of satu-
ration. The positions of these two planes can be established, using a large- signal 
disc model, with the assumption that the wave amplitude on the helix is given by 
small- signal theory. Then (14.65) can be used to correct for the gain compression in 
the large- signal region. The planes zt  and zs are hardly changed by the revision of 
the profile of the wave on the helix and it is found that the model then has greater 
self- consistency (see Worksheet 14.2). Thus the gain compression at saturation is

 ∆G edB = − ( )20
3

α log . (14.66)

When the input power to a tube is increased by 1 dB the effect is equivalent to increas-
ing the linear region of the tube by a section whose length would provide 1 dB of 
small- signal gain. This remains true provided that small- signal conditions exist over 
some part of the length of the tube. The small- signal gain per unit length is

 
dG

dz
edB0 20, log .= ( )α  (14.67)

Figure 14.25: Typical derivative transfer characteristics of a TWT: (a) AM/ AM conversion, 
and (b) AM/ PM conversion.
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Then, differentiating (14.65) and dividing by (14.67) we find an expression for the 
AM/ AM conversion in dB/ dB

 dG
dz

dz
dG

z z

z zdB

t

s t

⋅ = −
−( )
−( )0

2

21
,

 (14.68)

This gives a parabolic variation from unity in the linear region to zero at saturation, 
which may be compared with Figure  14.25(a). The AM/ AM conversion is least 
when the distance between zt  and zs is least, which generally occurs close to the 
synchronous point.

A simplified model of AM/ PM conversion can be derived from small- signal the-
ory by neglecting the backward wave [52]. Then, from (11.130), the forward wave 
is given by

 
∂
∂

= − +
∂
∂

V

z
j V Z

I
z

f
f c cβ µ0

11
2

. (14.69)

Now let

 V V z j t zf f= ( ) −( )0 0exp ω β  (14.70)

so that the phase of the voltage is referred to the phase of a wave travelling with the 
cold phase velocity of the helix. Substituting in (14.69) the wave voltage at z dz+  
is given by

 V z dz V z Z
I
z

dzf f c c0 0
11

2
+( ) = ( ) +

∂
∂

µ . (14.71)

But we may write

 ∂
∂

=
∂
∂

=
I
z

dz
I
t

dt j I
dz
u

1 1
1

0

ω  (14.72)

so that

 V z dz V z j Z I z
dz
u

j zf f c c0 0 1
0

1
2

+( ) = ( ) + ( ) ( )( )ωµ φexp , (14.73)

where φ z( ) is the phase of the RF beam current with respect to the wave. Then, if  
change of the amplitude of the wave in the element dz is small, the rate of change 
of the phase of Vf 0 with z is

 d
dz

Z
I z

V z
ze c c

f

Φ
=

( )
( ) ( )( )1

2
1

0

β µ φcos , (14.74)

which depends upon the ratio of the amplitude of the RF beam current to the amp-
litude of the wave voltage, and also upon the phase difference between them. These 
are determined by the non- linear interaction between the electron beam and the 
wave on the helix that also leads to the generation of harmonic currents. If  the ratio 
of the phase velocities of the helix at the first and second harmonic frequencies lies 
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in the range for which appreciable harmonic interaction takes place then the AM/ 
PM conversion is affected [53]. The AM/ PM conversion tends to be small when the 
variation in φ z( ) with z is small, and this occurs at low values of the ratio u vw0  [43].

14.3.7 Tapers

We have seen that, at saturation, the phase of the first harmonic of the beam cur-
rent relative to the voltage wave is zero, and no further energy can be extracted from 
the electrons. However, if  the slow- wave structure is modified, so that the phase 
velocity of the wave is reduced, then it is possible to extract more energy from the 
electrons, provided that they remain trapped by the wave. Such a change in the 
structure is referred to as a taper [16, 42, 54]. The change in the phase velocity in a 
taper can be continuous, or in a series of steps. It is found that the saturated power 
output of a tube can be increased in this way by about 2– 3 dB. In general tapering 
the slow- wave structure reduces its characteristic impedance so that the amplitude 
of the wave corresponding to a given power is reduced. Thus the wave does not 
trap the electrons as effectively. A point is reached, eventually, where further taper-
ing yields no improvement because the space- charge forces reduce the trapping of 
the electrons by the wave. Also, since some of the electrons are not trapped by the 
wave at saturation, the effect of the taper may be to move them into the accelerat-
ing phase of the field. Hence it is easiest to increase the efficiency of a TWT using 
an output taper if  the beam perveance is low, and the bunches are well- formed 
[44]. Conversely, little improvement in efficiency can be obtained by reducing the 
phase velocity when an untapered tube is operated at the condition for maximum 
efficiency. However, it is sometimes found that the relative phase tends to π as satu-
ration is approached in an untapered tube, operated at maximum efficiency, and 
that there is a big variation in the velocities of the electrons within the bunch. It has 
been shown that the efficiency can then be increased by the use of a positive taper, 
in which the phase velocity increases. This taper recaptures the bunch so that the 
relative phase decreases towards saturation in the usual manner [45, 55].

Early papers on tapering concluded that the best efficiency is obtained when the 
taper starts at the saturation plane of an untapered tube, and that the detailed 
profile of the taper does not have much effect on the efficiency achieved [16, 42]. 
However, this strategy tends to produce an AM/ AM transfer curve which is concave 
just before saturation so that the tube is non- linear over a greater range of values 
of the input power. More recent studies have shown that the taper may start before 
saturation; typically at the plane of maximum RF current [44, 56]. Since it is usu-
ally desirable to optimise the performance of a tube over a band of frequencies, the 
taper should be designed to give the greatest improvement in efficiency at the end of 
the band where the untapered efficiency is low. In helix TWTs the variation in phase 
velocity is usually achieved by changing the pitch of the helix which means that 
the gaps between the turns and, hence, the coupling impedance, are reduced. Since 
only a single parameter is varied there is necessarily a compromise between the 
properties of the helix at different frequencies within the working band. However, 
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in coupled- cavity TWTs the dispersion curve can be altered in a number of ways so 
that it is possible to design tapers whose properties are closer to optimum through-
out the band [44, 54, 57]. It is also possible to increase the efficiency of a tube by 
dividing the slow- wave structure into two or more sections which have uniform 
pitch. The sections are insulated from one another and have DC voltages applied to 
them so that the electron bunches are accelerated, moving them into the retarding 
phase of the wave [42]. This adds considerably to the complexity of the tube and 
does not appear to have been used except in experimental devices.

Tapering the slow- wave structure can also be used to enhance the performance of 
TWTs in other ways including [42, 58, 59]:

• reducing harmonic output power;
• improving linearity and reducing the AM/ PM distortion;
• equalising the performance across the frequency band;
• improving tolerance to changes in the beam voltage.

It has already been observed that the AM/ AM conversion of a tube depends upon 
the distance between the plane at which trapping commences, and the plane of sat-
uration. In an untapered tube this distance is least close to the synchronous point, 
but it can be further reduced by the use of a tapered structure. We have also seen 
that the AM/ PM conversion is strongly influenced by the change in the phase of the 
RF beam current with respect to the wave voltage. Thus, improved linearity can be 
achieved by adjusting the phase velocity of the slow- wave structure to keep the ratio 
u vw  constant as the electrons lose energy to the wave [60]. Such a taper, known as 
a dynamic velocity taper, can achieve improved linearity together with an increase 
of 1 to 2 dB in the efficiency.

14.3.8 Stability

A particular problem with helix TWTs, especially those designed to work at high 
power levels, or broad bandwidths, is a tendency to backward wave oscillations 
(BWO) when the beam interacts with the n = −1 space- harmonic of the backward- 
wave on the helix. The starting conditions for oscillation can be found using small- 
signal theory (see Section 11.7). Backward- wave oscillations are characterised by a 
threshold beam current above which the oscillation occurs, and a sharply defined 
frequency which is dependent on the beam voltage. Equation (11.164) shows that 
the start- oscillation current is inversely proportional to the square of the length 
of the section. Thus, the risk of backward- wave oscillations increases sharply as 
the length of a section is increased. The stability of a tube with given small- signal 
gain can be increased by increasing the number of severs, with the penalty of addi-
tional tube length to compensate for the increase in sever loss. It has been shown, 
however, that the stability of a section can also be increased by introducing a step 
change in the helix pitch at some point in its length. If  the average pitch of the sec-
tion remains constant, then the effect on the forward- wave gain is small, whilst the 
stability against backward- wave oscillations is determined by the stability of each 
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uniform section [61– 63]. Other techniques for increasing stability include the use of 
resonant loss using patterns printed on the support rods [64], and the use of exter-
nal filter structures to damp the unwanted mode [65, 66]. This analysis assumes that 
only a single mode can propagate on the helix. To avoid the possibility of feedback 
oscillations involving higher-order modes it is important that they are strongly cut- 
off. The lowest mode of concern is the TE11 waveguide mode in the space between 
the helix and the shield and it is important that the cut- off  frequency of this mode 
is above the working band of the tube.

In coupled- cavity TWTs oscillations can occur at the band edges if  the beam 
voltage is reduced. At these frequencies the group velocity tends to zero so that 
the slow- wave structure supports a standing wave. The coupling impedance of  a 
normal coupled- cavity structure tends to infinity at the upper cut- off  frequency 
(see Figure 4.28(b)) [67]. Band- edge oscillations are caused by the interaction of 
the slow space- charge wave with a backward- wave space- harmonic close to the 
band edge. The frequency of  oscillation varies only slightly with beam voltage. 
These oscillations present particular problems in cathode pulsed TWTs because 
the beam voltage passes through the critical range for oscillation on the rise and 
fall of  the pulse. The result is a characteristic RF pulse shape with the oscillations 
appearing as ‘Rabbits’ Ears’ on the rise and fall of  the pulse. If  this pulse were 
viewed using a spectrum analyser it would be seen that the ‘Rabbits’ Ears’ were at 
a different frequency from the main part of  the pulse. They can be suppressed by 
careful design, and by ensuring that the pulse rises and falls too quickly for the 
oscillation to build up. The start- oscillation conditions can be calculated using 
the methods described in [68] or by using a small- signal gain calculation program. 
Frequency selective loss is sometimes introduced to prevent these oscillations 
[69]. It has also been shown that they can be suppressed by tapering the slow- wave 
structure [70]. A third approach is to use a slow- wave structure designed to work 
in the inverted mode (see Section 4.5) so that the coupling impedance is zero at 
the upper cut- off  frequency [71]. There is some reduction in performance because 
the coupling impedance at the centre of  the pass- band is reduced. It is necessary 
to ensure that the beam cannot interact with the first higher- order mode, which 
then has infinite coupling impedance at its lower cut- off  frequency. Backward- 
wave oscillations may occur in the higher order modes of  a coupled- cavity struc-
ture, and it may also be possible for feedback oscillations to occur involving a 
higher- order mode [72]. Not all higher- order modes have appreciable interaction 
fields but it is necessary to check for possible problems of  this kind when a tube 
is being designed.

14.4 TWT Design

The design procedure for TWTs is similar to that for klystrons described in Section 
13.4. However, the great variety of types of TWT, and of the slow- wave structures 
incorporated in them, makes it much more difficult to make generalisations about 

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.015
https://www.cambridge.org/core


TWT Design 545

the process. The sections which follow discuss some of the chief  issues involved in 
the design of TWTs of different types.

14.4.1 Case Study: An Octave Bandwidth Helix TWT

Helix TWTs with a bandwidth of about one octave have been used in many com-
munications and radar systems. The conceptual design procedure can be illustrated 
by considering a tube with the specification in Table 14.2 [39].

The design calculations can conveniently be carried out using a spreadsheet so 
that effects of different design choices can be investigated quickly and easily (see 
Worksheet 14.3). The principal steps in the calculations for the tube in Table 14.2 are:

 i) Since the power output at the band edges is to be at least 1 kW, the RF power 
at the band centre must be at least 1.26 kW. The bandwidth required means 
that only a helix slow- wave structure is suitable. However, the mean output 
power of 10 W is well within the thermal capabilities of such a structure in this 
frequency band. The DC beam power required is found by dividing the RF 
power by an estimate of the efficiency of the tube at the band centre based on 
previous experience.

 ii) The perveance of the electron gun is chosen in the range 0.1 to 2 0. µ −A V 1.5 . In 
this case a high perveance is desirable to reduce the risk of DC voltage break-
down, to ensure that the coupling impedance of the helix slow- wave structure 
is as high as possible, and that the electronic efficiency is high. The anode volt-
age Va( ) and the beam current I0( ) can then be calculated.

 iii) The beam filling factor b a( ) is chosen in the range 0.5 to 0.7. Then the space- 
charge potential depression as the beam passes through the helix can be cal-
culated using (7.8). The potential on the axis Vh( ) is used to calculate the mean 
velocity of the electrons u0( ) (see Section 7.2).

 iv) The normalised beam radius at the band centre γ eb( ) is chosen in the range 
0.5 to 1.0. A large value of this parameter leads to an appreciable radial varia-
tion in the RF field of the helix acting on the electrons, and reduced coupling 
impedance through the radial coupling factor. Since γ eb increases with fre-
quency these effects are particularly important at the top of the frequency band 
of the tube. The beam radius b( ) and the helix radius a( ) can be calculated.

 v) It is now possible to calculate the plasma frequency of the beam and the Brillouin 
field. The magnetic field factor m is chosen to give the best compromise between 

Table 14.2: Outline statement of requirements for a pulsed TWT

Frequency 2.0 to 4.0 GHz

Power output (1 dB band edges) 1.0 kW

Duty cycle 1%

Gain (at 1 kW) 33 dB
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beam stiffness and the size and weight of the focusing magnet. This tube is suit-
able for PPM focusing and it is necessary to check that the peak field strength 
can be achieved without saturating the pole- pieces. Typically m is in the range 
1.5 to 3.0. The magnetic field parameter α is chosen in the range 0.1 to 0.2 to 
give an acceptable ripple in the beam radius (see Section 7.6.1). The peak mag-
netic field and the period of the PPM stack can then be calculated.

 vi) The plasma frequency reduction factor can now be calculated as a function 
of frequency. The saturated efficiency of the tube at the synchronous point 
is estimated using (14.56) multiplied by an estimate of the capture ratio (see 
Figure 14.19). This figure which is based on the helix voltage must be multi-
plied the ratio V Vh a  to give the estimated ratio of the RF power to the DC 
power input to the tube. The preceding calculations can be repeated using this 
revised estimate now, or deferred until a more accurate figure can be calculated 
using a large- signal disc model.

 vii) The synchronous frequency is chosen to lie within the operating band of the 
tube. It will usually lie close to the centre of the intended band, though, that 
is not always the best choice. The synchronous point can be adjusted, if  neces-
sary, to ensure that the maximum gain occurs at the centre frequency.

 viii) The slow- wave structure is designed to achieve the correct phase velocity at 
the synchronous point. The sheath helix model can be used for initial calcula-
tions because the phase velocity is not seriously in error, and the chief  effect of 
errors in the coupling impedance is in the gain per unit length. Assumptions 
must be made about the shield radius and the dielectric loading. Vane loading 
is not necessary for a tube having an octave bandwidth. From this information 
the pitch of the helix can be calculated together with the phase velocity, and 
coupling impedance, at frequencies within the working band.

 ix) When the preceding steps have been completed sufficient information is avail-
able for the small- signal and large- signal performance to be calculated. One 
sever should be sufficient to ensure that the tube is stable. Initial estimates of 
the lengths of the two sections can be made by using the two- wave approxima-
tion to find the gain per unit length at the lowest frequency where the electrical 
length of the tube is least. The minimum requirement of 33 dB of gain at the 1 
dB band edges implies a saturated gain of at least 34 dB at the band centre. If  
it is assumed that the launching loss, sever loss and gain compression are each 
6 dB then the total small- signal gain required is 52 dB at the band centre. This 
can conveniently be achieved using two sections of equal length so that there 
is sufficient gain in the output section to avoid loss of efficiency. The length of 
the attenuator can be estimated by noting that tapered loss over three wave-
lengths is normally sufficient to ensure a good match. Thus the total length of 
the central attenuator should be at least six wavelengths.

Table  14.3 shows the comparison between the tube parameters calculated 
using the method described above (see Worksheet 14.3) and those given by [39]. 
The methods are essentially the same but there are some differences between the 
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design choices made. The estimated efficiency was 26% and the calculations were 
repeated using this estimate which was found to be self- consistent. The results of 
the revised calculations are shown in the fourth column of the table. Figure 14.26(a) 
shows the computed dispersion curves of the helix and the slow space- charge wave. 
Figure  14.26(b) shows the small- signal gain of a single- section tube 176  mm in 
length calculated using the two- wave model and assuming a fixed total of 12 dB for 
the launching and sever losses.

The performance of a single- section tube having the parameters in the fourth col-
umn of Table 14.3 was calculated at the centre frequency using Worksheet 14.2. The 
saturated output power was 1.1 kW corresponding to an electronic efficiency of 
23%. The same result is obtained from (14.56) if  the capture ratio is reduced from 
0.7 to 0.6. These figures ignore the effects of the cold loss of the helix, of mismatches 
at the ends of the helix, and the radial motion of the electrons. Calculations using 
Worksheet 14.2 with the data in the second column of Table 14.3 gave a saturated 
efficiency of 22%. The design in [39] was for a tube with 33 dB gain at saturation. If  
the input and output sections of the circuit are assumed to be of equal length then 
the gain after the sever may be insufficient to allow the full efficiency to be reached. 
The design assumption of 15% efficiency may reflect that expectation. The high 
electronic efficiency of the tube means that little improvement could be achieved by 
tapering the helix.

The overall efficiency could be increased by the collector depression using the 
spent- beam curve computed by the large- signal disc model. A drift section can be 
added at the end of the tube to allow the bunches to disperse under the influence 

Table 14.3: Comparison between the tube parameters given in [39] and those calculated 
using Worksheet 14.3

Parameter Bliss [39] WS14.3 Revised Units

Estimated efficiency 15% 15% 26%

Gun perveance 1.96 1.9 1.9 µ −A V 1.5

Beam voltage Va( ) 7400 7200 5800 V

Beam current I0( ) 1.25 1.16 0.84 A

Filling factor b a( ) 0.5 0.5 0.5

Synchronous helix voltage Vh( ) 6100 6100 4900 V

Normalised beam radius γ eb 0.75 0.7 0.7

Beam radius 1.65 1.73 1.55 mm

Helix radius 3.3 3.46 3.10 mm

Brillouin field 0.059 0.059 T

Peak magnetic field 0.09 0.09 0.09 T

Magnet period 17.8 19.7 18.0 mm

Active length of helix 178 192 172 mm

v cp  at synchronism 0.14 0.134 0.120
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of space- charge forces. However, debunching does not affect the overall shape of 
the spent- beam curve very strongly [73]. In practice, the shapes of the spent- beam 
curves for TWTs vary with the design of the tube, and with frequency within the 
operating bandwidth. Figure 14.27 shows the spent beam curve at saturation for 
the tube whose parameters are in the fourth column of Table  14.3. At present 
there is no simple model of the large- signal behaviour of a TWT corresponding to 
those used in this book for klystrons and IOTs. However, the maximum normalised 
electron energy is typically 1.1 over a range of drive levels, and the spent- beam 
curve for helix TWTs is often approximately linear, as shown by the dashed line in 
Figure 14.27 [73]. With these assumptions the power in the spent beam is

 P P
V
Vspent dc

s

a

= +






1
2

1 1. , (14.75)

where Vs is the energy of the slowest electrons in eV. The electronic efficiency is then

 ηe
s

a

V
V

= − +






1
1
2

1 1.  (14.76)

or

 V
V

s

a
e= −0 9 2. .η  (14.77)

For the tube modelled above ηe = 0 23.  at saturation so that from (14.77) the nor-
malised energy of the slowest electron is V Vs a = 0 44. , which is close to the value 
shown in Figure 14.27. The energy of the slowest electron can be estimated in the 
same way when the tube is operated with reduced output power. This information 

Figure 14.26: S- band helix TWT: (a) dispersion curves for the helix and for the slow space- 
charge wave, and (b) small- signal gain of a single section versus frequency.
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can be used to construct an approximate model which reveals some of the features 
of depressed collector operation of a TWT (see Worksheet 10.4).

An alternative way of estimating the overall efficiency of a TWT with a depressed 
collector was suggested by Kosmahl [37]. The method is based on a trapezoidal 
approximation to the spent- beam curve such that the normalised energy of the 
slowest electron is given by

 V
V

f K Ks

a
e≈ − ( )1 3 η , (14.78)

where K is the microperveance and f K( ) is an empirical function plotted in the 
paper. Fitting a second-order function to the curve plotted gives

 f K K K( ) ≈ − +0 073 0 37 1 252. . . .  (14.79)

Assuming that K = 1 9.  and ηe = 0 23.  in (14.78) gives V Vs a = 0 39.  which is close to 
the figure calculated above. Further information about the design of TWT collec-
tors can be found in [73– 77].

14.4.2 Millimetre- Wave Helix TWTs

The design of millimetre wave TWTs with helix slow- wave structures is discussed 
in [36, 78– 80]. The discussion which follows examines the design of the 90 W, 34 
GHz pulsed TWT described in [80]. The conversion efficiency at saturation of this 
tube was 6.1% so that a DC beam power of 1.47 kW was required. The perveance 
chosen was 0 08. µ −A V 1.5 , corresponding to a beam current of 115 mA at a volt-
age of 12.75 kV. The beam voltage is unusually high for a helix TWT and it has a 
number of disadvantages: reduced coupling impedance; increased risk of voltage 
breakdown; and increased problems with backward wave oscillations. It does, how-
ever, allow the radii of the beam and the helix to be greater than if  a lower voltage 
had been chosen. The normalised beam and helix radii were 0.7 and 1.4. These are 

Figure 14.27: Spent beam curve at saturation for the S- band helix TWT.
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a little larger than those suggested by Cutler for maximum efficiency [38] but are 
close to the choice recommended in [39]. The Brillouin field for this beam is 0.124 
T, while the RMS PPM field was 2.26 T leading to a much greater beam stiffness 
than would normally be used at lower frequencies. The reason for this is that in 
such a small beam the effects of transverse thermal velocities are much greater than 
those of space- charge forces [36, 78]. When thermal velocities are important, the 
magnetic field required to confine a beam with equilibrium radius b is given by [81]

 B B
m kT
e b
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b

r
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c c
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2 2 0

2 2

2 4

28
= + 





+ 





, (14.80)

where BB is the Brillouin field in the absence of thermal velocities. This equation is 
equivalent to (7.54) with the addition of the second term to account for the effects 
of thermal velocities. This term becomes increasingly important when an electron 
beam is scaled to higher frequencies, keeping the plasma frequency and the area con-
vergence of the gun constant, because of the presence of the beam radius in the 
denominator. In the case of the tube described above the second term corresponds to 
a magnetic field of 0.054 T at a cathode temperature of 1100 °K, which is comparable 
with the Brillouin field. To minimise this term it is desirable to make the area conver-
gence of the gun as small as possible, consistent with acceptable cathode loading. In 
this case the area convergence was 35:1 with a cathode loading of 2.4 A cm2. Thus the 
maximum perveance of the electron gun in a millimetre wave tube is determined by 
the current which can be collimated by the maximum practical magnetic field.

To obtain stable PPM focusing the ratio of the plasma wavelength to the PPM 
period was 3.4. The 80 W, 30– 35 GHz pulsed helix TWT described by Ohtomo 
et al. had very similar parameters [79]. At millimetre wavelengths the cold loss of 
the helix has a major effect on the efficiency. For example, the efficiency of a 0.5 
W, 54 GHz, TWT was increased by a factor of 3 by plating the molybdenum helix 
with copper [78].

More recently the design of a 94 GHz pulsed TWT with saturated output 
power greater than 150 W was described in [82]. This tube had an inter- digital line 
slow- wave structure and a beam perveance of 0 058. µ −A V 1.5 , giving a conver-
sion efficiency of 5.5%. The data given in this paper suggests that its parameters 
were approximately γ eb = 1 9.  and ω ωq = 0 022.  giving a theoretical efficiency of 
8.4% corresponding to an effective capture ratio (including the effects of losses) of 
0.65. The overall efficiency was increased to over 15% by the use of a single stage 
depressed collector. Other work aimed at the development of TWTs at still higher 
frequencies is reviewed in [83].

14.4.3 High Efficiency Helix TWTs

A very important application of helix TWTs is in the field of satellite communica-
tions both as uplink and downlink power amplifiers. The requirements for space 
tubes are especially demanding since they must combine [5]:
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• Operating lifetime greater than 15 years in order to keep the number of spare 
tubes carried to a minimum.

• High total electrical efficiency because of the limited power available on the sat-
ellite and the difficulty of dissipating waste heat in space.

• High linearity to avoid co- channel interference arising from intermodulation 
products.

• Low mass to minimise the cost of launching the satellite.

The advances in the performance of these tubes since they were first used in Telstar 
1 in 1962 have been remarkable [5, 84– 86]. The state of the art is represented by 
tubes giving continuous powers of 200 W at Ku- band (10.7– 12.75 GHz) and 130 W 
at Ka- band (17– 22 GHz) with overall efficiencies of 68% and 66% respectively [5]. 
It should be noted that the operating bandwidths of these tubes are small compared 
with the bandwidth of which helix TWTs are capable. A detailed discussion of the 
design of space TWTs is given in [87]. Table 14.4 shows some examples of tubes 
whose design has been described in the literature.

The lifetime of a TWT depends chiefly on the lifetime of the cathode, which is 
determined by the point at which the production of free barium is no longer suf-
ficient to support the desired current density (see Section 18.5). M- type dispenser 
cathodes have achieved lifetimes greater than 100,000 hours (11.4 years) with con-
tinuous operation at up to 2 A cm− 2 [86]. The lifetime of a cathode depends not only 
upon its construction but also on the current density. This is because a high current 
density requires a high operating temperature that causes the evaporation rate of 
the barium to increase. For this reason the electron guns used in space TWTs gener-
ally have low perveance because this allows the cathode loading to be small without 
high area convergence. A further limitation is set by the PPM focusing which means 
that the perveance must be less than about 0 5. µ −A V 1.5 , depending upon the type 
of permanent magnets used.

Table 14.4: Examples of TWTs for space communications

Frequency (GHz) Power(W) Overall efficiency Application Reference

4.0– 4.2 3.5 34% Downlink [88]

17.7– 21.2 75 45% Downlink [89]

27.5– 29.5 40 25% Uplink [90]

5.85– 6.425 3000 24% Uplink [91]

14.0– 14.5 600 26% Uplink [91]

17.7– 21.2 75 54% Downlink [92]

10.7– 12.7 65 60% Downlink [93]

59– 64 20 40% Downlink [94]

3.4– 4.2 70 70% Downlink [95]

10.9– 12.75 130 72% Downlink [95]
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The overall efficiency of a space TWT depends upon the design of the slow- 
wave structure and also on the performance of the multi- element depressed col-
lector. We have seen that the efficiency of a tube with constant helix pitch depends 
principally upon the beam perveance. For example, a tube with a beam perveance 
of 0 2. µ −A V 1.5  and a uniform helix might have an electronic efficiency of about 
11%. This could be increased by making the synchronous point below the centre 
frequency but with the penalty of increased non- linearity. The use of a simple taper 
would increase the efficiency to around 15% but, again, with a reduction in linear-
ity. The design goals of high efficiency, and high linearity, are linked because it is 
necessary to operate the tube some way below its saturated output power to achieve 
acceptable linearity. Thus, to take an example, if  output backoff of 3 dB is neces-
sary to achieve acceptable linearity, the operating efficiency is half  the saturated 
efficiency. A method for determining the operating parameters of a tube to give the 
best efficiency for a given linearity is described in [87].

It has been found that it is possible to increase the efficiency and the linearity of a 
TWT simultaneously by using the double taper profile as shown in Figure 14.28(a). 
We have seen that when the electron velocity is reduced relative to the phase velocity 
of the helix the maximum RF beam current increases, and the difference in the 
phase between small- signal conditions and saturation is reduced (see Figure 14.20). 
The same thing happens when the phase velocity of the helix is increased, while 
keeping the electron velocity constant. Thus, the effect of the section of helix with 
increased phase velocity is to draw the electrons into the bunch more effectively, in 
a manner similar to that of the detuned penultimate cavity in a klystron. It is found 
that the section can be designed so that the phase lag introduced decreases with 
increasing drive level. Hence the section can simultaneously increase the electronic 
efficiency, by improving the bunching, and increase the linearity by reducing the 
AM/ PM conversion, compared with a similar tube with a conventional negative 
taper. The optimisation of a tube with a double taper is a complex multi- variable 
problem but a satisfactory initial design can be achieved systematically using a 
large- signal disk model [56, 96, 97]:

 i) A uniform TWT is modelled to find the helix phase velocities giving maximum 
gain vp0( ), maximum bunching vp1( ), and maximum efficiency vp2( ) at the cen-
tre frequency of the band over which the tube is to work. This is normally 
achieved by changing the pitch of the helix.

 ii) A TWT is modelled at the centre frequency with the pitch profile shown in 
Figure 14.28(b). The input signal level is chosen to be the drive at which the 
tube is intended to saturate. The length z0 is chosen to give at least 20 dB of 
gain so that the growing wave is fully established by the end of the section. The 
position z1 is found within a second section of arbitrary length which maxim-
ises the amplitude of the first harmonic of the RF beam current.

 iii) A TWT is modelled at the centre frequency with the pitch profile shown in 
Figure 14.28(a), and the same drive level as before. The length of the third 
section z12( ) is adjusted so that the phase of the bunch relative to the wave on 
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the helix is constant as the bunch loses energy. This is essentially a dynamic vel-
ocity taper (see Section 14.3.7). It has been found that a good initial approxi-
mation is to make this section at least three wavelengths long.

 iv) The length of the fourth section is chosen so that the output power just reaches 
saturation at the centre frequency.

 v) Finally, the phase velocity of the first section may be adjusted so that the gain 
is flattened across the frequency band, which may be up to 20% of the centre 
frequency.

All modern space TWTs employ double tapers of this kind, together with high 
efficiency multi- element depressed collectors [5, 84, 85], to achieve high operating 
efficiency at a working point which is backed off  from saturation by a few decibels. 
The efficiency can be increased still further by reducing the cold loss of the helix by 
adding a high- conductivity coating, and by using support rods with low dielectric 
losses [92– 94].

14.4.4 Ultra- Broad- band TWTs

We have seen that a TWT having an octave bandwidth can be designed using a helix 
slow- wave structure. The bandwidth is then limited by the dispersion of the struc-
ture. However, when the dispersion of the structure is modified by vane or dielectric 
loading (see Section 4.3.2) then synchronism between the beam and structure waves 
can be maintained over a much greater bandwidth. Tubes have been built in this 
way whose bandwidth exceeds three octaves [98]. The design of tubes of this kind 
presents its own challenges [99]:

Figure 14.28: (a) Double- taper profile used in high- efficiency space TWTs, and (b) single- step 
taper used to design the taper in (a).
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• The slow- wave structure must have negative dispersion so that synchronism with 
the slow space- charge wave is maintained over a broad band.

• The gain in the output section must be equalised to avoid forward wave oscil-
lations at frequencies where the gain is greatest, and the section must be long 
enough to give good efficiency at all frequencies.

• Means must be provided to suppress backward wave oscillations.
• The generation of harmonics must be suppressed.

The first method proposed for achieving a very broad bandwidth used a slow- 
wave structure in which a first section with positive dispersion was followed by a 
section with negative dispersion [98]. The section with negative dispersion (vane 
loading) was optimised for efficiency in the upper half  of  the band, while the 
unloaded first section provided gain at the lower frequencies. It was found that 
the harmonic performance was improved considerably if  the relative phase veloci-
ties of  the two sections were chosen correctly. This concept has recently been 
re- examined [100].

A uniform slow- wave structure can be used if  it is designed so that the increased 
gain at high frequencies, caused by the greater electrical length, is compensated 
by reduction in synchronism and/ or coupling impedance [101, 102]. Methods for 
suppressing harmonics and backward- wave oscillations have been reviewed in 
Sections 14.3.5 and 14.3.8 respectively. Tubes designed in this way tend to suf-
fer from low efficiency at high frequencies because the electron bunch is divided 
into slow electrons which are trapped by the wave, and fast electrons which are 
not. The use of  a positive phase velocity taper has been found to improve the 
efficiency at the top of  the operating band and, therefore, the useful bandwidth 
of  the TWT [55, 103]. This technique has also been found to reduce the output 
power at the second harmonic. Further improvements in the uniformity of  the 
efficiency over a wide bandwidth have been obtained using the helix pitch profile, 
shown in Figure 14.29, in which a section of  helix with reduced pitch to improve 
the bunching is followed by a short positive taper [103]. As an alternative to vari-
ation in the pitch of  the helix the vane loading may be varied to achieve the same 
velocity profile [104].

Figure 14.29: Double taper used in very wide bandwidth helix TWTs
(copyright 2009, IEEE. Reproduced, with permission, from [103]).
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14.4.5 Coupled- Cavity TWTs

General reviews of the performance and design of coupled- cavity TWTs are given in 
[2, 14, 105]. The design procedure for coupled- cavity TWTs follows the same general 
pattern as that for helix TWTs. It is necessary to decide, first, whether a forward 
fundamental or a space harmonic structure is required. The normalised beam radius 
γ eb( ) should be around 0.6 to ensure good efficiency. The point at which the slow- 

space charge wave is synchronous with the circuit wave is chosen so that the hot 
band of the tube is centred within the cold pass- band of the structure. Typically, 
β π0 0 6p ~ .  for a forward fundamental tube, and 1 5. π for a space- harmonic tube. 
The width of the cold pass- band of the structure is usually around twice that of the 
hot band, but it is possible for a tube to have useful output power outside the cold 
pass- band of the structure. The slow- wave structure can then be designed, and the 
final design checked, by small- signal and large- signal gain calculations using discrete 
interaction models. If  the tube is to be PPM focused, as is normal except at the 
highest power levels, then the PPM system design must proceed in parallel with the 
design of the slow- wave structure to ensure that the two are mutually compatible. 
Particular care is necessary to ensure that the tube is stable against oscillations at the 
cut- off frequencies of the structure, and in higher- order modes (see Section 14.3.8).

The design of tapers for coupled- cavity TWTs is discussed in [44]. In an unta-
pered tube the frequencies for maximum gain and maximum efficiency are differ-
ent. The gain at maximum efficiency may be too small for the tube to be saturated 
with the available drive power. An important function of the taper in a coupled- 
cavity TWT is, therefore, to align the gain and efficiency bands. Figure 14.30 shows, 
for a particular tube, the improvement in efficiency given by different step tapers at 
the frequencies for maximum bunching fb( ), and maximum gain fg( ). The improve-
ment is greatest at maximum bunching, but also varies markedly with the change in 
the phase velocity in the taper vpt( ). At maximum gain the improvement is smaller 
and fairly insensitive to the change in phase velocity. At maximum efficiency fe( ) 

Figure 14.30: Increase in efficiency produced by a taper at the frequencies of maximum 
bunching and maximum gain
(copyright 1991, IEE, reproduced, with permission of The IET, from [44]).
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a taper produced no further improvement. Clearly an ideal taper would give maxi-
mum efficiency at every frequency within the band of the tube. Figure 14.31 shows 
the effect on the efficiency of a single step taper, chosen to give the greatest effi-
ciency at the frequency of maximum bunching, and of an ideal differential taper.

In a coupled- cavity TWT the dispersion diagram of the slow- wave structure can 
be changed by:

• changing the pitch of the structure;
• changing the resonant frequency of the cavities;
• changing the strength of the coupling between the cavities.

Figure 14.32(a) shows the dispersion diagram of an untapered space- harmonic 
structure, together with the dispersion line for an ideal differential taper in which 
the change in phase velocity is optimum at each frequency. Figure  14.32(b) 
shows  the dispersion diagrams corresponding to each method of tapering com-
pared with the standard structure. Evidently a dispersion diagram which is close to 
the ideal curve can be produced by using a combination of the different possible 
changes to the dimensions of the structure. This approach suggests that in design-
ing a coupled- cavity TWT:

• The basic design should be such that fb and fe lie at the bottom and top of the 
frequency band of the tube. Then fg will be in the centre of the band.

• The taper should be designed to give maximum efficiency at  fb.

It was found that good results were obtained by this method [44]. Table 14.5 shows 
some examples of TWTs with coupled- cavity, and other discrete interaction slow- 
wave structures, whose design has been described in the literature.

14.4.6 Hybrid Tubes

The bunched electron beams produced in both klystrons and TWTs are not ideal 
because not all the electrons are grouped into the bunches, and because of the spread 

Figure 14.31: Saturated efficiency versus frequency curves for a tube without a taper, with 
an 80% one- step taper and with an ideal differential taper showing the conditions for 
maximum bunching, gain and efficiency
(copyright 1991, IEE, reproduced, with permission of The IET, from [44]).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.015
https://www.cambridge.org/core


TWT Design 557

of electron energies. A possible way of overcoming this is to create bunches which 
have near ideal properties before extracting the energy from them in a standing- wave, 
or a travelling-wave, output structure. The IOT is a simple example of a device of 
this kind which should have higher efficiency than a conventional klystron or a TWT. 
This concept was investigated theoretically by Meeker and Rowe [116] who showed 

Figure 14.32: Dispersion diagrams for a typical coupled- cavity slow- wave structure 
showing: (a) the standard circuit and the ideal differential taper, and (b) the standard 
circuit (solid line), cavity period taper (dotted line), cavity resonance taper (dashed line) 
and slot length taper (chain dotted line)
(copyright 1991, IEE, reproduced, with permission of The IET, from [44]).

Table 14.5: Examples of TWTs with coupled- cavity and other discrete interaction slow- wave structures

Frequency

GHz

Bandwidth  
%

Power Efficiency  
%

Slow- wave  
structure

Reference

2.75 10 1.0 MW pk 13 Space harmonic [106]

2.6– 2.95 12 4.2 MW pk 37 Cloverleaf [107]

5.4– 5.9 9 4.1 MW pk 34 Cloverleaf [107]

9.0 12 1.2 MW pk 25 Centipede [108]

11.9– 12.1 14 240 W cw 30 Space harmonic [109]

3 14 160 kW pk 35 Stub- supported ring [110]

5.25– 5.75 9 26 kW pk 16 Inverted 
space- harmonic

[71]

90 20 100 W cw 2 Double ladder [111]

22.3– 24.8 7 1 kW 23 Space harmonic [112]

28.3– 30.0 2 500 W cw 31 Double staggered 
slot

[113]

90 1 400 W pk 15 Folded waveguide [114]

33.5 7 700 W pk 7 Folded waveguide [115]
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that high efficiencies should be attainable, but that they may be considerably reduced 
by spreading of the bunches caused by space- charge forces. In an experimental inves-
tigation Lichtenberg created bunches at 1 GHz using grid modulation, together with 
an inductively tuned cavity [117]. The bunches were injected into a helix slow- wave 
structure which was also fed with an input signal. It was found that when the system 
was optimised the peak efficiency was around 40%, which was double that of the 
TWT on its own. The key finding was that it was necessary for the initial bunches to 
have both current and velocity modulation to counteract the effects of space- charge. 
The propagation characteristics of a beam of this kind were investigated in [118].

It is difficult to form a prebunched beam using grid modulation at frequencies 
much above 1 GHz because of transit- time effects. A possible alternative is to com-
bine the properties of a klystron bunching section with a TWT output section. 
We have seen that a very high degree of bunching with little velocity spread can 
be achieved in a well- design klystron. A hybrid tube of this kind is known as a 
Twystron®. This tube, operating at megawatt power levels, can achieve bandwidth, 
efficiency and gain flatness superior to those which can be realised in either a klys-
tron or a TWT alone [105, 119– 121].

The development of cold cathode technologies has offered the possibility of pre-
modulating an electron beam at higher frequencies [122]. An experimental TWT of this 
kind developed an output power of up to 280 mW in the range from 3.9 to 6.75 GHz 
and this has been increased to around 50 W by subsequent development [123, 124].
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15 Magnetrons

15.1 Introduction

This chapter, and the next, are concerned with tubes which employ electron beams 
in crossed electric and magnetic fields, as described in Chapter  8. Magnetron 
oscillators are considered in this chapter, beginning with a review of  the basic 
principles of  their operation. We shall refer to these devices as ‘magnetrons’ 
for convenience. Although both linear and circular geometries are possible (see 
Figure 8.1), only the second of  these is normally used because it minimises the 
volume in which a uniform magnetic field must be maintained. In addition, all 
high power devices are based on electron emission from a cylindrical cathode as 
illustrated in Figure 8.1(d) because it is not possible to make stable, high current, 
injected beams. The rotating cloud of  electrons interacts with the RF field of  a 
slow- wave structure which also forms the anode as shown in Figure 15.1. A num-
ber of  different forms of  anode are in use, and these are discussed in Section 15.3. 
There follows a review of  the properties of  magnetrons, and a discussion of  ways 
of  modelling them. The final section of  the chapter is concerned with the design 
of  magnetrons. Crossed field amplifiers, which are closely related to magnetrons, 
are dealt with in Chapter 16.

The magnetron was the first type of  microwave tube to be used in systems, fol-
lowing its successful development as the power source for radar during World War 
II. Modern tubes have the same basic features as the early tubes but are the result 
of  over seventy years of  engineering development [1– 3]. An overall efficiency of 
50% is typical for a pulsed tube but figures as high as 90% are achieved in CW 
tubes designed specifically for high efficiency. In comparison with a linear beam 
tube, at the same frequency and power level, the magnetron is smaller, simpler, and 
cheaper, and works at a lower voltage. The tuning range is small, usually 2– 10%. 
Magnetrons are, therefore, preferred to linear beam tubes when an oscillator is 
suitable and only a narrow tuning range is needed. The main applications of  mag-
netrons are in radar, in domestic and industrial microwave ovens, and in medical 
linear accelerators [3– 5]. Relativistic magnetrons, which deliver powers up to sev-
eral GW with pulse durations of  some tens of  nanoseconds, lie outside the scope 
of  this book [6, 7].
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15.2 Basic Principles

Figure 15.1 shows the general arrangement of a magnetron. The electrons are emit-
ted from a cylindrical cathode. In most types of magnetron an indirectly heated 
matrix cathode is used (see Section 18.5.3). The exceptions are tubes for domestic 
or industrial microwave ovens in which the cathode is a directly heated thoriated 
tungsten helix (see Section 18.5.1) [4]. The axial length of the interaction region 
La( ) is normally small compared with the free- space wavelength to avoid variation 

of the interaction in the axial direction. The cathode end hats limit the flow of elec-
trons in the axial direction. The cathode is usually supported by a coaxial extension 
(see Figure 15.25). The output power may be removed from the anode by probe, 
or iris, coupling to a waveguide and window at right angles to the axis of the tube. 
Alternatively, one or more of the anode vanes may be connected to an antenna on 
the axis of the tube which radiates into the external waveguide though a domed 
window (see Figure 15.26). The other possible arrangement, in which the cathode 
is outside the anode, suffers from the disadvantage that the power density on the 
anode is greater [8].

The magnetron is based upon the cut- off  magnetron diode, discussed in 
Chapter 8. Before oscillations commence much of the space between the cathode 
and the anode is occupied by a rotating cloud of electrons. It is believed the cloud 
is in a state of oscillation comprising azimuthal space- charge modes with a back-
ground of broadband noise (see Section 8.6). However, the properties of magne-
trons can be understood by assuming that the cloud takes the form of a uniform 
space- charge hub whose outer radius is rb, as shown in Figure 15.1. A magnetron 

Figure 15.1: General arrangement of a magnetron.
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is always operated at an anode voltage which is less than the Hull cut- off  voltage 
VH( ) given by (8.59). Thus, no current can flow through the tube in the absence of 
an interaction with the RF field of the anode. The properties of the space- charge 
hub are reviewed in Section 15.2.1.

The anode supports a number of resonant modes which can be decomposed 
into pairs of counter- rotating slow electromagnetic waves. These have radial and 
tangential components of the electric field, as discussed in Section 15.2.2. If  the 
angular velocities of the electrons are approximately synchronous with one of the 
travelling waves on the anode a collective interaction can take place. The modes 
are initially excited by the fluctuations in the electron cloud. There is competition 
between different possible modes of oscillation which grow at different rates. It is 
therefore important to ensure that the desired mode eventually dominates. Because 
the slow- wave structure is a closed circle the device is an oscillator. The strength of 
the interaction grows until it is limited by non- linear effects.

The nature of the interaction between the electrons in the hub and the RF field 
of the anode is illustrated in Figure 15.2. This shows the motion of the electrons in 
a frame of reference which is moving with their steady velocity u0 which is greater 
than the phase velocity of the RF electric field of the anode. Planar geometry has 
been assumed for simplicity. In this frame of reference the steady electric and mag-
netic forces are in balance. Electrons, which are on the surface of the electron cloud, 
move under the combined influence of the RF electric field, and the static magnetic 
field, as shown by the arrows in Figure 15.2(a). Their new positions and the new 
shape of the electron cloud are shown in Figure  15.2(b). The charge density in 
the electron cloud is approximately constant so that the electrons are concentrated 
regions of retarding field. The wave on the perturbed cloud resembles a slow space- 
charge wave on a Brillouin focused linear electron beam. Electrons which are in a 
retarding phase of the tangential RF electric field of the anode transfer energy to it. 
Because their tangential velocity is reduced there is an imbalance between the out-
ward electric force and the inward magnetic force on them and they drift outwards 
towards the anode. In so doing they move into a region where their potential energy 
is lower so that they gain kinetic energy and are able to maintain synchronism with 

Figure 15.2: Motion of electrons in a magnetron.
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the rotating RF field. Conversely, those electrons which are accelerated by the RF 
field move inwards towards the cathode. The perturbation of the charge cloud, and 
the growth in the magnitude of the RF electric field, are mutually reinforcing. It is 
found that the electrons can only reach the anode as a result of the interaction if  
the anode voltage is greater than the threshold voltage VT( ) which depends upon the 
magnetic field. The RF power delivered to the anode is very small until this volt-
age is exceeded. Thus a working magnetron operates at an anode voltage such that 
V V VT a H< < . The equation for the threshold voltage is derived in Section 15.2.3.

When stable oscillation has been established the electron bunches take the form 
of ‘spokes’ of charge based on a space- charge hub, as shown in Figure 15.3. A more 
detailed view is shown in Figure 15.36. The spokes move with an angular velocity 
which is synchronous with the wave, and the potential energy lost by the electrons 
is converted directly into RF energy in the field of the anode. Those electrons which 
return to the cathode may strike it with high energies and liberate secondary elec-
trons. The back- bombardment of the cathode caused in this way means that the 
emission from the cathode is a combination of thermionic and secondary electron 
emission. It is difficult to determine the fraction of electrons falling into each cat-
egory, but it is known that this can have important effects on the properties of the 
magnetron [9]. Electron bombardment also causes heating of the cathode, which 
may be compensated by reducing the current in the cathode heater. In some cases it 
is possible to operate a magnetron without any external heating of the cathode. The 
way in which the electronic efficiency depends upon the magnetic field is explored 
in Section 15.2.4.

The description of the operation of a magnetron in terms of an inner space- 
charge hub and spokes of charge is satisfactory as a basis for understanding the 
operation of a magnetron and the principal features of its performance. But it is 

Figure 15.3: The space- charge hub and spokes in an oscillating magnetron.
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important to realise that the actual behaviour of the electrons is much more com-
plex than is assumed in this simple model. We saw in Chapter 8 that, in practice, 
the electrons execute complex cycloidal motions about guiding centres which are in 
uniform motion. However, this motion is usually rapid compared with the drift of 
the guiding centres so that it is effectively averaged out and does not play a major 
role in the interaction. This is the justification for using a uniform hub as a model. 
It is assumed that the RF field of the anode does not act on the electrons within 
the hub. Its properties are therefore unchanged when electrons are drawn from it to 
form the spokes. A more detailed discussion of the interaction in a magnetron can 
be found in Section 15.6.

15.2.1 Hub Model

The DC potential within the space- charge hub is given by (8.68)
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We recall that this equation does not depend on any assumptions made about the 
space- charge distribution. The potential at the surface of the hub Vb( ) is found by 
setting r rb=  in this equation. Outside the hub the potential is given by (8.72)
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Then the radial component of the DC electric field outside the hub is
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The radius of the hub can be determined in any particular case by numerical solu-
tion of (15.2) when V Va=  at r ra= . The potential on the surface of the hub is then 
found by substitution into (15.1). The angular velocity of an electron on the surface 
of the hub is found to be

 ωb
b

b

e m V

r
=

( )2 0  (15.4)

by using the principle of conservation of energy. It should be noted that this angu-
lar velocity is not normally equal to the angular velocity of the travelling electro-
magnetic wave on the anode.

15.2.2 Interaction Field

Although practical magnetrons have cylindrical geometry, it is helpful to examine 
first the planar geometry shown in Figure 15.4 because that is sometimes used as an 
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approximation to the cylindrical case. The design of magnetron anodes is discussed in 
Section 15.3. For the present it is sufficient to note that the slow electromagnetic wave 
is generated by the RF voltages between the tips of a regular series of metallic vanes.

Let us assume that a wave travelling in the x direction with frequency ω and 
propagation constant β0 has uniform electric field amplitude Eg  between the vane 
tips. Then, from (4.37), the tangential electric field of the mth space- harmonic wave 
on the surface of the anode can be written

 E x h E
w
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w

w
j t xxm g

m

m
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where β β πm m p= +0 2  and the other symbols are defined in Figure 15.4. Since the 
phase velocity of the wave is much less than c, and the transverse dimensions are 
small compared with the free- space wavelength, we can use the quasi- static approxi-
mation. Then the electrostatic potential of the mth space- harmonic wave on the 
surface of the anode is given by
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Thus the amplitudes of the space- harmonics of the potential wave on the surface 
of the anode are
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If  the wave is a standing wave the amplitudes of the forward and backward waves 
are E V wg g= 2  where Vg is the magnitude of the RF voltage between the tips of 
the vanes. The total potential distribution is then the sum of the space- harmonic 
waves. For the special case of the π mode the m = 0 space harmonic of the forward 
wave and the m = −1 space harmonic of the backward wave both have the same 
propagation constant and the same amplitude. The amplitudes of all the other 

Figure 15.4: Arrangement of a planar magnetron.
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space- harmonics with positive phase velocities are smaller so that the RF potential 
on the surface of the anode can be approximated by the sum of the equal forward 
and backward waves given by

 V x h j
V w p

w p
j t x pg

± ( ) = −
( )
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since β π0 p = . Thus the amplitude of the standing potential wave is
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Figure  15.5 shows a comparison between the RF potential on the surface of 
the anode, modelled by the piecewise linear function which we have assumed, and 
the potential of the standing sinusoidal wave, when w p= 2. It can be seen that in 
this case, which is close to the situation in most magnetrons, the sinusoidal wave is 
a good approximation. Thus the peak- to- peak amplitude of the wave is approxi-
mately equal to the gap voltage, as one would expect.

The amplitude of the quasi- static potential of the standing wave in the π- mode 
must satisfy Laplace’s equation in two dimensions, hence
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Then, taking the gradient of the potential
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Figure 15.5: Comparison between the piecewise linear variation of electric potential 
on the surface of a magnetron anode, and the sum of the first forward and backward 
space- harmonic waves.
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Figure 15.6 shows the electric field of two adjacent cavities when the cavity pitch 
is equal to the distance between the cathode and the anode. It should be noted that 
the x component of the field is strongest close to the surface of the anode and that 
it decays rapidly with increasing distance towards the cathode. This justifies the use 
of a single term in the expansion of the field.

The analysis for circular geometry follows the same approach. Laplace’s equation 
takes the form

 1 1
0

2

2

2r r
r

V
r r

V∂
∂

∂
∂







+
∂
∂

=
θ

. (15.13)

If  there are n wavelengths around the anode then, separating the variables, the 
potential takes the form

 V r V r nr, cos .θ θ( ) = ( ) ( )  (15.14)

Substituting for V in (15.13) gives

 1
0

2

2r r
r

V
r

n
r

Vr
r

∂
∂

∂
∂







− = . (15.15)

It can be shown by substitution that the general solution of this equation is

 V Ar B rr
n n= + −  (15.16)

where A and B are constants. The relationship between the constants is found by 
applying the boundary conditions V = 0 when r rc= , and V V ns= ( )cos θ  when r ra= .  
Substitution into (15.14) gives

 V r V
R R
R R

ns

n n

a
n

a
n

, cosθ θ( ) =
−
−







( )
−

−
 (15.17)

where R r rc=  and R r ra a c= . Then

 E
V
r

nV
Rr

R R
R R

nr
s

c

n n

a
n

a
n

= −
∂
∂

= −
+
−







( )
−

−
cos θ  (15.18)

Figure 15.6: R.F. electric field of the π- mode of a planar magnetron.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.016
https://www.cambridge.org/core


Basic Principles 573

and

 E
r

V nV
Rr

R R
R R

ns

c

n n

a
n

a
nθ θ

θ= −
∂
∂

=
−
−







( )
−

−

1
sin  (15.19)

Figure 15.7 shows the variation of the tangential electric field between the cathode 
and the anode for n = 3 4 5, ,  when Ra = 2. It can be seen that the tangential field falls 
off rapidly with increasing distance from the surface of the anode and that the rate 
of change increases with n. Figure 15.8 shows the arrow plot of the π- mode field, for 
one quadrant of an anode with 12 resonators, obtained from (15.18) and (15.19).

When the phase shift per cavity is π the standing- wave field is the sum of equal 
forward and backward space- harmonics as in the planar case. The amplitude of the 
standing potential wave on the surface of the anode is related to the RF gap voltage 
by (15.9) where p r Na v= 2π , Nv is the number of vanes and the gap between the 
vane tips w p t= − . The amplitudes of the travelling waves are then

 V
wN r

wN r
Vv a

v a
g1

1 4

4
=

( )



π

sin
. (15.20)

15.2.3 Threshold Condition for Oscillations

The threshold voltage can be calculated by considering the conditions under which 
electrons can just reach the anode. The RF field of a cylindrical anode is decom-
posed into a pair of equal waves propagating in opposite directions whose tan-
gential electric fields vary as exp j t nω θ±( ) where n (an integer) is the number of 
wavelengths around the anode. The condition for constant phase is

 d
dt n s
θ ω ω= ± = ±  (15.21)

Figure 15.7: Variation of the tangential electric field between the cathode and the anode 
when Ra = 2 for three values of n.
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so that a plane of constant phase rotates about the axis with angular velocity ωs. When 
oscillations are just able to start, the RF field of the anode is negligible, the velocities 
of the electrons are tangential to the surface of the anode and synchronous with the 
wave. Then, using the principle of conservation of energy, the anode voltage is

 V
m

e
ra s0

0 2 2

2
= ω . (15.22)

This is the Characteristic Voltage which is the least anode voltage for which oscilla-
tions are possible. Since the diode is just cut off  the corresponding magnetic field is 
obtained by substituting V0 in (15.1) and setting r ra=  to give

 B
m

e r r
s

c a
0

0

2 2

2 1
1

= ⋅
−( )

ω  (15.23)

This is known as the Characteristic Field. The point B V0 0,( ) lies on the Hull cut- off  
curve (8.59) so that

 V
e
m

B r
r
ra
c

a
0

0
0
2 2

2

2

2

8
1= −







. (15.24)

Dividing (15.1) by (15.24) the Hull cut- off  curve can be expressed as

 V
V

B
B

b z

0

2

0
2

= , (15.25)

where Vb is the potential at the surface of  the space- charge hub. If  the magnetic 
field is increased, the diode is more strongly cut off, and the radius of  the hub 
decreases.

Figure 15.8: RF electric field of a 12- cavity magnetron anode operating in the π- mode 
when r ra c= 2 .
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To show that oscillations can still start when B Bz > 0 we consider the dynamics 
of the electrons in the presence of the RF field of the wave on the anode. The equa-
tions of motion of an electron in cylindrical polar co- ordinates are [9]

 m
d r
dt

r
d
dt

Fr0

2

2

2

− 

















=
θ  (15.26)

 d
dt

m r
d
dt

rF0
2 θ

θ






= , (15.27)

where Fr and Fθ are the components of the force acting on the electron. Multiplying 
(15.26) by dr dt and (15.27) by d dtθ  and adding gives

 d
dt

m dr
dt

r
d
dt

F
dr
dt

Fr
0

2

2

2

2






+ 




























= +

θ
θθ

θ
r

d
dt

. (15.28)

This equation is a statement of the work- energy theorem. The left- hand side is the 
rate of change of the kinetic energy of the electron with time and the right- hand side 
is the rate of working of the forces acting on it. If the forces are derived from a poten-
tial field the equation can be integrated to obtain the law of conservation of energy. 
Unfortunately this is not possible in the present case because the forces vary with time 
in a fixed coordinate system. This difficulty can be overcome by changing to a coord-
inate system which is rotating with the synchronous velocity, so that the RF electric 
field of the wave can be derived from a static potential. To do this we define

 ′ = −θ θ ωst (15.29)

then (15.26) and (15.27) become

 m
d r
dt

r
d
dt

r
d
dt

r Fs s r0

2

2

2

22− ′





− ′ −












=
θ ω θ ω  (15.30)

and

 d
dt

m r
d
dt

m r rFs0
2

0
2′ +





=
θ ω θ . (15.31)

Then, by the same procedure as before, we obtain the equation in the rotating frame 
of reference, which is equivalent to (15.28).

 d
dt

m dr
dt
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d
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dtr

0
2

2

2

2
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= +

θ
FF r

d
dt

d
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m rsθ
θ ω′ + 





1
2 0

2 2 . (15.32)

Now

 F e E r
d
dt

B e E r
d
dt

B r Br r z r z s z= − +





= − + ′ +





θ θ ω  (15.33)
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and

 F e E
dr
dt

Bzθ θ= − −





, (15.34)

where the electric field, which is the superposition of the DC and RF electric fields 
in the rotating system of coordinates, does not vary with time.

Substituting for Fr and Fθ in (15.32) we obtain, after simplification,
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(15.35)

Integration during the time taken for an electron to move from the cathode to the 
anode gives
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(15.36)

At the cathode dr dt = 0 and d dt s′ = −θ ω . To find the threshold condition for 
oscillation we assume that an electron which just reaches the anode does so with 
near- zero radial and tangential velocities in the rotating frame. Substituting these 
boundary conditions into the left- hand side of (15.36) gives

 V B r r
m

e
r rE dT s z a c s a

c

a= −( ) − + ′
′

′

∫
1
2 2

2 2 0 2 2ω ω θθθ

θ
, (15.37)

where

 V E drT rr

r

c

a= −∫ . (15.38)

In the limit of a vanishingly small RF electric field the last term in (15.37) tends to 
zero and

 V B r r
m

e
rT s z a c s a= −( ) −

1
2 2

2 2 0 2 2ω ω , (15.39)

where VT  is the threshold (or Hartree) voltage. This is the minimum DC voltage at 
which electrons can reach the anode under the influence of the RF field, for a given 
magnetic field. The threshold voltage can be given a simple physical explanation [10]. 
The first term on the right hand side of (15.39) is the voltage induced in the rotating 
spoke, considered as a conductor. The second term is the kinetic energy in electron 
volts of a synchronous electron which reaches the anode with zero radial velocity.

Combining (15.39) with (15.22) and (15.23) we obtain

 V
V

B
B

T z

0 0

2
1= − . (15.40)
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It is straightforward to show that (15.40) is a straight line which is tangential to the 
cut- off  curve (15.25) at the point B V0 0,( ) . The characteristic field is proportional 
to ωs so that each possible mode has its own characteristic point and threshold 
line. Figure 15.9 shows the normalised cut- off  curve for an eight- vane magnetron, 
together with the threshold lines for n = 4 (the π mode) and the adjacent modes. 
If  the magnetic field is greater than the characteristic field for the π mode no cur-
rent can flow until the anode voltage exceeds the threshold voltage for that mode. 
Once the threshold voltage has been exceeded oscillations build up from the noise 
already present in the electron hub. The operation of the magnetron as an oscillator 
requires the anode voltage to remain below the cut- off  voltage for the given mag-
netic field. Thus the possible region of operation lies between the threshold voltage 
line and the cut- off  voltage curve. The way in which the choice of operating point 
affects the properties of the magnetron are discussed in Section 15.4.

The assumptions involved in the derivation of (15.39) can be questioned. This 
is illustrated by Figure 15.10 which shows electron trajectories, in the synchronous 
frame of reference, in a magnetron which is just conducting. The trajectories were 
computed for a cylindrical magnetron but they are displayed in Cartesian coordi-
nates for convenience. A finite RF electric field was assumed. The tangential veloci-
ties of the electrons on the surface of the hub exceed the synchronous velocity so 
that they are initially in the direction of positive ′θ . The trajectory which finally 
reaches the surface of the anode has already travelled through several RF periods. 
It eventually reaches a position where the tangential retarding RF electric field is 
strong enough to cause the electron to drift towards the anode. The continuing drift 
of the electron to the right must be arrested before it leaves the retarding phase 
of the field 0 180° − °( ). The drift motion in the synchronous frame of reference 
is reversed and the electron then moves outward until it reaches the anode. The 
tangential velocity on impact is equal to the synchronous velocity, but the calcula-
tions show that the impact energy is approximately 0 2. eVa. Thus the assumption 
that the RF electric field, and the energies of electrons reaching the anode, are 

Figure 15.9: Threshold voltages for the n = 3, 4 and 5 modes of an eight- cavity magnetron. The 
axes are normalised to the characteristic voltage, and the characteristic field, for the n = 4 mode.
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both vanishingly small at the threshold voltage is seen to be false. Nevertheless, the 
threshold voltages computed from (15.39) are found to be close to the results of 
experimental measurements. It must be concluded that the effect of the finite RF 
electric field is balanced by the impact energy of the electron on the anode.

The requirement that the RF electric field should be finite means that the initiation 
of oscillations cannot be explained by the theory described above. An alternative pos-
sibility is to consider the threshold condition in terms of the synchronism between the 
slow space- charge wave on the hub and the wave on the anode [11]. We have seen that, 
in a circular magnetron, the angular velocity of the electrons on the surface of the 
hub ωb( ) exceeds the synchronous velocity. The angular velocity is synchronous at the 
characteristic voltage and magnetic field, and the difference increases as the magnetic 
field, and the anode voltage, are increased. In the example shown in Figure 15.10 
where V Va T≈  and B Bz = 3 34 0.  it was calculated that ω ωb s= 1 46. .

Space- charge waves on electron beams in crossed- fields take the form of pertur-
bations of the surface of the electron beam with constant charge density. Thus they 
resemble the space- charge waves on linear beams with Brillouin focusing. It has 
been shown that the propagation constants in a planar magnetron take the form

 u
d

c c p
0

2 2
1
2

2 2 1
β ω ω ω ω

β± = − 





+
+















coth
, (15.41)

where d is the distance between the anode and the surface of the hub [12]. We will 
assume that this equation is approximately correct for a cylindrical magnetron. The 
plasma frequency on the surface of the hub is given by (8.67) so that (15.41) becomes
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r r

r r
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4 4
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2 2
1
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β ω ω ω
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+ −( )( )














coth
. (15.42)

Figure 15.10: Electron trajectories in a magnetron which is just conducting.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.016
https://www.cambridge.org/core


Basic Principles 579

Making use of the synchronous condition

 β− =
n
rb

 (15.43)

we find that the threshold voltage is the root of
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2 1

1 1
0

4 4

1
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 (15.44)

for a given value of Bz , since ωb and rb  are then functions of Va only. Figure 15.11 
shows an example of the threshold voltage computed from this equation, compared 
with that given by (15.39). There is excellent agreement between the two curves for 
small values of the magnetic field. The difference at larger magnetic fields can be 
attributed to the difference between the results for planar and cylindrical magne-
trons as the distance between the anode and the surface of the hub increases. We 
saw in Section 8.6 that, in the absence of external RF fields, the space charge hub 
is perturbed by oscillations that are strongest when there is an integral number of 
wavelengths around the hub. If  the anode voltage is set to the value given by (15.44) 
then the slow space- charge wave with mode number n is synchronous with the wave 
on the anode. The currents induced in the anode by the space- charge wave transfer 
energy from the wave to the anode. There it is dissipated in resistive losses and in 
the external load. Because the slow space- charge wave carries negative energy its 
amplitude increases through the transfer of energy until the point is reached where 
the fields are strong enough for spoke formation. Thus space- charge wave theory 
explains why the threshold voltage is given correctly by (15.39) even when the RF 
fields are vanishingly small.

Figure 15.11: Comparison between threshold voltages computed for the 4J50 magnetron 
using: (a) (15.39) and (b) (15.44).
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15.2.4 Electronic Efficiency

The electronic efficiency of a magnetron can be estimated by noting that the RF 
output power is given by

 P P P Prf dc a c= − − , (15.45)

where the terms on the right- hand side are, respectively, the DC input power and 
the thermal power dissipated on the anode and on the cathode. Thus the electronic 
efficiency is given by

 ηe
a c

dc

P P
P

= −
+

1 . (15.46)

The power dissipated on the cathode is typically less than 5% of the input power so 
that it may usually be neglected in the first approximation (though it can be as great 
as 50% at low output powers) [13]. Since the spokes are stationary in the rotating 
frame the mean angular velocity of the electrons at the surface of the anode is ωs so 
that that the tangential energy of the electrons is eV0 from (15.22). If  it is assumed 
that the radial energy of an electron striking the anode is approximately equal to 
the tangential energy we can write (15.46) as

 ηe
a

V
V

≈ −1
2 0 .  (15.47)

Now a magnetron is normally operated at a voltage close to the threshold voltage 
so setting V Va T≈

 ηe
T

V
V

≈ −1
2 0 . (15.48)

Substituting for V VT0  from (15.40) we obtain

 ηe
z

z

B B
B B

≈
−
−

2 3
2

0

0

. (15.49)

The graph of the efficiency given by (15.49) in Figure 15.12 shows that the efficiency 
increases rapidly with B Bz 0  and that high efficiency is possible if  a high magnetic 
field is used. The validity of the approximations made in deriving this result can be 
examined using the theoretical models in Section 15.6.

15.3 Magnetron Anodes

Figure 15.13(a) shows a plan view of a magnetron anode which incorporates an 
even number of regularly spaced cavity resonators. The detailed shape of the reso-
nators may vary but the vane- type anode illustrated is the most common [14]. This 
circuit is a modified two- wire line in which the forward and backward waves are 
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strongly coupled together at frequencies close to the resonant frequencies of the 
cavities.

The properties of this structure can be determined from the equivalent circuit 
shown in Figure 15.14. The admittance at the tips of the vanes of the cavity, repre-
sented by L1 and C1, is

 Y j C
L

j Ca ω ω
ω

ω ω
ω

( ) = −






= −



1

1
1

1
2

2

1
1 , (15.50)

where ω1 1 11= L C  is the resonant frequency of the cavity. The admittance pre-
sented at the same terminals by the space between the cathode and the anode is

 Y
j C

k ω φ ω
φ

,
cos

,( ) =
−( )

0

2 1
 (15.51)

Figure 15.12: Approximate dependence of the efficiency of a magnetron on the normalised 
magnetic field.

Figure 15.13: (a) Arrangement of a vane- type magnetron anode and (b) detail of one cavity
(reproduced, with permission, from [15]).
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where C0 is the capacitance between the tip of a vane and the cathode and φ is the 
phase difference between adjacent cavities. The resonant frequency of the cavity, 
modified by the admittance of the inner space is given by

 Y Ya kω ω φ( ) + ( ) =, .0  (15.52)

Substituting into this equation from (15.50) and (15.51) we obtain, after a little 
rearrangement,

 cos .φ
ω ω

= − ⋅
−( )1

2
1

1
0

1 1
2 2

C
C

 (15.53)

This is a low- pass filter characteristic such that ω = 0 when φ = 0 and

 ω ω ωπ=
+

=1

0 11 4C C
, (15.54)

when φ π= . Normally the capacitance between an anode vane and the cathode C0( ) 
is small compared with the capacitance between the vanes C1( ) so that ωπ is slightly 
less than ω1. Because the slow- wave structure forms a closed circuit the only pos-
sible values of φ are those for which there are an integral number of wavelengths 
around the circuit. Thus

 φ π
n

v
v

n
N

n N= =
2

0 1 2; , ,  (15.55)

where Nv is the number of vanes in the anode and n is the mode number. Equation 
(15.53) can be rearranged as

 ω
ω φ1

0

1

1
2

1
2

1
1

= + ⋅
−







−
C
C cos

, (15.56)

from which the dispersion curve can be calculated. Figure 15.15 shows examples of 
dispersion curves calculated for a 12- vane anode for two values of the ratio C C0 1 .

Figure 15.14: Equivalent circuit of one cavity of a magnetron anode.
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Because the structure is periodic, the field can be expanded as a series of  space 
harmonics. Figure 15.15 shows the possible forward wave modes in the first two 
Brillouin zones (see Figure  4.6). Thus, the section of  each curve in the range 
π φ π≤ ≤ 2  represents the m = −1 space harmonic of  the backward wave. The reso-
nances of  a transmission line in the form of a circular loop can be represented 
as linear combinations of  modes having azimuthal variations cos nθ and sin nθ.  
When the transmission line is periodic, as in the case of  a magnetron anode, 
pairs of  modes exist in which the relationship between the phase of  the mode and 
the discontinuities in the line are different. In these modes, known as degenerate 
modes, the nodes and antinodes of  the field pattern are exchanged. Figure 15.16 
shows, as an example, the two possible orientations of  the radial field maxima 
of the degenerate n = 4 modes of  a 12- resonator anode. The differing relation-
ships between the field patterns, and the positions of  the vanes, mean that the 
two modes have slightly different frequencies. The asymmetry introduced by the 
output coupler means that one mode of  the pair is strongly coupled to the output 
waveguide and has a low Q factor. The other is weakly coupled and has a high Q 
factor so that unwanted oscillations may be a problem. When φ π=  the maxima 
of the tangential electric field coincide with the centres of  the gaps between the 
vanes. This mode cannot be degenerate because the tangential electric field in the 
alternative orientation is short- circuited by the vanes. For this reason magnetrons 
are always designed to operate using the π- mode field of  the anode. Figure 15.15 
shows that the frequencies of  other possible modes are very close to the frequency 
of  the π- mode. It is therefore important in the design and operation of  magnetrons 
to ensure that the wrong mode is not excited. The most troublesome modes are 
those for which n Nv= −2 1 and n Nv= +2 1. These are known as the π −( )1  and 
π +( )1  modes irrespective of  the number of  vanes. Because the output coupler has 

Figure 15.15: Dispersion curves of 12- vane magnetron anodes.
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been designed with respect to the π-mode  the excitation of  other modes usually 
shows itself  as a reduction in the output power in addition to a shift in frequency. 
The change in the interaction may also cause damage to the cathode and arcing 
within the tube because the impedance is mismatched to that of  the power supply. 
Various techniques for ensuring operation in the correct mode are discussed in 
Section 15.4.5.

The resonant frequency of the cavities in the anode in Figure 15.13(b) can be 
estimated by assuming that the depth of each cavity is a quarter of a wavelength so 
that λ = −( )4 2 1r r . It is found that this formula overestimates the frequency by about 
20%. A more exact solution is obtained from the input admittance of a wedge- 
shaped cavity with open ends given by

 Y j
L

r

J kr Y kr J kr Y kr

J kr Y kr
a

a

= ⋅ ⋅
( ) ( ) − ( ) ( )
( ) ( ) −

ε
µ ψ

0

0

0 1 1 2 1 2 0 1

1 1 1 2 JJ kr Y kr1 2 1 1( ) ( )











, (15.57)

where k c= ω  is the free- space propagation constant at frequency ω, La  is the axial 
length of the anode and ψ π= 2 Nv  [15]. The length of the anode is normally less 
than half  of the free- space wavelength to avoid the excitation of modes having axial 
variation of the RF field strength. The radii r1 and r2  are measured from the point of 
intersection of the projections of the vanes (see Figure 15.13(b)) so that

 r r
t

a1 = −
ψ

, (15.58)

where ψ π= 2 Nv . At resonance, k k c= =0 0ω , Y = 0 and (15.57) reduces to

 J k r Y k r J k r Y k r0 0 1 1 0 2 1 0 2 0 0 1 0( ) ( ) − ( ) ( ) = . (15.59)

Figure 15.16: Alternative orientations of the maxima of the radial electric field for the n = 4 
mode of a 12- resonator anode.
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This equation can be solved for k0 graphically or by numerical methods. The capaci-
tance of the resonator Cr( ) can be calculated from (15.57) since the input admit-
tance of the equivalent circuit is

 Y j Cr= − 

















ω ω
ω

1 0
2

. (15.60)

Differentiating (15.60) with respect to ω yields

 dY
d

jCrω
ω
ω

= + 

















1 0
2

 (15.61)

so that

 C
j
c

dY
dkr

k k

= − 



 =2

0

, (15.62)

where c is the velocity of light and the derivative of the Y with respect to k at res-
onance is calculated from (15.57). The value of the inductance L1 is then obtained 
immediately from Cr and ω0.

This calculation of the resonant frequency assumes that the RF magnetic field 
of the cavity is zero when r r= 1. It therefore ignores the effects of the fringing fields 
in the space between the anode and the cathode and at the ends of the anode. The 
effects of the fringing field can be modelled by adding a capacitance C f  in parallel 
with the equivalent circuit of the cavity. Because the dimensions of the region of 
fringing field are small compared with the free- space wavelength it is possible to 
determine the capacitance C f  from an electrostatic solution. The fringing capaci-
tance at the tips of the vanes is given approximately by [16]

 C
L

f
a= +















ε
π πµ

0 1
4

ln , (15.63)

where

 µ
π

=
N w

r
v

a2
. (15.64)

The capacitance of the cavity including the correction for the fringing field is then

 C C Cr f1 = + . (15.65)

The capacitance per vane between the anode and the cathode C0( ) can be estimated 
by finding upper and lower bounds [17]. An upper bound for C0 is obtained by 
assuming that the equipotential surfaces are concentric cylinders to give

 C
L

r r NU
a

a c v

= ( ) ⋅
ε π0 2

ln
. (15.66)
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To find a lower bound we assume that the flux lines between the anode and the 
cathode are confined to wedge- shaped volumes which terminate on the tips of the 
vanes so that

 C
L

r r
t
rL

a

a c a

= ( ) ⋅
ε0

ln
. (15.67)

Finally C0 is taken to be the geometric mean of these two bounds so that

 C C CL U0 = . (15.68)

Note that this calculation assumes that the cathode is a cylinder. In continuous 
wave magnetrons the cathode commonly takes the form of a helical wire and the 
capacitance calculated from (15.68) would need to be reduced to allow for this. We 
have seen that the dispersion diagram is not strongly dependent on C0 for typical 
values so this estimate is sufficiently accurate for our purposes. Further informa-
tion about the calculation of equivalent circuit parameters for resonators of other 
shapes and about the effects of the fringing fields at the ends of the anode can be 
found in [14].

The simple anode structure which has been discussed in this section suffers from 
the disadvantage that the mode frequencies are too close together to ensure that the 
π- mode alone is excited, without contamination from the adjacent modes. It is evi-
dent that the problem gets more difficult as the number of resonators in the anode 
is increased. A variety of solutions to this problem have been found in which the 
properties of the anode are modified by changes in its design. These are discussed 
in the sections which follow. In addition it has been found that the introduction of 
Nv 2- fold azimuthal periodicity into the magnetic field, the properties of the cath-
ode, or the shape of the anode, can help to ensure that the oscillations start in the 
π- mode [18– 21].

The output from a conventional cavity magnetron is generally made through a 
slot in the outer wall of one of the resonators or by connecting the inner conductor 
of a coaxial line to one, or more, of the vanes [3, 14]. In either case the coupling 
is made into a rectangular waveguide through a vacuum window. Although the 
magnetron is a fixed- frequency oscillator, it is possible to vary the frequency over 
a limited range by including metallic tuning elements that can be moved relative 
to the anode block. Metal bellows are used to take the motion through the vac-
uum envelope. The tuning elements can perturb the capacitance, the inductance, 
or both, of the resonant cavities. Pins inserted near the tips of the vanes alter the 
cavity capacitance, while those inserted near the outer edge of the cavity alter the 
inductance [3, 22– 24]. The frequency can be changed by up to 10% by a mechani-
cal tuner and various methods have been used to vary the frequency from pulse to 
pulse [3]. Electronic tuning which can vary the frequency by a few percent can be 
achieved using ferrites, diode switches or multipactor discharges [3, 25]. A greater 
tuning range can be achieved by coupling the anode to a high Q external cavity as 
described in Section 15.3.3.
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15.3.1 Strapped Anodes

In order to reduce the risk that a mode other than the π- mode is excited, the anodes 
in practical magnetrons are designed in such a way that the separation of these two 
modes is increased. Historically, the first method used was the introduction of wires, 
known as straps, which connect the vanes together. In modern magnetrons the straps 
are generally connected to alternate vanes as shown in Figure 15.17. Two or three 
straps are added to one, or both ends of the anode. Theoretically the straps do not 
carry current in the π- mode, since they are connected to vanes which are at the same 
phase. They do carry current in the other modes whose resonant frequencies are there-
fore perturbed. The actual effect of strapping is a little different, as will be seen, but it 
achieves the purpose of increasing the separation between the π and the π −1 modes.

The geometrical complexity of the strapping makes it difficult to determine their 
effects accurately except by cold test measurements, or from computational elec-
tromagnetics software. However, useful insight can be gained by considering the 
straps as TEM transmission lines which are connected to alternate vanes, as shown 
in Figure 15.18, where the admittance of each cavity is Y Y Ya k= +  from (15.50) and 
(15.51) [26].

Let us assume that the voltages on the tips of the vanes are given by

 V V jq= ( )0 exp ,φ  (15.69)

where φ is the phase shift per cavity and q = ± ±0 1 2, ,  is the index number of the 
vanes such that q = 0 when x = 0. Now let the voltage on strap 1 relative to the cath-
ode in the range 0 2≤ ≤x p be

 V V jkx V jkx1 = −( ) + ( )+ −exp exp  (15.70)

where V+ and V− are the amplitudes of the forward and backward waves, and k c= ω .

Figure 15.17: Strapped magnetron anode.
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When x = 0

 V V V V1 0= = ++ − (15.71)

and, when x p= 2

 V V j V jkp V jkp1 0 2 2 2= = −( ) + ( )+ −exp( ) exp exp .φ  (15.72)

Substituting for V− in (15.72) from (15.71) gives

 V j jkp jV kp0 2 2 2 2exp( ) exp sin .φ − ( )  = − ( )+  (15.73)

Similarly, substituting for V+ gives

 V j jkp jV kp0 2 2 2 2exp( ) exp sin .φ − −( )  = ( )−  (15.74)

The current flowing in the positive x direction when x is just greater than zero is 
given by

 I Y V Vc+ + −= −( ), (15.75)

where Yc is the characteristic admittance of the transmission line formed by strap 
1. Substituting for V+ and V− in (15.75) from (15.73) and (15.74) gives

 I
jY V

kp
j kpc

+ = ( ) − ( )( )0

2
2 2

sin
exp( ) cos .φ  (15.76)

Similarly, the current flowing in the negative x direction when x is just less than zero 
is given by

 I
jY V

kp
j kpc

− = ( ) − − ( )( )0

2
2 2

sin
exp( ) cos .φ  (15.77)

Figure 15.18: Equivalent circuit for a strapped anode.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.016
https://www.cambridge.org/core


Magnetron Anodes 589

The current flowing to the strap from the vane is the sum of these two currents

 I jY V
kp

kpc=
− ( )
( )







0

2 2 2 2

2

cos( ) cos

sin
.

φ
 (15.78)

This current can also be written in terms of the loop current circulating in the 
cavity as

 I i j= − −( )( )1 exp .φ  (15.79)

The voltage driving the loop current into the transmission line is

 V V j= − ( )( )0 1 exp .φ  (15.80)

Hence the admittance presented to the cavity by the straps is

 Y
i

V
jY

kp

kp
s cω φ

φ
φ

,
cos( ) cos

sin cos
.( ) = =

− ( )
( ) − ( )( )











2 2

2 1
 (15.81)

This result is not the same as that given by Yu and Hess [26]but it is believed to be 
correct.

The dispersion curve of a strapped anode is found from the solutions of

 Y Y Ya k sω ω φ ω φ( ) + ( ) + ( ) =, , .0  (15.82)

The characteristic admittance of the straps Yc( ) is unknown, but it can be used as an 
adjustable parameter to fit the dispersion curve to experimental data. Figure 15.19 
shows, as an example, the dispersion curves, with and without straps, for the anode 
of the 4J50 magnetron whose dimensions are given in [27] (see Worksheet 15.1). This 

Figure 15.19: Dispersion curves for the anode of the Litton 4J50 magnetron with, and 
without, straps.
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anode has 16 vanes and two strapping rings at each end. The characteristic admit-
tance of the straps was adjusted to give the correct π- mode frequency [13]. The fre-
quency of the π −1 mode then agreed with the figure given in [13] to three significant 
figures. It can be seen that the effect of the straps is to reduce the frequency of the 
π- mode and to increase the separation between the π and π −1 modes. The admit-
tance of the straps is capacitive at the π- mode so that the frequency of this mode 
is lower than in an unstrapped anode. It should be noted that the strapped anode 
is a bi- periodic structure so that the π- mode corresponds to a phase shift of 2π in 
one period (two cavities). The dispersion diagram has a forward- wave characteristic 
when the phase shift per cavity is small. This must be the case because the structure 
is a heavily modified form of two- wire line whose dispersion curve therefore passes 
through the origin. At larger values of phase shift the characteristic becomes back-
ward wave. The technique is limited to frequencies below 16 GHz by manufacturing 
difficulties. It is not suitable at the highest lower power levels because of problems 
with voltage breakdown between the straps and the vanes.

We have seen that the modes other than the π- mode exist as pairs whose orienta-
tions are determined by the position of the output coupler. If a break is made in the 
straps at an angle of 45° to the output waveguide, then the orientations of the two 
modes are determined by it. Both modes are then coupled to the output waveguide to 
some extent, the Q factors of the modes are reduced, and oscillations are less likely.

15.3.2 Rising Sun Anodes

An alternative anode structure which also makes use of bi- periodicity to increase 
the separation between the π and π −1 modes is the Rising Sun structure, shown in 
Figure 15.20. This structure is useful at high frequencies and high powers where 
construction of straps is difficult, or they suffer from voltage breakdown. The 
ratio of the depths of the two resonators d1/ d2 (where d = (r2 –  r1) is known as the 
circuit ratio.

The equivalent circuit of the rising sun structure is shown in Figure  15.21. 
Analysis of this circuit shows that the dispersion curves are given by

 
Z Z Z j

Z j Z Z
1 0 0

0 2 0

2 1 2

1 2 2
0

+ − + ( )( )
− + −( )( ) +

=
exp

exp
,

φ
φ

 (15.83)

where φ is the phase shift per cavity,

 Z j C j L1 1 1
1

1= +( )−ω ω , (15.84)

 Z j C j L2 2 2
1

1= +( )−ω ω , (15.85)

and

 Z j C0 01= ω . (15.86)
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Equation (15.83) can be expanded to give

 cos ,

cos cos

2 1

0

2

0

1 2

1
2

1
2

φ

φ φ

= +






+






=

Z
Z

Z
Z  (15.87)

where φ1 and φ2 are the phase shifts per cavity of uniform structures in which the 
one set of cavities is replaced by a short circuit, as shown in Figure 15.22. This 
is not quite accurate because short- circuiting a set of cavities also makes a small 
change in C0. Each structure has half  as many elements as the full anode and the π
- modes of these structures therefore correspond to the π 2 modes of the full anode. 
Figure 15.23 shows an example of the coupled, and uncoupled, dispersion curves 
(see Worksheet 15.2). The coupling between the modes produces a pair of pass- 
bands with a stop band between them. The upper pass- band is cut- off  at φ = 0 
and φ π=  with a frequency somewhat above the resonant frequencies of the large 

Figure 15.20: Arrangement of a rising sun magnetron anode
(reproduced, with permission, from [15]).

Figure 15.21: Equivalent circuit of a rising sun anode.
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cavities. The anode is designed to operate in the π- mode of the upper pass- band 
and the steep dispersion curve close to that point ensures good mode separation.

Figure 15.24 shows how the mode separation increases with circuit ratio d d2 1 for 
an anode where Nv = 18. The use of a large circuit ratio is superficially attractive, but 
it is found to lead to problems with the excitation of the φ = 0 mode. At the π- mode 
resonance the fields are different in the large and the small cavities, and this gives 
rise to a component of the tangential field which is in phase for all cavities. This 
component increases as the difference between the depths of the cavities increases. 
When interaction with this mode occurs it causes heavy back- bombardment of the 
cathode and serious loss of efficiency. An electron which is synchronous with the π- 
mode sees the φ = 0 mode as an RF field at the signal frequency. If  the cyclotron fre-
quency coincides with the signal frequency then a resonance occurs. It is therefore 
vital to ensure that the cyclotron frequency is well away from the signal frequency 
in a magnetron with a rising sun anode. It is usual also to avoid values of Nv which 
are divisible by four because it is found that they can lead to problems associated 

Figure 15.22: Uniform structures which are combined in a rising sun anode.

Figure 15.23: Dispersion curves of a typical rising sun anode, normalised to the frequency 
of the larger cavities (solid lines), together with the dispersion curves of the uniform 
uncoupled structures (chain dotted lines), and the frequency of the smaller cavities (dashed 
line)  N d dv = =( )18 1 782 1, . .
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with the mode for which φ π= 2. Further information about the properties of rising 
sun anodes can be found in [16].

15.3.3 Coaxial Anodes

Conventional magnetrons have mode and frequency stabilities which are inad-
equate for some purposes. Their tuning ranges are also rather restricted. These 
problems can be overcome by coupling the anode to another resonator having a 
very high Q factor [28– 30]. The additional cavity is placed around the anode result-
ing in the coaxial magnetron, shown in Figure 15.25. The coaxial cavity is coupled 
to alternate cavities by slots, so that the π- mode of the anode is coupled to the TE011 
(circular electric) mode of the coaxial cavity. The energy stored in the cavity is much 
greater than that stored around the vanes. This means that the operating frequency 
is determined by the resonant frequency of the cavity and can be tuned over a 
greater range than that of a conventional magnetron. Because the TE011 mode does 
not have any current flow across the end walls of the cavity, it is possible for the tun-
ing plunger to be made non- contacting. The space behind the tuner can hold lossy 
material to damp out unwanted modes. A comparison between a conventional and 
a coaxial magnetron is shown in Table 15.1. It is seen that the latter is superior in its 
tuning range and stability (frequency pushing and pulling are discussed in Sections 
15.4.2 and 15.4.3). The disadvantages of the coaxial magnetron are its large size, 
for a given frequency, and the slow rise of the anode voltage pulse needed to allow 
time for the energy stored in the coaxial cavity to build up as oscillation commences.

15.3.4 Long Anodes

The power output of a conventional magnetron is limited by heat dissipation in 
the cathode. To increase the output power it is necessary to increase the diameters 

Figure 15.24: Dependence of the π and π −1 mode frequencies of a rising sun anode with 18 
vanes on the circuit ratio d d2 1 .
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of the anode and the cathode and, therefore, the number of vanes. This brings 
with it problems of reduced mode separation. These problems can be overcome by 
using a magnetron with a much longer anode (known as a long anode magnetron) 
[31– 33]. By making the anode length comparable with the free- space wavelength, 
the cathode area can be increased without increasing its diameter and the number 
of vanes can be small. These magnetrons are normally made without straps and 
use the method of output connection to select the correct mode. A long anode can 
be regarded as a length of waveguide of unusual cross- section which propagates a 
TE mode in the axial direction. The anode then has resonances at the cut- off  fre-
quency of each mode, and also at higher frequencies where there are longitudinal 
standing waves determined by the boundary conditions at the ends of the anode. 
The notation for the modes is H H Hn n n, , ,′ ′′  etc. where n is azimuthal mode number 
and the number of primes represents the number of null planes along the length of 
the anode.

Table 15.1: Comparison between a coaxial and a conventional X- band magnetron

(copyright 1961, Academic Press, reproduced, with permission, from [28])

Coaxial magnetron Conventional magnetron

Peak power 250 kW 250 kW

Circuit efficiency 85% 70%

Electronic efficiency 65% 60%

Tuning range 20% 10%

Frequency pulling 3 MHz 14 MHz

Frequency pushing 0.08 MHz/ A 0.4 MHz/ A

Figure 15.25: Arrangement of a coaxial magnetron.
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The output connection is made by connecting the inner conductor of  a coaxial 
line symmetrically to alternate vanes as shown in Figure 15.26. The strength of 
the coupling is greatest when the connections are made close to the tips of  the 
vanes, and it decreases as the pitch circle diameter of  the connections is increased. 
The effect of  the symmetry of  the coupler is to couple the modes together in 
pairs so that the Hn mode is coupled to the H N nv 2( ) −  mode. For example, in a 
12 cavity anode the n = 0 mode is coupled to the n = 6  mode, the n = 1 mode to 
the n = 5 mode, and so on. These coupled modes are denoted by H H0 6 1 5, ,,( ) ( ) etc. 
since the Hn and H N nv 2( ) −  modes do not exist independently. Where one of  the 
component modes is strongly cut off, it represents local storage of  energy close 
to the output coupler, and the axial variation of  the electric field strength is 
determined by the other mode. It is then possible to simplify the notation still 
further. Thus, if  the H0 mode is strongly cut off, the H 0 6,( ) mode can be referred 
to as the 6 mode or π  mode. This mode is strongly coupled to the TEM mode of 
the output coaxial line. The line propagates all frequencies so that all the π  mode 
resonances π π π, , .′ ′′( )etc  are strongly coupled to the output and have loaded Q 
values determined by it. The non- π  modes couple to the higher- order modes of 
the coaxial line which are cut off, and these modes therefore have high Q fac-
tors determined by the losses in the anode. The symmetry of  the output coupler 
allows pure π- modes to be established when the frequency separation from the 
adjacent modes is as low as 1% so that straps are not necessary. The effect of 
adding straps was discussed in [34]. The output is coupled directly into a rectan-
gular waveguide via a capacitive probe enclosed by a hemispherical dielectric 
window. Further information about the design of  long- anode magnetrons can 
be found in [31– 33].

Figure 15.26: Simplified diagram of a long anode magnetron.
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15.4 Magnetron Properties

We saw in Section 15.2 that the behaviour of a magnetron can be described in terms 
of the cut- off  and threshold voltages. At the characteristic voltage and field V B0 0,( ) 
these two voltages coincide. However, it can be seen from Figure 15.12, that a tube 
must be operated appreciably above the characteristic field in order to achieve sat-
isfactory conversion efficiency. Usually B B0 3≥  and the magnetron is operated at 
an anode voltage just above the threshold voltage, and well below the cut- off  volt-
age (see Figure 15.9). The threshold voltage for each mode can be considered as 
the anode voltage at which oscillation in that mode begins. The oscillations in the 
various possible modes start from the noise in the circulating electron current and 
grow competitively until one becomes dominant. When the wrong mode becomes 
dominant the magnetron is said to be moding. This is revealed by a change in the 
frequency, reduced output power and excessive heat dissipation on the cathode. 
The anode current remains small until the oscillation is fully established. Therefore 
the impedance presented to the power supply by the magnetron varies during the 
start- up of the oscillation. This section reviews the practical aspects of the perform-
ance of magnetrons.

15.4.1 The Performance Chart

Manufacturers of  magnetrons commonly supply information about their char-
acteristics in the form of  a performance chart like the one shown in Figure 15.27. 
The diagram shows the anode voltage and current, the magnetic field, and the 
power output and efficiency. The lines for constant magnetic field are commonly 
called Gauss lines. Gauss line discontinuities are associated with discontinuous 
changes in other properties, as described in Section 15.4.4. The projection of  a 
Gauss line intersects the vertical axis close to the threshold voltage for that mag-
netic field. For the example shown, the intersections lie a little below the theoreti-
cal threshold voltages. Better agreement is obtained by linear projections which 
are tangents to the Gauss lines at the right- hand side of  the diagram. Regions 
of  operation to be avoided because of  poor mode stability or excessive heat dis-
sipation may be marked. Note that the axes of  this figure are exchanged, com-
pared with the usual presentation of  characteristic curves. For most magnetrons 
with strapped or rising sun anodes the magnetic field is provided by a permanent 
magnet whose strength is set by the manufacturer. Where the magnetic field is 
provided by an electromagnet (e.g. long anode magnetrons) it may be varied to 
some extent by the user. The efficiency increases as the magnetic field is increased. 
For a fixed magnetic field there is a region of  optimum efficiency, as shown in 
Figure 15.27. It is found that the graph of  the RF power against the DC current 
is approximately a straight line. A small current flows when the power is zero. This 
offset is caused by current which does not take part in the interaction, mainly 
emission from the cathode end- caps.
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15.4.2 Frequency Pushing

The frequency of oscillation of a magnetron varies with the anode current, as shown 
in Figure 15.28 where f0 is the resonant frequency of the anode in the absence of 
any electrons. The frequency at the peak of the curve is depressed relative to the 
unloaded resonant frequency of the anode by electron loading. The change in fre-
quency ∆f( ) is given approximately by

 ∆f
f QL0

0 6
~

.
, (15.88)

where the loaded Q of  the anode QL( ) is typically 250 for conventional magne-
trons, and 1000 for coaxial magnetrons. The shape of the curve is determined by the 

Figure 15.27: Performance chart of the 4J50 magnetron
(reproduced, with permission, from [35]).

Figure 15.28: Typical frequency pushing curve of a magnetron.
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changing phase of the electron spokes with respect to the RF field of the anode (see 
Section 15.6.7). Tubes are normally designed to be operated on the flattest part of 
the curve. The residual variation of frequency with current (~100 kHz/ A) is called 
the frequency pushing figure of the magnetron [36, 37].

15.4.3 Frequency Pulling

The effect of the output match on the performance of a magnetron is displayed by 
plotting the frequency and output power against the match on a Rieke diagram, as 
shown in Figure 15.29. It should be noted that the phase of the mismatch is referred 
to the output flange of the tube. Thus the line showing zero frequency shift does 
not normally coincide with the real axis of the impedance chart. The point of max-
imum power output does not usually coincide with the centre of the chart. This to 
ensure that the performance of the tube is stable throughout the permitted range 
of mismatch, that thermal limits are not exceeded, and that internal arcing does 
not occur. It is usual for magnetrons, other than low power tubes, to be protected 
from excessive variations in the output match by the inclusion of a circulator in the 
output waveguide.

To investigate the effect of a mismatched load we note that the admittance of the 
unloaded resonator is

 Y G jQU U U= + −














1

0

0ω
ω

ω
ω

, (15.89)

where GU  is the shunt conductance of the resonator and QU its unloaded Q. The 
external load may be represented by a transmission line whose characteristic 

Figure 15.29: Rieke diagram of the 4J50 magnetron
(reproduced, with permission, from [35]).
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admittance is GE so that the external loading conductance is GE when the transmis-
sion line is matched. When the line is terminated by a mismatch, the external admit-
tance loading the resonator may be written

 Y
S j

jS
GE E=

+
+

tan
tan

,
θ
θ1

 (15.90)

where S is the VSWR on the line and θ its electrical length. It is usual to specify 
the effect of a mismatched load for S = 1 5. , and it is then found that the imaginary 
part of (15.90) is maximum when θ = ±0 588.  and Y j GE E= ±( )1 083 0 417. . . When 
the external load is connected to the resonator the imaginary part of Y YU E+  is zero 
at resonance so that

 Q G GU U E
ω
ω

ω
ω0

0 0 417 0−






± =. . (15.91)

Now Q G Q GU U E E=  so that (15.91) may be written

 2 0 417

0

∆ω
ω

= ±
.

,
QE

 (15.92)

where ω ω ω= +0 ∆ . The frequency pulling figure fp( ) is defined as the change in the 
frequency when a load for which S = 1 5.  is varied through all possible phases. Thus

 f
f

Qp
E

= 0 417 0. . (15.93)

This derivation assumes that there is only one possible frequency at which the sum 
of the imaginary parts of the admittances is zero. When the transmission line con-
necting the load to the magnetron is long, as may be the case when an antenna is 
connected directly to the tube, multiple solutions are possible. The frequency of 
oscillation may then be unstable or show hysteresis effects. These long line effects 
can be avoided by careful design, or by placing an isolator between the magnetron 
and the transmission line [38].

15.4.4 Spectrum

The frequency spectrum of a magnetron normally includes some output at har-
monics of the fundamental frequency. Since the electronic charge does not vary 
sinusoidally with angle, but is concentrated in the spokes, the RF current flowing 
to the anode has a high harmonic content. The extent to which this is reflected in 
the output from the tube depends upon the coincidence between any higher-order 
modes of the anode with the harmonics of the signal frequency, and also on how 
well such modes are coupled to the output waveguide. Since these frequencies are 
tuned by changes in the output match it may be expected that those changes will 
also affect the harmonic output. It is possible to suppress harmonic emissions by 
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including a filter in the output waveguide either inside, or outside, the tube [39]. 
However, since the filter reflects the harmonic signals back into the anode, there 
may be unexpected changes in the output at the fundamental frequency.

The spectrum of a pulsed magnetron is normally determined by the Fourier 
Transform of the RF pulse. It is found, however, that the spectrum can be much 
broader if  the magnetron is operated at a low anode current where there is strong 
frequency pushing. This effect can be explained by the variation in the frequency of 
oscillation during the pulse. The spectrum of continuous wave cooker magnetrons 
is found to vary with the operating current. A study of magnetrons, operating at 
2.45 GHz, for use in domestic microwave ovens showed three distinct regimes [40]. 
At low currents (~20% of normal operating current) broadband random noise was 
observed with a bandwidth of up to 600 MHz. The noise showed distinct peaks 
corresponding to modulation at a frequency in the range 150 to 300 MHz, which 
increased with anode current. This low frequency noise can be conducted, and radi-
ated, by the high- voltage cathode leads and its harmonics can cause interference 
with UHF TV reception. At an anode current around 50% of the normal operating 
current the noise could take the form of discrete sidebands at frequencies about 
300 MHz above and below the fundamental, with power about 30 dB below it. This 
condition, involving spurious oscillation, was associated with Gauss line discon-
tinuities where a discontinuity in the characteristic curve corresponds to an abrupt 
change in the spectrum. Finally, at high currents, the spectrum showed no noise 
above the noise floor of the spectrum analyser. All cooker magnetrons show low- 
current, high- noise, and high- current, low- noise, regions with a discontinuous tran-
sition between them. Where spurious oscillation is associated with the transition it 
is strongly affected by the external VHF impedance between the cathode and the 
anode. In particular, it is possible to lock the frequency to a VHF resonant circuit 
in the cathode leads. The spectrum of a magnetron tends to deteriorate with age 
showing increasing levels of broadband noise. This change is presumably correlated 
with decreasing thermionic emission from the cathode and consequent changes in 
the relative proportions of thermionic and secondary emission.

Some pulsed magnetrons exhibit a phenomenon known as twinning in which the 
spectrum shows two distinct peaks, and two different levels of RF output power 
and anode current, as shown in Figure 15.30 [41, 42]. This phenomenon is clearly 
distinguishable from moding (see Section 15.4) because the frequency difference 
between the two modes is much smaller (typically only a few MHz). It is still not 
completely understood, but appears to be related to changes in the space- charge 
cloud that alter the electronic loading of the anode. The changes probably arise 
from changes in the proportions of thermionic and secondary electrons emitted by 
the cathode. A detailed study of twinning in pulsed magnetrons showed that the 
two states do not coexist, but that the tube may switch from one to the other during 
the pulse. On occasion multiple transitions were observed [42]. It was found that 
the conditions under which a tube twinned could be altered by changes in the out-
put match, the magnetic field, the heater power, and the cathode coating. However, 
none of these would completely eliminate the problem from tubes which showed 
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this tendency. Twinning is one of those phenomena, known to, and frustrating to, 
all tube engineers that may appear or disappear between batches of tubes as a result 
of minute changes in the production process. The instability appears to be corre-
lated with Gauss line discontinuities. A survey of a wide range of different types of 
magnetrons showed that twinning is most likely to occur when the ratio of the elec-
tron cyclotron frequency to the operating frequency lies in the range 0.75 to 1.25.

15.4.5 Mode Selection, Priming, and Locking

The typical characteristic curves of a magnetron oscillator, in Figure 15.27, show 
that for a given magnetic field the current remains low until the threshold voltage is 
reached. It then rises rapidly over a small change of variation of the anode voltage, 
and settles at an operating point determined by the load line of the power supply. 
When the magnetron is pulsed the shape of the pulse must be designed to ensure 
that the correct mode is excited [43, 44]. Figure 15.31 shows typical pulse wave-
forms for the anode voltage and anode current. For a discussion of pulse modula-
tors see Section 20.3.

The important features of the voltage pulse are:

• The rate of rise of the voltage can be fast as far as VT  but must thereafter be slow 
enough to ensure that the oscillation is fully established in the π mode before the 
threshold voltage of the π −1 mode is reached. Typically this takes of the order of 
50– 100 RF cycles. During the initial rise of the pulse the current consists mainly 
of the charging current of the capacitance between the anode and the cathode. If  
the oscillation is not fully established by the time the voltage reaches VT  then the 
anode current is low, the magnetron impedance is high, the voltage overshoots 
and π −1 mode oscillation is probable.

Figure 15.30: Spectrum of a magnetron showing twinning.
(copyright 2000, IEEE, reproduced, with permission, from [42]).
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• The pulse top must be flat because, as shown in Figures 15.27 and 15.28, a small 
voltage swing results in a large current swing, strong frequency pushing, and fre-
quency modulation during the pulse.

• The voltage pulse should fall fast to VT  and must fall fast enough thereafter to 
ensure that none of the modes beyond the π mode is excited.

If  the output port of the tube is connected to a circulator, then a signal can be 
injected at the π mode frequency. A signal with an amplitude 40 dB below the final 
output level has the effect of giving that mode a head start over the competing 
modes. The result is greater certainty that the correct mode will be excited. The 
technique, known as Priming, also determines the phase of the oscillation and pro-
vides pulse- to- pulse phase coherence.

The phase and frequency of an oscillator, such as a magnetron, can be locked 
by an injected signal [45]. The injection power required increases with the square 
of the frequency difference between the injected signal and the natural frequency 
of the oscillator. The bandwidth of a free- running magnetron is normally so large 
that the injected signal must be around 10 dB below the output power to achieve 
locking [46]. However, if  the bandwidth can be reduced by suitable selection of the 
operating conditions, or by an external control loop, the power required is much 
less [47– 49]. In the same way the frequencies of two or more tubes can be locked to 
one another [46, 50].

Figure 15.31: Typical voltage and current pulses of a magnetron.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.016
https://www.cambridge.org/core


Particle in Cell Magnetron Models 603

15.5 Particle in Cell Magnetron Models

To model a magnetron fully it is necessary to find self- consistent solutions for the 
electron motions and the RF fields (including the space- charge field). A  three- 
dimensional model is required to include the effects of longitudinal motion of the 
electrons, longitudinal variations of the fields, and the effects of fields in the end 
spaces. It is also necessary to model the combination of thermionic and secondary 
electron emission from the cathode (which may well be non- uniform), and to model 
the build- up of oscillations from the initial noise level to saturation. The additional 
complexity, compared with a model of a klystron or a TWT, requires the use of a 
fine computational mesh close to the surface of the cathode, and continuation of 
the calculations over some fifty or more RF cycles. Thus, the computational time is 
very long, even on a very powerful computer [51– 53].

As with klystrons and TWTs, it is possible to achieve some economy in the com-
putational effort: by using a two- dimensional model which ignores axial variations; 
by pre- calculating the static magnetic field; and by representing the properties of 
the anode by an equivalent circuit. This avoids the need to re- compute the electro-
magnetic fields outside the interaction region at each time step. However, because 
the electrons are collected on the anode it is desirable to include at least part of the 
space between the vanes in the interaction region. Calculations of this kind can 
provide valuable insight into the complex processes in a magnetron [54– 57]. Three 
states have been investigated [56, 57]:

• In the first the cathode current is dominated by primary emission, and the DC 
electric field is zero at the surface of the cathode. The electron trajectories are 
then similar to first-order Slater trajectories (see Section 8.3.2) and the thickness 
of the space- charge hub is close to that given by the numerical solution of (15.2). 
In order to maintain the space- charge hub the current emitted from the cathode 
must be between three and four times the anode current. The fraction of the DC 
power dissipated on the surface of the cathode is around 2%. The spokes are nar-
row as shown in Figure 15.32(a) and the base of the spoke is an unstable region 
with fluctuating behaviour. High- efficiency magnetrons for microwave ovens and 
industrial heating, which have thoriated tungsten cathodes with low secondary 
emission coefficients, are believed to operate in this condition.

• In the second case the cathode current is dominated by secondary emission. 
Because the distribution of  returning electrons is not uniform on the surface of 
the cathode, the shapes of  the spokes vary with time, and regions of  low- charge 
density move through the hub. These fluctuations are considerably greater than 
those in the primary emission state. The spokes are much thicker in this case as 
shown in Figure 15.32(b) and the cathode dissipation is of  the order of  10% of 
the DC power. Most high power pulsed magnetrons, which have oxide or dispen-
ser cathodes with high secondary emission coefficients, are believed to operate 
in this condition.
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• In the third case there is no secondary emission and the cathode current falls 
below around three times that required to supply the anode current. It is then 
limited by the primary emission from the cathode. This state is characterised by 
a complete absence of  fluctuations. It appears to correspond to the low- noise 
state observed in microwave oven magnetrons when the heater power is reduced.

Table 15.2 shows a summary of the results obtained for a 4J52 magnetron [56] 
with experimental data for comparison [35]. The computed results differ consider-
ably from the experimental data so that conclusions drawn from the model must be 
treated with caution.

15.6 Simple Magnetron Models

Because the modelling of  magnetrons using PIC codes is very time- consuming 
it is useful to have simpler models which can give approximate results quickly. 
The images in Figure 15.32, and the discussion in the previous section, illustrate 
the complexity of  the problem of  modelling a magnetron, and the danger of 
making assumptions about, for example, the shapes of  the spokes. It has been 
observed that magnetrons may exhibit chaotic behaviour in the sense that very 
small changes in the operating conditions produce appreciable changes in per-
formance. Twinning is an example of  this (see Section 15.4.4). Despite these 

Figure 15.32: Space- charge distribution in a 16- cavity magnetron where the emission is 
dominated by: (a) thermionic emission, and (b) secondary emission. The spokes rotate in 
the clockwise direction
(copyright 2004, IEEE, reproduced, with permission, from [57]).
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difficulties it is possible to gain useful insight into the factors affecting the per-
formance of  magnetrons using simple methods [13, 37, 58– 61]. These models are 
based upon the motion of  the electrons in simplified fields with the following 
assumptions:

• The electrons are drawn into the spokes from a space- charge hub whose proper-
ties are determined by static theory.

• The electric field of the anode is represented by a travelling wave and the RF mag-
netic field is neglected.

• The effects of all space- harmonics, other than the one synchronous with the 
spokes, are assumed to average to zero.

• The space- charge field of the spokes is neglected.
• The current flowing to the anode through the spokes is determined from the 

properties of the hub and the proportion of its perimeter from which electrons 
are drawn.

The properties of the space- charge hub, including the effects of secondary electron 
emission from the cathode are discussed in the next section. Following that, three 
different ways of modelling the spokes are reviewed and compared. It is then shown 
how the performance chart, the Rieke diagram, and the frequency pushing charac-
teristics of a magnetron can be computed.

Table 15.2: Properties of a 4J52 magnetron Bz =( )4900 G , computed for different emission regimes 
(copyright IEEE, 1998, reproduced, with permission, from [56]), compared with experimental data [35]

Primary
emission 
dominated

Secondary
emission 
dominated

Primary
emission
limited

Experiment

Anode voltage (kV) 16.5 15.5 17.5 16

V Va T 1.15 1.08 1.22

Anode current (A) 15.8 20.3 27.8 27

Output power (kW) 140.6 130.6 145.7 180

Efficiency (%) 53.9 41.4 29.9 42

Anode dissipation (%) 20.9 29.8 51.8

Cathode dissipation (%) 2.1 11.1 5.4

Circuit loss (%) 23.1 17.7 12.8

Frequency shift (MHz) –22.1 –17.9 –25.0

Thermionic current 
available (A)

220 2.2 55.0

Total cathode current (A) 54 77.6 53.5

Current fraction  
returned α( )

0.71 0.74 0.48

Wave voltage /  DC voltage 0.28 0.27 0.28
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15.6.1 The Space- Charge Hub

The conditions affecting the electron emission can be illustrated by a simple discus-
sion [62]. Let us assume that the total current emitted by the cathode is Ic and that a 
fraction α of  this current returns to the cathode so that the anode current is

 I Ia c= −( )1 α . (15.94)

If  the average secondary electron emission coefficient of the cathode is δ then the 
available secondary emission current is

 I Is c= α δ . (15.95)

McDowell found that α was typically in the range 0.65– 0.75, except when the cur-
rent was limited by primary emission [56]. Thus if  the product αδ is greater than 
unity the total current will be a self- balancing combination of primary and second-
ary emission. The secondary emission dominated state observed by McDowell will 
only arise if  the heating of the cathode by the heater, and by back bombardment, is 
insufficient to generate enough primary emission. Thus a magnetron model which 
assumes that the current is uniform and space- charge limited should correspond 
to the operating conditions in many magnetrons. However, this kind of model is 
unable to represent the fluctuating secondary emission from the cathode observed 
by McDowell when the secondary emission is dominant.

We saw in Section 8.5 that, theoretically, only zero or first-order trajectories can 
form a stable hub in a cylindrical magnetron. Either of these may be used as a 
model for the hub. For a given anode voltage and magnetic field the hub radius 
rb( ) is obtained by numerical solution of (15.2). The electrostatic potential on the 

surface of the hub is found by setting r rb=  in (15.1), and the angular velocity of 
electrons on the surface of the hub is given by (15.4). These calculations assume a 
zero-order hub but, as was shown in Section 8.5, the properties of a first-order hub 
are the same to within a few percent.

In a zero-order (Brillouin) hub the electrons move in circles concentric with the 
cathode [13, 37, 60, 61]. The electric field at the surface of the cathode is zero, and 
the space- charge density at the surface of the hub, obtained from (8.67), is

 ρ ε ωb c
c

b

m
e

r
r

= +






0 0 2
4

42
1 , (15.96)

where ωc zeB m= 0  is the cyclotron frequency. It is assumed that the electrons form-
ing the spokes are drawn from the surface of the space- charge hub with constant 
charge density. Since the spokes are synchronous with the field of the anode we 
assume, from (15.34), that

 dr
dt

E
Bz

≈ θ  (15.97)

at the base of the spoke. The tangential electric field is obtained by setting R Rb=  
in (15.19).
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Then anode current is given by

 I n r L
E
B

da b b a
z

= ′
′

′
⌠
⌡
ρ θθ

θ

θ

1

2

 (15.98)

where the integration is carried out over the angles for which current can flow to a 
spoke. Three different methods for determining this range of  angles are described 
in the sections which follow. This model suffers from the difficulty that, because 
there is no radial current within a zero-order hub, the electrons must be assumed 
to diffuse through the hub from the surface of  the cathode. It also assumes that 
the charge density in the hub is not perturbed by the RF field of  the anode. The 
calculation in (15.98) avoids the assumptions about the shape of  the spoke made 
in [13].

An alternative model of  the space- charge hub, suggested by the results obtained 
by McDowell [56], is to assume that the electrons in the hub follow first-order 
Slater orbits which start from the cathode and return to it. The radius of  the hub 
and the angular velocities of  the electrons on its surface are close to those of  a 
zero-order hub. However, the radial electrostatic field is reduced so that the elec-
trons experience a net inward force. When their tangential velocities are reduced, 
by interaction with the RF electric field, they can move outwards into the spokes. 
If  it is assumed that the total cathode emission is the maximum possible for a 
given ratio r rb c( ), then the cathode current in a cut- off  diode is approximately 
0.35 of  the space charge limited current in the absence of  a magnetic field (see 
Figure  8.13). When the diode is just conducting, the fraction is 0.7 because no 
electrons return to the cathode and the cathode current is doubled for given space 
charge. Thus, if  the space- charge hub is essentially the same as that in a diode at 
the point of  cut off, the charge density and the electrostatic potential are cylindri-
cally symmetrical, so we can write

 1 2 0 7−( ) + ≈α αI I Ic c CL. , (15.99)

where ICL  is determined using the Child– Langmuir law (5.70). Note that this 
assumes that the current density has azimuthal variation because the hub is cut off  
between the spokes but not at their bases. The multiplying constant on the right- 
hand side can be determined more precisely from r rb c , if  necessary (see Figure 8.13 
with ra  set to the hub radius). The fraction of the cathode current which flows to 
the anode ( )1− α  is obtained from the range of angles over which current can enter 
the spokes so that

 α
θ θ

π
= −

′ − ′( )
1

2
2 1n

. (15.100)

From (15.99) the current drawn from the cathode is

 I Ic CL≈
+
0 7

1
.

.
α  (15.101)
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We note that this tends to the expected values in the limits α → 0 and α → 1. The 
anode current is found by substitution in (15.94) to be

 I Ia CL=
−
+







1
1

0 7
α
α

.  (15.102)

and the back bombardment current striking the cathode is

 I Ib a=
−







α
α1

. (15.103)

Thus the anode current can be obtained directly from α, the hub radius, and the 
anode voltage. The variation in current with changes of the RF voltage is deter-
mined solely by changes in α.

15.6.2 The Rigid Spoke Model

The simplest approach to finding the properties of  the spokes was suggested by 
Welch [37] and subsequently developed by Hull and Vaughan [13, 59]. A necessary, 
but not sufficient, condition for electrons to enter the spokes is that they should be 
in the retarding phase of  the tangential RF electric field. However, if  they are to 
be able to reach the anode, then the sum of the DC and RF voltages on the anode 
must also exceed the threshold voltage given by (15.39), as shown in Figure 15.33. 
Then, in the rotating frame of  reference which is synchronous with the wave on 
the anode,

 V V n Va T+ ′ ≥1 cos ,θ  (15.104)

where V1 is the amplitude of the synchronous RF wave, which is a travelling wave in 
the stationary frame of reference, and a stationary wave in the synchronous frame. 
Equation (15.104) shows that the tube can conduct when the anode voltage is below 

Figure 15.33: Criterion for the conduction angle of a magnetron proposed by Welch
(copyright 1953, IEEE, reproduced, with permission, from [37]).
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the threshold voltage if  the inequality in (15.104) is satisfied. The conduction angle 
within which an electron can reach the anode ranges from  ′ =θ1 0 to

 ′ =
−





−θ2
1

1

1
n

V V
V

T acos , (15.105)

and the fraction of the electrons returned to the cathode is

 α
π

= −
−





−1
1

2
1

1

cos .
V V

V
T a  (15.106)

Using the data in Table 15.2 the fractions of the current returned to the cathode 
given by (15.106) are 0.67, 0.71, and 0.64, respectively, for the three cases. The first 
two figures are close to those in the table so the rigid spoke model is a valid approxi-
mation when the current is space- charge limited.

When a zero-order hub is assumed, the anode current, obtained from (15.19) and 
(15.98), is

 I
n L V

B
R R
R R

n da
b a

z

b
n

b
n

a
n

a
n

c

=
−
−







′( ) ′
−

−

′

∫
2

1

0

ρ θ θ
θ

sin  (15.107)

Evaluating the integral we find that

 I
n L V

B
R R
R R

na
b a

z

b
n

b
n

a
n

a
n

=
−
−







− ′( )
−

−

ρ θ1
21 cos . (15.108)

For a first-order hub, the anode current is given by (15.102), where α is given by 
(15.106), and the Child– Langmuir current has been calculated from (5.70) for a 
diode with inner radius rc, outer radius rb, length La, and applied voltage Vb. The tip 
of the spoke is assumed to reach the anode at the angle  ′ = ′θ θs 2 2.

15.6.3 Guiding Centre Orbits

A more accurate model of the spokes is provided by the motion of the guiding cen-
tres of the electron trajectories [60, 61, 63]. In this model the rapid cycloidal motion 
of the electrons in the spokes, and the space- charge field, are ignored. The papers 
cited deal only with the case of a planar magnetron but the same approach can also 
be used for circular geometry. It is assumed that, in the synchronous frame of refer-
ence, the radial acceleration and the angular velocity are small so that the equations 
of motion (15.30) and (15.31) can be rewritten using (15.33) and (15.34) as

 ω ω θ θ ω ω ωc s r c s s
d
dt

r
d
dt

e
m

E r− − ′







′ = − − −{ }2
0

, (15.109)

and

 ω ω θ
θc s

d
dt

dr
dt

e
m

E− − ′







=2 2
0

, (15.110)
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where the cyclotron frequency ωc zeB m= 0 . Now, typically ωs and d dt′θ  are 
around 10% of ωc so that the products of these terms can be neglected in the first 
approximation. Then (15.109) and (15.110) become

 d
dt

E
B r

r

z
s

′ = − −
θ ω , (15.111)

where Er  is the sum of the DC and RF fields given by (15.3) and (15.18), and

 dr
dt

E
Bz

= θ . (15.112)

We note that (15.112) is identical to (15.34) if  the tangential force Fθ is negligible. 
Now the electric field can be derived from the sum of the DC and RF electrostatic 
potentials in the rotating frame of reference so that

 d
dt B r r

V
m

e
r

z
s c

′ =
∂
∂

−





θ ω ω1
2

0 2  (15.113)

and

 dr
dt B r

V

z

= − ⋅
∂
∂ ′

1
θ

. (15.114)

These equations can be expressed in terms of a total potential defined by

 U V
m

e
r rc s c= − −( )0 2 2

2
ω ω , (15.115)

which is zero on the surface of the cathode so that

 d
dt B r

U
rz

′ = ⋅
∂
∂

θ 1  (15.116)

and

 dr
dt B r

U

z

= − ⋅
∂
∂ ′

1
θ

. (15.117)

From (15.116) we see that on the surface of the cathode, where V = 0, the angular 
velocity is

 d
dt s

′ = −
θ ω  (15.118)

as expected. Substituting for the DC and RF potentials in the rotating frame of 
reference from (15.1), (15.2) and (15.17) we can write (15.115) as

 U r V r V r n
m

e
r rc s c, cos .′( ) = ( ) + ( ) ′( ) − −( )θ θ ω ω0 1

0 2 2

2
 (15.119)
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The kinetic energy of the electrons is

 T r
m

e
r r, ′( ) = + ′( )θ θ0 2 2 2

2


  (15.120)

and the Hamiltonian for the electron trajectories is

 H T V= + . (15.121)

This quantity is a constant for the motion of an electron so that the trajectory of an 
electron which is initially on the surface of the hub at rb , ′( )θ0  is given by

 H r H rb, , .′( ) = ′( )θ θ0  (15.122)

It is found that, typically, T U∼ 0 1.  so that it can be neglected in the first approxi-
mation. Then, from (15.119)

 cos cosn
V r

V r V r V r n
m

e
r rb b c s b′( ) = ( ) ( ) − ( ) + ( ) ′( ) + −θ θ ω ω1

21
0 0 1 0

0 2 2(( )







. 

(15.123)

This equation can be used to calculate the trajectories of the guiding centres of 
the electrons forming the spokes. Figure 15.34 shows a typical set of trajectories in 
the retarding phase of the tangential electric field. The radius is normalised to the 
radius of the hub and the trajectories shown intersect the hub at 30° intervals. The 
electrons move outwards from the hub because the field is retarding. Their initial 
tangential velocity is greater than the synchronous velocity so that they move for-
wards in phase. In this example, electrons with initial phases between 0° and 120° 
can reach the anode, while those with phases in the range 150° to 180° move into the 
accelerating phase before reaching the anode. The limiting phase is represented by 
a trajectory which is moving directly outwards when its phase is 180°. Trajectories 
lying above, and to the right of, this line are non- physical because they can never 

Figure 15.34: Typical guiding centre trajectories which cross the surface of the hub at 30° 
intervals, and the limiting trajectory (broken line).
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be reached by electrons starting from the cathode. The trajectories are plotted in 
Cartesian coordinates for convenience so that motion to the right corresponds to 
anticlockwise rotation of the spokes. Setting d dt′ =θ 0 in (15.111), substituting for 
the radial electric field, and setting n ′ =θ π gives
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which can be solved for the radius r at which n ′ =θ π. Equation (15.123) can then be 
solved for ′θ2 corresponding to the limiting trajectory which is plotted as a dashed 
line in Figure 15.34. The conduction angle is usually greater than that assumed in 
the rigid spoke model. The anode current can be calculated for zero- and first-order 
hubs using (15.108) and (15.102). The empirical correction made by Riyopoulos, 
that the charge density in a zero-order hub should be approximately half  of that 
given by (15.96) in order to get agreement with experimental data, has not be used 
here. An empirical model of the space- charge in the spokes is described in [60, 61].

15.6.4 Electron Trajectory Model

The electron trajectories can be calculated directly by numerical integration of 
the equations of motion (15.30) and (15.31). The trajectories are initially equally 
spaced on the surface of the space- charge hub with angular velocities given from 
(15.1) and (15.4) by

 d
dt

r
rc
c

b
s

′ = −






−
θ ω ω1

2
1

2

2
. (15.125)

The space- charge of the spokes, and modification of the hub by the RF fields, are 
ignored and the integration is continued until the trajectories end on either the 
cathode or the anode. The fraction of the current returned to the cathode and the 
limiting initial angles between which trajectories can reach the anode can be deter-
mined directly.

Figure  15.35 shows an example of the trajectories calculated together with 
the RF voltage and the threshold voltage normalised to the anode voltage (see 
Worksheet 15.3). Figure 15.36 shows a detail of the trajectories in one RF cycle, 
plotted using Cartesian coordinates for convenience. The spoke assumed by the 
rigid spoke model, and the spoke calculated from the guiding centre model, are 
shown, for comparison. These calculations are for the 4J52 magnetron, at the oper-
ating point shown in Figure 15.27. The DC and RF voltages were computed using 
the rigid spoke model with a zero-order hub. It can be seen that the spoke calculated 
by the guiding centre model is similar to the computed trajectories. The difference 
is attributable to the approximations made in the derivation of the guiding centre 
model. The phase range within which electrons can reach the anode, and the phase 
of the tip of the spoke in the rigid spoke model, are similar to those from the guid-
ing centre model. The principal difference is that the rigid spoke model ignores the 
initial angular velocity of the electrons at the base of the spoke.
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Figure 15.35: Spokes computed for the 4J52 magnetron at its normal operating point with 
the RF voltage and the threshold voltage normalised with respect to the anode voltage. The 
rotation of the spokes is counter- clockwise. The position of the spoke tip given by the rigid 
spoke model is shown for comparison.

Figure 15.36: Detail of the trajectories of the 4J52 magnetron in one RF cycle plotted using 
Cartesian co- ordinates for convenience, together with the spokes predicted by the simple 
and the guiding centre models. Note that counter- clockwise rotation of the spokes is 
represented by motion to the right in this figure.
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15.6.5 Calculation of the Output Power

The energy with which the electrons strike the anode is

 V
m

e
r ria a= +( )0 2 2

2


θ . (15.126)

Substituting for the radial and angular velocities at the tip of the spoke, from 
(15.112) and (15.111), and multiplying by the anode current, gives the power dissi-
pated on the anode. This calculation avoids the arbitrary assumption about the tan-
gential velocity made by Vaughan [13]. It should be noted that the angular velocity 
of the electrons at the tip of the spoke is normally slightly greater than ωs. It is 
not possible to calculate the power dissipated on the cathode in the same manner. 
Vaughan [13] proposed the empirical expression

 P
I V
nc
a a= ( )

0 04.
cos θ

 (15.127)

on the basis that this power is typically around 5% of the input power at the nor-
mal operating point, but it may be up to 50% at very low inputs when n sθ π→ 2. 
Because the power dissipated on the cathode is usually small, errors in its estima-
tion do not result in major errors in the calculated performance. In the trajectory 
calculations the impact energies on the anode and the cathode can be calculated 
directly. Since the anode current is known, the RF power transferred to the anode, 
and the electronic efficiency, can be calculated from (15.45) and (15.46) as functions 
of the anode voltage, the RF wave voltage, and the magnetic field.

A second expression for the RF power delivered to the anode is

 P G G Va U E g= +( )1
2

2 (15.128)

where GU  and GE are the conductances of the anode, and of the external load, and 
Vg is the magnitude of the RF voltage as measured between adjacent vane tips. 
Now Vg is related to the wave voltage by (15.20) and therefore (15.128) gives the RF 
power delivered to the anode as a function of V1. The operating point can then be 
determined by solving the simultaneous equations (15.45) and (15.128) for Va and 
V1, given the values of Ia and Bz . Figure 15.37 shows the performance chart calcu-
lated for the 4J50/ 4J52 magnetron for comparison with the experimental results 
in Figure 15.27. The rigid spoke model with a zero-order hub was used for this 
calculation. Note that the magnetic fields represented by the Gauss lines are not 
identical in the two figures, also that this tube differs from the Litton 4J50 modelled 
by Vaughan [13]. Overall, the rigid spoke model produces results which are close 
enough to those obtained from experiment for initial exploration of the properties 
of a proposed design.

Table 15.3 shows a comparison between the results given by these models (see 
Worksheet 15.3). Overall the results from both models with zero-order hubs 
agree with experiment to a similar extent. Both sets are closer than the results  
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of PIC simulation in Table 15.2. Trajectory calculations, based on the electric fields 
determined using the rigid spoke model with a zero-order hub, give α = 0 52. . The 
reason that this figure is smaller than the one in the table is that some electrons 
for which ′ <θ1 0 can enter the spokes. Those electrons are accelerated and move 
forwards just below the surface of the hub until they enter the retarding phase of 
the field. It can be argued that the guiding centre model gives similar results if  tra-
jectories lying inside the hub are permitted. Strictly speaking, the Welch criterion 

Figure 15.37: Calculated performance chart for the 4J50/ 4J52 magnetron for comparison 
with Figure 15.27.

Table 15.3: 4J52 magnetron: Comparison between the results given by the models discussed in the 
text, and experimental data from [35]

Hub order Zero First Zero First Experiment

Spoke Rigid Rigid Guiding 
centre

Guiding 
centre

Anode voltage (kV) 16.5 18.2 13.2 17.3 16

V Va T 1.15 1.26 0.92 1.20

Anode current (A) 27.0 27.0 27.0 27.0 27

Output power (kW) 198 220 174 248 180

Efficiency (%) 44 45 49 53 42

Anode dissipation 
(%)

32 32 26 20

Cathode dissipation 
(%)

5 5 4 4

Circuit loss (%) 19 19 20 23

Current fraction 
returned α( )

0.69 0.64 0.50 0.62

Wave voltage /  DC 
voltage

0.36 0.35 0.42 0.39
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(see Figure 15.33) determines the range of angles from which electrons leaving the 
cathode can reach the anode. However, because the cathode current is zero in a 
zero- order hub, it is necessary to make some assumption about the extent of the 
bases of the spokes in order to determine the current in them. In addition, the 
method for determining the current assumes that the radial velocities of the elec-
trons are zero inside the hub, and non- zero at the base of the spoke. Thus there are 
a number of objections to theories based on the zero- order hub. In principle, the 
use of a first-order hub could overcome these difficulties. In the rigid spoke model 
the current drawn from the cathode can be determined directly using the Welch 
criterion without making any assumptions about the shape of the spoke. The guid-
ing centre model effectively replaces the Welch criterion. The assumption that the 
RF fields are zero inside the hub means that the conduction angle calculated using 
the guiding centre model also applies on the surface of the cathode. At present the 
rigid spoke model based on a zero-order hub appears to give the best agreement 
with experiment.

15.6.6 The Rieke Diagram

If  the load is varied we can write the external admittance as

 Y G
j
j

G jBE E E E=
+
−







= +0
1
1

ρ φ
ρ φ

exp
exp

, (15.129)

where ρ is the voltage reflection coefficient of the load and φ its phase angle. 
Substituting this expression into (15.128), and applying the same method as before, 
we can plot the contours of constant power on a Rieke diagram. Also, using 
(15.129) in combination with (15.89), the frequency shift as a function of reflection 
coefficient and phase angle is

 ∆f
f
Q

B
E

E= 0

2
 (15.130)

from which the contours of constant ∆f  can be plotted. Figure 15.38 shows the 
Rieke diagram computed for the 4J50 magnetron, operating with a constant cur-
rent of 8.8A, for comparison with Figure 15.29 (see Worksheet 15.3). This current 
was chosen so that the output power into a matched load was the same as in the 
experimental data. It should be remembered that the zero of the phase is arbitrary 
because of the convention that the experimental data is referred to the plane of the 
output flange.

15.6.7 Frequency Pushing

The RF current in the anode circuit is given by

 I V G jQg L L1
0

01= + −












ω
ω

ω
ω

. (15.131)
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Thus the phase angle of the current relative to the voltage is given by

 tan .φ ω
ω

ω
ω

ω
ω

= −






≈Q QL L
0

0

0

2 ∆
 (15.132)

Frequency pushing arises because the frequency must change to match the phase 
of the RF anode current so that (15.132) is satisfied. The RF current flowing into 
the anode comprises two components: the conduction current intercepted by the 
anode, and the induced current from the transverse motion of the charge in the 
spokes. Reference to Figure 15.36 shows that, at the moment when the RF voltage 
is maximum on the vane at θ = 0, the position of the tip of the spoke is θ θ= s and 
moving in the positive direction of θ. To a first approximation we may assume that 
this is also the effective position of the spoke for calculating the induced current. 
The power transferred to the anode by the induced current is maximum when the 
phase of the spoke coincides with the position at which the tangential electric field 
is retarding θ π=( )2n . Thus, the phase of the spoke relative to the tangential field is

 φ θ π
s sn= −

2
. (15.133)

The power transferred to the anode by the conduction current is maximum when 
the phase of the spoke coincides with the vane on which the voltage has its greatest 
negative value θ π=( )n . Hence the phase of the conduction current is

 φ θ πc sn= − . (15.134)

Comparing (15.134) with (15.133) we see that the conduction current lags the 
induced current by 90°. Thus the currents can be represented by the phasor 

Figure 15.38: Calculated Rieke diagram of the 4J50 magnetron for comparison with 
Figure 15.29.
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diagram in Figure 15.39 where I1θ is the induced current, and I r1  is the conduc-
tion current. The phasor sum of  these currents I1( ) is the net current flowing into 
the anode.

It is difficult to find the induced current directly but, fortunately, this is not neces-
sary. The conduction current can be approximated by a rectangular pulse of phase 
duration 2∆ and amplitude π ∆( )Ia where ∆  is the width of the tip of the spoke. 
Then, using Fourier analysis, it can be shown that the amplitude of the first har-
monic of the conduction current is

 I Ir a1 2=
sin

.
∆

∆
 (15.135)

Now, from Figure 15.36 we see that ∆  is typically of the order of 10° so that I Ir a1 2=  
to a very good approximation. The power transferred to the travelling voltage wave 
on the anode by the conduction current is

 P I Vr r c=
1
2 1 1 cos .φ  (15.136)

This can also be expressed in terms of the associated component of the current Igr( ) 
flowing in the anode circuit

 P I Vr gr g c=
1
2

cos φ  (15.137)

so that

 I I
V
Vgr a

g

= 2 1 , (15.138)

where V Vg1  is given by (15.20). The component of the RF current which is in phase 
with the gap voltage is

 I V G Gg g U Ecos .φ = +( )  (15.139)

Then, from the phasor diagram in Figure 15.39,

 V G G I Ig U E g s gr s+( ) = +θ φ φcos sin  (15.140)

Figure 15.39: Phasor diagram for calculating frequency pushing.
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or

 I
V G G I

g
g U E gr s

s
θ

φ
φ

=
+( ) − sin

cos
, (15.141)

and

 tan
sin cos

,φ
φ φθ=

−
+( )

I I

V G G
g s gr s

g U E

 (15.142)

so that the frequency pushing curve can be calculated by substitution in (15.132). 
Figure 15.40 shows the frequency pushing curves calculated for the 4J50/ 4J52 mag-
netron for various values of the magnetic field.

15.7 Magnetron Design

The conceptual design of a magnetron is based on the theory described above. For 
further information about the design of magnetrons see [1, 64]. Discussion of the 
design of magnetrons of different types can also be found in [29, 33, 65– 67].

15.7.1 Dimensionless Parameters

Magnetrons, like other tubes, are commonly designed by scaling from existing 
designs. We have seen in previous chapters that this means that geometric similarity 
and dynamic similarity must both be maintained. The first requirement is that all 
dimensions, and the wavelength at the π mode, are scaled by the same factor. The 
second requirement means that the tubes must be described by the same normalised 
parameters. The anode voltage and the magnetic field can be normalised by divid-
ing them by the characteristic voltage V0( ) given by (15.22) and the characteristic 
field B0( ) given by (15.23). We recall that the point defined by these values lies on 

Figure 15.40: Calculated frequency pushing curves for the 4J50/ 4J52 magnetron.
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the cut- off  curve of the magnetron diode. A  scale factor for the current can be 
defined as the current which flows in a diode when it is just not cut off  [9]. We have 
seen that this current is approximately 0.7 times the Child– Langmuir current, where 
the constant is a function only of the ratio r ra c  provided that the emission from 
the cathode is great enough to ensure that the current is limited by space- charge 
(see Section 8.5). The scale factors for power and impedance can then be defined 
as P I V0 0 0=  and G I V0 0 0= . The operating point on the performance chart of a 
tube is uniquely defined by any two of: the magnetic field; the anode voltage; and 
the anode current. Thus, a universal performance chart can be drawn in terms of 
dimensionless parameters. This applies to all geometrically similar magnetrons hav-
ing the same normalised values of G GE 0  and G GU 0 .

An alternative set of dimensionless parameters, which assumes geometrical simi-
larity, is [64]

 v
V

r
a

a s

=
η

ω2 2
, (15.143)

 b
Bz

s

c

s

= =
η
ω

ω
ω

, (15.144)

and

 i
I

r
a

a s

=
η

ε ω0
3 3

. (15.145)

15.7.2 Design Parameters

The basic specification of a magnetron includes the frequency, the power output, 
and the duty cycle. Because the current in a magnetron does not obey the 3/ 2 power 
law the concept of perveance is not useful. It is usual, instead, to use estimates of 
the efficiency, and the DC impedance, to find initial figures for the DC current and 
voltage. Table 15.4 shows typical values for different types of magnetron based on 
manufacturers’ data sheets. The circuit efficiency is typically 90– 95% at frequencies 
up to 3 GHz, falling to 70– 80% at 9 GHz, and 50– 60% at 24 GHz.

15.7.3 Design Case Study

This section illustrates the conceptual design of a 500 kW, 915 MHz, CW magne-
tron for microwave heating described by Shibata in [66] (see Worksheet 15.4). The 
principal steps of the design calculation below are not identical to those used by 
Shibata but the parameters have been chosen to give very nearly the same results.

 i) Since this is an exceptionally high- power tube we estimate, conservatively, from 
Table 15.4 that the efficiency will be 80%. In order to keep the anode voltage as 
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low as possible the DC impedance is taken to be 2.9 kΩ. The anode voltage and 
current are then found to be 44.0 kV and 15.2 A.

 ii) The normalised magnetic field is related to the electronic efficiency by (15.49). 
However, this equation does not take account of the power lost by cathode 
back- bombardment and by RF heating of the anode. If  the circuit efficiency 
is assumed to be 90%, and the cathode back- bombardment power is ignored, 
then B Bz 0 6 5= .  and, from (15.40), V VT 0 12 0= . .

 iii) Figure 15.27 shows that the working anode voltage of a magnetron is usually 
close to the threshold voltage. Therefore, we assume that V Va T = 1 so that the 
characteristic voltage V0 3 7= . kV. The cut- off  voltage is found from (15.25) to 
be 155 kV.

 iv) From (15.22) the anode radius is given, as function of the number of vanes, by

 r
e m V

Na v=
( )2

2
0 0

ω
. (15.146)

The choice of the radius of the space- charge hub is very important for correct 
magnetron operation. Since the RF fields in a planar magnetron and a cylin-
drical magnetron are similar it is possible to deduce the design criteria for a 
cylindrical tube from a consideration of the simpler, planar, geometry. If  the 
normalised depth of the space- charge hub in a planar magetron d h( ) is too 
small there is a large gap between the surface of the space- charge layer and the 
anode, and the field of the π mode at the surface of the hub is smaller than that 
of the π −1 mode. There is, then, a serious risk of π −1 mode excitation. If  d h is 

Table 15.4: Typical impedances and efficiencies for different types of magnetron. The output powers and anode 
currents for pulsed tubes are peak values

Anode Duty Frequency
(GHz)

Output power 
(kW)

Anode 
current
(A)

Impedance 
kΩ( )

Overall 
Efficiency
(%)

Strapped CW 0.9 30– 100 3– 6 3.0– 5.0 80– 90

Strapped CW 2.45 0.2– 30 2– 40 3.0– 7.0 65– 70

Strapped pulse 2– 4 5– 4500 4– 130 0.5– 1.5 35– 50

Strapped pulse 4– 8 200– 1000 25– 80 0.5– 1.0 30– 50

Strapped pulse 8– 11 1– 2000 2– 100 0.4– 1.4 30– 50

Strapped pulse 11– 18 20– 250 8– 28 0.8– 1.2 20– 45

Rising sun pulse 25– 35 40– 125 13– 28 0.7– 1.0 20– 25

Coaxial pulse 8– 10 10– 350 4– 27 0.8– 1.1 30– 50

Coaxial pulse 14– 17 1– 180 2– 25 0.8– 1.9 20– 40

Coaxial pulse 32– 36 25– 130 10– 20 1.0– 1.4 20– 30

Long anode pulse 3 2000– 5500 50– 200 0.2– 0.5 45– 55
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too large then the potential difference between the surface of the space charge 
layer and the anode is small and the tube efficiency is low.

In the π mode the normalised tangential RF field on the surface of a planar 
hub obtained from (15.11) is

 
E x d

E x h

d p

h p
d h px

x

,

,

sinh

sinh
exp .

( )
( ) =

( )
( ) ≈ −( )( )π
π

π  (15.147)

The approximation in (15.147) is valid if  d p > 2. Then a figure of merit (the 
Slater ratio) can be defined by

 R
E x d

E x h

h d

p
x

x

= −
( )
( ) =

−( )
ln

,

,
.

π
 (15.148)

We expect that empirical evidence will suggest the best value of R for optimum 
interaction. Eliminating Bz  between (8.12) and (8.25) gives

 V
V

d
h

d
h

a

H

= −





2 . (15.149)

Solving for d h gives

 d
h

V
V

a

H

= − −1 1 . (15.150)

Then, substituting into (15.148), we have

 R
h
p

V
V

a

H

= −
π

1 . (15.151)

In this equation the inaccessible variable d has been replaced by the ratio of 
the anode voltage to the cut- off voltage. It is not possible to find an equivalent 
closed- form expression for circular geometry, so (15.151) is adapted by assuming 
that the planar parameters can be defined in terms of the circular parameters by

 h r ra c= − , (15.152)

and

 p
r r

N
a c

v

=
+( )π

. (15.153)

This definition of p assumes that it is the mean circumference of the interaction 
region which matters. Note that p is not the pitch of the circular anode. The fig-
ure of merit for a cylindrical magnetron, known as the Modified Slater Factor, 
is therefore given by

 ′ =
−
+







−R N
r r
r r

V
Vv

c a

c a
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H

1 . (15.154)
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Experience suggests that ′R  should have a value of about 2 for a wide range of 
designs. Making use of (15.146) and (15.154) we can tabulate the anode and 
cathode radii for a range of values of Nv. We recall that the length of the anode 
should be small, compared with the free- space wavelength, to avoid the excita-
tion of longitudinal modes. Since this is an exceptionally high- powered tube we 
choose La = =0 16 53. λ mm. Then the ratio of the anode current to the surface 
area of the cathode can be calculated. If  it is assumed that 75% of the electrons 
are returned to the cathode then the cathode current is four times the anode 
current so that the cathode current density can be calculated. The results of this 
calculation are shown in Table 15.5.

In a very high power CW magnetron the design is limited by the maximum 
temperature of the vane tips rather than by the cathode current density. If  the 
power dissipated on the cathode is neglected the power dissipated by the is 
anode is given by

 P P Pa dc rf= − , (15.155)

and the vane tip temperature is

 T P
L
A

Tv a
th

v
r= +

κ
, (15.156)

where Lth is the thermal path distance to the cooling channel, κ  is the thermal 
conductivity of copper (401 W m− 1 K− 1),Av is the total cross- sectional area of 
the vanes normal to the heat flow, and Tr is temperature of the cooling channel. 
The thickness of the vanes t( ) is chosen to that the ratio of the thickness to the 
pitch is approximately 0.5. The pitch calculated from (15.146) is 20 mm, so let 
us choose the vane thickness to be 12 mm. To cool the anode effectively water 
cooling channels must be embedded in the vanes. Let us suppose that the effec-
tive thermal path is 10 mm. The vane tip temperatures calculated assuming that 
Tr = 293 K are shown in Table 15.5.

All the numbers of vanes considered result in cathode currents which are com-
fortably within the capability of thoriated tungsten [66, 68]. This is the preferred 
choice of cathode material because a back- bombardment power of around 14 kW 
is anticipated. The experimental tube used a pure tungsten wire cathode which 
was pre- heated to 1870 °C and operated at 2100 °C. The cathode terminals were 
water- cooled to reduce the heating by back- bombardment. The maximum anode 
temperature must be less than 700 °C to avoid re- crystallisation of the oxygen- 
free high- conductivity copper of which it is made. To allow a safety margin to 
cover local hot- spots the maximum temperature should be 500 °C (773 °K). It 
is desirable to keep the number of vanes as small as possible to reduce problems 
with excitation of the π −1 mode. Therefore we choose a 14- vane anode.

 v) Once the cathode and anode radii have been determined, the characteristic field 
can be found from (15.23) and, hence, the magnetic flux density required. The 
results are: B0 0 019= . T and Bz = 0 121. T. We note that Bz  is well below the sat-
uration flux density for soft iron (see Section 19.4.1), and therefore no problems  
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with non- uniformity of the field should occur. The magnetic field of the experi-
mental tube described in [66] was provided by a solenoid magnet. The ratio of 
the cyclotron frequency to the frequency of oscillation is 3.7 so that the differ-
ence is much greater than the figure of 20% which is desirable.

 vi) The threshold voltage for the π −1 mode can be found from (15.40) after calcu-
lating V0 and B0 with n = 6. The result is 50.6 kV which is comfortably above the 
working voltage.

The experimental magnetron had a coaxial anode to increase the circuit efficiency 
and the overall efficiency. No details of the properties of the anode are given in [66]. 
Although they could be calculated we shall infer them from simulation of the tube 
using the rigid spoke model with a zero- order hub. Table 15.6 shows the leading 
parameters and performance characteristics of this tube.

15.7.4 Other Considerations

The analysis and design methodology described above involve a number of sim-
plifying assumptions which may not always be valid. It is found that magnetrons 
do not always behave as expected, for reasons which are not understood. The phe-
nomenon of twinning (see Section 15.4.4) is just one example. These problems can 
occur as a result of tiny differences in manufacture between different batches of 
tubes. They may also depend upon the history of operation, and have a big effect on 
the satisfactory operation of the tube and its lifetime. Possible causes include: vari-
ations in the primary and secondary emission properties of the cathode; changes 
in the resistance of the heater; higher-order resonances of the anode and the end 
spaces; the external impedance presented by the power supply; and the presence of 
residual gas. These problems are generally solved by empirical ‘fixes’ and further 
research is needed to explain and understand them. Cooker magnetrons, for exam-
ple, require a filter box connected to the cathode, to control the impedance between 
the anode and the cathode, if  they are to work correctly. It has been found difficult 
to scale CW magnetrons to work at frequencies above 2.45 GHz [69].

Table 15.5: Design choices for a 500 kW magnetron

Nv ra (mm) rc (mm) Jc (A cm–2) Tv (K)

8 25.2 13.7 1.34 1117

10 31.4 19.4 0.95 952

12 37.7 25.3 0.73 842

14 44.0 31.3 0.59 764

16 50.3 37.3 0.49 705

18 56.6 43.4 0.42 659

20 62.9 49.6 0.37 622

22 69.2 55.7 0.33 593

24 75.5 61.9 0.30 568
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16 Crossed- Field Amplifiers

16.1 Introduction

Broad- band crossed- field amplifiers (CFAs), based on electron flow in crossed 
fields, are analogous to travelling- wave tubes. In essence, a CFA is a magnetron in 
which the slow- wave structure is not a closed loop but has been broken so that the 
two ends can be connected to external waveguides. CFAs share with the magnetron 
the advantages of small size, low weight, and high efficiency. However they have 
the disadvantages of low gain, high noise levels and non- linearity compared with 
TWTs. The applications of CFAs are mainly in military radar systems. For this rea-
son the available literature is sparse.

In theory many possible types of crossed- field tube exist, but not all of these have 
been found to be practical devices. The different types can be classified by consid-
ering the options for the tube geometry and for the type of beam and slow- wave 
structure used. The slow- wave structure fulfils the same role as the anode in a mag-
netron1. The geometry may be either linear or circular, and the electron beam may 
be emitted from the whole area of the cathode, as in a magnetron, or injected from 
an electron gun (see Figure 8.1). Cylindrical geometry has the advantage of com-
pactness and better use of the permanent magnet material. Planar geometry offers 
the possibility of greater interaction length and gain, but it has only been used in 
experimental tubes [1– 4]. Figure 16.1 shows the arrangements of circular emitting 
cathode, and injected beam, CFAs.

The slow- wave structure, like that in a TWT, can have either forward- wave or 
backward- wave characteristics, as shown in Figure  16.2. With a forward- wave 
structure the interaction takes place instantaneously over a band of frequencies. 
With a backward- wave structure the interaction is narrow band, and can be tuned 
over a range of frequencies by changing the electron drift velocity. It should be 
noted that the drift velocity corresponds to the voltage on the surface of the elec-
tron hub, which is normally around an order of magnitude less than the anode 
voltage. Because the slow- wave structure is periodic it has forward and backward- 
wave characteristics in successive Brillouin zones. Thus, the same tube can be 
operated as either a forward- wave or a backward- wave amplifier by changing the 
anode voltage, and the magnetic field, to achieve synchronism with the appropriate 

1 In the older literature the cathode and the slow- wave structure are called the sole, and the line, respectively.
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space- harmonic [6]. The circular geometry means that care must be taken to avoid 
positive feedback through RF coupling between the ends of the slow- wave struc-
ture, by allowing sufficient separation between them.

The interaction in a CFA resembles that in a magnetron. The electrons retarded 
by the RF electric field move outwards towards the slow- wave structure, while those 
accelerated move inwards towards the cathode. The resemblance is especially close 

Figure 16.2: CFA dispersion diagrams, normalised to the upper cut- off  frequency, showing 
the electron velocity line intersecting at π 2 phase shift per cell: (a) forward wave, and 
(b) backward wave.

Figure 16.1: Arrangement of: (a) emitting cathode CFA, and (b) injected beam crossed- field 
amplifiers 
(copyright 1973, IEEE, reproduced, with permission, from [5]).
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in an emitting cathode CFA where spokes of charge are formed, and all the elec-
trons are collected on either the slow- wave structure or the cathode.

16.1.1 Emitting Cathode CFAs

All crossed- field amplifiers which are of continuing importance are of the circular, 
re- entrant, emitting cathode type and the abbreviation CFA is now generally taken 
to refer to them [5, 7– 11]. The detailed discussions, in sections from 16.2 onwards, 
refer exclusively to tubes of this kind. The slow wave structure can be either forward-  
or backward- wave, but both have the arrangement shown in Figure 16.1(a), and 
it is convenient to discuss them together. The input and output connections are 
made according to the structure type and the direction of rotation of the electrons. 
A drift region may be included to control the feedback caused by the use of a re- 
entrant electron beam. In backward- wave tubes the drift region is sometimes omit-
ted, though the result is to produce frequencies within the band at which the output 
power is low. Backward- wave emitting- cathode CFAs are sometimes known by the 
proprietary name ‘Amplitron’. The electron beam is demodulated to some extent as 
it passes through the drift space but some modulation is carried forward to the start 
of the interaction.

Emitting cathode CFAs typically provide average powers ranging from 400 kW 
at 2.8 GHz to 100 W at 30 GHz, with efficiency in the range 35– 60% and bandwidth 
10– 15% [12]. The mean output power is limited by heat dissipation in the slow- wave 
structure. However, peak powers from hundreds of kilowatts to megawatts, with 
duty cycles around 0.001, may be obtained with good efficiencies. The gain is low 
(8– 15 dB) because of the limited length of the slow- wave structure, and the need to 
lock out noise- generating mechanisms. Where high gain is required a chain of tubes 
is used. Comparisons with systems employing TWTs should be made with whole 
systems, and not just the power output tubes. The final CFA of a chain can be made 
‘transparent’ so that the system has both high and low output power capabilities. 
Low power output is obtained by leaving the output tube switched off  so that the 
power of the penultimate tube passes through it with little attenuation. The CFA 
is particularly suited for use as the final amplifier for mobile radar applications 
because it is smaller, lighter, more efficient, and operates at a lower voltage, than an 
equivalent coupled- cavity TWT. CFAs are non- linear amplifiers at all power levels. 
They are therefore unsuited to multi- carrier operation because of the generation 
of intermodulation products. In radar applications the bandwidth can be used to 
achieve frequency agility. For this purpose either forward-  or backward- wave inter-
actions may be used though the latter requires a more complicated modulator to 
adjust the anode voltage for each frequency.

When making comparisons between the efficiencies of different tube types it is 
important to be careful about the way in which the efficiency is defined. In linear 
beam tubes the heater power, and any solenoid power, need to be included. In CFAs 
the low gain means that the RF input power is important. The best approach is to 
compare the efficiencies of complete amplifier chains having the same overall gain 
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and output power. Figure 16.3 shows the efficiencies of emitting cathode CFAs, as 
far as they can be ascertained from published data. For this purpose the efficiency 
has been defined as the ratio of the RF output power to the DC input power. The 
state of the art of the peak power of emitting cathode CFAs is shown in Figure 16.4.

The signal to noise ratio of a CFA is typically −45 to −55 dBc/ MHz, which is 
comparable with that of a TWT [12]. This noise is thought to arise from turbulence 
within the space- charge hub. It has been reported that the noise level can be reduced 
by shaping the magnetic field, or by incorporating a slow- wave structure in the cath-
ode (see Section 16.2.3), but no modern CFAs use these techniques [13].

An emitting- cathode CFA in which the electrons are collected at the end of the 
interaction region, in either a linear or a circular tube, is known by the proprietary 
name DEMATRON [1, 14]. Although such an amplifier has theoretical attractions, 
it has been found that gain is lower than expected because of the variation in the 
electron velocity caused by the space- charge in the spokes. This can be compensated 

Figure 16.3: Efficiencies of emitting cathode CFAs.

Figure 16.4: Peak power output of emitting cathode CFAs.
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for by tapering the DC electric field, the magnetic field, or the phase velocity of the 
slow- wave structure. It has not been found possible to build practical non- re- entrant 
CFAs of this kind whose performance is competitive with other types of tube.

16.1.2 Injected Beam CFAs

Injected- beam CFAs have been found to be inferior to linear- beam tubes in 
terms of power and bandwidth, and they are now chiefly of historical interest [7]. 
Figure 16.1(b) shows the arrangement of an injected beam CFA. Forward- wave 
amplifiers and backward- wave oscillators have essentially the same construction. 
The beam is in the form of a flat strip generated by a Kino gun (Figure 9.20). The 
electron velocity can be controlled by the accelerator voltage, and by the poten-
tial difference between the slow- wave structure and the cathode. As a result of the 
RF interaction some of the electrons are collected on the slow- wave structure. The 
remainder are collected on a collector electrode which may be depressed to increase 
the overall efficiency of the tube. It is important to ensure that secondary electrons 
are not emitted from the cathode. This is achieved by the use of grooves, or low 
secondary emission coatings. The geometry of the interaction region must be con-
trolled very accurately for satisfactory operation.

The crossed- field backward- wave oscillator (M- type Carcinotron) resembles the 
injected beam backward- wave amplifier shown in Figure 16.1(b). The input port is 
replaced by a matched termination inside the vacuum envelope [15– 20]. The attenu-
ator provides a good RF match at the end of the slow- wave structure remote from 
the output. Tubes of this kind have been used in electronic counter- measures sys-
tems with CW output powers up to a kilowatt and efficiencies around 50%. Peak 
powers up to 230 kW at S- band with 50% efficiency, and 50 kW at X- band with 15% 
efficiency, and tuning ranges around 15% have been reported [17].

Circular injected beam crossed- field amplifiers can provide average powers of 1 
kW and pulsed power of 5 kW at X- band with octave bandwidth and 20 dB gain 
[21]. The feasibility of generating 10 MW peak power at L- band has been demon-
strated, but the efficiency of injected beam CFAs is not high enough to make them 
competitive with tubes of other types [5]. The theory of injected beam CFAs is dis-
cussed in [22– 25]. They can have high noise output, and considerable research has 
been undertaken to find ways of reducing this [8]. Linear injected- beam CFAs have 
been used for experimental purposes [2, 3, 26, 27].

16.2 CFA Construction

The review of emitting- cathode CFAs by Skowron [5] remains the best available 
introduction to the subject, and much of this chapter is based on that paper. 
Further information is given in [28]. The close resemblance of a CFA to a mag-
netron means that the principles of operation and the characteristics of the two 
types of device are very similar. The electron beam is assumed to be drawn from a 
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space- charge hub where the electrons on the surface of the hub have a tangential 
velocity approximately equal to the phase velocity of the wave on the slow- wave 
structure.

16.2.1 Slow- Wave Structures

The slow- wave structure of  a CFA, like the anode of  a magnetron, must com-
bine suitable RF properties with the ability to dissipate the heat of  the electrons 
intercepted by it. The heat dissipation is not uniform, as in the magnetron, but is 
greater close to the output. It has been found by experimental observation that a 
few vanes close to, but not at, the output receive power around twice the average. 
Allowing for variation in the axial direction, a 3:1 variation in power density may 
occur. The structure is normally designed so that the phase shift is around π 2 per 
cell. The pitch of  the structure is then approximately half  that of  a comparable 
magnetron. The first practical tubes used a strapped- vane structure in which the 
input and output waveguides were connected to the straps [6]. This structure has 
a backward- wave characteristic when the phase shift per cell is around π 2 (see 
Figure 15.19).

Figure  16.5 shows some typical structures used in emitting- cathode CFAs. 
Forward- wave structures having good bandwidth, and flat dispersion, are often 
based on the helix or the meander line [5]. Examples of helix- derived structures 
are the helix- coupled vane structure (Figure 16.6(a) and (b)) and the stub- mounted 
helix. In the latter a flattened helix is supported by quarter- wave stubs whose load-
ing effects are small. Ceramic- supported meander lines are suitable for use at higher 
frequencies [5, 21]. Backward- wave structures include the strapped ladder line 
(Figure 16.6(d)), the inter- digital line (Figure 16.6(c)), and the split folded wave-
guide [14, 29]. Strapped- vane, ring- bar and dielectric- supported helix structures are 
described in [30].

16.2.2 Cathodes

CFAs designed for peak power of less than about 10 kW employ thermionic cath-
odes. Back- bombardment liberates secondary electrons so that the total current is 
a combination of both primary and secondary electrons in a proportion which is 
self- adjusting. The emission is space- charge limited, as in the magnetron. At higher 
power levels cold cathodes may be used so that all the electrons are produced by 
secondary emission. This is possible because the high RF electric fields produced  
by the input signal are sufficient to initiate emission using seed electrons produced 
by field emission, or by ionisation of the residual gas in the tube. The process 
requires the simultaneous application of the DC voltage and the RF pulse and the 
emission builds up in less than 10 ns. The current obtained from a secondary emit-
ting cathode is constant during the pulse, whereas that of a primary emitter may 
decay during the pulse.
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The cathode in a cold- cathode tube may be either an oxide cathode or a pure 
metal. The oxides of elements such as barium, aluminium, thorium, magnesium, 
and beryllium have secondary electron emission coefficients greater than 2.5. Pure 
metals have coefficients below 1.9, with platinum having the highest value at 1.85. 
Pure metal cathodes do not exhibit any wear- out mechanism, apart from erosion, 
so that very long tube lifetimes are possible. Oxide cathodes wear out because of 
depletion of the oxide caused by back- bombardment. However, it is possible to 
replenish it by, for example, including an oxygen dispenser within the vacuum enve-
lope [31]. CFAs with oxide cathodes can have lives greater than 40,000 hours.

16.2.3 Cathode- Driven CFAs

One of the chief  disadvantages of the CFA is its low gain which results from the 
fall- off  of the RF electric field between the slow- wave structure and the surface of 
the electron hub. The gain can be increased appreciably by incorporating a slow- 
wave structure in the surface of the cathode and applying the input signal to it. This 
structure is much closer to the surface of the hub and the gain can be increased by 
10 to 20 dB. The power output of such a tube is comparable with that of a conven-
tional CFA and the signal to noise ratio is reportedly improved by at least 20 dB 
[32]. If  the RF input is applied to the anode slow- wave structure of a tube of this 
kind the signal to noise ratio is improved by around 10 dB compared with a con-
ventional CFA. The design of a millimetre wave high gain CFA is described in [33].

Figure 16.5: Slow- wave structures for emitting- cathode CFAs: forward wave (a) helix- 
coupled vane and (b) double helix- coupled vane; backward wave (c) inter- digital line and 
(d) strapped ladder line (copyright Thales; courtesy of Thales).
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16.3 Basic Principles

The resemblance of a CFA to a magnetron means that much of the theory of 
magnetrons can be used, or adapted, to understand them. For the present we shall 
assume that the electrons are drawn from a uniform electron hub described by the 
equations in Section 15.2.1. We shall see later that detailed numerical modelling 
shows that this model is not strictly correct for cold cathode tubes because the sec-
ondary electron emission from the cathode is non- uniform.

Because the electron flow in a CFA is re- entrant the angular velocity of the 
spokes must be given by

 ω ω
s M

= , (16.1)

where ω is the frequency of operation and M is the number of spokes. Since the vel-
ocity ωs is determined by the anode voltage it follows that a CFA may be expected 
to exhibit a number of modes of operation corresponding to different values of M. 
There is evidence from both experiment and simulation that (16.1) is satisfied for 
synchronous operation of both forward-  and backward- wave CFA’s [34– 39]. It has 
been suggested that all the spokes are then identical [19] and the limited evidence 
available from the papers cited supports this, even in the presence of a drift region. 
Simulations using a moving wavelength code have shown that debunching effects in 
the drift region are not sufficient to eliminate the spokes completely.

When the operating point is moved away from synchronism, by changing either 
the frequency or the anode voltage, the residual spokes emerging from the drift 
region are no longer in phase with the RF voltage on the slow- wave structure as 
they re- enter it. Figure 16.6 shows the results of simulation of a forward- wave CFA 
when the operating voltage is slightly below that for synchronism. It can be seen 
that the spokes are only well- formed for the second half  of the interaction region. 
Calculations based on the angles of these spokes show that M in (16.1) is no longer 
an integer. Thus the view expressed in early work [6, 34] that M remains an inte-
ger, even when the operation is not synchronous, is seen to be incorrect. When the 
operation of the CFA is less efficient, the spokes may be erratic and less well defined 
[37, 40].

If  a uniform periodic slow- wave structure is assumed then each section subtends 
an angle 2π N a on the axis where Na is an integer. The phase shift per section is θ for 
synchronous operation, and the structure may have either forward-  or backward- 
wave characteristics. In a tube without a drift region Na is the number of cells in 
the structure. In general, the number of active cells is reduced by those which are 
replaced by the drift region. At synchronism the angular velocity of the wave on 
the structure is

 ω πω
θs

aN
=

2
. (16.2)
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Equating (16.1) and (16.2) gives

 θ π= 2
M
Na

. (16.3)

Note that this differs from the expression given in [6] because of a difference of π in 
the definition of θ. As a consequence of (16.3) the possible synchronous values of 
θ are fixed by the values of M and Na, as shown in Figure 16.7, for a structure with 
Na = 11 and a backward- wave characteristic in the first Brillouin zone. The syn-
chronous spoke velocity line is shown for M = 4. It is evident from Figure 16.7 that 
the choice of an odd integer for Na means that no interaction is possible at the π 
mode cut- off  of the structure where the interaction impedance is high, and the tube 
would be likely to oscillate. The threshold voltage at synchronism in a CFA is given 
by (15.39) where ωs is determined from (16.1). Now suppose that the tube whose 
dispersion diagram is shown in Figure 16.7 is operating in the M = 4 mode. If  the 
anode voltage is increased then, at some point, it will exceed the threshold voltage 
for the M = 3 mode. The operation of the tube may then move discontinuously to 
the new mode [35]. Since the anode current increases with increasing anode voltage, 
in the same way as a magnetron, it may be limited by the onset of a different mode 
[5]. The difference between the velocity of the spokes and the phase velocity on the 
slow- wave structure for non- synchronous operation means that the synchronous 
relation (16.3) is not strictly enforced. Some phase slippage is permissible at the 
input end of the structure [6].

Figure 16.6: Spoke formation in a typical forward wave CFA (courtesy of Dr D.P. 
Chernin [41]).
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Although the interactions in forward- wave and backward- wave tubes are simi-
lar there are some differences in detail. Consideration of  Figure 16.2 shows that, 
if  two tubes have slow- wave structures with the same cold bandwidth, then the 
change in the synchronous electron velocity for a given change in frequency is 
greater for the backward- wave tube. The anode voltage increases with increasing 
frequency in a backward- wave CFA, whereas the opposite is true for a forward- 
wave tube. The properties of  each spoke are chiefly determined by the RF field on 
the slow- wave structure at the tip of  the spoke. Thus the spokes are most strongly 
formed close to the output of  the tube. This means that in a forward- wave tube 
the charges carried by the spokes entering the drift region, and the debunching in 
the drift region, are both greater than in an equivalent backward- wave tube. This 
difference can be seen in  figures 7 and 3 in [37]. A further difference between the 
two types of  tube arises because of  the effects of  the transit time of  the electrons 
from the surface of  the hub to the anode. The current flowing in a spoke is deter-
mined by the RF field experienced by electrons at its base. At high signal levels, 
close to the tube output, the transit time is typically small compared with the 
synchronous period. The current in a spoke is then determined by the strength of 
the local RF field. However, at low signal levels, near to the tube input, the transit 
time is typically greater than the synchronous period. Thus the current reaching 
the anode is determined by the fields one or more synchronous periods away [42]. 
In a forward- wave amplifier the spokes are moving in the direction of  increasing 
RF field strength and the currents in the spokes close to the input are smaller than 
would be determined by the RF field at the spoke tip. The opposite is true in a 
backward- wave amplifier.

Figure 16.7: Dispersion diagram of a backward- wave CFA Na =( )11  showing synchronous 
points corresponding to different numbers of spokes.
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16.4 CFA Characteristics

16.4.1 Performance Chart

The performance chart of an emitting cathode CFA operated at a fixed frequency 
and RF drive level is like that of a magnetron (see Figure 16.8). For a given mag-
netic field no current flows until the anode voltage exceeds the threshold voltage. 
Thereafter the current increases, the anode voltage remains approximately con-
stant, and the output power increases with the current. The magnetic field is nor-
mally provided by a permanent magnet and is therefore fixed by the manufacturer. 
The operating curve varies slightly with frequency as shown in Figure  16.9. At 
constant current the voltage increases with frequency in a backward- wave CFA 
and decreases with frequency in a forward- wave tube, as discussed in the previous 
section. Figure 16.10 shows how the performance of a backward- wave amplifier 
tube depends upon the load line of the modulator for constant voltage, constant 
current, and constant impedance operation. Constant voltage operation produces 
an unacceptably large variation in power output and efficiency across the frequency 
band of the tube. Constant current operation gives essentially constant output 
power. These two conditions are approximated by hard tube and line type modu-
lators respectively (see Section 20.3) [5]. The change in the operating curve with 
frequency is smaller in a forward- wave amplifier and constant voltage operation is 
possible.

Figure 16.8: Typical performance chart of a CFA at 1190 MHz with 5 kW peak input power 
(copyright 1967, SFD, reproduced, with the permission of CPI, from [28]).
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Figure 16.9: Variation in the operating curve of a CFA with frequency: (a) backward- wave 
amplifier, and (b) forward- wave amplifier 
(copyright 1967, SFD. Reproduced, with the permission of CPI, from [28]).

Figure 16.10: Backward- wave CFA characteristics showing the effect of different modulator 
load lines 
(copyright 1967, SFD, reproduced, with the permission of CPI, from [28]).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.017
https://www.cambridge.org/core


CFA Characteristics 641

16.4.2 Modulation

Figure 16.11 shows typical pulses for operation of a pulsed CFA. If  a cold cathode 
tube is operated from a line type modulator the RF power must be applied before 
the voltage pulse. This ensures that current is drawn from the modulator as soon as 
the voltage is applied to the tube. Otherwise, the tube would present an open circuit 
to the modulator, resulting in a doubling of the voltage, leading to internal arcing 
and possible damage to the tube. If  the tube has a hot cathode with appreciable 
thermionic emission, the application of the voltage pulse before the RF pulse leads 
to noise generation from the uncontrolled space- charge cloud. As a rule of thumb, 
the voltage pulse is designed to reach 50% of its peak value when the RF input 
power is 90% of the full drive level. A similar situation arises with any type of CFA 
if  the RF input is removed before the end of the voltage pulse. It is desirable for the 
rise- and fall- times of the voltage pulse to be as short as possible to reduce the risk 
of oscillations at band edges, or in other modes where the gain is high.

Some CFAs are designed to be operated with cold cathodes and with DC volt-
ages applied to the electrodes. The current pulse is then triggered by the RF pulse. 
When the RF pulse is removed the electrons continue to circulate and would, if  
unchecked, lead to the generation of noise. For this reason a control electrode is 
incorporated, as shown in Figure 16.12. At the end of the RF pulse a positive pulse 
is applied to the control electrode to remove the circulating electrons. Figure 16.13 

Figure 16.11: Typical pulse nesting for a cold cathode CFA 
(copyright 1967, SFD, reproduced, with the permission of CPI, from [28]).
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shows the pulses for a cold- cathode CFA with a DC voltage applied to the cathode. 
Electron emission commences within a few nanoseconds of the start of the RF 
pulse. The proportion of electrons collected by the control electrode varies from 
zero, when it is unbiased, to 100% with sufficient positive bias. Thus, it is possible to 
find an intermediate level of DC bias where sufficient electrons continue to circulate 
for the tube to operate in the presence of RF drive but not when it is absent. It has 
been shown that RF keying can be achieved in this manner [5].

16.4.3 Transfer Characteristics

The amplitude transfer characteristics of a CFA may be displayed on either linear 
or logarithmic scales, as shown in Figure 16.14. It can be seen that the tube does 
not have a linear region of operation, nor does it exhibit saturation. The low gain 

Figure 16.12: Arrangement of a CFA with a control electrode 
(copyright 1973, IEEE. Reproduced, with permission, from [5]).

Figure 16.13: Typical pulse nesting for a CFA with a DC potential between the cathode and 
the anode 
(copyright 1967, SFD. Reproduced, with the permission of CPI, from [28]).
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of the tube means that the input RF power is a significant fraction of the total 
power input to the tube. Thus the RF input power is added to the (approximately 
constant) RF power generated by the interaction within the tube. If  the RF drive of 
a tube with a primary emitting cathode is increased from low levels it is found that, 
initially, the output at the drive frequency is proportional to the input and accom-
panied by noise. At higher drive levels the input signal suppresses the noise and the 
output is determined by the DC operating conditions. For this reason it is best to 
regard the CFA as a locked amplifier which is always in a non- linear condition. The 
minimum drive level for stable operation may be indicated on the AM/ AM curves.

The bandwidth of a CFA is determined by the range of frequencies over which 
stable operation is possible. It may also be specified as the range of frequencies for 
which the output is constant within some limits (e.g. ± 0.5 dB). Because, as we have 
seen, the output power is affected by the load line of the modulator, it is important 
to specify the conditions under which the bandwidth is defined. For a given fre-
quency, and given DC and RF input powers, it is found that a tube can operate over 
a range of currents. The upper limit is set by the maximum current available from 
the cathode, the onset of a competing oscillation, or the inability of the RF input 
power to suppress noise. The lower limit is set by the start of oscillation in a mode 
with a lower threshold voltage [5].

The phase of the output of a CFA is determined by the DC voltage and current, 
the RF drive level, and the variation of the phase length of the tube with frequency. 
Figure  16.15 illustrates the dependence on the anode voltage, and the RF drive 
level, of the phase of the output of an X- band backward- wave CFA, relative to the 

Figure 16.14: Typical CFA amplitude transfer curves: (a) linear scales, and 
(b) logarithmic scales 
(copyright 1967, SFD, reproduced, with the permission of CPI, from [28]).
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input. The figure shows typical phase variation for a 1% variation in anode voltage, 
and three different drive levels. The phase sensitivity to voltage is proportional to 
the gain of the tube. It is, therefore, least at high drive levels where the gain is least 
(see Figure 16.14). The sensitivity of the phase of a CFA to changes in anode volt-
age is about an order of magnitude less than that of a TWT. The variation of phase 
with drive power at constant voltage is usually measured with small changes in the 
input power around the normal operating point. It is typically of the order of 1 or 
2 degrees/ dB.

The phase length of a CFA is 1 to 10 wavelengths for a backward- wave tube, 
and 15– 20 wavelengths for a forward- wave tube. These are less than those of a 
linear- beam tube, and the resulting variation of phase with frequency typically less 
than ±5°. The phase length of a CFA is affected by the reactive loading of the elec-
trons (compare frequency pushing in a magnetron). The hot phase length is around  
20– 40° greater then the cold phase length, and decreases with increasing anode 
current. Because the CFA is a transparent amplifier, the phase variation in prac-
tical cases is strongly affected by the RF match presented to the input and output 
of the tube. If  the matches of the source and the load are perfect then the devia-
tions from linearity are small, and determined by mismatches within the tube. The 
phase variation caused by external mismatches can be estimated from the circuit in 
Figure 14.1 as

 ∆φ ρ ρ= S LAL (16.4)

where ρS and ρL are the input and output voltage reflection coefficients combining 
internal and external mismatches, and A and L are the amplification and cold loss 
of the tube expressed as voltage ratios.

Figure 16.15: Dependence of the relative phase of the output of a CFA on the anode voltage 
and the RF drive leve l
(copyright 1967, SFD, reproduced, with the permission of CPI, from [28]).
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16.4.4 Signal Growth and Anode Dissipation

Additional information about the properties of CFAs is provided by a detailed 
experimental study of an S- band forward- wave tube [43]. Experimental versions 
of this tube were fitted with RF probes and thermal sensors so that the RF power, 
and the vane temperatures, could be measured for a range of operating conditions. 
Typically, the temperature of the slow- wave structure varied approximately linearly 
from 20– 30 °C, at the input, to 70– 80 °C, at the middle of the interaction region. 
It then remained approximately constant until the output. The RF power on the 
slow- wave structure increased slowly over the first 20– 30% of the length of the 
interaction region. Thereafter it increased approximately linearly until the output. 
It was concluded that the initial growth in the RF power was based on the recircu-
lating space- charge above the electron hub, and that the linear growth made use of 
current extracted directly from the hub.

16.5 Theoretical Models of CFAs

16.5.1 PIC Codes

CFAs can be modelled by PIC codes in much the same way as magnetrons and, 
in some cases, the same code has been used for both types of  tube. The properties 
of  the slow- wave structure are usually modelled by an equivalent network. The 
accurate modelling of  secondary electron emission is essential for cold- cathode 
tubes. When the whole tube is modelled large computing resources and long CPU 
times are required [37– 40, 44– 46]. Moving window codes model the interaction 
with a single spoke as it develops through time [47– 53]. Where electrons move 
out of  the moving wavelength they are re- injected at the opposite boundary, as in 
the TWT simulations described by Vaughan [54]. This assumption is not strictly 
valid because the electron motion is not periodic in space. Additional guard wave-
lengths to overcome this problem do not appear to have been used in CFA mod-
els. The computer codes commonly employ rectangular Cartesian coordinates 
with a correction factor to account for the curvature of  the interaction space [48]. 
In these codes it is necessary to track the interaction over multiple passes through 
the tube. It is found that the computations do not converge to a stable solution 
but show pass- to- pass fluctuations which may be an indication of  the level of 
noise generation within the tube [49]. Stable results are obtained by taking the 
average over several passes, and the main features of  the tube performance can 
be modelled with good accuracy. The models also show the details of  spoke for-
mation, including the debunching in the drift region. When secondary emission is 
the dominant source of  electrons it is found that regions of  low density propagate 
through the space- charge hub. The method has been extended to tubes with a 
slow- wave structure on the cathode [51]. Whole tube simulations have been used 
to give additional information about spoke formation in CFAs, and to study the 
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conditions for low noise operation that have been observed experimentally [38, 
44, 45].

16.5.2 Soliton Theory

We have seen that considerable progress can be made in understanding the proper-
ties of linear- beam tubes by using models in which the non- linear equations describ-
ing the interaction are linearised by the small- signal approximation. This approach 
has been extended into the non- linear region of operation by the addition of more 
terms in the expansions. An alternative approach is to find non- linear solutions to 
weakly non- linear equations using soliton theory [55, 56]. A soliton is a solitary 
wave that maintains its shape while it propagates at a constant velocity. Solitons 
occur when the non- linearity, and dispersion, of a medium counteract each other 
to prevent the break- up of the wave. The application of soliton theory to CFAs 
shows that growing solitons can only exist for a limited range of anode voltages. 
For a particular tube this range was found to be from the threshold voltage VT( ) 
to 1 13. VT. This behaviour was found to be in good agreement with experimental 
results. At the upper limit the amplification ends abruptly. It was shown that the 
true synchronous voltage is slightly greater than the threshold voltage because of 
differences between the electron motion and the idealised Brillouin hub. However, 
the difference between the synchronous voltage and the threshold voltage was small 
in the typical operating range of the tube studied. The model was also able to pre-
dict the dependence of the phase shift on anode voltage [56].

16.5.3 Guiding Centre Theory

The guiding centre theory, whose application to magnetrons is described in Section 
15.6.3, was applied to modelling CFAs in [42, 57, 58]. The electrons were assumed 
to be drawn from a uniform hub whose surface was taken to be approximately that 
of the theoretical Brillouin hub. The electron density in the hub was not constant 
but was found by considering the balance between secondary emission of electrons 
from the cathode and their motion out of the hub into the spokes. Thus the electron 
density and the spoke current varied according to the local RF field. The model 
included the effect of the finite transit time of the electrons from the hub to the 
anode. The evolution of the spokes with time was computed by successive passes 
through the interaction region. The electron density at the start of a pass was taken 
to be a fixed fraction of that at the end of the previous pass. The electron stream 
was assumed to be unmodulated at the start of each pass. The results converged 
after only a few iterations and the Gauss lines which were computed showed some 
agreement with experimental results, including their dependence on the frequency. 
It is not clear whether the parameters of the model were adjusted to achieve agree-
ment with measurements. The model also showed the spatial growth of the electron 
density in the hub and of the RF voltage on the slow- wave structure. The electron 
density in the hub was typically about 0.8 of the theoretical hub density. When the 
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secondary electron emission coefficient of the cathode was increased above a cer-
tain level it was found that the output power did not settle to a steady value but 
oscillated from pass to pass indicating the generation of noise [59].

16.5.4 Non- Linear Fluid Mechanics

The application of the methods of fluid mechanics to the modelling of crossed- 
field devices has been described in a large number of papers including [60– 63]. In 
this approach the non- linear, cold- fluid, equations have been expanded into static 
and first- order time- varying parts, corresponding to the electron hub and spokes 
assumed in the guiding centre model. It has been shown that the two parts of the 
solution are not independent of one another, as in simpler models, but that the 
evolution of the spokes has an effect on the static electron density distribution. 
In particular, the electron density at the position of the theoretical hub surface is 
around half  of that at the cathode, when space- charge limited emission is assumed. 
Although this work provides some insights into the behaviour of CFAs it does not 
appear to be useful for engineering modelling of their performance.

16.5.5 Rigid Spoke Model

We have seen that the rigid spoke model of the magnetron gives good agree-
ment with experimental results, despite problems with the validity of some of the 
assumptions on which it is based. It is therefore of interest to consider whether a 
similar model can be constructed for CFAs. A simple model of this kind, described 
in [19], assumed that fully formed spokes were present throughout the interaction 
region, and that the current induced in the slow- wave structure was nearly constant. 
The induced current was divided equally between forward and backward travel-
ling waves. The difference in the phase relationships means that the induced cur-
rents add constructively in one direction, and cancel in the other. Since each spoke 
induces the same power in the circuit it follows that the signal growth with distance 
is linear. Experimental measurements have shown that this is true over most of the 
interaction region by (see Section 16.4.4). Increasing the gain of a CFA by a factor 
of 10 therefore requires a tenfold increase in the length of the interaction region. In 
contrast the exponential growth in a TWT only requires the length of the interac-
tion region to be doubled. The gain of a CFA can be estimated by assuming that the 
power induced in unit length of the slow- wave structure is equal to that of a mag-
netron having the same parameters and output power. The input power can then 
be calculated from the length of the structure, making allowance for the cold loss. 
The efficiency of the tube is found from the total power delivered to the structure. 
The application of this approach to an experimental tube gave good agreement for 
the efficiency. Further information on the parameters and performance of that tube 
can be found in [64– 66].

A straightforward improvement to the model described above uses a method 
developed for modelling non- reentrant CFAs [14]. The assumption that all spokes 
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deliver equal power to the slow- wave structure is replaced by one in which the 
power delivered to each section is calculated from the properties of a magnetron 
equivalent to that section. The rigid- spoke magnetron model described in the pre-
vious chapter can be used for this purpose. The synchronous angular velocity and 
the number of spokes are calculated from the frequency and the cold phase shift 
per cell of the slow- wave structure. The threshold voltage and the properties of 
the electron hub are calculated in exactly the same manner as for a magnetron. 
These values do not depend on the RF field of the slow- wave structure and they 
are therefore the same throughout the interaction region. The electric field acting 
on the electrons, and the conduction angle of the spokes, can then be calculated as 
functions of the anode voltage, the RF wave voltage on the slow- wave structure, 
and the magnetic field. The RF wave voltage V1( ) is related to the RF power flow in 
the structure  P1( ) by

 V Z Pc1 12= , (16.5)

where Zc is the coupling impedance of the circuit. The energies of the electrons 
striking the anode and the cathode are computed in the same way as for a magne-
tron. The DC current flowing to the anode is computed from the charge density in 
the hub, and the electric and magnetic fields at the base of the spoke. The impact 
energies of the electrons, and the current in each spoke, are functions of V1. They 
therefore vary with position in the CFA. The RF power delivered to the anode of 
the equivalent magnetron is given by

 P V V V Irf a ia ic= − −( ) 0 , (16.6)

where Va and I0 are the DC anode voltage and current and Via and Vic are the impact 
energies of the electrons on the anode and the cathode. Note that Vic is the actual 
impact energy of electrons on the cathode, multiplied by the ratio of the fraction 
of electrons striking the cathode to the fraction striking the anode. In (16.6) all the 
terms on the right- hand side, apart from Va are functions of the anode voltage, the 
magnetic field, and the RF power flow on the structure. The RF power delivered to 
the nth cell of the structure is then

 ∆P P P Nn rf n a= ( ) , (16.7)

where Pn is the power in the growing wave in the nth cell and Na is the perimeter of 
the anode divided by the length of a cell. The anode voltage and the magnetic field 
are the same for all the cells. The power in the next cell is given by

 P P P An n n c+ = +( ) −( )1 1∆ , (16.8)

where Ac is the fraction of the power lost per cell. This is related to the cold loss of 
the slow- wave structure in decibels by

 L N AdB c c= ( )10 log , (16.9)
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where Nc is the number of active cells. If  the RF input power is known then (16.8) 
can be applied repeatedly to find the power flow in each cell, and the output power 
of the tube, at the specified anode voltage and magnetic field. If  we assume that 
the power in the CFA grows linearly to this level over Nc cells, whilst that in the 
magnetron is constant over Na cells, we find that the power output of the CFA is 
approximately

 P
N
N

PCFA
c

a
EM≈

2
, (16.10)

where PEM  is the output power of the equivalent magnetron. The total anode cur-
rent is given by

 I I Na n an

Nc= ( )=∑ 1
, (16.11)

where In is the anode current of the equivalent magnetron for the nth cell. The total 
heat dissipation on the anode and the cathode can be found in a similar manner 
by summing the contributions of the equivalent magnetrons (see Worksheet 16.1).

This model was applied to the data for an S- band forward- wave CFA given in 
[49] and there was good qualitative agreement with the typical behaviour of a CFA, 
described in Section 16.4. This tube was identical, or very similar, to the experi-
mental tube studied in [43]. Figure 16.16 shows the Gauss lines computed for three 
different magnetic fields at the synchronous frequency (3.3 GHz) of the tube. These 
curves are similar to those in Figure 16.8. Figure 16.17 shows the Gauss lines at 
three different frequencies, when B = 0 3. T, with the experimental curves given 
in [49] for comparison. The properties of the slow- wave structure, which are not 
given in that paper, were estimated using the data for a similar tube in [47]. It can 

Figure 16.16: Gauss lines computed for the baseline tube at 3.3 GHz and 7 kW RF 
input power.
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be seen that the anode voltage increases with decreasing frequency, as shown in 
Figure  16.9(b). For frequencies other than the synchronous frequency the num-
ber of spokes calculated from (16.3) was not an integer. This is not inconsistent, 
because the interaction is assumed to be restarted from an unmodulated hub after 
the drift region.

Figure 16.18 shows the dependence of the output power on the anode current 
for three different frequencies compared with experimental data from [49]. It can be 
seen that the output power and efficiency predicted by the model are rather greater 
than the measured values. Possible reasons for this are explored below.

Figure 16.17: Gauss lines computed for the baseline tube at Bz = 0 3. T and 7 kW RF input 
power, with experimental data from [49] for comparison.

Figure 16.18: RF output power plotted against anode current for the baseline tube at 
Bz = 0 3. T and 7 kW RF input power, with experimental data from [49] for comparison.
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Figure 16.19 shows the AM/ AM curves computed for three different anode volt-
ages. These may be compared with Figure  16.14(a). At low values of the input 
power the RF field of the slow- wave structure is not sufficient to enable spokes to 
form, and the only output is noise. Figure 16.20 shows examples of the electron 
trajectories just below and just above the limiting input power. Below the limiting 
power no trajectories reach the anode and the modulation of the hub does not 
induce sufficient current in the slow- wave structure to enable the wave to grow. The 
figure also shows the spoke profiles for the rigid spoke and guiding centre approxi-
mations. Below the limit for spoke formation these models are incorrect because 
they predict non- zero anode currents.

Table  16.1 shows a detailed comparison between the results of  calculations 
using the model described with those in [49]. It can be seen that the anode current, 

Figure 16.19: RF output power plotted against RF input power for the baseline tube at 
3.3 GHz and Bz = 0 3. T. The dashed line shows the minimum RF input power for which 
spokes are formed.

Figure 16.20: Electron trajectories for RF input powers: (a) just below the minimum for 
spoke formation, and (b) just above the minimum for spoke formation.
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output power, efficiency and gain are over- estimated by the rigid spoke model 
while the anode and cathode dissipation are underestimated. The differences in 
the figures for the dissipation may be a result of  the different assumptions about 
electron emission from the cathode. The rigid spoke model assumes that the cur-
rent flow in the hub is space- charge limited whilst the moving wavelength code 
models secondary electron emission from a cold cathode. Table 15.2 shows that, 
in a magnetron, this can have a large effect on the anode and cathode dissipation. 
Because the rigid spoke model uses the dissipation to calculate the RF output 
power, underestimation of  the former leads automatically to over- estimation of 
the latter. The results are, in any case, very sensitive to changes in the magnetic 
field. McDowell adjusted the magnetic field to compensate for the use of  a lin-
ear, rather than a circular model of  the tube. It is not clear whether the value 
quoted in Table II in [49] was adjusted in this way. He observed that the agree-
ment between his results and those of  experiment was, in any case, somewhat 
fortuitous because the calculations ignored the effects of  penetration of  electrons 
into the space between the vanes.

Further understanding of the difference between the two models is obtained by 
plotting the forward power as a function of distance along the slow- wave structure, 
as shown in Figure 16.21. The low rate of growth close to the input calculated by 
the moving wavelength model is confirmed by experimental results [43]. It can be 
seen that both models predict very similar linear rates of growth and that better 
agreement could be obtained, quite simply, by moving the curve for the rigid spoke 
model to the right by around eight cells. This can be explained in terms of the finite 
time taken for electrons to move from the base to the tip of the spoke. A magnetron 
operates in a steady state, and the transit time can be ignored. In a CFA, on the 
other hand, the RF fields experienced by the spokes change in amplitude as they 
move through the tube.

Table 16.1: Comparison between calculated and experimental results for McDowell’s baseline forward wave CFA 
(copyright 2002, IEEE, reproduced, with permission, from [49])

Moving 
wavelength

Rigid spoke Rigid spoke 
(corrected)

Experiment

Voltage (kV) 13.25 13.25 13.25 13.25

Current (A) 22.0 23.9 20.0 22.0

Power (kW) 156.9 203 168 155

Power added efficiency (%) 54.7 63 61 52

Gain (dB) 13.5 14.6 13.8 13.5

RF power added /  DC input (%) 51.4 63.2 60.9

Anode dissipation /  DC input (%) 25.9 15.1 20.1

Cathode dissipation /  DC input (%) 10.6 5.3 7.3

Circuit loss /  d.c input (%) 10.5 13.9 12.0
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The transit time can be estimated as a function of the wave voltage in the equiva-
lent magnetron by integrating (15.113), and making use of the expression for the 
tangential electric field in (15.19), to give

 ∆t
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dr
B r
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r r
r r n
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r

r

z a a
n

a
n

n n
s

r

r

b

a

b

a

= =
−
−





 ( )

⌠
⌡


⌠ −

−
θ θ1

1
sin⌡⌡

 dr. (16.12)

This is the transit time for an electron at the centre of the spoke, assuming that its 
angular position, relative to the wave, is approximately constant during its motion 
from the hub to the anode. It can be seen that ∆t is inversely proportional to the 
wave voltage V1. The transit time can be expressed in terms of the number of cells 
traversed by the electron in its motion given by n ts s c= ω φ∆ . For the tube under 
consideration this was found to vary from 2 at the input to around 1 at the out-
put. However, this calculation underestimates the transit time close to the input. 
Figure 16.20(b) shows that, when the spokes are only just formed, the angular pos-
ition of the electrons varies considerably. For part of the motion they are in a region 
of very small tangential electric field. Thus the transit time is increased, so that 
the electrons move through a greater number of cells. It is difficult to determine 
the number of cells precisely because the electron dynamics at the input are very 
dependent on the properties of the electron hub as it emerges from the drift region. 
But this argument suggests that most of the difference between the two models can 
be explained in terms of transit time effects.

The rigid spoke model is based on some rather crude approximations, so the 
effort involved in including transit time effects correctly is not justified (though they 
have been included in a guiding centre model [42]). However, the shift of the curve 
in Figure 16.21 can be achieved using a piecewise constant model for the transit 
time, so that no current reaches the anode in the first eight cells. Current is drawn 

Figure 16.21: Growth in the forward RF power with distance.
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from the surface of the hub along the whole length of the slow- wave structure, but 
it is concentrated along a shorter length of the anode because of transit time effects. 
The results obtained when this correction is made are shown in the fourth column 
of Table 16.1. Because the distribution of the current along the anode is not known 
the power dissipated on the anode and the cathode has been calculated by scaling 
to achieve an overall power balance. Overall it may be concluded that, with this 
modification, the rigid spoke model gives a good qualitative understanding of the 
properties of CFAs.

16.6 CFA Design

The very limited information on CFAs which is available in the literature, the com-
plexity of their behaviour, and the scarcity of good theoretical models means that 
they must usually be designed by scaling from existing tubes, using dimensionless 
parameters similar to those used for magnetrons (see Section 15.7.1) [49].

An initial estimate of the performance of a CFA may be made using the sim-
plifying assumption that the power generated per unit length is constant [19]. 
Figure 16.21 shows that this is true for the greater part of the slow- wave structure. 
The gain can then be written

 G
P P

P

P

P
in gen

in

gen

in

=
+

= +1 , (16.13)

where Pgen is the RF power generated within the tube. The power added efficiency 
is given by

 η η ηa
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=
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=

−





⋅






= , (16.14)

where ηc is the circuit efficiency and ηe is the electronic efficiency.
The electronic efficiency of the equivalent magnetron, given approximately by 

(15.50), depends only on the dimensions of the tube and on the magnetic field. 
Thus, to this level of approximation, it is constant for the growing wave through-
out the CFA. The normalised magnetic field of the baseline tube in [49] was 
B Bz 0 4 6= . , giving the efficiency of the equivalent magnetron as approximately 
75%. Gewartowski and Watson multiplied this figure by the fraction of the perim-
eter of the tube occupied by the slow- wave structure. That adjustment is not correct 
because the RF power and the anode current are both proportional to the length 
of the slow- wave structure. However, these quantities are affected differently by the 
electron transit time. Thus the electronic efficiency is reduced by the fraction of the 
slow- wave structure that contributes to the signal growth. We saw, above, that this 
could be represented by reducing the active length of the slow- wave structure by  
8 cells, in a total of 62, giving a reduction in efficiency of 0.87. Thus the estimated 
electronic efficiency of the CFA is 65%.
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To find an expression for the circuit efficiency we note that the output power is 
given by

 
P P L
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L
L x dx

P L
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(16.15)

where Lc is the length of the slow- wave structure and α is the attenuation coefficient 
which is related to the cold loss of the structure by

 L L edB c= − ( )20α log . (16.16)

Thus the circuit efficiency is

 η
α

αc
in

genL
P
P

L= −






− −( )( )1

2
1 2exp . (16.17)

The baseline tube in [49] had 13 dB gain and 2 dB cold loss so that 2 0 46αLc = . ,  
P Pin gen = 0 05.  and ηc = 0 78. . Thus, the estimated overall efficiency of the tube is 
51%, which is close to the experimental figure in Table 16.1. Figure 16.3 shows the 
efficiencies of CFAs for which data is available.

Under synchronous conditions this tube had 19 spokes. An equivalent mag-
netron would therefore have 34 cavities, which is much too great for satisfactory 
separation of  the modes. That problem does not occur in a CFA, and the anode 
and cathode radii can be much greater than in an equivalent magnetron (see 
Table 15.5). The ratio of  the anode length to the free- space wavelength is 0.13 
which is very similar to that in a magnetron. The modified Slater ratio is 1.54 
because the gap between the anode and cathode is smaller than it would be in a 
typical magnetron. This could be to ensure that the RF electric field at the desired 
input power was strong enough to ensure satisfactory cold- cathode operation.

In this tube the cathode was offset from the mechanical centre because that had 
been found experimentally to give improved performance. It was also shown that 
similar improvements could be made by tapering the pitch of the slow- wave struc-
ture [43, 47]. This is probably a result of the reduction in the tangential velocity of 
the spokes, caused by space- charge potential depression close to the output, where 
the spoke charge is greatest [14]. Some additional information about the design of 
CFAs can be found in [8, 33, 67].
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17 Fast- Wave Devices

17.1 Introduction

The purpose of this chapter is to provide an introduction to the fast- wave tubes, 
especially to gyrotron oscillators and amplifiers which are important sources of 
RF power at millimetre and sub- millimetre wavelengths. The scope of the chapter 
is limited to those devices up to a frequency of around 1 THz which can be classed 
as vacuum tubes. Many fast- wave devices are described as masers or lasers (from 
the acronym Microwave/ Light Amplification by Stimulated Emission of Radiation) 
and some theoretical treatments regard them as quantum devices [1]. However, at 
least for the frequency range considered in this book, they can be regarded as clas-
sical devices in which the energy is transferred from a bunched electron beam to a 
synchronous electromagnetic wave. We shall see that, in many cases, the theory is 
analogous to that of the TWT. Many devices employ the electron cyclotron maser 
(ECM) interaction which is reviewed in Section 17.2. Examples, including gyrotron 
oscillators, gyro- klystrons, and gyro- TWAs, are discussed in Sections 17.3 and 17.4. 
Peniotrons and ubitrons are considered at the end of the chapter.

We have seen in the preceding chapters that, above some frequency, the output 
power and efficiency of linear- beam and crossed- field tubes decreases very rapidly 
with increasing frequency. This is caused chiefly by the very rapid fall- off  in the 
RF electric field from the surface of the electromagnetic structure as discussed in 
Section 4.1.1. The transverse variation of the interaction field is as I re0 γ( ) in cylin-
drical geometry so that, as a tube is scaled to higher frequencies the parameters 
γ eb and γ ea must be kept constant to maintain the strength of the interaction. The 
beam plasma frequency is related to the strength of the magnetic focusing field by 
(7.55) which may be written

 ω p
ze

m
B
m

= ⋅ ⋅
1

2 0

, (17.1)

where Bz  is the axial magnetic field and m is the ratio of the magnetic field to the 
Brillouin field. If  a solenoid with iron pole- pieces is used to provide the magnetic 
field, then the maximum value of Bz  is limited to around 2T by saturation of the 
iron. Higher fields can be provided by normal, or superconducting, solenoids which 
do not incorporate any iron. But it is then more difficult to achieve the desired pro-
file of Bz  as a function of the axial position. The maximum value of ω p is also likely 
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to be reduced as the frequency increases by the need to increase the beam stiffness, 
as the beam and tunnel radii are reduced. We have also seen (in (13.51)) that the 
beam perveance is approximately proportional to ω ωp( )2

 when γ eb is constant. 
Thus the maximum possible perveance of a magnetically focused beam decreases 
rapidly with increasing frequency. If  the beam voltage is kept constant, then the 
beam current and power are inversely proportional to the square of the frequency. 
The RF output power is further reduced by the decreases in electronic efficiency 
and circuit efficiency as the frequency increases. Additional limitations may be set 
by the need to reduce the beam filling factor to ensure good beam transmission. 
Hence, the limitation in performance of a TWT or crossed- field tube at millimetre 
and sub- millimetre wavelengths arises directly from the need to reduce the phase 
velocity of the electromagnetic wave to achieve synchronism with the velocity of 
the electrons. Similar considerations apply to klystrons because of the need to 
keep the normalised interaction gap lengths βe g( ) small to achieve useful coupling 
between the beam and the cavities. These limitations on performance can be miti-
gated to some extent by the use of sheet or annular electron beams, and of higher 
beam voltages. But the essential problem, of keeping an electron beam of sufficient 
power very close to the surface of the electromagnetic structure, remains [2].

We saw in Chapter 2 that, for frequencies above cut- off, the phase velocity of the 
waves in a smooth metallic waveguide circular waveguide is greater than the velocity 
of light, and strong RF electric fields can exist throughout the guide. Thus, if  an 
electron beam can interact with the electromagnetic field of a uniform waveguide, 
it does not have to be close to the surface of the guide. In addition, the volume of 
space which the beam can occupy is much greater so that the possible beam cur-
rent and power are increased. It is, of course, still necessary to achieve synchronism 
between the electrons and the electromagnetic wave if  a useful interaction is to 
occur. In a folded- waveguide TWT synchronism is achieved by making the struc-
ture periodic so that the interaction with a uniform beam is also periodic. That 
suggests the alternative strategy of using a periodic electron beam and a uniform 
structure. In principle this could be achieved in a number of ways, but practical 
devices have linear beams controlled by either a uniform axial magnetic field or a 
periodic magnetic field. These devices are classed as fast- wave devices because the 
phase velocity of the wave in the electromagnetic structure is greater than the vel-
ocity of light [3]. Fast- wave devices have been discussed by many authors, and the 
reader is referred to the literature for detailed information [4– 14]. Much of the pio-
neering work was done in the former Soviet Union, and a summary can be found 
in [15]. The sources cited in this chapter are English because they are most readily 
accessible, but work in Russia continues to be important.

17.2 Electron Cyclotron Masers

The electron cyclotron maser (ECM) interaction is the basis for a number of types 
of tube of which gyrotrons (see Section 17.3) are an important example. The 
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principle of operation of the ECM interaction can be understood by considering 
Figure 17.1 which shows an electron moving under the influence of a uniform lon-
gitudinal magnetic field in the presence of a uniform transverse RF electric field of 
frequency ω. The electron moves in a circular orbit with an angular velocity equal 
to the relativistic cyclotron frequency

 ω
γc
zeB

m
=

0

, (17.2)

where

 γ =
−

1

1 2 2u c
 (17.3)

is the relativistic factor and

 u u uz
2 2 2= +θ , (17.4)

where uθ and uz are the tangential and axial components of the electron velocity and 
it is assumed that the radial component of velocity is negligible. It can be seen that 
the cyclotron frequency decreases as the electron velocity increases.

If  the axial motion of the electrons is ignored, for the moment, then the motion 
of an electron is in synchronism with the RF field when ω ω= c. A synchronous 
electron at position 1 experiences a retarding field. When it reaches position 2 the 
direction of the RF electric field has reversed and the motion of the electron is fur-
ther retarded. Similarly, an electron starting at position 2 is accelerated and then 
accelerated again when it reaches position 1. The accelerated electrons fall back 
in phase relative to the RF field, because of the change in the cyclotron frequency 
with velocity. Similarly, retarded electrons move forward in phase so that electron 
bunches are formed. If  these bunches fall in the retarding phase of the RF field then 
there is a net transfer of energy from the electrons to the wave, as required. When 
relativistic effects are ignored the cyclotron frequency is constant and no bunching 

Figure 17.1: Principle of the electron cyclotron maser interaction.
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takes place. Hence a necessary condition for the ECM interaction is that the elec-
tron velocity should be high enough for relativistic effects to be important.

The radius of the orbit is the Larmor radius given by

 r
u

L
c

= θ

ω
, (17.5)

which increases as the electron velocity increases. Because the RF electric field is 
uniform in space, the change in the Larmor radius does not affect the field acting 
on the electrons. This situation changes if  the electric field is non- uniform because 
a net transfer of energy to the wave is possible, even when the velocities are low. 
This is the peniotron interaction which is discussed in Section 17.5. It may also 
occur in ECM devices if  the RF electric field is non- uniform in the region of the 
electron beam.

The electron beam is normally generated by a magnetron injection gun so that 
the energy of the electrons can be written using (1.4) as

 u u c
eV m c

z

a

θ
2 2 2

0
2

21
1

1
+ = −

+ ( ) 












, (17.6)

where Va is the potential of the anode relative to the cathode. The ratio of the trans-
verse velocity to the axial velocity is denoted by the pitch factor

 α θ=
u
uz

. (17.7)

This parameter is normally greater than unity. Because only the azimuthal velocity 
is changed by the interaction it follows that only the azimuthal energy can be con-
verted into RF power. Thus the electronic efficiency cannot exceed

 η α
α

θ

θ
e

z z

z

u u u

u u
=

+( ) −
+

=
+

2 2 2

2 2

2

21
. (17.8)

In practice it is not possible to reduce the tangential velocities of all the electrons to 
zero and the electronic efficiency is smaller that given by (17.8).

When the axial velocity of the electrons is taken into account the synchronous 
condition is slightly altered. The time taken for an electron to make one circuit of 
its orbit is

 t
c

=
2π
ω

. (17.9)

In that time the electron moves through an axial distance

 z u t
u

z
z

c

= =
2π
ω

. (17.10)
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For synchronism, the phase of the electromagnetic wave as seen by the electron must be

 ω β πt z s− = 2 , (17.11)

where the wave propagates as exp j t zω β−( ) and s is a positive integer. Substituting for 
t and z in (17.11) from (17.9) and (17.10) the condition for synchronism is found to be

 ω β ω= ±u sz c , (17.12)

where the first term on the right- hand side represents the Doppler shifting of the 
frequency caused by the longitudinal motion of the electron. Now the dispersion 
curve of any mode in a uniform waveguide is given by (2.11), which may be written

 β ω ω= −
1 2 2

c mn , (17.13)

where ωmn is the cut- off  frequency of the mode with mode numbers m n,( ). Note 
that this notation has been used to avoid confusion with the use of ωc for the cyclo-
tron frequency. Equation (17.13) can be written in normalised form as

 ω
ω

β
βmn mn

= +1
2

2
, (17.14)

where β ωmn mn c= . Using the same normalisations the dispersion equation for 
waves on the beam (17.12) can be written

 ω
ω

β
β

ω
ωmn mn

z c

mn

u
c

s
= ⋅ ± . (17.15)

Figure 17.2 shows a typical uncoupled dispersion diagram plotted using equa-
tions (17.14) and (17.15). It can be seen that there are normally two points of 
intersection between the waveguide mode and the electron cyclotron wave (marked 
A and B in the diagram). The different types of ECM device correspond to different 
choices of these points [10]:

• Gyrotron oscillator and gyro- klystron amplifier: The two points of intersection 
coincide so that the cyclotron wave line is tangential to the waveguide line close to 
the waveguide cut- off  frequency on the right- hand side of the diagram.

• Gyro- TWT: The two points of intersection lie close to one another on the right- 
hand side of the diagram so that a travelling- wave interaction is possible over a 
band of frequencies.

• Gyro- BWO: Point A lies on the left- hand side of the diagram so that the beam 
interacts with the backward wave in the waveguide.

• Cyclotron auto- resonance maser (CARM): Point B lies well to the right- hand side 
of the diagram so that the phase velocity is close to the velocity of light. When 
energy is extracted from the beam, the electron velocity decreases but the relativistic 
cyclotron frequency increases so that the resonant condition (17.12) is maintained.

These types of tube are discussed in greater detail below.
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17.2.1 Small- Signal Theory of ECM Interactions

From coupled- mode theory we expect the small- signal dispersion equation, when 
the modes shown in Figure 17.2 are coupled, to be of the form

 ω β β ω β ω ω β2 2 2 2 2− +( )( ) − −( ) = ( )c u s K fmn z c , , (17.16)

where K is a coupling constant which depends upon the properties of the waveguide 
and of the electron beam, and f is a function of ω and β. The squaring of the second 
term on the left- hand side of the equation is suggested by considering (11.137) in 
the limit of low space- charge. When K → 0 the solutions of (17.16) are the uncou-
pled modes shown in Figure  17.2, as expected. Equation (17.16) is a dispersion 
equation having the general form

 D ω β, ,( ) = 0  (17.17)

which is very similar to the dispersion equation for the travelling-wave tube (see 
(11.137)). The properties of a device represented by (17.17) are investigated by 
searching for the roots of this equation (compare Sections 11.5 and 11.7) [16, 17]. 
In general both ω and β may be complex.

In an ECM the RF electric field is provided by a guided electromagnetic wave. 
The simplest way of doing this is to use a TE n0  mode of a circular waveguide in 
which the electric field lines form concentric circles (see Figure 2.14). The tangential 
component of the electric field varies with radius as

 E r E J rθ β( ) = ( )0 1 , (17.18)

Figure 17.2: Uncoupled dispersion diagram for electron cyclotron mode 
interactions  u c sz c mn= = =( )0 264 1 5 1 2. , . , .α ω ω .
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as shown in Figure 17.3. The tangential electric field must be zero on the wall of the 
waveguide so that

 J an1 0 0β( ) = , (17.19)

where a is the radius of the waveguide and n = 1 2 3, , . When n = 1 β01 3 832a = .  and 
the maximum of the curve is β01r = 1.841 so that r a = 0 48. . Thus, for the best inter-
action the electrons should be in a thin annular beam whose mean radius is centred 
on the peak of the field as shown in Figure 17.4. The Larmor radius rL( ) should be 
small compared with the mean radius r0.

The dispersion equation is then found to be [18, 19]

 ω β β ν
πγ β

ω β
ω β ω

θ2 2 2
0
2

2

2
0
2

0

2 2 2

2

2

− +( ) =
−

( )
−( )

− −( )
⋅c

c
a J a

c

u s

u
cn

n z c
22

R
u

u s
Qs

z

z c
s−

−
− −













ω β
ω β ω

,
 

(17.20)
where J0  is the Bessel function of the first kind,

 ν
ε

=
Ne
m c

2

0 0
2
 (17.21)

is a dimensionless beam density parameter in which N is the number of electrons 
per unit length of the beam,

 R J r J rs s n s n L= ( ) ′ ( )



β β0 0 0

2

, (17.22)

and Q r rs n n Lβ β0 0 0,( ) is defined in [18]. The second term in the brackets in (17.20) 
is small, except when the transverse velocity uθ is small and it may, therefore, be 
neglected so that the equation becomes

 ω β β ω β ω ν
πγ

β βθ2 2 2
0
2 2

2
0 0 0− +( )  − −[ ] =

−
⋅

( ) ′ ( )
c u s

u J r J r
n z c

s n s n L

aaJ a
c

n0 0

2

2 2 2

β
ω β( )













−( ).

(17.23)

Figure 17.3: Radial variation of the tangential electric field in the TE n0  modes of a circular 
waveguide.
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We note that this equation has the form expected in (17.16). The parameter ν can 
be written

 ν γ= −( )





1 0 0c
u

I Z
Vz a

, (17.24)

where Z0 0 0= µ ε . The analogy with (11.137) is made more explicit if  we write 
β ω0 = c, β ωc c c=  and rearrange the right- hand side to give

 β β β β β β β β β0
2 2

0
2

0

2

0
2 2

0
2− −[ ] − ( ) −  = − −( )n z c nu c s K , (17.25)

where

 K
u

c
I Z
V

J r J r

a J a
z

a

s n s n L

n n

=
−( )

⋅ ⋅
( ) ′ ( )

( )










α γ
πγ

β β
β β

1 0 0 0 0 0

0 0 0




2

. (17.26)

It can be seen that the coupling between the beam and the waveguide increases as 
the beam current and the parameter α increase. Equation (17.25) is derived using 
the Vlasov equation which is more familiar to plasma physicists than it is to elec-
tronic engineers. The derivation requires some major assumptions including the 
representation of  the beam by an infinitely thin annulus in which all the electrons 
have the same initial velocity [20]. An alternative derivation based on an azimuthal 
perturbation of  the charge density in a thin annular beam gives essentially the 
same result [21]. It should be noted that both derivations neglect the azimuthal 
component of  the space- charge field. This can be justified on the grounds that 
the dominant component of  the space- charge field is radial. It is found that RF 
space- charge effects are not important in gyrotron oscillators, but they can have 
an important influence of  the bunching in drift regions of  gyro- amplifiers [12]. 
Because space- charge effects have been neglected, the two cyclotron modes are 

Figure 17.4: Arrangement of the electron beam in an ECM.
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degenerate (i.e. they have the same propagation constants at a given frequency) 
like space- charge waves in the limit ω p → 0. The resemblance between (17.25) and 
(11.137) has led some authors to follow Pierce [22] in approximating the equation 
as a cubic so that the solutions could be expressed in terms of  Pierce parameters 
familiar to TWT engineers [19, 23]. This approach is now unnecessary because it 
is straightforward to find the solutions to the full quartic equation, as shown in 
Worksheet 17.1.

The roots of  (17.25) can be computed for a given set of  parameters. Figure 17.5 
shows the real and imaginary parts of  the propagation constant computed for 
real frequencies, using data from [23] and a beam current of  2 A. The axes are 
normalised to the cut- off  frequency of  the waveguide and the free- space propa-
gation constant at that frequency. Below the cut- off  frequency the forward and 
backward waveguide modes (a)  are evanescent. The propagation constants of 
the negative and positive energy cyclotron modes (b and c) are real, but per-
turbed by coupling with the waveguide, so that the degeneracy of  the uncoupled 
modes is removed. It should be noted that the negative energy mode (b) has a 
higher phase velocity than the positive energy mode (c). This is the reverse of  the 
behaviour of  longitudinal space- charge waves. Above the cut- off  frequency, the 
propagation constants of  the backward waveguide mode (d), and the positive 
energy cyclotron mode (c), are real. The coupling between the negative energy 
cyclotron mode, and the forward waveguide mode, yields a complex conjugate 
pair of  roots (e)  over a range of  frequencies. Similarly, when the equation is 
solved for real values of  the propagation constant, the result is a complex con-
jugate pair of  roots for the frequency over the same range. Thus the interaction 
satisfies the criteria given by Briggs for a convective instability analogous to that 
in a TWT [17]. This can be used in a gyro- TWT to produce gain over a band of 
frequencies (see Section 17.4).

When the beam current is increased, the frequency range over which a complex 
conjugate pair of roots exists increases. The point P at which β is real moves towards 

Figure 17.5: The real and imaginary parts of the propagation constants of an ECM 
computed for a range of real frequencies.  V Ia c n= = = =( )70 2 0 9450 0kV, A 1.5, , . .α ω ω
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Q. At a current of approximately 4A (for the example chosen) these points coincide, 
as shown in Figure 17.6 so that all the roots are real at that point and a double root 
exists [23]. This satisfies Briggs’ criterion for the onset of a non- convective instabil-
ity [17, 23]. If  the beam current is increased still further the tube may oscillate under 
conditions determined by (17.17) and by

 d
d

D
β

ω β, ,( ) = 0  (17.27)

where both ω and β are complex (compare Section 11.7). The term Q r rs n n Lβ β0 0 0,( ) 
in (17.20) has the opposite sign to Rs and tends to increase the threshold at which a 
non- convective instability can occur. The threshold current is found to be increased 
by the wall losses of the waveguide but not by velocity spread in the electron beam 
[23]. The onset of oscillations is also affected by the length of the interaction 
region, as in the case of a backward- wave oscillator. Unlike the linear- beam BWO 
an ECM can also oscillate when the instability is convective because of reflections 
at the ends of the interaction region. From this discussion it can be concluded that a 
ECM oscillator may be based on either a convective, or a non- convective, instability 
according to the design and the operating conditions. In an ECM amplifier, how-
ever, it is necessary to ensure that the tube is stable against both the non- convective 
instability and feedback oscillations.

17.3 Gyrotron Oscillators

A gyrotron is an ECM oscillator. This type of  tube has been the subject of 
much research and development effort, and nearly all the ECMs manufactured 

Figure 17.6: The real and imaginary parts of the propagation constants of an ECM 
computed for a range of real frequencies.  V Ia c n= = = =( )70 4 0 9450 0kV, A 1.5, , .α ω ω
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commercially are gyrotrons. Figure  17.7 shows the power output as a func-
tion of  frequency for both pulsed and CW tubes based on manufacturers’ data 
sheets. Figure  17.8 summarises the efficiencies of  both pulsed and CW tubes 
as a function of  frequency. From these figures it can be seen that the majority 
of  tubes operate at frequencies above about 20 GHz where they are superior 
to linear- beam tubes. Pulsed and CW powers up to 1 MW are achieved with 
efficiencies greater than 30% up to a frequency around 200 GHz. Tubes exist 
with lower output power and efficiency up to 1.3 THz. Further information is 
available in [4, 24].

Figure 17.7: Output power of commercial gyrotron oscillators: (a) pulsed tubes, and 
(b) CW tubes.

Figure 17.8: Efficiency of commercial gyrotron oscillators.
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Figure 17.9(a) shows the basic arrangement of  a gyrotron oscillator. A hollow 
electron beam generated by a magnetron injection gun is injected into a cylindri-
cal cavity resonator which is operated close to the cut- off  frequency for longi-
tudinal travelling waves. The beam is controlled by the axial magnetic field of  a 
solenoid which also produces the desired orbits at the cyclotron frequency. For 
an 80 kV beam the relativistic cyclotron frequency is 44 GHz at a field of  1.8 T, 
which is around the maximum field which can readily be produced by a normal 
conducting magnet [25]. This limit is set by the saturation of  iron at around 2.1 
T. At higher frequencies it is necessary to use a superconducting solenoid. As the 
beam leaves the cavity it enters a circular waveguide of  larger diameter which 
allows electromagnetic waves to propagate out of  the cavity. The magnetic field 
decreases in this region, as shown in Figure 17.9(b), so that the spent electron 
beam can be collected on the walls of  the waveguide. The RF output power passes 
through a circular output window into an external waveguide. The resonant 
modes employed are normally either TE n0  circular waveguide modes, or TEm p,  
whispering gallery modes (where m1 and m p> ), as shown in Figure 17.10. The 
longitudinal variation of  the azimuthal component of  the RF electric field in the 
cavity is a standing wave whose profile is approximately Gaussian as shown in 
Figure 17.9(c). Methods for determining the eigenmodes of  open cavity resona-
tors are discussed in [10]. Variations from this basic arrangement are described 
briefly in Section 17.4.

Figure 17.9: (a) Arrangement of a gyrotron oscillator, (b) Magnetic field profile, and (c) RF 
electric field profile 
(copyright 1977, IEEE, reproduced, with permission from [15]).
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17.3.1 Large- Signal Interaction Model

The small- signal theory of the gyrotron oscillator has been discussed in Section 
17.2.1. A different approach is required to find the properties of a tube under large- 
signal conditions. Particle in Cell (PIC) codes can be used for this purpose but large 
computer resources and long run- times are needed [26]. Results can be obtained 
more quickly using codes written specifically for modelling gyrotrons, such as 
MAGY [27]. A code of this kind finds self- consistent solutions of the electromag-
netic fields and the dynamics of the electrons. Since the purpose of this chapter is 
to provide basic understanding of fast- wave tubes it is convenient to use a simpli-
fied approach in which the electromagnetic fields are represented by an approxi-
mate function. The problem is then reduced to the solution of the equations of 
motion of the electrons in the prescribed field [28]. The principles of the method are 
described below and it is implemented in Worksheet 17.1.

The relativistic equations of motion of an electron in electromagnetic fields are

 d
dt

m c eγ 0
2( ) = − ⋅u E, (17.28)

where γ  is defined by (17.3), and

 d
dt

e
e
c

p
E v B= − − × , (17.29)

where

 p u= γ m0  (17.30)

is the momentum of an electron. These equations can be transformed using nor-
malised variables to give

 dw
dZ

E

sB
p

z

= ⊥
φ θsin  (17.31)

Figure 17.10: Examples of the electric fields of cavity modes used in gyrotron oscillators: 
(a) symmetric TE n0( ) modes, and (b) whispering gallery TEm p,( ) modes (m1 and m p> ) 
(copyright 1997, IEEE, reproduced, with permission, from [12]).
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and

 d
dZ

w
E
B

w

p
r

z

θ δ θ= − +
−( )

⊥
0

1
cos , (17.32)

where θ is the angular position of the electron about its gyro- centre,

 w = −1
0

γ
γ

, (17.33)

 Z
u

z
z

=
ω

, (17.34)

 p w w⊥ ⊥= − +( )β 0
2 2

1
22 , (17.35)

and the detuning parameter is given by

 δ ω
ω0

01= −
s c . (17.36)

In these equations the subscript 0 is used to indicate the value of the parameter at 
the entrance to the resonator, β θ⊥ = u c and β



= u cz . A further transformation 
introduces the independent variable

 ζ β π β
β λ

≡ = ⋅⊥ ⊥0
2

0
2

02
Z

z



, (17.37)

where λ π ω= 2 c , and the dependent variable

 υ
β

γ
γθ

≡ = −
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2 2
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0
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0
2

0

w
c

u
. (17.38)

Note that the symbol υ has been used here for the normalised electron energy par-
ameter to avoid confusion with the use of u for velocities. The normalised inter-
action length is defined as

 µ π β
β λ

≡ ⋅⊥0
2

0

L
, (17.39)

where L is the physical length of the cavity and the detuning parameter is 
transformed to

 ∆ ≡ = −
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s c . (17.40)

Then equations (17.31) and (17.32) become
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and
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Here F is the normalised amplitude of the RF electric field given by

 F
E
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s
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s
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s m s m p≡ 
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−
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− ±
0

0
4

1

1 02
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!
,,  (17.43)

where xm p,  is the pth non- vanishing zero of ′ ( )J xm  and the azimuthal component of 
the RF electric field is

 E E f z J x r a jmm m pφ φ= ( ) ′ ( ) −( )0 , exp . (17.44)

The field used is that of  a rotating mode and the plus and minus signs in the 
Bessel function subscript in (17.43) correspond to the two possible directions of 
rotation.

The working equations (17.41) and (17.42) can be integrated numerically for a 
number of electrons with the initial conditions υ = 0, and θ distributed uniformly 
over 0 2, π( ). Most actual axial field profiles are approximated quite closely by a 
Gaussian distribution. It is therefore assumed that

 f ζ ζ µ( ) = − ( )exp .2
2  (17.45)

The radius of the orbit of an electron is found from (17.5) to be

 r
r

u
u

L

L0 0 0

= θ

θ

γ
γ

. (17.46)

Rearranging (17.3) we find that

 u
c
θ β

γ
= − −1

1
0

2
2

, (17.47)

since it is assumed that the axial component of the electron velocity is unchanged 
by the interaction. Substitution into (17.46) gives
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0
2 2

0
2

0
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1 1

1 1
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β γ
β γ




. (17.48)

But, from (17.38)

 γ γ β υ
= −





⊥
0

0
2

1
2

 (17.49)

so that the radius of the orbit of each electron as the interaction proceeds can be 
calculated from the values of υ which have been computed.
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The electronic efficiency is computed from the change in the kinetic energy of the 
electrons as they move through the cavity so that

 η γ γ
γ

β
γ

ηe ≡
−
−

=
−( )

⊥
⊥

0

0

0
2

01 2 1 1
, (17.50)

where η⊥ is the value of υ at the output plane averaged over all the electrons. The 
beam current can be found by making use of the energy balance equation

 F I2 = ⊥η , (17.51)

where I is a normalised current parameter defined by

 I
I
IR

= 0 , (17.52)

in which I0 is the beam current in amps and IR is a reference current given (in amps) by
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where QL is the loaded Q of  the resonator. It can be seen that IR is a constant, inde-
pendent of the operating point, for given tube parameters and mode numbers. The 
overall efficiency is obtained by multiplying the electronic efficiency by the circuit 
efficiency given by

 ηc
L

E

Q
Q

= , (17.54)

where QL and QE are the loaded and external Q factors of the cavity. In the gyrotron 
literature it is usual to call these the total QT( ) and diffractive QD( ) Q factors, and 
the unloaded QU( ) is known as the ohmic Q. For consistency the terminology used 
in the rest of this book is used here. The ohmic losses are typically less than 10% of 
the output power. The model described above provides a convenient way of inves-
tigating the properties, and design trade- offs, of gyrotrons (see Worksheet 17.1).

It can be seen that equations (17.41) and (17.42) which describe the motion of an 
electron depend upon the three parameters F, µ and ∆. If the first two of these are held 
constant then it is found that there is a value of ∆  for which the transverse efficiency 
η⊥( ) is maximum. If, in addition, the beam is only weakly relativistic sβ⊥( )0

2 2 1  
then the transverse efficiency does not depend upon the electron energy. Thus the 
optimised transverse efficiency depends only on F, µ and the cyclotron harmonic s 
[28– 30]. Figure 17.11 shows the plot for the fundamental s =( )1  cyclotron interaction. 
When the data from Figure 17.11 is substituted into (17.51) then the result is a plot 
showing the dependence of transverse efficiency on the normalised current and the 
interaction length, as shown in Figure 17.12. These plots are useful tools for gyrotron 
design. Corresponding plots for cyclotron harmonics up to s = 5 are given in [28, 30].

We saw in Section 17.2 that a gyrotron will not oscillate until the beam current 
exceeds a starting value. That analysis ignored the effects of the length of the cavity, 
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and of the variation of the interaction field along it, so it cannot provide an accur-
ate value for the starting current. An alternative approach, using the large- signal 
theory above, seeks the limiting current when the field strength parameter F tends 
to zero. Thus, from (17.51), the normalised starting current is given by

 I Lim
F

st
F

=




→ ⊥0

2

η
. (17.55)

Figure 17.11: Contours of the transverse efficiency of a gyrotron oscillator optimised with 
respect to ∆ plotted against the normalised field strength F and normalised interaction 
length µ for s = 1
(copyright 1985, MIT. Reproduced, with permission, from [30]).

Figure 17.12: Contours of the transverse efficiency of a gyrotron oscillator optimised with respect 
to ∆ plotted against the normalised current I and normalised interaction length µ for s = 1 
(copyright 1986, AIP, reproduced, with permission, from [28]).
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This can be calculated for any value of ∆  by finding the solution for a sufficiently 
small value of F. For a given mode, and fixed beam parameters, the value of µ is 
constant. Then the least possible starting current is given by the value of Imin that 
corresponds to the value of ∆  for which η⊥ is maximum. The dashed line marked 
I I= min in Figure 17.12 shows the locus of this current as µ is varied. Below this line 
it is not possible for oscillations to start.

If  ∆  is varied while µ is held constant it can be seen from (17.55) that the value of 
Ist must be greater than Imin. The same result is obtained directly using the equation 
for the starting current given in [28]

 I
x

x sst =






⋅
( )
−

4 2
2 2

πµ µ
exp

, (17.56)

where

 x ≡
µ∆
4

. (17.57)

Figure 17.13 shows a graph of Ist against ∆ , for three values of µ, for the operat-
ing mode of a 1 MW, 140 GHz CW gyrotron [31]. This graph is independent of the 
cavity mode and of the properties of the beam. The starting current in amps for 
each mode can be plotted against the magnetic field using (17.40) and (17.52). This 
plot is useful for determining which mode is excited first for a given magnetic field. 
It should be noted that there is normally a difference between the starting currents 
of co-  and contra- rotating modes having the same mode numbers. In general the 
co- rotating mode (negative sign in the Bessel function subscript in (17.53)) is found 
to have the best coupling to the beam [10].

The normalised starting current can be computed from (17.56) for any point in 
Figure 17.12. The dashed line marked I Ist=  shows the contour along which that 
condition is satisfied. In the region below this line the operating current I  is greater 

Figure 17.13: Normalised starting current of a gyrotron as a function of normalised 
detuning parameter.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.018
https://www.cambridge.org/core


Gyrotron Oscillators 677

than the starting current. This region is referred to as the soft- excitation region 
where oscillations will start if  the beam current exceeds the starting current. Above 
the line I Ist=  lies the hard- excitation region. A  tube whose intended operating 
point lies in this region must be started at a point in the soft- excitation region. The 
intended operating point is then reached by changing the current, voltage or mag-
netic field [10, 12, 28].

17.3.2 Case Study: A 140 GHz, 1 MW CW, Gyrotron

To illustrate the use of the theory outlined above let us consider the 140 GHz, 1 
MW CW, gyrotron whose design parameters are given in Table 17.1 [31, 32]

The values of the normalised parameters of this tube for start- up and normal 
operating conditions are given in Table  17.2. In both cases the value of F was 
adjusted to give a beam current of 40 A. Note that the tube is not operating at opti-
mum efficiency at start- up. The computed output power is 895 kW at start- up and 
1 MW under normal operating conditions. When the operating point is plotted on 
Figure 17.12 it can be seen that it lies in the hard excitation region. Potential depres-
sion in the beam is important in short- pulse tubes, and in the start- up of long- pulse 
and CW tubes (see Section 17.3.3). In CW and long pulse operation it is found that 
the beam space- charge is compensated by the accumulation of ions, after around 
100 ms [31]. The reduction of the effective beam voltage at start- up in this tube, 
caused by space- charge potential depression, ensures that the start- up point lies in 
the soft excitation region.

Figure  17.14 shows the phases of the electrons relative to the RF field along 
the length of the interaction region calculated using the normalised parameters in 
Table 17.2. The beam is modelled by 60 sample electrons, having the same initial 

Table 17.1: Design parameters of a 140 GHz, 1 MW CW, gyrotron [31]

(* corrected values [32])

Frequency 140 GHz

Cavity mode TE28 8,

Power, pulse length 1 MW, CW (1800 s)

Electron beam radius 10.1 mm*

Beam voltage 81 kV (74.74 kV at start- up)

Beam current 40 A

Velocity ratio α 1.3 (1.5 at start- up *)

Magnetic field 5.56 T

Cavity radius 20.48 mm

Cavity length (Lc) 14.5 mm

Q0 48650*

QL 1150*
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angular velocity, that are uniformly distributed in phase at the input to the cavity. 
At the centre of the cavity the beam is strongly bunched, but the absence of azi-
muthal space- charge forces means that there is a large velocity spread so that the 
bunch disperses by the end of the cavity. A more detailed view of the bunching is 
shown in Figure 17.15, which shows the azimuthal and radial positions of the elec-
trons at six equally- spaced planes along the length of the cavity. Figure 17.16 shows 
the evolution of the transverse and electronic efficiencies along the cavity. Note that 
the maximum transverse efficiency is close to the values at the normal operating 
point in Figures 17.11 and 17.12.

The non- linear model described above gives results which are useful for explor-
ing the initial design of a gyrotron. Its chief  limitation lies in the assumption of 
a Gaussian standing- wave field in the cavity. In practice the field usually differs 
appreciably from the Gaussian profile at the output end of the cavity. In this region 
the wave becomes a travelling wave so that the phase is no longer constant [10, 33]. 
To get more accurate results it is necessary to find a self- consistent solution for the 
RF fields and the electron dynamics [12, 27].

Table 17.2: Normalised operating parameters of a 140 
GHz CW gyrotron oscillator [31]

Start- up Operating

∆ 0.35 0.49

µ 13.0 11.1

F 0.090 0.103

I 0.019 0.020

Ist 0.007 0.028

Figure 17.14: Phase of sample electrons plotted against axial position, normalised to the 
length of the cavity, for a 1 MW, 140 GHz CW gyrotron.
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17.3.3 Design of Gyrotron Oscillators

The design of gyrotrons is discussed in detail in the literature and only the principal 
points are considered here [10, 12, 29, 34, 35]. An example of a design study for a 
high power gyrotron can be found in [36] and a detailed description of the develop-
ment of a 1 MW CW, 140 GHz, gyrotron is given in [31, 37, 38].

Factors which are important in the design of a gyrotron are ohmic heating of 
the cavity walls and stability of the operating mode. The power handling capabil-
ity of the output window, which used to be a constraint, is of less concern fol-
lowing the adoption of CVD diamond for windows. Gyrotrons are typically 
designed and operated with parameters in the high efficiency region. It can be 
seen, from Figures  17.11 and 17.12 that this corresponds to a detuning param-
eter ∆  0 45 0 55. .−  and a cavity length parameter µ  15 20− . This lies in the hard 

Figure 17.15: Phases and radial positions of sample electrons at equally- spaced planes  
( z1 = z/Lc ) within the cavity of a 1 MW, 140 GHz CW gyrotron.

Figure 17.16: Evolution of the transverse and electronic efficiencies plotted against axial 
position, normalised to the length of the cavity, for a 1 MW, 140 GHz CW gyrotron.
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excitation region and programmed voltage rise during start- up must be used to 
access the operating point. The choice of operating point is constrained by a num-
ber of factors, especially the average ohmic power density on the cavity walls and 
the external (diffractive) Q [29]. The average power density should be less than 
2 2kW cm− . The external Q has been shown to be proportional to L λ( )2

 for power 
extraction from the end of the cavity. Thus, reducing the power density on the walls 
by increasing the length of the cavity leads to a reduction in the circuit efficiency as 
more power is trapped within the cavity.

Because the operation of  a gyrotron depends upon the resonance between the 
cyclotron frequency and a resonant frequency of  the cavity it is possible to design 
tubes which employ high- order cavity modes, while still achieving stable single- 
mode operation. It is found that a large- amplitude mode suppresses its neigh-
bours so that single- frequency operation is possible, even when mode density is 
high. Symmetric modes TE n0( ) have low wall losses and require small cavity radii. 
Whispering- gallery modes TE m m pm p, ; 1 and >( ) have superior mode stability 
and are preferred for the highest power devices. It can be shown that νmp m2 2−( ) 
is a measure of  the stored energy in a cavity, and it is desirable for this parameter 
to be as large as possible. However, as the mode numbers are increased, the dens-
ity of  modes increases, leading to problems of  mode selection. It is also found 
that the external Q increases, producing a decrease in the circuit efficiency. For 
the 1 MW tube considered above νmp m2 2 53− =  [31]. The excitation of  possible 
competing modes can be examined by plotting curves of  their starting currents 
against magnetic field. It is desirable for the operating point to be in a region rela-
tively free from competing modes and for it to have the lowest starting current.

The choice of beam voltage and current depends upon the overall efficiency 
anticipated. The optimum beam radius for operation in the first cyclotron har-
monic is given from (17.44) by

 r
x

x
a xm

m p
m0

1 1
1 1 2

= =±
±

,

,
, ,

λ
π

 (17.58)

where the plus and minus signs refer to the direction of rotation of the wave [36]. In 
short- pulse tubes it is necessary to consider the space- charge potential depression 
in the beam and the limit which that sets on the maximum beam current. The volt-
age depression for a thin hollow beam is given by [36]

 ∆ ΩV
I a

r
≈ ×







60 0

0β


ln . (17.59)

If  the beam thickness is too big, the variation in space- charge potential produces 
variations in γ , in the detuning parameter, and in F, so that η⊥ cannot be optimised 
for all the electrons. Finally, it also increases the risk of multimode operation. Since 
energy is only extracted from the azimuthal motion of the electrons the transverse 
efficiency is reduced as shown by (17.50). The ratio of transverse to longitudinal 
velocity is generally chosen to lie in the range 1 1 5< <α .  to achieve good electronic 
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efficiency. It is desirable for the velocity spread in the electron beam to be as small 
as possible. However, though an RMS spread of 6% in the transverse velocity has 
little effect on efficiency, a10% spread causes an efficiency drop of the order of 20%. 
A 10% spread in the electron energy was found to cause a 50% drop in efficiency 
[12]. The electron beam in a gyrotron is usually provided by a magnetron injection 
gun with a temperature- limited cathode. This permits independent control of the 
beam current. The development of the gun relies heavily on computer modelling to 
achieve the required performance.

Figure 17.17 shows alternative output coupling methods used in gyrotrons. In 
both cases the electron beam is compressed as it leaves the electron gun until it 
reaches a point where the surrounding waveguide is cut off  at the intended operat-
ing frequency. Care is taken to suppress parasitic oscillations in this region [34]. 
The diameter of the waveguide is increased until it reaches the start of the cav-
ity. It is normally constant along the length of the cavity but variations are some-
times used to increase mode stability. At the end of the cavity there is an increasing 
taper so that the higher-order mode employed can propagate downstream. Because 
discontinuities in over- moded waveguides can cause unwanted mode conversion, 
the junctions between the cavity and the tapers at each end are made gradual to 
minimise mode conversion [10, 34, 39]. Early gyrotrons operating in TE n0  modes 

Figure 17.17: Gyrotron output coupling arrangements: (a) over-moded circular waveguide, 
and (b) quasi- optical mode converter
(copyright 2014, IEEE, reproduced, with permission, from [34]).
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employed the output coupling scheme, shown in Figure 17.17(a), in which the col-
lector is a section of over- moded waveguide long enough for all the electrons to 
be collected before the output window is reached. External converters are then 
used to convert the unpolarised output mode into a linearly polarised plane wave. 
Modern high power gyrotrons employ high-order whispering- gallery modes which 
cannot be converted using conventional waveguide mode converters. Instead, the 
mode is converted into the fundamental, Gaussian, free space mode TEM0 0,( ) by 
an asymmetrical waveguide launcher and an arrangement of mirrors, as shown in 
Figure 17.17(b). This is known as a quasi- optical mode converter. The RF win-
dow is then on the side of the tube, and the spent beam expands into a collector, 
which can have a large surface area. This is possible because the conflict between 
the requirements of the electron collector, and of the output coupler, has been 
removed. The overall efficiency of the tube can be increased by collector depression 
[34]. In either case it is important that the spent electrons are collected on the side 
of the cylindrical collector and do not impinge on the window. A detailed descrip-
tion of the design of the collector for a high power gyrotron is to be found in [40]. 
For information about the design of depressed collectors for gyrotrons see [41– 44].

It is difficult to extend the operation of conventional whispering- gallery mode 
gyrotrons to higher powers and frequencies because the maximum average power 
dissipated in the walls of the cavity is determined by the cooling technology avail-
able. In theory the average thermal loading can be reduced by going to even higher 
radial mode indices, but there are then severe problems with mode competition. 
The use of a coaxial cavity offers a solution to this problem because some of the 
possible modes are short- circuited by the inner conductor so that the total number 
of modes is reduced. The modes used are TEm p,  modes, with m p≈ 2 , that are found 
to give lower ohmic losses. Further information about coaxial gyrotrons is to be 
found in [45– 47].

The need to provide a higher magnetic field as the frequency increases can be 
offset by working at harmonics of the cyclotron frequency. Theoretical and experi-
mental studies have shown that useful efficiencies should be attainable even at quite 
high harmonics [28, 33]. The difficulty is, again, that of mode selection because 
of the possibility that modes involving lower-order harmonics will be excited [35]. 
This means that, in practice, it is difficult to operate a conventional gyrotron above 
the second harmonic. One solution to this problem is to employ an electron beam 
in which the guiding centres lie on the axis of the resonator so that electron orbits 
encircle the axis. The result is known as a Large Orbit Gyrotron in which only co- 
rotating modes whose azimuthal indices are equal to the harmonic number can be 
excited m s=( ) [35, 48, 49]. The number of possible modes is then greatly reduced. 
In this way it has been possible to generate 10 to 20 kW at 410 GHz using the fifth 
cyclotron harmonic [14]. A further possibility is to replace the cylindrical cavity by 
one in which the wave is trapped between a pair of opposed, curved mirrors [50, 
51]. The result is a TE p1,  mode which can be considered as a generalisation of the 
modes in a cylindrical resonator which has been divided into two halves by axial 
cuts. This resembles the kind of open resonator used in lasers [52– 54]. Tubes of this 
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kind, known as Quasi- Optical Gyrotrons, do not appear to have progressed beyond 
the experimental stage.

17.3.4 Cyclotron Auto- Resonance Masers

A way of achieving high frequency operation without a very high magnetic field is 
the Cyclotron Auto- resonance Maser (CARM) which operates at a point such as A 
in Figure 17.18. The frequency at this point is well above both the cut- off  frequency 
of the guide and the cyclotron frequency. The interaction is convective and high 
efficiency can be achieved. However it is very sensitive to the velocity spread in the 
beam if  the full theoretical efficiency is to be obtained [10, 55].

17.3.5 Tuneable Gyrotrons

The frequency of oscillation of a gyrotron oscillator is very close to the cut- off  
frequency of the cavity mode selected. Some tuning is possible by changing the 
magnetic field to excite different cavity modes. Step- tuned gyrotrons with power 
outputs up to 100 W in the frequency range 75– 600 GHz have been developed for 
plasma diagnostics and the study of nonlinear effects in materials research [56– 59]. 
These tubes employ both first and second harmonic cyclotron resonances. Smooth 
tuning over a frequency range has been achieved by excitation of successive axial 
modes. Power of the order of a few watts has been generated over a range of more 
than 1 GHz at 460 GHz [33, 60]. If  the operating point is moved into the backward- 
wave region, as shown at B in Figure 17.18, the interaction is non- convective as in 

Figure 17.18: Operating points for cyclotron auto- resonance masers (A), and gyro- backward- 
wave oscillators (B).
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a conventional backward- wave oscillator. Smooth variation of the frequency of 
operation can be achieved by changing either the beam velocity, or the magnetic 
field. The frequency of oscillation is below the cyclotron frequency so that a high 
magnetic field is required for high frequency operation [10, 61– 63].

17.4 Gyro- Amplifiers

We saw in Section 17.2 that the interaction between the electron beam and the elec-
tromagnetic wave takes the form of a convective instability when the beam current 
is below the threshold value for oscillation. The dispersion diagram in Figure 17.5 
bears a strong resemblance to that for a TWT (see Figure 11.19). It is therefore pos-
sible to build gyrotron amplifiers which are analogous to klystrons and TWTs. The 
development of these tubes is more difficult than the development of oscillators 
and only a few commercial devices exist. It is essential that they are stable in the 
absence of RF input and the development of overmoded input couplers is chal-
lenging. They must also achieve performance defined by factors such as bandwidth, 
gain, phase stability, and noise which are not relevant for oscillators [7, 12]. The 
principal application of these tubes is in radar at 35 and 94 GHz where the attenu-
ation of waves passing through the atmosphere is low.

In a gyro- klystron the electron beam passes through a series of cavities separated 
by cut- off drift tubes as shown in Figure 17.19(a). A practical, five- cavity, tube pro-
duced a peak output power of 100 kW at 94 GHz with a 3 dB bandwidth of 700 
MHz, saturated gain of 33 dB and efficiency of about 25% at 10% duty cycle [64– 66]. 
In a gyro- TWA the operating point is moved further above the cut- off frequency of 
the waveguide so that the growing wave has a group velocity which is not close to zero. 

Figure 17.19: Arrangement of gyro- amplifiers: (a) gyro- klystron and (b) gyro- TWA 
(copyright1997, IEEE, reproduced, with permission, from [12]).
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Figure 17.19(b) shows a schematic view of a gyro- TWA. Practical tubes employing a 
helically corrugated waveguide have been developed [67– 69]. A recent example gen-
erated more than 1 kW of continuous power in the range 30– 31 GHz, and efficiency 
greater than 5% [70]. In general, like their linear- beam counterparts, gyro- klystrons 
have the highest efficiency and gyro- TWAs the greatest bandwidth [12].

17.5 Peniotrons

A different interaction between a fast wave and a periodic electron beam can exist 
where the RF electric field is not uniform, as shown in Figure 17.20. It is not neces-
sary for the electrons to have relativistic velocities, and the cyclotron frequency is 
constant. Let us suppose that the signal frequency is twice the cyclotron frequency. 
An electron which experiences a retarding field at A moves in an orbit with smaller 
radius, as shown by the inner dashed circle. After half  a cyclotron period it reaches 
B where it encounters an accelerating field. However, because the orbit is smaller 
than before, this field is weaker than the retarding field at A. There is therefore a 
net transfer of energy from the electron to the field. Similarly, an electron which is 
accelerated by the field at A moves in a larger orbit and encounters a retarding field 
at C that is stronger than the field at A. Once again there is a net transfer of energy 
to the RF wave. This process continues in successive cyclotron periods so that the 
guiding centres drift away from the original centre of the beam. A device operating 
on this principle is known as a Peniotron.

The peniotron is a cyclotron resonance device, like the gyrotron, but with the 
important difference that energy is taken from all the electrons, and no phase 
bunching takes place. Thus, it is possible for the interaction to be highly efficient. 
Also, the phase of the RF field seen by an electron varies by 2π as it moves once 
around its orbit. Thus the resonant condition becomes

 ω β πt z s− = ±( )1 2 , (17.60)

Figure 17.20: Principle of operation of the peniotron.
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which may be compared with the corresponding equation for the gyrotron (17.11). 
Hence, substituting for t and z using (17.9) and (17.10) we obtain

 ω β ω− = ±( )u sz c1 . (17.61)

Then, by analogy with (17.16) we expect the small- signal dispersion relation to take 
the form

 ω β β ω β ω ω β2 2 2 2 2
1− +( )( ) − − ±( )( ) = ( )c u s K fm n z c, , . (17.62)

Hence the dispersion diagram for a peniotron is identical to that for a gyrotron, 
shown in Figure 17.2 and the gyrotron and peniotron mechanisms may compete 
with one another in the same device [71].

The original experimental peniotron employed an axis- encircling hollow beam 
within a double- ridged waveguide propagating the TE10 mode [72– 75]. More recent 
tubes have employed cavities with longitudinal vanes which resemble unstrapped 
magnetron cavities. This type of cavity is more suited to high harmonic peniotron 
operation because it is smaller, permitting lower voltage operation, and because it 
provides better mode selection. Large signal modelling of both gyrotron and peni-
otron interactions in a magnetron type cavity show that the fast peniotron interac-
tion (the positive sign in (17.61)) has very poor efficiency. Very good efficiency is 
possible for the slow peniotron harmonics s s−( ) −( )( )1 2,   but it decreases rapidly 
with increasing spread in the positions of the guiding centres [76, 77]. The peniotron 
is therefore chiefly of interest because of its potential for delivering high efficiency 
at high harmonic numbers and, therefore, for high- frequency operation without the 
need for a superconducting magnet. It has been the subject of a number of theoreti-
cal and experimental studies (see for example: [78– 84]) but the experimental results 
were generally disappointing. A 35 GHz third harmonic oscillator, which gener-
ated 6.9 kW of RF output power, demonstrated the achievement of a theoretical 
electronic efficiency of 75% but the conversion efficiency was only 39% because of 
high circuit losses [83]. The same paper reported results for operation in the tenth 
cyclotron harmonic at 100 GHz. The highest electronic conversion efficiency was 
2.3% at an output power of 160 W, corresponding to an electronic efficiency of 6%. 
At the time of writing these seem to have been the best results obtained.

17.6 Ubitrons (Free Electron Lasers)

The properties of an electron beam can also be made periodic by passing it through 
a periodic magnetic field, as shown in Figure 17.21 [85]. Figure 17.21(a) shows a 
sheet electron beam within a rectangular waveguide. The periodic transverse mag-
netic field causes the electron trajectories to follow undulating paths in the y- z plane. 
This motion can be coupled to the RF electric field of the TE10 mode of the wave-
guide. A microwave tube employing this principle is known as an Ubitron (undulat-
ing beam interaction) [86]. Figures 17.21(b) and (c) show alternative arrangements 
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of such a tube where the beam is focused by a periodic permanent magnet field. The 
arrangement of electro-  or permanent magnets to produce an undulating beam is 
known as a wiggler (or undulator).

If  space- charge forces are ignored, the propagation constants of the space- 
harmonics of the waves on the beam are given by

 β ω νπ
λν = ±

uz w

2
, (17.63)

where λw is the wavelength of the wiggler and ν = 0 1 2, , , etc. The strongest inter-
action with the field of the waveguide is that of the ν = −1 space harmonic for which 
the dispersion equation takes the form

 ω β β ω β β ω β2 2 2 2 2
− +( )( ) − +( )( ) = ( )c u K fm n w z, , , (17.64)

where β π λw w= 2 . The dispersion diagram is then, as shown in Figure 17.22, where 
βw and uz have been chosen so that the space- harmonic line is tangential to the wave-
guide dispersion curve. It can be shown that the condition for tangential operation is

 β ωw m n
zu c

= −, .
1 1

2 2
 (17.65)

Figure 17.21: Arrangements of ubitrons: (a) planar, (b) coaxial and (c) cylindrical
(copyright 1960, IRE, reproduced, with permission, from [86]).
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The magnitude of the term under the square root is set by the beam velocity. The fre-
quency of operation is slightly above the cut- off  frequency of the waveguide mode 
ωm n,( ), so the wavelength of the wiggler decreases as the frequency increases. The 

maximum frequency of operation at a given voltage is determined by the minimum 
practical period of the wiggler. Since the field of the wiggler is essentially governed 
by Laplace’s equation, the transverse distance between the pole- pieces needs to be 
less than their axial separation, in order to maintain a high transverse component 
of the magnetic field. Thus, the transverse space available for the beam decreases 
as the frequency increases. For example, at a beam voltage of 80 kV u cz  0 5.( ), 
and a cut- off  frequency of 50 GHz, it is found that λw  3 5. mm. This is probably 
around the minimum practical value. Operation at higher frequencies requires the 
use of higher beam voltages.

The first experimental ubitron used the arrangement in Figure  17.21(a) and 
achieved a maximum gain of 13 dB at about 2.6 GHz with a beam voltage of 135 
kV [86]. The peak output power was 1.2 MW at a beam voltage of 170 kV with 
an efficiency of 10%. Subsequent tubes, using the arrangement in Figure 17.21(c), 
delivered 1.65 MW pk at 15.75 GHz with a solid beam, and 150 kW pk at 54 GHz 
with a hollow beam [85]. Another tube gave a peak output power of 4.2 MW at 
16.6 GHz with 17.5% efficiency, 29 dB gain and 22% instantaneous bandwidth [87]. 
Ubitrons tend to suffer from poor beam transmission, problems with excitation of 
lower modes, and high sensitivity to changes in the beam voltage and the magnetic 
field. Information about the design, and in some cases, the performance of a num-
ber of other tubes can be found in [88– 92].

Figure 17.22: Uncoupled dispersion diagram for an ubitron.
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Ubitrons work at relatively low velocities where the interaction between the 
electrons and the waves is analogous to that in a TWT. It is interesting to note that 
computer modelling of  this interaction shows axial bunching of  the beam similar 
to that in a TWT. If  the velocities of  the electrons approach the speed of  light, 
then they lose appreciable energy by radiation, as a result of  transverse accelera-
tion within the wiggler. When this process takes place in a strong RF field then the 
radiation emitted is phase locked to that field and the device becomes a coherent 
power source. A device which works in this way is known as a Free Electron Laser 
(FEL). However, despite its name, the FEL is not a quantum device because the 
electrons are free, and therefore do not have quantised energies. The operation of 
an FEL can be explained entirely by classical theory. In an FEL the beam is pro-
vided by an accelerator, and coherent radiation can be generated at wavelengths 
from the infra- red to the X- ray region of  the electromagnetic spectrum. These 
devices lie outside the scope of  this book but further information can be found 
in [4, 6, 8].
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18 Emission and Breakdown 
Phenomena

18.1 Introduction

This chapter reviews the variety of emission and breakdown phenomena which 
occur, intentionally or unintentionally, in vacuum tubes. The underlying physics 
of each process is summarised but more specialised texts (e.g. [1]) should be con-
sulted for the details. In order for electrons to be released from a solid surface into 
a vacuum they must acquire sufficient energy to overcome a potential barrier. This 
energy can be provided by heat, by the impact of electrons or ions, or by irradi-
ation by short- wavelength light. The nature of the potential barrier depends upon 
the material and also upon the external electric field. These processes are import-
ant for the cathode, which is the source of the electrons employed in a tube, and 
also because of their role in initiating DC and RF voltage breakdown in vacuum. 
Secondary electrons, liberated by the impact of primary electrons, affect the per-
formance of multi- element depressed collectors (see Chapter 10). They also play 
an important role in crossed- field tubes (see Chapters 15 and 16), and in sustaining 
multipactor discharges (Section 18.8). Outside a tube it is important to avoid break-
down across high voltage insulators, and in waveguides. Bombardment of solid 
surfaces by high energy electrons leads to the production of X- rays which can be a 
hazard in the operation of high power tubes.

18.2 Emission of Electrons from Metal Surfaces

The discussion of the emission of electrons from metals in a vacuum begins with 
a review of the free electron model of a metal [1]. The conduction electrons, which 
are free to move within the metal, are considered to occupy a large number of 
closely spaced, quantised energy states, within a potential well. According to the 
Pauli Exclusion Principle no two electrons can have the same quantum numbers 
(including spin). Thus, each state can contain at most two electrons with oppos-
ing spin. At the absolute zero of temperature T =( )0 K  the electrons fill the lowest 
possible states up to a maximum energy known as the Fermi Energy EF( ). All the 
states above the Fermi Energy are then empty. If  the electron energy of the bottom 
of the potential well is taken to be zero, then the Fermi Energy is of the order of a 
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few electron volts for typical metals. The Fermi Energy lies somewhat below that 
of stationary free electrons outside the metal Es( ), as shown in Figure 18.1. This 
energy difference, known as the Work Function φ( ), depends upon the metal. It is 
typically in the range 2 to 6 eV but is strongly dependent upon the condition of the 
surface, including any contamination. Tables of work functions for metals can be 
found in [2, 3].

In the free electron model the electrons are assumed to be trapped in a rect-
angular potential well, as shown by the dashed line in Figure 18.1. If  an electron 
escapes from the well, and its distance from the surface x( ) is large compared with 
the atomic spacing, it moves in the potential of a positive image charge. This poten-
tial, referred to the potential at the surface of the metal in the absence of emission, 
is given by

 V
e

x
=

16 0πε
. (18.1)

The energy of the electron in this potential is shown by the solid curve in Figure 18.1. 
At a distance of 1 µm (3000– 4000 atomic spacings) from the surface the potential 
is 0.36 mV below the external potential. This model does not hold very close to the 
surface where the atomic structure becomes important.

In general, the probability that a quantum state with energy E is occupied is given 
by the Fermi- Dirac distribution function

 p E
E E

kT
F

( ) =
+ −





1

1 exp
, (18.2)

where T is the absolute temperature and k is Boltzmann’s constant 
k = ×( )−1 3806 10 23. J K 1− . At T = 0 the function defined by (18.2) has the property 

that p E E EF( ) = <1 when  and p E E EF( ) = >0 when  so that all the energy states 
below the Fermi energy are filled, and all those above it are empty, as required. The 
density of states is of the order of 1023 cm− 3 so that, at normal temperatures, the 
energy difference between adjacent states is small compared with thermal energies. 
As the temperature rises, some of the electrons have sufficient energy to move from 

Figure 18.1: Free electron model of a metal.
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states just below the Fermi energy to states just above it. Figure 18.2 shows the 
probability of occupation of states at 300 °K and 1300 °K for barium  EF =( )3 8. eV .

If  electrons are to escape from a metal, then the difference between their ener-
gies and the Fermi energy must exceed the work function. The energy required to 
enable electrons to escape may be supplied thermally, by photons, or by electron or 
ion bombardment. The height of the potential barrier can be reduced by a strong 
external electric field. These processes are discussed in the sections which follow.

18.2.1 Thermionic Emission

We have seen that work functions are typically of the order of a few electron volts. 
It is therefore possible to approximate (18.2) for energies of the order of EF + φ by

 p E
E E

kT
F( ) = −

−





exp , (18.3)

because E E kTF−  . At 17 C for example kT = 0 025. eV. The probability that 
an electron has just enough energy to escape from the metal is exp −( )φ kT . For 
example, the probability that an electron can escape from the surface of tungsten 
φ =( )4 54. eV  is 2 10 76× −  at 300 °K but is 4 10 17× −  at 1300 °K. Since the density 

of conduction electrons is of the order of 1023 cm− 3 it can be seen that no emis-
sion is possible at 300 °K but that appreciable emission may occur at the higher 
temperature.

The current density of thermionic emission is governed by the Richardson- 
Dushman equation [1]

 J A T kT= −( )0
2 exp .φ  (18.4)

Figure 18.2: Probability of occupation of states given by the Fermi- Dirac distribution 
function at 300 °K and 1300 °K when EF = 3 8. eV.
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The theoretical value of the constant A0 is

 A
m ek
h0

0
2

3

4
120= =

π
A cm K2 2− −  (18.5)

where h is Planck’s constant h = ×( )−6 626 10 34. J s . The probability that an elec-
tron will be reflected at the surface is negligible because of the smooth variation of 
potential outside the metal (see Figure 18.1). The work functions of metals depend 
upon temperature, and this can be modelled by rewriting (18.4) as

 J A T T kT= − +( )0
2 exp ,φ α  (18.6)

where α is the temperature coefficient of the work function. Taking the logarithm 
of (18.6) we obtain

 ln ln ln ,
J

T
A

k kT
A

kTR2 0






= − − = −
α φ φ  (18.7)

so that a plot of ln J T 2( ) against 1 T  is a straight line from which the constants AR 
and φ can be determined. The current density measured is affected by a number of 
factors:

• The apparent work function increases if  there is negative space- charge close to 
the surface. This is the case with space- charge limited emission when a virtual 
cathode is formed (see Section 5.3).

• The apparent work function decreases with increasing external field strength (see 
Section 18.2.2).

• The value of φ depends of the crystallographic plane of the emitting surface
• The work function is strongly affected by small quantities of adsorbed gases [4].
• The effective area of the emitting surface is not normally equal to the actual 

surface area.

Thus considerable care must be exercised in making experimental measurements 
of the properties of thermionic emitting surfaces. Nevertheless it is found that the 
properties of nearly all surfaces can be represented by (18.4) when A0 is replaced 
by values of AR determined by experiment [2, 5]. Practical thermionic cathodes are 
discussed in Section 18.5.

18.2.2 Field- Enhanced Emission (the Schottky Effect)

When the emitting surface forms the cathode of a plane- parallel diode then the 
potential outside the metal is given by

 V
e

x
x
d

Va= +
16 0πε

, (18.8)
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where d is the diode spacing and Va is the anode voltage relative to the cathode, as 
shown by the solid line in Figure 18.3. The work function is then reduced by

 ∆φ
πε

=
eV

d
a

4 0

. (18.9)

It should be noted that the change in the work function has been exaggerated in 
Figure 18.3 for clarity. In practice the change is small. If the electric field is 1 MV m− 1,  
for example, then ∆φ = 0 038. V. For field- enhanced emission (18.7) becomes

 ln ln .
J

T
A

kT
e

kT
eV

dR
a

2
04







= − +
φ

πε
 (18.10)

A plot of ln J( ) against Va  at constant temperature gives a straight line for voltages 
greater than those for which the emission is space- charge limited. Extrapolation of 
the line back to Va = 0 gives the zero field current (the saturation current) at that 
temperature. If  the measurements are repeated at different temperatures then the 
plot of (18.7) gives the constants AR and φ [6].

18.2.3 Field Emission

When the external electric field is greater than about 5 MV mm 1−  it is possible for 
electrons to pass through the potential barrier by quantum mechanical tunnelling 
without the need for the surface to be heated (see Figure 18.4) [7, 8]. The pro-
cess of  tunnelling is analogous to the attenuation of  waves as they pass through a 
short section of  cut- off  waveguide. Field emission, typically, takes place at sharp 
points, edges, and surface irregularities, where the electric field is enhanced by the 
geometry. A special case which is important in vacuum tubes is triple point emis-
sion. This occurs at the intersection between a metallic surface, a dielectric surface 
and vacuum where strong enhancement of  the electric field is produced by the 
geometry [9].

Figure 18.3: Reduction in the effective work function by an external electric field (the 
Schottky effect).
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The emitted current density is given by the Fowler- Nordheim equation in the 
form [8]

 J aV b V= −( )2 exp , (18.11)

where J is the current density in A cm−2, V is the potential difference between the 
emitting surface and a distant anode, and a is defined by

 a ≅ ×








−1 5 10

10 46
2

. exp
.

,
β
φ φ

 (18.12)

where φ is the work function in eV, b is defined by

 b ≅ ×6 44 107

3
2

. .
φ
β

 (18.13)

β is a geometric factor which depends on the electrode configuration, such that 
the electric field over the emitting area is E V= β . For a given material and geometry 
the parameters a and b are constants and a plot of ln J V 2( ) against 1 V  (a Fowler- 
Nordheim plot) should be a straight line. It is found that this is generally the case 
over many orders of magnitude of current. Changes in the operating conditions 
(temperature, residual gas composition and pressure, and the current being drawn) 
can produce large changes in the plot. These changes are usually due to changes in 
the surface conditions and in the shape of the emitter. They may, or may not, be 
reversible.

18.2.4 Photo- Electric Emission

The energy of a photon is hc λ, where λ is its wavelength and h is Planck’s constant. 
If  hc eλ φ>  then an electron may be ejected from the surface with kinetic energy 
given by

 1
2 0

2m u
hc

e= −
λ

φ. (18.14)

Figure 18.4: Cold field emission of electrons by tunnelling through the energy barrier.
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Thus, for a given material, the maximum wavelength of light for which photo- 
electric emission is possible is determined by the work function [2, 10]. The energies 
of photons in the visible region of the spectrum are in the range 1.6 to 3.3 eV. The 
work functions of metals are mostly greater than 4 eV so it is necessary to irradiate 
them with ultra- violet light to obtain photo- electric emission. The optical power 
incident on the surface is

 P
n hc

opt
p=
λ

, (18.15)

where np is the number of photons per second. The ratio of the number of electrons 
emitted to the number of incident photons is known as the quantum efficiency ηq( ) 
of  the surface. The electron current is then

 I n e P
e

hcp q opt q= = 





η η λ
. (18.16)

The quantum efficiencies of clean metal surfaces are of the order of 10– 4 to 10– 5 but 
values as high as 0.3 have been obtained from compound surfaces.

In order to get an electron current high enough to be useful in an electron tube it 
is necessary to illuminate the surface with a high power laser. Since the light from 
the laser can be in very short pulses it is possible to produce a bunched stream 
of electrons. Photo- cathodes are used as electron sources in particle accelerators 
but are not yet suitable for use in microwave tubes. Unwanted photo- electric emis-
sion can occur in a microwave tube as a result of the bombardment of surfaces by  
X- rays produced within the tube (see Section 18.4). Further information on photo- 
emission can be found in [10– 13].

18.3 Secondary Electron Emission

When electrons strike a solid surface in a vacuum they may be reflected elastically, 
or penetrate the surface and exchange energy with the electrons in the material [1]. 
An incident electron entering a solid material makes a series of collisions losing 
energy of about 30 eV each time. The electrons which gain energy through colli-
sions may make further collisions so that a cascade of secondary electrons moves 
through the material as a result of the impact of a primary electron. One or more 
secondary electrons may reach the surface and escape. In addition the primary elec-
tron may re- emerge with reduced energy. Secondary electrons can also be generated 
by ion bombardment [14]. Secondary electron emission is possible from metals, and 
from insulating and semi- conducting materials. The ways in which the phenom-
enon is important in vacuum tubes include:

• the influence on the performance of a magnetron of the relative proportions of 
primary and secondary emission from the cathode (see Chapter 15);
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• the use of secondary electron emission from cold cathodes in some crossed- field 
amplifiers (CFAs) (see Section 16.2.2);

• the effect of secondary electron emission on the performance of multi- element 
depressed collectors (see Section 10.4);

• voltage breakdown initiated by secondary emission from the surface of insulators 
(see Section 18.7.3);

• resonant RF discharges (multipactor) are sustained by the emission of secondary 
electrons (see Section 18.8).

Figure 18.5 shows the energy distribution of electrons emitted from a gold surface 
for three different primary energies [15]. This behaviour is typical of that found 
with other surfaces [16– 18]. For incident energies greater than 100 eV it is conveni-
ent to divide the electrons emitted into three categories:

• elastically reflected primaries;
• inelastically reflected (re- diffused) primaries (energies > 50 eV);
• true secondary electrons (energies < 50 eV).

The energy of the boundary between the second and third groups is arbitrary, but 
50 eV is commonly used in the literature [18– 20]. The total number of true second-
ary electrons emitted may exceed the number of incident primary electrons. For 
primary energies greater than 100 eV the energy distribution of the true secondary 
electrons is essentially independent of the primary energy [20]. It is characterised 
by the most probable energy Esm( ), and full width at half  maximum (HW), of the 
distribution, as shown in Figure 18.5. Typically, for metals, 1 5eV eV< <Esm  and 
3 15eV eV< <HW . The full width at half  maximum is much smaller for insulators 
than for metals, and it depends strongly on very thin surface layers. It is found that 
the angular distribution of true secondary electrons from polycrystalline metals is 
independent of the angle of incidence of the primary electron, to a good approxi-
mation, and that it is proportional to the cosine of the angle between the direction 
of emission and the normal.

The fraction of elastically reflected electrons falls rapidly with increasing primary 
energy, as shown, for oxidised beryllium, in Figure 18.6. However, at primary ener-
gies greater than 50 keV the fraction of all (elastic and inelastic) reflected primaries 
starts to increase again [1]. Note that the absence of re- diffused electrons below a 
primary energy of 50 eV in Figure 18.6 is a consequence of the definition of sec-
ondary electrons. For primary energies greater than 100 eV the true secondaries are 
the dominant group [15, 17, 21, 22]. The secondary electrons that are able to escape 
from the surface are generated in a very thin surface layer which is of the order of 
5 nm in metals, and 75 nm in insulators. Beyond that depth the secondary emission 
no longer depends upon the properties of the bulk material [20].

The secondary electron emission coefficient (secondary electron yield) of a mater-
ial δ( ) is the ratio of the number of secondary electrons emitted to the number of 
incident primary electrons. For all materials it is found that the dependence of δ on 
the energy of normally incident primary electrons can be represented approximately 
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by a universal curve having the shape shown in Figure 18.7 for θi = 0. This curve 
is defined by the maximum value of the secondary emission coefficient δm( ) and 
the primary electron energy at which it occurs Epm( ). The value of Epm usually 
lies between 200 and 1000 V [23, 24]. When the angle of incidence of the primary 
electrons is not zero it is found that the coefficient of secondary electron emission 
increases, and the peak of the curve moves to higher primary energies, as shown in 
Figure 18.7. The effect of increasing the angle of incidence is that the primary elec-
trons stay closer to the surface for longer so that the secondary electrons generated 
can escape more readily.

Figure 18.6: Fraction of elastically- reflected, rediffused and secondary electrons as a function 
of primary electron energy for oxidised beryllium 
(copyright 1994, IEEE, reproduced, with permission, from [17]).

Figure 18.5: Typical distributions of the energies of secondary and reflected primary 
electrons from a gold surface for various primary electron energies 
(copyright1996, Elsevier, reproduced, with permission, from [15]).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.019
https://www.cambridge.org/core


Secondary Electron Emission 703

The secondary electron emission properties of materials depend upon the prep-
aration and conditioning of the surfaces, and upon any surface layers present [25, 
26]. The preparation may include cleaning, coating, and texturing of the surface 
before assembly. Conditioning may include heating, and exposure to ion, or elec-
tron, bombardment after evacuation of the tube. In addition to surface layers 
added deliberately, the surface may be contaminated or oxidised. The contamin-
ation of the surface may occur from exposure to air before the tube is evacuated. 
After evacuation there may be contamination from residual gases or evaporation of 
materials such as barium (from the cathode). For this reason it is necessary to treat 
the extensive data in the literature with some caution. For example, a comparison 
of measured data for aluminium from 13 different sources showed consistent values 
of the Epm  400eV( ), but values of δm ranging from 0.5 to 3.3 [23]. The first figure 
may be the coefficient for a clean surface, while higher figures probably represent 
the effects of various thicknesses of oxide layer. A study of the properties of tech-
nical copper found δm ~ .2 3 for material as received from the supplier. This figure 
was reduced to about 1.8 by baking the sample to 300 °C, and reduced to about 1.4 
after exposure to an argon glow discharge [25]. The secondary electron emission 
coefficients of insulators are usually greater than those of metals. However, the 
measurement of secondary emission from insulators is made more complicated by 
the build- up of surface charge. Tables of the secondary electron emission properties 
of pure materials are given in [20, 23, 24, 27], but it should be noted that the fig-
ures given show considerable differences. The properties of some compounds and 
insulators are given in [20, 28]. The conditions under which the measurements of 
secondary electron yield are made usually differ from those existing in a vacuum 
tube. It is therefore difficult to have reliable knowledge of the properties of a surface 
within a tube.

The secondary electron emission coefficient of a surface can be adjusted by the 
choice of material, by the application of surface coatings, and by changing the 

Figure 18.7: Variation of the normalised secondary electron emission coefficient with 
normalised primary electron energy for three different angles of incidence.
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texture of the surface. Where a high secondary electron yield is required, as for the 
cathodes of some crossed- field amplifiers, the surface of a metal may be deliber-
ately oxidised [17, 29]. In most other cases the aim is to reduce secondary emission 
as far as possible. In particular, it is desirable to reduce the possibility of avalanche 
multiplication of the number of electrons by ensuring that the range of primary 
energies for which δ > 1 is as small as possible. This is often achieved by the addition 
of surface coatings such as titanium nitride and diamond- like carbon [30– 32]. An 
alternative approach modifies the surface of the material so that the ability of sec-
ondary electrons to escape from it is reduced. The modification can take the form 
of grooves in the surface which tend to trap the electrons emitted [33]. The emis-
sion of secondary electrons can also be reduced by adding microscopic textures to 
surfaces [34– 36]. Further details of these techniques, and their applications, can be 
found by searching for papers citing those referenced here.

18.3.1 Modelling Secondary Electron Emission

Models of secondary electron emission are needed to represent its effects in mag-
netrons, in multi- element depressed collectors, and in multipactor discharges (see 
Section 18.8). Theoretical studies of secondary electron emission give values of 
δm which bear some resemblance to measured values [37]. But the large scatter in 
the experimental data available makes the validation of the theory uncertain. The 
strong dependence of δm on the nature of the emitting surface means that measured 
values should be used in modelling, if  possible. We have noted that Epm is subject to 
smaller variations so that typical values can be obtained from the literature.

The shape of the curve for normal incidence in Figure 18.7 is much the same 
for all materials and empirical functions have been suggested by many authors [1, 
15, 18, 20, 38, 39]. One approach is based on simple models of the penetration of 
the primary electrons into the material, and the subsequent escape of the second-
ary electrons generated. The results, for normal incidence, can be expressed in the 
form [24]

 δ
δm

x

p

pm

k

m
p

pm

k

e

E

E
x

E

Em
=

−






− −
























−

−
1

1
1

1

exp





, (18.17)

where Ep is the energy of the primary electrons, k is adjusted to fit the curve to 
experimental data and xm is the solution of

 x
k

em
xm= −





−( )1
1

1 . (18.18)

Equation (18.17) is identical to those given by other authors who assumed fixed 
values for k in the range 1.35 to 1.67 [23, 40– 43]. However, the fit to experimen-
tal data can be considerably improved by using k as an adjustable parameter. The 
curves generated by (18.17) in this way give an excellent fit to the best available 
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experimental data for 18 different elements from beryllium to lead [24]. The values 
of k ranged from 1.25 to 1.69. The mean absolute relative error of the fit to experi-
mental data was better than 5% in nearly every case. It seems, therefore, that the 
shape of the curve is not truly universal, as was assumed in earlier work.

An alternative, simpler, equation adopted by Furman and Pivi that appears to 
give a better fit to data for technical materials is [18]

 δ
δm

p pm

p pm

s

s E E

s E E
=

( )
− + ( )1

, (18.19)

where s is a parameter which is chosen to give the best fit to experimental data. The 
value of this parameter was 1.54 for copper, and 1.81 for stainless steel. Figure 18.8 
shows a comparison between experimental results for technical copper taken from 
[25] and curves calculated from (18.17) with k = 1 4. , and (18.19) with s = 1 54. .

When the angle of incidence of the primary electrons is not zero it is found that 
the secondary electron emission curve can be derived from the curve for normal 
incidence. The maximum value of δ, and the primary energy at which it occurs, can 
be expressed in terms of empirical functions of the angle of incidence. Furman and 
Pivi [18] proposed the relations

 δ θ δ θm i m i( ) = ( ) + −( ) 0 1 0 66 1 0 8. cos .  (18.20)

and

 E Epm i pm iθ θ( ) = ( ) + −( ) 0 1 0 7 1. cos . (18.21)

These functions, which apply to the unpolished, polycrystalline surfaces commonly 
found in vacuum tubes, are substituted into (18.19) to give the secondary electron 

Figure 18.8: Normalised secondary electron emission curves for technical copper compared 
with the curves calculated using equations (18.17) and (18.19).
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emission coefficient as a function of the energy of the primary electrons and the 
angle of incidence

 δ
δ θ

θ

θm i

p pm i

p pm i

s

s E E

s E E( ) =
( )( )

− + ( )( )1
. (18.22)

Alternative expressions, given by Vaughan [44], are

 δ θ δ θ
πδm i m s
ik( ) = ( ) +





0 1
2

2

 (18.23)

and

 E E kpm i pm sV
iθ θ
π

( ) = ( ) +





0 1
2

2

, (18.24)

where ksδ and ksV  are constants which depend upon the surface roughness. The 
default value of both constants is unity for normal machined surfaces. The range 
is from zero, for deliberately roughened surfaces, such as textured carbon, up to 2 
for exceptionally smooth, clean, surfaces [44, 45]. The curves given by these two 
equations are close to those from (18.20) and (18.21) if  the constants are set to 1.6 
and 1.9, respectively. The curves in Figure 18.7 were computed using (18.19) and 
(18.22). The effect of surface layers was studied by Yu et al. who were able to show 
agreement with experimental results for layers of silicon dioxide of different thick-
nesses on silicon substrates [46]. In any particular case the model used should, if  
possible, be validated by reference to experimental measurements of the properties 
of the surface. It is also desirable that it should correctly model all three groups of 
electrons leaving the surface in both energy and angular distribution [18, 19].

18.4 X- ray Emission

X- rays are generated whenever electrons with energies greater than about 5 keV 
strike solid surfaces. Tubes which are designed to generate X- rays are outside the 
scope of this book, but X- ray generation is of more general importance because of 
its implications for safety [47]. The rapid deceleration of the electrons as they enter 
the material generates a broad spectrum of brehmsstrahlung (brake radiation) as 
shown in Figure 18.9. The spectrum has a sharp cut- off  at the photon energy eVp( ) 
equal to that of the incident electrons. In addition there are spectral lines, arising 
from transitions between the electron energy levels of atoms within the material. 
The wavelength of X- rays is related to the photon energy  Vp( ) by

 λ =
hc

eVp

. (18.25)
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where h is Planck’s constant. The fraction of the power carried by the electrons that 
is converted into X- rays is given approximately by

 F ZVa= × −7 10 4 , (18.26)

where Z is the atomic number of the target and Va is the accelerating voltage. The 
remainder of the power is dissipated as heat. Thus the X- ray intensity increases 
with increasing electron energy, and with increasing current striking the surface.

When X- rays with energies less than 1 MeV pass through materials they experi-
ence coherent, and incoherent, scattering and photo- electric absorption. Additional 
loss mechanisms apply at higher energies. The intensity of the radiation I( ) as a 
function of depth into the material is given by

 I I x= −( )0 exp ,µ  (18.27)

where I0 is the initial intensity, x is the thickness of the material, and µ is the attenu-
ation coefficient. Equation (18.27) applies to the attenuation of monochromatic  
X- rays incident normally on a plane sheet of material. The attenuation coefficient 
increases rapidly with atomic number. It decreases with increasing photon energy, 
as shown in Figure 18.10, which is based on data from [49]. The absorption edges, at 
which the value of µ is discontinuous, correspond to the lines in the spectra of the 
elements. It can be seen that, at a photon energy of 50 keV, the thickness of copper 
required to produce a given attenuation is about four times that of lead. Similarly 
the thickness of aluminium must be 24 times that of copper. Equation (18.27) can 
also be written

 I I x= −






( )



0 exp ,

µ
ρ

ρ  (18.28)

Figure 18.9: X- ray emission spectrum for a silver target with 40 keV electrons 
(copyright 2017, AMPTEK Inc., reproduced with permission, from [48]).
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where ρ is the density of the material. The parameter µ ρ( ) is the mass attenuation 
coefficient and ρx( ) is the mass per unit area of the sheet of material. This form is 
more convenient for calculations of X- ray shielding. Tables of the mass attenuation 
coefficient as a function of photon energy for many materials are given in [49]. It 
should be noted that in practical cases, it is necessary to consider the spectrum of 
the X- rays, and the geometry of the material, when computing the attenuation [50]. 
The implications of X- ray generation for the safe operation of tubes are discussed 
in Section 20.8.

18.5 Thermionic Cathodes

All the tubes discussed in this book require sources of  electrons for their oper-
ation. In the great majority of  cases this source is a thermionic cathode. The 
cathode is a critical component because failure of  emission is one of  the chief  
causes of  tube failure. According to (18.6) the current density depends upon the 
temperature of  the cathode and the work function of  the surface. The active 
material of  the surface of  the cathode is gradually evaporated at a rate which 
increases with temperature. Thus there is a trade- off  between the current density 
and the life of  the cathode. The normal end of  life of  a tube is determined by the 
failure of  the cathode emission, which is commonly taken to be a reduction of 
10% in the current density [51]. The temperature of  a cathode is normally meas-
ured by optical pyrometry in which the brightness of  the surface is compared 
with that of  the filament of  a standardised lamp. The temperature measured is 
the brightness temperature. This is the temperature at which the radiation from 
a black body is as bright as the cathode. The brightness temperature is always 
lower than the true temperature which must be obtained by applying a conver-
sion formula [6].

Figure 18.10: Comparison between the X- ray attenuation coefficients of lead, copper, and 
aluminium.
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The current which can be obtained from a cathode surface is reduced by:

• Bombardment by positive ions generated by ionisation of  the residual gas in 
the tube. Material is removed from the surface of  the cathode by sputtering 
leading to an increase in the work function. This problem arises if  the residual 
gas pressure in a tube is too high. It is more likely to occur in continuously 
operated tubes, where the ions accumulate in the potential well caused by the 
space- charge in the beam. In pulsed tubes there is less time for the ions to accu-
mulate, and they are dispersed by their space- charge in the intervals between 
the pulses.

• Absorption of oxidising gases such as oxygen, carbon dioxide, and water vapour 
that poison the cathode and increase its work function.

The emitted current density from a damaged cathode can sometimes be restored 
if  the source of damage is removed, but the final current density does not always 
return to the previous level [4, 52, 53].

The life expectancy of the cathode is a major factor in tube design, and manufac-
turers are understandably wary of the premature introduction of new technologies 
until they have been subjected to intensive life testing. An introduction to the main 
types of thermionic cathode is given below. These have been established for many 
years but they are still the subject of research and of an extensive literature. Further 
information about thermionic cathodes can be found in [2, 6, 13, 51, 54– 56].

18.5.1 Metal Emitters

Pure metals have relatively high work functions and they must be operated at high 
temperatures to give useful emission. The metal, in the form of a wire, is heated by 
the passage of an electric current through it. The cathode is, typically, constructed 
in the form of a cage, or a helix. The choice of metals is limited to those which have 
high melting points of which tungsten φ =( )4 54. eV, MP = 3640 K  is the one most 
commonly used. The high operating temperature means that surface contamina-
tions are rapidly evaporated and a tungsten emitter can operate in a poor vacuum, 
such as that in an unbaked demountable system. The current density is typically 
0.4 A cm− 2 at a temperature around 2,500 °K. Over time the wire becomes thinner 
because of evaporation of the tungsten. The life of a tungsten emitter is assumed 
to end when 10% of the material has evaporated because hot spots then tend to 
form [57].

The addition of a monolayer of thorium to a tungsten wire reduces the work 
function to 2.7 eV. Thus, a directly heated thoriated tungsten wire can deliver higher 
current densities, at a lower temperature, than pure tungsten. At a typical operat-
ing temperature of 2000 °K such an emitter can deliver up to 4 A cm− 2 with a life 
in excess of 10,000 hours. The thorium layer is readily evaporated if  the wire tem-
perature is too high, leading to premature failure of emission. It has been found 
that this problem can be reduced, to some extent, by carburising the top layer of 
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the tungsten to form tungsten carbide [2, 57]. The tungsten is doped with small 
grains of thorium oxide, which react with the tungsten carbide to replenish the free 
thorium on the surface of the filament. This type of emitter is used in triodes and 
tetrodes and in magnetrons for industrial heating and microwave ovens [58].

18.5.2 Oxide Cathodes

Cathodes having lower work functions than metallic emitters and, therefore, 
lower operating temperatures can be made using oxides of  certain elements. 
Oxide cathodes are made by painting, or spraying, a coating onto a metal base. 
The coating is usually a mixture of  the carbonates of  barium, strontium, and cal-
cium with a molar ratio (50– 58%):(38– 45%):(4– 8%) [2, 59]. The surface is acti-
vated during the evacuation of  the tube by heating it to convert the carbonates to 
oxides, giving a surface whose work function is between 1.2 and 1.8 eV. The DC 
current density of  a conventional oxide cathode, with a life in excess of  10,000 h,  
is up to 1 A cm−2 but higher currents can be obtained for short- pulse, low duty 
cycle operation [13]. The DC current density is limited by the high resistivity of 
the oxide layer. Oxide cathodes are easily poisoned and must be kept in high vac-
uum conditions once they have been activated. Problems may also be caused by 
poor adhesion of  the oxide layer to the metal base. Because oxide cathodes are 
simple and inexpensive to manufacture they are a continued subject of  research 
[2, 13, 59].

18.5.3 Dispenser Cathodes

The cathodes generally used in microwave tubes are dispenser cathodes in which 
the active materials are held within a porous metal matrix [2, 6]. In these cathodes 
the active material stored in the matrix can diffuse to the surface and replace that 
lost by evaporation. Dispenser cathodes have work functions of 1.8– 2.1 eV but 
do not suffer from the problem of high resistivity which limits the usefulness of 
oxide cathodes. Many different types of dispenser cathode have been invented and 
details can be found in the literature. The three main arrangements are shown in 
Figure 18.11. The essential component in all three is a porous metal matrix which 
is commonly made by sintering tungsten powder. The simplest arrangement is the 
impregnated cathode in Figure 18.11(a) in which the matrix is impregnated with a 
BaO:CaO:Al2O3 mixture in proportions such as 5:3:2 (the Phillips B cathode), or 
4:1:1 (the S cathode). The life of the cathode can be greatly increased by adding a 
reservoir of BaO behind the tungsten plug to form the reservoir cathode shown in 
Figure 18.11(b). This arrangement is especially useful for space tubes where very 
long life is essential. In the third arrangement a surface layer having a thickness of 
about 0.5 µm is added to the tungsten plug as shown in Figure 18.12(c). This layer, 
which is commonly an osmium– ruthenium alloy, reduces the work function of the 
surface allowing operation at a lower temperature and thus extending the cathode 
life (the M cathode).
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The way in which the saturated current available from a dispenser cathode 
changes with life can be modelled by supposing that it depends upon the relative 
proportions of the surface in which the emission is limited by space- charge, and 
by temperature (see (5.9)). Where there is space- charge limited emission, a low 
work function is maintained by a thin layer of the active material on the surface 
of the matrix. In an impregnated cathode this layer can be thought of as a balance 
between the rate of evolution of active material from the matrix and the rate of 
evaporation. It has been shown that this model gives a good fit to experimental 
data [60]. The balance is strongly affected by the geometry of the diode in which 
the measurements are made. Lifetime measurements made using a closely spaced 
parallel diode are not representative of the lifetime achieved when the same cathode 
is incorporated in an electron gun. This is because evaporated barium is refluxed 
to the cathode in a closely spaced parallel diode so that the active layer is main-
tained [61]. In an M- type cathode the diffusion of tungsten, from the matrix, into 
the surface layer changes the properties of the layer over time. With this addition, 
the model is a good fit to experimental data. An interesting feature of the model is 
that it predicts that at temperatures exceeding 1400 °K the saturated current falls 
with increasing temperature. This is because the rate of evaporation exceeds that at 
which the surface layer can be replenished from the matrix. The shape of the curve 
showing the transition between space- charge limited and temperature limited emis-
sion depends upon the parameter α in (5.9). This parameter, which is related to the 
uniformity of the emitting surface, decreases with time so that knee of the curve in 
Figure 5.2 becomes more rounded. The rate at which α decreases is increased as the 
temperature of the cathode is raised [61].

Dispenser cathodes can deliver DC current densities up to 4 A cm−2 at around 
1300 °K with lifetimes of over 100,000 hours. The addition of Sc2O3 to the barium 
mixture in a dispenser cathode has been found to decrease the work function and 
increase the current density (the scandate cathode). Although these cathodes have 
delivered current densities of 60 A cm−2 at around 1250 °K it has been found that 
they are sensitive to ion bombardment, from which they do not readily recover [52]. 

Figure 18.11: Arrangements of dispenser cathodes: (a) impregnated cathode, (b) reservoir 
cathode, and (c) impregnated cathode with a thin surface film.
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Because the thin surface layer in Figure 18.12(c) is also readily eroded by ion bom-
bardment, cathodes have been developed in which the coating material is added to 
the tungsten matrix. The result is a mixed- matrix (MM) cathode [62]. Fuller infor-
mation about all these types of cathode, including details of their manufacture, can 
be found in the references cited.

18.6 Field Emission Cathodes

A thermionic cathode requires a heater which has a finite warm- up time and adds 
to the power consumption of a tube. Hence there is continuing interest in the possi-
bility of using cold cathodes employing field emission. The most successful embodi-
ment of this concept is the Spindt cathode shown in Figure 18.12 [13, 63, 64]. This 
cathode comprises an array of field emitter tips, made using micro- electronic tech-
nology, arranged in holes in a gate electrode. The emitting tips are made from metals 
with high melting points, such as tungsten and molybdenum, from semiconductors, 
or from carbon nanotubes [13]. The presence of a gate electrode allows the electron 
beam to be pulsed, and gives the potential for modulation of the beam at micro-
wave frequencies. This has been demonstrated in experimental tubes, but the cath-
ode lifetime is short [65– 67]. In one example a cathode with 50,000 tips delivered a 
current of 120 mA for several days at a current density of 13 A cm 2− . The reliability 
is limited by local overheating and voltage breakdown leading to short- circuiting 
of the structure. Research into improved reliability is continuing [68, 69]. This type 

Figure 18.12: The Spindt cathode 
(copyright 1991, IEEE, reproduced, with permission, from [63]).
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of cathode also lends itself  to incorporation in vacuum micro- electronic devices [8, 
64]. For further information on this and other types of cold cathode see [12, 13].

18.7 Voltage Breakdown

Voltage breakdown sets limits to the design of tubes. It may take place either inside, 
or outside, the vacuum envelope, or through insulators, with both DC and RF 
voltages. The physical processes involved are discussed below. A  voltage break-
down dissipates stored energy which may cause damage to the tube, and alter its 
performance. In extreme cases the damage may be so severe that the tube can no 
longer operate. For this reason high power tubes are provided with protection cir-
cuits which are designed to turn the tube off  when a breakdown takes place (see 
Chapter 20). Whenever a tube ‘trips out’ it ceases operation for the time taken to 
restore normal operating conditions. Thus the objective of the designer is to elimin-
ate voltage breakdown as far as possible to increase the reliability of a tube.

18.7.1 Voltage Breakdown in Vacuum

The primary cause of voltage breakdown between metal electrodes in vacuum is 
field emission from whiskers and from microscopic dielectric inclusions in the sur-
faces. The latter are sites for triple point emission as described in Section 18.2.3. 
However, it is found that breakdown occurs at lower voltages than can be explained 
by field emission alone. The additional emission is believed to be in the form of sec-
ondary electrons produced by ion bombardment. If  it is assumed that the second-
ary electron emission is linearly proportional to the ion energy then the threshold 
for breakdown is given by

 WE
K
E

K2 1
2exp ,−





≤  (18.29)

where W is the maximum possible ion energy, E is the electric field on the surface 
of the negative electrode and K1 17= MV m 1−  and K2 1 8= . MV m3 2−  are empirical 
constants. This is Kilpatrick’s criterion, which is commonly used as a guide to DC, 
pulsed DC, and RF vacuum breakdown [70, 71].

For DC voltages W is equal to the potential difference between the electrodes. 
Thus, for example, the breakdown voltage between plane electrodes with a spacing 
of 10 mm given by (18.29) is 100 kV. When the electrodes are not flat the electric 
field on the surface of the negative electrode may be increased and the breakdown 
voltage reduced. The effect of departures of the field from uniformity can be rep-
resented by field enhancement factors defined as the ratio of the maximum electric 
field to that between plane electrodes with the same spacing and potential diffe-
rence [72]. The field enhancement factor may be as high as 10 for typical geometries, 
but figures up to 100 occur for tiny protuberances on the surfaces. The breakdown 
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voltage also depends upon surface finish, the metal from which the electrodes are 
made, and on any contamination present. It is usual for a high- voltage system to 
be conditioned by gradually raising the voltage and allowing breakdown events to 
remove the sources of emission. The criterion in (18.29) applies when the voltage is 
pulsed with a pulse length is 1 ms or more. For shorter pulses the breakdown volt-
age increases by a factor of 3 when the pulse length is reduced to 1 μs [73]. When 
the ion energy is greater than 100 keV there is a marked decline in secondary elec-
tron yield and the breakdown voltage is greater than that predicted by (18.29) [71].

For an RF voltage V1( ) the maximum ion energy W( ) in (18.29) is reduced by 
transit time effects. A graph for the ion transit time correction for higher voltages 
is given in [70] as a plot of W V1 against V V1

*  where the normalising voltage is 
defined by

 V
g M c

e
* ,= 











2
2

0
2π

λ π
 (18.30)

where g is the gap between plane electrodes, λ is the free space wavelength and M0 
is the rest mass of a hydrogen atom. If  V V1 1* ≤  the correction can be expressed as

 W
V

V
V1

10 63 . .
*

 (18.31)

Substituting for W in (18.29) and rearranging gives

 f MHz E E( ) = −( )1 63 8 52. exp . , (18.32)

where the electric field E is in MV m−1 [71]. The maximum electric field is found 
to be proportional to the square root of the frequency up to about 1 GHz [74]. 
At higher frequencies the increase is more gradual. In the range 20 GHz to 40 
GHz the maximum attainable surface field has been found to be independent of 
frequency [75].

The breakdown process described above may lead to the generation of a full vac-
uum arc [72, 76, 77]. An arc may be initiated in various ways including the explosion 
of a microscopic protrusion on the negative electrode, and the presence of loose 
particles within the gap. The material of the negative electrode is vaporised and ion-
ised so that a plasma cloud is formed, which provides a conducting path between 
the electrodes. On the negative electrode the arc terminates at one, or more, small 
spots a few micrometres in diameter. The intense local heating causes thermionic 
emission of electrons, liberates adsorbed gases, and releases metal vapour, all of 
which sustain the plasma in the arc. At arc currents up to a few hundred amps the 
anode spot is the passive collector of the cathode plasma jet, and is therefore fixed.

The cathode spots, however, move rapidly over the surface producing a char-
acteristic pattern of erosion. The arc voltage is usually 10– 30 volts and it varies 
little with the current. The extent to which material is removed from the negative 
electrode by the arc depends upon the current, the duration of the arc, and the 
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material from which the electrode is made. The erosion is generally greater in mate-
rials having low boiling points and low thermal conductivity. Tube manufacturers 
sometimes specify the maximum permissible arc energies for their products beyond 
which irreversible damage may be caused.

A DC arc commonly has a lifetime of between 1 msec. and 1 sec. after which it 
extinguishes spontaneously. The lifetime depends upon the material of the cath-
ode and increases rapidly with the current. For example, the duration of an arc on 
copper is about 1 ms at a current of 5 A but becomes less than 1 µs if  the current is 
reduced below about 3 A [76]. If  the current in the arc is reduced by the action of 
protection circuitry (see Chapter 20) then it will extinguish very fast. The high rate 
of change of current with time is sufficient to produce dangerously high voltages on 
the wires connected to the tube. It is therefore very important to ensure that their 
self- inductances are as low as possible. This applies especially to the connection 
between the tube body and ground.

18.7.2 Voltage Breakdown in Gases

DC voltage breakdown in gases depends upon the type of gas, and its pressure, and 
also upon the shapes and surface condition of the electrodes [11, 78– 80]. The pro-
cesses are complex and only a brief  introduction is given here. Figure 18.13 shows 
a typical graph of current against the voltage applied between a pair of electrodes 
surrounded by a gas. This graph illustrates the properties of the Townsend dis-
charge [81]. Some of the gas molecules are ionised by cosmic radiation and radio-
activity in the ground. When a voltage is applied to the electrodes the free electrons 
and ions can drift towards them so that a small current flows. The energy gained 
by the electrons is not sufficient to cause further ionisation of the gas. The cur-
rent saturates when the formation of new electron- ion pairs balances the rate at 
which they are removed by the applied field (region T0 in Figure 18.13). When the 
voltage is increased, the electrons can gain enough energy from the electric field 
to produce some additional ionisation and the current starts to rise (region T1). 
The positive ions drift towards the cathode. A further increase in the voltage gives 
the positive ions sufficient energy to liberate secondary electrons from the negative 
electrode (cathode). The electron current reaching the positive electrode (anode) 
then increases more rapidly (region T2). The electric discharge through the gas in 
these three regions relies on an external source of electrons, and the flow of current 
ceases if  that source is removed. As the current increases, a point is reached where 
the generation of secondary electrons, by ions striking the cathode, is sufficient to 
sustain the flow of current without any external source of electrons. At the point 
of transition from a non- self  sustaining discharge to a self- sustaining discharge the 
voltage reaches a peak. This is the breakdown (or sparking) voltage. Once electrical 
breakdown has occurred the current is determined by the impedance of the exter-
nal circuit.

It has been found that experimental values of the breakdown voltage, for a 
given gas and arrangement of electrodes, depend only upon the product of the 
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gas pressure and the separation of the electrodes. This result is known as Paschen’s 
Law. Figure 18.14 shows measured Paschen curves for air, nitrogen N2( ) and sul-
phur hexafluoride SF6( ) for plane electrodes [82]. The results for plane electrodes 
are a useful guide to other cases, if  the field enhancement factor is not too great. For 
example, the curve for air in Figure 18.14 gives a breakdown voltage of 30 kV for 
a 1 cm gap at standard pressure (100 kPa). This is close to that commonly quoted 
for breakdown between spheres in dry air. The breakdown voltage of air is reduced 
by humidity, and by the presence of dust particles, and it is good practice to use 
a safety factor of three for design purposes. The DC breakdown voltage may be 
used as an estimate of the RF breakdown voltage to calculate the maximum power 
which can be passed down coaxial lines and waveguides (see Section 2.3).

For typical electrode spacings the minimum of the Paschen curve normally 
occurs well below atmospheric pressure. In the region of the minimum the break-
down voltage is particularly affected by the material of the electrodes. To the right 
of the minimum the breakdown voltage of a fixed gap increases with pressure. This 

Figure 18.13: Current –  voltage characteristics of the Townsend discharge 
(copyright 1941, Dover Publications, reproduced, with permission, from [78]).

Figure 18.14: The Paschen curves for air, nitrogen (N2) and sulphur hexafluoride (SF6) 
(copyright 1982, IEEE, reproduced, with permission, from [82]).
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result is sometimes used in high voltage systems by pressurising them to reduce the 
risk of voltage breakdown. High power waveguide systems may also be pressurised 
for the same reason. The breakdown voltage can also be increased by using a gas 
such as SF6 which readily attaches electrons to form negative ions, so reducing the 
build- up of the discharge. This gas is inert and non- toxic but it breaks down into 
components which are corrosive and highly toxic when subjected to sparking. It is 
also expensive and it has been found that results which are nearly as good can be 
obtained by adding a small fraction of SF6 to N2 [79]. Moreover, it is a greenhouse 
gas that is extremely long- lived in the atmosphere and its use is therefore subject to 
restrictions. It should be noted that the breakdown voltage decreases as the pressure 
is reduced, and this is important in the design of systems for use at high altitudes. 
For further information on voltage breakdown in gases see [78, 83, 84].

To develop an expression for the Paschen curve we consider a pair of plane par-
allel electrodes with separation d, and potential difference V between them, sur-
rounded by a uniform gas at pressure P. Let us suppose that electrons are liberated 
from the surface of the negative electrode (cathode) at a steady rate n0 per second. 
The actual cause of emission (themionic emission, photo- electric emission etc.) is 
not important to the argument. These electrons are accelerated towards the anode 
and collide with the gas molecules. Some of these collisions will result in positive 
ionisation of the molecules so that the number of electrons moving through the gas 
increases with distance towards the anode. If  the rate of electron flow is n at a plane 
distant x from the cathode then the number of additional electrons produced in a 
distance dx is proportional to n so that

 dn
dx

n= α , (18.33)

where α is the fraction of electrons which make ionising collisions in unit distance. 
Integrating (18.33) with respect to x from the cathode to the anode gives the num-
ber of electrons per second reaching the anode as

 n n ea
d= 0

α . (18.34)

Thus the current reaching the anode is

 I I ea
d= 0

α , (18.35)

where I0 is the initial electron current leaving the cathode. The positive ions formed 
by the collisions drift towards the cathode under the influence of the electric field. 
In the steady state the total current must be the same at the cathode and the anode. 
Thus the number of positive ions striking the cathode per second must be n e d

0 1α −( ).  
The impact of the ions on the cathode may liberate secondary electrons, which are 
added to the initial electron current. Thus, the total electron current leaving the 
cathode is

 I I I ec c
d= + −( )0 1γ α , (18.36)
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where γ  is the secondary electron emission coefficient for impact by the positive 
ions. The dependence of γ  on the energy of the incident ions is neglected. The elec-
tron current leaving the cathode is increased by ionisation so that the anode current 
becomes

 I I e
I e

ea c
d

d

d
= =

− −( )
α

α

αγ
0

1 1
. (18.37)

The parameters α and γ  are the first and third Townsend ionisation coef-
ficients. The second coefficient β( ), representing ionisation caused by the 
impact of  ions on neutral molecules, is effectively zero for discharges of 
interest here.

Now, let us consider the effect of the collisions between electrons and gas mol-
ecules on the energies of the electrons. For the moment it will be assumed that that 
these collisions do not result in ionisation, and that an electron loses all its energy as 
a result of a collision. If  the fraction of electrons making a collision in unit length is 
1 λ then the number of electrons which have yet to make a collision decreases with 
position so that

 dn
dx

n
= −

λ
 (18.38)

and therefore

 n n e x= −
0

λ . (18.39)

The mean distance travelled by an electron before making a collision is

 x
n

nx
dx=

∞
⌠
⌡


1

0 0 λ
. (18.40)

Substituting for n from (18.39) and performing the integration we find that x = λ. 
Thus λ is the mean free path of  the electrons.

If  an electron starts from rest, and moves in a uniform electric field Ex, then it has 
sufficient energy to ionise a molecule if

 E x V x V Ex i i x≥ ≥or , (18.41)

where Vi is the ionisation potential of the molecule. Thus, electrons which have trav-
elled less than this distance do not have sufficient energy to cause ionisation. From 
(18.39) the fraction of the electrons which are able to produce ionisation is

 n
n

V
E

i

x0

= −






exp .
λ

 (18.42)
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The fraction of electrons per unit length which cause ionisation α( ) is then the 
product of the fraction which make collisions in unit length 1 λ( ) and the fraction 
which have sufficient energy to cause ionisation from (18.42). Hence

 α
λ λ

= −






1
exp .

V
E

i

x

 (18.43)

Now the mean free path is inversely proportional to the density of the gas and, 
therefore, inversely proportional to the pressure. Thus we can write (18.43) as

 α = −






AP
BP
Ex

exp  (18.44)

where P is the gas pressure and A and B AVi=  are constants for the gas. This equa-
tion gives results which agree with measurements for values of E Px  from 450 to 
7500 V kPa−1 cm−1 [82].

The condition for electric breakdown is found by setting the denominator in 
(18.37) to zero so that

 α
γ

d = +






ln .1
1  (18.45)

We note that this condition does not depend upon the initial current I0. Also, from 
(18.44),

 E
BP
APx = ( )ln

.
α

 (18.46)

Setting E V dx b= , where Vb is the breakdown voltage, and substituting for α from 
(18.45) we find that the breakdown voltage is given by

 V
BPd

APd
b =

+( ) ln ln
.

1 1 γ
 (18.47)

In this equation the constants A and B depend only on the properties of the gas 
while γ  depends also on the properties of the cathode surface. We note that, if  all 
these are constant, then the breakdown voltage depends only on the product Pd, in 
conformance with Paschen’s Law. The graph of Vb against Pd  has a minimum when

 Pd
e
Amin ln= +( )1 1 γ  (18.48)

and

 V
eB
Amin ln .= +( )1 1 γ  (18.49)

Then (18.47) can be expressed in normalised form as

 V
V

Pd Pd

Pd Pd
b

min

min

min
ln

.=
( )
( )  +1

 (18.50)
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Figure 18.15 shows the curve defined by (18.50). This curve has the same general 
form as the curves in Figure 18.14, but the prediction that all cases can be repre-
sented by the same normalised curve is not confirmed. This is a consequence of the 
simplifying assumptions which were made in the derivation of (18.50). However, 
the derivation does give insight into the physics of voltage breakdown. To the right 
of the minimum of the Paschen curve the breakdown voltage increases because the 
mean free path decreases, and fewer electrons gain sufficient energy to cause ion-
isation. To the left of the minimum the breakdown voltage increases because the 
number of molecules available for ionisation decreases. It should be noted that the 
equations derived above do not agree well with experimental results for breakdown 
in narrow gaps. This is because the electric field can be high enough to cause field 
emission, which has been ignored in the derivation.

18.7.3 Voltage Breakdown on Insulators

Any vacuum tube has one or more insulators which form part of  the vacuum 
envelope. These insulators, which are usually ceramic, include those separating 
the cathode from the anode, and collector elements from one another and from 
the tube body. Voltage breakdown on the vacuum side of  these insulators occurs 
at a lower voltage than for an equivalent vacuum gap [79]. This breakdown is ini-
tiated by the impact of  electrons on the surface of  the ceramic. These may come 
from any source but a particular problem is caused by triple junction emission. 
If  the ceramic is attached to the metal of  the tube body by brazing, then some 
of  the brazing alloy usually spreads a little way onto the surface of  the ceramic, 
providing a sharp metallic edge. The risk of  triple junction emission at that edge 
can be reduced by shaping the electrodes at the ends of  the insulator to shield 
the brazed joints from the electric field. The aim is to ensure that any breakdown 

Figure 18.15: Theoretical Paschen curve.
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takes place directly between the electrodes, rather than along the surface of  the 
insulator.

Ceramics have high secondary electron emission coefficients. Thus the impact 
of an electron on the surface of a ceramic may generate a number of secondary 
electrons and leave behind a positive surface charge. The secondary electrons are 
accelerated across the surface of the ceramic by the external field, and drawn back 
to it by the surface charge, so that they make further collisions and an electron ava-
lanche develops. The growing discharge liberates adsorbed gas molecules from the 
surface of the ceramic. These may become ionised, increasing the risk of break-
down. A breakdown can damage the surface of the insulator so that the breakdown 
voltage is reduced. In extreme cases the insulator may be punctured or may fracture, 
leading to loss of vacuum. It is important that the surface of the insulator should be 
free from contamination, and that adsorbed gases are driven off, as far as possible, 
by baking when the tube is evacuated. The breakdown voltage is strongly dependent 
on the shape of the insulator. It can be increased by adding corrugations to increase 
the path length. A detailed discussion of surface breakdown on insulators in vac-
uum is given in [85].

To reduce the risk of breakdown on the air side of an insulator it is important to 
keep the surface clean. The surface may be corrugated to increase the path length. 
The risk may be also be reduced by pressurisation, or by immersing the insulator in 
a dielectric fluid, such as transformer oil [79].

18.8 Multipactor Discharges

Multipactor is resonant radiofrequency vacuum discharge which is sustained by 
secondary electron emission [86, 87]. The basic principle can be explained by con-
sidering a pair of parallel metal plates in vacuum with an RF voltage between them, 
as shown in Figure  18.16. Note that the horizontal axis is time. A  free electron 
between the plates at A at a moment when the potential of the upper plate is posi-
tive is accelerated towards the upper plate. When it strikes the plate at B it may lib-
erate secondary electrons. If  the potential of the upper plate is now negative these 
electrons are accelerated downwards so that they strike the lower plate at C. There 
they may liberate further secondary electrons. If  the time taken for the electrons 
to cross from one plate to the other is just half  of an RF cycle then the process is 
repeated and the number of electrons increases each time. In order for a two- surface 
multipactor discharge to be sustained the RF voltage between the electrodes must 
give impact energies in the range for which the secondary emission coefficient δ( ) of  
at least one of the surfaces is greater than unity (see Figure 18.7). It is found that 
electrons, which are emitted from a surface before the optimum phase, experience 
a smaller accelerating force than those which are emitted after the optimum phase. 
Thus, the electrons are grouped into a smaller phase range when they arrive at the 
opposite plate. This phenomenon is known as phase focusing. As the intensity of 
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the discharge increases the process is limited by space- charge debunching so that 
the current saturates [88]. In resonant RF structures saturation may also be caused 
by detuning of the resonator [87]. A two- surface multipactor discharge typically 
involves currents of less than 1 A and voltages of a few hundred volts. The theory 
of two- surface multipactor is discussed in Section 18.8.1.

When a magnetic field is present the electron trajectories are bent by the field 
so that the impacts made on the surfaces are oblique. This type of  discharge 
can involve impacts on either one or two surfaces. When the primary electrons 
strike a surface obliquely the peak value of  δ is greater than for normal incidence 
and the range of  energies over which δ is greater than unity is increased (see 
Figure 18.7). Thus crossed- field multipactor discharges can occur at much higher 
energies than the simple multipactor and they are, in consequence, potentially 
much more damaging. The theory of  multipactor in crossed fields is discussed 
in Section 18.8.3. Because strong magnetic fields are used to focus linear- beam 
tubes it is quite possible for the conditions for crossed- field multipactor to exist 
somewhere within the tube. The manufacturer will normally have taken steps to 
ensure that this is not the case. However, if  the magnetic field around the tube is 
disturbed in any way, for example by the field of  a circulator, then it is possible 
for a destructive discharge to occur. It is also possible for multipactor discharges 
to occur on ceramic surfaces such as vacuum windows where surface charging 
produces a static electric field [87]. A discharge of  this kind changes the match 
of  the window and the energy transferred may be sufficient to crack the ceramic.

It is probable that multipactor discharges occur in most vacuum tubes. They 
have been observed in klystrons [86, 89] and magnetrons [90]. They also occur in 
transmission lines of  many kinds including rectangular waveguides [91, 92] and 
coaxial lines [93, 94], and in components such as windows [95, 96] and filters [97]. 
Signs of  multipactor discharges include heating, and the emission of  light and  
X- rays. They are sources of  noise, and can produce appreciable changes in the  
RF performance of  a tube by loading the RF circuit. The energy transferred to the 
surfaces by the impact of  electrons can cause window failure, and local outgassing, 
which may lead to the formation of  arcs. Multipactor discharges can sometimes 
be suppressed by changing the shapes of  surfaces, by surface coatings to reduce 
the secondary electron yield, and by the imposition of  static electric and magnetic 
fields [86, 87, 98].

Figure 18.16: Principle of the two- surface multipactor discharge.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.019
https://www.cambridge.org/core


Multipactor Discharges 723

18.8.1 Theory of Multipactor Discharges between Parallel Plates

The theory of the multipactor discharge between parallel metal plates has been 
discussed by a number of authors. The analysis presented here is based on that 
given in [86, 99]1. It provides insight into the factors contributing to the existence 
of multipactor discharges.

Consider two plates located at y = 0 and y d=  with an RF voltage V t1 sin ω( ) 
between them. The equation of motion for an electron is

 d y
dt

eV
m d

t
2

2

1

0

= ( )sin .ω  (18.51)

If  the electron is injected at x = 0 with velocity v0 when ω θt = 1 then its velocity at 
time t is

 dy
dt

eV
m d

t v= −( ) +1

0
1 0ω

θ ωcos cos . (18.52)

A second integration gives the position of the electron as a function of time

 y
d

eV
m d

t t
v
d

t= −( ) − +{ } + −( )1

0
2 2 1 1 1

0
1ω

ω θ θ ω θ
ω

ω θcos sin sin . (18.53)

If  the electron reaches the second plate when ω θt = 2 then

 1 1

0
2 2 2 1 1 2 1

0
2 1= −( ) − +{ } + −( )eV

m d
v
dω

θ θ θ θ θ
ω

θ θcos sin sin . (18.54)

In order for the discharge to be resonant, the phase of the RF voltage when the 
electron arrives at the second plate θ2( ) must differ from the initial phase by an odd 
multiple of π. Thus

 θ θ π2 1 1 3 5= + =n n; , ,  (18.55)

Substituting this condition into (18.54) gives the RF voltage as a function of the 
initial phase

 V
m
e

d d n v

n1
0 0

1 12
= ⋅

−( )
+

ω ω π
π θ θcos sin

. (18.56)

We note that v0 only appears in the numerator of (18.56) and θ1 only in the denomi-
nator. Thus, the minimum RF voltage for which multipactor can occur is given by 
the value of θ1 which maximises nπ θ θcos sin1 12+  regardless of the value of v0. This 
occurs when

 tan .θ
π1
2

=
n

 (18.57)

1 I am indebted to my colleague Dr Amos Dexter for making his lecture notes on this subject available to me.
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If  the RF voltage is greater than the minimum, electrons can reach the second elec-
trode with a range of initial phases. An electron whose initial velocity v0( ) is zero 
can only reach the second plate if  it is emitted in the positive half- cycle of the RF 
voltage. If  v0 0>  then the electron can still reach the second plate if  it is emitted into 
a slightly retarding field, and the limiting phase, beyond which the electron cannot 
escape from the surface, is negative.

A sustained discharge can only exist if  there is phase focusing as described 
above. Thus two electrons which leave the first plate at slightly different times arrive 
at the second plate with a smaller time interval between them. This is expressed 
mathematically by

 d
d

θ
θ

2

1

1< . (18.58)

If  this condition is not satisfied then the electrons drift away from the resonant 
condition over a number of cycles. Differentiating (18.54) with respect to θ1 gives

 eV
m d

d
d

d
d

1

0

2

1
1 2 1 1

2

1
2 11

ω
θ
θ

θ θ θ θ θ
θ

θ θ−






− −( ) − +


cos sin cos cos






+ −






=v
d
d0

2

1

1 0
θ
θ

.
 

(18.59)

When d dθ θ2 1 1=  the limiting phase satisfies

 cos sin cos .θ θ θ θ θ1 2 1 1 2= −( ) +  (18.60)

Substituting the resonant condition from (18.55) we find that this is identical 
to the phase given by (18.57). The second limit for the phase is found by setting 
d dθ θ2 1 1= −  to give

 eV
m d

v1

0
1 2 1 1 2 02

ω
θ θ θ θ θ− − −( ) +{ } =cos sin cos . (18.61)

Applying the condition for resonance we obtain

 2
2

1 1
0 0

1

cos sin .θ π θ ω
+ = −n

m d v
eV

 (18.62)

To eliminate V1 (18.56) is rewritten as

 n
m d d n v

eV
π θ θ

ω ω π
cos sin .1 1

0 0

1

2+ =
−( )

 (18.63)

Dividing (18.63) by (18.62), and rearranging gives

 tan .θ π ω
πω π

1
0

0
2

0

4 2

4
= −

+
+ − ( )

n v d

v n d n v
 (18.64)
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Thus, the minimum value of θ1 is the greater of the two values determined by the 
condition that the electron can escape from the surface, and by the second condi-
tion for phase focusing.

If  the RF voltage is increased, at a fixed value of ωd , from the minimum for 
which a discharge can occur, then θ1 decreases until it reaches the minimum value 
described above. The lower and upper limits of the RF voltage between which a 
discharge is possible are obtained by substituting the two values of θ1 obtained 
from (18.57) and (18.64) into (18.56). We may therefore plot V1 against fd d= ω π2  
to show the boundaries of possible regions of multipactor for each mode, as shown 
in Figure 18.17. The lines representing the limiting phase conditions for the lowest 
mode are AB and DC.

In order that an electron avalanche can develop the product of the secondary elec-
tron emission coefficients of the two plates must be greater than unity. The impact 
velocity is found by substitution of the resonant condition into (18.52) to give

 v
eV

m d
vi = +

2 1

0
1 0ω

θcos  (18.65)

which may be rearranged, eliminating θ1 using (18.56), to give

 V
m d

e
d

n
v v v vi i1

0
0

2

0
2

2 2
= − +( )








+ −( )ω ω π
. (18.66)

The limits set by this condition are found by inserting the two values of vi  for which 
the secondary electron emission coefficient is unity into (18.66). These boundaries 
are shown as DA and CD in Figure 18.18. This plot is known as a Hatch diagram 
[100, 101].

Figure 18.17: Hatch diagram showing the regions in which multipactor is theoretically 
possible.
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The boundaries of the three lowest multipactor regions in Figure  18.17 were 
computed using the theory developed above for comparison with the experimental 
results in Figure 3 of [101] (see Worksheet 18.1). The lowest experimental break-
down voltages were obtained when the aluminium electrodes had been left at a gas 
pressure of 2 microns Hg for 24 hours. It is probable that the surfaces were then 
fully oxidised. In the calculations it was assumed that δm = 3 5.  and Epm = 400 V 
[23]. The electron emission energy was fixed at 2 eV and the secondary electron 
emission curve was defined by (18.19) with s = 1 65. . The calculations predict that 
multipactor can exist in well defined regions with clear gaps between them. In the 
experiments it was found that discharges existed at all points above the dashed line 
in Figure 18.17. This discrepancy can be explained by a number of factors which 
have been ignored in the simple theory: the spread in the secondary electron ener-
gies; the effect of elastically and inelastically reflected electrons; and the possibility 
of asymmetric modes in which the value of n differs for the outward and backward 
motion [102– 106]. All these effects serve to broaden the bands so that they tend to 
merge. The boundary below which multipactor cannot occur is then a line which 
is tangential to the bottoms of the theoretical regions shown in Figure 18.17. The 
points on that line can be found by eliminating V1 between (18.56) and (18.65) and 
using θ1 from (18.57) to give

 ω π
π

d n v v
n

v v
ni i( ) = +( ) + −( )0 02
2  (18.67)

where vi  is the minimum impact velocity for which δ = 1. The corresponding values 
of V n1 ( ) are found by substitution into (18.65).

In the experiments described in [101] the voltage at which the discharge com-
menced increased when the electrodes were first subjected to a discharge at a higher 
pressure for half  an hour. This presumably reduced the thickness of the oxide layer, 
and increased the minimum impact voltage for which the secondary electron emis-
sion coefficient was unity. The effect can be modelled by reducing the value of δm 
used in the calculations. This raises the boundary line described above. There is 
then a distinction between those multipactor discharges which can be eliminated by 
conditioning, and those which cannot. The properties of two- surface multipactor 
discharges between parallel plates can be explored using Worksheet 18.1.

The assumption of a uniform RF electric field between plane electrodes is neces-
sarily idealised. The experiments of Hatch and Williams used a pair of circular 
plates without any kind of compensation for the field concentration at the edges. 
The assumption of a uniform field is a useful approximation when the discharge is 
in a rectangular waveguide or in a re- entrant cavity resonator [92, 107, 108]. It can 
be seen from Figure 18.17 that, theoretically, the discharge cannot occur if  the RF 
voltage is great enough. That limit is represented by a line which is tangential to 
the tops of the multipactor regions. However, even if  the maximum RF voltage is 
greater than the upper limit, its spatial variation ensures there is always some point 
in the waveguide or cavity where multipactor can occur. Thus, in a non- uniform 
field the discharge is located at a position where the conditions are favourable.
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18.8.2 Multipactor Discharges between Coaxial Cylinders

The other simple geometry in which multipactor can be studied is the vacuum- 
spaced coaxial line [94, 109, 110]. This case has practical importance in the coaxial 
waveguides and couplers used with many vacuum tubes. The symmetry of the field 
allows the problem to be treated as one- dimensional, but it is not possible to find 
a simple analytical solution. An important difference from the parallel plate case 
is that the electron transit times are different for inward and outward motion. It 
is therefore necessary to find trajectories for which the sum of the transit times is 
an integral number of RF periods. Both classical, and hybrid, two- surface modes 
are possible, in a manner very similar to those for parallel plates. But, it is found 
that the modes gradually disappear, as the ratio of the radius of the outer con-
ductor to that of the inner conductor increases, until two- surface multipactor is no 
longer possible. However, the velocity of an electron starting from the outer elec-
trode can be reversed before it reaches the inner electrode. If  it returns to the outer 
electrode in an integral number of RF periods then a single- surface discharge is 
possible. Hatch diagrams similar to Figure 18.17 are obtained for both two- surface 
and single surface discharges [110]. Further information is given in the references 
cited above.

18.8.3 Multipactor Discharges in Crossed Fields

Static magnetic fields are used to control the motion of the electrons in most vacuum 
tubes. It is important to consider how multipactor discharges are affected by them. 
The simplest case is the parallel plate geometry considered above, with the addition 
of a uniform static magnetic field parallel to the planes of the plates [111]. The deri-
vations of the equations are lengthy and will not be reproduced here. It turns out 
that both single surface, and double surface, discharges are possible. Figure 18.18 
shows examples of single and double- surface trajectories starting from x = 0. The 
impact of the single- surface trajectory in Figure 18.18(a) on the plane at x = 0 is 
normal so that the energy involved is similar to that in a two- surface multipactor 
without a magnetic field. On the other hand, the trajectories in Figure  18.18(b) 
make oblique impacts so that the electron energy can be much higher, while the sec-
ondary electron yield remains greater than unity (see Figure 18.8). In consequence 
the energy dissipated can be much greater, and more damaging, than in the other 
kinds of multipactor [86]. The properties of crossed- field discharges of both kinds 
can be explored using Worksheet 18.2.

18.8.4 Modelling Multipactor Discharges

In general, the possibility that a multipactor discharge will occur can be explored 
for any geometry for which the RF electric field can be computed. If  the satu-
rated discharge is to be computed then it is necessary to use a full particle in 
cell (PIC) code so that the modification of  the RF fields by the electronic space 
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charge can be included. However, if  the objective is only to determine whether 
multipactor is possible, then space- charge effects can be ignored. The electron 
trajectories can be computed using RF electric field components which have 
been calculated in advance and stored. The conditions under which the discharge 
can happen may be quite specific so it is necessary to track sample electrons from 
a large number of  points on the surfaces with a range of  starting phases and 
energies. The spatial and energy distributions of  the secondary electrons, and 
the time delay following the impact of  the primary electron, must be represented 
correctly. Elastically and inelastically reflected primary electrons must also be 
included. It is evident that a large number of  particles are needed at the start 
of  the simulation, and that the number will grow very rapidly with successive 
impacts. The growth in the number of  electrons can be used as an indication 
of  the existence of  a discharge. Examples of  the simulation of  multipactor dis-
charges are given in [94, 108, 112– 115].
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19 Magnets

19.1 Introduction

Virtually all microwave tubes employ a magnetic field to control the flow of elec-
trons. This chapter reviews the theory and design of both electromagnets and per-
manent magnets for this purpose. The objective is to create a specified magnetic 
field in the volume of space in which the electron interaction takes place.

In linear beam tubes, gyrotrons, and long anode magnetrons, the volume is a 
long thin cylinder. The magnetic field may vary in the axial direction, for example 
to provide the correct entry conditions at the electron gun, to increase the beam 
stiffness near the output gap of a klystron, or to allow beam expansion into the col-
lector of a gyrotron. It is important that the field should be cylindrically symmet-
rical about the axis of the beam. Multiple- beam tubes require a very uniform axial 
field to minimise the radial field components which can cause the beams to drift 
in the radial direction. The field is provided either by an electro- magnet, or by one 
or more permanent magnets [1– 3]. Electro- magnets may be normal conducting, or 
superconducting, and operated pulsed or continuously. They have the advantage 
that the strength of the magnetic field can be adjusted, as required, for the opti-
mum operation of the tube; however, the power required to energise and cool an 
electromagnet reduces the overall efficiency of the tube. Permanent magnets do not 
have these disadvantages, but heavy and expensive magnets are required to produce 
uniform fields. The size and weight of the magnet system can be reduced substan-
tially by using periodic permanent magnet (PPM) focusing (see Section 7.6). This is 
common for TWTs and has also been used for a few klystrons.

In crossed field tubes, other than long anode magnetrons, the interaction space is 
a relatively short annular cylinder. The field, which is normally supplied by a per-
manent magnet, should be uniform to within 5% to 15%, and be symmetrical about 
the axis to better than 3% [2].

The chapter begins with a review of the theory of magneto- statics, including the 
properties of iron and other ferromagnetic materials. This leads to a discussion of 
the use of magnetic circuits for analysis and design. The properties of common 
ferromagnetic materials are reviewed in Section 19.4. The remainder of the chapter 
considers the properties, and design, of three types of magnet:

• In coil dominated magnets (Section 19.5) the magnetic field and its distribution in 
space are determined by the positions of conducting coils, and the currents in them.
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• In iron dominated magnets (Section 19.6) the magnetic field is produced by cur-
rents in conducting coils but its distribution in space is determined by the shape 
of iron yokes and pole- pieces.

• In permanent magnet systems (Section 19.7) the magnetic field is provided by 
one, or more, permanent magnets, while iron yokes and pole- pieces are used to 
determine its distribution in space.

19.2 Review of Theory

The theory of electro- magnets and permanent magnets is discussed in textbooks 
on electromagnetism [4– 6]. The main results are reviewed below for convenience. 
Paramagnetic and diamagnetic effects are too small to be of importance for the 
applications considered in this book. Therefore the magnetic properties of all 
materials, except ferromagnetic materials (iron, cobalt, nickel and their alloys), will 
be assumed to be those of free space. Two vectors are used to represent magnetic 
fields: the magnetic flux density B and the magnetic field H. In a linear magnetic 
material they are related by

 B H H= =µ µ µ0 r , (19.1)

where µ is the permeability of the material, µ π0
74 10= × H m 1−  is the primary mag-

netic constant (or permeability of free space), and µr  is the relative permeability of  
the material. The normal component of B and the tangential component of H are 
continuous at boundaries between regions occupied by different materials.

The magnetic flux density generated by a current element I dl at a point P, whose 
distance from the element is r, is given by

 dB dl r= ∧( )µ
π

0

24
I
r

ˆ , (19.2)

where r̂ is a unit vector directed from the current element to P. The vector product 
ensures that the vector dB is normal to the plane containing dl and r̂. A steady elec-
tric current must flow in a closed circuit and, taking the integral of (19.2) around 
the circuit, we obtain the Biot- Savart Law

 B
dl r

=
∧⌠

⌡


µ
π
0

24
I

r

ˆ
.



 (19.3)

This can be used to compute the flux density, at any point, generated by an arrange-
ment of current- carrying conductors in free space.

The magnetic flux and field vectors obey Maxwell’s integral equations

 B ⋅ =∫∫ dS 0


,  (19.4)
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where the integral is taken over a closed surface, and

 H dl J
D

⋅ = +
∂
∂







⋅∫ ⌠
⌡

⌠
⌡


 t
dS,  (19.5)

where J is the current density, and D E= ε  is the electric flux density. The integral 
on the left- hand side of (19.5) is taken around a closed path, and the integral on the 
right- hand side is taken over a surface which spans the path. For steady currents 
flowing in conductors the right- hand side is the total current enclosed by the path 
of integration. The equation can then be written

 H dl⋅ =∫ ∑
=



In
n

N

1

 (19.6)

where N is the number of conductors and the current in the nth conductor is In. 
This form is known as the Magnetic Circuit Law. The application of this law to the 
analysis and design of magnets is discussed in Section 19.3.

The differential forms of equations (19.4) and (19.5) are

 ∇⋅ =B 0 (19.7)
and

 ∇ × = +
∂
∂

H J
D
t

. (19.8)

It is convenient to define a magnetic scalar potential U  by analogy with the electro-
static potential so that

 H = −∇U . (19.9)
The magnetic scalar potential difference between two points is

 U U2 1

1

2

− = − ⋅∫ H dl, (19.10)

where the integral is taken along any convenient path joining them. The magnetic 
scalar potential difference only has a unique value if  the path does not encircle any 
current. In that case, substituting into (19.7) from (19.9) we obtain

 ∇⋅ ∇ =µ U 0. (19.11)

For a homogeneous material µ is constant and U satisfies Laplace’s equation

 ∇ =2 0U . (19.12)
Then the magnetic field can be determined from the gradient of the scalar potential.

19.2.1 Ferromagnetism

Iron, cobalt, and nickel, and alloys based on these metals, are known as ferromag-
netic materials. They have magnetic properties which make them important for 
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engineering applications. The flux density in a ferromagnetic material depends not 
only on the magnetising field to which it is subjected, but also on the history of 
magnetisation. This is displayed in a B H−  curve, as shown in Figure 19.1(a). If  
the specimen is initially un- magnetised, then its state is represented by the point a. 
When the magnetising field Hi is gradually increased the curve a- b, known as initial 
magnetisation curve, is followed. The flux density can be written

 B J Hi i= + µ0 , (19.13)

where J is the magnetic polarisation of the material. At high values of Hi the 
polarisation reaches saturation Js( ) and thereafter an increase in Hi only serves 
to increase Bi by the change in µ0Hi. If  Hi is then reduced to zero, the flux density 
does not retrace the curve a- b. Instead, it follows a curve such as b- c, so that the flux 
density in the circuit does not fall to zero when the magnetising field is zero. The 
value of Bi at c is known as the remanence Br( ) of  the material. In order to reduce 
the flux density to zero it is necessary to reverse the direction of Hi. The value of Hi 
at which Bi becomes zero (point d) is known as the coercive force Hc( ). Increasing 
the magnitude of Hi beyond the value needed to reach d eventually produces sat-
uration of the material at e with the direction of the flux opposite to that at b. 
Finally, reducing the magnitude of Hi to zero and then increasing it with positive 
polarity produces the curve e- f- g- b. This behaviour, in which the magnetisation lags 
behind the magnetising field, is known as hysteresis. When the magnetising field is 
repeatedly taken through the same cycle, the hysteresis loop b- c- d- e- f- g- b is traversed 
repeatedly in a stable manner, provided only that the maximum magnitude of Hi is 
the same for both polarities. If, on the other hand, the magnitude of the magnetis-
ing field is smaller, it is found that the behaviour of the material is described by 
a smaller loop, such as the one shown dotted in Figure 19.1(a). From a practical 
point of view the main division is between ‘hard’ and ‘soft’ magnetic materials, as 
shown in Figure 19.1(b). Soft magnetic materials are easy to magnetise and demag-
netise, whereas both processes are more difficult for hard magnetic materials. Soft 
magnetic materials are used as conductors of magnetic flux, as described in the next 
section. Hard magnetic materials are used as permanent magnets. The properties of 
some common ferromagnetic materials are reviewed in Section 19.4.

19.2.2 Conduction of Magnetic Flux by Soft Magnetic Materials

Figure 19.2 shows a magnetic flux line as it passes from air into a material such 
as pure iron which has a high relative permeability. Applying the boundary 
conditions gives

 B B1 1 2 2cos cosα α=  (19.14)

and

 B B

r

1

0
1

2

0
2µ

α
µ µ

αsin sin .=  (19.15)
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Dividing (19.15) by (19.14) we obtain

 tan tan .α
µ

α1 2
1

=
r

 (19.16)

For soft magnetic materials µr  is large so that α α1 2 . For example, if  µr = 5000 
and α2 89= ° then α1 0 7= °. . Thus the flux lines in air are very nearly normal to the 
magnetic surface. It is therefore possible to treat soft magnetic materials as perfect 
magnetic conductors, to a good approximation. Laplace’s equation can then be 
used to find the distribution of a magnetic field in the air spaces between sections 
of soft magnetic material.

19.3 Magnetic Circuits

The analogy between the conduction of electricity by conductors, and the conduc-
tion of magnetic flux by iron, leads to the useful concept of the magnetic circuit. 

Figure 19.1: (a) A typical hysteresis loop showing the initial magnetisation curve and 
(b) typical hysteresis loops for hard and soft magnetic materials.

Figure 19.2: Change in the direction of a magnetic flux line at a boundary between air 
and iron.
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Figure 19.3 shows a simple magnetic circuit formed by a square iron core with a 
narrow air gap in it. A coil of N turns of wire is wound on the core and carries cur-
rent I. To make the problem easy to handle we make some simplifying assumptions. 
Let us suppose that the magnetic field strength Hi  is the same everywhere within the 
iron, and the magnetic field in the air gap is Ha. Now consider a closed path around 
the circuit which follows the centre line (shown dotted). Applying the magnetic 
circuit law (19.6) to this path gives

 LH gH NIi a+ =  (19.17)

where L is the length of the path in iron. If, for the moment, we assume that the 
cross- sectional area of the air gap is equal to that of the iron then

 B B
Ai a= =
Φ

, (19.18)

where Φ is the total flux circulating, and A is the cross- sectional area of the iron 
at right angles to the direction of the magnetic field. We have therefore assumed 
that all the flux due to the coil is contained within the bounds of the iron core and 
its projection across the air gap. Making use of (19.1) we can write B Hi i= µ  and 
B Ha a= µ0 . Substituting for Hi and Ha in Equation (19.17) in terms of Φ and the 
various constants gives

 N I
A

L g
= +







1

0µ µ
Φ, (19.19)

which can be written

 M R= Φ,  (19.20)

where M is known as the magneto- motive force and R as the reluctance. Equation 
(19.20) is analogous to Ohm’s law for electric circuits, but the analogy must not be 
pressed too far. Unlike an electric current, the magnetic flux in the circuit dissipates 
no energy, and there are no circulating magnetic charges. Moreover, it cannot be 

Figure 19.3: A simple magnetic circuit made up of an iron core with an air gap in it. The flux 
is supplied by a winding of N turns of wire.
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emphasised too often that magnetic materials do not normally behave in a linear 
fashion, so the reluctance of a circuit is only approximately constant, and then only 
under a limited range of conditions.

If  the permeability of the iron is not constant, the application of the magnetic 
circuit law to the circuit in Figure 19.3 gives

 NI LH gH LH
gB

i a i
i= + = +

µ0

 (19.21)

or

 B
L

g
NI
L

Hi i= −





µ0 . (19.22)

But we know that Bi and Hi must be related to each other by the initial magnetisa-
tion curve of the iron

 B f Hi i= ( ). (19.23)

The non- linear simultaneous equations (19.22) and (19.23) can be solved graphi-
cally, or by using an analytical approximation to the equation of the hysteresis loop. 
The graphical solution is shown in Figure 19.4. The working point is at the intersec-
tion of the straight line represented by (19.22) with the initial magnetisation curve. 
The intercept of this load line on the horizontal axis is the magneto- motive force in 
the circuit divided by the path length, while its slope is determined by the relative 
sizes of the iron path and the air gap.

The preceding discussion of magnetic circuits made some rather crude assump-
tions about the distribution of the magnetic flux. A more realistic view is shown in 
Figure 19.5(a). The flux lines in the air gap spread out into a fringing field as shown. 
Because the magnetic flux in the circuit is constant, the fringing reduces the flux  

Figure 19.4: Initial magnetisation curves of Armco iron and mild steel showing a typical 
load line (dashed).
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density in the air gap and, hence, the reluctance of the gap. A second difficulty in 
calculating the flux in the air gap is that some of the flux simply takes a short cut 
such as A- A´ and never reaches the gap at all. This flux is known as leakage flux. 
It exists because, although iron conducts flux better than air, the air is a poor mag-
netic insulator. If  we wish to pursue the analogy with electric circuits it is neces-
sary to think of the material surrounding the conductor as being a poor conductor 
rather than an insulator. Fortunately, in most cases, a very crude estimate of the 
leakage flux is adequate to provide a satisfactory value for the flux in the air gap. 
The flux leakage can be minimised by placing the source of the magneto- motive 
force as close to the air gap as possible. Thus, the magnetising coil can be replaced 
by a pair of coils close to the air gap, as shown in Figure 19.5(b). It can be seen 
that the leakage flux is then greatly reduced. Estimates of the fringing and leak-
age fluxes can be made using formulae to be found in the literature [7– 9] (see also 
Section 19.7.1). These methods are only suitable for the creating an initial design 
and computational magnetics software must be used to obtain accurate results [10]. 
Figure 19.5 and similar images in this chapter were produced using Gemini 1.2 [11].

19.3.1 Circuits Including Permanent Magnets

We have already noted that hard magnetic materials can be magnetised so that they 
produce a substantial magnetic flux even when the magnetising field is removed. 
These materials are used for making permanent magnets which are used especially 
in magnetrons, CFAs, and PPM focused TWTs. Figure 19.6 shows a portion of a 
typical B– H plot for a permanent magnet material. This curve, which is the part of 
the hysteresis loop lying in the second quadrant, is known as the demagnetisation 
curve of  the material.

Suppose that the circuit shown in Figure 19.5 is made of this material and mag-
netised to saturation by passing a current through the coil when the air gap is 
bridged by a piece of soft iron. When the current in the coil is reduced to zero the 
working point will be at P in Figure 19.6. If  the soft iron is removed from the gap, I 
is set to zero in (19.22), and fringing and leakage fluxes are neglected, we have

 B
L

g
Hi i= −







µ0 . (19.24)

This load line passes through the origin and has negative slope. It is plotted in 
Figure 19.6 as the line OQ. The effect of opening the gap is therefore to demagnet-
ise the magnet to some extent. For this reason it is common to speak of the demag-
netising field of  the air gap.

If  the piece of soft iron is reinserted in the air gap, the operating point of the 
magnet moves along a minor loop (or recoil line) to the point P’. In this state the 
magnet is largely immune to the effects of external fields. For this reason it is usual 
to store a permanent magnet with the air gaps bridged by a piece of soft iron which 
is known as a ‘keeper’. If  the keeper is absent, and the magnet is exposed to an 
external demagnetising field, then the working point might move to R. When the 
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external field is removed the working point now lies at Q’ on the minor loop RS. 
This illustration shows that it is necessary to treat permanent magnets carefully if  
their properties are to be preserved. If  the demagnetising field is strong enough for 
the point R to move into the third quadrant then the magnet may be completely 

Figure 19.5: (a) An electromagnet showing the fringing field around the air gap and a typical 
flux leakage path A A− ′ , and (b) an alternative arrangement of the coil to minimise the 
leakage flux.

Figure 19.6: The working point for a permanent magnet circuit lies in the second quadrant 
of the B– H plot at a point such as Q. A permanent magnet can be stabilised against 
demagnetisation by external fields by operating it at a point Q’ on a minor loop such 
as R– S.
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demagnetised. It is undesirable for the working point of the magnet to be sensitive 
to external influences in this way and permanent magnets are often stabilised by 
deliberately demagnetising them beyond their working points on the main hystere-
sis loop. The operation of a magnet which has been stabilised is then along a minor 
loop such as RS unless the external demagnetising field is very strong. Smaller 
external fields produce a temporary shift in the working point, but it returns to Q’ 
when the perturbing field is removed.

In a circuit involving a permanent magnet, the cost of the magnet is usually a 
considerable part of the cost of the whole circuit. It is, therefore, desirable to use the 
magnet material as efficiently as possible. A formula for this purpose can be derived 
by considering a uniform magnetic circuit with an air gap. Let the lengths of the 
magnet and the air gap be li and la and let their cross- sectional areas be Ai and Aa. 
The magnetic circuit law gives

 l H l Hi i a a+ = 0 (19.25)

and the conservation of flux gives

 A B A Bi i a a=  (19.26)

so that

 V B H V B Hi i i a a a= − , (19.27)

where V l Ai i i=  and V l Aa a a=  are, respectively, the volumes of the iron and the air 
gap. Now the density of the stored energy in a magnetic field is BH 2 so (19.27) 
shows that magnitude of the stored energy in the magnet must equal that in the air 
gap. Thus the minimum magnet volume to provide a stored energy in a given air 
gap is achieved by making the energy product of  the magnet B Hi i( ) as great as pos-
sible. This is known as Evershed’s criterion. Figure 19.7 shows curves of Hi and BiHi 
against Bi for a typical permanent magnet material. The optimum working point of 
the material is then Qopt where the value of BiHi is greatest. It is usual to design the 
magnetic circuit so that the magnet operates near this point.

19.4 Magnetic Materials

The properties of magnetic materials can be varied by making alloys with different 
proportions. They may be isotropic, or anisotropic, and are strongly influenced by 
the ways in which the finished material is prepared, especially any heat treatments 
used. A very great variety of materials now exists whose properties can be looked 
up in the literature [7, 12, 13] and in manufacturers’ catalogues.

19.4.1 Soft Magnetic Materials

Soft magnetic materials are characterised by narrow hysteresis loops, low rema-
nence and small coercive force. The area of the hysteresis loop is proportional to 
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the work required to move the working point around it. Thus, narrow loops are 
needed to minimise the generation of heat through hysteresis loss in transformer 
cores and other AC applications [14]. Microwave tubes generally use static magnetic 
fields and hysteresis loss does not occur. The properties of soft magnetic materials 
can be approximated by their initial magnetisation curves. Figure 19.4 shows two 
examples. The curves are nearly straight for fields well below saturation, so it is pos-
sible to make the approximation that the relative permeability is constant. The rela-
tive permeability decreases with increasing temperature, falling to zero at the Curie 
temperature Tc( ). Soft magnetic materials are used in vacuum tubes for pole- pieces, 
for shaping the magnetic field for electron guns, for yokes for electromagnets, and 
for magnetic shielding. It is useful to remember that materials such as nickel alloys, 
which are sometimes used for other purposes in tube construction, are also ferro-
magnetic and may affect the magnetic field close to them. Typical properties of soft 
magnetic materials are given in Table 19.1.

19.4.2 Permanent Magnet Materials

The choice of permanent magnets for use in microwave tubes is based on magnetic 
strength, operating temperature, corrosion resistance, stability, and cost. The prop-
erties of these materials can be changed irreversibly by vibration and shock, and by 
exposure to high temperatures. The available materials fall into four main classes as 
shown in Table 19.2 [3, 16]. Typical demagnetisation curves are shown in Figures. 
19.8 and 19.9.

Ferrite magnets are made from mixed oxides of iron, and certain other metals, 
sintered at a high temperature to form an insulating ferromagnetic compound. They 
are inexpensive and have good stability but the energy product and the maximum 
working temperature are low. Forcing two magnets together in repulsion can cause 
demagnetisation of up to 10%. Below  – 40 °C they suffer from large irreversible 

Figure 19.7: Typical curves of Hi and BiHi versus Bi for a permanent magnet material 
showing the choice of working point at the maximum value of BiHi to make the most 
efficient use of the material.
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Table 19.1: Typical properties of soft magnetic materials used in microwave tubes [15]

Material µr max( ) Js T( ) Hc A m 1−( ) Br T( ) Tc ( C)°

Armco iron (99.85% Fe) 7000 2.16 80 1.3 770

Mild steel 2000 2.15 150 – – 

Nickel 600 0.615 400 – 358

Mumetal 240,000 0.77 1.0 0.45 350

Table 19.2: Typical properties of permanent magnet materials [17]

Ferrite Alnico Samarium
cobalt

Neodynium
iron boron

BHmax kJ m 3−( ) 26 40 210 280

Bopt T( ) 0.14 0.13 0.35 0.45

Br T( ) 0.22– 0.40 0.80– 1.26 0.85– 1.0 1.2

Hc kA m 1−( ) 110– 240 40– 155 700– 800 820– 1040

Density (g cm−3) 4.9 7.3 8.4 7.5

Working temperature (°C) 250 550 300 120

Reversible change in Br (C−1) 0.19% 0.02% 0.03% 0.12%

Corrosion resistance Excellent Fair Excellent Poor

Ease of demagnetisation Low High Very low Very low

Cost comparison 1 5 20 10

Figure 19.8: Typical demagnetisation curves of permanent magnet materials 
(copyright 2010 Delta Magnets, reproduced, with permission, from [16]).
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losses in magnetisation. These materials are brittle and must be shaped by grinding, 
which is an expensive process.

Alnico materials are a group of cast alloys of iron with aluminium, cobalt, nickel 
and other metals. The preferred magnetic axis is determined during manufacture. 
They are relatively cheap, can be machined and have a high working temperature. 
Because the coercive force is low they are easily demagnetised. Forcing two magnets 
together in repulsion can cause demagnetisation by up to 50%. For this reason it 
is usual to stabilise them. They should be stored with a keeper in place to avoid 
demagnetisation, and are best magnetised after assembly [18].

Samarium cobalt, and neodymium iron, magnets are known collectively as rare 
earth magnets. Samarium cobalt magnets have a high energy product, excellent sta-
bility, and a moderate working temperature. They are hard, brittle, materials which 
are manufactured by sintering and must be shaped by grinding or abrasive cutting. 
Their corrosion resistance is excellent but they will break down if  exposed to hydro-
gen. The cost of these magnets is high but they are very useful when it is important 
to minimise the volume of the magnet. Neodymium iron boron magnets have the 
highest energy product of all and their cost is lower than that of samarium cobalt 
magnets. However, the maximum working temperature is too low for most vacuum 
tube applications and they break down when exposed to hydrogen.

19.5 Coil Dominated Magnets

The magnetic field generated by a system of coils without any iron pole- pieces is 
sometimes used for experimental purposes [19]. It is also relevant to the design of 
superconducting magnets where iron cannot be used because the high flux densities 
would saturate it [20, 21]. The simplest example is a circular current loop of radius 

Figure 19.9: Typical demagnetisation curves of Alnico magnets
(copyright 2010 Delta Magnets, reproduced, with permission, from [16]).
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a carrying current I, as shown in Figure 19.10. It can be shown that the flux density 
at a point P on the axis distant z from the plane of the loop is given by

 B
I

a
I
a z a

z = = ⋅
+( )

µ ψ µ0 3 0

2 2
3
2

2 2
1

1
sin . (19.28)

The calculation of the flux density at points which do not lie on the axis is more 
difficult because it requires the use of elliptic integrals [22].

A second simple case is the single- layer solenoid of finite length shown in 
Figure 19.11. The flux density on the axis is given by

 B
nI

z = −( )µ ψ ψ0
2 12

cos cos , (19.29)

where n is the number of turns per unit length. Note that if  P is inside the solenoid 
then the sign of cos ψ1 is reversed. The flux density at the centre of a solenoid of 
length L is then

 B
nIL

L a
z =

+ ( )
µ0

2 2
2

. (19.30)

If  L → 0 then Bz  tends to the value given by (19.28) at z = 0. When L → ∞ then 
B nIz → µ0  which can also be derived by the use of the magnetic circuit law (19.5).

Figure 19.10: Calculation of the flux density on the axis of a circular wire loop carrying 
current I.

Figure 19.11: Calculation of the flux density on the axis of a single- layer solenoid having n 
turns per unit length carrying current I.
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Practical coils differ from the idealised current loop and solenoid described 
above because the windings have finite length and thickness in all cases, as shown 
in Figure 19.12. The flux density of a practical coil having N turns is calculated by 
summing the contributions of all the turns to the total flux density (see Worksheet 
19.1). To find the field on the axis of this coil it is convenient to normalise all dimen-
sions to the mean radius a( ). Then the flux density on the axis, normalised to that 
at the centre of a current loop, is given by

 B z
Lt

z x

r
drz

t

t

L

( ) = +
−( )



























−

−

+

−

⌠

⌡




1
1

2

2

3
2

1
2

1
2

22

2
L

dx

⌠

⌡





. (19.31)

Figure 19.12: Arrangement of a coil having finite cross- sectional area.

Figure 19.13: Comparison between the normalised axial flux densities of coils having square 
cross- sections of different sizes  a =( )1 .
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Figure 19.13 shows a comparison of the flux density on the axis of coils having 
square cross- section. It can be seen that the flux density can be approximated quite 
closely by that of a current loop even when the cross- sectional dimensions of the 
coil are comparable with the mean radius. Figure 19.14 shows similar results for a 
solenoid for which L a= 8 . All the cases plotted can be modelled quite accurately by 
a single- layer solenoid

19.5.1 Arrays of Coils

The flux density produced by two or more coils can be calculated using the principle 
of superposition. The flux density on the axis of a circular current loop located at 
z d=  is obtained from (19.28) as

 B
I a

a z d
z = ⋅

+ −( )( )
µ0

2

2 2
3
2

2
. (19.32)

This expression can be expanded as a Taylor series about the origin as

 B z b b z b zz ( ) = + + +0 1 2
2
etc., (19.33)

where

 b
n

d B
dzn

n
z

n
z

= 



 =

1

0!
. (19.34)

When a pair of coils is arranged symmetrically with respect to the origin the odd 
order terms cancel. Using (19.34) it is found that

 b
a a d

a d
2

2 2 2

2 2 7 2

3 4
=

−( )
+( )

. (19.35)

Figure 19.14: Comparison between the normalised axial flux densities of solenoids having 
different thicknesses  a L= =( )1 8, .

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.020
https://www.cambridge.org/core


Coil Dominated Magnets 751

Thus setting d a= 2 produces a maximally flat field at the origin giving the well- 
known Helmholtz coils. The region of uniform field can be extended by the addi-
tion of more coils and by using equal ripple solutions [23– 25]. Figure 19.15 shows 
the maximally flat results for two, three and four coils when the total current is 
unity (see Worksheet 19.1). The method has also been extended to coils of finite 
cross- section [26, 27]. The design of superconducting magnets to produce a long 
length of uniform axial magnetic field is described in [20, 21]. Detailed information 
about the design of coil dominated magnets can be found in [28, 29].

19.5.2 Solenoids

Figure 19.16 shows a typical arrangement of a cylindrically symmetrical solenoid 
for a microwave tube. The air space is bounded at each end by a soft iron pole- piece 
and the return path for the flux is provided by an external yoke. This may take the 

Figure 19.15: Normalised, maximally flat, axial flux density distributions for two, three and 
four coils when the total current is unity  a =( )1 .

Figure 19.16: Arrangement of a solenoid for a microwave tube.
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form of an iron cylinder or of a number of iron bars. The magneto- motive force is 
provided by a winding made of copper or aluminium wire or tape [1, 3, 28, 30– 32]. 
It is possible to wind the coils directly onto the body of the tube but this is a dif-
ficult process which requires the complete tube to be spun in a lathe and can cause 
distortion of the tube [30]. A wound- on solenoid limits the temperature at which 
the tube can be baked during evacuation and increases the cost of replacing a failed 
tube. Thus, it is much more common to wind the solenoid on a separate former (as 
shown in Figure 19.16) and arrange for the tube to be inserted into it. Part of each 
pole- piece is incorporated in the tube body and care must be taken to ensure that 
there is a good magnetic joint between the sections of each pole- piece when the 
tube is installed. If  the tube fails it can be replaced without changing the solenoid 
which remains a permanent part of the equipment in which it is installed.

The basic design of a solenoid as shown in Figure 19.16 is very simple. For the 
time being we ignore the holes in the pole- pieces which are necessary in a linear 
beam tube for the passage of the electron beam. The effect of these holes is dis-
cussed in Section 9.3.1. The inner faces of the pole- pieces can be regarded as perfect 
magnetic conductors to a good approximation, and the problem is solved using the 
method of images. The region between the pole- pieces is regarded as a section of 
an infinitely long uniform solenoid which therefore has a uniform flux density B0( ) 
within it. The application of the magnetic circuit law (19.6) then gives

 µ0 0H L NI= , (19.36)

where the solenoid winding has N turns, each carrying current I. The shape and cross- 
sectional area of the conductors are chosen to give a convenient combination of volt-
age and current for the solenoid, bearing in mind the space needed for insulation. 
The current density in the winding can be chosen independently depending on the 
trade- off between size and cooling requirements. The current density is typically 2 
to 3 A  cm− 2. It is straightforward to calculate the resistance of the solenoid and, 
hence, the power dissipated in it. For pulsed operation it is also necessary to calculate 
the self- inductance. The design of the solenoid must include a thermal analysis, and 
arrangements for cooling, to ensure that the local temperature is never high enough 
to damage the insulation between the turns of the winding. The design of the pole- 
pieces and the yoke should include checks to ensure that the flux density is never suf-
ficient to cause local magnetic saturation because that would cause the flux inside the 
solenoid to be non- uniform, and would increase the leakage flux outside it.

In practice a solenoid usually comprises a number of separate coils as shown in 
Figure 19.16 allowing the sides of the coils to be cooled. Alternatively there may 
be gaps between the coils to allow access the tube body. The effect of this arrange-
ment of the winding is to cause a periodic variation in the axial magnetic field. 
The magnitude of the ripple can be estimated by assuming that each coil can be 
represented by a single current loop located at the centre of the winding and that 
the effect of the pole pieces can be represented by the mirror images of the coils in 
them. The final design of the solenoid is checked by numerical modelling using one 
of the many computer programs which are commercially available. The design of 
solenoids is discussed in [3, 33, 34].
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19.6 Iron Dominated Magnets

A few tubes, such as small klystrons, have dipole electromagnets arranged as 
shown in Figure 19.17(a). It can be seen from Figure 19.17(b) that the flux den-
sity in the gap between the pole- pieces is not uniform. Also, there are two regions 
where the flux concentration may be great enough to saturate the iron. The flux 
concentration at A can be reduced by rounding the corners of  the pole- pieces. The 
concentration at B is caused by the increase in flux towards the roots of  the pole- 
pieces caused by the fringing field. This effect can be reduced by tapering the pole- 
pieces so that the cross- sectional area increases as the flux increases. It has been 
shown that the saturation of  the pole- piece tips is almost uniform if  they have 
Rogowksi profiles [29]. This profile was originally devised to produce a uniform 
electric field between electrodes for studies of  voltage breakdown. The profile is 
such that the electric field on the surface of  an electrode is greatest on the axis 
and decreases monotonically with increasing distance from it [35]. In practice 
this profile can be approximated quite well by a circular arc and a taper, as shown 
in Figure 19.18(a) [29]. If  saturation of  the pole- piece does not occur, then the 
region where the field is uniform can be increased by shaping the surface of  the 
pole- piece, as shown in Figure 19.18(b). If  the reluctance of  the iron is neglected 
then the number of  ampere- turns required to produce a given flux density in the 
gap can be calculated directly. The flux density in the iron can be obtained from 
the flux density in the gap multiplied by a factor to allow for the fringing field. 
Then the additional ampere- turns needed to overcome the reluctance of  the iron 
can be calculated if  necessary. Further information on iron dominated magnets 
can be found in [29, 36].

Figure 19.17: Electromagnet for a small microwave tube: (a) general arrangement, and 
(b) flux distribution.
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19.7 Permanent Magnet Design

A permanent magnet system comprises one, or more, permanent magnets and may 
include a soft iron yoke and pole- pieces. The pole- pieces may concentrate the flux 
so that the flux density in the air gap is greater than the maximum which can be 
achieved in the magnets. For initial design purposes it is possible to neglect the 
reluctance of the soft iron parts of the circuit. The permanent magnets are then 
designed to provide the magneto- motive force required to produce the desired flux 
in the air space, as described in Section 19.3.1. If  the air space is between soft iron 
pole- pieces, which are not saturated, then its reluctance can be calculated using a 
numerical solution of Laplace’s equation. It is usually important to minimise some 
combination of the size, cost, and weight of the magnet.

19.7.1 Permanent Magnets for Magnetrons and CFAs

Early conventional magnetrons and CFAs employed Alnico magnets. The rela-
tively low energy products and low remanence of  these materials required the 
use of  large and heavy magnets, as shown in Figure  19.19(a) [2]. The higher 
energy products of  ferrite, and rare earth, materials allow the use of  smaller 
magnets, as shown in Figure 19.19(b). In some cases there may be iron pole- 
pieces between the permanent magnets and the gap. Alternative versions of 
both types of  magnet exist with rotational symmetry about the vertical axis, 
and the geometry may be annular instead of  cylindrical. The general principles 
of  design are that the permanent magnet material should be located as close 
to the air gap as possible, and that it should be operated close to its maximum 
energy product.

To illustrate the design procedure for a magnet of this kind let us suppose that we 
wish to generate a uniform flux density Bg between cylindrical magnets of radius R 
separated by a gap g. The flux density in the magnets must be greater than that in 
the air gap because of the fringing field. Figure 19.20 shows one quadrant of the 

Figure 19.18: Pole- piece design: (a) for uniform field in the pole- piece, and (b) for uniform 
field in the air gap.
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system with dimensions normalised to the radius of the magnets. The fringing is 
represented by approximate flux lines each comprising a circular arc and a straight 
line as shown [9]. We will assume that the magneto- motive force for a flux line is 
given by

 M M=
−
−







h z
h d 0 (19.37)

so that it is constant on the flat surface of the magnet z d=( ) and varies linearly 
along the curved surface r =( )1 . In the absence of fringing the flux generated by the 
magnet is

 Φ =
µ π0

0d
M . (19.38)

The contribution to the fringing flux from an element of the surface dz is

 d
h z
h d z c g

dzΦ =
−
−





 +

8
1

0 0
1

µ M , (19.39)

Figure 19.19: Arrangement of permanent magnets for magnetrons and CFAs using 
(a) Alnico, and (b) ferrite and rare earth magnets.

Figure 19.20: Geometry of a dipole magnet showing the form of an approximate flux line.
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where c1 4 1= ( ) −π  and h is an initial estimate. Then the additional flux is

 ∆Φ =
−

−
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8 0 0
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dz
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, (19.40)

which can be integrated to give
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Dividing by Φ gives

 ∆Φ
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Since the flux is continuous the flux density in the magnet must be

 B Bm g= +





1
∆Φ
Φ

. (19.43)

We suppose that the operating point lies on a linear demagnetisation curve (or 
recoil loop) defined by the intersections on the axes 0,Br( ) and −( )Hc ,0 . Then
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1  (19.44)

and, from the magnetic circuit law, we find that
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. (19.45)

The final value of h is found after a few iterations. Comparison between the results of 
this calculation and those from finite element modelling shows good qualitative agree-
ment. Figure 19.21 shows, as an example, the flux plot and the variation of Bz with 
radius at the mid- plane of the gap for a typical case, using a samarium cobalt magnet, 
for a target flux density in the gap of 0.4 T (pole radius 15 mm; gap 10 mm; magnet 
thickness 4.2 mm). These calculations are implemented in Worksheet 19.2. It should be 
noted that the theory given above assumes that the leakage flux is negligible. It is, in fact, 
rather difficult to find approximate formulae for the leakage flux in practical geometries 
and it is best to design the circuit so that the return flux path is kept well away from the 
permanent magnets. The method of estimating the fringing flux can be adapted for 
annular magnets, and for those fitted with cylindrical or conical pole- pieces.

19.7.2 Permanent Magnets for Linear Beam Tubes

Magnet structures similar to those in Figure 19.19(b) have been used for small klys-
trons and TWTs but they are not well- adapted to producing a long region of uni-
form field. An alternative arrangement is shown in Figure 19.22. This is suitable 
for use with Alnico magnets where a long magnet is required to generate sufficient 
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magneto- motive force. The length of the magnet relative to the air space can be 
increased, if  necessary, by making it barrel- shaped and by making the pole- pieces 
re- entrant. If  rare earth magnets are used then it may be necessary to create magnet 
stacks with alternate layers of permanent magnet and soft iron to obtain the cor-
rect combination of flux and magneto- motive force. The flux density on the axis is 

Figure 19.21: Results of finite element calculations for a dipole magnet (a) flux plot, and 
(b) variation of Bz  with r when z = 0.

Figure 19.22: Alnico magnet for a linear- beam tube: (a) general arrangement, and 
(b) flux plot.
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approximately uniform within the magnet but the sign is reversed outside the mag-
net. There is also a substantial leakage flux outside the magnet [1, 3]. An example 
of a klystron focused in this way is given in [37].

Figure 19.23 shows an alternative arrangement using radially magnetised rings, 
which is suitable for use with rare earth magnets [3, 38]. This suffers from the same 
problems of flux uniformity and leakage as the previous example. The reversal of 
the direction of the axial flux at the collector end of the magnet can be reduced by 
using a single ring magnet at the gun end. The non- uniformity of the axial flux, in 
this and other magnets, can be reduced by including a number of transverse soft 
iron plates as flux straighteners.

Further details of magnet design can be found in [1– 3]. The problems of flux 
leakage and non- uniform flux density can be overcome by cladding the magnet 
system with additional magnets having appropriate directions of magnetisation 
[39– 44].

19.7.3 Periodic Permanent Magnet (PPM) Systems

The theory of electron beam focusing by a periodic magnetic field is discussed in 
Section 7.6. In this section we consider the problem designing the periodic perma-
nent magnet stack to produce the field required. This subject was considered by a 
number of authors who developed graphical methods [45– 49]. The availability of 
powerful personal computers means that the formulae used in the graphs can be 

Figure 19.23: Rare earth magnet for a linear- beam tube: (a) general arrangement, and 
(b) flux plot.
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computed readily, so that graphical methods are no longer required. The discussion 
here follows that of Santra et al. which has the widest applicability and has been 
shown to give good results [50].

Figure 19.24 shows the arrangement and dimensions of a PPM structure. This 
allows a number of common variations to be considered:

• The relationship between the outer radius of  the pole- pieces r3( ) and the outer 
radius of  the magnets r5( ). If  r r3 5<  then the external leakage flux is reduced, 
and the peak flux density on the axis is increased, for a given magnet. However, 
it is then necessary to introduce some non- magnetic material to increase the 
overall radius of  the pole- piece if  it is to be cooled by conduction. This prob-
lem is avoided if  r r3 5> , although the peak magnetic flux density on the axis 
is reduced, and the leakage flux is increased. This arrangement is also better 
adapted to the addition of  small pieces of  soft iron (shunts) to the outside 
of  the stack to adjust its properties when hot- testing. The third possibility 
r r3 5=( ) is said to keep the variations in the field at the ends of  the stack to a 

minimum [48].
• The relationship between the inner radius of the magnets r4( ) and the outer radius 

of the ferrule r2( ). In helix TWTs it is possible to make the inner radius of the mag-
nets only slightly greater than the outer radius of the ferrule. This corresponds to 
the good design practice of placing the permanent magnet as close to the gap as 
possible. In coupled- cavity TWTs the ferrule forms part of the RF structure (see 
Figure 4.29) while the magnets must be placed outside the structure.

• Some PPM structures have ferrules, whereas others do not. The choice is deter-
mined partly by the ratio of  the gap length to the pitch of  the structure which 
gives the greatest fundamental component of  the flux density on the axis. 
However, it may be constrained by compatibility with the dimensions of  the RF 
structure.

The model used here allows for all these possible variations.

Figure 19.24: Arrangement of a periodic permanent magnet stack 
(copyright 2009, IEEE, reproduced, with permission, from [50]).

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.020
https://www.cambridge.org/core


Magnets760

The possible flux paths in air around the structure are illustrated in Figure 19.25. 
Because these paths are mostly in parallel with one another it is convenient to 
work in terms of permeance P( ) which is the reciprocal of the reluctance defined 
in (19.20). The calculation of the permeances is based on treating the surface of 
the pole- piece as a magnetic scalar equipotential so that the same magneto- motive 
force acts along each path. The case shown in Figure 19.25(a) was discussed in [46] 
and only the results are given here. It is assumed that the flux density is uniform in 
the gap between the ferrules g( ). We have seen, in discussions of the RF electric field 
in a gap, that this is quite a good approximation if  the ends of the ferrules are blunt 
(see Section 3.5.3). Then, in SI units,

 P
r r
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0 2

2
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, (19.46)
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and
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where I I K K0 1 0 1, ,  and  are modified Bessel functions and the dimensions of the struc-
ture are defined in Figure 19.24. The additional permeances in Figure 19.25(b) are

 P
r r

T4
0 4

2
2
2

=
−( )µ π

 (19.49)

Figure 19.25: Flux paths in a periodic permanent magnet stack 
(copyright 2009, IEEE. reproduced, with permission, from [50]).
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and

 P
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0 3

2
5
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. (19.50)

Finally, the indented pole pieces in Figure 19.25(c) add permeances given by

 P
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p

6
0

3 5

2
= ( )

µ π
ln  (19.51)

in series with P3 so that the modified permeance of this flux path is

 P
P P
P Pm3

3 6

3 62
=

+
. (19.52)

Note that this equation is given incorrectly in [50]. The total permeance Pt is found 
by summing the appropriate permeances in each case. Then the slope of the load 
line is
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r r
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−( )π 5
2

4
2

. (19.53)

If  rare- earth magnets are used then the demagnetisation curve is linear and the 
operating point H Bd d,( ) is given by

 H
B
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B
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d
r

r

c

=
+

, (19.54)

where Br and Hc are the remanence and coercive force of the material. Ferrite and 
Alnico magnets must be stabilised so that the operating point is on a minor loop 
[48]. We have seen that minor loops are effectively linear so that (19.54) can be used 
in this case also if  Br and Hc are taken to be the intersections of the projections of 
the minor loop on the two axes. Finally, the axial component of the magnetic flux 
density in the beam hole of an infinite PPM stack is given by
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,  (19.55)

where B H T gg d= µ0 . Equations (19.46) to (19.55) are the working equations in 
Worksheet 19.3.

The design of a PPM stack starts from the period of the magnetic field L( ) and 
the peak flux density on the axis Bz 0 0,( )( ). The inner radius of the ferrule r1( ) is 
normally fixed by the outer radius of the shield of a helix slow- wave structure, or 
by the beam hole radius of a coupled- cavity slow- wave structure. The flux density 
in the gap Bg( ) can be determined from (19.55) as a function of the gap length g( ) 
which can be chosen for the best results if  it is not constrained by the dimensions 
of the RF structure. The outer radius of the ferrule r2( ) needs to be great enough to 
avoid saturation of the ferrule. In practice this means that the flux density must be 
less than 1T (see Figure 19.4). The choice must also be compatible with the design 
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of the RF structure. The inner radius of the magnet r4( ) will normally be taken to be 
as small as possible. There then remain only three dimensions to be chosen namely 
the outer radius of the magnet r5( ), the outer radius of the pole- piece r3( ), and the 
thickness of the pole- pieces tp( ). If  the two radii are set to the same value then the 
number of free parameters is reduced to two. The thickness of the pole- piece must 
be great enough to avoid saturation. Subject to these restrictions the free param-
eters can be chosen to minimise the volume of the magnets. Final optimisation 
of the design requires the use of computational electromagnetics software. That 
analysis can also investigate the fields at the ends of the stack, and the effects of any 
gaps which are required to allow for the passage of the RF input and output con-
nections [51]. Methods similar to those described above can be used to analyse and 
design long- period PPM structures (see Section 7.6.1) and those where additional 
permanent magnets have been added to reduce the leakage flux [44, 52– 54].
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20 System Integration

20.1 Introduction

The previous chapters of this book have provided a detailed discussion of the prin-
ciples of vacuum tube amplifiers and oscillators. The purpose of this chapter is to 
review the factors affecting the satisfactory integration of a tube into the system of 
which it is a part. The principal elements of a high power RF system employing a 
vacuum tube amplifier are shown in Figure 20.1. The arrangement is similar if  the 
tube is an oscillator, except that there is no low- level RF system.

The key to satisfactory operation of any system is good integration of all the 
parts. Usually the different elements are obtained from a number of sources and 
successful system integration requires good communication between all the engin-
eers concerned. This is particularly important where vacuum tubes are concerned 
because the knowledge bases of the tube and the system engineers are not usu-
ally the same (see Section 1.5) [1]. Some of the interface problems can be avoided 
if  a single organisation takes responsibility for the design and manufacture of a 
packaged amplifier incorporating the tube and its subsystems. A good example is 
provided by the microwave power module in which a solid- state driver amplifier, a 
miniature TWT and its power supply are combined into a single unit [2].

The sections that follow consider how each of the blocks in Figure 20.1 contrib-
utes to the successful operation of the system. A detailed analysis of the nature and 
causes of reliability problems in tube- based systems can be found in [3]. Although 
great advances have since been made in tube manufacturers’ quality assurance it is 
to be suspected that many of the other problems identified still remain. An over-
view of the factors affecting the reliability of systems incorporating vacuum tubes 
is in given in Section 20.9. More detailed information can be found in [4– 6] and in 
other sources cited in this chapter.

20.2 DC Power Supplies

The high- voltage supply is the source of DC power to the tube, and any instability 
or noise in it is likely to lead to degradation of the tube performance. There may be 
combinations of voltage and current which must be avoided because the tube does 
not work correctly (see Sections 14.3.8 and 15.4.1) [7]. Some tubes have regions 
with negative resistance characteristics, and the impedance of the power supply 
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must then be chosen correctly if  oscillations are not to occur. When the tube is 
pulsed that may be achieved by applying a pulsed cathode voltage (see Section 20.3) 
or by using a DC high- voltage supply and applying a pulsed voltage to a control 
electrode (see Section 9.5). The design of the high- voltage supply is more compli-
cated if  the tube has a multi- element depressed collector. The collector electrodes 
are connected to taps on the high- voltage supply, and these intermediate voltages 
must be kept steady when the currents drawn change with the operating conditions 
of the tube. The possible voltages at the taps of the high- voltage supply may be 
determined by its design, and that places constraints on the design of the collector.

In addition to the main high- voltage supply there may be DC supplies at lower 
voltages for the cathode heater, electromagnets, control electrodes, and ion pumps. 
If  these supplies are not accurately calibrated, and well- regulated, then malfunc-
tion, and possibly damage, of the tube may result. The heater power is important 
in ensuring the correct emission from the cathode. Noise in the heater power supply 
can cause additional noise in the output from the tube. Incorrect magnet currents 
and control voltages may lead to imperfect control of the electrons leading to add-
itional power dissipation within the tube, and possible damage to internal struc-
tures. All the power supplies draw their power from an external AC or DC source 
which may not be well- regulated, and may exhibit voltage transients.

20.2.1 High- Voltage Switches

All power supplies rely on electronic high- voltage switches for their operation. 
These devices can be grouped into three classes:

• switched on and off  by the applied voltage;
• switched on by a control signal, and off  by the applied voltage;
• switched on and off  by a control signal.

Figure 20.1: Block diagram of a typical vacuum tube amplifier.
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Semiconductor devices switching up to 8 kV are now used in all DC supplies, but 
switches using vacuum or gas discharge technology are to be found in older systems 
[8]. Thyratrons (triggered gas discharge tubes) which can work at voltages up to 200 
kV and peak currents of 100 kA are still used in many pulsed supplies [9, 10], but 
semiconductor- based alternatives are being developed [11– 13]. Table 20.1 shows a 
classification of electronic high- voltage switches.

20.2.2 Load Impedance

The impedance presented to the high voltage power supply by the tube depends 
upon the type of tube and the operating conditions. The DC current drawn by a 
gridded tube operated in class B or C, or by an IOT, depends upon the RF input 
power (see Figure 12.21(b)). The examples in Chapter 12 show that typical values 
of the DC load impedance are 1 kΩ for a tetrode, and greater than 25 kΩ for an 
IOT. The load impedance presented by a linear- beam tube with a space- charge lim-
ited gun depends upon the perveance K( ) and the anode voltage  Va( ) as

 R
K V

L

a

=
1

. (20.1)

Figure  20.2 shows the impedance for typical values of  voltage and perveance. 
If  the current is reduced from the space- charge limited value by the voltage on 
a control grid, or by temperature limited operation (as in a gyrotron), then the 
impedance is increased. The operating points of  both gridded tubes and linear- 
beam tubes are determined by the anode voltage so the power supply should 
approximate to an ideal voltage source. In models of  the tube with its power 
supply, a linear- beam tube may be represented by a fixed resistor in series with a 
perfect diode.

Crossed- field tubes draw no current until the threshold voltage VT( ) is exceeded. 
Thereafter the voltage varies slowly for a large variation in current (see Figures 15.27 
and 16.8) so that the incremental impedance is of the order of 100 Ω. The operating 
point is determined by the current so the power supply should approximate to an 

Table 20.1: Classification of electronic high- voltage switches

Switch on Switch off Semiconductor Vacuum Gas discharge

Applied voltage Applied voltage Diodes Diodes

Control signal Applied voltage Thyristors Thyratrons
Spark gaps 
Ignitrons

Control signal Control signal MOSFETS
IGBTs
GTOs
IGCTs [14]

Triodes
Tetrodes
Hobetron [15]
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ideal current source. A crossed- field tube can be modelled by a diode and a fixed 
resistance in series with a DC voltage source [16, 17]. The current drawn is then 
given by

 I
V V

R
a T

L
0 =

−
, (20.2)

where Va is the anode voltage, VT  is the threshold voltage and RL is the incremental 
resistance.

For all tubes the regulation of the power supply must be able to handle the vari-
ation in the impedance during start- up as well as in normal operation. Figure 20.3 
compares the static characteristics of typical linear- beam, and crossed- field, tubes 
including a linear approximation for a linear- beam tube. In practice this idealised 
behaviour is modified by the inter- electrode capacitance of the tube and by the 
parasitic inductance of the cables connecting it to the power supply.

20.2.3 Electric Power Converters

The stable high voltage supply is provided by an electric power converter [14, 18]. 
Converters typically have the bridge configuration shown in Figure 20.4 where the 
switches represent semiconductor power devices.

According to the type of switches, and the way in which they are controlled, the 
basic converter can be used to convert power from DC or AC sources to supply DC, 
or variable frequency AC, power to a load. The output voltages of circuits using 
devices other than diodes can be controlled by the timing of the switching. The 
simplest example of an AC to DC converter is the single- phase bridge rectifier in 
which the switches are diodes as shown in Figure 20.5(a). The output waveform is 
shown in Figure 20.5(b). Referring to Figure 20.4 we see that when the input volt-
age is positive switches A and D are closed, and when the input voltage is negative 
switches B and C are closed. Thus the voltage applied to the load always has the 

Figure 20.2: D.C. input resistance of tubes with space- charge limited cathodes.
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Figure 20.3: Comparison between the static characteristics of typical tubes: linear- beam 
K RL= ≈( )1 4µperv, kΩ  and crossed- field  V RT L= =( )20 100kV, Ω .

Figure 20.4: Generic single phase bridge converter.

Figure 20.5: Single- phase diode bridge rectifier: (a) circuit diagram, (b) unsmoothed output 
waveform showing the mean voltage.
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same polarity. The working voltages of individual switching devices are typically  
1– 5 kV depending upon the type. Higher voltages are obtained by stacking con-
verter units in series, or by using voltage multiplier circuits. The properties of single- 
phase bridge converters of different kinds can be explored using Worksheet 20.1.

The output voltage provided by a power converter is modulated by the switch-
ing frequency and its harmonics. The ripple on the output of the rectifier can be 
reduced by employing a three- phase bridge circuit, as shown in Figure 20.6(a). This 
reduces the amplitude of the ripple, and increases the ripple frequency, as shown 
in Figure 20.6(b). In order to obtain a nearly constant voltage the output must be 
passed through a low pass filter, comprising a series inductor and shunt capacitor, 
as shown in Figure 20.6(a). Provided that the reactance of the capacitor 1 ωC( ) 
is small compared with the load resistance, the ripple in the voltage at the load is 
related to the ripple in the voltage at the output of the rectifier by

 V VL R1 2
0
2 1

1
1, , ,=

− ω ω
 (20.3)

where ω π0 02 1= =f LC  and V R1,  and V L1,  are the amplitudes of the first harmonic 
at the output of the rectifier, and the output of the filter, respectively.

A typical three- phase power supply of this kind, capable of delivering 16 A at  
52 kV with 0.7% ripple at 300 Hz, is described in [19]. The smoothing circuit comprises 
a 2 H inductor and a 24 µF capacitor so that f0 23= Hz. Substitution of these 
numbers into (20.3) shows that the filter reduces the amplitude of the ripple at the 
output of the rectifier by a factor of 0.006. The energy stored in the capacitor is 32 
kJ which is sufficient to cause damage to the tube if  an arc occurs. It is therefore 
necessary to provide an additional fast acting switch (known as a crowbar), in par-
allel with the capacitor, to divert the energy so that it can be dissipated harmlessly 
under fault conditions. Capacitors are available with capacitances up to 2 μF and 
working voltages of 100 kV [12, 20].

Figure 20.6: Three- phase bridge rectifier: (a) circuit diagram and (b) output waveform 
showing the mean voltage.
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The sizes of  the smoothing inductor and capacitor and, therefore, the magni-
tude of  the energy stored in the capacitor, can be further reduced by converting 
the AC input to the rectifier to single phase AC at a higher frequency [21]. This AC 
to AC conversion is accomplished using a bridge converter connected to a circuit 
which is resonant at the higher AC frequency. An alternative topology employs a 
number of  converters connected in such a way that their collective output has a 
high- frequency ripple so that only a small smoothing capacitor is required [11]. 
Further information on electronic power converters for vacuum tubes can be 
found in [5, 22].

The current drawn from the power supply may vary according to the operating 
conditions of the tube, causing variations in the voltage as a result of the internal 
impedance of the supply. This is particularly true when tubes with a DC high- 
voltage supply are pulsed by a voltage applied to a control electrode. The variation 
in voltage can be controlled by a post regulator which is a gridded tube, or a tran-
sistor, in series with the tube. The voltage drop across this component can be varied 
rapidly to compensate for changes in the voltage as the current changes [5].

20.3 Pulse Modulators

Many tubes, especially those for radar and for particle accelerators, are pulsed by 
applying voltage pulses to the cathode. The pulse duration can be from a few micro-
seconds up to several milliseconds, and the pulse repetition frequency from a few 
pulses per second up to a few kilohertz. The product of the pulse duration and 
the pulse repetition frequency, known as the duty cycle, is typically of the order of 
0.001. Pulse modulators work by storing energy over a period of time and then dis-
charging it into the load [17]. The mean power delivered by the DC power supply is 
then the product of the peak power and the duty cycle. The energy may be stored in 
either a capacitance or an inductance. Comparison between capacitive and induct-
ive energy storage shows that the energy density in the latter can be greater by a 
factor of about one hundred. However the specification for the switches for an 
inductive system is considerably more demanding, and modulators of this type are 
not widely used with vacuum tubes [10]. Further information about magnetic pulse 
modulators can be found in [23, 24]. The discussion below is restricted to capacitive 
energy storage.

Figure 20.7 shows two basic arrangements for a pulsed modulator with a capaci-
tive energy store. It is usual for the anode, and the tube body, to be earthed because 
that makes it easier to make RF connections and provide cooling. During the stor-
age period the switch is open and the stored energy is replenished from the DC sup-
ply. Then, while the switch is closed, all or part of the stored energy is transferred to 
the tube. It is not essential for the pulses to occur at regular intervals, provided that 
the minimum inter- pulse period is sufficient for the energy store to be recharged 
completely. The purpose of the isolating element is to restrict the current drawn 
from the power supply during the pulse.
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The shape of the voltage pulse can have important effects on the performance of 
the tube. Excessive voltages of either polarity can cause voltage breakdown. Ripple 
on the pulse top can produce temporal variations in power output, in the gain and 
phase of an amplifier, and in the frequency of an oscillator. Unwanted oscillations 
may occur if  the rise and fall times of the pulse are too slow or if  the over- swing 
following the rise of the pulse is too great (see Figure 20.13).

20.3.1 Active- Switch Modulator with a Resistive Load

When the energy store is a capacitor the voltage across it rises slowly during the 
inter- pulse period, and decays exponentially during the pulse, at a rate set by the 
storage capacitance and the resistance of the load. Since the voltage across the load 
should be nearly constant during the pulse, the switch must be opened again after a 
time which is short compared with the decay constant of the circuit. Therefore the 
switch must be of a type which can be both opened and closed by a control signal 
(see Table 20.1). The pulse duration is variable because the switch can be opened at 
any time. Modulators of this type are known as active- switch or hard- tube modula-
tors. As only a small fraction of the energy stored in the capacitor is delivered to 
the load during the pulse it is necessary to provide a crowbar circuit to discharge the 
capacitor safely under fault conditions. The isolating element can be either a high 
resistance or an inductor.

The pulse shape delivered to a resistive load can be found by considering the 
equivalent circuit shown in Figure  20.8(a). The resistance of the load is RL, the 
residual resistance of the switch in the on state is RS , and the capacitor CS  represents 

Figure 20.7: Pulsed modulators with a capacitive energy store: (a) direct coupled, and 
(b) capacitor coupled.
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the stray capacitance of the load, the switch, and the connecting cables. During the 
pulse the voltage across the storage capacitor varies as

 V t V tC ( ) = −( )0 exp ,α  (20.4)

where V0 is the initial voltage,

 α =
+( )
1

R R CL S

, (20.5)

and the capacitance of the storage capacitor is C. If  the switch is closed at t = 0 the 
voltage across the load, during the rise of the pulse, is given by

 V t V
R

R R
t tL

L

L S

( ) =
+

−( )⋅ − −( )( )0 11exp exp ,α α  (20.6)

where

 α1 =
+R R

R R C
L S

L S S

 (20.7)

and it has been assumed that the rise- time is small compared with the duration of 
the pulse. During the fall of the pulse the stray capacitance is discharged through 
the load and the voltage across the load is

 V t V
R

R R
t t tL

L

L S

( ) =
+

−( )⋅ − −( )( )0 1 2 1exp exp ,α α  (20.8)

where

 α2
1

=
R CL S

, (20.9)

and t1 is the time at which the switch is opened. Note that the fall of the pulse is 
much slower than the rise (see Figure 20.8(b)). The long fall time can be reduced 
by adding a ‘tail- biter’ switch, in parallel with the load, which is closed at the same 
moment that the main switch is opened [5]. It is customary to define the rise time 
of a pulse as the time taken for the voltage to change from 10% to 90% of its final 
value. The fall time is defined in the same way. The peak voltage is less than the 
initial voltage on the storage capacitor because of the voltage drop in the switch. It 
follows that some of the power input to the modulator is dissipated as heat in the 
switch so that the efficiency of the modulator is less than 100%. If  the switching 
device is a vacuum triode, or a transistor, it is possible to operate in its active region 
to control the current drawn from the storage capacitor. But the penalty for this is 
greater power dissipation in the active device and, therefore, reduced modulator 
efficiency. The voltage on the pulse top falls slowly during the pulse as the capacitor 
is discharged. The extent of the fall is known as the droop of  the pulse. The droop 
can be reduced by increasing the capacitance of the storage capacitor. Alternatively 
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a bouncer circuit which provides a compensating ramped voltage can be inserted 
between the load and earth [17]. This approach has been used to compensate for a 
20% droop in a 2 msec pulse, leading to a considerable reduction in the energy to be 
stored in the capacitor [25– 27].

20.3.2 Active- Switch Modulator with a Biased Diode Load

When the load is a crossed- field tube, modelled by a biased diode, the equivalent cir-
cuit for the rise and fall of the pulse is as shown in Figure 20.9(a). The switch S1 con-
trols the pulse, and the biased diode model of the load is represented by S2 together 
with the voltage VT . The additional impedance ZR is necessary to allow the stray cap-
acitance to be discharged at the end of the pulse because the tube stops conducting 
before the voltage has fallen to zero. In a capacitor- coupled modulator it also provides 
a recharging path for the storage capacitor. In the simplest case this component is a 
resistor RR. For purposes of analysis the circuit can be redrawn in terms of current 
sources as in Figure 20.9(b). Switch S2 is closed when V VL T>  and open otherwise.

The voltage across the storage capacitor can be approximated by

 V t V tC ( ) = − ′( )0 exp ,α  (20.10)

where

 ′ =
+( )α 1

1R R CS

, (20.11)

and

 R
R R

R R
L R

L R
1 =

+
. (20.12)

Figure 20.8: Pulse generation by capacitor discharge: (a) equivalent circuit diagram for the 
rise and fall of the pulse, and (b) a typical pulse shape plotted with the voltage normalised 
to the initial voltage on the storage capacitor and time normalised to the pulse duration.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.021
https://www.cambridge.org/core


Pulse Modulators 775

The rise of the pulse is analysed in two steps [17]:

 i) From t = 0 until t t= 1 when V VL T=

 V t V
R

R R
t tL

R

R S

( ) =
+

− ′( )⋅ − −( )( )0 11exp exp ,α α  (20.13)

where

 α1 =
+R R

R R C
R S

R S S

, (20.14)

and it is assumed that the rise time is short compared with the duration of the pulse.

 ii) From t t= 1 until S1 is opened when t t= 2

V t
V
R

t
V
R

R t t VL
S

T

L
T( ) = − ′( ) +









 − − −( )( )  +0

2 2 11exp exp expα α −− −( )( )α2 1t t ,

(20.15)

where

 1 1 1 1

2R R R RS R L

= + + , (20.16)

and

 α2
2

1
=

R CS

. (20.17)

Figure 20.9: Equivalent circuits for an active- switch modulator with a biased diode load:  
(a) with voltage sources, and (b) with equivalent current sources.
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If  the droop is small then the voltage on the pulse top is

 V t
V
R

V
R

RL
S

T

L

( ) = +










0
2 . (20.18)

The fall of the pulse is analysed in a similarly manner:
 iii) From t t= 2 until t t= 3 when V VL T=

 V t V
R

R R
t t V t t tL T

R

L R
L( ) =

+
− − −( )( )  + ( ) − −( )( )1 3 2 2 3 2exp exp ,α α  (20.19)

where

 α3
1

1
=

R CS

. (20.20)

 iv) From t t= 3 onwards

 V t V t tL T( ) = − −( )( )exp ,α4 3  (20.21)

where

 α4
1

=
R CR S

. (20.22)

Figure 20.10 shows a typical waveform calculated in this way. The pulse top lies 
only just above the threshold voltage and the capacitance of the storage capacitor 
must be large enough so that the droop is small and the voltage does not fall below 
VT  before the end of the pulse. The losses incurred by the use of the resistor RR can 
be reduced by replacing it by an inductor [17]. However, the storage of energy in 
the inductor during the fall of the pulse can cause the decaying voltage to become 
oscillatory so that its polarity is periodically reversed. It is undesirable for a large 
reverse voltage to be imposed on the tube, and an ‘over- swing’ diode may be added 
in parallel with the tube to provide a path for the reverse current.

During the pulse an active switch modulator can be regarded as a voltage source 
whose source resistance is the forward resistance of the switch. The current through 
the switch is approximately equal to that through the load. Thus, to minimise the 
power dissipated in the switch, it is desirable for the switch resistance to be small 
compared with the load resistance. The usual principle of matching the load to the 
source for maximum energy transfer is not relevant in this case. However, there are 
circumstances in which it is useful to place a pulse transformer between the modu-
lator and the load. Chief among these is the use of a transformer to provide a high 
voltage output pulse from a lower voltage modulator. This provides one way of 
obtaining high voltage pulses from a modulator employing solid state switches. The 
disadvantages of using a transformer are: the increased current and switch losses in 
the modulator; losses in the transformer itself; and degradation of the pulse shape 
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caused by reactances in the transformer. An alternative approach is the Marx bank 
modulator in which a number of capacitors are charged in parallel and then dis-
charged in series [28, 29]. A good comparison between different modulator topolo-
gies is given in [27] and examples of modulator design in [25, 30]. For discussion of 
the design of pulse transformers see [16, 17, 31– 33].

20.3.3 Line- Type Modulators

An alternative way of generating a flat- topped pulse is to charge a length of TEM 
transmission line and then discharge it by connecting it to the load, as shown in 
Figure 20.11(a). Initially both switches are open and the line in uncharged. Switch 
S1 is closed for long enough for the line to charge to the source voltage V0. When 
S2 is closed the line appears to the load as a voltage source V0 with an impedance 
equal to the characteristic impedance of the line Zc. The load voltage rises instant-
aneously to a value given by the potential divider rule. If  the load is matched to 
the line R ZL c=( ) then the voltage across the load is 0 5 0. V . The change in voltage 
propagates along the line towards the source. If  the line is dispersionless then the 
change in voltage propagates as a step having amplitude −0 5 0. V  and phase velocity 
vp. The voltage on the line is the sum of the initial voltage and this step wave, as 
shown in Figure 20.11(b). When the wave reaches the start of the line it encoun-
ters an open circuit and is reflected as a wave having amplitude −0 5 0. V , as shown 
in Figure 20.11(c). The time taken for the reflected step wave to reach the load is 
τ = 2l vp  where l is the length of the line. At that moment the wave is absorbed by 
the load and the voltage falls to zero. Thus, the load experiences a voltage pulse of 
amplitude 0 5 0. V  and a duration τ  which is fixed by the electrical length of the line. 
If  the load is not matched to the line then the reflected wave is reflected by the load 
with an amplitude which satisfies the boundary conditions. As a result the pulse 

Figure 20.10: Typical voltage pulse for an active- switch modulator connected to a biased 
diode load.
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does not end cleanly and the subsequent voltage may be positive, or oscillatory, 
depending upon the boundary conditions [17, 34].

The simple arrangement described is not practical, in most cases, because it 
requires an inconveniently long transmission line. For example, a line with a phase 
velocity half  the velocity of light designed to produce a 1 µs pulse would be 75 m 
long. Thus a practical line- type modulator employs a pulse- forming network  
having a number of sections with series inductance and shunt capacitance, as shown 
in Figure 20.12. The switch S1 is a diode, while S2 is a thyratron or a thyristor which 
is switched on by a control signal and switches off  automatically when the voltage 
across it falls to zero. The inductor in series with the DC source, and the capaci-
tance of the pulse- forming network, form a resonant circuit. As the line is charged 
the voltage rises sinusoidally until it reaches a maximum of 2 0V , at which value it 
is held by the diode. Thus the amplitude of the pulse is equal to the DC supply 
voltage. The impedance of the load is not normally matched to a practical value of 
characteristic impedance and modulators of this type require a pulse transformer 
to match the load to the line.

A lumped- element network cannot reproduce the behaviour of a uniform trans-
mission line exactly. Figure 20.13 shows the pulse shape when a uniform five- section 
network is terminated by a matched resistance. It can be seen that there is an over-
shoot at the start of the pulse, ripples on the pulse top, and an overshoot at the 
end of the pulse. The properties of a uniform transmission line can be approached 
more exactly by increasing the number of sections in the line but the pulse remains 
imperfect to some extent. A detailed discussion of theoretical methods for design-
ing pulse- forming networks is given in [17]. In one useful form of pulse- forming 

Figure 20.11: Principle of operation of a line- type modulator: (a) circuit diagram, (b) voltage 
distribution on the line during the first half  of the pulse, and (c) voltage distribution on the 
line during the second half  of the pulse.
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network the series inductors are wound on a common former so that there is mutual 
inductance between the sections. It is then possible to use capacitors which all have 
the same capacitance by suitable choice of the tapping points at which they are con-
nected to the inductors. It is important to recognise that the actual performance of a 
line- type modulator depends upon the impedance presented by the load, including 
the effects of reactances in the pulse transformer, and of parasitic reactances. The 
performance of modulators can be optimised by making empirical adjustments to 
the components in the pulse- forming network. It has been shown that the ripple in 
the pulse top can be reduced by using a pair of pulse- forming networks arranged so 
that their contributions to the ripple are in anti- phase [35]. The design of a simple 
line- type modulator with a pulse transformer is described in [36].

20.4 RF Systems

The RF system into which the tube is incorporated has an influence on its perform-
ance. The construction and calibration of the system are important, as also are 

Figure 20.12: Arrangement of a line- type modulator.

Figure 20.13: Pulse generated by a uniform five- section network terminated by a matched 
resistance (reproduced, with permission, from [17]).
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differences between the system, and the test stand used by the tube manufacturer. 
When the tube is an amplifier the correct drive level is important. Overdriving a 
tube increases its non- linearity and can cause oscillations and overheating. Because 
some RF power may emerge from the input port of the tube it is necessary to ensure 
that a good match is presented by the input system. Under fault conditions the 
returned power may be high, and at frequencies other than the normal operating 
frequency, so that it is necessary to protect the input system by a circulator.

When a tube is tested by the manufacturer the output is usually directed to a high 
power load which has a good match over a wide range of frequencies. The effects of 
an incorrect match may be variations in the power output, in the gain and phase of 
an amplifier, and in the frequency and spectrum of an oscillator. In extreme cases 
it may lead to RF voltage breakdown within the tube. The effects of the RF match 
are indicated on a Rieke diagram which may show regions where operation is for-
bidden (see Figures 13.12 and 15.29). The RF match presented by the system may 
be very different from that of the test stand and may affect the correct operation of 
the tube. For this reason the output of the tube is normally directed through a high- 
power circulator. However, the performance of a circulator is usually only specified 
over the working frequency band of the system. Thus, its properties at harmonic 
and other out- of band frequencies may not be defined. If  a filter is included in the 
system to block power at these frequencies, the effect of reflection into the output 
port of the tube must be considered. The construction of the RF output system 
must conform to good high power practice and particular care must be taken to 
avoid resonances. The output power of the tube and the power reflected by the 
system are measured using directional couplers whose calibration is important. The 
measurement of power at harmonic frequencies is not straightforward because the 
power may be divided between several waveguide modes [37]. Reflection of output 
power into the tube may cause overheating within it which may be indicated by 
increased gas pressure. It can also cause failure of the output window if  a peak of 
the standing wave occurs there. Abnormal causes of power reflection include arcs 
and multipactor discharges in the output waveguide. Reflected power, and wave-
guide arc, detectors connected to fast trips are used to protect the tube (see Section 
20.6.2). The design and maintenance of high power RF systems is discussed in 
[4, 38].

20.5 Cooling System

The methods used for cooling the collectors of IOTs, linear- beam tubes and gyro-
trons are discussed in Section 10.5. Similar methods are used for cooling the anodes 
of gridded tubes, magnetrons and CFAs. The greatest part of the heat is dissipated 
on these electrodes. However, it is usually necessary to cool the body of the tube, 
and cooling may also be required for electromagnets and output windows. The sur-
faces to be cooled may not be at earth potential. The density of the power to be 
dissipated is frequently great enough for the tube to be permanently damaged if  the 
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cooling is inadequate. Overheating can cause the release of adsorbed gases lead-
ing to an increase in the pressure within the tube. If  the background gas pressure 
rises then poisoning of the cathode may lead to reduced emission, and ion oscilla-
tions may add noise to the tube output. Large tubes are usually fitted with at least 
one ion pump whose function is to monitor, and maintain, the vacuum within the 
tube. Permanent damage is revealed by changes in the RF performance of the tube. 
Under normal operation the internal dimensions of the tube change because of the 
thermal expansion, leading to changes in performance with temperature. Vibration 
caused by cooling fans, pumps, and turbulence in the cooling system can cause 
internal parts of a tube to vibrate, imposing low frequency modulation on the RF 
output.

If  the tube is to be cooled correctly it is important that air and liquid flow rates 
should be adequate, that the incoming coolant temperature is correct, and that the 
surfaces to be cooled are clean and not damaged by corrosion. In air- cooled sys-
tems corrosion can be caused by excessive humidity. In water- cooled systems gal-
vanic corrosion may occur, leading to shortening of the life of the tube [39]. To 
prevent this it is important to consider the metals used in the construction of the 
cooling system, the purity and pH value of the water used, and the nature of any 
additives such as anti- freeze. Further information on the design and maintenance 
of cooling systems is given in [4, 5, 38, 40].

20.6 Control System

The purpose of the control system is to ensure correct and safe operation of the 
tube, and to protect it under fault conditions. The details of the system depend 
upon the tube type, and the power level at which it is operating, but the general 
principles are the same for all.

20.6.1 Interlocks

The parts of the system shown in Figure 20.1 must be interlocked in such a way that 
the different parts are turned on and off in the correct order. In addition, the inter-
locks provide protection if  any of the correct operating conditions, including the 
maximum ratings specified by the tube manufacturer, are violated. The interlocks may 
also include conditions relating to other parts of the complete system (for example 
the cooling of a high- power circulator). Examples of switch- on sequences are given  
in [5– 7]. At each stage the operating conditions are monitored so that the next stage 
cannot commence unless they are within prescribed limits. If  any quantity lies out-
side the permitted limits then the system is shut down. A typical start- up sequence is:

 i) The cooling and auxiliary supplies (electromagnets, ion pump) are turned on.
 ii) The cathode heater is turned on with a time delay which inhibits the next step 

until the full heater temperature has been reached.

                    

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9780511979231.021
https://www.cambridge.org/core


System Integration782

 iii) The control grid bias voltage is applied.
 iv) The anode voltage is applied. In some cases the voltage is increased gradually 

until the working voltage is reached.
 v) The collector voltages are applied to a tube with depressed collector electrodes. 

The screen grid voltage is applied to a tetrode.
 vi) The RF drive is applied. Note that in some linear- beam tubes the collector may 

not be designed to dissipate the full beam power in the absence of RF drive. It 
is then necessary for the anode voltage and the RF drive to be applied simul-
taneously and for the beam power to be reduced if  the RF drive fails [41].

 vii) The heater power of a magnetron or CFA is reduced to compensate for heating 
by back- bombardment of the cathode.

The same steps are followed in the reverse order to turn the tube off. Because parts 
of the tube may still be quite hot after it has been turned off  it may be necessary to 
keep the cooling systems in operation for some time.

20.6.2 Tube Protection

The interlocks described above cannot normally act fast enough to protect the tube 
under fault conditions. For this purpose, trips are required which can remove power 
from the tube under fault conditions within tens of microseconds, before damage 
can occur. For tubes with DC supplies this is achieved by firing the crowbar switch 
of the power supply. For cathode- pulsed tubes, the triggering of the next pulse must 
be suppressed. Faults to be detected include:

• DC arcs inside the tube indicated by excessive cathode, or grid, current;
• excessive reflected power and RF arcs in the output waveguide;
• excessive current interception on the tube body;
• grid bias failure;
• depressed collector bias failure;
• excessive gas pressure

20.7 Care of Tubes

The performance of a tube can be affected by its environment during storage, 
transportation, installation, and operation. Because tubes appear to be mechan-
ically robust they may be treated carelessly, with the result that the performance is 
degraded and the life of the tube reduced. Some common problems are:

• The copper body of a tube is very soft as a result of annealing during manufac-
ture so that the precision of the alignment of internal parts may be disturbed by 
shocks.

• Ceramic insulators are brittle and can be fractured so that the vacuum is lost.
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• The cathode assembly of a tube is often cantilevered, making it liable to be dis-
placed by transverse shocks. Internal spacings, especially those of grids, can be 
very small and critical to the operation of the tube.

• The magnetisation of permanent magnets can be altered by exposure to external 
magnetic fields or ferromagnetic materials. The presence of the magnet of a high- 
power circulator close to the tube may cause problems with focusing.

• The external surfaces of insulators can become dirty, and metal surfaces can be 
corroded.

For all these reasons it is important that a tube should always be transported in 
the packing provided by the manufacturer, and the handling procedures specified 
should be followed with care. If  ion pumps are fitted they can be used to monitor 
and maintain the vacuum during storage. When the manufacturer specifies a gas 
test this should be carried out before the tube is installed. Some tubes are very heavy 
and should only be handled and installed with appropriate equipment. After a tube 
has been installed it is usually necessary to follow a conditioning procedure before 
it is ready for normal use. That can include gradually raising the operating voltage 
over an extended period of time (see Section 18.7.1). A detailed discussion of these 
issues, and of the correct procedures is given in [4, 38].

20.8 Safety

Vacuum tubes are high power devices whose safe operation requires careful atten-
tion to the construction and use of the systems in which they are employed. 
A detailed discussion of the issues involved is given in [4, 38, 42].

Tubes operate at voltages which are potentially lethal and proper high- voltage 
precautions must be taken. All high- voltage connections must be enclosed, or 
adequately insulated, and interlocks provided so that high- voltage terminals are 
inaccessible when they are live. The design of the equipment must ensure that all 
high voltage terminals are earthed before any access to the enclosure is possible. 
High voltage hazard warning notices should be clearly displayed. Great care must 
be taken to keep earthing straps short and of very low inductance. Under fault 
conditions the rate of change of current with time can be very high so that high- 
induced voltages may exist on exposed metalwork (see Section 18.7.1).

RF power is dangerous to biological tissue especially the eyes. For this reason 
one should never look into the end of a waveguide carrying microwave power at 
any level. All joints in the high- power waveguide system must be correctly made 
and checked for leakage. It is important to be aware that RF power may be emit-
ted from parts of the tube such as the collector insulator of a linear- beam tube, or 
the cathode insulator of a crossed- field tube. There should, therefore, be adequate 
screening against such emissions, including those which only exist under fault con-
ditions. National regulations for safe levels of exposure to radio- frequency radia-
tion should be observed.
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X- rays are produced by the impact of  electrons on solid surfaces at voltages 
of  5 kV or more, as described in Section 18.4. Low- energy X- rays are screened 
out by the metal body of  a tube but may still escape through ceramic insulators. 
The energies of  electron impacts in crossed- field tubes are smaller than those 
in other tubes, but X- rays can still be emitted under fault conditions. If  X- rays 
are likely to be generated then the tube must only be operated in a properly 
screened enclosure and national regulations for the protection of  personnel must 
be observed [43, 44].

Some tubes contain beryllium oxide ceramics or beryllium metal parts. Beryllium 
oxide dust is highly toxic, and great care must be taken in handling a tube in which 
a ceramic has been broken. Otherwise a tube containing these materials is safe to 
handle unless an attempt is made to dismantle it. The tube should be clearly marked 
with a hazard label.

Sulphur hexafluoride (SF6) and Freon gases are sometimes used to prevent break-
down in high- voltage systems and high- power waveguides (see Section 18.7.2). If  
a breakdown does occur the gas may decompose, and combine with air or water 
vapour, to produce highly toxic and corrosive compounds. When systems use these 
gases it is essential to establish safe procedures for handling the consequences of a 
breakdown.

If an insulator is broken by a mechanical shock, the vacuum within a tube can 
cause fragments to fly outwards at high velocity, leading to injury. Correct handling 
procedures should be used to avoid this. Especial care is required if  beryllium oxide 
ceramics are present.

Exposed surfaces on an air- cooled tube may be at temperatures of 200 °C to 300 
°C during operation, and they may remain dangerously hot for some time after 
the tube has been turned off. The cooling fans should continue to operate until 
the temperature has been reduced to a safe level. Liquid coolants can also become 
dangerously hot, and care is needed to avoid breakage of cooling pipes, especially 
if  they are under pressure.

20.9 Reliability

The reliability of a vacuum tube can impinge on the reliability of the system, in 
which it is installed, in two ways. First, there are short- term system outages caused 
by trips when the tube is otherwise performing correctly. These can be common 
when a tube is first installed, after a period of storage, and their frequency decreases 
if  the tube is conditioned by gradually raising the anode voltage. Sometimes the fre-
quency of tripping increases after a long period of operation, but it can be reduced 
by repeating the conditioning process. The duration of each outage depends upon 
the length of time required to restart the tube after a trip. The effect of the outages 
may be only a minor irritation, or it may be serious where continuous availability of 
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the system is important. The second way in which the reliability of the tube affects 
that of the system is the point at which the tube no longer delivers the performance 
required so that it has to be replaced. This can be a major operation during which 
the system is not available for hours, or even days. Both kinds of outage affect the 
cost of ownership of the system which needs to be minimised by careful design and 
operation.

The normal end of life of a tube is determined by reduction in emission of elec-
trons from the cathode, caused by evaporation of barium. If  the gas pressure in a 
tube is too high, then the ions generated may bombard the cathode surface. This is 
more likely to occur in CW tubes than in pulsed tubes. The result may be damage 
by sputtering of material from the surface, or by ‘poisoning’, leading to reduced 
emission. A third cause of low emission is low cathode heater power, which may be 
caused by an internal short circuit, or by incorrect setting of the heater supply. If  
the cathode becomes temperature- limited, because the cathode work function has 
increased, or the heater power is too low, then the cathode current varies with the 
heater current. In addition, the reduction in the current drawn from the high volt-
age supply may cause its voltage to rise and voltage breakdown may occur. In mag-
netrons reduced emission leads to a poor RF spectrum. The lifetime of a tube can 
sometimes be extended by de- rating it to extend the cathode life, or by increasing 
the heater current when the emission starts to fall. The tube manufacturer should 
be consulted before either of these courses of action is pursued.

It is found that many tube failures are caused by incorrect handling, or by sys-
tem faults. The ways in which these affect the performance of the tube have been 
discussed in the preceding sections. The tendency to assume that the tube is faulty, 
and to attempt to cure system faults by replacing it, should be resisted. The tube is 
an expensive component and the cost of replacing it is not trivial. Therefore proper 
diagnostic procedures should be followed to ensure that the fault does not lie else-
where, before the tube is replaced [4]. Table 20.2 shows some typical symptoms and 
causes of tube failure. Further information is to be found in [4, 5].

20.10 Conclusion

Vacuum tubes continue to be important components in systems of many kinds. 
Progress in design, and in manufacturing technology, continue to yield improve-
ments in performance, reliability, and lifetime, as noted in Chapter 1 of this book. 
As a result, the performance of systems incorporating tubes is also improving, 
and new applications are becoming possible. However, if  the full benefits are to 
be achieved, it is essential that the tube engineers, and the systems engineers, have 
a good understanding of each others’ technologies. It is hoped that this book will 
contribute to that understanding by providing a detailed, and authoritative, account 
of the principles of vacuum electron devices.
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WS 1.1 Coupled Modes
WS 1.2 Modulation
WS 1.3 Linearity
WS 2.1 Ridged Waveguides
WS 2.2 Waveguide Capacitive Iris
WS 2.3 Waveguide Inductive Iris
WS 3.1 Resonant Circuits
WS 3.2 Cavity Resonators
WS 3.3 Re- entrant with Beam Hole
WS 3.4 Fujisawa’s model
WS 3.5 Gap Field
WS 3.6 Iris- Coupled Cavity
WS 4.1 Capacitance of a Planar Grid
WS 4.2 Meander Line
WS 4.3 Sheath Helix
WS 4.4 Capacitance of a Cylindrical Grid
WS 4.5 Tape Helix Model
WS 4.6 Ring- Bar Structure
WS 4.7 Folded Waveguide
WS 4.8 Space- Harmonic Structure
WS 5.1 Planar Diode
WS 5.2 Cylindrical Diode, Relativistic Effects
WS 5.3 Spherical Diode, Relativistic Effects
WS 5.4 Planar Diode with Initial Velocity
WS 6.1 Electrostatic Triode with Island Formation
WS 6.2 Effective Diode Spacing
WS 6.3 Tetrode Fields
WS 7.1 Calculation of Beam Parameters
WS 7.2 Solenoid Focusing
WS 7.3 Beam Spreading Curves
WS 7.4 PPM Focusing (Mean Radius)
WS 7.5 Periodic Electrostatic Focusing
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WS 8.1 Electron Trajectories
WS 8.2 Planar Crossed- Field Diode
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WS 9.1 Pierce Electron Gun
WS 9.2 PPM Stack Entry
WS 10.1 Collector Design
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WS 11.1 Gap Coupling
WS 11.2 Reduced Plasma Frequency
WS 11.3 Beam Gap Interaction
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WS 15.3 4J50 Magnetron
WS 15.4 Magnetron Design Sheet
WS 16.1 SFD- 262 Model
WS 17.1 Gyrotron Model
WS 18.1 Two Surface Multipactor Model
WS 18.2 Crossed Field Multipactor Model
WS 19.1 Coil Field
WS 19.2 Permanent Magnet Design
WS 19.3 PPM Stack Design
WS 20.1 Power Converters
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cloverleafstructure,176–8
dispersion,178
equivalentcircuit,178
higher-ordermodes,178
totalimpedance,178

coaxialline,45,52–7
characteristicimpedance,54
lossparameter,54
maximumpower,54
multipactordischargein,55
TEandTMmodes,55
TEmodefieldpatterns,58
TEMmode,53
TMmodefieldpatterns,58

co-channelinterference,29,31
collector,352–70
depressed,353,357–66
efficiency,359–60
energyrecovered,358–9,361
ingyrotronoscillator,682
probabilityofcollection,363

multi-element,360–70,490,508
asymmetric,369
DCefficiency,365
design,366–9
dispersive-lens,367
hyperbolicasymmetric,368
individual-lens,368
inductiveoutputtube,459
klystron, 488
non-ideal,363
parabolicsymmetric,369
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RFefficiency,365
symmetric,367
travelling-wavetube,525,552

particleincellsimulation,357
powerdensity,355,see cooling
secondaryelectrons,352–3,366
suppression,369

space-charge,357
potentialdepression,357
virtualcathode,357

spentbeam
distribution,354,366
reconditioning,370

virtualcathodein,481,487
X-raygeneration,352

conservationofenergy,5,9,194,291,302,394,574–5
continuityequation,294,385
continuousbeam-structureinteraction,404–11
backwardwave,408
bandwidth, 411
coupled-modeequation,406
decayingwave,408
dispersionequation,407,527
electricfieldofstructure,405
fastspace-chargewave,408
gainpercircuitwavelength,410
growingwave,408
Pierceparameters,409
slowspace-chargewave,408
synchronouspoint,407
two-waveapproximation,409

convectiveinstability,15,667
cooling,371–2
air,371
conduction,371
hypervapotron,372
pumpedliquid,372
vapourphase,372

coupled-cavityslow-wavestructure,173–81;
see alsocentipedestructure;cloverleaf
structure;space-harmonicstructure

couplingto,180
forwardfundamentalstructure,173
sever, 181
intravelling-wavetube,509,556

coupled-modetheory,12–17,408
couplingtocavityresonator,120–9
couplingfactor,122,124–5,129
electricantenna,120
equivalent circuit, 122, 129
externalQ,124
inputimpedance,128
iriscoupling,122,124
loopcoupling,122
magneticantenna,120
voltagereflectioncoefficient,123

crossed-fieldamplifier,629–38;see also crossed- 
fieldamplifierdesign;crossed-fieldamplifier
model;crossed-fieldamplifierperformance

anodecurrent,638
arrangement,629
backward-wave,629
cathode-driven,635
controlelectrode,641
emittingcathode,629,631–3
forward-wave,629
injectedbeam,629,633

basicprinciples,636–8
cathode,629,634
back-bombardment,634
cold,634,704
thermionic,634

efficiency,632
electrontransittime,638
inter-modulationproducts,631
line, seecrossed-fieldamplifier:slow-wave

structure
magneticfield,639
noise,632
operatingpoint,636
oxygendispenser,635
secondaryelectronsin,634
slow-wavestructure,629,634
heatdissipation,634
helix-coupledvane,634
inter-digitalline,634
meanderline,634
splitfoldedwaveguide,634
strappedladderline,634
strapped-vane,634
stub-mountedhelix,634

sole, seecrossed-fieldamplifier:cathode
space-chargehub,629,634,636
spokes,636,638
angularvelocity,636

synchronism,636
tuning,629

crossed-fieldamplifierdesign,654–5
circuitefficiency,655
electronicefficiency,654
equivalentmagnetron,654
modifiedSlaterfactor,655
poweraddedefficiency,654

crossed-fieldamplifiermodel,645–54
Brillouinhub,646
casestudy,649
coldloss,648
comparisonofmodels,651
efficiency,647
electrontransittime,646,653
equivalentmagnetron,648
gain,647
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Gausslines,649
guidingcentretheory,646
inducedcurrent,647
non-linearfluidmechanics,647
outputpower,649
particleincell,645
rigidspoke,647
secondaryelectronemission,645
solitontheory,646
spokeformation,645
thresholdvoltage,648

crossed-fieldamplifierperformance,639–45
band-edgeoscillations,641
bandwidth,643
gain,642
heatdissipation,645
loadline,639,643
matches,644
performancechart,639
phase,643
pulsenesting,641
pulsed,641
signalgrowth,645
transfercharacteristics,642

crossed-fieldbackward-waveoscillator,633
crossed-fieldelectronflow,287–8;see also 

cylindricalmagnetrondiode;planar
magnetrondiode

categories,287
equationofmotion,287

crossed-fieldelectrongun,344–8
Kinogun,345
magnetroninjectiongun,346
design,346

CVDdiamondwindow,679
cyclotronauto-resonancemaser,663
cyclotronfrequency,289,592,601,606,610, 

624,670
relativistic,661

cylindricalmagnetrondiode,300–15
back-bombardment,310
Brillouinflow,303
cathodecurrentdensity,306
currentwhenconducting,307
currentwhencutoff,309
electronflowin,308
electron trajectories 
withspace-charge,303,305
withoutspace-charge,302

equationsofmotion,301
experimentalresults,308–14
Hullcut-offvoltage,302
themagnetronproblem,314
potentialin,304
secondaryelectronemission,311
Slatertrajectories,307

space-charge
density,304,313
hub,301,307
modes,315
oscillations,312,314

cylindricalthermionicdiode,206–9
space-chargelimited,207
withrelativisticvelocity,208

DC power supply, 765–71
bridge converter 
3-phase,770
single-phase,768

crowbar,770,782
electricpowerconverter,768–71
high-voltage,765
high- voltage switch 
semiconductor,767
thyratron,767

high-voltageswitches,766
impedance,765
loadimpedance,767
crossed-fieldtube,767
griddedtube,767
linear-beamtube,767

low-voltage,766
formulti-elementdepressedcollector,766
noise,765–6
postregulator,771
smoothingcapacitor,770
storedenergy,771
voltageripple,770

DEMATRON,632
dielectricmaterial
alumina,84
anisotropicboronnitride,508
beryllia,84,508
CVDdiamond,84,679

digitalmodulation,26–8
amplitudeshiftkeyed(ASK),26
binaryphase-shiftkeyed(BPSK),26
constellationdiagram,26
frequencyshiftkeyed(FSK),26
phaseshiftkeyed(PSK),26
quadratureamplitude(QAM),26
quadraturephase-shiftkeyed 

(QPSK),26
digitalsignals,20
dimensionlessparameters
magnetron,619
travelling-wavetube,526

diocotroninstability,281,293
discretebeam-structureinteraction,411–15
dispersionequation,413
space-harmonicwaves,414

dispersiondiagram,13
dispersionequation,12

crossed-fieldamplifiermodel(cont.)
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forcoupledmodes,13
doublebeamamplifier,375

E modes, see TM modes
ECM, seeelectroncyclotronmaser
effectiveplasmafrequency,389,411
efficiency

circuit, 11
electronic,10,359,482
griddedtubeamplifier,437
gyrotronoscillator,674,678
inductiveoutputtube,458
klystron, 481
magnetronoscillator,580
travelling-wavetube,528–34

overall,10
poweradded,10
ofcrossedfieldamplifier,654

radiofrequency,10
withdepressedcollector,358

electromagneticspectrum
regulations, 8

electromagneticstructure
fast- wave, 11
resonant, 12
slow- wave, 12

electron 
relativistic 
kineticenergy,5
longitudinalmass,6
mass,5
momentum,6,671
transversemass,6
velocity,5

restenergy,5,204
electronbeam,250,see alsobeamspreading;

electronoptics;periodicfocusing;solenoid
focusing

annular, 281
cylindrical,250
diocotron instability, 281
electronicadmittance,395
relativistic,395

harmoniccurrents,420
potentialdepression,251,680
pre-bunching,557–8
sheet,281,502
thermalvelocities,282
transmission,330
trappedions,282

electronbunching,7,420
beamkineticvoltage,399
currentharmonics,7,379
currentmodulation,398
driftlength,380
idealised,426,479
ininductiveoutputtube,456

inklystron,477
RFconvectioncurrent,379,399
RFcurrent,398
intravelling-wavetube,512
velocitymodulation,378–80,398

electroncurrentmodulation
bydeflection,7
byemissiondensity,7
byvelocity,7

electroncyclotronmaser,660–8
convectiveinstability,667
cyclotronmodes,667
dispersiondiagram
coupled,667
uncoupled,663

dispersionequation,664
Dopplershiftin,663
electronbunches,661
electronicefficiency,662
feedbackoscillations,668
Larmorradius,665
non-convectiveinstability,668
pitchfactor,662
relativisticcyclotronfrequency,661
RFspace-charge,666
small-signaltheory,664–8
synchronism,661–2
thresholdcurrent,668
waveguidemodes,664

electronemission,694–700,see also  
freeelectronmodelofmetal; 
secondaryelectronemission; 
thermioniccathode

fieldemission,698
currentdensity,699
Fowler-Nordheimequation,699
triplepoint,698,713,720

field-enhancedemission,697
photo-electricemission,699
quantumefficiency,700

thermionicemission,696–7
currentdensity,697
Richardson-Dushmanequation,696
saturationcurrent,698

electrongun,317,see alsocrossed-fieldelectron
gun; Pierce electron gun

areaconvergence,317
Kinogun,345,633
perveance,317

electronoptics,252–8
aperturelens,256
Busch’stheorem,256
einzellens,255
electrostaticlens,254–6
electrostaticparaxialrayequation,254
equationsofmotion,252
focal length 
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aperturelens,256
electrostaticlens,255
magneticlens,258

magneticlens,258
magnetostaticparaxialrayequation,258

electronicefficiency,10
electronicpropagationconstant,378
energyperbit,23
engineeringdesign,32–3,see alsostatementof

requirements
conceptualdesign,32
designconsolidation,33
detaileddesign,33
dimensionalanalysis,34
dimensionlessgroups,34
dynamicsimilarity,35
geometricalsimilarity,34
modelling,36
scaling,33

EPC, seeDCpowersupply:electricpower
converter

Euleriananalysis,417
evanescent wave, 14
extendedinteractionoscillator,494

fast- wave devices, 659–68, see also electron 
cyclotron maser; gyrotron oscillator

cyclotronauto-resonancemaser,663,683
freeelectronlaser,689
gyro-BWO,663
gyro-klystron,663,684
gyrotronoscillator,663
gyro-TWT,663,685
peniotron,662,685
cavity,686
dispersionequation,686
resonantcondition,685

periodicelectronbeam,660
synchronism,660
ubitron,686–9
dispersionequation,687
undulator,687
wiggler,687

feedbackoscillations,668
intravelling-wavetube,544

FEL, see free electron laser
Fermienergy,694
Fermi-Diracdistribution,695
ferromagneticmaterials,737
energyproduct,744
hard,738
hysteresis,738
coerciveforce,738
demagnetisationcurve,742
initialmagnetisationcurve,738
minorloop,742

remanence,738
saturation,738

magneticpolarisation,738
permanentmagnet,738,745
Alnico,747
ferrite,745
rareearth,747
samariumcobalt,747

soft,738,744
stabilisation,744

Floquet’sTheorem,143
Fourierseries,7,143
Fowler-Nordheimequation,699
freeelectronlaser,689,see alsofast-wavedevices:

ubitron
freeelectronmodelofmetal,694–6
Fermienergy,694
Fermi-Diracdistribution,695
workfunction,695

frequencydomainmultiplexing,28
frequency-multipliertube,380

gain, 8
gatedfieldemissionarrays,457
griddedtubeamplifier,433–9
classesofamplification,436
commoncathode,433
commongrid,433
conductionangle,436
design,451–5
electronicefficiency,437
gain,438,453
inputimpedance,453
loadline,436,452
outputimpedance,453
practicaldetails,454
push-pullamplifier,439
Qpoint,434

groupvelocity,13
guiding centre theory 
crossed-fieldamplifier,646
magnetron,609

gyrotrondesign,679–83
cavitylengthparameter,679
competingmodes,680
cyclotronharmonics,682
detuningparameter,679
high-ordercavitymodes,680
optimumbeamradius,680
outputcoupling,681
storedenergyincavity,680
velocityspread,681

gyrotronoscillator,16,668–84,see also gyrotron 
design, large- signal gyrotron theory

accumulationofions,677
arrangement,670
casestudy,677–8

electronoptics(cont.)
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cavityresonator,670
coaxialcavity,682
collectordepression,682
cyclotronfrequency,670
diffractiveQ,674
effectivebeamvoltage,677
electronbunching,678
electronicefficiency,678
hard-excitationregion,677
heatingofcavitywalls,679
largeorbit,682
magneticfield,670
magnetroninjectiongun,670
ohmicQ,674
outputwindow,679
potentialdepression,677,680
quasi-optical,683
quasi-opticalmodeconverter,682
RFelectricfield,670
soft-excitationregion,677
stability,679
stateoftheart,669
step-tuned,683
totalQ,674
transverseefficiency,678
tuneable,683
waveguidemodesin,670
waveguidewindow,670
whisperinggallerymodes,670

H modes, see TE modes
Hartley’s law, 21
Hartree voltage, seemagnetronoscillator:threshold

voltage
helixslow-wavestructure,152–66
attenuator,166,509
characteristicimpedance,164
coldloss,550,553
coupler,165
dielectricloading,164
dielectricsupportrods,152,156
dispersionshaping,158
equivalentcircuitmodel,162–6
Pierceimpedance,164
sever,166
sheathhelix,154
dielectricloading,156
dispersion,155,157
equivalentcircuit,155
Pierceimpedance,158

tapehelix,159–62
intravelling-wavetube,508
vaneloading,158,554

Helmholtzcoils,751
Hull cut- off 
curve,574
voltage,567

inductive output tube, 433, 455–62
annularbeam,458
Applegatediagram,456
arrangement,455
bandwidth,456
casestudy,460–2
constantefficiency,460
deflectionmodulation,457
electronbunchformation,455–6
electronicefficiency,458
maximumoutputpower,458
multi-elementdepressedcollector,459
multiplebeam,458
radialbeam,458
space-chargedebunching,457
spentbeamdistribution,459

inductivewallamplifier,375
inselbildung, seetriode:island 

formation
instability 
absolute,16
convective,15,667
non-convective,16,668

inter-modulationdistortion,32
inter-modulationproducts,31
fifthorder,31
in klystron, 491
thirdorder,31

IOT, seeinductiveoutputtube

Karp structure, 148
Kilpatrick’scriterion,482,713
Kinoelectrongun,345,633
klystrode, seeinductiveoutputtube
klystron,466–8,see also klystron design;  

large-signalklystrontheory;small-signal
klystron theory

clustered- cavity, 494
electro- statically focused, 499
extendedinteraction,493
externalcavity,120,467
highfrequencylimits,659
integralcavity,467
monotronoscillations,494
multi-cavity,466
multiple-beam,500
reflexoscillator,499
relativistic,500
super-power,495

klystrondesign,491–9
broad-band,479,493
tuning,493

casestudy,497–9
highefficiency,494
long drift, 494
optimisation,499
secondharmoniccavity,495
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Lagrangian analysis, 417
Laplace’sequation,45–6,572,688,737,739,754
large-signalbeam-waveinteraction,417–19
disc(1D)models,417
distancestepmodels,418
energy balance, 419
induced current, 418
ring(2.5D)models,417
self- consistent solution, 419
space-chargefield,418
timestepmodels,418

large-signalgyrotrontheory,671–7
beamcurrent,674
contra-rotatingmodes,676
co-rotatingmodes,676
cyclotronharmonic,674
detuningparameter,672
electronenergyparameter,672
electronicefficiency,674
energybalance,674
equationsofmotion,671
interactionlength,672
loadedQ,674
normalisedcurrentparameter,674
overallefficiency,674
particleincellcode,671
referencecurrent,674
RFelectricfield,673
rotatingmode,673
soft-excitationregion,677
startingcurrent,675
transverseefficiency,674

large-signalklystrontheory,475–91
bunch 
compression,479
potentialenergy,479,482
velocityspread,482

bunching 
figureofmerit,477,482

collector 
depression,488
virtualcathode,481,487

efficiency
electronic,481–2
theoreticallimit,485
variationwithfrequency,483
variationwithperveance,487

model
distance-step,475
particleincell,475
time-step,475

non-linearity,476
gaincompression,476
harmonicoutput,483
inter-modulationproducts,491
saturation,476

outputcoupling,483

outputgap
effectivecouplingfactor,481
extendedinteraction,483
re- accelerated electrons, 481
voltage breakdown, 482

Riekediagram,485
sections,477
finalbunching,479
initialbunching,478
output,481–3

spentbeamdistribution,488
terminalcharacteristics,490
phasevariationwithbeamvoltage,490

large-signaltravelling-wavetubetheory,521–44
AM/ AM 
characteristics,539
conversion,541,543

AM/ PM 
characteristics,540
conversion,541

captureratio,529
dimensionlessparameters,526
efficiency
dependenceonoperatingpoint,531–4
effectsofsever,534–6
electronic,528–34
maximum,532–3,555
atsynchronouspoint,528

forwardwavegrowth,521
harmonics,537–8
inbroad-bandtubes,538

maximumgain,521,534,555
meanelectronvelocity,525
model
Eulerian,521
Lagrangian,521
particleincell,521
simpledisc(1D),521

modifiedApplegatediagram,524
phasespacediagrams,524
RFbeamcurrent
harmonics,523
maximum,532–3
phase,523

scaling,528
space-charge,524
spentbeamdistribution,525
stability,543–4
taper,542–3
design,542
dynamicvelocity,543
positive,542

transfercharacteristics,538–42
gaincompression,540
saturation,525

trappedelectrons,522,524
Larmorfrequency,258,260,305
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Larmorradius,662,665
lasers,659
Llewellyn- Peterson equations, 211
loadedQ,674
longanodemagnetron,594

magnet, 735–54, see also ferromagnetic materials; 
permanent magnet design

coil-dominated,747–52
arraysofcoils,750
circularloop,747
Helmholtzcoils,751
practical,749
solenoid,748,751
superconducting,751

computationalmagnetics,742,762
forcrossed-fieldtubes,735
iron-dominated,753
pole-piecedesign,753

forlinear-beamtubes,735
periodicpermanentmagnet,759
theory,736
Biot-Savartlaw,736
demagnetisingfield,742
Evershed’scriterion,744
fluxconduction,738
fringingfield,741,754
leakageflux,742
loadline,741
magneticcircuit,739–45
magneticcircuitlaw,737,740
magneticscalarpotential,737
magneto-motiveforce,740
permanentmagnet,742
permeance,760
reluctance,740

magnetic
boundaryconditions,736
circuitlaw,737
field,736
fluxdensity,736
scalarpotential,737

magnetronanode,580–95
coaxial,593–4
tuning,593

degeneratemodes,583
long,593–5
modes,594
outputcoupler,595

outputcoupler,586
risingsun,590–3
circuitratio,590,592
dispersioncurves,591
equivalentcircuit,590
pass-bands,591
stopband,591
zeromode,592

strapbreak,590
strapped,587–90
dispersioncurve,589
equivalentcircuit,587

tuning,586
vane-type,580
capacitance,585
dispersioncurve,582
equivalentcircuit,581
fringingcapacitance,585
inductance,585
resonantfrequency,584

π–1mode,583,590
π+1mode,583
πmode,583,590

magnetrondesign,619–24
anodecooling,623
casestudy,620
cathodecurrent,623
DCimpedanceestimate,620
dimensionlessparameters,619
magneticfluxdensity,623
modifiedSlaterfactor,622
numberofvanes,623
overallefficiencyestimate,620
practicalproblems,624
rising sun 
cyclotronfrequency,592

scaling,619
Slaterfactor,622
thresholdvoltage,624
vanetiptemperature,623

magnetroninjectiongun,346,662,681
ingyrotronoscillator,670

magnetronmodel,603–19
comparisonofmodels,604,612,614
DCanodecurrent,607–9,612
DCcathodecurrent,606–7
backbombardment,608
primaryemissiondominated,603
primaryemissionlimited,604
secondaryemissiondominated,603

dissipation
anode,614
cathode,614

particleincell,603
properties
frequencypushing,616–19
operatingpoint,614
outputpower,614
performancechart,614
Riekediagram,616

RFanodecurrent,618
conduction,617
induced,617

simplifyingassumptions,605
space-chargehub,603,606–8
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electrontrajectories,606
firstorder(Slater),607
secondaryemissioncurrent,606
Slatertrajectories,603
space-chargedensity,606
zeroorder(Brillouin),606

spoke,603
conductionangle,609,612
electrontrajectorymodel,612
equationsofmotion,609
guidingcentre,609–11
limitingtrajectory,612
phase,609,612,617
rigid,608
Welchcriterion,608,615

synchronousvelocity,611
thresholdvoltage,608

magnetronoscillator,565–81,see also  
magnetronanode;magnetrondesign;
magnetronmodel;magnetron 
properties

arrangement,565–6
anode,565
cathode,566
endhats,566
magneticfield,565
outputcoupler,566

cathode 
back-bombardment,568
secondaryelectronemission,568
thermionicemission,568

characteristicfield,574
characteristicvoltage,574
circular 
interactionfield,572–3
space-harmonicwaves,573
standingwave,573

electron 
angularvelocity,569,578
equationsofmotion,575
motion,567,569
spokes,568

electronicefficiency,580
modecompetition,567
operatingpoint,577
planar
interactionfield,569–72
space-harmonicwaves,570
standingwave,571

relativistic,565
space-chargehub,566,569
synchronous 
condition,574,579
velocity,575,578

thresholdvoltage,568,573–9
space-chargewavetheory,578–9

magnetronproperties,596–602
efficiency,596
externalmatch,598
frequency,597
pulling,593,599
pushing,593,598

Gausslinediscontinuities,596, 
600–1

Gausslines,596
harmonics,599
longlineeffect,599
modeselection,601–2
azimuthalperiodicity,586
phaselocking,602
priming,602

moding,596
performancechart,596
magneticfield,596
operatingpoint,596,601

pulsewaveforms,601
Riekediagram,598
spectrum,599–601
chaoticbehaviour,604
dependenceoncurrent,600
deteriorationwithage,600
twinning,600

MAGY,671
manufacturingdatapackage,19
manufacturingspecification,19
Marxbank,777
masers,659
matching,75–9
broad-band,76
equalripple,78
maximallyflat,77
stepped-impedancetransformer,79
usingstubs,75

Maxwell’sequations,44
Maxwell-Boltzmannenergyspectrum,196
meanfreepath,718
monotronoscillator,494
M-typeCarcinotron,seecrossed-field 

backward- wave oscillator
multipactor,52,721–8
asymmetric(hybrid)modes,726–7
basicprinciples,721
onceramicsurface,722
coaxialcylinders,727
incoaxiallines,722
incrossedfields,722,727
double-surface,727
single-surface,727

inklystroncavities,478
inklystrons,722
inmagnetrons,722
modelling,727
particleincellcode,727

magnetronmodel(cont.)
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parallelplates
Hatchdiagram,725
impactvelocity,725
lowerboundary,726
phasefocusing,724
resonantcondition,723
RFvoltagelimits,725
theory,723–6
upperboundary,726

phasefocusing,721
saturation,722
signsof,722
suppression,722
inwaveguides,722
inwindows,722

multiplebeam
inductiveoutputtube,458
klystron,500

multiplexing,28
frequencydomain,28

Newton’s second law of motion, 385
noise, 22
effectivenoisetemperature,23
noisefigure,23

noisepowerratio(NPR),32
non-convectiveinstability,16
non-linearfluidmechanics
theoryofcrossed-fieldamplifier,647

oscillation 
backward-wave,543
inhigher-ordermode,544

band-edge,544
suppression,544

feedback,544
monotron,494

out-of-bandemissions,11
outputback-off,31

parallel operation 
oftransistors,3
ofvacuumtubes,3

particleincellcode,37,417
modelofcollector,357
modelofcrossed-fieldamplifier,645
modelofgyrotron,671
modelofinductiveoutputtube,458
modelofklystron,475
modelofmagnetron,603
modelofmultipactor,727
modeloftravelling-wavetube,521

Paschen curve 
theory,717

Paschen’sLaw,716,719
Pauliexclusionprinciple,694
periodicelectrostaticfocusing,277–80

minimumripple,279
periodicpermanentmagnetfocusing,270–7
cathodeflux,271
design,276
doubleperiod,275
equilibriumcondition,274
equilibriumradius,275
fieldvariations,276
longperiodfocusing,275
magneticfieldparameter,270
minimumripple,271
randomfieldvariations,276
ripple,271
scalloping,275
space-chargeparameter,271
stiffness,275

permanentmagnetdesign,754–62
forcrossed-fieldtubes,754–7
forlinear-beamtubes,756
periodic,758–62
adjustment,759

permeability,736
offreespace,736
relative,736

phasevelocity,13
planewaves,42

phased-arrayradar,3
photo-cathodes,457
PIC code, seeparticleincellcode
Pierceelectrongun,318–44

anode 
aperture,319
effectivepotential,325
nose,321–4
nosedesign,331

anodelens,320,322
improvedmodel,324–7
sphericalaberration,326

beam
compression,337
controlelectrodes,341
scraper,343
waist,321

casestudy,332
computermodelling,331,336
controlfocuselectrode,341
control grid 
intercepting,342
non-intercepting,343–4
transparency,342

electrostatic 
design,331–2
theory,318–22

focuselectrode,321–4
design,331

forhollowbeam,340
magneticdesign,333–40
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buckingcoil,337
periodicpermanentmagnet,338–40
pole-pieceaperture,333
solenoid,333–8

modulatinganode,341
shadowgrid,343–4
forsheetbeam,340
thermalvelocities,326–31

Pierceparametersoftravelling-wavetube,409
pill-boxcavity,104–10
modes,104,109
R/Q,105
resonantfrequency,105
storedenergy,105
unloadedQ,106

planarmagnetrondiode,287–98
Brillouinflow,292,294

charge density, 292
conducting 
current,296
electrontrajectory,297

cut-off,288,298–301
electron layer, 298
injectedbeam,293

electron trajectories 
withspace-charge,292
withoutspace-charge,290

electrostaticpotentialin,293
emittingcathode,294
equationsofmotion,289
guiding centre, 289
Hull cut- off voltage, 291
magneticallyinsulated,288
Slatertwo-streamflow,299
cathodecurrent,300
chargedensity,300
chargestriations,300
electron trajectories, 299

planarslow-wavestructure,145–52
equivalentcircuit,145
inter-digitalline,152,550
incrossed-fieldamplifier,634

ladder line, 148
meanderline,149
dispersion,150
incrossed-fieldamplifier,634
surfaceimpedance,151
intravelling-wavetube,509

intravelling-wavetube,556
planarthermionicdiode,194–206
dimensionlessgroups,195
pulsed,212
relativisticvelocity,204–6
space-chargelimited,195
transittime,195,211
virtualcathode,196–7,218

withinitialvelocity,196
with injected current, 214
withthermalvelocities,196–203

Planck’sconstant,697,707
plasmafrequency,259,387,578
effective,389
reductionfactor,389
relativisticcorrection,387

Poisson’sequation,194,385
cylindricalgeometry,206
sphericalgeometry,209

Poyntingvector,44,48,58
PPM, seeperiodicpermanentmagnet
primarymagneticconstant,736
propagationconstant,13
pulsemodulator,771–9
activeswitch,639
biased-diodeload,774
resistiveload,772

bouncercircuit,774
dutycycle,771
energystoragein,771
hard tube, seepulsemodulator:activeswitch
linetype,639,777
pulse-formingnetwork,778

Marxbank,777
over-swingdiode,776
pulsetransformer,776,778
voltage 
droop,773
falltime,772–3
over-swing,772
ripple,772
risetime,772–3

Q factor 
diffractive, seeexternalQ
externalQ,98
loaded Q, 98
measurement,128,131
ohmic,see unloaded Q
total, see loaded Q
unloadedQ,95

rectangular cavity, 111

Rabbits’ Ears, see band- edge oscillation
rectangularcavity,110–11

R/ Q, 111
resonance,110
stored energy, 111
unloaded Q, 111

rectangularwaveguide,58–60
attenuationconstant,59
characteristicimpedance,59
frequencyband,60
higher-ordermodes,60
maximumpower,59

Pierceelectrongun(cont.)
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TEmode
cut-offfrequencies,58
equivalentcircuit,59
fieldpatterns,60

TMmode
cut-offfrequencies,60
fieldpatterns,60

re-entrantcavity,111–21
design,120
external,120
Fujisawa’smodel,115
interactionfield,118
methodofmomentsmodel,112
tuner,120

relativisticmagnetron,565
reliability,784
symptomsandcauses,785

requirementsspecification,seestatementof
requirements

resistivewallamplifier,375
resonantcircuit,94–104
bandwidth,96
coupledresonators,102
couplingfactor,99
excitation,99
criticallycoupled,100
over-coupled,101
under-coupled,101

externalQ,98
frequency,95
impedance,96
loaded Q, 98
lossin,97
parallel,94–5
phase,97
R/Q,95
shuntresistance,96
storedenergy,96
timeconstant,97
unloadedQ,95
voltagereflectioncoefficient,101

Richardson-Dushmanequation,696
ridgedwaveguide,60–4
bandwidth,61
characteristicimpedance,61,63
TE10modecut-offfrequency,62

Riekediagram,780
klystron,485
magnetron,598,616

ring-barslow-wavestructure,166–9
dispersion,167
Pierceimpedance,168
theoreticalmodels,167
intravelling-wavetube,509

ring-loopslow-wavestructure,168
intravelling-wavetube,509

Rogowksiprofile,753

safety 
hightemperatures,784
high-voltage,783
implosion,784
RFpower,783
toxicmaterials,784
X-ray,784

saturation current density 
cathode,196

saturationofiron,670
scaling 
travelling-wavetube,528

Schottkycurrent,193,see also saturation current 
density

Schottky effect, seefield-enhancedemission
second-orderinterceptpoint,8
secondaryelectronemission,700–6
coefficient,701
angleofincidence,702
ofceramic,721
ofinsulators,703
ofmetals,703
universalcurve,702

elasticallyreflectedprimaries,701
electronbombardment,700
energydistribution,701
inelasticallyreflectedprimaries,701
ionbombardment,700
model,704–6
angleofincidence,705
Furman-Pivi,705
surfacelayers,706

surface 
conditioning,703
contamination,703
layers,703
preparation,703
texture,704

truesecondaryelectrons,701
invacuumtubes,700
yield,701

secondary electrons 
incrossed-fieldamplifier,634
inelectroncollector,352–3,366
ingriddedelectrongun,342
inmagnetron,568
inmultipactor,721–8
intetrode,246,444
intriode,440

Shannon’stheorem,22
sheetbeam
klystron,502

signal to noise ratio, 22
signals,20–33,see alsoanaloguemodulation;

digitalmodulation;multiplexing
analogue,20
biterrorrate,23
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constantenvelope,28
digital,20
energyperbit,23
Shannon’stheorem,22
signal to noise ratio, 22

skindepth,106
Slater factor 
modified
crossed-fieldamplifier,655
cylindricalmagnetron,622

planarmagnetron,622
slow-wavestructure,134–44,see alsocoupled-

cavityslow-wavestructure;helixslow-wave
structure;planarslow-wavestructure;
ring-barslow-wavestructure;ring-loop
slow- wave structure; waveguide slow- wave 
structure

anti-Karpstructure,148
characteristicimpedance,136
couplingimpedance,405
dielectricloadedwaveguide,138
electricfield,137
equivalentcircuit,136,139
forbidden region, 144
groupvelocity,137,143
Karpstructure,148
period,139
periodic,139
phasevelocity,136,143
photonicband-gapstructure,138
Pierceimpedance,138,405
spaceharmonics,141
stopband,141,144
surfaceimpedance,138
totalimpedance,141
uniformstructures,134

slow-wavestructuremeasurement,181–3
coupled-cavitystructure
dispersion,181
impedance,182

helixstructure
dispersion,183
impedance,183

small-signalklystrontheory,468–75
currentmodulationatoutputgap,471
equivalentcircuit,469
gain,471
gainvs.frequency,475
idlercavities,470
idlercavitytransfermatrix,470
inputcavity,469
inputgapvoltage,470
outputcavity,471
outputpower,471
polesandzeroes,472
simplifiedsmall-signalmodel,474

space-chargewaveamplitudes,470
transferfunction,472
transient behaviour, 491
transmissionlinemodel,471

small-signaltravelling-wavetubetheory,513–21
coupled-cavity,520–1
transfermatrix,520

helix,514–20
boundaryconditions,517
coupledmodes,515
gain,518
launchingloss,518
sever,519
severloss,520

SNR, see signal to noise ratio
solenoid,670,751
currentdensityin,752
design,752
forlinear-beamtube,751
superconducting,670

solenoidfocusing,259–66
angularvelocityofelectrons,261
beamstiffness,261,263–6
Brillouinfield,260
Brillouinflow,260
bulkcurrent,265
cathodeflux,261
confinedflow,261
electronvelocity,261
equationofmotion,259
equilibriumbeamradius,261,396
scalloping,262
space-chargebalancedflow,261
surfacecurrent,265
thermalvelocities,550

solid- state devices, see transistors
comparedwithvacuumtubes,2–4

solid-statepoweramplifiers,3
solitontheoryofcrossed-field 

amplifier,646
spaceharmonicstructure,174–7
Chodorow-Nalosstructure,176
dispersion,175
equivalentcircuit,174
parametercalculation,176

Hughesstructure,174
totalimpedance,175

space-chargewavetheory,385–97
beamkineticvoltage,394
current 
body,390
convection,388,392,395
displacement,388
induced,390–4
surface,390

cyclotronwave,397
dispersiondiagram,387,390

signals(cont.)
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displacementcurrent,392
effectivetunnelradius,394
electromagneticpower,396
electronicadmittance,395
relativistic,395

fastspace-chargewave,387
higher-ordermodes,396
kineticpowerflow,395
Landaudamping,396
onnon-idealelectronbeam,396
plasmafrequency
effective,389
reductionfactor,389
relativisticcorrection,387

propagationconstant,390
radialcouplingfactor,393
slowspace-chargewave,387
transmissionlinerepresentation,394–6

spentbeamdistribution
inductiveoutputtube,459
klystron, 488
travelling-wavetube,525

sphericalthermionicdiode,209–11
space-chargelimited,210
withrelativisticvelocity,210

statementofrequirements,19–21
statementofwork,seestatementof 

requirements
sulphurhexafluoride,716–17
surfaceresistance,54,106
syntheticdiamond,508
systemintegration,765–86,see alsoDCpower

supply;pulsemodulator
blockdiagram,765
careoftubes,782
controlsystem,781
interlocks,781
tubeprotection,782

coolingsystem,780
reliability,765,784
RFsystem,779
circulator,780
inputmatch,780
outputmatch,780

safety,783
start-upsequence,781
turn-offsequence,782

Tchebychev, see matching: equal ripple
TEmodes,46–9
characteristicimpedance,48
equivalent circuit, 49
fieldpatterns,46
waveimpedance,48

TEMmode,45–6
characteristicimpedance,46
equivalentcircuit,45

propagationconstant,45
testspecification,19
tetrode,242–8,433
casestudy,444–8
design,448–51
electrostaticmodels,242
equivalenttriode,245–6
gridcurrents,246
high-power,443
islandformation,246
penetrationfactors,243
screengrid,225
space-chargein,246
staticcharacteristics,245

thermioniccathode,708–12
brightnesstemperature,708
currentdensity,709
dispenser,710
ionbombardment,709
life,708
measurement,711

metal,709
mixed-matrix,712
oxide,710
poisoning,709
reservoir,710
saturatedcurrent,711
scandate,711
temperaturedependenceofemission,711
temperaturemeasurement,708
thoriatedtungsten,709
typeM,551,710

thermionicdiode,190–4,see also  
cylindricalthermionicdiode;planar
thermionicdiode;spherical 
thermionicdiode

3/2powerlaw,192
dimensionalanalysis,191
perveance,193
space-chargelimited,190
temperaturelimited,193
two-dimensionalflow,221

thermionicemission,696
inamagnetron,568

thyratron,767
TMmodes,49–50
equivalentcircuit,50
fieldpatterns,50
waveimpedance,50

Townsenddischarge,715
breakdownvoltage,715

Townsendionisationcoefficients,718
transistors,3
diamond,3
state of the art, 4

transmissionline
TEMmode,45
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travelling-wavetube,15,507–14,see also 
large- signal travelling- wave tube theory; 
small-signaltravelling-wavetubetheory;
travelling- wave tube design

continuousinteraction,507
coupled-cavity,509
powerflow,510

discreteinteraction,507
electronbunchingin,512
energyconversionin,510
feedbackoscillations,507
foldedwaveguide,509
gainripple,508
helix,508
arrangement,508
meanpowerdissipation,509
powerholes,509

highfrequencylimits,659
linearity,552
meander-line,509
phasespacediagram,512
ring-bar,509
ring-loop,509
sever,508–9
synchronouspoint,510
terminationmatches,507
trappedelectrons,513

travelling-wavetubedesign,544–58
casestudy,545–9
collectordepression,547
coupled-cavity,555
highefficiency,550–3
hybridtubes,556–8
millimetrewavetube,549
taper,555
differential,556
double,552,554
positivephasevelocity,554

ultrabroad-band,553–4
triode,224–42,433
amplificationfactorμ, 224
anode(plate),224
anode current, 224
casestudy,441–3
control grid, 224
design,448–51
dynamicanode(anodeslope)resistance,225
electrostaticmodels,225–8
equivalentdiode,234
geometricalscreeningfactor,226
gridcurrent,238–40
high-power,439
inter-electrodecapacitances,227
islandformation,240–2
mututalconductance(transconductance),224
penetrationfactor,224,226–34

perveance,224
staticcharacteristics,234–8

tunneleffect,698
TWT, see travelling- wave tube
Twystron,558

ubitron, 686–9
universalbeamspreadingcurve,321
unloaded Q 
pill-boxcavity,106

vacuum tube amplifier, 7–9
bandwidth, 8, 11
efficiency,9–11
electromagneticstructure,11
gain, 8
gaincompression,8
harmonics,7
linearity, 8
outputpower,10
saturation, 8
second-orderinterceptpoint,8
transfer characteristic, 8

vacuumtubes,3–12
classificationof,17–18
comparedwithsolid-statedevices,2–4
designconstraints,20
efficiency,3
geometry,5
performancerequirements,20
reliability,3
state of the art, 4
typeM,6
typeO,6

velocityjumpamplifier,375
virtual cathode oscillator, 219
Vlasovequation,666
voltagebreakdown,52,713–21
ingas,715–20
ionisingcollisions,717
meanfreepath,718
Paschen’sLaw,716
RF,716
Townsenddischarge,715
Townsendionisationcoefficients,718

oninsulators,720
invacuum,713–15
contamination,714
fieldenhancementfactor,713
frequencydependence,714
Kilpatrick’scriterion,713
pulsedDC,714
RF,714
surfacefinish,714

vacuumarc,714
lifetime,715
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wave equations, 41
waveimpedance
offreespace,54

waveguide,41,52–68,see also circular waveguide; 
coaxialline;rectangularwaveguide;ridged
waveguide

filledwithsulphurhexafluoride,52
frequencyband,52
maximumpower,52
overmoded,52
pressurisation,52

waveguidecoupling
withchangeofmode,81–3
withoutchangeofmode,79–81

waveguidediscontinuities,65–75
capacitiveirisinrectangularwaveguide,72
heightstepinrectangularwaveguide,70
inductiveirisinrectangularwaveguide,74

waveguideslow-wavestructure,169–73
foldedwaveguide,169
coalescedmode,173
dispersion,170,172
impedance,172
inverted,173
normal,173
splitincrossed-fieldamplifier,634
intravelling-wavetube,509,556

helicalwaveguide,173
waveguidetheory,41–52,see alsoTEMmode;

TEmodes;TMmodes
cut-offfrequency,43
dispersiondiagram,43
evanescentmode,44

evanescentmodeattenuation,44
groupvelocity,43
guide wavelength, 48
phasevelocity,43
summaryofimpedances,65

waveguidewindow,52,83–8
broadband,87
incoaxialline,86
dielectricmaterials,84
failuremechanisms,83
ingyrotronoscillator,670
half- wavelength, 84
inmagnetron,586
multipactordischargein,83
pill-box,88
resonant in rectangular  

waveguide,87
stresses in, 84
trappedmodesin,86

workfunction,695,700
apparent,697

work-energytheorem,575

X- ray absorption, 707
attenuationcoefficient,707
edges,707
massattenuationcoefficient,708

X-rayemission,706–8
brakeradiation,706
brehmsstrahlung,706
spectrum,706

X-raysafety,784
X-rayscattering,707
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