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To my sons and students



Preface

This issue of Particle Accelerator Physics is intended to combine the content of
two earlier volumes and the volume on synchrotron radiation into one reference
book. This book is designed for the serious scientist and student to acquire the
underlaying physics of electron accelerator physics. Introductory discussions
on various types of accelerators have been eliminated, being well documented
in the literature. Beam optics has been formulated in a general way as to
be applicable also to proton and ion beams. Following the requests of many
readers many solutions to exercises are given in the appendix. Breaking with
the author’s preference, Standard International units are used in this edition.
In appendix 2, transformation rules are given to convert formulae between SI
and cgs systems. In the process of rewriting the texts, known typographical
and real errors have been corrected. The author wishes to express his sincere
appreciation to all readers pointing out such errors.

I would like to thank all staff at Springer who have contributed to the pub-
lication of this text. Foremost, I thank Dr. Christian Caron for his suggestion
and encouragement to combine several textbooks into one reference volume.
For the expert editing and cover design I thank Mrs. Birgit Muench and her
staff. Finally, it is a pleasure to thank Ms. Bhawna Narang from Techbooks
for her patient and thorough preparation of the proofs and final printing.

Nakhon Ratchasima, Thailand Helmut Wiedemann
March 2007



Preface to Volume 1

The purpose of this book is to provide a comprehensive introduction into
the physics of particle accelerators and particle beam dynamics.Particle ac-
celerators have become important research tools in high energy physics as
well as sources of incoherent and coherent radiation from the far infra red
to hard x-rays for basic and applied research. During years of teaching accel-
erator physics it became clear that the single most annoying obstacle to get
introduced into the field is the absence of a suitable textbook. Indeed most
information about modern accelerator physics is contained in numerous inter-
nal notes from authors working mostly in high energy physics laboratories all
over the world.

This text intends to provide a broad introduction and reference book into
the field of accelerators for graduate students, engineers and scientists summa-
rizing many ideas and findings expressed in such internal notes and elsewhere.
In doing so theories are formulated in a general way to become applicable for
any kind of charged particles. Writing such a text, however, poses the problem
of correct referencing of original ideas. I have tried to find the earliest refer-
ences among more or less accessible notes and publications and have listed
those although the reader may have difficulty to obtain the original paper.
In spite of great effort to be historically correct I apologize for possible omis-
sions and misquotes. This situation made it necessary to rederive again some
of such ideas rather than quote the results and refer the interested reader to
the original publication. I hope this approach will not offend the original au-
thors, but rather provides a broader distribution of their original ideas, which
have become important to the field of accelerator physics.

This text is split into two volumes. The first volume is designed to be
self contained and is aimed at newcomers into the field of accelerator physics,
but also to those who work in related fields and desire some background
on basic principles of raccelerator physics. The first volume therefore gives an
introductory survey of fundamental principles of particle acceleration followed
by the theory of linear beam dynamics in the transverse as well as longitudinal
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phase space including a detailed discussion of basic magnetic focusing units.
Concepts of single and multi particle beam dynamics are introduced.

Synchrotron radiation, its properties and effect on beam dynamics and
electron beam parameters is described in considerable detail followed by a dis-
cussion of beam instabilities on an introductory level, beam lifetime and basic
lattice design concepts. The second volume is aimed specifically to those stu-
dents, engineers and scientists who desire to immerse themselves deeper into
the physics of particle accelerators. It introduces the reader to higher order
beam dynamics, Hamiltonian particle dynamics, general perturbation theory,
nonlinear beam optics, chromatic and geometric aberrations and resonance
theory. The interaction of particle beams with rf fields of the accelerating
system and beam loading effects are described in some detail relevant to ac-
celerator physics. Following a detailed derivation of the theory of synchrotron
radiation particle beam phenomena are discussed while utilizing the Vlasov
and Fokker Planck equations leading to the discussion of beam parameters
and their manipulation and collective beam instabilities. Finally design con-
cepts and new developments of particle accelerators as synchrotron radiation
sources or research tools in high energy physics are discussed in some detail.

This text grew out of a number of lecture notes for accelerator physics
courses at Stanford University, the Synchrotron Radiation Research Labora-
tory in Taiwan, the University of Sao Paulo in Brazil, the International Center
for Theoretical Physics in Trieste and the US Particle Accelerator School as
well as from interaction with students attending those classes and my own
graduate students.

During almost thirty years in this field, I had the opportunity to work
with numerous individuals and accelerators in laboratories around the world.
Having learned greatly from these interactions I like to take this opportunity
to thank all those who interacted with me and have had the patience to
explain their ideas, share their results or collaborate with me. The design and
construction of new particle accelerators provides a specifically interesting
period to develop and test theoretically new ideas, to work with engineers and
designers, to see theoretical concepts become hardware and to participate in
the excitement of commissioning and optimization. I have had a number of
opportunities for such participation at the Deutsches Elektronen Synchrotron,
DESY, in Hamburg, Germany and at the Stanford University at Stanford,
California and am grateful to all colleagues who hosted and collaborated with
me. I wished I could mention them individually and apologize for not doing
S0.

A special thanks goes to the operators of the electron storage rings SPEAR
and PEP at the Stanford Linear Accelerator Center, specifically to T. Taylor,
W. Graham, E. Guerra and M. Maddox, for their dedicated and able efforts
to provide me during numerous shifts over many years with a working storage
ring ready for machine physics experimentation.

I thank Mrs. Joanne Kwong, who typed the initial draft of this texts and
introduced me into the intricacies of TEX typesetting. The partial support
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by the Department of Energy through the Stanford Synchrotron Radiation
Laboratory in preparing this text is gratefully acknowledged. Special thanks
to Dr. C. Maldonado for painstakingly reading the manuscript. Last but not
least I would like to thank my family for their patience in dealing with an
"absent” husband and father.

Palo Alto, California Helmut Wiedemann
December 1992



Preface to Volume I1

This text is a continuation of the first volume on ”Basic Principles and Linear
Beam Dynamics”. While the first volume has been written as an introductory
overview into beam dynamics it does not include more detailled discussion of
nonlinear and higher order beam dynamics or the full theory of synchrotron
radiation from relativistic electron beams. Both issues are, however, of fun-
damental importance for the design of modern particle accelerators. In this
volume beam dynamics is formulated within the realm of Hamiltonian dynam-
ics leading to the description of multiparticle beam dynamics with the Vlasov
equation and including statistical processes with the Fokker Planck equation.
Higher order perturbations and aberrations are discussed in detail including
Hamiltonian resonance theory and higher order beam dynamics. The discus-
sion of linear beam dynamics in Vol. I is completed here with the derivation
of the general equation of motion including kinematic terms and coupled mo-
tion. Building on the theory of longitudinal motion in Vol. I the interaction
of a particle beam with the rf system including beam loading, higher order
phase focusing and combination of acceleration and transverse focusing is dis-
cussed. The emission of synchrotron radiation greatly affects the beam quality
of electron or positron beams and we therefore derive the detailled theory of
synchrotron radiation including spatial and spectral distribution as well as
properties of polarization. The results of this derivation is then applied to
insertion devices like undulator and wiggler magnets. Beam stability in linear
and circular accelerators is compromized by the interaction of the electrical
charge in the beam with its environment leading to instabilities. Theoretical
models of such instabilities are discussed and scaling laws for the onset and
rise time of instabilities derived. Although this text builds up on Vol. I it
relates to it only as a reference for basic issues of accelerator physics which
could be obtained as well elsewhere. This volume is aimed specifically to those
students, engineers and scientists who desire to aqcuire a deeper knowledge
of particle beam dynamics in accelerators. To facilitate the use of this text as
a reference many of the more important results are emphazised by a frame
for quick detection. Consistent with Vol. I we use the cgs system of units.
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However, for the convenience of the reader who is used to the system of inter-
national units conversion factors have been added whenever such conversion
is necessary, e.g. whenever electrical or magnetic units are used. These conver-
sion factors are enclosed in square brackets like y/4mey and should be ignored
by those who use formulas in the cgs system. The conversion factors are easy
to identify since they include only the constants ¢, 7, €g, 19 and should there-
fore not mixed up with other factors in quare brackets. For the convenience of
the reader the source of these conversion factors are compiled in the appendix
together with other useful tools.

I would like to thank Joanne Kwong, who typed the initial draft of this
texts and introduced me into the intricacies of TEX typesetting and to my stu-
dents who guided me by numerous inquisitive questions. Partial support by the
Division of Basic Energy Sciences in the Department of Energy through the
Stanford Synchrotron Radiation Laboratory in preparing this text is grate-
fully acknowledged. Special thanks to Dr. C. Maldonado for painstakingly
reading the manuscript and to the editorial staff of Springer Verlag for the
support during the preparation of this text.

Palo Alto, California Helmut Wiedemann
March 1994



Preface to Synchrotron Radiation

This book covers the physical aspects of synchrotron radiation generation and
is designed as a textbook and reference for graduate students, teachers and
scientists utilizing synchrotron radiation. It is my hope that this text may
help especially students and young researchers entering this exciting field to
gain insight into the characteristics of synchrotron radiation.

Discovered in 1945, synchrotron radiation has become the source of pho-
tons from the infrared to hard x-rays for a large community of researchers
in basic and applied sciences. This process was particularly supported by the
development of electron accelerators for basic research in high energy physics.
Specifically, the development of the storage ring and associated technologies
resulted in the availability of high brightness photon beams far exceeding
other sources.

In this text, the physics of synchrotron radiation for a variety of magnets
is derived from first principles resulting in useful formulas for the practitioner.
Since the characteristics and quality of synchrotron radiation are intimately
connected with the accelerator and electron beam producing this radiation, a
short overview of relevant accelerator physics is included.

In the first four chapters radiation phenomena in general and synchrotron
radiation in particular are introduced based on more visual and basic physical
concepts. Where exact formulas are required, we borrow results from rigorous
derivations in Chaps. 9 and 10. This way the physics of synchrotron radiation
can be discussed without extensive deviations into mathematical manipula-
tions, which can be quite elaborate although straightforward. The consequence
for the reader, of this dual approach to synchrotron radiation is that, here and
there, one will find some repetitive discussions, which the author hopes will
provide easier reading and continuity in the train of thought.

Chapters 5 to 8 give an overview of beam dynamics in storage rings and
guidance for the optimization of a storage ring for synchrotron radiation pro-
duction. The theory of synchrotron radiation is derived rigorously in Chap.
9 and that of undulator or insertion device radiation in Chap. 10. Finally, in
Chap. 11 the physics of a free electron laser is discussed.
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Each chapter includes a set of exercises. For those exercises which are
marked with the argument (S), solutions are provided in Appendix A. In sup-
port of the practitioner utilizing synchrotron radiation most relevant formulas
together with useful mathematical and physical formulae and constants are
compiled in Appendices B-D.

The author would like to thank the editorial staff at Springer Verlag and
especially Drs. H. Lotsch and C. Ascheron for suggesting the writing of this
book. The trained eyes of Dr. A. Lahee and Ms. Dimler contributed much to
minimize typographical errors and to greatly improve the overall appearance
of the book. Special thanks goe to Professors J. Dorfan and K. Hodgson
at Stanford University for granting a sabbatical leave and to Professor T.
Vilaithong at the Chiang Mai University in Thailand for providing a quiet
and peaceful environment during the final stages of writing this book.

Chiang Mai, Thailand Helmut Wiedemann
December 2, 2001
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Tools We Need



1

Of Fields and Forces

Accelerator physics relates primarily to the interaction of charged particles
with electromagnetic fields. Detailed knowledge of the functionality of this in-
teraction allows the design of accelerators meeting specific goals and the pre-
diction of charged particle beam behavior in those accelerators. The interplay
between particles and fields is called beam dynamics. In this chapter, we recall
briefly some features of electromagnetic fields and fundamental processes of
classical and relativistic mechanics as they relate to particle beam dynamics.

1.1 Electromagnetic Fields of Charged Particles

Predictable control of charged particles is effected only by electric and mag-
netic fields, and beam dynamics is the result of such an interaction. We try
to design and formulate electromagnetic fields in a way that can be used
to accurately predict the behavior of charged particles. To describe the gen-
eral interaction of fields based on electric currents in specific devices and free
charged particles which we want to preserve, guide, and focus, we use as a
starting point Maxwell’s equations

V(eE) = £, Coulomb’s law,
VB =0,
(1.1)
VxE=— %B, Faraday’s law,
V x (iB) =pod+ C%% (eE). Ampere’s law,

consistent with the SI-system of units by inclusion of the unit scale factors

107 C C
= 8.8541878 x 10712 —, (1.2)

60:47702Vm Vm

and
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Vs
A m

o = 4m x 10*7AV—Z[1 = 1.2566371 x 1076 (1.3)

with the property
coprot =1. (1.4)

To transform to cgs-units, convenient transformation factors are compiled
in Appendix B. The quantities €, and u, are the relative dielectric constant
and magnetic permeability of the surrounding materials, respectively.

Integration of one or the other of Maxwell’s equations results, for example,
in the fields from singly charged particles or those of an assembly of particles
traveling along a common path and forming a beam. Applying Maxwell’s
equations, we will make generous use of algebraic relations which have been
collected in Appendix A.

Electric Field of a Point Charge

First, we apply Gauss’ theorem on a point charge ¢ at rest. The natural
coordinate system is the polar system because here the fields depend only on
the radial distance from the charge. We integrate Coulomb’s law (1.1) over a
spherical volume containing the charge ¢ at its center. With dV = 4mr2dr
the integral becomes [ VE dV= fOR L2 (r?E,)dV = 47 R*E, (R), where R
is the radial distance from the charge. On the r.h.s. of Coulomb’s law (1.1),
an integration over all the charge ¢ gives [ EOLedV = i and the electric field
of a point charge at distance R is

1 q
E.(R) = —=. 1.5
(%) 4dmreg € R2 (1.5)
The electric field is proportional to the charge and decays quadratically
with distance R

Fields of Charged Particle Beams

In particle beam dynamics many charged particles, traveling along the same
path, form a beam. This particle beam generates an electric as well as a
magnetic field. The proper coordinates are now cylindrical and Coulomb’s
law is

19 10B, 0B, 19

VE = -2 (rE,) + rE)= 2. (16

ror €0 €

r dp 0z
—— =
=0 =0
We assume a uniform continuous beam and expect therefore no azimuthal
or longitudinal dependence, leaving only the radial dependence. Radial in-
tegration over a cylindrical volume of unit length collinear with the beam
gives with the volume element dV = 27rdr, on the Lh.s. |rE,|| 2r. The r.h.s.
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is E(’)’—‘Jem"2 and the electric field for a uniformly charged particle beam with
radius R is

£o_p forr <R

2€p €
E = . 1.
) Lo B2 for > R (17

2ep€e T

The magnetic field for the same beam can be derived by applying Stoke’s
theorem on Ampere’s law to give after integration

%uoujor forr <R
B, (r) = . - . (1.8)
sHopjo-— forr >R

The fields increase linearly within the beam and decay again like 1/r out-
side the beam. Real particle beams are not uniform beams and a form function
must be included in the integration. In most cases, the radial particle distri-
bution is bell shaped or Gaussian. Both distributions differ little in the core
of the beam and therefore a convenient assumption is that of a Gaussian
distribution for which the fields will be derived in Problem 1.3.

1.1.1 Vector and Scalar Potential

By virtue of Maxwell’s equation VB = 0 onecan derive the magnetic field
from a vector potential A defined by

B=VxA. (1.9)

Faraday’s law can be used to derive also the electric field from potentials. The

equation Vx E = —%B = —% (V x A) can be written as V x (E + A) =0,

and solved by E = —% — V¢, where we added the gradient of a scalar

potential function ¢ which does not alter the validity of Maxwell’s equations
for all fields so defined. To summarize both electric and magnetic fields can
be derived from a scalar ¢ and vector A potential

B=VxA, (1.10)
HA
E=-—"-Vo. (1.11)

So far, the scalar potential function is not specified, giving us later the
freedom to apply a convenient condition.

1.1.2 Wave Equation

From Ampere’s law both the vector and scalar potentials can be derived.
Replacing in V X B = puouj + 4 FE the fields with their expressions in

c2
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terms of potentials, we get V x (V x A) = popj + & (fA — ng), and with
Vx (VxA)=V (VA) - VA
en 02A

2
A
v 2 Ot?

. en .
= —jopj + V(VA+C—’;@) . (1.12)
—_———
=0
At this point we specify the potential function ¢ such that it meets the con-
dition VA + %¢ = 0 thereby simplifying greatly (1.12). This condition is
called the Lorentz gauge and the resulting wave equation is

en 02A .

VEA- S =—uj. 1.13
c? ot? HoJ ( )

The vector potential is clearly defined by the placement of electrical currents

7. We will use this property later in the design of magnets for particle beam

guidance. Similarly, the wave equation for the scalar potential is

1 & p
2 = 1.14
v c? ot? €0 ( )

Knowledge of the placement of electrical charges defines uniquely the scalar
potential function. The second-order differential equations (1.13), (1.14) can
be integrated readily and the potentials are

o [ §(zy,2)
A(R,t) = i / 7 . dz dydz (1.15)
and ) ( )
p(x,y, 2
t) = dxdydz. 1.1
¢(R,1) 4W60/ R |, drdvde (1.16)

Integration over the location of all currents and charges results in the
definition of the vector and scalar potential at a distance R from the current
and charge centers, respectively. Both electric and magnetic fields may be
derived as discussed in the last section.

Lienard—Wiechert Potentials

For a point charge e at rest, we can integrate (1.15) readily to get A(R,t) =0
and p(R,t) = ﬁ . On the other hand, in the case of a moving point charge
the potentials cannot be obtained by simply integrating over the “volume” of
the point charge. The motion of the charge must be taken into account and
the result of a proper integration (see Chap. 22) are the Liénard—Wiechert

potentials [1,2]

_tc g B
AR t) =" RiTnB), (1.17)
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and
1 gq 1

~ 4reo R1+ng -

(R, 1) (1.18)
These potentials describe, for example, the radiation fields of synchrotron
radiation being emitted from relativistic electrons.

1.1.3 Induction

Applying Stokes’ theorem to Faraday’s law (1.1), we get on the Lh.s. a line
integral along the boundaries of the surface area S, which is equivalent to
a voltage. On the r.h.s. the magnetic flux passing through the surface S is
integrated and

/[VXE] da:j{Eds:— a—Bda:—a—@. (1.19)
s g Ot ot

By virtue of Faraday’s law, the magnetic flux @ through the area s and
varying in time generates an electromotive force along the boundaries of S. In
accelerator physics this principle is applied in the design of a betatron. Sim-
ilarly, from the second term on the right-hand side in Ampere’s law (1.1) we
get a magnetic induction from a time varying electric field. Both phenomena
play together to form the principle of induction or, in a particular example,
that of a transformer.

1.1.4 The Lorentz Force

The trajectories of charged particles can be influenced only by electric and
magnetic fields through the Lorentz force

F,=qE+q(vxB). (1.20)

Guiding particles through appropriate electric or magnetic fields is called par-
ticle beam optics or beam dynamics. Knowledge of the location and ampli-
tudes of electric and magnetic fields allows us to predict the path of charged
particles. A closer inspection of (1.20) shows that the same force from electric
or magnetic fields can be obtained if E = vB, where we have assumed that
the particle velocity is orthogonal to the magnetic field, v L B. For relativistic
particles v = ¢. To get the same force from an electric field as from, say, a 1 T
magnetic field, one would have to have an unrealistic high field strength of
E ~ 300 MV/m. For this reason, magnetic fields are used to deflect or focus
relativistic charged particles. For subrelativistic particles like ion beams with
a velocity v < ¢, on the other hand, electric fields may be more efficient.
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1.1.5 Equation of Motion

Accelerator physics is to a large extent the description of charged particle dy-
namics in the presence of external electromagnetic fields or of fields generated
by other charged particles. We use the Lorentz force to formulate particle
dynamics under the influence of electromagnetic fields. Whatever the inter-
action of charged particles with electromagnetic fields and whatever the ref-
erence system may be, we depend in accelerator physics on the invariance of
the Lorentz force equation under coordinate transformations. All acceleration
and beam guidance in accelerator physics will be derived from the Lorentz
force. For simplicity, we use throughout this text particles with one unit of
electrical charge e like electrons and protons unless otherwise noted. In the
case of multiply charged ions the single charge e must be replaced by eZ
where Z is the charge multiplicity of the ion. Both components of the Lorentz
force are used in accelerator physics where the force due to the electrical field
is mostly used to actually increase the particle energy while magnetic fields
are used mostly to guide particle beams along desired beam transport lines.
This separation of functions, however, is not exclusive as the example of the
betatron accelerator shows where particles are accelerated by time-dependent
magnetic fields. Similarly electrical fields are used in specific cases to guide or
separate particle beams.

Relating the Lorentz force to particle momentum or kinetic energy, we
know from definitions in classical mechanics that

Ap = f FL dt
I ,3 ACp = AEkin, (121)
AEkin = f FL ds ds=vd?

where 3 = v/c. The Lorentz force can be expressed in terms of fields and the
change of kinetic energy becomes

ABjn — /FLds _ q/ [E + (v x B)] ds (1.22)
:q/Eds+q/(v x_OB)vdt,

which indicates that an electric field component in the direction of particle
motion does increase the particle’s kinetic energy, while the magnetic field
does not contribute any acceleration. Magnetic fields are used only to deflect
a particle’s path by changing the direction of its momentum vector.

It becomes obvious that the kinetic energy of the particle changes when-
ever it travels in an accelerating electric field E and the acceleration occurs
in the direction of the electric field. This acceleration is independent of the
particle velocity and acts even on a particle at rest v = 0. The second compo-
nent of the Lorentz force in contrast depends on the particle velocity and is
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directed normal to the direction of propagation and normal to the magnetic
field direction. We find therefore from (1.22) the result that the kinetic en-
ergy is not changed by the presence of magnetic fields since the scalar product
(v x B) v vanishes. The magnetic field causes only a deflection of the particle
trajectory.

The Lorentz force (1.20) in conjunction with (1.21) is used to derive the
equation of motion for charged particles in the presence of electromagnetic

fields
dp d

at At

where Z is the charge multiplicity of the charged particle. For simplicity we
drop from here the factor Z since the charge multiplicity is different from unity
only for ion beams. For ion accelerators we note therefore that the particle
charge e must be replaced by eZ.

Both relations in (1.21) can be used to describe the effect of the Lorentz
force on particles. However, ease of mathematics makes us use one or the
other. We use the first equation for dynamics in magnetic fields and the second
for that in accelerating fields. Since the energy or the particle velocity does
not change in a magnetic field it is straightforward to calculate Ap. On the
other hand, accelerating fields do change the particle’s velocity which must
be included in the time integration to get Ap. Calculating AFyi,, we need
to know only the spatial extent and magnitude of the accelerating fields to
perform the integration.

The particle momentum p = ymv and its time derivative

—(myv)=eZE+eZ(v x B), (1.23)

dp _ dv d’y
. 1.24
a ~ "t tm Vit (1:24)

With
dy _dyds B

= = 1.25
a  dgdt | cadt (1.25)
we get from (1.24) the equation of motion
dp B dv
F=—"= 3 . 1.2
a - " ( FRAT) > (1.26)

For a force parallel to the particle propagation v, we have v v = v v and
(1.26) becomes

d v dVH dVH
— = 1++°8—) —F =my*—". 1.2
mw( J”ﬂc) a " a (1.27)

On the other hand, if the force is directed normal to the particle propaga-
tion, we have dv/dt = 0 and (1.26) reduces to

dpj_ dVJ_
L _ . 1.2
a  "ar (1.28)
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It is obvious from (1.27) and (1.28) how differently the dynamics of par-
ticle motion is affected by the direction of the Lorentz force. Specifically the
dynamics of highly relativistic particles under the influence of electromagnetic
fields depends greatly on the direction of the force with respect to the direction
of particle propagation. The difference between parallel and perpendicular ac-
celeration will have a great impact on the design of electron accelerators. As
we will see later, the acceleration of electrons is limited due to the emission
of synchrotron radiation. This limitation, however, is much more severe for
electrons in circular accelerators where the magnetic forces act perpendicu-
larly to the propagation compared to the acceleration in linear accelerators
where the accelerating fields are parallel to the particle propagation. This ar-
gument is also true for protons or for that matter, any charged particle, but
because of the much larger particle mass the amount of synchrotron radiation
is generally negligibly small.

1.1.6 Energy Conservation

The rate of work done in a charged particle-field environment is defined by
the Lorentz force and the particle velocity F,v = eEv + e (v x B)v. Noting
that (v x B)v = 0, we set eEv = jE, and the total rate of work done by
all particles and fields can be obtained by integrating Ampere’s law (1.1) over
all currents and fields

/jEdV:eo/(02 (Vx B) - E)EdV. (1.29)

With the vector relation V(a x b) = b(V xa) —a (V x b)

/jEdV:eo/ ?BVXE —*V(E x B)— EE|dV (1.30)
N——"
B
du 9
=— | |q; Teoc V(E x B)| dV,
where an energy density has been defined by
1
u=geo (B +c*B%). (1.31)

Applying Gauss’ theorem to the vector product in (1.30), we get an ex-
pression for the energy conservation of the complete particle-field system

d

% udV  + /jEdV + j{Snda = 0. (1.32)
——— ~—_— ——

change of particle energy radiation loss through

field energy loss or gain closed surface a
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This equation expresses the conservation of energy relating the change in
field energy and particle acceleration with a new quantity describing energy
loss or gain through radiation.

Poynting Vector

The third integral in (1.32) is performed over a surface enclosing all charges
and currents considered. The Poynting vector S is the energy loss/gain though
a unit surface element in the direction of the unit vector n normal to the
surface defined by
s— 1 [E x B] . (1.33)
Ho
Equation (1.33) exhibits characteristic features of electromagnetic radia-
tion. Both electric and magnetic radiation fields are orthogonal to each other
(E L B), orthogonal to the direction of propagation (E Ln, B L n), and
the vectors E, B, S form a right-handed orthogonal system. For plane waves
n x E=cB and
S = ecE*n. (1.34)

1.2 Primer in Special Relativity

Dynamic treatment of high energy particles requires the application of rela-
tivistic relations. We therefore review some of the more relevant issues of the
theory of special relativity.

1.2.1 Lorentz Transformation

Physical phenomena can appear different for observers in different systems of
reference. Yet, the laws of nature must be independent of the reference system.
In classical mechanics, we transform physical laws from one to another system
of reference by way of the Galileo transformation z* = z — vt assuming that
one system moves with velocity v along the z-axis of the other system.

As the velocities of bodies under study became faster, it became necessary
to reconsider this simple transformation leading to Einstein’s special theory
of relativity. Maxwell’s equations result in electromagnetic waves expanding
at a finite velocity and do not contain any reference to a specific system of ref-
erence. Any attempt to find a variation of the “velocity of light” with respect
to moving reference systems failed, most notably in Michelson’s experiment.
The expansion velocity of electromagnetic waves is therefore independent of
the reference system and is finite.

Any new transformation laws must include the observation that no element
of energy can travel faster than the speed of light. The new transformation
formulas combine space and time and are for a reference system £* moving
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with velocity v, = ¢, along the z-axis with respect to the stationary system

L

r =z,
y =y,

(1.35)
z ="+ Bcth),

ct =75 (B, 2" +ct*),

where the relativistic factor is v = 1/4/1 — 82 with 3, = v, /c and where all
quantities designated with * are measured in the moving system L£*. Of course,
either system is moving relative to the other and we will use this relativity
in various circumstances depending on whether quantities are known in the
laboratory or moving system. These Lorentz transformations can be expressed
in matrix formulation by

x 10 O 0 ¥ ¥
01 0 0 * *
Yl = Pilam | | (1.36)
z 00 ~ 40y z* z*
ct 00 +8y ~ ct* ct*

The inverse transformation is the same except that the velocity or 8 changes
sign, v — —w.
Lorentz Transformation of Fields

Without proof, electromagnetic fields transform between reference systems in
relative motion like

E, v 0 0 0 4980 E:
E, 0 v 0-8. 0 0| E;
E. 0 0 1 0 0 O E%
_ (1.37)
cB, 0 —B.0 ~ 0 O cB?
cBy +y8. 0 0 O v 0 cB;
cB, 0 0 0 O 0 1 cB}

Again, for the inverse transformation only the sign of the relative velocity
must be changed, 8, — — (.. According to this transformation of fields, a pure
static magnetic field in the laboratory system £ becomes an electromagnetic
field in the moving system L£*. An undulator field, therefore, looks to an
electron like an electromagnetic field like, for example, a laser field and both
interactions can be described by Compton scattering.
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Lorentz Contraction

Characteristic for relativistic mechanics is the Lorentz contraction and time
dilatation, both of which become significant in the description of particle
dynamics. To describe the Lorentz contraction, we consider a rod at rest in
the stationary system L along the z-coordinate with a length ¢ = z5 — 21.
In the system L£*, which is moving with the velocity v, in the positive z-
direction with respect to £, the rod appears to have the length ¢* = 235 — 27.
By a Lorentz transformation we can relate that to the length in the £-system.
Observing both ends of the rod at the same time (2 = ¢1) the lengths of the
rod as observed from both systems relate like £ = 20 — 21 = (25 — v,t3) —
v (25 — v 7)) =~ £* or

0= 0", (1.38)

A rod at rest in system L appears shorter in the moving particle system L£*
by a factor v and is always longest in its own rest system. For example, the
periodicity of an undulator A, becomes Lorentz-contracted to A\,/7v as seen
by relativistic electrons.

Time Dilatation

Similarly, we may derive the time dilatation or the elapsed time between
two events occurring at the same point (z2 = 21) in both coordinate systems.

From the Lorentz transformations, we get At = to —t; = « (t; + ﬁzzé) —

C
~ (t’{ + ﬁzczf) or

At =y A" (1.39)

As a consequence, high energy, unstable particles, like pions and muons, live
longer and can travel farther as measured in the laboratory system, because
the particle decay time is a particle property and is therefore measured in its
own moving system.

1.2.2 4-Vectors

4-vectors have a special significance in physics. As their name implies, four
physical quantities can form a 4-vector which has convenient properties when
viewed in different reference systems. The components of space—time, for ex-
ample, form a 4-vector 7 = (z,v, 2, ict). To identify 4-vectors, we add a tilde
S to the symbols. All true 4-vectors transform like the space—time coordinates
through the Lorentz transformations

@ = Mypa. (1.40)
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Invariance to Lorentz Transformations

The length of 4-vectors is the same in all reference systems and is therefore
open to measurements and comparisons independent of the location of the
experimenter. In fact, it can be shown (exercise) that even the product of two
arbitrary 4-vectors is Lorentz invariant. Take two 4-vectors in an arbitrary
frame of reference a*=(a}, a3, a3, ia}) and l;*:( T, b5,05,1b}) and form the
product a*b in component form. A Lorentz transformation on both 4-vectors
gives a'h = &l;, which is the same in any reference system and is therefore
Lorentz invariant. Specifically, the length of any 4-vector is Lorentz invariant.

Space—Time

Imagine a light flash to originate at the origin of the coordinate system
L(x,y,z). At the time ¢, the edge of this expanding light flash has expanded
with the velocity of light to

22 P 2% = AR (1.41)

Observing the same light flash from a moving system, we apply a Lorentz
transformation from the laboratory system L to the moving system L£* and
get

117*2 + y*2 + 2*2 _ C2t*2 (142)

demonstrating the invariance of the velocity of light ¢ as was experimentally
verified by Michelson and Morley in 1887. The velocity of light is the same in
all reference systems and its value is

¢ = 299,792,458 m/s. (1.43)

Space—Time 4-Vector
The components of the space—time 4-vector are
s = (131,582,563,1‘4) = (a:,y,z,ict), (144)

where the time component has been multiplied by ¢ to give all components
the same dimension. From the Lorentz invariant world time 7, defined as

et =V -8, (1.45)

we get

cdr = /e (d) — (dr)? — (dy)® — (d2)? = /e — (02 + 02 + o2) d

=V —0v2dt =+/1— %cdt, (1.46)
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a relation we know from the Lorentz transformation as time dilatation
dr = L dt. This effect has been verified experimentally by studies of unstable
particles at high energies.

Other 4-vectors can be formulated and often become relevant in acceler-
ator physics as, for example, those listed below. More 4-vectors are listed in
Appendix A.

4-Velocity

A velocity 4-vector can be derived from the space—time 4-vector by simple
differentiation

ds ds
5= =G = (0400 (147)
Evaluating the square of the velocity 4-vector we find 92 = yv2—vc? = —¢2

in the rest frame and in any other reference frame. The velocity of light is the
same in any reference system as experimentally verified by Michelson and
Morley.

4-A cceleration

From the velocity 4-vector, we derive the 4-acceleration
- dd d ([ ds ,d’5  _dy @ ,d*5  _4°
A= — =~v— [~v—= )| =~%2—— V— =7"— + 79— (va 1.48

ar th(vdt) TaE T TV ge T e (149
or in component form @ = (G, Gy, @.,1d:), we get a; = v2a,+7*3: (Ba),. ..,

a; = v* (B a) where a = (&, 7, #) is the ordinary acceleration. The Lorentz

invariance of @* becomes important to describe the emission of synchrotron

radiation from a relativistic charged particle and observation in a laboratory
reference frame. Conversely, experimental verification of the theory of syn-
chrotron radiation validates the invariance of @?.

Momentum—Energy 4-Vector

An important 4-vector is the 4-momentum or momentum-—energy 4-vector
defined by the canonical momentum cp and total energy E

cp = (pracpzﬂcl)zziE)- (149)

The length of the energy-momentum 4-vector ¢p = (cpa, cpy, cpz,iE) can be
determined by going into the rest frame where the momentum is zero and we
get

PP = Pp? + czpz +Pp? — B = —A?m?2c, (1.50)

where we have set Fy = Amc? for a particle with atomic mass A. From this
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E? = 2p? + A?m?c?, (1.51)

demonstrating the experimentally verifiable fact that the particle mass is
Lorentz invariant.

We look now for an expression of (1.51) without the use of velocities and
derive from the product of the velocity and momentum—energy 4-vectors

(yv,iye) (epiE) = ~yvep—cyE = —cAmc? (1.52)

an expression for the momentum

E — Amc?
Y8 cp—vE = —Amc*? = cp= %7 since p||B. (1.53)
g
Inserting this into (1.51), we get
E — Amé®\*
E2 — (’y[;m) +A2m2047 (154)
gl
and with 8242 =42 — 1
__E (1.55)
T Ame ’

defining the relativistic factor v in terms of energies. Sometimes, authors at-
tach this relativistic factor to the mass and assume thereby an increasing
moving mass. Einstein’s point of view is expressed in the following quote: “It
is not good to introduce the concept of the mass of a moving body M = ymy
for which no clear definition can be given. It is better to introduce no other
mass concept than the ‘rest mass’ myg. Instead of introducing M it is better to
mention the expression for the momentum and energy of a body in motion.”
In this book, we take the rest mass mg as an invariant.

Photon 4-Vector

An analogous 4-vector can be formulated for photons using deBroglie’s re-
lations p = hk and E = hw for ck = (cky, cky, ck,,iw). Since the energy-
momentum 4-vector is derived from the canonical momentum, we will have
to modify this 4-vector when electromagnetic fields are present.

Force 4-Vector

The force 4-vector is the time derivative of the energy—momentum 4-vector
(015, iE), which is consistent with the observation (so far) that the rest mass
does not change with time.

Electromagnetic 4-Vector

The electromagnetic potential 4-vector is (cA,ig).
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Charge/Current 4-Density

The square of the charge/current density 4-vector (vp,icp) is v%p? — c?p? =
—c%p? in the charge rest frame. As an experimental fact, we know that the
particle charge is Lorentz invariant. Therefore (pv,ipc) is a 4-vector. In a
somewhat different formulation the charge density is p3 = (1 —87?)p? or
p = 7vpo, which reflects the Lorentz contraction in one dimension as an increase
in the charge density.

Current 4-Divergence

We may define a divergence 4-vector by V = (—V,i8/0t) (note the minus sign
on the space components). With this, we can derive a current 4-divergence
6} =-Vj— c%, leading to Vj + c% = c%‘] = 0, which demands charge
preservation as has been verified in many elementary particle observations of
creation, transformation, and annihilation.

1.2.3 Spatial and Spectral Distribution of Radiation

Of great importance in accelerator and synchrotron radiation physics is the
Lorentz invariance of the product of two 4-vectors. Electromagnetic fields
emanating from relativistic charges can be described by plane waves E* =
E{jei‘p*, where @* = wt* — kn*r* is the phase of the wave in the particle
system and is Lorentz invariant. This invariance stems from the fact that
the phase can be formulated as the product of the photon and space—time
4-vectors

¢ P8 = [ckn,iw] [s,ict], (1.56)

where we have set kK = nk with n being the unit vector in the direction of
wave propagation. Using k = w/c the phase as measured in the laboratory £
is the same as that in the particle frame of reference £*

w* [(npa* +ngy" +nkz") — ct*] = wl(nex + nyy + n.z) — ct] = invariant.

To derive the relationships between similar quantities in both systems, we use
the Lorentz transformation (1.36), noting that the particle reference frame is
the frame where the particle or radiation source is at rest, and replace the
coordinates (x*,y*, z*, ct*) by those in the laboratory system for

w* [(npa* +njy* +nkz*) — ct*]
=w* [njz +nyy +nk (vz — Byct) — (=Byz +yet)] (1.57)
=w [(nzx + nyy + n.z) — ct],

from which one can isolate, for example, a relation between w* and w. Since
the space—time coordinates are independent from each other, we may equate
their coefficients on either side of the equation separately.
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Spectral Distribution

In so doing, the ct-coefficients define the transformation of the oscillation
frequency
wy 1+ 6.n;) =w, (1.58)

which expresses the relativistic Doppler effect. Looking parallel and opposite
to the direction of particle motion n} = 1, the observed oscillation frequency
is increased by the factor (1 4+ 3,) v & 2+ for highly relativistic particles. The
Doppler effect is reduced if the radiation is viewed at some finite angle © with
respect to the direction of motion of the source. In these cases n} = cos ©*.
The frequency shift can be very large for highly relativistic particles with
> 1

Spatial Distribution

Similarly, we obtain the transformation of spatial directions from

*

nk n B:+n}

=, ny = ———— — Ny = "
’7(1+52nz) 7(1+ﬁznz) (1+ﬂznz)

These transformations define the spatial distribution of radiation in the
laboratory system. In the case of transverse acceleration the radiation in the
particle rest frame is distributed like cos? ©* about the direction of motion.
This distribution becomes greatly collimated into the forward direction in the
laboratory system. With n’? +ng*/2 = sin? ©* and n? —l—n; = sin? © ~ 02 and
ny = cos @*, we find

(1.59)

Ny

sin ©*
~ —_— 1.
© v(1+ B cos O©%) (1.60)

In other words, radiation from relativistic particles, emitted in the particle
system into an angle —7w/2 < ©* < 7/2, appears in the laboratory system
highly collimated in the forward direction within an angle of

A6 ~ 4t (1.61)
v

This angle is very small for highly relativistic electrons like those in a
storage ring, where + is of the order of 103-10%.

1.3 Elements of Classical Mechanics

Expanding d’Alembert’s principle, we formulate Hamilton’s integral principle
by defining a function L = L(g;, ¢;,t) such that for any mechanical system the
variation of the integral ﬁ? L dt, called action, vanishes along any real path
(Fig. 1.1) so that
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L(t)

L(ty)

Fig. 1.1. Variational Principle

5/“ L(t) dt =0, (1.62)

Here, the variables (g;, i, t) are the coordinates and velocities, respectively,
and ¢ is the independent variable time. We may expand this function and get

5/ Ldt= /Z 5qldt+/z -5 dt . (1.63)

The second term can be modified using the assumption of the variational
theorem which requires that dg; = 0 at the beginning and end of the path

oL oL d oL d . | d oL
_ —Sq;dt = == —6q; Sqidt.  (1.64
94; 0¢: dt = d¢; dt ¢ 04, dt&q t / dt 8¢; ¢ (1.64)
N————
=0

Both terms can now be combined for

t L d oL
Ldt= 8q; dt = 0. 1.65
’ to & /zi:(aqz dtf)Q> ! (16

This integral can be zero for any arbitrary path if and only if the integrand
vanishes for each component ¢ independently. The resulting equations are
called the Euler-Lagrange equations

doL oL
dt 9¢;  0q;

(1.66)

Bypassing a more accurate discussion [3], we guess at the nature of the
Euler— Lagrange equations by considering a falling mass m. The kinetic energy
isT = §mv and the potentlal energy V = gx, where g is the gravitation force.
Ifweset L=T-V = 2 —gz and apply (1.66), we get m ¥ = g which is the
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well-known classical equation of motion for a falling mass in a gravitational
field. The time-independent Lagrangian can be defined by [3]

L=T-V (1.67)

and the Lagrange function therefore has the dimension of an energy. Further-
more, in analogy with basic mechanics like a falling mass, we can define the
momenta of a system by

oL
P=— 1.68
"= (1.05)
and call them the generalized canonical momenta. We use a capital P for the
canonical momentum to distinguish it from the ordinary momentum p. Both

are different only when electromagnetic fields are involved.

1.3.1 How to Formulate a Lagrangian?

The formulation of the Lagrangian is a creative process of physics. Whatever
expression one might propose, it should be independent of a particular ref-
erence system and therefore Lorentz invariant. Earlier, we have learned that
the product of two 4-vectors is Lorentz invariant and the product of two,
not necessarily different, 4-vectors is therefore a good choice to form the
Lagrangian. We investigate, for example, the product of the momentum-—
energy (cp;,cpz,cp;iE*) = (0,0,0,imcz) and the differential space—time
4-vectors (dz*, dy*, dz*, icd7) in the particle rest frame and get

1
— (dz*,dy*,dz", icdT) (cp;,cpz,cpz, iE*) = —mcdr = —mc?\/1 — F2dt.
c
(1.69)
This expression has the dimension of an energy and is Lorentz invariant. We
consider therefore this as the Lagrangian for a particle at rest being observed
from a relatively moving laboratory system

L= —mc*\/1— 3. (1.70)

The conjugate momenta are P; = g—; or for the z-component

o,
Vi

] i —doL 9L _dp _
and the equation of motion 0 = Bos — 0z = dt P, —0or

dP,
=0 1.72
p” (1.72)

indicating that the particle is in uniform motion with velocity .

Lagrangian (1.70) is consistent with classical experience if we set 3% < 1
and L = —mc?y/1 — 32 ~ —mc®+ %va. Since we use only derivatives of the
Lagrangian, we may ignore the constant —mc? and end up with the kinetic
energy of the free particle.

P, =— = YMmuy (1.71)
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The Lagrangian for a Charged Particle in an EM Field

The interaction between charged particle and electromagnetic field depends
only on the particle charge and velocity and on the field. We try therefore
the product of field and velocity 4-vector. Formulating this product in the
laboratory system, where the fields have been generated, we get.

e(Az, Ay, AL 1d) ¥ (Vg, vy, v2,1) = ey (Av — @) . (1.73)

Noting that ydr = dt, the extension to the Lagrange function in the
presence of electromagnetic fields is

L=-mc*\/1—-[32+cAv—eg. (1.74)
The canonical momentum is from (1.68)

P:Lv+eA:7mU+€A:p+€A7 (175)

V1-p?

where p is the ordinary momentum. Equation (1.74) is consistent with L =
T —V, where the potential V = e — eAv .

1.3.2 The Lorentz Force

The conjugate momenta in Cartesian coordinates r = (x,y, z) can be derived
from

b 0L _

=5n = eV (Av) —eVop=e (vVV)A+e [vx(V x A)]—eVe, (1.76a)

where we used the algebraic relation (A.18). Insertion into

d oL dP d
&E_E_a(p—keA)_e(vV)A—Fe[’vx (Vx A)—eVeo (1.76b)

results with 7 = v and % = %—‘? + (v V) A in an expression for the ordinary

momentum p
dp  0A
E——eﬁﬁ‘e[UX(VXA)}—eVQS. (177)

Converting potentials to fields, we may recover the Lorentz force F';, = %—f or

Fp=eE+e(vxB). (1.78)
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individual particle trajectory

ideal beam path

Fig. 1.2. Frenet—Serret coordinate system

1.3.3 Frenet—Serret Coordinates
A particle trajectory may follow a path described by
r(z) = 7ro(2) + dr(2). (1.79)

Here, ro(2) is the ideal path in beam dynamics and an orthogonal coordi-
nate system moves along the ideal path with its origin at r¢(z) as shown in
Fig. 1.2.

For this Frenet—Serret coordinate system we define three vectors

Uy (2) unit vector L to trajectory

unit vector || to trajectory (1.80)

uy(2) = u,(2) X uy(z)  unit binormal vector

to form an orthogonal coordinate system moving along the trajectory with a
reference particle at r¢(z). In beam dynamics we identify the plane defined
by vectors u,, and u.(z) as the horizontal plane and the plane orthogonal to
it as the vertical plane, parallel to u,. Change in vectors are determined by
curvatures

du,(2)
dz

du, (2)
dz

= Ky u,(2) and

= Ky u,(2), (1.81)

where (kz, ky) are the curvatures in the horizontal and vertical plane, respec-
tively. The particle trajectory can now be described by

Tz, y,2) = T0(2) + 2(2) ua(2) + y(2) wy(2), (1.82)
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where ro(z) is the location of the coordinate system’s origin (reference par-
ticle) and (z,y) are the deviations of a particular particle from 7¢(z). The
derivative with respect to z is then

d _drg du,(2) duy(z) , ,
Dtz = 0 gy P ) T ), () 4y ()
(1.83)
or with (1.80) and (1.81)
dr = uy dr + u, dy + u, hdz, (1.84)
where
h =1+ Kkog + Koyy - (1.85)

Using these Frenet—Serret coordinates, we are able to describe particle
trajectories much more efficiently than we could do in Cartesian coordinates.
Essentially, we have transformed away the ideal path or the geometry of the
design beam transport line which is already well known to us from the place-
ment of beam guidance elements. The new coordinates measure directly the
deviation of any particles from the reference particle.

We may use these relations to introduce a transformation from the Carte-
sian coordinate system to curvilinear Frenet—Serret coordinates in the La-

grangian L = —mc?+/1 — 32+eAr — e¢ . In the new coordinates, /1 — 52 =
\/1 — L (@2 + 9% + h?222), Af = A, + A, + hiA., and the Lagrangian be-
comes in curvilinear coordinates of beam dynamics

L=—mc\/1— & (a2 + 42 + h22) + e (A, + A, + hid,) —ed. (L86)

1.4 Hamiltonian Formulation

Like any other mechanical system, particle beam dynamics in the presence
of external electromagnetic fields can be described and studied very generally
through the Hamiltonian formalism. The motion of particles in beam trans-
port systems, expressed in normalized coordinates, is that of a harmonic oscil-
lator and deviations caused by nonlinear restoring forces appear as perturba-
tions of the harmonic oscillation. Such systems have been studied extensively
in the past and powerful mathematical tools have been developed to describe
the dynamics of harmonic oscillators under the influence of perturbations. Of
special importance is the Hamiltonian formalism which we will apply to the
dynamics of charged particles. Although this theory is well documented in
many text books, for example in [3,4], we will recall the Hamiltonian theory
with special attention to the application in charged particle dynamics.

The canonical variables in the Hamiltonian theory are the coordinates and
momenta rather than coordinates and velocities used in the Lagrangian. We
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use a coordinate transformation (g;, ¢;,t) = (g, P;, t) through the definition
of the momenta P; = OL/J¢; and define the Hamiltonian function by

H(gi,pi) = Y ¢ Pi — L(qi, i) - (1.87)

In analogy to the Lagrangian, we find that ¢; P; = 2T and the Hamiltonian
which does not depend on the time explicitly is therefore the sum of kinetic
and potential energy

H=T+V. (1.88)

This will become useful later since we often know forces acting on par-
ticles which can be derived from a potential. Similar to the Euler-Lagrange
equations, we define Hamiltonian equations by

oH . OH

- _P d
dq; an OF;

With L = —mc?y/1 — 32 + eAv — e¢, the Hamiltonian becomes by replacing
velocities with momenta

H(gi, P) = ¢iPi+mc*/1— 32— eAd + e, (1.90)

where ¢ = (q1,92,.-.,Gi,...) and A = (A1, As,...,A;,...), etc. and the

canonical momentum is defined in (1.75).The canonical momentum is the

combination of ordinary particle momentum p = ymgq and field momentum

eA. Insertion into the Hamiltonian and reordering give (H — e¢)® = m2c¢* +
2 2

(P —eA)” or

A (P —eA) — (H —ed)” = —m?c*. (1.91)
Equation (1.91) is equal to the square of the length of the energy momen-

tum 4-vector [cP, iE], where F = H — e¢, and is therefore Lorentz invariant.
A more familiar form is

=ep+ \/02 —eA)® +m2ct. (1.92)

In nonrelativistic mechanics, the Hamiltonian becomes with 32 < 1 and
ignoring the constant mc?

1
Hclass = §mv2 + 6¢» (193)

which is the sum of kinetic and potential energy.
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1.4.1 Cyclic Variables

The solution of the equations of motion become greatly simplified in cases
where the Hamiltonian does not depend on one or more of the coordinates or
momenta. In this case one or more of the Hamiltonian equations (1.89) are
zero and the corresponding conjugate variables are constants of motion. Of
particular interest for particle dynamics or harmonic oscillators are the cases
where the Hamiltonian does not depend on say the coordinate ¢; but only on
the momenta P;. In this case we have

HzH(Ql?"'aqi—hQi-‘rla"'aPhPQ)"'7Pia"') (194)

and the first Hamiltonian equation becomes

oH

o0 -P=0 or P, = const . (1.95)

Coordinates ¢; which do not appear in the Hamiltonian are called cyclic co-
ordinates and their conjugate momenta are constants of motion. From the
second Hamiltonian equation we get

0H
op g; = a; = const, (1.96)

since P; = const., which can be integrated immediately for

where ¢; is the integration constant. It is obvious that the complexity of a
mechanical system can be greatly reduced if by a proper choice of canonical
variables some or all dependence of the Hamiltonian on space coordinates can
be eliminated. We will derive the formalism that allows the transformation of
canonical coordinates into new ones, where some of them might be cyclic.

Example. Assume that the Hamiltonian does not depend explicitly on the

time, then %—If = 0 and the momentum conjugate to the time is a constant
of motion. From the second Hamilton equation, we have g—g = %t =1, and

the momentum conjugate to the time is therefore the total énergy p;=H =
const. The total energy of a system with a time-independent Hamiltonian is
constant and equal to the value of the Hamiltonian.

1.4.2 Canonical Transformations

For mechanical systems which allow in principle a formulation in terms of
cyclic variables, we need to derive rules to transform one set of variables
to another set, while preserving their property of being conjugate variables
appropriate to formulate the Hamiltonian for the system. In other words,
the coordinate transformation must preserve the variational principle (1.62).
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Suchitransformations are called canonical transformations g, = fx(q:, Pi,t)
and Py = gr(¢;, P;,t) and the variational principle now reads

5/ <Z i Pe — H) dt =0, (1.98a)
k

5/ (Z Gy Pe —H) dt=0. (1.98b)
k

The new Hamiltonian H need not be the same as the old Hamiltonian H
nor need both integrands be the same. Both integrands can differ, however,
only by a total time derivative of an otherwise arbitrary function G

. = dG
i P — H = 7. P. — H+ — 1.
zk:% k zk:qkk +dt (1.99)

After integration f 4G 4t becomes a constant and the variation of the integral
obviously vanishes under the variational principle (Fig. 1.1). The arbitrary
function G is called the generating function and may depend on some or all
of the old and new variables

G =G (qr, G, Pr, Py, t) with 0<k<N. (1.100)

The generating functions are functions of only 2/N variables. Of the 4N vari-
ables only 2N are independent because of another 2N transformation equa-
tions (1.98). We may now choose any two of four variables to be independent
keeping only in mind that one must be an old and one a new variable. De-
pending on our choice for the independent variables, the generating function
may have one of four forms

Gl = Gl(q76)t)7 G?) = G3(P7Q7t)7

) ) (1.101)
GQZGQ(q7P7t), G4:G4(P,P,t),

where we have set ¢ = (¢1,¢2,--.,qn), ete.
We take, for example, the generating function G, insert the total time
derivative

dG1 Z 8G1 8qk Z 8G1 8Pk 8G1

1.102
g, ot Opr. ot ot (1.102)

n (1.99), and get after some sorting
0G1 ~ 0Gq 0Gy
P, - P —_— H-H+——=)=0. (1.103
ZQk(k k) ZQk(k+ak) ( +8t) ( )

Both old and new variables are independent and the expressions in the paren-
theses must therefore vanish separately leading to the defining equations
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8G1 — 8G1 7 8G1
P,=— Py =——— H=H———. 1.104
YT 0 YT ag at (1.104)
Variables for which (1.104) hold are called canonical variables and the trans-
formations (1.98) are called canonical.

Generating functions for other pairings of new and old canonical variables
can be obtained from G; by Legendre transformations of the form

Ga(q, P,t) = G1(q,q,t) +qP. (1.105)

Equations (1.104) can be expressed in a general form for all four differ-
ent types of generating functions. We write the general generating equation
G = G(x, Tk, t), where the variables xp and Zj can be either coordinates
or momenta. Furthermore, x; and Zj are the old and new coordinates or
momenta, respectively, and the (y, yx) are the conjugate coordinates or mo-
menta to (zg, Zx). Then

0
Yk = :taiﬂka((Ek7jk’t)7
0
Y = :FaijkG(xk,fk,t), (1106)

H=H- %G(azk,fk,t) .

The upper signs are to be used if the derivatives are taken with respect to
coordinates and the lower signs if the derivatives are taken with respect to
momenta. It is not obvious which type of generating function should be used
for a particular problem. However, the objective of canonical transformations
is to express the problem at hand in as many cyclic variables as possible. Any
form of generating function that achieves this goal is therefore appropriate.

To illustrate the use of generating functions for canonical transformation,
we will discuss a few very general examples. For an identity transformation
we use a generating function of the form

G:q1]51+q2152+~~~ (1107)

and get with (1.106) and i = 1,2,..., N the identities

0G _

Pi=—— =P, 1.108
o ( a)
0G

77; = — = (; . 1108b

q +E)PZ- q ( )

A transformation from rectangular (x,y, z) to cylindrical (r, ¢, z) coordinates
is determined by the generating function

G (P,q) = —Pyrcosgp — Pyrsing — P, z (1.109)
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and the transformation relations are

oG oG
xz—apxzrcosgp, P,.:—E:—Fchosgo—i-Pysingp,
oG oG
y:—a—py:rsimp, sz—@:—Pmsingo—i-Pycosgp, (1.110)
oG oG
op. “ 0z

Similarly, relations for the transformation from rectangular to polar coor-
dinates are derived from the generating function

G = —P,r cosy sint — Pyrsing sint — P,rcos?. (1.111)

It is not always obvious if a coordinate transformation is canonical. To identify
a canonical transformation, we use Poisson brackets [3] defined by

- p. Cpy]— Ofk Ogr Of Ogk
Felaw Pl 1)) = 3 (Gl - SR80

i

(1.112)

It can be shown [3] that the new variables g, Py or (1.98) are canonical if and
only if the Poisson brackets

[P;, Pj] =0, [, q;] = 0, @i, Pj] = Moij, (1.113)

where 0;; is the Kronecker symbol and the factor A is a scale factor for the
transformation. To preserve the scale in phase space, the scale factor must
be equal to unity, A = 1. While the formalism for canonical transformation
is straightforward, we do not get a hint as to the optimum set of variables
for a particular mechanical system. In the next sections we will see, however,
that specific transformations have been identified and developed which prove
especially useful for a whole class of mechanical systems.

1.4.3 Curvilinear Coordinates

The choice of a particular coordinate system, of course, must not alter the
physical result and from this point of view any coordinate system could be
used. However, it soon becomes clear that the pursuit of physics solutions can
be mathematically much easier in one coordinate system that in another. For
systems which are symmetric about a point we would use polar coordinates,
for systems which are symmetric about a straight line we use cylindrical coor-
dinates. In beam dynamics there is no such symmetry, but we have a series of
magnets and other components aligned along some, not necessarily straight,
line. The collection of these elements is what we call a beam line. The par-
ticular arrangement of elements is in most cases not determined by physics
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but other more practical considerations. The matter of fact is that we know
about the “ideal” path that all particle should go being defined by the physi-
cal centers of the beam line elements. In a fixed Cartesian coordinate system
the result of “ideal” beam dynamics would be a complicated mathematical
expression trying to describe the “ideal” path in which we have no interest,
since we already know where it is. What we are interested in is the deviation
a particular particle might have from the ideal path. The most appropriate
coordinate system would therefore be the one which moves along the ideal
path. In Sect. 1.3.3, we have introduced such a curvilinear references system
also known as the Frenet—Serret reference system . The transformation from
Cartesian to Frenet—Serret coordinates can be derived from the generating
function formed from the old momenta and the new coordinates

G(z,2,Y,Pe 2, Pe, Poy) = — (cPo — ecAc) [ro(2) + zuy(2) + yuy(2)].
(1.114)
The momenta and fields in the old, Cartesian coordinate system are designated
with the index ¢. The new canonical momenta P in the Frenet—Serret system
are then, while noting that the transverse momenta are the same, in both
systems

(cP, — ecA,h) = —% = (cP, —ecA;),_ h,
(cP, —ecA,) = —% = (cP, —ecA;),, (1.115)
(cPy —ecAy) = —% = (cP, —ecAy).,
with curvatures ko, = —— and h = (1 + ko,Z + Koyy) as defined in (1.85).

Pox,y

The Hamiltonian H. = e¢ + C\/ m2c? + (P — eA)f in Cartesian coordinates
transforms then to the one in curvilinear coordinates of beam dynamics

(P, — eA.h)?

- + (P —eAy)’ + (P, —eA,)?. (1.116)

H:e¢+0\/m262+

For a particle traveling through a uniform field B,, we have A = (0,0, A4,) =
(0,0,—By ), Py y = pay, and the Hamiltonian is with A, = A .h

Hy =ep+ C\/m%2 +p2+pi+ % (P, + eByhx)Q. (1.117)

The distinction we make here on fields in curvilinear and Cartesian co-

ordinates stems from the practice to build magnets in a certain way. Dipole

magnets are designed carefully to have a uniform field in the beam area along

the curved path, which is not consistent with the transformation of a uniform
dipole field in cartesian coordinates to one
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1.4.4 Extended Hamiltonian

The Hamiltonian as derived so far depends on the canonical variables (g;, P;)
and the independent variable (¢) or (z) defined for individual particles. This
separate treatment of the independent variable can be eliminated by formu-
lating an extended Hamiltonian in which all coordinates are treated the same.

Starting with H(q1, g2, ..., qt, P1, P2, P3,..., P, t), we introduce the inde-
pendent variables (go, Py) by setting

qo = t and P() =-H (1118)
and obtain a new Hamiltonian
H(q0>q1aq27"'7qf7P07P17P27P33--~7Pf) :H+PO =0 (1119)

and Hamilton’s equations are then

dg; _ OH
dt — OP;
for i=0,1,2.... (1.120)
dP; _ _OH
dt Sqi

In particular, for ¢ = 0, the equations are

d
gzl_m:wrcl (1.121)
and
dP, OH OH dH
o __on__on_ _dit Py=— _ 1.122
ar 940 ot @ o =Rt (1.122)

The momentum conjugate to the time is equal to the Hamiltonian and
since H # H (1) for static fields, it follows that

dP,
—2 =0 = H=const. (1.123)
dr
Now, the independent variable is no more distinguishable from all other
coordinates, the Hamiltonian is expressed as a function of coordinates and
momenta only.

1.4.5 Change of Independent Variable

Since no particular coordinate is designated as the independent variable, we
may use any of the coordinates as that. For example, we prefer often to use
the longitudinal coordinate z as the independent variable rather than the time
t. More generally, consider to change the independent variable from g; to g;.
Defining, for example, g3 as the new independent variable, we solve H for P
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pP3 = —K(QO,Qla%w -y g, POaplaP27P37' .. 7pf) (1124)

and define a new extended Hamiltonian

K=P+K=0. (1.125)
Then equations
oK dQ3
R 1.12
oP; —dgs (1.126a)
oKk _ am _ —8—K (1.126D)

“0gs  dgs  Ogs’
oK - dq#g - oK

= = , 1.126¢
OP;z3  dgs  OPizs ( )
7 oK _ dPis _ oK (1.126d)
aqi¢3 dP3 8qi753
are in Hamiltonian form with the Hamiltonian

To use the longitudinal coordinate z rather than the time ¢ as the inde-
pendent variable, we start with Hamiltonian (1.116)

1
H(z,y,2,t) =ed+ \/h2 (cP, — ecAzh)2 + c2p? + m2ct, (1.128)

where p? = p2 + p2 . The longitudinal momentum is

cP, = ceA,h + h\/(H —ed)? — (epL)? — m2ct

= ceA.h + hy/c?p? — 2p?, (1.129)

where E2 = (H — e¢)” = (cp)* + (m02)2 has been used. We further normalize
to the momentum p and use trajectory slopes, 2’ = dz/dz = p,/p. , etc. rather
than momenta. With this, the new Hamiltonian is K (z,2’,y,y’,2) = —P./p

or using P./p = eA,/p+ h\/1 — p* /p? and p2 /p* ~ E y/z

ALh
K(z,2',y,y,2) = -6 —hy/1 -2 —y2. (1.130)

p

In beam dynamics, we restrict ourselves to paraxial beams,where =’ < 1
and ¢y’ < 1, and the momentum p ~ p.. Note p may not be the canonical
momentum if there is an electromagnetic field present, but P = p + eA is
canonical. In this last step, we seem to have lost terms involving transverse
vector potential components. This meets with the requirements of almost all
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beam transport lines, where we use predominantly transverse fields which can
be derived from the A,-component only. This is not true when we consider,
for example, solenoid fields which occur rather seldom and will be treated
separately. Finally, we separate the ideal particle momentum py from the
momentum deviation § = Ap/pg and replace 1/p = 1/ [pg (1 + )] =~ p% (1-9)
in the Hamiltonian for

eA,h
Do

K(z,2',y,y,2) ~ — (1—-6) —hy/1—22—y2. (1.131)

As discussed before, magnetic fields for particle beam dynamics can be
derived from a single component A, of the vector potential and the task to
determine equations of motion is now reduced to that of determining the
vector potential for the magnets in use. The equations of motion are from
(1.131)

oK _ o fiagzh (1—16) — Koa/I— 22 — y2, (1.132)
X

oz Po
0K " e 0A,h
— =y ' =—— 1—90) — Kkoy/1 — a2 —y'2. 1.133
Sy =V = (L= 8) — T a7 (1133)
With hB, = _ag;h and hB, = 6‘3;}‘ the equations of motion become
finally in paraxial approximation
o+ By h(1—6) — ks =0, (1.134)
Po
"~ B (1—6) — kg = 0. (1.135)
Po

These equations of motion are expressed in Cartesian coordinates which
are rather inconvenient in particle beam dynamics. The solutions include the
arbitrary layout of the beam line which is in most cases not easy to ex-
press mathematically. We will soon introduce a coordinate transformation
into curvilinear coordinates which eliminates this complication.

Problems

1.1. Derive the space charge force on a particle within a beam of equal par-
ticles and uniform density pg.

1.2 (S). Prove the validity of the field equations E, = ﬁpor and B, =

ﬁ Bpor for a uniform cylindrical particle beam with constant charge density
po within a radius r < R. Derive the field expressions for r > R.

1.3 (S). Derive the electric and magnetic fields of a beam with a radial charge
distribution p (r, ¢, z) = p (). Derive the field equations for a Gaussian charge
distribution with standard deviation o given by p(r) = poexp [—1?/ (202)].
What are the fields for » =0 and r = 07
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1.4 (S). A circular accelerator with a circumference of 300 m contains a uni-
form distribution of singly charged particles orbiting with the speed of light. If
the circulating current is 1 A, how many particles are orbiting? We instantly
turn on an ejection magnet so that all particles leave the accelerator during
the time of one revolution. What is the peak current at the ejection point?
How long is the current pulse duration? If the accelerator is a synchrotron
accelerating particles at a rate of 10 acceleration cycles per second, what is
the average ejected particle current?

1.5 (S). A proton with a kinetic energy of 1 eV is emitted parallel to the
surface of the earth. What is the bending radius due to gravitational forces?
What are the required transverse electrical and magnetic fields to obtain the
same bending radius? What is the ratio of electrical to magnetic field? Is
this ratio different for a proton energy of say 10 TeV? Why? (Gravitational
constant is 6.67259 x 10~ m3 kg~ ' s~2).

1.6 (S). Consider a highly relativistic electron bunch of n = 10'° uniformly
distributed electrons. The bunch has the form of a cylindrical slug, £ = 1 mm
long and a radius of R = 0.1 um. What is the electrical and magnetic field
strength at the surface of the beam. Calculate the peak electrical current of
the bunch. If two such beams in a linear collider with an energy of 500 GeV
pass by each other at a distance of 10 um (center to center), what is the
deflection angle of each beam due to the field of the other beam?

1.7. Use the results of Problem 1.1 and consider a parallel beam at the begin-
ning of a long magnet free drift space. Follow a particle under the influence
of the beam self-fields starting at a distance rop = o from the axis. Derive the
radial particle distance from the axis as a function of z.

1.8 (S). Show that for plane waves n x E = cB.

1.9 (S). Use the definition for 3, the momentum, the total, and kinetic energy
and derive expressions p(f, Exin), P(Fxin) and Exi,(y). Simplify the expres-
sions for very large energies, v > 1. Derive from these relativistic expressions
the classical nonrelativistic formulas.

1.10. Plot on log—log scale the velocity 3, momentum, and kinetic energy as a
function of the total energy for electrons, protons, and gold ions Au™*. Vary
the total energy from 0.01 mc? to 10*mc?.

1.11 (S). Protons are accelerated to a kinetic energy of 200 MeV at the end
of the Fermilab Alvarez linear accelerator. Calculate their total energy, their
momentum, and their velocity in units of the velocity of light.

1.12 (S). Protons are accelerated to a kinetic energy of 200 MeV at the end
of the Fermilab Alvarez linear accelerator. Calculate their total energy, their
momentum, and their velocity in units of the velocity of light.
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1.13. Show that (1.15) is indeed a solution of (1.13).

1.14 (S). Consider electrons to be accelerated in the L = 3 km long SLAC
linear accelerator with a uniform gradient of 20 MeV/m. The electrons have a
velocity v = ¢/2 at the beginning of the linac. What is the length of the linac
in the rest frame of the electron? Assume the particles at the end of the 3 km
long linac would enter another 3 km long tube and coast through it. How long
would this tube appear to be to the electron?

1.15 (S). A charged pion meson has a rest energy of 139.568 MeV and a
mean life time of 79, = 26.029 nsec in its rest frame. What are the lifetimes,
if the pion kinetic energy is 20 MeV? And 100 MeV? A pion beam decays
exponentially like e=*/7. At what distance from the source will the pion beam
intensity have fallen to 50%, if the kinetic energy is 20 MeV? Or 100 MeV?

1.16. Express the equation of motion (1.23) for Z = 1 in terms of particle
acceleration, velocity, and fields only. Verify from this result the validity of
(1.27) and (1.28).

1.17 (S). A positron beam of energy E accelerated in the linac hits a fixed
hydrogen target. What is the available energy from a collision with a tar-
get electron assumed to be at rest? Compare this available energy with that
obtained in a linear collider where electrons and positrons from two similar
linacs collide head on at the same energy.

1.18 (S). The SPEAR colliding beam storage ring has been constructed orig-
inally for electron and positron beams to collide head-on with an energy of
up to 3.5 GeV. At 1.55 GeV per beam a new particle, the v /J particle, was
created. In a concurrent experiment, such a ¢ /J particle has been produced
by protons hitting a hydrogen target. What proton energy was required to
produce the new particle? Determine the positron energy needed to create
1/ J particles by collisions with electrons in a fixed target.

1.19 (S). Consider the production of antiprotons by accelerating protons and
letting them collide with other protons in a stationary hydrogen target. What
is the minimum kinetic energy the accelerated protons must have to produce
antiprotons? Use the reaction p +p — p + p + p + P to preserve the baryon
number.

1.20 (S). Show that the product of two 4-vectors is Lorentz invariant.
1.21 (S). Prove that the 4-acceleration is indeed given by (1.48).

1.22 (S). The design for the Relativistic Heavy Ion Collider RHIC calls for
the acceleration of completely ionized gold atoms in a circular accelerator with
bending magnets reaching a maximum field of 3.45 T. What is the maximum
achievable kinetic energy per nucleon for gold ions Aut”" compared to pro-
tons? Calculate the total energy, momentum, and velocity of the gold atoms.
(AAu = 197)
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1.23 (S). Gold ions Au™'* are injected into the Brookhaven Alternating Gra-
dient Synchrotron (AGS) at a kinetic energy per nucleon of 72 MeV /u. What
is the velocity of the gold ions? The AGS was designed to accelerate protons
to a kinetic energy of 28.1 GeV. What is the corresponding maximum kinetic
energy per nucleon for these gold ions that can be achieved in the AGS? The
circulating beam is expected to contain 6 x 10° gold ions. Calculate the beam
current at injection and at maximum energy assuming there are no losses
during acceleration. The circumference of the AGS is Cags = 807.1 m. Why
does the beam current increase although the circulating charge stays constant
during acceleration?

1.24 (S). Using 4-vectors, derive the frequency of an outgoing photon from a
head-on Compton scattering process of an electron with a photon of frequency
w.

1.25 (S). Using 4-vectors, derive the frequency of an outgoing photon from
a head-on Compton scattering process of an electron with the field of an
undulator with period A,.

1.26 (S). Show that the Hamiltonian transforms like H, = (%Ht, if the
independent variable is changed from t to .

1.27. Determine which of the following transformations are canonical and
which are not:

=1 p1=11
(a)

g2 =Tz p2 = T2
(b) g=rcosy p=rsiny

q1 = 1 p1 = T1 * Ig
(c)

G2 =71 £ T2 p2=1Io

(d) g=qoe®  p=poe.
Show the formalism you use.

1.28 (S). Derive from Lagrangian (1.86) the equation of motion.
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Particle Dynamics in Electromagnetic Fields

The most obvious components of particle accelerators and beam transport sys-
tems are those that provide the beam guidance and focusing system. Whatever
the application may be, a beam of charged particles is expected by design to
follow closely a prescribed path along a desired beam transport line or along
a closed orbit in case of circular accelerators. The forces required to bend and
direct the charged particle beam or provide focusing to hold particles close to
the ideal path are known as the Lorentz forces and are derived from electric
and magnetic fields through the Lorentz equation.

2.1 The Lorentz Force

For a particle carrying a single basic unit of electrical charge the Lorentz force
is expressed by
F=cE+e[vxB], (2.1)

where e is the basic unit of electrical charge [5].

The vectors E and B are the electrical and magnetic field vectors, respec-
tively, and v is the velocity vector of the particle. These Lorentz forces will
be applied not only to guide particles along a predefined path but will also
be used for beam focusing to confine a beam of particles to within a narrow
vicinity of the ideal path. The evolution of particle trajectories under the in-
fluence of Lorentz forces is called beam dynamics or beam optics. The basic
formulation of beam dynamics relies only on linear fields which are indepen-
dent of or only linearly dependent on the distance of a particular particle from
the ideal trajectory. The mathematical description of particle trajectories in
the presence of only such linear fields is called linear beam dynamics.

The Lorentz force has two components originating from either an electrical
field E or a magnetic field B. For relativistic particles (v & ¢) we find that the
force from a magnetic field of 1 T is equivalent to that for an electrical field of
300 MV /m. Since it is technically straightforward to generate magnetic fields
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of the order of 1 T, but rather difficult to establish the equivalent electric
fields of 3 Million V/cm, it becomes apparent that most beam guidance and
focusing elements for relativistic particle beams are based on magnetic fields.
At low particle energies (v < ¢) this preference is less clear and justified since
the effectiveness of magnetic fields to bend particles is reduced proportional
to the particle velocity 5 = v/c.

2.2 Fundamentals of Charged Particle Beam Optics

Magnetic as well as electric fields can be produced in many ways and appear
in general in arbitrary directions and varying strengths at different locations.
It is impossible to derive a general mathematical formula for the complete
path of charged particles in an arbitrary field distribution. To design particle
beam transport systems, we therefore adopt some organizing and simplify-
ing requirements on the characteristics of electromagnetic fields used. In this
section, first general expressions for the electromagnetic fields will be derived
which are then introduced into the equations of motions. At that point it
becomes obvious which field components are the most useful to design pre-
dictable beam transport systems. By appropriate design of magnets less de-
sirable terms become negligibly small.

The general task in beam optics is to transport charged particles from
point A to point B along a desired path. We call the collection of bending
and focusing magnets installed along this ideal path the magnet lattice and
the complete optical system including the bending and focusing parameters
a beam transport system. Two general cases can be distinguished in beam
transport systems. Systems that display neither symmetry nor periodicity
and transport systems that include a symmetric or periodic array of mag-
nets. Periodic or symmetric transport systems can be repeated an arbitrary
number of times to produce longer transport lines. A specific periodic magnet
lattice is obtained if the arrangement of bending magnets forms a closed loop.
In our discussions of transverse beam dynamics, we will make no particular
distinction between open beam transport lines and circular lattices except in
such cases when we find the need to discuss special eigensolutions for closed
periodic lattices. We will therefore use the terminology of beam transport
systems when we discuss beam optics results applicable to both types of lat-
tices and refer to circular accelerator lattices when we derive eigenfunctions
characteristic only to periodic and closed magnet lattices.

2.2.1 Particle Beam Guidance

To guide a charged particle along a predefined path, magnetic fields are used
which deflect particles as determined by the equilibrium of the centrifugal
force and the Lorentz force
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myvlk+e[vx B]=0, (2.2)
where k = (Kkg, Ky, 0) is the local curvature vector of the trajectory with

1
Kpy = —— (2.3)
YT e

and p; 4 the local bending radius of the trajectory.

We assume in general that the magnetic field vector B is oriented normal
to the velocity vector v. This means we restrict the treatment of linear beam
dynamics to purely transverse fields. The restriction to purely transverse field
components has no fundamental reason other than to simplify the formulation
of particle beam dynamics. The dynamics of particle motion in longitudinal
fields will be discussed in Chap. 6. As mentioned earlier, the transverse com-
ponents of the particle velocities for relativistic beams are small compared to
the particle velocity v, (v, < v, vy K U, U, R V). With these assumptions,
the bending radius for the particle trajectory in a magnetic field is from (2.2)
with p = ymv

1

- -B —B

p o |p BE
and the angular frequency of revolution of a particle on a complete orbit
normal to the field B is

(2.4)

e ‘

ec‘

2
w, = %B

: (2.5)

which is also called the cyclotron or Larmor frequency [6]. Often, the beam
rigidity, defined as

p

is used to normalize the magnet strength. Using more practical units the
expressions for the beam rigidity and curvature become

Bp(Tm) = 2.19%85E(G6V) (2.7)
and 1 | B| |B(T) |
— (10 1 = — = . _ .
p (™) | Bp| 02998 B E (GeV) (28)

For relativistic particles this expression is further simplified since § ~ 1. The
deflection angle in a magnetic field is

0= ds (2.9)
p
or for a uniform field like in a dipole magnet of arc length ¢, the deflection
angle is 6 = £y, /p.
In this textbook, singly charged particles will be assumed unless otherwise
noted. For multiply charged particles like ions, the electrical charge e in all
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equations must be replaced by e Z if, for example, ions of net charge Z are
to be considered. Since it is also customary not to quote the total ion energy,
but the energy per nucleon, (2.8) becomes for ions

Z |B(T
%(m_l) = 0'2998;15};((;3\)/'/11)’ (2.10)

where F is the total energy per nucleon.

Beam guiding or bending magnets and focusing devices are the most ob-
vious elements of a beam transport system and we will shortly discus such
magnets in some more detail. Later, in Chap. 3, we will introduce all multipole
magnets in a more formal way.

Design Characteristics of a Dipole Magnet

The expressions for the magnetic potentials give us a guide to design devices
that generate the desired fields. Multipole fields are generated mostly in one
of two ways: by iron dominated magnets, or by proper placement of electrical
current carrying conductors. The latter way is mostly used in high field su-
perconducting magnets, where fields beyond the general saturation level for
iron at about 2 T are desired.

In iron dominated magnets, fields are determined by the shape of the
iron surfaces. Like metallic surfaces are equipotential surfaces for electrical
fields, so are surfaces of ferromagnetic material, like iron in the limit of in-
finite magnetic permeability, equipotential surfaces for magnetic fields. This
approximate property of iron surfaces can be exploited for the design of un-
saturated or only weakly saturated magnets. The fact that iron never reaches
infinite permeability does not affect the validity of the assumption that we can
produce specific multipoles by forming iron surfaces designed according to the
desired magnetic potential. For preliminary design calculations, it is sufficient
to assume infinite permeability of the ferromagnetic material. Where effects
of finite permeability or magnetic saturation become important, the fields are
determined numerically by mathematical relaxation methods. In this text,
we will not be able to discuss the details of magnet design and construction
but will concentrate only on the main magnet features from a beam dynamics
point of view. A wealth of practical experience in the design of iron dominated
accelerator magnets, including an extensive list of references, is compiled in a
review article by Fischer [7] and a monograph by Tanabe [8].

A dipole field can be generated, for example, in an electromagnet as shown
in Fig. 2.1, where the beam would travel normal to the cross section into the
center of the magnet.

The magnetic field B is generated by an electrical current [ in current car-
rying coils surrounding magnet poles. A ferromagnetic return yoke surrounds
the excitation coils providing an efficient return path for the magnetic flux.
The magnetic field is determined by Ampere’s law
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Fig. 2.1. Cross section of a dipole magnet (schematic)

B
Vx—=73, (2.11)
e
where p, is the relative permeability of the ferromagnetic material and j is
the current density in the coils. Integrating (2.11) along a closed path like the
one shown in Fig. 2.1 and using Stoke’s theorem give

B
2GBJ_+/7dO' :/j/()It,y“ (212)
oy

iron

where B is the magnetic field between and normal to the parallel magnet
poles with a gap distance of 2 G. The integral term in (2.12) is zero or negligi-
bly small in most cases assuming infinite or a very large permeability within
the magnetic iron. s = 21.o is the total current flowing in the complete
cross section of both coils. Solving (2.12) for the total current in each coil we
get in more practical units

Ton (A) = i B, (T)G (m), (2.13)
which is proportional to the magnetic field and the aperture between the
magnet poles.

As a practical example, we consider a magnetic field of 1 T in a dipole
magnet with an aperture of 2G = 10 cm. From (2.13), a total electrical current
of about 40,000 A is required in each of two excitation coils to generate this
field. Since the coil in general is composed of many turns, the actual electrical
current is much smaller by a factor equal to the number of turns and the total
coil current .. is therefore often measured in units of Ampere x turns. For
example, a coil composed of 40 windings with sufficient cross section to carry
an electrical current of 1000 A would provide the total required current of
40,000 A x turns.
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2.2.2 Particle Beam Focusing

Similar to the properties of light rays, particle beams also have a tendency
to spread out due to an inherent beam divergence. To keep the particle beam
together and to generate specifically desired beam properties at selected points
along the beam transport line, focusing devices are required. In photon optics
that focusing is provided by glass lenses. The characteristic property of such
focusing lenses is that a light ray is deflected by an angle proportional to the
distance of the ray from the center of the lens (Fig. 2.2). With such a lens a
beam of parallel rays can be focused to a point and the distance of this focal
point from the lens is called the focal length.

7* — focal point

F '

Fig. 2.2. Principle of focusing

focusing lens focal length

Any magnetic field that deflects a particle by an angle proportional to its
distance r from the axis of the focusing device will act in the same way as a
glass lens does in the approximation of paraxial, geometric optics for visible
light.

If f is the focal length, the deflection angle « is defined from Fig. 2.2 by

a=——. 2.14

7 (2.14)

A similar focusing property can be provided for charged particle beams by

the use of azimuthal magnetic fields B, with the property
4 e e

= —___ B {=—qr/ 2.15

«@ p ﬁE L4 ﬂE grk, ( )

where £ is the path length of the particle trajectory in the magnetic field

B, and g is the field gradient defined by B, = gr or by g = dB,/dr. Here

we have assumed the length ¢ to be short compared to the focal length such

that r does not change significantly within the magnetic field. If this is not
allowable, the product B¢ must be replaced by the integral f B, do.
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To get the focusing property (2.14) we require a linear dependence on r of
either the magnetic field B, or of the magnet length. We choose the magnetic
field to increase linearly with the distance r from the axis of the focusing
device while the magnet length remains constant.

A magnetic field that provides the required focusing property of (2.15)
can be found, for example, in a conductor carrying a uniform current density.
Clearly, such a device does not seem very useful for particle beam focusing. To
improve the “transparency” for particles, Panofsky and Baker [9] proposed to
use a plasma lens “which contains a longitudinal arc of nearly uniform current
density” and a similar device has been proposed in [10]. Still another varia-
tion of this concept is the idea to use an evenly distributed array of wires,
called the wire lens [11], simulating a uniform longitudinal current distrib-
ution. The strength of such lenses, however, is not sufficient for focusing of
high energy particles even if we ignore the obvious scattering problems. Both
issues, however, become irrelevant, where focusing is required in combination
with particle conversion targets. Here, for example, a Lithium cylinder, called
a Lithium lens, carrying a large pulsed current can be used to focus positrons
or antiprotons emerging from conversion targets [12,13].

A different type of focusing device is the parabolic current sheet lens. In
its simplest form, the current sheet lens is shown in Fig. 2.3. The rotational
symmetric lens produces an azimuthal magnetic field which scales inversely
proportional to r, B, ~ 1/r. Since the length of the lens scales like ¢ ~ r2,
the deflection of a particle trajectory increases linear with r as desired for a
focusing lens.

The field strength depends on the particular parameter of the paraboloid
used for the current sheet and the electrical current. The magnetic field is
from Maxwell’s equation

v

Fig. 2.3. Parabolic current sheet lens (schematic)



44 2 Particle Dynamics in Electromagnetic Fields

Mo [(A)

"~ 277 (m)

B, (T) (2.16)
and with £ = ar? the product of the field gradient g = dB,,/0r and the length
lis

gl(T) = ;L;a (m=1) I (A). (2.17)
The use of a parabolic shape for the current sheet is not fundamental. Any
form with the property ¢ ~ 72 will provide the desired focusing properties.
A geometric variation of such a system is used in high energy physics to
focus a high energy K-meson beam emerging from a target into the forward
direction [14, 15]. Since the decaying kaon beam produces neutrinos among
other particles, this device is called a neutrino horn,. On a much smaller scale
compared to the neutrino horn, a similar focusing devices can be used to
focus positrons from a conversion target into the acceptance of a subsequent
accelerator [16,17].

This type of lens may be useful for specific applications but cannot be
considered a general focusing device, where an aperture, free of absorbing
material, is required to let particles pass without being scattered. The most
suitable device that provides a material free aperture and the desired focusing
field is called a quadrupole magnet. The magnetic field can be derived in
Cartesian coordinates from the scalar potential

V=-gzxy (2.18)
to be
oV
oV
_aiy_ By=gx. (2.20)

These fields clearly deflect a particle trajectory proportional to its distance
from the optical axis. Magnetic equipotential surfaces with a hyperbolic profile
following the desired scalar potential (2.18) will be suitable to create the
desired fields. The field pattern of a quadrupole magnet is shown schematically
in Fig. 2.4.

In beam dynamics, it is customary to define an energy independent focus-
ing strength. Similar to the definition of the bending curvature in (2.4) we
define a focusing strength k by

€ ec

297 3E (2.21)
and the focal length of the magnetic device is from (2.14)
fl=ke. (2.22)

In more practical units, the focusing strength is given in analogy to (2.8) by
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Fig. 2.4. Magnetic field pattern for a quadrupole magnet
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(2.23)

Multiplication with Z/A gives the focusing strength for ions of charge mul-
tiplicity Z and atomic weight A. Consistent with the sign convention of the
Frenet—Serret coordinate system, the field directions are chosen such that
a positively charged particle like a proton or positron moving at a distance
x > 0 parallel to the z-axis is deflected toward the center (focusing), while the
same particle with a vertical offset from the z-axis (y > 0) becomes deflected
upward (defocusing).

Quadrupole magnets are focusing only in one plane and defocusing in the
other. This property is a result of Maxwell’s equations but does not diminish
the usefulness of quadrupole magnets as focusing elements. A combination
of quadrupoles can become a system that is focusing in both planes of a
Cartesian coordinate system. From paraxial light optics it is known that the
total focal length of a combination of two lenses with focal lengths f; and fs
and separated by a distance d is given by

1 1 1 d

FTR R T RR

A specific solution is fi = —fs and a quadrupole doublet with this property
is focusing in both the horizontal and vertical plane with equal focal length
1/f = d/| f1 f2|- Equation (2.24) allows many other solutions different from
the simple assumption made here. The fundamental observation here is that
there exist indeed combinations of focusing and defocusing quadrupoles which
can be made focusing in both planes and are therefore useful for charged
particle beam focusing.

(2.24)
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2.3 Equation of Motion

We use magnetic fields to guide charged particles along a prescribed path or
at least keep them close by. This path, or reference trajectory, is defined geo-
metrically by straight sections and bending magnets only. In fact it is mostly
other considerations, like the need to transport from an arbitrary point A to
point B in the presence of building constraints, that determine a particular
path geometry. We place dipole magnets wherever this path needs to be de-
flected and have straight sections in between. Quadrupole and higher order
magnets do not influence this path but provide the focusing forces necessary
to keep all particles close to the reference path.

The most convenient coordinate system to describe particle motion is the
Frenet—Serret system that follows with the particle along the reference path. In
other words, we use a curvilinear coordinate system as defined mathematically
by (1.80). The curvatures are functions of the coordinate z and are nonzero
only where there are bending magnets. In deriving the equations of motion,
we limit ourselves to the horizontal plane only. The generalization to both
horizontal and vertical plane is straightforward. We calculate the deflection
angle of an arbitrary trajectory for an infinitesimal segment of a bending
magnet with respect to the ideal trajectory. Using the notation of Fig. 2.5,
the deflection angle of the ideal path is dgpg = dz/pp or utilizing the curvature
to preserve the directionality of the deflection

dypo = Ko dz, (2.25)

where kg is the curvature of the ideal path. The deflection angle for an arbi-
trary trajectory is then given by

dy =kds. (2.26)

The ideal curvature kg is evaluated along the reference trajectory u = 0
for a particle with the ideal momentum. In linear approximation with respect
to the coordinates the path length element for an arbitrary trajectory is

ds = (14 kou) dz + O(2), (2.27)

where u is the distance of the particle trajectory from the reference trajectory
in the deflecting plane.

The magnetic fields depend on z in such a way that the fields are zero in
magnet free sections and assume a constant value within the magnets. This
assumption results in a step function distribution of the magnetic fields and
is referred to as the hard edge model, generally used in beam dynamics. The
path is therefore composed of a series of segments with constant curvatures.
To obtain the equations of motion with respect to the ideal path we subtract
from the curvature k for an individual particle the curvature kg of the ideal
path at the same location.
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individual
particle trajectory

reference
path

Fig. 2.5. Particle trajectories in deflecting systems. Reference path z and individual
particle trajectory s have in general different bending radii

Since u is the deviation of a particle from the ideal path, we get for the
equation of motion in the deflecting plane with respect to the ideal path from
Fig. 2.5 and (2.25,2.26) with u” = —(d¢/dz — dgg/dz),

v’ = —(1+ Kkou) Kk + Ko, (2.28)

where the derivations are taken with respect to z. In particle beam dynamics,
we generally assume paraxial beams, u’? < 1 since the divergence of the
trajectories u’ is typically of the order of 1072 rad or less and terms in u/? can
therefore be neglected. Where this assumption leads to intolerable inaccuracies
the equation of motion must be modified accordingly.

The equation of motion for charged particles in electromagnetic fields can
be derived from (2.28) and the Lorentz force. In case of horizontal deflection,
the curvature is kK = k, and expressing the general field by its components,

we have from (2.4)

ﬁﬁngyzi By0+gm+%sx2+--~ ) (2.29)
where we expanded the field into components up to second order. Such mag-
netic field expansions will be discussed in much detail in Chap. 3. Here, we
use just the three lowest order multipoles, a bending magnet, a quadrupole,
and a sextupole.

A real particle beam is never monochromatic and therefore effects due to
small momentum errors must be considered. This can be done by expanding
the particle momentum in the vicinity of the ideal momentum py

1 1 1

=T S ). (2.30)
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We are now ready to apply (2.28) to the horizontal plane, set v = x and
Kk = K, and get with (2.28), (2.29), while retaining only linear and quadratic
terms in d,z and y, the equation of motion

2" 4 (k+ w2, & = kow (6 — 82) + (b + k2,) x 6
—ima® —kroa® + O(3), (2.31)

where the sextupole strength is defined similar to the curvature and quadru-
pole strength by m = es/py. Here, we have used energy independent field
strength parameters as defined in (2.4) and (2.21).

It is interesting to identify each term with well-known observations and
terminology from geometric light optics. The (k + x2,)  term describes the
focusing effects from quadrupoles and a pure geometrical focusing from bend-
ing in a sector magnet. Sector magnets are the natural bending magnets for
a curvilinear coordinate system. However, in a uniform field sector magnet
particles travel a longer path for x > 0 and a shorter path for z < 0 leading
directly to a focusing effect in the deflecting plane. In the nondeflecting plane
there is no focusing. A dispersive effect arises from ko, (6 — §2) which reflects
the varying deflection angle for particles which do not have the ideal design
energy. Focusing is also energy dependent and the term (k+ k3,) x § gives rise
to chromatic aberrations describing imaging errors due to energy deviation.
The term —k ko, 22 has no optical equivalent (it would be a focusing prism)
and must be included only if there is focusing and bending present in the
same magnet like in a synchrotron magnet. The last term we care about here
is the sextupole term —% m (2% — y?) which introduces both chromatic and
geometric aberration. The chromatic aberration from sextupoles can be used
to cancel some of the chromatic aberration from quadrupoles, but in doing so
we introduce a quadratic effect which leads to geometric aberrations. This is
similar to the chromatic correction in optical systems by using different kinds
of glass. We will discuss these perturbatory effects in much more detail later
as we proceed.

The equation of motion in the vertical plane can be derived in a similar
way by setting v = y in (2.28) and k = k,. Consistent with the sign convention
of the Frenet—Serret coordinate system, (2.29) becomes for the vertical plane

Ry == £ By = +higy —hy—may — - (232)
p

and the equation of motion in the vertical plane is
Y — (k= K2,)y = koyd— (k= K2,)yd +may+roy ky? + O(3). (2:33)

In particular, we find for cases, where the deflection occurs only in one plane
say the horizontal plane, that the equation of motion in the vertical plane
becomes simply

/!

y'—ky=—kyd+mazy+ O(3), (2.34)
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which to the order of approximation considered is independent of the strength
of the horizontal bending field.

The magnet parameters rg, k, and m are functions of the independent
coordinate z. In real beam transport lines, these magnet strength parameters
assume constant, nonzero values within individual magnets and become zero in
drift spaces between the magnets. The task of beam dynamics is to distribute
magnets along the beam transport line in such a way that the solutions to the
equations of motion result in the desired beam characteristics.

2.4 Equations of Motion from the Lagrangian
and Hamiltonian

In this section, we will formulate the Lagrangian and Hamiltonian suitable
for the study of particle beam dynamics. Specifically, we will work in the
curvilinear coordinate system and use the longitudinal coordinate z as the
independent variable rather than the time ¢. This is of particular importance
because the time is measured along each particular trajectory and is therefore
evolving differently for each particle in relation to the z-coordinate. The time
is related to the particle position (s = wvt) along its trajectory and through
its velocity while the z-coordinate can function as a general reference for all
particles with z = 0 for the reference particle.

We will study both the Lagrangian and Hamiltonian formulation together
to clearly define canonical momenta and facilitate the study of particle dy-
namics with the support of the full Hamiltonian theory. Depending on the
problem at hand, it may be easier to start with one or the other formulation.

2.4.1 Equations of Motion from Lagrangian

In Chap. 1 we have derived Lagrangian (1.86) in the curvilinear coordinate
system of beam dynamics

L=-mey/2—32 —92 —h232 +e(2A, +9A, +hiA..) —ed, (2.35)

which controls the movement of charged particles in an electromagnetic field.
The magnetic fields can be derived from the potentials by

B=VxA (2.36)
_L[0(hAc) 94 L[0A, O(hAL)] L [04, 04
h Oy 0z h| 0z Ox Ox oy |

where h = 1 + k.o + Kkyy, while the electric fields are E = —V¢. The
equations of motion are the Lagrangian equations and are in component form
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(?t (ym @) = ymh k. 22 +e (§ B, — h B,) + eE,, (2.37a)
il . .
T (ymgy) = ymh ky, 2* + e (—i B, + h B,) + eE,, (2.37b)
d . . . .
T (ymhz)=—ym (kg &+ kyy) 2+e (£ By — yBy) +eE,, (2.37¢)

where 3 = \/xQ + ¢2 4 h22? and the relativistic factor v = 1/4/1 — 2. The

first two equatlons describe the transverse particle motion which we will later
call betatron motion or betatron oscillations. The third equation describes the
longitudinal or synchrotron oscillation, where the main restoring force comes
from the accelerating microwave field eF, .

It is customary to replace the time variable by the position variable z along
the ideal path. Each particle travels along its own path s at a velocity v =
ds/dt and we change the independent variable with the substitution

d d dz d v d

at Vds Vdsdz s dz’ (2.38)

s = /2% 4+ y'2 + h2. (2.39)

The primes are used to indicate a derivation with respect to z like s’ =
ds/dz. The Lagrangian with z as the independent variable rather than ¢ can
be derived from (2.35) with (2.38) to give with the momentum deviation
d = (p—po) /po from the ideal momentum pg

where the quantity

Lla,a g,y 2) = o + (1= 8) (' Ay + g/ Ay + hAc) — 5 —2 . (240
(z,2",y,9,2) = s +( )po(x +y'A,+ 2) Svmz)? ( )
Applying this to (2.37), the equations of motion are with p = m~yv
1"
2 S / / 12 eEQE‘
— 22 = kyh —(1—6)—s (hB, —y/'B. , 2.41
o' — ' =k ( )POS ( —y'B.) +s o2 (2.41a)
y"' - S—y —wkyh 4 (1—8) 2 (hB, —o'B.) + 52 (2.41b)
s’ Y Do ym v?
1
1
ZT =7 (K2 + Ky + 2 (ke + Kyy')] (2.41c¢)
_17_56’(/3 —y'B,) — /26E
h po ymw?’

So far, no approximations have been made and the equations of motion
are fully Hamiltonian or symplectic. Equations (2.41), however, are not suited
for analytical treatment and we therefore often use the paraxial approxima-
tion also known from geometric light optics where particle trajectories are
assumed to stay in the vicinity of the optical path keeping all slopes small
(z' < 1,y < 1,8 = 1). The third equation in (2.41) describes again syn-
chrotron motion and degenerates in the case where there are no electric fields
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to an equation that can be used to replace the factor s” /s’ in the betatron

equations. Since s'? ~ 1 for paraxial beams and terms like (k/, n;) vanish in
this approximation, we have s” /s’ & 0 and (2.41) become
2~ kyh— (1 5)£(hB ’B)—s—ﬂ (2.42a)
~ xT Do Yy Yy z ym ’02 ) .
1/ € / eE@l
y' = ryh +(1— 5)])—0 (hB; —2'B,) + ek (2.42b)

Of course, strictly speaking, these equations are not anymore symplectic,
which is of no practical consequence as far as beam optics goes. Yet, in modern
circular accelerators, particle beam stability can often be assured only by
numerical tracking calculations. This process applies the equations of motion
very often and even small approximations or deviations from symplecticity
can introduce false dissipating forces leading to erroneous results.

2.4.2 Canonical Momenta

Lagrangian (2.40) defines the canonical momenta by derivation with respect
to velocities

oL  0s ep e
Px@ac’w<1'ymv2)+(15)poAm (243
x eo e
= — 1— 1_ 7"4%’
s’ ( vmv2> a0
oL  8s eg e
p =9 _05 () 1-6) %A 2.43b
m (o) ra-0 e, e
y' e¢ e
== (11— 1-6)—A,.
S/( ’ymv2>+( )pO Y

Note, in this formulation, the canonical momenta are dimensionless be-
cause they are normalized to the total momentum p.

2.4.3 Equation of Motion from Hamiltonian

Knowledge of the Lagrangian and canonical momenta gives us the means
to formulate the Hamiltonian of the system. In doing so, we use conju-
gate coordinates (g;, P;) only, ignore the electric field, and get from (2.43)

= (PI - %Am) s', etc. and the Hamiltonian H = H(z, P,,y, Py, z) is by
definition with (2.40)

H=1'P,+yP,— L(z,2',y,y,2) (2.44)

2 2
O R
p p p
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From (2.39) and (2.43), we have s'? = s"2(P, — %AQE)2 —s'3(P,— ]%Ay)Q—i—hz
or (h/s")? =1~ (P, — %AI)2 - (P, — %Ay)2 and introducing this in the
Hamiltonian, we finally get

e eA, 2 eA,\ 2
H(z,Py,y, Py,z) = ——Ah—hy[1 — (Px - > - (Py - y) , (2.45)
p p p

where for practical applications, we set e/p ~ (1 — ¢) e/po. We may restrict
ourselves further to paraxial beams where transverse momenta are small com-
pared to unity (P, — %Az,y) < 1 allowing us to expand the square root. De-
pending on the desired accuracy, more expansion terms must be used. With
this, the Hamiltonian is in the lowest order

Hr~—(1-8)—Ah—h
Po

eA,
Po

2 2
TN P (2.46)
2 Do

+%h Py —(1-0)

Replacing in (2.45) the normalized canonical momenta (P,, P,) by nor-
malized ordinary momenta (p,,p,) and setting p, = «’ and p, = ¥y, the
Hamiltonian assumes a more familiar form

K(z, o', y,y, 2) =~ —piAZh (1=108) —hy/1—22—y?2 (2.47)
0

where the momenta p,, or (z’,3’) in the presence of fields are not canoni-
cal anymore and where second order terms in § are dropped. As we will see,
however, beam dynamics is based predominantly on fields which can be de-
rived from a potential of the form A(0,0, A,) and consequently, the ordinary
momenta are indeed also canonical. We seem to have made a total circle com-
ing from velocities (&,7) to slopes (2/,y') in the Lagrangian to normalized
canonical momenta (pg,py) back to slopes (2’,3’) which we now know to be
canonical momenta for most of the fields used in beam dynamics.

The equations of motion can now be derived from the Hamiltonian (2.47)
in curvilinear coordinates:

oK

=B, (2.48)
where P, = 2/ — %Am and P, = z”. The magnetic field hB, = (aét"’ — 6%1;12)

does not depend on z, e.g. A, /9z = 0. While ignoring any coupling into the
vertical plane (y = 0), the equation of motion (2.48) is

== (1-9) a}(‘;Az — KogV1—a? —y'?, (2.49)
x

Do

or with Koy # 0, Koy = 0, b = 1 4 Ko,x, and expanding only to second order
inz,2',y,y,0
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l‘” — _piOBy (1 _ 5) h + Kme (250)
L (1=6)h+ roa (1 — 327 — 39
—4 + 50— (1= 0) Koz + Ko + O (3) .

Q

%

The general bending term % can be expanded into, for example, a dipole kg,

a quadrupole kz, and a sextupole field %me for % = Koz +kx + %me +0(3)
resulting in the equation of motion
v = =Koy —kz—ima?+ ko0 +kad— ki, + ka6 — k kopa® + Koz + O (3),

or
"+ (k+ Kfy) T = Koa6 + (k+ K3y) 20— dma® — kkog2® + O (3), (2.51)

in agreement with (2.31) . Similarly, we may derive the equation of motion for

the vertical plane and get with i = — 5 = —Koy + ky + mzy + O(3)

y" — (k= k5,) y = koyd — (k — K3,) y6+may + kroyy® + O (3)  (2.52)

in agreement with (2.33).

2.4.4 Harmonic Oscillator

Particle dynamics will be greatly based on the understanding of harmonic
oscillators under the influence of perturbations. We therefore discuss here
the Hamiltonian for a harmonic oscillator. To do that, we start from (2.47),
eliminate the magnetic field A, = 0, ignore the curvature h = 1, and remember
that we have to reintroduce the potential by a function V. Furthermore, we
use the time ¢ = z/c as the independent variable again. With this, we derive
from (2.47) the Hamiltonian

K(z,2',2)~ —ep— V1 -2~ -V — (1 - 32?) . (2.53)

The potential for a harmonic oscillator derives from a restoring force —Dx
and is —%DxQ. A new Hamiltonian is then

K = 32" 4+ $Da? (2.54)

and the equations of motion are

g—lc = —2" = Du, (2.55)
T
% =12 =2 (2.56)

The Hamiltonian could have been formulated directly considering that it
is equal to the sum of kinetic T' and potential V energy KX =T + V.
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2.4.5 Action-Angle Variables

Particularly important for particle beam dynamics is the canonical transfor-
mation from Cartesian coordinates (w, w, @) to action-angle variables (J, 1, ¢).
This class of transformations is best suited for harmonic oscillators like
charged particles under the influence of focusing restoring forces. We assume
the equations of motion to be expressed in normalized coordinates of parti-
cle beam dynamics with the independent variable ¢ instead of the time. As
we will discuss later, it is necessary in beam dynamics to transform ordinary
cartesian coordinates (z, 2, z) into normalized coordinates (w, w, ). The gen-
erating function for the transformation to action-angle variables (J, %, ¢) is of
the form Gy in (1.101) which can be written with some convenient constant
factors as

G = —ivw’tan(y — 99), (2.57)

where ¢ is an arbitrary phase. Applying (1.106) to the generating function
(2.57), we get with v =dw/dp

oG .

g~ W= vw tan(y — 9), (2.58a)
oG 1 v w?

A YT (2:58b)

After some manipulation, the transformation equations take the form

w= \/?cos(w —4), (2.59a)

w=—V2wJsin(y —9) . (2.59b)

To determine whether the transformation to action-angle variables has
led us to cyclic variables we will use the unperturbed Hamiltonian, while
ignoring perturbations, and substitute the old variables by new ones through
the transformations (2.59). The generating function (2.57) does not explicitly
depend on the independent variable ¢ and the new Hamiltonian is therefore
given by

H=vJ. (2.60)

The independent variable v is obviously cyclic and from 0H /9y =0 = J
we find the first invariant or constant of motion

J = const . (2.61)

The second Hamiltonian equation

oH .
Sy =v=v (2.62)

defines the frequency of the oscillator which is a constant of motion since the
action J is invariant. The frequency or tune
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v = vg = const., (2.63)

and the angle variable v is the betatron phase. Eliminating the betatron phase
¥ from (2.59), we obtain an expression of the action in normalized coordinates

1
J = vpw? 4+ - —. (2.64)

Both terms on the r.h.s. can be associated with the potential and kinetic
energy of the oscillator, respectively, and the constancy of the action J is
synonymous with the constancy of the total energy of the oscillator.

2.5 Solutions of the Linear Equations of Motion

Equations (2.31), (2.33) are the equations of motion for strong focusing beam
transport systems [18,19], where the magnitude of the focusing strength is a
free parameter. No general analytical solutions are available for arbitrary dis-
tributions of magnets. We will, however, develop mathematical tools which
make use of partial solutions to the differential equations, of perturbation
methods, and of particular design concepts for magnets to arrive at an accu-
rate prediction of particle trajectories. One of the most important “tools” in
the mathematical formulation of a solution to the equations of motion is the
ability of magnet builders and alignment specialists to build magnets with
almost ideal field properties and to place them precisely along a predefined
ideal path. In addition, the capability of producing almost monochromatic
particle beams is of great importance for the determination of the properties
of particle beams. As a consequence, all terms on the r.h.s. of (2.31), (2.33)
can and will be treated as small perturbations and mathematical perturba-
tion methods can be employed to describe the effects of these perturbations
on particle motion.

We further notice that the lLh.s. of the equations of motion resembles
that of a harmonic oscillator although with a time dependent frequency. By a
proper transformation of the variables we can, however, express (2.31), (2.33)
exactly in the form of the equation for a harmonic oscillator with constant
frequency. This transformation is very important because it allows us to de-
scribe the particle motion mostly as that of a harmonic oscillator under the
influence of weak perturbation terms on the r.h.s.. A large number of mathe-
matical tools developed to describe the motion of harmonic oscillators become
therefore available for charged particle beam dynamics.

2.5.1 Linear Unperturbed Equation of Motion

In our attempt to solve the equations of motion (2.31), (2.33), we first try to
solve the homogeneous differential equation
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v+ Ku=0, (2.65)

where u stands for z or y and where, for the moment, we assume K to be

constant with K = k + k2 or K = —(k — k2), respectively. The principal
solutions of this differential equation are for K > 0

C(z) = cos (\/Ez) and S(z) = \/% sin (\/Ez) ) (2.66)

and for K <0

C(z) = cosh (m,z) and S(z) =

sinh (\/@z) . (2.67)

%H

These linearly independent solutions satisfy the following initial conditions:

c0)=1, C'(0)=dC/dz=0,

b (2.68)
S(0)=0, S'(0)=dS/dz=1.

Any arbitrary solution u(s) can be expressed as a linear combination of these
two principal solutions

u(z) = C(2)ug + S(2) uy, (2.69)
u'(z) = C'(2) ug + S (2) ug,

where wg,u(, are arbitrary initial parameters of the particle trajectory and
derivatives are taken with respect to the independent variable z.

In a general beam transport system, however, we cannot assume that the
magnet strength parameter K remains constant and alternative methods of
finding a solution for the particle trajectories must be developed. Nonetheless
it has become customary to formulate the general solutions for K = K (z) sim-
ilar to the principal solutions found for a harmonic oscillator with a constant
restoring force. Specifically, solutions can be found for any arbitrary beam
transport line which satisfy the initial conditions (2.68). These principal so-
lutions are the so-called sine-like and cosine-like solutions and we will derive
the conditions for such solutions. For the differential equation

v+ K(z)u=0 (2.70)

with a time dependent restoring force K (z), we make an ansatz for the general
solutions in the form (2.69). Introducing ansatz (2.69) into (2.70) we get after
some sorting

[5"(2) + K(2) S(2)] uo + [C"(2) + K(2) C(2)] ug = 0.

This equation must be true for any pair of initial conditions (ug,uy) and
therefore the coefficients must vanish separately:
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C"(z)+ K(2)C(z) = 0,

(2.71)
S"(z)+ K(2)S(z) = 0.

The general solution of the equation of motion (2.70) can be expressed by a

linear combination of a pair of solutions satisfying the differential equations

(2.71) and the boundary conditions (2.68).

It is impossible to solve (2.71) analytically in a general way that would
be correct for arbitrary distributions of quadrupoles K (z). Purely numerical
methods to solve the differential equations (2.71) may be practical but are
conceptually unsatisfactory since this method reveals little about character-
istic properties of beam transport systems. It is therefore not surprising that
other more revealing and practical methods have been developed to solve the
beam dynamics of charged particle beam transport systems.

2.5.2 Matrix Formulation

The solution (2.69) of the equation of motion (2.70) may be expressed in
matrix formulation

u(z) _ C(z) S(z) Ug . (2.72)
u/(z) C'(2) S'(2) | |uo

If we calculate the principal solutions of (2.70) for individual magnets only, we
obtain such a transformation matrix for each individual element of the beam
transport system. Noting that within each of the beam line elements, whether
it be a drift space or a magnet, the restoring forces are indeed constant, we may
use within each single beam line element the simple solutions (2.66) or (2.67)
for the equation of motion (2.70). With these solutions, we are immediately
ready to form transformation matrices for each beam line element. In matrix
formalism, we are able to follow a particle trajectory along a complicated
beam line by repeated matrix multiplications from element to element. This
procedure is widely used in accelerator physics and lends itself particularly
effective for applications in computer programs. With this method we have
completely eliminated the need to solve the differential equation (2.70) , which
we could not have succeeded in doing anyway without applying numerical
methods. The simple solutions (2.66), (2.67) will suffice to treat most beam
transport problems.

2.5.3 Wronskian

The transformation matrix just derived has special properties well known from
the theory of linear homogeneous differential equation of second order [20].
Only a few properties relevant to beam dynamics shall be repeated here. We
consider the linear homogeneous differential equation of second order



58 2 Particle Dynamics in Electromagnetic Fields
u +o(z)u +w(z)u=0. (2.73)

For such an equation, the theory of linear differential equations provides us
with a set of theorems describing the properties of the solutions:

e there is only one solution that meets the initial conditions u(zg) = ug and
u'(z0) = uy at z = 2o,

e because of the linearity of the differential equation, cu(z) is also a solution
if both u(z) is a solution and if ¢ = const., and

o if uy(2) and us(z) are two solutions, any linear combination thereof is also
a solution.

The two linearly independent solutions wu;(z) and ug(z) can be used to
form the Wronskian determinant or short the Wronskian

u1(2) uz(2)
W = =ujuy — ugu. (2.74)
u (2) uy(2)
This Wronskian has remarkable properties which are of great fundamental

importance in beam dynamics. Both u; and ug are solutions of (2.73). Multi-
plying and combining both equations like

uf +v(z)u) +w(z)u; =0 |- —us
uf +o(z)ub +w(z)ug =0 | -uy
give
(uruy —uguy) +v(2) (uruy — uz uy) =0,

which will allow us to derive a single differential equation for the Wronskian.
Making use of (2.74) and forming the derivative dW/dz = uy v — ug uf, we
obtain the differential equation

dw

o T W) =0, (2.75)

which can be integrated immediately to give
W(z) = Woe Ja 4% (2.76)

In the case of linear beam dynamics, we have v(z) = 0 as long as we do not
include dissipating forces like acceleration or energy losses into synchrotron
radiation and therefore W (z) = Wy = const. We use the sine- and cosine-like
solutions as the two independent solutions and get from (2.74) with (2.68)

Wo=CoS)—ClSo=1. (2.77)

For the transformation matrix of an arbitrary beam transport line with neg-
ligible dissipating forces, we finally get the general result
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W(z) = =1. (2.78)
C'(z) §'(z)

This result will be used repeatedly to prove useful general characteristics
of particle beam optics; in particular, this is another formulation of Liouville’s
theorem stating that the phase space density under these conditions is pre-
served. From the generality of the derivation, we conclude that the Wronskian
is equal to unity, or phase space preserving, for any arbitrary beam line that
is described by (2.73) if v(z) = 0 and w(z) = K(z).

2.5.4 Perturbation Terms

The principal solutions of the homogeneous differential equation give us the
basic solutions in beam dynamics. We will, however, repeatedly have the
need to evaluate the impact of perturbations on basic particle motion. These
perturbations are effected by any number of terms on the r.h.s. of the equations
of motion (2.31), (2.33). The principal solutions of the homogeneous equation
of motion can be used to find particular solutions P(z) for inhomogeneous
differential equations including perturbations of the form

P"(z) + K(2) P(2) = p(2), (2.79)

where p(z) stands for any one or more perturbation terms in (2.31), (2.33).
For simplicity, only the z-dependence is indicated in the perturbation term,
although in general they also depend on the transverse particle coordinates.
A solution P(z) of this equation can be found from

P(z) = /OZ p(z) G(z,7z)dz, (2.80)

where G(z,7) is a Green’s function which can be constructed from the prin-
cipal solutions of the homogeneous equation, i.e.,

G(z,7) = 8(2) C(3) — C(2) S(3). (2.81)

After insertion into (2.80) a particular solution for the perturbation can be
found from

P() = 5(2) / (3 CE)dE - C2) / () 5() 3. (2.82)

The general solution of the equations of motion (2.31), (2.33) is then given
by the combination of the two principal solutions of the homogenous part
of the differential equation and a particular solution for the inhomogeneous
differential equation
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w(z) = aCy(z) +bSyu(z) + Pu(2), (2.83)

where the coefficients a and b are arbitrary constants to be determined by the
initial parameters of the trajectory. We have also used the index u to indicate
that these functions must be defined separately for u = x and y.

Because of the linearity of the differential equation we find a simple super-
position of the general solutions of the homogeneous equation and a particular
solution for the inhomogeneous equations for any number of small perturba-
tions. This is an important feature of particle beam dynamics since it allows
us to solve the equation of motion up to the precision required by a partic-
ular application. While the basic solutions are very simple, corrections can
be calculated for each perturbation term separately and applied as necessary.
However, these statements, true in general, must be used carefully. In special
circumstances, even small perturbations may have a great effect on the parti-
cle trajectory if there is a resonance or if a particular instability occurs. With
these caveats in mind one can assume that in a well-defined particle beam line
with reasonable beam sizes and well-designed and constructed magnets the
perturbations are generally small and that mathematical perturbations meth-
ods are applicable. Specifically, we will in most cases assume that the (z,y)
amplitudes appearing in some of the perturbation terms can be replaced by
the principal solutions of the homogeneous differential equations.

Dispersion Function

One of the most important perturbations derives from the fact that the par-
ticle beams are not quite monochromatic but have a finite spread of energies
about the nominal energy cp. The deflection of a particle with the wrong en-
ergy in any magnetic or electric field will deviate from that for a particle with
the nominal energy. The variation in the deflection caused by such a chro-
matic error Ap in bending magnets is the lowest order of perturbation given
by the term &/pg, where 6 = Ap/pg < 1. We will ignore for now all terms
quadratic or of higher order in § and use the Green function method to solve
the perturbed equation

u' + K(2)u = Koyu(2)6. (2.84)

In (2.83) we have derived a general solution for the equation of motion for
any perturbation and applying this to (2.84), we get

w(z) =aCy(z) +b8,(2)+0D,(2),

, (2.85)
W(2) =aC(2) +085,(2) + 0 D, (2),

where we have set P,(z) = § D, (z) and used (2.82) to obtain

D.(z) = / Chou(®) [Su() Cu®) = Cul2) SuBNdE. (236)
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We have made use of the fact that like the perturbation, the particular solution
must be proportional to d. The function D,,(2) is called the dispersion function
and the physical interpretation is simply that the function 6 D, (z) determines
the offset of the reference trajectory from the ideal path for particles with a
relative energy deviation § from the ideal momentum cpy.

This result shows that the dispersion function generated in a particular
bending magnet does not depend on the dispersion at the entrance to the
bending magnet which may have been generated by upstream bending mag-
nets. The dispersion generated by a particular bending magnet reaches the
value D, (Ly,) at the exit of the bending magnet of length L,, and propagates
from there on through the rest of the beam line just like any other particle
trajectory. This can be seen from (2.86), where we have for z > Ly,

L

Ly
Du(2) = Su(2) /0 Ko (3) Cu(2) A7 — Cu(2) /0 ku(2) Su(2)dZ,  (2.87)

which has exactly the form of (2.69) describing the trajectory of a particle
starting with initial parameters at the end of the bending magnet given by
the integrals. With solution (2.85) we can expand the (2 x 2)-matrix in (2.72)
into a (3 x 3)-matrix, which includes the first order chromatic correction

u(z) Cu(z)  Su(z) Dy(2) u(2p)
v = ae s o || wen |- @8y
1 0 0 1 0

Here we have assumed that the particle energy and energy deviation remains
constant along the beam line. This representation of the first order chromatic
aberration will be used extensively in particle beam optics.

Problems

2.1 (S). Derive (2.37a) and (2.37c) from the Lagrange equations. Show all
steps.

2.2 (S). Derive the Lagrangian (2.40) from (2.35) (Hint: It is the variational
principle § [ Ldt = 0 that needs to be transformed).

2.3 (S). Derive the geometry of electrodes for a horizontally deflecting electric
dipole with an aperture radius of 2 cm which is able to deflect a particle beam
with a kinetic energy of 1 GeV by 10 mrad. The dipole be 1 m long and has a
minimum distance between electrodes of 10 cm. What is the potential required
on the electrodes?

2.4 (S). Verify the numerical validity of (2.8).
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2.5 (S). Prove that (2.82) is indeed a solution of (2.79).

2.6 (S). Transform the Hamiltonian (2.54) of a harmonic oscillator into
action-angle variables and show that the frequency is v = v/D. Derive the
equation of motion.

2.7. Show the validity of the transformation equations (2.59a) and (2.59b).
Interpret the physical meaning of (2.61) and (2.62).
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Electromagnetic Fields

3.1 Pure Multipole Field Expansion

From the discussion in the previous chapter it became clear that specific
desired effects on particle trajectories require specific magnetic fields. Dipole
fields are the proper fields to bend particle beams and quadrupole magnets
serve, for example, as beam focusing devices. To obtain an explicit formulation
of the equations of motion of charged particles in an arbitrary magnetic field
we derive the general magnetic fields consistent with Maxwell’s equations.

Although we have identified a curvilinear coordinate system moving to-
gether with particles to best fit the needs of beam dynamics, we use for
simplicity in this section a fixed, right-handed Cartesian coordinate system
(z,y, 2z). By doing so, we assume straight magnets and neglect the effects of
curvature to simplify the derivation of the general magnetic field components
in the approximation exhibiting only the main multipole fields. Later in this
chapter, we will derive both the electromagnetic fields and equations of motion
in full rigor.

3.1.1 The Laplace Equation

In particle beam transport systems a variety of electromagnetic fields are
used. Common to such devices is a material free region in the vicinity of
the axis of the device to provide a free passage for the particle beam. The
electromagnetic fields encountered by the particles, therefore, can be derived
from a potential function V' (z,y, z) which must be a solution of the charge
free Laplace equation

AV = 0. (3.1)

For simplicity, we assume the z-dependence of the fields to vanish as is the case
in the middle of long magnets. We choose this restriction to two-dimensional
transverse fields to simplify the derivation of basic multipole fields but will
include the z-dependence of fields later in a more general derivation. Such field
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expressions may be best obtained in a cylindrical coordinate system (r, @, z)
in which the Laplace equation is

LRV 19V 19V 9PV

V= o T e T T

0. (3.2)

We make an ansatz for the solution in the form of a Taylor expansion with
respect to the reference path (r = 0)

1 i
V(rg,2)=—RyY_ —HAn(2) " € (3.3)
n<0

This ansatz is not the most general solution of the Laplace equation, but
includes all main multipole fields used in beam dynamics. Later, we will derive
a solution that includes all terms allowed by the Laplace equation. The field
coefficients A,, can be derived from (3.2) while excluding negative values for
n to avoid nonphysical field singularities for » — 0. The beam rigidity Ry, is
factored out to allow later a convenient energy independent definition of the
coefficients A,,. The beam rigidity R}, is different for electric and magnetic
fields with

Ry, = g = % for magnetic fields, and (3.4)
2
E

Ry, = p? = % for electric fields. (3.5)

Since we use in beam dynamics mostly magnetic fields we will use in this book
(3.4) unless otherwise noted. Inserting (3.3) into the Laplace equation (3.2),
we get

1nn—-1)+n—n? nin
ZE ( 12 Ap(z)rel™? = 0. (3.6)

n

Equation (3.6) is true for arbitrary angles ¢ and nonvanishing strengths of the
multipole fields if and only if the expression vanishes for all values of n which
is true since the factor n(n — 1) + n — n? = 0. With this condition we find
ansatz (3.3) to be a valid Maxwellian description of a general electromagnetic
field for any field component A,,.

The Lorentz force on charged particles depends on the electromagnetic
fields which can now be derived by differentiation of the potential

E = *V%(xay)a (3 7)
B = -V Vy(z,y). '

Here we distinguish between the electrical potential V., and the magnetic po-
tential Vi,. Since the Laplace equation is valid for both the electric and the
magnetic field in a material free region, no real distinction between both fields
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had to be made. In reality, we rarely design devices which include more than
one term of the field expansion. It is therefore appropriate to decompose the
general field potential in (3.3) into its independent multipole terms. The dis-
tinction between electric and magnetic devices will appear when we try to
generate a specific field. To keep the discussion simple, we ignore here electric
fields and will discuss them later in Sect. 3.7.

Similarly, we postpone the discussion of longitudinal fields to Sect. 3.4.
That makes the lowest order term Ag(z) an additive value to the potential
which vanishes when we derive transverse fields by differentiation of the po-
tential.

We are now in a position to determine the field characteristics for any
multipole. This will be done in this section for magnetic fields most commonly
used in particle transport systems. Only for very special applications are two
or more multipole field components desired in the same magnet.

3.1.2 Deflecting Magnets

For n =1 we get the magnetic potential
~Vi(r,p) = Arre® (3.8)
p

or in Cartesian coordinates
e .
—Ew(x,y) = A (v +1iy). (3.9)

Both, the real and imaginary parts, are two independent solutions of the
same Laplace equation and therefore the potential for both components can
be written in the form

e
_Z;Vl(x,y) =Awz+ Any. (3.10)

The independent coefficients A1y and Ag; show indices which are equal to the
exponents of the associated coordinates, e.g. A;y come with the factor x'y°,
etc. All coeflicients A;; are still functions of z although we do not indicate
this explicitly. The equipotential lines in the transverse (z,y)-plane for the
first order potential are determined by

Ajox + Ao1 y = const. (3.11)

and the corresponding electromagnetic field is given in component formulation
by the vector

e
];B = (Ao, Aoy, 0) . (3.12)

Equation (3.12) defines the lowest order transverse field in beam guidance or
beam transport systems, is uniform in space, and is called a dipole field. To
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simplify the design of beam transport systems it is customary to use dipole
fields that are aligned with the coordinate system so as to exert a force on
the particles only in the horizontal, x, or only in the vertical, y, direction. A
simple rotation of such dipole fields about the beam axis would create again
the general field expressed by (3.12). The dipole field of (3.12) together with
our sign convention defines the coefficients Ag; and A1 as the horizontal and
vertical curvatures (kq, ky) = (—2z”, —y""), respectively or

A = EBw = —Ky and Ao = EBy = +Ky . (3.13)
p p

With these definitions, we have for a horizontally deflecting magnet Ay =
0, Ap1 # 0 and for a vertically deflecting magnet A;g9 # 0, Ag1 = 0.

To design a pure dipole magnet, we would place iron surfaces at equipo-
tential lines or for a horizontally deflecting magnet at

y=+G (3.14)

to obtain a vertical field with a vertical aperture of 2G.

3.1.3 Focusing Device

The most suitable device that provides a material free aperture and the de-
sired focusing field is a quadrupole magnet which has been introduced in the
previous chapter. The magnetic field can be derived in Cartesian coordinates
from the term n = 2 of the scalar potential (3.3) Va(r, ) = —21 Ay r?e?? or
in cartesian coordinates

—gw,y) — Ay b(z+iy)? = Agd(a® — o +120y) . (3.15)

Similar to the dipole case, both the real and imaginary parts are two inde-
pendent solutions of the same Laplace equation and therefore the potential
for both components can be written in the form

e
f];Vg(x,y) = Ay i(z® —y?) + A zy. (3.16)

Here we recognize that both the real and imaginary solutions are inde-
pendent solutions with independent coeflicients A;;. Coeflicients A;; = k and
Aoy = —Apz = —k because of symmetry defining the strengths for an upright
or rotated quadrupole, respectively. All coefficients A;; are still functions of z
although we do not indicate this explicitly. Separating both solutions, equipo-
tential lines in the transverse (x,y)-plane for both second order potentials
can be defined by

ki(2* —y?) = const., and (3.17a)
k xy = counst. (3.17b)
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The corresponding magnetic fields are in component formulation
(BEJU, B&y, O) and (Ek Y, Py T, 0) , (3.18)
e e e e

respectively. Magnetic equipotential surfaces with a profile following the de-
sired scalar potential (3.17) will be suitable to create the desired fields. The
field pattern of an upright quadrupole magnet (3.17b) is shown schemati-
cally in Fig. 3.1 together with the pole configuration for a rotated quadrupole
(3.17a).

y N
X R X
pole profile pole profile
xy = 1/2R? x%-y*=1/2R?

Fig. 3.1. Pole shape of an upright quadrupole (left) and of a rotated quadrupole
magnet (right)

Quadrupole Design Concepts

The feasibility of any accelerator or beam transport line design depends funda-
mentally on the parameters and diligent fabrication of technical components
composing the system. Not only the magnets need be designed so as to min-
imize undesirable higher order multipole field errors but they also must be
designed such that the desired parameters are within technical limits. Most
magnets constructed for beam transport lines are electromagnets rather than
permanent magnets. The magnets are excited by electrical current carrying
coils wound around magnet poles or in case of superconducting magnets by
specially shaped and positioned current carrying coils. In this section, we will
discuss briefly some fundamental design concepts and limits for most com-
monly used iron dominated quadrupole magnets as a guide for the accelerator
designer toward a realistic design. For more detailed discussions on technical
quadrupole designs we refer the reader to [7] and [8].
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Iron dominated magnets are the most commonly used magnets for particle
beam transport systems. Only where very high particle energies and magnetic
fields are required, superconducting magnets are used with maximum mag-
netic fields of 6-10 T compared to the maximum field in an iron magnet of
about 2 T. Although saturation of ferromagnetic material imposes a definite
limit on the strength of iron dominated magnets, most accelerator design
needs can be accommodated within this limit.

Quadrupoles together with bending magnets are the basic building blocks
for charged particle beam transport systems and serve as focusing devices to
keep the particle beam close to the desired beam path. The magnet pole
profile for a quadrupole can be derived the same way as that for a dipole
magnet. Placing an iron boundary in the shape of a hyperbola generates the
equipotential surface required for an upright quadrupole, or mathematically

xy = const. (3.19)

The inscribed radius of the iron free region is R and the constant in (3.19) is

therefore (R/\/i)2 = 3 R? as shown in Fig. 3.2. The pole shape or pole profile

for a quadrupole with bore radius R is then defined by the equation
zy=+1R%. (3.20)
Similarly, the pole profile of a rotated quadrupole is given by
? —y* =+ R%. (3.21)

This is the same hyperbola as (3.19) but rotated by 45°. Both (3.20), (3.21)
describe four symmetrically aligned hyperbolas which become the surfaces of
the ferromagnetic poles producing an ideal quadrupole field. Magnetization at
alternating polarity of each pole generates a sequence of equally strong north
and south poles.

In a real quadrupole, we cannot use infinitely wide hyperbolas but must cut
off the poles at some width. In Fig. 3.2 some fundamental design features and
parameters for a real quadrupole are shown and we note specifically the finite
pole width to make space for the excitation coils. Since only infinitely wide
hyperbolic poles create a pure quadrupole field, we expect the appearance of
higher multipole field errors characteristic for a finite pole width. While in an
ideal quadrupole the field gradient along, say, the z-axis would be constant,
we find for a finite pole width a drop off of the field and gradient approaching
the corners of poles. This drop off can be reduced to some extend if the
hyperbolic pole profile continues into its tangent close to the pole corner as
indicated in Fig. 3.2. This adds some iron to increase the field where the field
would otherwise fall below the desired value. The starting point of the tangent
determines greatly the final gradient homogeneity in the quadrupole aperture.
In Fig. 3.3 the gradient along the z-axis is shown for different starting points of
the tangent. There is obviously an optimum point for the tangent to minimize
the gradient error over a wide aperture.
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hyperbola
hyperbola

tangential
shimming

Fig. 3.2. Quadrupole design features

Application of tangent shimming must be considered as a fine adjustment
of the field quality rather than a means to obtain a large good field aperture
as becomes apparent from Fig. 3.3. The good field aperture is basically de-
termined by the width of the pole. While optimizing the tangent point, we
find an empirical correlation between gradient tolerance (Fig. 3.4) within an
aperture region x < X and the pole width expressed by the minimum pole
distance A. The good field region increases as the pole gets wider. For initial

7 field gradient parameter:Tangent point x,(mm)
(Gauss/cm) 34
160 — 37.5
| no
tangent
140 —
120 —
~| quadrupole profile:
Xy = 612.5 mm2
100 — | ‘ ‘ ‘ | ‘
0 10 20 30 x(mm) 40

Fig. 3.3. Field gradient and pole profile shimming for a particular quadrupole as
determined by numerical simulations with the program MAGNET [21]
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Fig. 3.4. Field gradient tolerances as a function of pole profile parameters calculated
with MAGNET

design purposes, we may use Fig. 3.4 to determine the pole width from A
based on the desired good field region X, and gradient field quality.

The final design of a magnet pole profile is made with the help of com-
puter codes which allow the calculation of magnet fields from a given pole
profile with saturation characteristics determined from a magnetization curve.
Widely used computer codes for magnet design are, for example, [21] and [22].

Field errors in iron dominated magnets have two distinct sources, the finite
pole width and mechanical manufacturing and assembly tolerances. From sym-
metry arguments, we can deduce that field errors due to the finite pole width
produce only select multipole components. In a quadrupole, for example, only
(2n 4+ 1)4-pole fields like 12-pole or 20-pole fields are generated. Similarly in a
dipole of finite pole width only (2n + 1)2-pole fields exist. We often call these
multipole field components the allowed multipole errors. Manufacturing and
assembly tolerances on the other hand do not exhibit any symmetry and can
cause the appearance of any multipole field error.

The particular choice of some geometric design parameters must be
checked against technical limitations during the design of a beam transport
line. One basic design parameter for a quadrupole is the bore radius R which
depends on the aperture requirements of the beam. Addition of some allowance
for the vacuum chamber and mechanical tolerance between chamber and mag-
net finally determines the quadrupole bore radius.

The field gradient is determined by the electrical excitation current in the
quadrupole coils. Similar to the derivation for a bending magnet, we may
derive a relation between field gradient and excitation current from Maxwell’s
curl equation. To minimize unnecessary mathematical complexity, we choose
an integration path as indicated in Fig. 3.5 which contributes to the integral
f B,ds only in the aperture of the quadrupole.
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Fig. 3.5. Determination of the field gradient from the excitation current

Starting from the quadrupole axis along a path at 45° with respect to the
horizontal or vertical plane toward the pole tip, we have

1 R
— %Bs ds = / B, dr = pg Lot - (3.22)
Hr 0

Since B, = gy and B, = gz, the radial field component is B, = /BZ + B2 =

gr and the excitation current from (3.22) is given by

Tiot (A X turns) = %ﬂog (i) R*(m) . (3.23)
The space available for the excitation coils or coil slot in a real quadrupole
design determines the maximum current carrying capability of the coil. Com-
mon materials for magnet coils are copper or aluminum. The electrical heating
of the coils depends on the current density, and a technically feasible balance
between heating and cooling capability must be found. As a practical rule the
current density in regular beam transport magnets should not exceed about
6-8 A/mm?. This is more an economical than a technical limit and up to
about a factor of 2 higher current densities could be used for special applica-
tions. The total required coil cross section, however, including an allowance
for insulation material between coil windings and about 15-20% for water
cooling holes in the conductor depends on the electrical losses in the coil.
The aperture of the water cooling holes is chosen such that sufficient water
cooling can be provided with an allowable water temperature increase which
should be kept below some 40°C to avoid boiling of the cooling water at the
surface and loss of cooling power. A low temperature rise is achieved if the
water is rushed through the coil at high pressure in which case undesirable
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Fig. 3.6. Magnetization and permeability of typical low carbon steel as a function
of excitation

vibrations of the magnets may occur. The water cooling hole in the conductor
must therefore be chosen with all these considerations in mind. Generally the
current density averaged over the whole coil cross section is about 60-70% of
that in the conductor.

In practical applications, we find the required coil cross section to be sig-
nificant compared to the magnet aperture leading to a long pole length and
potential saturation. To obtain high field limits due to magnetic saturation,
steel with a very low carbon content or low carbon steel is used for most
magnet applications in particle beam lines. Specifically, we require the car-
bon content for most high quality magnets to be no more than about 1%. In
Fig. 3.6 the magnetization curve and the permeability as a function of the
excitation are shown for a steel with 0.5 % carbon content. We note a steep
drop in the permeability above 1.6 T reaching full saturation at about 2 T. A
magnet has an acceptable saturation level if the magnetic permeability any-
where over the cross section of the magnet remains large compared to unity,
oy > 1.

Severe saturation effects at the corners of the magnet pole profile can be
avoided if the maximum field gradient, as a rule of thumb, is chosen such that
the pole tip field does not exceed a value of B, = 0.8-1 T. This limits the
maximum field gradient to gmax = Bp/R and the quadrupole length must
therefore be long enough to reach the focal length desired in the design of the
beam transport line. Saturation of the pole corners introduces higher-order
multipoles and must therefore be kept to a minimum.

Other saturation effects may occur at the pole root, where all magnetic
flux from a pole including fringe fields are concentrated. If the pole root is
too narrow, the flux density is too high and saturation occurs. This does
not immediately affect the field quality in the central aperture, but requires
higher excitation currents. A similar effect may occur in the return yokes if
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Fig. 3.7. Permeability values are plotted in a grid over the iron cross section of a
highly excited quadrupole. We note the significantly reduced permeability (u < 100)
in the narrow pole root (left). Widening the pole root quickly restores negligible satu-
ration (right) for the same excitation. Further small improvement could be obtained
by widening slightly the pole tip

the field density is too high because of a small iron cross section. In Fig. 3.7
a permeability plot is shown for a magnet driven into severe saturation. Low
values of the permeability indicate high saturation, which is evident in the
pole root.

By increasing the width of the pole root the saturation is greatly reduced
as shown in Fig. 3.8. To minimize pole root saturation the pole length should
be as short as possible because less flux is drawn through the side of the pole.
Unfortunately, this also reduces the space available for the excitation coils
leading to excessively large current densities. To reduce this conflict, the pole
width is usually increased at the pole root rather than shortening the pole
length.

In addition to pole root saturation, we may also experience return yoke
saturation, which is easily avoided by increasing its thickness.

Synchrotron Magnet

Sometimes a combination of both, the dipole field of a bending magnet and
the focusing field of a quadrupole, is desired for compact beam transport
lines to form what is called a synchrotron magnet. The name comes from
the use of such magnets for early synchrotron accelerators. Such a magnet
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Fig. 3.8. Permeability values are plotted in a grid over the iron cross section of a
highly excited quadrupole. We note the significantly reduced permeability (u < 100)
in the narrow pole root

actually is nothing but a transversely displaced quadrupole. The field in a
quadrupole displaced by ¢ from the beam axis is % B, =k(z—x¢) =kx—kxg
and a particle traversing this quadrupole at x = 0 will be deflected onto a
curved trajectory with a curvature of k, = k zg. At the same time, we observe
focusing corresponding to the quadrupole strength k. The pole cross section
of such a magnet is shown in Fig. 3.9.

The deviation from parallelism of the magnet poles at the reference tra-
jectory is often quantified by the characteristic length, defined by,

lbep = ! (3.24)
ch — 0 L .

Geometrically this characteristic length is equal to the distance from the ref-
erence trajectory to that point at which the tangents from the two magnet
poles at the vertical reference plane would touch (Fig. 3.9).

3.1.4 Multipole Magnets

The magnet pole shapes for sextupole or octupole magnets are derived in
a similar way and are shown in Fig. 3.10. Odd order multipoles like dipoles,
sextupoles, decapoles, etc. are characterized by central poles along the vertical
axis (Fig. 3.10 left). Even order multipoles have no poles along the horizontal
or vertical axis (Fig. 3.10 right). The profile can be derived directly from the
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Fig. 3.9. Pole profile for a synchrotron magnet
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Fig. 3.10. Pole profile for an upright sextupole (left) and octupole (right) magnet

respective potential (3.3). Only the profile of one pole must be determined
since the other poles are generated by simple rotation of the first pole by
multiples of the angle 90°/n, where n is the order of the multipole. Multipoles
of higher order than sextupoles are rarely used in accelerator physics but can
be derived from the appropriate multipole potentials.

For an arbitrary single higher order multipole the field components can be
derived from its potential (3.3)

fivn(r, p) = % Ay, r™elne (3.25)
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which, in Cartesian coordinates, becomes

1
—Valwy) = A+ iy)" (3.26)

Again, we note that both the real and imaginary parts of the potential are
valid independent solutions to the Laplace equation. Expanding the factor
(z + iy)™, we get, after some manipulation and after selecting different co-
efficients for the real and imaginary terms, a generalization of (3.10) for the
potential of the ntP-order multipole:

n

& yj
**Vn (x,y) = Z An—j,j — .
p = (n—3)! 5!

"I

(3.27)

From this equation it is straightforward to extract an expression for the
potential of any multipole field satisfying the Laplace equation. Since both
electrical and magnetic fields may be derived from the Laplace equation, we
need not make any distinction here and may use (3.27) as an expression for the
electrical as well as the magnetic potential. Separating the real and imaginary
terms of the potential, we get

n/2 n—2m 2m

e z Y
Re [—an (m,y)} = mzioAnfzm,zm n—2m)! 2m)” (3.28)

and

(n+1)/2 xn—2m+1 y2m—1

e
Im |:_an (1'7y):| - mz::l An72m+1,2m71 (Tl — 2m + 1)' (2m — 1)' . (329)

Note that to keep the nomenclature simple, some coefficients in (3.27) still
include the imaginary factor i, while this factor is no more included in the
same coefficients in (3.29).

As mentioned before, it is useful to keep both sets of solutions sepa-
rate because they describe two distinct orientations of multipole fields. For
a particular multipole both orientations can be realized by a mere rotation of
the element about its axis. From (3.28), (3.29) we find that only the imagi-
nary solution has what is called midplane symmetry with the property that
ImV, (z,y) = —ImV,, (2, —y) or Bny(z,y) = Bny(x,—y). In this symmetry,
there are no horizontal field components in the midplane, B, (z,0) = 0, and
a particle traveling in the horizontal midplane will remain in this plane. We
call all magnets in this class upright magnets. We call the magnets defined by
the real solutions of potential (3.28) rotated magnets since they differ from
the upright magnets only by a rotation about the magnet axis. In real beam
transport systems, we use almost exclusively magnetic fields with midplane
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symmetry as described by the imaginary solutions (3.29). The magnetic field
components for the nth-order multipoles derived from the imaginary solution
are given by

e n/2 xn—27n y2m—1

7Bn:c = Anf m m— s 3.30

D mZ:l gl 2m=l (n—2m)! (2m — 1)! (3.30)
(n+1)/2 n—2m-+1 2m—2

e x y

Z By, = An_om — . 3.31

p mz::l amett,2m=l (n—2m+ 1)! (2m — 2)! (3:31)

The asymmetry between the field components is not fundamental but only
reflects the fact that most beam transport lines are installed in a horizontal
plane for which the imaginary solutions provide the desired fields. The real and
imaginary solutions differentiate between two classes of magnet orientation.

3.1.5 Multipole Fields for Beam Transport Systems

Similar to dipoles and quadrupole magnets, we may get potential expressions
for all other multipole magnets. The results up to 5th order are compiled in
Table 3.1.

The coefficients A, have been replaced by more commonly used notation
defining particular magnetic multipoles. Each expression for the magnetic
potential is composed of both the real and the imaginary contributions. Since
both components differ only by a rotational angle, real magnets are generally
aligned such that only one or the other component appears. Only due to
alignment errors may the other component appear as a field error which can
be treated as a perturbation. The correspondence between the coefficients A,
and the commonly used notation for the multipole strength parameters are
shown in Table 3.2.

Here £, and the underlined coefficients are the magnet strengths for the ro-
tated multipoles, while x,, and the straight letters are the strength coefficients
for the upright multipoles.

Table 3.1. Magnetic multipole potentials
Dipole —%Vl = —KyT + Koy
Quadrupole  —=V5 = —1k(2® — y°) + kzy,
Sextupole —%Vg = —%m (mS — 31:y2) + %m (3x2y — y3) ,
Octupole —eVy=—4r (x4 — 62y + y4) + 547 (x3y — :cy?’) ,

Decapole _§V5 — —ﬁd (x5 — 1023y + 5my4) + Elod (5x4y —102%° + y5)
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Table 3.2. Correspondence between the potential coefficients and multipole
strength parameters

i
0
—Ky Kz
-k k k
—m m m -m
-r r r T -r
—d d d —d —d d

Table 3.3. Upright multipole fields

Dipole %Bm =0 %By = Ky

Quadrupole %BI =ky %By =kx

Sextupole %Bw = mzy %By = %m (1’2 — y2)

Octupole %Bz = ir (3m2y - y3) %By = ir (173 — 3my2)
Decapole %Bz = +%d (x3y — a:y3) By = +id (:v4 — 62%y* + y4)

From the expressions for the multipole potentials in Table 3.1 we obtain
by differentiation the multipole field components. For the imaginary solutions
of the Laplace equation these multipole field components up to decapoles are
compiled in Table 3.3. The multipole strength parameters can be related to
the derivatives of the magnetic field. Generalizing from Table 3.1, we get for
upright multipoles

e 0" 'B,

Cp Oan—l |a=g
y=0

Sp (m™™) (3.32)
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or in more practical units with cp = GF

my O 9" 'B, (T)
sn (07") = S GV BT (1)’ (3.33)

where the coefficient

Cn = 0.2997925 GeV/T/m (3.34)

and s, is the strength parameter of the nth-order multipole, i.e., s;1 = Kk, s5 =
k, s3 = m, s4 = 1, s5 = d, etc. The lowest order field derivatives are often
expressed by special symbols as well. The quadrupole field gradient, for ex-
ample, can be defined by g = 0B,,/0x and the derivative of the field gradient
in sextupole magnets by s = 9°B,/0z? = —0?B,/0y*. Derivations with re-
spect to other coordinates in accordance with the field definitions in Table 3.3
can be used as well to define magnet parameters.

The real solutions of the Laplace equation (3.28) describe basically the
same field patterns as the imaginary solutions, but the fields are rotated about
the z-axis by an angle ¢,, = w/(2n), where n is the order of the multipole. The
magnetic field expressions as derived from Table 3.1 are compiled in Table 3.4.
Analogous to (3.32) and (3.33) , the strength parameters for rotated multipoles
are defined by

e OB,
Sn (mfn) =—= (3.35)
p Oyt Ja=g
and o 1B, (T)
o G O'B,(T
sn (m7") = BE (GeV) dy»—1 (mn—1)" (3.36)

The characteristic difference between the two sets of field solutions is that
the fields of upright linear magnets in Table 3.3 do not cause coupling for
particles traveling in the horizontal or vertical midplane, in contrast to the
rotated magnet fields of Table 3.4 which would deflect particles out of the
horizontal midplane. In linear beam dynamics, where we use only dipole and
upright quadrupole magnets, the particle motion in the horizontal and vertical
plane are completely independent. This is a highly desirable “convenience”
without which particle beam dynamics would be much more complicated and

Table 3.4. Rotated multipole fields

Dipole ~ ¢=90° B, =—r, B, =0
Quadrupole ¢ = 45° By = —kx ¢By = +ky
Sextupole ¢ = 30° 5B:=—5m (® = y?) 2By = +mzy

Octupole ¢ = 22.5° iBz =—zr ($3 — 3my2) £By = f%
Decapole ¢ = 18° %Bw = —id (m4 — 6x%y% + y4) By = —|—%d (xgy — ;ry3)
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less predictable. Since there is no particular fundamental reason for a specific
orientation of magnets in a beam transport systems, we may as well use that
orientation that leads to the simplest and most predictable results. We will
therefore use exclusively upright magnet orientation for the main magnets and
treat the occasional need for rotated magnets as a perturbation.

The general magnetic field equation including only the most commonly
used upright multipole elements is given by

B, = +gy + szy + go (32°y —y®) + -+ (3.37)
By =By + gz + 15 (:C2 - y2) + 30 (:CS - SmyQ) + e (3.38)

Sometimes it is interesting to investigate the particle motion only in the
horizontal midplane, where y = 0. In this case we expect the horizontal field
components B, of all multipoles to vanish and any deflection or coupling is
thereby eliminated. In such circumstances, the particle motion is completely
contained in the horizontal plane and the general fields to be used are given
by

B, =0 (3.39)

By:By0+gx+%sx2+éox3+-~-. (3.40)
In terms of multipole strength parameters, the second equation in (3.40) be-
comes

2 6 24

In this form, the field expansion exhibits the most significant multipole
fields in the horizontal midplane as used in accelerator physics and is fre-
quently employed to study and solve beam stability problems or the effects of
particular multipole fields on beam parameters.

1 1 1
EBy:nx—kkx—kfmx?+frx3+—dx4+~-. (3.41)
b

3.2 General Transverse Magnetic-Field Expansion

Solving the Laplace equation in the previous section, we made a restrictive
ansatz which included only pure transverse multipole components. We also
neglected all kinematic effects caused by the curvilinear coordinate system.
These approximations eliminate many higher order terms which may become
of significance in particular circumstances. In preparation for more sophisti-
cated beam transport systems and accelerator designs aiming, for example,
at ever smaller beam emittances it becomes imperative to consider higher or-
der perturbations to preserve desired beam characteristics. To obtain all field
components allowed by the Laplace equation, a more general ansatz for the
field expansion must be made.

The general field is determined by the solution of the Laplace equation
[23,24] for the magnetic scalar potential. Since we use a curvilinear coordinate
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system for beam dynamics, we use the same for the magnetic-field expansion
and express the Laplace equation in these curvilinear coordinates

1[0 oV 0 ov 0 [10V
AV = — | — [ h— — | h—— — | == 3.42
h{@x( 8x)+8y< 8y>+8z(hﬁz>}’ (342)
where h = 14 K,z + kyy . We also assume without restricting full generality
that the particle beam may be bent horizontally as well as vertically. For the

general solution of the Laplace equation (3.42) we use an ansatz in the form
of a power expansion’

fij(z,y,Z) = Z Apg(2) — = - (3.43)

| |
p,q=>0 P

Terms with negative indices p and ¢ are excluded to avoid nonphysical
divergences of the potential at © = 0 or y = 0. We insert this ansatz into
(3.42), collect all terms of equal powers in z and y, and get

ZZ{FM}%((]{*Z)!EO’ (3.44)

p>0g¢=>0 (p

where {F),,} represents the collection of all coefficients for the term zPy9.

For (3.44) to be true for all values of the coordinates x and y, we require
that every coefficient F,, must vanish individually. Setting Fj,, = 0 leads to
the recursion formula

Ap g2+ Aprag =~z 3+ 1) Api1,g — Ky (3¢ +1) Ap g1
—3Kyq Apt2,g—1 — 362D Ap_1,g+42
2Ky q (Bp+ 1) Api1,g—1 — 2K2Kyp (3¢ + 1) Ap_1 g4+1
- 3"4372461 (¢g—1) Apt2,q-2 — 3”%17 (p—1) Ap_2,4+2
—k3p (p® = 3p+2) Ap_3.412 — miq (¢ —3q+2) Api2q-3
—righiy q(q— 14 3pg — 3p) Api1,q-2 (3.45)
_’ii”yp (p—1+3pg—3q) Ap—2,4+1
—Kyq (3/<§p2 - Kip + HiqZ — 2/€§q + /132/) Ap g1
—ka p(3K50° — Koq + Kop® — 263D+ K7) Ap 14
—(3p — 1)19“3 Apq— (Bg—1) q“i Apq

1 1 1 i I / /
_Aznq_ ’%pAp—Lq B quAp,q—l B Kprp—Lq B quAp,q—l’

which allows us to determine all coefficients A,,. The derivatives, indicated by
a prime, are understood to be taken with respect to the independent variable

! Note, in this section, we use temporarily the letter “p” for the particle momen-
tum and as an index. Since the momentum appears always in the factor e/p of
potentials it should not lead to confusion.
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z, like A = dA/dz, etc. Although most beam transport lines include only
horizontal bending magnets, we have chosen a fully symmetric field expan-
sion to be completely general. Equation (3.45) is a recursion formula for the
field coeflicients A,, and we have to develop a procedure to obtain all terms
consistent with this expression.

The Laplace equation is of second order and therefore we cannot derive
coeflicients of quadratic or lower order from the recursion formula. The low-
est order coeflicient Agy represents a constant potential independent of the
transverse coordinates x and y and since this term does not contribute to a
transverse field component, we will ignore it in this section. However, since
this term depends on z we cannot neglect this term where longitudinal fields
such as solenoid fields are important. Such fields will be discussed separately
in Sect. 3.4 and therefore we set here for simplicity

Ago =0. (3.46)

The terms linear in x or y are the curvatures in the horizontal and vertical
plane as defined previously

A10 = —hy and A01 = Rg, (347)
and
ky = —2” = +£B, with EBy‘ = %,
P P Pa (3.48)
ky=-y =—%B,  with CBy|= L.

Finally, the quadratic term proportional to x and y is identical to the quadru-
pole strength parameter
A =k. (3.49)

With these definitions of the linear coefficients, we may start exploiting the
recursion formula. All terms on the right-hand side of (3.45) are of lower order
than the two terms on the left-hand side which are of order n = p + q + 2.
The left-hand side is composed of two contributions, one resulting from pure
multipole fields of order n and the other from higher order field terms of lower
order multipoles.

We identify and separate from all other terms the pure multipole terms of
order n which do not depend on lower order multipole terms by setting

Ap,q+2,n + Ap+27q7n =0 (3.50)

and adding the index n to indicate that these terms are the pure nth-order
multipoles. Only the sum of two terms can be determined which means both
terms have the same value but opposite signs. For n = 2 we have, for example,
Aoy = —Ape and a comparison with the potentials of pure multipoles of
Table 3.2 shows that Ayg = —k 2.

2 Consistent with the definitions of magnet strengths, the underlined quantities
represent the magnet strengths of rotated multipole magnets.
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Similarly, in third order we get Azg = —A12 = —m and Ay = —Agg =
m. The fourth-order terms are determined by Ay = —Asy = —1 , Agy =
—Aps =1, and A3; = —A;3 = r. By a systematic application of all allowed
values for the indices, a correspondence between the coeflicients Ajj , and
the multipole strength parameters defined in Table 3.2 can be established. All
pure multipoles are determined by (3.50) alone.

Having identified the pure multipole components, we now concentrate on
using the recursion formula for other terms which so far have been neglected.
First, we note that coefficients of the same order n on the left-hand side of
(3.45) must be split into two parts to distinguish pure multipole components
Ajk.n of order n from the nth-order terms A;k of lower order multipoles which
we label by an asterisk *. Since we have already derived the pure multipole
terms, we explore (3.45) for the A* coefficients only

Ay 2t Apia, =1.hus. of (3.45). (3.51)

For the predetermined coefficients A1g, A1, and Ap; there are no corre-
sponding terms A* since that would require indices p and ¢ to be negative.
For p =0 and ¢ = 0 we have

Ape + A3g = — Kz Aro — Ky Aor = 0. (3.52)

This solution is equivalent to (3.50) and does not produce any new field
terms. The next higher order terms for p=0and ¢g=1orforp=1and ¢ =0
are determined by the equations

Afs + As) = — kak — kyk — kIl = C,
03 21 yk (3.53)
Alp + A5g = — kyk + kb + Ky = D,

where we set in preparation for the following discussion the right-hand sides
equal to the as yet undetermined quantities C' and D. Since we have no lead
how to separate the coefficients we set

A5 =fC, Afs=(1-[)C,
Ay =gD, A3 =(1-9g)D,

(3.54)

where 0 < (f,9) <1 and f = g. The indeterminate nature of this result is an
indication that these terms may depend on the actual design of the magnets.
Trying to interpret the physical meaning of these terms, we assume a mag-
net with a pure vertical dipole field at the center of the magnet, B,(0,0,0) # 0,
but no horizontal or finite longitudinal field components, B, (0,0,0) = 0 and
B;(0,0,0) = 0. Consistent with these assumptions the magnetic potential is

e " .
EV(I,y, z) = —Ao1y — %Aglwzy - %Amxyz (3.55)

— LA5a® — TSP+ 0(4).
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From (3.53) we get D = 0, C = —&/ and with (3.54) A}, = A%, = 0. The
magnetic-field potential reduces therefore to

e
];V(x,y,Z)=—f€xy+%fff;’x2y+é(1—f)H;'y?’ (3.56)
and the magnetic-field components are

1
%Bw = _f"{a:mya

(3.57)
%By =+ Ky — %f‘%glz_%(l_f)’%gyZ'

The physical origin of these terms becomes apparent if we investigate the two
extreme cases for which f = 0 or f = 1, separately. The magnetic fields in
these cases are for f =0

e
-B, =0 and —By, = ky — % Kly? (3.58
P p 2 )
and for f =1
€ " € _ 1,.m7,..2
-B, = — KLy and —By, = Ky — 5,27, (3.59)
p p

where the curvatures are functions of z.

Both cases differ only in the x//-terms describing the magnet fringe field.
In case of a straight bending magnet (x, # 0) with infinitely wide poles in
the z-direction, horizontal field components B, must vanish consistent with
f = 0. The field configuration in the fringe field region is of the form shown
in Fig. 3.11 and independent of x.

LYOINTIITRPAY. ST ST
side view frontal view

Fig. 3.11. Dipole end field configuration for f =0

Conversely, the case 0 < f < 1 describes the field pattern in the fringe field
of a bending magnet with poles of finite width in which case finite horizontal
field components B, appear off the symmetry planes. The fringe fields not
only bulge out of the magnet gap along z but also spread horizontally due to
the finite pole width as shown in Fig. 3.12, thus creating a finite horizontal
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side view frontal view

Fig. 3.12. Dipole end field configuration for 0 < f < 1

field component off the midplane. While it is possible to identify the origin of
these field terms, we are not able to determine the exact value of the factor f
in a general way but may apply three-dimensional magnet codes to determine
the field configuration numerically. The factor f is different for each type of
magnet depending on its actual mechanical dimensions.

Following general practice in beam dynamics and magnet design, however,
we ignore these effects of finite pole width, since they are specifically kept small
by design, and we may set f = g = 0. In this approximation we get

Aj =A%, =0 (3.60)

and

08 = —Kak — Kyk — K, (3.61)
Aty = —kyk + Kok + K . '

Similar effects of finite pole sizes appear for all multipole terms. As before,
we set f = 0 for lack of accurate knowledge of the actual magnet design and
assume that these terms are very small by virtue of a careful magnet design
within the good field region provided for the particle beam. For the fourth
order terms we have therefore with A3, = 0 and

Afy = Kam — kym — dkghyk + 452k + K7 + 2,k + 2K K,

(3.62)
Ay = Kym — kpm — dkgkyk — 40k — k' — 26y K] — 26 K], .
In the case p = ¢, we expect A;; = Aj; from symmetry and get
2473 =245 = —Kym — Hym-l—?fﬁik‘—i—QnZk‘ -k’
F2hy Ky — gkl — Kl + Ky (3.63)

With these terms we have finally determined all coefficients of the magnetic
potential up to fourth order. Higher order terms can be derived along similar
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arguments. Using these results, the general magnetic-field potential up to
fourth order is from (3.43)

_5 V({L‘7 Y, Z) = +A10.’E + A()ly (364)

lAzoﬂC2 + lAozy2 + Apxy
+ Agox +35 Agl.T Y+ Algxy +z A03y + 1A§Ox + A03y
+ FAsz! + FA512%y + L Asa®y® + L Azay®
+ iAMy4 + iAZonL + %Aglx:‘/(x2 +y7) + iA&y‘l +O(5).
From the magnetic potential we obtain the magnetic field expansion by

differentiation with respect to x or y for B, and B,, respectively. Up to third
order we obtain the transverse field components

5 B, = —ky, — kz + ky (3.65)
— %m(mQ —?) + mxy + 1 (—kyk + Kok + Kyy) x2
—gr(@® = 3zy?) — 5y — 327y)

112 (H$m—|—;‘£ym—|—2,‘£ k+ 2K2 k—‘rk’”—ﬁ;y Ky
—|—/<cx/<;m+/<;z—/<cy)(3x y+y3)
+%(nxm—/€ym—4/€x/@'yk+4mik

" " ’ 3
+ K"+ 265k, + 26,K) 7 + O(4)
and
; B, = +ky + ky + kx (3.66)

+ %m(xQ _ y2) + may — % (Kak + ryk 4 K1) Y2
+ g r(@® = 3xy?) — §r(y® — 327y)

— L (kom + kym + 262k + 2,{12//{ +E = Ry
+ Koty + “f - ”‘3;/2) (903 + 333y2)

+ & (kym — kem — dkgliyk — 4K2k

—k" = 2K}k, — 26K0) y° + O(4).

"
Y

The third component of the gradient in a curvilinear coordinate system is

B, = % %—‘Z/ and collecting all terms up to second order we get

e
” B. = 45y — ki, @ + (kyky — kaky + K 2y (3.67)

+ (K, — 1K) 2 — (ks — SE) >+ 0(3).
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While equations (3.65)—(3.67) describe the general fields in a magnet, in
practice, special care is taken to limit the number of fundamentally different
field components present in any one magnet. In fact most magnets are de-
signed as single multipoles like dipoles or quadrupoles or sextupoles, etc. A
beam transport system utilizing only such magnets is also called a separated-
function lattice since bending and focusing is performed in different types of
magnets.

A combination of bending and focusing, however, is being used for some
special applications and a transport system composed of such combined-field
magnets is called a combined-function lattice. Sometimes even a sextupole
term is incorporated in a magnet together with the dipole and quadrupole
fields. Rotated magnets, like rotated sextupoles m and octupoles r, are either
not used or in the case of a rotated quadrupole the chosen strength is generally
weak and its effect on the beam dynamics is treated by perturbation methods.

No mention has been made about electric field patterns. However, since
the Laplace equation for electrostatic fields in material free areas is the
same as for magnetic fields we conclude that the electrical potentials are ex-
pressed by (3.64) as well and the electrical multipole field components are also
given by (3.65)—(3.67) after replacing the nomenclature for the magnetic field
(B, By, B.,) by electric-field components (E,, Ey, E).

3.3 Third-Order Differential Equation of Motion

Equations of motions have been derived in Chap. 2 for the transverse (z, z)
and (y, z) planes up to second order which is adequate for most applications.
Sometimes, however, it might be desirable to use equations of motion in higher
order of precision or to investigate perturbations of higher order. A curvilinear
Frenet—Serret coordinate system, moving along the curved trajectory of the
reference particle 7o(z), was used and we generalize this system to include
curvatures in both transverse planes as shown in Fig. 3.13.

In this (z,y, z)-coordinate system, a particle at the location s and under
the influence of the Lorentz force follows a path described by the vector r
as shown in Fig. 3.13. The change in the momentum vector per unit time is
due only to a change in the direction of the momentum while the magnitude
of the momentum remains unchanged in a static magnetic fields. Therefore
p = pdr/ds where p is the value of the particle momentum and dr/ds is the
unit vector along the particle trajectory. With S—f = %Bc, where 7 = é,
the particle velocity v = g—: = i—: Bec, and we obtain the differential equation
describing the particle trajectory under the influence of a Lorentz force Fr,

fromg—f:FL:e[vst]

— x B

d*r e{j: } (3.68)

ds2  p
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individual trajector;

center of vertical
curvature

reference path
y-z projectio)

X-z projection

Py

center of horizontal
curvature

Fig. 3.13. Coordinate system

To evaluate (3.68) further, we note that

dr dr/dz o’
ar_ . 3.69
ds ds/dz ¢ (369)

d2r 1.d (7

VE/ith this, the general equation of motion is from (3.68) % — 5z 3—2 d(‘f—: =
e g [dr

X B] . In the remainder of this section, we will reevaluate this equa-

and

S @
tion in terms of more simplified parameters. From Fig. 3.13 or (1.82) we
have » = 79 + zu; + yu,, where the vectors u;, u,, and u, are the

unit vectors defining the curvilinear coordinate system. To completely evalu-
ate (3.70), the second derivative d?r/dz? must be derived from (1.84) with
du, = —k,u,dz — Kyu,dz for

d?r

== (2" = kah)ug + (Y — Kyh)uy + (260" + 26,y + K2 + Kyy)u.,

(3.71)
and (3.70) becomes with (1.84) and s'* = 7>

/ 12 / 12
/ ' ds P y' ds
<m _Hxh_Zsi’z dz>ux+<y _Hyh_Qs’Q dz)uy

h ds"? e dr
/ / / / o ’
+ <2/{xx + 2K,y +/{zx+/$yy—8/2dz)uz—ps [dz ><B:| .
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This is the general equation of motion for a charged particles in a mag-
netic field B. So far no approximations have been made. For practical use we
may separate the individual components and get the differential equations for
transverse motion

1 / d 12
x”_ﬁm h_§% % = %S/[y/ BZ _hBy] (3'723)
1y ds? e
S N SR 3.72b
L 2572 dz ps[ v B ( )

Chromatic effects originate from the momentum factor £ which is different

for particles of different energies. We expand this factor into a power series in §
e e

—=—(1-6+6 -6 +---), (3.73)
P Do

where 6 = Ap/pg and epy = BEy is the ideal particle momentum. A further
approximation is made when we expand s’ to third order in z and y while
restricting the discussion to paraxial rays with 2’ < 1 and ¢/ < 1

S h+ 3@ +y?) (1 —kex—Kyy)+- - . (3.74)

Evaluating the derivative ds’ 2 /dz we obtain terms including second or-
der derivatives z”/ and 3”. Neglecting fourth order terms, z” and y” can be
replaced by the unperturbed equations of motion 2” + (k2 + k)z = 0 and
y" + (k2 + k)y = 0. For the field components, we insert in (3.72b) expres-
sions (3.65)—(3.67) while making use of (3.73) and (3.74). Keeping all terms
up to third order in xz,y,z’,3’, and ¢, we finally obtain equations of motion
for a particle with charge e in an arbitrary magnetic field derivable from a
scalar potential. For the horizontal and vertical plane the general equations
of motion are (3.75) and (3.76) , respectively.

In spite of our attempt to derive a general and accurate equation of mo-
tion, we note that some magnet boundaries are not correctly represented.
The natural bending magnet is of the sector type and wedge or rectangular
magnets require the introduction of additional corrections to the equations
of motion which are not included here. This is also true for cases where a
beam passes off center through a quadrupole, in which case theory assumes a
combined function sector magnet and corrections must be applied to model
correctly a quadrupole with parallel pole faces. The magnitude of such cor-
rections is, however, in most cases very small. Equation (3.75) of motion
shows an enormous complexity which, however, in real beam transport lines,
becomes very much relaxed due to proper design and careful alignment of the
magnets. Nonetheless (3.75), and (3.76) for the vertical plane, can be used as
a reference to find and study the effects of particular perturbation terms. In
a special beam transport line one or the other of these perturbation terms
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may become significant and can now be dealt with separately. This may be
the case where strong multipole effects from magnet fringe fields cannot be
avoided or because large beam sizes and divergences are important and nec-
essary. The possible significance of any perturbation term must be evaluated
for each beam transport system separately.

2"+ (K2 + k) x = K0 — Kp0% + K30° — (b + Keky)y (3.75)
— (m+ 26,k + 26k + 262K, Ty — $m (2 — y?)

— (K3 + 260k) ¥* — (Koki — § Kok + 2Ky k — 5 K1)y

ke —y?) 4 K (2 4 yy) + ) (@'Y — oY) + gy
f%rx(xzf?)yz) ry( )
+12(’€y 11/€zm+2f€ k—lOm L+ k' —k Z

haky — Fy, *4 Kl ) 3
—(2kzm + Kym + nmﬁ + 2k kyk) =2y
+1(Bkam — Thym + 6k2k + k' — kykl) — 2Kk
5Kk + KL — 1122 — Kphyk) Ty
Jr%(lO/{m/eyk + 8Kl Ky + Kpm + 4n2ﬁ + K"+ 2K, n' + bkym) y3

—(2K2 + k) za’® — (Kipky + Kakyy) a2y — Kgkl w22

—Lk'2%y /{y/ﬁ’yx'yz—mzmyxxy — 2k + 3kyky) 2%y

+k zyy — %(k + ni) zy'? — (2/@5 —k)x'yy + lk’ 2y %kyyﬂ
+(2k2 4+ k)0 + (262ky +E)y 0 — KLyy'0 + Ky myé
+%/{m(x'2+y )8 + (3kyk + Kokl — Skak — $Ki — $m) Y6
(Am+ 26,k + k3) 2%6 + (m + 262Ky + 26,k + 2/{3&) xyo
—(k +262) 26% — (k + 2K,ky) Y6 + O(4) .

In the vertical plane we get a very similar equation, (3.76), which is to be
expected since we have not yet introduced any asymmetry.

In most beam transport lines the magnets are built in such a way that
different functions like bending, focusing, etc., are not combined thus elimi-
nating all terms that depend on those combinations like kg ky, K2k, or MK,
etc. As long as the terms on the right-hand sides are small we may apply per-
turbation methods to estimate the effects on the beam caused by these terms.
It is interesting, however, to try to identify the perturbations with aberrations
known from light optics.
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"

Yy + ("%2; —k)y = +hy0 — Ky 0% + 1y 0 — (k + Kyky) ® (3.76)

+ (m — 2kyk + 2K,k — 2/%/15) zy — im (2 —y?)

— (sz — 2k, k)y* — (K2ky + Lhyk + 3K,k — %,‘ig) x
1 2

— gyl

67“y( —32%) — er( z? — 3y?%)

— 11/€ym + 262k — 10n§k + K" — /iyn;’
3

2

/2) 4 K/ (I:Z:/ + yy/) o K’/r (z/y o zy’) + sz/y/

1
— & (ke
+ Kokl + Kl — k)Y
+ (2kym + Kzm — IiyE + 2K Kyk) zy?
*i(5liym — Tkzm + 6n§k + K 4 kRl — 22k
—5hiy Ky — Ky P4 12 4 Rakygk) 2y
+i(- 1OI€zliy]€ + 8,«;9c " — kym+ArZk+E + 2K}, Ky — Sk 2>
—(2k2 — 1k —k)yy? — (Kaky + Kpky) Ty’ — Ky, y2y’
%Ewy — kgkly 22y — Kok, 2 yy — 3 (k+ 3rgky) zy'?
—K'zx'y+3(k — r)x%y — (265 + k) wa'y' + 5K 2% — 1&9636’2
(2/-@2 - k) yo + (QHTHy + k) 20 — ryxa'd + K}, 2'yo
3K J(@ 4y )5—|—( Kok + Kiky + $kyk — Sk + 3m) 2?6
+(—im — 2kyk + K ) 25 — (m — 2/%,% + 26,k — 2Kyk) 2yo
+(k — 2k )y52 (k + 2K, ky) ©0% + O(4) .

_|_

Chromatic terms &, (6 — d% 4 6%), for example, are constant perturbations
for off momentum particles causing a shift of the equilibrium orbit which ide-
ally is the trivial solution x = 0 of the differential equation 2"/ + (k+x2)x = 0.
Of course, this is not quite true since k; is not a constant, but the general
conclusion is still correct. This shift is equal to Az = k(6 — 8% +82)/(k + K2)
and is related to the dispersion function D by D = Az/é. In light optics
this corresponds to the dispersion of colors of a beam of white light (particle
beam with finite energy spread) passing through a prism (bending magnet).
We may also use a different interpretation for this term. Instead of a particle
with an energy deviation § in an ideal magnet k, we can interpret this term
as the perturbation of a particle with the ideal energy by a magnetic field that
deviates from the ideal value. In this case, we replace k, (§ —30%—83) by — Ak,
and the shift in the ideal orbit is then called an orbit distortion . Obviously,
here and in the following paragraphs the interpretations are not limited to the
horizontal plane alone but also apply to the vertical plane caused by similar
perturbations. Terms proportional to x? cause geometric aberrations , where
the focal length depends on the amplitude x while terms involving z’ lead to
the well-known phenomenon of astigmatism or a combination of both aberra-
tions. Additional terms depend on the particle parameters in both the vertical
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and horizontal plane and therefore lead to more complicated aberrations and
coupling.

Terms depending also on the energy deviation d, on the other hand, give
rise to chromatic aberrations which are well known from light optics. Specif-
ically, the term (k + 2x2)xd is the source for the dependence of the focal
length on the particle momentum. Some additional terms can be interpreted
as combinations of aberrations described above.

It is interesting to write down the equations of motion for a pure quadru-
pole system where only k # 0 in which case (3.75) becomes

2"+ kx = kx (6 — 6° — 6°)— 5 k"z (2% + 3y°) (3.77)
—3kaa? + ko' yy + Kayy +04).

We note that quadrupoles do not produce geometric perturbations of lower
than third order. Only chromatic aberrations are caused in second order by
quadrupole magnets.

3.4 Longitudinal Field Devices

General field equations have been derived in this chapter with the only re-
striction that there be no solenoid fields, which allowed us to set Agp = 0 in
(3.46), and concentrate on transverse fields only. Longitudinal fields like those
produced in a solenoid magnet are used in beam transport systems for very
special purposes and their effect on beam dynamics cannot be ignored. We
now assume that the lowest order coefficient Ago in potential (3.43) does not
vanish

Aoo(z) # 0. (3.78)

Longitudinal fields do not cause transverse beam deflection although there
can be some amplitude dependent focusing or coupling. We may therefore
choose a cartesian coordinate system along such fields by setting x, = x, = 0,
and the recursion formula (3.45) reduces to

Aga + Agg = —Apy - (3.79)

Again, we have a solution where Ags + Aoy = 0, which is a rotated quadru-
pole as derived in (3.16) and can be ignored here. The additional component
of the field is Ay, + A5, = — Afj, and describes the endfields of the solenoid.
For reasons of symmetry with respect to  and y we have Aj, = A%, and

Afy = A3y = —5 A% (3.80)
With this, potential (3.43) for longitudinal fields is

e
_5‘/5('1:? y,z) = Ago — %Ago(x2 =+ ?JZ) = Ao — %Ago 7'27 (3.81)



3.4 Longitudinal Field Devices 93

where we have made use of rotational symmetry. The longitudinal field com-
ponent becomes from (3.81) in linear approximation

£B, = +4), (3.82)
p
and the transverse components

-2

e e

-B,=—A},r=—-1B.r 3.83
, 00 P (3.83)
B, =0.

The azimuthal field component obviously vanishes because of symmetry. Ra-
dial field components appear whenever the longitudinal field strength varies as
is the case in the fringe field region at the end of a solenoid shown in Fig. 3.14.

The strength By at the center of a long solenoid magnet can be calcu-
lated in the same way we determined dipole and higher order fields utilizing
Stoke’s theorem. The integral § B ds is performed along a path as indicated
in Fig. 3.14. The only contribution to the integral comes from the integral
along the field at the magnet axis. All other contributions vanish because the
integration path cuts field lines at a right angle, where B ds = 0 or follows
field lines to infinity where By = 0. We have therefore

%Bd z = BoAs = pop JJAs, (3.84)

where J is the total solenoid current per unit length. The solenoid field
strength is therefore given by

Bo(x =0,y =0) = poprd (3.85)

The total integrated radial field f B,.ds can be evaluated from the central
field for each of the fringe regions. We imagine a cylinder concentric with the

integration path |

1

—AAS

excitation coils

Fig. 3.14. Solenoid field



94 3 Electromagnetic Fields

solenoid axis and with radius r to extend from the solenoid center to a region
well outside the solenoid. At the center of the solenoid a total magnetic flux
of mr? By enters this cylinder. It is clear that along the infinitely long cylinder
the flux will exit the surface of the cylinder through radial field components.
We have therefore

71'7‘230:/ 2mr By (r)dz, (3.86)
0

where we have set z = 0 at the center of the solenoid. The integrated radial
field per fringe field is then

/ B,(r)dz = —1Byr. (3.87)
0

The linear dependence of the integrated radial fields on the distance r from
the axis constitutes linear focusing capabilities of solenoidal fringe fields.

Such solenoid focusing is used, for example, around a conversion target
to catch a highly divergent positron beam. The positron source is generally a
small piece of a heavy metal like tungsten placed in the path of a high energy
electron beam. Through an electromagnetic cascade, positrons are generated
and emerge from a point-like source into a large solid angle. If the target is
placed at the center of a solenoid the radial positron motion couples with
the longitudinal field to transfer the radial particle momentum into azimuthal
momentum. At the end of the solenoid, the azimuthal motion couples with the
radial field components of the fringe field to transfer azimuthal momentum
into longitudinal momentum. In this idealized picture a divergent positron
beam emerging from a small source area is transformed or focused into a
quasi-parallel beam of larger cross section. Such a focusing device is called a
A/4-lens, since the particles follow one quarter of a helical trajectory in the
solenoid.

In other applications large volume solenoids are used as part of elementary
particle detectors in high energy physics experiments performed at colliding-
beam facilities. The strong influence of these solenoidal detector fields on beam
dynamics in a storage ring must be compensated in most cases. In still other
applications solenoid fields are used just to contain a particle beam within a
small circular aperture like that along the axis of a linear accelerator.

3.5 Air Coil Magnets

Superconducting materials are available in large quantities as thin wires and
it has become possible to construct magnets with superconducting coils and
fields exceeding significantly the saturation limit of about 2 T in iron domi-
nated magnets. The magnetic-field properties in such magnets are determined
by the location of current carrying wires, a feature that has become one of the
most difficult engineering challenges in the construction of superconducting
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magnets. Any movement of wires during cool down or under the influence
of great mechanical forces from the magnetic fields must be avoided. Gen-
erally, the superconducting material is embedded into a solid copper matrix
to prevent thermal destruction in the event of a quench. The fact that most
superconducting magnets have an iron collar on the outside of the coils does
not affect our discussion since it mostly serve to keep the coils firmly in place
and to shield the outside environment from excessive magnetic field. In this
text, we will not consider technical construction methods of superconducting
magnets, but concentrate rather on the fundamental physical principles of
generating multipole fields in conductor dominated magnets. These principles
are obviously applicable to any ironless magnets, superconducting or other.
More comprehensive accounts of superconducting magnet technology can be
found, for example, in [25].

The determination of the magnetic field in such magnets is somewhat more
complicated compared to that in iron dominated magnets. In the latter case,
we performed an integration of Maxwell’s curl equation along a path which
is composed of a contribution from a known or desired field in the magnet
aperture, while all other parts of the integration path do not contribute to the
integral because either the field is very small like in unsaturated iron, or the
path is orthogonal to the field lines. In iron free magnets, we must consider
the whole path surrounding the current carrying coil.

Arbitrary multipole fields can be constructed in two somewhat related
ways which we will discuss here in more detail. The first method uses two equal
circular or elliptical conductors with the same current densities flowing in
opposite directions. We consider such a pair of conductors to overlap, though
not fully, as shown in Fig. 3.15 (left) and note that there is no net current in
the overlap region. The material can therefore be eliminated from this region
providing the magnet aperture for the particle beam. We consider this simple
case, proposed first by Rabi [26], to generate a pure dipole field. The magnetic
field within a cylindrical conductor with uniform current density j at radius
r (Fig. 3.15) is

Hy = % jr (3.88)

and in cartesian coordinates the field components are

H,=—3jy and Hy,=1jz. (3.89)

Now we superimpose on this another identical conductor with the current
running in the opposite direction —j. Since the electrical currents cancel, the
fields cancel and there is no magnetic field. If however, both conductors are
separated by a distance +dx along the horizontal coordinate as shown in
Fig. 3.15 a homogenous vertical field can be created in the overlap region.
The horizontal field component H, depends only on the vertical coordinate.
The contributions of both conductors to H, are therefore equal in magnitude
but of opposite sign and cancel perfectly everywhere within the overlap of the
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Fig. 3.15. Magnetic field in the overlap region of two cylindrical electrical conduc-
tors

conductors. The residual vertical field component from both conductors, on
the other hand, is

Hy=1j[(x+6z)— (. —éz)] = j206x. (3.90)

Within the area of the overlapping conductors, a pure vertical dipole field
has been generated that can be used for beam guidance after eliminating the
material in the overlap region where no net current flows. The current density
j is assumed to be constant and the current distribution just outside of the
limits of the overlap region is

I(p) =270z cosp. (3.91)

Conversely, we can state that a cosine-like current distribution on a circle
produces a pure magnetic dipole field within that circle leading to the second
method of generating magnetic fields for beam transport systems based on a
specific current distribution along the periphery of the aperture. The correla-
tion between a particular current distribution and the resulting higher order
multipole fields can be derived in a formal and mathematical way. To do this
it is convenient to use complex functions. A complex function

f(w)=H, +iH, (3.92)
is an analytical functions of w = x + iy if the Cauchy-Riemann equations

0H, OH,

H H.
o, _9 =0 and =0 (3.93)

or oy dy + ox

hold. We differentiate the Cauchy—Riemann equations with respect to  and
y, respectively, and get, after addition, the Laplace equations for H, and H,,.
Identifying H; with the components of the magnetic field we find the complex
function f (w) to describe a two-dimensional field in the (z,y)-plane [27]. To
derive the correlation between current distribution and magnetic fields, we
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start with a line current I along the z-axis. The complex potential for the
magnetic field generated by such a line current is

2
W= - I In(w — vp), (3.94)

where v is the location of the line current flowing in the z-direction and w is
the location of the field point in the complex (x,y)-plane. We may verify the
correctness of this potential by equating

cdW 1 1
H = —-—— = —
(w) 47 dw 2w — vy

= (H, +iH,), (3.95)

where w = x + iy and vg = xg + iyp. In Cartesian coordinates, such a line
current generates the well-known field components
11y—yo

11 x—x
= __ d H,=--=
3R R a 2R R

(3.96)

at a distance R?> = (z — 20)? + (y — yo)? from a line current I. The complex
function f (w) has a first-order singularity at w = vy and from Cauchy’s
residue theorem we find

%HWMw:;% L qw=ir, (3.97)

w — Yo

where 21/c is the residue of the function H(w). This can be applied to a
number of line currents by adding up the r.h.s of all residues, or integrating
a current distribution.

Following Beth, we apply (3.97) to a current sheet along the line v, where
dI/dv = I(yp) is the line current density flowing perpendicular through the
paper or (x,y)-plane and parallel to the z-direction. A closed path leading
clockwise and tightly around the current element I(p)Av (Fig. 3.16) gives
with (3.97)

Hi(w) — Ho(w) = =i I(¢). (3.99)

integration path

v

Fig. 3.16. Current sheet theorem



98 3 Electromagnetic Fields

We must consider here only fields very close to the current sheet to elimi-
nate the contributions from other current elements. Therefore the integration
path surrounds closely the current element and H; and Hy are the fields on
either side of the current sheet for w — wv. This current sheet theorem will
prove very useful in deriving magnetic fields from current distributions.

A cosine-like current distribution on a circle produces a pure dipole field
inside this circle. Generalizing this observation, we study fields generated by
higher harmonic current distributions. Let the current be distributed along a
circle of radius R like

v = Re%, (3.99)

where ¢ is the angle between the radius vector R and the positive x-
coordinate. The azimuthal current distribution along the circle be

I(p) = — Z I, cos(np + ¢n) (3.100)

n=1

and replacing the trigonometric functions by exponential functions, we get
with (3.99)

17 n ; R\"
cos(ny + ¢p) = 3 [ew" (%) +etn <U> } . (3.101)

An ansatz for the field configuration which meets the proper boundary
condition at the location of the currents w = v is obtained by inserting (3.101)
into (3.100) and we get after differentiation from (3.97)

) n—1 ) n+1
ei¥n (%) +eien (R> ] L (3.102)
w

We would like to apply (3.102) to any location w not just at the current
sheet and add therefore two more boundary conditions. The fields must not
diverge anywhere in the (x,y)-plane specifically for w — 0 and w — co. We
also exclude a constant field in all of the (z, y)-plane since it would require an
infinite energy. Application of these boundary conditions to (3.102) gives the
fields

1< I,
H — Hy=i= o
0 ‘2;"3

1 I, . wyn—1
. — 5 noien [ 2
Hi(w) =i ;n oe (R) (3.103)
o o I, _. R\
Hy(w) = —i— Zn— e ¥ <) . (3.104)
c = R w

Both fields now meet proper boundary conditions for realistic fields at
w =0 and w = oo and are consistent with the current sheet theorem (3.98).
Being interested only in the field inside the current distribution, we find with
(3.95)
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. 1 I, ; T+ 1y net
Hy+1HxHi(w)12ZnRe"’"( = > , (3.105)

n=1

where R? = (z — 20)? + (y — y0)?. The angle ,, determines the orientation of
the multipole fields and to be consistent with the definitions of conventional
magnet fields, we set ¢, = 0 for upright multipoles and ¢,, = 7/ (2n) for
rotated multipoles. An upright quadrupole field, for example, is defined by
the imaginary term for n = 2 in (3.105)

e .
Hi(w):lR—ngzlgw. (3.106)

For a rotated quadrupole, the orientation ps = 7/4, and the field gradient is
determined by

I
9= (3.107)
The current distribution to create such a field is from (3.100)
I(p) = =21y cos(2¢ +m/4). (3.108)

In a similar way, current distributions can be derived for arbitrary higher
order field configurations including combinations of multipole fields. Proper
selection of the orientation ¢,, distinguishes between upright and rotated mag-
nets. The derivation was made based on a current distribution on a circle but
could have been based as well on an ellipse. We also chose to use only a thin
current sheet. A “thick” current sheet can be represented by many thin current
sheets and a linear superposition of fields. More detailed information about
the techniques of building superconducting magnets exceeds the goals of this
text and more specialized literature should be consulted, for example [25].

3.6 Periodic Wiggler Magnets

Particular arrays or combinations of magnets can produce desirable results
for a variety of applications. An especially useful device of this sort is a wig-
gler magnet [28] which is composed of a series of short bending magnets with
alternating field excitation. Most wiggler magnets are used as sources of high
brightness photon beams in synchrotron radiation facilities and are often also
called undulators. There is no fundamental difference between both. We dif-
ferentiate between a strong field wiggler magnet and an undulator, which is
merely a wiggler magnet at low fields, because of the different synchrotron
radiation characteristics. As long as we talk about magnet characteristics in
this text, we make no distinction between both types of magnets. Wiggler
magnets are used for a variety of applications to either produce coherent or
incoherent photon beams in electron accelerators, or to manipulate electron
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beam properties like beam emittance and energy spread. To compensate anti-
damping in a combined function synchrotron a wiggler magnet including a
field gradient has been used for the first time to modify the damping parti-
tion numbers [29]. In colliding-beam storage rings wiggler magnets are used
to increase the beam emittance for maximum luminosity [30]. In other appli-
cations, a very small beam emittance is desired as is the case in damping rings
for linear colliders or synchrotron radiation sources which can be achieved by
employing damping wiggler magnets in a different way [31].

Wiggler magnets are generally designed as flat wiggler magnet as shown
in Fig. 3.17 [28] with field components only in one plane or as helical wiggler
magnets [32—-34] where the transverse field component rotates along the mag-
netic axis. In this discussion, we concentrate on flat wigglers which are used
in growing numbers to generate, for example, intense beams of synchrotron
radiation from electron beams, to manipulate beam parameters, or to pump
a free electron laser.

y U & O 4
s il Bl EX T
V & & 4

«cvrheir» Ay »

Vo

permanent magnet pieces

particle
path

Fig. 3.17. Permanent magnet wiggler showing the magnetization direction of indi-
vidual blocks (schematic)

3.6.1 Wiggler Field Configuration

Whatever the application may be, the wiggler magnet deflects the electron
beam transversely in an alternating fashion without introducing a net deflec-
tion on the beam. Wiggler magnets are generally considered to be insertion
devices installed in a magnet free straight section of the lattice and not being
part of the basic magnet lattice. To minimize the effect of wiggler fields on
the particle beam, the integrated magnetic field through the whole wiggler
magnet must be zero

/ Bl ds=0. (3.109)
wiggler

Since a wiggler magnet is a straight device, we use a fixed Cartesian coordinate
system (z,y,z) with the z-axis parallel to the wiggler axis to describe the
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wiggler field, rather than a curvilinear system that would follow the oscillatory
deflection of the reference path in the wiggler. The origin of the coordinate
system is placed in the middle of one of the wiggler magnets. The whole
magnet may be composed of NV equal and symmetric pole pieces placed along
the z-axis at a distance A,/2 from pole center to pole center as depicted in
Fig. 3.18. Each pair of adjacent wiggler poles forms one wiggler period with a
period length A, and the whole magnet is composed of N/2 periods. Since all
periods are assumed to be the same and the beam deflection is compensated
within each period no net beam deflection occurs for the complete magnet.

—> - —>

t ' t

A I A z,
| v |

——period length (A )——

t \ t
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permanent magnet blocks with magnetization

Fig. 3.18. Field distribution in a wiggler magnet

On a closer inspection of the precise beam trajectory we observe a lateral
displacement of the beam within a wiggler magnet. To compensate this lateral
beam displacement, the wiggler magnet should begin and end with only a half
pole of length A, /4 to allow the beams to enter and exit the wiggler magnet
parallel with the unperturbed beam path.

The individual magnets comprising a wiggler magnet are in general very
short and the longitudinal field distribution differs considerably from a hard-
edge model. In fact most of the field will be fringe fields. We consider only
periodic fields which can be expanded into a Fourier series along the axis
including a strong fundamental component with a period length A, and higher
harmonics expressed by the ansatz [35]

By, = By Z ban+1(z,y) cos[(2n + 1) k2], (3.110)

n>0
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where the wave number k, = 2m/X,. The functions b;(z,y) describe the vari-
ation of the field amplitude orthogonal to the beam axis for the harmonic 1.
The content of higher harmonics is greatly influenced by the particular de-
sign of the wiggler magnet and the ratio of the period length to the pole gap
aperture. For very long periods relative to the pole aperture the field profile
approaches that of a hard-edge dipole field with a square field profile along
the z-axis. For very short periods compared to the pole aperture, on the other
hand, we find only a significant amplitude for the fundamental period and
very small perturbations due to higher harmonics.
We may derive the full magnetic field from Maxwell’s equations based on
a sinusoidal field along the axis. Each field harmonic may be determined sep-
arately due to the linear superposition of fields. To eliminate a dependence of
the magnetic field on the horizontal variable z, we assume a pole width which
is large compared to the pole aperture. The fundamental field component is
then
By (y,z) = By bi(y) coskyz. (3.111)

Maxwell’s curl equation is in the wiggler aperture V x B = 0 and we have

with (3.111) and 282 = 22

0B, OB .
9y = a—zy = —Bobi(y) kp sinkpz. (3.112)

Integration of (3.112) with respect to z gives the vertical field component
By = —Bo ky b (1) / sin by . (3.113)
0

We have not yet determined the y-dependence of the amplitude function by (y).
From VB = 0 and the independence of the field on the horizontal position,
we get with (3.111)

0B. _ 0B, __, 9h(y)

0z Oy 0 dy

cos kpz . (3.114)

Forming the second derivatives 9% B, /(0y 0z) from (3.112), (3.114) we get for
the amplitude function the differential equation

9bi(y)
TyQ = kg bi(y), (3.115)
which can be solved by the hyperbolic functions

b1(y) = a coshkpy + b sinh kpy . (3.116)

Since the magnetic field is symmetric with respect to y = 0 and b,(0) = 1,
the coefficients are a = 1 and b = 0. Collecting all partial results, the wiggler
magnetic field is finally determined by the components
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B, =0,
B, = By cosh kpy coskpz, (3.117)
B, = —By sinh kpy sink,z,
where B, is obtained by integration of (3.112) with respect to y.
The hyperbolic dependence of the field amplitude on the vertical position

introduces higher order field errors which we determine by expanding the
hyperbolic functions

o Ry ()t (hpy)® | (Rpy)®
coshkpy =1+ 51 + A1 + Gl + Y +e (3.118)
koy)®  (kpy)®  (kpy)T
sinhkpy = +(kp y) + ( ggf) + ( p;,’) + ( "7?) - (3.119)

Typically the vertical gap in a wiggler magnet is much smaller than the period
length or y < A, to avoid drastic reduction of the field strength. Due to the
fast convergence of the series expansions (3.118) only a few terms are required
to obtain an accurate expression for the hyperbolic function within the wiggler
aperture. Expansion (3.118) displays higher order field components explicitly
which, however, do not have the form of higher order multipole fields and we
cannot treat these fields just like any other multipole perturbation but must
consider them separately.

To determine the path distortion due to wiggler fields, we follow the ref-
erence trajectory through one quarter period starting at a symmetry plane in
the middle of a pole. At the starting point z = 0 in the middle of a wiggler pole
the beam direction is parallel to the reference trajectory and the deflection
angle at a downstream point z is given by

I(z) = E/o B, (z) dz = EBO cosh kpy/o cos kpz dz (3.120)
e 1 .
= ——By+—coshkyy sink,z.
kp

The maximum deflection angle is equal to the deflection angle for a quarter
period or half a wiggler pole and is from (3.120) for y = 0 and kpz = 7/2

0= —230%. (3.121)

This deflection angle is used to define the wiggler strength parameter

K = ) = ce

Bo Ay, 3.122
orme2 0P ( )
where mc? is the particle rest energy and « is the particle energy in units of

the rest energy. In more practical units this strength parameter is
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K =Cg By (T) Ap (cm) = By (T) Ap (cm), (3.123)

where
ce

Ck 5 =093373 T 'em™".

2mmece

The parameter K is a characteristic wiggler constant defining the wiggler
strength and is not to be confused with the general focusing strength K =
k2 +k. Coming back to the distinction between wiggler and undulator magnet,
we speak of a wiggler magnet if K > 1 and of an undulator if K <« 1. Of
course, many applications happen in a gray zone of terminology when K ~ 1.

3.7 Electric Field Components

Electrical fields are commonly employed for low energy, nonrelativistic par-
ticles. As discussed in Chap. 2, magnetic devises are most effective at high
energies when particle velocities are close to the speed of light. At lower ve-
locities, magnetic fields lose their efficiency and are often replaced by more
economic electric field devises. At very low energies electric fields are used
almost exclusively.

3.7.1 Electrostatic Deflectors

The electric field E between two parallel metallic electrodes is uniform in
space and can be used to deflect a particle beam. This field can be derived
from (3.10) taking only the first term modified for electric fields Vi(z,y) =
— % Ajp x. To get a uniform field, we generate equipotential surfaces by plac-
ing metallic electrodes at, for example, z = +G = const. and applying a
voltage difference V' between the electrodes. The Lorentz force of the electric
field on a charged particle is by virtue of d’Alembert’s principle equal to the
centrifugal force or assuming a deflection in the horizontal plane

yAmc? 3?
v

eZE, = (3.124)

Here we have assumed that the electric field is parallel to the vector from
the particle to the center of curvature. That is true for parallel plates which are
curved to follow the curvature or for straight parallel plates if the deflection
angle is very small. Solving for the curvature, we get

1 eE, eZV v 1
g — —, 3.125
p YAmMc23? Fyin v+ 12G ( )

where 2G is the distance and V' the voltage between the electrodes.
We kept here the relativistic notation to cover the rare use of electrostatic
fields on high energy beams for small deflections which cannot be done by
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magnetic fields. For nonrelativistic particles, (3.125) reduces to % = ff:f]z

or in case of an ion beam with charge multiplicity Z and kinetic energy per

nucleon Fy;, = %mv2

1 1 _ €ZE(V/m)
; (m ) o QAEkin (GV) ’

where E = V/ (2G)is the electric field between the electrodes.

(3.126)

3.7.2 Electrostatic Focusing Devices

The most simple electrostatic device with focusing properties is an iris elec-
trode on some potential and concentric with the path of a charged particle
beam as shown in Fig. 3.19.

r

iris aperture I a

VO

Fig. 3.19. Iris electrode

To determine the field configuration and focusing properties, we note that
the electric potential distribution V (r, z) in the vicinity of the iris is rotational
symmetric and expanding into a Taylor series about r = 0 this symmetry
requires all odd terms of the expansion to vanish.

1. 1 64‘/0 (Z)
\% =W -V 2y g 3.127
(1,2) = Vi (2) + 570 () 12 4 o= 0t (3.127)

With a dot we denote derivatives with respect to r and with a prime we
denote derivatives with respect to z. To be a real potential solution, (3.127)
must also be a solution of the Laplace equation

v 1oV 9*V
AV = —+ ——+ — =0. 3.128
or? + r Or + 022 ( )
Inserting (3.127) into (3.128) results in

. 10*V 1... . 10*V
0=VW+3 UT2+§V(JT2+V0+* 02

1.
" "2
where the coefficients of each term ™ must be equal to zero separately to give
.. 4 ..
2Wo+ VY =0,Vo =0, and 22 r‘ﬁo + %VO” = 0. Using these relations, we set

379
4 4 . . .
aar‘i" = %aaz‘ﬁ“ and the potential function is
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1 1 0*V;
V(r2) =V (2) = 7 (2) r* + o 48724(” r (3.130)
The on-axis (r = 0) field component is
E,=-Vj(2), (3.131)
and from VE =0 or 8£2 = —%% (rE,), we get by integration
rOF,
Er=-55. = Ve () r. (3.132)
Knowing the field components, we can derive the focusing properties by

integrating the radial equation of motion m# = mv?r” = ¢E,, where v and ¢

are the particle velocity and charge, respectively. We use Fig. 3.20 to define
the integration

F2) z2
/ ) - q OE,
7"2—7"1—mU2/Z Erdz__2mv2/z "oz dz
1 1

and solve in thin lens approximation (r = const., v = const.)

’ / _an

—r; = Ey— FEq) . 3.133
ry == g s (B~ B) (3.133)
With imv? = ¢V} and setting E = —V”, (3.133) becomes rjy — r{ = 2L VQ/‘;OV{
and the focal length of the iris electrode is
1 V-W
i . 3.134
The transformation matrix is finally
1 0
Misis = | vy-v{ 1 (3.135)
Vo

From the transformation matrix or focal length it is obvious that there
is no focusing for a symmetric iris electrode where Vy = V/. On the other
hand, an asymmetric potential is not possible without additional electrodes.
We investigate therefore the properties of an iris doublet.

thin lens

Fig. 3.20. Focusing by an iris electrode
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3.7.3 Iris Doublet

We now investigate the particle dynamics for an iris doublet as shown in Fig.
3.21. Between both electrodes a distance d apart, the potential varies linearly
from V7 to V5. The doublet has three active parts, two iris electrodes and the
drift space between them. The transformation matrices for both iris electrodes
are

1 0 1 0
Mi=1| w-w ) and My =| n-n K (3.136)
4dv; 4dVs
V, - -/

1 d ) ,

- - Y

A\ V(z) 2

Vi

Z

Fig. 3.21. Focusing by an iris doublet

The transformation matrix for the drift space between the electrodes can
be derived from the particle trajectory

z B B 4 T/pl B
r(z) =7 + r(Z)dz=r —|—/ —dz. 3.137
(z)=n /0 ) Y o i+ Ap() ( )

The particle momentum varies between the electrodes from p; = v/2mFEy, to

p1+ Ap(z) = \/Qm (Ekin + qVQ;VI z) and the integral in (3.137) becomes
d
2Fyind Vo—V1 _ 2dv/Vq

— + 3.138
q(Va—V3) ! Fnd (3.138)

Zl = —m———.
o VvVa+ Vi

Eyin d

The particle trajectory at the location of the second electrode is r(d) =

re =11 + %r’l and its derivative r = r}\/V1/+/Va from which we can

deduce the transformation matrix

| 24V
Ma=| VYL (3.139)
LA

VV2
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We may now collect all parts and get the transformation matrix for the iris
doublet

s(R+1) 2%
Map = MoMaMi = | (rR2_1)sR+1) 45, | > (3.140)
8dR? 2R°

where R = 1/Va/ /V;. Unfortunately, this doublet is still not very useful since
it still changes the energy of the particle as indicated by the fact that the
determinate det(Mgp) = 1/R.

3.7.4 Einzellens

To obtain a focusing device that does not change the particle energy, we
combine two doublets to form a symmetric triplet as shown in Fig. 3.22 The
transformation matrix for an Einzellens is then the product of two symmetric
doublets

mi1 Mi2

Mel :M2d (‘/27‘/1)-/\/11(1 (%a%) = 9 (3141)
ma1  Ma22
where
3R _ 3 2d 3R—1
N ey R (3.142)
3(R*—1)(1-R)(3—R) 3 3R :
ma1 = SR ; Mog =4 — 55 — 55,
and R = % = \/ 1+ % = \/ 1+ E‘ZT‘:;. The Einzellens displays some peculiar

focusing properties depending on the potentials involved compared with the
particle’s kinetic energy. The focal length of the Einzellens is

% _ % (1-R*)(R—1)(3-R). (3.143)

Varying the potential V, we obtain varying focusing conditions as summarized
in the following table and plotted as a function of R in Fig. 3.23.

V]-- --VZ - V]

V(z) 2
\A \ \A

Fig. 3.22. Structure of an Einzellens
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Fig. 3.23. Focusing 8d/3f from (3.143) in an Einzellens as a function of R

The results of focusing properties in an Einzellens are compiled in the fol-
lowing table. Depending on the chosen voltage the Einzellens can be focusing
or defocusing.

|4 V<=V -Vi<V<<0 0<V <8V V>8V
R Imaginary O0<R<1 1<R<3 R>3
1/f  No solution >0 >0 <0

N/A Focusing Focusing  Defocusing

The practical focusing regime is limited to 0 < R < 1. For 1 < R < 3 the
focusing is very weak and for R > 3 the Einzellens is defocusing.

3.7.5 Electrostatic Quadrupole

A different focusing device based on electrostatic fields can be designed very
much along the strategy for a magnetic quadrupole. We pick the first term
on the r.h.s. of (3.16) and modify the expression to reflect the beam rigidity
(3.4) for electric fields

B

e

Va(z,y) = Asp %(:1:2 — y2) =—g %(m2 — y2), (3.144)

where the field gradient, ¢ = 0F, /0x. Such a device can be constructed by
placing metallic surfaces in the form of a hyperbola

22 —y®> = £ R = const. (3.145)
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Fig. 3.24. Electric field quadrupole, ideal pole profile (left), and practical approach
with cylindrical metallic tubes (right)

where R is the aperture radius of the device as shown in Fig. 3.24 (left)

The potential of the four electrodes is alternately V = :I:% gR?. This design
can be somewhat simplified by replacing the hyperbolic metal surfaces by
equivalently sized metallic tubes as shown in Fig. 3.24 (right). Numerical
computer simulation programs can be used to determine the degradation of
the quadrupole field due to this simplification.

Problems

3.1 (S). Derive the geometry of electrodes for a horizontally deflecting electric
dipole with an aperture radius of 2 cm which is able to deflect a particle beam
with a kinetic energy of 10 MeV by 10 mrad. The dipole be 0.1 m long. What
is the potential required on the electrodes?

3.2 (S). Design an electrostatic quadrupole which provides a focal length of
10 m in the horizontal plane for particles with a kinetic energy of 10 MeV. The
device shall have an aperture with a diameter of 10 cm and an effective length
of 0.1m. What is the form of the electrodes, their orientation, and potential?

3.3 (S). In the text, we have derived the fields from a scalar potential. We
could also derive the magnetic fields from a vector potential A through the
differentiation B = V x A. For purely transverse magnetic fields, show that
only the longitudinal component A, # 0 must be nonzero. Derive the vec-
tor potential for a dipole and quadrupole field and compare with the scalar
potential. What is the difference between the scalar potential and the vector
potential?

3.4 (S). Derive the pole profile (aperture radius » = 1lcm) for a combined
function magnet including a dipole field to produce for a particle beam of
energy £ = 50 GeV a bending radius of p = 300 m, a focusing strength
k = 0.45 m~2, and a sextupole strength of m = 23.0 m~3.
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3.5 (S). Strong mechanical forces exist between the magnetic poles when a
magnet is energized. Are these forces attracting or repelling the poles? Why?
Consider a dipole magnet £ =1 m long, a pole width w = 0.2 m, and a field
of B =1.5T. Estimate the total force between the two magnet poles?

3.6 (S). Following the derivation of (2.8) for a bending magnet, derive a simi-
lar expression for the electrical excitation current in A x turns of a quadrupole
with an aperture radius R and a desired field gradient g. What is the total
excitation current necessary in a quadrupole with an effective length of £ =
1 m and R = 3 cm to produce a focal length of f = 50 m for particles with
an energy of cp = 500 GeV?

3.7 (S). Consider a coil in the aperture of a magnet as shown in Fig. 3.25.
All n windings are made of very thin wires and are located exactly on the
radius R. We rotate now the coil about its axis at a rotation frequency v.
Such rotating coils are used to measure the multipole field components in a
magnet. Show analytically that the recorded signal is composed of harmonics
of the rotation frequency v. What is the origin of the harmonics?

e

magnet pole

Fig. 3.25. Rotating coil in a magnet to determine higher order multipole compo-
nents

3.8 (S). Explain why a quadrupole with a finite pole width does not produce a
pure quadrupole field. What are the other allowed multipole field components
(ignore mechanical tolerances) and why?

3.9 (S). Through magnetic measurements the following magnetic multipole
field components in a quadrupole are determined. At x = 1.79 cm and y =0
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cm: By = 0.3729 T, By = 1.25 x 107 T, By = 0.23 x 107* T, Bs = 0.36 x
1074 T, and Bg = 0.726 x 107* T, By = 0.020 x 1074 T, Bg = 0.023 x 10~
T, By = 0.0051 x 10~* T, and Bjo = 0.0071 x 10~% T. Calculate the relative
multipole strengths at = 1 ¢m normalized to the quadrupole field at 1 cm.
Why do the 12-pole and 20-pole components stand out with respect to the
other multipole components?

3.10 (S). Derive the equation for the pole profile of an iron dominated upright
octupole with a bore radius R. Ignore longitudinal variations. To produce a
field of 0.5 T at the pole tip (R = 3 c¢m), what total current per coil is required?

3.11 (S). Calculate and design the current distribution for a pure air coil,
superconducting dipole magnet to produce a field of By = 5 T in an aperture

of radius R = 3 cm without exceeding an average current density of 7 = 1000
A/mm?.

3.12. Derive an expression for the current distribution in air coils to produce a
combination of a dipole, quadrupole, and sextupole field. Express the currents
in terms of fields and field gradients.

3.13. Design a dipole magnet as proposed by Rabi with an aperture radius of
5 cm and a field of 1 kG. The separation of both circles should be no more than
20% of the radius. Calculate the required electrical current and the current
density. To allow appropriate cooling the average current density should not
exceed 5 A/mm?. In case the magnet must be pulsed like a kicker magnet to
stay below this thermal limit determine the maximum duty cycle. Calculate
the stored field energy, the inductance of the magnet, and the required voltage
from the power supply if the rise time should be no more than 10% of the
pulse length.
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Beam Dynamics



4

Single Particle Dynamics

The general equations of motion, characterized by an abundance of pertur-
bation terms on the right-hand side of, for example, (3.75), (3.76) have been
derived in the previous chapter. If these perturbation terms were allowed to
become significant in real beam transport systems, we would face almost in-
surmountable mathematical problems trying to describe the motion of charged
particles in a general way. For practical mathematical reasons, it is therefore
important to design components for particle beam transport systems such
that undesired terms appear only as small perturbations. With a careful de-
sign of beam guidance magnets and accurate alignment of these magnets we
can indeed achieve this goal.

Most of the perturbation terms are valid solutions of the Laplace equation
describing higher order fields components. Virtually all these terms can be
minimized to the level of perturbations by a proper design of beam trans-
port magnets. Specifically, we will see that the basic goals of beam dynamics
can be achieved by using only two types of magnets, bending magnets and
quadrupoles, which sometimes are combined into one magnet. Beam transport
systems, based on only these two lowest order magnet types, are called linear
systems and the resulting theory of particle dynamics in the presence of only
such magnets is referred to as linear beam dynamics or linear beam optics.

In addition to the higher order magnetic field components, we also find
purely kinematic terms in the equations of motion due to large amplitudes or
due to the use of curvilinear coordinates. Some of these terms are generally
very small for particle trajectories which stay close to the reference path such
that divergences are small, 2’ < 1 and 3’ < 1. The lowest order kinematic
effects resulting from the use of a curvilinear coordinate system, however, can-
not generally be considered small perturbations. One important consequence
of this choice for the coordinate system is that the natural bending magnet
is a sector magnet which has very different beam dynamics properties than a
rectangular magnet which would be the natural magnet type for a Cartesian
coordinate system. While a specific choice of a coordinate system will not
change the physics, we must expect that some features are expressed easily
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or in a more complicated way in one or the other coordinate system. We have
chosen to use the curvilinear system because it follows the ideal path of the
particle beam and offers a simple direct way to express particle trajectories
deviating from the ideal path. In a fixed Cartesian coordinate system, we
would have to deal with geometric expressions relating the points along the
ideal path to an arbitrary reference point. The difference becomes evident for a
simple trajectory like a circle of radius r and center at (xg,yo) which in a fixed
orthogonal coordinate system would be expressed by (z—x¢)%+(y—yo)? = r2.
In the curvilinear coordinate system this equation reduces to the simple iden-

tity x(z) = 0.

4.1 Linear Beam Transport Systems

The theory of beam dynamics based on quadrupole magnets for focusing is
called strong focusing beam dynamics in contrast to the case of weak focusing.
Weak focusing systems utilize the focusing of sector magnets in combination
with a small gradient in the bending magnet profile. Such focusing is utilized
in circular accelerators like betatrons or some cyclotrons and the first gen-
eration of synchrotrons. The invention of strong focusing by Christofilos [18]
and independently by Courant et al. [19] changed quickly the way focusing
arrangements for large particle accelerators are determined. One of the main
attractions for this kind of focusing was the ability to greatly reduce the mag-
net aperture needed for the particle beam since the stronger focusing confines
the particles to a much smaller cross section compared to weak focusing. A
wealth of publications and notes have been written during the 1950s to deter-
mine and understand the intricacies of strong focusing, especially the rising
problems of alignment and field tolerances as well as those of resonances.
Particle stability conditions from a mathematical point of view have been
investigated by Moser [36].

Extensive mathematical tools are available to determine the characteris-
tics of linear particle motion. In this chapter, we will discuss the theory of
linear charged particle beam dynamics and apply it to the development of
beam transport systems, the characterization of particle beams, and to the
derivation of beam stability criteria.

The bending and focusing function may be performed either in separate
magnets or be combined within a synchrotron magnet. The arrangement of
magnets in a beam transport system, called the magnet lattice, is often re-
ferred to as a separated function or combined function lattice depending on
whether the lattice makes use of separate dipole and quadrupole magnets or
uses combined function magnets, respectively.

Linear equations of motion can be extracted from (3.75),(3.76) to treat
beam dynamics in first or linear approximation. For simplicity and without
restricting generality we assume the bending of the beam to occur only in one
plane, the x-plane. The linear magnetic fields for bending and quadrupole
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magnets are expressed by

B, = -gv, (4.1a)
B, = By + gz, (4.1b)

where B, is the dipole field and g is the gradient of the quadrupole field.
With these field components we obtain from (3.75), (3.76) the equations of
motion in the approximation of linear beam dynamics

2" + (ko+r3,) z =0, (4.2a)
y' —koy=0. (4.2b)

The differential equations (4.2) cannot be solved in general because the mag-
net strength parameters are determined by the actual distribution of magnets
along the beam transport line and therefore are arbitrary functions of the
independent variable z. The equations of motion however, directly exhibit the
focusing power along the beam transport line. Integrating either of (4.2) over
a short distance Az, we find the deflection angle [y”dz =y’ — y) = a. On
the other hand, [ koydz ~ koy Az and applying definition (2.14) for the fo-
cal length, we find the general expressions for the focal length of magnetic
gradient fields

1 e OB
7 +ko Az +cp o z, (4.3a)
1 e 0B
3 0 = 0 (4.3b)

Knowing the field gradient in any segment of a beam transport line of length
Az, we may either immediately determine the focusing power of this segment
or formulate the equations of motion. Both, the focusing from the bending
magnet and that from a quadrupole may be combined into one parameter

K(2) = ko(2) + K3, (2). (4.4)

So far no distinction has been made between combined or separated function
magnets and the formulation of the equations of motion based on the magnet
strength parameter K as defined in (4.3) is valid for both types of magnets. For
separated function magnets either kg or kg, is set to zero while for combined
function magnets both parameters are nonzero.

4.1.1 Nomenclature

Focusing along a beam transport line is performed by discrete quadrupoles
placed to meet specific particle beam characteristics required at the end or
some intermediate point of the beam line. The dependence of the magnet
strength on z is, therefore, a priori indeterminate and is the subject of lattice
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design in accelerator physics. To describe focusing lattices simple symbols are
used to point out location and sometimes relative strength of magnets. In this
text we will use symbols from Fig. 4.1 for bending magnets, quadrupoles, and
sextupoles or multipoles.

1

bending magnet focusing quadrupole

-

sextupole/multipole defocusing quadrupole

I >

Fig. 4.1. Symbols for magnets in lattice design and typical distributions of magnets
along a beam transport line

All magnets are symbolized by squares along the z-axis and the length of
the symbol may represent the actual magnetic length. The symbol for pure
dipole magnets is a square centered about the z-axis while bending magnets
with a gradient are shifted vertically to indicate the sign of the focusing.
Positive squares are used to indicate horizontal focusing and negative squares
for horizontal defocusing quadrupoles. Similar but vertically higher symbols
are used for quadrupoles indicating the sign of the focusing as well.

Using such symbols, a typical beam transport line may have general pat-
terns like that shown in Fig 4.1. The sequence of magnets and their strength
seems random and is mostly determined by external conditions to be discussed
later. More regular magnet arrangements occur for circular accelerators or
very long beam transport lines.

4.2 Matrix Formalism in Linear Beam Dynamics
The seemingly arbitrary distribution of focusing parameters in a beam trans-

port system makes it impossible to formulate a general solution of the differ-
ential equations of motion (4.2). To describe particle trajectories analytically
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through a beam transport line composed of drift spaces, bending magnets,
and quadrupoles, we will derive mathematical tools which consist of partial
solutions and can be used to describe complete particle trajectories.

In this section, we will derive and discuss the matrix formalism [20] as a
method to describe particle trajectories. This method makes use of the fact
that the magnet strength parameters are constant at least within each individ-
ual magnet. The equations of motion become very simple since the restoring
force K is constant and the solutions have the form of trigonometric func-
tions. The particle trajectories may now be described by analytical functions
at least within each uniform element of a transport line including magnet free
drift spaces.

These solutions can be applied to any arbitrary beam transport line, where
the focusing parameter K changes in a step like function along the beam
transport line as shown in Fig. 4.1. By cutting this beam line into its smaller
uniform pieces so that K = const. in each of these pieces, we will be able
to follow the particle trajectories analytically step by step through the whole
transport system. This is the model generally used in particle beam optics
and is called the hard edge model.

In reality, however, since nature does not allow sudden changes of physical
quantities (natura non facit saltus) the hard edge model is only an approxi-
mation, although for practical purposes a rather good one. In a real magnet
the field strength does not change suddenly from zero to full value but rather
follows a smooth transition from zero to the maximum field. Sometimes, the
effects due to this smooth field transition or fringe field are important and
we will derive the appropriate corrections later in this section. For now, we
continue using the hard edge model for beam transport magnets and keep in
mind that in some cases a correction may be needed to take into account the
effects of a smooth field transition at the magnet edges.

Using this approximation, where 1/pg and k are constants, and ignoring
perturbations, the equation of motion is reduced to that of a harmonic oscil-
lator,

u' 4+ Ku=0, where K =ko+ K3, = const. (4.5)

The principal solutions have been derived in Sect. 2.5.1 and are expressed in
matrix formulation by

u(z) _ Cu(2) Su(2) Ug | (16)
u'(z) C(2) Si(2) ) \up

where v may be used for either x or y. We have deliberately separated the
motion in both planes since we do not consider coupling. Formally, we could
combine the two 2 x 2 transformation matrices for each plane into one 4 x 4
matrix describing the transformation of all four coordinates
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x(2) Cy(z) Sy(z) 0O 0 Zo
z'(2) Cp(2) 53(2) 0 0 T
= : (4.7)
y(2) 0 0 Cy(z) Sy(z) Yo
y'(2) 0 0 Cyz)S,(2) | \ wo

Obviously the transformations are still completely decoupled but in this form
we could include coupling effects, where, for example, the z-motion depends
also on the y-motion and vice versa. This can be further generalized to include
any particle parameter like the longitudinal position of a particle with respect
to a reference particle, or the energy of a particle, the spin vector, or any
particle coordinate that may depend on other coordinates. In the following
paragraphs we will restrict the discussion to linear (2 x 2) transformation
matrices for a variety of beam line elements.

4.2.1 Drift Space

In a drift space of length ¢ or in a weak bending magnet, where k3, < 1 and
ko = 0, the focusing parameter K = 0 and the solution of (4.5) in matrix
formulation can be expressed by

u(z) 1¢ o
= . (4.8)
u'(z) 01 ug

A more precise derivation of the transformation matrices for bending mag-
nets of arbitrary strength will be described later in this chapter. Any drift
space of length ¢ = z — z is, therefore, represented by the simple transforma-
tion matrix

10
Ma(0]0) = NE (4.9)

We recognize the expected features of a particle trajectory in a field free
drift space. The amplitude u changes only if the trajectory has an original
nonvanishing slope u(, # 0 while the slope itself does not change at all.

4.2.2 Quadrupole Magnet

For a pure quadrupole the bending term kg, = 0 and the field gradient or
quadrupole strength k(z) # 0 can be positive as well as negative. With these
assumptions we solve again (4.5) and determine the integration constants by
initial conditions. For k = |k| > 0 we get the transformation for a focusing
quadrupole
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_ cos ﬁ sin ¢ u(20) (4.10)

u'(z) —Vksiny  cosv u'(20)

where 99 = Vk(z — 2z . This equation is true for any section within the
quadrupole as long as both points zy and z are within the active length of the
quadrupole.

For a full quadrupole of length ¢ and strength k we set ¢ = v/kf and the
transformation matrix for a full quadrupole in the focusing plane is

coS ¢ ﬁ sin ¢

Mar (£]0) = (4.11)
—Vk sing cosy
Similarly we get in the other plane with & = —|k| the solution for a
defocusing quadrupole
u(z coshy  —— sinh u(z
() _ N )

u'(2) VIk[sinh)  cosh u' (o)

where ¢ = \/|k| (z — 2p). The transformation matrix in the defocusing plane
through a complete quadrupole of length ¢ with ¢ = 4/|k|¢ is therefore

coshp —sinhy
Map (£]0) = VIkl . (4.13)

V|k|sinhg  cosh

These transformation matrices make it straightforward to follow a particle
through a transport line. Any arbitrary sequence of drift spaces, bending mag-
nets and quadrupole magnets can be represented by a series of transformation
matrices M;. The transformation matrix for the whole composite beam line
is then just equal to the product of the individual matrices. For example, by
multiplying all matrices along the path in Fig. 4.2 the total transformation
matrix M for the 10 magnetic elements of this example is determined by the
product

M = M10~ . M5M4M3M2M1 (414)

and the particle trajectory transforms through the whole composite transport
line like

u(z) u(20)

=M (z]z0) , (4.15)

u'(z) ' (20)

where the starting point zp in this case is at the beginning of the drift space
M and the end point z is at the end of the magnet M.
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k(z)‘[

M, ‘M, MMM M M, ' M,

Fig. 4.2. Example of a beam transport line (schematic)

4.2.3 Thin Lens Approximation

As will become more apparent in the following sections, this matrix formalism
is widely used to calculate trajectories for individual particle or for a virtual
particle representing the central path of a whole beam. The repeated multi-
plication of matrices, although straightforward, is very tedious and therefore
most beam dynamics calculations are performed on digital computers. In some
cases, however, it is desirable to analytically calculate the approximate prop-
erties of a small set of beam elements. For these cases it is sufficient to use
what is called the thin lens approximation. In this approximation it is assumed
that the length of a quadrupole magnet is small compared to its focal length
(¢ < f) and we set

{0, (4.16)

while keeping the focal strength constant,
f~' =4kl = const. (4.17)

This result is analogous to geometric light optics, where we assume the glass
lenses to be infinitely thin. As a consequence ¢ = vk ¢ — 0 and the transfor-
mation matrices (4.11), (4.13) are the same in both planes except for the sign
of the focal length

u(z 17/ U,
(@) _ o1, (4.18)
u'(2) —% 1 ug
where
L =Fk¢ > 0 in the focusing plane
f &P (4.19)

f~'=k¢ < 0 in the defocusing plane.

The transformation matrix has obviously become very simple and exhibits
only the focusing property in the form of focal length. Quite generally one
may regard for single as well as composite systems the matrix element My,
as the element that expresses the focal strength of the transformation.



4.2 Matrix Formalism in Linear Beam Dynamics 123

In thin lens approximation it is rather easy to derive focusing properties of
simple compositions of quadrupoles. A quadrupole doublet composed of two
quadrupole magnets separated by a drift space of length L is described by the
total transformation matrix

10\ (1L 10
Map (L10)= [ 1 (4.20)

~+t1/\o01 ~+1

1-L/fi L

=1/f* 1-L/f

where we find the well-known expression from geometric paraxial light optics

111
f~ fh f2 fife

Such a doublet can be made focusing in both planes if, for example, the
quadrupole strengths are set such that f; = —fy = f. The total focal length
is then f* = +L/f? > 0 in both the horizontal and the vertical plane.

This simple result, where the focal length is the same in both planes, is a
valid solution only in thin lens approximation. For a doublet of finite length
quadrupoles the focal length in the horizontal plane is always different from
that in the vertical plane as can be verified by using the transformations
(4.11), (4.13) to calculate the matrix Mgap. Since individual matrices are not
symmetric with respect to the sign of the quadrupole field, the transformation
matrices for the horizontal plane Mgy x and the vertical plane Mgy, , must
be calculated separately and turn out to be different. In special composite
cases, where the quadrupole distribution is symmetric as shown in Fig. 4.3,
the matrices for both of the two symmetric half sections are related in a simple
way. If the matrix for one half of the symmetric beam line is

(4.21)

ab
M= (4.22)
cd

then the reversed matrix for the second half of the beam line is

db
M, = (4.23)

ca

and the total symmetric beam line has the transformation matrix

ad + bec  2bd
Mtot == Mr M == . (424)
2ac ad+ be
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A

v

M M,

Fig. 4.3. Reversed lattice

We made no particular assumptions for the lattice shown in Fig. 4.3 except for
symmetry and relations (4.22), (4.23) are true for any arbitrary but symmetric
beam line.

The result for the reversed matrix is not to be confused with the inverse
matrix, where the direction of the particle path is also reversed. The inverses
matrix of (4.22) is

M; = . (4.25)

—C a

Going through an arbitrary section of a beam line and then back to the
origin again results in a total transformation matrix equal to the unity matrix

10
Mot = M; M = . (4.26)
01

These results now allow us to calculate the transformation matrix M;, for a
symmetric quadrupole triplet. With (4.20), (4.25) the transformation matrix
of a quadrupole triplet as shown in Fig. 4.4 is

972/ 42
Mo MM = 1—2L%/f22L(1+L/f) | 27

—1/fr 1-212/f?

where f* is defined by (4.21) with f; = —f2 = f.

Such a triplet is focusing in both planes as long as f > L. Symmetric
triplets as shown in Fig. 4.4 have become very important design elements of
long beam transport lines or circular accelerators since such a triplet can be
made focusing in both planes and can be repeated arbitrarily often to provide
a periodic focusing structure called a FODO-channel . The acronym is derived
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M M

T

Fig. 4.4. Symmetric quadrupole triplet

from the sequence of focusing (F) and defocusing (D) quadrupoles separated
by non-focusing elements (O) like a drift space or a bending magnet.

4.2.4 Quadrupole End Field Effects

In defining the transformation through a quadrupole we have assumed the
strength parameter k(z) to be a step function with a constant nonzero value
within the quadrupole and zero outside. Such a hard edge field distribution
is only approximately true for a real quadrupole. The strength parameter
in a real quadrupole magnet varies in a gentle way from zero outside the
quadrupole to a maximum value in the middle of the quadrupole. In Fig. 4.5
the measured gradient of a real quadrupole along the axis is shown.

The field extends well beyond the length of the iron core and the effective
magnetic length, defined by

field . [—iron length —] |
Y |

) l

trapezoidal field/7 |
approximation =/ \

: effective magnet length :

\ \

/
\ ‘ \ \ \ ‘ \
-200 -100 0 100 200 z(mm)

Fig. 4.5. Field profile in a real quadrupole with a bore radius of R = 3 cm and an
iron length of firon = 15.9 cm
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d
tr = 1992 (4.28)

g0

where gq is the field gradient in the middle of the quadrupole, is longer than
the iron length by about the radius of the bore aperture

logt = liyon + R. (4.29)

The real field distribution can be approximated by a trapezoid such that
fgdz is the same in both cases (see Fig. 4.5). To define the trapezoidal
approximation we assume a fringe field extending over a length equal to the
bore radius R as shown in Fig. 4.5. End field effects must therefore be expected
specifically with quadrupoles of large bore radii and short iron cores. It is
interesting to investigate as to what extent the transformation characteristics
for a real quadrupole differ from the hard edge model. The real transformation
matrix can be obtained by slicing the whole axial quadrupole field distribution
in thin segments of varying strengths. Treating these segments as short hard
edge quadrupoles, the full transformation matrix is the product of the matrices
for all segments.

While it is possible to obtain an accurate transformation matrix this way
the variations of the matrix elements due to this smooth field distribution
turn out to be mostly small and in practice, therefore, the hard edge model
is used to develop beam transport lattices. Nonetheless after a satisfactory
solution has been found, these real transformation matrices should be used
to check the solution and possibly make a small adjustment to the idealized
hard edge model design.

In this section, we will discuss an analytical estimate of the correction
to be expected for a real field distribution [37] by looking for the “effective”
hard edge model parameters (k,¢) which result in a transformation matrix
equal to the transformation matrix for the corresponding real quadrupole.
The transformation matrix for the real quadrupole is

M, = ¢S 4.30
ool (4:30)

where the matrix elements are the result of multiplying all “slice” matrices
for the quadrupole segments as shown in Fig. 4.6.

We now assume that this real quadrupole can be represented by a hard
edge model quadrupole of length ¢ with adjacent drift spaces A as indicated
in Fig. 4.6. The transformation through this system for a focusing quadrupole
is given by [37]
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| . .
— — — effective magnetic length— —

)

field

i N
7'4 % z
Fig. 4.6. Decomposition of an actual quadrupole field profile into segments of hard
edge quadrupoles

1A cos ﬁsinw 1A
01 —Vksingp cosy 01

cosp —VEkAsing  2\cosp — ﬁsincp (4.31)

—VEsinp cos ¢ — VEAsing

with ¢ = vk ¢. This hard edge transformation matrix must be the same as the
actual matrix (4.30) and we will use this equality to determine the effective
quadrupole parameters k, £. First, we note that the choice of the total length
L = 7+ 2) is arbitrary as long as it extends over the whole field profile,
and both, the “slices” and hard edge matrices extend over the whole length
L by employing drift spaces if necessary. Equating (4.30) and (4.31) we can
compose two equations which allow us to determine the effective parameters
k, ¢ from known quantities

1 _ 1 .
Ci—5LC! =cosg, + 5, sing,, (4.32)
Cll, = —p, sinp, .

Here we have added the index f to indicate a focusing quadrupole. The first
of these equations can be solved for ¢r since the quantities C,,C?, and L
are known. The second equation is then solved for ¢, and k, = ¢?/¢;. Two
parameters are sufficient to equate the 2 x 2 matrices (4.30), (4.31) since two of
the four equations are redundant for symmetry reasons, M1y = Moy = C = 5,
and the determinant of the matrices on both sides must be unity. Similarly,
we get for a defocusing quadrupole

1 — L i
C,—3LC" =coshyp, — 5 ¢, sinhp,, (4.33)
Ci Ly = —p, sinhp, .
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Equations (4.32) and (4.33) define a hard edge representation of a real quadru-
pole. However, we note that the effective quadrupole length ¢ and strength
k are different from the customary definition, where kg is the actual magnet
strength in the middle of the quadrupole and the magnet length is defined by
by = k% J k(z)dz. We also observe that the effective values ¢ and k are dif-
ferent for the focusing and defocusing plane. Since the end fields are not the
same for all quadrupoles but depend on the design parameters of the magnet,
we cannot determine the corrections in general. In practical cases, however,
it turns out that the corrections Ak = k — kg and A¢ = ¢ — £y are small for
quadrupoles which are long compared to the aperture and are larger for short
quadrupoles with a large aperture. In fact the differences Ak and Af turn
out to have opposite polarity and the thin lens focal length error Ak AZ is
generally very small.

As an example, we use the quadrupole of Fig. 4.5 and calculate the correc-
tions due to end field effects. We calculate the total transformation matrix for
the real field profile as discussed above by approximating the actual field dis-
tribution by a series of hard edge “slice” matrices in both planes as a function
of the focusing strength ko and solve (4.32), (4.33) for the effective parameters
(kt, £¢) and (kq,%q), respectively. In Fig. 4.7 these relative fringe field correc-
tions to the quadrupole strength Ak/ky and to the quadrupole length AZ/¢
are shown as functions of the strength kq. The effective quadrupole length is
longer and the effective quadrupole strength is lower than the pure hard edge
values. In addition the corrections are different in both planes. Depending on
the sensitivity of the beam transport system these corrections may have to be
included in the final optimization.

0.12
0.1 -
0.08 focusing plane
0.06 -
0.04
0.02 ky(m2)
O ] " T " T " T " T "
-0.02 10 20 30 40 50
-0.04
-0.06
-0.08 —
-0.1 -
-0.12
-0.14 -

Al/l, defocusing plane

Ak/k, focusing plane

defocusing plane

Fig. 4.7. Fringe field correction for the quadrupole of Fig. 4.5 with a bore radius
of R = 3.0 cm and a steel length of firon = 15.9 cm
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4.3 Focusing in Bending Magnets

Bending magnets have so far been treated just like drift spaces as far as
focusing properties are concerned. This is a good approximation for weak
bending magnets which bend the beam only by a small angle. In cases of
larger deflection angles, however, we observe focusing effects which are due
to the particular type of magnet and its end fields. In Chap. 3 we discussed
the geometric focusing term 2 which appears in sector magnets only. Other
focusing terms are associated with bending magnets and we will discuss in this
section these effects in a systematic way. Specifically, the focusing of charged
particles crossing end fields at oblique angles will be discussed.

The linear theory of particle beam dynamics uses a curvilinear coordinate
system following the path of the reference particle and it is assumed that
all magnetic fields are symmetric about this path. The “natural” bending
magnet in this system is one, where the ideal path of the particles enters
and exits normal to the magnet pole faces. Such a magnet is called a sector
magnet as shown in Fig. 4.8. The total deflection of a particle depends on
the distance of the particle path from the ideal path in the deflecting plane
which, for simplicity, we assume to be in the horizontal z-plane. Particles
following a path at a larger distance from the center of curvature than the
ideal path travel a longer distance through this magnet and are, therefore,
deflected by a larger angle than a particle on the ideal path. Correspondingly,
a particle passing through the magnet closer to the center of curvature is less
deflected.

This asymmetry leads to a focusing effect which is purely geometric in na-
ture. On the other hand, we may choose to use a magnet such that the ideal
path of the particle beam does not enter the magnet normal to the pole face
but rather at an angle. Such a configuration has an asymmetric field distrib-

ds
Ne<0

T w
‘ I ™~ pole face of
Po

particle
trajectory

sector magnet

Fig. 4.8. Focusing in a sector magnet, where 19 = ne = —0/2
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ution about the beam axis and therefore leads to focusing effects. On a more
subtle note we find a modification of these focusing effects due to extended
fringe field of the magnets. While these fringe fields expand orthogonally to
the face of the magnet iron, we obviously have some deflection in these fringe
fields which leads to asymmetric field distributions about the particle beam
axis and to focusing. In the following subsections we will discuss and formulate
these focusing effects more quantitatively.

4.3.1 Sector Magnets

The degree of focusing in a sector magnet can be evaluated in any infinitesimal
sector of such a magnet by calculating the deflection angle as a function of the
particle position x. With the notation from Fig. 4.8 we get for the deflection
angle while keeping only linear terms in x

df = ko ds = ko (1 + kox) dz. (4.34)

The first term on the r.h.s. merely defines the ideal path, while the second
x-dependent term of the deflection angle in (4.34) describes the particle motion
in the vicinity of the ideal path. With respect to the curvilinear coordinate
system following the ideal path we get the additional deflection

60 = k2 adz. (4.35)

This correction is to be included in the differential equation of motion as an
additional focusing term

_0 2

Az = Ep e (4.36)

to the straight quadrupole focusing leading to the equation of motion
"+ (k+K) =0, (4.37)

which is identical to the result obtained in Sect. 2.3.

The differential equation (4.37) has the same form as that for a quadrupole
and therefore the solutions must be of the same form. Using this similarity
we replace k by (k+ x2) and obtain immediately the transformation matrices
for a general sector magnet. For K = k + k2 > 0 and

0 =VK/ (4.38)

we get from (4.11) the transformation matrix

cos @ L sin®
Mgy 5(£]0) = VK , (4.39)
—VKsin® cosO
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where £ is the arc length of the sector magnet and where both the focusing
term k and the bending term k¢ may be nonzero. Such a magnet is called
a synchrotron magnet since this magnet type was first used for lattices of
synchrotrons.

For the defocusing case, where K = k + % < 0 and © = \/m& we get
from (4.13)

cosh © L_sinh©
Msya(£]0) = VI : (4.40)
VI|K|sinh®  cosh©

Note that the argument © is equal to the deflection angle 6 only in the
limit £ — 0 because these transformation matrices include bending as well as
focusing in the same magnet. Obviously, in the nondeflecting plane ko = 0
and such a magnet acts just like a quadrupole with strength k and length .

A subset of general sector magnets are pure dipole sector magnets, where
we eliminate the focusing by setting & = 0 and get the pure dipole strength
K = k% > 0. The transformation matrix for a pure sector magnet of length £
and bending angle # = k¢ in the deflecting plane becomes from (4.39)

cos  posind
M, (£]0) = . (4.41)

—kosinf cos6

If we also let kg — 0 we arrive at the transformation matrix of a sector magnet
in the nondeflecting plane

17
MS,O(E | 0) = ’ (442)
01

which has the form of a drift space. A pure dipole sector magnet therefore
behaves in the nondeflecting plane just like a drift space of length ¢. Note that
¢ is the arc length of the magnet while the engineering magnet length might
be given as the straight length between entry and exit points.

4.3.2 Fringe Field Effects

The results obtained above are those for a hard edge model and do not reflect
modifications caused by the finite extend of the fringe fields. The hard edge
model is again an idealization and for a real dipole we consider the gradual
transition of the field from the maximum value to zero outside the magnet.
The extend of the dipole fringe field is typically about equal to the gap height
or distance between the magnet poles.

We assume magnet poles which are very wide compared to the gap height
and therefore transverse field components in the deflecting plane; here B,
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can be neglected. At the entrance into a magnet the vertical field component
B, increases gradually from the field free region to the maximum value in
the middle of the magnet (Fig. 4.9). We will discuss the effects on the particle
dynamics caused by this fringe field and compare it with the results for a hard
edge model magnet.

B,(2)

u
; B,(2)

P, 5/"(3 w

zZ
\Zg

linearized fringe field

effective hard edge

fringe field
end of iron core fringe fiel o~

Z

F—2G— z

Fig. 4.9. End field profile in a dipole magnet and fringe field focusing

For the following discussion we consider both a fixed orthogonal Cartesian
coordinate system (u,v,w), used in the fringe area, and a moving curvilinear
system (z,y,z). The origin of the fixed coordinate system is placed at the
point Py where the field starts to rise (Fig. 4.9). At this point both coordi-
nate systems coincide. The horizontal field component vanishes for reasons of
Symmetry

B,=0 (4.43)
and the vertical field component in the fringe region may be described by
B, = F(w). (4.44)

With Maxwell’s curl equation dB,,/0v — 0B, /0w = 0 we get after integration
the longitudinal field component B,, = [(8B,/0w)dv or

OF (w
B, =y 850 ), (4.45)

where y = v and where a linear fringe field was assumed with 0F (w)/0w =
cost.

These field components must be expressed in the curvilinear coordinate
system (z,y,z). At the point s within the fringe field the longitudinal field
component B,, can be split into B, and B,. The horizontal field component
is then B, = B, sind Fig. 4.9 where § is the deflection angle at the point z
defined by

§= —/O F(z)dz. (4.46)
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With OF (w) OF(w) d OF(z) 1
w w) dz z
Bo=y dw Y8, dw Y82 coso (4.47)
we get
B.(2) =y F'(2) tané, (4.48)

where F'(z) = dF/dz. The vertical fringe field component is with B, /0y —
0B, /0x = 0 and integration

By(z) = By + x F'(2) tand. (4.49)
The longitudinal field component is from (4.47) and B, = B, cos¢
B.(2) =y F'(2). (4.50)

The field components of the fringe field depend linearly on the transverse
coordinates and therefore fringe field focusing [38] must be expected. With
the definition of the focal length from (4.3), we get

1 L
?:/0 K(z)dz, (4.51)

where K (z) is the focusing strength parameter K(z) = x%(2) + k(2). In the
deflecting plane the fringe field focusing is with k(z) = (e/po) 0B, /0x and
(4.49)

1 =
7= / (k' tan d + x?) dz, (4.52)
x 0

where we have set k(z) = (e/po) F(z). For small deflection angles ¢ in the
fringe field tand ~ § = [;"xdz and after integration of (4.49) by parts
through the full fringe field we get the focal length while neglecting higher
order terms in d¢

1
7 = Ko 6{7 (453)

xz

where kg = 1/pg is the curvature in the central part of the magnet and ds is
the total deflection angle in the fringe field region.

This result does not deviate from that of the hard edge model, where for
a small deflection angle 6 we have from (4.41) 1/f, = ko 0 agreeing with the
result for the fringe field focusing. We therefore obtain the convenient result
that in the deflecting plane of a sector magnet there is no need to correct the
focusing because of due to the finite extend of the fringe field.

4.3.3 Finite Pole Gap

In the vertical plane this situation is different since we expect vertical focusing
from (4.48) while there is no focusing in the approximation of a hard edge
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model. Using definition (4.51) of the focal length in the vertical plane gives
with K (z) = —k(z) and (4.48)

1 —

fy
The fringe field of a sector magnet therefore leads to a defocusing effect which
depends on the particular field profile. We may approximate the fringe field
by a linear fit over a distance approximately equal to the pole gap 2G which is
a good approximation for most real dipole magnets. We neglect the nonlinear
part of the fringe field and approximate the slope of the field strength by the
linear expression k' = ko/2G = const. The focal length for the full fringe field
of length z¢ = 2@ is therefore with x(z) =k’ 2, 0 < z < 2 and

- / W tan 6 dz ~ — / W(2)6(2) dz. (4.54)
0 0

5(z) = /O Wadz= 1022 (4.55)
given by
1 2G b 1 5 1
T =— ; k'0(Z)dz = —§R0G=—§Ho5f, (4.56)
Y
where
O = (5(Zf) =Ko G. (4.57)

This is the focusing due to the fringe field at the entrance of a sector magnet.
At the exit we have the same effect since the sign change of ' is compensated
by the need to integrate now from full field to the field free region which is
just opposite to the case in the entrance fringe field. Both end fields of a sector
magnet provide a small vertical defocusing. We note that this defocusing is
quadratic in nature, since §¢ < k¢ and therefore independent of the sign of
the deflection.

With these results we may now derive a corrected transformation matrix
for a sector magnet by multiplying the hard edge matrix (4.42) on either side
with thin length fringe field focusing

1 0\ [1¢ 10
(4.58)
1

1 1
_Tyl 01 -7

and get with (4.56) and 6 = £/p, for the transformation matrix in the vertical,
nondeflecting plane of a sector magnet instead of (4.42)

1+%96f Y4
My (£]0) = \ (4.59)
’ ) )
S gl 14300

The second-order term in the Ms;-matrix element can be ignored for practical
purposes but is essential to keep the determinant equal to unity.
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4.3.4 Wedge Magnets

In a more general case compared to a sector magnet we will allow the refer-
ence path of the particle beam to enter and exit the magnet at an arbitrary
angle with the pole face. Magnets with arbitrary pole face rotation angles
are called wedge magnets. Figure 4.10 shows such a case and we will derive
the transformation matrices for wedge magnets. First, we note that the fringe
field effect is not different from the previous case of a sector magnet except
that now the angle §(z) must be replaced by a new angle n + §(z) where the
pole rotation angle 7 and the sign convention is defined in Fig. 4.10.

reference

path .
exit face

magnet
entrance face

Fig. 4.10. Fringe field focusing in wedge magnets

Different from the case of a sector magnet, we cannot replace the tangent
in (4.52) by its argument since the angle n can be large to prohibit such an
approximation. As a further consequence of a large value of 1, we must take
into account the actual path length in the fringe field. To calculate the focal
length f,, we have instead of (4.52)

L
fo

Expanding for small angles § < 1 we get tan (n+ ) ~ tann + §. This
approximation is true only as long as § tann < 1 or for entrance angles 1 not
too close to 90° and the argument in integral (4.60) becomes £’ tann+x'6+ 2.
In addition to the terms for a sector magnet, a new term (x’tann) appears
and the focal length of the fringe field is

/Zf [’ tan (n + 0) + £%] dz. (4.60)
0

1 =t
f— = / K tann dz + kods = ko tann + Kods, (4.61)
z 0
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where the integral extends over the whole fringe field. Since to first order the
path length through the fringe field is

zf = 26 , (4.62)
cosn

where 2G is the pole gap height, we have
2G/ cosn
of = / kdZz. (4.63)
0

The term kgds describes again the well-known focusing of a sector magnet
in the deflecting plane while the term kg tann provides the correction nec-
essary for non-normal entry of the beam path into the magnet. For the case
shown in Fig. 4.10, where 1 > 0, we obtain beam focusing in the deflecting
plane from the fringe field. Similarly, we get a focusing or defocusing effect at
the exit fringe field depending on the sign of the pole rotation. The complete
transformation matrix of a wedge magnet in the horizontal deflecting plane is
obtained by multiplying the matrix of a sector magnet with thin lens matrices
to take account of edge focusing. For generality, however, we must assume that
the entrance and the exit angle may be different. We will therefore distinguish
between the edge focusing for the entrance angle n = 79 and that for the exit
angle n = n, and get for the transformation matrix in the deflecting plane

1 0 cos 0 sin 6 1 0
My, (£,0) = po . (4.64)

_p% tanne 1 _p% sinf cos6 _p% tanng 1

In the vertical plane the focal length is similar to (4.54)

zf

1 =t
— = —/ k' tan (n+ 6) dzZ ~ —kg tann —/ K'ddz. (4.65)
fy 0 0

Again we have the additional term which is now focusing in the vertical
plane for 77 < 0. For a linear fringe field the focal length is in analogy to (4.56)

1
f— = —Kgtann — %Iioéf, (4.66)
Yy
where 26/
cosm 2G? G
&:/ kdz =K' — :ﬁ%ﬂ (4.67)
0 cos3n  cos?yp

since k (z) & K’z and K’ = Ko/ (G/ cosn). The complete transformation matrix
in the vertical plane for a horizontally deflecting wedge magnet then becomes

1 0] [1¢ 1 0
Mo (£,0) = . (4.68)
p% (tanme + 30¢.) 1 01 L (tanmng + £6¢,) 1

Po
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Equations (4.64) and (4.68) are for bending magnets with arbitrary en-
trance and exit angles 1y and 7,. We note specifically that the transformation
in the nondeflecting plane becomes different from a simple drift space and
find a focusing effect due to the magnet fringe fields which depends on the
entrance and exit angles between particle trajectory and pole face.

This general derivation of the focusing properties of a wedge magnet must
be taken with caution where the pole face rotations are very large. In spite
of the finite pole rotation angles we have assumed that the particles enter the
fringe field at the same location z along the beam line independent of the
transverse particle amplitude x. Similarly, the path length of the trajectory
in such a wedge magnet depends on the particle amplitude x and slope z’.
Obviously these are second-order effects but may become significant in special
cases.

4.3.5 Rectangular Magnet

A particular case of a symmetric wedge magnet is the rectangular magnet,
which has parallel end faces. If we install this magnet symmetrically about
the intended particle trajectory, the entrance and exit angles equal half the
bending angle as shown in Fig. 4.11.

For a deflection angle 8,19 = . = —0/2 and the transformation matrix in
the deflecting plane is from (4.64)

1 0 cosf pgsiné 1 0
M., (£]0) = . (4.69)
_ tanmne 1 __sinf cos 6 __tanmng 1
po Po Po
1 pgsiné
0 1

No<0

/_\ ne<0

reference path

particle
trajectory

— pole face of
rectangular
magnet

Po

Ng=Ne=-6/2 0

Fig. 4.11. Rectangular magnet
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A rectangular dipole magnet transforms in the deflecting plane like a drift
space of length pgsinf and does not focus the beam. Note that the “magnet
length” ¢ defined by the deflection angle § = ¢/pg is the arc length and is
related to the straight magnet length L by

.0 .l
L = 2py sin 3= 2pp sin %0 (4.70)

In the vertical plane we observe a focusing with the focal length
1 1 6 do /2)
— =4+—|tan- — —— ] . 4.71
fy Po ( 2 3 ( )

From (4.67) 69,2 = G/[po cos(6/2)] and with (4.70) 65,2 = 2G tan(0/2)/L.
Inserting this in (4.71), we obtain for the transformation matrix of a rectan-
gular bending magnet in the nondeflecting plane

1 0 1¢ 1 0 1—f£ ¢
M:o(0]0) = 1 1 - 2 yé e |
5\ -7 LTIl
(4.72)
where ) . > p
— = —(1——)tan| =) . 4.73
5= (-5 (3) 7

In a rectangular dipole magnet we find just the opposite edge focusing
properties compared to a sector magnet. The focusing in the deflecting plane
of a sector magnet has shifted to the vertical plane in a rectangular magnet
and focusing is completely eliminated in the deflecting plane. Because of the
finite extend of the fringe field, however, the focusing strength is reduced by
the fraction 2G/(3L) where 2G is the gap height and L is the straight magnet
length.

4.3.6 Focusing in a Wiggler Magnet

The derivation of fringe field focusing in ordinary dipole magnets as discussed
in previous sections can be directly applied to wiggler magnets. The beam
path in a wiggler magnet is generally not parallel to the reference trajectory z
because of the transverse deflection in the wiggler field and follows a periodic
sinusoidal form along the reference path. For this reason the field component
B, appears to the particle partially as a transverse field B = B, tanv ~ B, 9,
where we use for a moment £ as an auxiliary transverse coordinate normal
to and in the plane of the actual wiggling beam path. We also assume that
the wiggler deflection angle is small, ¥ < 1. The field component B¢ can be
expressed with (3.117), (3.120) more explicitly by

o sinh (kpy) cosh (kpy)
kp

€

p [Bo sin (kpz)]

Be = (4.74)
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and with expansions (3.118) we have finally

(&

Be=— (B sin (kp2))* (y + 2K2 95 +--+). (4.75)

P

The linear y-dependence is similar to that found to produce vertical focus-
ing in wedge magnets. Since the wiggler field appears quadratically in (4.74),
Be(z) = Be(—2) and Be¢(By) = Be(—By). In other words, the transverse field
has the same sign along all wiggler poles independent of the polarity of the
vertical main wiggler field. The integrated focusing field gradient per wiggler
half pole is from (4.75)

e Ap/4 e
gyl = —;)BS/O sin® kpzdz = —;)%Bg Aps (4.76)

where £ is the effective length of the focusing element. The integrated equiva-
lent quadrupole strength or inverse focal length for each half pole with parallel
entry and exit pole faces is

1 1 eB0>2 A
kel = —— == (20) )\ = _ o 477
S -3 8<p0 =35 (4.77)

where 1/pg = £By is the inverse bending radius at the center of a wiggler
pole at which point the field reaches the maximum value By. For N wiggler
poles we have 2N times the focusing strength and the focal length of the
total wiggler magnet of length L., = %N Ap expressed in units of the wiggler
strength parameter K becomes

1 K?
5o kg Ly, . (4.78)

Tacitly, a rectangular form of the wiggler poles has been assumed (Fig. 4.12)
and consistent with our sign convention, we find that wiggler fringe fields cause
focusing in the nondeflecting plane. Within the approximation used there is
no corresponding focusing effect in the deflecting plane. This is the situation
for most wiggler magnets or poles except for the first and last half pole where
the beam enters the magnetic field normal to the pole face.

A reason to possibly use wiggler magnets with rotated pole faces like wedge
magnets originates from the fact that the wiggler focusing is asymmetric and
not part of the lattice focusing and may therefore need to be compensated.
For moderately strong wiggler fields the asymmetric focusing in both planes
can mostly be compensated by small adjustments of lattice quadrupoles. The
focusing effect of strong wiggler magnets may, however, generate a significant
perturbation of the lattice focusing structure or create a situation where no
stable solution for betatron functions exists anymore. The severity of this
problem can be reduced by designing the wiggler poles as wedge magnets in
such a way as to split the focusing equally between both the horizontal and
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wiggler poles

Fig. 4.12. Wiggler magnet with parallel pole end faces

vertical plane. In this case local correction can be applied efficiently in nearby
lattice quadrupoles.
We will therefore discuss the focusing and transformation matrix through

a wiggler pole in the case of arbitrary entry and exit angles. To derive the
complete and general transformation matrices, we note that the whole wiggler
field can be treated in the same way as the fringe field of ordinary magnets.
The focal length of one half pole in the horizontal deflecting plane is from
(4.61)

1

fa
where the pole face rotation angle n has been assumed to be small and of
the order of the wiggler deflection angle per pole (Fig. 4.13). With k, =
K20 €Os kpz the field slope is

Ap/4
/ Kl mdz + Ko Of, (4.79)
0

Kl = Kgo kp sinkpz (4.80)

and after integration of (4.79), the focal length for the focusing of a wiggler

half pole is
1
A = kg0 (08 + 1), (4.81)

where J¢ is given by (4.57) and in the case of a wiggler magnet is equal to the
deflection angle of a half pole. In the case of a rectangular wiggler pole = —ds
and the focusing in the deflecting plane vanishes as we would expect. In the
nondeflecting plane (4.54) applies and the focal length is for small angles 5
and §

1 Ap/d
- = 7/ ki In+6(2)]dz. (4.82)
fy 0

The focal length per wiggler half pole is after integration
1 T
- = —Rkaxo (77+5f) — — K0 Of - (483)
fy 4

Here again setting n = —dr restores the result obtained in (4.78).
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Fig. 4.13. Wiggler magnet with wedge-shaped poles

The focusing in each single wiggler pole is rather weak and we may apply
thin lens approximation to derive the transformation matrices. For this we
consider the focusing to occur in the middle of each wiggler pole with drift
spaces of length A,/4 on each side. With 2/f being the focal length of a
full pole in either the horizontal plane (4.81) or vertical plane (4.83) the
transformation matrix for each wiggler pole is finally

1,/4 1 0\ [1x,/4

Mopole = (4.84)

0 1 —-2/f1 0 1
Ap A A

1— 22 2e (1_7p>

_ 2f °f 4 ~ 1 %Ap
2 )
2 )\p - F 1
—2 1— ¥ f

where the approximation A\, < f was used. For a wiggler magnet of length
Ly = %N Ap, we have N poles and the total transformation matrix is

Mwigglcr = MII)\{jle . (485)

This transformation matrix can be applied to each plane and any pole
rotation angle . Specifically, we set n = —K /v for a rectangular pole shape
and n = 0 for pole rotations orthogonal to the path like in sector magnets.

4.3.7 Hard Edge Model of Wiggler Magnets

Although the magnetic properties of wiggler magnets are well understood and
easy to apply, it is nonetheless often desirable to describe the effects of wiggler
magnets in the form of hard edge models. This is particularly true when
numerical programs are to be used which do not include the feature of properly
modeling a sinusoidal wiggler field. On the other hand accurate modeling is
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important since frequently strong wiggler magnets are to be inserted into a
beam transport lattice.

For the proper modeling of linear wiggler magnet properties, we choose
three conditions to be fulfilled. The deflection angle for each pole should be the
same as that for the equivalent hard edge model. Similarly the edge focusing
must be the same. Finally, like any other bending magnet in an electron
circular accelerator, a wiggler magnet also contributes to quantum excitation
and damping of the beam emittance and beam energy spread. The quantum
excitation is in first approximation proportional to the third power of the
curvature while the damping scales like the square of the curvature similar to
focusing.

Considering now a wiggler field

B(z) = By sinkpz, (4.86)

we try to model the field for a half pole with parallel endpoles by a hard edge
magnet. Three conditions should be met. The deflection angle of the hard
edge model of length ¢ and field B must be the same as that for a wiggler half

pole, or

15 A
o By(z)dz = —2—.
Ph Po Jhalfpole 27 Po

0 (4.87)
Here we use py, for the bending radius of the equivalent hard edge model
and pg for the bending radius at the peak wiggler field By. The edge focusing
condition can be expressed by
1 15 1
—:—}21:—2 sin2kpzdz:
fy Ph £o halfpole

Ao

. 488
83 (4.88)

Modeling a wiggler field by a single hard edge magnet requires in linear
beam optics only two conditions to be met which can be done with the two
parameters B(z) and ¢ available. From (4.87), (4.88) we therefore get the hard
edge magnet parameters (Fig. 4.14)

pn = 2po and =2\, (4.89)

For a perfect modeling of the equilibrium energy spread and emittance due
to quantum excitation in electron storage rings we would also like the cubic
term to be the same

1 1 A
e 7/ sin® kpzdz = 2P . (4.90)
ph Po halfpole 3w £o

Since we have no more free parameters available, we can at this pint only
estimate the mismatch. With (4.88), (4.89) we get from (4.90) the inequality

1 T
— £ — 4.91
3.7 337 (4.91)
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Fig. 4.14. Hard edge model for a wiggler magnet period

which indicates that the quantum excitation from wiggler magnets is not
correctly treated although the error is only about 8%.

Similarly, one could decide that the quadratic and cubic terms must be
equal while the deflection angle is let free. This would be a reasonable assump-
tion since the total deflection angle of a wiggler is compensated anyway. In
this case the deflection angle would be underestimated by about 8%. Where
these mismatches are not significant, the simple hard edge model (4.90) can
be applied. For more accuracy the sinusoidal wiggler field must be segmented
into smaller hard edge magnets.

4.4 Elements of Beam Dynamics

The most basic elements of a beam transport line are drift spaces, bending
magnets, and focusing magnets or quadrupoles. Obviously, in a drift space
of length ¢ the electric or magnetic field vanishes. Bending magnets act as
beam guidance devices while quadrupoles will focus the beam. In the following
section, we will discuss building blocks made up of bending magnets and
quadrupoles, which exhibit features known from light optics thus justifying
our extensive use of terminology from optics in particle beam dynamics.

4.4.1 Building Blocks for Beam Transport Lines

With special arrangements of bending and focusing magnets it is possible to
construct lattice sections with particular properties. We may desire a lattice
section with specific chromatic properties, achromatic or isochronous sections.
In the next subsections we will discuss such lattice elements with special
properties.
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General Focusing Properties

The principal solutions and some elements of transformation matrices through
an arbitrary beam transport line can reveal basic beam optical properties of
this beam line. A close similarity to paraxial light optics is found in the matrix
element C’(2). As shown schematically in Fig. 4.15, parallel trajectories, uf, =
0, are deflected by the focusing system through the matrix element C’(z) and
emerge with a slope u/(z) = C'(2) up.

i focal
== ,  point

principal plane

Fig. 4.15. Focusing in a quadrupole doublet

From basic principles of light optics we know (2.14) that the ratio —ug/u'(2)
is defined as the focal length of the system . In analogy, we therefore define
also a focal length f for a composite focusing system by setting

t=0C'(2). (4.92)

The focal point is defined by the condition u (zf) = 0 and is, therefore,
located where the cosine-like solution becomes zero, C(z¢) = 0.

More similarities with paraxial light optics can be identified. Point to point
imaging, for example, is defined in particle beam optics by the sine-like func-
tion S(z), starting at the object plane at z = zy. The image point is lo-
cated where the sine-like function crosses again the reference axis or where
S(z; + zp) = 0 as shown in Fig. 4.16.

By definition such a section of a beam transport system has a betatron
phase advance of 180°. The beam size or object size Hy at zg is transformed by
the cosine-like function to become at the image point H(z;) = | C(z; + 20)| Ho
and the magnification of the beam optical system is given by the absolute
value of the cosine-like function at the image point
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Fig. 4.16. Point to point imaging

Chromatic Properties

Very basic features can be derived for the chromatic characteristics of a beam
transport line. In (2.86), we have already derived the dispersion function

D(z) = S(2) /O T ro(3) C(3) dE — O(2) /O " ro(3) S(3) 5. (4.94)

From this expression we conclude that there is dispersion only if at least
one of the two integrals in (4.94) is nonzero. That means only dipole fields
can cause a dispersion as a consequence of the linear chromatic perturbation
term ko0. All other perturbation terms in (2.31),(2.33) are of higher order in
6 or depend on the transverse particle coordinates and therefore contribute
only to higher order corrections of the dispersion function.

Specifically, we find from (2.31) the lowest order chromatic quadrupole
perturbation to be kzd. Since any arbitrary particle trajectory is composed of
an energy independent part g and an energy dependent part D¢, expressed
by * = xg + D6 we find the lowest chromatic quadrupole perturbation to
the dispersion function to be the second order term kD62 which does not
contribute to linear dispersion.

While some dispersion cannot be avoided in beam transport systems where
dipole magnets are used, it is often desirable to remove this dispersion at least
in some parts of the beam line. As a condition for that to happen at say z = z4,
we require that D(zq) = 0. From (4.94) this can be achieved if

SGa) _ Ji'mo(3) 5(3) d
Cza) [ ko (2) C(3) d2’

a condition that can be met by proper adjustments of the focusing structure.

(4.95)

Achromatic Lattices

A much more interesting case is the one where we require both the dispersion
and its derivative to vanish, D(z4) = 0 and D’(zq) = 0. In this case we have no
dispersion function downstream from the point z = zq up to the point where
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the next dipole magnet creates a new dispersion function. The conditions for
this to happen are

D(zq) = 0= —S(2q) I + C(2q) L.

(4.96)
D'(zq) = 0= —5"(2q) I + C'(2q) I,
where we have set I, = fozd koC'dZ and I = fozd ko S dZ. We can solve (4.96)
for I. or Iy and get

[C(za) 5'(2a) = S(2a) C'(2a)] L = 0,

(4.97)
[C(za) S'(za) — S(2a) C'(za)] Is = 0.
Since C(zq) S’ (z4)—S(z4) C'(za) = 1, the conditions for a vanishing dispersion
function are
I = [ ko(2) C(2) dZ =0,

(4.98)
Iy = [ ko(?) S(Z)dz =0.

A beam line is called a first-order achromat or short an achromat if and
only if both conditions (4.98) are true. The physical characteristics of an
achromatic beam line is that at the end of the beam line, the position and the
slope of a particle are independent of the energy.

4.4.2 Isochronous Systems

For the accelerating process we will find that the knowledge of the path length
is of great importance. The path length L of any arbitrary particle trajectory
can be derived by integration to give

Lo dS Lo 2
L:/ds:/o Edg:/o \/x’2+y’2+(1+nmx) dz, (4.99)

where Lj is the length of the beam line along the ideal reference path. For
simplicity we have ignored a vertical deflection of the beam. The path length
variation due to a vertical bend would be similar to that for a horizontal bend
and can therefore be easily derived form this result. Since z’, %', and s,z are
all small compared to unity, we may expand the square root and get in keeping
only second-order terms

Lo
L:/‘ﬂ+@x+afﬂwﬂ+@ﬁmﬁ+a$. (4.100)
0

Utilizing (2.88) we get from (4.100) for the path length difference
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Lo Lo
(L—L@%mﬂzam/‘f%@yxadz+x@/ ko(3)S()dE (4.101)
0 0
Lo
+5/ ko(3) D(2) dZ.
0

The variation of the path length has two contributions. For § = 0 the path
length varies due to the curvilinear coordinate system where dipole fields exist.
This is a direct consequence of the coordinate system which selects a sector
magnet as its natural bending magnet. The ideal path enters and exits this
type of dipole magnet normal to its pole face as shown in Fig. 4.17. It becomes
obvious from Fig. 4.17 that the path length difference depends on the particle
position with respect to the reference path and is in linear approximation

dl=10—1y=(po+x)dp — podep. (4.102)

individual trajectory

sector magnet

/ indeal path

Fig. 4.17. Path length in a sector magnet

Figure 4.18 displays the general situation for a wedge magnet with arbi-
trary entrance and exit pole face angles. The path length differs from that
in a sector magnet on either end of the magnet. The first integral in (4.101)
therefore must be modified to take into account the path length elements in
the fringe field. For a wedge magnet we have therefore instead of (4.101)

(L LO)wedge 0/0 i Ry (E’I) C(E) dz

+ [C(20) o + po] o + [C(2e) o + po] e
— 9 C(20) tanmng — xo C(ze) tanne

+ ) /LO +(3) S( ~)dz+5/ (2)D(Z)dZ  (4.103)
0
~ (L - LO)sector + 0( )
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Fig. 4.18. Path length in a wedge magnet

Here [C(z) xg + po]n is the arc length through the wedge-like deviations
from a sector magnet which must be compensated by the decrease or increase
C(z) zo tann in the adjacent drift space. For small edge angles both terms
compensate well and the total path length of a wedge magnet is similar to the
equivalent sector magnet. In general we therefore ignore path length variations
in wedge magnets with respect to sector magnets as well as those in the
adjacent drift spaces. For large edge angles, however, this assumption should
be reconsidered.

Equation (4.101) imposes quite severe restrictions on the focusing sys-
tem if the path length is required to be independent of initial condition and
the energy. Since the parameters zg,x(, and ¢ are independent parameters
for different particles, all three integrals in (4.101) must vanish separately.
An isochronous beam transport line must therefore be a first-order achromat
(4.98) with the additional condition that [k, Ddz = 0.

For highly relativistic particles § =~ 1 and this condition is equivalent to
being an isochronous beam line. In general, any beam line becomes isochro-
nous if we require the time of flight rather than the path length to be equal
for all particles. In this case we have to take into account the velocity of the
particles as well as its variation with energy. The variation of the particle
velocity with energy introduces in (4.101) an additional chromatic correction
and the variation of the time of flight becomes

Be(T —Ty) =xole +ahLs+6(Ig —772). (4.104)

In straight beam lines, where no bending magnets are involved, (4.104) van-
ishes and higher than linear terms must be considered. From (4.100) it is obvi-
ous that the bending independent terms are quadratic in nature and therefore
isochronicity cannot be achieved exactly since

Lo
ﬂCAT:/ (m’2+y'2)d2> 0. (4.105)
0
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This integral is positive for any particle oscillating with a finite betatron am-
plitude. A straight beam transport line is therefore an isochronous transport
system only in first order.

Problems

4.1. Sketch a quadrupole doublet and draw the sine- and cosine-like trajecto-
ries through the quadrupole doublet to the focal point for the horizontal and
vertical plane and verify that (4.21) is indeed true. (Hint: first define from
where to where you need to measure the combined focal length f).

4.2 (S). Consider a thin quadrupole doublet with a drift space of 1 m between
them. The quadrupole strengths are to be adjusted to make a focal point
in both planes at a point 5 m from the second quadrupole. Determine the
quadrupole strengths and calculate the combined doublet focal length in both
planes. Sketch the doublet focusing and define in this sketch the calculated
combined focal lengths.

4.3 (S). Consider a quadrupole doublet made of thin lenses. (a) Calculate
the focal length of a quadrupole doublet with | f1| = |fi|] = 5 m and a
distance between the magnets of d = 1 m. Plot for this doublet the focal
length as a function of particle momentum —5% < Ap/py < 5% . (b) Use
a parallel beam of radius ro and maximum divergence r(, and calculate the
beam radius r at the focal point of this doublet. (¢) Plot the magnification
r/ro as a function of momentum —5% < Ap/po < 5%. What is the chromatic
aberration (r — rg) /7o of the spot size?

4.4 (S). Consider the quadrupole doublet of Problem 4.2. Sketch the sine-
and cosine-like trajectories through the quadrupole doublet to the focal point
for the horizontal and vertical plane and verify that (4.21) is indeed true.
(Hint: first define from where to where you need to measure the combined
focal lenth f*.

4.5 (S). Particle trajectories in phase space assume the shape of an ellipse.
Derive a transformation of the phase space coordinates (u, u’) to coordinates
(w,w) such that the particle trajectories are circles with the radius Se.

4.6. Use the quadrupole of Fig. 4.5 but with a reduced iron length of ¢;.,, =
5.0 cm and calculate for ky = 50 m~2 and ko = 30 m~2 the corrections for the
quadrupole length and strength as discussed in Sect. 4.2.4. Approximate the
end field by just one step. Compare the results with Fig. 4.7, where £;;0, = 15.9
cm. Which quadrupole needs more correction?

4.7. (a) Design a symmetric thin lens triplet with a focal point for both planes
at the same point z = z. (b) Calculate and plot the betatron function for the
quadrupole triplet and drift space just beyond the focal point. The value for
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the betatron function be Sy = 8 m at the entrance to the triplet z = 0, where
we also assume ag = 0. (c¢) Derive the phase advance in one plane between
z =0 and z = z both from the elements of the transformation matrix and by
integrating the betatron function. Both method should give the same results.
How does this phase advance change if 5 = 20 m and ag = 07 Prove your
statement two ways.

4.8. Consider a combined function sector magnet with nonparallel pole faces
to produce a field gradient. (a) Determine the field gradient to produce equal
focusing in both the horizontal and vertical plane. (b) What is the relationship
between the field index n, the bending radius p, and the focusing strength &
for this combined function magnet. What is the field index for a sector magnet
with equal focusing in both planes? (¢) Derive the equations of motion for both
the deflecting and nondeflecting plane in terms of field index and bending
radius. State the conditions for the field index n to obtain stable particle
oscillations in both planes. Assume a circular accelerator constructed of a
uniform sector magnet with a stable field index n. What is the number of
betatron oscillations per turn in both planes? Derive the equations of motion
in both the deflecting and nondeflecting plane?

4.9 (S). Sector and rectangular magnets have opposite focusing properties.
Determine the geometry of a wedge magnet with equal focusing in both planes.

4.10. A wiggler magnet is composed of a series of equal rectangular dipoles
with alternating polarity. Derive the linear transformation matrices in both
planes for a single wiggler magnet pole. For the field distribution assume a
sinusoidal field By (z) = By sin (kz), where k = 27/A, and X, is the wiggler
magnet period. Define a hard edge model for a wiggler pole with the same
deflection angle and a bending radius 1/pyg. What is the equivalent length
of this hard edge pole in units of the wiggler period and what is the focal
length of the edge field focusing. Compare with the result of the sinusoidal
field distribution. By adjusting both the hard edge effective magnetic length
and strength it is possible to match both the deflection angle and the focal
length of the sinusoidal wiggler field.

4.11 (S). In an arbitrary beam transport line, we assume that at the point
zo the particle beam is kicked in the horizontal or vertical plane by the de-
flection angle ¥. What is the betatron amplitude for the beam at any point z
downstream from zy? To maximize the betatron amplitude at z how should
the lattice functions, betatron function, and/or phase be chosen at zg and 2?

4.12 (S). Consider three cells of a symmetric FODO lattice %QFl - QD —
QF, —QDs — QF3 — QD3 — %QF4 with a betatron phase advance ¥r = 90°
per cell. Further assume there are special coils in the quadrupoles to produce
dipole fields which can be used to deflect the beam. (a) Construct a symmetric
beam bump which starts at QF;, ends at QF4, and reaches an amplitude
Ay = 2 cm at the center of QDs. How many trim coils need to be activated?
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(b) Derive the relative kick angles required to construct the beam bump and
calculate the beam displacement in each quadrupole. Is Ay the maximum
amplitude of the beam bump? Why? Why not? (c) What are the criteria
for either Ay being the maximum displacement or not? For which phase ¥g
would the dipole fields be minimum? Is there a more economic solution for a
symmetric beam bump with an amplitude Ay at the center of QD57



5

Particle Beams and Phase Space

The solution of the linear equations of motion allows us to follow a single
charged particle through an arbitrary array of magnetic elements. Often,
however, it is necessary to consider a beam of many particles and it would
be impractical to calculate the trajectory for every individual particle. We,
therefore, look for some representation of the whole particle beam.

To learn more about the collective motion of particles we observe their
dynamics in phase space. Each particle at any point along a beam transport
line is represented by a point in six-dimensional phase space with coordinates
(x, px, Y, Dy, 0, E) where p, = poz’ and p, =~ poy’ are the transverse momenta
with ¢pg = B Ey, o is the coordinate along the trajectory, Ey is the ideal
particle energy, and E is the particle energy. Instead of the energy E often
the momentum c¢p or the momentum deviation from the ideal momentum
Ap = p — pp or the relative momentum deviation Ap/pg is used. We use the
momentum to study particle dynamics in the presence of magnetic field. In
accelerating systems, like linear accelerators, the use of the particle’s kinetic
energy is much more convenient. Similarly, when the beam energy stays con-
stant, we use instead of the transverse momenta the slope of the trajectories
',y which are proportional to the transverse momenta and are generally very
small so we may set sinz’ ~ z’.

The coupling between the horizontal and vertical plane is being ignored
in linear beam dynamics or treated as a perturbation as is the coupling be-
tween transverse and longitudinal motion. Only the effect of energy errors on
the trajectory will be treated in this approximation. First, however, we set
AFE = 0 and represent the beam by its particle distribution in the horizon-
tal (z,z’) or vertical (y,y’) phase space separately. Because of the absence
of coupling between degrees of freedom in this approximation we may split
the six-dimensional phase space into three independent two-dimensional phase
planes.
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5.1 Beam Emittance

Particles in a beam occupy a certain region in phase space which is called
the beam emittance and we define three independent two-dimensional beam
emittances. Their numerical values multiplied by 7 are equal to the area oc-
cupied by the beam in the respective phase plane. The beam emittance is a
measure of the transverse or longitudinal temperature of the beam and de-
pends on the source characteristics of a beam or on other effects like quantized
emission of photons into synchrotron radiation and its related excitation and
damping effects.

A simple example of a beam emittance and its boundaries is shown in
Fig. 5.1, where particles emerge from a disk with radius w and where the
direction of the particle trajectories can be anywhere within +90° with respect
to the surface of the source. The proper phase space representation of this
beam at the surface of the source is shown in Fig. 5.1(left). All particles are
contained in a narrow strip within the boundaries x,,,x = +w but with a
large distribution of transverse momenta (p, = po tanz’).

X' iris X'
tw/d
Z X z X
“‘/ -W w “‘1 -W W
phase space / widd
representation

phase space
representation

Fig. 5.1. Beam from a diffuse source in real space and in phase space (left). Re-
duction of phase space (shaded area) due to beam restriction by an iris aperture
(right)

Any real beam emerging from its source will be clipped by some aperture
limitations of the vacuum chamber. We assume a simple iris as the aperture
limitation located at a distance d from the source and an opening with a
radius of R = w. The fact that we choose the iris aperture to be the same as
the size of the source is made only to simplify the arguments. Obviously many
particles emerging from the source will be absorbed at the iris. The part of the
beam which passes the iris occupies a phase space area at the exit of the iris
like the shaded area shown in Fig. 5.1 (right). Among all particles emerging
from the source with an amplitude £ = +w only those will pass the iris for
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which the slope of the trajectory is between 2’ = 0 and ' = F2w/d. This
beam now has a measurable beam emittance as determined by the source and
iris aperture.

The concept of describing a particle beam in phase space will become very
powerful in beam dynamics since we can prove that the density of particles in
phase space does not change along a beam transport line, where the forces act-
ing on particles can be derived from macroscopic electric and magnetic fields.
In other words particles that are within a closed boundary in phase space
at one point of the beam line stay within that boundary. This is Liouville’s
theorem which we will prove for the fields used in beam dynamics.

5.1.1 Liouville’s Theorem

In Chap. 4 we have learned to follow individual particles through an arbitrary
beam transport line made up of drift spaces, dipole, and quadrupole magnets.
Since this is true for any particle with known initial parameters in phase
space (z,z’,y,y’) it is in principle possible to calculate trajectories along a
beam line for a large number of particles forming a particle beam. Obviously,
this is impractical, and we are therefore looking for mathematical methods
to describe the beam as a whole without concentrating on individual particle
trajectories. To this end we make use of methods in statistical mechanics
describing the evolution of a large number of particles forming a particle
beam.

Liouville’s theorem is of specific importance in this respect and we will use
it extensively to describe the properties of a particle beam as a whole. This
theorem states that under the influence of conservative forces the particle
density in phase space stays constant. Since (4.1),(4.2) is equivalent to the
equation of a free harmonic oscillator, we know that the motion of many
particles in phase space follow Liouville’s theorem. A more direct proof of the
validity of Liouville’s theorem in particle beam dynamics can be obtained by
observing the time evolution of an element in the six-dimensional phase space.
If ¥ is the particle density in phase space, the number of particles within a
six-dimensional, infinitesimal element is

¥ (x,Y, 2, pa, Py p=) dz dy dz dpy dpy dp. . (5.1)
The phase space current created by the motion of these particles is
J= &, Vy,viWp,,Vpy,Vp.), (5.2)

where the time derivatives are to be taken with respect to a time 7 measured
along the trajectory of the phase space element. This time is to be distin-
guished from the reference time t along the reference orbit in the same way as
we distinguish between the coordinates s and z. We set therefore & = dx/dr,
etc. The phase space current must satisfy the continuity equation
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Vj+—-—=0. (5.3)
or
From this, we get with (5.2) and the assumption that the particle location
does not depend on its momentum and vice versa

—g—y::VT(W 7)+V, (¥ p) (5.4)

=rV, ¥+ ¥ (V,7)+pV, ¥+ (V,p),

— (o o0 o —_ (9. 9 _o ; ivati
where V,. = (617 5y az) and V, = (8;:17 oy apz>' The time derivative of

the space vector r,

= \/ﬁ, (5.5)
does not depend on the location r, and we have therefore
V,r=0. (5.6)
From the Lorentz force equation, we get
Vop=eV,[r xB]l=eB(V,x7)—er(V,xB). (5.7)

The magnetic field B does not depend on the particle momentum p and
therefore the second term on the right-hand side of (5..7) vanishes. For the
first term, we find V,, x 7 = 0 because (V, x ), = 2% Oy 0

opy, — op. 20d g =

fS) P — CPy Pz — 97 2 _ 2 2 2
Copy T T A Ope where we have used p Pz + Dy + -

We get a similar result for the other components and have finally for (5.7)

V,p=0. (5.8)

With these results, we find from (5.4) the total time derivative of the phase
space density ¥ to vanish

%f+v,m=+vap:g:o, (5.9)
proving the invariance of the phase space density V.

Independent from general principles of classical mechanics we have shown
the validity of Liouville’s theorem for the motion of charged particles under
the influence of Lorentz forces. This is obviously also true for that part of the
Lorentz force that derives from an electrical field since

V,p=cV,E = 0 (5.10)

because the electric field E does not depend on the particle momentum.
The same result can be derived in a different way from the property of
the Wronskian in particle beam dynamics. For that, we assume that the unit
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vectors uy,Us ..., ug form a six-dimensional, orthogonal coordinate system.
The determinant formed by the components of the six vectors ¢y, xs,...,Tq
in this system is equal to the volume of the six-dimensional polygon defined
by the vectors x;. The components of the vectors x; with respect to the base
vectors u; are x;; and the determinant is

T11 T12 T13 T14 T15 T16

D= o = |1, L2, 3, T4, L5, Lg| - (5.11)

x61 cee e eee e x66

We will derive the transformation characteristics of this determinant consid-

ering a transformation
Y, = Mz, (5.12)

where M = (a;;) and determinant (5.11) then transforms like

6 6 6
Y1, Y2, Y |= §:a1jlel,§ a2j2w]'27"'§ A6jg Tjg

=1 J1=1 J1=1
6
= E a1j, 255 - - - Cb6j6|iL'j1, Ljogy - v Jijﬁl. (513)
The determinant |x;,, &;,, ... &j, | is equal to zero if two or more of the in-

dices j; are equal and further the determinant changes sign if two indices are
interchanged. These rules lead to

6
‘yl, Yo ..., Yg | = Z €j1j2...56 Alj; A2jy - - - A6jg | L1, L2, ..., L6 ‘, (514)
ji=1
where
+1 for even permutations of the indices j;
€142 ...je — § —1 for odd permutations of the indices j; (5.15)
0 if any two indices are equal.
The sum Zgizl €j1ja...jo 1j1 G2j5 - - - G6jg is just the determinant of the trans-

formation matrix M and finally we get

Y1, Ys - Y| = M| |z1, 22, ..., x6] - (5.16)
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Fig. 5.2. Phase space ellipse

For a particle beam transport line, however, we know that | M| is the Wron-
skian with
W=|M|=1. (5.17)

If we now identify this six-dimensional space with the six-dimensional phase
space, we see from (5.16) and (5.17) that the phase space under the class of
transformation matrices considered in beam dynamics is constant. Conversely,
if W #£ 1, we get a change in phase space, as we will see when we consider,
for example, acceleration, damping, or synchrotron radiation losses.

5.1.2 Transformation in Phase Space

Liouville’s theorem provides a powerful tool to describe a beam in phase space.
Knowledge of the area occupied by particles in phase space at the beginning of
a beam transport line will allow us to determine the location and distribution
of the beam at any other place along the transport line without having to
calculate the trajectory of every individual particle.

It has become customary to surround all particles of a beam in phase space
by an ellipse called the phase ellipse (Fig. 5.2) described by

yat+2axa + B =, (5.18)

where «, 3,7y, and € are ellipse parameters. The area enclosed by the ellipse is
called the beam emittance® e defined by

! The literature is not always uniform in the representation of numerical values for
the beam emittance. Often the beam emittance is quoted in units of 7—mm-mrad
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/ dzdz’ = 7e, (5.19)
ellipse

while the parameters «, 3, and « determine the shape and orientation of the
ellipse. This characterization of the beam emittance by the area of an ellipse
seems at first arbitrary although practical. Later in Sect. 5.2, we will see that
all particles travel along their individual ellipses in phase space. If we now
choose that or those particles on the largest phase ellipse within a particular
beam, we know that all other particles within that ellipse will stay within
that ellipse. We are thereby able to describe the collective behavior of a beam
formed by many particles by the dynamics of a single particle.

Since all particles enclosed by a phase ellipse stay within that ellipse, we
only need to know how the ellipse parameters transform along the beam line
to be able to describe the whole particle beam. Let the equation

Yo x% + 2a0 zo 2 + Po x62 =€ (5.20)

be the equation of the phase ellipse at the starting point z = 0 of the beam
line. Any particle trajectory transforms from the starting point z = 0 to any
. : z(2) C(z) S(z) | [ =o
other point z # 0 by the transformation =
' (2) C'(2) 8'(2) ) \ =0
Solving for xy and z{ and inserting into (5.20), we get after sorting of coeffi-
cients and stopping to show explicitly the z-dependence

e=(C"By —25C'ap + S%y) 2* (5.21)
+ 2(=CC'By+ S'Cag+ SC'ag — S S"v) x 2’
+ (CQﬁo —-25Cagp+ SQ’)/()) 2.

This equation can be brought into the form (5.18) by replacing the coefficients
in (5.21) with

v =C"By —25'C'ap + S0,
a=—CC'fy+ (5'C + SC")ag — S ', (5.22)
B=C%3y—25Cag+ S*y.

The resulting ellipse equation still has the same area me as we would
expect, but due to different parameters v, a, 8, the new ellipse has a different
orientation and shape. During a transformation along a beam transport line
the phase ellipse will continuously change its form and orientation but not
its area. In matrix formulation the ellipse parameters, which are also called
Twiss parameters [39], transform from (5.22) like

and it is not clear if the factor 7 is included in the numerical value or not. We
define in this book the beam emittance as the beam phase space area divided by
.
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B(2) 2 s s\ (B
a(z) | =|-ccrcs' +c's -89 | | a0 | - (5.23)
7 (2) c? 208 5% ) \

The orientation, eccentricity and area of an ellipse is defined by three para-
meters, while (5.20) includes four parameters «, 3,7 and e. Since the area
is defined by € we expect the other three parameters to be correlated. From
geometric properties of an ellipse we find that correlation to be

By—a®=1. (5.24)

So far we have used only the (z,z’)-phase space, but the results are valid also
for the (y, y’)-phase space. Equation (5.23) provides the tool to calculate beam
parameters anywhere along the beam line from the initial values Gy, ag, Yo.
The phase ellipse in a drift space, for example, becomes distorted in a clock
wise direction without changing the slope of any particle as shown in Fig. 5.3.
If the drift space is long enough a convergent beam transforms eventually into

a divergent beam, while the angular envelope A = z/ . = /€7 stays constant.

max

The point 2y, at which the beam reaches its minimum size is determined by
a(zy) = 0 and we get from (5.23) for the location of a beam waist in a drift
section.

=24y —20=—. (5.25)

Yo

This point of minimum beam size is up or downstream of z = 2y depending
on the sign of ag being negative or positive, respectively.

More formally, the transformation through a simple drift space of length

G(0) 120 ¢ 0o
a@ =101 —¢ ap | s (5.26)
7 (0) 00 1 Y0

which describes, for example, the transition of a convergent phase ellipse to
a divergent phase ellipse as shown in Fig. 5.3. Particles in the upper half of

AN
N

z=0 z=7, 7=z,

Fig. 5.3. Transformation of a phase space ellipse at different locations along a drift
section
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the phase ellipse move from left to right and particles in the lower half from
right to left. During the transition from the convergent to divergent phase
ellipse we find an upright ellipse which describes the beam at the location of
a waist. The form and orientation of the phase ellipse tells us immediately
the characteristics beam behavior. Convergent beams are characterized by
a rotated phase ellipse extending from the left upper quadrant to the lower
right quadrant while a divergent beam spreads from the left lower to the right
upper quadrant. A symmetric phase ellipse signals the location of a waist or
symmetry point.

A divergent beam fills, after some distance, the whole vacuum chamber
aperture and in order not to lose beam a focusing quadrupole must be in-
serted. During the process of focusing a diverging beam entering a focusing
quadrupole reaches a maximum size and then starts to converge again. This
transformation, generated by a focusing quadrupole is shown in Fig. 5.4, where
we recognize slopes of particle trajectories to reverse signs thus forming a con-
vergent beam.

focusing lens

/e
y

diverging converging beam diverging
beam beam waist beam

Fig. 5.4. Transformation of a phase ellipse due to a focusing quadrupole. The
phase ellipse is shown at different locations along a drift space downstream from the
quadrupole

After this step, the beam may develop as shown for a drift space until
the next focusing quadrupole is required. In reality this focusing scenario is
complicated by the fact that we also need vertical focusing which requires the
insertion of defocusing quadrupoles as well.

5.1.3 Beam Matrix

Particle beams are conveniently described in phase space by enclosing their
distribution with ellipses. Transformation rules for such ellipses through a
beam transport system have been derived for a two-dimensional phase space
and we expand here the discussion of phase space transformations to more
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dimensions. The equation for an n-dimensional ellipse can be written in the
form

T 1

u o u=1, (5.27)

where the symmetric matrix o is still to be determined, u” is the transpose
of the coordinate vector u defined by

<

u=1|vy |. (5.28)

3

(%)

The volume of this n-dimensional ellipse is

7.rn/2

S T

Vdet o, (5.29)

where I is the gamma function. Applying (5.27) to the two-dimensional phase
space, we get for the ellipse equation

0'22$2+20'12II/+O'11I,2:€2. (530)

and comparison with (5.18) defines the beam matrix with well-known beam
parameters as
011 0 8 —«
o= 1T =& . (5.31)
021 022 —a

Since only three of the four parameters in the beam matrix o are indepen-
dent, we find that 091 = o12. This identification of the beam matrix can be
expanded to six or arbitrary many dimensions including, for example, spin or
coupling terms which we have so far neglected. The two-dimensional “volume”
or phase space area is

Vo =nVdeto =m\/011 020 — 03y =€ (5.32)

consistent with the earlier definition of beam emittance, since 8y — a? = 1.
The definition of the beam matrix elements are measures of the particle

distribution in phase space. As such, we would expect different definitions

for different distributions. Since most particle beams have a Gaussian or bell
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shaped distribution, however, we adopt a uniform definition of beam matrix
elements. The betatron oscillation amplitude for a particular particle and its
derivative is can be described by (see Chap. 5.2)

= a;\/Bcos (1 + 1), (5.33)

) = aiﬂ cos (¢ + ;) —a sin (¢ + ;) . (5.34)

1
2vB R
We now form average values of all particles within a well-defined fraction of
a beam and get

(27) = a; B (cos® (Y + 1)) = §ai B = B, (5.35)
Py =%ttt =ttt (5:36)
(ri2)) = —ajaf = —ea, (5.37)

where we have assumed a Gaussian particle distribution and a beam emittance
defined by 4 2a = ¢ . This definition describes that part of the beam which is
within one standard deviation of the distribution in multidimensional phase
space. The beam matrix elements are finally defined by

011 = < 2> =€ef,
0o = <ac’2> = 7, (5.38)
012 = (T; 7)) = —ear.

With this definition, the beam emittance can be expressed by

€ =011 02 — 01y = (27) (z?) — (x; AR (5.39)

This definition is generally accepted also for any arbitrary particle distri-
bution. Specifically, beams from linear accelerators or proton and ion beams
can have arbitrary distributions.

Similar to the two-dimensional case, we look for the evolution of the n-
dimensional phase ellipse along a beam transport line. With M(P;|Pz) the
n X n transformation matrix from point Py to Py we get uy = M(P1|Py) uo
and the equation of the phase ellipse at point P; is

M Pu) oy M uy) =uf oy tuy = 1. (5.40)
With (M7) ™" o
fore like

Y = [M oo MT]~! the beam matrix transforms there-

o, = MogMT. (5.41)

This formalism will be useful for the experimental determination of beam
emittances.
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Measurement of the Beam Emittance

The ability to manipulate in a controlled and measurable way the orientation
and form of the phase ellipse with quadrupoles gives us the tool to experimen-
tally determine the emittance of a particle beam. Since the beam emittance
is a measure of both the beam size and beam divergence, we cannot directly
measure its value. While we are able to measure the beam size with the use
of a fluorescent screen, for example, the beam divergence cannot be measured
directly. If, however, the beam size is measured at different locations or under
different focusing conditions such that different parts of the ellipse will be
probed by the beam size monitor, the beam emittance can be determined.
Utilizing the definition of the beam matrix in (5.31), we have

0110922 — O’%Q = 62 (542)

and the beam emittance can be measured, if we find a way to determine the
beam matrix. To determine the beam matrix og at point Py, we consider
downstream from Py a beam transport line with some quadrupoles and beam
size monitors like fluorescent screens at three places, P; to Ps. From (5.23)
and (5.31) we get for the beam sizes 0,11 at locations P; three relations of
the form

0i,11 = 012 00,11 + QSiOi 00,12 + 512 00,22 (543)

which we may express in matrix formulation by

2 2
01,11 C{ —20151 5% 00,11 00,11
oo | = | C3 —2C25; 53 o012 | =Moo | 0012 |- (5.44)
2 2
0311 C5 —2C5853 Ss 00,22 00,22

where C; and S; are elements of the transformation matrix from point Py to
P; and o, j, are elements of the beam matrix at P;. Equation (5.44) can be
solved for the beam matrix elements o; ;i at Py

00,11 01,11

_ T —1 A 4T
00,12 | — (Ma Mo) Mo 0211 | > (5-45)
00,22 03,11

where the matrix M, is known from the parameters of the beam transport
line between Py and P; and MZ is the transpose of it. The solution vector
can be used in (5.42) to calculate finally the beam emittance.

This procedure to measure the beam emittance is straightforward but
requires three beam size monitors at appropriate locations such that the mea-
surements can be conducted with the desired resolution. A much simpler pro-
cedure makes use of only one beam size monitor at P; and one quadrupole
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between Py and P;. We vary the strength of the quadrupole and measure
the beam size at P; as a function of the quadrupole strength. These beam
size measurements as a function of quadrupole strength are equivalent to the
measurements at different locations discussed above and we can express the
results of n beam size measurements by the matrix equation

2 2
0'1711 Cl —20151 Sl
00,11 00,11
0'2711 022 —20252 822
= . . . 00,12 :Ma,n 00,12 | * (5-46)
9 9 00,22 00,22
Jn,ll Cn —2Cn5n Sn

Like in (5.45) the solution is from simple matrix multiplications

01,11
00,11
0211
_ T -1 T ’
00,12 - (anMU,n) Ma,n . . (547)
00,22
On,11

An experimental procedure has been derived which allows us to determine
the beam emittance through measurements of beam sizes as a function of
focusing. Practically, the evaluation of (5.47) is performed by measuring the
beam size o7 11(k) at P; as a function of the quadrupole strength k& and
comparing the results with the theoretical expectation

0'1,11(]{3) = Cz(k) 70,11 + QC(IC) S(k) 00712 + 52(]{3) 70,22 - (548)

By fitting the parameters og 11,00,12, and 0g 22 to match the measured
curve, one can determine the beam emittance from (5.42). However, this pro-
cedure does not guarantee automatically a measurement with the desired
precision. To accurately fit three parameters we must be able to vary the
beam size considerably such that the nonlinear variation of the beam size
with quadrupole strength becomes quantitatively significant. An analysis of
measurement errors indicates that the beam size at Py should be large and
preferably divergent. In this case variation of the quadrupole strength will dra-
matically change the beam size at P, from a large value, when the quadrupole
is off, to a narrow focal point and again to a large value by over focusing.

A most simple arrangement consists of a single quadrupole and a screen
at a distance d. Assuming that the length ¢, of the quadrupole is ¢, < d, we
can use thin lens approximation and the total transformation matrix is then

L—d/f d\ _(1d Loy (5.45)

“1/f 1 01) \-1/f1
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Equation (5.48) becomes

or(k) = (14 dlek)® o011 +2 (1 + dlyk) dog iz + d* o020
or after reordering

0'1711(]6) = (d2 630'0711) /{52 +2 (déq(fo,ll + d2 éq(fo,lg) k (550)
+ (00,11 4+ 2d0g,12 + d200,22) .

Fitting o1 11 (k) with a parabola (ak2 + bk + c) will determine the whole beam
matrix og by

a
90,11 = T35 (5.51)
q
b— 2d1€q0(] 11
S LR 52
00,12 2Pl (5.52)
c—o0 —2do
00,22 = 0’11d2 012 (5.53)

Of course, the beam matrix not only defines the beam emittance but also
the betatron functions at the beginning of the quadrupole in this measure-
ment. We gain with this measurement a full set of initial beam parameters
(v, Bo, ), €) and may now calculate beam parameters at any point along the
transport line.

5.2 Betatron Functions

The trajectory of a particle through an arbitrary beam transport system can
be determined by repeated multiplication of transformation matrices through
each of the individual elements of the beam line. This method is convenient
especially for computations on a computer but it does not reveal many prop-
erties of particle trajectories. For a deeper insight, we attempt to solve the
equation of motion analytically. The differential equation of motion is

u' +k(z)u=0, (5.54)

where u stands for  or y and k(z) is an arbitrary function of z resembling the
particular distribution of focusing along a beam line. For a general solution of
(5.54) we apply the method of variation of integration constants and use an
ansatz with a z-dependent amplitude and phase

u(z) = Vey/B(2) coslip(z) — o], (5.55)

which is similar to the solution of a harmonic oscillator equation with a
constant coefficient k. The quantities € and 1)y are integration constants.
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From (5.55) we form first and second derivatives with the understanding that
B = ﬁ(z)ﬂﬁ = /(/)(Z)v etc.

= e costt — o) — Ve Fsin(u — ) ¥
" 65” -3 ﬁ/Q /8l . /
u = \/ETWQQ cos(v — o) — ﬁﬁ sin(y) — vo) ¥ (5.56)

—ey/B sin(y — o) " — e/ Beos(t — o) ¢'2,

and insert into (5.54). The sum of all coefficients of the sine and cosine terms,
respectively, must vanish separately to make ansatz (5.55) valid for all phases
1. From this, we get the following two conditions:

388" — 367%) = B + ?k =0 (5.57)

and
B+ B =0. (5.58)
Equation (5.58) can be integrated immediately since 8¢ 4+ 84" = (84') for

B = const. =1, (5.59)

where a specific normalization of the phase function has been chosen by se-

lecting the integration constant to be equal to unity. From (5.59) we get for

the phase function

(7 dz
o B(2)
Knowledge of the function 3(z) along the beam line obviously allows us to

compute the phase function. Inserting (5.59) into (5.57) we get the differential

equation for the function 5(z)

%ﬁﬁ” _ iﬁlQ + BQk =1, (5.61)

which becomes with a = —3 8’ and v = (1 + o?)/3

¥ (2) + 10 - (5.60)

B +2kB -2y =0. (5.62)

The justification for the definition of 7 becomes clear below when we make
the connection to ellipse geometry and (5.24). With o/ = —1 8" this is equiv-
alent to

o =kpB—7. (5.63)

Before we solve (5.62) we try to determine the physical nature of the
functions ((z), a(z), and y(z). To do that, we first note that any solution
that satisfies (5.62) together with the phase function 1 (z) can be used to make
(5.55) a real solution of the equation of motion (5.54). From that solution and
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derivative (5.56) we eliminate the phase (¢ — ) and obtain a constant of
motion which is also called the Courant—Snyder invariant [20]

yu? 4+ 200’ + Bu'” =¢. (5.64)

This invariant expression is equal to the equation of an ellipse with the
area me which we have encountered in the previous section and the particular
choice of the letters 3, «, 7y, € for the betatron functions and beam emittance
now becomes obvious. The physical interpretation of this invariant is that of a
single particle traveling in phase space along the contour of an ellipse with the
parameters 3, o, and «y. Since these parameters are functions of z, the form of
the ellipse is changing constantly but, due to Liouville’s theorem, any particle
starting on that ellipse will stay on it. The choice of an ellipse to describe
the evolution of a beam in phase space is thereby more than a mathematical
convenience. We may now select a single particle to define a phase ellipse
and know that all particles with lesser betatron oscillation amplitudes will
stay within that ellipse. The description of an ensemble of particles forming
a beam have thereby been reduced to that of a single particle.

The ellipse parameter functions or Twiss parameters 3, , 7y, and the phase
function 1 are called the betatron functions or lattice functions and the os-
cillatory motion of a particle along the beam line (5.55) is called the betatron
oscillation. This oscillation is quasi-periodic with varying amplitude and fre-
quency. To demonstrate the close relation with the solution of a harmonic
oscillator, we use the betatron and phase function to perform a coordinate
transformation

(u, 2) — (w, ) (5.65)
by setting )
u(z * dz
w() = 8 and w—/o 3@ (5.66)

where u(z) stands for z(z) and y(z), respectively. These coordinates (w, )
are called normalized coordinates and equation of motion (5.54) transforms
to

d?w 9

dil/}z +w” = 0, (567)

which indeed is the equation of a harmonic oscillator with angular frequency
1. This identity will be very important for the treatment of perturbing driving
terms that appear on the right-hand side of (5.67) which will be discussed in
more detail in Sect. 5.3.1.
So far, we have tacitly assumed that the betatron function [(z) never
vanishes or changes sign. This can be shown to be true by setting ¢(z) =
B(2) and inserting into (5.61). With 3’ = 2q¢’ and 8" = 2(¢"*> + qq") we
get the differential equation

1
q"+kq—$:(). (5.68)
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The term 1/¢> prevents a change of sign of ¢(z). Letting ¢ > 0 vary toward
zero ¢ =~ 1/¢q®> — co. This curvature, being positive, will become arbitrarily
large and eventually turns the function ¢(z) around before it reaches zero.
Similarly, the function ¢(z) stays negative along the whole beam line if it is
negative at one point. Since the sign of the betatron function is not deter-
mined and does not change, it has became customary to use only the positive
solution.

The beam emittance parameter € appears as an amplitude factor in the
equation for the trajectory of an individual particle. This amplitude factor is
equal to the beam emittance only for particles traveling on an ellipse that just
encloses all particles in the beam. In other words, a particle traveling along
a phase ellipse with amplitude /e defines the emittance of that part of the
total beam which is enclosed by this ellipse or for all those particles whose
trajectories satisfy

Bu? + 20uu’ +yu® <e. (5.69)

Since it only leads to confusion to use the letter € as an amplitude factor
we will from now on use it only when we want to define the whole beam and
set /e = a for all cases of individual particle trajectories.

5.2.1 Beam Envelope

To describe the beam as a whole, a beam envelope equation can be defined. All
particles on the beam emittance defining ellipse follow trajectories described

by

xi(2) = Vey/B(2) cos[yy(z) + di], (5.70)
where d; is an arbitrary phase constant for the particle 7. By selecting at every
point along the beam line that particle (¢) for which cos[i)(z) 4+ §;] = +1, we
can construct an envelope of the beam containing all particles

B(z) = £ /e /B(2). (5.71)

Here the two signs indicate only that there is an envelope an either side
of the beam center. We note that the beam envelope is determined by the
beam emittance € and the betatron function ((z). The beam emittance is a
constant of motion and resembles the transverse “temperature” of the beam.
The betatron function reflects exterior forces from focusing magnets and is
highly dependent on the particular arrangement of quadrupole magnets. It
is this dependence of the beam envelope on the focusing structure that lets
us design beam transport systems with specific properties like small or large
beam sizes at particular points.

5.3 Beam Dynamics in Terms of Betatron Functions

Properties of betatron functions can now be used to calculate the parameters
of individual particle trajectories anywhere along a beam line. Any particle
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trajectory can be described by
u(z) = a+/B costp 4+ b+\/B sintp (5.72)

and the amplitude factors a and b can be determined by setting at z =0

¢:07 ﬁ:ﬁ(h U(O) = Uo,

(5.73)
a=ay, u(0)=ug.
With these boundary conditions we get
a= -,
VBo (5.74)

b= \757“0"’ VBOUEN

and after insertion into (5.72) the particle trajectory and its derivative are

(cosw + ap sin) ug + /B Bo sin 1 ug,

— Q‘Q

[(ag — @) costp — (1 + aap) sin ] ug (5.75)

+ 4/ %(cosz/) — acsin ) uy,
or in matrix formulation

C(z) S(z) \/ﬁ»(coswqtaosmw) VB0 sin v

C'(z) S'(2) ‘\1/57(; cos ) — 1\'}'%’ sin \/% (cos®) — asiny)
(5.76)
Knowledge of the betatron functions along a beam line allows us to calcu-
late individual particle trajectories. The betatron functions can be obtained by
either solving numerically the differential equation (5.61) or by using the ma-
trix formalism (5.23) to transform phase ellipse parameters. Since the ellipse
parameters in (5.23) and the betatron functions are equivalent, we have found
a straightforward way to calculate their values anywhere once we have initial
values at the start of the beam line. This method is particularly convenient
when using computers to perform matrix multiplication.
Transformation of the betatron functions becomes very simple in a drift
space where the transformation matrix is

~ VBB

C(z) S(z) _ 1z (5.77)
C'(z) S'(2) 01/) '

The betatron functions at the point z are from (5.26)
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B(z) = Bo — 2a0 2 + 70 22,
a(z) = ag — Y0 2, (5.78)
7(2) = 70,

with initial values By, ag,yo are taken at the beginning of the drift space.

We note that y(z) = const. in a drift space. This result can be derived also
from the differential equation (5.62) which for ¥ = 0 becomes " = 2v and
the derivative with respect to z is 3"/ = 27’. On the other hand, we calculate
from the first equation (5.78) the third derivative of the betatron function
with respect to z to be 8”” = 0. Obviously both results are correct only if the
~-function is a constant in a drift space where k = 0.

The location of a beam waist is defined by a = 0 and occurs from (5.78) at
zw = ap/70. The betatron function increases quadratically with the distance
from the beam waist (see Fig. 5.5) and can be expressed by

(2 — 2y)?2

Bw
where 3, is the value of the betatron function at the waist and z — z,, is
the distance from the waist. From (5.79) we note that the magnitude of the
betatron function away from the waist reaches large values for both large and
small betatron functions at the waist. We may therefore look for conditions
to obtain the minimum value for the betatron function anywhere in a drift

space of length 2L. For this we take the derivative of 3 with respect to By
and get from (d8/dBy = 0)

Bz = zw) = Bw + (5.79)

Bwopt = L. (5.80)
At either end of the drift space we then have
ﬂ(L) =2 /BW,Opt . (581)

This is the optimum solution for the betatron function on either side of a
drift space with length 2L resulting in a minimum aperture requirement along
a drift space of length L. The phase advance in a drift space is from (5.79)

Boa

z,=0

Fig. 5.5. Betatron function in a drift space
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_ o dz/ﬁw _ L ™ L
Y(L) —/0 W = arctanﬁ—w -5 for N — 0. (5.82)

The phase advance through a drift space of length 2L is therefore never
larger than 7 and actually never quite reaches that value

A "r/)drift <. (583)

5.3.1 Beam Dynamics in Normalized Coordinates

The form and nomenclature of the differential equation (5.54) resemble very
much that of a harmonic oscillator and indeed this is not accidental since in
both cases the restoring force increases linearly with the oscillation ampli-
tude. In particle beam dynamics we find an oscillatory solution with varying
amplitude and frequency and by a proper coordinate transformation we are
able to make the motion of a particle look mathematically exactly like that
of a harmonic oscillator. This kind of formulation of beam dynamics will be
very useful in the evaluation of perturbations on particle trajectories since all
mathematical tools that have been developed for harmonic oscillators will be
available for particle beam dynamics.

We introduce Floquet’s coordinates, or normalized coordinates, through
the transformation
(5.84)

Sl

and

dz
w(z)=/0 3 (5.85)

Note that we used here a different normalization than that selected in
(5.59) to adapt more appropriately to the issues to be discussed here. With
this transformation we get for the first derivative

/ 1
W = w\y/g +w2% =50 %w (5.86)

and for the second derivative

o a?

.
R R e

where dots indicate derivatives with respect to the phase w = dw/dp etc. We
insert these expressions into (5.54) and get the general equation of motion
expressed in normalized coordinates

"

(5.87)

v+ ku= W+(188" — o® + kB%)v*w | = p(z,y, 2), (5.88)

=1

1
v233/2
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where the right-hand side represents a general perturbation term p(z,y, 2)
which was neglected so far. The square bracket is equal to unity according
to (5.61) and the equation of motion takes the simple form of a harmonic
oscillator with some perturbation

W+ 2w — 233 p(x,y,2) =0. (5.89)
This nonlinear equation of motion can be derived from the Hamiltonian

1 1 ntz Pn
H = 511'12 + §V2w2 — 2B p—w”7 (5.90)
n

where coupling has been ignored and p(z, z) = p,a" ! = pnﬁ%l w™ L. Later,
we will perform another canonical transformation to action-angle variables,
which brings the Hamiltonian into a convenient form to exhibit effects of
perturbations.

Since the parameter v is constant, we have in the case of vanishing per-
turbations (p, = 0) the exact equation of a harmonic oscillator and particles
perform in this representation periodic sine-like oscillations with the frequency
v

w = wp cos(¢Y +9), (5.91)

where ¥(z) = vp(z). The transformation matrix in these variables is given by

M- (€W S _ ey sm@)

() S'() —sin () cos ()

as can easily be derived from (5.91).

The use of normalized coordinates not only allows us to treat particle beam
dynamics equivalent to a harmonic oscillator but is also convenient in the dis-
cussions of perturbations or aberrations. In phase space each particle performs
closed trajectories in the form of an ellipse which we called the phase ellipse.
In Cartesian coordinates this ellipse, however, continuously changes its shape
and orientation and correlations between two locations are not always obvi-
ous. If we use normalized coordinates, the unperturbed phase ellipse becomes
an invariant circle as shown in Fig. 5.6.

From (5.84) we get with u(z) = a\/8(z) cos¥(z)

w(y) = % = a cos, (5.93)
(di% =/pBu + % u = —a siny, (5.94)

and after elimination of the phase, the Courant—Snyder invariant becomes
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y

| dw/dy

Fig. 5.6. Ideal phase ellipse in normalized coordinates

w? + (‘“)2 = 2 (5.95)
dy ) 7 '
where a is the betatron oscillation amplitude.
The equation of motion (5.89) is now ready to be transformed into action-
angle variables. The constancy of the action J is synonymous with the
Courant—Snyder invariant (2.64) or the constancy of the beam emittance.

J = %I/O (’yuQ + 20uu’ + 3 U/Q) = %l/oe. (5.96)

In (¢, J) phase space, the particle moves along a circle with radius J at a
revolution frequency vy. The motion is uniform, periodic, and stable. Including
the independent variable ¢ to form a three-dimensional phase space, we find
a particle to spiral along the surface of a torus as shown in Fig. 5.7. The
ensemble of all particles oscillating with the same amplitude J follow spirals
occupying the full surface of the torus.

This result is not particularly interesting in itself, since it only corroborates
what we have found earlier for harmonic oscillators with simpler mathematical
tools. The circle in (1, J) phase space, however, provides us with a reference
against which to compare perturbed motions and derive stability criteria.
Indeed, we will later use canonical transformations to eliminate well-known
linear motions, like the circular motion of an unperturbed harmonic oscilla-
tor in (1, J) space to exhibit more clearly the effects of perturbation only.
Including perturbations into Hamiltonian (2.62) allows the determination of
perturbed tunes and study resonance phenomena. Having defined canonical
variables for the system, we will also be able to study the evolution of particle
beams by applying Vlasov’s equation in Sect. 9.1. The Fokker—Planck equa-
tion will finally allow us to determine beam parameters even in the presence
of statistical events.
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trajectory

reference path

Fig. 5.7. Unperturbed particle trajectories in (¢, J, ¢) phase space

We have chosen the betatron phase i as the independent variable and
the particles cover one full turn along the phase “ellipse” for each betatron
oscillation. This is a convenient way of representation in beam transport sys-
tems; yet, for circular accelerators we find it more useful to make ¢ = /v the
independent variable in which case the particle rotation frequency in phase
space is the same as that in the ring. This is particularly convenient when we
discuss field and alignment perturbations which occur periodically in a ring
and allow the application of Fourier techniques.

5.4 Dispersive Systems

Beam guidance and focusing are performed by applying Lorentz forces and
the effects of these fields on particle trajectories depend on the momentum
of the particles. So far, we have derived beam dynamics for particles with
ideal momenta for which the beam transport system is designed. To properly
describe the dynamics of a real particle beam we must include chromatic
effects caused by an error in the beam energy or by a spread of energies
within the particle beam. In Sect. 2.5.4 the perturbation due to a momentum
error has been derived and expressed in terms of a dispersion. Continuing the
formulation of beam dynamics in terms of transformation matrices we derive
in this section transformation matrices for particles with a momentum error.

5.4.1 Analytical Solution

The dispersion function has been derived as a special solution to a chromatic
perturbation term in Chap. 2 and (2.86):

D(z) = /O " H(2)[S(2) C5) — C(2) S(2)] d (5.97)
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describes the dispersion function in a beam transport line. There is no contri-
bution to the dispersion function unless there is at least one bending magnet
in the beam line. Knowing the location and strength of bending magnets,
together with the principal solutions of the equations of motion, we may cal-
culate the dispersion anywhere along the beam transport line by integration
of (5.97).

Similar to the matrix formalism for betatron oscillations we would also
like to apply the same formalism for the dispersion function. For this we
note that the particle deviation u from the reference path is composed of the
betatron motion and a displacement due to an energy error u = ug + us. The
transformation matrix is therefore a composite of both contributions and can
be expressed by

u(z) ug(20) us(20)
u'(2) | = M| uf(z0) | + M| uj(z0) | (5.98)
1) 0 0

where M is the 3 x 3 transformation matrix, § is the relative momentum
error, and us(z) = D(z)6 and uf(z) = D’(z)0 are the displacement and
slope, respectively, of the reference path for particles with a momentum error
5. Equation (5.98) can also be applied to the dispersion function alone by
setting the betatron oscillation amplitudes to zero and the momentum error
0 =1 for

D(z) D(z)
D) | =M | D'(z) | - (5.99)
1 1

By determining the transformation matrices for individual bending mag-
nets, we are in a position to calculate in matrix formulation the dispersion
function anywhere along a beam transport line.

In the deflecting plane of a pure sector magnet, the principal solutions
are with K = k3 = 1/p3

C(z) S(2) _ cos (koz)  posin (koz) . (5.100)
C'(z) S'(2) —kosin (koz) cos (koz)

With p(z) = po = const. we get from (5.97) and (5.100) for the dispersion
function within the magnet

D(z) = sin (/foz)/o cos (koZ) dz — cos (HOZ)/O sin (koZ) dz

= po [1 — cos (ko2)] (5.101)
D'(2) = sin (ko2 ) .
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Particles with momentum error § follow an equilibrium path given by
D(z) 6 which can be determined experimentally by observing the beam path
for two different values of the beam momentum §; and d,. The difference of
the two paths divided by the momentum difference is the dispersion function
D(z) = Au/(d2 — 01). In practical applications this is done either by chang-
ing the beam energy or by changing the strength of the bending magnets. In
circular electron accelerators, however, only the first method will work since
the electrons always adjust the energy through damping to the energy deter-
mined by the magnetic fields. In circular electron accelerators, we determine
the dispersion function by changing the rf-frequency which enforces a change
in the particle energy as we will discuss later in Chap. 6.

5.4.2 (3 x 3)-Transformation Matrices

From (5.100) and (5.101) we may form now (3 x 3)-transformation matri-
ces. In the deflecting plane of a pure sector magnet of arc length ¢ such a
transformation matrix is
cos® ppsind pg (1 — cosb)
M, (£]0) = fp% sinf cosf sin @ , (5.102)
0 0 1
where 6 = £/pg is the deflection angle of the magnet. In the nondeflecting

plane, the magnet behaves like a drift space with p% =0,k = 0 and arc length
L

C(1) S(0) 0
Mo (€10) = | c"(0) s'(1) 0 |- (5.103)
0 0 1

For a synchrotron magnet of the sector type we get from (4.39) in analogy
with (5.101), replacing ko by VK, and with © = \/k + £/ for the case of a
focusing synchrotron magnet

sin® 1—cos®

cos © e e
My (€10) = | —V/Ksin© cos© sin® (5.104)

0 0 1

and for a defocusing synchrotron magnet
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cosh © sinh® 1—cosh®

VIKl VK]
My, (£]0) = V/|K|sinh © cosh® sinh® | » (5.105)

0 0 1

where © = \/|k + k3|¢.

In the case of a rectangular magnet without field gradient, we multiply the
matrix for a sector magnet by the transformation matrices for end field focus-
ing. Since these end effects act like quadrupoles we have no new contribution
to the dispersion and the transformation matrices for each end field are

1 00
Me =] Kotan(6/2)10 | - (5.106)
0 01

With these end field matrices the chromatic transformation matrix for a rec-
tangular bending magnet in the deflecting plane is obtained from (5.102) with
My = Me Mgy, p Me

1 posind po (1 — cosf)
M ,(00)=f0 1  2tan(8/2) |- (5.107)
1

Similarly, we can derive the transformation matrices for rectangular syn-
chrotron magnets.

5.4.3 Linear Achromat

Frequently it is necessary in beam transport systems to deflect a particle beam.
If this is done in an arbitrary way an undesirable finite dispersion function
will remain at the end of the deflecting section. Special magnet arrangements
exist which allow to bend a beam without generating a residual dispersion.
Such magnet systems composed of only bending magnets and quadrupoles are
called linear achromats.

Consider, for example, an off-momentum particle traveling along the ideal
path of a straight beam line. At some location, we insert a bending magnet
and the off-momentum particle will be deflected by a different angle with
respect to particles with correct momenta. The difference in the deflection
angle appears as a displacement in phase space from the center to a finite value
A = §D(z)/+/B . From here on, the off-momentum reference path follows the
dispersion function D(z)d and the particle performs betatron oscillations in
the form of circles with radius a until another bending magnet further modifies
or compensates this motion Fig. (5.8).
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Fig. 5.8. Trajectory of an off-momentum particle through a chromatic beam trans-
port section

In case a second bending magnet is placed half a betatron oscillation down-
stream from the first causing the same difference in the deflection angle, the
effect of the first magnet can be compensated completely and the particle
continues to move along the ideal path again. A section of a beam transport
line with this property is called an achromat.

Figure 5.9 displays an achromatic section proposed by Panofsky [40] which
may be used as a building block for curved transport lines or circular acceler-
ators. This section is composed of a symmetric arrangement of two bending
magnets with a quadrupole at the center and is also know as a double bend
achromat or a Chasman—Green lattice [40,41].

General conditions for linear achromats have been discussed in Sect. 4.4
and we found that the integrals

I - /O T h(2)S(2)dz = 0 (5.108)

and

I = /0 K(5)C(2) d = 0, (5.109)

must vanish for a lattice section to become achromatic. For a double bend
achromat this can be accomplished by a single parameter or quadrupole if
adjusted such that the betatron phase advance between the vertex points
of the bending magnet is 180°. Applying the conditions for achromaticity,
Steffen [37] derived the relationship

1
— cot(p/2) = potan(0/2) +d 5.110
T €otl(e/2) = potan(6/2) (5110)
between the magnet deflection angle 6, the bending radius pg, the drift space
d, and the quadrupole strength ¢ = v/k¢ while the dispersion function reaches
a maximum at the quadrupole center of
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Fig. 5.9. Double bend achromat [40] [41]
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A variation of this lattice, the triple bend achromat [42,43], is shown in
Fig. 5.10, where a third bending magnet is inserted for practical reasons to
provide more locations to install sextupoles for chromatic corrections.

Magnet arrangements as shown in Figs. 5.9 and 5.10 are dispersion free
deflection units or linear achromats. This achromat is focusing only in the
deflecting plane but defocusing in the nondeflecting plane which must be com-
pensated by external quadrupole focusing or, since there are no special focus-
ing requirements for the nondeflecting plane, by either including a field gradi-
ent in the pole profile of the bending magnets [44] or additional quadrupoles
between the bending magnets. In a beam transport line this achromat can be
used for diagnostic purposes to measure the energy and energy spread of a
particle beam as will be discussed in more detail in Sect. 5.4.5

A further variation of the lattice in Fig. 5.9 has been proposed by Steffen
[37] to generate an achromatic beam translation as shown in Fig. 5.11.

In this case, the total phase advance must be 360° because the integral I
would not vanish anymore for reasons of symmetry. We therefore use stronger
focusing to make I. vanish because both the bending angle and the cosine-like
function change sign. Achromatic properties are obtained again for parameters
meeting the condition [37]

Dinax = (5.111)

1 dvk 2 si
ptan(/2) + A = — fcf’”* Sy (5.112)
VEk dVk sing — 2 cos g
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Fig. 5.10. Triple bend achromat [42]

Fig. 5.11. Achromatic beam translation

where ¢ = Vk € and k, ¢ are the quadrupole strength and length, respectively.
The need for beam translation occurs frequently during the design of beam
transport lines. Solutions exist to perform such an achromatic translation but
the required focusing is much more elaborate and may cause significantly
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stronger aberrations compared to a simple one-directional beam deflection of
the double bend achromat type.

Utilizing symmetric arrangements of magnets, deflecting achromats can
be composed from bending magnets only [37]. One version has become par-
ticularly important for synchrotron radiation sources, where wiggler magnets
are used to produce high-intensity radiation. Such triple bend achromat are
composed of a row of alternately deflecting bending magnets which do not
introduce a net deflection on the beam. Each unit or period of such a wiggler
magnet Fig. (5.12) is a linear achromat.

.
| |
: |
| 21 |

w |

wiggler pole————— 1 —

|
wiggler period |

\
\
‘ 1

Fig. 5.12. Wiggler achromat

The transformation of the dispersion through half a wiggler unit is the
superposition of the dispersion function from the first magnet at the end of
the second magnet plus the contribution of the dispersion from the second
magnet. In matrix formulation and for hard edge rectangular magnets the
dispersion at the end of half a wiggler period is

D, —po (1 — 0 14, 1-—- 0
_ [ o (mcosO) ) po (1 — cos0) C Ga13)
D., —2tan (6/2) 01 2tan (6/2)

where p > 0, § = lyp, and /4y, is the length of one half wiggler pole (see
Fig. 5.12). Evaluation of (5.113) gives the simple result

Dy = 21, tan(6/2),
Dl =0.

(5.114)

The dispersion reaches a maximum in the middle of the wiggler period and
vanishes again for reasons of symmetry at the end of the period. For sector
magnets we would have obtained the same results. Each full wiggler period
is therefore a linear achromat from a beam optics point of view. Such an
arrangement, can also be used as a spectrometer by placing a monitor at
the center, where the dispersion is large. For good momentum resolution,
however, beam focusing must be provided in the deflecting plane upstream
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of the bending magnets to produce a small focus at the beam monitors for a
monochromatic beam as will be discussed in the next section.

The examples of basic lattice designs discussed in this section are partic-
ularly suited for an analytical treatment. In practice, modifications of these
basic lattices are required to meet specific boundary conditions making, how-
ever, the analytical treatment much more complicated. With the availability
of computers and numerical lattice design codes, it is prudent to start with
basic lattice building blocks and then use a fitting program for modifications
to meet particular design goals.

5.4.4 Spectrometer

Although the dispersion has been treated as a perturbation, it is a highly
desired feature of a beam line to determine the energy or energy distribution
of a particle beam. Such a beam line is called a spectrometer for which many
different designs exist. A specially simple and effective spectrometer can be
made with a single 180° sector magnet [45,46]. For such a spectrometer, the
transformation matrix is from (5.102)

10 2p
M(180°) | o0o-10|. (5.115)
0 0 +1

In this spectrometer all particles emerging from a small target (Fig. 5.13)
are focused to a point again at the exit of the magnet. The focal points for
different energies, however, are separated spatially due to dispersion. Math-
ematically, this is evident since the particle trajectories at the end of the
magnet are given by

6>0 6=0 6<0 target

Fig. 5.13. 180° spectrometer (note that in this figure po < 0)
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xT=—x0+2pp0 (5.116)

and show different positions x for different energies ¢.

The image point is independent of x{, and only proportional to § with a
large proportionality factor which allows a large energy resolution. While this
spectrometer seems to have almost ideal features it is also an example of the
limitations of perturbation methods. For larger values of ¢ of the order of
several percent, higher order terms cannot be neglected anymore. Inclusion of
such terms, for example, will first tilt and then bend the focal plane at the
end of the magnet.

More sophisticated spectrometers including focusing to accept large emit-
tance beams have been devised with special efforts to reduce the effects of
aberrations. It is not the intend of this text to discuss such designs in detail.
More comprehensive overviews for spectrometers with further references can
be found for example in [37,47]. In the treatment of this spectrometer, we
have ignored the nondeflecting plane. Since there is no focusing, particles are
widely spread out in this plane at the end of the magnet. Practical versions
of this spectrometer, therefore, include a focusing term in the nondeflecting
plane in such a way that the resulting focusing is the same in both planes [48].

5.4.5 Measurement of Beam Energy Spectrum

Frequently it is desirable to determine experimentally the particle energy and
energy spread. Basically only one bending magnet is needed to perform this
experiment. The finite beam size of the monochromatic part of the beam
will greatly influence the resolution of the energy measurement. Optimum
resolution is achieved if some focusing is included and the measurement is
performed at a location where the beam size is small while the dispersion
is large. In Fig. 5.14 particle beams at two different energies are shown in
phase space, where both beam centers are separated by the dispersion and its
slope.

In reality no such separation exists since we have a spread of energies
rather than two distinct energies. This energy spread is mixed with the spread
in phase space of the beam emittance and beams of different energies can only
be separated completely if the relative energy difference is at least

o 2Eb_2\/€5
min — D - D I

(5.117)

where Ey, = /e 8 is the beam envelope. To maximize the energy resolution the
beam size Ej, should be small and the dispersion D(z) large. From Fig. 5.14
we note, therefore, that for a given beam emittance and dispersion the energy
resolution can be improved significantly if the measurement is performed at
or close to a beam waist where (§ reaches a minimum.

To derive mathematical expressions for the energy resolution and condi-
tions for the maximum energy resolution 1/d,,;, we assume a beam line as
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Fig. 5.15. Measurement of the energy spectrum

shown in Fig. 5.15 with the origin of the coordinate system z = 0 at the
center of the bending magnet. The salient features of this beam line is the
quadrupole followed by a bending magnet. With this sequence of magnets we
are able to focus the particle beam in the deflection plane while leaving the
dispersion unaffected. In the case of a reversed magnet sequence the dispersion
function would be focused as well, compromising the energy resolution.

Transforming dispersion (5.101) back from the end of the sector bending
magnet to the middle of the magnet we get the simple result

Dy cos§ —posing po (1 — cos6) 0
- - . (5.118)
Dj, pio sing  cosd sin 6 2sin &
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The dispersion appears to originate in the middle of the magnet with a slope
D{ = 2sinf/2. At a distance z from the middle of the bending magnet the
betatron function is given by 3(z) = Bo—2ap z+70 22 where 3y, ag, and o are
the values of the betatron functions in the middle of the bending magnet, and
the dispersion D(z) = 2 sin(6/2) 2. Inserting these expressions into (5.117) we
can find the location z,; for maximum momentum resolution by differentiating
dmin With respect to z. Solving dd,in/dz = 0 for z, we get

_

S o (5.119)
and the maximum momentum resolution is
in(6/2
51 = VBosin(0/2) (5.120)

min \/E
The best momentum resolution for a beam with emittance € is achieved if
both the bending angle 6 and the betatron function §y in the middle of the
bending magnet are large. From condition (5.119), we also find o > 0 which
means that the beam must be converging to make a small spot size at the
observation point downstream of the bending magnet. With (5.78) we find that
zy = Bo/ao = —By/a,, and from the beam envelope Ef = €f3,, at z = z,,,
we get the derivative 2B, Ef, = €], = —2ea,,. With this and D/D’ = z, the
optimum place to measure the energy spread of a particle beam is at

- D(’ZM) _ Eb(zM)
Y D'(zy)  Ei(zg)

It is interesting to note that the optimum location z,, is not at the beam
waist, where ((z) reaches a minimum, but rather somewhat beyond the beam
waist, where D//f is maximum.

At this point, we may ask if it is possible through some clever beam fo-
cusing scheme to improve this resolution. Analogous to the previous deriva-
tion we look for the maximum resolution J_* = D(2)/[2/€3(z)]. The dis-
persion is expressed in terms of the principal solution D(z) = S(z) D’'(0)
and D'(z) = S'(z) D'(0) since D(0) = 0. The betatron function is given by
B(z) = C?(2) Bo — 2C(2)S(2) ap + S?(2) 7o and the condition for maximum
resolution turns out to be a/3 = —D’/D. With this, we get the resolution

-l D(z) _ S(z)Dj _ sin(Q/Q)S(z> (5.122)
mh2VeB 2Vep Vep

and finally with S(z) = \/Bof(2) siny(z)

5—'1 _ ﬂOSIn(9/2) Slnw(Z) < /BOSIH(H/Q)
min \/g — \/E )
which is at best equal to result (5.120) for ¢(z) = 90°. The momentum res-

olution is never larger than in the simple setup of Fig. 5.15 no matter how
elaborate a focusing lattice is employed.

(5.121)

(5.123)
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If more than one bending magnet is used the resolution may be increased
if the betatron phases between the magnets 1 (z;) and the place of the mea-
surement t(z,,) are chosen correctly. The resolution is then

oot = % Z V/Boi sin(0;/2) sinf[yp(z,,) — ¥(z)], (5.124)

where the sum is taken over all magnets ¢. Such an energy resolving system
is often used in beam transport lines to filter out a small energy band of a
particle beam with a larger energy spread. In this case a small slit is placed
at the place for optimum energy resolution (z = z,,).

Of course, this discussion is restricted to linear beam optics which does
not address problems caused by nonlinear effects and geometric as well as
chromatic aberrations.

5.4.6 Path Length and Momentum Compaction

The existence of different reference paths implies that the path length between
two points of a beam transport line may be different as well for different
particle momenta. We will investigate this since the path length is of great
importance as will be discussed in detail in Chap. 6. In preparation for this
discussion, we derive here the functional dependences of the path length on
momentum and focusing lattice.

The path length along a straight section of the beam line depends on the
angle of the particle trajectory with the reference path. Since, however, in this
chapter we are interested only in linear beam dynamics, we may neglect such
second-order corrections to the path length. The only linear contribution to
the path length comes from the curved sections of the beam transport line.
The total path length is therefore given by

L= /(1 + kz)dz. (5.125)

We evaluate (5.125) along the reference path, where x = D(z)d. First we
find the expected result Ly = [ dz for § = 0, which is the ideal design length
of the beam line or the design circumference of a circular accelerator. The
deviation from this ideal length is then

AL = 5/H (2) D(2)dz. (5.126)

The variation of the path length with momentum is determined by the mo-
mentum compaction factor, defined by
Ap

e = ALT/LO with 6= ——. (5.127)
p
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Its numerical value can be calculated with (5.126)

1 Lo

e = —
Lo Jo

k(2) D(2)dz = <D;Z)> . (5.128)

In this approximation the path length variation is determined only by the
dispersion function in bending magnets and the path length depends only on
the energy of the particles. To prepare for the needs of longitudinal phase
focusing in Chap. 6, we will not only consider the path length but also the
time it takes a particle to travel along that path. If L is the path length, the

travel time is given by
L

T = % .
Here 8 = v/c is the velocity of the particle in units of the velocity of light and

is not to be confused with the betatron function. The variation of 7 gives by
logarithmic differentiation

(5.129)

Ar AL AB
e A (5.130)

With AL/L = «a.¢ and ¢p = BE we get dp/p = dB/8 + dE/E and with
dE/E = 3?dp/p we can solve for d3/3 = (1/4?)dp/p, where v = E/mc? is
the energy of the particles in units of the rest energy mc?. From (5.130) we

have then A ) d d
LA (2 - ac> Lo L (5.131)
T p p

Ne = (1 - ac) (5.132)

the momentum compaction. The energy

and call the combination

1
Tt = o

for which the momentum compaction vanishes is called the transition energy,
which will play an important role in phase focusing. Below the transition
energy the arrival time is determined by the actual velocity of the particles
while above the transition energy the particle speed is so close to the speed of
light that the arrival time of a particle with respect to other particles depends
more on the path length than on its speed. For a circular accelerator we
may relate the time 7, a particle requires to follow a complete orbit to the
revolution frequency w, and get from (5.131)

(5.133)

dwy  dm d
e ] - (5.134)
Wr Ty p
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For particles above the transition energy this quantity is negative which means
a particle with a higher energy needs a longer time for one revolution than
a particle with a lower energy. This is because the dispersion function causes
particles with a higher energy to follow an equilibrium orbit with a larger
average radius compared to the radius of the ideal orbit.

By special design of the lattice one could generate an oscillating dispersion
function in such a way as to make the momentum compaction 7. to vanish.
Such a ring would be isochronous to the approximation used here. Due to
higher order aberrations, however, there are nonlinear terms in the dispersion
function which together with an energy spread in the beam cause a spread of
the revolution frequency compromising the degree of isochronicity.

Problems

5.1 (S). Particle trajectories in phase space assume the shape of an ellipse.
Derive a transformation of the phase space coordinates (u,u’, z) to coordinates
(w,w, 1) such that the particle trajectories are circles with the radius (Se).

5.2 (S). Use (5.18) for the phase ellipse and prove that the area enclosed by
the ellipse is indeed equal to 7e.

5.3 (S). Show that the transformation of the beam matrix (5.41) is consistent
with the transformation of the lattice functions.

5.4. Consider a ring made from an even number of FODO cells. To provide
component free space we cut the ring along a symmetry line through the mid-
dle of two quadrupoles on opposite sides of the ring and insert a drift space
of length £4. Derive the transformation matrix for this ring and compare with
that of the unperturbed ring. What is the tune change of the accelerator. The
betatron functions will be modified. Derive the new value of the horizontal
betatron function at the symmetry point in units of the unperturbed beta-
tron function. Is there a difference to whether the free section is inserted in
the middle of a focusing or defocusing quadrupole? How does the n-function
change?

5.5 (S). Sometimes two FODO channels of different parameters must be
matched. Show that a lattice section can be designed with a phase advance of
A, = Ay, = 7/2, which will provide the desired matching of the betatron
functions from the symmetry point of one FODO channel to the symmetry
point of the other channel. Such a matching section is also called a quarter
wavelength transformer. Does this also transformer work for curved FODO
channels, where the dispersion is finite?

5.6. The fact that a Collins straight section can be inserted into any trans-
port line without creating perturbations outside the insertion makes these
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insertions also a periodic lattice. A series of Collins straight sections can be
considered as a periodic lattice composed of quadrupole doublets and long
drift spaces in between. Construct a circular accelerator by inserting bending
magnets into the drift spaces d and adjusting the drift spaces to D = 5 m.
What is the phase advance per period? Calculate the periodic n-function and
make a sketch with lattice and lattice functions for one period.

5.7. Consider a regular FODO lattice where some bending magnets are elim-
inated to provide magnet free spaces and to reduce the n-function in the
straight section. How does the minimum value of the n-function scale with
the phase per FODO cell. Show if conditions exist to match the n-function
perfectly in the straight section of this lattice?
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Longitudinal Beam Dynamics

Accelerator physics is primarily the study of the interaction of charged par-
ticles with electromagnetic fields. In previous chapters we have concentrated
the discussion on the interaction of transverse electrical and magnetic fields
with charged particles and have derived appropriate formalisms to apply this
interaction to the design of beam transport systems. The characteristics of
these transverse fields is that they allow to guide charged particles along a
prescribed path but do not contribute directly to the energy of the particles
through acceleration. For particle acceleration we must generate fields with
nonvanishing force components in the direction of the desired acceleration.
Such fields are called longitudinal fields or accelerating fields. In a very gen-
eral way we describe in this section the interaction of longitudinal electric
fields with charged particles to derive the process of particle acceleration, its
scaling laws, and its stability limits.

The usefulness and application of electric fields to accelerate charged par-
ticles depends greatly on the temporal variations of these fields. Accelerating
fields can be static or pulsed or they may be electromagnetic fields oscillating
at high frequencies. Conceptually, the most simple way to accelerate charged
particles is through a static field applied to two electrodes as shown in Fig. 6.1.
In this case, the total kinetic energy a particle can gain while traveling from
one electrode to the other is equal to the product of the particle charge and
the voltage between the electrodes.

Electric breakdown phenomena, however, limit the maximum applicable
voltage and thereby the maximum energy gain. Nonetheless, this method is
intriguingly simple and efficient compared to other accelerating methods and
therefore still plays a significant role among modern particle accelerators, for
example, in particle sources. Electrostatic acceleration schemes are specifi-
cally useful for low energy particles for which other methods of acceleration
would be inefficient. Higher voltages and particle energies can be reached if
the electric fields are applied in the form of very short pulses. Application of
static high voltages to accelerate particles is limited to some 10 million Volt
due to high voltage breakdown.
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Fig. 6.1. Principle of electrostatic accelerators

For higher particle energies, different acceleration methods must be used.
The most common and efficient way to accelerate charged particles to high
energies is to use high frequency electromagnetic fields in specially designed
accelerating structures. Acceleration to high energies occurs while charged
particles either pass once through many or many times through one or a few
accelerating structures each excited to electric field levels below the break
down threshold. In this section, we concentrate the discussion on charged
particle acceleration by electromagnetic radio frequency fields.

6.1 Longitudinal Particle Motion

Application of radio frequency in short rf-fields has become exceptionally effec-
tive for the acceleration of charged particles. Both, fields and particle motion,
can be synchronized in an effective way to allow the acceleration of charged
particles in principle to arbitrary large energies were it not for other limita-
tions.

The first idea and experiment for particle acceleration with radio frequency
fields has been published by Ising [49] although he did not actually succeed
to accelerate particles due to an inefficient approach to rf-technology. Later
Wideroe [50] introduced the concept of generating the accelerating fields in
resonating rf-cavities and was able to accelerate heavy ions. Original papers
describing these and other early developments of particle acceleration by rf-
fields are collected in a monogram edited by Livingston [51].

To study the interaction of electromagnetic rf-fields with charged parti-
cles, we assume a plane electromagnetic wave of frequency w propagating
in the z-direction. A free electromagnetic wave does not have a longitudinal
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electric field component and therefore a special physical environment, called
the accelerating structure, must be provided to generate accelerating field
components in the direction of propagation. To study particle dynamics in
longitudinal fields, we assume that we were able to generate rf-fields with an
electric field component along the path of the particles expressed by

E(z,t) = Eg @) = Byel¥, (6.1)

where the phase 1 = (wt — kz). The particle momentum changes at a rate
equal to the electric force exerted on the particle by the rf-field
P eBW) = Smed). (62)
Multiplying this with the particle velocity we get the rate of change of the
kinetic energy, dEyi, = ¢Bdp. Integration of (6.2) with respect to time be-
comes unnecessarily complicated for general fields because of the simultaneous
variation of the electric field and particle velocity with time. We therefore in-
tegrate (6.2) with respect to the longitudinal coordinate and obtain instead of
the momentum gain the increase in the kinetic or total energy for the complete
accelerating structure

AE = (y —y0) mc? = €/E(1/}) dz, (6.3)

where 7 mc? is the energy of the particle before acceleration. Of course, the
trick to integrate the electric field through the accelerating section rather than
over time following the particle is only a conceptual simplification and the time
integration will have to be executed at some point. Generally this is done
when the particular accelerating section, the fields, and the synchronization
are known.

Traveling electromagnetic waves are used in linear accelerators and the
accelerating structure is designed such that the phase velocity of the wave is
equal to the velocity of the particles to be accelerated. In this case, the particle
travels along the structure in synchronism with the wave and is therefore ac-
celerated or decelerated at a constant rate. Maximum acceleration is obtained
if the particles ride on the crest of the wave.

In a standing wave accelerating section, the electric field has the form

E(z,t) = Eo(z) 9, (6.4)

where 0 is the phase at the moment the particle enters the accelerating section
at t = 0. When we refer to an accelerating voltage V in a standing wave
cavity we mean to say a particle traveling close to the speed of light through
the cavity will gain a maximum kinetic energy of eV while passing the cavity
center at the moment the field reaches its crest. Such a particle would enter
the cavity some time before the field reaches a maximum and will exit when
the field is decaying again. For slower particles the energy gain would be lower
because of the longer transit time.
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6.1.1 Longitudinal Phase Space Dynamics

Successful particle acceleration depends on stable and predictable interaction
of charged particles and electromagnetic fields. Because oscillating rf-fields are
used, special criteria must be met to assure systematic particle acceleration
rather than random interaction with rf-fields producing a little or no accel-
eration. The constructive interaction of particles and waves was investigated
in 1945 independently by Veksler [52] and McMillan [53] leading to the dis-
covery of the fundamental principle of phase focusing. In this subsection, we
will derive the physics of phase focusing and apply it to the design of particle
accelerators.

The degree of acceleration depends on the momentary phase ¥ of the field
as seen by the particle while traveling through or with an electromagnetic
field. Straight superposition of an electromagnetic wave and charged particle
motion will not necessarily lead to a net acceleration. In general, the particles
are either too slow or too fast with respect to the phase velocity of the wave
and the particle will, during the course of interaction with the electromagnetic
wave, integrate over a range of phases and may gain a little or no net energy
from the electric fields. Therefore, special boundary conditions for the accel-
erating rf-wave must be met such that maximum or at least net acceleration
can be achieved. This can be done by exciting and guiding the electromag-
netic waves in specially designed accelerating structures designed such that
the phase velocity of the electromagnetic wave is equal to the particle veloc-
ity. Only then can we choose a specific phase and integration of (6.3) becomes
straightforward for particles traveling in the direction of propagation of the
electromagnetic waves.

For practical reasons, specifically in circular accelerators, particle acceler-
ation occurs in short, straight accelerating sections placed along the particle
path. In this case no direct traveling wave exists between adjacent accelerat-
ing sections and specific synchronicity conditions must be met for the fields
in different accelerating sections to contribute to particle acceleration as de-
sired. For the purpose of developing a theory of stable particle acceleration
we may imagine an rf-wave traveling along the path of the particle with a
phase velocity equal to the particle velocity and an amplitude which is zero
everywhere except in discrete accelerating cavities.

To derive the synchronicity conditions, we consider two accelerating sec-
tions separated by a distance L as shown in Fig. 6.2. Once the proper operating
conditions are known for two sections a third section may be added by ap-
plying the same synchronicity condition between each pair of cavities. The
successive accelerating sections need not necessarily be physically different
sections but could be the same section or the same sections passed through
by the particles at periodic time intervals. For example, the distance L be-
tween successive accelerating sections may be equal to the circumference of a
circular accelerator.
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Fig. 6.2. Discrete accelerating sections

For systematic acceleration the phase of the rf-fields in each of the accel-
erating sections must reach specific values at the moment the particles arrive.
If the phase of the fields in each of N accelerating sections is adjusted to
be the same at the time of arrival of the particles, the total acceleration is
N times the acceleration in each individual section. This phase is called the
synchronous phase 15 defined by

s = wt — kz = const., (6.5)

where w is the oscillating frequency of the electromagnetic field. The time
derivative of (6.5) vanishes and the synchronicity condition is

Vs =w—kpBc=0, (6.6)

since dz/dt = Be. This condition can be met if we set

2m
k=— .
- (6.7)
and the frequency of the electromagnetic field is then from (6.6)
2m 2m
w1 —kjl ﬁC— fﬁc— E, (68)

where w; is the lowest frequency satisfying the synchronicity condition and
AT is the time needed for particles with velocity Gc to travel the distance
L. This equation relates the time of travel between successive accelerating
sections with the frequency of the accelerating rf-fields in a conditional way
to assure systematic particle acceleration and relation (6.8) is therefore called
the synchronicity condition .

However, any integer multiple of the frequency w; satisfies the synchronic-
ity condition as well, and we may instead of (6.8) define permissible frequencies
of the accelerating rf-fields by
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2 21
wp = hwy =k e = T hpBc= ATh’ (6.9)
where / is an integer called the harmonic number with k, = hk;.

The synchronicity condition must be fulfilled for any spatial arrangement
of the accelerating structures. To illuminate the principle, we assume here a
series of short, equidistant accelerating gaps or accelerating sections along
the path of a particle. Let each of these gaps be excited by its own power
source to produce an accelerating rf-field. The synchronicity condition (6.8) is
fulfilled if the rf-frequency is the same in each of these gaps, although it does
not require each accelerating gap to reach the same rf-phase at the arrival time
of the particles. Each cavity in a set of accelerating cavities oscillating at the
same frequency may be tuned to an arbitrary rf-phase and the synchronicity
condition would still be met. From a practical point of view, however, it is
inefficient to choose arbitrary phases and it is more reasonable to adjust the
phase in each cavity to the optimum phase desired.

The assumption that the rf-frequency of all cavities be the same is unneces-
sarily restrictive considering that any harmonic of the fundamental frequency
is acceptable. Therefore, a set of accelerating cavities in a circular accelerator,
for example, may include cavities resonating at frequencies differing by an
integer multiple of the fundamental frequency w;.

A straightforward application of the synchronicity condition can be found
in the design of the Wideroe linear accelerator structure [50] as shown in
Fig. 6.3. Here the fields are generated by an external rf-source and applied to
a series of metallic drift tubes. Accelerating fields build up at gaps between
the tubes while the tubes themselves serve as a field screens for particles
during the time the electric fields is changing sign and would be decelerating.
The length of the field-free drift tubes is determined by the velocity of the
particles and is L = ¢B8T,¢, where T,¢ is the period of the rf-field. As the
particle energy increases so does the velocity ¢80 and the length L of the tube
must increase too. Only when the particles become highly relativistic will the
distance between field-free drift sections become a constant together with the
velocity of the particles. Structures with varying drift lengths are generally
found in low energy proton or ion accelerators based on [54], which is a
technically more efficient version of the Wideroe principle.

For electrons it is much easier to reach relativistic energies where the
velocity is sufficiently constant such that in general no longitudinal variation of
the accelerating structure is needed. In circular accelerators, we cannot adjust
the distance between cavities or the circumference as the particle velocity §
increases. The synchronicity condition therefore must be applied differently.
From (6.9) we find the rf-frequency to be related to the particle velocity and
distances between cavities. Consequently we have the relation

Bhih =L, (6.10)

which requires that the distance between any pair of accelerating cavities
be an integer multiple of GA;s. Since L and h are constants, this condition
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Fig. 6.3. Wideroe linac structure

requires that the rf-frequency be changed during acceleration proportional to
the particle velocity (. Only for particles reaching relativistic energies, when
0 ~ 1, will the distance between cavities approach an integer multiple of the
rf-wavelength and the circumference C' must then meet the condition

C=Bh. (6.11)

6.2 Equation of Motion in Phase Space

So far, we have assumed that both the particle velocity 8 and the wave num-
ber k are constant. This is not a valid general assumption. For example, we
cannot assume that the time of flight from one gap to the next is the same for
all particles. For low energy particles we have a variation of the time of flight
due to the variation of the particle velocities for different particle momenta.
The wave number k or the distance between accelerating sections need not be
the same for all particles either. A momentum dependent path length between
accelerating sections exists if the lattice between such sections includes bend-
ing magnets. As a consequence, the synchronicity condition must be modified
to account for such chromatic effects.

Removing the restriction of a constant wave number k, we obtain by a
variation of (6.6)

. ok Op
where 5 5
™ U Wrev
k:kllzhfozrﬁ:hﬁc, (613)
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and Lg is the distance between accelerating gaps along the ideal path. The
synchronous phase is kept constant s = const. or z/}s = 0 and serves as the
reference phase against which all deviations are measured.

The momentum dependence of the wave number comes from the fact that
the path length L between accelerating gaps may be different from Ly for
off-momentum particles. The variation of the wave number with particle mo-
mentum is therefore

ok
dp

oo
o OLOp

kn OL

O_ LO 6p

k
=—2q, (6.14)
0 Do

where a, is the momentum compaction factor. We evaluate the momentum
compaction factor starting from L = fOLO sdz and get, while keeping only

linear terms in the expression for s, the path length L = fOLO (1+ Kk, x)dz. For
transverse particle motion z = xg + 1 (Ap/po) and employing average values
of the integrands the integral becomes

A
L=L0+<HI$3> Lo+<ﬁmn>?pLo. (6.15)
0

Because of the oscillatory character of the betatron motion (k. zg) =
0 and the relative path length variation is AL/Ly = (n/p) (Ap/po) or the
momentum compaction factor becomes

Qo = <Z> . (6.16)

The momentum compaction factor increases only in curved sections where
p # 0 and the path length is longer or shorter for higher energy particles de-
pending on the dispersion function being positive or negative, respectively. For
a linear accelerator the momentum compaction factor vanishes since the length
of a straight line does not depend on the momentum. With (9p/0t) At = Ap
and mey? AB = Ap we finally get for (6.12) with (6.14) and after some ma-
nipulation
Acp

= —Bekn (772 - ac) -

(6.17)

The term =2 in (6.17) appears together with the momentum compaction
factor «. and therefore has the same physical relevance. This term represents
the variation of the particle velocity with energy. Therefore, even in a linear
accelerator where o = 0, the time of flight between accelerating gaps is energy
dependent as long as particles are still nonrelativistic.

After differentiation of (6.17) with respect to the time, we get the equation
of motion in the longitudinal direction describing the variation of the phase
with respect to the synchronous phase 15 for particles with a total momentum
deviation Ap
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w+% (ﬁckhnc ?p?) =0. (6.18)

In most practical applications, parameters like the particle velocity § or
the energy vary only slowly during acceleration compared to the rate of change
of the phase and we consider them for the time being as constants. The slow
variation of these parameters constitutes an adiabatic variation of external
parameters for which Ehrenfest’s theorem holds. The equation of motion in
the potential of the rf-field becomes in this approximation

v ﬁC kh Tc 0
4+ —————Acp=0. 6.19
¥ T (6.19)
Integration of the electrical fields along the accelerating sections returns the
kinetic energy gain per turn

€/LE(’(/J) dz = eV (y), (6.20)

where V (¢) is the total particle accelerating voltage seen by particles along
the distance L. For particles with the ideal energy and following the ideal
orbit the acceleration is eV (1), where 15 is the synchronous phase.

Acceleration, however, is not the only source for energy change of particles.
There are also gains or losses from, for example, interaction with the vacuum
chamber environment, external fields like free electron lasers, synchrotron ra-
diation, or anything else exerting longitudinal forces on the particle other than
accelerating fields. We may separate all longitudinal forces into two classes,
one for which the energy change depends only on the phase of the accelerat-
ing fields V(¢) and the other where the energy change depends only on the
energy of the particle U(FE) itself. The total energy gain AE per unit time or
per turn is the composition of both types of external effects

AE = eV(¥) — U(E), (6.21)

where U(E) is the energy dependent loss per turn due, for example, to syn-
chrotron radiation.

6.2.1 Small Oscillation Amplitudes

For arbitrary variations of the accelerating voltage with phase we cannot
further evaluate the equation of motion unless the discussion is restricted
to small variations in the vicinity of the synchronous phase. While the ideal
particle arrives at the accelerating cavities exactly at the synchronous phase
s, most other particles in a real beam arrive at slightly different phases. For
small deviations ¢ from the synchronous phase,

o =1 —1bs, (6.22)
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we can expand the accelerating voltage into a Taylor series at ¥ = s and
get for the average rate of change of the particle energy with respect to the
energy of the synchronous particle from (6.20)

dpap_ L

d
g T eV(s)+e —

v
de

¢ —U(Eo) — —%

. (6.23)

s

where the particle energy £ = Fy + AE and T} is the time of flight for the
reference particle

Lo
= 5

At equilibrium eV (vs) = U(Ey) + AE(y), where AE(4)) is the energy
loss that does not depend on the energy like higher order mode losses. We
note that such losses lead only to a shift in the synchronous phase and we
therefore ignore such losses here. Later, we will take up this discussion again
in connection with the evaluation of the effects of higher order mode losses.
Since 0 Acp = AE, we get with (6.23) and ¢ = ¥ from (6.19) the equation of
motion or phase equation

c ¢ A
. Bckyne AV chnne dU| - Acp o (6.25)

Ty (6.24)

e
Ty Cab|, " Ty dE|g cpo

With (6.17) and ¢ = s + ¢, (6.25) becomes the differential equation of
motion for small phase oscillations

G+2a, o+ N%p =0, (6.26)
where the damping decrement is defined by

1 dU

=+ = — 2
o + 9Ty dE |y, (6.27)
and the synchrotron frequency by
o2 = Pekune AV (6.28)

(&
cpoTo — di s

Particles orbiting in a circular accelerator perform longitudinal oscillations
with the frequency (2. These phase oscillations are damped or antidamped
depending on the sign of the damping decrement. Damping occurs only if
there is an energy loss which depends on the particle energy itself as in the
case of synchrotron radiation. In most cases of accelerator physics we find
the damping time to be much longer than the phase oscillation period and
we may therefore discuss the phase equation while ignoring damping terms.
Whenever damping becomes of interest, we will include this term again.

This phase equation is valid only for small oscillation amplitudes because
only the linear term has been used in the expansion for the rf-voltage. For
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larger amplitudes this approximation cannot be made anymore and direct
integration of the differential equation is necessary. The small amplitude ap-
proximation, however, is accurate to describe most of the fundamental features
of phase oscillations. At large amplitudes, the nonlinear terms will introduce
a change in the phase oscillation frequency and finally a limit to stable oscil-
lations to be discussed later in this chapter.

The phase equation has the form of the equation of motion for a damped
harmonic oscillator and we will look for conditions leading to a positive fre-
quency and stable phase oscillations. Because the phase equation was derived
first for synchrotron accelerators, the oscillations are also called synchrotron
oscillations and are of fundamental importance for beam stability in all cir-
cular accelerators based on rf-acceleration. For real values of the oscillation
frequency we find that particles which deviate from the synchronous phase are
subjected to a restoring force leading to harmonic oscillations about the equi-
librium or synchronous phase. From the equation of motion (6.25) it becomes
clear that phase focusing is proportional to the derivative of the accelerating
voltage rather than to the accelerating voltage itself and is also proportional
to the momentum compaction 7.

To gain a further insight into the phase equation and determine stability
criteria, we must make an assumption for the waveform of the accelerating
voltage. In most cases, the rf-accelerating fields are created in resonant cav-
ities and therefore the accelerating voltage can be expressed by a sinusoidal
waveform

V(1) =V sintp (6.29)
and expanded about the synchronous phase to get with ¥ = ¢s + ¢
V(s + @) = Vo (sins cos ¢ + sin ¢ cos ) . (6.30)
Keeping only linear terms in ¢ the phase equation is
G+ 2%p =0, (6.31)
where the synchrotron oscillation frequency now becomes

knne =
02 = S T cosab 6.32
CPo Toe o cos¥s ( )

A particle passing periodically every Tj seconds or integer multiples thereof
through localized and synchronized accelerating fields along its path performs
synchrotron oscillations with the frequency (2 about the synchronous phase.

In circular accelerators we have frequently the situation that several rf-
cavities are employed to provide the desired acceleration. The reference time
Ty is most conveniently taken as the revolution time and the rf-voltage Vj is
the total accelerating voltage seen by the particle while orbiting around the
ring once. The rf-frequency is an integer multiple of the revolution frequency,
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frf = hfrcva (633)

where the integer h is the harmonic number and the revolution frequency is
with the circumference C

1 C
T() B Cﬁ '
With wrey = 27 frev we get from (6.32) the synchrotron frequency in more
practical units

Jrev = (6.34)

2 hneeVp coshs
rev 277—/6 CpO '

Similar to the betatron oscillation tunes, we define the synchrotron oscil-
lation tune or short the synchrotron tune as the ratio

P=w (6.35)

n

wrev

Vg =

(6.36)

For real values of the synchrotron oscillation frequency the phase equation
assumes the simple form

w = cos (2t + x1), (6.37)

where X; is an arbitrary phase function for the particle ¢ at time ¢t = 0. With
¥ = ¢ we find from (6.17), (6.32) the relation between the momentum and
phase deviation for real values of the synchrotron oscillation frequency

o~

Acp %) ¢
6 = — = — =
CPo hwrev Ne h Wrev Nc

sin (2t + ;) - (6.38)

The particle momentum deviation, being the conjugate variable to the
phase, also oscillates with the synchrotron frequency about the ideal momen-
tum. Both, the phase and momentum oscillations describe the particle motion
in longitudinal phase space as shown in Fig. 6.4 for stable and unstable syn-
chrotron oscillations, respectively. At the time ¢, when in (6.38) the phase
Nty + xi = 0, we expect the momentum deviation to be zero while the phase
(6.37) reaches the maximum value . Particles with a negative momentum
compaction 7. < 0 move clockwise in phase space about the reference point
while a positive momentum compaction causes the particles to rotate coun-
terclockwise.

The same process that has led to phase focusing will also provide the focus-
ing of the particle momentum. Any particle with a momentum different from
the ideal momentum will undergo oscillations at the synchrotron frequency
which are from (6.38) described by

§=—05sin(2t+ i), (6.39)

where the maximum momentum deviation is related to the maximum phase
excursion @ by
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By inverse deduction we may express the momentum equation similar to
the phase equation (6.31) and get with Ap/pg = § the differential equation
for the momentum deviation

d26
— +02%5=0. 6.41
e (6.41)

Similar to the transverse particle motion, we eliminate from (6.37), (6.38)

the argument of the trigonometric functions to obtain an invariant of the form

52 2 N _Q R
gzi%:l with  §=——0, (6.42)

where the sign is chosen to indicate stable or unstable motion depending on
whether the synchrotron oscillation frequency (2 is real or imaginary, respec-
tively. The trajectories for both cases are shown in Fig. 6.4. Clearly, the case
of imaginary values of the synchrotron oscillation frequency leads to an expo-
nential growth in the oscillation amplitude.

6.2.2 Phase Stability

The synchrotron oscillation frequency must be real and the right-hand side
of (6.32) must therefore be positive to obtain stable solutions for phase oscil-
lations. All parameters in (6.32) are positively defined quantities except for
the momentum compaction 7. and the phase factor coss. For low particle
energies the momentum compaction is in general positive because 772 > a.
but becomes negative for higher particle energies. The energy at which the
momentum compaction changes sign is called the transition energy defined by

1

TYr = ﬁc . (643)
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Since the momentum compaction factor for circular accelerators is approx-
imately equal to the inverse horizontal tune . ~ v 2, we conclude that the
transition energy i, is of the order of the tune and therefore in general a small
number reaching up to the order of a hundred for very large accelerators. For
electrons, the transition energy is of the order of a few MeV and for protons
in the GeV regime. In circular electron accelerators the injection energy is al-
ways selected to be well above the transition energy and no stability problems
occur during acceleration since the transition energy is not crossed. Not so
for protons. Proton linear accelerators with an energy of the order of 10 GeV
or higher are very costly and therefore protons and ions in general must be
injected into a circular accelerator below transition energy.

The synchronous rf-phase must be selected depending on the particle en-
ergy being below or above the transition energy. Stable phase focusing can be
obtained in either case if the rf-synchronous phase is chosen as follows:

0<9s< g for <y, (6.44)

F<yYs<m for v >,

In a proton accelerator with an injection energy below the transition energy
the rf-phase must be changed very quickly when the transition energy is being
crossed. Often the technical difficulty of this sudden change in the rf-phase
is ameliorated by the use of pulsed quadrupoles [55,56], which is an efficient
way of varying momentarily the momentum compaction factor by perturbing
the dispersion function. A sudden change of a quadrupole strength can lower
the transition energy below the actual energy of the particle. This helpful
“perturbation” lasts for a small fraction of a second while the particles are
still being accelerated and the rf-phase is changed. By the time the quadrupole
pulse terminates, the rf-phase has been readjusted and the particle energy is
now above the unperturbed transition energy.

In general, we find that a stable phase oscillation for particles under the
influence of accelerating fields can be obtained by properly selecting the syn-
chronous phase 15 in conjunction with the sign of the momentum compaction
such that

2*>0. (6.45)

This is the principle of phase focusing [53] and is a fundamental process
to obtain stable particle beams in circular high energy accelerators. An oscil-
lating accelerating voltage together with a finite momentum compaction pro-
duces a stabilizing focusing force in the longitudinal degree of freedom just as
transverse magnetic or electric fields can produce focusing forces for the two
transverse degrees of freedom. With the focusing of transverse amplitudes, we
found a simultaneous focusing of its conjugate variable, the transverse mo-
mentum. The same occurs in the longitudinal phase where the particle energy
or the energy deviation from the ideal energy is the conjugate variable to the
time or phase of a particle. Both variables are related by (6.17) and a focusing
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force not only exists for the phase or longitudinal particle motion but also for
the energy keeping the particle energy close to the ideal energy.

Focusing conditions have been derived for all six degrees of freedom where
the source of focusing originates either from the magnet lattice for transverse
motion or from a combination of accelerating fields and a magnetic lattice
property for the energy and phase coordinate. The phase stability can be seen
more clearly by observing the particle trajectories in phase space. Equation
(6.31) describes the motion of a pendulum with the frequency {2 which for
small amplitudes (sin¢ = ¢) becomes equal to the equation of motion for a
linear harmonic oscillator and can be derived from the Hamiltonian

H=1¢"+10%%. (6.46)

Small amplitude oscillations in phase space are shown in Fig. 6.4 and
we note the confinement of the trajectories to the vicinity of the reference
point. In the case of unstable motion the trajectories quickly lead to unbound
amplitudes in energy and phase (Fig. 6.4 right).

Large Oscillation Amplitudes

For larger oscillation amplitudes we cannot anymore approximate the trigono-
metric function sin ¢ = ¢ by its argument. Following the previous derivation
for the equation of motion (6.31) we now get

@ =—2sine, (6.47)
which can be derived from the Hamiltonian
H=1¢>— 0 cosp (6.48)

being identical to that of a mechanical pendulum. As a consequence of our
ability to describe synchrotron motion by a Hamiltonian and canonical vari-
ables, we expect the validity of the Poincaré integral

J1 = /dgbdgo = const. (6.49)

under canonical transformations. Since the motion of particles during syn-
chrotron oscillations can be described as a series of canonical transforma-
tions [3], we find the particle density in the (¢, ) phase space to be a con-
stant of motion. The same result has been used in transverse phase space
and the area occupied by this beam in phase space has been called the beam
emittance. Similarly, we define an emittance for the longitudinal phase space.
Different choices of canonical variables can be defined as required to empha-
size the physics under discussion. Specifically we find it often convenient to
use the particle momentum instead of ¢ utilizing relation (6.17).
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separatrices

Fig. 6.5. Phase space diagrams for a synchronous phase ¢s = 7

Particle trajectories in phase space can be derived directly from the Hamil-
tonian by plotting solutions of (6.48) for different values of the “energy” H
of the system. These trajectories, well known from the theory of harmonic
oscillators, are shown in Fig. 6.5 for the case of a synchronous phase ¥ = 7.

The trajectories in Fig. 6.5 are of two distinct types. In one type the
trajectories are completely local and describe oscillations about equilibrium
points separated by 27 along the abscissa. For the other type the trajectories
are not limited to a particular area in phase and the particle motion assumes
the characteristics of libration. This phenomenon is similar to the two cases
of possible motion of a mechanical pendulum or a swing. At small amplitudes
we have periodic motion about the resting point of the swing. For increasing
amplitudes, however, that oscillatory motion could become a libration when
the swing continues to go over the top. The lines separating the regime of
libration from the regimes of oscillation are called separatrices.

Particle motion is stable inside the separatrices due to the focusing prop-
erties of the potential well which in this representation is just the cos ¢ term
in (6.48). The area within separatrices is commonly called an rf-bucket de-
scribing a place where particles are in stable motion. In Fig. 6.6, Hamiltonian
(6.48) is shown in a three-dimensional representation with contour lines rep-
resenting the equipotential lines. The stable potential wells, within the sep-
aratrices, keeping the particles focused toward the equilibrium position, are
clearly visible.

Inside the separatrices the average energy gain vanishes due to oscillatory
phase motion of the particles. This is obvious from (6.30) which becomes for
ws =7 R N R

V() =V sintp = Vp sin(vs +¢) = Vj singp (6.50)

averaging to zero since the average phase (p) = 0.
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Fig. 6.6. Potential well for stationary rf-buckets, ¥s = 7

The area within such separatrices is called a stationary rf-bucket. Such
buckets, while not useful for particle accelerations, provide the necessary po-
tential well to produce stable bunched particle beams in facilities where the
particle energy need not be changed as for example in a proton or ion stor-
age ring where bunched beams are desired. Whenever particles must receive
energy from accelerating fields, may it be for straight acceleration or merely
to compensate for energy losses like synchrotron radiation, the synchronous
phase must be different from zero. As a matter of fact, due to the principle
of phase focusing, particles within the regime of stability automatically os-
cillate about the appropriate synchronous phase independent of their initial
parameters.

In the discussion of large amplitude oscillations we have tacitly assumed
that the synchrotron oscillation frequency remains constant and is equal to
(6.32). From (6.29), however, we note that the frequency is proportional to
the variation of the rf-voltage with phase. Specifically, we note in Fig. 6.5 that
the trajectories in phase space are elliptical only for small amplitudes but are
periodically distorted for larger amplitudes. This distortion leads to a spread
of the synchrotron oscillation frequency.

6.2.3 Acceleration of Charged Particles

In the preceding paragraph we have arbitrarily assumed that the synchronous
phase be zero (s = 0) and as a result of this choice we obtained stationary,
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nonaccelerating rf-buckets. No particle acceleration occurs since the particles
pass through the cavities when the fields cross zero. Whenever particle accel-
eration is required a finite synchronous phase must be chosen. The average
energy gain per revolution is then

AE = V(1) = Vo sin s . (6.51)

Beam dynamics and stability become much different for s # 0. From
(6.19), we get with (6.21), (6.30), (6.32) a phase equation more general than

(6.47)

- o [sin(¥s + ¢) — sinyy] = 0, (6.52)

or after expanding the trigonometric term into its components

2

5 in g i s —sinys) =0. 6.53
@+ p— (sin s cos @ + sin ¢ cos s — sin ) (6.53)
This equation can also be derived directly from the Hamiltonian for the dy-

namics of phase motion

1., 22

2('0 B COS Y

[cos(ws + @) — cos s + @ sini)g] = H. (6.54)

The phase space trajectories or diagrams now differ considerably from
those in Fig. 6.5 depending on the value of the synchronous phase 5. In
Fig. 6.7 phase space diagrams are shown for different values of the synchronous
phase and a negative value for the momentum compaction 7.

We note clearly the reduction in stable phase space area as the synchro-
nous phase is increased or as the particle acceleration is increased. Outside the
phase stable areas the particles follow unstable trajectories leading to contin-
uous energy loss or gain depending on the sign of the momentum compaction.
Equation (6.54) describes the particle motion in phase space for arbitrary val-
ues of the synchronous phase and we note that this equation reduces to (6.46)
if we set ¢ = 0. The energy gain for the synchronous particle at ¢ = g
becomes from (6.18)

AE = ¢ / E(h)dz. (6.55)

We obtain a finite energy gain or loss whenever the synchronous phase in
accelerating sections is different from an integer multiple of 180° assuming that
all accelerating sections obey the synchronicity condition. The form of (6.55)
is actually more general insofar as it integrates over all fields encountered
along the path of the particle. In case some accelerating sections are not
synchronized, the integral collects all contributions as determined by the phase
of the rf-wave at the time the particle arrives at a particular section whether
it be accelerating or decelerating. The synchronicity condition merely assures
that the acceleration in all accelerating sections is the same for each turn.
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Fig. 6.7. Phase space diagrams for particles above transition energy (v > Vi),
synchronous phases of s = 170 (top left), 57/6 (top right),2r/3 (bottom), and
above transition energy

Particle trajectories in phase space are determined by Hamiltonian (6.54),
which is similar to (6.48) except for the linear term in ¢. Due to this term,
the potential well is now tilted (Fig. 6.8) compared to the stationary case
(Fig. 6.6). We still have quadratic minima in the potential well function to
provide stable phase oscillations, but particles escaping over the maxima of
the potential well will be lost because they continuously lose or gain energy
as can be seen by following such trajectories in Fig. 6.9. This is different from
the case of stationary buckets where such a particle would just wander from
bucket to bucket while staying close to the ideal energy at the center of the
buckets. Phase stable regions in the case of finite values of the synchronous
phase are called moving rf-buckets.

The situation is best demonstrated by the three diagrams in Fig. 6.9 show-
ing the accelerating field, the potential, and the phase space diagram as a
function of the phase for different synchronous phases.

In this particular case we have assumed that the particle energy is above
transition energy and that the synchronous phase is such that cosys < 0 to
obtain stable synchrotron oscillations. The center of the bucket is located at
the synchronous phase 15 and the longitudinal stability range is limited by the
phases 11 and 5. In the next section we will derive analytical expressions for
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Fig. 6.8. 3D rendition of a potential well for moving rf-buckets 15 # 0
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Fig. 6.9. Phase space focusing for moving rf buckets displaying the phase relation-
ship of accelerating field, potential, and rf bucket
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the longitudinal stability limit and use the results to determine the momentum
acceptance of the bucket as well.

While both phases, 15 and 7 — 15, would supply the desired energy gain
only one phase provides stability for the particles. The stable phase is easily
chosen by noting that the synchrotron oscillation frequency (2 must be real
and therefore 7. cosvs > 0. Depending on such operating conditions the
rf-bucket has different orientations as shown in Fig. 6.10.

] /\}/E\(rf-voltage

AR Y

V>V, | O CD"
><D

Y<Y, G>:<

acceieratmg deceleratmg buckets

Fig. 6.10. Relationship between rf-phase and orientation of moving rf-buckets for
accelerating as well as decelerating fields

We still can choose whether the electric field should accelerate or decelerate
the beam by choosing the sign of the field. For the decelerating case which,
for example, is of interest for free electron lasers, the “fish” like buckets in the
phase space diagram are mirror imaged.

6.3 Longitudinal Phase Space Parameters

We will here investigate in more detail specific properties and parameters of
longitudinal phase space motion. From these parameters it will be possible to
define stability criteria.

6.3.1 Separatrix Parameters

During the discussions of particle dynamics in longitudinal phase space we
found specific trajectories in phase space, called separatrices which separate
the phase stable region from the region where particles follow unstable trajec-
tories leading away from the synchronous phase and from the ideal momen-
tum. Within the phase stable region particles perform oscillations about the
synchronous phase and the ideal momentum. This “focal point” in the phase
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diagram is called a stable fixed point (sfp). The unstable fixed point (ufp) is
located where the two branches of the separatrix cross. The location of fixed
points can be derived from the two conditions:

on _ or _
O O
From the first condition, we find with (6.54) that ¥ = 0 independent of

any other parameter. All fixed points are therefore located along the -axis
of the phase diagram as shown in Fig. 6.11.

and 0. (6.56)

40 rf—bl%cket separatrices

v

==
—
——————— /

WI \l‘,s Wz
ufp sfp

Fig. 6.11. Characteristic bucket and separatrix parameters

The second condition leads to the actual location of the fixed points ¢ on
the ¥-axis and is with ¢ = s + ¢

sin )y —sinys = 0. (6.57)

This equation can be solved for ; = 95 or 1)y = m—1)s and the coordinates
of the fixed points are

(wsfa &sf) = (T/)w 0) for the sfp and

) (6.58)
(7/}uf7 wuf) = (77 — s, 0) for the ufp.

The distinction between a stable and unstable fixed point is made through
the existence of a minimum or maximum in the potential at these points
respectively. In Fig. 6.9, this distinction becomes obvious where we note the
stable fixed points at the center of the potential minima and the unstable
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fixed points at the saddle points. The maximum stable phase elongation or
bunch length is limited by the separatrix and the two extreme points ¢); and
1o which we will determine in Sect. 6.3.3.

6.3.2 Momentum Acceptance

Particles on trajectories just inside the separatrix reach maximum devia-
tions in phase and momentum from the ideal values in the course of per-
forming synchrotron oscillations. A characteristic property of the separatrix
is therefore the definition of the maximum phase or momentum deviation
a particle may have and still undergo stable synchrotron oscillations. The
value of the maximum momentum deviation is called the momentum accep-
tance of the accelerator. To determine the numerical value of the momentum
acceptance, we use the coordinates of the unstable fixed point (6.58) and cal-
culate the value of the Hamiltonian for the separatrix which is from (6.54)
with Yyt = Vs + our = 7 — 1) and Py =0

2

9]
Hy = pr— [2cosths — (T — 2ebg) sinahs] . (6.59)

Following the separatrix from this unstable fixed point, we eventually reach
the location of maximum distance from the ideal momentum. Since ¢ is pro-
portional to Ap/pg, the location of the maximum momentum acceptance can
be obtained through a differentiation of (6.54) with respect to ¢

o 8790 _ 02 sin s — sin(ys + )
Op €oS s

—0. (6.60)

At the extreme points where the momentum reaches a maximum or minimum,
0/ = 0 which occurs at the phase

sin(ts + @) = sin s or ¢=0. (6.61)

This is exactly the condition we found in (6.57) for the location of the
stable fixed points and is independent of the value of the Hamiltonian. The
maximum momentum deviation or momentum acceptance ¢,.. occurs there-
fore for all trajectories at the phase of the stable fixed points ¢ = 5. We
equate at this phase (6.59) with (6.54) to derive an expression for the maxi-
mum momentum acceptance

1920 = 222 — (7 — 2%) tanvy). (6.62)

In accelerator physics it is customary to define an over voltage factor. This
factor is equal to the ratio of the maximum rf-voltage in the cavities to the
desired energy gain in the cavity Uy
eVo 1

1= T T s (6.63)
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and can be used to replace trigonometric functions of the synchronous phase.
To solve (6.62), we use the expression

1
ir—p = arccosg (6.64)

derived from the identity cos (%77 — ws) = sin 1), replace the synchrotron os-
cillation frequency (2 by its representation (6.35) and get with (6.17) the
momentum acceptance for a moving bucket

Ap)2 eVp sin 1) < 1)
= =———2(v¢>—1—arccos— | . 6.65
(po ace T hInc| epo q (6.65)
The function

F(q) =2 <\/q27—1 — arccos 2) (6.66)

is shown in Fig. 6.12 as a function of the over voltage factor q.
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Fig. 6.12. Over voltage function F (q)

The synchronous phase is always different from zero or m when charged
particles are to be accelerated. In circular electron and very high energy pro-
ton accelerators the synchronous phase must be nonzero even without accel-
eration to compensate for synchrotron radiation losses. In low and medium
energy circular proton or heavy ion storage rings no noticeable synchrotron
radiation occurs and the synchronous phase is either ¥s = 0 or m depend-
ing on the energy being below or above the transition energy. In either case
sin s = 0 which, however, does not necessarily lead to a vanishing momen-
tum acceptance since the function F'(¢q) approaches the value 2¢ and the factor
sinys F'(q¢) — 2 in (6.65) while ¢ — oo. Therefore stable buckets for protons
and heavy ions can be produced with a finite energy acceptance. The maxi-
mum momentum acceptance for such stationary buckets is from (6.65)
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<Ap>2 _ 2 (6.67)

Do / max,stat. mh \Wc\ €Po .

Note that this expression for the maximum momentum acceptance appears
to be numerically inconsistent with (6.40) for @ = 7, because (6.40) has been
derived for small oscillations only ¢ < 7. From Fig. 6.11, we note that the
aspect ratios of phase space ellipses change while going from bucket center
toward the separatrices. The linear proportionality between maximum mo-
mentum deviation and maximum phase of (6.40) becomes distorted for large
values of @ such that the acceptance of the rf-bucket is reduced by the factor
2/7 from the value of (6.40).

The momentum acceptance is further reduced for moving buckets as the
synchronous phase increases. In circular accelerators, where the required en-
ergy gain for acceleration or compensation of synchrotron radiation losses per
turn is Uy, the momentum acceptance is

(AP)Q U ppy-t@ (Ap)z . (668)

Po max,moving mh |77<:| €Po 2 q bo max,static

The reduction F(q)/2¢q in momentum acceptance is solely a function of
the synchronous phase and is shown in Fig. 6.13 for the case v > ;.

Overall, the momentum acceptance depends on lattice and rf-parameters
and scales proportional to the square root of the rf-voltage in the accelerat-
ing cavities. Strong transverse focusing decreases the momentum compaction
thereby increasing the momentum acceptance while high values for the rf-
frequency diminishes the momentum acceptance. Very high frequency accel-
erating systems based, for example, on high intensity lasers to produce high
accelerating fields are expected to have a rather small momentum acceptance
and work therefore best with monoenergetic beams.

1 .
4 F(@)/2q
0.5 |
1 W (deg)
0 | | | |
90 120 150 180

Fig. 6.13. Reduction factor of the momentum acceptance F(q)/2q as a function of
the synchronous phase
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It is often customary to use other parameters than the momentum as the
coordinates in longitudinal phase space. The most common parameter is the
particle energy deviation AFE/w,¢ together with the phase. In these units, we
get for the stationary bucket instead of (6.67)

2eVy B
— 607067 (6.69)
max,stat. mh |770| Wit

which is measured in eV s. Independent of the conjugate coordinates used,
the momentum acceptance for moving rf-buckets can be measured in units of
a stationary rf-bucket, where the proportionality factor depends only on the
synchronous phase.

AE
Wrf

6.3.3 Bunch Length

During the course of synchrotron oscillations, particles oscillate between ex-
treme values in momentum and phase with respect to the reference point and
both modes of oscillation are out of phase by 90°. All particles of a beam
perform incoherent phase oscillations about a common reference point and
thereby generate the appearance of a steady longitudinal distribution of par-
ticles, which we call a particle bunch. The total bunch length is twice the
maximum longitudinal excursion of particles from the bunch center defined

by

(6.70)

where @ is the maximum phase deviation.

In circular electron accelerators the rf-parameters are generally chosen to
generate a bucket which is much larger than the core of the beam. Statisti-
cal emission of synchrotron radiation photons generates a Gaussian particle
distribution in phase space and therefore the rf-acceptance is adjusted to pro-
vide stability far into the tails of this distribution. To characterize the beam,
however, only the core (one standard deviation) is used. In the case of bunch
length or energy deviation we therefore consider only the situation for small
oscillation amplitudes. In this approximation the bunch length becomes with
(6.40)

14 c|ne| Ap
- g el =28 71
2 2P0 | max o7
or with (6.35)
E_jevem [T Ap (6.72)
2 Wrev \ heV cost)s PO |max

The bunch length in a circular electron accelerator depends on a variety
of rf and lattice parameters. It is inversely proportional to the square root of
the rf-voltage and frequency. A high frequency and rf-voltage can be used to
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reduce the bunch length of which only the rf-voltage remains a variable once
the system is installed. Practical considerations, however, limit the range of
bunch length adjustment this way. The momentum compaction is a lattice
function and theoretically allows the bunch length to adjust to any small
value. For high energy electron rings 7. =~ —a. and by arranging the focusing
such that the dispersion functions change sign, the momentum compaction
factor of a ring can become zero or even negative. Rings for which 7. = 0
are called isochronous rings [57]. By adjusting the momentum compaction to
zero, phase focusing is lost similar to the situation going through transition
in proton accelerators and total beam loss may occur. In this case, however,
nonlinear, higher order effects become dominant which must be taken into
consideration. If on the other hand the momentum compaction is adjusted
to very small values, beam instability may be avoidable [58]. The benefit of
an isochronous or quasi-isochronous ring would be that the bunch length in
an electron storage ring could be made very small. This is important, for
example, to either create short synchrotron radiation pulses or maximize the
efficiency of a free electron laser by preserving the microbunching at the laser
wavelength as the electron beam orbits in the storage ring.

In a circular proton or ion accelerator we need not be concerned with the
preservation of Gaussian tails and therefore the whole rf-bucket could be filled
with the beam proper at high density. In this case, the bunch length is limited
by the extreme phases 11 and 15 of the separatrix. Because the longitudinal
extend of the separatrix depends on the synchronous phase, we expect the
bunch length to depend also on the synchronous phase. One limit is given by
the unstable fixed point at ¥; = m — 5. The other limit must be derived from
(6.54), where we replace H by the potential of the separatrix from (6.59).
Setting ¢ = 0, we get for the second limit of stable phases the transcendental
equation

cos 1,2 + 12 sints = (7 — 1)) sinyps — cos s . (6.73)

This equation has two solutions mod(27) of which ¢ is one solution and
the other is 5. Both solutions and their difference are shown in Fig. 6.14 as
functions of the synchronous phase.

The bunch length of proton beams is therefore determined only by

Ar
by = 27:(1#2 — 1) (6.74)

Different from the electron case, we find the proton bunch length to be di-
rectly proportional to the rf-wavelength. On the other hand, there is no direct
way of compressing a proton bunch by raising or lowering the rf-voltage. This
difference stems from the fact that electrons radiate and adjust by damping
to a changed rf-bucket while nonradiating particles do not have this property.
However, applying adiabatic rf-voltage variation we may modify the bunch
length as will be discussed in Sect. 6.3.5.
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Fig. 6.14. Maximum phases limiting the extent of moving buckets

6.3.4 Longitudinal Beam Emittance

Separatrices distinguish between unstable and stable regions in the longitu-
dinal phase space. The area of stable phase space in analogy to transverse
phase space is called the longitudinal beam emittance; however, it should be
noted that the definition of longitudinal emittance as used in the accelerator
physics community often includes the factor 7 in the numerical value of the
emittance and is therefore equal to the real phase space area. To calculate the
longitudinal emittance, we evaluate the integral f pdq where p and q are the
conjugate variables describing the synchrotron oscillation.

Similar to transverse beam dynamics we distinguish again between beam
acceptance and beam emittance. The acceptance is the maximum value for
the beam emittance to be able to pass through a transport line or accelerator
components. In the longitudinal phase space the acceptance is the area en-
closed by the separatrices. Of course, we ignore here other possible acceptance
limitations which are not related to the parameters of the accelerating system.
The equation for the separatrix can be derived by equating (6.54) with (6.59)
which gives with (6.17) and (6.35)

Acp\? Vi
( cp) —__ ¢ [cosp+ 1+ (25 + ¢ — ) sinelg] . (6.75)
cPo Thne| epo
We define a longitudinal beam emittance by
AFE
€p = / de, (6.76)
S Wrf

where the integral is to be taken along a path S tightly enclosing the beam
in phase space. Only for ¥y = n 7 can this integral be solved analytically. The
maximum value of the beam emittance so defined is the acceptance of the
system. Numerically, the acceptance of a stationary bucket can be calculated
by inserting (6.75) into (6.76) and integration along the enclosing separatrices
resulting in
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26VOE0/8
ace = 8y | 20O 6.77
“onee =S\ TR nd o om0

Comparison with the momentum acceptance (6.76) shows the simple rela-
tion that the longitudinal acceptance is eight times the energy acceptance

AFE
Wrf

(6.78)

€p,acc = 3

max,stat

For moving rf-buckets, the integration (6.76) must be performed numer-
ically between the limiting phases i1 and 5. The resulting acceptance in
percentage of the acceptance for the stationary rf-bucket is shown in Fig. 6.15
as a function of the synchronous phase angle.
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Fig. 6.15. Acceptance of moving rf-buckets in units of the acceptance of a stationary
rf-bucket

The acceptance for 15 < 180° is significantly reduced imposing some prac-
tical limits on the maximum rate of acceleration for a given maximum rf-
voltage. During the acceleration cycle, the magnetic fields in the lattice mag-
nets are increased consistent with the available maximum rf-voltage and by
virtue of the principle of phase focusing the particles will keep close to the
synchronous phase whenever the rate of energy increase is slow compared to
the synchrotron oscillation frequency which is always the case. In high en-
ergy electron synchrotrons or storage rings the required “acceleration” is no
more a free parameter but is mainly determined by the energy loss due to
synchrotron radiation and a stable beam can be obtained only if sufficient
rf-voltage is supplied to provide the necessary acceptance.

6.3.5 Phase Space Matching

In transverse phase space, a need for matching exists while transferring a beam
from one accelerator to another accelerator. Such matching conditions exist
also in longitudinal phase space. In the absence of matching part of the beam
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may be lost due to lack of overlap with the rf-bucket or severe phase space
dilution may occur if a beam is injected unmatched into a too large rf-bucket.
In the case of electrons a mismatch generally has no detrimental effect on the
beam unless part or all of the beam exceeds rf-bucket limitations. Because of
synchrotron radiation and concomitant damping, electrons always assume a
Gaussian distribution about the reference phase and ideal momentum. The
only matching then requires that the rf-bucket is large enough to enclose the
Gaussian distribution far into the tails of 7-10 standard deviations.

In proton and heavy ion accelerators, such damping is absent and careful
phase space matching during the transfer of particle beams from one accelera-
tor to another is required to preserve beam stability and phase space density.
A continuous monochromatic beam, for example, being injected into an accel-
erator with too large an rf-bucket as shown in Fig. 6.16 will lead to a greatly
diluted emittance.

Fig. 6.16. Phase space filamentation

This is due to the fact that the synchrotron oscillation is to some extent
nonlinear and the frequency changes with oscillation amplitude with the effect
that for all practical purposes the beam eventually occupies all available phase
space. This does not conflict with Liouville’s theorem, since the microscopic
phase space is preserved albeit fragmented and spread through filamentation
over the whole bucket.

The situation is greatly altered if the rf-voltage is reduced and adjusted to
just cover the energy spread in the beam. Not all particles will be accepted,
specifically those in the vicinity of the unstable fixed points, but all particles
that are injected inside the rf-bucket remain there and the phase space density
for that part of the beam is not diluted. The acceptance efficiency is equal to
the bucket overlap on the beam in phase space. A more sophisticated capturing
method allows the capture of almost all particles in a uniform longitudinal
distribution by turning on the rf-voltage very slowly [59], a procedure which
is also called adiabatic capture.
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Fig. 6.17. Proper match for a bunched beam (left). Mismatch for a bunched beam
(right)

Other matching problems occur when the injected beam is not continuous.
A beam from a booster synchrotron or linear accelerator may be already
bunched but may have a bunch length which is shorter than the rf-wavelength
or we may want to convert a bunched beam with a significant momentum
spread into an unbunched beam with a small momentum spread. Whatever
the desired modification of the distribution of the beam in phase space may
be, there are procedures to allow the change of particular distributions while
keeping the overall emittance constant.

For example, to accept a bunched beam with a bunch length shorter than
the rf-wavelength in the same way as a continuous beam by matching only
the momentum acceptance would cause phase space filamentation as shown
in Fig. 6.17. In a proper matching procedure the rf-voltage would be ad-
justed such that a phase space trajectory surrounds closely the injected beam
(Fig. 6.17a). In mathematical terms, we would determine the bunch length
© of the injected beam and following (6.71) would adjust the rf-voltage such
that the corresponding momentum acceptance 5= (Ap/Po)max matches the
momentum spread in the incoming beam. If no correct matching is done and
the beam is injected like shown in Fig. 6.17c, then the variation of synchrotron
oscillation frequency with amplitude would cause filamentation and the di-
lution of beam phase space. Effectively, this simulates in real space a larger
emittance.

Equation (6.71) represents a relation between the maximum momentum
deviation and phase deviation for small amplitude phase space trajectories
which allows us to calculate the bunch length as a function of external para-
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meters. Methods have been discussed in transverse particle dynamics which
allow the manipulation of conjugate beam parameters in phase space while
keeping the beam emittance constant. Specifically, within the limits of con-
stant phase space we were able to exchange beam size and transverse momen-
tum or beam divergence by appropriate focusing arrangements to produce,for
example, a wide parallel beam or a small beam focus.

Similarly, we are able to manipulate within the limits of a constant longitu-
dinal beam emittance the bunch length and momentum spread. The focusing
device in this case is the voltage in accelerating cavities. Assume, for exam-
ple, a particle bunch with a very small momentum spread but a long bunch
length as shown in Fig. 6.18a. To transform such a bunch into a short bunch
we would suddenly increase the rf-voltage in a time short compared to the
synchrotron oscillation period. The whole bunch then starts to rotate within
the new bucket (Fig. 6.18b) exchanging bunch length for momentum spread.
After a quarter synchrotron oscillation period, the bunch length has reached
its shortest value and starts to increase again through further rotation of the
bunch unless the rf-voltage is suddenly increased a second time to stop the
phase space rotation of the bunch (Fig. 6.18c). Before this second adjustment
of the rf-voltage the bunch boundary does not coincide with a phase space
trajectory causing the whole bunch to rotate. The rf-voltage therefore must
be increased to such a value that all particles on the bunch boundary follow
the same phase space trajectory.

A
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Fig. 6.18. Phase space rotation

This phase space manipulation can be conveniently expressed by repeated
application of (6.40). The maximum momentum deviation (Ap/pg)o and the
maximum phase deviation @y for the starting situation in Fig. 6.18a are related
by

Ap
Po

2
_ N 5, 6.79
0 hwrev ‘nc‘ 0 ( )
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where (2 is the starting synchrotron oscillation frequency for the rf-voltage
Vo. To start bunch rotation the rf-voltage is increased to Vi (Fig. 6.18b) and
after a quarter synchrotron oscillation period at the frequency (2; o< v/V; the
phase deviation @y has transformed into the momentum deviation

Ap
Po

0
5 6.80
™ e (650

At the same time the original momentum error &?/Pob has become a phase
error 1 given by
Ap
Po

2 =R
=—— 7. 6.81)
o hwrey |1 (

Now we need to stop further phase space rotation of the whole bunch.
This can be accomplished by increasing a second time the rf-voltage during
a time short compared to the synchrotron oscillation period in such a way
that the new bunch length or ¥ is on the same phase space trajectory as the
new momentum spread Ap/poly (Fig. 6.18¢). The required rf-voltage is then
determined by

Ap
Po
We take the ratio of (6.78) and (6.81) to get

@1 2 _ &/poh
®o QO Ap/p0|0

2 N
= — . 6.82
1 h wrev ‘770‘ a1 ( )

(6.83)

and replace the ratio of the momentum spreads by the ratio of (6.79) and
(6.80). With §2; < /V; and £ « @ we finally get the scaling law for the

reduction of the bunch length
1
b Vo\*
— =] . 6.84
4 ( Va ) (6.84)

In other words the bunch length can be reduced by increasing the rf-voltage
in a two-step process and the bunch length reduction scales like the fourth
power of the rf-voltage. This phase space manipulation is symmetric in the
sense that a beam with a large momentum spread and a short bunch length
can be converted into a bunch with a smaller momentum spread at the expense
of the bunch length by reducing the rf-voltage in two steps.

The bunch length manipulation described here is correct and applicable
only for nonradiating particles. For radiating particles like electrons, the bunch
manipulation is easier due to damping effects. Equation (6.40) still holds, but
the momentum spread is independently determined by synchrotron radiation
and the bunch length therefore scales simply proportional to the square root
of the rf-voltage.
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6.4 Higher Order Phase Focusing

The principle of phase focusing is fundamental for beam stability in circular
accelerators and we find the momentum compaction factor to be a controlling
quantity. Since the specific value of the momentum compaction determines
critically the beam stability, it is interesting to investigate the consequences
to beam stability as the momentum compaction factor varies. Specifically,
we will discuss the situation where the linear momentum compaction factor
is reduced to very small values and higher order terms become significant.
This is, for example, of interest in proton or ion accelerators going through
transition energy during acceleration, or as we try to increase the quadru-
pole focusing in electron storage rings to obtain a small beam emittance, or
when we intentionally reduce the momentum compaction to reduce the bunch
length. In extreme cases, the momentum compaction factor becomes zero at
transition energy or in an isochronous storage ring where the revolution time
is made the same for all particles independent of the momentum. The linear
theory of phase focusing would predict beam loss in such cases due to lack of
phase stability. To accurately describe beam stability when the momentum
compaction factor is small or vanishes, we cannot completely ignore higher
order terms. Some of the higher order effects on phase focusing will be dis-
cussed here. There are two main contributions to the higher order momentum
compaction factor, one from the dispersion function and the other from the
momentum dependent path length. First, we derive the higher order contri-
butions to the dispersion function, and then apply the results to the principle
of phase focusing to determine the perturbation on the beam stability.

6.4.1 Path Length in Higher Order

The path length together with the velocity of particles governs the time of
arrival at the accelerating cavities from turn to turn and therefore defines
the stability of a particle beam. Generally, only the linear dependence of the
path length on particle momentum is considered. We find, however, higher
order chromatic contributions of the dispersion function to the path length as
well as momentum independent contributions due to the finite angle of the
trajectory with respect to the ideal orbit during betatron oscillations.

The path length for a particular trajectory from point zy = 0 to point z in
our curvilinear coordinate system can be derived from the integral L = fUst,
where s is the coordinate along the particular trajectory. This integral can be
expressed by

L= 7{ \/(1 +kx)’ + 2% + ' 2dz, (6.85)

where the first term of the integrand represents the contribution to the path
length due to curvature generated by bending magnets while the second and
third terms are contributions due to finite horizontal and vertical betatron
oscillations. For simplicity, we ignore vertical bending magnets. Where this
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simplification cannot be made, it is straightforward to extend the derivation
of the path length in higher order to include bending in the vertical plane
as well. We expand (6.85) up to second order and get for the path length
variation AL = L — L

AL = f (ot sr2a® + 10 ® +1y%)dz +0(3).  (6386)

The particle amplitudes are composed of betatron oscillation, orbit distor-
tions, and off-energy orbits

T =25+ 0+ 000 + Mm%+,
B 0T To M (6.87)

Y =Yg+ Yo,

where (z3,y3) describe the betatron oscillations and (19,71, . . .) are the linear
and higher order dispersion functions derived in Sect. 12.6. The quantities
(20, yo0) describe the deviation of the actual orbit from the ideal orbit or orbit
distortion due to magnetic field and alignment errors.

Evaluating integral (6.86), we note that the oscillatory character of (z3,yg)
causes all terms linear in (z,yg) to vanish while averaging over many turns.
The orbit distortions (xg,yo) are statistical in nature since the correction in a
real accelerator is done such that (xg) = 0 and (z() = 0. Betatron oscillations
and orbit distortions are completely independent and therefore cross terms
like (xpxo) vanish. The dispersion function ny and the higher order term
niare unique periodic solutions of the inhomogeneous equation of motion. For
the betatron oscillations we assume a nonresonant tune which causes terms
like (zgno) to vanish as well. With these results the path length variation is

AL%%7{(%2+y£32+x62+y62+mzx%+m2x3) dz (6.88)

—|—(57{/1770dz+527{(m71+%/£2173+%7]62) dz.

There are three main contributions of which two are of chromatic nature.
The finite transverse betatron oscillations as well as orbit distortions con-
tribute to a second-order increase in the path length of the beam transport sys-
tem which is of nonchromatic nature. Equation (6.88) can be simplified by us-

ing the explicit expressions for the particle motion zg(z) = v/€,0:(2) sin ¢, (2)

and x5(z) = \/ex/Bu(2) [cosYu(2) — @z (2) sinep,(2)]. Forming the square
T 2= ¢, /Ba(2) (cos? thy — vy sin 2tp, + a2 sin? ¥,) and averaging over all
phases 1,
1
f{ x'BQ dz = ¢, 7{ R (cos? ¥, + a2 sin®¢,) dz, (6.89)

24hy .
= emj{ <cosﬂ ¥ + Ve sin® pr) dz =~ %E‘T?{% dz,
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%. Similarly, we get

j{y'ﬂz dz =~ Le, ]{'yy dz, (6.90)

where we used the simplifying expression sin® 1, ~

and
?{/1233% dz = %exfmzﬁx dz. (6.91)

The integrals are taken over the entire beam transport line of length Ly and
using average values for the integrands, the path-length variation is

AL

T =1 (6 () + ey (n) + € (K76s)) (6.92)
0

+3(a6") + 5 (uh7) + 3 (%)
t+acd+ (fem) + 3 (s23) + 3 (1)) 62 + 0(3).

In this expression for the path-length variation we find separate contribu-
tions due to betatron oscillations, orbit distortion, and higher order chromatic
effects. We have used the emittance € as the amplitude factor for betatron
oscillation and therefore get a path-length spread within the beam due to
the finite beam emittance e. Note specifically that for an electron beam this
emittance scales by the factor n2 to include Gaussian tails, where n, is the
oscillation amplitude in units of the standard amplitude o. For whole beam
stability a total emittance of €. = 7?€¢ —10%¢ should be considered. For stable
machine conditions, the contribution of the orbit distortion is the same for all
particles and can therefore be corrected by an adjustment of the rf-frequency.
We include these terms here, however, to allow the estimation of allowable
tolerances for dynamic orbit changes.

6.4.2 Higher Order Phase Space Motion

The longitudinal phase stability in a circular accelerator depends on the value
of the momentum compaction 7., which actually regulates the phase focusing
to obtain stable particle motion. This parameter is not a quantity that can be
chosen freely in the design of a circular accelerator without jeopardizing other
desirable design goals. If, for example, a small beam emittance is desired
in an electron storage ring, or if for some reason it is desirable to have an
isochronous ring where the revolution time for all particles is the same, the
momentum compaction should be made to become very small. This in itself
does not cause instability unless the momentum compaction approaches zero
and higher order chromatic terms modify phase focusing to the extent that
the particle motion becomes unstable. To derive conditions for the loss of
phase stability, we evaluate the path-length variation (6.92) with momentum
in higher order
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AL

I, — ot 8 +£4+0(3), (6.93)
where £ represents the momentum independent term
€= (e (V) + &y (m) + €0 (K°62)) (6.94)
and
ay = (km) + % </€2ng> + % <7}62> . (6.95)

Following the derivation of the linear phase equation, we note that it is the
variation of the revolution time with momentum rather than the path-length
variation that affects the synchronicity condition. Defining the momentum
compaction

1
Ne = — — Q 6.96)
7’ (
the differential equation for the phase oscillation to second order is
0
6777[} = —wys (nccs — 16 — E) (6.97)
t
and for the momentum oscillation
00 eV . i
— = — s) - 6.98
= T (sing — siny) (6.98)

In linear approximation, where oy = 0 and £ = 0, a single pair of fixed
points and separatrices exists in phase space. These fixed points can be found
from the condition that ¢ = 0 and § = 0 and they lie on the abscissa for § = 0.
The stable fixed point is located at (¢st, dst) = (5, 0) defining the center of the
rf-bucket where stable phase oscillations occur. The unstable fixed point at
(tut, 0ur) = (m — 1)s, 0) defines the crossing point of the separatrices separating
the trajectories of oscillations from those of librations.

Considering also higher order terms in the theory of phase focusing leads
to a more complicated pattern of phase space trajectories. Setting (6.98) equal
to zero we note that the abscissae of the fixed points are at the same location
as for the linear case

Yir=1s  and =T —hs. (6.99)

The energy coordinates of the fixed points, however, are determined by
solving (6.97) for ¢» =0 or

Ned — 0% — € =0 (6.100)

with the solutions

5 = +2"C (1 + \/ﬁ) : (6.101)

851

where
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o 460&1
e
Due to the quadratic character of (6.100), we get now two layers of fixed

points with associated areas of oscillation and libration. In Figs. 6.19, 6.20, the

phase diagrams are shown for increasing values of the perturbation «; while
for now we set the momentum independent perturbation & = 0. Numerically,
the contour lines have been calculated from the Hamiltonian (6.106) with

A/2n. = 0.005. The appearance of the second layer of stable islands and the

increasing perturbation of the original rf-buckets is obvious. There is actually

a point (Fig. 6.20a) where the separatrices of both island layers merge. We

will use this merging of the separatrices later to define a tolerance limit for

the perturbation on the momentum acceptance.

r

(6.102)
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\—
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T]c/(x’l

W =V C D

Fig. 6.19. Second-order longitudinal phase space for ¢s = 0, & = 0 and weak
perturbation ay /n. = —3.0

The coordinates of the fixed points in the phase diagram are determined
from (6.108), (6.109) and are for the linear fixed points in the first layer

point A:  pa =1, o= (1—-vI=T),
' (6.103)
point B: Y =7 — s, B=g=(1-vV1-T).

The momenta of these fixed points are at § = 0 for I" = 0 consistent
with earlier discussions. As orbit distortions and betatron oscillations increase,
however, we note a displacement of the equilibrium momentum as I" increases.
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Fig. 6.20. Higher order longitudinal phase space diagrams for ¢s = 0, £ = 0 and
strong perturbation a1 /n. = —6.0 (a) and a1/n. = —13.5 (b)

The fixed points of the second layer of islands or rf-buckets are displaced
both in phase and in momentum with respect to the linear fixed points and
are located at

point C: e = s, dc = gk (1+v1-T),
point D: Yp = T — s, op = 3 (1+v1-T).

(6.104)

The dependence of the coordinates for the fixed points on orbit dis-
tortions and the amplitude of betatron oscillations becomes evident from
(6.114),(6.117). Specifically, we note a shift in the reference momentum of
the beam by £/7. as the orbit distortion increases as demonstrated in the ex-
amples shown in Figs. 6.21, 6.22, 6.23(c), and 6.23(d). Betatron oscillations,
on the other hand, cause a spread of the beam momentum in the vicinity
of the fixed points. This readjustment of the beam momentum is a direct
consequence of the principle of phase focusing whereby the particle follows a
path such that the synchronicity condition is met. The phase space diagram
of Fig. 6.19 is repeated in Fig. 6.21 with a parameter 2£/n. = —0.125 and in
Fig. 6.22 with the further addition of a finite synchronous phase of ¢ = 0.7
rad. In addition to the shift of the reference momentum a significant reduction
in the momentum acceptance compared to the regular rf-buckets is evident in
both diagrams.

As long as the perturbation is small and |a;| < |7|, the new fixed points
are located far away from the reference momentum and their effect on the
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Fig. 6.21. Second-order longitudinal phase space for s = 0, 2£/n. = —0.125 and
strong perturbation a1 /n. = —6.0 (a) and a1 /n. = —13.5 (b)

i

a%f U AT

FAUINAIWERIINS
== = =

WS Tc_\lls

nc/(xl

kk

%

Fig. 6.22. Higher order longitudinal phase space diagrams for ¥s = 0.7, 2§/n. =
—0.125, and a weak perturbation a1 /n. = —3.0

particle dynamics can be ignored. The situation becomes very different when-
ever the linear momentum compaction becomes very small or even zero due to
strong quadrupole focusing during momentum ramping through transition or
in the case of the deliberate design of a low a-lattice for a quasi-isochronous
storage ring. In these cases higher order perturbations become significant and
cannot be ignored. We cannot assume anymore that the perturbation term «;
is negligibly small and the phase dynamics may very well become dominated
by perturbations.

The perturbation a; of the momentum compaction factor depends on the
perturbation of the dispersion function and is therefore also dependent on the
sextupole distribution in the storage ring. Given sufficient sextupole families,



6.4 Higher Order Phase Focusing 231

second order unstable second order unstable
fixed, points \ R stable fixed
“Irf-buckets

I

o a)
second order unstable second order unstable stable

fixed| p oi\nts fixed |points f-buckets
/\

0.0

stable
rf-buckets
//l

¢) D

Fig. 6.23. Three-dimensional rendition of Figs. 6.17-20

it is at least in principle possible to adjust the parameter o to zero or a small
value by a proper distribution of sextupoles.

6.4.3 Stability Criteria

Stability criteria for phase oscillations under the influence of higher order mo-
mentum compaction terms can be derived from the Hamiltonian. The nonlin-
ear equations of motion (6.97), (6.98) can be derived from the Hamiltonian

_eVit
Tocpo

1 1
[COS'I/) — COs 'l/Js + (7/} - T;Z}s) sin ws] — Wrf <§nc§2 - §Oé153 - g(s) .
(6.105)
To eliminate inconsequential factors for the calculation of phase space
trajectories, we simplify (6.105) to

H=A [cos i) — cosabs 4 (¢ — abs) sin abs] — 21,62 + %oqé?’ +4£6,  (6.106)

where
26V}f

= - 6.107
Tocpowrene ( )

A
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We may use (6.106) to calculate phase space trajectories and derive stabil-
ity conditions for various combinations of the parameters A, the perturbation
of the momentum compaction o1, and the synchronous phase v (Figs. 6.19—
6.22). In Fig. 6.23, the phase diagrams of Figs. 6.19-6.22 are now displayed
as three-dimensional surfaces plots with the same parameters. Starting from
the linear approximation where only regular rf-buckets appear along the -
axis, we let the ratio ay /7. increase and find the second set of rf-buckets to
move in from large relative momentum errors ¢ toward the main rf-buckets.
A significant modification of the phase diagrams occurs when the perturba-
tion reaches such values that the separatrices of both sets of buckets merge as
shown in Fig.6.20(a). A further increase of the perturbation quickly reduces
the momentum acceptance of the rf-system as can be noticed by comparing
Figs. 6.20(a) and 6.20(b) or Figs. 6.23(a) and 6.23b). The effect of the mo-
mentum shift when £ # 0 becomes obvious in Diagrams 6.21, 6.22, 6.23(c),
and 6.23(d) as well as the effect of a finite synchronous phase in Fig. 6.23(d).

From these qualitative observations we derive a threshold of allowable per-
turbation a; above which the momentum acceptance of the system becomes
significantly reduced. From Fig. 6.20(a) we take the condition for momentum
stability when the separatrices of both sets of buckets merge which occurs
when the Hamiltonian for both separatrices or for the fixed points (B) and
(C) are equal and

H (m —1)s,08) = H(ts, 6c) - (6.108)
Equation (6.108) becomes in the form of (6.106)
A(=2cos s + (1 — 20bs) sin ) — 63 + %%5]33 + 27755]3 (6.109)

(6%
=2 2Ms 198,
UE c

Comparing (6.107) with the results of linear theory, we note that the max-
imum unperturbed momentum acceptance is related to the parameter A by

1 Ap>2 |7c]
A=—_ - (2P , 6.110
F@M%(mnmm (6.110)

where with % = sin s and
F(q) = —2cos s + (7 — 2¢)5) sints . (6.111)

Equation (6.109) can be solved for the maximum momentum acceptance

AP>2 Ne /2 2 2 Q1 /.3 3 3
— = 0c —o0n) + = 0% —on) +2—=— (6c — o) . 6.112
(m mx|m(0 ) ﬂm(c v) o] (00 %) - (6:112)

Using expression (6.101) for the coordinates of the fixed points, (6.112)
eventually becomes with (6.102)
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AP>2 772 3/2
=P = Tl (1 )32, 6.113
(52) -i&a-n) (6.113

max

and the stability criterion that the nonlinear perturbation not reduce the
momentum acceptance is finally expressed by

oy < el (1= D)

Po ) desired

(6.114)

From this criterion we note that the momentum independent perturbation
I can further limit the momentum acceptance until there is for I" > 1 no finite
momentum acceptance left at all.

The momentum shift and the momentum acceptance as well as stability
limits can be calculated analytically as a function of a; and the momentum
independent term I'. As long as the perturbation is small and (6.114) is ful-
filled we calculate the momentum acceptance for the linear rf-buckets from
the value of Hamiltonian (6.106). For stronger perturbations, where the sep-
aratrices of both layers of rf-buckets have merged and are actually exchanged
(Fig. 6.20), a different value of the Hamiltonian must be chosen. The maxi-
mum stable synchrotron oscillation in this case is not anymore defined by the
separatrix through fixed point B but rather by the separatrix through fixed
point C. In the course of synchrotron oscillations a particle reaches maximum
momentum deviations from the reference momentum at the phase ¢ = .
We have two extreme momentum deviations, one at the fixed point (C) and
the other half a synchrotron oscillation away. Both points have the same value
of Hamiltonian (6.106) and are related by

LIV LS _5g+§%5g+2£50. (6.115)

nC nC C
We replace d¢ from (6.104) and obtain a third-order equation for the
maximum momentum acceptance ¢
S a0 o6 3/2
2+ 30F 25— [1+(1fr)/ fgr} . (6.116)

Tlc e 04%

This third-order equation can be solved analytically and has the solutions

0= (1-2V/1-T),
ba5 = e (1+VI-T) .

(6.117)

Two of the three solutions are the same and define the momentum at
the crossing of the separatrix at the fixed point (C) while the other solution
determines the momentum deviation half a synchrotron oscillation away from
the fixed point (C). We plot these solutions in Fig. 6.24 together with the
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Fig. 6.24. Higher order momentum acceptance

momentum shift of the reference momentum at the fixed point (A). As long
as there is no momentum independent perturbation I" = 0 and the momentum
acceptance is
2 a1
TNe
The asymmetry of the momentum acceptance obviously reflects the asym-
metry of the separatrix. For oty — 0 the momentum acceptance in (6.113)
diverges, which is a reminder that we consider here only the case where the
perturbation «; exceeds limit (6.114). In reality the momentum acceptance
does not increase indefinitely but is limited by other criteria, for example,
by the maximum rf-voltage available. The momentum acceptance limits of
(6.117) are further reduced by a finite beam emittance when I' # 0 causing
a spread in the revolution time. All beam stability is lost as I" approaches
unity and the stability criterion for stable synchrotron motion in the presence
of betatron oscillations is defined by

4€an
n2

—2< - 0<1. (6.118)

<1, (6.119)

where the parameter £ is defined by (6.94).

In evaluating the numerical value of ¢ we must consider the emittances
€2,y as amplitude factors. In the case of a Gaussian electron beam in a storage
ring, for example, a long quantum lifetime can be obtained only if particles
with betatron oscillation amplitudes up to at least seven standard values are
stable. For such particles the emittance is ¢ = 7?¢,, where ¢, is the beam
emittance for one standard deviation. Similarly, the momentum acceptance
must be large enough to include a momentum deviation of dyax > 7o, /FEo.

In general, the stability criteria can be met easily if, by proper adjust-
ment of sextupole magnets, the linear perturbation «; of the momentum
compaction is set to zero. In this case, however, we must consider dynamic
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stability of the beam and storage ring to prevent «y to vary more than the
stability criteria allow. Any dynamic variation of a; must meet the condition
0?2

Aay < =5 6.120

< E (6.120)

Even if the quadratic term «; is made to approach zero we still must

consider the momentum shift due to nonchromatic terms when & # 0. From
(6.103) we have for the momentum shift of the stable fixed point A

5, =l (1 iy F) , (6.121)
2 a1

where I is small when «; — 0 and the square root can be expanded. In this

limit the momentum shift becomes

b, — £ for a; — 0. (6.122)

U

To achieve low values of the momentum compaction, it is therefore also
necessary to reduce the particle beam emittance. Case studies of isochronous
lattices show, however, that this might be very difficult because the need to
generate both positive and negative values for the dispersion function gener-
ates large values for the slopes of the dispersion leading to rather large beam
emittances.

Adjusting the quadratic term a; to zero finally brings us back to the sit-
uation created when the linear momentum compaction was reduced to small
values. One cannot ignore higher order terms anymore. In this case we would
expect that the quadratic and cubic perturbations of the momentum com-
paction will start to play a significant role since 7. ~ 0 and a7 =~ 0. The
quadratic term a3 will introduce a spread of the momentum compaction due
to the momentum spread in the beam while the cubic term a4 introduces a
similar spread to the linear term a;.

Problems

6.1 (S). A 500 MHz rf-system is supposed to be used in a Wideroe type linac
to accelerate protons from a 1 MeV Van de Graaf accelerator. Determine the
length of the first three drift tubes for an accelerating voltage at the gaps of
0.5 MeV while assuming that the length of the tubes shall not be less than
15 c¢m. Describe the operating conditions from an rf-frequency point of view.

6.2 (S). A proton beam is injected at a low energy into a storage ring in ny,
equidistant short bunches and the rf-system in the storage ring is turned off.
Derive an expression for the debunching time, or the time it takes for the
bunched proton beam to spread out completely.
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6.3. Calculate the synchrotron oscillation frequency for a 9 GeV proton
booster. The maximum momentum is cppax = 8.9 GeV the harmonic num-
ber h = 84, the rf-voltage Vs = 200 kV, transition energy v, = 5.4, and
rf-frequency at maximum momentum f,y = 52.8 MHz. Calculate and plot the
rf and synchrotron oscillation frequency as a function of momentum from an
injection momentum of 400 MeV to a maximum momentum of 8.9 GeV while
the synchronous phase is ¥s = 45°. What is the momentum acceptance at
injection and at maximum energy? How long does the acceleration last?

6.4 (S). The momentum acceptance in a synchrotron is reduced as the syn-
chronous phase is increased. Derive a relationship between the maximum ac-
celeration rate and momentum acceptance. How does this relationship differ
for protons and radiating electrons?

6.5. Specify a synchrotron of your choice made up of FODO cells for the accel-
eration of relativistic particles. Assume an rf-system to provide an accelerating
voltage equal to 10~* of the maximum particle energy in the synchrotron. Dur-
ing acceleration the synchrotron oscillation tune (vs) shall remain less than
0.02. What are the numerical values for the rf-frequency, harmonic number, rf-
voltage, synchronous phase angle, and acceleration time in your synchrotron?
In the case of a proton synchrotron determine the change in the bunch length
during acceleration.

6.6 (S). Derive an expression for and plot the synchrotron frequency as a
function of oscillation amplitude within the separatrices. What is the syn-
chrotron frequency at the separatrices?

6.7 (S). Sometimes it is desirable to produce short bunches, even only tem-
porary in a storage ring either to produce short X-ray pulses or for quick
ejection from a damping ring into a linear collider. By a sudden change of
the rf-voltage the bunch can be made to rotate in phase space. Determine
analytically the shortest possible bunch length as a function of the rf-voltage
increase considering a finite energy spread. For how many turns would the
short bunch remain within 50% of its shortest value?
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Periodic Focusing Systems

The fundamental principles of charged particle beam dynamics as discussed
in previous chapters can be applied to almost every beam transport need.
Focusing and bending devices for charged particles are based on magnetic or
electric fields which are specified and designed in such a way as to allow the
application of fundamental principles of beam optics leading to predictable
results.

Beam transport systems can be categorized into two classes: The first
group is that of beam transport lines which are designed to guide charged
particle beams from point A to point B. In the second class, we find beam
transport systems or magnet lattices forming circular accelerators. The physics
of beam optics is the same in both cases but in the design of actual solutions
different boundary conditions may apply. Basic linear building blocks in a
beam transport line are the beam deflecting bending magnets, quadrupoles to
focus the particle beam, and field free drift spaces between magnets. Transfor-
mation matrices have been derived in Chap. 4 and we will apply these results
to compose more complicated beam transport systems. The arrangement of
magnets along the desired beam path is called the magnet lattice or short the
lattice.

Beam transport lines can consist of an irregular array of magnets or a
repetitive sequence of a group of magnets. Such a repetitive magnet sequence
is called a periodic magnet lattice, or short periodic lattice and if the magnet
arrangement within one period is symmetric this lattice is called a symmetric
magnet lattice, or short a symmetric lattice. By definition a circular accelera-
tor lattice is a periodic lattice with the circumference being the period length.
To simplify the design and theoretical understanding of beam dynamics it is
customary, however, to segment the full circumference of a circular accelerator
into sectors which are repeated a number of times to form the complete ring.
Such sectors are called superperiods and define usually most salient features
of the accelerator in contrast to much smaller periodic segments called cells,
which include only a few magnets.
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In this chapter, we concentrate on the study of periodic focusing struc-
tures. For long beam transport lines and specifically for circular accelerators
it is prudent to consider focusing structures that repeat periodically. In this
case, one can apply beam dynamics properties of one periodic lattice structure
as many times as necessary with known characteristics. In circular particle
accelerators such periodic focusing structures not only simplify the determi-
nation of beam optics properties in a single turn but we will also be able
to predict the stability criteria for particles orbiting an indefinite number of
revolutions around the ring.

To achieve focusing in both planes, we will have to use both focusing
and defocusing quadrupoles in a periodic sequence such that we can repeat a
lattice period any number of times to form an arbitrary long beam line which
provides the desired focusing in both planes.

7.1 FODO Lattice

The most simple periodic lattice would be a sequence of equidistant focusing
quadrupoles of equal strength. This arrangement is unrealistic with magnetic
quadrupole fields which do not focus in both the horizontal and vertical plane
in the same magnet. The most simple and realistic compromise is therefore a
periodic lattice like the symmetric quadrupole triplet which was discussed in
Sect. 4.2.3. and is shown schematically in Fig. 7.1.

FODO Period

; 7 s
/ 1 !

%2 QF QD 1 QF

Fig. 7.1. FODO-lattice (QF: focusing quadrupole; QD: defocusing quadrupole)

Each half of such a lattice period is composed of a focusing (F) and a
defocusing (D) quadrupole with a drift space (O) in between. Combining such
a sequence with its mirror image as shown in Fig. 7.1 results in a periodic
lattice which is called a FODO lattice or a FODO channel. By starting the
period in the middle of a quadrupole and continuing to the middle of the next
quadrupole of the same sign not only a periodic lattice but also a symmetric
lattice is defined. Such an elementary unit of focusing is called a lattice unit
or in this case a FODO cell. The FODO lattice is the most widely used
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lattice in accelerator systems because of its simplicity, flexibility, and its beam
dynamical stability.

7.1.1 Scaling of FODO Parameters

To determine the properties and stability criteria for a FODO period we re-
strict ourselves to thin lens approximation, where we neglect the finite length
of the quadrupoles. This approximation greatly simplifies the mathematical
expressions while retaining the physical properties to a very high degree. A
simple periodic and symmetric transformation matrix for a FODO cell can
be derived by starting in the middle of one quadrupole and going to the mid-
dle of the next quadrupole of the same type. Any other point in the FODO
lattice could be used as the starting point with the analogous point one pe-
riod downstream to be the ending point, but the mathematical expressions
would be unnecessarily complicated without adding more physical insight.
The FODO period therefore can be expressed symbolically by the sequence
%QF —L-QD—-L— %QF, where the symbol L represents a drift space of
length L and the symbols QF and @D focusing and defocusing quadrupoles,
respectively. In either case we have a triplet structure for which the transfor-
mation matrix has been derived in Sect. 4.2.3 and is

1-2L oL (1 n é)
MFQDO = 1f sz (7.1)
—7s 1-2%

Here fy = —fa = f, 1/f*=2(1 - L/f)L/f 2. Such a FODO lattice is
called a symmetric FODO lattice.

From the transformation matrix (7.1) we can deduce an important prop-
erty for the betatron function. The diagonal elements are equal as they always
are in any symmetric lattice. Comparison of this property with elements of the
transformation matrix expressed in terms of betatron functions (5.76) shows
that the solution of the betatron function is periodic and symmetric since
a = 0 both at the beginning and the end of the lattice period. We therefore
have symmetry planes in the middle of the quadrupoles for the betatron func-
tions in the horizontal as well as in the vertical plane. The betatron functions
then have the general periodic and symmetric form as shown in Fig. 7.2.

From (5.22) and (7.1), we can derive the analytical expression for the
periodic and symmetric betatron function by setting Gy = £, ag = 0, and

Y0 = 1/Bo and get

2 2
B = (1—2?2) ﬁ+4L2<1+§) % (7.2)

where f > 0 and [ is the value of the betatron function in the middle of the
focusing quadrupole, QF. Solving for 3, we get after some manipulations
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I FODO Cell

Fig. 7.2. Periodic betatron functions in a FODO channel

f_f
ﬂ+ =T L L+1 :LK’(K+1), (73)
\/ f2 VK2 -1
-1
where we define the FODO parameter k by
f
== >1 7.4
K= > (7.4)

and set 3 = 371 to indicate the solution at the center of the focusing quadru-
pole. The FODO parameter k is used only here and should not be identified
with our general use of this letter being the curvature. Had we started at the
defocusing quadrupole we would have to replace f by —f and get analogous
to (7.3) for the value of the betatron function in the middle of the defocusing
quadrupole
=17 k(k—1) .
K2 —1
These are the solutions for both the horizontal and the vertical plane.
In the middle of the horizontally focusing quadrupole QF (f > 0) we have
B: = BT and B, = B~ and in the middle of the horizontally defocusing
quadrupole QD (f < 0), we have 3, = 3~ and 3, = 7. From the knowledge
of the betatron functions at one point in the lattice, it is straightforward to
calculate the value at any other point by proper matrix multiplications as
discussed earlier. In open arbitrary beam transport lines the initial values of
the betatron functions are not always known and there is no process other
than measurements of the actual particle beam in phase space to determine
the values of the betatron functions as discussed in Sect. 5.1.3. The betatron
functions in a periodic lattice in contrast are completely determined by the
requirement that the solution be periodic with the periodicity of the lattice.
It is not necessary that the focusing lattice be symmetric to obtain a unique,
periodic solution. Equation (5.22) can be used for any periodic lattice re-
quiring only the equality of the betatron functions at the beginning and at
the end of the periodic structure. Of course, not any arbitrary although peri-
odic arrangement of quadrupoles will lead to a viable solution and we must
therefore derive conditions for periodic lattices to produce stable solutions.

(7.5)
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The betatron phase for a FODO cell can be derived by applying (5.76) to
a symmetric lattice. With ag = @ = 0 and 3y = ( this matrix is

cos¢ [sing

) (7.6)
—% sing cos ¢
where ¢ is the betatron phase advance through a full symmetric period. Since
matrix (7.6) must be equal to matrix (7.1), the phase must be
L2 k%2-2

cosgb:lfQP:T (7.7

or 1
sin & = ~. (7.8)

For solution (7.8) to be real the parameter x must be larger than unity, a
result which also becomes obvious from (7.3),(7.5). This condition is equivalent
to stating that the focal length of half a quadrupole in a FODO lattice must
be longer than the distances to the next quadrupole.

The solutions for periodic betatron functions depend strongly on the
quadrupole strengths. Specifically, we observe that (7.3) has minimum char-
acteristics for 8. For k — 1 as well as for K — oo we get 8 — oo, and
therefore we expect a minimum between these extremes. Taking the deriva-
tive dBT /dk = 0, (7.3) becomes

K — kg —1=0, (7.9)
which can be solved for
Ko =344/ +1=16180. (7.10)
The optimum phase advance per FODO cell is therefore
¢o ~ 76.345° . (7.11)

The maximum value of the betatron function reaches a minimum for a
FODO lattice with a phase advance of about 76.3° per cell. Since beam sizes
scale with the square root of the betatron functions, a lattice with this phase
advance per cell requires the minimum beam aperture.

This criterion, however, is true only for a flat beam when €, > ¢, or
€y > €. For around beam €, = €, and maximum beam acceptance is obtained
by minimizing the beam diameter or E2 + E; ~ Bz + By, where E, and E, are
the beam envelopes in the horizontal and vertical plane, respectively (Fig. 7.3).
This minimum is determined by d(8, + 5,)/dx = 0, or for

Fopt = V2 (7.12)
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Fig. 7.3. Maximum beam acceptance of a FODO lattice with a circular aperture

of radius R and where E; y = \/€2,y0e,y

and the optimum betatron phase per cell is then from (7.8)
¢opt =90°. (713)

This solution requires the minimum radial aperture R in quadrupoles for
a beam with equal beam emittances in both planes e, = ¢, = €. The betatron
functions in the middle of the quadrupoles are then simply

:)Eat:L(Q—i_\/i)a

(7.14)
ﬂo_pt:L(2_\/§)'
The beam envelopes are E2? = ;;c € and Eg = Bopt € and the maximum

beam emittance to fit an aperture of radius R or the acceptance of the aperture
can be determined from

E2+E:=R*=c("+47). (7.15)

From (7.14) we find 81+ 3~ = 4 L and the acceptance of a FODO channel
with an aperture radius R becomes

R2

max — 5 - 7.1
€ il (7.16)

With this optimum solution we may develop general scaling laws for the
betatron functions in a FODO lattice. The values of the betatron functions
need not be known at all points of a periodic lattice to characterize the beam
optical properties. It is sufficient to know these values at characteristic points
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like the symmetry points in a FODO channel, where the betatron functions
reach maximum or minimum values. From (7.3), (7.14) the betatron functions
at these symmetry points are given by

Bt _ _ m(k+])
Bopt (2+V2)VK2—1 (717)
B K (k—1)

Bopt (2—v2)VKr2—-1 °

The scaling of the betatron function is independent of L and depends only
on the ratio of the focal length to the distance between quadrupoles k = f /L.
In Fig. 7.4, the betatron functions 87 and 3~ are plotted as a function of the
FODO parameter «.

] BB,

0.5 : B_/B_Opt

0.2 1

01 T T T T T T
0 1 2 3 4

Fig. 7.4. Scaling of horizontal and vertical betatron functions in a FODO lattice

The distance L between quadrupoles is still a free parameter and can
be adjusted to the needs of the particular application. We observe, however,
that the maximum value of the betatron function varies linearly with L and,
therefore, the maximum beam size in a FODO lattice scales like v/L.

7.1.2 Betatron Motion in Periodic Structures

For the design of circular accelerators it is of fundamental importance to
understand the long term stability of the beam over many revolutions. Specif-
ically we need to know if the knowledge of beam dynamics in one periodic
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unit can be extrapolated to many periodic units. In the following sections, we
discuss stability criteria as well as characteristic beam dynamics in periodic
lattices.

Stability Criterion

The periodic solution for one FODO cell has been derived in the last section
and we expect that such periodic focusing cells can be repeated indefinitely.
Following the classic paper by Courant and Snyder [20], we will derive the
stability conditions for an indefinite number of periodic but not necessarily
symmetric focusing cells. The structure of the cells can be arbitrary but must
be periodic. If M(z + 2L|z) is the transformation matrix for one cell, we have
for N cells

M(z+ N2L| z) = [M(z +2L| 2)]V . (7.18)

Stable solutions are obtained if all elements of the total transformation
matrix stay finite as N increases indefinitely. To find the conditions for this
we calculate the eigenvalues A of the characteristic matrix equation. The eigen-
values A are a measure for the magnitude of the matrix elements and therefore
finite values for the eigenvalues will be the indication that the transformation
matrix stays finite as well. The characteristic matrix equation

(M= \T)x =0, (7.19)

where 7 is the unity matrix. For nontrivial values of the eigenvectors (x # 0)
the determinant

C-x 8
M —\T| = —0 (7.20)
S -

and with C'S" — SC’ = 1 the eigenvalue equation is
M- (C+S8)A+1=0. (7.21)
The solutions for the eigenvalues are
Ma2=2(C+S8) £/ LO+5) -1 (7.22)
or with the substitution 1(C + 5") = cos ¢
Ao =cosp + ising =e?. (7.23)
The betatron phase ¢ must be real or the trace of the matrix M must be
Tr{M}=C+5 < 2. (7.24)

On the other hand, the transformation matrix for a full lattice period is
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M [cose+asing  Bsing 7 (7.25)

—ysing cos¢ —asing

@
which can be expressed with J = b by
— —a
M=TZcosp+ Jsing. (7.26)

This matrix has the form of Euler’s formula for a complex exponential.
Since the determinant of M is unity we get 78 —a? =1 or J? = —Z. Similar
to Moivre’s formula, for N equal periods

MY = (Tcos¢p+ Tsinp)N =Zcos N+ Jsin No (7.27)
and the trace for N periods is bounded if cos¢ < 1 or if (7.24) holds or if
Tr (MYN) =2cos(Ng) < 2. (7.28)

This result is called the stability criterion for periodic beam transport
lattices. We note that the trace of the transformation matrix M does not de-
pend on the reference point z. To show this we consider two different reference
points z1 and 29, where z; < 29, for which the following identities hold

M(za +2L| z1) = M(z2] z1) M(2z1 + 2L| z1) = M(z2 + 2L| 22) M (22| z1)
(7.29)
and solving for M(zg + 2L|z2) we get

M(zo 4 2L 25) = M(22| 21) M(21 + 2L| 1) M~ (25| 21) . (7.30)

This is a similarity transformation and, therefore, both transformation ma-
trices M(z2 +2L| z2) and M(z1 +2L| z1) have the same trace and eigenvalues
independent of the choice of the location z.

7.1.3 General FODO Lattice

So far we have considered FODO lattices, where both quadrupoles have equal
strength, f; = —fo = f. Since we made no use of this in the derivation of the
stability criterion for betatron functions we expect that stability can also be
obtained for unequal quadrupoles strengths. In this case the transformation
matrix of half a FODO cell is

™ 10\ (1L 10 -5 L 4
A 11 01 17 B 1 1_ L ’ (7.31)
f2 f1 7 TR
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where 1/f* = +1/f14+1/fo—L/(f1 f2). Multiplication with the reverse matrix
gives for the full transformation matrix of the FODO cell

L L
1—2L 2L(1—E>

M = i (7.32)
—Fl-f 124
The stability criterion
Tr{M} = ‘2 — % <2 (7.33)
is equivalent to
0< L <1. (7.34)

f*

To determine the region of stability in the (u,v)-plane, where u = L/ f;
and v = L/fy, weuse L/f* = +L/f1+ L/fa— L*/(f1 f2) and get with (7.34)
the condition

O<u+v—uv<l, (7.35)

where v and v can be positive or negative. Solving the second inequality for
either u or v we find the conditions |u| < 1 and |v| < 1. With this, the first
inequality can be satisfied only if u and v have different signs. The boundaries
of the stability region are therefore given by the four equations

ful =1, vl =t (7.36)

ol =1, |ul =

defining the stability region shown in Fig. 7.5 which is also called the necktie
diagram because of its shape. Due to the full symmetry in |u| and |v| the
shaded area in Fig. 7.5 is the stability region for both the horizontal and
vertical plane.

For convenience, we used the thin lens approximation to calculate the
necktie diagram. Nothing fundamentally will, however, change when we use
the transformation matrices for real quadrupoles of finite length except for
a small variation of the stability boundaries depending on the degree of de-
viation from the thin lens approximation. With the general transformation

c s
matrix for a full FODO period M = the periodic solution for the
c' s

betatron function is 32 = % and the stability condition
TTM =|C+ S| <2. (7.37)

The stability diagram has still the shape of a necktie although the boundaries
are slightly curved.
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Fig. 7.5. Necktie diagram

A general transformation matrix for half a FODO cell can be obtained in
matrix formalism with ¢ = v/k¢ by multiplying the matrices

cosh 1o % sinh 1o 1L

M
2 %2 sinh s cosh s 01

cos Yy % sin Yy

~ , (7.38)

— % siniyy cosy

where now L is not the half cell length but just the drift space between two
adjacent quadrupoles of finite length and the indices refer to the first and
the second half quadrupole, respectively. From this we get the full period
transformation matrix by multiplication with the reverse matrix

¢ S
M: :Ml

C/ S/ 2T

Obviously the mathematics becomes elaborate although straightforward
and it is prudent to use computers to find the desired results.
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Table 7.1. FODO cell parameters

Example 1 2 3 4
Energy, E(GeV) 10 50 4 20,000
Half cell length, L(m) 6.0 2.6 3.6 114.25
Quadrupole length, £4(m) 0.705 1.243 0.15 3.64

Bending magnet length, £, (m) 3.55  2.486 2.5  99.24
Phase advance per cell, ¥ 101.4 108.0 135.0 90.0
Quadrupole strength', k (m~2)

lattice type* (FODO) sf cf sf sf

t these parameters will be determined in Problem 7.1

*sf: separated function; cf: combined function lattice.

As reference examples to study and discuss a variety of accelerator physics
issues in this text, we consider different FODO lattices (Table 7.1) which are
of some but definitely not exhaustive practical interest. Other periodic lattices
are of great interest as well specifically for synchrotron radiation sources but
are less accessible to analytical discussions than a FODO lattice. All examples
except Example 2 are separated function lattices.

Example 1 is that for a 10 GeV electron synchrotron at DESY [60, 61]
representing a moderately strong focusing lattice with a large stability range
as is commonly used if no extreme beam parameters are required as is the
case for synchrotrons used to inject into storage rings. Figure 7.6 shows the
betatron functions for this lattice. We note small deviations from a regular
FODO lattice which is often required to make space for other components.
Such deviations from a regular lattice cause only small perturbations in the
otherwise periodic betatron functions. Strong focusing is required for beam
transport lines in linear electron positron collider facilities to minimize in-
crease of the beam emittance due to synchrotron radiation. As Example 2
we use the lattice for the long curved beam transport lines leading the 50
GeV beam from the linac to the collision area at the Stanford Linear Col-
lider [62]. This lattice exhibits the greatest deviation from a thin lens FODO
channel as shown in Fig. 7.7. Example 3 resembles a theoretical lattice for an
extremely small beam emittance used to study fundamental limits of beam
stability and control of aberrations [63] . Lattices for future very high energy
hadron colliders in the TeV range use rather long FODO cells leading to large
values of the betatron and dispersion functions and related high demands on
magnet field and alignment tolerances. Arc lattice parameters for the 20 TeV
Superconducting Super Collider (SSC) are compiled as Example 4.
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Fig. 7.6. FODO lattice for one octant of a synchrotron [60,61])
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Fig. 7.7. FODO cell for a linear collider transport line [64,65] (Example 2 in Table
7.1)

7.2 Beam Dynamics in Periodic Closed Lattices

In the previous section, we discussed the beam dynamics in a FODO lattice
and we will use such periodic lattices to construct a closed path for circular
accelerators like synchrotrons and storage rings. The term “circular” is used
in this context rather loosely since such accelerators are generally composed
of both circular and straight sections giving the ring the appearance of a
circle, a polygon, or racetrack. Common to all these rings is the fact that the
reference path must be a closed path so that the total circumference of the
ring constitutes a periodic lattice that repeats turn for turn.

7.2.1 Hill’s Equation

The motion of particles or more massive bodies in periodic external fields
has been studied extensively by astronomers in the past century especially in
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connection with the three-body problem. In particle beam dynamics we find
the equation of motion in periodic lattices to be similar to those studied by
the astronomer Hill. We will discuss in this chapter the equation of motion,
called Hill’s equation, its solutions, and properties.
Particle beam dynamics in periodic systems is determined by the equation
of motion
v+ K(z)u=0, (7.39)

where K (z) is periodic with the period L,
K(z)=K(z+Ly). (7.40)

The length of a period L, may be the circumference of the circular accelerator
lattice or the length of a superperiod repeating itself several times around the
circumference. The differential equation (7.39) with the periodic coefficient
(7.40) has all the characteristics of a Hill’s differential equation [66]. The solu-
tions of Hill’s equation and their properties have been formulated in Floquet’s
theorem :

e two independent solutions exist of the form
ui(z) = w(z) e/ e,

ug(z) = w*(z) e 1H=/Le (7.41)

e w*(z) is the complex conjugate solution to w(z). For all practical cases of
beam dynamics we have only real solutions and w*(z) = w(z);
o the function w(z) is unique and periodic in z with period Ly,

w(z+ Ly) = w(z); (7.42)
e 11 is a characteristic coefficient defined by
cospp=2Tr [M(z+ Ly |2)] ; (7.43)
e the trace of the transformation matrix M is independent of z
Tr [M(z + Lyl2]) # £(2): (7.44)
e the determinant of the transformation matrix is equal to unity
det M =1; (7.45)
e the solutions remain finite for

ST IM(z+ Lplz)] < 1. (7.46)



7.2 Beam Dynamics in Periodic Closed Lattices 251

The amplitude function w(z) and the characteristic coefficient p can be
correlated to quantities we have derived earlier using different methods. The
transformation of a trajectory u through one lattice period of length L, must
be equivalent to the multiplication by the transformation matrix (7.25) for
that period which gives

u(z + Lp) = (cosyp + a siny) u(z) + B sinep u'(z), (7.47)

where u stands for any of the two solutions (7.41) and 1 is the betatron phase
advance for the period. From (7.41),(7.42) we get on the other hand

u(z + Ly) = u(z) e = u(2) (cos p £ 1 sin p) . (7.48)
Comparing the coefficients for the sine and cosine terms we get
cos Y = cos i or v =p (7.49)
and
au(z) + Bu'(z) = tiu(z). (7.50)

The first equality can also be derived from (7.25) and (7.43) . Equation
(7.50) can be further simplified by a logarithmic differentiation

!

B3 fi—-ao

(7.51)

u// U// ﬁ/ o
u’ u

On the other hand, we can construct from (7.39),(7.50) the expression

u’ o -Kf3 +i—-«
z 2 - — .52
u’ U +i—« I6] (7.52)
and equating the r.h.s. of both expressions (7.51), (7.52), we find
1-a?—Kp>+dpB-apf) £i2a+p8)=0, (7.53)

where all functions in brackets are real as long as we have stability. Both
brackets must be equal to zero separately with the solutions

ﬁ/ =-2 Q, (754)
and
o =KB—+~. (7.55)
Equation (7.54) can be used in (7.50) for
u’ +i—a i 1
_— = = i —_ + -,
u B g 2p

(7.56)

and after integration
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u C[Fd¢ B
log — = + = 4 ljge 2 7.57
og 1/0 ﬁ+20gﬁo’ (7.57)

where uy = u(zo) and By = B(z¢) for z = zg. Solving for u(z) we get the
well-known solution '

u(z) = a/B(z)et'?, (7.58)
where a = ug/v/Bo and

_ [T 4¢
Y(z —20) = L3O (7.59)
With (L) = p and
B(z) = w((;) ; (7.60)

we find the previous definitions of the betatron functions to be consistent with
the coefficients of Floquet’s solutions in a periodic lattice. In the next section
we will apply the matrix formalism to determine the solutions of the betatron
functions in periodic lattices.

7.2.2 Periodic Betatron Functions

Having determined the existence of stable solutions for particle trajectories in
periodic lattices we will now derive periodic and unique betatron functions.
For this we take the transformation matrix of a full lattice period

o
M+ Lyl = | o (7.61)

and construct the transformation matrix for betatron functions:

3 ¢ 208 8 Bo Bo
al=|-coccs +c's—-ss a | =Ms | ao | - (7.62)
v c'? 20’8 92 Y Y

Lattice functions are not changed by a lattice segment with a unity trans-
formation matrix except inside this segment. In this case, any set of lattice
functions B = (8, «,7) is also a periodic solution. Because of the quadratic
nature of the matrix elements, we find the same result in the case of a 180°
phase advance for the lattice segment. Any such lattice segment with a phase
advance of an integer multiple of 180° is neutral to the transformation of
lattice functions. This feature can be used to create irregular insertions in a
lattice that do not disturb the lattice functions outside the insertions.

To obtain from (7.62) a general periodic solution for the betatron functions
we simply solve the eigenvector equation
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Mp—1)B8 = 0. (7.63)
The solution can be obtained from the component equations of (7.63)

(C*-1)3—-25Ca+S*y=0,
CC'B—(8C+CS" —1)a+8S8~=0, (7.64)
C?3-258C" a+(S?*-1)y=0.

A particular simple solution is obtained if the periodic lattice includes a
symmetry point. In this case, we define this symmetry point as the start of
the periodic lattice with o = 0, and get the simple solutions

S? 1
2
=—0 =0 —. 7.65
=1 ) (7.65)
The transformation matrix for a superperiod or full circumference of a ring
then becomes simply from (5.76)

cosy  fsinp
M= , (7.66)

_1lg
Fsinp cosp

where g is the phase advance for the full lattice period. The solutions are
stable as long as the trace of the transformation matrix meets the stability
criterion (7.37) or as long as p # nw, where n is an integer.

Different from an open transport line, well determined and unique starting
values for the periodic betatron functions exist in a closed lattice due to the
periodicity requirement allowing us to determine the betatron function any-
where else in the lattice. Although (7.65) allows both a positive and a negative
solution for the betatron function, we choose only the positive solution for the
definition of the betatron function.

Stable periodic solutions for asymmetric but periodic lattices, where o # 0,
can be obtained in a straightforward way from (7.64) as long as the determi-
nant M, —Z| #0.

The betatron phase for a full turn around a circular accelerator of circum-
ference C is from (7.59)

z+L¢
ure)= [ 55 (7.67)

If we divide this equation by 27 we get a quantity v which is equal to the
number of betatron oscillations executed by particles traveling once around
the ring. This number is called the tune or operating point of the circular
accelerator. Since there are different betatron functions in the horizontal plane
and in the vertical plane, we also get separate tunes in a circular accelerator
for both planes
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1 d¢
Vpgy=—P ———.
S 2m By (Q)

This definition is equivalent to having chosen the integration constant
in (5.59) equal to 1/27 instead of unity. Yet another normalization can be
obtained by choosing 1/v for the integration constant in (5.59), in which case

the phase defined as )
) [
ple) = — —/0 B0 (7.69)

varies between 0 and 27 along the circumference of a ring lattice. This nor-
malization will become convenient when we try to decompose periodic field
errors in the lattice into Fourier components to study their effects on beam
stability.

Equation (7.68) can be used to get an approximate expression for the
relationship between the betatron function and the tune. If 3 is the average
value of the betatron function around the ring then p(L¢) = 27v ~ Lo /8 =~
2mR/j3 or

(7.68)

- R
8= - (7.70)

This equation is amazingly accurate for most rings and is therefore a useful
tool for a quick estimate of the average betatron function or for the tunes often
referred to as the smooth approximation.

In a circular accelerator, three tunes are defined for the three degrees
of freedom, the horizontal, vertical and longitudinal motion. In Fig. 7.8 the
measured frequency spectrum is shown for a particle beam in a circular accel-
erator. The electric signal from an isolated electrode in the vacuum chamber is
recorded and connected to a frequency analyzer. The signal amplitude depends
on the distance of the passing beam to the electrode and therefore includes the
information of beam oscillations as a modulation of the revolution frequency.

Oscillations of particles about a longitudinal reference point and about
the ideal particle momentum are called longitudinal oscillations, phase oscil-
lations or synchrotron oscillations. Such oscillations can also be detected with
electrodes and the signal from synchrotron oscillations appears on a spectrum

Fig. 7.8. Frequency spectrum from a circulating particle beam: vs, synchrotron
tune; v., vy, betatron tunes; v, £ vy, satellites
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analyzer as sidebands to harmonics of the revolution frequency. Analogous
to the transverse motion, a longitudinal tune vy is defined as the number of
oscillations per revolution or as the synchrotron tune .

We note a number of frequencies in the observed spectrum of the storage
ring SPEAR as shown in Fig. 7.8. At the low frequency end two frequencies
indicate the longitudinal tune 4 and its first harmonic at 2v5. The two large
signals are the horizontal and vertical tunes of the accelerator. Since the en-
ergy oscillation affects the focusing of the particles, we also observe two weak
satellite frequencies on one of the transverse tunes at a distance of +v5. The
actual frequencies observed are not directly equal to vwgy, where wy is the
revolution frequency, but are only equal to the nonintegral part of the tune
Av wg, where Av is the distance to the integer nearest to v.

7.2.3 Periodic Dispersion Function

The dispersion function can be periodic if the lattice is periodic. In this section,
we will determine the periodic solution of the dispersion function first for the
simple lattice building block of a FODO channel and then for general but
periodic lattice segments.

Scaling of the Dispersion in a FODO Lattice

Properties of a FODO lattice have been discussed in detail for a monochro-
matic particle beam only and no chromatic effects have been taken into ac-
count. To complete this discussion we now include chromatic effects which
cause, in linear approximation, a dispersion proportional to the energy spread
in the beam and are caused by bending magnets. We have used the transfor-
mation matrix for a symmetric quadrupole triplet as the basic FODO cell.
The bending magnet edge focusing was ignored and so were chromatic effects.
In the following we still ignore the quadratic edge focusing effects of the bend-
ing magnets, but we cannot ignore any longer linear effects of energy errors.
For simplicity we assume again thin lenses for the quadrupoles and get for the
chromatic transformation matrix through half a FODO cell, %QF -B- %QD
with (5.102) and assuming small deflection angles

100 1L 512 1 00
14
Migopo = | 1/f10 o1 L -1/f10
0 01 00 1 0 01
or after multiplication
L 172
1-% L %L
Miropo = | —%& 1+1L p%(pr%) . (7.71)
0 1
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Fig. 7.9. Dispersion function in FODO cells (Example 1 in Table 7.1)

The absolute value of the focal length f is the same for both quadrupoles
but since we start at the symmetry point in the middle of a quadrupole, this
focal length is based only on half a quadrupole. We have also assumed that the
deflection angle of the bending magnet is small, § < 1, in analogy to thin lens
approximation for quadrupoles. Lastly, we assumed that the bending magnets
occupy the whole drift space between adjacent quadrupoles. This is not quite
realistic but allows us an analytical and reasonable accurate approach.

In Section 5.4 dispersive elements of transformation matrices have been
derived. In periodic lattices, however, we look for a particular solution which
is periodic with the periodicity of the focusing lattice and label the solution by
1(z) or the n-functionin distinction from the ordinary, generally non-periodic
dispersion function D(z). The typical form of the periodic dispersion function

in a FODO lattice is shown in Fig. 7.9. In addition to being periodic, this 7-
function must be symmetric with respect to the symmetry points in the middle
of the FODO quadrupoles, where the derivative of the n-function vanishes.
The transformation through one half FODO cell is

n- nt
0 = M% ropo | O [, (7.72)
1 1

where we have set § = 1 in accordance with the definition of dispersion func-
tions and deflection in the horizontal plane.

In the particular arrangement of quadrupoles chosen in (7.71) the focusing
quadrupole is the first element and, therefore, the dispersion function reaches
a maximum value n* there. At the center of the defocusing quadrupole the
dispersion function is reduced to a minimum value ™. The opposite sequence
of quadrupoles would lead to similar results. From (7.72) we get the two
equations
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- _ L + L?
y +f . 2”°L (7.73)
O:*ﬁn +%(1+ﬁ) .
Solving (7.73) for the periodic dispersion function in the middle of the
FODO quadrupoles, where y’ = 0, we get in the focusing or defocusing quadru-

pole, respectively

2 2
=L (14 ) = £ rn+)

2 (7.74)
n- = J;—o (1—%) :%H(Qli—l),
where k = f /L.

As mentioned before, in this approximation the bending magnet is as long
as the length of half the FODO cell since the quadrupoles are assumed to be
thin lenses and no drift spaces have been included between the quadrupoles
and the bending magnet. The bending radius pg, therefore, is equal to the
average bending radius in the FODO lattice. From the known values of the
dispersion function at the beginning of the FODO lattice, we can calculate
this function anywhere else in the periodic cell. Similar to the discussion in
Sect. 7.1, we chose an optimum reference lattice, where

ko = V2, (7.75)

and
g = 55 (4+V2),

=L @-v2).

In Fig. 7.10 the values of the dispersion functions, normalized to those for the
optimum FODO lattice in the middle of the FODO quadrupoles, are plotted
versus the FODO cell parameter .

From Fig. 7.10 we note a diminishing dispersion function in a FODO cell
as the betatron phase per cell or the focusing is increased (f — 0). This result
will be important later for the design of storage rings for specific applications
requiring either large or small beam emittances. The procedure to determine
the dispersion functions in a FODO cell is straightforward and can easily be
generalized to real FODO lattices with finite quadrupole length and shorter
bending magnets, although it may be desirable to perform the matrix multi-
plications on a computer. For exploratory designs of accelerators structures,
however, the thin lens approximation is a powerful and fairly accurate design
tool.

(7.76)

General Solution for the Periodic Dispersion

In the previous section the dispersion function for a periodic and symmetric
FODO lattice was derived. Many periodic lattice structures, however, are
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Fig. 7.10. Scaling of the dispersion function in a FODO lattice

neither symmetric nor pure FODO structures and therefore we need to derive
the periodic dispersion function in a more general form. To do this, we include
in the equation of motion also the linear energy error term from, for example,
(2.51)

u' + K(2)u=ro(2)6. (7.77)

For particles having the ideal energy, § = 0, the right-hand side vanishes
and the solutions are composed of betatron oscillations and the trivial solution

up(2) =0. (7.78)

This trivial solution of (7.77) is clearly periodic and represents what is
called in beam transport systems the ideal path and in circular accelerators the
equilibrium orbit or closed orbit about which particles perform betatron oscil-
lations. The expression for the ideal equilibrium orbit is this simple since we
decided to use a curvilinear coordinate system which follows the design orbit
(7.78) as determined by the placement of bending magnets and quadrupoles.

For off-momentum particles (§ # 0), the ideal path or closed orbit is dis-
placed. Ignoring for a moment the z-dependence of K and kg, this systematic
displacement of the orbit is of the order of

R0

Au:K

(7.79)
as suggested by (7.77). In a real circular accelerator we expect a similar al-
though z-dependent displacement of the equilibrium orbit for off-momentum
particles. Only one equilibrium orbit exists for each particle energy in a given
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closed lattice. If there were two solutions u; and ug of (7.77) we could write
for the difference
(up —u2)" + K(2) (ug —ug) =0, (7.80)

which is the differential equation for betatron oscillations. Different solutions
for the same energy, therefore, differ only by betatron oscillations which are
already included in the general solution as the homogeneous part of the dif-
ferential equation (7.77). Therefore, in a particular circular lattice only one
unique equilibrium orbit or closed orbit exists for each energy.

Chromatic transformation matrices have been derived in Sect. 5.4. If we
apply these matrices to a circular lattice and calculate the total transformation
matrix around the whole ring, we will be able to determine a self-consistent
solution for equilibrium orbits. Before we calculate the periodic equilibrium
orbits, we note that the solutions of (7.77) are proportional to the momentum
deviation §. We therefore define the generalized periodic dispersion function
as the equilibrium orbit for 6 = 1 which we call the n—function. The transfor-
mation matrix for a periodic lattice of length L is

Clz+Lp) S(z+Lp) D(z+ Lyp)
M(z+Ly|z)=| C'(2+Lp) S’ (2 + Lp) D' (z + Ly) (7.81)
0 0 1

and we get for the n-function with n(z + L,) = n(z), n'(z + L) = 1’ (z) and
(7.81)

n(z) = C(z + Lp)n(z) + S(z + Lp) ' (2) + D(z + Ly),

(7.82)
n'(2) = C'(z+ L) n(z) + 5'(z + Lp) ' (2) + D'(z + L) -

These two equations can be solved for 7(z) and 7/(2), the periodic dispersion
function at the point z. The equilibrium orbit for any off-momentum particle
can be derived from this solution by multiplying with §

us(z) =n(z) 0. (7.83)

In a more formal way the periodic solution for the dispersion function can
be derived from (7.82) in a form without the arguments for increased clarity

(C—-1)n+Sn+D =0,
C'n+(S"-1)n+ D =0,

(7.84)

which in vector notation is

(M, —T)n =0, (7.85)
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where M, is defined by (7.81) and = (n,7’,1). The periodic dispersion
function is therefore the eigenvector of the eigenvalue equation (7.85).

A particularly simple result is obtained again if the point z is chosen at a
symmetry point, where 7/, = 0. In this case the dispersion function at the
symmetry point is

D

nSym = 1—-C and 77éym

=0. (7.86)
Once the values of the n-functions are known at one point it is straightfor-
ward to obtain the values at any other point in the periodic lattice by matrix
multiplication.
We may also try to derive an analytical solution for the periodic dispersion
from the differential equation

'+ Kn=r. (7.87)

The solution is again the composition of the solutions for the homogeneous
and the inhomogeneous differential equation. First, we transform (7.87) into
normalized coordinates w, = n/v/B and dg = dz/(v8). In these coordinates
(7.87) becomes

d*wy 20— 2033/2 — L2F
Tw—l—uwn—yﬁ k=V"F(p). (7.88)

An analytical solution to (7.88) has been derived in Sect. 2.5.4 and we

have accordingly

wy (@) = wo, cosve + % sin vy

+v fow F(r)sinv(p — 7)dr,

i W (7.89)
(@) = —woy sinvp + =2 cos v

+v f(;p F(7)cosv(p —7)dr,
where we have set w = % w(¢y). To select a periodic solution, we set
wy (2m) = wy,(0) = wo, and Wy (21) = oy, -

We insert these boundary conditions into (7.89) to determine (won, uvm])

and use the results in the first equation of (7.89) to get the general periodic
solution for the normalized dispersion function after some manipulations

v

o427
wy(p) = / F(r)cos[v(p — 7+ m)]dr. (7.90)
©

2sin v

Now we return to the original variables (7, z), and get from (7.90) the
equation for the periodic dispersion or n-function



7.2 Beam Dynamics in Periodic Closed Lattices 261

nz) =5 N (2)

cos vip
2sin v

— () +mld¢. (7.91)

This solution shows clearly that periodic dispersion function at any point
z depends on all bending magnets in the ring. We also observe a fundamental
resonance phenomenon which occurs should the tune of the ring approach
an integer in which case finite equilibrium orbits for off-momentum particles
do not exist anymore. To get stable equilibrium orbits, the tune of the ring
must not be chosen to be an integer or in accelerator terminology an integer
resonance must be avoided
v # n, (7.92)

where n is an integer.

This is consistent with solution (7.86), where we learned that C(z + L)
must be different from unity. Since C' is the matrix element for the total ring
we have C' = cos 27w which obviously is equal to +1 only for integer values
of the tune v. While (7.89) is not particularly convenient to calculate the
dispersion function, it clearly exhibits the resonance character and will be
very useful later in some other context, for example, if we want to determine
the effect of a single bending magnet.

Another way to solve the differential equation (7.88) will be considered
to introduce a powerful mathematical method useful in periodic systems. We
note that the perturbation term F(z) = ($%/2(2) k (z) is a periodic function
with the period L, or 27 using normalized coordinates. The perturbation term
can therefore be expanded into a Fourier series

B3k =Y F,e", (7.93)
where .
F, = % B33 ke ¢ dy (7.94)
2

or if we go back to regular variables

f VOO ing() dc¢. (7.95)

TL
27r1/

Similarly, we may expand the periodic n-function into a Fourier series
= Wy e, (7.96)
Using both (7.93),(7.96) in (7.88), we get
(—n? + %) Z Wy e = 12 Z F,em?, (7.97)

which can be solved for the Fourier coefficients W, of the periodic dispersion
function
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V2 F,

The periodic solution of the differential equation (7.88) is finally
oo 2 in
v F,, ™%
wy(p) = _Z: — (7.99)

It is obvious again that the tune must not be an integer to avoid a reso-
nance. This solution is intrinsically periodic since ¢ is periodic and the relation
to (7.90) can be established by replacing F,, by its definition (7.94). Using
the property F_,, = F,, we get for a symmetric lattice and with formula
GR[1.445.6]!

oo ging v g e=in¢
= S S E IO VA A (7.100)

Z 2 _n2
=2 § 1O VEQ [21+§ s a
— e P RO VED costvlp - ¢+ al)de

which is the same as (7.90) since d7 = v(3d(. For an asymmetric lattice the
proof is similar albeit somewhat more elaborate. Solution (7.100) expresses the
dispersion function as the combination of a constant and a sum of oscillatory
terms. Evaluating the nonoscillatory part of the integral, we find the average
value of the dispersion or n—function,

(8)
(n)~ 2L (7.101)

Yo
This result by itself is of limited usefulness but can be used to obtain
an estimate for the momentum compaction factor «. defined analogous to

(5.128) by

_ L 0@,
=7 j{ (%) dz~ (n/p) . (7.102)

A good approximation for the momentum compaction factor is therefore
a. = (0)/(pv) and with (7.70) integrated only over the arcs of the ring

1

Qe N — .
2

(7.103)

Thus we find the interesting result that the transition energy ~; is approx-
imately equal to the horizontal tune of a circular accelerator

! We will abbreviate in this way formulas from the Table of Integrals, Series and
Products, 1.S. Gradshteyn/I.M. Ryzhik, 4th edition.
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Vi N Uy (7.104)

As a cautionary note for circular accelerators with long straight sections,
only the tune of the arc sections should be used here since straight sections do
not contribute to the momentum compaction factor but can add significantly
to the tune.

7.2.4 Periodic Lattices in Circular Accelerators

Circular accelerators and long beam transport lines can be constructed from
fundamental building blocks like FODO cells or other magnet sequences which
are then repeated many times. Any cell or lattice unit for which a periodic
solution of the lattice functions can be found may be used as a basic building
block for a periodic lattice. Such units need not be symmetric but the solution
for a symmetric lattice segment is always periodic.

FODO cells as elementary building blocks for larger beam transport lat-
tices may lack some design features necessary to meet the objectives of the
whole facility. In a circular accelerator we need, for example, some component
free spaces along the orbit to allow the installation of experimental detectors
or other machine components like accelerating sections, injection magnets,
or synchrotron radiation producing insertion devices. A lattice made up of
standard FODO cells with bending magnets would not provide such spaces.

The lattice of a circular accelerator therefore exhibits generally more com-
plexity than that of a simple FODO cell. Often, a circular accelerator is made
up of a number of superperiods which may be further subdivided into seg-
ments with special features like dispersion suppression section, achromatic
sections, insertions, matching sections or simple focusing, and bending units
like FODO cells. To illustrate basic lattice design concepts, we will discuss
specific lattice solutions to achieve a variety of objectives.

Synchrotron Lattice

For a synchrotron whose sole function is to accelerate particles the problem
of free space can be solved quite easily. Most existing synchrotrons are based
on a FODO lattice recognizing its simplicity, beam dynamical stability, and
efficient use of space. To provide magnet free spaces, we merely eliminate some
of the bending magnets. As a consequence the whole ring lattice is composed
of curved as well as straight FODO cells. The elimination of bending magnets
must, however, be done thoughtfully since the dispersion function depends
critically on the distribution of the bending magnets. Random elimination of
bending magnets may lead to an uncontrollable perturbation of the dispersion
function. Often it is desirable to have the dispersion function vanish or at
least be small in magnet free straight sections to simplify injection and avoid
possible instabilities if rf-cavities are placed, where the dispersion function is
finite. The general approach to this design goal is, for example, to use regular
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Fig. 7.11. Typical FODO lattice for a separated function synchrotron

FODO cells for the arcs followed by a dispersion matching section, where the
dispersion function is brought to zero or at least to a small value leading finally
to a number of bending magnet free, straight FODO cells. As an example such
a lattice is shown in Fig. 7.11 for a 3.5 GeV synchrotron [67].

Figure 7.11 shows one quadrant of the whole ring and we clearly recognize
three different lattice segments including seven arc FODO half cells, two half
cells to match the dispersion function, and one half cell for installation of
other machine components. Such a quadrant is mirror reflected at one or the
other end to form one of two ring lattice superperiods. In this example, the
ring consists of two superperiods although another ring could be composed by
a different number of superperiods. A specific property of the lattice shown
in Fig. 7.11 is, as far as focusing is concerned, that the whole ring is made
up of equal FODO cells with only two quadrupole families QF and QD. The
betatron functions are periodic and are not significantly affected by the pres-
ence or omission of bending magnets which are assumed to have negligible
edge focusing. By eliminating bending magnets in an otherwise unperturbed
FODO lattice, we obtain magnet free spaces equal to the length of the bend-
ing magnets which are used for the installation of accelerating components,
injection magnets, and beam monitoring equipment.

Phase Space Matching

Periodic lattices like FODO channels exhibit unique solutions for the betatron
and dispersion functions. In realistic accelerator designs, however, we will not
be able to restrict the lattice to periodic cells only. We will find the need for
a variety of lattice modifications which necessarily require locally other than
periodic solutions. Within a lattice of a circular accelerator, for example, we
encountered the need to provide some magnet free spaces, where the dispersion
function vanishes. In colliding beam facilities, it is desirable to provide for a
very low value of the betatron function at the beam collision point to maximize
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the luminosity. These and other lattice requirements necessitate a deviation
from the periodic cell structure. Beam transport lines are in most cases not
based on periodic focusing. If such transport lines carry beam to be injected
into a circular accelerator or must carry beam from such an accelerator to
some other point, we must consider proper matching conditions at locations,
where lattices of different machines or beam transport systems meet [68,69].
Joining arbitrary lattices may result in an inadequate over lap of the phase
ellipse for the incoming beam with the acceptance of the downstream lattice
as shown in Fig. 7.12a.

A incoming beam 4  acceptance 4

——> \/> >
a) b) c)

Fig. 7.12. Matching conditions in phase space: mismatch (a), perfect match (b),
and efficient match (c)

For a perfect match of two lattices all lattice functions must be the same
at the joining point as shown in Fig. 7.12b

(ﬁrv azvﬂyvayvna 77/)1 = (69?? arvﬂyv ay77]777/)2 . (7105)

In this case, the phase ellipse at the end of lattice 1 is similar to the acceptance
ellipse at the entrance of lattice 2. Equality of both ellipses occurs only if
the acceptance in both lattices is the same. To avoid dilution of particles in
phase space perfect matching is desired in proton and ion beam transport
systems and accelerators. For electrons this is less critical because electron
beams regain the appropriate phase ellipse through synchrotron radiation and
damping. The main goal of matching an electron beam is to assure that the
emittance of the incoming beam is fully accepted by the downstream lattice as
shown in Fig. 7.12c. Perfect matching of all lattice functions and acceptances
with beam emittance, however, provide the most economic solution since no
unused acceptance exist. Matching of the dispersion function (7,7’) in addition
also assures that phase ellipses for off-momentum particles match as well.
Matching in circular accelerators is much more restrictive than that be-
tween independent lattices. In circular accelerators a variety of lattice seg-
ments for different functions must be tied together to form a periodic magnet
structure. To preserve the periodic lattice functions we must match them ex-
actly between different lattice segments. Failure of perfect matching between
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lattice segments can lead to periodic solutions of lattice functions which are
vastly different from design goals or do not exist at all.

In general there are six lattice functions to be matched requiring six vari-
ables or quadrupoles in the focusing structure of the upstream lattice to
produce a perfect match. Matching quadrupoles must not be too close to-
gether in order to provide some independent matching power for individual
quadrupoles. As an example, the betatron functions can be modified most
effectively if a quadrupole is used at a location, where the betatron function
is large and not separated from the matching point by multiples of 7 in be-
tatron phase. Most independent matching conditions for both the horizontal
and vertical betatron functions are created if matching quadrupoles are lo-
cated where one betatron function is much larger than the other allowing
almost independent control of matching condition.

It is impossible to perform such general matching tasks by analytic meth-
ods and a number of numerical codes are available to solve such problems.
Frequently used matching codes are TRANSPORT [70], or MAD [71]. Such
programs are an indispensable tool for lattice design and allow the fitting of
any number of lattice functions to desired values including boundary condi-
tions to be met along the matching section.

Dispersion Matching

A very simple, although not perfect, method to reduce the dispersion func-
tion in magnet free straight sections is to eliminate one or more bending
magnets close to but not at the end of the arc and preferably following a
focusing quadrupole, QF. In this arrangement of magnets the dispersion func-
tion reaches a smaller value compared to those in regular FODO cells with
a slope that becomes mostly compensated by the dispersion generated in the
last bending magnet. The match is not perfect but the dispersion function is
significantly reduced, where this is desirable, and magnet free sections can be
created in the lattice. This method requires no change in the quadrupole or
bending magnet strength and is therefore also operationally very simple as
demonstrated in the example of a synchrotron lattice shown in Fig. 7.11. We
note the less than perfect matching of the dispersion function which causes
a beating of an originally periodic dispersion function. In the magnet free
straight sections, however, the dispersion function is considerably reduced
compared to the values in the regular FODO cells.

More sophisticated matching methods must be employed, where a perfect
match of the dispersion function is required. Matching of the dispersion to
zero requires the adjustment of two parameters, n = 0 and n’ = 0, at the
beginning of the straight section. This can be achieved by controlling some
of the upstream quadrupoles. Compared to a simple two parameter FODO
lattice (Fig. 7.11), this variation requires a more complicated control system
and additional power supplies to specially control the matching quadrupoles.
This dispersion matching process disturbs the betatron functions which must
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Fig. 7.13. Lattice for a 1.2 GeV low emittance damping ring

be separately controlled and matched by other quadrupoles in dispersion free
sections. Such a matching method is utilized in a number of storage rings with
a special example shown in Fig. 7.13 [72]. Here, we note the perfect matching
of the dispersion function as well as the associated perturbation of the beta-
tron function requiring additional matching. Quadrupoles QFM and QDM are
adjusted such that n = 0 and ' = 0 in the straight section. In principle this
could be done even without eliminating a bending magnet, but the strength
of the dispersion matching quadrupoles would significantly deviate from that
of the regular FODO quadrupoles and cause a large distortion of the betatron
function in the straight section. To preserve a symmetric lattice, the betatron
function must be matched with the quadrupoles Q1 and Q2 to get o, = 0
and a, = 0 at the symmetry points of the lattice.

Dispersion Suppressor

A rather elegant method of dispersion matching has been developed by Keil
[73]. Noting that dispersion matching requires two parameters he chooses to
vary the last bending magnets at the end of the arcs rather than quadrupoles.
The great advantage of this method is to leave the betatron functions and
the tunes undisturbed at least as long as we may ignore the end field focusing
of the bending magnets which is justified in large high energy accelerators.
This dispersion suppressor consists of four FODO half cells following directly
the regular FODO cells at a focusing quadrupole QF as shown in Fig. 7.14.
The strength of the bending magnets are altered into two types with a to-
tal bending angle of all four magnets to be equal to two regular bending
magnets.

The matching conditions can be derived analytically from the transforma-
tion matrix for the full dispersion suppressor as a function of the individual
magnet, parameters. An algebraic manipulation program has been used to de-
rive a result that is surprisingly simple. If 6 is the bending angle for regular
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Fig. 7.14. Dispersion suppressor lattice

FODO cell bending magnets and ) is the betatron phase for a regular FODO
half cell, the bending angles 61 and 5 are determined by [73]

=0 (1 1) (7.106)

 4sin? P
and )
0=60 | ——|, 7.107
2 <451n2 w> ( )
where
0=0,+05. (7.108)

This elegant method requires several FODO cells to match the dispersion
function and is therefore most appropriately used in large systems. Where a
compact lattice is important, matching by quadrupoles as discussed earlier
might be more space efficient.

Magnet Free Insertions

An important part of practical lattice design is to provide magnet free spaces
which are needed for the installation of other essential accelerator components
or experimental facilities. Methods to provide limited magnet free spaces by
eliminating bending magnets in FODO lattices have been discussed earlier.
Often, however, much larger magnet free spaces are required and procedures
to provide such sections need to be formulated.

The most simple and straightforward approach is to use a set of quadru-
poles and focus the lattice functions 3, 3, and 7 into a magnet free section
such that the derivatives c, o, and 7’ vanish in the center of this section. This
method is commonly applied to interaction areas in colliding beam facilities
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to provide optimum beam conditions for maximum luminosity at the collision
point. A typical example is shown in Fig. 7.15.
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Fig. 7.15. Lattice of the SPEAR storage ring

A more general design approach to provide magnet free spaces in a periodic
lattice is exercised in the storage ring shown in Fig. 7.16 [74] or the storage
ring as shown in Fig. 7.15 [75]. In the ADONE lattice the quadrupoles of a
FODO lattice are moved together to form doublets and alternate free spaces
are filled with bending magnets or left free for the installations of other com-
ponents.

Another scheme to provide magnet free spaces is exercised in the SPEAR
lattice (Fig. 7.15) where the FODO structure remains unaltered except that
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Fig. 7.16. Lattice of the ADONE storage ring
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the FODO cells have been separated in the middle of the QF quadrupoles.
A separation in the middle of the QD quadrupoles would have worked as
well. Since the middle of FODO quadrupoles are symmetry points, a modest
separation can be made with minimal perturbation to the betatron functions

and no perturbation to the dispersion function since ” = 0 in the middle of
FODO quadrupoles.

Collins Insertion

A simple magnet free insertion for dispersion free segments of the lattice has
been proposed by Collins [76]. The proposed insertion consists of a focusing
and a defocusing quadrupole of equal strength but opposite polarity with a
long drift space in between as shown in Fig. 7.17. In thin lens approximation,
the transformation matrix for the insertion is

1d 10\ [1D 1 0\ (14
Mips = . (7.109)
o1/ \1/r1)\o1 /) \-1/71) \o1

B—function

D
- Collinsinsertion -

Fig. 7.17. Collins insertion

This insertion matrix must be equated with the transformation matrix
for this same insertion expressed in terms of lattice functions at the insertion
point with the regular lattice

cos ) + asin sin
Mins = d) 2 ¢ 6 ¢ . (7110)
—HTasinw cos ) — asin
Both matrices provide three independent equations to be solved for the drift
lengths d and D and for the focal length f of the quadrupoles. After multi-

plications of all matrices we equate matrix elements and get
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p=2" q=1  aa y-_9 (7.111)
Y Y Y
These relations are valid for both planes only if o, = —c,. Generally this is
not the case for arbitrary lattices but for a weak focusing FODO lattice, this
condition is met well. We note that this design provides an insertion of length
D which is proportional to the value of the betatron functions at the insertion
point and requires that a # 0.

Of course any arbitrary insertion with a unity transformation matrix, Z,
in both planes is a valid solution as well. Such solutions can in principle
always be enforced by matching with a sufficient number of quadrupoles. If
the dispersion function and its derivative is zero such an insertion may also
have a transformation matrix of —Z. This property of insertions is widely
used in computer designs of insertions when fitting routines are available to
numerically adjust quadrupole strength such that desired lattice features are
met including the matching of the lattice functions to the insertion point. A
special version of such a solution is the low beta insertion for colliding beam
facilities.

Low Beta Insertions

In colliding beam facilities long magnet free straight sections are required
to allow the installation of high energy particle detectors. At the center of
these sections, where two counter rotating particle beams collide, the betatron
functions must reach very small values forming a narrow beam waist. This
requirement allows us to minimize the destructive beam—beam effect when
two beams collide and thereby maximize the luminosity of the colliding beam
facility [77].

An example for the incorporation of such a low beta insertion is shown in
Fig. 7.18 representing one of many variations of a low beta insertion in collid-
ing beam facilities [29]. The special challenge in this matching problem is to
provide a very small value for the betatron functions at the collision point. To
balance the asymmetry of the focusing in the closest quadrupoles the betatron
functions in both planes are generally not made equally small but the vertical
betatron function is chosen smaller than the horizontal to maximize the lu-
minosity. The length of the magnet free straight section is determined by the
maximum value for the betatron function that can be accepted in the first ver-
tically focusing quadrupole. The limit may be determined by just the physical
aperture available or technically possible in these insertion quadrupoles or by
the chromaticity and ability to correct and control chromatic and geometric
aberrations.

The maximum value of the betatron function at the entrance to the first
quadrupole, the minimum value at the collision point, and the magnet free
section are correlated by the equation for the betatron function in a drift
space. Assuming symmetry about the collision point, the betatron functions
develop from there like
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Fig. 7.18. Lattice functions of a colliding beam storage ring [78]. Shown is half
the circumference with the collision point, low beta, and vanishing dispersion at the
center

22
Ea
where (5* is the value of the betatron function at the symmetry point, z is the
distance from the collision point, and 2L, is the full length of the insertion
between the innermost quadrupoles.

The distance L tended to be quite large to allow the installation of large
particle detectors for high energy physics experiment. As a consequence, the
betatron function became very large in the first quadrupoles causing severe
perturbations and limitations in particle dynamics. This, of course, created
a limit in the achievable luminosity. In new colliding beam facilities, like B-
factories, the Low beta creating quadrupoles are incorporated deeply into the
detectors, thus reducing L and the maximum value for the betatron functions.
This compromise resulted in significantly higher luminosity of colliding beams.

B(z) = p* + (7.112)

Example of a Colliding Beam Storage Ring

In electron or hadron colliding beam storage rings many of the previously
discussed design features are incorporated. Basically such facilities employ a
lattice which consists of a number of identical superperiods, where each super-
period includes a collision point or interaction region , a transition section for
matching of lattice functions, and an arc section which in most cases is made
up of a number of FODO cells. The collision points feature a minimum value
of the betatron functions to maximize the collision rate or luminosity requir-
ing a matching section to match the betatron functions to those of the FODO
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Fig. 7.19. Lattice functions in the PEP storage ring for one half of six symmetric

superperiods. The collision point and low beta section are at z = 0 and the arc
sections consist of FODO cells

cells in the arcs. In addition the transition section also serves to match the
finite dispersion from the arcs to the desired values in the interaction region.

In Fig. 7.19 the lattice of the Positron Electron Project, PEP, is shown
for one half of six symmetric superperiods. We will use this lattice as a refer-
ence to discuss beam dynamics issues, beam stability characteristics, and to
allow comparison with measurements. Some salient parameters for the PEP
colliding beam facility are compiled in Table 7.2.

The interaction region was designed to provide 20 m of magnet free space
for the installation of an experimental detector and the minimum value of the
vertical betatron functions at the collision point was designed to be 3; =5
cm. This interaction region continues into the transition section with betatron
matching in the first part and betatron and dispersion matching close to the
arcs. At the symmetry points of the superperiod a short magnet free section
is included for installation of select beam manipulation and monitoring equip-
ment. The lattice functions in the FODO section are not perfectly matched
for economic reasons to minimize the number of independent power supplies.

From the lattice functions in Fig. 7.19, we note that the low beta insertion
and matching of the dispersion function are zero in the interaction region.
We also note very large values of the betatron functions in the interaction
region quadrupoles as a consequence of the low beta at the collision point and
the long distance to the first focusing quadrupole. The long magnet free dis-
tance between the first quadrupole doublet and the beginning of the transition
section is useful for the installation of accelerator equipment, especially for ac-
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Table 7.2. PEP lattice parameters

Energy, E(GeV) 15.0 Beam current, I(mA) 100
Circumference, C(m) 2200 Superperiodicity 6
Beam emittance, e(nm) 125 Energy spread, og/E 0.0010
Tunes, Vg, Vy 21.25, 18.19 Beta function at IP, 8; ,(m) 3.0/0.11
Nat. chromaticity, oz, £oy -31.21, -99.47 Mom. comp. factor, ac 0.00257
Energy loss/turn, U(MeV) 26.98 Radiation power, Ps(MW) 2.698
Accelerating voltage, Vis(MV) 39.43 Synchrotron tune, vs 0.0451
FODO parameters

Cell length, L(m) 14.4 Phase/cell, ¥ 4(°) 56.0, 31.9
Bending radius, p(m) 165.5 Acceptance, Ay, (pum) 29.9, 11.0

celerating rf-cavities, but is mainly a necessary lattice feature. The transition
from rather small betatron functions in the arc FODO lattice to large values
in the insertion quadrupoles cannot be accomplished without an appropriate
length of drift space to let the betatron functions grow. As this drift space is
reduced, the strength of the matching quadrupoles becomes very strong and
quickly neither theoretical nor technical solution to the matching problem are
found. The focusing from the interaction region quadrupoles must be such
that at the beginning of the matching section, here at Q3, not only the be-
tatron functions reach values comparable to those in the arc section but the
rate of change of the betatron functions, a = —3’/2, must be comparable as
well to those in the arcs.

This feature of lattice matching constitutes a severe limitation on the flex-
ibility for small rings and short beam transport systems to incorporate inser-
tions with desired properties of the lattice functions. Even if at low energies
such insertions might be technically possible the strong focusing and large
values of the betatron functions and divergencies can cause severe limitations
in beam stability due to aberrations. This should not prevent the accelerator
designer from trying to meet a particular design need, but it is prudent to
address beam stability problems as early as a linear lattice design has been
developed.
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7.3 FODO Lattice and Acceleration

So far we have ignored the effect of acceleration in beam dynamics. In spe-
cific cases, however, acceleration effects must be considered specifically if the
particle energy changes significantly along the beam line. In linear acceler-
ators such a need occurs at low energies when we try to accelerate a large
emittance beam through the small apertures of the accelerating sections. For
example, when a positron beam is to be created the positrons emerging from
a target within a wide solid angle are focused into the small aperture of a
linear accelerator. After some initial acceleration in the presence of a solenoid
field along the accelerating structure it is desirable to switch over to more eco-
nomic quadrupole focusing. Even at higher energies when the beam diameter
is much smaller than the aperture strong focusing is still desired to minimize
beam break up instabilities.

7.3.1 Lattice Structure

A common mode of focusing uses a FODO lattice in conjunction with the
linac structure. We may, however, not apply the formalism developed for
FODO lattices without modifications because the particle energy changes sig-
nificantly along the lattice. A thin lens theory has been derived by Helm [79]
based on a regular FODO channel in the particle reference system. Due to the
Lorentz contraction, the constant quadrupole separations L* in the particle
system increase in the laboratory system as the beam energy increases. To
show this quantitatively, we consider a FODO channel installed along a lin-
ear accelerator and starting at the energy 7o with a constant cell half length
L = ~oL*. The tick-marks along the scale in Fig. 7.20 indicate the locations of
the quadrupoles and the distances between magnets in the laboratory system
are designated by Lq,Lsy....

L L L L, Ls Le

Fig. 7.20. FODO channel and acceleration

With the acceleration « in units of the rest energy per unit length and g
the particle energy at the center of the first quadrupole the condition to have
a FODO channel in the particle system is

L

- rd L

L:/ ZZ=7°1H<1+°‘1>. (7.113)
0 Q

(07
1+% Yo

The quantity 2L is the length of a FODO cell and L; is the distance between
the first and second quadrupole in the laboratory system. Solving for L; we
get
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~ef — 1
Li=LS—=, (7.114)
K
where
a ~
k=1. (7.115)
Yo

At the same time the beam energy has increased from ~q to
T =7 +al;. (7.116)

Equation (7.113) can be applied to any of the downstream distances be-
tween quadrupoles. The nth distance L,,, for example, is determined by an
integration from z,_; to z, or equivalently from 0 to L,

L

. "od n L,

L:/ A lln(1+a > (7.117)
0 L+ Tn—1 @ TYn—1

While solving for L,,, we express the energy 7, _1 by addition of the energy
gains, Y,_1 = Z?_l Ay = Z?_l L;, and taking the distances L; from
expressions (7.114), (7.117) we get for k < 1

~e® —1

L,=1L en=br (7.118)

K

In thin lens approximation, the distances between successive quadrupoles
increase exponentially in the laboratory system according to (7.118) to resem-
ble the focusing properties of a regular FODO channel with a cell length 2L*
in the particle system under the influence of an accelerating field.

Such FODO channels are used to focus large emittance particle beams in
linear accelerators as is the case for positron beams in positron linacs. For
strong focusing as is needed for low energies where the beam emittance is
large, the thin lens approximation, however, is not accurate enough and a
more exact formulation of the transformation matrices must be applied [80],
which we will derive here in some detail.

7.3.2 Transverse Beam Dynamics and Acceleration

Transverse focusing can be significantly different along a linear accelerator due
to the rapid changing particle energy compared to a fixed energy transport
line, and the proper beam dynamics must be formulated in the presence of lon-
gitudinal acceleration. To derive the correct equations of motion we consider
the particle dynamics in the presence of the complete Lorentz force including
electrical fields

p=¢eE+e[rxB]. (7.119)

To solve this differential equation we consider a straight beam transport
line with quadrupoles aligned along the s-coordinate as we would have in a
linear accelerator. The accelerating fields are assumed to be uniform with a
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finite component only along the z-coordinate. At the location r = (z,y, 2),
the fields can be expressed by E = (0,0, a/e) and B = (gx, gy,0), where the
acceleration « is defined by

a=cl|E|. (7.120)

To evaluate (7.119), we express the time derivative of the momentum,
p = ym7* by
P = ymr + ym# , (7.121)
where v = E/ mc? is the particle energy in units of the rest energy. From
cp = E/B we find that 4 = a3/mc? and (7.121) becomes for the z-component

1
he = afimi + -E i . (7.122)
&

In this subsection, we make ample use of quantities «, 3, being accelera-
tion and relativistic parameters which should not be confused with the lattice
functions, which we will not need here. Bowing to convention, we refrain from
introducing new labels.

The variation of the momentum with time can also be expressed with the
Lorentz equation (7.119), and with the specified fields, we get

Ps = —cefBgzx. (7.123)

We replace the time derivatives in (7.122) by derivatives with respect to the
independent variable s

&= fca, (7.124)

. @
B o= ,32 c2 .CL'H + - I/,
yem

and after insertion into (7.122) and equating with (7.123) the equation of
motion becomes

d%x a dxr ceg
— 4+ ——=—+—-——=2=0 7.125
2 PEd: T (7.125)
where we used the relation 3% + 1/9? = 1. With 5= dep/dz 4nd defining the
quantity
dp/dz !
= = , 7.126
" Po Bepo ( )
we get for the equation of motion in the horizontal plane, u = x
d? d k
u o cY 0 =0, (7.127)

a2 Ptz de Ttz

introducing the quadrupole strength kg = %. Equation (7.127) is also valid for
the vertical plane u = y if we only change the sign of the quadrupole strength
ko. Equation (7.127) is a Bessel’s differential equation, which becomes obvious
by defining a new independent variable



278 7 Periodic Focusing Systems

&= i—f\/ko(l—i-noz) (7.128)

transforming (7.127) into

d?u  1du

- + R

gz £d¢
which is the equation of motion in the presence of both transverse and longi-
tudinal fields.

+u=0, (7.129)

Analytical Solutions

The solutions of the differential equation (7.129) are Bessel’s functions of the
first and second kind in zero order

u(z) = C1lo(§) + C2Yo(8) (7.130)

In terms of initial conditions (ug,uy) for s = 0 we can express the solutions
in matrix formulation

Yo
u@)\ VR ([ B Y ) (Yo (u
== ey ; . (7.131)
w(z) Mo\ o s ) \ o g )\

Here we defined Z; = Z; (% To(1+ noz)) and Zio = Zio (%m) where Z;
stands for either of the Bessel’s functions I; or Y; and ¢ =0, 1.
Transformation Matrices

The transformation matrix for a drift space can be obtained from (7.131) by
letting ko — 0, but it is ea81er to just integrate (7.127) directly with k:o =0. We

get from (7. 127) — 175> and after logarithmic integration v’ = 1+n02+
const. After still another integration
u=ug+ 777 % log (1 + 102) (7.132)
or for a drift space of length L
u(L) 1 77%) log (1 +noL) uo
_ . (7.133)
1
u'(L) 0 T+noL up

For most practical purposes we may assume that 2@ > 1 and may, there-
fore, use asymptotic expressions for the Bessel’s functions. In this approxima-
tion the transformation matrix of a focusing quadrupole of length ¢ is
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o cos AE —Z_sin AE
M = vk (7.134)
—03Vkosin AE o8 cos AL
g (fo + ) sin Ag 8% g, C08 AL

0'3 A g M
3¢ goéxﬁCOSAg §<—0 )smA§

)

where .
4
7.135
1+ 1706 ( )
and with A = & — &,
2
& = - ko and (7.136)
0
2
&= —ko(1+nol). (7.137)
7o
Similarly we get for a defocusing quadrupole
o cosh A¢ —Z_ sinh A&
My = VEo (7.138)

—03/kgsinh A¢ o3 cosh A¢
g (5@4_1) sinh A& s\ﬁ&ofz cosh AE

3‘5 \ﬁcosh AL -2 (f ) sinh Ag

These transformation matrices can be further simplified for low accelerating
fields noting that %é < 1. In this case & — & ~ Vkof = ¢ and with

1 3 1 1/3 1
-i(e+e)~se+g) (7.139)

we get for a focusing quadrupole the approximate transformation matrix

o 0 costp  —=sin
M; = VEo (7.140)
003 —vkosiny  cosy
Asin 0
0 —Asiny

and similarly for a defocusing quadrupole
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0 h —L_sinh
My — o cosh v 5 Sin P (7.141)
003 —Vkosinhy  cosh
Asinh 0
Jr
0 —Asinh

Finally, the transformation matrix for a drift space of length L in an
accelerating system can be derived from either (7.140) or (7.141) by letting
ko — 0 for

1 —Llogo*
Mg = " : (7.142)
0 ot

where 0% = 1/(1 + n9L) in agreement with (7.122). In the limit of vanishing
accelerating fields ny — 0 and we obtain back the well-known transformation
matrices for a drift space. Similarly, we may test (7.140), (7.141) for consis-
tency with regular transformation matrices.

In (7.140) to (7.142) we have the transformation matrices for all elements
to form a FODO channel in the presence of acceleration. We may now apply
all formalisms used to derive periodic betatron, dispersion functions, or beam
envelopes as derived in Sect. 7.1 for regular FODO cells. Considering one half
cell we note that the quadrupole strength kg of the first half quadrupole is
determined by the last half quadrupole of the previous FODO half cell. We
have therefore two variables left, the half cell drift length L and the strength
k1 of the second half quadrupole of the FODO half cell, to fit the lattice
functions to a symmetric solution by requiring that o, = 0 and o, = 0.

7.3.3 Adiabatic Damping

Transformation matrices derived in this section are not phase space conserving
because their determinant is no more equal to unity. The determinant for a
drift space with acceleration is, for example,

1
1+mn02’
which is different from unity if there is a finite acceleration. The two-
dimensional (z,z’) phase space, for example, is not invariant anymore. For

example, the area of a rhombus in phase space, defined by the two vectors
xo = (z,0) and @, = (0, z(), is reduced according to (7.143) to

|z, 2’|

and the beam emittance, defined by  and x’, is therefore not preserved in
the presence of accelerating fields. This phenomenon is known as adiabatic
damping under which the beam emittance varies like

det My = o =

(7.143)

=17 s |zo, x| (7.144)
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1 Po
€= €0 = — €0, 7.145
=" (7.145)

where 199Az = AE/Ey is the relative energy gain along the length Az of the
accelerator. From this we immediately see that the normalized phase space
area cpe is conserved in full agreement with Liouville’s theorem. In beam
transport systems involving a linear accelerator it is therefore more convenient
and dynamically correct to use the truly invariant normalized beam emittance
defined by

€n = Pye. (7.146)

This normalized emittance remains constant even when the particle en-
ergy is changing due to external electric fields. In the presence of dissipating
processes like synchrotron radiation, scattering, or damping, however, even
the normalized beam emittance changes because Liouville’s theorem of the
conservation of phase space is not valid anymore.

From (7.144) we formally obtain the constancy of the normalized beam
emittance by multiplying with the momenta py and p = pg (1 + n92) for

|z, (1410 2) po ®'| = |20, Po 0’| (7.147)

or with the transverse momenta py &’ = p,, and (1 4 19z) pox’ = p,
|®, p, | = |0, Py,| = const. (7.148)
This can be generalized to a six-dimensional phase space, remembering that in

. 1 3. . 1 -1 log 04
this case det(Mg) = (W) since the matrix has the form o

0 ot
fy;iolog o* 0 0 00
ot 0 0 00
1 —%logo®0 0
My = o , (7.149)

0 o 00
0 0 1A
0o 0 00

1
0
0
0
0
0

o o o o

where A is an rf-related quantity irrelevant for our present arguments. For the
six-dimensional phase space with coordinates x, p,, y, p,, 7, AE, where
Py» Py are the transverse momenta, 7 is the longitudinal position of the par-
ticle with respect to a reference particle and AF is the energy deviation we
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200 0 0 0 0
0pox 0 0 0 0

get finally with |xo, Py, Yo, Poy, To, AEo| =

0 0 0poy 00
0000TTO
0000 0ct

|, Py Ys Pys Ty AE| = |x0, Poys Yos Poys Toy AFEg| = const.  (7.150)

These results do not change if we had included focusing in the transformation
matrix. From (7.140), (7.141), we see immediately that the determinants for
both matrices are

det(M,) ~ det(M,) =~ o* (7.151)

ignoring small terms proportional to A.

Problems

Use thin lens approximation unless otherwise noted.

7.1. For the FODO lattices in Table 7.1 calculate in thick lens approximation
the required quadrupole strengths to meet the other FODO cell parameters.

7.2 (S). Produce a conceptual design for a separated function proton syn-
chrotron to be used to accelerate protons from a kinetic energy of 10 GeV/c
to 150 GeV/c. The circular vacuum chamber aperture has a radius of R = 20
mm and is supposed to accommodate a beam with a uniform beam emit-
tance of ¢ = 5 mm mrad in both planes and a uniform momentum spread
of og/E = £0.1 %. The peak magnetic bending field is B = 1.8 T at 150
GeV/c.

7.3 (S). Specify a FODO cell to be used as the basic lattice unit for a 50
GeV synchrotron or storage ring. The quadrupole aperture for the beam shall
have a radius of R = 3 cm. Adjust parameters such that a Gaussian beam
with an emittance of €., = 5 mm mrad in the horizontal plane, of €., = 0.5
mm mrad in the vertical plane, and an energy spread of AE/E; = 0.01
would fit within the quadrupole aperture. Ignore wall thickness of the vacuum
chamber.

(a) Counsidering the magnetic field limitations of conventional magnets,
adjust bending radius, focal length, and if necessary cell length to stay within
realistic limits for conventional magnets.

(b) What is the dipole field and the pole tip field of the quadrupoles?
Adjust the total number of cells such that there is an even number of FODO
cells and the tunes are far away from an integer or half integer resonance?
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7.4. Produce a conceptual design for a proton synchrotron to be used to ac-
celerate protons from a kinetic energy of 10 GeV/c to 150 GeV/c. The total
magnet aperture is G = 5 cm and the circular vacuum chamber aperture has a
radius of R = 2 cm and is supposed to accommodate a beam with a maximum
beam emittance of € = 8 mm mrad. The peak magnetic bending field at 150
GeV/cis 1.8 T.

(a) Choose a half cell length L which provides the desired transverse accep-
tance for the specified vacuum chamber aperture. What is the maximum value
of the betatron and n-function? What is the quadrupole strength if its half
length is 5% of L and what is the deflection angle per bending magnet if the
length is 75% of L. How many dipoles and quadrupoles are required to com-
pose a ring?

(b) If the copper cross sectional area in the dipole coils is 20 cm?/coil, what
is the total power dissipation in the ring at 150 GeV/c (pcy = 21 Ohm cm at
20°C) ? What is the circumference and what are the tunes of the machine?
(c) Is the injection energy above or below the transition energy? What is the
revolution frequency at injection and at maximum energy?

7.5 (S). Consider a ring composed of an even number 2n, of FODO cells. To
provide two component free spaces, we cut the ring at a symmetry line through
the middle of two quadrupoles on opposite sides of the ring and insert a drift
space of length 2¢ which is assumed to be much shorter than the value of the
betatron function at this symmetry point ¢ < Gy. Derive the transformation
matrix for this ring and compare with that of the unperturbed ring. What is
the tune change of the accelerator. The betatron functions will be modified.
Derive the new value of the horizontal betatron function at the symmetry
point in units of the unperturbed betatron function. Is there a difference to
whether the free section is inserted in the middle of a focusing or defocusing
quadrupole? How does the n-function change?

7.6. For one example determine the real quadrupole length required to pro-
duce the quoted betatron phase advances per FODO cell in Table 7.1. Com-
pare with thin lens quadrupole strengths.

7.7. Calculate the values of the betatron functions at the center of the
quadrupoles for FODO cells 1 and 2 in Table 7.1 and compare with the actual
thick lens betatron functions in Figs. 7.6 and 7.7. Discuss the difference.

7.8. The original lattice of Problem 7.5 is to be expanded to include dispersion
free cells. Incorporate into the lattice two symmetric dispersion suppressors
based on the FODO lattice of the ring following the scheme shown in Fig. 7.14.
Adjust the bending magnet strength to retain a total bending angle of 27 in
the ring. Incorporate the two dispersion suppressors symmetrically into the
ring and make a schematic sketch of the lattice.
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7.9. In the dispersion free region of Problem 7.8 introduce a symmetric Collins
insertion to provide a long magnet free section of the ring. Determine the para-
meters of the insertion magnets and drift spaces. Use thin lens approximation
to calculate a few values of the betatron functions in the Collins insertions
and plot betatron and dispersion functions through the Collins insertion.

7.10. For the complete ring lattice of Problem 7.9 make a parameter list
including such parameters as circumference, revolution time, number of cells,
tunes (use simple numerical integration to calculate the phase advance in the
Collins insertion), max. beam sizes, magnet types, length, and strengths.

7.11 (S). Sometimes two FODO channels of different parameters must be
matched. Show that a lattice section can be designed with a phase advance of
A, = A, = w/2 which will provide the desired matching of the betatron
functions from the symmetry point of one FODO cell to the symmetry point
of the other cells. Such a matching section is also called a quarter wavelength
transformer and is applicable to any matching of symmetry points. Does this
transformer also work for curved FODO channels where the dispersion is
finite?

7.12. The fact that a Collins straight section can be inserted into any trans-
port line without creating perturbations outside the insertion makes these
insertions also a periodic lattice. A series of Collins straight sections can be
considered as a periodic lattice composed of quadrupole doublets and long
drift spaces in between. Construct a circular accelerator by inserting bending
magnets into the drift spaces d and adjusting the drift spaces to D = 5 m.
What is the phase advance per period? Calculate the periodic n-function and
make a sketch with lattice and lattice functions for one period.

7.13. Consider a regular FODO lattice as shown in Fig. 7.11, where some
bending magnets are eliminated to provide magnet free spaces and to reduce
the n-function in the straight section. How does the minimum value of the
n-function scale with the phase per FODO cell. Show if conditions exist to
match the n-function perfectly in the straight section of this lattice?

7.14. The quadrupole lattice of the synchrotron in Fig. 7.11 forms a pure
FODO lattice. Yet the horizontal betatron function shows some beating per-
turbation while the vertical betatron function is periodic. What is the source
of perturbation for the horizontal betatron function? An even stronger per-
turbation is apparent for the dispersion function. Explain why the dispersion
function is perturbed.

7.15. How many protons would produce a circulating beam of 1 A in the ring
of problem 7.27 Calculate the total power stored in that beam at 150 GeV/c.
By how many degrees could one liter of water be heated up by this energy?
The proton beam emittance be €, , = 5 mm mrad at the injection energy of
10 GeV/c. Calculate the average beam width at 150 GeV/c along the lattice
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and assume this beam to hit because of a sudden miss-steering a straight piece
of vacuum chamber at an angle of 10 mrad. If all available beam energy is
absorbed in a Imm thick steel vacuum chamber, by how much will the strip
of steel heat up? Will it melt? (specific heat cpe = 0.11 cal/g/°C, melting
temperature Tp, = 1528 °C.
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Particle Beam Parameters

Particle beams are characterized by a set of quantifying parameters being
either constants of motion or functions varying from point to point along a
beam transport line. The parameters may be a single particle property like
the betatron function which is the same for all particles within a beam or
quantities that are defined only for a collection of particles like beam sizes
or beam intensity. We will define and derive expressions for such beam para-
meters and use them to characterize particle beams and develop methods for
manipulation of such parameters.

8.1 Definition of Beam Parameters

Particle beams and individual particles are characterized by a number of pa-
rameters which we use in beam dynamics. We will define such parameters first
before we discuss the determination of their numerical value.

8.1.1 Beam Energy

Often we refer to the energy of a particle beam although we actually describe
only the nominal energy of a single particle within this beam. Similarly, we
speak of the beam momentum, beam Kkinetic energy, or the velocity of the
beam, when we mean to say that the beam is composed of particles with
nominal values of these quantities. We found in earlier chapters that the most
convenient quantity to characterize the “energy” of a particle is the momen-
tum for transverse beam dynamics and the kinetic energy for acceleration.
To unify the nomenclature it has become common to use the term energy for
both quantities noting that the quantity of pure momentum should be mul-
tiplied with the velocity of light, ¢p, to become dimensionally correct. Thus,
the particle momentum is expressed in the dimension of an energy without
being numerically identical either to the total energy or the kinetic energy but
approaching both for highly relativistic energies.
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8.1.2 Time Structure

A true collective beam parameter is the time structure of the particle stream.
We make the distinction between a continuous beam being a continuous flow of
particles and a bunched beam. Whenever particles are accelerated by means of
rf-fields a bunched beam is generated, while continuous beams can in general
be sustained only by dc accelerating fields or when no acceleration is required
as may be true for a proton beam in a storage ring. A pulsed beam consists
of a finite number of bunches or a continuous stream of particles for a finite
length of time. For example, a beam pulse from a linear accelerator is made
up of a finite string of micro bunches generated by rf-accelerating fields.

8.1.3 Beam Current

The beam intensity or beam current is expressed in terms of an electrical
current using the common definition of the ratio of the electrical charge passing
by a current monitor per unit time. For bunched beams, the time span during
which the charge is measured can be either shorter than the duration of the
bunch or the beam pulse or may be long compared to both. Depending on
which time scale we use, we define the bunch current or peak current, the
pulse current or the average current respectively.

In Fig. 8.1 the general time structure of bunched beams is shown. The
smallest unit is the microbunch, which is separated from the next microbunch
by the wavelength of the accelerating rf-field or a multiple thereof. The mi-
crobunch current or peak current I is defined as the total microbunch charge
q divided by the microbunch duration 7,

=21, (8.1)
T

The micropulse duration must be specially defined to take a nonuniform
charge distribution of the particular accelerator into account. A series of mi-
crobunches form a beam pulse which is generally determined by the duration
of the rf-pulse. In a conventional S-band electron linear accelerator, the rf-
pulse duration is of the order of a few micro seconds while a superconducting
linac can produce a continuous stream of microbunches thus eliminating the
pulse structure of the beam. An electrostatic accelerator may produce pulsed
beams if the accelerating voltage is applied only for short time intervals. The
pulse current I, is defined as the average current during the duration of the
pulse. If the duration of the microbunch is 7,, and the time between successive

microbunches is T},, the pulse current is

~T q

H H

The average beam current, finally, is the beam current averaged over a
complete cycle of the particular accelerator.
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Fig. 8.1. Definitions for time structure and pulse currents. (a) Peak current, I =
q/Tu, where 7, is the microbunch duration and ¢ is the charge per microbunch. (b)
Pulse current I, = I 7, /T}, = q/T},, where T}, is the microbunch period. (c) Average
current (I = I,Tpirep, with T, the pulse duration and vyep the pulse repetition rate.
(d) Continuous beam current

=1, _ 4T g
T, 1T, Teep

(8.3)

where n, is the number of microbunches per pulse and ¢ is the charge in a
microbunch. In a beam transport line, this is the total charge passing by per
unit time, where the unit time is as long as the distance between beam pulses.
In a circular accelerator it is, for example, the total circulating charge divided
by the revolution time. For the experimenter using particles from a cycling
synchrotron accelerator the average current is the total charge delivered to
the experiment during a time long compared to the cycling time divided by
that time.

The “beam on-beam off” time is measured by the duty factor defined as
the fraction of actual beam time to total time at the experimental station.
Depending on the application, it is desirable to have a high duty factor where
the particles come more uniformly distributed in time compared to a low duty
factor where the same number of particles come in short bursts.
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8.1.4 Beam Dimensions

Of great importance for the design of particle accelerators is the knowledge
of beam size parameters like transverse dimensions, bunch length, and energy
spread as well as the particle intensity distribution in six-dimensional phase
space. In this respect, electron beams may behave different from beams of
heavier particles like protons which is a consequence of synchrotron radiation
and effects of quantized emission of photons on the dynamic parameters of
the electrons. Where such radiation effects are negligible, beams of any kind
of particles evolve the same way along a beam line. Specifically, we have seen
that in such cases the beam emittances are a constant of motion and the
beam sizes are therefore modulated only by the variation of the betatron and
dispersion functions as determined by the focusing structure. The particle
distribution stays constant while rotating in phase space. This is true for the
transverse as well as for the longitudinal and energy parameters.

A linear variation of beam emittances with energy is introduced when par-
ticles are accelerated or decelerated. We call this variation adiabatic damp-
ing, where the beam emittances scale inversely proportional with the particle
momentum and the transverse beam sizes, divergences, bunch length, and
energy spread scale inversely to the square root of the particle momentum.
This adiabatic damping actually is not a true damping process where the
area in phase space is reduced. It rather reflects the particular definition of
beam emittances with respect to the canonical dimensions of phase space. In
transverse beam dynamics we are concerned with geometric parameters and
a phase space element would be expressed by the product Au Aw’. Liouville’s
theorem, however, requires the use of canonical variables, momentum and po-
sition, and the same phase space element is Au Ap,,, where Ap, = pou’ and
u is any of the three degrees of freedom. Acceleration increases the particle
momentum py and as a consequence the geometric emittances Au Au’ must
be reduced to keep the product Au Ap,, constant. This reduction of the geo-
metric emittance by acceleration is called adiabatic damping and occurs in all
three degrees of freedom.

More consistent with Liouville’s theorem of constant phase space density
is the normalized emittance defined by

€n = ﬂ’}/e? (84)

where ~ is the particle energy in units of the rest energy and S = v/c. This
normalized emittance obviously has the appropriate definition to stay constant
under the theorem of Liouville.

It is often difficult and impractical to define a beam emittance for the
whole beam. Whenever the beam is fuzzy at the edges it may not make sense
to include all particles into the definition of the beam emittance and provide
expensive aperture for the fuzzy part of the beam. In such cases one might
define the beam emittance containing 95% of the total beam intensity or what-
ever seems appropriate. Relativistic electron beams in circular accelerators are
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particularly fuzzy due to the quantized emission of synchrotron radiation. As
a consequence, the particle distribution transforms into a Gaussian distri-
bution. Later, we will discuss the evolution of the beam emittance due to
statistical effects in great detail and derive the particle distribution from the
Fokker—Planck equation. In this case we define the beam emittance for that
part of the beam which is contained within one standard unit of the Gaussian
distribution.

The beam emittance for particle beams is primarily defined by the char-
acteristic source parameters and source energy. Given perfect matching be-
tween different accelerators and beam lines during subsequent acceleration,
this source emittance is reduced inversely proportional to the particle mo-
mentum by adiabatic damping and stays constant in terms of normalized
emittance. This describes accurately the ideal situation for proton and ion
beams, for nonrelativistic electrons, and electrons in linear accelerators as
long as statistical effects are absent. A variation of the emittance occurs in
the presence of statistical effects in the form of collisions with other particles or
emission of synchrotron radiation and we will concentrate here in more detail
on the evolution of beam emittances in highly relativistic electron beams.

Statistical processes cause a spreading of particles in phase space or a con-
tinuous increase of beam emittance. In cases where this diffusion is due to the
particle density, the emittance increase may decrease significantly because the
scattering occurrence drops to lower and lower values as the particle density
decreases. Such a case appears in intrabeam scattering [81-83], where parti-
cles within the same bunch collide and exchange energy. It appears specifically
when particles exchange longitudinal momentum into transverse momentum
and gain back the lost longitudinal momentum from the accelerating cavities.
The beam “heats” up transversely which becomes evident in the increased
beam emittance and beam sizes.

Statistical perturbations due to synchrotron radiation, however, lead to
truly equilibrium states where the continuous excitation due to quantized
emission of photons is compensated by damping. Discussing first the effect of
damping will prepare us to combine the results with statistical perturbations
leading to an equilibrium state of the beam dimensions.

8.2 Damping

Emission of synchrotron radiation causes the appearance of a reaction force
on the emitting particle which must be taken into account to accurately de-
scribe particle dynamics. In doing so, we note from the theory of synchrotron
radiation that the energy lost into synchrotron radiation is lost through the
emission of many photons and we may assume that the energy loss is continu-
ous. Specifically, we assume that single photon emissions occur fast compared
to the oscillation period of the particle such that we may treat the effect of
the recoil force as an impulse.
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In general we must consider the motion of a particle in all three degrees of
freedom or in six-dimensional phase space. The appearance of damping stems
from the emission of synchrotron radiation in general, but the physics leading
to damping in the longitudinal degree of freedom is different from that in
the transverse degrees of freedom. The rate of energy loss into synchrotron
radiation depends on the particle energy itself being high at high energies and
low at low energies. As a consequence, a particle with a higher than ideal
energy will lose more energy to synchrotron radiation than the ideal particle
and a particle with lower energy will lose less energy. The combined result is
that the energy difference between such three particles has been reduced, an
effect that shows up as damping of the beam energy spread. With the damping
of the energy spread, we also observe a damping of its conjugate variable, the
longitudinal phase or bunch length.

In the transverse plane we note that the emission of a photon leads to a loss
of longitudinal as well as transverse momentum since the particle performs
betatron oscillations. The total lost momentum is, however, replaced in the
cavity only in the longitudinal direction. Consequently, the combined effect of
emission of a photon and the replacement of the lost energy in accelerating
cavities leads to a net loss of transverse momentum or transverse damping.

Although damping mechanisms are different for transverse and longitudi-
nal degrees of freedom, the total amount of damping is limited and determined
by the amount of synchrotron radiation. This correlation of damping decre-
ments in all degrees of freedom was derived first by Robinson [84] for general
accelerating fields as long as they are not so strong that they would apprecia-
bly affect the particle orbit.

8.2.1 Robinson Criterion

Following Robinson’s idea we will derive what is now known as Robinson’s
damping criterion by observing the change of a six-dimensional vector in
phase space due to synchrotron radiation and acceleration. The components
of this vector are the four transverse coordinates (z,z’,y,y’), the energy devi-
ation AF, and the longitudinal phase deviation from the synchronous phase
@ = 9 — 1)s. Consistent with smooth approximation a continuous distribu-
tion of synchrotron radiation along the orbit is assumed as well as continuous
acceleration to compensate energy losses. During the short time dt the six-
dimensional vector

u=(x, 'y, Yy, o, 5E> (8.5)

will change by an amount proportional to dt. We may expand the transfor-
mations into a Taylor series keeping only linear terms and express the change
of the phase space vector in the form of a matrix transformation

Au = u; —ug = dt Mug. (8.6)

From the eigenvalue equation for this transformation matrix,
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MU]' = )\j’U,j,

where u; are the eigenvectors, \; are the eigenvalues being the roots of the
characteristic equation det(M — AZ) = 0 and Z is the unity matrix. From
(8.6) we get

u; = (1 + M dt)UO = (1 + >‘j dt)UO ~ uge)‘j dt . (87)

Since the eigenvectors must be real the eigenvalues come in conjugate complex
pairs

/\j = Oy + iﬁi,
where ¢ = 1,2, 3 and

j=6 i=3
dA=2> ai. (8.8)
j=1 i=1

The quantities «; cause exponential damping or excitation of the eigen-
vectors depending on whether they are negative or positive, while the [3; con-
tribute only a frequency shift of the oscillations.

Utilizing the transformation matrix M, we derive expressions for the eigen-
values by evaluating the expression % det(TM—=AT)|,—o in two different ways.
With M = A7 we get

j=6

d 4=
et (P =N T, = ch;[ (A = Mlr=o = =A* Y ). (8.9)

Jj=1

On the other hand, we may execute the differentiation on the determinant
directly and get

d
4 det (rM = MT)| = (8.10)

mi1 mi2 mi3
TMma1 Tm22_)\ TMma3

TMms1 TMms2 Tm33—>\

7=0
TMmii - A TN 12 TMmais
mai ma2 ma3

TMM31 TMmM32 T133 — A e

7=0

=6
5 5 52
:—)\m11~~-—)\m56=—)\ mjj.

j=1
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Comparing (8.9)and (8.10) we note with (8.8) the relation

j=6 j=6 i=3
D= my =2 a (8.11)
j— j—1 i=1

between eigenvalues, matrix elements, and damping decrements. To further
identify the damping we must determine the transformation. The elements
mq1,ms3, and mss are all zero because the particle positions (x,y, ¢) are not
changed by the emission of a photon or by acceleration during the time dt.

mi1 = 0 ms3 — 0 mss = 0. (812)

The slopes, however, will change. Since synchrotron radiation is emitted
in the forward direction, we have no direct change of the particle trajectory
due to the emission process. We ignore at this point the effects of a finite
radiation opening angle § = +1/~ and show in connection with the derivation
of the vertical beam emittance that this effect is negligible while determining
damping. Acceleration will change the particle direction because the longitu-
dinal momentum is increased while the transverse momentum stays constant,
see Fig. 8.2.

As shown in Fig. 8.2, a particle with a total momentum py and a transverse
momentum pg; due to betatron oscillation emits a photon of energy e,. This
process leads to a loss of momentum —Ap = ¢, /3, where 8 = v/c, and a loss
of transverse momentum. Acceleration will again compensate for this energy
loss. During acceleration the momentum is increased by Ap,s = +(Pt/cf) dt,

Pot| T

P1t]

Py

Fig. 8.2. Reduction of the transverse momentum of trajectories by acceleration.
For simplicity we assume here that the energy loss —Ap due to the emission of a
photon is immediately compensated by accelerating fields in an rf-cavity (Apyf)
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where P, is the rf-power to the beam. The transverse momentum during this
acceleration is not changed and we therefore have (py — Ap) uy = [pg — Ap +
(Pye/cf) dt] u}, where uj, and «} are the slopes of the particle trajectory before
and after acceleration, respectively. With «' = /8¢ and ¢py = BEp we have
to first order in Ap and P, dt

. E() . Prf dt .
= ~ (11— . 1
“ Ey+ P dt o < > o (8.13)

From (8.7) we get with (8.13), using average values for the synchrotron
radiation power around the ring and with u =z oru =y
P.
Mmoo = 7% and myq = 7E70, (814)
where we note that the rf-power is equal to the nominal synchrotron radiation
power (P,) = Uy/Tp. The energy variation of the particle is the combination
of energy loss —P, dt and gain Py¢dt. With

8PA, _ af)rf
PV(E) P (EO) + 37E AE, and Prf("/’) = Prf(¢5) + aw .
where ¢ = 1) — 15, we get
AE; = AEy — Py(E)dt + Py(¢) dt
OP,
=AE) — -2 1
o oF |, N pdt (8.15)

because P, (Ey) = Pre(1)s). Equation (8.15) exhibits two more elements of the
transformation matrix

oP,

and Mmeg = — ol
0

mes = —(—— (816)

We now have all elements necessary to determine the damping decrements.
From (8.12), (8.14), (8.16) we get the sum of the damping decrements

Jj=6

(P,) , 0P
Zal—%ZmMZ—EZ‘%a*”o

Jj=1

(8.17)

which depends only on the synchrotron radiation power and the particle en-
ergy. This result was first derived by Robinson [84] and is known as Robinson’s
damping criterion.

We may separate the damping decrements. For a plane circular accelerator
without vertical bending magnets and coupling, the vertical damping decre-
ment o, = ap can be extracted. Since the vertical motion is not coupled to
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either the horizontal or the synchrotron oscillations, we get from (8.14) and
(8.17)

(Py)
Ey
The damping decrement for synchrotron oscillations has been derived in (6.27)
and is

-3 (8.18)

y =

d{Py)
dE

(8.19)

[N

o, = —

0
The horizontal damping decrement finally can be derived from Robinson’s
damping criterion (8.17) and the two known decrements (8.18), (8.19) to be

(Py) _

1 1 9Py
2 Ey 2 0E

1d<P'y>
0 2 dE

0y = —

(8.20)

0

We may further evaluate the total and partial differential of the syn-
chrotron radiation power P, with energy F. The synchrotron radiation power
is proportional to the square of the particle energy E and magnetic field B
and the partial differential is therefore

or,
oF

_ o (P
= 255 (8.21)

The total differential of the synchrotron radiation power depends not only
on the particle energy directly but also on the variation of the magnetic field
with energy as seen by the particle. A change in the particle energy causes a
shift in the particle orbit where the n-function is nonzero and this shift may
move the particle to a location with different field strength. To include all
energy dependent contributions, we inspect the definition

1
(Py) =7 fPWdT

and noting that for highly relativistic particles (v = ¢)

cdr =ds = (1+nAE> dz

p Eo
we get
1 n AE

P)=—oP, |1+ —-—— | dz. 8.22
(Py) CTo%V(—i_pEo) z ( )

Differentiating (8.22) with respect to energy, we get

d(py) 1 ar, n
= — — P,—1d 8.23
dE |, cTo ) | dE |, "7 pE.| (8.23)

where
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dp, P. P, dB dz P P,

— =22 42 Y — = =21 492 Tk

AE |, "By “Bodw dE By B,

Collecting all components, the synchrotron oscillation damping decrement
(8.19) is finally

- _%@ 2+9), (8.24)

NI
(oW
&

where we used (P,) o ¢ r?dz and Py o k% with K = 1/p

$ K3 77(1+2p2k) dz

9= (8.25)
$r *dz
Similarly, we get from (8.20) for the horizontal damping decrement
1 (Py)
oy = =5 (1-1). (5.26)

In summary the damping decrements for betatron and synchrotron oscillations
can be expressed by

_ 1) 1Py
= =5 (24 0) = 5
_ 1) _ 1)
ap =5 pt (1=9) = — "2 o, (8.27)
_upy_1py,
Y 2 B 2 E Y

where the factors J; are the damping partition numbers,

J. =2+,
Jy=1-1, (8.28)
Jy=1.

Robinson’s damping criterion can be expressed by
> Ji=4. (8.29)

In more practical quantities, the damping decrements can be obtained with
(21.34) from

1
oy = —irecy? <p2> Ju. (8.30)

Damping can be obtained in circular electron accelerators in all degrees of
freedom. In transverse motion particles oscillate in the potential created by
quadrupole focusing and any finite amplitude is damped by synchrotron radi-
ation damping. Similarly, longitudinal synchrotron oscillations are contained
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by a potential well created by the rf-fields and the momentum compaction and
finite deviations of particles in energy and phase are damped by synchrotron
radiation damping. We note that the synchrotron oscillation damping is twice
as strong as transverse damping.

All oscillation amplitudes a,, in six-dimensional phase space are damped
(v < 0) or antidamped (o > 0) like

ay = ague ™! (8.31)

and the damping or rise times are

1

Ty = o (8.32)

In a particular choice of lattice, damping rates can be shifted between
different degrees of freedom and special care must be taken when combined
function magnets or strong sector magnets are introduced into a ring lattice.
Both the synchrotron and betatron oscillation damping can be modified by

a particular choice of lattice. From (8.25) we note the contribution x3n which
is caused by sector magnets. Particles with higher energies follow a longer
path in a sector magnet and therefore radiate more. Consequently synchrotron
damping is increased with ). This term vanishes for rectangular magnets and
must be modified appropriately for wedge magnets. For a rectangular magnet

2knk d
ﬁrect = f H’Z : (833)
$K7dz
and for wedge magnets
[K200m0 + [ 2(kn k) dz + k26 )
Zz [ 0"o f (kn k) ene]l . (8.34)

ﬁwc e —
dg § Kk2dz

Here we add all contributions from all magnets 7 in the ring. The edge
angles at the entrance 6y and exit 6, are defined to be positive going from a
rectangular magnet toward a sector magnet.

The second term in the nominator of (8.25) becomes significant for com-
bined function magnets and vanishes for separated function magnets. Specif-
ically, a strong focusing gradient (k > 0) combined with beam deflection can
contribute significantly to . For ¢ = 1 all damping in the horizontal plane is
lost and antidamping or excitation of betatron oscillations appears for 9 > 1.
This occurs, for example, in older combined function synchrotrons. At low en-
ergies, however, the beam in such lattices is still stable due to strong adiabatic
damping and only at higher energies when synchrotron radiation becomes sig-
nificant will horizontal antidamping take over and dictate an upper limit to
the feasibility of such accelerators. Conversely, vertical focusing (k < 0) can
be implemented into bending magnets such that the horizontal damping is
actually increased since ¥ < 0. However, there is a limit for the stability of
synchrotron oscillations for 9 = 2.
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8.3 Particle Distribution in Longitudinal Phase Space

The particle distribution in phase space is rarely uniform. To determine the
required aperture in a particle transport system avoiding excessive losses we
must, however, know the particle distribution. Proton and ion beams involve
particle distributions which due to Liouville’s theorem do not change along
a beam transport system, except for the variation of the betatron and dis-
persion function. The particle distribution can therefore be determined by
measurements of beam transmission through a slit for varying openings. If
this is done at two points about 90° apart in betatron phase space, angular
as well as spatial distribution can be determined.

This procedure can also be applied to electrons in a transport system.
The distribution changes, however, significantly when electrons are injected
into a circular accelerator. We will discuss the physics behind this violation of
Liouville’s theorem and determine the resulting electron distribution in phase
space.

Relativistic electron and positron beams passing through bending mag-
nets emit synchrotron radiation, a process that leads to quantum excitation
and damping. As a result the original beam emittance at the source is com-
pletely replaced by an equilibrium emittance that is unrelated to the original
source characteristics. Postponing a rigorous treatment of statistical effects to
Chap. 9, we concentrate here on a more visual discussion of the reaction of
synchrotron radiation on particle and beam parameters.

8.3.1 Energy Spread

Statistical emission of photons causes primarily a change of particle energy
leading to an energy spread within the beam. To evaluate the effect of quan-
tized emission of photons on the beam energy spread, we observe particles
undergoing synchrotron oscillations so that a particle with an energy devia-
tion Ag at time to will have an energy error at time ¢ of

A(t) = Ag ettt (8.35)

Emission of a photon with energy € at time t; causes a perturbation and
the particle continues to undergo synchrotron oscillations but with a new
amplitude

Ay = Agel?ltto) _ g eif2(t=t) (8.36)

The change in oscillation amplitude due to the emission of one photon
of energy ¢ can be derived from (8.36) by multiplying with its imaginary
conjugate to get

A3 = A2+ % —2eAgcos[2(t; — to)]. (8.37)
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Because the times at which photon emission occurs is random we have for
the average increase in oscillation amplitude due to the emission of a photon

of energy ¢
<AA2> = <A% — A(2J> =e?. (8.38)

The rate of change in amplitude per unit time due to this statistical or
quantum excitation while averaging around the ring is

<dd/12 > /000 e (¢) de = <Nph <€2>>z . (8.39)

where n (g) is the number of photons of energy ¢ emitted per unit time and
energy bin de. This can be equated to the total photon flux Nph multiplied by
the average square of the photon energy and again taking the average along
the orbit.

Damping causes a reduction in the synchrotron oscillation amplitude and
with A = Apge®! and the synchrotron oscillation damping time 7, = 1/ |a,|

(8.27)
dA? 2
— == (A?). 8.40
(Gl = @0
Both quantum excitation and damping lead to an equilibrium state

(N () - Ti (4% =0, (8.41)

or solving for <A2>
(A7) = 47 (Non (%)) - (8.42)

Due to the central limit theorem of statistics the energy distribution due
to statistical emission of photons assumes a Gaussian distribution with the
standard root mean square energy spread o2 = 3 (A?). The photon spectrum
will be derived in Part VIII and the integral in (8.39) can be evaluated to
give [85]

. 55
Non (€2) = ——P oe. . 8.43
ph< > 24 \/g 70€c ( )

Replacing the synchrotron radiation power P, by its expression in (21.34)
and the critical photon energy . = hw. by (21.49) we get

. 55
Non (€2) = Ty [CC’,th (m02)47753] (8.44)

and the equilibrium energy spread becomes finally with (8.27) and (21.34)
2

a Tz : '7 <R>
7 = 157 Vo)), =G (8.45)

z
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where
55 hc

1 32¢/3me?
for electrons and positrons. The equilibrium energy spread in an electron
storage ring depends only on the beam energy and the bending radius.

=384x10""® m (8.46)

8.3.2 Bunch Length

The conjugate coordinate to the energy deviation is the phase and a spread of
particle energy also appears as a spread in phase or as a longitudinal particle
distribution and an equilibrium bunch length. From (6.71) we get

c|ne| oe
= — 8.47
ot 2 Ey ( )

and replacing the synchrotron oscillation frequency by its expression (6.35) we
finally get for the equilibrium bunch length in a circular electron accelerator

_ V2me nky oc
o = = —. (8.48)
Wrev | heV cosps Eo

We note that the equilibrium electron bunch length can be varied by vary-

ing the rf-voltage and scales like oy o 1/ \/§ which is a much stronger depen-
dence than the scaling obtained for nonradiating particles in Sect. 6.3.5. A very
small bunch length can be obtained by adjusting the momentum compaction
to a small value including zero. As the momentum compaction approaches
zero, however, second-order terms must be considered which has been dis-
cussed in detail in Sect. 6.4.2. An electron storage ring where the momentum
compaction is adjusted to be zero or close to zero is called an isochronous
ring [57] or a quasi-isochronous ring [58]. Such rings do not yet exist at this
time but are intensely studied and problems are being solved in view of great
benefits for research in high energy physics, synchrotron radiation sources,
and free electron lasers to produce short particle or light pulses.

8.4 Transverse Beam Emittance

The sudden change of particles energy due to the quantized emission of pho-
tons also causes a change in the characteristics of transverse particle motion.
Neither position nor the direction of the particle trajectory is changed during
the forward emission of photons. From beam dynamics, however, we know that
different reference trajectories exist for particles with different energies. Two
particles with energies cp; and cps follow two different reference trajectories
separated at the position z along the beam transport line by a distance
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Az (2) = (=) % (8.49)

where 7)(z) is the dispersion function and cpy is the reference energy. Although
particles in general do not exactly follow these reference trajectories, they do
perform betatron oscillations about these trajectories. The sudden change of
the particle energy causes a sudden change in the reference path and thereby
a sudden change in the betatron oscillation amplitude.

8.4.1 Equilibrium Beam Emittance

Postponing again a rigorous discussion of the evolution of phase space due
to statistical perturbations to the next chapter, we follow here a more intu-
itive path to determine the equilibrium transverse beam emittance. Similar to
the discussion leading to the equilibrium energy spread we will observe per-
turbations to the transverse motion caused by photon emission. In the case
of longitudinal quantum excitation it was sufficient to consider the effect of
photon emission on the particle energy alone since the particle phase is not
changed by this process.

As a particle emits a photon it will not change its actual position and
direction. However, the position of a particle with respect to the ideal reference
orbit is the combination of its betatron oscillation amplitude and a chromatic
contribution due to a finite energy deviation and dispersion. Variation of the
particle position u = ug + n(AE/Ep) and direction v’ = uj + 1’ (AE/Ep)
due to the emission of a photon of energy ¢ is described by

du=0=0dug+ngy or bug=-—ng,
(8.50)

/

ou' =0=0ug+n'y or Odup=-n

Ea

We note the sudden changes in the betatron amplitudes and slopes because
the sudden energy loss leads to a simultaneous change in the reference orbit.
This perturbation will modify the phase ellipse the particles move on. The
variation of the phase ellipse yu2 + 2auu’ + fu'> = a? is expressed by

70 (ud) + 208 (uguly) + Bo(uly”) = 8(a®)

and inserting relations (8.50) we get terms of the form d(u3) = (ugo +dug)* —
u%o etc. Emission of photons can occur at any betatron phase and we therefore
average over all phases. As a consequence, all terms depending linearly on
the betatron amplitude and its derivatives or variations thereof vanish. The
average variation of the phase ellipse or oscillation amplitude a due to the
emission of photons with energy € then becomes

(6a?) = %gH(z), (8.51)
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where )
H(z) = Bn'" + 2ann’ + 1. (8.52)

We average again over all photon energies, multiply by the total number
of photons emitted per unit time, and integrate over the whole ring to get the
variation of the oscillation amplitude per turn

Ala?) = C}Eg }{Nph@?w(z) dz. (8.53)

The rate of change of the oscillation amplitude is then with z = ¢t

d{a?)
dt

_ ;g (NonleH(2)) (8.54)

z

q

where the index z indicates averaging around the ring. This quantum exci-
tation of the oscillation amplitude is compensated by damping for which we

have similar to (8.40)
a
dt

Equilibrium is reached when quantum excitation and damping are of equal
strength which occurs for

= 20, (a?) . (8.55)

0'2 Tu

= im <Nph<52>Hu>z . (8.56)
Here we have used the definition of the standard width of a Gaussian
particle distribution

o = (u*(2)) = 30°Bu (8.57)

with the betatron function 3, and u = x or y. With (8.27), (8.44), and (21.34)
we finally get
)
“ Bu a4 Ju <"<52> '
which we define as the equilibrium beam emittance of a relativistic electron
in a circular accelerator.

(8.58)

8.4.2 Emittance Increase in a Beam Transport Line

In (8.53) we decided to integrate the quantum excitation over a complete turn
of a circular accelerator. This should not be taken as a restriction but rather
as an example. If we integrate along an open beam transport line we would
get the increase of the beam emittance along this beam line. This becomes
important for very high energy linear colliders where beams are transported
along the linear accelerator and some beam transport system in the final
focus section just ahead of the collision point. Any dipole field along the
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beam path contributes to an increase of the beam emittance, whether it be
real dipole magnets, dipole field errors, path displacements in a quadrupole,
or small correction magnets for beam steering. Since there is no damping, the
emittance growth is therefore in both planes from (8.53) and (8.57)

— 1 \ 2

The function H is now evaluated with the dispersion functions D,,(z) in-
stead of the periodic n-function with contributions from any dipole field, be it
a real bending magnet, dipole field errors, or the associated dipole correctors.
Since such errors occur in both planes there is an emittance increase in both
planes as well. With (8.44) the increase in beam emittance is finally

55C., he (mc?)?
Ae, = 2y CRE) 5/5371” dz, 8.60
‘ 6irv3 (8:60)

where the integration is taken along the beam line. The perturbation of the
beam emittance in a beam transport line increases with the fifth power of the
particle energy. At very high energies we therefore expect a significant effect
of dipole errors on the beam emittance even if the basic beam transport line
is straight.

So far, we have not yet distinguished between the horizontal and vertical
plane since the evolution of the phase space does not depend on the particular
degree of freedom. The equilibrium beam emittance, however, depends on ma-
chine parameters and circular accelerators are not constructed symmetrically.
Specifically, accelerators are mostly constructed in a plane and therefore there
is no deflection in the plane normal to the ring plane. Assuming bending only
occurs in the horizontal plane, we may use (8.58) directly as the result for the
horizontal beam emittance u = x.

8.4.3 Vertical Beam Emittance

In the vertical plane, the bending radius p, — oo and the vertical beam
emittance reduces to zero by virtue of damping. Whenever we have ideal
conditions like this it is prudent to consider effects that we may have neglected
leading to less than ideal results. In this case, we have neglected the fact that
synchrotron radiation photons are emitted not strictly in the forward direction
but rather into a small angle +1 /. Photons emitted at a slight angle exert
a recoil on the particle normal to the direction of the trajectory. A photon
emitted at an angle 6 with respect to the direction of the trajectory and an
azimuth ¢ causes a variation of the vertical slope by

£
6’:—0 P —
Y =6 cosop,

while the position is not changed dy = 0. This leads to a finite beam emittance
which can be derived analogous to the general derivation above
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2
g T. .
5—3 = ﬁ <Nph<5292 cos? @) ﬁy>z . (8.61)
We set )
(267 cos® @) =~ (£2) (0°) (cos® ¢) =~ (52>ﬁ
v
and finally get for the fundamental lower limit of the vertical beam emittance
ay By (k)
Ve =0, Y . 8.62
ﬂy €y q2<]y <H2> ( )

Very roughly €, /e, =1/ ~% <« 1 and it is therefore justified to neglect this
term in the calculation of the horizontal beam emittance. This fundamental
lower limit of the equilibrium beam emittance is of the order of 10~!3 m,
assuming the betatron function and the bending radius to be of similar mag-
nitude, and therefore indeed very small compared to actual achieved beam
emittances in real accelerators. In reality, we observe a larger beam emittance
in the vertical plane due to coupling or due to vertical steering errors which
create a small vertical dispersion and, consequently, a small yet finite vertical
beam emittance. As a practical rule the vertical beam emittance is of the
order of 1% or less of the horizontal beam emittance due to field and align-
ment tolerances of the accelerator magnets. For very small horizontal beam
emittances, however, this percentage may increase because the vertical beam
emittance due to vertical dipole errors becomes more significant.

Sometimes it is necessary to include vertical bending magnets in an oth-
erwise horizontal ring. In this case the vertical dispersion function is finite
and so is Hy(z). The vertical emittance is determined by evaluating (8.58)
while using the vertical dispersion function. Note, however, that all bending
magnets must be included in the calculation of equilibrium beam emittances
because for quantum excitation it is immaterial whether the energy loss was
caused in a horizontally or vertically bending magnet. The same is true for
the damping term in the denominator. Differences in the horizontal and ver-
tical beam emittance come from the different betatron and n-functions at the
location of the radiation source.

8.4.4 Beam Sizes

Beam parameters like width, height, length, divergence, and energy spread
are not all fixed independent quantities, but rather depend on emittances and
lattice and rf-parameters. These multiple dependences allow the adjustment of
beam parameters, within limits, to be optimum for the intended application.
In this section we will discuss such dependences.

A particle beam at any point of a beam transport line may be represented
by a few phase ellipses for different particle momenta as shown in Fig. 8.3. The
phase ellipses for different momenta are shifted proportional to the dispersion
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Fig. 8.3. Distribution of beam ellipses for a beam with finite emittance and mo-
mentum spread (schematic). The variation in the shape of the phase ellipses for
different energies reflect the effect of chromatic aberrations

function at that point and its derivative. Generally, the form and orientation
of the ellipses are slightly different, too, due to chromatic aberrations in the
focusing properties of the beam line. For the definition of beam parameters
we therefore need the knowledge of the lattice functions including chromatic
aberrations and the beam emittance and momentum spread.

The particle beam width or beam height is determined by the beam emit-
tance, the value of the betatron function, the value of the dispersion function,
and the energy spread. The betatron and dispersion functions vary along a
beam transport line and depend on the distribution of the beam focusing el-
ements. The beam sizes are therefore also functions of the location along the
beam line. From the focusing lattice these functions can be derived and the
beam sizes can be calculated.

The beam size of a particle beam is generally not well defined since the
boundaries of a beam tends to become fuzzy. We may be interested in the beam
size that defines all of a particle beam. In this case we look for that phase
ellipse that encloses all particles and obtain the beam size in the form of the
beam envelope. The beam half-width or half-height of this beam envelope is

defined by

with u = (x,y). If there is also a finite momentum spread within the beam
particles the overall beam size or beam envelope is increased by the dispersion

Acp
) 2

un(2) = nu(2) b0 (8.64)

and the total beam size is
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Ac
ot (2) = ug(2) + un(2) = VeuBul2) + (2 —p (8.65)

This definition of the beam size assumes a uniform particle distribution
within the beam and is used mostly to determine the acceptance or the beam
stay clear , BSC , of a beam transport system. The acceptance of a beam trans-
port system is defined as the maximum emittance a beam may have and still
pass through the vacuum chambers of a beam line. In Fig. 8.3 this would be
the area of the ellipse that encloses the whole beam including off-momentum
particles. In practice, however, we would choose a larger acceptance to allow
for errors in the beam path.

Since the lattice functions vary along a beam line the required aperture
to let a beam with the maximum allowable emittance pass is not the same
everywhere along the system. To characterize the aperture variation consistent
with the acceptance, a beam stay clear (BSC) area is defined as the required
material free aperture of the beam line.

For a more precise description of the actual beam size the particle dis-
tribution must be considered. Most particle beams have a Gaussian or near-
Gaussian density distribution in all six dimensions of phase space and there-
fore the contributions to the beam parameters from different sources add in
quadrature. The beam parameters for Gaussian particle distributions are de-
fined as the standard values of the Gaussian distribution

0.(1:70.(1:/70-3170-3/’30-670'@7 (866)

where most designations have been defined and used in previous chapters
and where o5 = o./cpg and oy is the bunch length. Quoting beam sizes in
units of ¢ can be misleading specifically in connection with beam intensities.
For example, a beam with a horizontal and vertical size of 1o has a cross
section of 20,20, and includes only 46.59% of the beam. Therefore, beam
intensities are often given for 2¢’s or as in the case of proton and ion beam
for v/60’s. In Table 8.1 the fraction of the total beam intensity is compiled
for a few generally used units of beam size measurement and for beam size,
cross section, and volume.

Table 8.1. Fraction of total beam intensity

One dimension Two dimension Three dimension

% % %
lo 68.26 46.59 31.81
20 95.44 91.09 86.93

V6o 98.56 97.14 95.74
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The beam size for Gaussian beams is thereby

Gutor =\ €uBu(z) +72(2)02 . (8.67)

Four parameters are required to determine the beam size in each plane
although in most cases the vertical dispersion vanishes.

8.4.5 Beam Divergence

The angular distribution of particles within a beam depends on the rotation
of the phase ellipse and we define analogous to the beam size an angular beam
envelope by

Ou’ tot — \/eu’Yu(Z) + 77/2(2:) O'g . (868)

Again, there is a contribution from the betatron motion, from a finite mo-
mentum spread, and from the associated chromatic aberration. The horizontal
and vertical beam divergences are also determined by four parameters in each
plane.

8.5 Variation of the Damping Distribution

Robinson’s criterion provides an expression for the overall damping in six-
dimensional phase space without specifying the distribution of damping in
the three degrees of freedom. In accelerators we make an effort to decouple
the particle motion in the three degrees of freedom as much as possible and
as a result we try to optimize the beam parameters in each plane separately
from the other planes for our application. Part of this optimization is the
adjustment of damping and as a consequence of beam emittances to desired
values. Robinson’s criterion allows us to modify the damping in one plane at
the expense of damping in another plane. This shifting of damping is done by
varying damping partition numbers defined in (8.28).

From the definition of the ¥ parameter is is clear that damping parti-
tion numbers can be modified depending on whether the accelerator lattice
is a combined function or a separated function lattice. Furthermore, we may
adjust virtually any distribution between partition numbers by choosing a
combination of gradient and separated function magnets.

8.5.1 Damping Partition and rf-Frequency

Actually such “gradients” can be introduced even in a separated function
lattice. If the rf-frequency is varied the beam will follow a path that meets the
synchronicity condition. Increasing the rf-frequency, for example, leads to a
shorter wavelength and therefore the total path length in the ring need to be
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shorter. As a consequence of the principle of phase stability the beam energy is
reduced and the beam follows a lower energy equilibrium orbit with the same
harmonic number as the reference orbit for the reference energy. Decreasing
the rf-frequency leads just to the opposite effect. The off-momentum orbits
pass systematically off center through quadrupoles which therefore function
like combined function gradient magnets.

To quantify this effect we use only the second term in expression (8.25)
for 9. The first term, coming from sector magnets, will stay unaffected. Dis-
placement of the orbit in the quadrupoles will cause a bending with a bending
radius

LRy (8.69)
Pq

An rf-frequency shift causes a momentum change of

A 1 Af,
A _ 1Ak (8.70)
Po ac frr
which in turn causes a shift in the equilibrium orbit of
Ap n Afrf
br=n—=———", 8.71
K Po Q¢ frf ( )
and the bending radius of the shifted orbit in quadrupoles is
1 A Afy
s (8.72)
Pq Po Q¢ frf
Inserting into the second term of (8.25), we get
1 $2k2n%dz Af,
Ay = L $2R 0z A (8.73)

Q¢ fpi%dz frf ’

where p, is the bending radius of the ring bending magnets All quantities in
(8.73) are fixed properties of the lattice and changing the rf-frequency leads
just to the expected effect. Specifically, we note that all quadrupoles con-
tribute additively irrespective of their polarity. We may apply this to a simple
isomagnetic FODO lattice where all bending magnets and quadrupoles have
the same absolute strength respectively with f dz/p? = 27/ pa,. Integration of
the nominator in (8.73) leads to

74 2 K22z = 22 (1 e+ 7P a2 e

where [ is half the quadrupole length in a FODO lattice, 7max and nmin are the
values of the n-function in the focusing QF and defocusing QD quadrupoles,
respectively, and n. is the number of FODO cells in the ring. With all this
the variation of the ¥ parameter
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— 2 Pa nfnax + nr2nin Afrf
A = — oL T i S (8.74)

Here we have used the focal length f~' = kl,. We replace in (8.74) the n
functions by expressions (7.74) derived for a FODO lattice, recall the relation
f = &L, and finally get [86]

(8.75)

where p is again the average bending radius in the FODO cell. The variation
of the ¥ parameter in a FODO lattice is the more sensitive to rf-frequency
variations the longer the cell compared to the quadrupole length and the
weaker the focusing. For other lattices the expressions may not be as simple as
for the FODO lattice but can always be computed numerically by integrations
and evaluation of (8.73).

By varying the rf-frequency and thereby the horizontal and longitudinal
damping partition number we have found a way to either increase or decrease
the horizontal beam emittance. The adjustments, however, are limited. To
decrease the horizontal beam emittance we would increase the horizontal par-
tition number and at the same time the longitudinal partition number would
be reduced. The limit is reached when the longitudinal motion becomes unsta-
ble or in practical cases when the partition number drops below about half a
unit. Other more practical limits may occur before stability limits are reached
if, for example, the momentum change becomes too large to fit in the vacuum
chamber aperture.

8.6 Variation of the Equilibrium Beam Emittance

In circular electron accelerators the beam emittance is determined by the
emission of synchrotron radiation and the resulting emittance is not always
equal to the desired value. In such situations methods to alter the equilibrium
emittance are desired and we will discuss in the next sections such methods
which may be used to either increase or decrease the beam emittance.

8.6.1 Beam Emittance and Wiggler Magnets

The beam emittance in an electron storage ring can be greatly modified by
the use of wiggler magnets both to increase [30] or to decrease the beam
emittance. A decrease in beam emittance has been noted by Tazzari [87)
while studying the effect of a number of wiggler magnets in a low emittance
storage ring design. Manipulation of the beam emittance in electron storage
rings has become of great interest, specifically, to obtain extremely small beam
emittances, and we will therefore derive systematic scaling laws for the effect
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of wiggler magnets on the beam emittance as well as on the beam energy
spread [87,88].

The particle beam emittance in a storage ring is the result of two com-
peting effects, the quantum excitation caused by the quantized emission of
photons and the damping effect. Both effects lead to an equilibrium beam
emittance observed in electron storage rings.

Independent of the value of the equilibrium beam emittance in a particu-
lar storage ring, it can be further reduced by increasing the damping without
also increasing the quantum excitation. More damping can be established by
causing additional synchrotron radiation through the installation of deflect-
ing dipole magnets like strong wiggler magnets. In order to avoid quantum
excitation of the beam emittance, however, the placement of wiggler magnets
has to be chosen carefully. As discussed earlier, an increase of the beam emit-
tance through quantum excitation is caused only when synchrotron radiation
is emitted at a place in the storage ring where the dispersion function is finite.
The emission of a photon causes a sudden energy loss and thereby also a sud-
den change of the particle’s equilibrium trajectory which causes a correspond-
ing increase in the betatron oscillation amplitude about the new equilibrium
orbit. Emittance reducing wiggler magnets therefore must be placed in areas
around the storage ring where the dispersion vanishes to minimize quantum
excitation. To calculate the modified equilibrium beam emittance, we start
from (8.54) and get with (8.44) and (8.57) an expression for the quantum ex-
citation of the emittance which can be expanded to include wiggler magnets

% = gTqu v (K*H), (8.76)
q,0

The quantity H is evaluated for the plane for which the emittance is to
be determined, F is the particle energy, and p is the bending radius of the
regular ring magnets. The average () is to be taken for the whole ring and the
index 0 indicates that the average </{3'H>0 be taken only for the ring proper
without wiggler magnets.

Since the contributions of different magnets, specifically of regular storage
ring magnets and wiggler magnets, are independent of each other, we may use
the results of the basic ring lattice and add to the regular quantum excitation
and damping the appropriate additions due to the wiggler magnets,

de| 2
dt 3

q,w

reCq 7’ [(K°H), + (*H) ] . (8.77)

Both, ring magnets and wiggler magnets, produce synchrotron radiation
and contribute to damping of the transverse particle oscillations. Again, we
may consider both contributions separately and adding the averages we get
the combined rate of emittance damping from (8.55) and (8.27)

de

E = —gTeCEW Ju ’73 [<"€2>0 + <H2>w] ’ (878)

d,w 3
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where €, is the beam emittance with wiggler magnets and J, is the damping
partition number with © = x,y. The equilibrium beam emittance is reached
when the quantum excitation rate and the damping rates are of equal magni-
tude. We add therefore (8.77) and (8.78) and solve for the emittance

€ = C l2 <K/3H>O + <I€3H>W
v 4T <"52>0 + <’€2>W ’

(8.79)

where Cy is defined in (8.46). With ¢, being the unperturbed beam emit-
tance (pw — 00), the relative emittance change due to the presence of wiggler
magnets is

e 1+ (k*H), [ (K*H),

e 1+(r), /()

Making use of the definition of average parameter values we get with the
circumference of the storage ring C' = 27 R

(8.80)

(K*H), = & ¢ || Hdz, (k*H) =& ¢ k3| Hdz,

(8.81)
(k?)y = & $ K3dz, and (k%) =& fridz.

Evaluation of these integrals for the particular storage ring and wiggler
magnet employed gives from (8.80) the relative change in the equilibrium
beam emittance. We note that the quantum excitation term scales like the
cube while the damping scales only quadratically with the wiggler curvature.
This feature leads to the effect that the beam emittance is always reduced for
small wiggler fields and increases only when the third power terms become
significant.

Concurrent with a change in the beam emittance, a change in the momen-
tum spread due to the wiggler radiation can be derived similarly:

o2 _ L4 (K / (k%0
0% 1t ()/ (R0

(8.82)

A closer inspection of (8.80) and (8.82) reveals basic rules and conditions
for the manipulations of beam emittance and energy spread. If the ring dis-
persion function is finite in the wiggler section, (Hy) # 0 and strong quan-
tum excitation may occur depending on the magnitude of the wiggler magnet
bending radius py. This situation is desired if the beam emittance must be
increased [30]. If wiggler magnets are placed into a storage ring lattice where
the ring dispersion function vanishes, only the small dispersion function due
to the wiggler magnets must be considered for the calculation of (Hy) and
therefore only a little quantum excitation occurs. In this case the beam emit-
tance can be reduced since the wiggler radiation contributes more strongly
to damping and we call such magnets damping wigglers [87, 88]. Whenever
wiggler magnets are used which are stronger than the ordinary ring magnets
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Pw < po the momentum spread in the beam is increased. This is true for
virtually all cases of interest.

Conceptual methods to reduce the beam emittance in a storage ring have
been derived which are based on increased synchrotron radiation damping
while avoiding quantum excitation effects. Optimum lattice parameters nec-
essary to achieve this will be derived in the next section.

8.6.2 Damping Wigglers

The general effects of wiggler magnet radiation on the beam emittance has
been described and we found that the beam emittance can be reduced if the
wiggler is placed where i = 0 to eliminate quantum excitation (H) = 0. This
latter assumption, however, is not quite correct. Even though we have chosen
a place, where the storage ring dispersion function vanishes, the quantum
excitation factor H, is not exactly zero once the wiggler magnets are turned
on because they create their own dispersion function (Fig. 8.4). To calculate
this dispersion function, we assume a sinusoidal wiggler field [88]

B(z) = By coskpz, (8.83)

where k, = 2w/, and A, is the wiggler period length. The differential equa-
tion for the dispersion function is then

M-function

S

Ip>0 p<O0 Ip>0

Fig. 8.4. Dispersion function in one period of a wiggler magnet

/.

n" =K = Ky coskpz, (8.84)
which can be solved by

z) =% (1 —coskpz),
77() kp( p) (8.85)

n'(z) = ’Z—Zsin kpz,

where we have assumed that the wiggler magnet is placed in a dispersion free
location 1y = nj, = 0. With this solution, the first two equations (8.81) can be
evaluated. To simplify the formalism we ignore the z-dependence of the lattice
functions within the wiggler magnet setting o, = 0 and 3, = const. Evalu-
ating integrals (8.81), we note that the absolute value of the bending radius
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must be used along the integration path because the synchrotron radiation
does not depend on the sign of the deflection. With this in mind, we evaluate
the integrals fo)‘p/2 |/<;3| n?dz and fOA"/z ‘n3| n’2 dz. For each half period of the
wiggler magnet the contribution to the integral is

12 1 &3 4 K53, 4 k53,

Ap/2
A Sl Hdz = = —— -2 4 W W 8.86
/0 77 dz 5, k3 15 k3 15 k3 (8.86)

where the approximation A\, < [, was made. For the whole wiggler magnet
with NV, periods the total quantum excitation integral is with the deflection
angle per wiggler half pole Oy = ky/kp
8
/]K;W|Hdz~N 7&@ (8.87)
Similarly, the damping integral for the total wiggler magnet is

/ k2dz =7 Ny KywOsy . (8.88)

Inserting expressions (8.81), (8.87), (8.88) into (8.80) , we get for the emittance
ratio

Bx_ P53
Exw _ 1+ 157rN (7‘()/006 (8 89)
€ 1+ Lin, 200 ’ '
z0 2 Wy O W

where (Hp) is the average value of H in the ring bending magnets excluding
the wiggler magnets. We note from (8.89) that the beam emittance indeed
can be reduced by wiggler magnets if O, is kept small. For easier numerical
calculation we replace (Hp) by the unperturbed beam emittance which is from
(8.79) in the limit py, — oo

Jz Po €x0
Ho) = L2 POE0 8.90
(o) = e (5.90)
and get instead of (8.89)
4Cyq 2 2 po 03
Caxw _ L+ 157, Nwe Opw’y Px(:, 9"" ) (891)

€20 1+ b Nw% @w
The beam emittance is reduced by wiggler magnets whenever the condition

8 Cy B

2 02
O; <1 8.92
157 J, € pwﬁy W= ( )

is fulfilled. For large numbers of wiggler poles Ny, — 0o the beam emittance
reaches asymptotically a lower limit given by

8 Cq Bu

o = T V6. (8.93)
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In this limit the ultimate beam emittance is independent of the unper-
turbed beam emittance. This derivation did not include any perturbation of
the original lattice functions due to focusing effects by the wiggler poles. Such
perturbations are either small or must be compensated such that our assump-
tions still are valid.

For many wiggler poles the increase in momentum spread also reaches an
asymptotic limit which is given from (8.82)

02 £0 BW
_, Po _

EW

T T B (8.94)

where By is the magnetic field strength in the ring magnets. Beam stability
and acceptance problems may occur if the beam momentum spread is allowed
to increase too much and therefore inclusion of damping wigglers must be
planned with some caution.

8.7 Robinson Wiggler

The horizontal betatron motion in a combined function synchrotron FODO
lattice is not damped because 1 > 1. Beam stability in a synchrotron therefore
exists only during acceleration when the antidamping is over compensated by
adiabatic damping, and the maximum energy achievable in a combined func-
tion synchrotron is determined when the quantum excitation becomes too
large to be compensated by adiabatic damping. In an attempt at the Cam-
bridge Electron Accelerator CEA to convert the synchrotron into a storage
ring the problem of horizontal beam instability was solved by the proposal [29]
to insert a damping wiggler consisting of a series of poles with alternating
fields and gradients designed such that the horizontal partition number be-
comes positive and —2 < 1§ < 1.

Such magnets can be used generally to vary the damping partition numbers
without having to vary the rf-frequency and thereby moving the beam away
from the center of the beam line.

8.7.1 Damping Partition and Synchrotron Oscillation

The damping partition number and, therefore, damping depend on the relative
momentum deviation of the whole beam or of particles within a beam from
the reference energy. During synchrotron oscillations, significant momentum
deviations can occur, specifically, in the tails of a Gaussian distribution. Such
momentum deviations, although only temporary, can lead to reduced damping
or outright antidamping [86]. To quantify this effect, we write (8.73) in the
form

2k2n2dz A A
Ag = $2Kdz Ap o Ap.

8.95
¢ nidz Do Po (8.95)
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The momentum deviation is not a constant but rather oscillates with the
synchrotron oscillation frequency

Ap _ 4p

sin 2t = dnax Sin 2, (8.96)
Po Do | max

where {2 is the synchrotron oscillation frequency. The damping partition num-
ber oscillates as well (8.95) and the damping decrement is therefore

L L Cubmasin 20). (8.97)
T Txz0
If the perturbation is too large we have antidamping during part of the

synchrotron oscillation period. As a consequence the beam is “breathing”
in its horizontal and longitudinal dimensions while undergoing synchrotron
oscillations. To quantify this, we calculate similar to (8.56) the total rate of
change of the betatron oscillation amplitude a?, as defined by the phase space
ellipse yu? +20uu’ + Bu’ 2= a?, composed of quantum excitation and modified
damping .

d(a®)  (Npn(2)H)  2(a?)

Ty (8.98)

The amplitude a? has the dimension of an emittance but we are interested
here in the maximum amplitude which can be expressed in terms of a betatron
amplitude by a? = u2,,, /.. Replacing the varying damping time by 771 =

7'0_1(1 — OmaxCo sin £2t), (8.98) becomes
d{u?,.) 2

<u2max> = OmaxCo sin 2t dt,
max 0

which can be readily integrated to give

(1) = (o) 0 | 2220 (1 cos )| (5.99)

To
A particle with a betatron amplitude umax,o will, during the course of a
synchrotron oscillation period, reach amplitudes as large as umax.The effect
is the largest for particles with large energy oscillations. On the other hand,
the effect on the core of the beam is generally very small since 0.y is small.

8.7.2 Can we Eliminate the Beam Energy Spread?

To conclude the discussions on beam manipulation we try to conceive a way to
eliminate the energy spread in a particle beam. From beam dynamics we know
that the beam particles can be sorted according to their energy by introducing
a dispersion function. The distance of a particle from the reference axis is
proportional to its energy and is given by
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x5 = D3, (8.100)

where D is the value of the dispersion at the location under consideration and
0 = AE/Ey is the energy error. For simplicity we make no difference between
energy and momentum during this discussion. We consider now a cavity ex-
cited at a higher mode such that the accelerating field is zero along the axis,
but varies linearly with the distance from the axis. If now the accelerating
field, or after integration through the cavity, the accelerating voltage off axis
is

X
Vie(zs) = — 5“ Eo, (8.101)

we have just compensated the energy spread in the beam. The particle beam
has become monochromatic, at least to the accuracy assumed here. In reality
the dispersion of the beam is not perfect due to the finite beam emittance.

We will discuss cavity modes and find that the desired mode indeed exists
and the lowest order of such modes is the TM;1¢o mode. So far we have made no
mistake and yet Liouville’s theorem seems to be violated because this scheme
does not change the bunch length and the longitudinal emittance has been
indeed reduced by application of macroscopic fields.

The problem is that we are by now used to consider transverse and longitu-
dinal phase space separately. While this separation is desirable to manage the
mathematics of beam dynamics, we must not forget that ultimately beam dy-
namics occurs in six-dimensional phase space. Since Liouville’s theorem must
be true, its apparent violation warns us to observe changes in other phase
space dimensions. In the case of beam monochromatization we notice that the
transverse beam emittance has been increased. The transverse variation of the
longitudinal electric field is caused by virtue of Maxwell’s equations, the ap-
pearance of transverse magnetic fields which deflect the particles transversely
thus increasing the transverse phase space at the expense of the longitudinal
phase space.

This is a general feature of electromagnetic fields which is known as the
Panofsky—Wenzel theorem [89], stating that transverse acceleration occurs
whenever there is a transverse variation of the longitudinal accelerating field.
We will discuss this in more detail in Sect. 19.1.3. So, indeed we may mono-
chromatize a particle beam with the use of a TM719 mode, but only at the
expense of an increase in the transverse beam emittance.

8.8 Beam Life Time

Particles traveling along a beam transport line or orbiting in a circular accel-
erator can be lost due to a variety of causes. We ignore the trivial cases of
beam loss due to technical malfunctioning of beam line components or losses
caused by either complete physical obstruction of the beam line or a mismatch
of vacuum chamber aperture and beam dimensions. For a well-designed beam
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transport line or circular accelerator we distinguish two main classes for par-
ticle loss which are losses due to scattering and losses due to instabilities.
While particle losses due to scattering with other particles is a single parti-
cle effect leading to a gradual loss of beam intensity, instabilities can lead to
catastrophic loss of part or all of the beam. In this chapter, we will concentrate
on single particle losses due to interactions with residual gas atoms.

The effect of particle scattering on the beam parameters is different in a
beam transport line compared to a circular accelerator especially compared
to storage rings. Since a beam passes through transport lines only once, we
are not concerned about beam life time but rather with the effect of particle
scattering on the transverse beam size. For storage rings, in contrast, we
consider both the effect of scattering on the beam emittance and the overall
effect on the beam lifetime. Since long lifetimes of the order of many hours
are desired in storage rings even small effects can accumulate to reduce beam
performance significantly. In proton rings continuous scattering with residual
gas atoms or with other protons of the same beam can change the beam
parameters considerably for lack of damping. Even for electron beams, where
we expect the effects of scattering to vanish within a few damping times, we
may observe an increase in beam emittance. This is specifically true due to
intrabeam scattering for dense low emittance beams at low energies when
damping is weak.

Collisions of particles with components of residual gas atoms, losses due
to a finite acceptance limited by the physical or dynamic aperture, collisions
with other particles of the same beam, or with synchrotron radiation photons
can lead to absorption of the scattered particles or cause large deflections
leading to instable trajectories and eventual particle loss. The continuous loss
of single particles leads to a finite beam lifetime and may in severe cases
require significant hardware modifications or a different mode of operation to
restore a reasonable beam lifetime.

Each of these loss mechanisms has a particular parameter characterizing
and determining the severity of the losses. Scattering effects with residual gas
atoms are clearly dominated by the vacuum pressure while scattering effects
with other particles in the same beam depend on the particle density. Some
absorption of particles at the vacuum chamber walls will always occur due to
the Gaussian distribution of particles in space. Even for nonradiating proton
beams which are initially confined to a small cross section, we observe the
development of a halo of particles outside the beam proper due to intrabeam
scattering. The expansion of this halo is obviously limited by the vacuum
chamber aperture. In circular accelerators this aperture limitation may not
only be effected by solid vacuum chambers but also by “soft walls” due to
stability limits imposed by the dynamic aperture.

Longitudinal phase or energy oscillations are limited either by the available
rf-parameters determining the momentum acceptance or by the transverse
acceptance at locations, where the dispersion function is nonzero whichever is
more restrictive. A momentum deviation or spread translates at such locations
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into a widening of the beam and particle loss occurs if the momentum error is
too large to fit within the stable aperture. Transverse oscillation amplitudes
are limited by the transverse acceptance as limited by the vacuum chamber
wall or by aberrations due to nonlinear fields.

8.8.1 Beam Lifetime and Vacuum

Particle beams are generally confined within evacuated chambers to avoid ex-
cessive scattering on residual gas atoms. Considering multiple Coulomb scat-
tering alone the rms radial scattering angle of particles with momentum p
and velocity 0 passing through a scattering material of thickness L can be
described by [90,91]

200mey [ L
Bep I (8.102)
where Z is the charge multiplicity of the particle and L, is the radiation length
of the scattering material. The scattering angle is the angle at which the
intensity has fallen to a fraction 1/e of the peak intensity. We may integrate
(8.102) and get the beam radius of a pencil beam after passing through a
scatterer of thickness L

'l9rms =7

_ 7z Ol JL (8.103)
3Becp N Le
The beam emittance generated by scattering effects is then in both the
horizontal and vertical plane just the product of the projections of the distance
r of the particles from the reference path and the radial scattering angles ¢
onto the respective plane. From (8.102), (8.103) the beam emittance growth
due to Coulomb scattering in a scatterer of length L is then

2
€ry(radm) = 2% = (

(8.104)

14(MeV) ) > L%(m)
3

Bep Ly(m)

For atmospheric air the radiation length is L, = 300.5 m and a pencil
electron beam with a momentum of say ¢p = 1000 MeV passing through 20 m
of atmospheric air would grow through scattering to a beam diameter of 6.9
cm or to a beam emittance of about 177 mrad mm in each plane. This is much
too big an increase in beam size to be practical in a 20 m beam transport line
let alone in a circular accelerator or storage ring, where particles are expected
to circulate at nearly the speed of light for many turns like in a synchrotron
or for many hours in a storage ring.

To avoid beam blow up due to scattering, we obviously need to provide an
evacuated environment to the beam with a residual gas pressure which must
be the lower the longer the beam is supposed to survive scattering effects.
This does not mean that beam transport in atmospheric pressure must be
avoided at all cost. Sometimes it is very useful to let a beam pass though
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air to provide free access for special beam monitoring devices specifically at
the end of a beam transport line before the beam is injected into a circular
accelerator. Obviously, this can be done only if the scattering effects through
very thin metallic windows and the short length of atmospheric air will not
spoil the beam emittance too much.

Elastic Scattering

As particles travel along an evacuated pipe they occasionally collide with
atoms of the residual gas. These collisions can be either on nuclei or electrons
of the residual gas atoms. The physical nature of the collision depends on the
mass of the colliding partners. Particles heavier than electrons suffer mostly an
energy loss in collisions with the atomic shell electrons while they lose little or
no energy during collisions with massive nuclei but are merely deflected from
their path by elastic scattering. The lighter electrons in contrast suffer both
deflection and energy losses during collisions.

In this section we concentrate on the elastic scattering process, where the
energy of the fast particle is not changed. For the purpose of calculating par-
ticle beam lifetimes due to elastic or Coulomb scattering we ignore screening
effects by shell electrons and mathematical divergence problems at very small
scattering angles. The scattering process is therefore described by the classical
Rutherford scattering with the differential cross section per atom in cgs units

do 1 2Ze2\? 1
— = , 8.105
d?  4rwe ( 250]?) sin? (6/2) ( )

where z is the charge multiplicity of the incident particle, eZ is the charge
of the heavy scattering nucleus, 6 is the scattering angle with respect to the
incident path, {2 is the solid angle with df2 = sinfdfdy, and ¢ is the polar
angle.

To determine the particle beam lifetime or the particle loss rate we will
calculate the rate of events for scattering angles larger than a maximum value
of 6 which is limited by the acceptance of the beam transport line. Any particle
being deflected by an angle larger than this maximum scattering angle will
be lost. We integrate the scattering cross section over all angles greater than
f up to the maximum scattering angle w. With n scattering centers or atoms
per unit volume and N beam particles, the loss rate is

do
-—— =2 N — sinfdf. 8.106
wefn /9 1p Sin ( )
Under normal conditions at 0°C and a gas pressure of 760 mm mercury
the number of scattering centers in a homogeneous gas is equal to twice Avo-
gadro’s number A and becomes for an arbitrary gas pressure P
P(Torr) (Torr)

P
n=2A"""1=192x 268675 x 10*°

1
760 760 (8.107)
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The factor 2 comes from the fact that homogeneous gases are composed of
two atomic molecules, where each atom acts as a separate scattering center.
This assumption would not be true for single atomic noble gases which we do
not consider here, but will be included in a later generalization. The integral
on the r.h.s. of (8.106) becomes with (8.105)

™ sinfdf 2
/5 sin*(6/2)  tan2(9/2) (8:108)

Dividing (8.106) by N we find an exponential decay of beam intensity with
time

N = Nye /7, (8.109)
where the decay time constant or beam lifetime is
P(T Ze2\? 4
rl=cB2A (Torr) (Z < ) LI (8.110)
760 2Bcp) tan(6/2)

The maximum acceptable scattering angle 9 is limited by the acceptance
€4 of the beam transport line. A particle being scattered by an angle 6 at
a location where the betatron function has the value By reaches a maximum
betatron oscillation amplitude of a = /G, 0p 0 elsewhere along the beam
transport line where the betatron function is 3,. The minimum value of A%/34
along the ring lattice, where A is the vacuum chamber aperture or the limit
of the dynamic aperture whichever is smaller, is equal to the ring acceptance

A2

SRR (8.111)

€A

For simplicity we ignore here the variation of the betatron function and
take an average value () at the location of the scattering event and finally
get for the maximum allowable scattering angle

62 = % (8.112)

This angle is generally rather small and we may set tan(§/2) ~ (5/2)
Utilizing these definitions and approximations we obtain for the lifetime of
a beam made up of singly charged particles z = 1 due to elastic Coulomb
scattering expressed in more practical units

(cp)? (GeV?) €a (mm mrad)

Tes (hours) =10.25 <ﬁ (m)> P (nTOIT) ’

(8.113)

where we have assumed that the residual gas composition is equivalent to
nitrogen gas No with Z2? ~ 49. The Coulomb scattering lifetime is proportional
to the ring acceptance or proportional to the square of the aperture A where
A?/f3 is a minimum.
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The particle loss due to Coulomb scattering is most severe at very low
energies and increases with the acceptance of the beam transport line. Fur-
ther, the beam lifetime depends on the focusing in the transport line through
the average value of the betatron function. If instead of averaging the beta-
tron function we integrate the contributions to the beam lifetime along the
transport line we find that the effect of the scattering event depends on the
betatron function at the location of the collision and the probability that such
a collision occurs at this location depends on the gas pressure there. Therefore,
it is prudent to not only minimize the magnitude of the betatron functions
alone but rather minimize the product SP along the transport line. Specif-
ically, where large values of the betatron function cannot be avoided, extra
pumping capacity should be provided to reach locally a low vacuum pressure
for long Coulomb scattering lifetime.

We have made several simplifications and approximations by assuming a
homogeneous gas and assuming that the maximum scattering angle be the
same in all directions. In practical situations, however, the acceptance need
not be the same in the vertical and horizontal plane. First we will derive the
beam lifetime for nonisotropic aperture limits. We assume that the apertures
in the horizontal and vertical plane allow maximum scattering angles of 0,
and 6,. Particles are then lost if the scattering angle 6 into a polar angle ¢
exceeds the limits

) )
and 0> — (8.114)

0> - .
cos ¢ sin ¢

The horizontal aperture will be relevant for all particles scattered into a
polar angle between zero and arctan(d,/6,) while particles scattered into a

polar angle of arctan(é\y /6,) and 7/2 will be absorbed by the vertical aperture
whenever the scattering angle exceeds this limit. We calculate the losses in
only one quadrant of the polar variable and multiply the result by 4 since the
scattering and absorption process is symmetric about the polar axis. Integral
(8.108) becomes in this case

T . arctan(ay /51. ) i :
[emowde a [ B s
9 sin” (0/2) 0 8./ cos Sin” (0/2)

i T singde
v f do [ T
arctan((%/@x) 0,/ sin ¢ sin? (0/2)
The solutions of the integrals are similar to that in (8.108) and we get

T sinfdld
/ SI.H47<P _ 5 [r + (R*+ 1) sin (2arctan R) (8.116)
g sin” (0/2) 02

+2 (R — 1) arctan R],

where R = gy/é\w
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Using (8.116) instead of (8.108) in (8.110) gives a more accurate expression
for the beam lifetime due to Coulomb scattering. We note that for R =1 we
do not get exactly the lifetime (8.110) but find a lifetime that is larger by a
factor of 1 4 /2. This is because we used a rectangular aperture in (8.116)
compared to a circular aperture in (8.108). The beam lifetime (8.113) now
becomes for a rectangular acceptance

ours) — 21 (cp)?(GeV?) e (mm mrad)
Tes (hours) = 10.25 = @ (3(m) P(aTor) (8.117)
The function F(R)

F(R) = [r + (R? 4 1) sin(2arctan R) 4 2(R* — 1) arctan R (8.118)

is shown in Fig. 8.5. For some special cases the factor 27/F(R) assumes the
values given in the following table.

Shape of aperture Round Square Rectangular

ratio: R = 6,/0, 1.00 1.00 0—1

o1 /F(R) 1.00 1.22 2 —1.22

2n/F(R)

y X

|
|
I
|
|
|
|
T

1.0
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8
Fig. 8.5. Function F(R) to determine the acceptance for Coulomb scattering

Tacitly we have assumed that the vertical acceptance is smaller than the
horizontal acceptance which in most cases is true. In cases, where 0, > 0., we
may use the same equations with x and y exchanged.

Particles performing large amplitude betatron oscillations form as a con-
sequence of Coulomb scattering a halo around the beam proper. In the case
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Fig. 8.6. Measurement of beam lifetime in an electron storage ring with a movable
scraper. The curve on the left shows the Coulomp scattering halo for amplitudes
larger than 60 indicating a strong deviation from Gaussian particle distribution.
The curve on the right shows the beam lifetime as a function of scraper position.

of an electron storage ring the particle intensity in this halo reaches an equi-
librium between the constant supply of scattered electrons and synchrotron
radiation damping.

The deviation of the particle density distribution from a Gaussian distri-
bution due to scattering can be observed and measured. In Fig. 8.6 beam
lifetime measurements are shown for an electron beam in a storage ring as
a function of a variable ring acceptance as established by a movable scraper.
The abscissa is the actual position of the scraper during the beam lifetime
measurement, while the variable for the ordinate is the aperture for which a
pure Gaussian particle distribution would give the same beam lifetime.

If the particle distribution had been purely Gaussian, the measured points
would lie along a straight line. In reality, however, we observe an overpopu-
lation of particles in the tails of the distribution for amplitudes larger than
about 60 forcing the scraper to be located farther away from the beam center
to get a beam lifetime equal to that of a pure Gaussian distribution. This over-
population or halo at large amplitudes is due to elastic Coulomb scattering
on the residual gas atoms.

Since the acceptance of the storage ring is proportional to the square of
the aperture at the scraper, we expect the beam lifetime due to Coulomb
scattering to vary proportional to the square of the scraper position. This is
shown in Fig. 8.7 for good vacuum and poor vacuum conditions. In the case
of poor vacuum, we find a saturation of the beam lifetime at large scraper
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Fig. 8.7. Beam lifetime in an electron storage ring as a function of the acceptance.
The transition of the curve on the right from a linear dependence of beam lifetime
on the acceptance to a constant lifetime occurs when the acceptance due to the
scraper position is equal to the ring acceptance

openings which indicates that the scraper is no longer the limiting aperture
in the ring. This measurement therefore allows an accurate determination of
the physical ring acceptance or the dynamic aperture whichever is smaller.

So far we have assumed the residual gas to consist of homogeneous two
atom molecules. This is not an accurate description of the real composition
of the residual gas although on average the residual gas composition is equiv-
alent to a nitrogen gas. Where the effects of a more complex gas composition
becomes important, we apply (8.110) to each different molecule and atom of
the residual gas. In (8.110) we replace the relevant factor P Z? by a summa-
tion over all gas components. If P; is the partial pressure of the molecules
and Z; is the atomic number of the atom j in the molecule ¢ we replace in
(8.110)

Pz> - Y PZ (8.119)
i,
and sum over all atoms 4 in the molecule j.

Inelastic Scattering

Charged particles passing through matter become deflected by strong electri-
cal fields from the atomic nuclei. This deflection constitutes an acceleration
and the charged particles lose energy through emission of radiation which is
called bremsstrahlung. If this energy loss is too large such that the particle
energy error becomes larger than the storage ring energy acceptance, the par-
ticle gets lost. We are therefore interested in calculating the probability for
such large energy losses to estimate the beam lifetime.
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The probability of suffering a relative energy loss 6 =dE/E; due to such
an inelastic scattering process has been derived by Bethe and Heitler [92,93].
For extreme relativistic particles and full screening this probability per unit
thickness of matter is [93]

— dé 2-20+62 2 183 2

where n is the number of atoms per unit volume and the factor ¢ is with the
fine structure constant ov = 1/137

b=r27%q, (8.121)

where 7, is the classical electron radius. We integrate this probability over all
energy losses larger than the energy acceptance of the storage ring § > Jacc
and get after some manipulation and setting d,c. < 1

1
_ dé 2-264+62 2 183 2
P= 2@71/?(175) {<1—53> 21nZl/3+9} (8.122)

183 3\ =
(= Indace) (4111 Z1/3+9> nd.
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The radiation length L, is defined as the distance over which the particle
energy has dropped to 1/e due to inelastic scattering. For highly relativistic
particles this length is given by [93]

1 — 183 2
Combining (8.122) and (8.123), we find the simple solution that the prob-

ability for a particle to suffer a relative energy loss of more than ... per

radiation length is

4
Praa = = 3 I ac.- (8.124)

To calculate the beam lifetime or beam decay rate due to bremsstrahlung,
we note that the probability for a particle loss per unit time is equal to
the beam decay rate or equal to the inverse of the beam lifetime. The
bremsstrahlung lifetime is therefore

1 dN c 4 ¢

-1

=—— — = P— =~ nfaec- 8.125

Tos TNy At Ly 3L, (8.125)
The radiation length for gases are usually expressed for a standard temper-

ature of 20°C and a pressure of 760 Torr. Under vacuum conditions the radi-

ation length of the residual gas is therefore increased by the factor 760/ Proy;.
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We again recognize the complex composition of the residual gas and define an
effective radiation length by

- (8.126)

where L,; is the radiation length for gas molecules of type ¢. From
(8.125), (8.126) the beam lifetime due to bremsstrahlung for a composite resid-
ual gas is 3
4 1 P
besl =3¢ i ﬁﬁlnémm (8.127)
where ]31 is the residual partial gas pressure for gas molecules of type 7. Al-
though the residual gas of ultra high vacuum systems rarely includes a signif-
icant amount of nitrogen gas, the average value for (Z?2) of the residual gas
components is approximately 50 or equivalent to nitrogen gas. For all practi-
cal purposes we may therefore assume the residual gas to be nitrogen with a
radiation length under normal conditions of L, n, = 290m and scaling to the
actual vacuum pressure P,,. we get for the beam lifetime

1
ool (hours™!) = 0.00653 Pyyc(nTorr) In . (8.128)
acc
Basically the bremsstrahlung lifetime depends only on the vacuum pressure
and the energy acceptance and the product of beam lifetime and vacuum
pressure is a function of the energy acceptance .. = Av/7,

153.14

Tps (hour) P(nTorr) = (/A7)

(8.129)
In tabular form we get:

Sace = Ay/y  0.005 0.010 0.015 0.020 0.025

7(hr) P(nTorr) 28.90 33.25 36.46 39.15 41.51

There are many more forms of interaction possible between energetic parti-
cles and residual gas atoms. Chemical, atomic, and nuclear reactions leading to
the formation of new molecules like ozone, ionization of atoms, or radioactive
products further contribute to energy loss of the beam particles and even-
tual loss from the beam. These effects, however, are very small compared to
Coulomb scattering or bremsstrahlung losses and may therefore be neglected
in the estimation of beam lifetime.

8.8.2 Ultra High Vacuum System

Accelerated particles interact strongly with residual gas atoms and molecules
by elastic and inelastic collisions. To minimize particle loss due to such colli-
sions we provide an evacuated beam pipe along the desired beam path. For
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open beam transport systems a high vacuum of 107® — 10~7 Torr is sufficient.
This is even sufficient for pulsed circular accelerators like synchrotrons, where
the particles remain only for a short time. In storage rings, however, particles
are expected to circulate for hours and therefore ultra high vacuum conditions
must be created.

Thermal Gas Desorption

To reach very low gas pressures in the region of 107% — 10~7 Torr for high
vacuum or even lower pressures in the regime of ultra high vacuum (UHV)
we must consider the continuous desorption of gas molecules from the walls
due to thermal desorption. Gas molecules adsorbed on the chamber surface
are in thermal equilibrium with the environment and the thermal energy of
the molecules assumes a statistically determined Boltzmann distribution. This
distribution includes a finite probability for molecules to gain a large enough
amount of energy to overcome the adsorption energy and be released from the
wall.

The total gas flow from the wall due to this thermal gas desorption depends
mostly on the preparation of the material. While for carefully cleaned surfaces
the thermal desorption coefficient may be of the order of 10712 — 10~13 Torr
lt/sec/cm?, a bakeout to 140 — 300°C can reduce this coefficient by another
order of magnitude.

Synchrotron Radiation induced Desorption

In high energy electron or positron accelerators a significant amount of energy
is emitted in the form of synchrotron radiation. This radiation is absorbed by
vacuum chamber walls and causes not only a heating effect of the chamber
walls but also the desorption of gas molecules adsorbed on the surface.

The physical process of photon induced gas desorption evolves in two steps
[94]. First a photon hitting the chamber walls causes an electron emission with
the probability 7.(g), where € is the photon energy. Secondly, the emission as
well as the subsequent absorption of that photo electron can desorb neutral
atoms from the chamber surface with the probability nq. To calculate the
total desorption in a storage ring, we start from the differential synchrotron
radiation photon flux (21.56) which we integrate over the ring circumference
and now write in the form

dN(e) _ 8ma_ I, Aw
a9 e w

S(¢), (8.130)

where € = hw is the photon energy, I}, the beam current, E' the beam energy
and S(¢) a mathematical function defined by (21.57).

The photoelectron current N, results from the folding of (8.130 ) with the
photoelectron emission coefficient 7,(w) for the material used to construct the
vacuum chamber and the integration over all photon energies,
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N, = Sm@ Elb/ e () s(“) dw. (8.131)
0

w We

The photoelectron emission coefficient depends on the choice of the ma-
terial for the vacuum chamber. Fig. 8.8 displays the photoelectron coefficient
for aluminum as a function of photon energy [95].

a 7, (el/photon)
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Fig. 8.8. Photon electron coefficient 7. for aluminum [95]

We note there are virtually no photoelectrons for photon energies of less
than 10 eV. At 1460 eV the K-edge of aluminum causes a sharp increase of
the coefficient followed by a monotonous decrease for higher photon energies.

The photoelectron coefficient depends not only on the material of the
photon absorber but also on the incident angle. The probability of releasing
an electron from the surface is increased for shallow incidence of the photon.
The enhancement factor F(©) represents the increase in the photoelectron-
emission coefficient 7e(€) due to a nonnormal incidence of a photon on the
surface, where @ is the angle between the photon trajectory and the normal
to the absorbing material surface. For angles close to normal incidence the
enhancement factor scales like the inverse of the sine of the angle

1
F(O)= ek (8.132)
For larger angles, however, the enhancement factor falls off from the inverse
sine dependence as has been determined by measurements [96] and reaches
a maximum value of about seven for small angles. The gas production is
determined by the desorption rate @), defined as the total number of neutral
atoms released along the circumference from the chamber surface,

92.4 % 760 .
Q=25 Nema, (8.133)
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where @ is expressed in Torr lt/s and 7 is the desorption coefficient. The
factor 2 is due to the fact that a photo electron can desorb an atom while
leaving as well as while arriving at a surface. With (8.133) we get the average
vacuum pressure (P) from

(8.134)

where S is the total installed pumping speed in the storage ring. For a rea-
sonably accurate estimate of the photon flux we may use the small argument
approximation (21.60) for photon energies € < e.. Photons of higher energies
generally do not contribute significantly to the desorption since there are only
a few. To obtain the photon flux we therefore need to integrate only from 10
eV to € = ¢, the differential photon flux (21.60) folded with the photoelectron-
emission coefficient 7,(e).

The desorption coefficient 74 is largely determined by the treatment of the
vacuum chamber like baking, beam cleaning, and argon discharge cleaning.
For example in the aluminum chamber of the storage ring SPEAR [97] the
desorption coefficient at 1.5 GeV was initially about 17y ~ 5 x 10~2 then
5x 104 after one month of operation, 10~ after two months of operation, and
reached about 3 x 1076 after about one year of operation. These numbers are
not to be viewed too generally, since the cleaning process depends strongly on
the particular preparation of the surfaces. However, following well-established
cleaning procedures and handling of ultra high vacuum components these
numbers can be of general guidance consistent with observations on other
storage rings.

Laboratory measurements [95] show the following relationship between
photoelectron current I,n. = e N,, desorption coefficient 14, and total inte-
grated beam time of a vacuum system

Iphe(A)

= 1070 R/
Na=7x10 #(hr)0-63

(8.135)

New vacuum chambers release much gas when the first synchrotron radiation
strikes the surface, but cleans as the radiation cleaning continues.

Problems

8.1 (S). What is the probability for a 6 GeV electron to emit a photon with
an energy of € = o, per unit time traveling on a circle with radius p = 25
m. How likely is it that this particle emits another such photon within a
damping time? In evaluating quantum excitation and equilibrium emittances,
do we need to consider multiple photon emissions? (Use isomagnetic ring).

8.2 (S). How many photons are emitted by an electron of energy E on average
per turn.
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8.3. Consider a circular electron storage ring of your choice and specify beam
energy, current, ring circumference, and average vacuum chamber dimensions.
Calculate the total thermal gas desorption and the total required pumping
capacity in the ring. Now add synchrotron radiation and estimate the increase
of pumping speed needed after say 100 A h of beam operation. Plot the average
gas pressure as a function of integrated beam time.

8.4 (S). Calculate the synchrotron damping time for a 3 GeV storage ring
with a bending radius of p = 10 m and pure rectangular dipole magnets.
Assume 100% bending magnet fill factor. What is the synchrotron damping
time in this ring? How long does it take to radiate away all its energy?

8.5. An electron beam circulating in a 1.5 GeV storage ring emits synchrotron
radiation. The rms emission angle of photons is 1/ about the forward direc-
tion of the particle trajectory. Determine the photon phase space distribution
at the source point and at a distance of 10 m away while ignoring the finite
particle beam emittance. Now assume a Gaussian particle distribution with a
horizontal beam emittance of ¢, = 1.5 x 1077 rad m. Fold both the photon
and particle distributions and determine the photon phase space distribution
10 m away from the source point if the electron beam size is o, = 1.225 mm,
the electron beam divergence o, = 0.1225 mrad, and the source point is a
symmetry point of the storage ring. Assume the dispersion function to vanish
at the source point. For what minimum photon wavelength would the verti-
cal electron beam size appear diffraction limited if the emittance coupling is
10% ?

8.6. Consider an electron beam in an isomagnetic 6 GeV storage ring with a
bending radius of p = 20 m . Calculate the rms energy spread o./Ej and the
damping time ;.
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Vlasov and Fokker—Planck Equations

Mathematical tools have been derived in previous chapters to describe the dy-
namics of singly charged particles in electromagnetic fields. While the knowl-
edge of single-particle dynamics is essential for the development of particle
beam transport systems, we are still missing a formal treatment of the behav-
ior of multiparticle beams. In principle a multiparticle beam can be described
simply by calculating the trajectories of every single particle within this beam,
a procedure that is obviously too inefficient to be useful for the description of
any real beam involving a very large number of particles.

In this paragraph, we will derive concepts to describe the collective dy-
namics of a beam composed of a large number of particles and its evolution
along a transport line utilizing statistical methods that lead to well-defined
descriptions of the total beam parameters. Mathematical problems arise only
when we have a particle beam with neither a few particles nor very many
particles. Numerical methods must be employed if the number of particles are
of importance and where statistical methods would lead to incorrect results.

The evolution of a particle beam has been derived based on Liouville’s the-
orem assuring the constancy of the particle density in phase space. However,
this concept has not allowed us to determine modifications of particle distri-
butions due to external forces. Particle distributions are greatly determined
by particle source parameters, quantum effects due to synchrotron radiation,
nonlinear magnetic fields, collisions with other particles in the same beam,
and with particles in another beam or with atoms of the residual gases in
the beam environment to name only a few phenomena that could influence
that distribution. In this chapter, we will derive mathematical methods that
allow the determination of particle distributions under the influence of various
external electromagnetic forces.
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9.1 The Vlasov Equation

To study the development of a particle beam along a transport line, we
will concentrate on the evolution of a particle density distribution function
¥U(r,p,t) in six-dimensional phase space where every particle is represented
by a single point. We consider a volume element of phase space that is small
enough that we may assume the particle density to be constant throughout
that element and determine its evolution in time. In doing so, we will further
assume a large, statistically significant number of particles in each volume
element and only a slow variation of the particle density from one volume
element to any adjacent volume element. To simplify the equations we re-
strict the following discussion to two-dimensional phase space (w, p,,) and use
exclusively normalized coordinates w = x/+/J3.

The dynamics of a collection of particles can be studied by observing the
evolution of their phase space. Specifically, we may choose a particular phase
space element and follow it along its path taking into account the forces acting
on it. To do this, we select a phase space element in the form of a rectangular
box defined by the four corner points P; in Fig. 9.1.

Q,

Fig. 9.1. Two-dimensional motion of a rectangle in phase space

At the time t these corners have the coordinates

B

(w0, pw),

Py(w + Aw, py), (9.1)
Ps(w+ Aw, py + Apw),

Py(w, pw + Apw) -

A short time At later, this rectangular box will have moved and may be

deformed into a new form more like a parallelogram (Q1, Q2, Qs3, Q4) as shown
in Fig. 9.1. In determining the volume of the new box at time ¢t + At we will
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assume the conservation of particles allowing no particles to be generated or
getting lost. To keep the derivation general the rate of change in the conjugate
variables is set to

w = fw(w7pw7t)’ (92)

pw = gw(wapwyt)a

where w = dw/dt and p,, = dp,,/dt and the time interval At is small enough
to allow linear expansion of the particle motion. In other words, the time
interval shall be chosen such that no physical parameters of the dynamical
system change significantly and a Taylor’s expansion can be applied. The new
corners of the volume element are then given by

Q1 [+ fu(w, puw,t) AL, puw + gu(w, puw, t) At],

Q2 [w+ Aw + fy(w + Aw, py, t) At,
Puw + Guw(w + Aw, py,, t) At],

Q3 [w+ Aw + fu (w4 Aw, py + Apw, t) At, (9.3)
Pw + Apw + guw(w + Aw, puy + Apy, t) At],

Q4w+ fu (0, Dy + Apy, t) At,
Pw + APw + guw(w, pu + Apu, t) At] .

The goal of our discussion is now to derive an expression for the particle

density ¥(w,py,t) after a time At. Because of the conservation of particles
we have

U(w+ fu At,pw + gw AL, t+ At) AAg = ¥ (w, pw,t) AAp, (9.4)

where AAp and AAg are the areas in phase space as defined by the cor-
ner points P; and @Q;, respectively. From Fig. 9.1a and (9.1) we derive an
expression for the phase space areas which are at the starting time ¢

AAp = Aw Apy, (9.5)
and at the time t + At from (9.3)
_ Ofw | Ogu
AAg = Aw Ap,, [1 + ( Em + Gpw> At] , (9.6)

where Taylor’s expansions have been used for the functions f,, and g,, retain-
ing only linear terms. To prove (9.6) we note that the area AAp has the form
of a rhombus with its sides determined by two vectors and the area, therefore,
is equal to the determinant formed by these two vectors. In our case these
vectors are Py = (Aw, 0) pointing from P; to P, and Py = (0, Ap,,) pointing
from P; to Ps. The area therefore is

Aw 0
|P1,P2|: :AU}pr:AAP (97)
0 Apy
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in agreement with (9.5). A time interval At later these vectors will have
changed as determined by (9.2). Each of the corner points P; is moving al-
though with different speed thus distorting the rectangle P; into the shape
Q; of Fig. 9.1b. To calculate the new vectors defining the distorted area we
expand the functions f,, and g, in a Taylor’s series at the point (w,py).
While, for example, the w-component of the movement of point P; along
the w-coordinate is given by f,, At the same component for P, changes by
fw At + % Aw At. The w-component of the vector @, therefore becomes
Aw + %Aw At. Similarly, we can calculate the p-component of this vector
as well as both components for the vector Q5. The phase space area of the dis-
torted rectangle (Q1, @2, @3, Q4) at time t + At with these vector components
is then given by

Aw+YrAwar Gl Ap, At

Q1. Q| = = Adg . (9.8)
%Aw At Apy, + %pr At

Dropping second-order terms in At we get indeed expression (9.6). Obviously,
the phase space volume does not change if

Ofw | Ogw
o apw_o (9.9)

in agreement with the result obtained in Chap. 5, where we have assumed that
the Lorentz force is the only force acting on the particle. In this paragraph,
however, we have made no such restrictions and it is this generality that allows
us to derive, at least in principle, the particle distribution under the influence

of any forces. The factor
fw | O0gu
1 - At 1
(G ) ) (9.10)

in (9.6) is the general Wronskian of the transformation and is not necessarily
equal to unity. We have such an example in the form of adiabatic damping.
Indeed we have damping or antidamping whenever the Wronskian is different
from unity.

To illustrate this, we use the example of a damped harmonic oscillator,
which is described by the second-order differential equation

W 4 200 10 + wWiw = 0, (9.11)

or in the form of a set of two linear differential equations

w = WoPw = fw(w;pw7t) ’
(9.12)
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From this we indeed find the relation

Ol 990
ow  Opy
where o, is the damping decrement of the oscillator. We have obtained on a
general basis that the phase space density for harmonic oscillators will vary
only if damping forces are present. Here we use the term damping in a very
general way including excitation depending on the sign of the damping decre-
ment a,,. The designation a,, for the damping decrement may potentially
lead to some confusion with the same use for the betatron function o = —% G
However, we choose here to rather require some care than introduce against
common use new designations for the damping decrement or the betatron
functions. We also note that for all cases where the damping time is long
compared to the oscillation time, and we consider here only such cases, the
damping occurs for both conjugate trajectories.
The derivation in two-dimensional phase space can easily be generalized
to six-dimensional phase space with the generalized volume element

= 20y, , (9.13)

AVp = Ar Ap (9.14)
at time ¢ and a time interval At later
AVg =Ar Ap[1+ V. f At + Vg At]. (9.15)

The Nabla operators are defined by

o 0 0 0 o0 0
Vr = <8U)’ %7 au) and Vp = <apw’ap,u7 apu) y (916)

where (w, v, u) are normalized variables and the vector functions f and g are
defined by the components f = (fu, fo, fu) and g = (9w, gv, Gu)-

Equation (9.4) can now be further reduced after applying a Taylor’s ex-
pansion to the density function ¥. With (9.5), (9.6), and keeping only linear

rerms v ov v 0f, 0
w g’UJ
A, wa wa - — |\ &5 — | V.
ot gy T, <8w+8pw>
It is straightforward to generalize this result again to six-dimensional phase

space

(9.17)

o
ST IVl gV, =~ (V. f+V,0) 7, (9.18)

which is called the Vlasov equation. If there is no damping the r.h.s. of the
Vlasov Equation vanishes and we have

ov
— v ¥ =0. 1
D +fV,¥+gV, 0 (9.19)
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This is simply the total time derivative of the phase space density ¥ telling
us that in the absence of damping it remains a constant of motion. The preser-
vation of the phase space density is Liouville’s theorem and we have derived
in this paragraph the validity of this theorem for a Hamiltonian system with
vanishing dissipating forces (V, f + V,g) = 0.

Equation (9.19) describes the evolution of a multiparticle system in phase
space where the physics of the particular particle dynamics is introduced
through the functions f (r,p,t) and g(r,p,t). The definition of these func-
tions in (9.2) appears similar to that for the Hamiltonian equations of motion.
In case r and p are canonical variables we may indeed derive these functions
from the Hamiltonian

r=V,H =Ff,
Pt =7 (9.20)
15 = -V, H= g9,

where H is the Hamiltonian of the system. We are, therefore, at least in
principle, able to solve the evolution of a multiparticle system in phase space if
its Hamiltonian is known. It should be emphasized, however, that the variables
(w, p) need not be canonical to be used in the Vlasov equation.

It is interesting to apply the Vlasov equation to simple one-dimensional
harmonic oscillators with vanishing perturbation. Introducing the canonical
variable p through w = vp, the Hamiltonian becomes

Ho = %VpQ + %Vw2 (9.21)
and the equations of motion are

W=+ G =vp=], (9.22)

It is customary for harmonic oscillators and similarly for particle beam
dynamics to use the oscillation phase as the independent or “time” variable.
Since we have not made any specific use of the real time in the derivation
of the Vlasov equation, we choose here the phase as the “time” variable. For
the simple case of an undamped harmonic oscillator é% =0 and g—g =0, and
consequently, the Vlasov equation becomes from (9.17) with (9.22)

ov ov ov

— +vp——vw—=0. 9.23

30 VP Bw P (9.23)
In cylindrical phase space coordinates (w = 7 cosf, p = rsinf, ¢) this reduces

to the simple equation
ov o

90 Va0~
Any differentiable function with the argument (r, 04 v) can be a solution
of (9.24) describing the evolution of the particle density ¥ with time

0. (9.24)
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Y(w,p,..0)

Fig. 9.2. Beam motion in phase space
g’(’U)?pw, QO) = F("’» 0 + V(P) (925)

The particle distribution in (w, p,,) phase space merely rotates about the
center with the frequency v and remains otherwise unchanged as shown in
Fig. 9.2. This is just another way of saying that an ensemble of many particles
behaves like the sum of all individual particles since any interaction between
particles as well as damping forces have been ignored. In (z,z’) phase space
this rotation is deformed into a “rotation” along elliptical trajectories. The
equation of motion in (w, p,,) phase space is solved by r = const. indicating
that the amplitude r is a constant of motion. In (x,2") phase space we set
w = x/y/Band p=+Bx'+ <% = and get from r? = w? 4 p2, for this constant
of motion

Bz + 2aza’ + 22 = const., (9.26)

which is the Courant—Snyder invariant. The Vlasov equation allows us to
generalize this result collectively to all particles in a beam. Any particular
particle distribution a beam may have at the beginning of the beam transport
line or circular accelerator will be preserved as long as damping or other
statistical effects are absent.

9.1.1 Betatron Oscillations and Perturbations

The Vlasov equation will prove to be a useful tool to derive particle beam para-
meters. Specifically, it allows us to study the influence of arbitrary macroscopic
fields on particle density in phase space and on the characteristic frequency of
particle motion. To demonstrate this, we expand the example of the harmonic
oscillator to include also perturbation terms. For such a perturbed system the
equation of motion is
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Wi w =158 pafEu, (9.27)

n>0

where the coefficients p,, are the strength parameters for the nth-order per-
turbation term and the amplitude w is the normalized betatron oscillation
amplitude. The Vlasov equation allows us to calculate the impact of these
perturbation terms on the betatron frequency. We demonstrate this first with
a linear perturbation term (n = 1) caused by a gradient field error p; = —dk
in a quadrupole. In this case the equation of motion is from (9.27)

W+ viw=—126%0kw (9.28)

or
W+ v2 (14 320k)w =0. (9.29)

This second-order differential equation can be replaced by two first-order
differential equations which is in general the most straightforward way to

obtain functions (9.2)
w=uwvg\/ 1+ 52 dkp,
p=—vog/1+B26kw.

Here it is assumed that the betatron function 8 and the quadrupole field
error 0k are uniformly distributed along the beam line and therefore can be
treated as constants. This approach is justified here since we are interested
only in the average oscillation frequency of the particles and not in fast oscillat-
ing terms. The desired result can be derived directly from (9.30) without any
further mathematical manipulation by comparison with (9.22). From there
the oscillating frequency for the perturbed system is given by

V=19 1+ ﬂQ ok =~ IZ0) (1 + %ﬁQ(Sk'), (931)

for small perturbations. The betatron frequency shift can be expressed by the
lowest order harmonic of the Fourier expansion for the periodic perturbation
function vy 82 6k to give

(9.30)

2y (ﬁz 5k:)0 = j{VO B2 6kdp = j{ﬁékz dz, (9.32)

making use of the definition for the betatron phase dy =dz/1y0. The tune
shift dv due to quadrupole field errors is therefore from (9.31)

1
5V:V—V0:—fﬁ6kdz, (9.33)
4

in agreement with (12.54). Again, the Vlasov equation confirms this result
for all particles irrespective of the distribution in phase space. This procedure
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can be expanded to any order of perturbation. From the differential equation
(9.27) one gets in analogy to the equations of motion (9.30)

w=wvy [1=p32 3 pafr/2wnlp,
n>0
(9.34)

p=—1g 17&3/2 anﬂn/2wn71w .
n>0

For small perturbations the solution for the unperturbed harmonic oscilla-
tor w(p) = wo sin(rep+4J) may be used where ¢ is an arbitrary phase constant.
The tune shift Av = v — vy is thus

1 ndl g L
Av=- % Ej{pmg Fun=tsin™ Y rop(2) + 6] dz . (9.35)

n >0

Not all perturbation terms contribute to a tune variation. All even terms
n = 2m, where m is an integer, integrate, for example, to zero in this approx-
imation and a sextupole field therefore does not contribute to a tune shift
or tune spread. This conclusion must be modified, however, due to higher
order approximations which become necessary when perturbations cannot be
considered small anymore. Further, we find from (9.35) that the tune shift
is independent of the particle oscillation amplitude only for quadrupole field
errors n = 1. For higher order multipoles the tune shift becomes amplitude
dependent resulting in a tune spread within the particle beam rather than a
coherent tune shift for all particles of the beam.

In a particular example, the tune spread caused by a single octupole
(n = 3) in a circular accelerator is given by

€w
Avg = — 5 fpgﬂz dz, (9.36)
where w3 = ¢, is the emittance of the beam. Similar results can be found for
higher order multipoles.

9.1.2 Damping

At the beginning of this section we have decided to ignore damping and have
used the undamped Vlasov equation (9.19). Damping or antidamping effects
do, however, occur in real systems and it is interesting to investigate if the
Vlasov equation can be used to derive some general insight into damped sys-
tems as well. For a damped oscillator we use (9.12), (9.13) to form the Vlasov
equation in the form of (9.17). Instead of the phase we now use the real time
as the independent variable to allow the intuitive definition of the damping
decrement as the relative decay of the oscillation amplitude with time
ov ov

ov
o XA 200 Pu) o = 20,7 . .
5 +wopwaw (wow + ozwpu)apw +20, (9.37)
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This partial differential equation can be solved analytically in a way similar
to the solution of the undamped harmonic oscillator by using cylindrical coor-
dinates. For very weak damping we expect a solution close to (9.25) where the
amplitude 7 in phase space was a constant of motion. For a damped oscillator
we try to form a similar invariant from the solution of a damped harmonic

oscillator
w=wpe *'cos\/wi—aZt=re *'cosf. (9.38)

With the conjugate component wg p,, = w, we form the expression

Wo Pw + QW _ . - .
% = —wpe “'siny/wZ —a2t=—re *'sing (9.39)

2
wo ay

and eliminate the phase 6 from (9.38), (9.39) keeping only terms linear in the
damping decrement «,, and we obtain the “invariant”
S Du - (9.40)

r2 e 20wt :w2+pi+2
wo

Obviously if we set a,, = 0 we have the invariant of the harmonic oscillator.
The time dependent factor due to finite damping modifies this “invariant”.
However, for cases where the damping time is long compared to the oscillation
period we may still consider (9.40) a quasi-invariant. The phase coordinate 6
can be derived from (9.38), (9.39) as a function of w and p,, as may be verified
by insertion into the differential equation (9.37). The solution for the phase
space density of a damped oscillator is of the form

U (w, pu, t) = > F(r, D), (9.41)

where F(r,®) is any arbitrary but differentiable function of r and ¢ and the
phase @ is defined by

@z@—l—y/w%—aﬁ,t:arctan(—&—uw}) +y/wE —aZt. (9.42)

— a2
wj — oz, w

For very weak damping a,, — 0 and solution (9.41) approaches (9.25)
where o, = 0 and v = wyt as expected. Therefore even for finite damping a
particle distribution rotates in phase space although with a somewhat reduced
rotation frequency due to damping. The particle density ¥, however, changes
exponentially with time due to the factor e?*+*. For damping a,, > 0, we get
an increase in the phase space density at a distance r from the beam center.
At the same time the real particle oscillation amplitudes (w,p,,) are being
reduced proportional to e~®w! and the increase in the phase space density
at r reflects the concentration of particles at the beam center from larger
amplitudes due to damping.

In conclusion we found that in systems where velocity-dependent forces
exist, we have damping (., > 0) or antidamping (a,, < 0) of oscillation am-
plitudes. As has been discussed such forces do exist in accelerators leading to
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damping. Mostly, however, the Vlasov equation is applied to situations where
particles interact with self or external fields that can lead to instabilities. It
is the task of particle beam dynamics to determine the nature of such inter-
actions and to derive the circumstances under which the damping coefficient
Quy, if not zero, is positive for damping or negative leading to beam instability.

9.2 Damping of Oscillations in Electron Accelerators

In electron accelerators we are concerned mainly with damping effects caused
by the emission of synchrotron radiation. All six degrees of freedom for par-
ticle motion are damped. Damping of energy oscillations occurs simply from
the fact that the synchrotron radiation power is energy dependent. Therefore
a particle with a higher energy than the reference particle radiates more and
a particle with less energy radiates less. The overall effect is that the energy
deviation is reduced or damped. Damping of the transverse motion is prin-
cipally a geometric effect. The photons of synchrotron radiation are emitted
into the direction of the particle motion. Therefore part of the energy loss is
correlated to a loss in transverse momentum. On the other hand, the lost en-
ergy is restored through accelerating fields with longitudinal components only.
The overall effect of an energy loss during the course of betatron oscillations
is therefore a loss of transverse momentum which leads to a reduction in the
transverse oscillation amplitude, an effect we call damping. In the next sec-
tion, we will discuss the physics leading to damping and derive the appropriate
damping decrement for different modes of oscillations.

9.2.1 Damping of Synchrotron Oscillations

In a real beam particles are spread over a finite distribution of energies close
to the reference energy. The magnitude of this energy spread is an important
parameter to be considered for both beam transport systems and for exper-
imental applications of particle beams. In general, a small energy spread as
small as possible is desired to minimize chromatic aberrations and for im-
proved accuracy of experimental observation. We will therefore derive the
parametric dependence of damping and discuss methods to reduce the energy
spread within a particle beam.

To do this, we consider a beam of electrons being injected with an arbi-
trary energy distribution into a storage ring ignoring incidental beam losses
during the injection process due to a finite energy acceptance. Particles in a
storage ring undergo synchrotron oscillations which are oscillations about the
ideal momentum and the ideal longitudinal position. Since energy and time
or equivalently energy and longitudinal position are conjugate phase space
variables, we will investigate both the evolution of the energy spread and the
longitudinal distribution or bunch length of the particle beam.
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The evolution of energy spread or bunch length of the particle beam will
depend very much on the nature of particles and their energy. For heavy
particles like protons or ions there is no synchrotron radiation damping and
therefore the phase space for such beams remains constant. As a consequence,
the energy spread or bunch length also stays constant. A similar situation
occurs for electrons or positrons at very low energies since synchrotron ra-
diation is negligible. Highly relativistic electrons, however, produce intense
synchrotron radiation leading to a strong damping effect which is discussed
below in more detail.

The damping decrement «, is defined in the Vlasov equation by

of 99
% + 87]7 = 2()éw (943)

and can be calculated with the knowledge of the functions f and g. For the
conjugate variables (w, p,,) we use the time deviation of a particle with respect
to the synchronous particle w = 7 as shown in Fig. 9.3 and the difference of
the particle’s energy E from the synchronous or reference energy Eg and set
pw=¢=F—E;.

reference par-

tele 7 T a=y
S0

Fig. 9.3. Longitudinal particle position

particle bunch

Since f = i—”t' = 7 and g = G = € we have to determine the rate of
change for the conjugate variables. The rate of change of 7 is from (6.17) with

CPo ~ ES
dr €
— = _nCﬂQfs’ (9.44)

dt

where we have replaced the phase by the time 1/) = ¢Bko7 and the relative
momentum error by the relative energy error since we consider here only
highly relativistic particles. The latter replacement is a matter of convenience
since we will be using the energy gain in accelerating fields.

The energy rate of change ¢ is the balance of the energy gained in ac-
celerating fields and the energy lost due to synchrotron radiation or other
losses:

‘= % (eVie(rs +7) — U(Es + )], (9.45)

Where T is the time the particles take to travel the distance L. The energy
gain within the distance L for a particle traveling a time 7 behind the reference
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or synchronous particle is eVt (15 + 7) and U is the energy loss to synchrotron
radiation along the same distance of travel.

We apply these expressions to the simple situation of a linear accelerator of
length L where the momentum compaction factor vanishes (a. = 0) and where
there is no energy loss due to synchrotron radiation U = 0. Furthermore, we
ignore for now other energy losses and have with 7, = 1/~2

s 1
f:T:,YTELSa

(9.46)
g=¢= %GWf(TS +7).

Inserting into (9.43) we find the damping decrement to vanish which is
consistent with observation and with the phenomenon of adiabatic damping.
This name is unfortunate in the sense that it does not actually describe a
damping effect in phase space as we just found out but rather describes the
variation of the relative energy spread with energy which is merely a conse-
quence of the constant phase space density or Liouville’s theorem. From the
Vlasov equation we learn that in the absence of damping the energy spread
€ stays constant as the particle beam gets accelerated. Consequently, the rel-
ative energy spread EL decreases as we would expect for adiabatic damping.
The Vlasov equation can still be used to describe adiabatic damping but we
need to use the relative energy spread as one of the variables. Instead of the
second equation (9.46), we then have

g=——="2_F (9.47)

where Ej is the particle energy at time ¢o, E; is the energy at time ¢ = o +d¢,
and B, = Ey + adt with a = d(ﬁs = F; the acceleration per unit time. We
choose the time interval d¢ small enough so that adt < E;, and get

E
g=—— 2 __ = (9.48)

The damping decrement becomes from (9.43) with § = - and 9f /0T =0

dg E 1dé
%= B —20, = 25& (9.49)
and after integration
o 5 L, [E . | E
or
5= £ B (9.51)
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The relative energy spread in the beam is reduced during acceleration
inversely proportional to the square root of the energy. This reduction of the
relative energy spread is called adiabatic damping. Returning to the general
case we apply a Taylor’s expansion to the rf-voltage in (9.46) and get for terms
on the r.h.s. of (9.45) keeping only linear terms

eVig(rs +7) = eVig(1s) + ¢ V(v;ff T, (9.52)
T
oU

Since the energy gain from the rf- field eV;¢(75) for the synchronous particle
just compensates its energy loss U(E;), we have instead of (9.45) now

_ o
oF

€= T eVie(rs) T ) (9.54)

€
Es
where we have set V¢ = 85/“ . The synchrotron oscillation damping decrement
can now be derived from (9.43) with (9.46), (9.54) to give

L1 oU

4 =+i% o (9.55)

Es

We will now derive the damping decrement for the case that the energy
loss is only due to synchrotron radiation. The energy loss along the transport
line L is given by

1 (L
Us = f/ P, ds, (9.56)
¢ Jo
where P, = C., E/p? is the synchrotron radiation power and the integration
is taken along the actual particle trajectory s. If p(z) is the bending radius
along z, we have % =1+ % . With z =25 +17 Ei and averaging over many

betatron oscillations, we get (zg) =0 and

dz N €
—=14+-=. 9.57
dz + p E ( )

This asymmetric averaging of the betatron oscillation only is permis-
sible if the synchrotron oscillation frequency is much lower than the be-
tatron oscillation frequency as is the case in circular accelerators. With
ds = [1 4 (n/p) (¢/Es)]dz in (9.56), the energy loss for a particle of energy
E,+¢is

Us(Es +€) = %/

N €
P, (1+—-——)d 9.58
LA{(J’_/DE) ¢ ( )

S

or after differentiation with respect to the energy
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1 [[dP, _ n1
- [ 1S ep T2 . 9.5
c/[dEJF”pES]E ‘ (9:59)
J :

The synchrotron radiation power is proportional to the square of the en-
ergy and the magnetic field P, ~ E2B2 which we use in the expansion

0Uj
oE

Es

dP, 0P, OP, 0B P, P, 0B Oz
it Attt Wit Bt Wit T s Bt 9.60
dE ~ OF 0B, 9E " E. "B 0x 0F (9.60)
The variation of the synchrotron radiation power with energy depends
directly on the energy but also on the magnetic field if there is a field gradient
%—f and a finite dispersion function n = Ej g—g. The magnetic field as well as
the field gradient is to be taken at the reference orbit. Collecting all these

terms and setting B%)O;—f = pk we get for (9.59)

1 P P P, n
== 2 Y419 7,k il A4
c/( E R’ ’”Esp>
L

U, 1 1
=12 P “+2pk
E, +cUS/ Wn(p—i— p)
L

where we have made use of Uy = % S . Py(Es)dz. Recalling the expressions
for the synchrotron radiation power and energy loss P, = C, E%/p? and
Us = Cy E} [dz/p?, we may simplify (9.61) for

oUs
OF

dz (9.61)

dz |,

E.

ou

o _Us
oF

E, Es

(2+9), (9.62)

where the ¥-parameter has been introduced in (8.25). We finally get from
(9.55) with (9.62) the damping decrement for synchrotron oscillations
Us ,_(P)

(2+9) = 2T E, Je= 2E,

— US
- 2T E,

o Je s (9.63)
in full agreement with results obtained earlier. Since all parameters except
¥ are positive we have shown that the synchrotron oscillations for radiating

particles are damped. A potential situation for antidamping can be created if
¥ < =2,

9.2.2 Damping of Vertical Betatron Oscillations

Particles orbiting in a circular accelerator undergo transverse betatron oscil-
lations. These oscillations are damped in electron rings due to the emission
of synchrotron radiation. To calculate the damping decrement, we assume ac-
celerating fields evenly distributed around the ring to restore the lost energy.
In practice this is not true since only a few rf-cavities in a ring are located at
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one or more places around the ring. As long as the revolution time around the
ring is small compared to the damping time, however, we need not consider
the exact location of the accelerating cavities and may assume an even and
uniform distribution around the ring.

First we will derive the damping decrement for the vertical betatron oscil-
lation. In a plane accelerator with negligible coupling this motion is indepen-
dent of the other oscillations. This is not the case for the horizontal betatron
motion which is coupled to the synchrotron oscillation due to the presence
of a finite dispersion function. We will therefore derive the vertical damping
decrement first and then discuss a very general theorem applicable for the
damping in circular accelerators. This theorem together with the damping
decrement for the synchrotron and vertical betatron oscillations will enable
us to derive the horizontal damping in a much simpler way than would be
possible in a more direct way.

In normalized coordinates the functions f and g are for the vertical plane

dw
—_— = = . 4
a, = TP f(w,p, ), (9.64)
dp
@ =—vw=g(w,p,p), (9.65)

where v = v, w = y/\/ﬂiy,i% =By — % %y, and v, ¢ = 1, is the
vertical betatron phase.

Due to the emission of a synchrotron radiation photon alone the particle
does not change its position y nor its direction of propagation y’. With this
we now derive the damping within a path element Az which includes the
emission of photons as well as the appropriate acceleration to compensate
for that energy loss. Just after the emission of the photon but before the
particle interacts with accelerating fields, let the transverse momentum and
total energy be p; and Eg, respectively. The slope of the particle trajectory
is therefore (Fig. 9.4)

_epl
BEs

Energy is transferred from the accelerating cavity to the particle at the
rate of the synchrotron radiation power P, and the particle energy increases
in the cavity of length Az from Eg to Eg + Pv% and the slope of the par-
ticle trajectory becomes at the exit of the cavity of length As due to this

acceleration
/o Cp1L ~ CpL P’y Az
= Az 1- .
BEs + P’yT BE;s BEs ¢

We are now in a position to express the functions f and ¢ in terms of physical
parameters. The function f is expressed by

Aw - LAz
f _ _ yl ?/O _ yO -y /6:[/ y(/)’ (968)

Ay B Ae B, Ay

Yo (9.66)

(9.67)
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P At

Cp.l.

Fig. 9.4. Acceleration and damping

where we made use of Ap = Az/(v3). The damping decrement will depend
on the derivation % which can be seen from (9.68) to vanish since f does not
depend on w

of

ow
The variation of the conjugate variable p with phase is from (9.64)

0. (9.69)

Ap dw1 _ dwo

de de
= v N
Ap v Ap (9.70)

From linear beam dynamics, we find

dw1 d’wo ’ / 1 7/!
— = —— =/ — e — 71
dp dp By (1 — o) 9 3, (y1 — o) (9.71)
and get with (9.67), (9.68)
P. ’
Ap —/By cwi Az yy+ F(y)

The function F(y) is a collection of y—dependent terms that become ir-
relevant for our goal. The degree of damping will be determined by the value
of the derivative g—z which with y{ = ﬁ% + % ;%yyo becomes
dg dg P, Az
—=v—— = —
Op 8‘;—‘;’ BcE, Ap

(9.73)

In the derivation of (9.73) we have used the betatron phase as the “time”
and therefore get the damping per unit betatron phase advance. Transforming

to the real time with QCAAZ@ = % and (9.43)

89 _ iTrev —9 Trev

op FEs 21 YWon

(9.74)
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and solving for the vertical damping decrement’

(Py)
ay = QEZ'

(9.75)

In this last equation, we have used the average synchrotron radiation power
which is the appropriate quantity in the case of a nonisomagnetic ring. The
damping of the vertical betatron function is proportional to the synchrotron
radiation power. This fact can be used to increase damping when so desired
by increasing the synchrotron radiation power from special magnets in the
lattice structure.

9.2.3 Robinson’s Damping Criterion

The general motion of charged particles extends over all six degrees of freedom
in phase space and therefore the particle motion is described in six-dimensional
phase space as indicated in the general Vlasov equation (9.18). It is, however,
a fortunate circumstance that it is technically possible to construct acceler-
ator components in such a fashion that there is only a little or no coupling
between different pairs of conjugate coordinates. As a consequence, we can
generally treat horizontal betatron oscillations separate from the vertical be-
tatron oscillations and both of them separate from synchrotron oscillations.
Coupling effects that do occur will be treated as perturbations. There is some
direct coupling via the dispersion function between synchrotron and particu-
larly the horizontal betatron oscillations but the frequencies are very different
with the synchrotron oscillation frequency being in general much smaller than
the betatron oscillation frequency. Therefore in most cases the synchrotron os-
cillation can be ignored while discussing transverse oscillations and we may
average over many betatron oscillations when we discuss synchrotron motion.

A special property of particle motion in six-dimensional phase space must
be introduced allowing us to make general statements about the overall damp-
ing effects in a particle beam. We start from the Vlasov equation (9.18)

ov

St VA gV, U=~ (V, f V)7 (9.76)

and define a total damping decrement oy by setting
V,.f+V,g =—2a. (9.77)

The total damping decrement is related to the individual damping decre-
ments of the transverse and longitudinal oscillations but the precise depen-
dencies are not yet obvious. In the derivation of (9.18), we have expanded the

! Generally, the letter a, is used for the vertical damping decrement. Since in beam
dynamics «y is also used to identify a lattice function, a mixup of the quantities
could occur. We have chosen not to use a different nomenclature, however, since
this choice is too deeply entrenched in the community. With some care, confusion
can be avoided.
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functions f and ¢ in a Taylor series neglecting all terms of second or higher
order in time and got as a result the simple expression (9.77) for the overall
damping. Upon writing (9.77) in component form, we find from the compo-
nents of the L.h.s. that the overall damping decrement « is just the sum of
all three individual damping decrements and we may therefore set

V. f+Vpg =20 =2, +0o,+a). (9.78)

From this equation and the linearity of the functions f and g describing the
physics of the dynamical system general characteristics of the damping process
can be derived. The damping decrement does not depend on the dynamic
variables of the particles and coupling terms do not contribute to damping.
The damping rate is therefore the same for all particles within a beam. In the
following paragraphs, we will discuss in more detail the general characteristics
of synchrotron radiation damping. Specifically, we will determine the functions
f and g and derive an expression for the total damping.

We consider a small section of a beam transport line or circular accelerator
including all basic processes governing the particle dynamics. These processes
are focusing, emission of photons, and acceleration. All three processes are
assumed to occur evenly along the beam line. The six-dimensional phase space
to be considered is

(x, 2", y,y  7,€). (9.79)

During the short time At some of the transverse coordinates change and
it is those changes that eventually determine the damping rate. Neither the
emission of a synchrotron radiation photon nor the absorption of energy in
the accelerating cavities causes any change in the particle positions z,y, and
7. Indicating the initial coordinates by the index 0 and setting ScAt = Az we
get for the evolution of the particle positions within the length element Az in
the three space dimensions

x = x0 + x Az,

Yy = yo + Yo Az, (9.80)
L €0 Az
T =T e ——— .
0 T 7 E. fe

The conjugate coordinates vary in a somewhat more complicated way. First
we note that the Vlasov equation does not require the conjugate coordinates
to be canonical variables. Indeed this derivation will become simplified if we
do not use canonical variables but use the slopes of the particle trajectories
with the reference path and the energy deviation. The change of the slopes
due to focusing is proportional to the oscillation amplitude and vanishes on
average. Emission of a synchrotron radiation photon occurs typically within
an angle of +1/v causing a small transverse kick to the particle trajectory. In
general, however, this transverse kick will be very small and we may assume
for all practical purposes the slope of the transverse trajectory not to be
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altered by photon emission. Forces parallel to the direction of propagation of
the particles can be created, however, through the emission of synchrotron
radiation photons. In this case, the energy or energy deviation of the particle

will be changed like
Az Az

6:607P»Y%+Prf%.

Here we use the power P, to describe the synchrotron radiation energy
loss rate a particle may suffer during the time ScAt = Az. No particular
assumption has been made about the nature of the energy loss except that
during the time At it be small compared to the particle energy. To compensate
this energy loss the particles become accelerated in rf- cavities. The power Py¢
is the energy flow from the cavity to the particle beam, not to be confused
with the total power the rf-source delivers to the cavity.

The transverse slopes 2’ and 3 are determined by the ratio of the trans-
verse to the longitudinal momentum v’ = p, /p, where u stands for z or y,
respectively. During the acceleration in the rf-cavity the transverse momentum
does not change but the total kinetic energy increases from Eg to Es+ Prf%.
As a consequence, the transverse slope of the trajectory is reduced and is after
a distance Az

(9.81)

c P Az
u = % ol — —rf—ug. (9.82)
sz"‘V—Prfﬁﬁ ES ﬁC
Explicitly, the transverse slopes now vary like
1 P Az
° TR R (9.83)
’ / P Az

All ingredients are available now to formulate expressions for the functions f
and g in component form

= (xé, Y0, 77;7)

(9.84)
g = (7%:‘%67 7};{:?%)7 7P’y +Prf) .

With these expressions we evaluate (9.78) and find that V, f = 0. For the
determination of V,g we note that the cavity power P+ does not depend on
the particle energy and the derivative of the radiation power with respect to

the particle energy is
opP, P
——1=—_2_1 9.85
Oe E, ( )

Finally we note that the rf-power Py is just equal to the radiation power P,
and finally get from (9.78)

P.
()4,;—}—0@—!-046:257 . (9.86)
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The sum of all damping decrements is a constant, a result which has been
derived first by Robinson [84] and is known as the Robinson criterion.

The total damping depends only on the synchrotron radiation power and
the particle energy and variations of magnetic field distribution in the ring,
keeping the radiation power constant will not affect the total damping rate
but may only shift damping from one degree of freedom to another.

9.2.4 Damping of Horizontal Betatron Oscillations

With the help of the Robinson criterion, the damping decrement for the hor-
izontal betatron oscillation can be derived by simple subtraction. Inserting
(9.63), (9.77) into (9.86) and solving for the horizontal damping decrement we

get P
v
= ZES(l 9) . (9.87)

The damping decrements derived from the Vlasov equation agrees com-
pletely with the results obtained in Sect. 7.2 by very different means.

No matter what type of magnet lattice we use, the total damping depends
only on the synchrotron radiation power and the particle energy. We may,
however, vary the distribution of the damping rates through the ¥-parameter
to different oscillation modes by a proper design of the focusing and bending
lattice in such a way that one damping rate is modified in the desired way
limited only by the onset of antidamping in another mode. Specifically, this is
done by introducing gradient bending magnets with a field gradient such as
to produce the desired sign of the ¥ parameter.

Qg

9.3 The Fokker—Planck Equation

From the discussions of the previous section it becomes clear that the Vlasov
equation is a useful tool to determine the evolution of a multiparticle system
under the influence of forces depending on the physical parameters of the
system through differentiable functions. If, however, the dynamics of a system
in phase space depends only on its instantaneous physical parameters where
the physics of the particle dynamics cannot be expressed by differentiable
functions, the Vlasov equation will not be sufficient to describe the full particle
dynamics. A process which depends only on the state of the system at the
time ¢ and not on its history is called a Markoff process.

In particle beam dynamics we have frequently the appearance of such
processes where forces are of purely statistical nature like those caused, for
example, by the quantized emission of synchrotron radiation photons or by
collisions with other particles within the same bunch or residual gas atoms.
To describe such a situation we still have variations of the coordinates per
unit time similar to those in (9.2) but we must add a term describing the
statistical process and we therefore set
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W= fu (W,pw,t) + Y& 6t —t:) (9.88)
Pw=gw (W,puw,t) + > _m 6 (t —t;) (9.89)

where &; and 7; are instantaneous statistical changes in the variables w and
pw with a statistical distribution in time ¢; and where §(¢ — ¢;) is the Dirac
delta function. The probabilities P, (§) and P,(m) for statistical occurrences
with amplitudes & and 7 be normalized and centered

J Pu(§dE =1, J Pu(§) £dE =0,

(9.90)
[ Py(m)dr =1, J Py(r)mdr = 0.
The first equations normalize the probability amplitudes and the second
equations are true for symmetric statistical processes. The sudden change in
the amplitude Aw; or momentum Ap,,; due to one such process is given by

/& —t;)dt =&, (9.91a)
pri = /71'1‘ 5(t—ti)dt =T;. (991b)

Analogous to the discussion of the evolution of phase space in the pre-
vious section, we will now formulate a similar evolution including statistical
processes. At the time t + At, the particle density in phase space is taken to
be ¥ (w, py,t+ At) and we intend to relate this to the particle density at time
t. During the time interval At there are finite probabilities P, (§), P,(7) that
the amplitude (w — £) or the momentum (p,, — ) be changed by a statistical
process to become w or p,,. This definition of the probability function also
covers the cases where particles during the time At either jump out of the
phase space area AAp or appear in the phase space area AAg.

To determine the number of particles ending up within the area AAg,
we look at all area elements AAp which at time ¢ are a distance Aw = &
and Ap,, = 7 away from the final area element AAq at time t + At. As a
consequence of our assumption that the particle density is only slowly varying
in phase space, we may assume that the density ¥ is uniform within the area
elements AAp eliminating the need for a local integration. We may now write
down the expression for the phase space element and the particle density at
time ¢t + At by integrating over all values of £ and w

“+o0 “+o0
I=Adp / / W(w— &, pu — 7 1) Po(€) Py(m)dedm,  (9.92)

where we used the abbreviation I = W(w+ fy, At, pyw—+guwAt, t+At)AAg. The
volume elements AAp and AAg are given by (9.5),(9.6), respectively. The
statistical fluctuations may in general be of any magnitude. In particle beam
dynamics, however, we find that the fluctuations with reasonable probabilities
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are small compared to the values of the variables w and p,,. The phase space
density can therefore be expanded into a Taylor series where we retain linear
as well as quadratic terms in £ and 7

oY, Yy

U(w—E&,py —mt) =Wy — E——— — .
(W =& po —m,1) =¥ — &5~ L (9.93)
9? wo %W, Wy
2 2
f 27T 8p121) +£7rawapw7
where ¥y = ¥(w, py, t) and we finally get for the integrals with (9.90)

8 EZ/Q 8 LpO

I= %+2a 2/gp d§+262 /71'2Pp(71')d7r. (9.94)

For simplicity, we leave off the integration limits which are still from —oo to
+o00. If we now set N to be the number of statistical occurrences per unit
time we may simplify the quadratic terms on the r.h.s. of (9.94) by setting

L[ @rue s = H(Ne) A (0.95)
[ 7Py ) dm = § (N n?) 0 (9.90)

and get similarly to the derivation of the Vlasov equation in Sect. 9.1

8![’0 8@0 8“70 8fw 8gw
— — =2 )y .
pr + fuw g0 9w O <8w + oo ) (9.97)
0%y, 0%,
%<NS£2> ; +2<N7f772> 5}720'

This partial differential equation is identical to the Vlasov equation except
for the statistical excitation terms and is called the Fokker—Planck equation
[98]. We define diffusion coefficients describing the flow in £ and 7 space by

=1 (N &%), (9.98)
=3 (Nx7?), (9.99)
and the Fokker—Planck equation finally becomes
6W ov 0w 0*w
vy Jw =20, ¥ D— D,—. 9.100
f apw @ + Ea 2 + a 2 ( )

For the case of damped oscillators the Fokker—Planck equation can be
derived similarly to (9.37) and is
ov ov ov 0*w 0*w

i P %00y o) 2L = 20, W+ D D.
ot WP gy~ Wowt 20w pu) e = 20l Degyg + Dag

This form of the Fokker—Planck equation will be very useful to describe a par-
ticle beam under the influence of diffusion processes. In the following section,
we will derive general solutions which will be applicable to specific situations
in accelerator physics.

. (9.101)
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9.3.1 Stationary Solution of the Fokker—Planck Equation

A unique stationary solution exists for the particle density distribution de-
scribed by the partial differential equation (9.100). To derive this solution we
transform (9.100) to cylindrical coordinates (w, p,,) — (r,6) with w = r cos6
and p,, = rsinf. There are terms proportional to derivatives of the phase
space density with respect to the angle 8. One of these terms woWy exists even
in the absence of diffusion and damping and describes merely the betatron
motion in phase space while the other terms depend on damping and diffu-
sion. The diffusion terms will introduce a statistical mixing of the phases 6
and after some damping times any initial azimuthal variation of the phase
space density will be washed out. We are here only interested in the station-
ary solution and therefore set all derivatives of the phase space density with
respect to the phase 6 to zero. In addition we find it necessary to average
square terms of cosf and sinf. With these assumptions the Fokker—Planck
equation (9.100) becomes after some manipulations in the new coordinates

ov D\ ov o2y
= 2a, W wl+ =) —+D=—, 9.102
ot +<a T+r>8r+ or? (9.102)
where we have defined a total diffusion coefficient
D = 1(D¢ + Dx). (9.103)

Equation (9.102) has some similarity with, for example, wave equations in
quantum mechanics which are solved by the method of separation of variables
and we expect the stationary solution for the phase space density to be of the
form ¥(r,t) =, Fn(t) G, (r). The solution G, (r) must meet some particular
boundary conditions. Specifically, at time ¢ = 0, we may have any arbitrary
distribution of the phase space density G,o(r). Furthermore, we specify that
there be a wall at » = R beyond which the phase space density drops to zero
and consequently, the boundary conditions are

Gn(r < R) = Gpo(r),
G,(r>R)=0.

(9.104)

By the method of separation of the constants we find for the functions F,,(t)
F,(t) = const.e ", (9.105)

where the quantity — v, is the separation constant. The general form of the
solution for (9.102) may now be expressed by a series of orthogonal functions
or eigenmodes of the distribution G,,(r) which fulfil the boundary conditions
(9.104)

U(r,t) = Z Cn Gp(r)e ont. (9.106)

n>0
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The amplitudes ¢, in (9.106) are determined such as to fit the initial density
distribution

Wy(r,t =0) =Y cnGno(r). (9.107)

n>0

With ansatz (9.106) we get from (9.102) for each of the eigenmodes the fol-
lowing second-order differential equation:

82Gn 1 Aoy 8Gn (77 Qp,
52 T (T + D?“) T D (2 + a) Gn=0. (9.108)

All terms with a coefficient a,, > 0 vanish after some time due to damping
(9.105). Negative values for the damping decrements «,, < 0 define instabil-
ities which we will not consider here. Stationary solutions, therefore, require
the separation constants to be zero a,, = 0. Furthermore, all solutions G,
must vanish at the boundary » = R where R may be any value including
infinity if there are no physical boundaries at all to limit the maximum par-
ticle oscillation amplitude. In the latter case where there are no walls, the
differential equation (9.108) can be solved by the stationary distribution

U(r,t) = Z ¢n Gp(r) o exp (—% 7"2) , (9.109)

an=0

which can easily be verified by backinsertion into (9.108). The solution for the
particle distribution in phase space under the influence of damping «,, and
statistical fluctuations D is a Gaussian distribution with the standard width

D
=4/—. 9.110
Or oy ( )
Normalizing the phase space density the stationary solution of the Fokker—
Planck equation for a particle beam under the influence of damping and sta-
tistical fluctuations is

_ 1 —7‘2/20'3

(r) mare . (9.111)
Eigenfunctions for which the eigenvalues a,, are not zero are needed to
describe an arbitrary particle distribution, e.g., a rectangular distribution at
time t = 0. The Fokker—Planck equation, however, tells us that after some
damping times these eigensolutions have vanished and the Gaussian distri-
bution is the only stationary solution left. The Gaussian distribution is not
restricted to the r-space alone. The particle distribution in equilibrium be-
tween damping and fluctuations is also Gaussian in the normalized phase
space (w,p,) as well as in real space. With r2 = w? + p2, we immediately get

for the density distribution in the (w,p,) space

1

e /2% o Pu/2, (9.112)
2m0,0p,,

U(w,py) =
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where we have set o, = 0p,, = \/g . The standard deviation in w and p,, is
the same as for r which is to be expected since all three quantities have the
same dimension and are linearly related.

In real space we have for u = z or u = y by deﬁnition u = /B, w and
p= % where W = 3—1‘0’. On the other hand, p = /3, 2’ — 2f z and inserted
into (9.109) we get the density distribution in real space as

Yuu? — Bl un’ + ﬁuu’2>

2
202

U(u, u') o exp (— (9.113)

This distribution describes the particle distribution in real phase space
where particle trajectories follow tilted ellipses. Note that we carefully avoid
replacing the derivative of the betatron function with 8’ = —2a because this
would lead to a definite confusion between the damping decrement and the
betatron function. To further reduce confusion we also use the damping times
Ti = o !, Integrating distribution (9.113) for all values of the angles v/, for
example, gives the particle distribution in the horizontal or vertical midplane.
Using the mathematical relation [ ge*pzzziqmdx = % Gy [99], we get

]. 2 2
V()= —— e % /2% 9.114
() V27/Buow (9114)

where the standard width of the horizontal Gaussian particle distribution is

0w =/ Bow = /B TuDu . (9.115)

The index u has been added to the diffusion and damping terms to indi-
cate that these quantities are in general different in the horizontal and ver-
tical plane. The damping time depends on all bending magnets, vertical and
horizontal, but only on the damping-partition number for the plane under
consideration. Similar distinction applies to the diffusion term.

In a similar way, we get the distribution for the angles by integrating
(9.113) with respect to u

’ \/B B Ul2
w() = ___Pe 1 9.116
(u ) \/ﬂ 1+ % /8/20-10 exp [ 2 (1+i ﬂ/ 2) 0.3)‘| ( )

where the standard width of the angular distribution is

;2 ;2
.- \/%aw = 4+ ﬁ — V" (9.117)

We have not made any special assumption as to the horizontal or vertical
plane and find in (9.114)—(9.117) the solutions for the particle distribution in
both planes.
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In the longitudinal phase space the of motion are mathematically equal to
(9.11), (9.12). First we define new variables

[0)
0z (9.118)

W= —

Ne

where (2 is the synchrotron oscillation frequency, 7. is the momentum com-
paction, and 7 is the longitudinal deviation of a particle from the reference
particle. We define the conjugate variable by

(9.119)

where € is the energy deviation from the reference energy Ej. After differenti-
ation of (9.54) and making use of (9.55) and the definition of the synchrotron
oscillation frequency, we use these new variables and obtain two first-order
differential equations

W= +02sp, (9.120)
p=—0sw—2a.p. (9.121)

These two equations are of the same form as (9.12) and the solution of the
longitudinal Fokker—Planck equation is therefore similar to (9.114)—(9.117).
The energy distribution within a particle beam under the influence of damping
and statistical fluctuations becomes with p = § = ¢/ Ejy

1 2 2
V() = ——e 9 /205 ,
Q V2Togs

where the standard value for the energy spread in the particle beam is defined
by

(9.122)

=< = /7D, . (9.123)

In a similar way, we get for the conjugate coordinate 7 with w = 267' the
distribution

1 _12/942
W(r) = N /207 (9.124)

The standard width of the longitudinal particle distribution is finally

o, = %\/TEDG . (9.125)

The deviation in time 7 of a particle from the synchronous particle is
equivalent to the distance of these two particles. Since s = ¢f7, we may define
the standard value for the bunch length by

O¢ = Cﬂ |}7;| V TeDe . (9126)
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By application of the Fokker—Planck equation to systems of particles under
the influence of damping and statistical fluctuations, we were able to derive
expressions for the particle distribution within the beam. In fact, we were
able to determine that the particle distribution is Gaussian in all six degrees
of freedom. Since such a distribution does not exhibit any definite boundary
for the beam, it becomes necessary to define the size of the distributions in
all six degrees of freedom by the standard value of the Gaussian distribution.
Specific knowledge of the nature for the statistical fluctuations are required
to determine the numerical values of the beam sizes.

In Chap. 17 we will apply these results to determine the equilibrium beam
emittance in an electron positron storage ring where the statistical fluctuations
are generated by quantized emission of synchrotron radiation photons.

9.3.2 Particle Distribution within a Finite Aperture

The particle distribution in an electron beam circulating in a storage ring is
Gaussian if we ignore the presence of walls containing the beam. All other
modes of particle distribution are associated with a finite damping time and
vanish therefore after a short time. In a real storage ring we must, however,
consider the presence of vacuum chamber walls which cut off the Gaussian
tails of the particle distribution. Although the particle intensity is very small
in the far tails of a Gaussian distribution, we cannot cut off those tails too
tight without reducing significantly the beam lifetime. Due to quantum exci-
tation, we observe a continuous flow of particles from the beam core into the
tails and back by damping toward the core. A reduction of the aperture into
the Gaussian distribution therefore absorbs not only those particles which
populate these tails at a particular moment but also all particles which reach
occasionally large oscillation amplitudes due to the emission of a high energy
photon. The absorption of particles due to this effect causes a reduction in
the beam lifetime which we call the quantum lifetime.

The presence of a wall modifies the particle distribution especially close
to the wall. This modification is described by normal mode solutions with a
finite damping time which is now acceptable because any aperture less than
an infinite aperture absorbs beam particles thus introducing a finite beam
lifetime. Cutting off Gaussian tails at large amplitudes will not affect the
Gaussian distribution in the core and we therefore look for small variations
of the Gaussian distribution which become significant only quite close to the
wall. Instead of (9.109) we try the ansatz

U(r,t)=e 28 ng(r) e (9.127)

where 1/« is the time constant for the distribution, with the boundary con-
dition that the particle density be zero at the aperture or acceptance defining
wall r = A or

V(A t)=0. (9.128)
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Equation (9.127) must be a solution of (9.102) and back insertion of (9.127)
into (9.102) gives the condition on the function g(r)

1
g"+(rr)g'+ 2 _g=0. (9.129)

o2 Oy O
Since g(r) = 1 in case there is no wall, we expand into a power series

r2

=507

g(r)=1+ Z Cy ¥, where x
E>1

(9.130)

Inserting (9.130) into (9.129) and collecting terms of equal powers in r we
derive the coefficients

p=k B
G = (k:l!)2 g(plX)’“WX, (9.131)

where X = 52— < 1. The approximation X < 1 is justified since we expect
the vacuum chamber wall to be far away from the beam center such that the
expected quantum lifetime 1/« is long compared to the damping time 1/a,

of the oscillation under consideration. With these coefficients (9.130) becomes

gr)=1-5—> " (9.132)

For x = A?/(20?) > 1 where A is the amplitude or amplitude limit for the
oscillation w, the sum in (9.132) can be replaced by an exponential function

1, e
— e —. 1
> . (9.133)
E>1
From the condition g(A) = 0 we finally get for the quantum lifetime 74 =
e
1 e

Tq — iTw; y (9134)

where 2
= —. 9.135
T= 5 (9.135)

The quantum lifetime is related to the damping time. To make the quan-
tum lifetime very large of the order of 50 or more hours, the aperture must
be at least about 70, in which case x = 24.5 and e*/z = 1.8 x 10°.

The aperture A is equal to the transverse acceptance of a storage ring
for a one-dimensional oscillation like the vertical betatron oscillation while
longitudinal or energy oscillations are limited through the maximum energy
acceptance allowed by the rf-voltage. Upon a closer look, however, we note a
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complication for horizontal betatron oscillations and synchrotron oscillations
because of the coupling from energy oscillation into transverse position due to
a finite dispersion function. We also have assumed that a/(2a,,) < 1 which
is not true for tight apertures of less than 1o. Both of these situations have
been investigated in detail [100,101] and the interested reader is referred to
those references.

Specifically, if the acceptance A of a storage ring is defined at a location
where there is also a finite dispersion function, Chao [100] derives a combined
quantum lifetime of

en’/2 1
C V2rapn3 (1+7)/r(l—r)
2

where n = A/o., 02 = o2 +n’0}, r =103 /02, Ais the transverse aperture,
7 is the dispersion function at the same location as A, o, is the transverse
beam size and o5 = o/ E is the standard relative energy width in the beam.

T (9.136)

9.3.3 Particle Distribution in the Absence of Damping

To obtain a stationary solution for the particle distribution it was essential
that there were eigensolutions with vanishing eigenvalues a,, = 0. As a result,
we obtained an equilibrium solution where the statistical fluctuations are com-
pensated by damping. In cases where there is no damping, we would expect
a different solution with particles spreading out due to the effect of diffusion
alone. This case can become important in very high energy electron—positron
linear colliders where an extremely small beam emittance must be preserved
along a long beam transport line. The differential equation (9.108) becomes

in this case
G, 100G,
or? + r or
We will assume that a beam with a Gaussian particle distribution is in-
jected into a damping free transport line and we therefore look for solutions

of the form

Qi -
+ 5 Gn =0. (9.137)

U, (r,t) = ¢ Gp(r) et (9.138)

where Y
Gy(r) =e " /2% (9.139)

with o being the beam size at ¢ = 0. We insert (9.139) into (9.137) and obtain
an expression for the eigenvalues «a,

2D D
= — — 1. (9.140)
9 9

The time-dependent solution for the particle distribution now becomes

v(r0) = dexp (<251t exo K_%O) (1-%)]. e
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Since nowhere a particular mode is used we have omitted the index n. Solution
(9.141) clearly exhibits the effect of the diffusion in two respects. The particle
density decays exponentially with the decrement 2D /o2. At the same time the
distribution remains to be Gaussian although being broadened by diffusion.
The time-dependent beam size o is given by

2D

o2 (t) = % ~ op (1 +— t) , (9.142)
0

where we have assumed that the diffusion term is small (2D/03)t < 1. Setting

0% = 02 = ¢,3, for the plane u where 3, is the betatron function at the

observation point of the beam size ¢,. The time-dependent beam emittance
is

2D
€= €+ -1 (9.143)
or the rate of change
de, 2D D¢+ D,
Couw 20 _ Dt Dn (9.144)
dt  Bu Bu

Due to the diffusion coefficient D we obtain a continuous increase of the
beam emittance in cases where no damping is available.

The Fokker—Planck diffusion equation provides a tool to describe the evo-
lution of a particle beam under the influence of conservative forces as well
as statistical processes. Specifically, we found that such a system has a sta-
tionary solution in cases where there is damping. The stationary solution for
the particle density is a Gaussian distribution with the standard width of the
distribution o given by the diffusion constant and the damping decrement.

In particular, the emission of photons due to synchrotron radiation has the
properties of a Markoff process and we therefore find the particle distribution
to be Gaussian. Indeed we will see that this is true in all six dimensions of
phase space.

Obviously not every particle beam is characterized by the stationary so-
lution of the Fokker—Planck equation. Many modes contribute to the particle
distribution and specifically at time ¢t = 0 the distribution may have any ar-
bitrary form. However, it has been shown that after a time long compared to
the damping times only one nontrivial stationary solution is left, the Gaussian
distribution.

Problems

9.1. Derive from the Vlasov equation an expression for the synchrotron fre-
quency while ignoring damping. A second rf-system with a different frequency
can be used to change the synchrotron tune. Determine a system that would
reduce the synchrotron tune for the reference particle to zero while providing
the required rf-voltage at the synchronous phase. What is the relationship
between both voltages and phases? Is the tune shift the same for all particles?
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9.2. Formulate an expression for the equilibrium bunch length in a storage
ring with two rf-systems of different frequencies to control bunch length.

9.3. To reduce coupling instabilities between bunches of a multibunch beam it
is desirable to give each bunch a different synchrotron tune. This can be done,
for example, by employing two rf-systems operating at harmonic numbers h
and h+1. Determine the ratio or required rf-voltages to split the tunes between
successive bunches by Av/vs.

9.4. Attempt to damp out the energy spread of a storage ring beam in the
following way. At a location where the dispersion function is finite one could
insert a TMj;9-mode cavity. Such a cavity produces accelerating fields which
vary linearly with the transverse distance of a particle from the reference path.
This together with a linear change in particle energy due to the dispersion
would allow the correction of the energy spread in the beam. Derive the com-
plete Vlasov equation for such an arrangement and discuss the six-dimensional
dynamics. Show that it is impossible to achieve a monochromatic stable beam.

9.5. Energy loss of a particle beam due to synchrotron radiation provides
damping. Show that energy loss due to interaction with an external electro-
magnetic field does not provide beam damping.

9.6. An arbitrary particle distribution of beam injected into a storage ring
damps out while a Gaussian distribution evolves with a standard width spe-
cific to the ring design. What happens if a beam from another storage ring
with a Gaussian distribution is injected? Explain why this beam changes its
distribution to the ring specific Gaussian distribution.

9.7. Consider a 1.5 GeV electron storage ring with a bending field of 1.5 T.
Let the bremsstrahlung lifetime be 100 h, the Coulomb scattering lifetime 50
h, and the Touschek lifetime 60 h. Calculate the total beam lifetime including
quantum excitation as a function of aperture. How many “sigma’s” (A/o)
must the aperture be in order not to reduce the beam lifetime by more than
10% due to quantum excitation?

9.8. Derive an expression for the diffusion due to elastic scattering of beam
particles on residual gas atoms. How does the equilibrium beam emittance
of an electron beam scale with gas pressure and beam energy? Determine an
expression for the required gas pressure to limit the emittance growth of a
proton or ion beam to no more than 1% per hour and evaluate numerical for
a proton emittance of 10~ rad m at an energy of 300 GeV. Is this a problem
if the achievable vacuum pressure is 1 nTorr? Concentrating the allowable
scattering to one location of 10 cm length (gas jet as a target) in a ring of 4
km circumference, calculate the tolerable pressure of the gas jet.

9.9. Consider a long beam transport line made up of FODO cells for a 500
GeV electron beam with an emittance of 107! rad m. For a straight, 1 km long
beam line determine the FODO cell parameters and tolerance on quadrupole
alignment to keep the emittance growth along the beam line to less than 10%.
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9.10. For future linear electron colliders it may be desirable to provide a
switching of the beams from one experimental detector to another. Imagine a
linear collider system with two experimental stations separated transversely
by 50 m. To guide the beams from the linear accelerators to the experimental
stations use translating FODO cells and determine the parameters required
to keep the emittance growth of a beam to less than 10% (beam emittance
107! rad m at 500 GeV).

9.11. Use the Fokker—Planck equation and derive an expression for the equi-
librium beam emittance of a coupled beam.
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Equilibrium Particle Distribution

The wide variety of particle beam applications often require very specific beam
characteristics in terms of say cross section, divergence, energy spread, or pulse
structure. To a large extent such parameters can be adjusted by particular
application of focusing and other forces. In this chapter, we will discuss some
of these methods of beam optimization and manipulation.

10.1 Particle Distribution in Phase Space

The beam emittance of particle beams is primarily defined by parameters
and source energy. Given perfect matching between different accelerators and
beam lines during subsequent acceleration, this source emittance is reduced
inversely proportional to the particle momentum by adiabatic damping and
stays constant in terms of normalized emittance. This accurately describes the
situation for proton and ion beams, for nonrelativistic electrons and electrons
in linear accelerators.

The beam emittance for relativistic electrons, however, evolves fundamen-
tally different in circular accelerators. Relativistic electron and positron beams
passing through bending magnets emit synchrotron radiation, a process that
leads to quantum excitation and damping. As a result, the original beam emit-
tance at the source is completely replaced by an equilibrium emittance that
is unrelated to the source characteristics.

10.1.1 Diffusion Coefficient and Synchrotron Radiation

Emission of a photon causes primarily a change of the particle energy but,
as a consequence, the characteristics of the particle motion is changed as
well. Neither position nor the direction of the particle trajectory is changed
during the forward emission of photons along the direction of the particle
propagation, ignoring for now the small transverse perturbation due to the
finite opening angle of the radiation of £1/4. From beam dynamics, however,
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we know that different reference trajectories exist for particles with different
energies. Two particles with energies cpg and cp; > ¢pg follow two different
reference trajectories separated at the position z along the beam transport
line by a distance
C€pP1 — Cpo

Ax =n(z) prr— (10.1)
where 7)(z) is the dispersion function and cpy is the reference energy. Although
particles in general do not exactly follow these reference trajectories, they do
perform betatron oscillations about them. The sudden change of the parti-
cle energy during the emission of a photon leads to a sudden change in the
reference path and thereby to a sudden change in the betatron oscillation
amplitude.

Following the discussion of the Fokker—Planck equation in Chap. 9, we
may derive a diffusion coefficient from these sudden changes in the coordi-
nates. Using normalized coordinates w = 2/+/3, the change in the betatron
amplitude at the moment a photon of energy e, is emitted becomes

_ () &
Aw=¢=—Tm pt. (10.2)

Similarly, the conjugate coordinate w = /3, x'ﬁ + o, x5 changes by

n(z) 2L, (10.3)

Mo =7 = —/Bon () - — = 2) £
0

Ey VB

The frequency at which these statistical variations occur is the same for £
and 7 and is equal to the number of photons emitted per unit time

Ne =N, =N. (10.4)

From (10.2), (10.3) we get

erno (V| (Va2 | = (2) % (o)
= EO X 177 \/EH - EO ’ .

where we have defined a special lattice function

H =B + 2, +7.m? . (10.6)
We are interested in the average value of the total diffusion coefficient (9.103)

1 2

D=3 W(E+9): = 37 (N (E)H)-, (107)

where the average (---), is to be taken along the whole transport line or the
whole circumference of a circular accelerator. Since photon emission does not
occur outside of bending magnets, the average is taken only along the length
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of the bending magnets. To account for the variation in photon energies, we
use the rms value of the photon energies (e%> The theory of synchrotron
radiation is discussed in much detail in Chap. 22 and we take in the following
paragraph only relevant results of this theory.

The number of photons emitted per unit time with frequencies between w
and w + dw is simply the spectral radiation power at this frequency divided
by the photon energy hw. Here, we consider only bending magnet radiation
and treat radiation from insertion devices as perturbations. Of course, this
approach must be modified if a significant part of radiation comes from non-
bending magnet radiation. The spectral photon flux from a single electron is
from (22.149)

dn(w) _ 1 dP(w) _ P, 9\[/ Ks s (10.8)

dv  hw dw w2 87

where ¢ = w/w.. The total photon flux is by integration over all frequencies

which becomes with GR(6.561.16) and F(1/6) I'(1/6) = 5m/3 after integration
by parts from AS(6.1.17)

P, 9{/ K, 15V3 P,

= — . 10.1
hw 87 8 huw, (10.10)

The rms value of the photon energy <€’2y> can be derived in the usual way
from the spectral distribution n (w) by

93P, hw

h2 o0 [e'e]

2 oi C 2
= TV yte g/ Ks/3(z)dzd¢  (10.11
8t N 0 ¢ 5/3(7) ( )

(€)= N, win(w)dw =

and is after integration by parts

(&) = Ph‘”“/ CK

)dc. (10.12)

The integral of the modified Bessel’s function in (10.12) is from
GR[6.561.16] 4I'(2 + 2)I'(2 — 3) where we use again AS(6.1.17) for

I (%) r) =2n Collectmg all terms

55

—_P, hw, 10.13
YWk (10.13)

and the diffusion coefficient (10.7) becomes

N{e) =

55 (P7 hwcH>z
483  Ej

D= %(N(E + 7)), = (10.14)
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The stationary solution for the Fokker—Planck equation has been derived
describing the equilibrium particle distribution in phase space under the in-
fluence of quantum excitation and damping. In all six dynamical degrees of
freedom the equilibrium distribution is a Gaussian distribution and the stan-
dard value of the distribution width is determined by the damping time and
the respective diffusion coefficient. In this chapter, we will be able to calculate
quantitatively the diffusion coefficients and from that the beam parameters.

10.1.2 Quantum Excitation of Beam Emittance

High energy electron or positron beams passing through a curved beam trans-
port line suffer from quantum excitation which is not compensated by damping
since there is no acceleration. In Sect. 9.3.3 we have discussed this effect and
found the transverse beam emittance to increase linearly with time (9.144)
and we get with (10.14)

de, dep 55 reohe 5<7‘(>

@75724\/§mc27 ra

(10.15)

There is a strong energy dependence of the emittance increase along the
beam transport line and therefore the effect becomes only significant for very
high beam energies as proposed for linear collider systems. Since the emit-
tance blow up depends on the lattice function H, we would choose a very
strong focusing lattice to minimize the dilution of the beam emittance. For
this reason, the beam transport system for the linear collider at the Stan-
ford Linear Accelerator Center [102] is composed of very strongly focusing
combined bending magnets.

Particle distributions become modified each time we inject a beam into a
circular accelerator with significant synchrotron radiation. Arbitrary particle
distributions can be expected from injection systems before injection into a
circular accelerator. If the energy in the circular accelerator is too small to
produce significant synchrotron radiation the particular particle distribution
is preserved according to Liouville’s theorem while all particles merely rotate
in phase space as discussed in Sect. 9.1. As the beam energy is increased or if
the energy is sufficiently high at injection to generate significant synchrotron
radiation, all modes in the representation of the initial particle distribution
vanish within a few damping times while only one mode survives or builds up
which is the Gaussian distribution with a standard width given by the diffusion
constant and the damping time. In general, any deviation from this unique
equilibrium solution and be it only a mismatch to the correct orientation of
the beam in phase space will persist for a time not longer than a few damping
times.
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10.2 Equilibrium Beam Emittance

In circular electron accelerators, as in electron storage rings, quantum excita-
tion is counteracted by damping. Since quantum excitation is not amplitude
dependent but damping is, there is an equilibrium beam emittance when both
effects are equally strong. In the presence of quantum fluctuations Liouville’s
theorem is not applicable strictly anymore. In the case of an electron beam
in equilibrium the phase space density for a beam in equilibrium is preserved,
although in a different way. While Liouville’s theorem is based on Hamil-
tonian mechanics and demands that no particle should escape its phase space
position, we allow in the case of an electron beam in equilibrium that a parti-
cle may escape its phase space position but be replaced instantly by another
particle due to damping.

10.2.1 Horizontal Equilibrium Beam Emittance

The horizontal beam size is related to damping and diffusion coefficient from

(9.115) like
2

o
= —7.D,. 10.16
3, (10.16)

Damping times have been derived in Sect. 9.2 and with (10.7) the hori-
zontal beam size o, at a location where the value of the betatron function is
(. becomes

or _ N(E)H)-

A W Nt At e

ﬂm 2EO JI<P’Y>Z.

The ratio 02 /3, is consistent with our earlier definition of the beam emit-

tance. For a particle beam which is in equilibrium between quantum excitation

and damping, this ratio is defined as the equilibrium beam emittance being

equivalent to the beam emittance for all particles within one standard value

of the Gaussian distribution. For further simplification, we make use of ex-

pression (10.13) and get with the radiation power (22.59) and the critical
frequency (22.78) the horizontal beam emittance equation

_ o2 H1P%)-
€Ex = C'q’Y Jw <1/p2>z 9

where we adopted Sands’ [103] definition of a quantum excitation constant

_ 55 he
97 32/3 mc?

The equilibrium beam emittance scales like the square of the beam energy
and depends further only on the bending radius and the lattice function H.
From the definition of H the horizontal equilibrium beam emittance depends
on the magnitude of the dispersion function and can therefore be adjusted
to small or large values depending on the strength of the focusing for the
dispersion function.

(10.17)

(10.18)

=3.84 x 107 ¥ m. (10.19)
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10.2.2 Vertical Equilibrium Beam Emittance

The vertical beam emittance follows from (10.18) considering that the disper-
sion function and therefore H vanishes. Consequently, the equilibrium vertical
beam emittance seems to be zero because there is only damping but no quan-
tum excitation. In this case, however, we can no longer ignore the fact that the
photons are emitted into a finite although very small angle about the forward
direction of particle propagation. Each such emission causes both a loss in
the particle energy and a transverse recoil deflecting the particle trajectory.
The photons are emitted typically within an angle 1/ generating a transverse
kick without changing the betatron oscillation amplitude. With dy = 0 and

oy = % ;—”07 we get for the statistical variations

& =0,
1 €y
71'2 = 6?/772 (FO) 2 .

Following a derivation similar to that for the horizontal beam emittance,
we get for the vertical beam emittance equation

(10.20)

o Bl 0a1)

€, = .
Y qu<1//’2>z

This is the fundamentally lower limit of the equilibrium beam emittance
due to the finite emission angle of synchrotron radiation. For an isomagnetic
ring the vertical beam emittance

o B
Y h Jy ol

(10.22)

does not depend on the particle energy but only on the bending radius and the
average value of the betatron function. In most practical circular accelerator
designs, both the bending radius and the betatron function are of similar
magnitude and the fundamental emittance limit therefore is of the order of
Cq = 10713 rad m, indeed very small compared to actually achieved beam
emittances.

The assumption that the vertical dispersion function vanishes in a flat cir-
cular accelerator is true only for an ideal ring. Dipole field errors, quadrupole
misalignments, and any other source of undesired dipole fields create a verti-
cal closed orbit distortion and an associated vertical dispersion function. This
vertical dispersion function, often called spurious dispersion function, is fur-
ther modified by orbit correction magnets but it is not possible to completely
eliminate it because the location of dipole errors are not known.

Since the diffusion coefficient D is quadratic in the dispersion function
(10.7), we get a contribution to the vertical beam emittance from quantum
excitation similar to that in the horizontal plane. Indeed, this effect on the
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vertical beam emittance is much larger than that due to the finite emission
angle of photons discussed above and is therefore together with coupling the
dominant effect in the definition of the vertical beam emittance.

The contribution to the vertical beam emittance is in analogy to the deriva-
tion leading to (10.18)

3
Aey = Cq 728:?1/%; 2';;, (10.23)

where H,, is the average value along the ring circumference, i.e.,

2
Hy = (By 773/; +2ayny 77; + Yy 77§>z . (10.24)

To minimize this effect, orbit correction schemes must be employed which
not only correct the equilibrium orbit but also the perturbation to the disper-
sion function. Of course, the same effect with a similar magnitude also occurs
in the horizontal plane but is in general negligible compared to ordinary quan-
tum excitation.

10.3 Equilibrium Energy Spread and Bunch Length

The statistical processes caused by the emission of synchrotron radiation pho-
tons affect not only the four transverse dimensions of phase space but also the
energy—time phase space. Particles orbiting in a circular accelerator emit pho-
tons with a statistical distribution of energies while only the average energy
loss is replaced in the accelerating cavities.

10.3.1 Equilibrium Beam Energy Spread

This leaves a residual statistical distribution of the individual particle energies
which we have derived in Sect. 9.3 to be Gaussian just like the transverse
particle distribution with a standard width given by (9.123). The conjugate
coordinate is the “time” w = 7%7 where 7 is the deviation in time of a particle
from the synchronous particle, and € is the energy deviation of a particle from
the reference energy Ej.

The emission of a photon will not change the position of the particle in
time and therefore £ = 0. The conjugate coordinate being the particle energy
will change due to this event by the magnitude of the photon energy and we
have 7 = €,/Ey. Comparing with (10.5), we note that we get the desired
result analogous to the transverse phase space by setting H = 1 and using the
correct damping time for longitudinal motion. The equilibrium energy spread
then becomes from (9.123) in analogy to (10.18)

2 3
o 2 (11/0% ).

— Moz 10.2
£ = S R (1025)



376 10 Equilibrium Particle Distribution

which in a separated function lattice depends only on the particle energy
and the bending radius. In a fully or partially combined function lattice, the
partition number J. can be modified providing a way to vary the energy
spread.

10.3.2 Equilibrium Bunch Length

There is also a related equilibrium distribution in the longitudinal dimen-
sion which defines the length of the particle bunch. This distribution is also
Gaussian and the standard bunch length is from (9.125), (9.126)

o = 3 |;’;| 2—0 . (10.26)

The equilibrium bunch length not only depends on the particle energy and
the bending radius but also on the focusing lattice through the momentum
compaction factor and the partition number as well as on rf-parameters in-
cluded in the synchrotron oscillation frequency (2. To exhibit the scaling, we
introduce lattice and rf-parameters into (10.26) to get with (10.25) and the de-
finition of the synchrotron frequency (6.32) an expression for the equilibrium
bunch length

Utg _ 2m Cy 776?3 R? <|1//’3|>z,
(mc?)? Je heVy cos g (1/p2)-

where R is the average radius of the ring. The bunch length can be modified
through more parameters than any other characteristic beam parameter in the
six-dimensional phase space. Lattice design affects the resulting bunch length
through the momentum compaction factor and the partition number. Strong
focusing results in a small value for the momentum compaction factor and a
small bunch length. Independent of the strength of the focusing, the momen-
tum compaction factor can in principle be adjusted to any value including
zero and negative values by allowing the dispersion function to change sign
along a circular accelerator because the momentum compaction factor is the
average of the dispersion function a, = (1/p). In this degree of approxima-
tion the bunch length could therefore be reduced to arbitrarily small values by
reducing the momentum compaction factor. However, close to the transition
energy phase focusing to stabilize synchrotron oscillations is lost.
Introduction of gradient magnets into the lattice modifies the partition
numbers as we have discussed in Sect. 9.2.1. As a consequence, both the energy
spread and bunch length increase or decrease at the expense of the opposite
effect on the horizontal beam emittance. The freedom to adjust any of these
three beam parameters in this way is therefore limited but nonetheless an im-
portant means to make adjustments if necessary. Obviously, the rf-frequency
as well as the rf-voltage has a great influence on the bunch length. The bunch
length scales inversely proportional to the square root of the rf-frequency and
is shorter for higher frequencies. Generally, no strong reasons exist to choose

(10.27)
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a particular rf-frequency but might become more important if control of the
bunch length is important for the desired use of the accelerator. The bunch
length is also determined by the rate of change of the rf-voltage in the accel-
erating cavities at the synchronous phase

V sin =V costy. (10.28)
P=1s

. d
1% = —

For a single frequency rf-system the bunch length can be shortened when
the rf-voltage is increased. To lengthen the bunch the rf-voltage can be reduced
up to a point where the rf-voltage would fail to provide a sufficient energy
acceptance.

10.4 Phase-Space Manipulation

The distribution of particles in phase space is given either by the injector
characteristics and injection process or in the case of electron beams by the
equilibrium of quantum excitation due to synchrotron radiation and damping.
The result of these processes is not always what is desired and it is therefore
useful to discuss some method to modify the particle distribution in phase
space within the validity of Liouville’s theorem.

10.4.1 Exchange of Transverse Phase-Space Parameters

In beam dynamics we are often faced with a desire to change the beam size
in one of the six phase-space dimensions. Liouville’s theorem tells us that this
is not possible with macroscopic fields unless we let another dimension vary
as well so as not to change the total volume in six-dimensional phase space.
A very simple example of exchanging phase-space dimensions is the in-
crease or decrease of one transverse dimension at the expense of its conjugate
coordinate. A very wide and almost parallel beam, for example, can be fo-
cused to a small spot size where, however, the beam divergence has become
very large. Obviously, this process can be reversed too and we describe such
a process as the rotation of a beam in phase space or as phase-space rotation.
A more complicated but often very desirable exchange of parameters is
the reduction of beam emittance in one plane at the expense of the emit-
tance in the other plane. Is it, for example, possible to reduce say the vertical
beam emittance to zero at the expense of the horizontal emittance? Although
Liouville’s theorem would allow such an exchange other conditions in the
Hamiltonian theory will not allow this kind of exchange in multidimensional
phase space. The condition of symplecticity is synonymous with Liouville’s
theorem only in one dimension. For n dimensions the symplecticity condition
imposes a total of n(2n — 1) conditions on the dynamics of particles in phase
space [104]. These conditions impose an important practical limitation on the
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exchange between different degrees of freedom of phase space. Specifically, it
is not possible to reduce the smaller of two phase-space dimensions further at
the expense of the larger emittance, or if the phase space is the same in two
dimensions neither can be reduced at the expense of the other.

10.4.2 Bunch Compression

So far we have discussed only the exchange of transverse phase-space parame-
ters. Longitudinal phase space can also be exchanged by special application
of magnetic and rf-fields. Specifically, we often face the problem to compress
the bunch to a very short length at the expense of energy spread.

For linear colliders the following problem exists. Very small transverse
beam emittances can be obtained only in storage rings specially designed
for low equilibrium beam emittances. Therefore, an electron beam is injected
from a conventional source into a damping ring specially designed for low
equilibrium beam emittance. After storage for a few damping times the beam
is ejected from the damping ring again and transferred to the linear acceler-
ator to be further accelerated. During the damping process in the damping
ring, however, the bunch length will also reach its equilibrium value which in
practical storage rings is significantly longer than could be accepted in, for
example, an S-band or X-band linear accelerator. The bunch length must be
shortened.

This is done in a specially designed beam transport line between the damp-
ing ring and linear accelerator consisting of a nonisochronous transport line
and an accelerating section installed at the beginning of this line (Fig. 10.1).

The accelerating section is phased such that the center of the bunch does
not see any field while the particles ahead of the bunch center are acceler-
ated and the particles behind the bunch center are decelerated. Following this
accelerating section, the particles travel through a curved beam transport sys-
tem with a finite momentum compaction factor a, = L% fOLO %dz where Lg is

chromatic bunch
compression section

dispersion
function

accelerating
section

longitudinal

—F—1 phase ellipse

Fig. 10.1. Bunch-compressor system (schematic)
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the length of the beam transport line. Early particles within a bunch, having
been accelerated, follow a longer path than the reference particles at the cen-
ter of the bunch while the decelerated particles being late with respect to the
bunch center follow a shortcut. All particles are considered highly relativistic
and the early particles fall back toward the bunch center while late particles
catch up with the bunch center. If the parameters of the beam transport sys-
tem are chosen correctly the bunch length reaches its minimum value at the
desired location at, for example, the entrance of the linear accelerator. From
that point on the phase-space, rotation is halted because of lack of momentum
compaction in a straight line. Liouville’s theorem is not violated because the
energy spread in the beam has been increased through the phase-dependent
acceleration in the bunch-compression system.

Formulating this bunch compression in more mathematical terms, we start
from a particle distribution in longitudinal phase space described by the phase
ellipse

e+t =72 =ad? (10.29)
where a is the longitudinal emittance and 7 is the particle location along the
bunch measured from the bunch center such that 7 > 0 if the particle trails the
bunch center. In the first step of bunch compression, we apply an acceleration

Ae = —eV sinwyT =~ —eVy wpeeT . (10.30)

The particle energy is changed according to its position along the bunch.
Replacing € in (10.29) by € + Ae and sorting we get

i e? — 273 eV wpr er + (75 2 VE W + &) 12 = a?, (10.31)

where the appearance of the cross term indicates the rotation of the ellipse.

The second step is the actual bunch compression in a nonisochronous trans-

port line of length L and momentum compaction Az/L = 1 €/(cpg). Traveling

though this beam line, a particle experiences a shift in time of
Az L e

AT = — = .
pe  Be epo

Again, the time 7 in (10.31) is replaced by 74+ A7 to obtain the phase ellipse
at the end of the bunch compressor of length L. The shortest bunch length

occurs when the phase ellipse becomes upright. The coefficient for the cross
term must therefore be zero giving a condition for minimum bunch length:

(10.32)

 om e
L Ne Wrt ’

eV = (10.33)

From the remaining coefficients of €2 and 72, we get the bunch length after
compression

. €0
— 10.34
T eVis it ( )
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and the energy spread
€ = To wit eVig, (10.35)

where we used the approximation 7y eVywys > €. This is justified because
we must accelerate particles at the tip of th e bunch by much more than
the original energy spread to obtain efficient bunch compression. Liouville’s
theorem is obviously kept intact since

eF =é . (10.36)

For tight bunch compression, a particle beam with small energy spread is
required as well as an accelerating section with a high rf-voltage and frequency.
Of course, the same parameters contribute to the increase of the energy spread
which can become the limiting factor in bunch compression. If this is the case,
one could compress the bunch as much as is acceptable followed by acceleration
to higher energies to reduce the energy spread by adiabatic damping, and then
go through a bunch compression again.

10.4.3 Alpha Magnet

Bunch compression requires two steps. First, an accelerating system must
create a correlation between particle energy and position. Then we utilize a
nonisochronous magnetic transport line to rotate the particle distribution in
phase space until the desired bunch length is reached.

The first step can be eliminated in the case of an electron beam generated
in an rf-gun. Here the electrons emerge from a cathode which is inserted
into an rf-cavity [105]. The electrons are accelerated immediately where the
acceleration is a strong function of time because of the rapidly oscillating field.
In Fig. 10.2 the result from computer simulations of the particle distribution in
phase space [31] is shown for an electron beam from a 3 GHz rf-gun [106,107]
(Fig. 10.3).

For bunch compression we use an alpha magnet which got its name from
the alpha-like shape of the particle trajectories. This magnet is made from
a quadrupole split in half where the other half is simulated by a magnetic
mirror plate at the vertical midplane. While ordinarily a particle beam would
pass through a quadrupole along the axis or parallel to this axis this is not
the case in an alpha magnet. The particle trajectories in an alpha magnet
have very unique properties which were first recognized by Enge [108]. Most
obvious is the fact that the entrance and exit point can be the same for all
particles independent of energy. The same is also true for the total deflection
angle. Borland [109] has analyzed the particle dynamics in an alpha magnet in
detail and we follow his derivation here. Particles entering the alpha magnet
fall under the influence of the Lorentz force

F1, =eE +e[v x B, (10.37)



10.4 Phase-Space Manipulation 381

6 y(mc2)

b N N, (108 e/p-sec)
5 =) 2

i ' - 16
4 — L

* — 1.2
3 L

i — 0.8
2 - 0.4

2100 2150 2200 2250 T(p-sec) 2300

Fig. 10.2. Particle distribution in phase space for an electron beam from an rf-gun
with thermionic cathode
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Fig. 10.3. Cross section of a microwave electron gun

where we ignore the electrical field. Replacing the magnetic field by its gradient
B = (gus,0,gu1), we get in the coordinate system of Fig. 10.4 the equation
of motion

2 d
—‘i S {“ x u} , (10.38)
z

where the scaling factor
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Fig. 10.4. Alpha magnet and particle trajectories
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and the coordinate vector u = (uq,us,us).
By introducing normalized coordinates U = ¢ u and path length S = oz,
(10.38) becomes
d?U  [dU
as? ~ " |as ”

The remarkable feature of (10.40) is the fact that it does not exhibit any
dependence on the particle energy or the magnetic field. One solution for
(10.40) is valid for all operating conditions and beam energies. The alpha
shaped trajectories are similar to each other and scale with energy and field
gradient according to the normalization introduced above.

Equation (10.40) can be integrated numerically and in doing so, Borland
obtains for the characteristic parameters of the normalized trajectory in an
alpha magnet [109]

(U3, 0,U1)] - (10.40)

0, = 0.71052 rad, S, = 4.64210,

. (10.41)
= 40.70991°, U; = 1.81782,

where 6, is the entrance and exit angle with respect to the magnet face, S

is the normalized path length, and U; is the apex of the trajectory in the

alpha magnet. We note specifically that the entrance and exit angle 6, is

independent of beam energy and magnetic field. It is therefore possible to

construct a beam transport line including an alpha magnet.

Upon introducing the scaling factor (10.39), (10.41) becomes
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_ _ By
sa(m) = 52 = 0.19166,/ —H7 10.42)
dr(m) = 2 = 0.07505, / 5T .

Bunch compression occurs due to the functional dependence of the path length
on the particle energy. Taking the derivative of (10.42) with respect to the
particle momentum py = G, one gets the compression equation

dsq(m) 0.07505 (10.43)

dpo \/29(T/m)po

For bunch compression, higher momentum particles must arrive first be-
cause they follow a longer path and therefore fall back with respect to later
particles. For example, an electron beam with the phase-space distribution
from Fig. 10.2 becomes compressed as shown in Fig. 10.5.

S afn

Q

5.50 —

t(p-sec)
T T T T T
00 01 02 03 04 05 06 07 08 09 1.0

4.25

Fig. 10.5. Particle distribution in longitudinal phase space after compression in an
alpha magnet

Because of the small longitudinal emittance of the beam it is possible to
generate very short electron bunches of some 100 fs (rms) duration, which can
be used to produce intense coherent far infrared radiation [110].

10.5 Polarization of a Particle Beam

For high energy physics experimentation, it is sometimes important to have
beams of transversely or longitudinally polarized particles. It is possible, for
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example, to create polarized electron beams by photoemission from GaAs
cathodes [111]. From a beam dynamics point of view, we are concerned with
the transport of polarized beams through a magnet system and the resulting
polarization status. The magnetic moment vector of a particle rotates about a
magnetic field vector. A longitudinally polarized electron traversing a vertical
dipole field would therefore experience a rotation of the longitudinal polar-
ization about the vertical axis. On the other hand, the vertical polarization
would not be affected while passing through a horizontally bending magnet.
This situation is demonstrated in Fig. 10.6.

Fig. 10.6. Precession of the particle spin in a transverse or longitudinal magnetic
field

Similarly, longitudinal polarization is not affected by a solenoid field. In
linear collider facilities, specific spin rotators are introduced to manipulate the
electron spin in such a way as to preserve beam polarization and obtain the
desired spin direction at an arbitrarily located collision point along the beam
transport line. For the preservation of beam polarization, it is important to
understand and formulate spin dynamics.

Electron and positron beams circulating for a long time in a storage ring
can become polarized due to the reaction of continuous emission of trans-
versely polarized synchrotron radiation. The evolution of the polarization has
been studied in detail by several researchers [100,112-114] and the polariza-
tion time is given by [100]

1 5v/3 62h'y5

Tpol 8 m3c2p3

(10.44)

with a theoretically maximum achievable polarization of 92.38%. The polariza-
tion time is a strong function of beam energy and is very long for low energies.
At energies of several GeV, however, this time becomes short compared to the
storage time of an electron beam in a storage ring.
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This build up of polarization is counteracted by nonlinear magnetic field
errors which cause precession of the spin depending on the betatron ampli-
tude and energy of the particle thus destroying polarization. Again, we must
understand spin dynamics to minimize this depolarization. Simple relations
exist for the rotation of the spin while the particle passes through a magnetic
field. To rotate the spin by a magnetic field, there must be a finite angle
between the spin direction and that of the magnetic field. The spin rotation
angle about the axis of a transverse field depends on the angle between the
spin direction o (|os| = 1) and magnetic field B, and is given by [114]

1
P, =C <1+> |0'S><BJ_|£7 (1045)
v
where
g—2
n, = £5= = 0.00115065, (10.46)
c. =" —0.0068033 (T 'm™"), (10.47)
mc

g is the gyromagnetic constant and B £ is the integrated transverse magnetic
field strength. Apart from a small term 1/, the spin rotation is independent
of the energy. In other words, a spin component normal to the field direction
can be rotated by 90° while passing though a magnetic field of 2.309 T m and
it is therefore not important at what energy the spin is rotated.

Equation (10.45) describes the situation in a flat storage ring with hori-
zontal bending magnets only unless the polarization of the incoming beam is
strictly vertical. Any horizontal or longitudinal polarization component would
precess while the beam circulates in the storage ring. As long as this spin is the
same for all particles, the polarization would be preserved. Unfortunately, the
small energy dependence of the precession angle and the finite energy spread
in the beam would wash out the polarization. On the other hand, the vertical
polarization of a particle beam is preserved in an ideal storage ring. Field
errors, however, may introduce a depolarization effect. Horizontal field errors
from misalignments of magnets, for example, would rotate the vertical spin.
Fortunately, the integral of all horizontal field components in a storage ring is
always zero along the closed orbit and the net effect on the vertical polariza-
tion is zero. Nonlinear fields, however, do not cancel and must be minimized
to preserve the polarization.

A transverse spin can also be rotated about the longitudinal axis of a
solenoid field and the rotation angle is

e gl
Yi=% (1 +ngm> los x By (. (10.48)

In a solenoid field it is therefore possible to rotate a horizontal polarization
into a vertical polarization or vice versa. Spin rotation in a longitudinal field
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is energy dependent and such spin rotations should therefore be done at low
energies if possible.

The interplay between rotations about a transverse axis and the longitu-
dinal axis is responsible for a spin resonance which destroys whatever beam
polarization exists. To show this, we assume a situation where the polarization
vector precesses just by 27, or an integer multiple n thereof, while the particle
circulates once around the storage ring. In this case v, = n2m, eB, {/E = 2,
and we get from (10.45)

n=ng(1+7). (10.49)

For n = 1, resonance occurs at a beam energy of £ = 440.14 MeV. At
this energy any small longitudinal field interacts with the polarization vector
at the same phase, eventually destroying any transverse polarization. This
resonance occurs at equal energy intervals of

En(MeV) = 440.14 + 440.65 (n — 1) (10.50)

and can be used in storage rings as a precise energy calibration.

In Fig. 10.7 spin dynamics is shown for the case of a linear collider where
a longitudinally polarized beam is desired at the collision point. A longitudi-
nally polarized beam is generated from a source and accelerated in a linear

linacbeam % %
-

polarization
directions

dampingring

Fig. 10.7. Spin manipulation during beam transfer from linear accelerator to damp-
ing ring and back
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accelerator. No rotation of the polarization direction occurs because no mag-
netic fields are involved yet. At some energy the beam is transferred to a
damping ring to reduce the beam emittance. To preserve polarization in the
damping ring the polarization must be vertical. In Fig. 10.7, we assume a lon-
gitudinal polarized beam coming out of the linear accelerator. A combination
of transverse fields, to rotate the longitudinal into a horizontal spin, followed
by a solenoid field which rotates the horizontal into a vertical spin, is used
in the transport line to the damping ring to obtain the desired vertical spin
orientation. This orientation is in line with all magnets in the damping ring
and the polarization can be preserved.

To obtain the desired rotation in the beam transport magnets at a given
energy, the beam must be deflected by a specific deflection angle which is from
(10.45)

0=—Bil="—"-—. (10.51)

Coming out of the damping ring the beam passes through a combination of
two solenoids and two transverse field sections. Depending on which solenoid
is turned on, we end up with a longitudinal or transverse polarization at the
entrance of the linac. By the use of both solenoids any polarization direction
can be realized.

Problems

10.1 (S). Show that the horizontal damping partition number is negative in
a fully combined function FODO lattice as employed in older synchrotron
accelerators. Why, if there is horizontal antidamping in such synchrotrons,
is it possible to retain beam stability during acceleration? What happens if
we accelerate a beam and keep it orbit