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To my sons and students



Preface

This issue of Particle Accelerator Physics is intended to combine the content of
two earlier volumes and the volume on synchrotron radiation into one reference
book. This book is designed for the serious scientist and student to acquire the
underlaying physics of electron accelerator physics. Introductory discussions
on various types of accelerators have been eliminated, being well documented
in the literature. Beam optics has been formulated in a general way as to
be applicable also to proton and ion beams. Following the requests of many
readers many solutions to exercises are given in the appendix. Breaking with
the author’s preference, Standard International units are used in this edition.
In appendix 2, transformation rules are given to convert formulae between SI
and cgs systems. In the process of rewriting the texts, known typographical
and real errors have been corrected. The author wishes to express his sincere
appreciation to all readers pointing out such errors.

I would like to thank all staff at Springer who have contributed to the pub-
lication of this text. Foremost, I thank Dr. Christian Caron for his suggestion
and encouragement to combine several textbooks into one reference volume.
For the expert editing and cover design I thank Mrs. Birgit Muench and her
staff. Finally, it is a pleasure to thank Ms. Bhawna Narang from Techbooks
for her patient and thorough preparation of the proofs and final printing.

Nakhon Ratchasima, Thailand Helmut Wiedemann
March 2007



Preface to Volume I

The purpose of this book is to provide a comprehensive introduction into
the physics of particle accelerators and particle beam dynamics.Particle ac-
celerators have become important research tools in high energy physics as
well as sources of incoherent and coherent radiation from the far infra red
to hard x-rays for basic and applied research. During years of teaching accel-
erator physics it became clear that the single most annoying obstacle to get
introduced into the field is the absence of a suitable textbook. Indeed most
information about modern accelerator physics is contained in numerous inter-
nal notes from authors working mostly in high energy physics laboratories all
over the world.

This text intends to provide a broad introduction and reference book into
the field of accelerators for graduate students, engineers and scientists summa-
rizing many ideas and findings expressed in such internal notes and elsewhere.
In doing so theories are formulated in a general way to become applicable for
any kind of charged particles. Writing such a text, however, poses the problem
of correct referencing of original ideas. I have tried to find the earliest refer-
ences among more or less accessible notes and publications and have listed
those although the reader may have difficulty to obtain the original paper.
In spite of great effort to be historically correct I apologize for possible omis-
sions and misquotes. This situation made it necessary to rederive again some
of such ideas rather than quote the results and refer the interested reader to
the original publication. I hope this approach will not offend the original au-
thors, but rather provides a broader distribution of their original ideas, which
have become important to the field of accelerator physics.

This text is split into two volumes. The first volume is designed to be
self contained and is aimed at newcomers into the field of accelerator physics,
but also to those who work in related fields and desire some background
on basic principles of raccelerator physics. The first volume therefore gives an
introductory survey of fundamental principles of particle acceleration followed
by the theory of linear beam dynamics in the transverse as well as longitudinal



X Preface to Volume I

phase space including a detailed discussion of basic magnetic focusing units.
Concepts of single and multi particle beam dynamics are introduced.

Synchrotron radiation, its properties and effect on beam dynamics and
electron beam parameters is described in considerable detail followed by a dis-
cussion of beam instabilities on an introductory level, beam lifetime and basic
lattice design concepts. The second volume is aimed specifically to those stu-
dents, engineers and scientists who desire to immerse themselves deeper into
the physics of particle accelerators. It introduces the reader to higher order
beam dynamics, Hamiltonian particle dynamics, general perturbation theory,
nonlinear beam optics, chromatic and geometric aberrations and resonance
theory. The interaction of particle beams with rf fields of the accelerating
system and beam loading effects are described in some detail relevant to ac-
celerator physics. Following a detailed derivation of the theory of synchrotron
radiation particle beam phenomena are discussed while utilizing the Vlasov
and Fokker Planck equations leading to the discussion of beam parameters
and their manipulation and collective beam instabilities. Finally design con-
cepts and new developments of particle accelerators as synchrotron radiation
sources or research tools in high energy physics are discussed in some detail.

This text grew out of a number of lecture notes for accelerator physics
courses at Stanford University, the Synchrotron Radiation Research Labora-
tory in Taiwan, the University of Sao Paulo in Brazil, the International Center
for Theoretical Physics in Trieste and the US Particle Accelerator School as
well as from interaction with students attending those classes and my own
graduate students.

During almost thirty years in this field, I had the opportunity to work
with numerous individuals and accelerators in laboratories around the world.
Having learned greatly from these interactions I like to take this opportunity
to thank all those who interacted with me and have had the patience to
explain their ideas, share their results or collaborate with me. The design and
construction of new particle accelerators provides a specifically interesting
period to develop and test theoretically new ideas, to work with engineers and
designers, to see theoretical concepts become hardware and to participate in
the excitement of commissioning and optimization. I have had a number of
opportunities for such participation at the Deutsches Elektronen Synchrotron,
DESY, in Hamburg, Germany and at the Stanford University at Stanford,
California and am grateful to all colleagues who hosted and collaborated with
me. I wished I could mention them individually and apologize for not doing
so.

A special thanks goes to the operators of the electron storage rings SPEAR
and PEP at the Stanford Linear Accelerator Center, specifically to T. Taylor,
W. Graham, E. Guerra and M. Maddox, for their dedicated and able efforts
to provide me during numerous shifts over many years with a working storage
ring ready for machine physics experimentation.

I thank Mrs. Joanne Kwong, who typed the initial draft of this texts and
introduced me into the intricacies of TEX typesetting. The partial support
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by the Department of Energy through the Stanford Synchrotron Radiation
Laboratory in preparing this text is gratefully acknowledged. Special thanks
to Dr. C. Maldonado for painstakingly reading the manuscript. Last but not
least I would like to thank my family for their patience in dealing with an
”absent” husband and father.

Palo Alto, California Helmut Wiedemann
December 1992



Preface to Volume II

This text is a continuation of the first volume on ”Basic Principles and Linear
Beam Dynamics”. While the first volume has been written as an introductory
overview into beam dynamics it does not include more detailled discussion of
nonlinear and higher order beam dynamics or the full theory of synchrotron
radiation from relativistic electron beams. Both issues are, however, of fun-
damental importance for the design of modern particle accelerators. In this
volume beam dynamics is formulated within the realm of Hamiltonian dynam-
ics leading to the description of multiparticle beam dynamics with the Vlasov
equation and including statistical processes with the Fokker Planck equation.
Higher order perturbations and aberrations are discussed in detail including
Hamiltonian resonance theory and higher order beam dynamics. The discus-
sion of linear beam dynamics in Vol. I is completed here with the derivation
of the general equation of motion including kinematic terms and coupled mo-
tion. Building on the theory of longitudinal motion in Vol. I the interaction
of a particle beam with the rf system including beam loading, higher order
phase focusing and combination of acceleration and transverse focusing is dis-
cussed. The emission of synchrotron radiation greatly affects the beam quality
of electron or positron beams and we therefore derive the detailled theory of
synchrotron radiation including spatial and spectral distribution as well as
properties of polarization. The results of this derivation is then applied to
insertion devices like undulator and wiggler magnets. Beam stability in linear
and circular accelerators is compromized by the interaction of the electrical
charge in the beam with its environment leading to instabilities. Theoretical
models of such instabilities are discussed and scaling laws for the onset and
rise time of instabilities derived. Although this text builds up on Vol. I it
relates to it only as a reference for basic issues of accelerator physics which
could be obtained as well elsewhere. This volume is aimed specifically to those
students, engineers and scientists who desire to aqcuire a deeper knowledge
of particle beam dynamics in accelerators. To facilitate the use of this text as
a reference many of the more important results are emphazised by a frame
for quick detection. Consistent with Vol. I we use the cgs system of units.



XIV Preface to Volume II

However, for the convenience of the reader who is used to the system of inter-
national units conversion factors have been added whenever such conversion
is necessary, e.g. whenever electrical or magnetic units are used. These conver-
sion factors are enclosed in square brackets like

√
4πε0 and should be ignored

by those who use formulas in the cgs system. The conversion factors are easy
to identify since they include only the constants c, π, ε0, µ0 and should there-
fore not mixed up with other factors in quare brackets. For the convenience of
the reader the source of these conversion factors are compiled in the appendix
together with other useful tools.

I would like to thank Joanne Kwong, who typed the initial draft of this
texts and introduced me into the intricacies of TEX typesetting and to my stu-
dents who guided me by numerous inquisitive questions. Partial support by the
Division of Basic Energy Sciences in the Department of Energy through the
Stanford Synchrotron Radiation Laboratory in preparing this text is grate-
fully acknowledged. Special thanks to Dr. C. Maldonado for painstakingly
reading the manuscript and to the editorial staff of Springer Verlag for the
support during the preparation of this text.

Palo Alto, California Helmut Wiedemann
March 1994



Preface to Synchrotron Radiation

This book covers the physical aspects of synchrotron radiation generation and
is designed as a textbook and reference for graduate students, teachers and
scientists utilizing synchrotron radiation. It is my hope that this text may
help especially students and young researchers entering this exciting field to
gain insight into the characteristics of synchrotron radiation.

Discovered in 1945, synchrotron radiation has become the source of pho-
tons from the infrared to hard x-rays for a large community of researchers
in basic and applied sciences. This process was particularly supported by the
development of electron accelerators for basic research in high energy physics.
Specifically, the development of the storage ring and associated technologies
resulted in the availability of high brightness photon beams far exceeding
other sources.

In this text, the physics of synchrotron radiation for a variety of magnets
is derived from first principles resulting in useful formulas for the practitioner.
Since the characteristics and quality of synchrotron radiation are intimately
connected with the accelerator and electron beam producing this radiation, a
short overview of relevant accelerator physics is included.

In the first four chapters radiation phenomena in general and synchrotron
radiation in particular are introduced based on more visual and basic physical
concepts. Where exact formulas are required, we borrow results from rigorous
derivations in Chaps. 9 and 10. This way the physics of synchrotron radiation
can be discussed without extensive deviations into mathematical manipula-
tions, which can be quite elaborate although straightforward. The consequence
for the reader, of this dual approach to synchrotron radiation is that, here and
there, one will find some repetitive discussions, which the author hopes will
provide easier reading and continuity in the train of thought.

Chapters 5 to 8 give an overview of beam dynamics in storage rings and
guidance for the optimization of a storage ring for synchrotron radiation pro-
duction. The theory of synchrotron radiation is derived rigorously in Chap.
9 and that of undulator or insertion device radiation in Chap. 10. Finally, in
Chap. 11 the physics of a free electron laser is discussed.
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Each chapter includes a set of exercises. For those exercises which are
marked with the argument (S), solutions are provided in Appendix A. In sup-
port of the practitioner utilizing synchrotron radiation most relevant formulas
together with useful mathematical and physical formulae and constants are
compiled in Appendices B–D.

The author would like to thank the editorial staff at Springer Verlag and
especially Drs. H. Lotsch and C. Ascheron for suggesting the writing of this
book. The trained eyes of Dr. A. Lahee and Ms. Dimler contributed much to
minimize typographical errors and to greatly improve the overall appearance
of the book. Special thanks goe to Professors J. Dorfan and K. Hodgson
at Stanford University for granting a sabbatical leave and to Professor T.
Vilaithong at the Chiang Mai University in Thailand for providing a quiet
and peaceful environment during the final stages of writing this book.

Chiang Mai, Thailand Helmut Wiedemann
December 2, 2001
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Tools We Need



1

Of Fields and Forces

Accelerator physics relates primarily to the interaction of charged particles
with electromagnetic fields. Detailed knowledge of the functionality of this in-
teraction allows the design of accelerators meeting specific goals and the pre-
diction of charged particle beam behavior in those accelerators. The interplay
between particles and fields is called beam dynamics. In this chapter, we recall
briefly some features of electromagnetic fields and fundamental processes of
classical and relativistic mechanics as they relate to particle beam dynamics.

1.1 Electromagnetic Fields of Charged Particles

Predictable control of charged particles is effected only by electric and mag-
netic fields, and beam dynamics is the result of such an interaction. We try
to design and formulate electromagnetic fields in a way that can be used
to accurately predict the behavior of charged particles. To describe the gen-
eral interaction of fields based on electric currents in specific devices and free
charged particles which we want to preserve, guide, and focus, we use as a
starting point Maxwell’s equations

∇ ( εE) = ρ
ε0
, Coulomb’s law,

∇B = 0,

∇× E = − ∂
∂tB , Faraday’s law,

∇×
(

1
µB
)

= µ0 j + 1
c2

∂
∂t (εE) . Ampère’s law,

(1.1)

consistent with the SI-system of units by inclusion of the unit scale factors

ε0 =
107

4πc2
C

V m
= 8.8541878 × 10−12 C

V m
, (1.2)

and



4 1 Of Fields and Forces

µ0 = 4π × 10−7 V s
A m

= 1.2566371 × 10−6 V s
A m

(1.3)

with the property
ε0µ0 c

2 = 1 . (1.4)

To transform to cgs-units, convenient transformation factors are compiled
in Appendix B. The quantities εr and µr are the relative dielectric constant
and magnetic permeability of the surrounding materials, respectively.

Integration of one or the other of Maxwell’s equations results, for example,
in the fields from singly charged particles or those of an assembly of particles
traveling along a common path and forming a beam. Applying Maxwell’s
equations, we will make generous use of algebraic relations which have been
collected in Appendix A.

Electric Field of a Point Charge

First, we apply Gauss’ theorem on a point charge q at rest. The natural
coordinate system is the polar system because here the fields depend only on
the radial distance from the charge. We integrate Coulomb’s law (1.1) over a
spherical volume containing the charge q at its center. With dV = 4πr2dr
the integral becomes

∫
∇E dV =

∫ R

0
1
r2

∂
∂r

(
r2 Er

)
dV = 4πR2Er (R), where R

is the radial distance from the charge. On the r.h.s. of Coulomb’s law (1.1),
an integration over all the charge q gives

∫
ρ

ε0 εdV = q
ε0 ε and the electric field

of a point charge at distance R is

Er (R) =
1

4πε0 ε
q

R2
. (1.5)

The electric field is proportional to the charge and decays quadratically
with distance R

Fields of Charged Particle Beams

In particle beam dynamics many charged particles, traveling along the same
path, form a beam. This particle beam generates an electric as well as a
magnetic field. The proper coordinates are now cylindrical and Coulomb’s
law is

∇E =
1
r

∂

∂r
(rEr) +

1
r

∂Eϕ

∂ϕ︸ ︷︷ ︸
=0

+
∂Ez

∂z︸︷︷︸
=0

=
1
r

∂

∂r
(rEr) =

ρ

ε0 ε
. (1.6)

We assume a uniform continuous beam and expect therefore no azimuthal
or longitudinal dependence, leaving only the radial dependence. Radial in-
tegration over a cylindrical volume of unit length collinear with the beam
gives with the volume element dV = 2πrdr, on the l.h.s. |rEr|r0 2π. The r.h.s.
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is ρ0
ε0 εr

πr2 and the electric field for a uniformly charged particle beam with
radius R is

Er (r) =





ρ0
2ε0 εr for r < R

ρ0
2ε0 ε

R2

r for r > R
. (1.7)

The magnetic field for the same beam can be derived by applying Stoke’s
theorem on Ampere’s law to give after integration

Bϕ (r) =





1
2µ0µ j0r for r < R

1
2µ0µ j0

R2

r for r > R
. (1.8)

The fields increase linearly within the beam and decay again like 1/r out-
side the beam. Real particle beams are not uniform beams and a form function
must be included in the integration. In most cases, the radial particle distri-
bution is bell shaped or Gaussian. Both distributions differ little in the core
of the beam and therefore a convenient assumption is that of a Gaussian
distribution for which the fields will be derived in Problem 1.3.

1.1.1 Vector and Scalar Potential

By virtue of Maxwell’s equation ∇B = 0 one can derive the magnetic field
from a vector potential A defined by

B = ∇× A . (1.9)

Faraday’s law can be used to derive also the electric field from potentials. The
equation ∇×E = − ∂

∂tB = − ∂
∂t (∇× A) can be written as ∇×

(
E + Ȧ

)
= 0,

and solved by E = −∂A
∂t − ∇ϕ , where we added the gradient of a scalar

potential function ϕ which does not alter the validity of Maxwell’s equations
for all fields so defined. To summarize both electric and magnetic fields can
be derived from a scalar φ and vector A potential

B = ∇× A , (1.10)

E = −∂A

∂t
−∇φ . (1.11)

So far, the scalar potential function is not specified, giving us later the
freedom to apply a convenient condition.

1.1.2 Wave Equation

From Ampere’s law both the vector and scalar potentials can be derived.
Replacing in ∇ × B = µ0µ j + εµ

c2 Ė the fields with their expressions in
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terms of potentials, we get ∇× (∇× A) = µ0µ j + εµ
c2

(
−Ä −∇ϕ̇

)
, and with

∇× (∇×A) = ∇ (∇A) −∇2A

∇2A − εµ

c2
∂2A

∂t2
= −µ0µ j + ∇

(
∇A+

εµ

c2
ϕ̇
)

︸ ︷︷ ︸
=0

. (1.12)

At this point we specify the potential function ϕ such that it meets the con-
dition ∇A + εµ

c2 ϕ̇ = 0 thereby simplifying greatly (1.12) . This condition is
called the Lorentz gauge and the resulting wave equation is

∇2A − εµ

c2
∂2A

∂t2
= −µ0 j . (1.13)

The vector potential is clearly defined by the placement of electrical currents
j. We will use this property later in the design of magnets for particle beam
guidance. Similarly, the wave equation for the scalar potential is

∇2ϕ− 1
c2

∂2ϕ

∂t2
= − ρ

ε0
. (1.14)

Knowledge of the placement of electrical charges defines uniquely the scalar
potential function. The second-order differential equations (1.13), (1.14) can
be integrated readily and the potentials are

A(R, t) =
µ0

4π

∫
j(x, y, z)

R

∣∣∣∣
tr

dxdy dz (1.15)

and

ϕ(R, t) =
1

4πε0

∫
ρ(x, y, z)

R

∣∣∣∣
tr

dxdy dz . (1.16)

Integration over the location of all currents and charges results in the
definition of the vector and scalar potential at a distance R from the current
and charge centers, respectively. Both electric and magnetic fields may be
derived as discussed in the last section.

Lienard–Wiechert Potentials

For a point charge e at rest, we can integrate (1.15) readily to get A(R, t) = 0
and ϕ(R, t) = e

4πε0R . On the other hand, in the case of a moving point charge
the potentials cannot be obtained by simply integrating over the “volume” of
the point charge. The motion of the charge must be taken into account and
the result of a proper integration (see Chap. 22) are the Liénard–Wiechert
potentials [1, 2]

A(R, t) =
µ0c

4π
q

R

β

1 + nβ

∣∣∣∣
tr

(1.17)
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and

ϕ(R, t) =
1

4πε0
q

R

1
1 + nβ

∣∣∣∣
tr

. (1.18)

These potentials describe, for example, the radiation fields of synchrotron
radiation being emitted from relativistic electrons.

1.1.3 Induction

Applying Stokes’ theorem to Faraday’s law (1.1), we get on the l.h.s. a line
integral along the boundaries of the surface area S, which is equivalent to
a voltage. On the r.h.s. the magnetic flux passing through the surface S is
integrated and

∫

S

[∇× E] da =
∮

E ds = −
∫

S

∂B

∂t
da = −∂Φ

∂t
. (1.19)

By virtue of Faraday’s law, the magnetic flux Φ through the area s and
varying in time generates an electromotive force along the boundaries of S. In
accelerator physics this principle is applied in the design of a betatron. Sim-
ilarly, from the second term on the right-hand side in Ampère’s law (1.1) we
get a magnetic induction from a time varying electric field. Both phenomena
play together to form the principle of induction or, in a particular example,
that of a transformer.

1.1.4 The Lorentz Force

The trajectories of charged particles can be influenced only by electric and
magnetic fields through the Lorentz force

F L = q E + q (v × B) . (1.20)

Guiding particles through appropriate electric or magnetic fields is called par-
ticle beam optics or beam dynamics. Knowledge of the location and ampli-
tudes of electric and magnetic fields allows us to predict the path of charged
particles. A closer inspection of (1.20) shows that the same force from electric
or magnetic fields can be obtained if E = vB, where we have assumed that
the particle velocity is orthogonal to the magnetic field, v⊥B. For relativistic
particles v ≈ c. To get the same force from an electric field as from, say, a 1 T
magnetic field, one would have to have an unrealistic high field strength of
E ≈ 300 MV/m. For this reason, magnetic fields are used to deflect or focus
relativistic charged particles. For subrelativistic particles like ion beams with
a velocity v � c, on the other hand, electric fields may be more efficient.
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1.1.5 Equation of Motion

Accelerator physics is to a large extent the description of charged particle dy-
namics in the presence of external electromagnetic fields or of fields generated
by other charged particles. We use the Lorentz force to formulate particle
dynamics under the influence of electromagnetic fields. Whatever the inter-
action of charged particles with electromagnetic fields and whatever the ref-
erence system may be, we depend in accelerator physics on the invariance of
the Lorentz force equation under coordinate transformations. All acceleration
and beam guidance in accelerator physics will be derived from the Lorentz
force. For simplicity, we use throughout this text particles with one unit of
electrical charge e like electrons and protons unless otherwise noted. In the
case of multiply charged ions the single charge e must be replaced by eZ
where Z is the charge multiplicity of the ion. Both components of the Lorentz
force are used in accelerator physics where the force due to the electrical field
is mostly used to actually increase the particle energy while magnetic fields
are used mostly to guide particle beams along desired beam transport lines.
This separation of functions, however, is not exclusive as the example of the
betatron accelerator shows where particles are accelerated by time-dependent
magnetic fields. Similarly electrical fields are used in specific cases to guide or
separate particle beams.

Relating the Lorentz force to particle momentum or kinetic energy, we
know from definitions in classical mechanics that

∆p =
∫

F L dt

∆Ekin =
∫

F L ds



 −→

ds=vdt
β ∆cp = ∆Ekin, (1.21)

where β = v/c. The Lorentz force can be expressed in terms of fields and the
change of kinetic energy becomes

∆Ekin =
∫

F Lds = q

∫
[E + (v × B)] ds (1.22)

= q

∫
E ds + q

∫
(v × B) v︸ ︷︷ ︸

=0

dt,

which indicates that an electric field component in the direction of particle
motion does increase the particle’s kinetic energy, while the magnetic field
does not contribute any acceleration. Magnetic fields are used only to deflect
a particle’s path by changing the direction of its momentum vector.

It becomes obvious that the kinetic energy of the particle changes when-
ever it travels in an accelerating electric field E and the acceleration occurs
in the direction of the electric field. This acceleration is independent of the
particle velocity and acts even on a particle at rest v = 0. The second compo-
nent of the Lorentz force in contrast depends on the particle velocity and is
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directed normal to the direction of propagation and normal to the magnetic
field direction. We find therefore from (1.22) the result that the kinetic en-
ergy is not changed by the presence of magnetic fields since the scalar product
(v × B)v vanishes. The magnetic field causes only a deflection of the particle
trajectory.

The Lorentz force (1.20) in conjunction with (1.21) is used to derive the
equation of motion for charged particles in the presence of electromagnetic
fields

dp
dt

=
d
dt

(mγ v) = eZ E + eZ(v × B), (1.23)

where Z is the charge multiplicity of the charged particle. For simplicity we
drop from here the factor Z since the charge multiplicity is different from unity
only for ion beams. For ion accelerators we note therefore that the particle
charge e must be replaced by eZ.

Both relations in (1.21) can be used to describe the effect of the Lorentz
force on particles. However, ease of mathematics makes us use one or the
other. We use the first equation for dynamics in magnetic fields and the second
for that in accelerating fields. Since the energy or the particle velocity does
not change in a magnetic field it is straightforward to calculate ∆p. On the
other hand, accelerating fields do change the particle’s velocity which must
be included in the time integration to get ∆p. Calculating ∆Ekin, we need
to know only the spatial extent and magnitude of the accelerating fields to
perform the integration.

The particle momentum p = γmv and its time derivative

dp
dt

= mγ
dv
dt

+ mv
dγ
dt

. (1.24)

With
dγ
dt

=
dγ
dβ

dβ
dt

= γ3 β

c

dv
dt

(1.25)

we get from (1.24) the equation of motion

F =
dp
dt

= m

(
γ

dv
dt

+ γ3 β

c

dv
dt

v
)

. (1.26)

For a force parallel to the particle propagation v, we have v̇ v = v̇ v and
(1.26) becomes

dp‖
dt

= mγ
(
1 + γ2β

v

c

) dv‖
dt

= mγ3 dv‖
dt

. (1.27)

On the other hand, if the force is directed normal to the particle propaga-
tion, we have dv/dt = 0 and (1.26) reduces to

dp⊥
dt

= mγ
dv⊥
dt

. (1.28)
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It is obvious from (1.27) and (1.28) how differently the dynamics of par-
ticle motion is affected by the direction of the Lorentz force. Specifically the
dynamics of highly relativistic particles under the influence of electromagnetic
fields depends greatly on the direction of the force with respect to the direction
of particle propagation. The difference between parallel and perpendicular ac-
celeration will have a great impact on the design of electron accelerators. As
we will see later, the acceleration of electrons is limited due to the emission
of synchrotron radiation. This limitation, however, is much more severe for
electrons in circular accelerators where the magnetic forces act perpendicu-
larly to the propagation compared to the acceleration in linear accelerators
where the accelerating fields are parallel to the particle propagation. This ar-
gument is also true for protons or for that matter, any charged particle, but
because of the much larger particle mass the amount of synchrotron radiation
is generally negligibly small.

1.1.6 Energy Conservation

The rate of work done in a charged particle–field environment is defined by
the Lorentz force and the particle velocity F Lv = eEv + e (v × B) v . Noting
that (v × B) v = 0, we set eEv = jE, and the total rate of work done by
all particles and fields can be obtained by integrating Ampère’s law (1.1) over
all currents and fields

∫
jE dV = ε0

∫ (
c2 (∇× B) − Ė

)
E dV . (1.29)

With the vector relation ∇(a × b) = b (∇ × a) − a (∇ × b)

∫
j E dV = ε0

∫ [
c2B ∇×E︸ ︷︷ ︸

=−Ḃ

− c2∇ (E × B) − ĖE

]
dV (1.30)

= −
∫ [

du

d t
+ ε0c

2∇ (E × B)
]

dV,

where an energy density has been defined by

u =
1
2
ε0
(
E2 + c2B2

)
. (1.31)

Applying Gauss’ theorem to the vector product in (1.30), we get an ex-
pression for the energy conservation of the complete particle–field system

d
dt

∫
u dV

︸ ︷︷ ︸
change of

field energy

+
∫

jE dV
︸ ︷︷ ︸

particle energy

loss or gain

+
∮

Snda
︸ ︷︷ ︸

radiation loss through

closed surface a

= 0 . (1.32)
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This equation expresses the conservation of energy relating the change in
field energy and particle acceleration with a new quantity describing energy
loss or gain through radiation.

Poynting Vector

The third integral in (1.32) is performed over a surface enclosing all charges
and currents considered. The Poynting vector S is the energy loss/gain though
a unit surface element in the direction of the unit vector n normal to the
surface defined by

S =
1
µ0

[E × B] . (1.33)

Equation (1.33) exhibits characteristic features of electromagnetic radia-
tion. Both electric and magnetic radiation fields are orthogonal to each other
(E ⊥B), orthogonal to the direction of propagation (E ⊥n, B ⊥ n) , and
the vectors E, B, S form a right-handed orthogonal system. For plane waves
n × E = cB and

S = ε0cE
2 n . (1.34)

1.2 Primer in Special Relativity

Dynamic treatment of high energy particles requires the application of rela-
tivistic relations. We therefore review some of the more relevant issues of the
theory of special relativity.

1.2.1 Lorentz Transformation

Physical phenomena can appear different for observers in different systems of
reference. Yet, the laws of nature must be independent of the reference system.
In classical mechanics, we transform physical laws from one to another system
of reference by way of the Galileo transformation z∗ = z − vt assuming that
one system moves with velocity v along the z-axis of the other system.

As the velocities of bodies under study became faster, it became necessary
to reconsider this simple transformation leading to Einstein’s special theory
of relativity. Maxwell’s equations result in electromagnetic waves expanding
at a finite velocity and do not contain any reference to a specific system of ref-
erence. Any attempt to find a variation of the “velocity of light” with respect
to moving reference systems failed, most notably in Michelson’s experiment.
The expansion velocity of electromagnetic waves is therefore independent of
the reference system and is finite.

Any new transformation laws must include the observation that no element
of energy can travel faster than the speed of light. The new transformation
formulas combine space and time and are for a reference system L∗ moving
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with velocity vz = cβz along the z-axis with respect to the stationary system
L

x = x∗,

y = y∗,

z = γ (z∗ + βz ct
∗) ,

ct = γ (βz z
∗ + ct∗) ,

(1.35)

where the relativistic factor is γ = 1/
√

1 − β2
z with βz = vz/c and where all

quantities designated with ∗ are measured in the moving system L∗. Of course,
either system is moving relative to the other and we will use this relativity
in various circumstances depending on whether quantities are known in the
laboratory or moving system. These Lorentz transformations can be expressed
in matrix formulation by




x

y

z

ct




=




1 0 0 0

0 1 0 0

0 0 γ +βγ

0 0 +βγ γ







x∗

y∗

z∗

ct∗




= ML




x∗

y∗

z∗

ct∗




. (1.36)

The inverse transformation is the same except that the velocity or β changes
sign, v → −v.

Lorentz Transformation of Fields

Without proof, electromagnetic fields transform between reference systems in
relative motion like



Ex

Ey

Ez

cBx

cBy

cBz




=




γ 0 0 0 +γβz 0

0 γ 0 −γβz 0 0

0 0 1 0 0 0

0 −γβz 0 γ 0 0

+γβz 0 0 0 γ 0

0 0 0 0 0 1







E∗
x

E∗
y

E∗
z

cB∗
x

cB∗
y

cB∗
z




. (1.37)

Again, for the inverse transformation only the sign of the relative velocity
must be changed, βz → − βz. According to this transformation of fields, a pure
static magnetic field in the laboratory system L becomes an electromagnetic
field in the moving system L∗. An undulator field, therefore, looks to an
electron like an electromagnetic field like, for example, a laser field and both
interactions can be described by Compton scattering.
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Lorentz Contraction

Characteristic for relativistic mechanics is the Lorentz contraction and time
dilatation, both of which become significant in the description of particle
dynamics. To describe the Lorentz contraction, we consider a rod at rest in
the stationary system L along the z-coordinate with a length � = z2 − z1.
In the system L∗, which is moving with the velocity vz in the positive z-
direction with respect to L, the rod appears to have the length �∗ = z∗2 − z∗1 .
By a Lorentz transformation we can relate that to the length in the L-system.
Observing both ends of the rod at the same time (t2 = t1) the lengths of the
rod as observed from both systems relate like � = z2 − z1 = γ (z∗2 − vzt

∗
2) −

γ (z∗1 − vzt
∗
1) = γ �∗ or

� = γ �∗. (1.38)

A rod at rest in system L appears shorter in the moving particle system L∗

by a factor γ and is always longest in its own rest system. For example, the
periodicity of an undulator λp becomes Lorentz-contracted to λp/γ as seen
by relativistic electrons.

Time Dilatation

Similarly, we may derive the time dilatation or the elapsed time between
two events occurring at the same point (z2 = z1) in both coordinate systems.
From the Lorentz transformations, we get ∆t = t2 − t1 = γ

(
t∗2 + βzz∗

2
c

)
−

γ
(
t∗1 + βzz∗

1
c

)
or

∆t = γ ∆t∗ . (1.39)

As a consequence, high energy, unstable particles, like pions and muons, live
longer and can travel farther as measured in the laboratory system, because
the particle decay time is a particle property and is therefore measured in its
own moving system.

1.2.2 4-Vectors

4-vectors have a special significance in physics. As their name implies, four
physical quantities can form a 4-vector which has convenient properties when
viewed in different reference systems. The components of space–time, for ex-
ample, form a 4-vector r̃ = (x, y, z, ict). To identify 4-vectors, we add a tilde
s̃ to the symbols. All true 4-vectors transform like the space–time coordinates
through the Lorentz transformations

ã∗ = ML ã . (1.40)
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Invariance to Lorentz Transformations

The length of 4-vectors is the same in all reference systems and is therefore
open to measurements and comparisons independent of the location of the
experimenter. In fact, it can be shown (exercise) that even the product of two
arbitrary 4-vectors is Lorentz invariant. Take two 4-vectors in an arbitrary
frame of reference ã∗= (a∗1, a

∗
2, a

∗
3, ia

∗
4) and b̃

∗
= (b∗1, b

∗
2, b

∗
3, ib

∗
4) and form the

product ã∗b̃
∗

in component form. A Lorentz transformation on both 4-vectors
gives ã∗b̃

∗
= ãb̃ , which is the same in any reference system and is therefore

Lorentz invariant. Specifically, the length of any 4-vector is Lorentz invariant.

Space–Time

Imagine a light flash to originate at the origin of the coordinate system
L(x, y, z). At the time t, the edge of this expanding light flash has expanded
with the velocity of light to

x2 + y2 + z2 = c2t2. (1.41)

Observing the same light flash from a moving system, we apply a Lorentz
transformation from the laboratory system L to the moving system L∗ and
get

x∗2 + y∗2 + z∗2 = c2t∗2 (1.42)

demonstrating the invariance of the velocity of light c as was experimentally
verified by Michelson and Morley in 1887. The velocity of light is the same in
all reference systems and its value is

c = 299, 792, 458 m/s. (1.43)

Space–Time 4-Vector

The components of the space–time 4-vector are

s̃ = (x1, x2, x3, x4) = (x, y, z, ict) , (1.44)

where the time component has been multiplied by c to give all components
the same dimension. From the Lorentz invariant world time τ , defined as

cτ =
√

−s̃2, (1.45)

we get

cdτ =
√

c2 (dt)2 − (dx)2 − (dy)2 − (dz)2 =
√

c2 −
(
v2

x + v2
y + v2

z

)
dt

=
√

c2 − v2 dt =
√

1 − β2 cdt, (1.46)
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a relation we know from the Lorentz transformation as time dilatation
dτ = 1

γ dt . This effect has been verified experimentally by studies of unstable
particles at high energies.

Other 4-vectors can be formulated and often become relevant in acceler-
ator physics as, for example, those listed below. More 4-vectors are listed in
Appendix A.

4-Velocity

A velocity 4-vector can be derived from the space–time 4-vector by simple
differentiation

ṽ =
ds̃

dτ
= γ

ds̃

dt
= γ (ẋ, ẏ, ż, ic) . (1.47)

Evaluating the square of the velocity 4-vector we find ṽ2 = γv2−γc2 = −c2

in the rest frame and in any other reference frame. The velocity of light is the
same in any reference system as experimentally verified by Michelson and
Morley.

4-Acceleration

From the velocity 4-vector, we derive the 4-acceleration

ã =
dṽ

dτ
= γ

d
dt

(
γ

ds̃

dt

)
= γ2 d2s̃

dt2
+ γṽ

dγ
dt

= γ2 d2s̃

dt2
+ ṽ

γ3

c2
(va) (1.48)

or in component form ã = (ãx, ãy, ãz, i ãt), we get ãx = γ2ax +γ4βx (β a) , . . .,
ãt = γ4 (β a) where a = (ẍ, ÿ, z̈) is the ordinary acceleration. The Lorentz
invariance of ã2 becomes important to describe the emission of synchrotron
radiation from a relativistic charged particle and observation in a laboratory
reference frame. Conversely, experimental verification of the theory of syn-
chrotron radiation validates the invariance of ã2.

Momentum–Energy 4-Vector

An important 4-vector is the 4-momentum or momentum–energy 4-vector
defined by the canonical momentum cp and total energy E

cp̃ = (cpx, cpy, cpz, iE). (1.49)

The length of the energy–momentum 4-vector cp̃ = (cpx, cpy, cpz,iE) can be
determined by going into the rest frame where the momentum is zero and we
get

c2p̃2 = c2p2
x + c2p2

y + c2p2
z − E2 = −A2m2c4, (1.50)

where we have set E0 = Amc2 for a particle with atomic mass A. From this
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E2 = c2p2 + A2m2c4, (1.51)

demonstrating the experimentally verifiable fact that the particle mass is
Lorentz invariant.

We look now for an expression of (1.51) without the use of velocities and
derive from the product of the velocity and momentum–energy 4-vectors

(γv,iγc) (cp,iE) =⇒ γv cp−cγE = −cAmc2 (1.52)

an expression for the momentum

γβ cp−γE = −Amc2 =⇒ cp =
γE −Amc2

γβ
, since p‖β . (1.53)

Inserting this into (1.51), we get

E2 =
(
γE −Amc2

γβ

)2

+ A2m2c4, (1.54)

and with β2γ2 = γ2 − 1

γ =
E

Amc2
, (1.55)

defining the relativistic factor γ in terms of energies. Sometimes, authors at-
tach this relativistic factor to the mass and assume thereby an increasing
moving mass. Einstein’s point of view is expressed in the following quote: “It
is not good to introduce the concept of the mass of a moving body M = γm0

for which no clear definition can be given. It is better to introduce no other
mass concept than the ‘rest mass’ m0. Instead of introducing M it is better to
mention the expression for the momentum and energy of a body in motion.”
In this book, we take the rest mass m0 as an invariant.

Photon 4-Vector

An analogous 4-vector can be formulated for photons using deBroglie’s re-
lations p = �k and E = �ω for ck̃ = (ckx, cky, ckz,iω). Since the energy–
momentum 4-vector is derived from the canonical momentum, we will have
to modify this 4-vector when electromagnetic fields are present.

Force 4-Vector

The force 4-vector is the time derivative of the energy–momentum 4-vector(
cṗ, iĖ

)
, which is consistent with the observation (so far) that the rest mass

does not change with time.

Electromagnetic 4-Vector

The electromagnetic potential 4-vector is (cA, iφ) .
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Charge/Current 4-Density

The square of the charge/current density 4-vector (vρ, icρ) is v2ρ2 − c2ρ2 =
−c2ρ2

0 in the charge rest frame. As an experimental fact, we know that the
particle charge is Lorentz invariant. Therefore (ρv,iρc) is a 4-vector. In a
somewhat different formulation the charge density is ρ2

0 =
(
1 − β 2

)
ρ2 or

ρ = γρ0, which reflects the Lorentz contraction in one dimension as an increase
in the charge density.

Current 4-Divergence

We may define a divergence 4-vector by ∇̃ = (−∇, i∂/∂t) (note the minus sign
on the space components). With this, we can derive a current 4-divergence
∇̃j̃ = −∇ j− c∂ρ

∂t , leading to ∇j + c∂ρ
∂t = c∂ρ0

∂t = 0, which demands charge
preservation as has been verified in many elementary particle observations of
creation, transformation, and annihilation.

1.2.3 Spatial and Spectral Distribution of Radiation

Of great importance in accelerator and synchrotron radiation physics is the
Lorentz invariance of the product of two 4-vectors. Electromagnetic fields
emanating from relativistic charges can be described by plane waves E∗ =
E∗

0ei Φ∗
, where Φ∗ = ωt∗ − kn∗r∗ is the phase of the wave in the particle

system and is Lorentz invariant. This invariance stems from the fact that
the phase can be formulated as the product of the photon and space–time
4-vectors

c p̃ s̃ = [ckn,iω] [s,ict] , (1.56)

where we have set k = nk with n being the unit vector in the direction of
wave propagation. Using k = ω/c the phase as measured in the laboratory L
is the same as that in the particle frame of reference L∗

ω∗ [(n∗
xx

∗ + n∗
yy

∗ + n∗
zz

∗)− ct∗
]

= ω [(nxx + nyy + nzz) − ct] = invariant.

To derive the relationships between similar quantities in both systems, we use
the Lorentz transformation (1.36), noting that the particle reference frame is
the frame where the particle or radiation source is at rest, and replace the
coordinates (x∗, y∗, z∗, ct∗) by those in the laboratory system for

ω∗ [(n∗
xx

∗ + n∗
yy

∗ + n∗
zz

∗)− ct∗
]

= ω∗ [n∗
xx + n∗

yy + n∗
z (γz − βγct) − (−βγz + γct)

]
(1.57)

= ω [(nxx + nyy + nzz) − ct] ,

from which one can isolate, for example, a relation between ω∗ and ω . Since
the space–time coordinates are independent from each other, we may equate
their coefficients on either side of the equation separately.
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Spectral Distribution

In so doing, the ct-coefficients define the transformation of the oscillation
frequency

ω∗γ (1 + βz n
∗
z) = ω, (1.58)

which expresses the relativistic Doppler effect. Looking parallel and opposite
to the direction of particle motion n∗

z = 1, the observed oscillation frequency
is increased by the factor (1 + βz) γ ≈ 2γ for highly relativistic particles. The
Doppler effect is reduced if the radiation is viewed at some finite angle Θ with
respect to the direction of motion of the source. In these cases n∗

z = cosΘ∗.
The frequency shift can be very large for highly relativistic particles with
γ 
 1.

Spatial Distribution

Similarly, we obtain the transformation of spatial directions from

nx =
n∗

x

γ (1 + βz n∗
z)

, ny =
n∗

y

γ (1 + βz n∗
z)

, nz =
βz + n∗

z

(1 + βz n∗
z)

. (1.59)

These transformations define the spatial distribution of radiation in the
laboratory system. In the case of transverse acceleration the radiation in the
particle rest frame is distributed like cos2 Θ∗ about the direction of motion.
This distribution becomes greatly collimated into the forward direction in the
laboratory system. With n∗2

x +n∗2
y = sin2 Θ∗ and n2

x +n2
y = sin2 Θ ≈ Θ2 and

n∗
z = cosΘ∗, we find

Θ ≈ sinΘ∗

γ(1 + β cosΘ∗)
. (1.60)

In other words, radiation from relativistic particles, emitted in the particle
system into an angle −π/2 < Θ∗ < π/2, appears in the laboratory system
highly collimated in the forward direction within an angle of

∆Θ ≈ ± 1
γ
. (1.61)

This angle is very small for highly relativistic electrons like those in a
storage ring, where γ is of the order of 103–104.

1.3 Elements of Classical Mechanics

Expanding d’Alembert’s principle, we formulate Hamilton’s integral principle
by defining a function L = L(qi, q̇i, t) such that for any mechanical system the
variation of the integral

∫ t1
t0

L dt, called action, vanishes along any real path
(Fig. 1.1) so that
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L(t0)

L(t1)

Fig. 1.1. Variational Principle

δ

∫ t1

t0

L(t) dt = 0 . (1.62)

Here, the variables (qi, q̇i, t) are the coordinates and velocities, respectively,
and t is the independent variable time. We may expand this function and get

δ

∫ t1

t0

L dt =
∫ ∑

i

∂L

∂qi
δqi dt +

∫ ∑
i

∂L

∂q̇i
δq̇i dt . (1.63)

The second term can be modified using the assumption of the variational
theorem which requires that δqi = 0 at the beginning and end of the path

∫
∂L

∂q̇i
δq̇i dt =

∫
∂L

∂q̇i

d
dt

δqi dt =
∂L

∂q̇i

d
dt

δqi

∣∣∣∣
t1

t0︸ ︷︷ ︸
=0

−
∫

d
dt

∂L

∂q̇i
δqi dt . (1.64)

Both terms can now be combined for

δ

∫ t1

t0

L dt =
∫ ∑

i

(
∂L

∂qi
− d

dt
∂L

∂q̇i

)
δqi dt = 0 . (1.65)

This integral can be zero for any arbitrary path if and only if the integrand
vanishes for each component i independently. The resulting equations are
called the Euler–Lagrange equations

d
dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (1.66)

Bypassing a more accurate discussion [3], we guess at the nature of the
Euler–Lagrange equations by considering a falling mass m. The kinetic energy
is T = 1

2mv2 and the potential energy V = gx, where g is the gravitation force.
If we set L = T−V = 1

2mv2−gx and apply (1.66), we get mv̇ = g which is the
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well-known classical equation of motion for a falling mass in a gravitational
field. The time-independent Lagrangian can be defined by [3]

L = T − V (1.67)

and the Lagrange function therefore has the dimension of an energy. Further-
more, in analogy with basic mechanics like a falling mass, we can define the
momenta of a system by

Pi =
∂L

∂q̇i
(1.68)

and call them the generalized canonical momenta. We use a capital P for the
canonical momentum to distinguish it from the ordinary momentum p. Both
are different only when electromagnetic fields are involved.

1.3.1 How to Formulate a Lagrangian?

The formulation of the Lagrangian is a creative process of physics. Whatever
expression one might propose, it should be independent of a particular ref-
erence system and therefore Lorentz invariant. Earlier, we have learned that
the product of two 4-vectors is Lorentz invariant and the product of two,
not necessarily different, 4-vectors is therefore a good choice to form the
Lagrangian. We investigate, for example, the product of the momentum–
energy

(
cp∗x, cp

∗
y, cp

∗
z, iE

∗) =
(
0, 0, 0, imc2

)
and the differential space–time

4-vectors (dx∗, dy∗, dz∗, icdτ) in the particle rest frame and get

1
c

(dx∗,dy∗,dz∗, icdτ)
(
cp∗x, cp

∗
y, cp

∗
z, iE

∗) = −mc2dτ = −mc2
√

1 − β2dt .

(1.69)
This expression has the dimension of an energy and is Lorentz invariant. We
consider therefore this as the Lagrangian for a particle at rest being observed
from a relatively moving laboratory system

L = −mc2
√

1 − β2. (1.70)

The conjugate momenta are Pi = ∂L
∂q̇i

or for the x-component

Px = −m
−vx√
1 − β2

= γmvx (1.71)

and the equation of motion 0 = d
dt

∂L
∂vx

− ∂L
∂x = d

dtPx − 0 or

dPx

dt
= 0 (1.72)

indicating that the particle is in uniform motion with velocity β.
Lagrangian (1.70) is consistent with classical experience if we set β2 � 1

and L = −mc2
√

1 − β2 ≈ −mc2 + 1
2mv2. Since we use only derivatives of the

Lagrangian, we may ignore the constant −mc2 and end up with the kinetic
energy of the free particle.
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The Lagrangian for a Charged Particle in an EM Field

The interaction between charged particle and electromagnetic field depends
only on the particle charge and velocity and on the field. We try therefore
the product of field and velocity 4-vector. Formulating this product in the
laboratory system, where the fields have been generated, we get.

e (Ax, Ay, Az, iφ) γ (vx, vy, vz, i) = eγ (Av − φ) . (1.73)

Noting that γdτ = dt , the extension to the Lagrange function in the
presence of electromagnetic fields is

L = −mc2
√

1 − β2 + eAv − eφ . (1.74)

The canonical momentum is from (1.68)

P =
mv√
1 − β2

+ eA = γmv + eA = p + eA , (1.75)

where p is the ordinary momentum. Equation (1.74) is consistent with L =
T − V , where the potential V = eφ− eAv .

1.3.2 The Lorentz Force

The conjugate momenta in Cartesian coordinates r = (x, y, z) can be derived
from

Ṗ =
∂L

∂r
= e∇ (Av) − e∇φ = e (v∇) A + e [v× (∇× A)] − e∇φ, (1.76a)

where we used the algebraic relation (A.18). Insertion into

d
dt

∂L

∂ṙ
=

dP
dt

=
d
dt

(p + eA) = e (v∇) A + e [v × (∇× A)] − e∇φ (1.76b)

results with ṙ = v and dA
dt = ∂A

∂t + (v ∇) A in an expression for the ordinary
momentum p

d p

dt
= −e

∂A

∂t
+ e [v × (∇× A)] − e∇φ . (1.77)

Converting potentials to fields, we may recover the Lorentz force F L = d p
dt or

F L = eE + e (v × B) . (1.78)
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Fig. 1.2. Frenet–Serret coordinate system

1.3.3 Frenet–Serret Coordinates

A particle trajectory may follow a path described by

r(z) = r0(z) + δr(z) . (1.79)

Here, r0(z) is the ideal path in beam dynamics and an orthogonal coordi-
nate system moves along the ideal path with its origin at r0(z) as shown in
Fig. 1.2.

For this Frenet–Serret coordinate system we define three vectors

ux(z) unit vector ⊥ to trajectory

uz(z) =
dr0(z)

dz
unit vector ‖ to trajectory

uy(z) = uz(z) × ux(z) unit binormal vector

(1.80)

to form an orthogonal coordinate system moving along the trajectory with a
reference particle at r0(z). In beam dynamics we identify the plane defined
by vectors ux and uz(z) as the horizontal plane and the plane orthogonal to
it as the vertical plane, parallel to uy. Change in vectors are determined by
curvatures

dux(z)
dz

= κx uz(z) and
duy(z)

dz
= κy uz(z), (1.81)

where (κx, κy) are the curvatures in the horizontal and vertical plane, respec-
tively. The particle trajectory can now be described by

r(x, y, z) = r0(z) + x(z)ux(z) + y(z)uy(z), (1.82)
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where r0(z) is the location of the coordinate system’s origin (reference par-
ticle) and (x, y) are the deviations of a particular particle from r0(z). The
derivative with respect to z is then

d
dz

r(x, y, z) =
dr0

dz
+ x(z)

dux(z)
dz

+ y(z)
duy(z)

dz
+ x′(z)ux(z) + y′(z)uy(z)

(1.83)
or with (1.80) and (1.81)

dr = ux dx + uy dy + uz hdz, (1.84)

where
h = 1 + κ0xx + κ0yy . (1.85)

Using these Frenet–Serret coordinates, we are able to describe particle
trajectories much more efficiently than we could do in Cartesian coordinates.
Essentially, we have transformed away the ideal path or the geometry of the
design beam transport line which is already well known to us from the place-
ment of beam guidance elements. The new coordinates measure directly the
deviation of any particles from the reference particle.

We may use these relations to introduce a transformation from the Carte-
sian coordinate system to curvilinear Frenet–Serret coordinates in the La-
grangian L = −mc2

√
1 − β2+eAṙ − eφ . In the new coordinates,

√
1 − β2 =√

1 − 1
c2 (ẋ2 + ẏ2 + h2ż2), Aṙ = ẋAx + ẏAy + hżAz, and the Lagrangian be-

comes in curvilinear coordinates of beam dynamics

L = −mc2
√

1 − 1
c2 (ẋ2 + ẏ2 + h2ż2) + e (ẋAx + ẏAy + hżAz) − eφ . (1.86)

1.4 Hamiltonian Formulation

Like any other mechanical system, particle beam dynamics in the presence
of external electromagnetic fields can be described and studied very generally
through the Hamiltonian formalism. The motion of particles in beam trans-
port systems, expressed in normalized coordinates, is that of a harmonic oscil-
lator and deviations caused by nonlinear restoring forces appear as perturba-
tions of the harmonic oscillation. Such systems have been studied extensively
in the past and powerful mathematical tools have been developed to describe
the dynamics of harmonic oscillators under the influence of perturbations. Of
special importance is the Hamiltonian formalism which we will apply to the
dynamics of charged particles. Although this theory is well documented in
many text books, for example in [3, 4], we will recall the Hamiltonian theory
with special attention to the application in charged particle dynamics.

The canonical variables in the Hamiltonian theory are the coordinates and
momenta rather than coordinates and velocities used in the Lagrangian. We
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use a coordinate transformation (qi, q̇i, t) =⇒ (qi, Pi, t) through the definition
of the momenta Pi = ∂L/∂q̇i and define the Hamiltonian function by

H(qi, pi) =
∑

q̇i Pi − L(qi, q̇i) . (1.87)

In analogy to the Lagrangian, we find that q̇iPi = 2T and the Hamiltonian
which does not depend on the time explicitly is therefore the sum of kinetic
and potential energy

H = T + V . (1.88)

This will become useful later since we often know forces acting on par-
ticles which can be derived from a potential. Similar to the Euler–Lagrange
equations, we define Hamiltonian equations by

∂H

∂qi
= −Ṗi and

∂H

∂Pi
= +q̇i. (1.89)

With L = −mc2
√

1 − β2 + eAv − eφ, the Hamiltonian becomes by replacing
velocities with momenta

H(qi, Pi) =
∑

q̇iPi + mc2
√

1 − β2 − eAq̇ + eφ, (1.90)

where q = (q1, q2, . . . , qi, . . .) and A = (A1, A2, . . . , Ai, . . .) , etc. and the
canonical momentum is defined in (1.75) .The canonical momentum is the
combination of ordinary particle momentum p = γmq̇ and field momentum
eA. Insertion into the Hamiltonian and reordering give (H − eφ)2 = m2c4 +
c2 (P − eA)2 or

c2 (P − eA)2 − (H − eφ)2 = −m2c4 . (1.91)

Equation (1.91) is equal to the square of the length of the energy momen-
tum 4-vector [cP , iE], where E = H − eφ, and is therefore Lorentz invariant.
A more familiar form is

H = eφ +
√

c2 (P − eA)2 + m2c4. (1.92)

In nonrelativistic mechanics, the Hamiltonian becomes with β2 � 1 and
ignoring the constant mc2

Hclass =
1
2
mv2 + eφ, (1.93)

which is the sum of kinetic and potential energy.



1.4 Hamiltonian Formulation 25

1.4.1 Cyclic Variables

The solution of the equations of motion become greatly simplified in cases
where the Hamiltonian does not depend on one or more of the coordinates or
momenta. In this case one or more of the Hamiltonian equations (1.89) are
zero and the corresponding conjugate variables are constants of motion. Of
particular interest for particle dynamics or harmonic oscillators are the cases
where the Hamiltonian does not depend on say the coordinate qi but only on
the momenta Pi. In this case we have

H = H(q1, . . . , qi−1, qi+1, . . . , P1, P2, . . . , Pi, . . .) (1.94)

and the first Hamiltonian equation becomes

∂H

∂qi
= −Ṗi = 0 or Pi = const . (1.95)

Coordinates qi which do not appear in the Hamiltonian are called cyclic co-
ordinates and their conjugate momenta are constants of motion. From the
second Hamiltonian equation we get

∂H

∂pi
= q̇i = ai = const , (1.96)

since Pi = const., which can be integrated immediately for

qi(t) = ait + ci, (1.97)

where ci is the integration constant. It is obvious that the complexity of a
mechanical system can be greatly reduced if by a proper choice of canonical
variables some or all dependence of the Hamiltonian on space coordinates can
be eliminated. We will derive the formalism that allows the transformation of
canonical coordinates into new ones, where some of them might be cyclic.

Example. Assume that the Hamiltonian does not depend explicitly on the
time, then ∂H

∂t = 0 and the momentum conjugate to the time is a constant
of motion. From the second Hamilton equation, we have ∂H

∂pi
= d

dt t = 1, and
the momentum conjugate to the time is therefore the total energy pi = H =
const. The total energy of a system with a time-independent Hamiltonian is
constant and equal to the value of the Hamiltonian.

1.4.2 Canonical Transformations

For mechanical systems which allow in principle a formulation in terms of
cyclic variables, we need to derive rules to transform one set of variables
to another set, while preserving their property of being conjugate variables
appropriate to formulate the Hamiltonian for the system. In other words,
the coordinate transformation must preserve the variational principle (1.62).
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Such transformations are called canonical transformations q̄k = fk(qi, Pi, t)
and P̄k = gk(qi, Pi, t) and the variational principle now reads

δ

∫ (∑
k

q̇k Pk −H

)
dt = 0, (1.98a)

δ

∫ (∑
k

˙̄qk P̄k −H

)
dt = 0 . (1.98b)

The new Hamiltonian H need not be the same as the old Hamiltonian H
nor need both integrands be the same. Both integrands can differ, however,
only by a total time derivative of an otherwise arbitrary function G

∑
k

q̇k Pk −H =
∑

k

˙̄qkP̄k −H +
dG
dt

. (1.99)

After integration
∫

dG
dt dt becomes a constant and the variation of the integral

obviously vanishes under the variational principle (Fig. 1.1). The arbitrary
function G is called the generating function and may depend on some or all
of the old and new variables

G = G (qk, q̄k, Pk, P̄k, t) with 0 ≤ k ≤ N . (1.100)

The generating functions are functions of only 2N variables. Of the 4N vari-
ables only 2N are independent because of another 2N transformation equa-
tions (1.98). We may now choose any two of four variables to be independent
keeping only in mind that one must be an old and one a new variable. De-
pending on our choice for the independent variables, the generating function
may have one of four forms

G1 = G1(q, q̄, t), G3 = G3(P, q̄, t),

G2 = G2(q, P̄ , t), G4 = G4(P, P̄ , t),
(1.101)

where we have set q = (q1, q2, . . . , qN ), etc.
We take, for example, the generating function G1, insert the total time

derivative
dG1

dt
=
∑

k

∂G1

∂qk

∂qk

∂t
+
∑

k

∂G1

∂pk

∂Pk

∂t
+

∂G1

∂t
(1.102)

in (1.99), and get after some sorting

∑
k

q̇k

(
Pk − ∂G1

∂qk

)
−
∑

k

˙̄qk

(
P̄k +

∂G1

∂q̄k

)
−
(
H −H +

∂G1

∂t

)
= 0 . (1.103)

Both old and new variables are independent and the expressions in the paren-
theses must therefore vanish separately leading to the defining equations
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Pk =
∂G1

∂qk
, P̄k = −∂G1

∂q̄k
, H = H−∂G1

∂t
. (1.104)

Variables for which (1.104) hold are called canonical variables and the trans-
formations (1.98) are called canonical.

Generating functions for other pairings of new and old canonical variables
can be obtained from G1 by Legendre transformations of the form

G2(q, P̄ , t) = G1(q, q̄, t) + q P̄ . (1.105)

Equations (1.104) can be expressed in a general form for all four differ-
ent types of generating functions. We write the general generating equation
G = G(xk, x̄k, t), where the variables xk and x̄k can be either coordinates
or momenta. Furthermore, xk and x̄k are the old and new coordinates or
momenta, respectively, and the (yk, ȳk) are the conjugate coordinates or mo-
menta to (xk, x̄k). Then

yk = ± ∂

∂xk
G(xk, x̄k, t) ,

ȳk = ∓ ∂

∂x̄k
G(xk, x̄k, t) , (1.106)

H = H̄ − ∂

∂t
G(xk, x̄k, t) .

The upper signs are to be used if the derivatives are taken with respect to
coordinates and the lower signs if the derivatives are taken with respect to
momenta. It is not obvious which type of generating function should be used
for a particular problem. However, the objective of canonical transformations
is to express the problem at hand in as many cyclic variables as possible. Any
form of generating function that achieves this goal is therefore appropriate.

To illustrate the use of generating functions for canonical transformation,
we will discuss a few very general examples. For an identity transformation
we use a generating function of the form

G = q1 P̄1 + q2 P̄2 + · · · (1.107)

and get with (1.106) and i = 1, 2, . . . , N the identities

P i = −∂G

∂qi
= P̄ i, (1.108a)

q̄i = +
∂G

∂P̄i
= qi . (1.108b)

A transformation from rectangular (x, y, z) to cylindrical (r, ϕ, z) coordinates
is determined by the generating function

G (P, q̄) = −Pxr cosϕ− Pyr sinϕ− Pz z (1.109)
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and the transformation relations are

x = − ∂G

∂px
= r cosϕ, P r = −∂G

∂r
= +Px cosϕ + Py sinϕ,

y = − ∂G

∂py
= r sinϕ, Pϕ = − ∂G

r∂ϕ
= −Px sinϕ + Py cosϕ,

z = − ∂G

∂pz
= z, Pz = −∂G

∂z
= Pz.

(1.110)

Similarly, relations for the transformation from rectangular to polar coor-
dinates are derived from the generating function

G = −Px r cosϕ sinϑ− Pyr sinϕ sinϑ− Pzr cosϑ . (1.111)

It is not always obvious if a coordinate transformation is canonical. To identify
a canonical transformation, we use Poisson brackets [3] defined by

[fk(qi, Pj), gk(qi, Pj)] =
∑

i

(
∂fk

∂qi

∂gk

∂Pi
− ∂fk

∂Pi

∂gk

∂qi

)
. (1.112)

It can be shown [3] that the new variables q̄k, P̄k or (1.98) are canonical if and
only if the Poisson brackets

[P̄i, P̄j ] = 0, [q̄i, q̄j ] = 0, [q̄i, P̄j ] = λδij , (1.113)

where δij is the Kronecker symbol and the factor λ is a scale factor for the
transformation. To preserve the scale in phase space, the scale factor must
be equal to unity, λ = 1. While the formalism for canonical transformation
is straightforward, we do not get a hint as to the optimum set of variables
for a particular mechanical system. In the next sections we will see, however,
that specific transformations have been identified and developed which prove
especially useful for a whole class of mechanical systems.

1.4.3 Curvilinear Coordinates

The choice of a particular coordinate system, of course, must not alter the
physical result and from this point of view any coordinate system could be
used. However, it soon becomes clear that the pursuit of physics solutions can
be mathematically much easier in one coordinate system that in another. For
systems which are symmetric about a point we would use polar coordinates,
for systems which are symmetric about a straight line we use cylindrical coor-
dinates. In beam dynamics there is no such symmetry, but we have a series of
magnets and other components aligned along some, not necessarily straight,
line. The collection of these elements is what we call a beam line. The par-
ticular arrangement of elements is in most cases not determined by physics
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but other more practical considerations. The matter of fact is that we know
about the “ideal” path that all particle should go being defined by the physi-
cal centers of the beam line elements. In a fixed Cartesian coordinate system
the result of “ideal” beam dynamics would be a complicated mathematical
expression trying to describe the “ideal” path in which we have no interest,
since we already know where it is. What we are interested in is the deviation
a particular particle might have from the ideal path. The most appropriate
coordinate system would therefore be the one which moves along the ideal
path. In Sect. 1.3.3, we have introduced such a curvilinear references system
also known as the Frenet–Serret reference system . The transformation from
Cartesian to Frenet–Serret coordinates can be derived from the generating
function formed from the old momenta and the new coordinates

G(z, x, y, Pc,z, Pc,x, Pc,y) = − (cP c − ecAc) [r0(z) + xux(z) + y uy(z)] .
(1.114)

The momenta and fields in the old, Cartesian coordinate system are designated
with the index c. The new canonical momenta P in the Frenet–Serret system
are then, while noting that the transverse momenta are the same, in both
systems

(cPz − ecAzh) = −∂G

∂z
= (cPz − ecAz)c h,

(cPx − ecAx) = −∂G

∂x
= (cPx − ecAx)c , (1.115)

(cPy − ecAy) = −∂G

∂y
= (cPy − ecAy)c ,

with curvatures κ0x,y = 1
ρ0x,y

and h = (1 + κ0xx + κ0yy) as defined in (1.85) .

The Hamiltonian Hc = eφ + c
√

m2c2 + (P − eA)2c in Cartesian coordinates
transforms then to the one in curvilinear coordinates of beam dynamics

H = eφ + c

√
m2c2 +

(Pz − eAzh)
h2

2

+ (Px − eAx)2 + (Py − eAy)2. (1.116)

For a particle traveling through a uniform field By, we have A = (0, 0, Az) =
(0, 0,−By x), Px,y = px,y, and the Hamiltonian is with Az = Ac,zh

Hh = eφ + c

√
m2c2 + p2

x + p2
y +

1
h2

(Pz + eByhx)2. (1.117)

The distinction we make here on fields in curvilinear and Cartesian co-
ordinates stems from the practice to build magnets in a certain way. Dipole
magnets are designed carefully to have a uniform field in the beam area along
the curved path, which is not consistent with the transformation of a uniform
dipole field in cartesian coordinates to one
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1.4.4 Extended Hamiltonian

The Hamiltonian as derived so far depends on the canonical variables (qi, Pi)
and the independent variable (t) or (z) defined for individual particles. This
separate treatment of the independent variable can be eliminated by formu-
lating an extended Hamiltonian in which all coordinates are treated the same.

Starting with H(q1, q2, . . . , qf, P1, P2, P3, . . . , Pf, t), we introduce the inde-
pendent variables (q0, P0) by setting

q0 = t and P0 = −H (1.118)

and obtain a new Hamiltonian

H(q0, q1, q2, . . . , qf, P0, P1, P2, P3, . . . , Pf) = H + P0 = 0 (1.119)

and Hamilton’s equations are then

dqi

dt = ∂H
∂Pi

dPi

dt = −∂H
∂qi





for i = 0, 1, 2 . . . . (1.120)

In particular, for i = 0, the equations are

dq0
dt

= 1 → q0 = t + C1 (1.121)

and

dP0

dt
= −∂H

∂q0
= −∂H

∂t
= −dH

dt
=⇒ P0 = −H + C2 . (1.122)

The momentum conjugate to the time is equal to the Hamiltonian and
since H 
= H (τ) for static fields, it follows that

dP0

dτ
= 0 =⇒ H = const. (1.123)

Now, the independent variable is no more distinguishable from all other
coordinates, the Hamiltonian is expressed as a function of coordinates and
momenta only.

1.4.5 Change of Independent Variable

Since no particular coordinate is designated as the independent variable, we
may use any of the coordinates as that. For example, we prefer often to use
the longitudinal coordinate z as the independent variable rather than the time
t. More generally, consider to change the independent variable from qi to qj .
Defining, for example, q3 as the new independent variable, we solve H for P3
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p3 = −K(q0, q1, q2, . . . , qf, P0, P1, P2, P3, . . . , pf) (1.124)

and define a new extended Hamiltonian

K = P3 + K = 0 . (1.125)

Then equations

∂K
∂P3

=
dq3
dq3

= 1, (1.126a)

− ∂K
∂q3

=
dP3

dq3
= −∂K

∂q3
, (1.126b)

∂K
∂Pi�=3

=
dqi�=3

dq3
=

∂K

∂Pi�=3
, (1.126c)

− ∂K
∂qi�=3

=
dPi�=3

dP3
= − ∂K

∂qi�=3
(1.126d)

are in Hamiltonian form with the Hamiltonian

K = −p3 . (1.127)

To use the longitudinal coordinate z rather than the time t as the inde-
pendent variable, we start with Hamiltonian (1.116)

H (x, y, z, t) = eφ +

√
1
h2

(cPz − ecAzh)2 + c2p2
⊥ + m2c4, (1.128)

where p2
⊥ = p2

x + p2
y . The longitudinal momentum is

cPz = ceAzh + h

√
(H − eφ)2 − (cp⊥)2 −m2c4

= ceAzh + h
√

c2p2 − c2p2
⊥, (1.129)

where E2 = (H − eφ)2 = (cp)2 +
(
mc2

)2 has been used. We further normalize
to the momentum p and use trajectory slopes, x′ = dx/dz = px/pz , etc. rather
than momenta. With this, the new Hamiltonian is K (x, x′, y, y′, z) = −Pz/p

or using Pz/p = eAz/p + h
√

1 − p2
⊥/p2 and p2

⊥/p2 ≈ x′ 2 + y′ 2

K(x, x′, y, y′, z) = −eAzh

p
− h
√

1 − x′2 − y′2. (1.130)

In beam dynamics, we restrict ourselves to paraxial beams,where x′ � 1
and y′ � 1, and the momentum p ≈ pz. Note p may not be the canonical
momentum if there is an electromagnetic field present, but P = p + eA is
canonical. In this last step, we seem to have lost terms involving transverse
vector potential components. This meets with the requirements of almost all



32 1 Of Fields and Forces

beam transport lines, where we use predominantly transverse fields which can
be derived from the Az-component only. This is not true when we consider,
for example, solenoid fields which occur rather seldom and will be treated
separately. Finally, we separate the ideal particle momentum p0 from the
momentum deviation δ = ∆p/p0 and replace 1/p = 1/ [p0 (1 + δ)] ≈ 1

p0
(1 − δ)

in the Hamiltonian for

K(x, x′, y, y′, z) ≈ −eAzh

p0
(1 − δ) − h

√
1 − x′2 − y′2. (1.131)

As discussed before, magnetic fields for particle beam dynamics can be
derived from a single component Az of the vector potential and the task to
determine equations of motion is now reduced to that of determining the
vector potential for the magnets in use. The equations of motion are from
(1.131)

∂K

∂x
= −x′′ = − e

p0

∂Azh

∂x
(1 − δ) − κ0x

√
1 − x′2 − y′2, (1.132)

∂K

∂y
= −y′′ = − e

p0

∂Azh

∂y
(1 − δ) − κ0y

√
1 − x′2 − y′2. (1.133)

With hBy = −∂Azh
∂x and hBx = ∂Azh

∂y the equations of motion become
finally in paraxial approximation

x′′ +
e

p0
By h (1 − δ) − κ0x = 0, (1.134)

y′′ − e

p0
Bxh (1 − δ) − κ0y = 0 . (1.135)

These equations of motion are expressed in Cartesian coordinates which
are rather inconvenient in particle beam dynamics. The solutions include the
arbitrary layout of the beam line which is in most cases not easy to ex-
press mathematically. We will soon introduce a coordinate transformation
into curvilinear coordinates which eliminates this complication.

Problems

1.1. Derive the space charge force on a particle within a beam of equal par-
ticles and uniform density ρ0.

1.2 (S). Prove the validity of the field equations Er = 1
2ε0

ρ0r and Bϕ =
1

2ε0
βρ0r for a uniform cylindrical particle beam with constant charge density

ρ0 within a radius r < R. Derive the field expressions for r > R.

1.3 (S). Derive the electric and magnetic fields of a beam with a radial charge
distribution ρ (r, ϕ, z) = ρ (r). Derive the field equations for a Gaussian charge
distribution with standard deviation σ given by ρ (r) = ρ0 exp

[
−r2/

(
2σ2
)]

.
What are the fields for r = 0 and r = σ?
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1.4 (S). A circular accelerator with a circumference of 300 m contains a uni-
form distribution of singly charged particles orbiting with the speed of light. If
the circulating current is 1 A, how many particles are orbiting? We instantly
turn on an ejection magnet so that all particles leave the accelerator during
the time of one revolution. What is the peak current at the ejection point?
How long is the current pulse duration? If the accelerator is a synchrotron
accelerating particles at a rate of 10 acceleration cycles per second, what is
the average ejected particle current?

1.5 (S). A proton with a kinetic energy of 1 eV is emitted parallel to the
surface of the earth. What is the bending radius due to gravitational forces?
What are the required transverse electrical and magnetic fields to obtain the
same bending radius? What is the ratio of electrical to magnetic field? Is
this ratio different for a proton energy of say 10 TeV? Why? (Gravitational
constant is 6.67259 × 10−11 m3 kg−1 s−2).

1.6 (S). Consider a highly relativistic electron bunch of n = 1010 uniformly
distributed electrons. The bunch has the form of a cylindrical slug, � = 1 mm
long and a radius of R = 0.1 µm. What is the electrical and magnetic field
strength at the surface of the beam. Calculate the peak electrical current of
the bunch. If two such beams in a linear collider with an energy of 500 GeV
pass by each other at a distance of 10 µm (center to center), what is the
deflection angle of each beam due to the field of the other beam?

1.7. Use the results of Problem 1.1 and consider a parallel beam at the begin-
ning of a long magnet free drift space. Follow a particle under the influence
of the beam self-fields starting at a distance r0 = σ from the axis. Derive the
radial particle distance from the axis as a function of z.

1.8 (S). Show that for plane waves n × E = cB .

1.9 (S). Use the definition for β, the momentum, the total, and kinetic energy
and derive expressions p(β,Ekin), p(Ekin) and Ekin(γ). Simplify the expres-
sions for very large energies, γ 
 1. Derive from these relativistic expressions
the classical nonrelativistic formulas.

1.10. Plot on log–log scale the velocity β, momentum, and kinetic energy as a
function of the total energy for electrons, protons, and gold ions Au+14. Vary
the total energy from 0.01 mc2 to 104mc2.

1.11 (S). Protons are accelerated to a kinetic energy of 200 MeV at the end
of the Fermilab Alvarez linear accelerator. Calculate their total energy, their
momentum, and their velocity in units of the velocity of light.

1.12 (S). Protons are accelerated to a kinetic energy of 200 MeV at the end
of the Fermilab Alvarez linear accelerator. Calculate their total energy, their
momentum, and their velocity in units of the velocity of light.
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1.13. Show that (1.15) is indeed a solution of (1.13).

1.14 (S). Consider electrons to be accelerated in the L = 3 km long SLAC
linear accelerator with a uniform gradient of 20 MeV/m. The electrons have a
velocity v = c/2 at the beginning of the linac. What is the length of the linac
in the rest frame of the electron? Assume the particles at the end of the 3 km
long linac would enter another 3 km long tube and coast through it. How long
would this tube appear to be to the electron?

1.15 (S). A charged pion meson has a rest energy of 139.568 MeV and a
mean life time of τ0π = 26.029 nsec in its rest frame. What are the lifetimes,
if the pion kinetic energy is 20 MeV? And 100 MeV? A pion beam decays
exponentially like e−t/τπ . At what distance from the source will the pion beam
intensity have fallen to 50%, if the kinetic energy is 20 MeV? Or 100 MeV?

1.16. Express the equation of motion (1.23) for Z = 1 in terms of particle
acceleration, velocity, and fields only. Verify from this result the validity of
(1.27) and (1.28).

1.17 (S). A positron beam of energy E accelerated in the linac hits a fixed
hydrogen target. What is the available energy from a collision with a tar-
get electron assumed to be at rest? Compare this available energy with that
obtained in a linear collider where electrons and positrons from two similar
linacs collide head on at the same energy.

1.18 (S). The SPEAR colliding beam storage ring has been constructed orig-
inally for electron and positron beams to collide head-on with an energy of
up to 3.5 GeV. At 1.55 GeV per beam a new particle, the ψ/J particle, was
created. In a concurrent experiment, such a ψ/J particle has been produced
by protons hitting a hydrogen target. What proton energy was required to
produce the new particle? Determine the positron energy needed to create
ψ/J particles by collisions with electrons in a fixed target.

1.19 (S). Consider the production of antiprotons by accelerating protons and
letting them collide with other protons in a stationary hydrogen target. What
is the minimum kinetic energy the accelerated protons must have to produce
antiprotons? Use the reaction p + p −→ p + p + p + p̄ to preserve the baryon
number.

1.20 (S). Show that the product of two 4-vectors is Lorentz invariant.

1.21 (S). Prove that the 4-acceleration is indeed given by (1.48).

1.22 (S). The design for the Relativistic Heavy Ion Collider RHIC calls for
the acceleration of completely ionized gold atoms in a circular accelerator with
bending magnets reaching a maximum field of 3.45 T. What is the maximum
achievable kinetic energy per nucleon for gold ions Au+77 compared to pro-
tons? Calculate the total energy, momentum, and velocity of the gold atoms.
(AAu = 197)
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1.23 (S). Gold ions Au+14 are injected into the Brookhaven Alternating Gra-
dient Synchrotron (AGS) at a kinetic energy per nucleon of 72 MeV/u. What
is the velocity of the gold ions? The AGS was designed to accelerate protons
to a kinetic energy of 28.1 GeV. What is the corresponding maximum kinetic
energy per nucleon for these gold ions that can be achieved in the AGS? The
circulating beam is expected to contain 6× 109 gold ions. Calculate the beam
current at injection and at maximum energy assuming there are no losses
during acceleration. The circumference of the AGS is CAGS = 807.1 m. Why
does the beam current increase although the circulating charge stays constant
during acceleration?

1.24 (S). Using 4-vectors, derive the frequency of an outgoing photon from a
head-on Compton scattering process of an electron with a photon of frequency
ω.

1.25 (S). Using 4-vectors, derive the frequency of an outgoing photon from
a head-on Compton scattering process of an electron with the field of an
undulator with period λu.

1.26 (S). Show that the Hamiltonian transforms like Hϕ = dt
dϕHt, if the

independent variable is changed from t to ϕ.

1.27. Determine which of the following transformations are canonical and
which are not:

(a)
q1 = x1 p1 = ẋ1

q2 = x2 p2 = ẋ2

(b) q = r cosψ p = r sinψ

(c)
q1 = x1 p1 = ẋ1 ± ẋ2

q2 = x1 ± x2 p2 = ẋ2

(d) q = q0eε p = p0eε.

Show the formalism you use.

1.28 (S). Derive from Lagrangian (1.86) the equation of motion.
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Particle Dynamics in Electromagnetic Fields

The most obvious components of particle accelerators and beam transport sys-
tems are those that provide the beam guidance and focusing system. Whatever
the application may be, a beam of charged particles is expected by design to
follow closely a prescribed path along a desired beam transport line or along
a closed orbit in case of circular accelerators. The forces required to bend and
direct the charged particle beam or provide focusing to hold particles close to
the ideal path are known as the Lorentz forces and are derived from electric
and magnetic fields through the Lorentz equation.

2.1 The Lorentz Force

For a particle carrying a single basic unit of electrical charge the Lorentz force
is expressed by

F = eE + e [v × B] , (2.1)

where e is the basic unit of electrical charge [5].
The vectors E and B are the electrical and magnetic field vectors, respec-

tively, and v is the velocity vector of the particle. These Lorentz forces will
be applied not only to guide particles along a predefined path but will also
be used for beam focusing to confine a beam of particles to within a narrow
vicinity of the ideal path. The evolution of particle trajectories under the in-
fluence of Lorentz forces is called beam dynamics or beam optics. The basic
formulation of beam dynamics relies only on linear fields which are indepen-
dent of or only linearly dependent on the distance of a particular particle from
the ideal trajectory. The mathematical description of particle trajectories in
the presence of only such linear fields is called linear beam dynamics.

The Lorentz force has two components originating from either an electrical
field E or a magnetic field B. For relativistic particles (v ≈ c) we find that the
force from a magnetic field of 1 T is equivalent to that for an electrical field of
300 MV/m. Since it is technically straightforward to generate magnetic fields
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of the order of 1 T, but rather difficult to establish the equivalent electric
fields of 3 Million V/cm, it becomes apparent that most beam guidance and
focusing elements for relativistic particle beams are based on magnetic fields.
At low particle energies (v � c) this preference is less clear and justified since
the effectiveness of magnetic fields to bend particles is reduced proportional
to the particle velocity β = v/c.

2.2 Fundamentals of Charged Particle Beam Optics

Magnetic as well as electric fields can be produced in many ways and appear
in general in arbitrary directions and varying strengths at different locations.
It is impossible to derive a general mathematical formula for the complete
path of charged particles in an arbitrary field distribution. To design particle
beam transport systems, we therefore adopt some organizing and simplify-
ing requirements on the characteristics of electromagnetic fields used. In this
section, first general expressions for the electromagnetic fields will be derived
which are then introduced into the equations of motions. At that point it
becomes obvious which field components are the most useful to design pre-
dictable beam transport systems. By appropriate design of magnets less de-
sirable terms become negligibly small.

The general task in beam optics is to transport charged particles from
point A to point B along a desired path. We call the collection of bending
and focusing magnets installed along this ideal path the magnet lattice and
the complete optical system including the bending and focusing parameters
a beam transport system. Two general cases can be distinguished in beam
transport systems. Systems that display neither symmetry nor periodicity
and transport systems that include a symmetric or periodic array of mag-
nets. Periodic or symmetric transport systems can be repeated an arbitrary
number of times to produce longer transport lines. A specific periodic magnet
lattice is obtained if the arrangement of bending magnets forms a closed loop.
In our discussions of transverse beam dynamics, we will make no particular
distinction between open beam transport lines and circular lattices except in
such cases when we find the need to discuss special eigensolutions for closed
periodic lattices. We will therefore use the terminology of beam transport
systems when we discuss beam optics results applicable to both types of lat-
tices and refer to circular accelerator lattices when we derive eigenfunctions
characteristic only to periodic and closed magnet lattices.

2.2.1 Particle Beam Guidance

To guide a charged particle along a predefined path, magnetic fields are used
which deflect particles as determined by the equilibrium of the centrifugal
force and the Lorentz force
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mγv2 κ + e [ v × B ] = 0, (2.2)

where κ = (κx, κy, 0) is the local curvature vector of the trajectory with

κx,y =
1

ρx,y
(2.3)

and ρx,y the local bending radius of the trajectory.
We assume in general that the magnetic field vector B is oriented normal

to the velocity vector v. This means we restrict the treatment of linear beam
dynamics to purely transverse fields. The restriction to purely transverse field
components has no fundamental reason other than to simplify the formulation
of particle beam dynamics. The dynamics of particle motion in longitudinal
fields will be discussed in Chap. 6. As mentioned earlier, the transverse com-
ponents of the particle velocities for relativistic beams are small compared to
the particle velocity vz (vx � vz, vy � vz, vz ≈ vs). With these assumptions,
the bending radius for the particle trajectory in a magnetic field is from (2.2)
with p = γmv

1
ρ

=
∣∣∣∣
e

p
B

∣∣∣∣ =
∣∣∣∣
ec

βE
B

∣∣∣∣ (2.4)

and the angular frequency of revolution of a particle on a complete orbit
normal to the field B is

ω
L

=
∣∣∣∣
e c2

E
B

∣∣∣∣ , (2.5)

which is also called the cyclotron or Larmor frequency [6]. Often, the beam
rigidity, defined as

|B ρ | =
p

e
, (2.6)

is used to normalize the magnet strength. Using more practical units the
expressions for the beam rigidity and curvature become

Bρ (Tm) =
10

2.998
β E (GeV) (2.7)

and
1
ρ

(
m−1

)
=

|B|
|Bρ| = 0.2998

|B (T) |
β E (GeV)

. (2.8)

For relativistic particles this expression is further simplified since β ≈ 1. The
deflection angle in a magnetic field is

θ =
∫

ds
ρ

(2.9)

or for a uniform field like in a dipole magnet of arc length �m, the deflection
angle is θ = �m/ρ.

In this textbook, singly charged particles will be assumed unless otherwise
noted. For multiply charged particles like ions, the electrical charge e in all
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equations must be replaced by eZ if, for example, ions of net charge Z are
to be considered. Since it is also customary not to quote the total ion energy,
but the energy per nucleon, (2.8) becomes for ions

1
ρ

(
m−1

)
= 0.2998

Z

A

|B (T) |
β E (GeV/u)

, (2.10)

where E is the total energy per nucleon.
Beam guiding or bending magnets and focusing devices are the most ob-

vious elements of a beam transport system and we will shortly discus such
magnets in some more detail. Later, in Chap. 3, we will introduce all multipole
magnets in a more formal way.

Design Characteristics of a Dipole Magnet

The expressions for the magnetic potentials give us a guide to design devices
that generate the desired fields. Multipole fields are generated mostly in one
of two ways: by iron dominated magnets, or by proper placement of electrical
current carrying conductors. The latter way is mostly used in high field su-
perconducting magnets, where fields beyond the general saturation level for
iron at about 2 T are desired.

In iron dominated magnets, fields are determined by the shape of the
iron surfaces. Like metallic surfaces are equipotential surfaces for electrical
fields, so are surfaces of ferromagnetic material, like iron in the limit of in-
finite magnetic permeability, equipotential surfaces for magnetic fields. This
approximate property of iron surfaces can be exploited for the design of un-
saturated or only weakly saturated magnets. The fact that iron never reaches
infinite permeability does not affect the validity of the assumption that we can
produce specific multipoles by forming iron surfaces designed according to the
desired magnetic potential. For preliminary design calculations, it is sufficient
to assume infinite permeability of the ferromagnetic material. Where effects
of finite permeability or magnetic saturation become important, the fields are
determined numerically by mathematical relaxation methods. In this text,
we will not be able to discuss the details of magnet design and construction
but will concentrate only on the main magnet features from a beam dynamics
point of view. A wealth of practical experience in the design of iron dominated
accelerator magnets, including an extensive list of references, is compiled in a
review article by Fischer [7] and a monograph by Tanabe [8].

A dipole field can be generated, for example, in an electromagnet as shown
in Fig. 2.1, where the beam would travel normal to the cross section into the
center of the magnet.

The magnetic field B is generated by an electrical current I in current car-
rying coils surrounding magnet poles. A ferromagnetic return yoke surrounds
the excitation coils providing an efficient return path for the magnetic flux.
The magnetic field is determined by Ampere’s law
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Fig. 2.1. Cross section of a dipole magnet (schematic)

∇ × B

µr
= j , (2.11)

where µr is the relative permeability of the ferromagnetic material and j is
the current density in the coils. Integrating (2.11) along a closed path like the
one shown in Fig. 2.1 and using Stoke’s theorem give

2GB⊥ +
∫

iron

B

µr
dσ = µ0Itot, (2.12)

where B⊥ is the magnetic field between and normal to the parallel magnet
poles with a gap distance of 2G. The integral term in (2.12) is zero or negligi-
bly small in most cases assuming infinite or a very large permeability within
the magnetic iron. Itot = 2Icoil is the total current flowing in the complete
cross section of both coils. Solving (2.12) for the total current in each coil we
get in more practical units

Icoil (A) =
1
µ0

B⊥ (T)G (m) , (2.13)

which is proportional to the magnetic field and the aperture between the
magnet poles.

As a practical example, we consider a magnetic field of 1 T in a dipole
magnet with an aperture of 2G = 10 cm. From (2.13), a total electrical current
of about 40,000 A is required in each of two excitation coils to generate this
field. Since the coil in general is composed of many turns, the actual electrical
current is much smaller by a factor equal to the number of turns and the total
coil current Icoil is therefore often measured in units of Ampere × turns. For
example, a coil composed of 40 windings with sufficient cross section to carry
an electrical current of 1000 A would provide the total required current of
40,000 A × turns.
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2.2.2 Particle Beam Focusing

Similar to the properties of light rays, particle beams also have a tendency
to spread out due to an inherent beam divergence. To keep the particle beam
together and to generate specifically desired beam properties at selected points
along the beam transport line, focusing devices are required. In photon optics
that focusing is provided by glass lenses. The characteristic property of such
focusing lenses is that a light ray is deflected by an angle proportional to the
distance of the ray from the center of the lens (Fig. 2.2). With such a lens a
beam of parallel rays can be focused to a point and the distance of this focal
point from the lens is called the focal length.

focal point 
α

f
focal length focusing lens 

r

Fig. 2.2. Principle of focusing

Any magnetic field that deflects a particle by an angle proportional to its
distance r from the axis of the focusing device will act in the same way as a
glass lens does in the approximation of paraxial, geometric optics for visible
light.

If f is the focal length, the deflection angle α is defined from Fig. 2.2 by

α = − r

f
. (2.14)

A similar focusing property can be provided for charged particle beams by
the use of azimuthal magnetic fields Bϕ with the property

α = − �

ρ
= − e

βE
Bϕ � =

e

βE
g r �, (2.15)

where � is the path length of the particle trajectory in the magnetic field
Bϕ and g is the field gradient defined by Bϕ = gr or by g = dBϕ/dr. Here
we have assumed the length � to be short compared to the focal length such
that r does not change significantly within the magnetic field. If this is not
allowable, the product Bϕ� must be replaced by the integral

∫
Bϕ dσ.
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To get the focusing property (2.14) we require a linear dependence on r of
either the magnetic field Bϕ or of the magnet length. We choose the magnetic
field to increase linearly with the distance r from the axis of the focusing
device while the magnet length remains constant.

A magnetic field that provides the required focusing property of (2.15)
can be found, for example, in a conductor carrying a uniform current density.
Clearly, such a device does not seem very useful for particle beam focusing. To
improve the “transparency” for particles, Panofsky and Baker [9] proposed to
use a plasma lens “which contains a longitudinal arc of nearly uniform current
density” and a similar device has been proposed in [10]. Still another varia-
tion of this concept is the idea to use an evenly distributed array of wires,
called the wire lens [11], simulating a uniform longitudinal current distrib-
ution. The strength of such lenses, however, is not sufficient for focusing of
high energy particles even if we ignore the obvious scattering problems. Both
issues, however, become irrelevant, where focusing is required in combination
with particle conversion targets. Here, for example, a Lithium cylinder, called
a Lithium lens, carrying a large pulsed current can be used to focus positrons
or antiprotons emerging from conversion targets [12,13].

A different type of focusing device is the parabolic current sheet lens. In
its simplest form, the current sheet lens is shown in Fig. 2.3. The rotational
symmetric lens produces an azimuthal magnetic field which scales inversely
proportional to r, Bϕ ∼ 1/r. Since the length of the lens scales like � ∼ r2,
the deflection of a particle trajectory increases linear with r as desired for a
focusing lens.

The field strength depends on the particular parameter of the paraboloid
used for the current sheet and the electrical current. The magnetic field is
from Maxwell’s equation

B

BI I
e+

Fig. 2.3. Parabolic current sheet lens (schematic)
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Bϕ (T) =
µ0

2π
I (A)
r (m)

(2.16)

and with � = a r2 the product of the field gradient g = ∂Bϕ/∂r and the length
� is

g � (T) =
µ0

2π
a
(
m−1

)
I (A) . (2.17)

The use of a parabolic shape for the current sheet is not fundamental. Any
form with the property � ∼ r2 will provide the desired focusing properties.
A geometric variation of such a system is used in high energy physics to
focus a high energy K-meson beam emerging from a target into the forward
direction [14, 15]. Since the decaying kaon beam produces neutrinos among
other particles, this device is called a neutrino horn,. On a much smaller scale
compared to the neutrino horn, a similar focusing devices can be used to
focus positrons from a conversion target into the acceptance of a subsequent
accelerator [16,17].

This type of lens may be useful for specific applications but cannot be
considered a general focusing device, where an aperture, free of absorbing
material, is required to let particles pass without being scattered. The most
suitable device that provides a material free aperture and the desired focusing
field is called a quadrupole magnet. The magnetic field can be derived in
Cartesian coordinates from the scalar potential

V = − g x y (2.18)

to be

−∂V

∂x
= Bx = g y, (2.19)

−∂V

∂y
= By = g x . (2.20)

These fields clearly deflect a particle trajectory proportional to its distance
from the optical axis. Magnetic equipotential surfaces with a hyperbolic profile
following the desired scalar potential (2.18) will be suitable to create the
desired fields. The field pattern of a quadrupole magnet is shown schematically
in Fig. 2.4.

In beam dynamics, it is customary to define an energy independent focus-
ing strength. Similar to the definition of the bending curvature in (2.4) we
define a focusing strength k by

k =
e

p
g =

ec

βE
g (2.21)

and the focal length of the magnetic device is from (2.14)

f −1 = k � . (2.22)

In more practical units, the focusing strength is given in analogy to (2.8) by
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Fig. 2.4. Magnetic field pattern for a quadrupole magnet

k
(
m−2

)
= 0.2998

g (T/m)
βE (GeV)

. (2.23)

Multiplication with Z/A gives the focusing strength for ions of charge mul-
tiplicity Z and atomic weight A. Consistent with the sign convention of the
Frenet–Serret coordinate system, the field directions are chosen such that
a positively charged particle like a proton or positron moving at a distance
x > 0 parallel to the z-axis is deflected toward the center (focusing), while the
same particle with a vertical offset from the z-axis (y > 0) becomes deflected
upward (defocusing).

Quadrupole magnets are focusing only in one plane and defocusing in the
other. This property is a result of Maxwell’s equations but does not diminish
the usefulness of quadrupole magnets as focusing elements. A combination
of quadrupoles can become a system that is focusing in both planes of a
Cartesian coordinate system. From paraxial light optics it is known that the
total focal length of a combination of two lenses with focal lengths f1 and f2

and separated by a distance d is given by

1
f

=
1
f1

+
1
f2

− d

f1 f2
. (2.24)

A specific solution is f1 = −f2 and a quadrupole doublet with this property
is focusing in both the horizontal and vertical plane with equal focal length
1/f = d /| f1 f2|. Equation (2.24) allows many other solutions different from
the simple assumption made here. The fundamental observation here is that
there exist indeed combinations of focusing and defocusing quadrupoles which
can be made focusing in both planes and are therefore useful for charged
particle beam focusing.
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2.3 Equation of Motion

We use magnetic fields to guide charged particles along a prescribed path or
at least keep them close by. This path, or reference trajectory, is defined geo-
metrically by straight sections and bending magnets only. In fact it is mostly
other considerations, like the need to transport from an arbitrary point A to
point B in the presence of building constraints, that determine a particular
path geometry. We place dipole magnets wherever this path needs to be de-
flected and have straight sections in between. Quadrupole and higher order
magnets do not influence this path but provide the focusing forces necessary
to keep all particles close to the reference path.

The most convenient coordinate system to describe particle motion is the
Frenet–Serret system that follows with the particle along the reference path. In
other words, we use a curvilinear coordinate system as defined mathematically
by (1.80). The curvatures are functions of the coordinate z and are nonzero
only where there are bending magnets. In deriving the equations of motion,
we limit ourselves to the horizontal plane only. The generalization to both
horizontal and vertical plane is straightforward. We calculate the deflection
angle of an arbitrary trajectory for an infinitesimal segment of a bending
magnet with respect to the ideal trajectory. Using the notation of Fig. 2.5,
the deflection angle of the ideal path is dϕ0 = dz/ρ0 or utilizing the curvature
to preserve the directionality of the deflection

dϕ0 = κ0 dz, (2.25)

where κ0 is the curvature of the ideal path. The deflection angle for an arbi-
trary trajectory is then given by

dϕ = κds . (2.26)

The ideal curvature κ0 is evaluated along the reference trajectory u = 0
for a particle with the ideal momentum. In linear approximation with respect
to the coordinates the path length element for an arbitrary trajectory is

ds = (1 + κ0 u) dz + O(2), (2.27)

where u is the distance of the particle trajectory from the reference trajectory
in the deflecting plane.

The magnetic fields depend on z in such a way that the fields are zero in
magnet free sections and assume a constant value within the magnets. This
assumption results in a step function distribution of the magnetic fields and
is referred to as the hard edge model, generally used in beam dynamics. The
path is therefore composed of a series of segments with constant curvatures.
To obtain the equations of motion with respect to the ideal path we subtract
from the curvature κ for an individual particle the curvature κ0 of the ideal
path at the same location.



2.3 Equation of Motion 47

dz

ρ
0

dϕ

u

ds

individual
particle trajectory

dϕ
0

ρ

reference
path

Fig. 2.5. Particle trajectories in deflecting systems. Reference path z and individual
particle trajectory s have in general different bending radii

Since u is the deviation of a particle from the ideal path, we get for the
equation of motion in the deflecting plane with respect to the ideal path from
Fig. 2.5 and (2.25, 2.26) with u′′ = −(dϕ/dz − dϕ0/dz),

u′′ = − (1 + κ0 u)κ + κ0, (2.28)

where the derivations are taken with respect to z. In particle beam dynamics,
we generally assume paraxial beams, u′2 � 1 since the divergence of the
trajectories u′ is typically of the order of 10−3 rad or less and terms in u′2 can
therefore be neglected. Where this assumption leads to intolerable inaccuracies
the equation of motion must be modified accordingly.

The equation of motion for charged particles in electromagnetic fields can
be derived from (2.28) and the Lorentz force. In case of horizontal deflection,
the curvature is κ = κx and expressing the general field by its components,
we have from (2.4)

κx =
e

p
By =

e

p

[
By0 + gx +

1
2
s x2 + · · ·

]
, (2.29)

where we expanded the field into components up to second order. Such mag-
netic field expansions will be discussed in much detail in Chap. 3. Here, we
use just the three lowest order multipoles, a bending magnet, a quadrupole,
and a sextupole.

A real particle beam is never monochromatic and therefore effects due to
small momentum errors must be considered. This can be done by expanding
the particle momentum in the vicinity of the ideal momentum p0

1
p

=
1

p0 (1 + δ)
≈ 1

p0
(1 − δ + · · · ) . (2.30)
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We are now ready to apply (2.28) to the horizontal plane, set u = x and
κ = κx and get with (2.28), (2.29), while retaining only linear and quadratic
terms in δ, x and y, the equation of motion

x′′ + (k + κ2
0x)x = κ0x (δ − δ2) + (k + κ2

0x)x δ

− 1
2 mx2 − k κ0 x

2 + O(3), (2.31)

where the sextupole strength is defined similar to the curvature and quadru-
pole strength by m = es/p0. Here, we have used energy independent field
strength parameters as defined in (2.4) and (2.21).

It is interesting to identify each term with well-known observations and
terminology from geometric light optics. The (k + κ2

0x)x term describes the
focusing effects from quadrupoles and a pure geometrical focusing from bend-
ing in a sector magnet. Sector magnets are the natural bending magnets for
a curvilinear coordinate system. However, in a uniform field sector magnet
particles travel a longer path for x > 0 and a shorter path for x < 0 leading
directly to a focusing effect in the deflecting plane. In the nondeflecting plane
there is no focusing. A dispersive effect arises from κ0x (δ− δ2) which reflects
the varying deflection angle for particles which do not have the ideal design
energy. Focusing is also energy dependent and the term (k+κ2

0x)x δ gives rise
to chromatic aberrations describing imaging errors due to energy deviation.
The term −k κ0x x2 has no optical equivalent (it would be a focusing prism)
and must be included only if there is focusing and bending present in the
same magnet like in a synchrotron magnet. The last term we care about here
is the sextupole term − 1

2 m (x2 − y2) which introduces both chromatic and
geometric aberration. The chromatic aberration from sextupoles can be used
to cancel some of the chromatic aberration from quadrupoles, but in doing so
we introduce a quadratic effect which leads to geometric aberrations. This is
similar to the chromatic correction in optical systems by using different kinds
of glass. We will discuss these perturbatory effects in much more detail later
as we proceed.

The equation of motion in the vertical plane can be derived in a similar
way by setting u = y in (2.28) and κ = κy. Consistent with the sign convention
of the Frenet–Serret coordinate system, (2.29) becomes for the vertical plane

κy = − e

p
Bx = +κ0y − k y −mxy − · · · (2.32)

and the equation of motion in the vertical plane is

y′′ − (k − κ2
0y) y = κ0y δ − (k − κ2

0y) y δ + mxy + κ0y k y2 + O(3) . (2.33)

In particular, we find for cases, where the deflection occurs only in one plane
say the horizontal plane, that the equation of motion in the vertical plane
becomes simply

y′′ − k y = − k y δ + mxy + O(3), (2.34)
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which to the order of approximation considered is independent of the strength
of the horizontal bending field.

The magnet parameters κ0, k, and m are functions of the independent
coordinate z. In real beam transport lines, these magnet strength parameters
assume constant, nonzero values within individual magnets and become zero in
drift spaces between the magnets. The task of beam dynamics is to distribute
magnets along the beam transport line in such a way that the solutions to the
equations of motion result in the desired beam characteristics.

2.4 Equations of Motion from the Lagrangian
and Hamiltonian

In this section, we will formulate the Lagrangian and Hamiltonian suitable
for the study of particle beam dynamics. Specifically, we will work in the
curvilinear coordinate system and use the longitudinal coordinate z as the
independent variable rather than the time t. This is of particular importance
because the time is measured along each particular trajectory and is therefore
evolving differently for each particle in relation to the z-coordinate. The time
is related to the particle position (s = vt) along its trajectory and through
its velocity while the z-coordinate can function as a general reference for all
particles with z = 0 for the reference particle.

We will study both the Lagrangian and Hamiltonian formulation together
to clearly define canonical momenta and facilitate the study of particle dy-
namics with the support of the full Hamiltonian theory. Depending on the
problem at hand, it may be easier to start with one or the other formulation.

2.4.1 Equations of Motion from Lagrangian

In Chap. 1 we have derived Lagrangian (1.86) in the curvilinear coordinate
system of beam dynamics

L = −mc
√

c2 − ẋ2 − ẏ2 − h2 ż2 + e ( ẋ Ax + ẏ Ay + h ż Ac,z) − eφ, (2.35)

which controls the movement of charged particles in an electromagnetic field.
The magnetic fields can be derived from the potentials by

B = ∇ × A (2.36)

=
1
h

[
∂(hAc,z)

∂y
− ∂Ay

∂z

]
x +

1
h

[
∂Ax

∂z
− ∂(hAc,z)

∂x

]
y+
[
∂Ay

∂x
− ∂Ax

∂y

]
z,

where h = 1 + κxx + κyy, while the electric fields are E = −∇φ . The
equations of motion are the Lagrangian equations and are in component form
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d
dt

(γm ẋ) = γmhκx ż2 + e (ẏ Bz − h ż By) + eEx, (2.37a)

d
dt

(γmẏ) = γmhκy ż2 + e (−ẋ Bz + h ż Bx) + eEy, (2.37b)

d
dt

(γmh ż) = −γm (κx ẋ + κy ẏ) ż + e (ẋ By − ẏ Bx) + eEz, (2.37c)

where β = 1
c

√
ẋ2 + ẏ2 + h2ż2 and the relativistic factor γ = 1/

√
1 − β2. The

first two equations describe the transverse particle motion which we will later
call betatron motion or betatron oscillations. The third equation describes the
longitudinal or synchrotron oscillation, where the main restoring force comes
from the accelerating microwave field eEz.

It is customary to replace the time variable by the position variable z along
the ideal path. Each particle travels along its own path s at a velocity v =
ds/dt and we change the independent variable with the substitution

d
dt

= v
d
ds

= v
dz
ds

d
dz

=
v

s′
d
dz

, (2.38)

where the quantity
s′ =

√
x′2 + y′2 + h2. (2.39)

The primes are used to indicate a derivation with respect to z like s′ =
ds/dz. The Lagrangian with z as the independent variable rather than t can
be derived from (2.35) with (2.38) to give with the momentum deviation
δ = (p− p0) /p0 from the ideal momentum p0

L̃(x, x′, y, y′, z) = s′ + (1 − δ)
e

p0
(x′Ax + y′Ay + hAc,z) − s′

eφ

γmv2
. (2.40)

Applying this to (2.37), the equations of motion are with p = mγv

x′′ − s′′

s′
x′ = κxh − (1 − δ)

e

p0
s′ (hBy − y′Bz) + s′2

eEx

γmv2
, (2.41a)

y′′ − s′′

s′
y′ = κyh + (1 − δ)

e

p0
s′ (hBx − x′Bz) + s′2

eEy

γmv2
, (2.41b)

s′′

s′
=

1
h

[
κ′

xx + κ′
yy + 2 (κxx

′ + κyy
′)
]

(2.41c)

− 1 − δ

h

e

p0
s′ (x′By − y′Bx) − s′2

eEz

γmv2
.

So far, no approximations have been made and the equations of motion
are fully Hamiltonian or symplectic. Equations (2.41), however, are not suited
for analytical treatment and we therefore often use the paraxial approxima-
tion also known from geometric light optics where particle trajectories are
assumed to stay in the vicinity of the optical path keeping all slopes small
(x′ � 1, y′ � 1, s′ ≈ 1). The third equation in (2.41) describes again syn-
chrotron motion and degenerates in the case where there are no electric fields
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to an equation that can be used to replace the factor s′′/s′ in the betatron
equations. Since s′2 ≈ 1 for paraxial beams and terms like

(
κ′

x, κ
′
y

)
vanish in

this approximation, we have s′′/s′ ≈ 0 and (2.41) become

x′′ ≈ κxh− (1 − δ)
e

p0
(hBy − y′Bz) +

eEx

γmv2
, (2.42a)

y′′ ≈ κyh + (1 − δ)
e

p0
(hBx − x′Bz) +

eEy

γmv2
. (2.42b)

Of course, strictly speaking, these equations are not anymore symplectic,
which is of no practical consequence as far as beam optics goes. Yet, in modern
circular accelerators, particle beam stability can often be assured only by
numerical tracking calculations. This process applies the equations of motion
very often and even small approximations or deviations from symplecticity
can introduce false dissipating forces leading to erroneous results.

2.4.2 Canonical Momenta

Lagrangian (2.40) defines the canonical momenta by derivation with respect
to velocities

Px =
∂L̃

∂x′ =
∂s′

∂x′

(
1 − eφ

γmv2

)
+ (1 − δ)

e

p0
Ax (2.43a)

=
x′

s′

(
1 − eφ

γmv2

)
+ (1 − δ)

e

p0
Ax,

Py =
∂L̃

∂y′
=

∂s′

∂y′

(
1 − eφ

γmv2

)
+ (1 − δ)

e

p0
Ay (2.43b)

=
y′

s′

(
1 − eφ

γmv2

)
+ (1 − δ)

e

p0
Ay .

Note, in this formulation, the canonical momenta are dimensionless be-
cause they are normalized to the total momentum p.

2.4.3 Equation of Motion from Hamiltonian

Knowledge of the Lagrangian and canonical momenta gives us the means
to formulate the Hamiltonian of the system. In doing so, we use conju-
gate coordinates (qi, Pi) only, ignore the electric field, and get from (2.43)
x′ =

(
Px − e

pAx

)
s′, etc. and the Hamiltonian H = H(x, Px, y, Py, z) is by

definition with (2.40)

H = x′Px + y′Py − L (x, x′, y, y′, z) (2.44)

= −e

p
Azh− s′

[
1 −
(
Px − eAx

p

)2

−
(
Py − eAy

p

)2
]
.
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From (2.39) and (2.43), we have s′2 = s′2(Px− e
pAx)2−s′2(Py− e

pAy)2+h2

or (h/s′)2 = 1 − (Px − e
pAx)2 − (Py − e

pAy)2 and introducing this in the
Hamiltonian, we finally get

H(x, Px, y, Py, z) = −e

p
Azh−h

√
1 −
(
Px − eAx

p

)2

−
(
Py − eAy

p

)2

, (2.45)

where for practical applications, we set e/p ≈ (1 − δ) e/p0 . We may restrict
ourselves further to paraxial beams where transverse momenta are small com-
pared to unity (Px,y − e

pAx,y) � 1 allowing us to expand the square root. De-
pending on the desired accuracy, more expansion terms must be used. With
this, the Hamiltonian is in the lowest order

H ≈ − (1 − δ)
e

p0
Azh− h

+
1
2
h

[
Px − (1 − δ)

eAx

p0

]2
+

1
2
h

[
Py − (1 − δ)

eAy

p0

]2
. (2.46)

Replacing in (2.45) the normalized canonical momenta (Px, Py) by nor-
malized ordinary momenta (px, py) and setting px = x′ and py = y′, the
Hamiltonian assumes a more familiar form

K(x, x′, y, y′, z) ≈ − e

p0
Azh (1 − δ) − h

√
1 − x′2 − y′2, (2.47)

where the momenta px,y or (x′, y′) in the presence of fields are not canoni-
cal anymore and where second order terms in δ are dropped. As we will see,
however, beam dynamics is based predominantly on fields which can be de-
rived from a potential of the form A(0, 0, Az) and consequently, the ordinary
momenta are indeed also canonical. We seem to have made a total circle com-
ing from velocities (ẋ, ẏ) to slopes (x′, y′) in the Lagrangian to normalized
canonical momenta (px, py) back to slopes (x′, y′) which we now know to be
canonical momenta for most of the fields used in beam dynamics.

The equations of motion can now be derived from the Hamiltonian (2.47)
in curvilinear coordinates:

∂K

∂x
= −P ′

x, (2.48)

where Px = x′ − e
pAx and P ′

x = x′′. The magnetic field hBy =
(

∂Ax

∂z − ∂hAz

∂x

)
does not depend on z, e.g. ∂Ax/∂z = 0. While ignoring any coupling into the
vertical plane (y ≡ 0), the equation of motion (2.48) is

−x′′ = − e

p0
(1 − δ)

∂hAz

∂x
− κ0x

√
1 − x′2 − y′2, (2.49)

or with κ0x 
= 0, κ0y = 0, h = 1 + κ0xx, and expanding only to second order
in x, x′, y, y′, δ
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x′′ = − e

p0
By (1 − δ)h + κ0x

√
1 − x′2 − y′2 (2.50)

≈ − 1
ρ (1 − δ)h + κ0x

(
1 − 1

2x
′2 − 1

2y
′2)

≈ − 1
ρ + 1

ρδ − (1 − δ) 1
ρκ0xx + κ0x + O (3) .

The general bending term 1
ρ can be expanded into, for example, a dipole κ0x,

a quadrupole kx, and a sextupole field 1
2mx2 for 1

ρ = κ0x +kx+ 1
2mx2 +O(3)

resulting in the equation of motion
x′′ = −κ0x−k x− 1

2mx2 +κ0xδ+k x δ−κ2
0xx+κ2

0xxδ−k κ0xx
2 +κ0x +O (3),

or

x′′ +
(
k + κ2

0x

)
x = κ0xδ +

(
k + κ2

0x

)
x δ − 1

2mx2 − k κ0xx
2 + O (3) , (2.51)

in agreement with (2.31) . Similarly, we may derive the equation of motion for
the vertical plane and get with 1

ρy
= − e

p0Bx
= −κ0y + ky + mxy + O(3)

y′′ −
(
k − κ2

0y

)
y = κ0yδ −

(
k − κ2

0y

)
y δ + mxy + k κ0yy

2 + O (3) (2.52)

in agreement with (2.33).

2.4.4 Harmonic Oscillator

Particle dynamics will be greatly based on the understanding of harmonic
oscillators under the influence of perturbations. We therefore discuss here
the Hamiltonian for a harmonic oscillator. To do that, we start from (2.47),
eliminate the magnetic field Az = 0, ignore the curvature h = 1, and remember
that we have to reintroduce the potential by a function V. Furthermore, we
use the time t = z/c as the independent variable again. With this, we derive
from (2.47) the Hamiltonian

K(x, x′, z) ≈ −eφ−
√

1 − x′2 ≈ −V −
(
1 − 1

2x
′2) . (2.53)

The potential for a harmonic oscillator derives from a restoring force −Dx
and is − 1

2Dx2. A new Hamiltonian is then

K = 1
2x

′2 + 1
2Dx2 (2.54)

and the equations of motion are

∂K
∂x

= −x′′ = Dx, (2.55)

∂K
∂x′ = x′ = x′ . (2.56)

The Hamiltonian could have been formulated directly considering that it
is equal to the sum of kinetic T and potential V energy K = T + V.
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2.4.5 Action-Angle Variables

Particularly important for particle beam dynamics is the canonical transfor-
mation from Cartesian coordinates (w, ẇ, ϕ) to action-angle variables (J, ψ, ϕ).
This class of transformations is best suited for harmonic oscillators like
charged particles under the influence of focusing restoring forces. We assume
the equations of motion to be expressed in normalized coordinates of parti-
cle beam dynamics with the independent variable ϕ instead of the time. As
we will discuss later, it is necessary in beam dynamics to transform ordinary
cartesian coordinates (x, x′, z) into normalized coordinates (w, ẇ, ϕ). The gen-
erating function for the transformation to action-angle variables (J, ψ, ϕ) is of
the form G1 in (1.101) which can be written with some convenient constant
factors as

G = − 1
2νw

2 tan(ψ − ϑ), (2.57)

where ϑ is an arbitrary phase. Applying (1.106) to the generating function
(2.57), we get with ẇ =dw/dϕ

∂G

∂w
= ẇ = −νw tan(ψ − ϑ), (2.58a)

∂G

∂ψ
= −J = −1

2
ν w2

cos2(ψ − ϑ)
. (2.58b)

After some manipulation, the transformation equations take the form

w =

√
2J
ν

cos(ψ − ϑ) , (2.59a)

ẇ = −
√

2νJ sin(ψ − ϑ) . (2.59b)

To determine whether the transformation to action-angle variables has
led us to cyclic variables we will use the unperturbed Hamiltonian, while
ignoring perturbations, and substitute the old variables by new ones through
the transformations (2.59). The generating function (2.57) does not explicitly
depend on the independent variable ϕ and the new Hamiltonian is therefore
given by

H = ν J . (2.60)

The independent variable ψ is obviously cyclic and from ∂H/∂ψ = 0 = J̇
we find the first invariant or constant of motion

J = const . (2.61)

The second Hamiltonian equation

∂H

∂J
= ψ̇ = ν (2.62)

defines the frequency of the oscillator which is a constant of motion since the
action J is invariant. The frequency or tune
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ν = ν0 = const., (2.63)

and the angle variable ψ is the betatron phase. Eliminating the betatron phase
ψ from (2.59), we obtain an expression of the action in normalized coordinates

J =
1
2
ν0w

2 +
1
2
ẇ2

ν0
. (2.64)

Both terms on the r.h.s. can be associated with the potential and kinetic
energy of the oscillator, respectively, and the constancy of the action J is
synonymous with the constancy of the total energy of the oscillator.

2.5 Solutions of the Linear Equations of Motion

Equations (2.31), (2.33) are the equations of motion for strong focusing beam
transport systems [18, 19], where the magnitude of the focusing strength is a
free parameter. No general analytical solutions are available for arbitrary dis-
tributions of magnets. We will, however, develop mathematical tools which
make use of partial solutions to the differential equations, of perturbation
methods, and of particular design concepts for magnets to arrive at an accu-
rate prediction of particle trajectories. One of the most important “tools” in
the mathematical formulation of a solution to the equations of motion is the
ability of magnet builders and alignment specialists to build magnets with
almost ideal field properties and to place them precisely along a predefined
ideal path. In addition, the capability of producing almost monochromatic
particle beams is of great importance for the determination of the properties
of particle beams. As a consequence, all terms on the r.h.s. of (2.31), (2.33)
can and will be treated as small perturbations and mathematical perturba-
tion methods can be employed to describe the effects of these perturbations
on particle motion.

We further notice that the l.h.s. of the equations of motion resembles
that of a harmonic oscillator although with a time dependent frequency. By a
proper transformation of the variables we can, however, express (2.31), (2.33)
exactly in the form of the equation for a harmonic oscillator with constant
frequency. This transformation is very important because it allows us to de-
scribe the particle motion mostly as that of a harmonic oscillator under the
influence of weak perturbation terms on the r.h.s. . A large number of mathe-
matical tools developed to describe the motion of harmonic oscillators become
therefore available for charged particle beam dynamics.

2.5.1 Linear Unperturbed Equation of Motion

In our attempt to solve the equations of motion (2.31), (2.33), we first try to
solve the homogeneous differential equation
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u′′ + K u = 0, (2.65)

where u stands for x or y and where, for the moment, we assume K to be
constant with K = k + κ2

x or K = −(k − κ2
y), respectively. The principal

solutions of this differential equation are for K > 0

C(z) = cos
(√

K z
)

and S(z) =
1√
K

sin
(√

K z
)
, (2.66)

and for K < 0

C(z) = cosh
(√

|K| z
)

and S(z) =
1√
|K|

sinh
(√

|K| z
)
. (2.67)

These linearly independent solutions satisfy the following initial conditions:

C(0) = 1, C ′(0) = dC/dz = 0,

S(0) = 0, S′(0) = dS/dz = 1 .
(2.68)

Any arbitrary solution u(s) can be expressed as a linear combination of these
two principal solutions

u(z) = C(z)u0 + S(z)u′
0, (2.69)

u′(z) = C ′(z)u0 + S′(z)u′
0,

where u0, u
′
0 are arbitrary initial parameters of the particle trajectory and

derivatives are taken with respect to the independent variable z.
In a general beam transport system, however, we cannot assume that the

magnet strength parameter K remains constant and alternative methods of
finding a solution for the particle trajectories must be developed. Nonetheless
it has become customary to formulate the general solutions for K = K(z) sim-
ilar to the principal solutions found for a harmonic oscillator with a constant
restoring force. Specifically, solutions can be found for any arbitrary beam
transport line which satisfy the initial conditions (2.68). These principal so-
lutions are the so-called sine-like and cosine-like solutions and we will derive
the conditions for such solutions. For the differential equation

u′′ + K(z)u = 0 (2.70)

with a time dependent restoring force K(z), we make an ansatz for the general
solutions in the form (2.69). Introducing ansatz (2.69) into (2.70) we get after
some sorting

[S′′(z) + K(z)S(z)]u0 + [C ′′(z) + K(z)C(z)]u′
0 = 0 .

This equation must be true for any pair of initial conditions (u0, u
′
0) and

therefore the coefficients must vanish separately:
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C ′′(z) + K(z)C(z) = 0,

S′′(z) + K(z)S(z) = 0 .
(2.71)

The general solution of the equation of motion (2.70) can be expressed by a
linear combination of a pair of solutions satisfying the differential equations
(2.71) and the boundary conditions (2.68).

It is impossible to solve (2.71) analytically in a general way that would
be correct for arbitrary distributions of quadrupoles K(z). Purely numerical
methods to solve the differential equations (2.71) may be practical but are
conceptually unsatisfactory since this method reveals little about character-
istic properties of beam transport systems. It is therefore not surprising that
other more revealing and practical methods have been developed to solve the
beam dynamics of charged particle beam transport systems.

2.5.2 Matrix Formulation

The solution (2.69) of the equation of motion (2.70) may be expressed in
matrix formulation


 u(z)

u′(z)


 =


 C(z) S(z)

C ′(z) S′(z)




u0

u′
0


 . (2.72)

If we calculate the principal solutions of (2.70) for individual magnets only, we
obtain such a transformation matrix for each individual element of the beam
transport system. Noting that within each of the beam line elements, whether
it be a drift space or a magnet, the restoring forces are indeed constant, we may
use within each single beam line element the simple solutions (2.66) or (2.67)
for the equation of motion (2.70). With these solutions, we are immediately
ready to form transformation matrices for each beam line element. In matrix
formalism, we are able to follow a particle trajectory along a complicated
beam line by repeated matrix multiplications from element to element. This
procedure is widely used in accelerator physics and lends itself particularly
effective for applications in computer programs. With this method we have
completely eliminated the need to solve the differential equation (2.70) , which
we could not have succeeded in doing anyway without applying numerical
methods. The simple solutions (2.66), (2.67) will suffice to treat most beam
transport problems.

2.5.3 Wronskian

The transformation matrix just derived has special properties well known from
the theory of linear homogeneous differential equation of second order [20].
Only a few properties relevant to beam dynamics shall be repeated here. We
consider the linear homogeneous differential equation of second order
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u′′ + v(z)u′ + w(z)u = 0 . (2.73)

For such an equation, the theory of linear differential equations provides us
with a set of theorems describing the properties of the solutions:

• there is only one solution that meets the initial conditions u(z0) = u0 and
u′(z0) = u′

0 at z = z0,
• because of the linearity of the differential equation, c u(z) is also a solution

if both u(z) is a solution and if c = const., and
• if u1(z) and u2(z) are two solutions, any linear combination thereof is also

a solution.

The two linearly independent solutions u1(z) and u2(z) can be used to
form the Wronskian determinant or short the Wronskian

W =

∣∣∣∣∣∣
u1(z) u2(z)

u′
1(z) u′

2(z)

∣∣∣∣∣∣
= u1 u

′
2 − u2 u

′
1 . (2.74)

This Wronskian has remarkable properties which are of great fundamental
importance in beam dynamics. Both u1 and u2 are solutions of (2.73). Multi-
plying and combining both equations like

u′′
1 + v(z)u′

1 + w(z)u1 = 0 | · −u2

u′′
2 + v(z)u′

2 + w(z)u2 = 0 | · u1

give
(u1 u

′′
2 − u2 u

′′
1) + v(z) (u1 u

′
2 − u2 u

′
1) = 0,

which will allow us to derive a single differential equation for the Wronskian.
Making use of (2.74) and forming the derivative dW/dz = u1 u

′′
2 − u2 u

′′
1 , we

obtain the differential equation

dW
dz

+ v(z)W (z) = 0, (2.75)

which can be integrated immediately to give

W (z) = W0 e−
∫ z

z0
v(z̄) dz̄

. (2.76)

In the case of linear beam dynamics, we have v(z) ≡ 0 as long as we do not
include dissipating forces like acceleration or energy losses into synchrotron
radiation and therefore W (z) = W0 = const. We use the sine- and cosine-like
solutions as the two independent solutions and get from (2.74) with (2.68)

W0 = C0 S
′
0 − C ′

0 S0 = 1 . (2.77)

For the transformation matrix of an arbitrary beam transport line with neg-
ligible dissipating forces, we finally get the general result
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W (z) =

∣∣∣∣∣∣∣

C(z) S(z)

C ′(z) S′(z)

∣∣∣∣∣∣∣
= 1 . (2.78)

This result will be used repeatedly to prove useful general characteristics
of particle beam optics; in particular, this is another formulation of Liouville’s
theorem stating that the phase space density under these conditions is pre-
served. From the generality of the derivation, we conclude that the Wronskian
is equal to unity, or phase space preserving, for any arbitrary beam line that
is described by (2.73) if v(z) = 0 and w(z) = K(z).

2.5.4 Perturbation Terms

The principal solutions of the homogeneous differential equation give us the
basic solutions in beam dynamics. We will, however, repeatedly have the
need to evaluate the impact of perturbations on basic particle motion. These
perturbations are effected by any number of terms on the r.h.s. of the equations
of motion (2.31), (2.33). The principal solutions of the homogeneous equation
of motion can be used to find particular solutions P (z) for inhomogeneous
differential equations including perturbations of the form

P ′′(z) + K(z)P (z) = p(z), (2.79)

where p(z) stands for any one or more perturbation terms in (2.31), (2.33).
For simplicity, only the z-dependence is indicated in the perturbation term,
although in general they also depend on the transverse particle coordinates.
A solution P (z) of this equation can be found from

P (z) =
∫ z

0

p(z̃)G(z, z̃) dz̃, (2.80)

where G(z, z̃) is a Green’s function which can be constructed from the prin-
cipal solutions of the homogeneous equation, i.e.,

G(z, z̃) = S(z)C(z̃) − C(z)S(z̃) . (2.81)

After insertion into (2.80) a particular solution for the perturbation can be
found from

P (z) = S(z)
∫ z

0

p(z̃)C(z̃) dz̃ − C(z)
∫ z

0

p(z̃)S(z̃) dz̃ . (2.82)

The general solution of the equations of motion (2.31), (2.33) is then given
by the combination of the two principal solutions of the homogenous part
of the differential equation and a particular solution for the inhomogeneous
differential equation
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u(z) = aCu(z) + b Su(z) + Pu(z), (2.83)

where the coefficients a and b are arbitrary constants to be determined by the
initial parameters of the trajectory. We have also used the index u to indicate
that these functions must be defined separately for u = x and y.

Because of the linearity of the differential equation we find a simple super-
position of the general solutions of the homogeneous equation and a particular
solution for the inhomogeneous equations for any number of small perturba-
tions. This is an important feature of particle beam dynamics since it allows
us to solve the equation of motion up to the precision required by a partic-
ular application. While the basic solutions are very simple, corrections can
be calculated for each perturbation term separately and applied as necessary.
However, these statements, true in general, must be used carefully. In special
circumstances, even small perturbations may have a great effect on the parti-
cle trajectory if there is a resonance or if a particular instability occurs. With
these caveats in mind one can assume that in a well-defined particle beam line
with reasonable beam sizes and well-designed and constructed magnets the
perturbations are generally small and that mathematical perturbations meth-
ods are applicable. Specifically, we will in most cases assume that the (x, y)
amplitudes appearing in some of the perturbation terms can be replaced by
the principal solutions of the homogeneous differential equations.

Dispersion Function

One of the most important perturbations derives from the fact that the par-
ticle beams are not quite monochromatic but have a finite spread of energies
about the nominal energy cp. The deflection of a particle with the wrong en-
ergy in any magnetic or electric field will deviate from that for a particle with
the nominal energy. The variation in the deflection caused by such a chro-
matic error ∆p in bending magnets is the lowest order of perturbation given
by the term δ/ρ0, where δ = ∆p/p0 � 1. We will ignore for now all terms
quadratic or of higher order in δ and use the Green function method to solve
the perturbed equation

u′′ + K(z)u = κ0u(z) δ . (2.84)

In (2.83) we have derived a general solution for the equation of motion for
any perturbation and applying this to (2.84) , we get

u(z) = aCu(z) + b Su(z) + δ Du(z),

u′(z) = aC ′
u(z) + b S

′
u(z) + δ D′

u(z),
(2.85)

where we have set Pu(z) = δ Du(z) and used (2.82) to obtain

Du(z) =
∫ z

0

κ0u(z̃) [Su(z)Cu(z̃) − Cu(z)Su(z̃)] dz̃ . (2.86)
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We have made use of the fact that like the perturbation, the particular solution
must be proportional to δ. The function Du(z) is called the dispersion function
and the physical interpretation is simply that the function δ Du(z) determines
the offset of the reference trajectory from the ideal path for particles with a
relative energy deviation δ from the ideal momentum cp0.

This result shows that the dispersion function generated in a particular
bending magnet does not depend on the dispersion at the entrance to the
bending magnet which may have been generated by upstream bending mag-
nets. The dispersion generated by a particular bending magnet reaches the
value Du(Lm) at the exit of the bending magnet of length Lm and propagates
from there on through the rest of the beam line just like any other particle
trajectory. This can be seen from (2.86), where we have for z > Lm

Du(z) = Su(z)
∫ Lm

0

κu (z̃)Cu(z̃) dz̃ − Cu(z)
∫ Lm

0

κu(z̃)Su(z̃) dz̃, (2.87)

which has exactly the form of (2.69) describing the trajectory of a particle
starting with initial parameters at the end of the bending magnet given by
the integrals. With solution (2.85) we can expand the (2× 2)-matrix in (2.72)
into a (3 × 3)-matrix, which includes the first order chromatic correction




u(z)

u′(z)

δ


 =




Cu(z) Su(z) Du(z)

C ′
u(z) S′

u(z) D′
u(z)

0 0 1







u(z0)

u′(z0)

δ


 . (2.88)

Here we have assumed that the particle energy and energy deviation remains
constant along the beam line. This representation of the first order chromatic
aberration will be used extensively in particle beam optics.

Problems

2.1 (S). Derive (2.37a) and (2.37c) from the Lagrange equations. Show all
steps.

2.2 (S). Derive the Lagrangian (2.40) from (2.35) (Hint: It is the variational
principle δ

∫
Ldt = 0 that needs to be transformed).

2.3 (S). Derive the geometry of electrodes for a horizontally deflecting electric
dipole with an aperture radius of 2 cm which is able to deflect a particle beam
with a kinetic energy of 1 GeV by 10 mrad. The dipole be 1 m long and has a
minimum distance between electrodes of 10 cm. What is the potential required
on the electrodes?

2.4 (S). Verify the numerical validity of (2.8).
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2.5 (S). Prove that (2.82) is indeed a solution of (2.79).

2.6 (S). Transform the Hamiltonian (2.54) of a harmonic oscillator into
action-angle variables and show that the frequency is ν =

√
D. Derive the

equation of motion.

2.7. Show the validity of the transformation equations (2.59a) and (2.59b).
Interpret the physical meaning of (2.61) and (2.62).
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Electromagnetic Fields

3.1 Pure Multipole Field Expansion

From the discussion in the previous chapter it became clear that specific
desired effects on particle trajectories require specific magnetic fields. Dipole
fields are the proper fields to bend particle beams and quadrupole magnets
serve, for example, as beam focusing devices. To obtain an explicit formulation
of the equations of motion of charged particles in an arbitrary magnetic field
we derive the general magnetic fields consistent with Maxwell’s equations.

Although we have identified a curvilinear coordinate system moving to-
gether with particles to best fit the needs of beam dynamics, we use for
simplicity in this section a fixed, right-handed Cartesian coordinate system
(x, y, z). By doing so, we assume straight magnets and neglect the effects of
curvature to simplify the derivation of the general magnetic field components
in the approximation exhibiting only the main multipole fields. Later in this
chapter, we will derive both the electromagnetic fields and equations of motion
in full rigor.

3.1.1 The Laplace Equation

In particle beam transport systems a variety of electromagnetic fields are
used. Common to such devices is a material free region in the vicinity of
the axis of the device to provide a free passage for the particle beam. The
electromagnetic fields encountered by the particles, therefore, can be derived
from a potential function V (x, y, z) which must be a solution of the charge
free Laplace equation

∆V ≡ 0. (3.1)

For simplicity, we assume the z-dependence of the fields to vanish as is the case
in the middle of long magnets. We choose this restriction to two-dimensional
transverse fields to simplify the derivation of basic multipole fields but will
include the z-dependence of fields later in a more general derivation. Such field
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expressions may be best obtained in a cylindrical coordinate system (r, ϕ, z)
in which the Laplace equation is

∆V =
∂2V

∂r2
+

1
r

∂V

∂r
+

1
r2

∂2V

∂ϕ2
+

∂2V

∂z2
≡ 0 . (3.2)

We make an ansatz for the solution in the form of a Taylor expansion with
respect to the reference path (r ≡ 0)

V (r, ϕ, z) = −Rb

∑
n≤0

1
n!

An(z) rn einϕ . (3.3)

This ansatz is not the most general solution of the Laplace equation, but
includes all main multipole fields used in beam dynamics. Later, we will derive
a solution that includes all terms allowed by the Laplace equation. The field
coefficients An can be derived from (3.2) while excluding negative values for
n to avoid nonphysical field singularities for r → 0. The beam rigidity Rb is
factored out to allow later a convenient energy independent definition of the
coefficients An. The beam rigidity Rb is different for electric and magnetic
fields with

Rb =
p

e
=

βE

ec
for magnetic fields, and (3.4)

Rb =
pβ

e
c =

β2E

e
for electric fields. (3.5)

Since we use in beam dynamics mostly magnetic fields we will use in this book
(3.4) unless otherwise noted. Inserting (3.3) into the Laplace equation (3.2),
we get ∑

n

1
n!

n (n− 1) + n− n2

r2
An(z) rneinϕ = 0 . (3.6)

Equation (3.6) is true for arbitrary angles ϕ and nonvanishing strengths of the
multipole fields if and only if the expression vanishes for all values of n which
is true since the factor n(n − 1) + n − n2 = 0. With this condition we find
ansatz (3.3) to be a valid Maxwellian description of a general electromagnetic
field for any field component An.

The Lorentz force on charged particles depends on the electromagnetic
fields which can now be derived by differentiation of the potential

E = −∇Ve(x, y),

B = −∇Vm(x, y).
(3.7)

Here we distinguish between the electrical potential Ve and the magnetic po-
tential Vm. Since the Laplace equation is valid for both the electric and the
magnetic field in a material free region, no real distinction between both fields
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had to be made. In reality, we rarely design devices which include more than
one term of the field expansion. It is therefore appropriate to decompose the
general field potential in (3.3) into its independent multipole terms. The dis-
tinction between electric and magnetic devices will appear when we try to
generate a specific field. To keep the discussion simple, we ignore here electric
fields and will discuss them later in Sect. 3.7.

Similarly, we postpone the discussion of longitudinal fields to Sect. 3.4.
That makes the lowest order term A0(z) an additive value to the potential
which vanishes when we derive transverse fields by differentiation of the po-
tential.

We are now in a position to determine the field characteristics for any
multipole. This will be done in this section for magnetic fields most commonly
used in particle transport systems. Only for very special applications are two
or more multipole field components desired in the same magnet.

3.1.2 Deflecting Magnets

For n = 1 we get the magnetic potential

−e

p
V1(r, ϕ) = A1 r eiϕ (3.8)

or in Cartesian coordinates

−e

p
V1(x, y) = A1 (x + iy) . (3.9)

Both, the real and imaginary parts, are two independent solutions of the
same Laplace equation and therefore the potential for both components can
be written in the form

−e

p
V1(x, y) = A10 x + A01 y . (3.10)

The independent coefficients A10 and A01 show indices which are equal to the
exponents of the associated coordinates, e.g. A10 come with the factor x1y0,
etc. All coefficients Aij are still functions of z although we do not indicate
this explicitly. The equipotential lines in the transverse (x, y)-plane for the
first order potential are determined by

A10 x + A01 y = const. (3.11)

and the corresponding electromagnetic field is given in component formulation
by the vector

e

p
B = (A10, A01, 0) . (3.12)

Equation (3.12) defines the lowest order transverse field in beam guidance or
beam transport systems, is uniform in space, and is called a dipole field. To
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simplify the design of beam transport systems it is customary to use dipole
fields that are aligned with the coordinate system so as to exert a force on
the particles only in the horizontal, x, or only in the vertical, y, direction. A
simple rotation of such dipole fields about the beam axis would create again
the general field expressed by (3.12). The dipole field of (3.12) together with
our sign convention defines the coefficients A01 and A10 as the horizontal and
vertical curvatures (κx, κy) = (−x′′,−y′′), respectively or

A10 =
e

p
Bx = −κy and A01 =

e

p
By = +κx . (3.13)

With these definitions, we have for a horizontally deflecting magnet A10 =
0, A01 
= 0 and for a vertically deflecting magnet A10 
= 0, A01 = 0.

To design a pure dipole magnet, we would place iron surfaces at equipo-
tential lines or for a horizontally deflecting magnet at

y = ±G (3.14)

to obtain a vertical field with a vertical aperture of 2G.

3.1.3 Focusing Device

The most suitable device that provides a material free aperture and the de-
sired focusing field is a quadrupole magnet which has been introduced in the
previous chapter. The magnetic field can be derived in Cartesian coordinates
from the term n = 2 of the scalar potential (3.3) V2(r, ϕ) = −p

e
1
2 A2 r

2 ei2ϕ or
in cartesian coordinates

−e

p
V2(x, y) = A2

1
2 (x + iy)2 = A2

1
2 (x2 − y2 + i2xy) . (3.15)

Similar to the dipole case, both the real and imaginary parts are two inde-
pendent solutions of the same Laplace equation and therefore the potential
for both components can be written in the form

−e

p
V2(x, y) = A20

1
2 (x2 − y2) + A11 xy . (3.16)

Here we recognize that both the real and imaginary solutions are inde-
pendent solutions with independent coefficients Aij . Coefficients A11 = k and
A20 = −A02 = −k because of symmetry defining the strengths for an upright
or rotated quadrupole, respectively. All coefficients Aij are still functions of z
although we do not indicate this explicitly. Separating both solutions, equipo-
tential lines in the transverse (x, y)-plane for both second order potentials
can be defined by

k 1
2 (x2 − y2) = const., and (3.17a)

k xy = const. (3.17b)
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The corresponding magnetic fields are in component formulation
(p
e
k x,

p

e
k y, 0

)
and

(p
e
k y,

p

e
k x, 0

)
, (3.18)

respectively. Magnetic equipotential surfaces with a profile following the de-
sired scalar potential (3.17) will be suitable to create the desired fields. The
field pattern of an upright quadrupole magnet (3.17b) is shown schemati-
cally in Fig. 3.1 together with the pole configuration for a rotated quadrupole
(3.17a).

pole profile
xy = 1/2R2

R

y

x

pole profile
x2- y2= 1/2R2

x

y

R

Fig. 3.1. Pole shape of an upright quadrupole (left) and of a rotated quadrupole
magnet (right)

Quadrupole Design Concepts

The feasibility of any accelerator or beam transport line design depends funda-
mentally on the parameters and diligent fabrication of technical components
composing the system. Not only the magnets need be designed so as to min-
imize undesirable higher order multipole field errors but they also must be
designed such that the desired parameters are within technical limits. Most
magnets constructed for beam transport lines are electromagnets rather than
permanent magnets. The magnets are excited by electrical current carrying
coils wound around magnet poles or in case of superconducting magnets by
specially shaped and positioned current carrying coils. In this section, we will
discuss briefly some fundamental design concepts and limits for most com-
monly used iron dominated quadrupole magnets as a guide for the accelerator
designer toward a realistic design. For more detailed discussions on technical
quadrupole designs we refer the reader to [7] and [8].
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Iron dominated magnets are the most commonly used magnets for particle
beam transport systems. Only where very high particle energies and magnetic
fields are required, superconducting magnets are used with maximum mag-
netic fields of 6–10 T compared to the maximum field in an iron magnet of
about 2 T. Although saturation of ferromagnetic material imposes a definite
limit on the strength of iron dominated magnets, most accelerator design
needs can be accommodated within this limit.

Quadrupoles together with bending magnets are the basic building blocks
for charged particle beam transport systems and serve as focusing devices to
keep the particle beam close to the desired beam path. The magnet pole
profile for a quadrupole can be derived the same way as that for a dipole
magnet. Placing an iron boundary in the shape of a hyperbola generates the
equipotential surface required for an upright quadrupole, or mathematically

xy = const. (3.19)

The inscribed radius of the iron free region is R and the constant in (3.19) is
therefore (R/

√
2)

2
= 1

2R
2 as shown in Fig. 3.2. The pole shape or pole profile

for a quadrupole with bore radius R is then defined by the equation

xy = ± 1
2 R2 . (3.20)

Similarly, the pole profile of a rotated quadrupole is given by

x2 − y2 = ±R2 . (3.21)

This is the same hyperbola as (3.19) but rotated by 45◦. Both (3.20), (3.21)
describe four symmetrically aligned hyperbolas which become the surfaces of
the ferromagnetic poles producing an ideal quadrupole field. Magnetization at
alternating polarity of each pole generates a sequence of equally strong north
and south poles.

In a real quadrupole, we cannot use infinitely wide hyperbolas but must cut
off the poles at some width. In Fig. 3.2 some fundamental design features and
parameters for a real quadrupole are shown and we note specifically the finite
pole width to make space for the excitation coils. Since only infinitely wide
hyperbolic poles create a pure quadrupole field, we expect the appearance of
higher multipole field errors characteristic for a finite pole width. While in an
ideal quadrupole the field gradient along, say, the x-axis would be constant,
we find for a finite pole width a drop off of the field and gradient approaching
the corners of poles. This drop off can be reduced to some extend if the
hyperbolic pole profile continues into its tangent close to the pole corner as
indicated in Fig. 3.2. This adds some iron to increase the field where the field
would otherwise fall below the desired value. The starting point of the tangent
determines greatly the final gradient homogeneity in the quadrupole aperture.
In Fig. 3.3 the gradient along the x-axis is shown for different starting points of
the tangent. There is obviously an optimum point for the tangent to minimize
the gradient error over a wide aperture.
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Fig. 3.2. Quadrupole design features

Application of tangent shimming must be considered as a fine adjustment
of the field quality rather than a means to obtain a large good field aperture
as becomes apparent from Fig. 3.3. The good field aperture is basically de-
termined by the width of the pole. While optimizing the tangent point, we
find an empirical correlation between gradient tolerance (Fig. 3.4) within an
aperture region x ≤ XF and the pole width expressed by the minimum pole
distance A. The good field region increases as the pole gets wider. For initial
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Fig. 3.3. Field gradient and pole profile shimming for a particular quadrupole as
determined by numerical simulations with the program MAGNET [21]
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Fig. 3.4. Field gradient tolerances as a function of pole profile parameters calculated
with MAGNET

design purposes, we may use Fig. 3.4 to determine the pole width from A
based on the desired good field region XF and gradient field quality.

The final design of a magnet pole profile is made with the help of com-
puter codes which allow the calculation of magnet fields from a given pole
profile with saturation characteristics determined from a magnetization curve.
Widely used computer codes for magnet design are, for example, [21] and [22].

Field errors in iron dominated magnets have two distinct sources, the finite
pole width and mechanical manufacturing and assembly tolerances. From sym-
metry arguments, we can deduce that field errors due to the finite pole width
produce only select multipole components. In a quadrupole, for example, only
(2n+1)4-pole fields like 12-pole or 20-pole fields are generated. Similarly in a
dipole of finite pole width only (2n+ 1)2-pole fields exist. We often call these
multipole field components the allowed multipole errors. Manufacturing and
assembly tolerances on the other hand do not exhibit any symmetry and can
cause the appearance of any multipole field error.

The particular choice of some geometric design parameters must be
checked against technical limitations during the design of a beam transport
line. One basic design parameter for a quadrupole is the bore radius R which
depends on the aperture requirements of the beam. Addition of some allowance
for the vacuum chamber and mechanical tolerance between chamber and mag-
net finally determines the quadrupole bore radius.

The field gradient is determined by the electrical excitation current in the
quadrupole coils. Similar to the derivation for a bending magnet, we may
derive a relation between field gradient and excitation current from Maxwell’s
curl equation. To minimize unnecessary mathematical complexity, we choose
an integration path as indicated in Fig. 3.5 which contributes to the integral∮

Bsds only in the aperture of the quadrupole.
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iron yoke
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Fig. 3.5. Determination of the field gradient from the excitation current

Starting from the quadrupole axis along a path at 45
◦

with respect to the
horizontal or vertical plane toward the pole tip, we have

1
µr

∮
Bs ds =

∫ R

0

Br dr = µ0 Itot . (3.22)

Since Bx = gy and By = gx, the radial field component is Br =
√

B2
x + B2

y =

gr and the excitation current from (3.22) is given by

Itot (A × turns) =
1

2µ0
g

(
T
m

)
R2(m) . (3.23)

The space available for the excitation coils or coil slot in a real quadrupole
design determines the maximum current carrying capability of the coil. Com-
mon materials for magnet coils are copper or aluminum. The electrical heating
of the coils depends on the current density, and a technically feasible balance
between heating and cooling capability must be found. As a practical rule the
current density in regular beam transport magnets should not exceed about
6–8 A/mm2. This is more an economical than a technical limit and up to
about a factor of 2 higher current densities could be used for special applica-
tions. The total required coil cross section, however, including an allowance
for insulation material between coil windings and about 15–20% for water
cooling holes in the conductor depends on the electrical losses in the coil.
The aperture of the water cooling holes is chosen such that sufficient water
cooling can be provided with an allowable water temperature increase which
should be kept below some 40◦C to avoid boiling of the cooling water at the
surface and loss of cooling power. A low temperature rise is achieved if the
water is rushed through the coil at high pressure in which case undesirable
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Fig. 3.6. Magnetization and permeability of typical low carbon steel as a function
of excitation

vibrations of the magnets may occur. The water cooling hole in the conductor
must therefore be chosen with all these considerations in mind. Generally the
current density averaged over the whole coil cross section is about 60–70% of
that in the conductor.

In practical applications, we find the required coil cross section to be sig-
nificant compared to the magnet aperture leading to a long pole length and
potential saturation. To obtain high field limits due to magnetic saturation,
steel with a very low carbon content or low carbon steel is used for most
magnet applications in particle beam lines. Specifically, we require the car-
bon content for most high quality magnets to be no more than about 1%. In
Fig. 3.6 the magnetization curve and the permeability as a function of the
excitation are shown for a steel with 0.5 % carbon content. We note a steep
drop in the permeability above 1.6 T reaching full saturation at about 2 T. A
magnet has an acceptable saturation level if the magnetic permeability any-
where over the cross section of the magnet remains large compared to unity,
µr 
 1.

Severe saturation effects at the corners of the magnet pole profile can be
avoided if the maximum field gradient, as a rule of thumb, is chosen such that
the pole tip field does not exceed a value of Bp = 0.8–1 T. This limits the
maximum field gradient to gmax = Bp/R and the quadrupole length must
therefore be long enough to reach the focal length desired in the design of the
beam transport line. Saturation of the pole corners introduces higher-order
multipoles and must therefore be kept to a minimum.

Other saturation effects may occur at the pole root, where all magnetic
flux from a pole including fringe fields are concentrated. If the pole root is
too narrow, the flux density is too high and saturation occurs. This does
not immediately affect the field quality in the central aperture, but requires
higher excitation currents. A similar effect may occur in the return yokes if
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pole root

Fig. 3.7. Permeability values are plotted in a grid over the iron cross section of a
highly excited quadrupole. We note the significantly reduced permeability (µ � 100)
in the narrow pole root (left). Widening the pole root quickly restores negligible satu-
ration (right) for the same excitation. Further small improvement could be obtained
by widening slightly the pole tip

the field density is too high because of a small iron cross section. In Fig. 3.7
a permeability plot is shown for a magnet driven into severe saturation. Low
values of the permeability indicate high saturation, which is evident in the
pole root.

By increasing the width of the pole root the saturation is greatly reduced
as shown in Fig. 3.8. To minimize pole root saturation the pole length should
be as short as possible because less flux is drawn through the side of the pole.
Unfortunately, this also reduces the space available for the excitation coils
leading to excessively large current densities. To reduce this conflict, the pole
width is usually increased at the pole root rather than shortening the pole
length.

In addition to pole root saturation, we may also experience return yoke
saturation, which is easily avoided by increasing its thickness.

Synchrotron Magnet

Sometimes a combination of both, the dipole field of a bending magnet and
the focusing field of a quadrupole, is desired for compact beam transport
lines to form what is called a synchrotron magnet. The name comes from
the use of such magnets for early synchrotron accelerators. Such a magnet
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Fig. 3.8. Permeability values are plotted in a grid over the iron cross section of a
highly excited quadrupole. We note the significantly reduced permeability (µ � 100)
in the narrow pole root

actually is nothing but a transversely displaced quadrupole. The field in a
quadrupole displaced by x0 from the beam axis is e

p By = k (x−x0) = k x−k x0

and a particle traversing this quadrupole at x = 0 will be deflected onto a
curved trajectory with a curvature of κx = k x0. At the same time, we observe
focusing corresponding to the quadrupole strength k. The pole cross section
of such a magnet is shown in Fig. 3.9.

The deviation from parallelism of the magnet poles at the reference tra-
jectory is often quantified by the characteristic length, defined by,

�ch =
1

ρ0 k
. (3.24)

Geometrically this characteristic length is equal to the distance from the ref-
erence trajectory to that point at which the tangents from the two magnet
poles at the vertical reference plane would touch (Fig. 3.9).

3.1.4 Multipole Magnets

The magnet pole shapes for sextupole or octupole magnets are derived in
a similar way and are shown in Fig. 3.10. Odd order multipoles like dipoles,
sextupoles, decapoles, etc. are characterized by central poles along the vertical
axis (Fig. 3.10 left). Even order multipoles have no poles along the horizontal
or vertical axis (Fig. 3.10 right). The profile can be derived directly from the
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Fig. 3.9. Pole profile for a synchrotron magnet
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Fig. 3.10. Pole profile for an upright sextupole (left) and octupole (right) magnet

respective potential (3.3). Only the profile of one pole must be determined
since the other poles are generated by simple rotation of the first pole by
multiples of the angle 90◦/n, where n is the order of the multipole. Multipoles
of higher order than sextupoles are rarely used in accelerator physics but can
be derived from the appropriate multipole potentials.

For an arbitrary single higher order multipole the field components can be
derived from its potential (3.3)

−e

p
Vn(r, ϕ) =

1
n!

An rn einϕ, (3.25)



76 3 Electromagnetic Fields

which, in Cartesian coordinates, becomes

−e

p
Vn(x, y) =

1
n!

An (x + i y)n
. (3.26)

Again, we note that both the real and imaginary parts of the potential are
valid independent solutions to the Laplace equation. Expanding the factor
(x + iy)n, we get, after some manipulation and after selecting different co-
efficients for the real and imaginary terms, a generalization of (3.10) for the
potential of the nth-order multipole:

−e

p
Vn (x, y) =

n∑
j=0

An−j,j
xn−j

(n− j)!
yj

j!
. (3.27)

From this equation it is straightforward to extract an expression for the
potential of any multipole field satisfying the Laplace equation. Since both
electrical and magnetic fields may be derived from the Laplace equation, we
need not make any distinction here and may use (3.27) as an expression for the
electrical as well as the magnetic potential. Separating the real and imaginary
terms of the potential, we get

Re
[
−e

p
Vn (x, y)

]
=

n/2∑
m=0

An−2m,2m
xn−2m

(n− 2m)!
y2m

(2m)!
, (3.28)

and

Im
[
−e

p
Vn (x, y)

]
=

(n+1)/2∑
m=1

An−2m+1,2m−1
xn−2m+1

(n− 2m + 1)!
y2m−1

(2m− 1)!
. (3.29)

Note that to keep the nomenclature simple, some coefficients in (3.27) still
include the imaginary factor i, while this factor is no more included in the
same coefficients in (3.29).

As mentioned before, it is useful to keep both sets of solutions sepa-
rate because they describe two distinct orientations of multipole fields. For
a particular multipole both orientations can be realized by a mere rotation of
the element about its axis. From (3.28), (3.29) we find that only the imagi-
nary solution has what is called midplane symmetry with the property that
ImVn(x, y) = −ImVn(x,−y) or Bny(x, y) = Bny(x,−y). In this symmetry,
there are no horizontal field components in the midplane, Bnx(x, 0) ≡ 0, and
a particle traveling in the horizontal midplane will remain in this plane. We
call all magnets in this class upright magnets. We call the magnets defined by
the real solutions of potential (3.28) rotated magnets since they differ from
the upright magnets only by a rotation about the magnet axis. In real beam
transport systems, we use almost exclusively magnetic fields with midplane
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symmetry as described by the imaginary solutions (3.29). The magnetic field
components for the nth-order multipoles derived from the imaginary solution
are given by

e

p
Bnx =

n/2∑
m=1

An−2m+1,2m−1
xn−2m

(n− 2m)!
y2m−1

(2m− 1)!
, (3.30)

e

p
Bny =

(n+1)/2∑
m=1

An−2m+1,2m−1
xn−2m+1

(n− 2m + 1)!
y2m−2

(2m− 2)!
. (3.31)

The asymmetry between the field components is not fundamental but only
reflects the fact that most beam transport lines are installed in a horizontal
plane for which the imaginary solutions provide the desired fields. The real and
imaginary solutions differentiate between two classes of magnet orientation.

3.1.5 Multipole Fields for Beam Transport Systems

Similar to dipoles and quadrupole magnets, we may get potential expressions
for all other multipole magnets. The results up to 5th order are compiled in
Table 3.1.

The coefficients Ajk have been replaced by more commonly used notation
defining particular magnetic multipoles. Each expression for the magnetic
potential is composed of both the real and the imaginary contributions. Since
both components differ only by a rotational angle, real magnets are generally
aligned such that only one or the other component appears. Only due to
alignment errors may the other component appear as a field error which can
be treated as a perturbation. The correspondence between the coefficients Ajk

and the commonly used notation for the multipole strength parameters are
shown in Table 3.2.

Here κy and the underlined coefficients are the magnet strengths for the ro-
tated multipoles, while κx and the straight letters are the strength coefficients
for the upright multipoles.

Table 3.1. Magnetic multipole potentials

Dipole − e
p
V1 = −κyx + κxy

Quadrupole − e
p
V2 = − 1

2
k (x2 − y2) + kxy ,

Sextupole − e
p
V3 = − 1

6
m
(
x3 − 3xy2

)
+ 1

6
m
(
3x2y − y3

)
,

Octupole − e
p
V4 = − 1

24
r
(
x4 − 6x2y2 + y4

)
+ 1

24
r
(
x3y − xy3

)
,

Decapole − e
p
V5 = − 1

120
d
(
x5 − 10x3y2 + 5xy4

)
+ 1

120
d
(
5x4y − 10x2y3 + y5

)
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Table 3.2. Correspondence between the potential coefficients and multipole
strength parameters

A00

A10 A01

A20 A11 A02

A30 A21 A12 A03

A40 A31 A22 A13 A04

A50 A41 A32 A23 A14 A05

�

0

−κy κx

−k k k

−m m m −m

−r r r r −r

−d d d −d −d d

Table 3.3. Upright multipole fields

Dipole e
p
Bx = 0 e

p
By = κx

Quadrupole e
p
Bx = ky e

p
By = kx

Sextupole e
p
Bx = mxy e

p
By = 1

2
m
(
x2 − y2

)

Octupole e
p
Bx = 1

24
r
(
3x2y − y3

)
e
p
By = 1

24
r
(
x3 − 3xy2

)

Decapole e
p
Bx = + 1

6
d
(
x3y − xy3

)
e
p
By = + 1

24
d
(
x4 − 6x2y2 + y4

)

From the expressions for the multipole potentials in Table 3.1 we obtain
by differentiation the multipole field components. For the imaginary solutions
of the Laplace equation these multipole field components up to decapoles are
compiled in Table 3.3. The multipole strength parameters can be related to
the derivatives of the magnetic field. Generalizing from Table 3.1, we get for
upright multipoles

sn

(
m−n

)
=

e

p

∂n−1By

∂xn−1

∣∣∣∣x=0
y=0

(3.32)
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or in more practical units with cp = βE

sn

(
m−n

)
=

Cm

βE (GeV)
∂n−1By (T)

∂xn−1 (mn−1)
, (3.33)

where the coefficient

Cm = 0.2997925 GeV/T/m (3.34)

and sn is the strength parameter of the nth-order multipole, i.e., s1 = κ, s2 =
k, s3 = m, s4 = r, s5 = d, etc. The lowest order field derivatives are often
expressed by special symbols as well. The quadrupole field gradient, for ex-
ample, can be defined by g = ∂By/∂x and the derivative of the field gradient
in sextupole magnets by s = ∂2By/∂x

2 = −∂2By/∂y
2. Derivations with re-

spect to other coordinates in accordance with the field definitions in Table 3.3
can be used as well to define magnet parameters.

The real solutions of the Laplace equation (3.28) describe basically the
same field patterns as the imaginary solutions, but the fields are rotated about
the z-axis by an angle φn = π/(2n), where n is the order of the multipole. The
magnetic field expressions as derived from Table 3.1 are compiled in Table 3.4.
Analogous to (3.32) and (3.33) , the strength parameters for rotated multipoles
are defined by

sn

(
m−n

)
= −e

p

∂n−1Bx

∂yn−1

∣∣∣∣x=0
y=0

(3.35)

and

sn

(
m−n

)
= − Cm

βE (GeV)
∂n−1Bx (T)

∂yn−1 (mn−1)
. (3.36)

The characteristic difference between the two sets of field solutions is that
the fields of upright linear magnets in Table 3.3 do not cause coupling for
particles traveling in the horizontal or vertical midplane, in contrast to the
rotated magnet fields of Table 3.4 which would deflect particles out of the
horizontal midplane. In linear beam dynamics, where we use only dipole and
upright quadrupole magnets, the particle motion in the horizontal and vertical
plane are completely independent. This is a highly desirable “convenience”
without which particle beam dynamics would be much more complicated and

Table 3.4. Rotated multipole fields

Dipole φ = 90◦ e
p
Bx = −κy

e
p
By = 0

Quadrupole φ = 45◦ e
p
Bx = −kx e

p
By = +ky

Sextupole φ = 30◦ e
p
Bx = − 1

2
m
(
x2 − y2

)
e
p
By = +mxy

Octupole φ = 22.5◦ e
p
Bx = − 1

6
r
(
x3 − 3xy2

)
e
p
By = − 1

6
r
(
3x2y − y3

)

Decapole φ = 18◦ e
p
Bx = − 1

24
d
(
x4 − 6x2y2 + y4

)
e
p
By = + 1

6
d
(
x3y − xy3

)
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less predictable. Since there is no particular fundamental reason for a specific
orientation of magnets in a beam transport systems, we may as well use that
orientation that leads to the simplest and most predictable results. We will
therefore use exclusively upright magnet orientation for the main magnets and
treat the occasional need for rotated magnets as a perturbation.

The general magnetic field equation including only the most commonly
used upright multipole elements is given by

Bx = +gy + sxy + 1
6o
(
3x2y − y3

)
+ · · · (3.37)

By = By0 + gx + 1
2s
(
x2 − y2

)
+ 1

6o
(
x3 − 3xy2

)
+ · · · . (3.38)

Sometimes it is interesting to investigate the particle motion only in the
horizontal midplane, where y = 0. In this case we expect the horizontal field
components Bx of all multipoles to vanish and any deflection or coupling is
thereby eliminated. In such circumstances, the particle motion is completely
contained in the horizontal plane and the general fields to be used are given
by

Bx = 0 (3.39)

By = By0 + g x + 1
2s x

2 + 1
6o x

3 + · · · . (3.40)

In terms of multipole strength parameters, the second equation in (3.40) be-
comes

e

p
By = κx + k x +

1
2
mx2 +

1
6
r x3 +

1
24

d x4 + · · · . (3.41)

In this form, the field expansion exhibits the most significant multipole
fields in the horizontal midplane as used in accelerator physics and is fre-
quently employed to study and solve beam stability problems or the effects of
particular multipole fields on beam parameters.

3.2 General Transverse Magnetic-Field Expansion

Solving the Laplace equation in the previous section, we made a restrictive
ansatz which included only pure transverse multipole components. We also
neglected all kinematic effects caused by the curvilinear coordinate system.
These approximations eliminate many higher order terms which may become
of significance in particular circumstances. In preparation for more sophisti-
cated beam transport systems and accelerator designs aiming, for example,
at ever smaller beam emittances it becomes imperative to consider higher or-
der perturbations to preserve desired beam characteristics. To obtain all field
components allowed by the Laplace equation, a more general ansatz for the
field expansion must be made.

The general field is determined by the solution of the Laplace equation
[23,24] for the magnetic scalar potential. Since we use a curvilinear coordinate
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system for beam dynamics, we use the same for the magnetic-field expansion
and express the Laplace equation in these curvilinear coordinates

∆V =
1
h

[
∂

∂x

(
h
∂V

∂x

)
+

∂

∂y

(
h
∂V

∂y

)
+

∂

∂z

(
1
h

∂V

∂z

)]
, (3.42)

where h = 1 + κxx + κyy . We also assume without restricting full generality
that the particle beam may be bent horizontally as well as vertically. For the
general solution of the Laplace equation (3.42) we use an ansatz in the form
of a power expansion1

−e

p
V (x, y, z) =

∑
p,q≥0

Apq(z)
xp

p!
yq

q!
. (3.43)

Terms with negative indices p and q are excluded to avoid nonphysical
divergences of the potential at x = 0 or y = 0. We insert this ansatz into
(3.42), collect all terms of equal powers in x and y, and get

∑
p≥0

∑
q≥0

{Fpq}
xp

(p− 2)!
yq

(q − 2)!
≡ 0, (3.44)

where {Fpq} represents the collection of all coefficients for the term xpyq.
For (3.44) to be true for all values of the coordinates x and y, we require

that every coefficient Fpq must vanish individually. Setting Fpq = 0 leads to
the recursion formula

Ap,q+2 + Ap+2,q = −κx (3p + 1)Ap+1,q − κy (3q + 1)Ap,q+1

−3κyq Ap+2,q−1 − 3κxpAp−1,q+2

−2κxκyq (3p + 1)Ap+1,q−1 − 2κxκyp (3q + 1)Ap−1,q+1

− 3κ2
yq (q − 1)Ap+2,q−2 − 3κ2

xp (p− 1)Ap−2,q+2

−κ3
xp (p2 − 3p + 2)Ap−3,q+2 − κ3

yq (q2 − 3q + 2)Ap+2,q−3

−κxκ
2
y q (q − 1 + 3pq − 3p)Ap+1,q−2 (3.45)

−κ2
xκy p (p− 1 + 3pq − 3q)Ap−2,q+1

−κyq (3κ2
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x p + κ2

yq
2 − 2κ2

yq + κ2
y)Ap,q−1

−κx p (3κ2
yq

2 − κ2
yq + κ2

xp
2 − 2κ2

xp + κ2
x)Ap−1,q

−(3p− 1) pκ2
x Ap,q − (3q − 1) qκ2

y Ap,q

−A′′
p,q− κxpA

′′
p−1,q − κyqA

′′
p,q−1− κ′

xpA
′
p−1,q − κ′

yqA
′
p,q−1,

which allows us to determine all coefficients Apq. The derivatives, indicated by
a prime, are understood to be taken with respect to the independent variable
1 Note, in this section, we use temporarily the letter “p” for the particle momen-

tum and as an index. Since the momentum appears always in the factor e/p of
potentials it should not lead to confusion.
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z, like A′ = dA/dz, etc. Although most beam transport lines include only
horizontal bending magnets, we have chosen a fully symmetric field expan-
sion to be completely general. Equation (3.45) is a recursion formula for the
field coefficients Apq and we have to develop a procedure to obtain all terms
consistent with this expression.

The Laplace equation is of second order and therefore we cannot derive
coefficients of quadratic or lower order from the recursion formula. The low-
est order coefficient A00 represents a constant potential independent of the
transverse coordinates x and y and since this term does not contribute to a
transverse field component, we will ignore it in this section. However, since
this term depends on z we cannot neglect this term where longitudinal fields
such as solenoid fields are important. Such fields will be discussed separately
in Sect. 3.4 and therefore we set here for simplicity

A00 = 0 . (3.46)

The terms linear in x or y are the curvatures in the horizontal and vertical
plane as defined previously

A10 = −κy and A01 = κx, (3.47)

and
κx = −x” = + e

pBy with
∣∣∣ epBy

∣∣∣ = 1
ρx

,

κy = −y” = − e
pBx with

∣∣∣ epBx

∣∣∣ = 1
ρy

.
(3.48)

Finally, the quadratic term proportional to x and y is identical to the quadru-
pole strength parameter

A11 = k . (3.49)

With these definitions of the linear coefficients, we may start exploiting the
recursion formula. All terms on the right-hand side of (3.45) are of lower order
than the two terms on the left-hand side which are of order n = p + q + 2.
The left-hand side is composed of two contributions, one resulting from pure
multipole fields of order n and the other from higher order field terms of lower
order multipoles.

We identify and separate from all other terms the pure multipole terms of
order n which do not depend on lower order multipole terms by setting

Ap,q+2,n + Ap+2,q,n = 0 (3.50)

and adding the index n to indicate that these terms are the pure nth-order
multipoles. Only the sum of two terms can be determined which means both
terms have the same value but opposite signs. For n = 2 we have, for example,
A20 = −A02 and a comparison with the potentials of pure multipoles of
Table 3.2 shows that A20 = −k 2.
2 Consistent with the definitions of magnet strengths, the underlined quantities

represent the magnet strengths of rotated multipole magnets.
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Similarly, in third order we get A30 = −A12 = −m and A21 = −A03 =
m. The fourth-order terms are determined by A40 = −A22 = −r , A22 =
−A04 = r, and A31 = −A13 = r. By a systematic application of all allowed
values for the indices, a correspondence between the coefficients Ajk,n and
the multipole strength parameters defined in Table 3.2 can be established. All
pure multipoles are determined by (3.50) alone.

Having identified the pure multipole components, we now concentrate on
using the recursion formula for other terms which so far have been neglected.
First, we note that coefficients of the same order n on the left-hand side of
(3.45) must be split into two parts to distinguish pure multipole components
Ajk,n of order n from the nth-order terms A∗

jk of lower order multipoles which
we label by an asterisk ∗. Since we have already derived the pure multipole
terms, we explore (3.45) for the A∗ coefficients only

A∗
p,q+2 + A∗

p+2,q = r.h.s. of (3.45) . (3.51)

For the predetermined coefficients A10, A01, and A11 there are no corre-
sponding terms A∗ since that would require indices p and q to be negative.
For p = 0 and q = 0 we have

A∗
02 + A∗

20 = −κx A10 − κy A01 = 0. (3.52)

This solution is equivalent to (3.50) and does not produce any new field
terms. The next higher order terms for p = 0 and q = 1 or for p = 1 and q = 0
are determined by the equations

A∗
03 + A∗

21 = −κxk − κyk − κ′′
x = C,

A∗
12 + A∗

30 = −κyk + κxk + κ′′
y = D,

(3.53)

where we set in preparation for the following discussion the right-hand sides
equal to the as yet undetermined quantities C and D. Since we have no lead
how to separate the coefficients we set

A∗
21 = f C, A∗

03 = (1 − f)C,

A∗
12 = g D, A∗

30 = (1 − g)D,
(3.54)

where 0 ≤ (f, g) ≤ 1 and f = g. The indeterminate nature of this result is an
indication that these terms may depend on the actual design of the magnets.

Trying to interpret the physical meaning of these terms, we assume a mag-
net with a pure vertical dipole field at the center of the magnet, By(0, 0, 0) 
= 0,
but no horizontal or finite longitudinal field components, Bx(0, 0, 0) = 0 and
Bs(0, 0, 0) = 0. Consistent with these assumptions the magnetic potential is

e

p
V (x, y, z) = −A01y − 1

2A
∗
21x

2y − 1
2A

∗
12xy

2 (3.55)

− 1
6A

∗
30x

3 − 1
6A

∗
03y

3 + O(4) .
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From (3.53) we get D ≡ 0, C = −κ′′
x and with (3.54) A∗

12 = A∗
30 = 0. The

magnetic-field potential reduces therefore to

e

p
V (x, y, z) = −κxy + 1

2 f κ′′
x x2y + 1

6 (1 − f )κ′′
x y3 (3.56)

and the magnetic-field components are

e
pBx = −f κ′′

xxy,

e
pBy = +κx − 1

2f κ′′
xx

2 − 1
2 (1 − f )κ′′

x y2 .
(3.57)

The physical origin of these terms becomes apparent if we investigate the two
extreme cases for which f = 0 or f = 1, separately. The magnetic fields in
these cases are for f = 0

e

p
Bx = 0 and

e

p
By = κx − 1

2 κ′′
xy

2 (3.58)

and for f = 1

e

p
Bx = −κ′′

xxy and
e

p
By = κx − 1

2κ
′′
xx

2, (3.59)

where the curvatures are functions of z.
Both cases differ only in the κ′′

x-terms describing the magnet fringe field.
In case of a straight bending magnet (κx 
= 0) with infinitely wide poles in
the x-direction, horizontal field components Bx must vanish consistent with
f = 0. The field configuration in the fringe field region is of the form shown
in Fig. 3.11 and independent of x.

y

x

y

frontal viewside view

zB B

Fig. 3.11. Dipole end field configuration for f = 0

Conversely, the case 0 < f < 1 describes the field pattern in the fringe field
of a bending magnet with poles of finite width in which case finite horizontal
field components Bx appear off the symmetry planes. The fringe fields not
only bulge out of the magnet gap along z but also spread horizontally due to
the finite pole width as shown in Fig. 3.12, thus creating a finite horizontal
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side view frontal view

y

x
B

y

B
z

Fig. 3.12. Dipole end field configuration for 0 < f < 1

field component off the midplane. While it is possible to identify the origin of
these field terms, we are not able to determine the exact value of the factor f
in a general way but may apply three-dimensional magnet codes to determine
the field configuration numerically. The factor f is different for each type of
magnet depending on its actual mechanical dimensions.

Following general practice in beam dynamics and magnet design, however,
we ignore these effects of finite pole width, since they are specifically kept small
by design, and we may set f = g = 0. In this approximation we get

A∗
21 = A∗

12 = 0 (3.60)

and
A∗

03 = −κxk − κyk − κ′′
x,

A∗
30 = −κyk + κxk + κ′′

y .
(3.61)

Similar effects of finite pole sizes appear for all multipole terms. As before,
we set f = 0 for lack of accurate knowledge of the actual magnet design and
assume that these terms are very small by virtue of a careful magnet design
within the good field region provided for the particle beam. For the fourth
order terms we have therefore with A∗

22 ≡ 0 and

A∗
40 = κxm− κym− 4κxκyk + 4κ2

xk + k′′ + 2κxκ
′′
y + 2κ′

xκ
′
y,

A∗
04 = κym− κxm− 4κxκyk − 4κ2

yk − k′′ − 2κyκ
′′
x − 2κ′

yκ
′
x .

(3.62)

In the case p = q, we expect Aij = Aji from symmetry and get

2A∗
13 = 2A∗

31 = −κxm− κym + 2κ2
x k + 2κ2

y k − k′′

+2κyκ
′′
y − 2κxκ

′′
x − κ′2

x + κ′2
y . (3.63)

With these terms we have finally determined all coefficients of the magnetic
potential up to fourth order. Higher order terms can be derived along similar
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arguments. Using these results, the general magnetic-field potential up to
fourth order is from (3.43)

−e

p
V (x, y, z) = +A10x + A01y (3.64)

+ 1
2A20x

2 + 1
2A02y

2 + A11xy

+ 1
6A30x

3+ 1
2A21x

2y + 1
2A12xy

2+ 1
6A03y

3 + 1
6A

∗
30x

3 + 1
6A

∗
03y

3

+ 1
24A40x

4 + 1
6A31x

3y + 1
4A22x

2y2 + 1
6A13xy

3

+ 1
24A04y

4 + 1
24A

∗
40x

4 + 1
6A

∗
31xy(x

2 + y2) + 1
24A

∗
04y

4 + O(5).

From the magnetic potential we obtain the magnetic field expansion by
differentiation with respect to x or y for Bx and By, respectively. Up to third
order we obtain the transverse field components

e

p
Bx = −κy − kx + ky (3.65)

− 1
2m(x2 − y2) + mxy + 1

2 (−κyk + κxk + κ′′
y)x2

− 1
6 r(x3 − 3xy2) − 1

6 r(y3 − 3x2y)

− 1
12 (κxm + κym + 2κ2

xk + 2κ2
yk + k′′ − κyκ

′′
y

+ κxκ
′′
x + κ′2

x − κ′2
y) (3x2y + y3)

+ 1
6 (κxm− κym− 4κxκyk + 4κ2

xk

+ k′′ + 2κxκ
′′
y + 2κ′

xκ
′
y)x3 + O(4)

and
e

p
By = +κx + ky + kx (3.66)

+ 1
2 m(x2 − y2) + mxy − 1

2 (κxk + κyk + κ′′
x) y2

+ 1
6 r(x3 − 3xy2) − 1

6 r(y3 − 3x2y)

− 1
12 (κxm + κym + 2κ2

xk + 2κ2
yk + k′′ − κyκ

′′
y

+ κxκ
′′
x + κ′2

x − κ′2
y ) (x3 + 3xy2)

+ 1
6 (κym− κxm− 4κxκyk − 4κ2

yk

−k′′ − 2κ′′
xκy − 2κ′

xκ
′
y) y3 + O(4) .

The third component of the gradient in a curvilinear coordinate system is
Bz = − 1

h
∂V
∂z and collecting all terms up to second order we get

e

p
Bz = +κ′

xy − κ′
y x + (κyκ

′
y − κxκ

′
x + k′)xy (3.67)

+ (κxκ
′
y − 1

2 k′)x2 − (κ′
xκy − 1

2 k′) y2 + O(3) .
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While equations (3.65)–(3.67) describe the general fields in a magnet, in
practice, special care is taken to limit the number of fundamentally different
field components present in any one magnet. In fact most magnets are de-
signed as single multipoles like dipoles or quadrupoles or sextupoles, etc. A
beam transport system utilizing only such magnets is also called a separated-
function lattice since bending and focusing is performed in different types of
magnets.

A combination of bending and focusing, however, is being used for some
special applications and a transport system composed of such combined-field
magnets is called a combined-function lattice. Sometimes even a sextupole
term is incorporated in a magnet together with the dipole and quadrupole
fields. Rotated magnets, like rotated sextupoles m and octupoles r, are either
not used or in the case of a rotated quadrupole the chosen strength is generally
weak and its effect on the beam dynamics is treated by perturbation methods.

No mention has been made about electric field patterns. However, since
the Laplace equation for electrostatic fields in material free areas is the
same as for magnetic fields we conclude that the electrical potentials are ex-
pressed by (3.64) as well and the electrical multipole field components are also
given by (3.65)–(3.67) after replacing the nomenclature for the magnetic field
(Bx, By, Bz) by electric-field components (Ex, Ey, Ez).

3.3 Third-Order Differential Equation of Motion

Equations of motions have been derived in Chap. 2 for the transverse (x, z)
and (y, z) planes up to second order which is adequate for most applications.
Sometimes, however, it might be desirable to use equations of motion in higher
order of precision or to investigate perturbations of higher order. A curvilinear
Frenet–Serret coordinate system, moving along the curved trajectory of the
reference particle r0(z), was used and we generalize this system to include
curvatures in both transverse planes as shown in Fig. 3.13.

In this (x, y, z)-coordinate system, a particle at the location s and under
the influence of the Lorentz force follows a path described by the vector r
as shown in Fig. 3.13. The change in the momentum vector per unit time is
due only to a change in the direction of the momentum while the magnitude
of the momentum remains unchanged in a static magnetic fields. Therefore
p = pdr/ds where p is the value of the particle momentum and dr/ds is the
unit vector along the particle trajectory. With dp

dτ = dp
ds βc, where τ = s

βc ,

the particle velocity vs = dr
dτ = dr

ds βc, and we obtain the differential equation
describing the particle trajectory under the influence of a Lorentz force FL

from dp
dτ = FL = e [vs × B]

d2r

ds2
=

e

p

[
dr

ds
× B

]
. (3.68)
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Fig. 3.13. Coordinate system

To evaluate (3.68) further, we note that

dr

ds
=

dr/dz
ds/dz

=
r′

s′
(3.69)

and
d2r

ds2
=

1
s′

d
dz

(
r′

s′

)
. (3.70)

With this, the general equation of motion is from (3.68) d2r
dz2 − 1

2s′2
dr
dz

ds′2

dz =
e
p s′
[
dr
dz × B

]
. In the remainder of this section, we will reevaluate this equa-

tion in terms of more simplified parameters. From Fig. 3.13 or (1.82) we
have r = r0 + xux + y uy, where the vectors ux, uy, and uz are the
unit vectors defining the curvilinear coordinate system. To completely evalu-
ate (3.70) , the second derivative d2r/dz2 must be derived from (1.84) with
duz = −κxuxdz − κyuydz for

d2r

dz2
= (x′′ − κxh)ux + (y′′ − κyh)uy + (2κxx

′ + 2κyy
′ + κ′

xx + κ′
yy)uz,

(3.71)
and (3.70) becomes with (1.84) and s′ 2 = r′ 2

(
x′′ − κxh− x′

2s′2
ds′2

dz

)
ux +

(
y′′ − κyh− y′

2s′2
ds′2

dz

)
uy

+
(

2κxx
′ + 2κyy

′ + κ′
xx + κ′

yy − h

s′2
ds′2

dz

)
uz =

e

p
s′
[
dr

dz
× B

]
.



3.3 Third-Order Differential Equation of Motion 89

This is the general equation of motion for a charged particles in a mag-
netic field B. So far no approximations have been made. For practical use we
may separate the individual components and get the differential equations for
transverse motion

x′′ − κx h−1
2
x′

s′2
ds′2

dz
=

e

p
s′[y′ Bz − hBy] (3.72a)

y′′ − κy h− 1
2
y′

s′2
ds′2

dz
=

e

p
s′[hBx − x′ Bz] . (3.72b)

Chromatic effects originate from the momentum factor e
p which is different

for particles of different energies. We expand this factor into a power series in δ

e

p
=

e

p0
(1 − δ + δ2 − δ3 + · · · ), (3.73)

where δ = ∆p/p0 and cp0 = βE0 is the ideal particle momentum. A further
approximation is made when we expand s′ to third order in x and y while
restricting the discussion to paraxial rays with x′ � 1 and y′ � 1

s′ ≈ h + 1
2 (x′2 + y′2) (1 − κx x− κy y) + · · · . (3.74)

Evaluating the derivative ds′2/dz we obtain terms including second or-
der derivatives x′′ and y′′. Neglecting fourth order terms, x′′ and y′′ can be
replaced by the unperturbed equations of motion x′′ + (κ2

x + k)x = 0 and
y′′ + (κ2

y + k)y = 0. For the field components, we insert in (3.72b) expres-
sions (3.65)–(3.67) while making use of (3.73) and (3.74). Keeping all terms
up to third order in x, y, x′, y′, and δ, we finally obtain equations of motion
for a particle with charge e in an arbitrary magnetic field derivable from a
scalar potential. For the horizontal and vertical plane the general equations
of motion are (3.75) and (3.76) , respectively.

In spite of our attempt to derive a general and accurate equation of mo-
tion, we note that some magnet boundaries are not correctly represented.
The natural bending magnet is of the sector type and wedge or rectangular
magnets require the introduction of additional corrections to the equations
of motion which are not included here. This is also true for cases where a
beam passes off center through a quadrupole, in which case theory assumes a
combined function sector magnet and corrections must be applied to model
correctly a quadrupole with parallel pole faces. The magnitude of such cor-
rections is, however, in most cases very small. Equation (3.75) of motion
shows an enormous complexity which, however, in real beam transport lines,
becomes very much relaxed due to proper design and careful alignment of the
magnets. Nonetheless (3.75), and (3.76) for the vertical plane, can be used as
a reference to find and study the effects of particular perturbation terms. In
a special beam transport line one or the other of these perturbation terms
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may become significant and can now be dealt with separately. This may be
the case where strong multipole effects from magnet fringe fields cannot be
avoided or because large beam sizes and divergences are important and nec-
essary. The possible significance of any perturbation term must be evaluated
for each beam transport system separately.

x′′ + (κ2
x + k)x = κxδ − κxδ

2 + κxδ
3 − (k + κxκy) y (3.75)

− (m + 2κxk + 2κyk + 2κ2
xκy)xy − 1

2m (x2 − y2)

− (κ3
x + 2κxk)x2 − (κxκ

2
y − 1

2 κxk + 2
3κy k − 1

2 κ′′
x) y2

+ 1
2 κx(x′2 − y′

2) + κ′
x (xx′ + yy′) + κ′

y (x′y − xy′) + κyx
′y′

− 1
6 r x(x2 − 3y2) + 1

6 r y (y2 − 3x2)

+ 1
12 (κym− 11κxm + 2κ2

yk − 10κ2
xk + k′′ − κyκ

′′
y

+κxκ
′′
x − κ′

y
2 + κ′

x
2)x3

−(2κxm + κym + κ2
xk + 2κxκyk)x2y

+ 1
4 (5κxm− 7κym + 6κ2

xk + k′′ − κyκ
′′
y − 2κ2

yk

+5κxκ
′′
x + κ′

x
2 − κ′

y
2 − κxκyk)xy2

+ 1
6 (10κxκyk + 8κ′′

xκy + κxm + 4κ2
yk + k′′ + 2κ′

xκ
′
y + 5κym) y3

−(2κ2
x + 3

2k)xx′2 − (κ′
xκy + κxκ

′
y)xx′y − κxκ

′
x x2x′

− 1
2k

′x2y′ − κyκ
′
yx

′y2 − κxκyxx
′y′ − 1

2 (k + 3κxκy)x′2y

+k′xyy′ − 1
2 (k + κ2

x)xy′2 − (2κ2
y − k)x′yy′ + 1

2k
′y2y′ − 1

2k yy′2

+(2κ2
x + k)x δ + (2κxκy + k) y δ − κ′

xyy
′δ + κ′

y xy′δ

+ 1
2κx(x′2 + y′

2)δ + (3
2κyk + κxκ

2
y − 1

2κxk − 1
2κ

′′
x − 1

2m) y2δ

+(1
2m + 2κxk + κ3

x)x2δ + (m + 2κ2
xκy + 2κyk + 2κxk)xyδ

−(k + 2κ2
x)xδ2 − (k + 2κxκy) yδ2 + O(4) .

In the vertical plane we get a very similar equation, (3.76), which is to be
expected since we have not yet introduced any asymmetry.

In most beam transport lines the magnets are built in such a way that
different functions like bending, focusing, etc., are not combined thus elimi-
nating all terms that depend on those combinations like κxκy, κxk, or mκx

etc. As long as the terms on the right-hand sides are small we may apply per-
turbation methods to estimate the effects on the beam caused by these terms.
It is interesting, however, to try to identify the perturbations with aberrations
known from light optics.
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y′′ + (κ2
y − k)y = +κyδ − κyδ

2 + κyδ
3 − (k + κxκy)x (3.76)

+ (m− 2κyk + 2κxk − 2κxκ
2
y)xy − 1

2 m (x2 − y2)

− (κ3
y − 2κyk)y2 − (κ2

xκy + 1
2κyk + 3

2κxk − 1
2κ

′′
y)x2

− 1
2κy(x′2 − y′2) + κ′

y(xx′ + yy′) − κ′
x (x′y − xy′) + κxx

′y′

− 1
6r y(y

2 − 3x2) − 1
6r x(x2 − 3y2)

− 1
12 (κxm− 11κym + 2κ2

xk − 10κ2
yk + k′′ − κyκ

′′
y

+ κxκ
′′
x + κ′2

x − κ′2
y ) y3

+ (2κym + κxm− κ2
yk + 2κxκyk)xy2

− 1
4 (5κym− 7κxm + 6κ2

yk + k′′ + κxκ
′′
x − 2κ2

xk

−5κyκ
′′
y − κ′

y
2 + κ′

x
2 + κxκyk)x2y

+ 1
6 (−10κxκyk + 8κxκ

′′
y − κym+4κ2

xk+k′′ + 2κ′
xκ

′
y − 5κxm)x3

−(2κ2
y − 1

2k − k) yy′2 − (κxκ
′
y + κ′

xκy)xyy′ − κyκ
′
y y2y′

− 1
2k

′x′y2 − κxκ
′
x x2y′ − κxκy x′yy′ − 1

2 (k + 3κxκy) xy′2

−k′xx′y+ 1
2 (k − κ2

y)x′2y − (2κ2
x + k)xx′y′+ 1

2k
′x2x′ − 1

2k xx′2

+(2κ2
y − k) yδ + (2κxκy + k)xδ − κ′

yxx
′δ + κ′

x x′yδ

+ 1
2κy(x′2 + y′

2) δ + (3
2κxk + κ2

xκy + 1
2κyk − 1

2κ
′′
y + 1

2m)x2δ

+(− 1
2m− 2κyk + κ3

y) y2δ − (m− 2κxκ
2
y + 2κxk − 2κyk)xyδ

+(k − 2κ2
y) yδ2 − (k + 2κxκy)xδ2 + O(4) .

Chromatic terms κx (δ− δ2 + δ3), for example, are constant perturbations
for off momentum particles causing a shift of the equilibrium orbit which ide-
ally is the trivial solution x ≡ 0 of the differential equation x′′+(k+κ2

x)x = 0.
Of course, this is not quite true since κx is not a constant, but the general
conclusion is still correct. This shift is equal to ∆x = κx(δ− δ2 + δ3)/(k+κ2

x)
and is related to the dispersion function D by D = ∆x/δ. In light optics
this corresponds to the dispersion of colors of a beam of white light (particle
beam with finite energy spread) passing through a prism (bending magnet).
We may also use a different interpretation for this term. Instead of a particle
with an energy deviation δ in an ideal magnet κx we can interpret this term
as the perturbation of a particle with the ideal energy by a magnetic field that
deviates from the ideal value. In this case, we replace κx (δ−δ2−δ3) by −∆κx

and the shift in the ideal orbit is then called an orbit distortion . Obviously,
here and in the following paragraphs the interpretations are not limited to the
horizontal plane alone but also apply to the vertical plane caused by similar
perturbations. Terms proportional to x2 cause geometric aberrations , where
the focal length depends on the amplitude x while terms involving x′ lead to
the well-known phenomenon of astigmatism or a combination of both aberra-
tions. Additional terms depend on the particle parameters in both the vertical
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and horizontal plane and therefore lead to more complicated aberrations and
coupling.

Terms depending also on the energy deviation δ, on the other hand, give
rise to chromatic aberrations which are well known from light optics. Specif-
ically, the term (k + 2κ2

x)x δ is the source for the dependence of the focal
length on the particle momentum. Some additional terms can be interpreted
as combinations of aberrations described above.

It is interesting to write down the equations of motion for a pure quadru-
pole system where only k 
= 0 in which case (3.75) becomes

x′′ + kx = kx (δ − δ2 − δ3)− 1
12 k′′x (x2 + 3y2) (3.77)

− 3
2k xx′2 + k x′ yy′ + k′xyy′ + O(4) .

We note that quadrupoles do not produce geometric perturbations of lower
than third order. Only chromatic aberrations are caused in second order by
quadrupole magnets.

3.4 Longitudinal Field Devices

General field equations have been derived in this chapter with the only re-
striction that there be no solenoid fields, which allowed us to set A00 = 0 in
(3.46), and concentrate on transverse fields only. Longitudinal fields like those
produced in a solenoid magnet are used in beam transport systems for very
special purposes and their effect on beam dynamics cannot be ignored. We
now assume that the lowest order coefficient A00 in potential (3.43) does not
vanish

A00(z) 
= 0 . (3.78)

Longitudinal fields do not cause transverse beam deflection although there
can be some amplitude dependent focusing or coupling. We may therefore
choose a cartesian coordinate system along such fields by setting κx = κy = 0,
and the recursion formula (3.45) reduces to

A02 + A20 = −A′′
00 . (3.79)

Again, we have a solution where A02 +A20 = 0, which is a rotated quadru-
pole as derived in (3.16) and can be ignored here. The additional component
of the field is A∗

02 + A∗
20 = −A′′

00 and describes the endfields of the solenoid.
For reasons of symmetry with respect to x and y we have A∗

02 = A∗
20 and

A∗
02 = A∗

20 = − 1
2A

′′
00. (3.80)

With this, potential (3.43) for longitudinal fields is

−e

p
Vs(x, y, z) = A00 − 1

4A
′′
00(x

2 + y2) = A00 − 1
4A

′′
00 r

2, (3.81)
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where we have made use of rotational symmetry. The longitudinal field com-
ponent becomes from (3.81) in linear approximation

e

p
Bz = +A′

00 (3.82)

and the transverse components

e

p
Br = − 1

2A
′′
00 r = −e

p
1
2B

′
z r, (3.83)

Bϕ = 0 .

The azimuthal field component obviously vanishes because of symmetry. Ra-
dial field components appear whenever the longitudinal field strength varies as
is the case in the fringe field region at the end of a solenoid shown in Fig. 3.14.

The strength B0 at the center of a long solenoid magnet can be calcu-
lated in the same way we determined dipole and higher order fields utilizing
Stoke’s theorem. The integral

∮
B ds is performed along a path as indicated

in Fig. 3.14. The only contribution to the integral comes from the integral
along the field at the magnet axis. All other contributions vanish because the
integration path cuts field lines at a right angle, where B ds = 0 or follows
field lines to infinity where Bs = 0. We have therefore

∮
Bd z = B0∆s = µ0µrJ∆s, (3.84)

where J is the total solenoid current per unit length. The solenoid field
strength is therefore given by

B0 (x = 0, y = 0) = µ0µrJ . (3.85)

The total integrated radial field
∫
Brds can be evaluated from the central

field for each of the fringe regions. We imagine a cylinder concentric with the

integration path

∆s

B
s

s

excitation coils

Fig. 3.14. Solenoid field
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solenoid axis and with radius r to extend from the solenoid center to a region
well outside the solenoid. At the center of the solenoid a total magnetic flux
of πr2B0 enters this cylinder. It is clear that along the infinitely long cylinder
the flux will exit the surface of the cylinder through radial field components.
We have therefore

πr2B0 =
∫ ∞

0

2πrBr(r)dz, (3.86)

where we have set z = 0 at the center of the solenoid. The integrated radial
field per fringe field is then

∫ ∞

0

Br(r)dz = − 1
2B0 r. (3.87)

The linear dependence of the integrated radial fields on the distance r from
the axis constitutes linear focusing capabilities of solenoidal fringe fields.

Such solenoid focusing is used, for example, around a conversion target
to catch a highly divergent positron beam. The positron source is generally a
small piece of a heavy metal like tungsten placed in the path of a high energy
electron beam. Through an electromagnetic cascade, positrons are generated
and emerge from a point-like source into a large solid angle. If the target is
placed at the center of a solenoid the radial positron motion couples with
the longitudinal field to transfer the radial particle momentum into azimuthal
momentum. At the end of the solenoid, the azimuthal motion couples with the
radial field components of the fringe field to transfer azimuthal momentum
into longitudinal momentum. In this idealized picture a divergent positron
beam emerging from a small source area is transformed or focused into a
quasi-parallel beam of larger cross section. Such a focusing device is called a
λ/4-lens, since the particles follow one quarter of a helical trajectory in the
solenoid.

In other applications large volume solenoids are used as part of elementary
particle detectors in high energy physics experiments performed at colliding-
beam facilities. The strong influence of these solenoidal detector fields on beam
dynamics in a storage ring must be compensated in most cases. In still other
applications solenoid fields are used just to contain a particle beam within a
small circular aperture like that along the axis of a linear accelerator.

3.5 Air Coil Magnets

Superconducting materials are available in large quantities as thin wires and
it has become possible to construct magnets with superconducting coils and
fields exceeding significantly the saturation limit of about 2 T in iron domi-
nated magnets. The magnetic-field properties in such magnets are determined
by the location of current carrying wires, a feature that has become one of the
most difficult engineering challenges in the construction of superconducting
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magnets. Any movement of wires during cool down or under the influence
of great mechanical forces from the magnetic fields must be avoided. Gen-
erally, the superconducting material is embedded into a solid copper matrix
to prevent thermal destruction in the event of a quench. The fact that most
superconducting magnets have an iron collar on the outside of the coils does
not affect our discussion since it mostly serve to keep the coils firmly in place
and to shield the outside environment from excessive magnetic field. In this
text, we will not consider technical construction methods of superconducting
magnets, but concentrate rather on the fundamental physical principles of
generating multipole fields in conductor dominated magnets. These principles
are obviously applicable to any ironless magnets, superconducting or other.
More comprehensive accounts of superconducting magnet technology can be
found, for example, in [25].

The determination of the magnetic field in such magnets is somewhat more
complicated compared to that in iron dominated magnets. In the latter case,
we performed an integration of Maxwell’s curl equation along a path which
is composed of a contribution from a known or desired field in the magnet
aperture, while all other parts of the integration path do not contribute to the
integral because either the field is very small like in unsaturated iron, or the
path is orthogonal to the field lines. In iron free magnets, we must consider
the whole path surrounding the current carrying coil.

Arbitrary multipole fields can be constructed in two somewhat related
ways which we will discuss here in more detail. The first method uses two equal
circular or elliptical conductors with the same current densities flowing in
opposite directions. We consider such a pair of conductors to overlap, though
not fully, as shown in Fig. 3.15 (left) and note that there is no net current in
the overlap region. The material can therefore be eliminated from this region
providing the magnet aperture for the particle beam. We consider this simple
case, proposed first by Rabi [26], to generate a pure dipole field. The magnetic
field within a cylindrical conductor with uniform current density j at radius
r (Fig. 3.15) is

Hθ = 1
2j r (3.88)

and in cartesian coordinates the field components are

Hx = − 1
2j y and Hy = 1

2j x . (3.89)

Now we superimpose on this another identical conductor with the current
running in the opposite direction −j. Since the electrical currents cancel, the
fields cancel and there is no magnetic field. If however, both conductors are
separated by a distance ±δx along the horizontal coordinate as shown in
Fig. 3.15 a homogenous vertical field can be created in the overlap region.
The horizontal field component Hx depends only on the vertical coordinate.
The contributions of both conductors to Hx are therefore equal in magnitude
but of opposite sign and cancel perfectly everywhere within the overlap of the
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j

 2δx

R

-I+I
Hθ

H

Fig. 3.15. Magnetic field in the overlap region of two cylindrical electrical conduc-
tors

conductors. The residual vertical field component from both conductors, on
the other hand, is

Hy = 1
2 j [(x + δx) − (x− δx)] = 1

2 j 2 δx . (3.90)

Within the area of the overlapping conductors, a pure vertical dipole field
has been generated that can be used for beam guidance after eliminating the
material in the overlap region where no net current flows. The current density
j is assumed to be constant and the current distribution just outside of the
limits of the overlap region is

I(ϕ) = 2 j δx cosϕ . (3.91)

Conversely, we can state that a cosine-like current distribution on a circle
produces a pure magnetic dipole field within that circle leading to the second
method of generating magnetic fields for beam transport systems based on a
specific current distribution along the periphery of the aperture. The correla-
tion between a particular current distribution and the resulting higher order
multipole fields can be derived in a formal and mathematical way. To do this
it is convenient to use complex functions. A complex function

f (w) = Hy + iHx (3.92)

is an analytical functions of w = x + iy if the Cauchy-Riemann equations

∂Hy

∂x
− ∂Hx

∂y
= 0 and

∂Hy

∂y
+

∂Hx

∂x
= 0 (3.93)

hold. We differentiate the Cauchy–Riemann equations with respect to x and
y, respectively, and get, after addition, the Laplace equations for Hx and Hy.
Identifying Hi with the components of the magnetic field we find the complex
function f (w) to describe a two-dimensional field in the (x, y)-plane [27]. To
derive the correlation between current distribution and magnetic fields, we
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start with a line current I along the z-axis. The complex potential for the
magnetic field generated by such a line current is

W = −2
c
I ln(w − v0), (3.94)

where v0 is the location of the line current flowing in the z-direction and w is
the location of the field point in the complex (x, y)-plane. We may verify the
correctness of this potential by equating

H(w) = − c

4π
dW
dw

=
1
2

I

w − v0
= (Hy + iHx), (3.95)

where w = x + iy and v0 = x0 + iy0. In Cartesian coordinates, such a line
current generates the well-known field components

Hy =
1
2
I

R

x− x0

R
and Hx = −1

2
I

R

y − y0

R
(3.96)

at a distance R2 = (x− x0)2 + (y − y0)2 from a line current I. The complex
function f (w) has a first-order singularity at w = v0 and from Cauchy’s
residue theorem we find

∮
H(w) dw =

1
2

∮
I

w − v0
dw = i I, (3.97)

where 2I/c is the residue of the function H(w). This can be applied to a
number of line currents by adding up the r.h.s of all residues, or integrating
a current distribution.

Following Beth, we apply (3.97) to a current sheet along the line v, where
dI/dv = I(ϕ) is the line current density flowing perpendicular through the
paper or (x, y)-plane and parallel to the z-direction. A closed path leading
clockwise and tightly around the current element I(ϕ)∆v (Fig. 3.16) gives
with (3.97)

Hi(w) −H0(w) = −i I(ϕ) . (3.98)

v+∆v

integration path

J

 v

H
i 
(w)

Ho (w)

Fig. 3.16. Current sheet theorem
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We must consider here only fields very close to the current sheet to elimi-
nate the contributions from other current elements. Therefore the integration
path surrounds closely the current element and Hi and H0 are the fields on
either side of the current sheet for w → v. This current sheet theorem will
prove very useful in deriving magnetic fields from current distributions.

A cosine-like current distribution on a circle produces a pure dipole field
inside this circle. Generalizing this observation, we study fields generated by
higher harmonic current distributions. Let the current be distributed along a
circle of radius R like

v = R eiϕ, (3.99)

where ϕ is the angle between the radius vector R and the positive x-
coordinate. The azimuthal current distribution along the circle be

I(ϕ) = −
∞∑

n=1

In cos(nϕ + ϕn) (3.100)

and replacing the trigonometric functions by exponential functions, we get
with (3.99)

cos(nϕ + ϕn) =
1
2

[
eiϕn

( v

R

)n

+ e−iϕn

(
R

v

)n ]
. (3.101)

An ansatz for the field configuration which meets the proper boundary
condition at the location of the currents w = v is obtained by inserting (3.101)
into (3.100) and we get after differentiation from (3.97)

Hi −H0 = i
1
2

∞∑
n=1

n
In

R

[
eiϕn

(w
R

)n−1

+ e−iϕn

(
R

w

)n+1
]
. (3.102)

We would like to apply (3.102) to any location w not just at the current
sheet and add therefore two more boundary conditions. The fields must not
diverge anywhere in the (x, y)-plane specifically for w → 0 and w → ∞. We
also exclude a constant field in all of the (x, y)-plane since it would require an
infinite energy. Application of these boundary conditions to (3.102) gives the
fields

Hi(w) = i
1
2

∞∑
n=1

n
In

R
eiϕn

(w
R

)n−1

(3.103)

H0(w) = −i
2π
c

∞∑
n=1

n
In

R
e−iϕn

(
R

w

)n+1

. (3.104)

Both fields now meet proper boundary conditions for realistic fields at
w = 0 and w = ∞ and are consistent with the current sheet theorem (3.98).
Being interested only in the field inside the current distribution, we find with
(3.95)
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Hy + iHx = Hi(w) = i
1
2

∞∑
n=1

n
In

R
eiϕn

(
x + iy
R

)n−1

, (3.105)

where R2 = (x−x0)2 + (y− y0)2. The angle ϕn determines the orientation of
the multipole fields and to be consistent with the definitions of conventional
magnet fields, we set ϕn = 0 for upright multipoles and ϕn = π/ (2n) for
rotated multipoles. An upright quadrupole field, for example, is defined by
the imaginary term for n = 2 in (3.105)

Hi(w) = i
I2
R2

w = i g w . (3.106)

For a rotated quadrupole, the orientation ϕ2 = π/4, and the field gradient is
determined by

g =
I2
R2

. (3.107)

The current distribution to create such a field is from (3.100)

I(ϕ) = −2 I2 cos(2ϕ + π/4) . (3.108)

In a similar way, current distributions can be derived for arbitrary higher
order field configurations including combinations of multipole fields. Proper
selection of the orientation ϕn distinguishes between upright and rotated mag-
nets. The derivation was made based on a current distribution on a circle but
could have been based as well on an ellipse. We also chose to use only a thin
current sheet. A “thick” current sheet can be represented by many thin current
sheets and a linear superposition of fields. More detailed information about
the techniques of building superconducting magnets exceeds the goals of this
text and more specialized literature should be consulted, for example [25].

3.6 Periodic Wiggler Magnets

Particular arrays or combinations of magnets can produce desirable results
for a variety of applications. An especially useful device of this sort is a wig-
gler magnet [28] which is composed of a series of short bending magnets with
alternating field excitation. Most wiggler magnets are used as sources of high
brightness photon beams in synchrotron radiation facilities and are often also
called undulators. There is no fundamental difference between both. We dif-
ferentiate between a strong field wiggler magnet and an undulator, which is
merely a wiggler magnet at low fields, because of the different synchrotron
radiation characteristics. As long as we talk about magnet characteristics in
this text, we make no distinction between both types of magnets. Wiggler
magnets are used for a variety of applications to either produce coherent or
incoherent photon beams in electron accelerators, or to manipulate electron
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beam properties like beam emittance and energy spread. To compensate anti-
damping in a combined function synchrotron a wiggler magnet including a
field gradient has been used for the first time to modify the damping parti-
tion numbers [29]. In colliding-beam storage rings wiggler magnets are used
to increase the beam emittance for maximum luminosity [30]. In other appli-
cations, a very small beam emittance is desired as is the case in damping rings
for linear colliders or synchrotron radiation sources which can be achieved by
employing damping wiggler magnets in a different way [31].

Wiggler magnets are generally designed as flat wiggler magnet as shown
in Fig. 3.17 [28] with field components only in one plane or as helical wiggler
magnets [32–34] where the transverse field component rotates along the mag-
netic axis. In this discussion, we concentrate on flat wigglers which are used
in growing numbers to generate, for example, intense beams of synchrotron
radiation from electron beams, to manipulate beam parameters, or to pump
a free electron laser.

particle
path

permanent magnet pieces

Fig. 3.17. Permanent magnet wiggler showing the magnetization direction of indi-
vidual blocks (schematic)

3.6.1 Wiggler Field Configuration

Whatever the application may be, the wiggler magnet deflects the electron
beam transversely in an alternating fashion without introducing a net deflec-
tion on the beam. Wiggler magnets are generally considered to be insertion
devices installed in a magnet free straight section of the lattice and not being
part of the basic magnet lattice. To minimize the effect of wiggler fields on
the particle beam, the integrated magnetic field through the whole wiggler
magnet must be zero ∫

wiggler

B⊥ dz = 0 . (3.109)

Since a wiggler magnet is a straight device, we use a fixed Cartesian coordinate
system (x, y, z) with the z-axis parallel to the wiggler axis to describe the
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wiggler field, rather than a curvilinear system that would follow the oscillatory
deflection of the reference path in the wiggler. The origin of the coordinate
system is placed in the middle of one of the wiggler magnets. The whole
magnet may be composed of N equal and symmetric pole pieces placed along
the z-axis at a distance λp/2 from pole center to pole center as depicted in
Fig. 3.18. Each pair of adjacent wiggler poles forms one wiggler period with a
period length λp and the whole magnet is composed of N/2 periods. Since all
periods are assumed to be the same and the beam deflection is compensated
within each period no net beam deflection occurs for the complete magnet.

B

period length (λp)

permanent magnet blocks with magnetization

z

Fig. 3.18. Field distribution in a wiggler magnet

On a closer inspection of the precise beam trajectory we observe a lateral
displacement of the beam within a wiggler magnet. To compensate this lateral
beam displacement, the wiggler magnet should begin and end with only a half
pole of length λp/4 to allow the beams to enter and exit the wiggler magnet
parallel with the unperturbed beam path.

The individual magnets comprising a wiggler magnet are in general very
short and the longitudinal field distribution differs considerably from a hard-
edge model. In fact most of the field will be fringe fields. We consider only
periodic fields which can be expanded into a Fourier series along the axis
including a strong fundamental component with a period length λp and higher
harmonics expressed by the ansatz [35]

By = B0

∑
n≥0

b2n+1(x, y) cos[(2n + 1) kpz], (3.110)
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where the wave number kp = 2π/λp. The functions bi(x, y) describe the vari-
ation of the field amplitude orthogonal to the beam axis for the harmonic i.
The content of higher harmonics is greatly influenced by the particular de-
sign of the wiggler magnet and the ratio of the period length to the pole gap
aperture. For very long periods relative to the pole aperture the field profile
approaches that of a hard-edge dipole field with a square field profile along
the z-axis. For very short periods compared to the pole aperture, on the other
hand, we find only a significant amplitude for the fundamental period and
very small perturbations due to higher harmonics.

We may derive the full magnetic field from Maxwell’s equations based on
a sinusoidal field along the axis. Each field harmonic may be determined sep-
arately due to the linear superposition of fields. To eliminate a dependence of
the magnetic field on the horizontal variable x, we assume a pole width which
is large compared to the pole aperture. The fundamental field component is
then

By(y, z) = B0 b1(y) cos kpz . (3.111)

Maxwell’s curl equation is in the wiggler aperture ∇ × B = 0 and we have
with (3.111) and ∂Bz

∂y = ∂By

∂z

∂Bz

∂y
=

∂By

∂z
= −B0 b1(y) kp sin kpz . (3.112)

Integration of (3.112) with respect to z gives the vertical field component

By = −B0 kp b1(y)
∫ z

0

sin kpz̄ dz̄ . (3.113)

We have not yet determined the y-dependence of the amplitude function b1(y).
From ∇B = 0 and the independence of the field on the horizontal position,
we get with (3.111)

∂Bz

∂z
= −∂By

∂y
= −B0

∂ b1(y)
∂y

cos kpz . (3.114)

Forming the second derivatives ∂2 Bz/(∂y ∂z) from (3.112), (3.114) we get for
the amplitude function the differential equation

∂2b1(y)
∂y2

= k2
p b1(y), (3.115)

which can be solved by the hyperbolic functions

b1(y) = a cosh kpy + b sinh kpy . (3.116)

Since the magnetic field is symmetric with respect to y = 0 and b1(0) = 1,
the coefficients are a = 1 and b = 0. Collecting all partial results, the wiggler
magnetic field is finally determined by the components
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Bx = 0,

By = B0 cosh kpy cos kpz,

Bz = −B0 sinh kpy sin kpz,

(3.117)

where Bz is obtained by integration of (3.112) with respect to y.
The hyperbolic dependence of the field amplitude on the vertical position

introduces higher order field errors which we determine by expanding the
hyperbolic functions

cosh kpy = 1 +
(kp y)2

2 !
+

(kp y)4

4 !
+

(kp y)6

6 !
+

(kp y)8

8 !
+ · · · , (3.118)

sinh kpy = +(kp y) +
(kp y)3

3 !
+

(kp y)5

5 !
+

(kp y)7

7 !
+ · · · . (3.119)

Typically the vertical gap in a wiggler magnet is much smaller than the period
length or y � λp to avoid drastic reduction of the field strength. Due to the
fast convergence of the series expansions (3.118) only a few terms are required
to obtain an accurate expression for the hyperbolic function within the wiggler
aperture. Expansion (3.118) displays higher order field components explicitly
which, however, do not have the form of higher order multipole fields and we
cannot treat these fields just like any other multipole perturbation but must
consider them separately.

To determine the path distortion due to wiggler fields, we follow the ref-
erence trajectory through one quarter period starting at a symmetry plane in
the middle of a pole. At the starting point z = 0 in the middle of a wiggler pole
the beam direction is parallel to the reference trajectory and the deflection
angle at a downstream point z is given by

ϑ(z) =
e

p

∫ z

0

By (z̄) dz̄ =
e

p
B0 cosh kpy

∫ z

0

cos kpz̄ dz̄ (3.120)

= −e

p
B0

1
kp

cosh kpy sin kpz .

The maximum deflection angle is equal to the deflection angle for a quarter
period or half a wiggler pole and is from (3.120) for y = 0 and kpz = π/2

θ = −e

p
B0

λp

2π
. (3.121)

This deflection angle is used to define the wiggler strength parameter

K = βγθ =
ce

2πmc2
B0 λp, (3.122)

where mc2 is the particle rest energy and γ is the particle energy in units of
the rest energy. In more practical units this strength parameter is
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K = CK B0 (T) λp (cm) ≈ B0 (T) λp (cm) , (3.123)

where
CK =

c e

2πmc2
= 0.93373 T−1 cm−1 .

The parameter K is a characteristic wiggler constant defining the wiggler
strength and is not to be confused with the general focusing strength K =
κ2+k. Coming back to the distinction between wiggler and undulator magnet,
we speak of a wiggler magnet if K 
 1 and of an undulator if K � 1. Of
course, many applications happen in a gray zone of terminology when K ≈ 1.

3.7 Electric Field Components

Electrical fields are commonly employed for low energy, nonrelativistic par-
ticles. As discussed in Chap. 2, magnetic devises are most effective at high
energies when particle velocities are close to the speed of light. At lower ve-
locities, magnetic fields lose their efficiency and are often replaced by more
economic electric field devises. At very low energies electric fields are used
almost exclusively.

3.7.1 Electrostatic Deflectors

The electric field E between two parallel metallic electrodes is uniform in
space and can be used to deflect a particle beam. This field can be derived
from (3.10) taking only the first term modified for electric fields V1(x, y) =
− pβ

e A10 x. To get a uniform field, we generate equipotential surfaces by plac-
ing metallic electrodes at, for example, x = ±G = const. and applying a
voltage difference V between the electrodes. The Lorentz force of the electric
field on a charged particle is by virtue of d’Alembert’s principle equal to the
centrifugal force or assuming a deflection in the horizontal plane

eZEx =
γAmc2β2

ρ
. (3.124)

Here we have assumed that the electric field is parallel to the vector from
the particle to the center of curvature. That is true for parallel plates which are
curved to follow the curvature or for straight parallel plates if the deflection
angle is very small. Solving for the curvature, we get

1
ρ

=
eZEx

γAmc2β2
=

eZ V

Ekin

γ

γ + 1
1

2G
, (3.125)

where 2G is the distance and V the voltage between the electrodes.
We kept here the relativistic notation to cover the rare use of electrostatic

fields on high energy beams for small deflections which cannot be done by
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magnetic fields. For nonrelativistic particles, (3.125) reduces to 1
ρ = eEx

Amv2

or in case of an ion beam with charge multiplicity Z and kinetic energy per
nucleon Ekin = 1

2mv2

1
ρ

(
m−1

)
=

eZE (V/m)
2AEkin (eV)

, (3.126)

where E = V/ (2G)is the electric field between the electrodes.

3.7.2 Electrostatic Focusing Devices

The most simple electrostatic device with focusing properties is an iris elec-
trode on some potential and concentric with the path of a charged particle
beam as shown in Fig. 3.19.

V0

a z

r

iris aperture

Fig. 3.19. Iris electrode

To determine the field configuration and focusing properties, we note that
the electric potential distribution V (r, z) in the vicinity of the iris is rotational
symmetric and expanding into a Taylor series about r = 0 this symmetry
requires all odd terms of the expansion to vanish.

V (r, z) = V0 (z) +
1
2
V̈0 (z) r2 +

1
24

∂4V0 (z)
∂r4

r4 + · · · . (3.127)

With a dot we denote derivatives with respect to r and with a prime we
denote derivatives with respect to z. To be a real potential solution, (3.127)
must also be a solution of the Laplace equation

∆V =
∂2V

∂r2
+

1
r

∂V

∂r
+

∂2V

∂z2
= 0 . (3.128)

Inserting (3.127) into (3.128) results in

0 = V̈0 +
1
2
∂4V0

∂r4
r2 +

1
2

...
V 0 r

2 + V̈0 +
1
6
∂4V0

∂r4
r2 + V ′′

0 +
1
2
V̈ ′′

0 r2 + · · · , (3.129)

where the coefficients of each term rn must be equal to zero separately to give
2V̈0 + V ′′

0 = 0,
...
V 0 = 0, and 2

3
∂4V0
∂r4 + 1

2 V̈
′′
0 = 0. Using these relations, we set

∂4V0
∂r4 = 3

8
∂4V0
∂z4 and the potential function is
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V (r, z) = V0 (z) − 1
4
V ′′

0 (z) r2 +
1
64

∂4V0 (z)
∂z4

r4 + · · · . (3.130)

The on-axis (r = 0) field component is

Ez = −V ′
0 (z) , (3.131)

and from ∇E = 0 or ∂Ez

∂z = − 1
r

∂
∂r (rEr) , we get by integration

Er = −r

2
∂Ez

∂z
= 1

2V
′′
0 (z) r . (3.132)

Knowing the field components, we can derive the focusing properties by
integrating the radial equation of motion mr̈ = mv2r′′ = qEr, where v and q
are the particle velocity and charge, respectively. We use Fig. 3.20 to define
the integration

r′2 − r′1 =
q

mv2

∫ z2

z1

Er dz = − q

2mv2

∫ z2

z1

r
∂Er

∂z
dz

and solve in thin lens approximation (r = const., v = const.)

r′2 − r′1 = − q r1
2mv2

(E2 − E1) . (3.133)

With 1
2mv2 = qV0 and setting E = −V ′, (3.133) becomes r′2 − r′1 = r1

4
V ′

2−V ′
1

V0
and the focal length of the iris electrode is

1
f

=
V ′

2 − V ′
1

4V0
. (3.134)

The transformation matrix is finally

Miris =




1 0
V ′

2−V ′
1

V0
1


 . (3.135)

From the transformation matrix or focal length it is obvious that there
is no focusing for a symmetric iris electrode where V ′

2 = V ′
1 . On the other

hand, an asymmetric potential is not possible without additional electrodes.
We investigate therefore the properties of an iris doublet.

V0

zV1 V2

z1 z2

Ez2 = 0Ez1 = 0

thin lens

Fig. 3.20. Focusing by an iris electrode
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3.7.3 Iris Doublet

We now investigate the particle dynamics for an iris doublet as shown in Fig.
3.21. Between both electrodes a distance d apart, the potential varies linearly
from V1 to V2 . The doublet has three active parts, two iris electrodes and the
drift space between them. The transformation matrices for both iris electrodes
are

M1 =




1 0
V2−V1

4dV1
1


 and M2 =




1 0
V2−V1

4dV2
1


 . (3.136)

z

V

z
V1

V(z)
V2

d
V1 V2

Fig. 3.21. Focusing by an iris doublet

The transformation matrix for the drift space between the electrodes can
be derived from the particle trajectory

r(z) = r1 +
∫ z

0

r′(z̄) dz̄ = r1 +
∫ z

0

r′ p1

p1 + ∆p(z̄)
dz̄ . (3.137)

The particle momentum varies between the electrodes from p1 =
√

2mEkin to

p1 + ∆p(z̄) =

√
2m
(
Ekin + q

V2−V1

d
z

)
and the integral in (3.137) becomes

∫ d

0

dz̄√
1 +

V2−V1

Ekin d z̄

=
2Ekin d

q (V2 − V1)

√
1 + q

V2 − V1

Ekin d
z̄

∣∣∣∣∣
d

0

=
2d

√
V1√

V2 +
√
V1

. (3.138)

The particle trajectory at the location of the second electrode is r(d) =
r2 = r1 + 2d

√
V1√

V2+
√

V1
r′1 and its derivative r′2 = r′1

√
V1/

√
V2 from which we can

deduce the transformation matrix

Md =




1 2d
√

V1√
V2+

√
V1

0
√

V1√
V2


 . (3.139)
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We may now collect all parts and get the transformation matrix for the iris
doublet

Mdb = M2MdM1 =




1
2 (R + 1) 2d

1+R

(R2−1)(3R+1)

8dR2

3R−1
2R2


 , (3.140)

where R =
√
V2/

√
V1. Unfortunately, this doublet is still not very useful since

it still changes the energy of the particle as indicated by the fact that the
determinate det(Mdb) = 1/R .

3.7.4 Einzellens

To obtain a focusing device that does not change the particle energy, we
combine two doublets to form a symmetric triplet as shown in Fig. 3.22 The
transformation matrix for an Einzellens is then the product of two symmetric
doublets

Mel = M2d (V2, V1)M1d (V1, V2) =


m11 m12

m21 m22


 , (3.141)

where
m11 = 4 − 3R

2 − 3
2R , m12 = 2d

R
3R−1
1+R ,

m21 =
3(R2−1)(1−R)(3−R)

8dR , m22 = 4 − 3
2R − 3R

2 ,
(3.142)

and R =
√

V2√
V1

=
√

1 + V
V1

=
√

1 + qV
Ekin

. The Einzellens displays some peculiar
focusing properties depending on the potentials involved compared with the
particle’s kinetic energy. The focal length of the Einzellens is

1
f

=
3

8dR
(
1 −R2

)
(R− 1) (3 −R) . (3.143)

Varying the potential V, we obtain varying focusing conditions as summarized
in the following table and plotted as a function of R in Fig. 3.23.

z

V

z
V1

V(z) V2

d
V1 V2 V1d

V1

Fig. 3.22. Structure of an Einzellens
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Fig. 3.23. Focusing 8d/3f from (3.143) in an Einzellens as a function of R

The results of focusing properties in an Einzellens are compiled in the fol-
lowing table. Depending on the chosen voltage the Einzellens can be focusing
or defocusing.

V V < −V1 −V1 < V < 0 0 < V < 8V1 V > 8V1

R Imaginary 0 < R < 1 1 < R < 3 R > 3

1/f No solution > 0 > 0 < 0

N/A Focusing Focusing Defocusing

The practical focusing regime is limited to 0 < R < 1. For 1 < R < 3 the
focusing is very weak and for R > 3 the Einzellens is defocusing.

3.7.5 Electrostatic Quadrupole

A different focusing device based on electrostatic fields can be designed very
much along the strategy for a magnetic quadrupole. We pick the first term
on the r.h.s. of (3.16) and modify the expression to reflect the beam rigidity
(3.4) for electric fields

V2(x, y) = − pβ

e
A20

1
2 (x2 − y2) = −g 1

2 (x2 − y2), (3.144)

where the field gradient, g = ∂Ex/∂x. Such a device can be constructed by
placing metallic surfaces in the form of a hyperbola

x2 − y2 = ±R = const. (3.145)
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+V

+V

-V-V R

r = R

Fig. 3.24. Electric field quadrupole, ideal pole profile (left), and practical approach
with cylindrical metallic tubes (right)

where R is the aperture radius of the device as shown in Fig. 3.24 (left)
The potential of the four electrodes is alternately V = ± 1

2gR
2. This design

can be somewhat simplified by replacing the hyperbolic metal surfaces by
equivalently sized metallic tubes as shown in Fig. 3.24 (right). Numerical
computer simulation programs can be used to determine the degradation of
the quadrupole field due to this simplification.

Problems

3.1 (S). Derive the geometry of electrodes for a horizontally deflecting electric
dipole with an aperture radius of 2 cm which is able to deflect a particle beam
with a kinetic energy of 10 MeV by 10 mrad. The dipole be 0.1 m long. What
is the potential required on the electrodes?

3.2 (S). Design an electrostatic quadrupole which provides a focal length of
10 m in the horizontal plane for particles with a kinetic energy of 10 MeV. The
device shall have an aperture with a diameter of 10 cm and an effective length
of 0.1m. What is the form of the electrodes, their orientation, and potential?

3.3 (S). In the text, we have derived the fields from a scalar potential. We
could also derive the magnetic fields from a vector potential A through the
differentiation B = ∇ × A. For purely transverse magnetic fields, show that
only the longitudinal component Az 
= 0 must be nonzero. Derive the vec-
tor potential for a dipole and quadrupole field and compare with the scalar
potential. What is the difference between the scalar potential and the vector
potential?

3.4 (S). Derive the pole profile (aperture radius r = 1 cm) for a combined
function magnet including a dipole field to produce for a particle beam of
energy E = 50 GeV a bending radius of ρ = 300 m, a focusing strength
k = 0.45 m−2, and a sextupole strength of m = 23.0 m−3.
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3.5 (S). Strong mechanical forces exist between the magnetic poles when a
magnet is energized. Are these forces attracting or repelling the poles? Why?
Consider a dipole magnet � = 1 m long, a pole width w = 0.2 m, and a field
of B = 1.5 T. Estimate the total force between the two magnet poles?

3.6 (S). Following the derivation of (2.8) for a bending magnet, derive a simi-
lar expression for the electrical excitation current in A × turns of a quadrupole
with an aperture radius R and a desired field gradient g. What is the total
excitation current necessary in a quadrupole with an effective length of � =
1 m and R = 3 cm to produce a focal length of f = 50 m for particles with
an energy of cp = 500 GeV?

3.7 (S). Consider a coil in the aperture of a magnet as shown in Fig. 3.25.
All n windings are made of very thin wires and are located exactly on the
radius R. We rotate now the coil about its axis at a rotation frequency ν.
Such rotating coils are used to measure the multipole field components in a
magnet. Show analytically that the recorded signal is composed of harmonics
of the rotation frequency ν. What is the origin of the harmonics?

rotating measuring
coi l

magnet flux 

beam and
magnet 
axis

magnet pole 

Fig. 3.25. Rotating coil in a magnet to determine higher order multipole compo-
nents

3.8 (S). Explain why a quadrupole with a finite pole width does not produce a
pure quadrupole field. What are the other allowed multipole field components
(ignore mechanical tolerances) and why?

3.9 (S). Through magnetic measurements the following magnetic multipole
field components in a quadrupole are determined. At x = 1.79 cm and y = 0
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cm: B2 = 0.3729 T, B3 = 1.25 × 10−4 T, B4 = 0.23 × 10−4 T, B5 = 0.36 ×
10−4 T, and B6 = 0.726 × 10−4 T, B7 = 0.020 × 10−4 T, B8 = 0.023 × 10−4

T, B9 = 0.0051 × 10−4 T, and B10 = 0.0071 × 10−4 T. Calculate the relative
multipole strengths at x = 1 cm normalized to the quadrupole field at 1 cm.
Why do the 12-pole and 20-pole components stand out with respect to the
other multipole components?

3.10 (S). Derive the equation for the pole profile of an iron dominated upright
octupole with a bore radius R. Ignore longitudinal variations. To produce a
field of 0.5 T at the pole tip (R = 3 cm), what total current per coil is required?

3.11 (S). Calculate and design the current distribution for a pure air coil,
superconducting dipole magnet to produce a field of B0 = 5 T in an aperture
of radius R = 3 cm without exceeding an average current density of ̂ = 1000
A/mm2.

3.12. Derive an expression for the current distribution in air coils to produce a
combination of a dipole, quadrupole, and sextupole field. Express the currents
in terms of fields and field gradients.

3.13. Design a dipole magnet as proposed by Rabi with an aperture radius of
5 cm and a field of 1 kG. The separation of both circles should be no more than
20% of the radius. Calculate the required electrical current and the current
density. To allow appropriate cooling the average current density should not
exceed 5 A/mm2. In case the magnet must be pulsed like a kicker magnet to
stay below this thermal limit determine the maximum duty cycle. Calculate
the stored field energy, the inductance of the magnet, and the required voltage
from the power supply if the rise time should be no more than 10% of the
pulse length.



Part II

Beam Dynamics



4

Single Particle Dynamics

The general equations of motion, characterized by an abundance of pertur-
bation terms on the right-hand side of, for example, (3.75), (3.76) have been
derived in the previous chapter. If these perturbation terms were allowed to
become significant in real beam transport systems, we would face almost in-
surmountable mathematical problems trying to describe the motion of charged
particles in a general way. For practical mathematical reasons, it is therefore
important to design components for particle beam transport systems such
that undesired terms appear only as small perturbations. With a careful de-
sign of beam guidance magnets and accurate alignment of these magnets we
can indeed achieve this goal.

Most of the perturbation terms are valid solutions of the Laplace equation
describing higher order fields components. Virtually all these terms can be
minimized to the level of perturbations by a proper design of beam trans-
port magnets. Specifically, we will see that the basic goals of beam dynamics
can be achieved by using only two types of magnets, bending magnets and
quadrupoles, which sometimes are combined into one magnet. Beam transport
systems, based on only these two lowest order magnet types, are called linear
systems and the resulting theory of particle dynamics in the presence of only
such magnets is referred to as linear beam dynamics or linear beam optics.

In addition to the higher order magnetic field components, we also find
purely kinematic terms in the equations of motion due to large amplitudes or
due to the use of curvilinear coordinates. Some of these terms are generally
very small for particle trajectories which stay close to the reference path such
that divergences are small, x′ � 1 and y′ � 1. The lowest order kinematic
effects resulting from the use of a curvilinear coordinate system, however, can-
not generally be considered small perturbations. One important consequence
of this choice for the coordinate system is that the natural bending magnet
is a sector magnet which has very different beam dynamics properties than a
rectangular magnet which would be the natural magnet type for a Cartesian
coordinate system. While a specific choice of a coordinate system will not
change the physics, we must expect that some features are expressed easily
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or in a more complicated way in one or the other coordinate system. We have
chosen to use the curvilinear system because it follows the ideal path of the
particle beam and offers a simple direct way to express particle trajectories
deviating from the ideal path. In a fixed Cartesian coordinate system, we
would have to deal with geometric expressions relating the points along the
ideal path to an arbitrary reference point. The difference becomes evident for a
simple trajectory like a circle of radius r and center at (x0, y0) which in a fixed
orthogonal coordinate system would be expressed by (x−x0)2+(y−y0)2 = r2.
In the curvilinear coordinate system this equation reduces to the simple iden-
tity x(z) = 0.

4.1 Linear Beam Transport Systems

The theory of beam dynamics based on quadrupole magnets for focusing is
called strong focusing beam dynamics in contrast to the case of weak focusing.
Weak focusing systems utilize the focusing of sector magnets in combination
with a small gradient in the bending magnet profile. Such focusing is utilized
in circular accelerators like betatrons or some cyclotrons and the first gen-
eration of synchrotrons. The invention of strong focusing by Christofilos [18]
and independently by Courant et al. [19] changed quickly the way focusing
arrangements for large particle accelerators are determined. One of the main
attractions for this kind of focusing was the ability to greatly reduce the mag-
net aperture needed for the particle beam since the stronger focusing confines
the particles to a much smaller cross section compared to weak focusing. A
wealth of publications and notes have been written during the 1950s to deter-
mine and understand the intricacies of strong focusing, especially the rising
problems of alignment and field tolerances as well as those of resonances.
Particle stability conditions from a mathematical point of view have been
investigated by Moser [36].

Extensive mathematical tools are available to determine the characteris-
tics of linear particle motion. In this chapter, we will discuss the theory of
linear charged particle beam dynamics and apply it to the development of
beam transport systems, the characterization of particle beams, and to the
derivation of beam stability criteria.

The bending and focusing function may be performed either in separate
magnets or be combined within a synchrotron magnet. The arrangement of
magnets in a beam transport system, called the magnet lattice, is often re-
ferred to as a separated function or combined function lattice depending on
whether the lattice makes use of separate dipole and quadrupole magnets or
uses combined function magnets, respectively.

Linear equations of motion can be extracted from (3.75), (3.76) to treat
beam dynamics in first or linear approximation. For simplicity and without
restricting generality we assume the bending of the beam to occur only in one
plane, the x-plane. The linear magnetic fields for bending and quadrupole
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magnets are expressed by

Bx = −g y, (4.1a)
By = By0 + gx, (4.1b)

where By0 is the dipole field and g is the gradient of the quadrupole field.
With these field components we obtain from (3.75), (3.76) the equations of
motion in the approximation of linear beam dynamics

x′′ +
(
k0+κ2

0x

)
x = 0, (4.2a)

y′′ − k0 y = 0 . (4.2b)

The differential equations (4.2) cannot be solved in general because the mag-
net strength parameters are determined by the actual distribution of magnets
along the beam transport line and therefore are arbitrary functions of the
independent variable z. The equations of motion however, directly exhibit the
focusing power along the beam transport line. Integrating either of (4.2) over
a short distance ∆z, we find the deflection angle

∫
y′′ dz = y′ − y′0 = α. On

the other hand,
∫
k0 y dz ≈ k0 y ∆z and applying definition (2.14) for the fo-

cal length, we find the general expressions for the focal length of magnetic
gradient fields

1
fx

= +k0 ∆z = +
e

cp

∂By

∂x
∆z, (4.3a)

1
fy

= − k0 ∆z = − e

cp

∂Bx

∂y
∆z . (4.3b)

Knowing the field gradient in any segment of a beam transport line of length
∆z, we may either immediately determine the focusing power of this segment
or formulate the equations of motion. Both, the focusing from the bending
magnet and that from a quadrupole may be combined into one parameter

K(z) = k0(z) + κ2
0x(z). (4.4)

So far no distinction has been made between combined or separated function
magnets and the formulation of the equations of motion based on the magnet
strength parameter K as defined in (4.3) is valid for both types of magnets. For
separated function magnets either k0 or κ0x is set to zero while for combined
function magnets both parameters are nonzero.

4.1.1 Nomenclature

Focusing along a beam transport line is performed by discrete quadrupoles
placed to meet specific particle beam characteristics required at the end or
some intermediate point of the beam line. The dependence of the magnet
strength on z is, therefore, a priori indeterminate and is the subject of lattice
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design in accelerator physics. To describe focusing lattices simple symbols are
used to point out location and sometimes relative strength of magnets. In this
text we will use symbols from Fig. 4.1 for bending magnets, quadrupoles, and
sextupoles or multipoles.

bending magnet focusing quadrupole

sextupole/multipole defocusing quadrupole

z

Fig. 4.1. Symbols for magnets in lattice design and typical distributions of magnets
along a beam transport line

All magnets are symbolized by squares along the z-axis and the length of
the symbol may represent the actual magnetic length. The symbol for pure
dipole magnets is a square centered about the z-axis while bending magnets
with a gradient are shifted vertically to indicate the sign of the focusing.
Positive squares are used to indicate horizontal focusing and negative squares
for horizontal defocusing quadrupoles. Similar but vertically higher symbols
are used for quadrupoles indicating the sign of the focusing as well.

Using such symbols, a typical beam transport line may have general pat-
terns like that shown in Fig 4.1. The sequence of magnets and their strength
seems random and is mostly determined by external conditions to be discussed
later. More regular magnet arrangements occur for circular accelerators or
very long beam transport lines.

4.2 Matrix Formalism in Linear Beam Dynamics

The seemingly arbitrary distribution of focusing parameters in a beam trans-
port system makes it impossible to formulate a general solution of the differ-
ential equations of motion (4.2). To describe particle trajectories analytically
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through a beam transport line composed of drift spaces, bending magnets,
and quadrupoles, we will derive mathematical tools which consist of partial
solutions and can be used to describe complete particle trajectories.

In this section, we will derive and discuss the matrix formalism [20] as a
method to describe particle trajectories. This method makes use of the fact
that the magnet strength parameters are constant at least within each individ-
ual magnet. The equations of motion become very simple since the restoring
force K is constant and the solutions have the form of trigonometric func-
tions. The particle trajectories may now be described by analytical functions
at least within each uniform element of a transport line including magnet free
drift spaces.

These solutions can be applied to any arbitrary beam transport line, where
the focusing parameter K changes in a step like function along the beam
transport line as shown in Fig. 4.1. By cutting this beam line into its smaller
uniform pieces so that K = const. in each of these pieces, we will be able
to follow the particle trajectories analytically step by step through the whole
transport system. This is the model generally used in particle beam optics
and is called the hard edge model.

In reality, however, since nature does not allow sudden changes of physical
quantities (natura non facit saltus) the hard edge model is only an approxi-
mation, although for practical purposes a rather good one. In a real magnet
the field strength does not change suddenly from zero to full value but rather
follows a smooth transition from zero to the maximum field. Sometimes, the
effects due to this smooth field transition or fringe field are important and
we will derive the appropriate corrections later in this section. For now, we
continue using the hard edge model for beam transport magnets and keep in
mind that in some cases a correction may be needed to take into account the
effects of a smooth field transition at the magnet edges.

Using this approximation, where 1/ρ0 and k are constants, and ignoring
perturbations, the equation of motion is reduced to that of a harmonic oscil-
lator,

u′′ + K u = 0, where K = k0 + κ2
0x = const . (4.5)

The principal solutions have been derived in Sect. 2.5.1 and are expressed in
matrix formulation by


 u(z)

u′(z)


 =


Cu(z) Su(z)

C ′
u(z) S′

u(z)




u0

u′
0


 , (4.6)

where u may be used for either x or y. We have deliberately separated the
motion in both planes since we do not consider coupling. Formally, we could
combine the two 2 × 2 transformation matrices for each plane into one 4 × 4
matrix describing the transformation of all four coordinates
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


x(z)

x′(z)

y(z)

y′(z)




=




Cx(z) Sx(z) 0 0

C ′
x(z) S′

x(z) 0 0

0 0 Cy(z) Sy(z)

0 0 C ′
y(z) S′

y(z)







x0

x′
0

y0

y′0




. (4.7)

Obviously the transformations are still completely decoupled but in this form
we could include coupling effects, where, for example, the x-motion depends
also on the y-motion and vice versa. This can be further generalized to include
any particle parameter like the longitudinal position of a particle with respect
to a reference particle, or the energy of a particle, the spin vector, or any
particle coordinate that may depend on other coordinates. In the following
paragraphs we will restrict the discussion to linear (2 × 2) transformation
matrices for a variety of beam line elements.

4.2.1 Drift Space

In a drift space of length � or in a weak bending magnet, where κ2
0x � 1 and

k0 = 0, the focusing parameter K = 0 and the solution of (4.5) in matrix
formulation can be expressed by


 u(z)

u′(z)


 =


 1 �

0 1




u0

u′
0


 . (4.8)

A more precise derivation of the transformation matrices for bending mag-
nets of arbitrary strength will be described later in this chapter. Any drift
space of length � = z− z0 is, therefore, represented by the simple transforma-
tion matrix

Md(�|0) =


1 �

0 1


 . (4.9)

We recognize the expected features of a particle trajectory in a field free
drift space. The amplitude u changes only if the trajectory has an original
nonvanishing slope u′

0 
= 0 while the slope itself does not change at all.

4.2.2 Quadrupole Magnet

For a pure quadrupole the bending term κ0x = 0 and the field gradient or
quadrupole strength k(z) 
= 0 can be positive as well as negative. With these
assumptions we solve again (4.5) and determine the integration constants by
initial conditions. For k = |k| > 0 we get the transformation for a focusing
quadrupole
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
 u(z)

u′(z)


 =


 cosψ 1√

k
sinψ

−
√
k sinψ cosψ




 u(z0)

u′(z0)


 , (4.10)

where ψ =
√
k (z − z0 . This equation is true for any section within the

quadrupole as long as both points z0 and z are within the active length of the
quadrupole.

For a full quadrupole of length � and strength k we set ϕ =
√
k� and the

transformation matrix for a full quadrupole in the focusing plane is

MQF (� |0) =


 cosϕ 1√

k
sinϕ

−
√
k sinϕ cosϕ


 . (4.11)

Similarly we get in the other plane with k = − |k| the solution for a
defocusing quadrupole


 u(z)

u′(z)


 =


 coshψ 1√

|k|
sinhψ

√
|k| sinhψ coshψ




 u(z0)

u′(z0)


 , (4.12)

where ψ =
√
|k| (z − z0). The transformation matrix in the defocusing plane

through a complete quadrupole of length � with ϕ =
√

|k|� is therefore

MQD (� |0) =


 coshϕ 1√

|k|
sinhϕ

√
|k| sinhϕ coshϕ


 . (4.13)

These transformation matrices make it straightforward to follow a particle
through a transport line. Any arbitrary sequence of drift spaces, bending mag-
nets and quadrupole magnets can be represented by a series of transformation
matrices Mi. The transformation matrix for the whole composite beam line
is then just equal to the product of the individual matrices. For example, by
multiplying all matrices along the path in Fig. 4.2 the total transformation
matrix M for the 10 magnetic elements of this example is determined by the
product

M = M10. . .M5M4M3M2M1 (4.14)

and the particle trajectory transforms through the whole composite transport
line like 

 u(z)

u′(z)


 = M (z |z0 )


 u(z0)

u′(z0)


 , (4.15)

where the starting point z0 in this case is at the beginning of the drift space
M1 and the end point z is at the end of the magnet M10.
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z

k(z)

M1 M2 M3 M4 M5 M6 M7 M8

Fig. 4.2. Example of a beam transport line (schematic)

4.2.3 Thin Lens Approximation

As will become more apparent in the following sections, this matrix formalism
is widely used to calculate trajectories for individual particle or for a virtual
particle representing the central path of a whole beam. The repeated multi-
plication of matrices, although straightforward, is very tedious and therefore
most beam dynamics calculations are performed on digital computers. In some
cases, however, it is desirable to analytically calculate the approximate prop-
erties of a small set of beam elements. For these cases it is sufficient to use
what is called the thin lens approximation. In this approximation it is assumed
that the length of a quadrupole magnet is small compared to its focal length
(� � f) and we set

� → 0, (4.16)

while keeping the focal strength constant,

f−1 = +k l = const . (4.17)

This result is analogous to geometric light optics, where we assume the glass
lenses to be infinitely thin. As a consequence ϕ =

√
k � → 0 and the transfor-

mation matrices (4.11), (4.13) are the same in both planes except for the sign
of the focal length


 u(z)

u′(z)


 =


 1 �

− 1
f 1




u0

u′
0


 , (4.18)

where
f−1 = k � > 0 in the focusing plane

f−1 = k � < 0 in the defocusing plane.
(4.19)

The transformation matrix has obviously become very simple and exhibits
only the focusing property in the form of focal length. Quite generally one
may regard for single as well as composite systems the matrix element M21

as the element that expresses the focal strength of the transformation.
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In thin lens approximation it is rather easy to derive focusing properties of
simple compositions of quadrupoles. A quadrupole doublet composed of two
quadrupole magnets separated by a drift space of length L is described by the
total transformation matrix

Mdb (L |0) =


 1 0

− 1
f2

1




1 L

0 1




 1 0

− 1
f1

1


 (4.20)

=


 1 − L/f1 L

−1/f∗ 1 − L/f2


 ,

where we find the well-known expression from geometric paraxial light optics

1
f∗ =

1
f1

+
1
f2

− L

f1 f2
. (4.21)

Such a doublet can be made focusing in both planes if, for example, the
quadrupole strengths are set such that f1 = −f2 = f . The total focal length
is then f∗ = +L/f2 > 0 in both the horizontal and the vertical plane.

This simple result, where the focal length is the same in both planes, is a
valid solution only in thin lens approximation. For a doublet of finite length
quadrupoles the focal length in the horizontal plane is always different from
that in the vertical plane as can be verified by using the transformations
(4.11), (4.13) to calculate the matrix Mdb. Since individual matrices are not
symmetric with respect to the sign of the quadrupole field, the transformation
matrices for the horizontal plane Mdb,x and the vertical plane Mdb,y must
be calculated separately and turn out to be different. In special composite
cases, where the quadrupole distribution is symmetric as shown in Fig. 4.3,
the matrices for both of the two symmetric half sections are related in a simple
way. If the matrix for one half of the symmetric beam line is

M =


a b

c d


 (4.22)

then the reversed matrix for the second half of the beam line is

Mr =


d b

c a


 (4.23)

and the total symmetric beam line has the transformation matrix

Mtot = Mr M =


ad + bc 2bd

2ac ad + bc


 . (4.24)
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M Mr

Fig. 4.3. Reversed lattice

We made no particular assumptions for the lattice shown in Fig. 4.3 except for
symmetry and relations (4.22), (4.23) are true for any arbitrary but symmetric
beam line.

The result for the reversed matrix is not to be confused with the inverse
matrix, where the direction of the particle path is also reversed. The inverses
matrix of (4.22) is

Mi =


 d −b

−c a


 . (4.25)

Going through an arbitrary section of a beam line and then back to the
origin again results in a total transformation matrix equal to the unity matrix

Mtot = Mi M =


1 0

0 1


 . (4.26)

These results now allow us to calculate the transformation matrix Mtr for a
symmetric quadrupole triplet. With (4.20), (4.25) the transformation matrix
of a quadrupole triplet as shown in Fig. 4.4 is

Mtr = Mr M =


 1 − 2L2/f 2 2L (1 + L/f)

−1/f∗ 1 − 2L2/f 2


 , (4.27)

where f∗ is defined by (4.21) with f1 = −f2 = f .
Such a triplet is focusing in both planes as long as f > L. Symmetric

triplets as shown in Fig. 4.4 have become very important design elements of
long beam transport lines or circular accelerators since such a triplet can be
made focusing in both planes and can be repeated arbitrarily often to provide
a periodic focusing structure called a FODO-channel . The acronym is derived
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M M
r

Fig. 4.4. Symmetric quadrupole triplet

from the sequence of focusing (F) and defocusing (D) quadrupoles separated
by non-focusing elements (O) like a drift space or a bending magnet.

4.2.4 Quadrupole End Field Effects

In defining the transformation through a quadrupole we have assumed the
strength parameter k(z) to be a step function with a constant nonzero value
within the quadrupole and zero outside. Such a hard edge field distribution
is only approximately true for a real quadrupole. The strength parameter
in a real quadrupole magnet varies in a gentle way from zero outside the
quadrupole to a maximum value in the middle of the quadrupole. In Fig. 4.5
the measured gradient of a real quadrupole along the axis is shown.

The field extends well beyond the length of the iron core and the effective
magnetic length, defined by

-200 -100 0 100 200

effective magnet length

trapezoidal field 
approximation

measured field

iron lengthfield

z(mm)

Fig. 4.5. Field profile in a real quadrupole with a bore radius of R = 3 cm and an
iron length of �iron = 15.9 cm
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�eff =
∫
g dz
g0

, (4.28)

where g0 is the field gradient in the middle of the quadrupole, is longer than
the iron length by about the radius of the bore aperture

�eff ≈ �iron + R . (4.29)

The real field distribution can be approximated by a trapezoid such that∫
g dz is the same in both cases (see Fig. 4.5). To define the trapezoidal

approximation we assume a fringe field extending over a length equal to the
bore radius R as shown in Fig. 4.5. End field effects must therefore be expected
specifically with quadrupoles of large bore radii and short iron cores. It is
interesting to investigate as to what extent the transformation characteristics
for a real quadrupole differ from the hard edge model. The real transformation
matrix can be obtained by slicing the whole axial quadrupole field distribution
in thin segments of varying strengths. Treating these segments as short hard
edge quadrupoles, the full transformation matrix is the product of the matrices
for all segments.

While it is possible to obtain an accurate transformation matrix this way
the variations of the matrix elements due to this smooth field distribution
turn out to be mostly small and in practice, therefore, the hard edge model
is used to develop beam transport lattices. Nonetheless after a satisfactory
solution has been found, these real transformation matrices should be used
to check the solution and possibly make a small adjustment to the idealized
hard edge model design.

In this section, we will discuss an analytical estimate of the correction
to be expected for a real field distribution [37] by looking for the “effective”
hard edge model parameters (k, �) which result in a transformation matrix
equal to the transformation matrix for the corresponding real quadrupole.
The transformation matrix for the real quadrupole is

MQ =


 C S

C ′ S′


 , (4.30)

where the matrix elements are the result of multiplying all “slice” matrices
for the quadrupole segments as shown in Fig. 4.6.

We now assume that this real quadrupole can be represented by a hard
edge model quadrupole of length � with adjacent drift spaces λ as indicated
in Fig. 4.6. The transformation through this system for a focusing quadrupole
is given by [37]
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effective magnetic length

field

z

Fig. 4.6. Decomposition of an actual quadrupole field profile into segments of hard
edge quadrupoles


1 λ

0 1




 cosϕ 1√

k
sinϕ

−
√
k sinϕ cosϕ




1 λ

0 1




=


 cosϕ−

√
kλ sinϕ 2λ cosϕ− 1√

k
sinϕ

−
√
k sinϕ cosϕ−

√
kλ sinϕ


 (4.31)

with ϕ =
√
k �. This hard edge transformation matrix must be the same as the

actual matrix (4.30) and we will use this equality to determine the effective
quadrupole parameters k, �. First, we note that the choice of the total length
L = � + 2λ is arbitrary as long as it extends over the whole field profile,
and both, the “slices” and hard edge matrices extend over the whole length
L by employing drift spaces if necessary. Equating (4.30) and (4.31) we can
compose two equations which allow us to determine the effective parameters
k, � from known quantities

Cf− 1
2LC ′

f
= cosϕf + 1

2ϕf sinϕf ,

C ′
f
�f = −ϕf sinϕf .

(4.32)

Here we have added the index f to indicate a focusing quadrupole. The first
of these equations can be solved for ϕf since the quantities Cf , C

′
f
, and L

are known. The second equation is then solved for �f and kf = ϕ2
f
/�f . Two

parameters are sufficient to equate the 2×2 matrices (4.30), (4.31) since two of
the four equations are redundant for symmetry reasons, M11 = M22 = C = S′,
and the determinant of the matrices on both sides must be unity. Similarly,
we get for a defocusing quadrupole

Cd − 1
2 LC ′

d
= coshϕd − 1

2 ϕd sinhϕd ,

C ′
d
�d = −ϕd sinhϕd .

(4.33)
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Equations (4.32) and (4.33) define a hard edge representation of a real quadru-
pole. However, we note that the effective quadrupole length � and strength
k are different from the customary definition, where k0 is the actual magnet
strength in the middle of the quadrupole and the magnet length is defined by
�0 = 1

k0

∫
k(z) dz. We also observe that the effective values � and k are dif-

ferent for the focusing and defocusing plane. Since the end fields are not the
same for all quadrupoles but depend on the design parameters of the magnet,
we cannot determine the corrections in general. In practical cases, however,
it turns out that the corrections ∆k = k − k0 and ∆� = � − �0 are small for
quadrupoles which are long compared to the aperture and are larger for short
quadrupoles with a large aperture. In fact the differences ∆k and ∆� turn
out to have opposite polarity and the thin lens focal length error ∆k∆� is
generally very small.

As an example, we use the quadrupole of Fig. 4.5 and calculate the correc-
tions due to end field effects. We calculate the total transformation matrix for
the real field profile as discussed above by approximating the actual field dis-
tribution by a series of hard edge “slice” matrices in both planes as a function
of the focusing strength k0 and solve (4.32), (4.33) for the effective parameters
(kf , �f) and (kd, �d), respectively. In Fig. 4.7 these relative fringe field correc-
tions to the quadrupole strength ∆k/k0 and to the quadrupole length ∆�/�0
are shown as functions of the strength k0. The effective quadrupole length is
longer and the effective quadrupole strength is lower than the pure hard edge
values. In addition the corrections are different in both planes. Depending on
the sensitivity of the beam transport system these corrections may have to be
included in the final optimization.
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Fig. 4.7. Fringe field correction for the quadrupole of Fig. 4.5 with a bore radius
of R = 3.0 cm and a steel length of �iron = 15.9 cm
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4.3 Focusing in Bending Magnets

Bending magnets have so far been treated just like drift spaces as far as
focusing properties are concerned. This is a good approximation for weak
bending magnets which bend the beam only by a small angle. In cases of
larger deflection angles, however, we observe focusing effects which are due
to the particular type of magnet and its end fields. In Chap. 3 we discussed
the geometric focusing term κ2 which appears in sector magnets only. Other
focusing terms are associated with bending magnets and we will discuss in this
section these effects in a systematic way. Specifically, the focusing of charged
particles crossing end fields at oblique angles will be discussed.

The linear theory of particle beam dynamics uses a curvilinear coordinate
system following the path of the reference particle and it is assumed that
all magnetic fields are symmetric about this path. The “natural” bending
magnet in this system is one, where the ideal path of the particles enters
and exits normal to the magnet pole faces. Such a magnet is called a sector
magnet as shown in Fig. 4.8. The total deflection of a particle depends on
the distance of the particle path from the ideal path in the deflecting plane
which, for simplicity, we assume to be in the horizontal x-plane. Particles
following a path at a larger distance from the center of curvature than the
ideal path travel a longer distance through this magnet and are, therefore,
deflected by a larger angle than a particle on the ideal path. Correspondingly,
a particle passing through the magnet closer to the center of curvature is less
deflected.

This asymmetry leads to a focusing effect which is purely geometric in na-
ture. On the other hand, we may choose to use a magnet such that the ideal
path of the particle beam does not enter the magnet normal to the pole face
but rather at an angle. Such a configuration has an asymmetric field distrib-

dθ

ρ0

ds

dz
η0<0 ηe<0

reference path

pole face of
sector magnet

particle
trajectory

x

Fig. 4.8. Focusing in a sector magnet, where η0 = ηe = −θ/2
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ution about the beam axis and therefore leads to focusing effects. On a more
subtle note we find a modification of these focusing effects due to extended
fringe field of the magnets. While these fringe fields expand orthogonally to
the face of the magnet iron, we obviously have some deflection in these fringe
fields which leads to asymmetric field distributions about the particle beam
axis and to focusing. In the following subsections we will discuss and formulate
these focusing effects more quantitatively.

4.3.1 Sector Magnets

The degree of focusing in a sector magnet can be evaluated in any infinitesimal
sector of such a magnet by calculating the deflection angle as a function of the
particle position x. With the notation from Fig. 4.8 we get for the deflection
angle while keeping only linear terms in x

dθ = κ0 ds = κ0 (1 + κ0x) dz . (4.34)

The first term on the r.h.s. merely defines the ideal path, while the second
x-dependent term of the deflection angle in (4.34) describes the particle motion
in the vicinity of the ideal path. With respect to the curvilinear coordinate
system following the ideal path we get the additional deflection

δθ = κ2
0 xdz . (4.35)

This correction is to be included in the differential equation of motion as an
additional focusing term

∆x′′ = − δθ

dz
= −κ2

0 x (4.36)

to the straight quadrupole focusing leading to the equation of motion

x′′ +
(
k + κ2

0

)
x = 0, (4.37)

which is identical to the result obtained in Sect. 2.3.
The differential equation (4.37) has the same form as that for a quadrupole

and therefore the solutions must be of the same form. Using this similarity
we replace k by (k+κ2

0) and obtain immediately the transformation matrices
for a general sector magnet. For K = k + κ2

0 > 0 and

Θ =
√
K� (4.38)

we get from (4.11) the transformation matrix

Msy,f(� | 0) =


 cosΘ 1√

K
sinΘ

−
√
K sinΘ cosΘ


 , (4.39)



4.3 Focusing in Bending Magnets 131

where � is the arc length of the sector magnet and where both the focusing
term k and the bending term κ0 may be nonzero. Such a magnet is called
a synchrotron magnet since this magnet type was first used for lattices of
synchrotrons.

For the defocusing case, where K = k + κ2
0 < 0 and Θ =

√
|K|�, we get

from (4.13)

Msy,d( � | 0 ) =


 coshΘ 1√

|K|
sinhΘ

√
|K| sinhΘ coshΘ


 . (4.40)

Note that the argument Θ is equal to the deflection angle θ only in the
limit k → 0 because these transformation matrices include bending as well as
focusing in the same magnet. Obviously, in the nondeflecting plane κ0 = 0
and such a magnet acts just like a quadrupole with strength k and length �.

A subset of general sector magnets are pure dipole sector magnets, where
we eliminate the focusing by setting k = 0 and get the pure dipole strength
K = κ2

0 > 0. The transformation matrix for a pure sector magnet of length �
and bending angle θ = κ0� in the deflecting plane becomes from (4.39)

Ms,ρ( � | 0 ) =


 cos θ ρ0 sin θ

−κ0 sin θ cos θ


 . (4.41)

If we also let κ0 → 0 we arrive at the transformation matrix of a sector magnet
in the nondeflecting plane

Ms,0(� | 0) =


 1 �

0 1


 , (4.42)

which has the form of a drift space. A pure dipole sector magnet therefore
behaves in the nondeflecting plane just like a drift space of length �. Note that
� is the arc length of the magnet while the engineering magnet length might
be given as the straight length between entry and exit points.

4.3.2 Fringe Field Effects

The results obtained above are those for a hard edge model and do not reflect
modifications caused by the finite extend of the fringe fields. The hard edge
model is again an idealization and for a real dipole we consider the gradual
transition of the field from the maximum value to zero outside the magnet.
The extend of the dipole fringe field is typically about equal to the gap height
or distance between the magnet poles.

We assume magnet poles which are very wide compared to the gap height
and therefore transverse field components in the deflecting plane; here Bx,
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can be neglected. At the entrance into a magnet the vertical field component
By increases gradually from the field free region to the maximum value in
the middle of the magnet (Fig. 4.9). We will discuss the effects on the particle
dynamics caused by this fringe field and compare it with the results for a hard
edge model magnet.

2G
z

end of iron core

effective hard edge

fringe field

By(z)

By(z)

zf

δ
x

z

fringe field

zf

wP0

u

linearized fringe field

Fig. 4.9. End field profile in a dipole magnet and fringe field focusing

For the following discussion we consider both a fixed orthogonal Cartesian
coordinate system (u, v, w), used in the fringe area, and a moving curvilinear
system (x, y, z). The origin of the fixed coordinate system is placed at the
point P0 where the field starts to rise (Fig. 4.9). At this point both coordi-
nate systems coincide. The horizontal field component vanishes for reasons of
symmetry

Bu = 0 (4.43)

and the vertical field component in the fringe region may be described by

Bv = F (w) . (4.44)

With Maxwell’s curl equation ∂Bw/∂v−∂Bv/∂w = 0 we get after integration
the longitudinal field component Bw =

∫
(∂Bv/∂w) dv or

Bw = y
∂F (w)
∂w

, (4.45)

where y = v and where a linear fringe field was assumed with ∂F (w)/∂w =
cost.

These field components must be expressed in the curvilinear coordinate
system (x, y, z). At the point s within the fringe field the longitudinal field
component Bw can be split into Bx and Bz. The horizontal field component
is then Bx = Bw sin δ Fig. 4.9 where δ is the deflection angle at the point z
defined by

δ =
e

p0

∫ z

0

F (z̄) dz̄ . (4.46)
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With

Bw = y
∂F (w)
∂w

= y
∂F (w)
∂z

dz
dw

≈ y
∂F (z)
∂z

1
cos δ

, (4.47)

we get
Bx(z) = y F ′(z) tan δ, (4.48)

where F ′(z) = dF/dz. The vertical fringe field component is with ∂Bx/∂y −
∂By/∂x = 0 and integration

By(z) = By0 + xF ′(z) tan δ . (4.49)

The longitudinal field component is from (4.47) and Bz = Bw cos δ

Bz(z) = y F ′(z) . (4.50)

The field components of the fringe field depend linearly on the transverse
coordinates and therefore fringe field focusing [38] must be expected. With
the definition of the focal length from (4.3), we get

1
f

=
∫ zf

0

K(z̄) dz̄, (4.51)

where K(z) is the focusing strength parameter K(z) = κ2(z) + k(z). In the
deflecting plane the fringe field focusing is with k(z) = (e/p0) ∂By/∂λ and
(4.49)

1
fx

=
∫ zf

0

(κ′ tan δ + κ2) dz̄, (4.52)

where we have set κ(z) = (e/p0)F (z). For small deflection angles δ in the
fringe field tan δ ≈ δ =

∫ zf

0
κdz̄ and after integration of (4.49) by parts

through the full fringe field we get the focal length while neglecting higher
order terms in δf

1
fx

= κ0 δf , (4.53)

where κ0 = 1/ρ0 is the curvature in the central part of the magnet and δf is
the total deflection angle in the fringe field region.

This result does not deviate from that of the hard edge model, where for
a small deflection angle θ we have from (4.41) 1/fx ≈ κ0 θ agreeing with the
result for the fringe field focusing. We therefore obtain the convenient result
that in the deflecting plane of a sector magnet there is no need to correct the
focusing because of due to the finite extend of the fringe field.

4.3.3 Finite Pole Gap

In the vertical plane this situation is different since we expect vertical focusing
from (4.48) while there is no focusing in the approximation of a hard edge
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model. Using definition (4.51) of the focal length in the vertical plane gives
with K(z) = −k(z) and (4.48)

1
fy

= −
∫ zf

0

κ′ tan δ dz̄ ≈ −
∫ zf

0

κ′(z̄) δ(z̄) dz̄ . (4.54)

The fringe field of a sector magnet therefore leads to a defocusing effect which
depends on the particular field profile. We may approximate the fringe field
by a linear fit over a distance approximately equal to the pole gap 2G which is
a good approximation for most real dipole magnets. We neglect the nonlinear
part of the fringe field and approximate the slope of the field strength by the
linear expression κ′ = κ0/2G = const. The focal length for the full fringe field
of length zf = 2G is therefore with κ(z) = κ′ z, 0 ≤ z ≤ zf and

δ(z) =
∫ z

0

κ′z̄ dz̄ =
κ0

4G
z2 (4.55)

given by
1
fy

= −
∫ 2G

0

κ′δ(z̄) dz̄ = −1
3
κ2

0 G = −1
3
κ0 δf , (4.56)

where
δf = δ(zf) = κ0 G . (4.57)

This is the focusing due to the fringe field at the entrance of a sector magnet.
At the exit we have the same effect since the sign change of κ′ is compensated
by the need to integrate now from full field to the field free region which is
just opposite to the case in the entrance fringe field. Both end fields of a sector
magnet provide a small vertical defocusing. We note that this defocusing is
quadratic in nature, since δf ∝ κ0 and therefore independent of the sign of
the deflection.

With these results we may now derive a corrected transformation matrix
for a sector magnet by multiplying the hard edge matrix (4.42) on either side
with thin length fringe field focusing


 1 0

− 1
fy

1




1 �

0 1




 1 0

− 1
fy

1


 (4.58)

and get with (4.56) and θ = �/ρ0 for the transformation matrix in the vertical,
nondeflecting plane of a sector magnet instead of (4.42)

M�,0(� | 0) =




1 + 1
3θ δf �

2
3

δf
ρ0

+ 1
9

δ2
f

ρ2
0
� 1 + 1

3θ δf


 . (4.59)

The second-order term in the M21-matrix element can be ignored for practical
purposes but is essential to keep the determinant equal to unity.
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4.3.4 Wedge Magnets

In a more general case compared to a sector magnet we will allow the refer-
ence path of the particle beam to enter and exit the magnet at an arbitrary
angle with the pole face. Magnets with arbitrary pole face rotation angles
are called wedge magnets. Figure 4.10 shows such a case and we will derive
the transformation matrices for wedge magnets. First, we note that the fringe
field effect is not different from the previous case of a sector magnet except
that now the angle δ(z) must be replaced by a new angle η + δ(z) where the
pole rotation angle η and the sign convention is defined in Fig. 4.10.

x

zδη0>0
η0+δ

ηe<0 Bw

Bz

Bx

exit facemagnet

entrance face

reference
path
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ge field

Fig. 4.10. Fringe field focusing in wedge magnets

Different from the case of a sector magnet, we cannot replace the tangent
in (4.52) by its argument since the angle η can be large to prohibit such an
approximation. As a further consequence of a large value of η, we must take
into account the actual path length in the fringe field. To calculate the focal
length fx, we have instead of (4.52)

1
fx

=
∫ zf

0

[
κ′ tan (η + δ) + κ2

]
dz̄. (4.60)

Expanding for small angles δ � 1 we get tan (η + δ) ≈ tan η + δ. This
approximation is true only as long as δ tan η � 1 or for entrance angles η not
too close to 90◦ and the argument in integral (4.60) becomes κ′ tan η+κ′δ+κ2.
In addition to the terms for a sector magnet, a new term (κ′ tan η) appears
and the focal length of the fringe field is

1
fx

=
∫ zf

0

κ′ tan η dz̄ + κ0δf = κ0 tan η + κ0δf, (4.61)
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where the integral extends over the whole fringe field. Since to first order the
path length through the fringe field is

zf =
2G

cos η
, (4.62)

where 2G is the pole gap height, we have

δf =
∫ 2G/ cos η

0

κdz̄ . (4.63)

The term κ0δf describes again the well-known focusing of a sector magnet
in the deflecting plane while the term κ0 tan η provides the correction nec-
essary for non-normal entry of the beam path into the magnet. For the case
shown in Fig. 4.10, where η > 0, we obtain beam focusing in the deflecting
plane from the fringe field. Similarly, we get a focusing or defocusing effect at
the exit fringe field depending on the sign of the pole rotation. The complete
transformation matrix of a wedge magnet in the horizontal deflecting plane is
obtained by multiplying the matrix of a sector magnet with thin lens matrices
to take account of edge focusing. For generality, however, we must assume that
the entrance and the exit angle may be different. We will therefore distinguish
between the edge focusing for the entrance angle η = η0 and that for the exit
angle η = ηe and get for the transformation matrix in the deflecting plane

Mw,ρ (�, 0) =


 1 0

− 1
ρ0

tan ηe 1




 cos θ ρ0 sin θ

− 1
ρ0

sin θ cos θ




 1 0

− 1
ρ0

tan η0 1


 . (4.64)

In the vertical plane the focal length is similar to (4.54)

1
fy

= −
∫ zf

0

κ′ tan (η + δ) dz̄ ≈ −κ0 tan η −
∫ zf

0

κ′δ dz̄ . (4.65)

Again we have the additional term which is now focusing in the vertical
plane for η < 0. For a linear fringe field the focal length is in analogy to (4.56)

1
fy

= −κ0 tan η − 1
3κ0δf, (4.66)

where

δf =
∫ 2G/ cos η

0

κdz̄ = κ′ 2G2

cos3 η
=

κ0G

cos2 η
, (4.67)

since κ (z) ≈ κ′z and κ′ = κ0/ (G/ cos η). The complete transformation matrix
in the vertical plane for a horizontally deflecting wedge magnet then becomes

Mw,0 (�, 0) =




1 0

1
ρ0

(
tan ηe + 1

3δfe
)

1




1 �

0 1






1 0

1
ρ0

(
tan η0 + 1

3δf0
)

1


 . (4.68)
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Equations (4.64) and (4.68) are for bending magnets with arbitrary en-
trance and exit angles η0 and ηe. We note specifically that the transformation
in the nondeflecting plane becomes different from a simple drift space and
find a focusing effect due to the magnet fringe fields which depends on the
entrance and exit angles between particle trajectory and pole face.

This general derivation of the focusing properties of a wedge magnet must
be taken with caution where the pole face rotations are very large. In spite
of the finite pole rotation angles we have assumed that the particles enter the
fringe field at the same location z along the beam line independent of the
transverse particle amplitude x. Similarly, the path length of the trajectory
in such a wedge magnet depends on the particle amplitude x and slope x′.
Obviously these are second-order effects but may become significant in special
cases.

4.3.5 Rectangular Magnet

A particular case of a symmetric wedge magnet is the rectangular magnet,
which has parallel end faces. If we install this magnet symmetrically about
the intended particle trajectory, the entrance and exit angles equal half the
bending angle as shown in Fig. 4.11.

For a deflection angle θ, η0 = ηe = −θ/2 and the transformation matrix in
the deflecting plane is from (4.64)

Mr,ρ (� | 0) =


 1 0

− tan ηe
ρ0

1




 cos θ ρ0 sin θ

− sin θ
ρ0

cos θ




 1 0

− tan η0
ρ0

1


 (4.69)

=


 1 ρ0 sin θ

0 1


 .
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Fig. 4.11. Rectangular magnet
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A rectangular dipole magnet transforms in the deflecting plane like a drift
space of length ρ0 sin θ and does not focus the beam. Note that the “magnet
length” � defined by the deflection angle θ = �/ρ0 is the arc length and is
related to the straight magnet length L by

L = 2ρ0 sin
θ

2
= 2ρ0 sin

�

2ρ0
. (4.70)

In the vertical plane we observe a focusing with the focal length

1
fy

= +
1
ρ0

(
tan

θ

2
−

δθ/2

3

)
. (4.71)

From (4.67) δθ/2 = G/[ρ0 cos(θ/2)] and with (4.70) δθ/2 = 2G tan(θ/2)/L.
Inserting this in (4.71) , we obtain for the transformation matrix of a rectan-
gular bending magnet in the nondeflecting plane

Mr,0(�|0) =


 1 0

− 1
fy

1




 1 �

0 1




 1 0

− 1
fy

1


 =


 1 − �

fy
�

− 2
fy

+ �
f 2

y
1 − �

fy


 ,

(4.72)
where

1
fy

=
1
ρ0

(
1 − 2G

3L

)
tan
(
θ

2

)
. (4.73)

In a rectangular dipole magnet we find just the opposite edge focusing
properties compared to a sector magnet. The focusing in the deflecting plane
of a sector magnet has shifted to the vertical plane in a rectangular magnet
and focusing is completely eliminated in the deflecting plane. Because of the
finite extend of the fringe field, however, the focusing strength is reduced by
the fraction 2G/(3L) where 2G is the gap height and L is the straight magnet
length.

4.3.6 Focusing in a Wiggler Magnet

The derivation of fringe field focusing in ordinary dipole magnets as discussed
in previous sections can be directly applied to wiggler magnets. The beam
path in a wiggler magnet is generally not parallel to the reference trajectory z
because of the transverse deflection in the wiggler field and follows a periodic
sinusoidal form along the reference path. For this reason the field component
Bz appears to the particle partially as a transverse field Bξ = Bz tanϑ ≈ Bz ϑ,
where we use for a moment ξ as an auxiliary transverse coordinate normal
to and in the plane of the actual wiggling beam path. We also assume that
the wiggler deflection angle is small, ϑ � 1. The field component Bξ can be
expressed with (3.117), (3.120) more explicitly by

Bξ = −e

p
[B0 sin (kpz)]

2 sinh (kpy) cosh (kpy)
kp

(4.74)
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and with expansions (3.118) we have finally

Bξ = −e

p
[B0 sin (kpz)]

2 (y + 2
3 k2

p y3 + · · · ) . (4.75)

The linear y-dependence is similar to that found to produce vertical focus-
ing in wedge magnets. Since the wiggler field appears quadratically in (4.74),
Bξ(z) = Bξ(−z) and Bξ(B0) = Bξ(−B0). In other words, the transverse field
has the same sign along all wiggler poles independent of the polarity of the
vertical main wiggler field. The integrated focusing field gradient per wiggler
half pole is from (4.75)

gy � = −e

p
B2

0

∫ λp/4

0

sin2 kpz dz = −e

p
1
8B

2
0 λp, (4.76)

where � is the effective length of the focusing element. The integrated equiva-
lent quadrupole strength or inverse focal length for each half pole with parallel
entry and exit pole faces is

ky � = − 1
fy

= −1
8

(
eB0

p0

)2

λp = − λp

8ρ2
0

, (4.77)

where 1/ρ0 = e
pB0 is the inverse bending radius at the center of a wiggler

pole at which point the field reaches the maximum value B0. For N wiggler
poles we have 2N times the focusing strength and the focal length of the
total wiggler magnet of length Lw = 1

2N λp expressed in units of the wiggler
strength parameter K becomes

1
fy

=
K2

2γ2
k2
p Lw . (4.78)

Tacitly, a rectangular form of the wiggler poles has been assumed (Fig. 4.12)
and consistent with our sign convention, we find that wiggler fringe fields cause
focusing in the nondeflecting plane. Within the approximation used there is
no corresponding focusing effect in the deflecting plane. This is the situation
for most wiggler magnets or poles except for the first and last half pole where
the beam enters the magnetic field normal to the pole face.

A reason to possibly use wiggler magnets with rotated pole faces like wedge
magnets originates from the fact that the wiggler focusing is asymmetric and
not part of the lattice focusing and may therefore need to be compensated.
For moderately strong wiggler fields the asymmetric focusing in both planes
can mostly be compensated by small adjustments of lattice quadrupoles. The
focusing effect of strong wiggler magnets may, however, generate a significant
perturbation of the lattice focusing structure or create a situation where no
stable solution for betatron functions exists anymore. The severity of this
problem can be reduced by designing the wiggler poles as wedge magnets in
such a way as to split the focusing equally between both the horizontal and
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x

Fig. 4.12. Wiggler magnet with parallel pole end faces

vertical plane. In this case local correction can be applied efficiently in nearby
lattice quadrupoles.

We will therefore discuss the focusing and transformation matrix through
a wiggler pole in the case of arbitrary entry and exit angles. To derive the
complete and general transformation matrices, we note that the whole wiggler
field can be treated in the same way as the fringe field of ordinary magnets.
The focal length of one half pole in the horizontal deflecting plane is from
(4.61)

1
fx

=
∫ λp/4

0

κ′
x η dz + κx0 δf , (4.79)

where the pole face rotation angle η has been assumed to be small and of
the order of the wiggler deflection angle per pole (Fig. 4.13). With κx =
κx0 cos kpz the field slope is

κ′
x = κx0 kp sin kpz (4.80)

and after integration of (4.79) , the focal length for the focusing of a wiggler
half pole is

1
fx

= κx0 (δf + η), (4.81)

where δf is given by (4.57) and in the case of a wiggler magnet is equal to the
deflection angle of a half pole. In the case of a rectangular wiggler pole η = −δf
and the focusing in the deflecting plane vanishes as we would expect. In the
nondeflecting plane (4.54) applies and the focal length is for small angles η
and δ

1
fy

= −
∫ λp/4

0

κ′
x [η + δ(z̄)] dz̄ . (4.82)

The focal length per wiggler half pole is after integration

1
fy

= −κx0 (η + δf) −
π

4
κx0 δf . (4.83)

Here again setting η = −δf restores the result obtained in (4.78).
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Fig. 4.13. Wiggler magnet with wedge-shaped poles

The focusing in each single wiggler pole is rather weak and we may apply
thin lens approximation to derive the transformation matrices. For this we
consider the focusing to occur in the middle of each wiggler pole with drift
spaces of length λp/4 on each side. With 2/f being the focal length of a
full pole in either the horizontal plane (4.81) or vertical plane (4.83) the
transformation matrix for each wiggler pole is finally

Mpole =


1 λp/4

0 1




 1 0

−2/f 1




 1 λp/4

0 1


 (4.84)

=




1 − λp
2 f

λp
f

(
1 − λp

4 f

)

− 2
f 1 − λp

2 f


≈


 1 1

2λp

− 2
f 1


 ,

where the approximation λp � f was used. For a wiggler magnet of length
Lw = 1

2Nλp, we have N poles and the total transformation matrix is

Mwiggler = MN
pole . (4.85)

This transformation matrix can be applied to each plane and any pole
rotation angle η. Specifically, we set η = −K/γ for a rectangular pole shape
and η = 0 for pole rotations orthogonal to the path like in sector magnets.

4.3.7 Hard Edge Model of Wiggler Magnets

Although the magnetic properties of wiggler magnets are well understood and
easy to apply, it is nonetheless often desirable to describe the effects of wiggler
magnets in the form of hard edge models. This is particularly true when
numerical programs are to be used which do not include the feature of properly
modeling a sinusoidal wiggler field. On the other hand accurate modeling is
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important since frequently strong wiggler magnets are to be inserted into a
beam transport lattice.

For the proper modeling of linear wiggler magnet properties, we choose
three conditions to be fulfilled. The deflection angle for each pole should be the
same as that for the equivalent hard edge model. Similarly the edge focusing
must be the same. Finally, like any other bending magnet in an electron
circular accelerator, a wiggler magnet also contributes to quantum excitation
and damping of the beam emittance and beam energy spread. The quantum
excitation is in first approximation proportional to the third power of the
curvature while the damping scales like the square of the curvature similar to
focusing.

Considering now a wiggler field

B(z) = B0 sin kpz, (4.86)

we try to model the field for a half pole with parallel endpoles by a hard edge
magnet. Three conditions should be met. The deflection angle of the hard
edge model of length � and field B must be the same as that for a wiggler half
pole, or

θ =
�h
ρh

=
e

p0

∫

halfpole

By(z) dz =
λp

2π ρ0
. (4.87)

Here we use ρh for the bending radius of the equivalent hard edge model
and ρ0 for the bending radius at the peak wiggler field B0. The edge focusing
condition can be expressed by

1
fy

=
�h
ρ2
h

=
1
ρ2
0

∫

halfpole

sin2 kpz dz =
λp

8ρ2
0

. (4.88)

Modeling a wiggler field by a single hard edge magnet requires in linear
beam optics only two conditions to be met which can be done with the two
parameters B(z) and � available. From (4.87), (4.88) we therefore get the hard
edge magnet parameters (Fig. 4.14)

ρh = 4
πρ0 and �h = 2

π2λp . (4.89)

For a perfect modeling of the equilibrium energy spread and emittance due
to quantum excitation in electron storage rings we would also like the cubic
term to be the same

�h
ρ3
h

?=
1
ρ3
0

∫

halfpole

sin3 kpz dz =
λp

3π ρ3
0

. (4.90)

Since we have no more free parameters available, we can at this pint only
estimate the mismatch. With (4.88), (4.89) we get from (4.90) the inequality

1
3π


= π

32
, (4.91)
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Fig. 4.14. Hard edge model for a wiggler magnet period

which indicates that the quantum excitation from wiggler magnets is not
correctly treated although the error is only about 8%.

Similarly, one could decide that the quadratic and cubic terms must be
equal while the deflection angle is let free. This would be a reasonable assump-
tion since the total deflection angle of a wiggler is compensated anyway. In
this case the deflection angle would be underestimated by about 8%. Where
these mismatches are not significant, the simple hard edge model (4.90) can
be applied. For more accuracy the sinusoidal wiggler field must be segmented
into smaller hard edge magnets.

4.4 Elements of Beam Dynamics

The most basic elements of a beam transport line are drift spaces, bending
magnets, and focusing magnets or quadrupoles. Obviously, in a drift space
of length � the electric or magnetic field vanishes. Bending magnets act as
beam guidance devices while quadrupoles will focus the beam. In the following
section, we will discuss building blocks made up of bending magnets and
quadrupoles, which exhibit features known from light optics thus justifying
our extensive use of terminology from optics in particle beam dynamics.

4.4.1 Building Blocks for Beam Transport Lines

With special arrangements of bending and focusing magnets it is possible to
construct lattice sections with particular properties. We may desire a lattice
section with specific chromatic properties, achromatic or isochronous sections.
In the next subsections we will discuss such lattice elements with special
properties.



144 4 Single Particle Dynamics

General Focusing Properties

The principal solutions and some elements of transformation matrices through
an arbitrary beam transport line can reveal basic beam optical properties of
this beam line. A close similarity to paraxial light optics is found in the matrix
element C ′(z). As shown schematically in Fig. 4.15, parallel trajectories, u′

0 =
0, are deflected by the focusing system through the matrix element C ′(z) and
emerge with a slope u′(z) = C ′(z)u0.

principal plane 

focal
point

f1

L

f

f2

u'
o

u'

Fig. 4.15. Focusing in a quadrupole doublet

From basic principles of light optics we know (2.14) that the ratio −u0/u
′(z)

is defined as the focal length of the system . In analogy, we therefore define
also a focal length f for a composite focusing system by setting

f−1 = C ′(z) . (4.92)

The focal point is defined by the condition u (zf) = 0 and is, therefore,
located where the cosine-like solution becomes zero, C(zf) = 0.

More similarities with paraxial light optics can be identified. Point to point
imaging, for example, is defined in particle beam optics by the sine-like func-
tion S(z), starting at the object plane at z = z0. The image point is lo-
cated where the sine-like function crosses again the reference axis or where
S(zi + z0) = 0 as shown in Fig. 4.16.

By definition such a section of a beam transport system has a betatron
phase advance of 180◦. The beam size or object size H0 at z0 is transformed by
the cosine-like function to become at the image point H(zi) = |C(zi +z0)|H0

and the magnification of the beam optical system is given by the absolute
value of the cosine-like function at the image point

M = |C(zi + z0)| . (4.93)
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Fig. 4.16. Point to point imaging

Chromatic Properties

Very basic features can be derived for the chromatic characteristics of a beam
transport line. In (2.86), we have already derived the dispersion function

D(z) = S(z)
∫ z

0

κ0(z̃)C(z̃) dz̃ − C(z)
∫ z

0

κ0(z̃)S(z̃) dz̃ . (4.94)

From this expression we conclude that there is dispersion only if at least
one of the two integrals in (4.94) is nonzero. That means only dipole fields
can cause a dispersion as a consequence of the linear chromatic perturbation
term κ0δ. All other perturbation terms in (2.31), (2.33) are of higher order in
δ or depend on the transverse particle coordinates and therefore contribute
only to higher order corrections of the dispersion function.

Specifically, we find from (2.31) the lowest order chromatic quadrupole
perturbation to be kxδ. Since any arbitrary particle trajectory is composed of
an energy independent part xβ and an energy dependent part Dδ, expressed
by x = xβ + Dδ we find the lowest chromatic quadrupole perturbation to
the dispersion function to be the second order term kDδ2 which does not
contribute to linear dispersion.

While some dispersion cannot be avoided in beam transport systems where
dipole magnets are used, it is often desirable to remove this dispersion at least
in some parts of the beam line. As a condition for that to happen at say z = zd,
we require that D(zd) = 0. From (4.94) this can be achieved if

S(zd)
C(zd)

=

∫ zd

0
κ0 (z̃) S (z̃) dz̃∫ zd

0
κ0 (z̃) C (z̃) dz̃

, (4.95)

a condition that can be met by proper adjustments of the focusing structure.

Achromatic Lattices

A much more interesting case is the one where we require both the dispersion
and its derivative to vanish, D(zd) = 0 and D′(zd) = 0. In this case we have no
dispersion function downstream from the point z = zd up to the point where
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the next dipole magnet creates a new dispersion function. The conditions for
this to happen are

D(zd) = 0 = −S(zd) Ic + C(zd) Is,

D′(zd) = 0 = −S′(zd) Ic + C ′(zd) Is,
(4.96)

where we have set Ic =
∫ zd

0
κ0C dz̃ and Is =

∫ zd

0
κ0 S dz̃. We can solve (4.96)

for Ic or Is and get

[C(zd)S′(zd) − S(zd)C ′(zd)] Ic = 0,

[C(zd)S′(zd) − S(zd)C ′(zd)] Is = 0 .
(4.97)

Since C(zd)S′(zd)−S(zd)C ′(zd) = 1, the conditions for a vanishing dispersion
function are

Ic =
∫ zd

0
κ0(z̃)C(z̃) dz̃ = 0,

Is =
∫ zd

0
κ0(z̃)S(z̃) dz̃ = 0 .

(4.98)

A beam line is called a first-order achromat or short an achromat if and
only if both conditions (4.98) are true. The physical characteristics of an
achromatic beam line is that at the end of the beam line, the position and the
slope of a particle are independent of the energy.

4.4.2 Isochronous Systems

For the accelerating process we will find that the knowledge of the path length
is of great importance. The path length L of any arbitrary particle trajectory
can be derived by integration to give

L =
∫

ds =
∫ L0

0

ds
dz̃

dz̃ =
∫ L0

0

√
x′ 2 + y′ 2 + (1 + κxx)2 dz̃, (4.99)

where L0 is the length of the beam line along the ideal reference path. For
simplicity we have ignored a vertical deflection of the beam. The path length
variation due to a vertical bend would be similar to that for a horizontal bend
and can therefore be easily derived form this result. Since x′, y′, and κxx are
all small compared to unity, we may expand the square root and get in keeping
only second-order terms

L =
∫ L0

0

[1 + κx x + 1
2 (x′ 2 + y′

2 + κ2
x x2)] dz̃ + O(3) . (4.100)

Utilizing (2.88) we get from (4.100) for the path length difference
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(L− L0)sector = x0

∫ L0

0

κx(z̃)C(z̃) dz̃ + x′
0

∫ L0

0

κx(z̃)S(z̃) dz̃ (4.101)

+δ

∫ L0

0

κx(z̃)D(z̃) dz̃ .

The variation of the path length has two contributions. For δ = 0 the path
length varies due to the curvilinear coordinate system where dipole fields exist.
This is a direct consequence of the coordinate system which selects a sector
magnet as its natural bending magnet. The ideal path enters and exits this
type of dipole magnet normal to its pole face as shown in Fig. 4.17. It becomes
obvious from Fig. 4.17 that the path length difference depends on the particle
position with respect to the reference path and is in linear approximation

d� = �− �0 = (ρ0 + x) dϕ− ρ0 dϕ . (4.102)

indeal path 

individual trajectory

sector magnet

dϕ

dl

x

Fig. 4.17. Path length in a sector magnet

Figure 4.18 displays the general situation for a wedge magnet with arbi-
trary entrance and exit pole face angles. The path length differs from that
in a sector magnet on either end of the magnet. The first integral in (4.101)
therefore must be modified to take into account the path length elements in
the fringe field. For a wedge magnet we have therefore instead of (4.101)

(L− L0)wedge= x0

∫ L0

0

κx(z̃)C(z̃) dz̃

+ [C(z0)x0 + ρ0] η0 + [C(ze)x0 + ρ0] ηe

− x0 C(z0) tan η0 − x0 C(ze) tan ηe

+ x′
0

∫ L0

0

κx(z̃)S(z̃) dz̃ + δ

∫ L0

0

κx(z̃)D(z̃) dz̃ (4.103)

≈ (L− L0)sector + O(2) .
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Fig. 4.18. Path length in a wedge magnet

Here [C(z)x0 + ρ0] η is the arc length through the wedge-like deviations
from a sector magnet which must be compensated by the decrease or increase
C(z)x0 tan η in the adjacent drift space. For small edge angles both terms
compensate well and the total path length of a wedge magnet is similar to the
equivalent sector magnet. In general we therefore ignore path length variations
in wedge magnets with respect to sector magnets as well as those in the
adjacent drift spaces. For large edge angles, however, this assumption should
be reconsidered.

Equation (4.101) imposes quite severe restrictions on the focusing sys-
tem if the path length is required to be independent of initial condition and
the energy. Since the parameters x0, x

′
0, and δ are independent parameters

for different particles, all three integrals in (4.101) must vanish separately.
An isochronous beam transport line must therefore be a first-order achromat
(4.98) with the additional condition that

∫
κx D dz̃ = 0.

For highly relativistic particles β ≈ 1 and this condition is equivalent to
being an isochronous beam line. In general, any beam line becomes isochro-
nous if we require the time of flight rather than the path length to be equal
for all particles. In this case we have to take into account the velocity of the
particles as well as its variation with energy. The variation of the particle
velocity with energy introduces in (4.101) an additional chromatic correction
and the variation of the time of flight becomes

β c (T − T0) = x0 Ic + x′
0 Is + δ (Id − γ−2) . (4.104)

In straight beam lines, where no bending magnets are involved, (4.104) van-
ishes and higher than linear terms must be considered. From (4.100) it is obvi-
ous that the bending independent terms are quadratic in nature and therefore
isochronicity cannot be achieved exactly since

β c∆T =
∫ L0

0

(x′ 2 + y′
2) dz̃ > 0 . (4.105)
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This integral is positive for any particle oscillating with a finite betatron am-
plitude. A straight beam transport line is therefore an isochronous transport
system only in first order.

Problems

4.1. Sketch a quadrupole doublet and draw the sine- and cosine-like trajecto-
ries through the quadrupole doublet to the focal point for the horizontal and
vertical plane and verify that (4.21) is indeed true. (Hint: first define from
where to where you need to measure the combined focal length f ) .

4.2 (S). Consider a thin quadrupole doublet with a drift space of 1 m between
them. The quadrupole strengths are to be adjusted to make a focal point
in both planes at a point 5 m from the second quadrupole. Determine the
quadrupole strengths and calculate the combined doublet focal length in both
planes. Sketch the doublet focusing and define in this sketch the calculated
combined focal lengths.

4.3 (S). Consider a quadrupole doublet made of thin lenses. (a) Calculate
the focal length of a quadrupole doublet with | f1| = | f1| = 5 m and a
distance between the magnets of d = 1 m. Plot for this doublet the focal
length as a function of particle momentum −5% < ∆p/p0 < 5% . (b) Use
a parallel beam of radius r0 and maximum divergence r′0 and calculate the
beam radius r at the focal point of this doublet. (c) Plot the magnification
r/r0 as a function of momentum −5% < ∆p/p0 < 5%. What is the chromatic
aberration (r − r0) /r0 of the spot size?

4.4 (S). Consider the quadrupole doublet of Problem 4.2. Sketch the sine-
and cosine-like trajectories through the quadrupole doublet to the focal point
for the horizontal and vertical plane and verify that (4.21) is indeed true.
(Hint: first define from where to where you need to measure the combined
focal lenth f∗.

4.5 (S). Particle trajectories in phase space assume the shape of an ellipse.
Derive a transformation of the phase space coordinates (u, u′) to coordinates
(w, ẇ) such that the particle trajectories are circles with the radius βε.

4.6. Use the quadrupole of Fig. 4.5 but with a reduced iron length of �iron =
5.0 cm and calculate for k0 = 50 m−2 and k0 = 30 m−2 the corrections for the
quadrupole length and strength as discussed in Sect. 4.2.4. Approximate the
end field by just one step. Compare the results with Fig. 4.7, where �iron = 15.9
cm. Which quadrupole needs more correction?

4.7. (a) Design a symmetric thin lens triplet with a focal point for both planes
at the same point z = zf. (b) Calculate and plot the betatron function for the
quadrupole triplet and drift space just beyond the focal point. The value for
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the betatron function be β0 = 8 m at the entrance to the triplet z = 0, where
we also assume α0 = 0. (c) Derive the phase advance in one plane between
z = 0 and z = zf both from the elements of the transformation matrix and by
integrating the betatron function. Both method should give the same results.
How does this phase advance change if β0 = 20 m and α0 = 0? Prove your
statement two ways.

4.8. Consider a combined function sector magnet with nonparallel pole faces
to produce a field gradient. (a) Determine the field gradient to produce equal
focusing in both the horizontal and vertical plane. (b) What is the relationship
between the field index n, the bending radius ρ, and the focusing strength k
for this combined function magnet. What is the field index for a sector magnet
with equal focusing in both planes? (c) Derive the equations of motion for both
the deflecting and nondeflecting plane in terms of field index and bending
radius. State the conditions for the field index n to obtain stable particle
oscillations in both planes. Assume a circular accelerator constructed of a
uniform sector magnet with a stable field index n. What is the number of
betatron oscillations per turn in both planes? Derive the equations of motion
in both the deflecting and nondeflecting plane?

4.9 (S). Sector and rectangular magnets have opposite focusing properties.
Determine the geometry of a wedge magnet with equal focusing in both planes.

4.10. A wiggler magnet is composed of a series of equal rectangular dipoles
with alternating polarity. Derive the linear transformation matrices in both
planes for a single wiggler magnet pole. For the field distribution assume a
sinusoidal field By(z) = By0 sin (kz), where k = 2π/λp and λp is the wiggler
magnet period. Define a hard edge model for a wiggler pole with the same
deflection angle and a bending radius 1/ρ0. What is the equivalent length
of this hard edge pole in units of the wiggler period and what is the focal
length of the edge field focusing. Compare with the result of the sinusoidal
field distribution. By adjusting both the hard edge effective magnetic length
and strength it is possible to match both the deflection angle and the focal
length of the sinusoidal wiggler field.

4.11 (S). In an arbitrary beam transport line, we assume that at the point
z0 the particle beam is kicked in the horizontal or vertical plane by the de-
flection angle ϑ. What is the betatron amplitude for the beam at any point z
downstream from z0? To maximize the betatron amplitude at z how should
the lattice functions, betatron function, and/or phase be chosen at z0 and z?

4.12 (S). Consider three cells of a symmetric FODO lattice 1
2QF1 −QD1 −

QF2 −QD2 −QF3 −QD3 − 1
2QF4 with a betatron phase advance ψF = 90◦

per cell. Further assume there are special coils in the quadrupoles to produce
dipole fields which can be used to deflect the beam. (a) Construct a symmetric
beam bump which starts at QF1, ends at QF4, and reaches an amplitude
Ak = 2 cm at the center of QD2. How many trim coils need to be activated?
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(b) Derive the relative kick angles required to construct the beam bump and
calculate the beam displacement in each quadrupole. Is Ak the maximum
amplitude of the beam bump? Why? Why not? (c) What are the criteria
for either Ak being the maximum displacement or not? For which phase ψF

would the dipole fields be minimum? Is there a more economic solution for a
symmetric beam bump with an amplitude Ak at the center of QD2?



5

Particle Beams and Phase Space

The solution of the linear equations of motion allows us to follow a single
charged particle through an arbitrary array of magnetic elements. Often,
however, it is necessary to consider a beam of many particles and it would
be impractical to calculate the trajectory for every individual particle. We,
therefore, look for some representation of the whole particle beam.

To learn more about the collective motion of particles we observe their
dynamics in phase space. Each particle at any point along a beam transport
line is represented by a point in six-dimensional phase space with coordinates
(x, px, y, py, σ, E) where px ≈ p0 x

′ and py ≈ p0 y
′ are the transverse momenta

with cp0 = β E0, σ is the coordinate along the trajectory, E0 is the ideal
particle energy, and E is the particle energy. Instead of the energy E often
the momentum cp or the momentum deviation from the ideal momentum
∆p = p − p0 or the relative momentum deviation ∆p/p0 is used. We use the
momentum to study particle dynamics in the presence of magnetic field. In
accelerating systems, like linear accelerators, the use of the particle’s kinetic
energy is much more convenient. Similarly, when the beam energy stays con-
stant, we use instead of the transverse momenta the slope of the trajectories
x′, y′ which are proportional to the transverse momenta and are generally very
small so we may set sinx′ ≈ x′.

The coupling between the horizontal and vertical plane is being ignored
in linear beam dynamics or treated as a perturbation as is the coupling be-
tween transverse and longitudinal motion. Only the effect of energy errors on
the trajectory will be treated in this approximation. First, however, we set
∆E = 0 and represent the beam by its particle distribution in the horizon-
tal (x, x′) or vertical (y, y′) phase space separately. Because of the absence
of coupling between degrees of freedom in this approximation we may split
the six-dimensional phase space into three independent two-dimensional phase
planes.
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5.1 Beam Emittance

Particles in a beam occupy a certain region in phase space which is called
the beam emittance and we define three independent two-dimensional beam
emittances. Their numerical values multiplied by π are equal to the area oc-
cupied by the beam in the respective phase plane. The beam emittance is a
measure of the transverse or longitudinal temperature of the beam and de-
pends on the source characteristics of a beam or on other effects like quantized
emission of photons into synchrotron radiation and its related excitation and
damping effects.

A simple example of a beam emittance and its boundaries is shown in
Fig. 5.1, where particles emerge from a disk with radius w and where the
direction of the particle trajectories can be anywhere within ±90◦ with respect
to the surface of the source. The proper phase space representation of this
beam at the surface of the source is shown in Fig. 5.1(left). All particles are
contained in a narrow strip within the boundaries xmax = ±w but with a
large distribution of transverse momenta (px = p0 tanx′).

w

z

x'

x
w-w

phase space 
representation

w

z

x'

x

w-w

phase space 
representation

iris

w/d

-w/d

Fig. 5.1. Beam from a diffuse source in real space and in phase space (left). Re-
duction of phase space (shaded area) due to beam restriction by an iris aperture
(right)

Any real beam emerging from its source will be clipped by some aperture
limitations of the vacuum chamber. We assume a simple iris as the aperture
limitation located at a distance d from the source and an opening with a
radius of R = w. The fact that we choose the iris aperture to be the same as
the size of the source is made only to simplify the arguments. Obviously many
particles emerging from the source will be absorbed at the iris. The part of the
beam which passes the iris occupies a phase space area at the exit of the iris
like the shaded area shown in Fig. 5.1 (right). Among all particles emerging
from the source with an amplitude x = ±w only those will pass the iris for



5.1 Beam Emittance 155

which the slope of the trajectory is between x′ = 0 and x′ = ∓ 2w/d. This
beam now has a measurable beam emittance as determined by the source and
iris aperture.

The concept of describing a particle beam in phase space will become very
powerful in beam dynamics since we can prove that the density of particles in
phase space does not change along a beam transport line, where the forces act-
ing on particles can be derived from macroscopic electric and magnetic fields.
In other words particles that are within a closed boundary in phase space
at one point of the beam line stay within that boundary. This is Liouville’s
theorem which we will prove for the fields used in beam dynamics.

5.1.1 Liouville’s Theorem

In Chap. 4 we have learned to follow individual particles through an arbitrary
beam transport line made up of drift spaces, dipole, and quadrupole magnets.
Since this is true for any particle with known initial parameters in phase
space (x, x′, y, y′) it is in principle possible to calculate trajectories along a
beam line for a large number of particles forming a particle beam. Obviously,
this is impractical, and we are therefore looking for mathematical methods
to describe the beam as a whole without concentrating on individual particle
trajectories. To this end we make use of methods in statistical mechanics
describing the evolution of a large number of particles forming a particle
beam.

Liouville’s theorem is of specific importance in this respect and we will use
it extensively to describe the properties of a particle beam as a whole. This
theorem states that under the influence of conservative forces the particle
density in phase space stays constant. Since (4.1), (4.2) is equivalent to the
equation of a free harmonic oscillator, we know that the motion of many
particles in phase space follow Liouville’s theorem. A more direct proof of the
validity of Liouville’s theorem in particle beam dynamics can be obtained by
observing the time evolution of an element in the six-dimensional phase space.
If Ψ is the particle density in phase space, the number of particles within a
six-dimensional, infinitesimal element is

Ψ(x, y, z, px, py, pz) dxdy dz dpx dpy dpz . (5.1)

The phase space current created by the motion of these particles is

j = (Ψ ẋ, Ψ ẏ, Ψ ż, Ψ ṗx, Ψ ṗy, Ψ ṗz), (5.2)

where the time derivatives are to be taken with respect to a time τ measured
along the trajectory of the phase space element. This time is to be distin-
guished from the reference time t along the reference orbit in the same way as
we distinguish between the coordinates s and z. We set therefore ẋ = dx/dτ,
etc. The phase space current must satisfy the continuity equation
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∇j +
∂Ψ

∂τ
= 0 . (5.3)

From this, we get with (5.2) and the assumption that the particle location
does not depend on its momentum and vice versa

−∂Ψ

∂τ
=∇r(Ψ ṙ)+∇p(Ψ ṗ) (5.4)

=ṙ ∇rΨ + Ψ (∇rṙ)+ṗ ∇pΨ + Ψ (∇p ṗ),

where ∇r =
(

∂
∂x ,

∂
∂y ,

∂
∂z

)
and ∇p =

(
∂

∂px
, ∂

∂py
, ∂

∂pz

)
. The time derivative of

the space vector r,
ṙ

c
=

cp√
c2p2 + m2c4

, (5.5)

does not depend on the location r, and we have therefore

∇r ṙ = 0 . (5.6)

From the Lorentz force equation, we get

∇p ṗ = e∇p[ṙ × B] = eB (∇p × ṙ) − e ṙ (∇p × B) . (5.7)

The magnetic field B does not depend on the particle momentum p and
therefore the second term on the right-hand side of (5.7) vanishes. For the
first term, we find ∇p × ṙ = 0 because (∇p × ṙ)x = ∂ż

∂py
− ∂ẏ

∂pz
and ∂ż

∂py
=

c ∂
∂py

pz√
p2+m2c2

= c py pz

(p2+m2c2)3/2 = ∂ẏ
∂pz

, where we have used p2 = p2
x + p2

y + p2
z.

We get a similar result for the other components and have finally for (5.7)

∇p ṗ = 0 . (5.8)

With these results, we find from (5.4) the total time derivative of the phase
space density Ψ to vanish

∂Ψ

∂τ
+ ∇rΨ ṙ + ∇pΨ ṗ =

dΨ
dτ

= 0, (5.9)

proving the invariance of the phase space density Ψ .
Independent from general principles of classical mechanics we have shown

the validity of Liouville’s theorem for the motion of charged particles under
the influence of Lorentz forces. This is obviously also true for that part of the
Lorentz force that derives from an electrical field since

∇p ṗ = e∇pE = 0 (5.10)

because the electric field E does not depend on the particle momentum.
The same result can be derived in a different way from the property of

the Wronskian in particle beam dynamics. For that, we assume that the unit
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vectors u1,u2 . . . ,u6 form a six-dimensional, orthogonal coordinate system.
The determinant formed by the components of the six vectors x1,x2, . . . ,x6

in this system is equal to the volume of the six-dimensional polygon defined
by the vectors xi. The components of the vectors xi with respect to the base
vectors uj are xij and the determinant is

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 x13 x14 x15 x16

x21 x22 x23 · · · · · · · · ·
x31 x32 · · · · · · · · · · · ·
x41 · · · · · · · · · · · · · · ·
x51 · · · · · · · · · · · · · · ·
x61 · · · · · · · · · · · · x66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= |x1, x2, x3, x4, x5, x6| . (5.11)

We will derive the transformation characteristics of this determinant consid-
ering a transformation

yi = Mxj, (5.12)

where M = (aij) and determinant (5.11) then transforms like

|y1,y2 . . . ,y6 |=

∣∣∣∣∣∣
6∑

j1=1

a1j1 xj1 ,
6∑

j1=1

a2j2 xj2 , . . .
6∑

j1=1

a6j6 xj6

∣∣∣∣∣∣

=
6∑
a1j1 a2j2 . . . a6j6 |xj1 , xj2 , . . . xj6 | . (5.13)

The determinant |xj1 , xj2 , . . . xj6 | is equal to zero if two or more of the in-
dices ji are equal and further the determinant changes sign if two indices are
interchanged. These rules lead to

|y1,y2 . . . ,y6 | =
6∑

ji=1

εj1j2...j6 a1j1 a2j2 . . . a6j6 |x1,x2, . . . ,x6 |, (5.14)

where

εj1, j2 ... j6 =





+1 for even permutations of the indices ji

−1 for odd permutations of the indices ji

0 if any two indices are equal.

(5.15)

The sum
∑6

ji=1 εj1j2...j6 a1j1 a2j2 . . . a6j6 is just the determinant of the trans-
formation matrix M and finally we get

|y1,y2 . . . ,y6 | = |M| |x1,x2, . . . ,x6| . (5.16)
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tan

area: A =

-

-

Fig. 5.2. Phase space ellipse

For a particle beam transport line, however, we know that |M| is the Wron-
skian with

W = |M| = 1 . (5.17)

If we now identify this six-dimensional space with the six-dimensional phase
space, we see from (5.16) and (5.17) that the phase space under the class of
transformation matrices considered in beam dynamics is constant. Conversely,
if W 
= 1, we get a change in phase space, as we will see when we consider,
for example, acceleration, damping, or synchrotron radiation losses.

5.1.2 Transformation in Phase Space

Liouville’s theorem provides a powerful tool to describe a beam in phase space.
Knowledge of the area occupied by particles in phase space at the beginning of
a beam transport line will allow us to determine the location and distribution
of the beam at any other place along the transport line without having to
calculate the trajectory of every individual particle.

It has become customary to surround all particles of a beam in phase space
by an ellipse called the phase ellipse (Fig. 5.2) described by

γ x2 + 2αxx′ + β x′2 = ε, (5.18)

where α, β, γ, and ε are ellipse parameters. The area enclosed by the ellipse is
called the beam emittance1 ε defined by
1 The literature is not always uniform in the representation of numerical values for

the beam emittance. Often the beam emittance is quoted in units of π–mm–mrad
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∫

ellipse

dxdx′ = π ε, (5.19)

while the parameters α, β, and γ determine the shape and orientation of the
ellipse. This characterization of the beam emittance by the area of an ellipse
seems at first arbitrary although practical. Later in Sect. 5.2, we will see that
all particles travel along their individual ellipses in phase space. If we now
choose that or those particles on the largest phase ellipse within a particular
beam, we know that all other particles within that ellipse will stay within
that ellipse. We are thereby able to describe the collective behavior of a beam
formed by many particles by the dynamics of a single particle.

Since all particles enclosed by a phase ellipse stay within that ellipse, we
only need to know how the ellipse parameters transform along the beam line
to be able to describe the whole particle beam. Let the equation

γ0 x
2
0 + 2α0 x0 x

′
0 + β0 x

′2
0 = ε (5.20)

be the equation of the phase ellipse at the starting point z = 0 of the beam
line. Any particle trajectory transforms from the starting point z = 0 to any

other point z 
= 0 by the transformation


 x (z)

x′ (z)


 =


 C(z) S(z)

C ′(z) S′(z)




x0

x′
0


.

Solving for x0 and x′
0 and inserting into (5.20) , we get after sorting of coeffi-

cients and stopping to show explicitly the z-dependence

ε = (C ′2β0 − 2S′C ′α0 + S′2γ0)x2 (5.21)
+ 2 (−CC ′β0 + S′C α0 + SC ′α0 − S S′γ0)xx′

+ (C2β0 − 2S C α0 + S2γ0)x′2.

This equation can be brought into the form (5.18) by replacing the coefficients
in (5.21) with

γ = C ′2β0 − 2S′C ′α0 + S′2γ0,

α = −CC ′β0 + (S′C + SC ′)α0 − S S′γ0, (5.22)

β = C2β0 − 2S Cα0 + S2γ0 .

The resulting ellipse equation still has the same area π ε as we would
expect, but due to different parameters γ, α, β, the new ellipse has a different
orientation and shape. During a transformation along a beam transport line
the phase ellipse will continuously change its form and orientation but not
its area. In matrix formulation the ellipse parameters, which are also called
Twiss parameters [39], transform from (5.22) like

and it is not clear if the factor π is included in the numerical value or not. We
define in this book the beam emittance as the beam phase space area divided by
π.
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


β (z)

α (z)

γ (z)


 =




C2 −2CS S2

−CC ′ CS′ + C ′S −SS′

C ′ 2 −2C ′S′ S′ 2







β0

α0

γ0


 . (5.23)

The orientation, eccentricity and area of an ellipse is defined by three para-
meters, while (5.20) includes four parameters α, β, γ and ε. Since the area
is defined by ε we expect the other three parameters to be correlated. From
geometric properties of an ellipse we find that correlation to be

β γ − α2 = 1 . (5.24)

So far we have used only the (x, x′)-phase space, but the results are valid also
for the (y, y′)-phase space. Equation (5.23) provides the tool to calculate beam
parameters anywhere along the beam line from the initial values β0, α0, γ0.

The phase ellipse in a drift space, for example, becomes distorted in a clock
wise direction without changing the slope of any particle as shown in Fig. 5.3.
If the drift space is long enough a convergent beam transforms eventually into
a divergent beam, while the angular envelope A = x′

max =
√
εγ stays constant.

The point zw at which the beam reaches its minimum size is determined by
α(zw) = 0 and we get from (5.23) for the location of a beam waist in a drift
section.

� = zw − z0 =
α0

γ0
. (5.25)

This point of minimum beam size is up or downstream of z = z0 depending
on the sign of α0 being negative or positive, respectively.

More formally, the transformation through a simple drift space of length
� is 



β (�)

α (�)

γ (�)


 =




1 −2� �2

0 1 −�

0 0 1







β0

α0

γ0


 , (5.26)

which describes, for example, the transition of a convergent phase ellipse to
a divergent phase ellipse as shown in Fig. 5.3. Particles in the upper half of

z
x0’

x0 x0 x0

z=0 z=z1 z=z2

Fig. 5.3. Transformation of a phase space ellipse at different locations along a drift
section
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the phase ellipse move from left to right and particles in the lower half from
right to left. During the transition from the convergent to divergent phase
ellipse we find an upright ellipse which describes the beam at the location of
a waist. The form and orientation of the phase ellipse tells us immediately
the characteristics beam behavior. Convergent beams are characterized by
a rotated phase ellipse extending from the left upper quadrant to the lower
right quadrant while a divergent beam spreads from the left lower to the right
upper quadrant. A symmetric phase ellipse signals the location of a waist or
symmetry point.

A divergent beam fills, after some distance, the whole vacuum chamber
aperture and in order not to lose beam a focusing quadrupole must be in-
serted. During the process of focusing a diverging beam entering a focusing
quadrupole reaches a maximum size and then starts to converge again. This
transformation, generated by a focusing quadrupole is shown in Fig. 5.4, where
we recognize slopes of particle trajectories to reverse signs thus forming a con-
vergent beam.

z

focusing lens

diverging                         converging                    beam            diverging
beam                               beam                         waist            beam

Fig. 5.4. Transformation of a phase ellipse due to a focusing quadrupole. The
phase ellipse is shown at different locations along a drift space downstream from the
quadrupole

After this step, the beam may develop as shown for a drift space until
the next focusing quadrupole is required. In reality this focusing scenario is
complicated by the fact that we also need vertical focusing which requires the
insertion of defocusing quadrupoles as well.

5.1.3 Beam Matrix

Particle beams are conveniently described in phase space by enclosing their
distribution with ellipses. Transformation rules for such ellipses through a
beam transport system have been derived for a two-dimensional phase space
and we expand here the discussion of phase space transformations to more
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dimensions. The equation for an n-dimensional ellipse can be written in the
form

uT σ−1u = 1, (5.27)

where the symmetric matrix σ is still to be determined, uT is the transpose
of the coordinate vector u defined by

u =




x

x′

y

y′

τ

δ
...




. (5.28)

The volume of this n-dimensional ellipse is

Vn =
πn/2

Γ (1 + n/2)

√
det σ, (5.29)

where Γ is the gamma function. Applying (5.27) to the two-dimensional phase
space, we get for the ellipse equation

σ22 x
2 + 2σ12 xx′ + σ11 x

′2 = ε2 . (5.30)

and comparison with (5.18) defines the beam matrix with well-known beam
parameters as

σ =


σ11 σ12

σ21 σ22


 = ε2


 β −α

−α γ


 . (5.31)

Since only three of the four parameters in the beam matrix σ are indepen-
dent, we find that σ21 = σ12. This identification of the beam matrix can be
expanded to six or arbitrary many dimensions including, for example, spin or
coupling terms which we have so far neglected. The two-dimensional “volume”
or phase space area is

V2 = π
√

det σ = π
√

σ11 σ22 − σ2
12 = π ε (5.32)

consistent with the earlier definition of beam emittance, since βγ − α2 = 1.
The definition of the beam matrix elements are measures of the particle

distribution in phase space. As such, we would expect different definitions
for different distributions. Since most particle beams have a Gaussian or bell
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shaped distribution, however, we adopt a uniform definition of beam matrix
elements. The betatron oscillation amplitude for a particular particle and its
derivative is can be described by (see Chap. 5.2)

xi = ai

√
β cos (ψ + ψi) , (5.33)

x′
i = ai

β′

2
√
β

cos (ψ + ψi) − ai
1√
β

sin (ψ + ψi) . (5.34)

We now form average values of all particles within a well-defined fraction of
a beam and get

〈
x2

i

〉
= a2

iβ
〈
cos2 (ψ + ψi)

〉
= 1

2
a2

iβ = εβ, (5.35)
〈
x′2

i

〉
= a2

i

α2

β
1
2

+ a2
i

1
β

1
2

= 1
2
a2

i

1 + α2

β
= εγ, (5.36)

〈xi x
′
i〉 = −a2

iα
1
2

= −εα, (5.37)

where we have assumed a Gaussian particle distribution and a beam emittance
defined by 1

2
a2

i = ε . This definition describes that part of the beam which is
within one standard deviation of the distribution in multidimensional phase
space. The beam matrix elements are finally defined by

σ11 =
〈
x2

i

〉
= εβ,

σ22 =
〈
x′2

i

〉
= εγ, (5.38)

σ12 = 〈xi x
′
i〉 = −εα .

With this definition, the beam emittance can be expressed by

ε2 = σ11 σ22 − σ2
12 =

〈
x2

i

〉 〈
x′2

i

〉
− 〈xi x

′
i〉

2
. (5.39)

This definition is generally accepted also for any arbitrary particle distri-
bution. Specifically, beams from linear accelerators or proton and ion beams
can have arbitrary distributions.

Similar to the two-dimensional case, we look for the evolution of the n-
dimensional phase ellipse along a beam transport line. With M(P1|P2) the
n × n transformation matrix from point P0 to P1 we get u1 = M(P1|P0)u0

and the equation of the phase ellipse at point P1 is

(M−1 u1)T σ−1
0 (M−1 u1) = uT

1 σ−1
1 u1 = 1 . (5.40)

With
(
MT

)−1
σ−1

0 M−1 = [Mσ0 MT ]−1 the beam matrix transforms there-
fore like

σ1 = Mσ0MT . (5.41)

This formalism will be useful for the experimental determination of beam
emittances.
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Measurement of the Beam Emittance

The ability to manipulate in a controlled and measurable way the orientation
and form of the phase ellipse with quadrupoles gives us the tool to experimen-
tally determine the emittance of a particle beam. Since the beam emittance
is a measure of both the beam size and beam divergence, we cannot directly
measure its value. While we are able to measure the beam size with the use
of a fluorescent screen, for example, the beam divergence cannot be measured
directly. If, however, the beam size is measured at different locations or under
different focusing conditions such that different parts of the ellipse will be
probed by the beam size monitor, the beam emittance can be determined.

Utilizing the definition of the beam matrix in (5.31), we have

σ11 σ22 − σ2
12 = ε2 (5.42)

and the beam emittance can be measured, if we find a way to determine the
beam matrix. To determine the beam matrix σ0 at point P0, we consider
downstream from P0 a beam transport line with some quadrupoles and beam
size monitors like fluorescent screens at three places, P1 to P3. From (5.23)
and (5.31) we get for the beam sizes σi,11 at locations Pi three relations of
the form

σi,11 = C2
i σ0,11 + 2SiCi σ0,12 + S2

i σ0,22 (5.43)

which we may express in matrix formulation by



σ1,11

σ2,11

σ3,11


 =




C2
1 −2C1S1 S2

1

C2
2 −2C2S2 S2

2

C2
3 −2C3S3 S2

3







σ0,11

σ0,12

σ0,22


 = Mσ




σ0,11

σ0,12

σ0,22


 , (5.44)

where Ci and Si are elements of the transformation matrix from point P0 to
Pi and σi,jk are elements of the beam matrix at Pi. Equation (5.44) can be
solved for the beam matrix elements σi,jk at P0




σ0,11

σ0,12

σ0,22


 = (MT

σ Mσ)−1 MT
σ




σ1,11

σ2,11

σ3,11


 , (5.45)

where the matrix Mσ is known from the parameters of the beam transport
line between P0 and Pi and MT

σ is the transpose of it. The solution vector
can be used in (5.42) to calculate finally the beam emittance.

This procedure to measure the beam emittance is straightforward but
requires three beam size monitors at appropriate locations such that the mea-
surements can be conducted with the desired resolution. A much simpler pro-
cedure makes use of only one beam size monitor at P1 and one quadrupole
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between P0 and P1. We vary the strength of the quadrupole and measure
the beam size at P1 as a function of the quadrupole strength. These beam
size measurements as a function of quadrupole strength are equivalent to the
measurements at different locations discussed above and we can express the
results of n beam size measurements by the matrix equation



σ1,11

σ2,11

...

σn,11




=




C2
1 −2C1S1 S2

1

C2
2 −2C2S2 S2

2

...
...

...

C2
n −2CnSn S2

n







σ0,11

σ0,12

σ0,22


 = Mσ,n




σ0,11

σ0,12

σ0,22


 . (5.46)

Like in (5.45) the solution is from simple matrix multiplications




σ0,11

σ0,12

σ0,22


 = (MT

σ,n Mσ,n)−1 MT
σ,n




σ1,11

σ2,11

...

σn,11




. (5.47)

An experimental procedure has been derived which allows us to determine
the beam emittance through measurements of beam sizes as a function of
focusing. Practically, the evaluation of (5.47) is performed by measuring the
beam size σ1,11(k) at P1 as a function of the quadrupole strength k and
comparing the results with the theoretical expectation

σ1,11(k) = C2(k)σ0,11 + 2C(k)S(k)σ0,12 + S2(k)σ0,22 . (5.48)

By fitting the parameters σ0,11, σ0,12, and σ0,22 to match the measured
curve, one can determine the beam emittance from (5.42). However, this pro-
cedure does not guarantee automatically a measurement with the desired
precision. To accurately fit three parameters we must be able to vary the
beam size considerably such that the nonlinear variation of the beam size
with quadrupole strength becomes quantitatively significant. An analysis of
measurement errors indicates that the beam size at P0 should be large and
preferably divergent. In this case variation of the quadrupole strength will dra-
matically change the beam size at P1 from a large value, when the quadrupole
is off, to a narrow focal point and again to a large value by over focusing.

A most simple arrangement consists of a single quadrupole and a screen
at a distance d. Assuming that the length �q of the quadrupole is �q � d, we
can use thin lens approximation and the total transformation matrix is then


 1 − d/f d

−1/f 1


 =


 1 d

0 1




 1 0

−1/f 1


 . (5.49)
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Equation (5.48) becomes

σ1,11(k) = (1 + d �qk)2 σ0,11 + 2 (1 + d �qk) d σ0,12 + d2 σ0,22

or after reordering

σ1,11(k) =
(
d2 �2qσ0,11

)
k2 + 2

(
d �qσ0,11 + d2 �qσ0,12

)
k (5.50)

+
(
σ0,11 + 2d σ0,12 + d2σ0,22

)
.

Fitting σ1,11(k) with a parabola
(
ak2 + bk + c

)
will determine the whole beam

matrix σ0 by

σ0,11 =
a

d2�2q
, (5.51)

σ0,12 =
b− 2d �qσ0,11

2d2�q
, (5.52)

σ0,22 =
c− σ0,11 − 2d σ0,12

d2
. (5.53)

Of course, the beam matrix not only defines the beam emittance but also
the betatron functions at the beginning of the quadrupole in this measure-
ment. We gain with this measurement a full set of initial beam parameters
(α0, β0, γ

′
0, ε) and may now calculate beam parameters at any point along the

transport line.

5.2 Betatron Functions

The trajectory of a particle through an arbitrary beam transport system can
be determined by repeated multiplication of transformation matrices through
each of the individual elements of the beam line. This method is convenient
especially for computations on a computer but it does not reveal many prop-
erties of particle trajectories. For a deeper insight, we attempt to solve the
equation of motion analytically. The differential equation of motion is

u′′ + k(z)u = 0, (5.54)

where u stands for x or y and k(z) is an arbitrary function of z resembling the
particular distribution of focusing along a beam line. For a general solution of
(5.54) we apply the method of variation of integration constants and use an
ansatz with a z-dependent amplitude and phase

u(z) =
√
ε
√

β(z) cos[ψ(z) − ψ0], (5.55)

which is similar to the solution of a harmonic oscillator equation with a
constant coefficient k. The quantities ε and ψ0 are integration constants.
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From (5.55) we form first and second derivatives with the understanding that
β = β(z), ψ = ψ(z), etc.

u′=
√
ε

β′

2
√
β

cos(ψ − ψ0) −
√
ε
√

β sin(ψ − ψ0)ψ′,

u′′=
√
ε
β β′′ − 1

2 β′2

2β3/2
cos(ψ − ψ0) −

√
ε
β′
√
β

sin(ψ − ψ0)ψ′ (5.56)

−ε
√

β sin(ψ − ψ0)ψ′′ −
√
ε
√

β cos(ψ − ψ0)ψ′2,

and insert into (5.54). The sum of all coefficients of the sine and cosine terms,
respectively, must vanish separately to make ansatz (5.55) valid for all phases
ψ. From this, we get the following two conditions:

1
2 (ββ′′ − 1

2β
′2) − β2ψ′2 + β2k = 0 (5.57)

and
β′ψ′ + β ψ′′ = 0 . (5.58)

Equation (5.58) can be integrated immediately since β′ψ + β ψ′′ = (β ψ′)′ for

β ψ′ = const. = 1, (5.59)

where a specific normalization of the phase function has been chosen by se-
lecting the integration constant to be equal to unity. From (5.59) we get for
the phase function

ψ(z) =
∫ z

0

dz̄
β(z̄)

+ ψ0 . (5.60)

Knowledge of the function β(z) along the beam line obviously allows us to
compute the phase function. Inserting (5.59) into (5.57) we get the differential
equation for the function β(z)

1
2ββ

′′ − 1
4β

′2 + β2k = 1, (5.61)

which becomes with α = − 1
2 β′ and γ = (1 + α2)/β

β′′ + 2 kβ − 2γ = 0 . (5.62)

The justification for the definition of γ becomes clear below when we make
the connection to ellipse geometry and (5.24). With α′ = − 1

2β
′′ this is equiv-

alent to
α′ = k β − γ . (5.63)

Before we solve (5.62) we try to determine the physical nature of the
functions β(z), α(z), and γ(z). To do that, we first note that any solution
that satisfies (5.62) together with the phase function ψ(z) can be used to make
(5.55) a real solution of the equation of motion (5.54). From that solution and
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derivative (5.56) we eliminate the phase (ψ − ψ0) and obtain a constant of
motion which is also called the Courant–Snyder invariant [20]

γu2 + 2αuu′ + β u′2 = ε . (5.64)

This invariant expression is equal to the equation of an ellipse with the
area πε which we have encountered in the previous section and the particular
choice of the letters β, α, γ, ε for the betatron functions and beam emittance
now becomes obvious. The physical interpretation of this invariant is that of a
single particle traveling in phase space along the contour of an ellipse with the
parameters β, α, and γ. Since these parameters are functions of z, the form of
the ellipse is changing constantly but, due to Liouville’s theorem, any particle
starting on that ellipse will stay on it. The choice of an ellipse to describe
the evolution of a beam in phase space is thereby more than a mathematical
convenience. We may now select a single particle to define a phase ellipse
and know that all particles with lesser betatron oscillation amplitudes will
stay within that ellipse. The description of an ensemble of particles forming
a beam have thereby been reduced to that of a single particle.

The ellipse parameter functions or Twiss parameters β, α, γ, and the phase
function ψ are called the betatron functions or lattice functions and the os-
cillatory motion of a particle along the beam line (5.55) is called the betatron
oscillation. This oscillation is quasi-periodic with varying amplitude and fre-
quency. To demonstrate the close relation with the solution of a harmonic
oscillator, we use the betatron and phase function to perform a coordinate
transformation

(u, z) −→ (w,ψ) (5.65)

by setting

w(ψ) =
u(z)√
β(z)

and ψ =
∫ z

0

dz̄
β(z̄)

, (5.66)

where u(z) stands for x(z) and y(z), respectively. These coordinates (w,ψ)
are called normalized coordinates and equation of motion (5.54) transforms
to

d2w

dψ2
+ w2 = 0, (5.67)

which indeed is the equation of a harmonic oscillator with angular frequency
1. This identity will be very important for the treatment of perturbing driving
terms that appear on the right-hand side of (5.67) which will be discussed in
more detail in Sect. 5.3.1.

So far, we have tacitly assumed that the betatron function β(z) never
vanishes or changes sign. This can be shown to be true by setting q(z) =√

β(z) and inserting into (5.61). With β′ = 2 q q′ and β′′ = 2 (q′2 + q q′′) we
get the differential equation

q′′ + k q − 1
q3

= 0 . (5.68)
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The term 1/q3 prevents a change of sign of q(z). Letting q > 0 vary toward
zero q′′ ≈ 1/q3 → ∞. This curvature, being positive, will become arbitrarily
large and eventually turns the function q(z) around before it reaches zero.
Similarly, the function q(z) stays negative along the whole beam line if it is
negative at one point. Since the sign of the betatron function is not deter-
mined and does not change, it has became customary to use only the positive
solution.

The beam emittance parameter ε appears as an amplitude factor in the
equation for the trajectory of an individual particle. This amplitude factor is
equal to the beam emittance only for particles traveling on an ellipse that just
encloses all particles in the beam. In other words, a particle traveling along
a phase ellipse with amplitude

√
ε defines the emittance of that part of the

total beam which is enclosed by this ellipse or for all those particles whose
trajectories satisfy

β u′2 + 2αuu′ + γ u2 ≤ ε . (5.69)

Since it only leads to confusion to use the letter ε as an amplitude factor
we will from now on use it only when we want to define the whole beam and
set

√
ε = a for all cases of individual particle trajectories.

5.2.1 Beam Envelope

To describe the beam as a whole, a beam envelope equation can be defined. All
particles on the beam emittance defining ellipse follow trajectories described
by

xi(z) =
√
ε
√

β(z) cos[ψ(z) + δi], (5.70)

where δi is an arbitrary phase constant for the particle i. By selecting at every
point along the beam line that particle (i) for which cos[ψ(z) + δi] = ±1, we
can construct an envelope of the beam containing all particles

E(z) = ±
√
ε
√

β(z) . (5.71)

Here the two signs indicate only that there is an envelope an either side
of the beam center. We note that the beam envelope is determined by the
beam emittance ε and the betatron function β(z). The beam emittance is a
constant of motion and resembles the transverse “temperature” of the beam.
The betatron function reflects exterior forces from focusing magnets and is
highly dependent on the particular arrangement of quadrupole magnets. It
is this dependence of the beam envelope on the focusing structure that lets
us design beam transport systems with specific properties like small or large
beam sizes at particular points.

5.3 Beam Dynamics in Terms of Betatron Functions

Properties of betatron functions can now be used to calculate the parameters
of individual particle trajectories anywhere along a beam line. Any particle



170 5 Particle Beams and Phase Space

trajectory can be described by

u(z) = a
√

β cosψ + b
√

β sinψ (5.72)

and the amplitude factors a and b can be determined by setting at z = 0

ψ = 0, β = β0, u(0) = u0,

α = α0, u′(0) = u′
0 .

(5.73)

With these boundary conditions we get

a = 1√
β0

u0,

b = α0√
β0

u0 +
√
β0 u

′
0,

(5.74)

and after insertion into (5.72) the particle trajectory and its derivative are

u(z) =

√
β

β0
(cosψ + α0 sinψ)u0 +

√
β β0 sinψ u′

0,

u′(z) =
1√
β0β

[(α0 − α) cosψ − (1 + αα0) sinψ]u0 (5.75)

+

√
β0

β
(cosψ − α sinψ)u′

0,

or in matrix formulation

 C(z) S(z)

C ′(z) S′(z)


 =



√

β
β0

(cosψ + α0 sinψ)
√
ββ0 sinψ

α0−α√
ββ0

cosψ − 1+αα0√
ββ0

sinψ
√

β0
β (cosψ − α sinψ)


 .

(5.76)
Knowledge of the betatron functions along a beam line allows us to calcu-

late individual particle trajectories. The betatron functions can be obtained by
either solving numerically the differential equation (5.61) or by using the ma-
trix formalism (5.23) to transform phase ellipse parameters. Since the ellipse
parameters in (5.23) and the betatron functions are equivalent, we have found
a straightforward way to calculate their values anywhere once we have initial
values at the start of the beam line. This method is particularly convenient
when using computers to perform matrix multiplication.

Transformation of the betatron functions becomes very simple in a drift
space where the transformation matrix is


 C(z) S(z)

C ′(z) S′(z)


 =


 1 z

0 1


 . (5.77)

The betatron functions at the point z are from (5.26)
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β(z) = β0 − 2α0 z + γ0 z
2,

α(z) = α0 − γ0 z, (5.78)
γ(z) = γ0,

with initial values β0, α0, γ0 are taken at the beginning of the drift space.
We note that γ(z) = const. in a drift space. This result can be derived also

from the differential equation (5.62) which for k = 0 becomes β′′ = 2γ and
the derivative with respect to z is β′′′ = 2γ′. On the other hand, we calculate
from the first equation (5.78) the third derivative of the betatron function
with respect to z to be β′′′ = 0. Obviously both results are correct only if the
γ-function is a constant in a drift space where k = 0.

The location of a beam waist is defined by α = 0 and occurs from (5.78) at
zw = α0/γ0. The betatron function increases quadratically with the distance
from the beam waist (see Fig. 5.5) and can be expressed by

β(z − zw) = βw +
(z − zw)2

βw
, (5.79)

where βw is the value of the betatron function at the waist and z − zw is
the distance from the waist. From (5.79) we note that the magnitude of the
betatron function away from the waist reaches large values for both large and
small betatron functions at the waist. We may therefore look for conditions
to obtain the minimum value for the betatron function anywhere in a drift
space of length 2L. For this we take the derivative of β with respect to βw

and get from (dβ/dβw = 0)
βw,opt = L . (5.80)

At either end of the drift space we then have

β(L) = 2βw,opt . (5.81)

This is the optimum solution for the betatron function on either side of a
drift space with length 2L resulting in a minimum aperture requirement along
a drift space of length L. The phase advance in a drift space is from (5.79)

βw

zw

β0

z
z0=0

Fig. 5.5. Betatron function in a drift space
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ψ(L) =
∫ L

0

dz̄/βw

1+ (z̄/βw) 2
= arctan

L

βw
→ π

2
for

L

βw
→ ∞ . (5.82)

The phase advance through a drift space of length 2L is therefore never
larger than π and actually never quite reaches that value

∆ψdrift ≤ π . (5.83)

5.3.1 Beam Dynamics in Normalized Coordinates

The form and nomenclature of the differential equation (5.54) resemble very
much that of a harmonic oscillator and indeed this is not accidental since in
both cases the restoring force increases linearly with the oscillation ampli-
tude. In particle beam dynamics we find an oscillatory solution with varying
amplitude and frequency and by a proper coordinate transformation we are
able to make the motion of a particle look mathematically exactly like that
of a harmonic oscillator. This kind of formulation of beam dynamics will be
very useful in the evaluation of perturbations on particle trajectories since all
mathematical tools that have been developed for harmonic oscillators will be
available for particle beam dynamics.

We introduce Floquet’s coordinates, or normalized coordinates, through
the transformation

w =
u√
β

(5.84)

and
ϕ (z) =

∫ z

0

dz̄
ν β(z̄)

. (5.85)

Note that we used here a different normalization than that selected in
(5.59) to adapt more appropriately to the issues to be discussed here. With
this transformation we get for the first derivative

u′ = ẇ

√
β

νβ
+ w

β′

2
√
β

=
1

ν
√
β
ẇ − α√

β
w (5.86)

and for the second derivative

u′′ =
ẅ

ν2β3/2
− w

α′
√
β
− w

α2

β3/2
, (5.87)

where dots indicate derivatives with respect to the phase ẇ = dw/dϕ etc. We
insert these expressions into (5.54) and get the general equation of motion
expressed in normalized coordinates

u′′ + k u =
1

ν2β3/2


ẅ+

(
1
2ββ

′′ − α2 + kβ2
)

︸ ︷︷ ︸
=1

ν2w


 = p(x, y, z), (5.88)
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where the right-hand side represents a general perturbation term p(x, y, z)
which was neglected so far. The square bracket is equal to unity according
to (5.61) and the equation of motion takes the simple form of a harmonic
oscillator with some perturbation

ẅ + ν2w − ν2β3/2p(x, y, z) = 0 . (5.89)

This nonlinear equation of motion can be derived from the Hamiltonian

H =
1
2
ẇ2 +

1
2
ν2w2 − ν2β

n+2
2

pn

n
wn, (5.90)

where coupling has been ignored and p(x, z) = pnx
n−1 = pnβ

n−1
2 wn−1. Later,

we will perform another canonical transformation to action-angle variables,
which brings the Hamiltonian into a convenient form to exhibit effects of
perturbations.

Since the parameter ν is constant, we have in the case of vanishing per-
turbations (pn ≡ 0) the exact equation of a harmonic oscillator and particles
perform in this representation periodic sine-like oscillations with the frequency
ν

w = w0 cos(ψ + δ) , (5.91)

where ψ(z) = νϕ(z). The transformation matrix in these variables is given by

M (z | 0) =


 C(ψ) S(ψ)

C ′(ψ) S′(ψ)


 =


 cos (ψ) sin (ψ)

− sin (ψ) cos (ψ)


 (5.92)

as can easily be derived from (5.91).
The use of normalized coordinates not only allows us to treat particle beam

dynamics equivalent to a harmonic oscillator but is also convenient in the dis-
cussions of perturbations or aberrations. In phase space each particle performs
closed trajectories in the form of an ellipse which we called the phase ellipse.
In Cartesian coordinates this ellipse, however, continuously changes its shape
and orientation and correlations between two locations are not always obvi-
ous. If we use normalized coordinates, the unperturbed phase ellipse becomes
an invariant circle as shown in Fig. 5.6.

From (5.84) we get with u(z) = a
√

β(z) cosψ(z)

w(ψ) =
u√
β

= a cosψ, (5.93)

dw
dψ

=
√

β u′ +
α√
β
u = −a sinψ, (5.94)

and after elimination of the phase, the Courant–Snyder invariant becomes
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w

dw/dψ

a

Fig. 5.6. Ideal phase ellipse in normalized coordinates

w2 +
(

dw
dψ

)2

= a2, (5.95)

where a is the betatron oscillation amplitude.
The equation of motion (5.89) is now ready to be transformed into action-

angle variables. The constancy of the action J is synonymous with the
Courant–Snyder invariant (2.64) or the constancy of the beam emittance.

J = 1
2ν0

(
γu2 + 2αuu′ + β u′ 2

)
= 1

2ν0ε . (5.96)

In (ψ, J) phase space, the particle moves along a circle with radius J at a
revolution frequency ν0. The motion is uniform, periodic, and stable. Including
the independent variable ϕ to form a three-dimensional phase space, we find
a particle to spiral along the surface of a torus as shown in Fig. 5.7. The
ensemble of all particles oscillating with the same amplitude J follow spirals
occupying the full surface of the torus.

This result is not particularly interesting in itself, since it only corroborates
what we have found earlier for harmonic oscillators with simpler mathematical
tools. The circle in (ψ, J) phase space, however, provides us with a reference
against which to compare perturbed motions and derive stability criteria.
Indeed, we will later use canonical transformations to eliminate well-known
linear motions, like the circular motion of an unperturbed harmonic oscilla-
tor in (ψ, J) space to exhibit more clearly the effects of perturbation only.
Including perturbations into Hamiltonian (2.62) allows the determination of
perturbed tunes and study resonance phenomena. Having defined canonical
variables for the system, we will also be able to study the evolution of particle
beams by applying Vlasov’s equation in Sect. 9.1. The Fokker–Planck equa-
tion will finally allow us to determine beam parameters even in the presence
of statistical events.
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Fig. 5.7. Unperturbed particle trajectories in (ψ, J, ϕ) phase space

We have chosen the betatron phase ψ as the independent variable and
the particles cover one full turn along the phase “ellipse” for each betatron
oscillation. This is a convenient way of representation in beam transport sys-
tems; yet, for circular accelerators we find it more useful to make ϕ = ψ/ν the
independent variable in which case the particle rotation frequency in phase
space is the same as that in the ring. This is particularly convenient when we
discuss field and alignment perturbations which occur periodically in a ring
and allow the application of Fourier techniques.

5.4 Dispersive Systems

Beam guidance and focusing are performed by applying Lorentz forces and
the effects of these fields on particle trajectories depend on the momentum
of the particles. So far, we have derived beam dynamics for particles with
ideal momenta for which the beam transport system is designed. To properly
describe the dynamics of a real particle beam we must include chromatic
effects caused by an error in the beam energy or by a spread of energies
within the particle beam. In Sect. 2.5.4 the perturbation due to a momentum
error has been derived and expressed in terms of a dispersion. Continuing the
formulation of beam dynamics in terms of transformation matrices we derive
in this section transformation matrices for particles with a momentum error.

5.4.1 Analytical Solution

The dispersion function has been derived as a special solution to a chromatic
perturbation term in Chap. 2 and (2.86):

D(z) =
∫ z

0

κ(z̄) [S(z)C(z̄) − C(z)S(z̄)] dz̄ (5.97)
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describes the dispersion function in a beam transport line. There is no contri-
bution to the dispersion function unless there is at least one bending magnet
in the beam line. Knowing the location and strength of bending magnets,
together with the principal solutions of the equations of motion, we may cal-
culate the dispersion anywhere along the beam transport line by integration
of (5.97).

Similar to the matrix formalism for betatron oscillations we would also
like to apply the same formalism for the dispersion function. For this we
note that the particle deviation u from the reference path is composed of the
betatron motion and a displacement due to an energy error u = uβ + uδ. The
transformation matrix is therefore a composite of both contributions and can
be expressed by




u(z)

u′(z)

δ


 = M




uβ(z0)

u′
β(z0)

0


+ M




uδ(z0)

u′
δ(z0)

δ


 , (5.98)

where M is the 3 × 3 transformation matrix, δ is the relative momentum
error, and uδ(z) = D(z) δ and u′

δ(z) = D′(z) δ are the displacement and
slope, respectively, of the reference path for particles with a momentum error
δ. Equation (5.98) can also be applied to the dispersion function alone by
setting the betatron oscillation amplitudes to zero and the momentum error
δ = 1 for 



D(z)

D′(z)

1


 = M




D(z0)

D′(z0)

1


 . (5.99)

By determining the transformation matrices for individual bending mag-
nets, we are in a position to calculate in matrix formulation the dispersion
function anywhere along a beam transport line.

In the deflecting plane of a pure sector magnet, the principal solutions
are with K = κ2

0 = 1/ρ2
0


 C(z) S(z)

C ′(z) S′(z)


 =


 cos (κ0z) ρ0 sin (κ0z)

−κ0 sin (κ0z) cos (κ0z)


 . (5.100)

With ρ(z) = ρ0 = const. we get from (5.97) and (5.100) for the dispersion
function within the magnet

D(z) = sin (κ0z)
∫ z

0

cos (κ0z̄) dz̄ − cos (κ0z)
∫ z

0

sin (κ0z̄) dz̄

= ρ0 [1 − cos (κ0z)] (5.101)
D′(z) = sin (κ0z ) .
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Particles with momentum error δ follow an equilibrium path given by
D(z) δ which can be determined experimentally by observing the beam path
for two different values of the beam momentum δ1 and δ2. The difference of
the two paths divided by the momentum difference is the dispersion function
D(z) = ∆u/(δ2 − δ1). In practical applications this is done either by chang-
ing the beam energy or by changing the strength of the bending magnets. In
circular electron accelerators, however, only the first method will work since
the electrons always adjust the energy through damping to the energy deter-
mined by the magnetic fields. In circular electron accelerators, we determine
the dispersion function by changing the rf-frequency which enforces a change
in the particle energy as we will discuss later in Chap. 6.

5.4.2 (3 × 3)-Transformation Matrices

From (5.100) and (5.101) we may form now (3 × 3)-transformation matri-
ces. In the deflecting plane of a pure sector magnet of arc length � such a
transformation matrix is

Ms,ρ (� |0) =




cos θ ρ0 sin θ ρ0 (1 − cos θ)

− 1
ρ0

sin θ cos θ sin θ

0 0 1


 , (5.102)

where θ = �/ρ0 is the deflection angle of the magnet. In the nondeflecting
plane, the magnet behaves like a drift space with 1

ρ0
= 0, k = 0 and arc length

�

Ms,0 (� |0) =




C(1) S(�) 0

C ′(0) S′(1) 0

0 0 1


 . (5.103)

For a synchrotron magnet of the sector type we get from (4.39) in analogy
with (5.101), replacing κ0 by

√
K, and with Θ =

√
k + κ2

0� for the case of a
focusing synchrotron magnet

Msy,f (� |0) =




cosΘ sin Θ√
K

1−cos Θ√
K

−
√
K sinΘ cosΘ sinΘ

0 0 1


 (5.104)

and for a defocusing synchrotron magnet
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Msy,d (� |0) =




coshΘ sinh Θ√
|K|

1−cosh Θ√
|K|√

|K| sinhΘ coshΘ sinhΘ

0 0 1


 , (5.105)

where Θ =
√

|k + κ2
0|�.

In the case of a rectangular magnet without field gradient, we multiply the
matrix for a sector magnet by the transformation matrices for end field focus-
ing. Since these end effects act like quadrupoles we have no new contribution
to the dispersion and the transformation matrices for each end field are

Me =




1 0 0

κ0 tan (θ/2) 1 0

0 0 1


 . (5.106)

With these end field matrices the chromatic transformation matrix for a rec-
tangular bending magnet in the deflecting plane is obtained from (5.102) with
Mr,ρ = Me Msy,ρ Me

Mr,ρ(�|0) =




1 ρ0 sin θ ρ0 (1 − cos θ)

0 1 2 tan (θ/2)

1


 . (5.107)

Similarly, we can derive the transformation matrices for rectangular syn-
chrotron magnets.

5.4.3 Linear Achromat

Frequently it is necessary in beam transport systems to deflect a particle beam.
If this is done in an arbitrary way an undesirable finite dispersion function
will remain at the end of the deflecting section. Special magnet arrangements
exist which allow to bend a beam without generating a residual dispersion.
Such magnet systems composed of only bending magnets and quadrupoles are
called linear achromats.

Consider, for example, an off-momentum particle traveling along the ideal
path of a straight beam line. At some location, we insert a bending magnet
and the off-momentum particle will be deflected by a different angle with
respect to particles with correct momenta. The difference in the deflection
angle appears as a displacement in phase space from the center to a finite value
∆ẇ = δD(z)/

√
β . From here on, the off-momentum reference path follows the

dispersion function D(z) δ and the particle performs betatron oscillations in
the form of circles with radius a until another bending magnet further modifies
or compensates this motion Fig. (5.8).
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D(z)δ/β1/2

Fig. 5.8. Trajectory of an off-momentum particle through a chromatic beam trans-
port section

In case a second bending magnet is placed half a betatron oscillation down-
stream from the first causing the same difference in the deflection angle, the
effect of the first magnet can be compensated completely and the particle
continues to move along the ideal path again. A section of a beam transport
line with this property is called an achromat.

Figure 5.9 displays an achromatic section proposed by Panofsky [40] which
may be used as a building block for curved transport lines or circular acceler-
ators. This section is composed of a symmetric arrangement of two bending
magnets with a quadrupole at the center and is also know as a double bend
achromat or a Chasman–Green lattice [40,41].

General conditions for linear achromats have been discussed in Sect. 4.4
and we found that the integrals

Is =
∫ z

0

κ(z̄)S(z̄) dz̄ = 0 (5.108)

and
Ic =

∫ z

0

κ(z̄)C(z̄) dz̄ = 0, (5.109)

must vanish for a lattice section to become achromatic. For a double bend
achromat this can be accomplished by a single parameter or quadrupole if
adjusted such that the betatron phase advance between the vertex points
of the bending magnet is 180◦. Applying the conditions for achromaticity,
Steffen [37] derived the relationship

1√
k

cot(ϕ/2) = ρ0 tan(θ/2) + d (5.110)

between the magnet deflection angle θ, the bending radius ρ0, the drift space
d, and the quadrupole strength ϕ =

√
k� while the dispersion function reaches

a maximum at the quadrupole center of
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Fig. 5.9. Double bend achromat [40] [41]

Dmax = − 1√
k

sin θ

2 sin(ϕ/2)
. (5.111)

A variation of this lattice, the triple bend achromat [42, 43], is shown in
Fig. 5.10, where a third bending magnet is inserted for practical reasons to
provide more locations to install sextupoles for chromatic corrections.

Magnet arrangements as shown in Figs. 5.9 and 5.10 are dispersion free
deflection units or linear achromats. This achromat is focusing only in the
deflecting plane but defocusing in the nondeflecting plane which must be com-
pensated by external quadrupole focusing or, since there are no special focus-
ing requirements for the nondeflecting plane, by either including a field gradi-
ent in the pole profile of the bending magnets [44] or additional quadrupoles
between the bending magnets. In a beam transport line this achromat can be
used for diagnostic purposes to measure the energy and energy spread of a
particle beam as will be discussed in more detail in Sect. 5.4.5

A further variation of the lattice in Fig. 5.9 has been proposed by Steffen
[37] to generate an achromatic beam translation as shown in Fig. 5.11.

In this case, the total phase advance must be 360◦ because the integral Ic
would not vanish anymore for reasons of symmetry. We therefore use stronger
focusing to make Ic vanish because both the bending angle and the cosine-like
function change sign. Achromatic properties are obtained again for parameters
meeting the condition [37]

ρ tan(θ/2) + λ =
1√
k

d
√
k cosϕ + 2 sinϕ

d
√
k sinϕ− 2 cosϕ

, (5.112)



5.4 Dispersive Systems 181

1614121086420

20

15

10

5

0

-5

-10

-15

(m)

βx

βy

10ηx

z(m)

Fig. 5.10. Triple bend achromat [42]

Fig. 5.11. Achromatic beam translation

where ϕ =
√
k � and k, � are the quadrupole strength and length, respectively.

The need for beam translation occurs frequently during the design of beam
transport lines. Solutions exist to perform such an achromatic translation but
the required focusing is much more elaborate and may cause significantly
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stronger aberrations compared to a simple one-directional beam deflection of
the double bend achromat type.

Utilizing symmetric arrangements of magnets, deflecting achromats can
be composed from bending magnets only [37]. One version has become par-
ticularly important for synchrotron radiation sources, where wiggler magnets
are used to produce high-intensity radiation. Such triple bend achromat are
composed of a row of alternately deflecting bending magnets which do not
introduce a net deflection on the beam. Each unit or period of such a wiggler
magnet Fig. (5.12) is a linear achromat.

D(z)

2lw

lwlw
wiggler pole

wiggler period

Fig. 5.12. Wiggler achromat

The transformation of the dispersion through half a wiggler unit is the
superposition of the dispersion function from the first magnet at the end of
the second magnet plus the contribution of the dispersion from the second
magnet. In matrix formulation and for hard edge rectangular magnets the
dispersion at the end of half a wiggler period is


Dw

D′
w


 =


−ρ0 (1 − cos θ)

−2 tan (θ/2)


+


 1 �w

0 1




ρ0 (1 − cos θ)

2 tan (θ/2)


 , (5.113)

where ρ > 0, θ = �wρ, and �w is the length of one half wiggler pole (see
Fig. 5.12). Evaluation of (5.113) gives the simple result

Dw = 2 �w tan(θ/2),

D′
w = 0 .

(5.114)

The dispersion reaches a maximum in the middle of the wiggler period and
vanishes again for reasons of symmetry at the end of the period. For sector
magnets we would have obtained the same results. Each full wiggler period
is therefore a linear achromat from a beam optics point of view. Such an
arrangement can also be used as a spectrometer by placing a monitor at
the center, where the dispersion is large. For good momentum resolution,
however, beam focusing must be provided in the deflecting plane upstream
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of the bending magnets to produce a small focus at the beam monitors for a
monochromatic beam as will be discussed in the next section.

The examples of basic lattice designs discussed in this section are partic-
ularly suited for an analytical treatment. In practice, modifications of these
basic lattices are required to meet specific boundary conditions making, how-
ever, the analytical treatment much more complicated. With the availability
of computers and numerical lattice design codes, it is prudent to start with
basic lattice building blocks and then use a fitting program for modifications
to meet particular design goals.

5.4.4 Spectrometer

Although the dispersion has been treated as a perturbation, it is a highly
desired feature of a beam line to determine the energy or energy distribution
of a particle beam. Such a beam line is called a spectrometer for which many
different designs exist. A specially simple and effective spectrometer can be
made with a single 180◦ sector magnet [45, 46]. For such a spectrometer, the
transformation matrix is from (5.102)

M
(
180

◦
)

=




−1 0 2ρ0

0 −1 0

0 0 +1


 . (5.115)

In this spectrometer all particles emerging from a small target (Fig. 5.13)
are focused to a point again at the exit of the magnet. The focal points for
different energies, however, are separated spatially due to dispersion. Math-
ematically, this is evident since the particle trajectories at the end of the
magnet are given by

δ > 0                         δ = 0               δ < 0        target

Fig. 5.13. 180◦ spectrometer (note that in this figure ρ0 < 0)
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x = −x0 + 2 ρ0 δ (5.116)

and show different positions x for different energies δ.
The image point is independent of x′

0 and only proportional to δ with a
large proportionality factor which allows a large energy resolution. While this
spectrometer seems to have almost ideal features it is also an example of the
limitations of perturbation methods. For larger values of δ of the order of
several percent, higher order terms cannot be neglected anymore. Inclusion of
such terms, for example, will first tilt and then bend the focal plane at the
end of the magnet.

More sophisticated spectrometers including focusing to accept large emit-
tance beams have been devised with special efforts to reduce the effects of
aberrations. It is not the intend of this text to discuss such designs in detail.
More comprehensive overviews for spectrometers with further references can
be found for example in [37, 47]. In the treatment of this spectrometer, we
have ignored the nondeflecting plane. Since there is no focusing, particles are
widely spread out in this plane at the end of the magnet. Practical versions
of this spectrometer, therefore, include a focusing term in the nondeflecting
plane in such a way that the resulting focusing is the same in both planes [48].

5.4.5 Measurement of Beam Energy Spectrum

Frequently it is desirable to determine experimentally the particle energy and
energy spread. Basically only one bending magnet is needed to perform this
experiment. The finite beam size of the monochromatic part of the beam
will greatly influence the resolution of the energy measurement. Optimum
resolution is achieved if some focusing is included and the measurement is
performed at a location where the beam size is small while the dispersion
is large. In Fig. 5.14 particle beams at two different energies are shown in
phase space, where both beam centers are separated by the dispersion and its
slope.

In reality no such separation exists since we have a spread of energies
rather than two distinct energies. This energy spread is mixed with the spread
in phase space of the beam emittance and beams of different energies can only
be separated completely if the relative energy difference is at least

δmin ≥ 2Eb

D
= 2

√
ε β

D
, (5.117)

where Eb =
√
ε β is the beam envelope. To maximize the energy resolution the

beam size Eb should be small and the dispersion D(z) large. From Fig. 5.14
we note, therefore, that for a given beam emittance and dispersion the energy
resolution can be improved significantly if the measurement is performed at
or close to a beam waist where β reaches a minimum.

To derive mathematical expressions for the energy resolution and condi-
tions for the maximum energy resolution 1/δmin we assume a beam line as
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Fig. 5.14. Energy resolution in phase space

quadrupole

s=0

bending magnet

dispersion function

beam envelope

D(sM)

Eb(sM)
2 sinθ/2

β0

s=sM

Fig. 5.15. Measurement of the energy spectrum

shown in Fig. 5.15 with the origin of the coordinate system z = 0 at the
center of the bending magnet. The salient features of this beam line is the
quadrupole followed by a bending magnet. With this sequence of magnets we
are able to focus the particle beam in the deflection plane while leaving the
dispersion unaffected. In the case of a reversed magnet sequence the dispersion
function would be focused as well, compromising the energy resolution.

Transforming dispersion (5.101) back from the end of the sector bending
magnet to the middle of the magnet we get the simple result




D0

D′
0


 =




cos θ
2 −ρ0 sin θ

2

1
ρ0

sin θ
2 cos θ

2







ρ0 (1 − cos θ)

sin θ


 =


 0

2 sin θ
2


 . (5.118)
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The dispersion appears to originate in the middle of the magnet with a slope
D′

0 = 2 sin θ/2. At a distance z from the middle of the bending magnet the
betatron function is given by β(z) = β0−2α0 z+γ0 z

2 where β0, α0, and γ0 are
the values of the betatron functions in the middle of the bending magnet, and
the dispersion D(z) = 2 sin(θ/2) z. Inserting these expressions into (5.117) we
can find the location zM for maximum momentum resolution by differentiating
δmin with respect to z. Solving dδmin/dz = 0 for z, we get

zM =
β0

α0
(5.119)

and the maximum momentum resolution is

δ−1
min =

√
β0sin(θ/2)√

ε
. (5.120)

The best momentum resolution for a beam with emittance ε is achieved if
both the bending angle θ and the betatron function β0 in the middle of the
bending magnet are large. From condition (5.119) , we also find α0 > 0 which
means that the beam must be converging to make a small spot size at the
observation point downstream of the bending magnet. With (5.78) we find that
zM = β0/α0 = −βM/αM and from the beam envelope E2

b = εβM at z = zM ,
we get the derivative 2EbE

′
b = εβ′

M
= −2εαM . With this and D/D′ = z, the

optimum place to measure the energy spread of a particle beam is at

zM =
D(zM)
D′(zM)

=
Eb(zM)
E′

b(zM)
. (5.121)

It is interesting to note that the optimum location zM is not at the beam
waist, where β(z) reaches a minimum, but rather somewhat beyond the beam
waist, where D/

√
β is maximum.

At this point, we may ask if it is possible through some clever beam fo-
cusing scheme to improve this resolution. Analogous to the previous deriva-
tion we look for the maximum resolution δ−1

min = D(z)/[2
√

εβ(z)]. The dis-
persion is expressed in terms of the principal solution D(z) = S(z)D′(0)
and D′(z) = S′(z)D′(0) since D(0) = 0. The betatron function is given by
β(z) = C2(z)β0 − 2C(z)S(z)α0 + S2(z) γ0 and the condition for maximum
resolution turns out to be α/β = −D′/D. With this, we get the resolution

δ−1
min =

D(z)
2
√
εβ

=
S(z)D′

0

2
√
εβ

=
sin(θ/2)√

εβ
S(z) (5.122)

and finally with S(z) =
√

β0β(z) sinψ(z)

δ−1
min =

√
β0sin(θ/2)√

ε
sinψ(z) ≤

√
β0sin(θ/2)√

ε
, (5.123)

which is at best equal to result (5.120) for ψ(z) = 90◦. The momentum res-
olution is never larger than in the simple setup of Fig. 5.15 no matter how
elaborate a focusing lattice is employed.
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If more than one bending magnet is used the resolution may be increased
if the betatron phases between the magnets ψ(zi) and the place of the mea-
surement ψ(zM) are chosen correctly. The resolution is then

δ−1
min =

1√
ε

∑
i

√
β0i sin(θi/2) sin[ψ(zM) − ψ(zi)], (5.124)

where the sum is taken over all magnets i. Such an energy resolving system
is often used in beam transport lines to filter out a small energy band of a
particle beam with a larger energy spread. In this case a small slit is placed
at the place for optimum energy resolution (z = zM).

Of course, this discussion is restricted to linear beam optics which does
not address problems caused by nonlinear effects and geometric as well as
chromatic aberrations.

5.4.6 Path Length and Momentum Compaction

The existence of different reference paths implies that the path length between
two points of a beam transport line may be different as well for different
particle momenta. We will investigate this since the path length is of great
importance as will be discussed in detail in Chap. 6. In preparation for this
discussion, we derive here the functional dependences of the path length on
momentum and focusing lattice.

The path length along a straight section of the beam line depends on the
angle of the particle trajectory with the reference path. Since, however, in this
chapter we are interested only in linear beam dynamics, we may neglect such
second-order corrections to the path length. The only linear contribution to
the path length comes from the curved sections of the beam transport line.
The total path length is therefore given by

L =
∫

(1 + κx) dz . (5.125)

We evaluate (5.125) along the reference path, where x = D(z) δ. First we
find the expected result L0 =

∫
dz for δ = 0, which is the ideal design length

of the beam line or the design circumference of a circular accelerator. The
deviation from this ideal length is then

∆L = δ

∫
κ (z)D(z) dz . (5.126)

The variation of the path length with momentum is determined by the mo-
mentum compaction factor, defined by

αc =
∆L/L0

δ
with δ =

∆p

p
. (5.127)
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Its numerical value can be calculated with (5.126)

αc =
1
L0

∫ L0

0

κ (z)D(z) dz =
〈
D(z)
ρ

〉
. (5.128)

In this approximation the path length variation is determined only by the
dispersion function in bending magnets and the path length depends only on
the energy of the particles. To prepare for the needs of longitudinal phase
focusing in Chap. 6, we will not only consider the path length but also the
time it takes a particle to travel along that path. If L is the path length, the
travel time is given by

τ =
L

cβ
. (5.129)

Here β = v/c is the velocity of the particle in units of the velocity of light and
is not to be confused with the betatron function. The variation of τ gives by
logarithmic differentiation

∆τ

τ
=

∆L

L
− ∆β

β
. (5.130)

With ∆L/L = αc δ and cp = βE we get dp/p = dβ/β + dE/E and with
dE/E = β2 dp/p we can solve for dβ/β = (1/γ2) dp/p, where γ = E/mc2 is
the energy of the particles in units of the rest energy mc2. From (5.130) we
have then

∆τ

τ
= −

(
1
γ2

− αc

)
dp
p

= −ηc
dp
p

(5.131)

and call the combination

ηc =
(

1
γ2

− αc

)
(5.132)

the momentum compaction. The energy

γt =
1√
αc

(5.133)

for which the momentum compaction vanishes is called the transition energy,
which will play an important role in phase focusing. Below the transition
energy the arrival time is determined by the actual velocity of the particles
while above the transition energy the particle speed is so close to the speed of
light that the arrival time of a particle with respect to other particles depends
more on the path length than on its speed. For a circular accelerator we
may relate the time τr a particle requires to follow a complete orbit to the
revolution frequency ωr and get from (5.131)

dωr

ωr
= −dτr

τr
= ηc

dp
p

. (5.134)
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For particles above the transition energy this quantity is negative which means
a particle with a higher energy needs a longer time for one revolution than
a particle with a lower energy. This is because the dispersion function causes
particles with a higher energy to follow an equilibrium orbit with a larger
average radius compared to the radius of the ideal orbit.

By special design of the lattice one could generate an oscillating dispersion
function in such a way as to make the momentum compaction ηc to vanish.
Such a ring would be isochronous to the approximation used here. Due to
higher order aberrations, however, there are nonlinear terms in the dispersion
function which together with an energy spread in the beam cause a spread of
the revolution frequency compromising the degree of isochronicity.

Problems

5.1 (S). Particle trajectories in phase space assume the shape of an ellipse.
Derive a transformation of the phase space coordinates (u, u′, z) to coordinates
(w, ẇ, ψ) such that the particle trajectories are circles with the radius (βε).

5.2 (S). Use (5.18) for the phase ellipse and prove that the area enclosed by
the ellipse is indeed equal to πε.

5.3 (S). Show that the transformation of the beam matrix (5.41) is consistent
with the transformation of the lattice functions.

5.4. Consider a ring made from an even number of FODO cells. To provide
component free space we cut the ring along a symmetry line through the mid-
dle of two quadrupoles on opposite sides of the ring and insert a drift space
of length �d. Derive the transformation matrix for this ring and compare with
that of the unperturbed ring. What is the tune change of the accelerator. The
betatron functions will be modified. Derive the new value of the horizontal
betatron function at the symmetry point in units of the unperturbed beta-
tron function. Is there a difference to whether the free section is inserted in
the middle of a focusing or defocusing quadrupole? How does the η-function
change?

5.5 (S). Sometimes two FODO channels of different parameters must be
matched. Show that a lattice section can be designed with a phase advance of
∆ψx = ∆ψy = π/2, which will provide the desired matching of the betatron
functions from the symmetry point of one FODO channel to the symmetry
point of the other channel. Such a matching section is also called a quarter
wavelength transformer. Does this also transformer work for curved FODO
channels, where the dispersion is finite?

5.6. The fact that a Collins straight section can be inserted into any trans-
port line without creating perturbations outside the insertion makes these
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insertions also a periodic lattice. A series of Collins straight sections can be
considered as a periodic lattice composed of quadrupole doublets and long
drift spaces in between. Construct a circular accelerator by inserting bending
magnets into the drift spaces d and adjusting the drift spaces to D = 5 m.
What is the phase advance per period? Calculate the periodic η-function and
make a sketch with lattice and lattice functions for one period.

5.7. Consider a regular FODO lattice where some bending magnets are elim-
inated to provide magnet free spaces and to reduce the η-function in the
straight section. How does the minimum value of the η-function scale with
the phase per FODO cell. Show if conditions exist to match the η-function
perfectly in the straight section of this lattice?



6

Longitudinal Beam Dynamics

Accelerator physics is primarily the study of the interaction of charged par-
ticles with electromagnetic fields. In previous chapters we have concentrated
the discussion on the interaction of transverse electrical and magnetic fields
with charged particles and have derived appropriate formalisms to apply this
interaction to the design of beam transport systems. The characteristics of
these transverse fields is that they allow to guide charged particles along a
prescribed path but do not contribute directly to the energy of the particles
through acceleration. For particle acceleration we must generate fields with
nonvanishing force components in the direction of the desired acceleration.
Such fields are called longitudinal fields or accelerating fields. In a very gen-
eral way we describe in this section the interaction of longitudinal electric
fields with charged particles to derive the process of particle acceleration, its
scaling laws, and its stability limits.

The usefulness and application of electric fields to accelerate charged par-
ticles depends greatly on the temporal variations of these fields. Accelerating
fields can be static or pulsed or they may be electromagnetic fields oscillating
at high frequencies. Conceptually, the most simple way to accelerate charged
particles is through a static field applied to two electrodes as shown in Fig. 6.1.
In this case, the total kinetic energy a particle can gain while traveling from
one electrode to the other is equal to the product of the particle charge and
the voltage between the electrodes.

Electric breakdown phenomena, however, limit the maximum applicable
voltage and thereby the maximum energy gain. Nonetheless, this method is
intriguingly simple and efficient compared to other accelerating methods and
therefore still plays a significant role among modern particle accelerators, for
example, in particle sources. Electrostatic acceleration schemes are specifi-
cally useful for low energy particles for which other methods of acceleration
would be inefficient. Higher voltages and particle energies can be reached if
the electric fields are applied in the form of very short pulses. Application of
static high voltages to accelerate particles is limited to some 10 million Volt
due to high voltage breakdown.
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Fig. 6.1. Principle of electrostatic accelerators

For higher particle energies, different acceleration methods must be used.
The most common and efficient way to accelerate charged particles to high
energies is to use high frequency electromagnetic fields in specially designed
accelerating structures. Acceleration to high energies occurs while charged
particles either pass once through many or many times through one or a few
accelerating structures each excited to electric field levels below the break
down threshold. In this section, we concentrate the discussion on charged
particle acceleration by electromagnetic radio frequency fields.

6.1 Longitudinal Particle Motion

Application of radio frequency in short rf-fields has become exceptionally effec-
tive for the acceleration of charged particles. Both, fields and particle motion,
can be synchronized in an effective way to allow the acceleration of charged
particles in principle to arbitrary large energies were it not for other limita-
tions.

The first idea and experiment for particle acceleration with radio frequency
fields has been published by Ising [49] although he did not actually succeed
to accelerate particles due to an inefficient approach to rf-technology. Later
Wideroe [50] introduced the concept of generating the accelerating fields in
resonating rf-cavities and was able to accelerate heavy ions. Original papers
describing these and other early developments of particle acceleration by rf-
fields are collected in a monogram edited by Livingston [51].

To study the interaction of electromagnetic rf-fields with charged parti-
cles, we assume a plane electromagnetic wave of frequency ω propagating
in the z-direction. A free electromagnetic wave does not have a longitudinal



6.1 Longitudinal Particle Motion 193

electric field component and therefore a special physical environment, called
the accelerating structure, must be provided to generate accelerating field
components in the direction of propagation. To study particle dynamics in
longitudinal fields, we assume that we were able to generate rf-fields with an
electric field component along the path of the particles expressed by

E(z, t) = E0 ei(ωt−kz) = E0 eiψ, (6.1)

where the phase ψ = (ωt − kz). The particle momentum changes at a rate
equal to the electric force exerted on the particle by the rf-field

dp

d t
= eE(ψ) =

d
dt

(γmcβ) . (6.2)

Multiplying this with the particle velocity we get the rate of change of the
kinetic energy, dEkin = cβ dp. Integration of (6.2) with respect to time be-
comes unnecessarily complicated for general fields because of the simultaneous
variation of the electric field and particle velocity with time. We therefore in-
tegrate (6.2) with respect to the longitudinal coordinate and obtain instead of
the momentum gain the increase in the kinetic or total energy for the complete
accelerating structure

∆E = (γ − γ0)mc2 = e

∫
E(ψ) dz, (6.3)

where γ0 mc2 is the energy of the particle before acceleration. Of course, the
trick to integrate the electric field through the accelerating section rather than
over time following the particle is only a conceptual simplification and the time
integration will have to be executed at some point. Generally this is done
when the particular accelerating section, the fields, and the synchronization
are known.

Traveling electromagnetic waves are used in linear accelerators and the
accelerating structure is designed such that the phase velocity of the wave is
equal to the velocity of the particles to be accelerated. In this case, the particle
travels along the structure in synchronism with the wave and is therefore ac-
celerated or decelerated at a constant rate. Maximum acceleration is obtained
if the particles ride on the crest of the wave.

In a standing wave accelerating section, the electric field has the form

E(z, t) = E0(z) eiωt+δ, (6.4)

where δ is the phase at the moment the particle enters the accelerating section
at t = 0. When we refer to an accelerating voltage V in a standing wave
cavity we mean to say a particle traveling close to the speed of light through
the cavity will gain a maximum kinetic energy of eV while passing the cavity
center at the moment the field reaches its crest. Such a particle would enter
the cavity some time before the field reaches a maximum and will exit when
the field is decaying again. For slower particles the energy gain would be lower
because of the longer transit time.
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6.1.1 Longitudinal Phase Space Dynamics

Successful particle acceleration depends on stable and predictable interaction
of charged particles and electromagnetic fields. Because oscillating rf-fields are
used, special criteria must be met to assure systematic particle acceleration
rather than random interaction with rf-fields producing a little or no accel-
eration. The constructive interaction of particles and waves was investigated
in 1945 independently by Veksler [52] and McMillan [53] leading to the dis-
covery of the fundamental principle of phase focusing. In this subsection, we
will derive the physics of phase focusing and apply it to the design of particle
accelerators.

The degree of acceleration depends on the momentary phase ψ of the field
as seen by the particle while traveling through or with an electromagnetic
field. Straight superposition of an electromagnetic wave and charged particle
motion will not necessarily lead to a net acceleration. In general, the particles
are either too slow or too fast with respect to the phase velocity of the wave
and the particle will, during the course of interaction with the electromagnetic
wave, integrate over a range of phases and may gain a little or no net energy
from the electric fields. Therefore, special boundary conditions for the accel-
erating rf-wave must be met such that maximum or at least net acceleration
can be achieved. This can be done by exciting and guiding the electromag-
netic waves in specially designed accelerating structures designed such that
the phase velocity of the electromagnetic wave is equal to the particle veloc-
ity. Only then can we choose a specific phase and integration of (6.3) becomes
straightforward for particles traveling in the direction of propagation of the
electromagnetic waves.

For practical reasons, specifically in circular accelerators, particle acceler-
ation occurs in short, straight accelerating sections placed along the particle
path. In this case no direct traveling wave exists between adjacent accelerat-
ing sections and specific synchronicity conditions must be met for the fields
in different accelerating sections to contribute to particle acceleration as de-
sired. For the purpose of developing a theory of stable particle acceleration
we may imagine an rf-wave traveling along the path of the particle with a
phase velocity equal to the particle velocity and an amplitude which is zero
everywhere except in discrete accelerating cavities.

To derive the synchronicity conditions, we consider two accelerating sec-
tions separated by a distance L as shown in Fig. 6.2. Once the proper operating
conditions are known for two sections a third section may be added by ap-
plying the same synchronicity condition between each pair of cavities. The
successive accelerating sections need not necessarily be physically different
sections but could be the same section or the same sections passed through
by the particles at periodic time intervals. For example, the distance L be-
tween successive accelerating sections may be equal to the circumference of a
circular accelerator.
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z

Fig. 6.2. Discrete accelerating sections

For systematic acceleration the phase of the rf-fields in each of the accel-
erating sections must reach specific values at the moment the particles arrive.
If the phase of the fields in each of N accelerating sections is adjusted to
be the same at the time of arrival of the particles, the total acceleration is
N times the acceleration in each individual section. This phase is called the
synchronous phase ψs defined by

ψs = ωt− kz = const., (6.5)

where ω is the oscillating frequency of the electromagnetic field. The time
derivative of (6.5) vanishes and the synchronicity condition is

ψ̇s = ω − k βc = 0, (6.6)

since dz/dt = βc. This condition can be met if we set

k =
2π
L

(6.7)

and the frequency of the electromagnetic field is then from (6.6)

ω1 = k1 βc =
2π
L

βc =
2π
∆T

, (6.8)

where ω1 is the lowest frequency satisfying the synchronicity condition and
∆T is the time needed for particles with velocity βc to travel the distance
L. This equation relates the time of travel between successive accelerating
sections with the frequency of the accelerating rf-fields in a conditional way
to assure systematic particle acceleration and relation (6.8) is therefore called
the synchronicity condition .

However, any integer multiple of the frequency ω1 satisfies the synchronic-
ity condition as well, and we may instead of (6.8) define permissible frequencies
of the accelerating rf-fields by
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ωh = hω1 = kh βc =
2π
L

hβc =
2π
∆T

h, (6.9)

where h is an integer called the harmonic number with kh = h k1.
The synchronicity condition must be fulfilled for any spatial arrangement

of the accelerating structures. To illuminate the principle, we assume here a
series of short, equidistant accelerating gaps or accelerating sections along
the path of a particle. Let each of these gaps be excited by its own power
source to produce an accelerating rf-field. The synchronicity condition (6.8) is
fulfilled if the rf-frequency is the same in each of these gaps, although it does
not require each accelerating gap to reach the same rf-phase at the arrival time
of the particles. Each cavity in a set of accelerating cavities oscillating at the
same frequency may be tuned to an arbitrary rf-phase and the synchronicity
condition would still be met. From a practical point of view, however, it is
inefficient to choose arbitrary phases and it is more reasonable to adjust the
phase in each cavity to the optimum phase desired.

The assumption that the rf-frequency of all cavities be the same is unneces-
sarily restrictive considering that any harmonic of the fundamental frequency
is acceptable. Therefore, a set of accelerating cavities in a circular accelerator,
for example, may include cavities resonating at frequencies differing by an
integer multiple of the fundamental frequency ω1.

A straightforward application of the synchronicity condition can be found
in the design of the Wideroe linear accelerator structure [50] as shown in
Fig. 6.3. Here the fields are generated by an external rf-source and applied to
a series of metallic drift tubes. Accelerating fields build up at gaps between
the tubes while the tubes themselves serve as a field screens for particles
during the time the electric fields is changing sign and would be decelerating.
The length of the field-free drift tubes is determined by the velocity of the
particles and is L = cβ Trf , where Trf is the period of the rf-field. As the
particle energy increases so does the velocity cβ and the length L of the tube
must increase too. Only when the particles become highly relativistic will the
distance between field-free drift sections become a constant together with the
velocity of the particles. Structures with varying drift lengths are generally
found in low energy proton or ion accelerators based on [54], which is a
technically more efficient version of the Wideroe principle.

For electrons it is much easier to reach relativistic energies where the
velocity is sufficiently constant such that in general no longitudinal variation of
the accelerating structure is needed. In circular accelerators, we cannot adjust
the distance between cavities or the circumference as the particle velocity β
increases. The synchronicity condition therefore must be applied differently.
From (6.9) we find the rf-frequency to be related to the particle velocity and
distances between cavities. Consequently we have the relation

β λrf h = L, (6.10)

which requires that the distance between any pair of accelerating cavities
be an integer multiple of βλrf . Since L and h are constants, this condition
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Fig. 6.3. Wideroe linac structure

requires that the rf-frequency be changed during acceleration proportional to
the particle velocity β. Only for particles reaching relativistic energies, when
β ≈ 1, will the distance between cavities approach an integer multiple of the
rf-wavelength and the circumference C must then meet the condition

C = β hλrf . (6.11)

6.2 Equation of Motion in Phase Space

So far, we have assumed that both the particle velocity β and the wave num-
ber k are constant. This is not a valid general assumption. For example, we
cannot assume that the time of flight from one gap to the next is the same for
all particles. For low energy particles we have a variation of the time of flight
due to the variation of the particle velocities for different particle momenta.
The wave number k or the distance between accelerating sections need not be
the same for all particles either. A momentum dependent path length between
accelerating sections exists if the lattice between such sections includes bend-
ing magnets. As a consequence, the synchronicity condition must be modified
to account for such chromatic effects.

Removing the restriction of a constant wave number k, we obtain by a
variation of (6.6)

∆ψ̇ = −∆(k βc) = −ck ∆β − βc
∂k

∂p

∂p

∂t
∆t, (6.12)

where
k = kh = h

2π
L0

=
2π
λrf

= h
ωrev

βc
, (6.13)
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and L0 is the distance between accelerating gaps along the ideal path. The
synchronous phase is kept constant ψs = const. or ψ̇s = 0 and serves as the
reference phase against which all deviations are measured.

The momentum dependence of the wave number comes from the fact that
the path length L between accelerating gaps may be different from L0 for
off-momentum particles. The variation of the wave number with particle mo-
mentum is therefore

∂k

∂p

∣∣∣∣
0

=
∂k

∂L

∂L

∂p

∣∣∣∣
0

= − kh

L0

∂L

∂p

∣∣∣∣
0

= − kh

p0
αc, (6.14)

where αc is the momentum compaction factor. We evaluate the momentum
compaction factor starting from L =

∫ L0

0
sdz and get, while keeping only

linear terms in the expression for s, the path length L =
∫ L0

0
(1+κx x) dz. For

transverse particle motion x = xβ + η (∆p/p0) and employing average values
of the integrands the integral becomes

L = L0 + 〈κx xβ〉L0 + 〈κx η〉 ∆p

p0
L0 . (6.15)

Because of the oscillatory character of the betatron motion 〈κx xβ〉 =
0 and the relative path length variation is ∆L/L0 = 〈η/ρ〉 (∆p/p0) or the
momentum compaction factor becomes

αc =
〈
η

ρ

〉
. (6.16)

The momentum compaction factor increases only in curved sections where
ρ 
= 0 and the path length is longer or shorter for higher energy particles de-
pending on the dispersion function being positive or negative, respectively. For
a linear accelerator the momentum compaction factor vanishes since the length
of a straight line does not depend on the momentum. With (∂p/∂t)∆t = ∆p
and mcγ3 ∆β = ∆p we finally get for (6.12) with (6.14) and after some ma-
nipulation

ψ̇ = −βc kh (γ−2 − αc)
∆cp

cp0
. (6.17)

The term γ−2 in (6.17) appears together with the momentum compaction
factor αc and therefore has the same physical relevance. This term represents
the variation of the particle velocity with energy. Therefore, even in a linear
accelerator where αc = 0, the time of flight between accelerating gaps is energy
dependent as long as particles are still nonrelativistic.

After differentiation of (6.17) with respect to the time, we get the equation
of motion in the longitudinal direction describing the variation of the phase
with respect to the synchronous phase ψs for particles with a total momentum
deviation ∆p
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ψ̈ +
∂

∂t

(
βc kh ηc

∆cp

cp0

)
= 0 . (6.18)

In most practical applications, parameters like the particle velocity β or
the energy vary only slowly during acceleration compared to the rate of change
of the phase and we consider them for the time being as constants. The slow
variation of these parameters constitutes an adiabatic variation of external
parameters for which Ehrenfest’s theorem holds. The equation of motion in
the potential of the rf-field becomes in this approximation

ψ̈ +
βc kh ηc

cp0

∂

∂t
∆cp = 0 . (6.19)

Integration of the electrical fields along the accelerating sections returns the
kinetic energy gain per turn

e

∫

L

E(ψ) dz = e V (ψ), (6.20)

where V (ψ) is the total particle accelerating voltage seen by particles along
the distance L. For particles with the ideal energy and following the ideal
orbit the acceleration is eV (ψs), where ψs is the synchronous phase.

Acceleration, however, is not the only source for energy change of particles.
There are also gains or losses from, for example, interaction with the vacuum
chamber environment, external fields like free electron lasers, synchrotron ra-
diation, or anything else exerting longitudinal forces on the particle other than
accelerating fields. We may separate all longitudinal forces into two classes,
one for which the energy change depends only on the phase of the accelerat-
ing fields V (ψ) and the other where the energy change depends only on the
energy of the particle U(E) itself. The total energy gain ∆E per unit time or
per turn is the composition of both types of external effects

∆E = e V (ψ) − U(E), (6.21)

where U(E) is the energy dependent loss per turn due, for example, to syn-
chrotron radiation.

6.2.1 Small Oscillation Amplitudes

For arbitrary variations of the accelerating voltage with phase we cannot
further evaluate the equation of motion unless the discussion is restricted
to small variations in the vicinity of the synchronous phase. While the ideal
particle arrives at the accelerating cavities exactly at the synchronous phase
ψs, most other particles in a real beam arrive at slightly different phases. For
small deviations ϕ from the synchronous phase,

ϕ = ψ − ψs, (6.22)
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we can expand the accelerating voltage into a Taylor series at ψ = ψs and
get for the average rate of change of the particle energy with respect to the
energy of the synchronous particle from (6.20)

d
dt

∆E =
1
T0

[
eV (ψs) + e

dV
dψ

∣∣∣∣
ψs

ϕ− U(E0) −
dU
dE

∣∣∣∣
E0

∆E

]
, (6.23)

where the particle energy E = E0 + ∆E and T0 is the time of flight for the
reference particle

T0 =
L0

βc
. (6.24)

At equilibrium eV (ψs) = U(E0) + ∆E(ψ), where ∆E(ψ) is the energy
loss that does not depend on the energy like higher order mode losses. We
note that such losses lead only to a shift in the synchronous phase and we
therefore ignore such losses here. Later, we will take up this discussion again
in connection with the evaluation of the effects of higher order mode losses.
Since β ∆cp = ∆E, we get with (6.23) and ϕ̈ = ψ̈ from (6.19) the equation of
motion or phase equation

ϕ̈ +
βc kh ηc

cp0 T0
e

dV
dψ

∣∣∣∣
ψs

ϕ− c kh ηc

T0

dU
dE

∣∣∣∣
E0

∆cp

cp0
= 0 . (6.25)

With (6.17) and ψ = ψs + ϕ, (6.25) becomes the differential equation of
motion for small phase oscillations

ϕ̈ + 2αz ϕ̇ + Ω2ϕ = 0, (6.26)

where the damping decrement is defined by

αz = +
1

2T0

dU
dE

∣∣∣∣
E0

(6.27)

and the synchrotron frequency by

Ω2 =
βc kh ηc

cp0 T0
e

dV
dψ

∣∣∣∣
ψs

. (6.28)

Particles orbiting in a circular accelerator perform longitudinal oscillations
with the frequency Ω. These phase oscillations are damped or antidamped
depending on the sign of the damping decrement. Damping occurs only if
there is an energy loss which depends on the particle energy itself as in the
case of synchrotron radiation. In most cases of accelerator physics we find
the damping time to be much longer than the phase oscillation period and
we may therefore discuss the phase equation while ignoring damping terms.
Whenever damping becomes of interest, we will include this term again.

This phase equation is valid only for small oscillation amplitudes because
only the linear term has been used in the expansion for the rf-voltage. For
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larger amplitudes this approximation cannot be made anymore and direct
integration of the differential equation is necessary. The small amplitude ap-
proximation, however, is accurate to describe most of the fundamental features
of phase oscillations. At large amplitudes, the nonlinear terms will introduce
a change in the phase oscillation frequency and finally a limit to stable oscil-
lations to be discussed later in this chapter.

The phase equation has the form of the equation of motion for a damped
harmonic oscillator and we will look for conditions leading to a positive fre-
quency and stable phase oscillations. Because the phase equation was derived
first for synchrotron accelerators, the oscillations are also called synchrotron
oscillations and are of fundamental importance for beam stability in all cir-
cular accelerators based on rf-acceleration. For real values of the oscillation
frequency we find that particles which deviate from the synchronous phase are
subjected to a restoring force leading to harmonic oscillations about the equi-
librium or synchronous phase. From the equation of motion (6.25) it becomes
clear that phase focusing is proportional to the derivative of the accelerating
voltage rather than to the accelerating voltage itself and is also proportional
to the momentum compaction ηc.

To gain a further insight into the phase equation and determine stability
criteria, we must make an assumption for the waveform of the accelerating
voltage. In most cases, the rf-accelerating fields are created in resonant cav-
ities and therefore the accelerating voltage can be expressed by a sinusoidal
waveform

V (ψ) = V̂0 sinψ (6.29)

and expanded about the synchronous phase to get with ψ = ψs + ϕ

V (ψs + ϕ) = V̂0 (sinψs cosϕ + sinϕ cosψs) . (6.30)

Keeping only linear terms in ϕ the phase equation is

ϕ̈ + Ω2ϕ = 0, (6.31)

where the synchrotron oscillation frequency now becomes

Ω2 =
c kh ηc

cp0 T0
eV̂0 cosψs . (6.32)

A particle passing periodically every T0 seconds or integer multiples thereof
through localized and synchronized accelerating fields along its path performs
synchrotron oscillations with the frequency Ω about the synchronous phase.

In circular accelerators we have frequently the situation that several rf-
cavities are employed to provide the desired acceleration. The reference time
T0 is most conveniently taken as the revolution time and the rf-voltage V̂0 is
the total accelerating voltage seen by the particle while orbiting around the
ring once. The rf-frequency is an integer multiple of the revolution frequency,
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frf = h frev, (6.33)

where the integer h is the harmonic number and the revolution frequency is
with the circumference C

frev =
1
T0

=
C

cβ
. (6.34)

With ωrev = 2πfrev we get from (6.32) the synchrotron frequency in more
practical units

Ω2 = ω2
rev

h ηc eV̂0 cosψs

2π β cp0
. (6.35)

Similar to the betatron oscillation tunes, we define the synchrotron oscil-
lation tune or short the synchrotron tune as the ratio

νs =
Ω

ωrev
. (6.36)

For real values of the synchrotron oscillation frequency the phase equation
assumes the simple form

ϕ = ϕ̂ cos (Ωt + χi), (6.37)

where χi is an arbitrary phase function for the particle i at time t = 0. With
ψ̇ = ϕ̇ we find from (6.17), (6.32) the relation between the momentum and
phase deviation for real values of the synchrotron oscillation frequency

δ =
∆cp

cp0
= − ϕ̇

hωrev ηc
=

Ω ϕ̂

hωrev ηc
sin (Ωt + χi) . (6.38)

The particle momentum deviation, being the conjugate variable to the
phase, also oscillates with the synchrotron frequency about the ideal momen-
tum. Both, the phase and momentum oscillations describe the particle motion
in longitudinal phase space as shown in Fig. 6.4 for stable and unstable syn-
chrotron oscillations, respectively. At the time t0 when in (6.38) the phase
Ωt0 + χi = 0, we expect the momentum deviation to be zero while the phase
(6.37) reaches the maximum value ϕ̂. Particles with a negative momentum
compaction ηc < 0 move clockwise in phase space about the reference point
while a positive momentum compaction causes the particles to rotate coun-
terclockwise.

The same process that has led to phase focusing will also provide the focus-
ing of the particle momentum. Any particle with a momentum different from
the ideal momentum will undergo oscillations at the synchrotron frequency
which are from (6.38) described by

δ = − δ̂ sin (Ωt + χi), (6.39)

where the maximum momentum deviation is related to the maximum phase
excursion ϕ̂ by
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ϕ ϕ

δ

Fig. 6.4. Synchrotron oscillations in phase space for stable motion
(
Ω2 > 0

)
(left)

and for unstable motion
(
Ω2 < 0

)
(right)

δ̂ =
∣∣∣∣

Ω

hωrev ηc

∣∣∣∣ ϕ̂ . (6.40)

By inverse deduction we may express the momentum equation similar to
the phase equation (6.31) and get with ∆p/p0 = δ the differential equation
for the momentum deviation

d2δ

dt2
+ Ω2 δ = 0 . (6.41)

Similar to the transverse particle motion, we eliminate from (6.37), (6.38)
the argument of the trigonometric functions to obtain an invariant of the form

δ2

δ̂2
± ϕ2

ϕ̂2
= 1 with δ̂ =

Ω

hωrev
ϕ̂, (6.42)

where the sign is chosen to indicate stable or unstable motion depending on
whether the synchrotron oscillation frequency Ω is real or imaginary, respec-
tively. The trajectories for both cases are shown in Fig. 6.4. Clearly, the case
of imaginary values of the synchrotron oscillation frequency leads to an expo-
nential growth in the oscillation amplitude.

6.2.2 Phase Stability

The synchrotron oscillation frequency must be real and the right-hand side
of (6.32) must therefore be positive to obtain stable solutions for phase oscil-
lations. All parameters in (6.32) are positively defined quantities except for
the momentum compaction ηc and the phase factor cosψs. For low particle
energies the momentum compaction is in general positive because γ−2 > αc

but becomes negative for higher particle energies. The energy at which the
momentum compaction changes sign is called the transition energy defined by

γtr =
1√
αc

. (6.43)
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Since the momentum compaction factor for circular accelerators is approx-
imately equal to the inverse horizontal tune αc ≈ ν−2

x , we conclude that the
transition energy γtr is of the order of the tune and therefore in general a small
number reaching up to the order of a hundred for very large accelerators. For
electrons, the transition energy is of the order of a few MeV and for protons
in the GeV regime. In circular electron accelerators the injection energy is al-
ways selected to be well above the transition energy and no stability problems
occur during acceleration since the transition energy is not crossed. Not so
for protons. Proton linear accelerators with an energy of the order of 10 GeV
or higher are very costly and therefore protons and ions in general must be
injected into a circular accelerator below transition energy.

The synchronous rf-phase must be selected depending on the particle en-
ergy being below or above the transition energy. Stable phase focusing can be
obtained in either case if the rf-synchronous phase is chosen as follows:

0 < ψs <
π
2 for γ < γtr,

π
2< ψs < π for γ > γtr .

(6.44)

In a proton accelerator with an injection energy below the transition energy
the rf-phase must be changed very quickly when the transition energy is being
crossed. Often the technical difficulty of this sudden change in the rf-phase
is ameliorated by the use of pulsed quadrupoles [55, 56], which is an efficient
way of varying momentarily the momentum compaction factor by perturbing
the dispersion function. A sudden change of a quadrupole strength can lower
the transition energy below the actual energy of the particle. This helpful
“perturbation” lasts for a small fraction of a second while the particles are
still being accelerated and the rf-phase is changed. By the time the quadrupole
pulse terminates, the rf-phase has been readjusted and the particle energy is
now above the unperturbed transition energy.

In general, we find that a stable phase oscillation for particles under the
influence of accelerating fields can be obtained by properly selecting the syn-
chronous phase ψs in conjunction with the sign of the momentum compaction
such that

Ω2 > 0 . (6.45)

This is the principle of phase focusing [53] and is a fundamental process
to obtain stable particle beams in circular high energy accelerators. An oscil-
lating accelerating voltage together with a finite momentum compaction pro-
duces a stabilizing focusing force in the longitudinal degree of freedom just as
transverse magnetic or electric fields can produce focusing forces for the two
transverse degrees of freedom. With the focusing of transverse amplitudes, we
found a simultaneous focusing of its conjugate variable, the transverse mo-
mentum. The same occurs in the longitudinal phase where the particle energy
or the energy deviation from the ideal energy is the conjugate variable to the
time or phase of a particle. Both variables are related by (6.17) and a focusing
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force not only exists for the phase or longitudinal particle motion but also for
the energy keeping the particle energy close to the ideal energy.

Focusing conditions have been derived for all six degrees of freedom where
the source of focusing originates either from the magnet lattice for transverse
motion or from a combination of accelerating fields and a magnetic lattice
property for the energy and phase coordinate. The phase stability can be seen
more clearly by observing the particle trajectories in phase space. Equation
(6.31) describes the motion of a pendulum with the frequency Ω which for
small amplitudes (sinϕ ≈ ϕ) becomes equal to the equation of motion for a
linear harmonic oscillator and can be derived from the Hamiltonian

H = 1
2 ϕ̇

2 + 1
2Ω

2ϕ2 . (6.46)

Small amplitude oscillations in phase space are shown in Fig. 6.4 and
we note the confinement of the trajectories to the vicinity of the reference
point. In the case of unstable motion the trajectories quickly lead to unbound
amplitudes in energy and phase (Fig. 6.4 right).

Large Oscillation Amplitudes

For larger oscillation amplitudes we cannot anymore approximate the trigono-
metric function sinϕ ≈ ϕ by its argument. Following the previous derivation
for the equation of motion (6.31) we now get

ϕ̈ = −Ω2 sinϕ, (6.47)

which can be derived from the Hamiltonian

H = 1
2 ϕ̇

2 −Ω2 cosϕ (6.48)

being identical to that of a mechanical pendulum. As a consequence of our
ability to describe synchrotron motion by a Hamiltonian and canonical vari-
ables, we expect the validity of the Poincaré integral

J1 =
∫

z

dϕ̇ dϕ = const. (6.49)

under canonical transformations. Since the motion of particles during syn-
chrotron oscillations can be described as a series of canonical transforma-
tions [3], we find the particle density in the (ϕ, ϕ̇ ) phase space to be a con-
stant of motion. The same result has been used in transverse phase space
and the area occupied by this beam in phase space has been called the beam
emittance. Similarly, we define an emittance for the longitudinal phase space.
Different choices of canonical variables can be defined as required to empha-
size the physics under discussion. Specifically we find it often convenient to
use the particle momentum instead of ϕ̇ utilizing relation (6.17).
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separatrices
Fig. 6.5. Phase space diagrams for a synchronous phase ψs = π

Particle trajectories in phase space can be derived directly from the Hamil-
tonian by plotting solutions of (6.48) for different values of the “energy” H
of the system. These trajectories, well known from the theory of harmonic
oscillators, are shown in Fig. 6.5 for the case of a synchronous phase ψs = π.

The trajectories in Fig. 6.5 are of two distinct types. In one type the
trajectories are completely local and describe oscillations about equilibrium
points separated by 2π along the abscissa. For the other type the trajectories
are not limited to a particular area in phase and the particle motion assumes
the characteristics of libration. This phenomenon is similar to the two cases
of possible motion of a mechanical pendulum or a swing. At small amplitudes
we have periodic motion about the resting point of the swing. For increasing
amplitudes, however, that oscillatory motion could become a libration when
the swing continues to go over the top. The lines separating the regime of
libration from the regimes of oscillation are called separatrices.

Particle motion is stable inside the separatrices due to the focusing prop-
erties of the potential well which in this representation is just the cosϕ term
in (6.48). The area within separatrices is commonly called an rf-bucket de-
scribing a place where particles are in stable motion. In Fig. 6.6, Hamiltonian
(6.48) is shown in a three-dimensional representation with contour lines rep-
resenting the equipotential lines. The stable potential wells, within the sep-
aratrices, keeping the particles focused toward the equilibrium position, are
clearly visible.

Inside the separatrices the average energy gain vanishes due to oscillatory
phase motion of the particles. This is obvious from (6.30) which becomes for
ψs = π

V (ψ) = V̂0 sinψ = V̂0 sin(ψs + ϕ) = V̂0 sinϕ (6.50)

averaging to zero since the average phase 〈ϕ〉 = 0.
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ψ

δ

Fig. 6.6. Potential well for stationary rf-buckets, ψs = π

The area within such separatrices is called a stationary rf-bucket. Such
buckets, while not useful for particle accelerations, provide the necessary po-
tential well to produce stable bunched particle beams in facilities where the
particle energy need not be changed as for example in a proton or ion stor-
age ring where bunched beams are desired. Whenever particles must receive
energy from accelerating fields, may it be for straight acceleration or merely
to compensate for energy losses like synchrotron radiation, the synchronous
phase must be different from zero. As a matter of fact, due to the principle
of phase focusing, particles within the regime of stability automatically os-
cillate about the appropriate synchronous phase independent of their initial
parameters.

In the discussion of large amplitude oscillations we have tacitly assumed
that the synchrotron oscillation frequency remains constant and is equal to
(6.32). From (6.29), however, we note that the frequency is proportional to
the variation of the rf-voltage with phase. Specifically, we note in Fig. 6.5 that
the trajectories in phase space are elliptical only for small amplitudes but are
periodically distorted for larger amplitudes. This distortion leads to a spread
of the synchrotron oscillation frequency.

6.2.3 Acceleration of Charged Particles

In the preceding paragraph we have arbitrarily assumed that the synchronous
phase be zero (ψs = 0) and as a result of this choice we obtained stationary,
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nonaccelerating rf-buckets. No particle acceleration occurs since the particles
pass through the cavities when the fields cross zero. Whenever particle accel-
eration is required a finite synchronous phase must be chosen. The average
energy gain per revolution is then

∆E = V (ψs) = V̂0 sinψs . (6.51)

Beam dynamics and stability become much different for ψs 
= 0. From
(6.19), we get with (6.21), (6.30), (6.32) a phase equation more general than
(6.47)

ϕ̈ +
Ω2

cosψs
[sin(ψs + ϕ) − sinψs] = 0, (6.52)

or after expanding the trigonometric term into its components

ϕ̈ +
Ω2

cosψs
(sinψs cosϕ + sinϕ cosψs − sinψs) = 0 . (6.53)

This equation can also be derived directly from the Hamiltonian for the dy-
namics of phase motion

1
2
ϕ̇2 − Ω2

cosψs
[cos(ψs + ϕ) − cosψs + ϕ sinψs] = H . (6.54)

The phase space trajectories or diagrams now differ considerably from
those in Fig. 6.5 depending on the value of the synchronous phase ψs. In
Fig. 6.7 phase space diagrams are shown for different values of the synchronous
phase and a negative value for the momentum compaction ηc.

We note clearly the reduction in stable phase space area as the synchro-
nous phase is increased or as the particle acceleration is increased. Outside the
phase stable areas the particles follow unstable trajectories leading to contin-
uous energy loss or gain depending on the sign of the momentum compaction.
Equation (6.54) describes the particle motion in phase space for arbitrary val-
ues of the synchronous phase and we note that this equation reduces to (6.46)
if we set ψs = 0. The energy gain for the synchronous particle at ψ = ψs

becomes from (6.18)

∆E = e

∫
E(ψs) dz . (6.55)

We obtain a finite energy gain or loss whenever the synchronous phase in
accelerating sections is different from an integer multiple of 180◦ assuming that
all accelerating sections obey the synchronicity condition. The form of (6.55)
is actually more general insofar as it integrates over all fields encountered
along the path of the particle. In case some accelerating sections are not
synchronized, the integral collects all contributions as determined by the phase
of the rf-wave at the time the particle arrives at a particular section whether
it be accelerating or decelerating. The synchronicity condition merely assures
that the acceleration in all accelerating sections is the same for each turn.
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Fig. 6.7. Phase space diagrams for particles above transition energy (γ > γtr) ,
synchronous phases of ψs = 170 (top left), 5π/6 (top right), 2π/3 (bottom), and
above transition energy

Particle trajectories in phase space are determined by Hamiltonian (6.54),
which is similar to (6.48) except for the linear term in ϕ. Due to this term,
the potential well is now tilted (Fig. 6.8) compared to the stationary case
(Fig. 6.6). We still have quadratic minima in the potential well function to
provide stable phase oscillations, but particles escaping over the maxima of
the potential well will be lost because they continuously lose or gain energy
as can be seen by following such trajectories in Fig. 6.9. This is different from
the case of stationary buckets where such a particle would just wander from
bucket to bucket while staying close to the ideal energy at the center of the
buckets. Phase stable regions in the case of finite values of the synchronous
phase are called moving rf-buckets.

The situation is best demonstrated by the three diagrams in Fig. 6.9 show-
ing the accelerating field, the potential, and the phase space diagram as a
function of the phase for different synchronous phases.

In this particular case we have assumed that the particle energy is above
transition energy and that the synchronous phase is such that cosψs < 0 to
obtain stable synchrotron oscillations. The center of the bucket is located at
the synchronous phase ψs and the longitudinal stability range is limited by the
phases ψ1 and ψ2. In the next section we will derive analytical expressions for
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Fig. 6.8. 3D rendition of a potential well for moving rf-buckets ψs �= 0
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Fig. 6.9. Phase space focusing for moving rf buckets displaying the phase relation-
ship of accelerating field, potential, and rf bucket
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the longitudinal stability limit and use the results to determine the momentum
acceptance of the bucket as well.

While both phases, ψs and π − ψs, would supply the desired energy gain
only one phase provides stability for the particles. The stable phase is easily
chosen by noting that the synchrotron oscillation frequency Ω must be real
and therefore ηc cosψs > 0. Depending on such operating conditions the
rf-bucket has different orientations as shown in Fig. 6.10.

 γ > γtr

 γ < γtr

Fig. 6.10. Relationship between rf-phase and orientation of moving rf-buckets for
accelerating as well as decelerating fields

We still can choose whether the electric field should accelerate or decelerate
the beam by choosing the sign of the field. For the decelerating case which,
for example, is of interest for free electron lasers, the “fish” like buckets in the
phase space diagram are mirror imaged.

6.3 Longitudinal Phase Space Parameters

We will here investigate in more detail specific properties and parameters of
longitudinal phase space motion. From these parameters it will be possible to
define stability criteria.

6.3.1 Separatrix Parameters

During the discussions of particle dynamics in longitudinal phase space we
found specific trajectories in phase space, called separatrices which separate
the phase stable region from the region where particles follow unstable trajec-
tories leading away from the synchronous phase and from the ideal momen-
tum. Within the phase stable region particles perform oscillations about the
synchronous phase and the ideal momentum. This “focal point” in the phase
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diagram is called a stable fixed point (sfp). The unstable fixed point (ufp) is
located where the two branches of the separatrix cross. The location of fixed
points can be derived from the two conditions:

∂H
∂ψ̇

= 0 and
∂H
∂ψ

= 0 . (6.56)

From the first condition, we find with (6.54) that ψ̇f = 0 independent of
any other parameter. All fixed points are therefore located along the ψ-axis
of the phase diagram as shown in Fig. 6.11.

ψ1 ψ2
ψs

ufp sfp

ψ

δ separatricesrf-bucket

Fig. 6.11. Characteristic bucket and separatrix parameters

The second condition leads to the actual location of the fixed points ψf on
the ψ-axis and is with ψ = ψs + ϕ

sinψf − sinψs = 0 . (6.57)

This equation can be solved for ψf = ψs or ψf = π−ψs and the coordinates
of the fixed points are

(ψsf , ψ̇sf) = (ψs, 0) for the sfp and

(ψuf , ψ̇uf) = (π − ψs, 0) for the ufp.
(6.58)

The distinction between a stable and unstable fixed point is made through
the existence of a minimum or maximum in the potential at these points
respectively. In Fig. 6.9, this distinction becomes obvious where we note the
stable fixed points at the center of the potential minima and the unstable
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fixed points at the saddle points. The maximum stable phase elongation or
bunch length is limited by the separatrix and the two extreme points ψ1 and
ψ2 which we will determine in Sect. 6.3.3.

6.3.2 Momentum Acceptance

Particles on trajectories just inside the separatrix reach maximum devia-
tions in phase and momentum from the ideal values in the course of per-
forming synchrotron oscillations. A characteristic property of the separatrix
is therefore the definition of the maximum phase or momentum deviation
a particle may have and still undergo stable synchrotron oscillations. The
value of the maximum momentum deviation is called the momentum accep-
tance of the accelerator. To determine the numerical value of the momentum
acceptance, we use the coordinates of the unstable fixed point (6.58) and cal-
culate the value of the Hamiltonian for the separatrix which is from (6.54)
with ψuf = ψs + ϕuf = π − ψs and ψ̇uf = 0

Hf =
Ω2

cosψs
[2 cosψs − (π − 2ψs) sinψs] . (6.59)

Following the separatrix from this unstable fixed point, we eventually reach
the location of maximum distance from the ideal momentum. Since ϕ̇ is pro-
portional to ∆p/p0, the location of the maximum momentum acceptance can
be obtained through a differentiation of (6.54) with respect to ϕ

ϕ̇
∂ϕ̇

∂ϕ
−Ω2 sinψs − sin(ψs + ϕ)

cosψs
= 0 . (6.60)

At the extreme points where the momentum reaches a maximum or minimum,
∂ϕ̇/∂ϕ = 0 which occurs at the phase

sin(ψs + ϕ) = sinψs or ϕ = 0 . (6.61)

This is exactly the condition we found in (6.57) for the location of the
stable fixed points and is independent of the value of the Hamiltonian. The
maximum momentum deviation or momentum acceptance ϕ̇acc occurs there-
fore for all trajectories at the phase of the stable fixed points ψ = ψs. We
equate at this phase (6.59) with (6.54) to derive an expression for the maxi-
mum momentum acceptance

1
2 ϕ̇

2
acc = Ω2[2 − (π − 2ψs) tanψs]. (6.62)

In accelerator physics it is customary to define an over voltage factor. This
factor is equal to the ratio of the maximum rf-voltage in the cavities to the
desired energy gain in the cavity U0

q =
eV0

U0
=

1
sinψs

(6.63)



214 6 Longitudinal Beam Dynamics

and can be used to replace trigonometric functions of the synchronous phase.
To solve (6.62), we use the expression

1
2π − ψs = arccos

1
q

(6.64)

derived from the identity cos
(

1
2π − ψs

)
= sinψs, replace the synchrotron os-

cillation frequency Ω by its representation (6.35) and get with (6.17) the
momentum acceptance for a moving bucket

(
∆p

p0

)2

acc

=
eV0 sinψs

π h |ηc| cp0
2
(√

q2 − 1 − arccos
1
q

)
. (6.65)

The function

F (q) = 2
(√

q2 − 1 − arccos
1
q

)
(6.66)

is shown in Fig. 6.12 as a function of the over voltage factor q.
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Fig. 6.12. Over voltage function F (q)

The synchronous phase is always different from zero or π when charged
particles are to be accelerated. In circular electron and very high energy pro-
ton accelerators the synchronous phase must be nonzero even without accel-
eration to compensate for synchrotron radiation losses. In low and medium
energy circular proton or heavy ion storage rings no noticeable synchrotron
radiation occurs and the synchronous phase is either ψs = 0 or π depend-
ing on the energy being below or above the transition energy. In either case
sinψs = 0 which, however, does not necessarily lead to a vanishing momen-
tum acceptance since the function F (q) approaches the value 2q and the factor
sinψs F (q) → 2 in (6.65) while q → ∞. Therefore stable buckets for protons
and heavy ions can be produced with a finite energy acceptance. The maxi-
mum momentum acceptance for such stationary buckets is from (6.65)
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(
∆p

p0

)2

max,stat.

=
2 eV0

π h |ηc| cp0
. (6.67)

Note that this expression for the maximum momentum acceptance appears
to be numerically inconsistent with (6.40) for ϕ̂ = π, because (6.40) has been
derived for small oscillations only ϕ̂ � π. From Fig. 6.11, we note that the
aspect ratios of phase space ellipses change while going from bucket center
toward the separatrices. The linear proportionality between maximum mo-
mentum deviation and maximum phase of (6.40) becomes distorted for large
values of ϕ̂ such that the acceptance of the rf-bucket is reduced by the factor
2/π from the value of (6.40).

The momentum acceptance is further reduced for moving buckets as the
synchronous phase increases. In circular accelerators, where the required en-
ergy gain for acceleration or compensation of synchrotron radiation losses per
turn is U0, the momentum acceptance is

(
∆p

p0

)2

max,moving

=
U0

π h |ηc| cp0
F (q) =

F (q)
2 q

(
∆p

p0

)2

max,static

. (6.68)

The reduction F (q)/2q in momentum acceptance is solely a function of
the synchronous phase and is shown in Fig. 6.13 for the case γ > γtr.

Overall, the momentum acceptance depends on lattice and rf-parameters
and scales proportional to the square root of the rf-voltage in the accelerat-
ing cavities. Strong transverse focusing decreases the momentum compaction
thereby increasing the momentum acceptance while high values for the rf-
frequency diminishes the momentum acceptance. Very high frequency accel-
erating systems based, for example, on high intensity lasers to produce high
accelerating fields are expected to have a rather small momentum acceptance
and work therefore best with monoenergetic beams.

90 120 150 180

0

0.5

1
F(q)/2q

ψs(deg)

Fig. 6.13. Reduction factor of the momentum acceptance F (q)/2q as a function of
the synchronous phase
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It is often customary to use other parameters than the momentum as the
coordinates in longitudinal phase space. The most common parameter is the
particle energy deviation ∆E/ωrf together with the phase. In these units, we
get for the stationary bucket instead of (6.67)

∆E

ωrf

∣∣∣∣
max,stat.

=

√
2 eV0 E0 β

π h |ηc|ω2
rf

, (6.69)

which is measured in eV s. Independent of the conjugate coordinates used,
the momentum acceptance for moving rf-buckets can be measured in units of
a stationary rf-bucket, where the proportionality factor depends only on the
synchronous phase.

6.3.3 Bunch Length

During the course of synchrotron oscillations, particles oscillate between ex-
treme values in momentum and phase with respect to the reference point and
both modes of oscillation are out of phase by 90◦. All particles of a beam
perform incoherent phase oscillations about a common reference point and
thereby generate the appearance of a steady longitudinal distribution of par-
ticles, which we call a particle bunch. The total bunch length is twice the
maximum longitudinal excursion of particles from the bunch center defined
by

�

2
= ± c

hωrev
ϕ̂ = ± λrf

2π
ϕ̂, (6.70)

where ϕ̂ is the maximum phase deviation.
In circular electron accelerators the rf-parameters are generally chosen to

generate a bucket which is much larger than the core of the beam. Statisti-
cal emission of synchrotron radiation photons generates a Gaussian particle
distribution in phase space and therefore the rf-acceptance is adjusted to pro-
vide stability far into the tails of this distribution. To characterize the beam,
however, only the core (one standard deviation) is used. In the case of bunch
length or energy deviation we therefore consider only the situation for small
oscillation amplitudes. In this approximation the bunch length becomes with
(6.40)

�

2
= ± c |ηc|

Ω

∆p

p0

∣∣∣∣
max

(6.71)

or with (6.35)
�

2
= ± c

√
2π

ωrev

√
ηc cp0

h eV̂ cosψs

∆p

p0

∣∣∣∣
max

. (6.72)

The bunch length in a circular electron accelerator depends on a variety
of rf and lattice parameters. It is inversely proportional to the square root of
the rf-voltage and frequency. A high frequency and rf-voltage can be used to
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reduce the bunch length of which only the rf-voltage remains a variable once
the system is installed. Practical considerations, however, limit the range of
bunch length adjustment this way. The momentum compaction is a lattice
function and theoretically allows the bunch length to adjust to any small
value. For high energy electron rings ηc ≈ −αc and by arranging the focusing
such that the dispersion functions change sign, the momentum compaction
factor of a ring can become zero or even negative. Rings for which ηc = 0
are called isochronous rings [57]. By adjusting the momentum compaction to
zero, phase focusing is lost similar to the situation going through transition
in proton accelerators and total beam loss may occur. In this case, however,
nonlinear, higher order effects become dominant which must be taken into
consideration. If on the other hand the momentum compaction is adjusted
to very small values, beam instability may be avoidable [58]. The benefit of
an isochronous or quasi-isochronous ring would be that the bunch length in
an electron storage ring could be made very small. This is important, for
example, to either create short synchrotron radiation pulses or maximize the
efficiency of a free electron laser by preserving the microbunching at the laser
wavelength as the electron beam orbits in the storage ring.

In a circular proton or ion accelerator we need not be concerned with the
preservation of Gaussian tails and therefore the whole rf-bucket could be filled
with the beam proper at high density. In this case, the bunch length is limited
by the extreme phases ψ1 and ψ2 of the separatrix. Because the longitudinal
extend of the separatrix depends on the synchronous phase, we expect the
bunch length to depend also on the synchronous phase. One limit is given by
the unstable fixed point at ψ1 = π−ψs. The other limit must be derived from
(6.54), where we replace H by the potential of the separatrix from (6.59).
Setting ϕ̇ = 0, we get for the second limit of stable phases the transcendental
equation

cosψ1,2 + ψ1,2 sinψs = (π − ψs) sinψs − cosψs . (6.73)

This equation has two solutions mod(2π) of which ψ1 is one solution and
the other is ψ2. Both solutions and their difference are shown in Fig. 6.14 as
functions of the synchronous phase.

The bunch length of proton beams is therefore determined only by

�p =
λrf

2π
(ψ2 − ψ1) . (6.74)

Different from the electron case, we find the proton bunch length to be di-
rectly proportional to the rf-wavelength. On the other hand, there is no direct
way of compressing a proton bunch by raising or lowering the rf-voltage. This
difference stems from the fact that electrons radiate and adjust by damping
to a changed rf-bucket while nonradiating particles do not have this property.
However, applying adiabatic rf-voltage variation we may modify the bunch
length as will be discussed in Sect. 6.3.5.
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Fig. 6.14. Maximum phases limiting the extent of moving buckets

6.3.4 Longitudinal Beam Emittance

Separatrices distinguish between unstable and stable regions in the longitu-
dinal phase space. The area of stable phase space in analogy to transverse
phase space is called the longitudinal beam emittance; however, it should be
noted that the definition of longitudinal emittance as used in the accelerator
physics community often includes the factor π in the numerical value of the
emittance and is therefore equal to the real phase space area. To calculate the
longitudinal emittance, we evaluate the integral

∮
pdq where p and q are the

conjugate variables describing the synchrotron oscillation.
Similar to transverse beam dynamics we distinguish again between beam

acceptance and beam emittance. The acceptance is the maximum value for
the beam emittance to be able to pass through a transport line or accelerator
components. In the longitudinal phase space the acceptance is the area en-
closed by the separatrices. Of course, we ignore here other possible acceptance
limitations which are not related to the parameters of the accelerating system.
The equation for the separatrix can be derived by equating (6.54) with (6.59)
which gives with (6.17) and (6.35)

(
∆cp

cp0

)2

=
eV0

πh|ηc| cp0
[cosϕ + 1 + (2ψs + ϕ− π) sinψs] . (6.75)

We define a longitudinal beam emittance by

εϕ =
∫

S

∆E

ωrf
dϕ, (6.76)

where the integral is to be taken along a path S tightly enclosing the beam
in phase space. Only for ψs = nπ can this integral be solved analytically. The
maximum value of the beam emittance so defined is the acceptance of the
system. Numerically, the acceptance of a stationary bucket can be calculated
by inserting (6.75) into (6.76) and integration along the enclosing separatrices
resulting in
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εϕ,acc = 8

√
2 eV0 E0 β

π h |ηc|ω2
rf

. (6.77)

Comparison with the momentum acceptance (6.76) shows the simple rela-
tion that the longitudinal acceptance is eight times the energy acceptance

εϕ,acc = 8
∆E

ωrf

∣∣∣∣
max,stat

. (6.78)

For moving rf-buckets, the integration (6.76) must be performed numer-
ically between the limiting phases ψ1 and ψ2. The resulting acceptance in
percentage of the acceptance for the stationary rf-bucket is shown in Fig. 6.15
as a function of the synchronous phase angle.

Fig. 6.15. Acceptance of moving rf-buckets in units of the acceptance of a stationary
rf-bucket

The acceptance for ψs < 180◦ is significantly reduced imposing some prac-
tical limits on the maximum rate of acceleration for a given maximum rf-
voltage. During the acceleration cycle, the magnetic fields in the lattice mag-
nets are increased consistent with the available maximum rf-voltage and by
virtue of the principle of phase focusing the particles will keep close to the
synchronous phase whenever the rate of energy increase is slow compared to
the synchrotron oscillation frequency which is always the case. In high en-
ergy electron synchrotrons or storage rings the required “acceleration” is no
more a free parameter but is mainly determined by the energy loss due to
synchrotron radiation and a stable beam can be obtained only if sufficient
rf-voltage is supplied to provide the necessary acceptance.

6.3.5 Phase Space Matching

In transverse phase space, a need for matching exists while transferring a beam
from one accelerator to another accelerator. Such matching conditions exist
also in longitudinal phase space. In the absence of matching part of the beam
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may be lost due to lack of overlap with the rf-bucket or severe phase space
dilution may occur if a beam is injected unmatched into a too large rf-bucket.
In the case of electrons a mismatch generally has no detrimental effect on the
beam unless part or all of the beam exceeds rf-bucket limitations. Because of
synchrotron radiation and concomitant damping, electrons always assume a
Gaussian distribution about the reference phase and ideal momentum. The
only matching then requires that the rf-bucket is large enough to enclose the
Gaussian distribution far into the tails of 7–10 standard deviations.

In proton and heavy ion accelerators, such damping is absent and careful
phase space matching during the transfer of particle beams from one accelera-
tor to another is required to preserve beam stability and phase space density.
A continuous monochromatic beam, for example, being injected into an accel-
erator with too large an rf-bucket as shown in Fig. 6.16 will lead to a greatly
diluted emittance.

Fig. 6.16. Phase space filamentation

This is due to the fact that the synchrotron oscillation is to some extent
nonlinear and the frequency changes with oscillation amplitude with the effect
that for all practical purposes the beam eventually occupies all available phase
space. This does not conflict with Liouville’s theorem, since the microscopic
phase space is preserved albeit fragmented and spread through filamentation
over the whole bucket.

The situation is greatly altered if the rf-voltage is reduced and adjusted to
just cover the energy spread in the beam. Not all particles will be accepted,
specifically those in the vicinity of the unstable fixed points, but all particles
that are injected inside the rf-bucket remain there and the phase space density
for that part of the beam is not diluted. The acceptance efficiency is equal to
the bucket overlap on the beam in phase space. A more sophisticated capturing
method allows the capture of almost all particles in a uniform longitudinal
distribution by turning on the rf-voltage very slowly [59], a procedure which
is also called adiabatic capture.
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Fig. 6.17. Proper match for a bunched beam (left). Mismatch for a bunched beam
(right)

Other matching problems occur when the injected beam is not continuous.
A beam from a booster synchrotron or linear accelerator may be already
bunched but may have a bunch length which is shorter than the rf-wavelength
or we may want to convert a bunched beam with a significant momentum
spread into an unbunched beam with a small momentum spread. Whatever
the desired modification of the distribution of the beam in phase space may
be, there are procedures to allow the change of particular distributions while
keeping the overall emittance constant.

For example, to accept a bunched beam with a bunch length shorter than
the rf-wavelength in the same way as a continuous beam by matching only
the momentum acceptance would cause phase space filamentation as shown
in Fig. 6.17. In a proper matching procedure the rf-voltage would be ad-
justed such that a phase space trajectory surrounds closely the injected beam
(Fig. 6.17a). In mathematical terms, we would determine the bunch length
ϕ̂ of the injected beam and following (6.71) would adjust the rf-voltage such
that the corresponding momentum acceptance δ̂ = (∆p/p0)max matches the
momentum spread in the incoming beam. If no correct matching is done and
the beam is injected like shown in Fig. 6.17c, then the variation of synchrotron
oscillation frequency with amplitude would cause filamentation and the di-
lution of beam phase space. Effectively, this simulates in real space a larger
emittance.

Equation (6.71) represents a relation between the maximum momentum
deviation and phase deviation for small amplitude phase space trajectories
which allows us to calculate the bunch length as a function of external para-
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meters. Methods have been discussed in transverse particle dynamics which
allow the manipulation of conjugate beam parameters in phase space while
keeping the beam emittance constant. Specifically, within the limits of con-
stant phase space we were able to exchange beam size and transverse momen-
tum or beam divergence by appropriate focusing arrangements to produce,for
example, a wide parallel beam or a small beam focus.

Similarly, we are able to manipulate within the limits of a constant longitu-
dinal beam emittance the bunch length and momentum spread. The focusing
device in this case is the voltage in accelerating cavities. Assume, for exam-
ple, a particle bunch with a very small momentum spread but a long bunch
length as shown in Fig. 6.18a. To transform such a bunch into a short bunch
we would suddenly increase the rf-voltage in a time short compared to the
synchrotron oscillation period. The whole bunch then starts to rotate within
the new bucket (Fig. 6.18b) exchanging bunch length for momentum spread.
After a quarter synchrotron oscillation period, the bunch length has reached
its shortest value and starts to increase again through further rotation of the
bunch unless the rf-voltage is suddenly increased a second time to stop the
phase space rotation of the bunch (Fig. 6.18c). Before this second adjustment
of the rf-voltage the bunch boundary does not coincide with a phase space
trajectory causing the whole bunch to rotate. The rf-voltage therefore must
be increased to such a value that all particles on the bunch boundary follow
the same phase space trajectory.

δ

δ δ

ψ ψ ψ

Fig. 6.18. Phase space rotation

This phase space manipulation can be conveniently expressed by repeated
application of (6.40). The maximum momentum deviation (∆̂p/p0)0 and the
maximum phase deviation ϕ̂0 for the starting situation in Fig. 6.18a are related
by

∆̂p

p0

∣∣∣∣∣
0

=
Ω0

hωrev |ηc|
ϕ̂0, (6.79)
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where Ω0 is the starting synchrotron oscillation frequency for the rf-voltage
V0. To start bunch rotation the rf-voltage is increased to V1 (Fig. 6.18b) and
after a quarter synchrotron oscillation period at the frequency Ω1 ∝

√
V1 the

phase deviation ϕ̂0 has transformed into the momentum deviation

∆̂p

p0

∣∣∣∣∣
1

=
Ω1

hωrev |ηc|
ϕ̂0 . (6.80)

At the same time the original momentum error ∆̂p/p0|0 has become a phase
error ϕ̂1 given by

∆̂p

p0

∣∣∣∣∣
0

=
Ω1

hωrev |ηc|
ϕ̂1 . (6.81)

Now we need to stop further phase space rotation of the whole bunch.
This can be accomplished by increasing a second time the rf-voltage during
a time short compared to the synchrotron oscillation period in such a way
that the new bunch length or ϕ̂ is on the same phase space trajectory as the
new momentum spread ∆̂p/p0|1 (Fig. 6.18c). The required rf-voltage is then
determined by

∆̂p

p0

∣∣∣∣∣
1

=
Ω2

hωrev |ηc|
ϕ̂1 . (6.82)

We take the ratio of (6.78) and (6.81) to get

ϕ̂1 Ω2

ϕ̂0 Ω0
=

∆̂p/p0|1
∆̂p/p0|0

(6.83)

and replace the ratio of the momentum spreads by the ratio of (6.79) and
(6.80). With Ωi ∝

√
Vi and � ∝ ϕ̂ we finally get the scaling law for the

reduction of the bunch length

�1
�0

=
(
V0

V2

) 1
4

. (6.84)

In other words the bunch length can be reduced by increasing the rf-voltage
in a two-step process and the bunch length reduction scales like the fourth
power of the rf-voltage. This phase space manipulation is symmetric in the
sense that a beam with a large momentum spread and a short bunch length
can be converted into a bunch with a smaller momentum spread at the expense
of the bunch length by reducing the rf-voltage in two steps.

The bunch length manipulation described here is correct and applicable
only for nonradiating particles. For radiating particles like electrons, the bunch
manipulation is easier due to damping effects. Equation (6.40) still holds, but
the momentum spread is independently determined by synchrotron radiation
and the bunch length therefore scales simply proportional to the square root
of the rf-voltage.
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6.4 Higher Order Phase Focusing

The principle of phase focusing is fundamental for beam stability in circular
accelerators and we find the momentum compaction factor to be a controlling
quantity. Since the specific value of the momentum compaction determines
critically the beam stability, it is interesting to investigate the consequences
to beam stability as the momentum compaction factor varies. Specifically,
we will discuss the situation where the linear momentum compaction factor
is reduced to very small values and higher order terms become significant.
This is, for example, of interest in proton or ion accelerators going through
transition energy during acceleration, or as we try to increase the quadru-
pole focusing in electron storage rings to obtain a small beam emittance, or
when we intentionally reduce the momentum compaction to reduce the bunch
length. In extreme cases, the momentum compaction factor becomes zero at
transition energy or in an isochronous storage ring where the revolution time
is made the same for all particles independent of the momentum. The linear
theory of phase focusing would predict beam loss in such cases due to lack of
phase stability. To accurately describe beam stability when the momentum
compaction factor is small or vanishes, we cannot completely ignore higher
order terms. Some of the higher order effects on phase focusing will be dis-
cussed here. There are two main contributions to the higher order momentum
compaction factor, one from the dispersion function and the other from the
momentum dependent path length. First, we derive the higher order contri-
butions to the dispersion function, and then apply the results to the principle
of phase focusing to determine the perturbation on the beam stability.

6.4.1 Path Length in Higher Order

The path length together with the velocity of particles governs the time of
arrival at the accelerating cavities from turn to turn and therefore defines
the stability of a particle beam. Generally, only the linear dependence of the
path length on particle momentum is considered. We find, however, higher
order chromatic contributions of the dispersion function to the path length as
well as momentum independent contributions due to the finite angle of the
trajectory with respect to the ideal orbit during betatron oscillations.

The path length for a particular trajectory from point z0 = 0 to point z in
our curvilinear coordinate system can be derived from the integral L =

∮ z

0
ds,

where s is the coordinate along the particular trajectory. This integral can be
expressed by

L =
∮ √

(1 + κx)2 + x′ 2 + y′ 2dz, (6.85)

where the first term of the integrand represents the contribution to the path
length due to curvature generated by bending magnets while the second and
third terms are contributions due to finite horizontal and vertical betatron
oscillations. For simplicity, we ignore vertical bending magnets. Where this
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simplification cannot be made, it is straightforward to extend the derivation
of the path length in higher order to include bending in the vertical plane
as well. We expand (6.85) up to second order and get for the path length
variation ∆L = L− L0

∆L =
∮ (

κx + 1
2κ

2x2 + 1
2 x′ 2 + 1

2 y′
2
)

dz + O(3) . (6.86)

The particle amplitudes are composed of betatron oscillation, orbit distor-
tions, and off-energy orbits

x = xβ + x0 + η0δ + η1δ
2 + · · · ,

y = yβ + y0,
(6.87)

where (xβ , yβ) describe the betatron oscillations and (η0, η1, . . .) are the linear
and higher order dispersion functions derived in Sect. 12.6. The quantities
(x0, y0) describe the deviation of the actual orbit from the ideal orbit or orbit
distortion due to magnetic field and alignment errors.

Evaluating integral (6.86), we note that the oscillatory character of (xβ , yβ)
causes all terms linear in (xβ , yβ) to vanish while averaging over many turns.
The orbit distortions (x0, y0) are statistical in nature since the correction in a
real accelerator is done such that 〈x0〉 = 0 and 〈x′

0〉 = 0. Betatron oscillations
and orbit distortions are completely independent and therefore cross terms
like 〈xβx0〉 vanish. The dispersion function η0 and the higher order term
η1are unique periodic solutions of the inhomogeneous equation of motion. For
the betatron oscillations we assume a nonresonant tune which causes terms
like 〈xβη0〉 to vanish as well. With these results the path length variation is

∆L ≈ 1
2

∮ (
x′

β
2 + y′β

2 + x′
0

2 + y′0
2 + κ2x2

β + κ2x2
0

)
dz (6.88)

+ δ

∮
κη0 dz + δ2

∮ (
κη1 + 1

2κ
2η2

0 + 1
2 η′0

2
)

dz .

There are three main contributions of which two are of chromatic nature.
The finite transverse betatron oscillations as well as orbit distortions con-
tribute to a second-order increase in the path length of the beam transport sys-
tem which is of nonchromatic nature. Equation (6.88) can be simplified by us-
ing the explicit expressions for the particle motion xβ(z) =

√
εxβx(z) sinψx(z)

and x′
β(z) =

√
εx/βx(z) [cosψx(z) − αx(z) sinψx(z)]. Forming the square

x′
β

2 = εx/βx(z)
(
cos2 ψx − αx sin 2ψx + α2

x sin2 ψx

)
and averaging over all

phases ψx

∮
x′

β
2 dz = εx

∮
1
βx

(
cos2 ψx + α2

x sin2 ψx

)
dz, (6.89)

= εx

∮ (
cos 2ψx

βx
+ γx sin2 ψx

)
dz ≈ 1

2εx

∮
γx dz,
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where we used the simplifying expression sin2 ψx ≈ 1
2 . Similarly, we get

∮
y′β

2 dz ≈ 1
2εy

∮
γy dz, (6.90)

and ∮
κ2x2

β dz ≈ 1
2εx

∮
κ2βx dz . (6.91)

The integrals are taken over the entire beam transport line of length L0 and
using average values for the integrands, the path-length variation is

∆L

L0
= 1

4

(
εx 〈γx〉 + εy 〈γy〉 + εx

〈
κ2βx

〉)
(6.92)

+ 1
2

〈
x′

0
2
〉

+ 1
2

〈
y′0

2
〉

+ 1
2

〈
κ2x2

0

〉

+ αcδ +
(
〈κη1〉 + 1

2

〈
κ2η2

0

〉
+ 1

2

〈
η′0

2
〉)

δ2 + O(3) .

In this expression for the path-length variation we find separate contribu-
tions due to betatron oscillations, orbit distortion, and higher order chromatic
effects. We have used the emittance ε as the amplitude factor for betatron
oscillation and therefore get a path-length spread within the beam due to
the finite beam emittance ε. Note specifically that for an electron beam this
emittance scales by the factor n2

σ to include Gaussian tails, where nσ is the
oscillation amplitude in units of the standard amplitude σ. For whole beam
stability a total emittance of εtot = 72ε−102ε should be considered. For stable
machine conditions, the contribution of the orbit distortion is the same for all
particles and can therefore be corrected by an adjustment of the rf-frequency.
We include these terms here, however, to allow the estimation of allowable
tolerances for dynamic orbit changes.

6.4.2 Higher Order Phase Space Motion

The longitudinal phase stability in a circular accelerator depends on the value
of the momentum compaction ηc, which actually regulates the phase focusing
to obtain stable particle motion. This parameter is not a quantity that can be
chosen freely in the design of a circular accelerator without jeopardizing other
desirable design goals. If, for example, a small beam emittance is desired
in an electron storage ring, or if for some reason it is desirable to have an
isochronous ring where the revolution time for all particles is the same, the
momentum compaction should be made to become very small. This in itself
does not cause instability unless the momentum compaction approaches zero
and higher order chromatic terms modify phase focusing to the extent that
the particle motion becomes unstable. To derive conditions for the loss of
phase stability, we evaluate the path-length variation (6.92) with momentum
in higher order
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∆L

L0
= αcδ + α1 δ

2 + ξ + O(3), (6.93)

where ξ represents the momentum independent term

ξ = 1
4

(
εx 〈γx〉 + εy 〈γy〉 + εx

〈
κ2βx

〉)
(6.94)

and
α1 = 〈κη1〉 + 1

2

〈
κ2η2

0

〉
+ 1

2

〈
η′0

2
〉

. (6.95)

Following the derivation of the linear phase equation, we note that it is the
variation of the revolution time with momentum rather than the path-length
variation that affects the synchronicity condition. Defining the momentum
compaction

ηc =
1
γ2

− αc (6.96)

the differential equation for the phase oscillation to second order is

∂ψ

∂t
= −ωrf

(
ηcδ − α1δ

2 − ξ
)

(6.97)

and for the momentum oscillation

∂δ

∂t
=

eVrf

T0cp0
(sinψ − sinψs) . (6.98)

In linear approximation, where α1 = 0 and ξ = 0, a single pair of fixed
points and separatrices exists in phase space. These fixed points can be found
from the condition that ψ̇ = 0 and δ̇ = 0 and they lie on the abscissa for δ = 0.
The stable fixed point is located at (ψsf, δsf) = (ψs, 0) defining the center of the
rf-bucket where stable phase oscillations occur. The unstable fixed point at
(ψuf, δuf) = (π − ψs, 0) defines the crossing point of the separatrices separating
the trajectories of oscillations from those of librations.

Considering also higher order terms in the theory of phase focusing leads
to a more complicated pattern of phase space trajectories. Setting (6.98) equal
to zero we note that the abscissae of the fixed points are at the same location
as for the linear case

ψ1f = ψs and ψ2f = π − ψs . (6.99)

The energy coordinates of the fixed points, however, are determined by
solving (6.97) for ψ̇ = 0 or

ηcδ − α1δ
2 − ξ = 0 (6.100)

with the solutions
δf = +

ηc

2α1

(
1 ±

√
1 − Γ

)
, (6.101)

where
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Γ =
4ξα1

η2
c

. (6.102)

Due to the quadratic character of (6.100), we get now two layers of fixed
points with associated areas of oscillation and libration. In Figs. 6.19, 6.20, the
phase diagrams are shown for increasing values of the perturbation α1 while
for now we set the momentum independent perturbation ξ = 0. Numerically,
the contour lines have been calculated from the Hamiltonian (6.106) with
∆/2ηc = 0.005. The appearance of the second layer of stable islands and the
increasing perturbation of the original rf-buckets is obvious. There is actually
a point (Fig. 6.20a) where the separatrices of both island layers merge. We
will use this merging of the separatrices later to define a tolerance limit for
the perturbation on the momentum acceptance.

A B

C Ds

c

phase

s

Fig. 6.19. Second-order longitudinal phase space for ψs = 0, ξ = 0 and weak
perturbation α1/ηc = −3.0

The coordinates of the fixed points in the phase diagram are determined
from (6.108), (6.109) and are for the linear fixed points in the first layer

point A: ψA = ψs, δA = ηc
2α1

(
1 −

√
1 − Γ

)
,

point B: ψB = π − ψs, δB = ηc
2α1

(
1 −

√
1 − Γ

)
.

(6.103)

The momenta of these fixed points are at δ = 0 for Γ = 0 consistent
with earlier discussions. As orbit distortions and betatron oscillations increase,
however, we note a displacement of the equilibrium momentum as Γ increases.
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Fig. 6.20. Higher order longitudinal phase space diagrams for ψs = 0, ξ = 0 and
strong perturbation α1/ηc = −6.0 (a) and α1/ηc = −13.5 (b)

The fixed points of the second layer of islands or rf-buckets are displaced
both in phase and in momentum with respect to the linear fixed points and
are located at

point C: ψC = ψs, δC = ηc
2α1

(
1 +

√
1 − Γ

)
,

point D: ψD = π − ψs, δD = ηc
2α1

(
1 +

√
1 − Γ

)
.

(6.104)

The dependence of the coordinates for the fixed points on orbit dis-
tortions and the amplitude of betatron oscillations becomes evident from
(6.114), (6.117). Specifically, we note a shift in the reference momentum of
the beam by ξ/ηc as the orbit distortion increases as demonstrated in the ex-
amples shown in Figs. 6.21, 6.22, 6.23(c), and 6.23(d). Betatron oscillations,
on the other hand, cause a spread of the beam momentum in the vicinity
of the fixed points. This readjustment of the beam momentum is a direct
consequence of the principle of phase focusing whereby the particle follows a
path such that the synchronicity condition is met. The phase space diagram
of Fig. 6.19 is repeated in Fig. 6.21 with a parameter 2ξ/ηc = −0.125 and in
Fig. 6.22 with the further addition of a finite synchronous phase of ψs = 0.7
rad. In addition to the shift of the reference momentum a significant reduction
in the momentum acceptance compared to the regular rf-buckets is evident in
both diagrams.

As long as the perturbation is small and |α1| � |ηc|, the new fixed points
are located far away from the reference momentum and their effect on the
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Fig. 6.21. Second-order longitudinal phase space for ψs = 0, 2ξ/ηc = −0.125 and
strong perturbation α1/ηc = −6.0 (a) and α1/ηc = −13.5 (b)
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Fig. 6.22. Higher order longitudinal phase space diagrams for ψs = 0.7, 2ξ/ηc =
−0.125, and a weak perturbation α1/ηc = −3.0

particle dynamics can be ignored. The situation becomes very different when-
ever the linear momentum compaction becomes very small or even zero due to
strong quadrupole focusing during momentum ramping through transition or
in the case of the deliberate design of a low α-lattice for a quasi-isochronous
storage ring. In these cases higher order perturbations become significant and
cannot be ignored. We cannot assume anymore that the perturbation term α1

is negligibly small and the phase dynamics may very well become dominated
by perturbations.

The perturbation α1 of the momentum compaction factor depends on the
perturbation of the dispersion function and is therefore also dependent on the
sextupole distribution in the storage ring. Given sufficient sextupole families,
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Fig. 6.23. Three-dimensional rendition of Figs. 6.17–20

it is at least in principle possible to adjust the parameter α1 to zero or a small
value by a proper distribution of sextupoles.

6.4.3 Stability Criteria

Stability criteria for phase oscillations under the influence of higher order mo-
mentum compaction terms can be derived from the Hamiltonian. The nonlin-
ear equations of motion (6.97), (6.98) can be derived from the Hamiltonian

H =
eVrf

T0cp0
[cosψ − cosψs + (ψ − ψs) sinψs] − ωrf

(
1
2
ηcδ

2 − 1
3
α1δ

3 − ξδ

)
.

(6.105)
To eliminate inconsequential factors for the calculation of phase space

trajectories, we simplify (6.105) to

H̃ = ∆ [cosψ − cosψs + (ψ − ψs) sinψs] − 2ηcδ
2 + 4

3α1δ
3 + 4ξδ, (6.106)

where
∆ =

2eVrf

T0cp0ωrfηc
. (6.107)
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We may use (6.106) to calculate phase space trajectories and derive stabil-
ity conditions for various combinations of the parameters ∆, the perturbation
of the momentum compaction α1, and the synchronous phase ψs (Figs. 6.19–
6.22). In Fig. 6.23, the phase diagrams of Figs. 6.19–6.22 are now displayed
as three-dimensional surfaces plots with the same parameters. Starting from
the linear approximation where only regular rf-buckets appear along the ψ-
axis, we let the ratio α1/ηc increase and find the second set of rf-buckets to
move in from large relative momentum errors δf toward the main rf-buckets.
A significant modification of the phase diagrams occurs when the perturba-
tion reaches such values that the separatrices of both sets of buckets merge as
shown in Fig.6.20(a). A further increase of the perturbation quickly reduces
the momentum acceptance of the rf-system as can be noticed by comparing
Figs. 6.20(a) and 6.20(b) or Figs. 6.23(a) and 6.23b). The effect of the mo-
mentum shift when ξ 
= 0 becomes obvious in Diagrams 6.21, 6.22, 6.23(c),
and 6.23(d) as well as the effect of a finite synchronous phase in Fig. 6.23(d).

From these qualitative observations we derive a threshold of allowable per-
turbation α1 above which the momentum acceptance of the system becomes
significantly reduced. From Fig. 6.20(a) we take the condition for momentum
stability when the separatrices of both sets of buckets merge which occurs
when the Hamiltonian for both separatrices or for the fixed points (B) and
(C) are equal and

H̃ (π − ψs, δB) = H̃(ψs, δC) . (6.108)

Equation (6.108) becomes in the form of (6.106)

∆ (−2 cosψs + (π − 2ψs) sinψs) − δ2
B + 2

3

α1

ηc
δ3
B + 2

ξ

ηc
δB (6.109)

= −δ2
C + 2

3

α1

ηc
δ3
C + 2

ξ

ηc
δC .

Comparing (6.107) with the results of linear theory, we note that the max-
imum unperturbed momentum acceptance is related to the parameter ∆ by

∆ =
1

F (q) sinψs

(
∆p

p0

)2

max

|ηc|
ηc

, (6.110)

where with 1
q = sinψs and

F (q) = −2 cosψs + (π − 2ψs) sinψs . (6.111)

Equation (6.109) can be solved for the maximum momentum acceptance
(
∆p

p0

)2

max

=
ηc

|ηc|
(
δ2
C − δ2

B

)
+ 2

3

α1

|ηc|
(
δ3
C − δ3

B

)
+ 2

ξ

|ηc|
(δC − δB) . (6.112)

Using expression (6.101) for the coordinates of the fixed points, (6.112)
eventually becomes with (6.102)
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(
∆p

p0

)2

max

=
η2
c

3α2
1

(1 − Γ )3/2
, (6.113)

and the stability criterion that the nonlinear perturbation not reduce the
momentum acceptance is finally expressed by

α1 ≤ |ηc|√
3

(1 − Γ )3/4

(
∆p
p0

)
desired

. (6.114)

From this criterion we note that the momentum independent perturbation
Γ can further limit the momentum acceptance until there is for Γ ≥ 1 no finite
momentum acceptance left at all.

The momentum shift and the momentum acceptance as well as stability
limits can be calculated analytically as a function of α1 and the momentum
independent term Γ . As long as the perturbation is small and (6.114) is ful-
filled we calculate the momentum acceptance for the linear rf-buckets from
the value of Hamiltonian (6.106). For stronger perturbations, where the sep-
aratrices of both layers of rf-buckets have merged and are actually exchanged
(Fig. 6.20), a different value of the Hamiltonian must be chosen. The maxi-
mum stable synchrotron oscillation in this case is not anymore defined by the
separatrix through fixed point B but rather by the separatrix through fixed
point C. In the course of synchrotron oscillations a particle reaches maximum
momentum deviations from the reference momentum at the phase ψ = ψs.
We have two extreme momentum deviations, one at the fixed point (C) and
the other half a synchrotron oscillation away. Both points have the same value
of Hamiltonian (6.106) and are related by

−δ̂2 + 2
3

α1

ηc
δ̂3 + 2

ξ

ηc
δ̂ = −δ2

C + 2
3

α1

ηc
δ3
C + 2

ξ

ηc
δC . (6.115)

We replace δC from (6.104) and obtain a third-order equation for the
maximum momentum acceptance δ̂

−δ̂2 + 2
3

α1

ηc
δ̂3 + 2

ξ

ηc
δ̂ − η2

c

6α2
1

[
1 + (1 − Γ )3/2 − 3

2Γ
]
. (6.116)

This third-order equation can be solved analytically and has the solutions

δ̂1 = ηc
2α1

(
1 − 2

√
1 − Γ

)
,

δ̂2,3 = ηc
2α1

(
1 +

√
1 − Γ

)
.

(6.117)

Two of the three solutions are the same and define the momentum at
the crossing of the separatrix at the fixed point (C) while the other solution
determines the momentum deviation half a synchrotron oscillation away from
the fixed point (C). We plot these solutions in Fig. 6.24 together with the
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momentum shift of the reference momentum at the fixed point (A). As long
as there is no momentum independent perturbation Γ = 0 and the momentum
acceptance is

−2 < −2α1

ηc
δ < 1 . (6.118)

The asymmetry of the momentum acceptance obviously reflects the asym-
metry of the separatrix. For α1 → 0 the momentum acceptance in (6.113)
diverges, which is a reminder that we consider here only the case where the
perturbation α1 exceeds limit (6.114). In reality the momentum acceptance
does not increase indefinitely but is limited by other criteria, for example,
by the maximum rf-voltage available. The momentum acceptance limits of
(6.117) are further reduced by a finite beam emittance when Γ 
= 0 causing
a spread in the revolution time. All beam stability is lost as Γ approaches
unity and the stability criterion for stable synchrotron motion in the presence
of betatron oscillations is defined by

4 ξ α1

η2
c

< 1, (6.119)

where the parameter ξ is defined by (6.94).
In evaluating the numerical value of ξ we must consider the emittances

εx,y as amplitude factors. In the case of a Gaussian electron beam in a storage
ring, for example, a long quantum lifetime can be obtained only if particles
with betatron oscillation amplitudes up to at least seven standard values are
stable. For such particles the emittance is ε = 72 εσ, where εσ is the beam
emittance for one standard deviation. Similarly, the momentum acceptance
must be large enough to include a momentum deviation of δmax ≥ 7σ

E
/E0.

In general, the stability criteria can be met easily if, by proper adjust-
ment of sextupole magnets, the linear perturbation α1 of the momentum
compaction is set to zero. In this case, however, we must consider dynamic
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stability of the beam and storage ring to prevent α1 to vary more than the
stability criteria allow. Any dynamic variation of α1 must meet the condition

∆α1 <
η2
c

4ξ
. (6.120)

Even if the quadratic term α1 is made to approach zero we still must
consider the momentum shift due to nonchromatic terms when ξ 
= 0. From
(6.103) we have for the momentum shift of the stable fixed point A

δA =
ηc

2α1

(
1 −

√
1 − Γ

)
, (6.121)

where Γ is small when α1 → 0 and the square root can be expanded. In this
limit the momentum shift becomes

δA → ξ

ηc
for α1 → 0 . (6.122)

To achieve low values of the momentum compaction, it is therefore also
necessary to reduce the particle beam emittance. Case studies of isochronous
lattices show, however, that this might be very difficult because the need to
generate both positive and negative values for the dispersion function gener-
ates large values for the slopes of the dispersion leading to rather large beam
emittances.

Adjusting the quadratic term α1 to zero finally brings us back to the sit-
uation created when the linear momentum compaction was reduced to small
values. One cannot ignore higher order terms anymore. In this case we would
expect that the quadratic and cubic perturbations of the momentum com-
paction will start to play a significant role since ηc ≈ 0 and α1 ≈ 0. The
quadratic term α3 will introduce a spread of the momentum compaction due
to the momentum spread in the beam while the cubic term α4 introduces a
similar spread to the linear term α1.

Problems

6.1 (S). A 500 MHz rf-system is supposed to be used in a Wideroe type linac
to accelerate protons from a 1 MeV Van de Graaf accelerator. Determine the
length of the first three drift tubes for an accelerating voltage at the gaps of
0.5 MeV while assuming that the length of the tubes shall not be less than
15 cm. Describe the operating conditions from an rf-frequency point of view.

6.2 (S). A proton beam is injected at a low energy into a storage ring in nb

equidistant short bunches and the rf-system in the storage ring is turned off.
Derive an expression for the debunching time, or the time it takes for the
bunched proton beam to spread out completely.
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6.3. Calculate the synchrotron oscillation frequency for a 9 GeV proton
booster. The maximum momentum is cpmax = 8.9 GeV the harmonic num-
ber h = 84, the rf-voltage Vrf = 200 kV, transition energy γtr = 5.4, and
rf-frequency at maximum momentum frf = 52.8 MHz. Calculate and plot the
rf and synchrotron oscillation frequency as a function of momentum from an
injection momentum of 400 MeV to a maximum momentum of 8.9 GeV while
the synchronous phase is ψs = 45◦. What is the momentum acceptance at
injection and at maximum energy? How long does the acceleration last?

6.4 (S). The momentum acceptance in a synchrotron is reduced as the syn-
chronous phase is increased. Derive a relationship between the maximum ac-
celeration rate and momentum acceptance. How does this relationship differ
for protons and radiating electrons?

6.5. Specify a synchrotron of your choice made up of FODO cells for the accel-
eration of relativistic particles. Assume an rf-system to provide an accelerating
voltage equal to 10−4 of the maximum particle energy in the synchrotron. Dur-
ing acceleration the synchrotron oscillation tune (νs) shall remain less than
0.02. What are the numerical values for the rf-frequency, harmonic number, rf-
voltage, synchronous phase angle, and acceleration time in your synchrotron?
In the case of a proton synchrotron determine the change in the bunch length
during acceleration.

6.6 (S). Derive an expression for and plot the synchrotron frequency as a
function of oscillation amplitude within the separatrices. What is the syn-
chrotron frequency at the separatrices?

6.7 (S). Sometimes it is desirable to produce short bunches, even only tem-
porary in a storage ring either to produce short X-ray pulses or for quick
ejection from a damping ring into a linear collider. By a sudden change of
the rf-voltage the bunch can be made to rotate in phase space. Determine
analytically the shortest possible bunch length as a function of the rf-voltage
increase considering a finite energy spread. For how many turns would the
short bunch remain within 50% of its shortest value?
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Periodic Focusing Systems

The fundamental principles of charged particle beam dynamics as discussed
in previous chapters can be applied to almost every beam transport need.
Focusing and bending devices for charged particles are based on magnetic or
electric fields which are specified and designed in such a way as to allow the
application of fundamental principles of beam optics leading to predictable
results.

Beam transport systems can be categorized into two classes: The first
group is that of beam transport lines which are designed to guide charged
particle beams from point A to point B. In the second class, we find beam
transport systems or magnet lattices forming circular accelerators. The physics
of beam optics is the same in both cases but in the design of actual solutions
different boundary conditions may apply. Basic linear building blocks in a
beam transport line are the beam deflecting bending magnets, quadrupoles to
focus the particle beam, and field free drift spaces between magnets. Transfor-
mation matrices have been derived in Chap. 4 and we will apply these results
to compose more complicated beam transport systems. The arrangement of
magnets along the desired beam path is called the magnet lattice or short the
lattice.

Beam transport lines can consist of an irregular array of magnets or a
repetitive sequence of a group of magnets. Such a repetitive magnet sequence
is called a periodic magnet lattice, or short periodic lattice and if the magnet
arrangement within one period is symmetric this lattice is called a symmetric
magnet lattice, or short a symmetric lattice. By definition a circular accelera-
tor lattice is a periodic lattice with the circumference being the period length.
To simplify the design and theoretical understanding of beam dynamics it is
customary, however, to segment the full circumference of a circular accelerator
into sectors which are repeated a number of times to form the complete ring.
Such sectors are called superperiods and define usually most salient features
of the accelerator in contrast to much smaller periodic segments called cells,
which include only a few magnets.
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In this chapter, we concentrate on the study of periodic focusing struc-
tures. For long beam transport lines and specifically for circular accelerators
it is prudent to consider focusing structures that repeat periodically. In this
case, one can apply beam dynamics properties of one periodic lattice structure
as many times as necessary with known characteristics. In circular particle
accelerators such periodic focusing structures not only simplify the determi-
nation of beam optics properties in a single turn but we will also be able
to predict the stability criteria for particles orbiting an indefinite number of
revolutions around the ring.

To achieve focusing in both planes, we will have to use both focusing
and defocusing quadrupoles in a periodic sequence such that we can repeat a
lattice period any number of times to form an arbitrary long beam line which
provides the desired focusing in both planes.

7.1 FODO Lattice

The most simple periodic lattice would be a sequence of equidistant focusing
quadrupoles of equal strength. This arrangement is unrealistic with magnetic
quadrupole fields which do not focus in both the horizontal and vertical plane
in the same magnet. The most simple and realistic compromise is therefore a
periodic lattice like the symmetric quadrupole triplet which was discussed in
Sect. 4.2.3. and is shown schematically in Fig. 7.1.

z

FODO Period

½ QF QD  ½ QF

Fig. 7.1. FODO-lattice (QF: focusing quadrupole; QD: defocusing quadrupole)

Each half of such a lattice period is composed of a focusing (F) and a
defocusing (D) quadrupole with a drift space (O) in between. Combining such
a sequence with its mirror image as shown in Fig. 7.1 results in a periodic
lattice which is called a FODO lattice or a FODO channel. By starting the
period in the middle of a quadrupole and continuing to the middle of the next
quadrupole of the same sign not only a periodic lattice but also a symmetric
lattice is defined. Such an elementary unit of focusing is called a lattice unit
or in this case a FODO cell. The FODO lattice is the most widely used
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lattice in accelerator systems because of its simplicity, flexibility, and its beam
dynamical stability.

7.1.1 Scaling of FODO Parameters

To determine the properties and stability criteria for a FODO period we re-
strict ourselves to thin lens approximation, where we neglect the finite length
of the quadrupoles. This approximation greatly simplifies the mathematical
expressions while retaining the physical properties to a very high degree. A
simple periodic and symmetric transformation matrix for a FODO cell can
be derived by starting in the middle of one quadrupole and going to the mid-
dle of the next quadrupole of the same type. Any other point in the FODO
lattice could be used as the starting point with the analogous point one pe-
riod downstream to be the ending point, but the mathematical expressions
would be unnecessarily complicated without adding more physical insight.
The FODO period therefore can be expressed symbolically by the sequence
1
2QF − L − QD − L − 1

2QF , where the symbol L represents a drift space of
length L and the symbols QF and QD focusing and defocusing quadrupoles,
respectively. In either case we have a triplet structure for which the transfor-
mation matrix has been derived in Sect. 4.2.3 and is

MFODO =


1 − 2 L2

f 2 2L
(
1 + L

f

)

− 1
f ∗ 1 − 2 L2

f 2


 . (7.1)

Here ff = −fd = f , 1/f ∗ = 2 (1 − L/f)L/f 2. Such a FODO lattice is
called a symmetric FODO lattice.

From the transformation matrix (7.1) we can deduce an important prop-
erty for the betatron function. The diagonal elements are equal as they always
are in any symmetric lattice. Comparison of this property with elements of the
transformation matrix expressed in terms of betatron functions (5.76) shows
that the solution of the betatron function is periodic and symmetric since
α = 0 both at the beginning and the end of the lattice period. We therefore
have symmetry planes in the middle of the quadrupoles for the betatron func-
tions in the horizontal as well as in the vertical plane. The betatron functions
then have the general periodic and symmetric form as shown in Fig. 7.2.

From (5.22) and (7.1), we can derive the analytical expression for the
periodic and symmetric betatron function by setting β0 = β, α0 = 0, and
γ0 = 1/β0 and get

β =
(

1 − 2
L2

f 2

)2

β + 4L2

(
1 +

L

f

)2 1
β
, (7.2)

where f > 0 and β is the value of the betatron function in the middle of the
focusing quadrupole, QF. Solving for β, we get after some manipulations
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Fig. 7.2. Periodic betatron functions in a FODO channel

β+ = L

f
L

f
L+1√
f 2

L2−1

= L
κ(κ + 1)√
κ2 − 1

, (7.3)

where we define the FODO parameter κ by

κ =
f

L
> 1 (7.4)

and set β = β+ to indicate the solution at the center of the focusing quadru-
pole. The FODO parameter κ is used only here and should not be identified
with our general use of this letter being the curvature. Had we started at the
defocusing quadrupole we would have to replace f by −f and get analogous
to (7.3) for the value of the betatron function in the middle of the defocusing
quadrupole

β− = L
κ(κ− 1)√
κ2 − 1

. (7.5)

These are the solutions for both the horizontal and the vertical plane.
In the middle of the horizontally focusing quadrupole QF (f > 0) we have
βx = β+ and βy = β− and in the middle of the horizontally defocusing
quadrupole QD (f < 0), we have βx = β− and βy = β+. From the knowledge
of the betatron functions at one point in the lattice, it is straightforward to
calculate the value at any other point by proper matrix multiplications as
discussed earlier. In open arbitrary beam transport lines the initial values of
the betatron functions are not always known and there is no process other
than measurements of the actual particle beam in phase space to determine
the values of the betatron functions as discussed in Sect. 5.1.3. The betatron
functions in a periodic lattice in contrast are completely determined by the
requirement that the solution be periodic with the periodicity of the lattice.
It is not necessary that the focusing lattice be symmetric to obtain a unique,
periodic solution. Equation (5.22) can be used for any periodic lattice re-
quiring only the equality of the betatron functions at the beginning and at
the end of the periodic structure. Of course, not any arbitrary although peri-
odic arrangement of quadrupoles will lead to a viable solution and we must
therefore derive conditions for periodic lattices to produce stable solutions.
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The betatron phase for a FODO cell can be derived by applying (5.76) to
a symmetric lattice. With α0 = α = 0 and β0 = β this matrix is


 cosφ β sinφ

− 1
β sinφ cosφ


 , (7.6)

where φ is the betatron phase advance through a full symmetric period. Since
matrix (7.6) must be equal to matrix (7.1), the phase must be

cosφ = 1 − 2
L2

f 2
=

κ2 − 2
κ2

(7.7)

or
sin φ

2 =
1
κ
. (7.8)

For solution (7.8) to be real the parameter κ must be larger than unity, a
result which also becomes obvious from (7.3),(7.5). This condition is equivalent
to stating that the focal length of half a quadrupole in a FODO lattice must
be longer than the distances to the next quadrupole.

The solutions for periodic betatron functions depend strongly on the
quadrupole strengths. Specifically, we observe that (7.3) has minimum char-
acteristics for β+. For κ → 1 as well as for κ → ∞ we get β → ∞, and
therefore we expect a minimum between these extremes. Taking the deriva-
tive dβ+/dκ = 0, (7.3) becomes

κ2
0 − κ0 − 1 = 0, (7.9)

which can be solved for

κ0 = 1
2 ±
√

1
4 + 1 = 1.6180 . (7.10)

The optimum phase advance per FODO cell is therefore

φ0 ≈ 76.345◦ . (7.11)

The maximum value of the betatron function reaches a minimum for a
FODO lattice with a phase advance of about 76.3◦ per cell. Since beam sizes
scale with the square root of the betatron functions, a lattice with this phase
advance per cell requires the minimum beam aperture.

This criterion, however, is true only for a flat beam when εx 
 εy or
εy 
 εx. For a round beam εx ≈ εy and maximum beam acceptance is obtained
by minimizing the beam diameter or E2

x +E2
y ∼ βx +βy, where Ex and Ey are

the beam envelopes in the horizontal and vertical plane, respectively (Fig. 7.3).
This minimum is determined by d(βx + βy)/dκ = 0, or for

κopt =
√

2 (7.12)
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Fig. 7.3. Maximum beam acceptance of a FODO lattice with a circular aperture
of radius R and where Ex,y =

√
εx,yβx,y

and the optimum betatron phase per cell is then from (7.8)

φopt = 90◦ . (7.13)

This solution requires the minimum radial aperture R in quadrupoles for
a beam with equal beam emittances in both planes εx = εy = ε. The betatron
functions in the middle of the quadrupoles are then simply

β+
opt = L (2 +

√
2),

β−
opt = L (2 −

√
2) .

(7.14)

The beam envelopes are E2
x = β+

opt ε and E2
y = β−

opt ε and the maximum
beam emittance to fit an aperture of radius R or the acceptance of the aperture
can be determined from

E2
x + E2

y = R2 = ε (β+ + β−) . (7.15)

From (7.14) we find β++β− = 4L and the acceptance of a FODO channel
with an aperture radius R becomes

εmax =
R2

4L
. (7.16)

With this optimum solution we may develop general scaling laws for the
betatron functions in a FODO lattice. The values of the betatron functions
need not be known at all points of a periodic lattice to characterize the beam
optical properties. It is sufficient to know these values at characteristic points
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like the symmetry points in a FODO channel, where the betatron functions
reach maximum or minimum values. From (7.3) , (7.14) the betatron functions
at these symmetry points are given by

β+

βopt
= κ (κ+1)

(2+
√

2)
√

κ2−1

β−

βopt
= κ (κ−1)

(2−
√

2)
√

κ2−1
.

(7.17)

The scaling of the betatron function is independent of L and depends only
on the ratio of the focal length to the distance between quadrupoles κ = f /L.
In Fig. 7.4, the betatron functions β+ and β− are plotted as a function of the
FODO parameter κ.

κ = f / L
0.1
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0.5
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2

β+/β+
opt

β-/β-
opt

10 2 3 4

Fig. 7.4. Scaling of horizontal and vertical betatron functions in a FODO lattice

The distance L between quadrupoles is still a free parameter and can
be adjusted to the needs of the particular application. We observe, however,
that the maximum value of the betatron function varies linearly with L and,
therefore, the maximum beam size in a FODO lattice scales like

√
L.

7.1.2 Betatron Motion in Periodic Structures

For the design of circular accelerators it is of fundamental importance to
understand the long term stability of the beam over many revolutions. Specif-
ically we need to know if the knowledge of beam dynamics in one periodic
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unit can be extrapolated to many periodic units. In the following sections, we
discuss stability criteria as well as characteristic beam dynamics in periodic
lattices.

Stability Criterion

The periodic solution for one FODO cell has been derived in the last section
and we expect that such periodic focusing cells can be repeated indefinitely.
Following the classic paper by Courant and Snyder [20], we will derive the
stability conditions for an indefinite number of periodic but not necessarily
symmetric focusing cells. The structure of the cells can be arbitrary but must
be periodic. If M(z+2L|z) is the transformation matrix for one cell, we have
for N cells

M(z + N 2L| z) = [M(z + 2L| z)]N . (7.18)

Stable solutions are obtained if all elements of the total transformation
matrix stay finite as N increases indefinitely. To find the conditions for this
we calculate the eigenvalues λ of the characteristic matrix equation. The eigen-
values λ are a measure for the magnitude of the matrix elements and therefore
finite values for the eigenvalues will be the indication that the transformation
matrix stays finite as well. The characteristic matrix equation

(M− λI)x = 0, (7.19)

where I is the unity matrix. For nontrivial values of the eigenvectors (x 
= 0)
the determinant

|M− λI| =

∣∣∣∣∣∣
C − λ S

C ′ S′ − λ

∣∣∣∣∣∣
= 0 (7.20)

and with CS′ − SC ′ = 1 the eigenvalue equation is

λ2 − (C + S′)λ + 1 = 0 . (7.21)

The solutions for the eigenvalues are

λ1,2 = 1
2 (C + S′) ±

√
1
4 (C + S′)2 − 1 (7.22)

or with the substitution 1
2 (C + S′) = cosφ

λ1,2 = cosφ ± i sinφ = eiφ . (7.23)

The betatron phase φ must be real or the trace of the matrix M must be

Tr{M} = C + S′ ≤ 2 . (7.24)

On the other hand, the transformation matrix for a full lattice period is
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M =


 cosφ + α sinφ β sinφ

−γ sinφ cosφ− α sinφ


 , (7.25)

which can be expressed with J =


 α β

−γ −α


 by

M = I cosφ + J sinφ . (7.26)

This matrix has the form of Euler’s formula for a complex exponential.
Since the determinant of M is unity we get γβ−α2 = 1 or J 2 = −I. Similar
to Moivre’s formula, for N equal periods

MN = (I cosφ + J sinφ)N = I cosNφ + J sinNφ (7.27)

and the trace for N periods is bounded if cosφ < 1 or if (7.24) holds or if

Tr
(
MN

)
= 2 cos(Nφ) ≤ 2 . (7.28)

This result is called the stability criterion for periodic beam transport
lattices. We note that the trace of the transformation matrix M does not de-
pend on the reference point z. To show this we consider two different reference
points z1 and z2, where z1 < z2, for which the following identities hold

M(z2 + 2L| z1) = M(z2| z1)M(z1 + 2L| z1) = M(z2 + 2L| z2)M(z2| z1)
(7.29)

and solving for M(z2 + 2L|z2) we get

M(z2 + 2L| z2) = M(z2| z1)M(z1 + 2L| z1)M−1(z2| z1) . (7.30)

This is a similarity transformation and, therefore, both transformation ma-
trices M(z2 +2L| z2) and M(z1 +2L| z1) have the same trace and eigenvalues
independent of the choice of the location z.

7.1.3 General FODO Lattice

So far we have considered FODO lattices, where both quadrupoles have equal
strength, f1 = −f2 = f . Since we made no use of this in the derivation of the
stability criterion for betatron functions we expect that stability can also be
obtained for unequal quadrupoles strengths. In this case the transformation
matrix of half a FODO cell is

M 1
2

=


 1 0

− 1
f2

1




 1 L

0 1




 1 0

− 1
f1

1


 =


1 − L

f1
L

− 1
f ∗ 1 − L

f2


 , (7.31)
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where 1/f∗ = +1/f1+1/f2−L/(f1 f2). Multiplication with the reverse matrix
gives for the full transformation matrix of the FODO cell

M =




1 − 2 L
f ∗ 2L

(
1 − L

f2

)

− 2
f ∗ 1 − L

f1
1 − 2 L

f ∗


 . (7.32)

The stability criterion

Tr{M} =
∣∣∣∣2 − 4L

f∗

∣∣∣∣ < 2 (7.33)

is equivalent to

0 <
L

f∗ < 1 . (7.34)

To determine the region of stability in the (u, v)-plane, where u = L/f1

and v = L/f2, we use L/f∗ = +L/f1 +L/f2 −L2/(f1 f2) and get with (7.34)
the condition

0 < u + v − uv < 1, (7.35)

where u and v can be positive or negative. Solving the second inequality for
either u or v we find the conditions |u| < 1 and |v| < 1. With this, the first
inequality can be satisfied only if u and v have different signs. The boundaries
of the stability region are therefore given by the four equations

|u| = 1, |v| = |u|
1+|u| ,

|v| = 1, |u| = |v|
1+|v| ,

(7.36)

defining the stability region shown in Fig. 7.5 which is also called the necktie
diagram because of its shape. Due to the full symmetry in |u| and |v| the
shaded area in Fig. 7.5 is the stability region for both the horizontal and
vertical plane.

For convenience, we used the thin lens approximation to calculate the
necktie diagram. Nothing fundamentally will, however, change when we use
the transformation matrices for real quadrupoles of finite length except for
a small variation of the stability boundaries depending on the degree of de-
viation from the thin lens approximation. With the general transformation

matrix for a full FODO period M =


 C S

C ′ S′


the periodic solution for the

betatron function is β2 = S2

1−C2 and the stability condition

TrM = |C + S′| < 2 . (7.37)

The stability diagram has still the shape of a necktie although the boundaries
are slightly curved.
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Fig. 7.5. Necktie diagram

A general transformation matrix for half a FODO cell can be obtained in
matrix formalism with ψ =

√
k� by multiplying the matrices

M 1
2

=


 coshψ2

�2
ψ2

sinhψ2

ψ2
�2

sinhψ2 coshψ2




1 L

0 1




×


 cosψ1

�1
ψ1

sinψ1

−ψ1
�1

sinψ1 cosψ1


 , (7.38)

where now L is not the half cell length but just the drift space between two
adjacent quadrupoles of finite length and the indices refer to the first and
the second half quadrupole, respectively. From this we get the full period
transformation matrix by multiplication with the reverse matrix

M =


 C S

C ′ S′


 = M 1

2 ,r M 1
2
.

Obviously the mathematics becomes elaborate although straightforward
and it is prudent to use computers to find the desired results.
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Table 7.1. FODO cell parameters

Example 1 2 3 4

Energy, E(GeV) 10 50 4 20,000

Half cell length, L(m) 6.0 2.6 3.6 114.25

Quadrupole length, �q(m) 0.705 1.243 0.15 3.64

Bending magnet length, �b(m) 3.55 2.486 2.5 99.24

Phase advance per cell, ψ 101.4 108.0 135.0 90.0

Quadrupole strength†, k (m−2) · · · · · · · · · · · ·

lattice type∗ (FODO) sf cf sf sf

† these parameters will be determined in Problem 7.1

∗sf: separated function; cf: combined function lattice.

As reference examples to study and discuss a variety of accelerator physics
issues in this text, we consider different FODO lattices (Table 7.1) which are
of some but definitely not exhaustive practical interest. Other periodic lattices
are of great interest as well specifically for synchrotron radiation sources but
are less accessible to analytical discussions than a FODO lattice. All examples
except Example 2 are separated function lattices.

Example 1 is that for a 10 GeV electron synchrotron at DESY [60, 61]
representing a moderately strong focusing lattice with a large stability range
as is commonly used if no extreme beam parameters are required as is the
case for synchrotrons used to inject into storage rings. Figure 7.6 shows the
betatron functions for this lattice. We note small deviations from a regular
FODO lattice which is often required to make space for other components.
Such deviations from a regular lattice cause only small perturbations in the
otherwise periodic betatron functions. Strong focusing is required for beam
transport lines in linear electron positron collider facilities to minimize in-
crease of the beam emittance due to synchrotron radiation. As Example 2
we use the lattice for the long curved beam transport lines leading the 50
GeV beam from the linac to the collision area at the Stanford Linear Col-
lider [62]. This lattice exhibits the greatest deviation from a thin lens FODO
channel as shown in Fig. 7.7. Example 3 resembles a theoretical lattice for an
extremely small beam emittance used to study fundamental limits of beam
stability and control of aberrations [63] . Lattices for future very high energy
hadron colliders in the TeV range use rather long FODO cells leading to large
values of the betatron and dispersion functions and related high demands on
magnet field and alignment tolerances. Arc lattice parameters for the 20 TeV
Superconducting Super Collider (SSC) are compiled as Example 4.
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Fig. 7.6. FODO lattice for one octant of a synchrotron [60,61])
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Fig. 7.7. FODO cell for a linear collider transport line [64,65] (Example 2 in Table
7.1)

7.2 Beam Dynamics in Periodic Closed Lattices

In the previous section, we discussed the beam dynamics in a FODO lattice
and we will use such periodic lattices to construct a closed path for circular
accelerators like synchrotrons and storage rings. The term “circular” is used
in this context rather loosely since such accelerators are generally composed
of both circular and straight sections giving the ring the appearance of a
circle, a polygon, or racetrack. Common to all these rings is the fact that the
reference path must be a closed path so that the total circumference of the
ring constitutes a periodic lattice that repeats turn for turn.

7.2.1 Hill’s Equation

The motion of particles or more massive bodies in periodic external fields
has been studied extensively by astronomers in the past century especially in
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connection with the three-body problem. In particle beam dynamics we find
the equation of motion in periodic lattices to be similar to those studied by
the astronomer Hill. We will discuss in this chapter the equation of motion,
called Hill’s equation, its solutions, and properties.

Particle beam dynamics in periodic systems is determined by the equation
of motion

u′′ + K(z)u = 0, (7.39)

where K(z) is periodic with the period Lp

K(z) = K(z + Lp) . (7.40)

The length of a period Lp may be the circumference of the circular accelerator
lattice or the length of a superperiod repeating itself several times around the
circumference. The differential equation (7.39) with the periodic coefficient
(7.40) has all the characteristics of a Hill’s differential equation [66]. The solu-
tions of Hill’s equation and their properties have been formulated in Floquet’s
theorem :

• two independent solutions exist of the form

u1(z) = w(z) ei µ z/Lp ,

u2(z) = w∗(z) e−i µ z/Lp
(7.41)

• w∗(z) is the complex conjugate solution to w(z). For all practical cases of
beam dynamics we have only real solutions and w∗(z) = w(z) ;

• the function w(z) is unique and periodic in z with period Lp

w(z + Lp) = w(z) ; (7.42)

• µ is a characteristic coefficient defined by

cosµ = 1
2Tr [M (z + Lp |z )] ; (7.43)

• the trace of the transformation matrix M is independent of z

Tr [M(z + Lp|z]) 
= f(z) ; (7.44)

• the determinant of the transformation matrix is equal to unity

detM = 1 ; (7.45)

• the solutions remain finite for

1
2 Tr [M(z + Lp|z)] < 1 . (7.46)



7.2 Beam Dynamics in Periodic Closed Lattices 251

The amplitude function w(z) and the characteristic coefficient µ can be
correlated to quantities we have derived earlier using different methods. The
transformation of a trajectory u through one lattice period of length Lp must
be equivalent to the multiplication by the transformation matrix (7.25) for
that period which gives

u(z + Lp) = (cosψ + α sinψ)u(z) + β sinψ u′(z), (7.47)

where u stands for any of the two solutions (7.41) and ψ is the betatron phase
advance for the period. From (7.41),(7.42) we get on the other hand

u(z + Lp) = u(z) e±iµ = u(z) (cosµ± i sinµ) . (7.48)

Comparing the coefficients for the sine and cosine terms we get

cosψ = cosµ or ψ = µ (7.49)

and
αu(z) + βu′(z) = ± iu(z) . (7.50)

The first equality can also be derived from (7.25) and (7.43) . Equation
(7.50) can be further simplified by a logarithmic differentiation

u′′

u′ − u′

u
= −β′

β
− α′

± i − α
. (7.51)

On the other hand, we can construct from (7.39),(7.50) the expression

u′′

u′ − u′

u
=

−K β

± i − α
− ± i − α

β
(7.52)

and equating the r.h.s. of both expressions (7.51), (7.52), we find

(1 − α2 −K β2 + α′β − αβ′) ± i (2α + β′) = 0, (7.53)

where all functions in brackets are real as long as we have stability. Both
brackets must be equal to zero separately with the solutions

β′ = −2α, (7.54)

and
α′ = K β − γ . (7.55)

Equation (7.54) can be used in (7.50) for

u′

u
=

±i − α

β
= ± i

β
+

1
2
β′

β
, (7.56)

and after integration
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log
u

u0
= ± i

∫ z

0

dζ
β

+ 1
2 log

β

β0
, (7.57)

where u0 = u(z0) and β0 = β(z0) for z = z0. Solving for u(z) we get the
well-known solution

u(z) = a
√

β(z) e±i ψ, (7.58)

where a = u0/
√
β0 and

ψ(z − z0) =
∫ z

z0

dζ
β(ζ)

. (7.59)

With ψ(Lp) = µ and
√

β(z) =
w(z)
a

, (7.60)

we find the previous definitions of the betatron functions to be consistent with
the coefficients of Floquet’s solutions in a periodic lattice. In the next section
we will apply the matrix formalism to determine the solutions of the betatron
functions in periodic lattices.

7.2.2 Periodic Betatron Functions

Having determined the existence of stable solutions for particle trajectories in
periodic lattices we will now derive periodic and unique betatron functions.
For this we take the transformation matrix of a full lattice period

M(z + Lp | z ) =


 C S

C ′ S′


 (7.61)

and construct the transformation matrix for betatron functions:



β

α

γ


 =




C2 −2CS S2

−CC ′ CS′ + C ′S −SS′

C ′ 2 −2C ′S′ S′ 2







β0

α0

γ0


= Mβ




β0

α0

γ0


 . (7.62)

Lattice functions are not changed by a lattice segment with a unity trans-
formation matrix except inside this segment. In this case, any set of lattice
functions β = (β, α, γ) is also a periodic solution. Because of the quadratic
nature of the matrix elements, we find the same result in the case of a 180◦

phase advance for the lattice segment. Any such lattice segment with a phase
advance of an integer multiple of 180◦ is neutral to the transformation of
lattice functions. This feature can be used to create irregular insertions in a
lattice that do not disturb the lattice functions outside the insertions.

To obtain from (7.62) a general periodic solution for the betatron functions
we simply solve the eigenvector equation
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(Mβ − I)β = 0 . (7.63)

The solution can be obtained from the component equations of (7.63)

(C2 − 1)β − 2SC α + S2 γ = 0,
CC ′ β − (S′C + CS′ − 1)α + SS′ γ = 0, (7.64)

C ′2 β − 2S′C ′ α + (S′2 − 1) γ = 0 .

A particular simple solution is obtained if the periodic lattice includes a
symmetry point. In this case, we define this symmetry point as the start of
the periodic lattice with α = 0, and get the simple solutions

β2 =
S2

1 − C2
, α = 0, γ =

1
β
. (7.65)

The transformation matrix for a superperiod or full circumference of a ring
then becomes simply from (5.76)

M =




cosµ β sinµ

− 1
β sinµ cosµ


 , (7.66)

where µ is the phase advance for the full lattice period. The solutions are
stable as long as the trace of the transformation matrix meets the stability
criterion (7.37) or as long as µ 
= nπ, where n is an integer.

Different from an open transport line, well determined and unique starting
values for the periodic betatron functions exist in a closed lattice due to the
periodicity requirement allowing us to determine the betatron function any-
where else in the lattice. Although (7.65) allows both a positive and a negative
solution for the betatron function, we choose only the positive solution for the
definition of the betatron function.

Stable periodic solutions for asymmetric but periodic lattices, where α 
= 0,
can be obtained in a straightforward way from (7.64) as long as the determi-
nant |Mp − I| 
= 0.

The betatron phase for a full turn around a circular accelerator of circum-
ference C is from (7.59)

µ(LC) =
∫ z+LC

z

dζ
β(ζ)

. (7.67)

If we divide this equation by 2π we get a quantity ν which is equal to the
number of betatron oscillations executed by particles traveling once around
the ring. This number is called the tune or operating point of the circular
accelerator. Since there are different betatron functions in the horizontal plane
and in the vertical plane, we also get separate tunes in a circular accelerator
for both planes
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νx,y =
1
2π

∮
dζ

βx,y(ζ)
. (7.68)

This definition is equivalent to having chosen the integration constant
in (5.59) equal to 1/2π instead of unity. Yet another normalization can be
obtained by choosing 1/ν for the integration constant in (5.59), in which case
the phase defined as

ϕ(z) =
ψ(z)
ν

=
∫ z

0

dζ
ν β(ζ)

(7.69)

varies between 0 and 2π along the circumference of a ring lattice. This nor-
malization will become convenient when we try to decompose periodic field
errors in the lattice into Fourier components to study their effects on beam
stability.

Equation (7.68) can be used to get an approximate expression for the
relationship between the betatron function and the tune. If β is the average
value of the betatron function around the ring then µ(LC) = 2πν ≈ LC/β ≈
2πR/β or

β =
R

ν
. (7.70)

This equation is amazingly accurate for most rings and is therefore a useful
tool for a quick estimate of the average betatron function or for the tunes often
referred to as the smooth approximation.

In a circular accelerator, three tunes are defined for the three degrees
of freedom, the horizontal, vertical and longitudinal motion. In Fig. 7.8 the
measured frequency spectrum is shown for a particle beam in a circular accel-
erator. The electric signal from an isolated electrode in the vacuum chamber is
recorded and connected to a frequency analyzer. The signal amplitude depends
on the distance of the passing beam to the electrode and therefore includes the
information of beam oscillations as a modulation of the revolution frequency.

Oscillations of particles about a longitudinal reference point and about
the ideal particle momentum are called longitudinal oscillations, phase oscil-
lations or synchrotron oscillations. Such oscillations can also be detected with
electrodes and the signal from synchrotron oscillations appears on a spectrum

Fig. 7.8. Frequency spectrum from a circulating particle beam: νs, synchrotron
tune; νx, νy, betatron tunes; νx ± νy, satellites
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analyzer as sidebands to harmonics of the revolution frequency. Analogous
to the transverse motion, a longitudinal tune νs is defined as the number of
oscillations per revolution or as the synchrotron tune .

We note a number of frequencies in the observed spectrum of the storage
ring SPEAR as shown in Fig. 7.8. At the low frequency end two frequencies
indicate the longitudinal tune νs and its first harmonic at 2νs. The two large
signals are the horizontal and vertical tunes of the accelerator. Since the en-
ergy oscillation affects the focusing of the particles, we also observe two weak
satellite frequencies on one of the transverse tunes at a distance of ±νs. The
actual frequencies observed are not directly equal to ν ω0, where ω0 is the
revolution frequency, but are only equal to the nonintegral part of the tune
∆ν ω0, where ∆ν is the distance to the integer nearest to ν.

7.2.3 Periodic Dispersion Function

The dispersion function can be periodic if the lattice is periodic. In this section,
we will determine the periodic solution of the dispersion function first for the
simple lattice building block of a FODO channel and then for general but
periodic lattice segments.

Scaling of the Dispersion in a FODO Lattice

Properties of a FODO lattice have been discussed in detail for a monochro-
matic particle beam only and no chromatic effects have been taken into ac-
count. To complete this discussion we now include chromatic effects which
cause, in linear approximation, a dispersion proportional to the energy spread
in the beam and are caused by bending magnets. We have used the transfor-
mation matrix for a symmetric quadrupole triplet as the basic FODO cell.
The bending magnet edge focusing was ignored and so were chromatic effects.
In the following we still ignore the quadratic edge focusing effects of the bend-
ing magnets, but we cannot ignore any longer linear effects of energy errors.
For simplicity we assume again thin lenses for the quadrupoles and get for the
chromatic transformation matrix through half a FODO cell, 1

2QF – B – 1
2QD

with (5.102) and assuming small deflection angles

M 1
2 FODO =




1 0 0

1/f 1 0

0 0 1







1 L 1
2ρ0

L2

0 1 L
ρ0

0 0 1







1 0 0

−1/f 1 0

0 0 1




or after multiplication

M 1
2 FODO =




1 − L
f L 1

2ρ0
L2

− L
f2 1 + L

f
L
ρ0

(
1 + L

2f

)

0 0 1


 . (7.71)
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Fig. 7.9. Dispersion function in FODO cells (Example 1 in Table 7.1)

The absolute value of the focal length f is the same for both quadrupoles
but since we start at the symmetry point in the middle of a quadrupole, this
focal length is based only on half a quadrupole. We have also assumed that the
deflection angle of the bending magnet is small, θ � 1, in analogy to thin lens
approximation for quadrupoles. Lastly, we assumed that the bending magnets
occupy the whole drift space between adjacent quadrupoles. This is not quite
realistic but allows us an analytical and reasonable accurate approach.

In Section 5.4 dispersive elements of transformation matrices have been
derived. In periodic lattices, however, we look for a particular solution which
is periodic with the periodicity of the focusing lattice and label the solution by
η(z) or the η-functionin distinction from the ordinary, generally non-periodic
dispersion function D(z). The typical form of the periodic dispersion function
in a FODO lattice is shown in Fig. 7.9. In addition to being periodic, this η-
function must be symmetric with respect to the symmetry points in the middle
of the FODO quadrupoles, where the derivative of the η-function vanishes.
The transformation through one half FODO cell is




η−

0

1


 = M 1

2 FODO




η+

0

1


 , (7.72)

where we have set δ = 1 in accordance with the definition of dispersion func-
tions and deflection in the horizontal plane.

In the particular arrangement of quadrupoles chosen in (7.71) the focusing
quadrupole is the first element and, therefore, the dispersion function reaches
a maximum value η+ there. At the center of the defocusing quadrupole the
dispersion function is reduced to a minimum value η−. The opposite sequence
of quadrupoles would lead to similar results. From (7.72) we get the two
equations
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η− =
(
1 − L

f

)
η+ + L2

2ρ0
,

0 = − L
f 2 η+ + L

ρ0

(
1 + L

2 f

)
.

(7.73)

Solving (7.73) for the periodic dispersion function in the middle of the
FODO quadrupoles, where η′ = 0, we get in the focusing or defocusing quadru-
pole, respectively

η+ = f 2

ρ0

(
1 + L

2 f

)
= L2

2ρ0
κ (2κ + 1)

η− = f 2

ρ0

(
1 − L

2 f

)
= L2

2ρ0
κ (2κ− 1),

(7.74)

where κ = f /L.
As mentioned before, in this approximation the bending magnet is as long

as the length of half the FODO cell since the quadrupoles are assumed to be
thin lenses and no drift spaces have been included between the quadrupoles
and the bending magnet. The bending radius ρ0, therefore, is equal to the
average bending radius in the FODO lattice. From the known values of the
dispersion function at the beginning of the FODO lattice, we can calculate
this function anywhere else in the periodic cell. Similar to the discussion in
Sect. 7.1, we chose an optimum reference lattice, where

κ0 =
√

2, (7.75)

and
η+
0 = L2

2ρ (4 +
√

2),

η−0 = L2

2ρ (4 −
√

2) .
(7.76)

In Fig. 7.10 the values of the dispersion functions, normalized to those for the
optimum FODO lattice in the middle of the FODO quadrupoles, are plotted
versus the FODO cell parameter κ.

From Fig. 7.10 we note a diminishing dispersion function in a FODO cell
as the betatron phase per cell or the focusing is increased (f → 0). This result
will be important later for the design of storage rings for specific applications
requiring either large or small beam emittances. The procedure to determine
the dispersion functions in a FODO cell is straightforward and can easily be
generalized to real FODO lattices with finite quadrupole length and shorter
bending magnets, although it may be desirable to perform the matrix multi-
plications on a computer. For exploratory designs of accelerators structures,
however, the thin lens approximation is a powerful and fairly accurate design
tool.

General Solution for the Periodic Dispersion

In the previous section the dispersion function for a periodic and symmetric
FODO lattice was derived. Many periodic lattice structures, however, are
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Fig. 7.10. Scaling of the dispersion function in a FODO lattice

neither symmetric nor pure FODO structures and therefore we need to derive
the periodic dispersion function in a more general form. To do this, we include
in the equation of motion also the linear energy error term from, for example,
(2.51)

u′′ + K(z)u = κ0(z) δ . (7.77)

For particles having the ideal energy, δ = 0, the right-hand side vanishes
and the solutions are composed of betatron oscillations and the trivial solution

u0(z) ≡ 0 . (7.78)

This trivial solution of (7.77) is clearly periodic and represents what is
called in beam transport systems the ideal path and in circular accelerators the
equilibrium orbit or closed orbit about which particles perform betatron oscil-
lations. The expression for the ideal equilibrium orbit is this simple since we
decided to use a curvilinear coordinate system which follows the design orbit
(7.78) as determined by the placement of bending magnets and quadrupoles.

For off-momentum particles (δ 
= 0), the ideal path or closed orbit is dis-
placed. Ignoring for a moment the z-dependence of K and κ0, this systematic
displacement of the orbit is of the order of

∆u =
κ0

K
δ (7.79)

as suggested by (7.77). In a real circular accelerator we expect a similar al-
though z-dependent displacement of the equilibrium orbit for off-momentum
particles. Only one equilibrium orbit exists for each particle energy in a given
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closed lattice. If there were two solutions u1 and u2 of (7.77) we could write
for the difference

(u1 − u2 )′′ + K(z) (u1 − u2) = 0, (7.80)

which is the differential equation for betatron oscillations. Different solutions
for the same energy, therefore, differ only by betatron oscillations which are
already included in the general solution as the homogeneous part of the dif-
ferential equation (7.77). Therefore, in a particular circular lattice only one
unique equilibrium orbit or closed orbit exists for each energy.

Chromatic transformation matrices have been derived in Sect. 5.4. If we
apply these matrices to a circular lattice and calculate the total transformation
matrix around the whole ring, we will be able to determine a self-consistent
solution for equilibrium orbits. Before we calculate the periodic equilibrium
orbits, we note that the solutions of (7.77) are proportional to the momentum
deviation δ. We therefore define the generalized periodic dispersion function
as the equilibrium orbit for δ = 1 which we call the η–function. The transfor-
mation matrix for a periodic lattice of length Lp is

M(z + Lp | z ) =




C (z + Lp) S (z + Lp) D (z + Lp)

C ′ (z + Lp) S′ (z + Lp) D′ (z + Lp)

0 0 1


 (7.81)

and we get for the η-function with η(z + Lp) = η(z), η′(z + Lp) = η′(z) and
(7.81)

η(z) = C(z + Lp) η(z) + S(z + Lp) η′(z) + D(z + Lp),

η′(z) = C ′(z + Lp) η(z) + S′(z + Lp) η′(z) + D′(z + Lp) .
(7.82)

These two equations can be solved for η(z) and η′(z), the periodic dispersion
function at the point z. The equilibrium orbit for any off-momentum particle
can be derived from this solution by multiplying with δ

uδ(z) = η(z) δ . (7.83)

In a more formal way the periodic solution for the dispersion function can
be derived from (7.82) in a form without the arguments for increased clarity

(C − 1)η + Sη′ + D = 0,

C ′η + (S′ − 1)η′ + D′ = 0,
(7.84)

which in vector notation is

(Mη − I)η = 0, (7.85)
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where Mη is defined by (7.81) and η = (η, η′, 1). The periodic dispersion
function is therefore the eigenvector of the eigenvalue equation (7.85).

A particularly simple result is obtained again if the point z is chosen at a
symmetry point, where η′sym = 0. In this case the dispersion function at the
symmetry point is

ηsym =
D

1 − C
and η′sym = 0 . (7.86)

Once the values of the η-functions are known at one point it is straightfor-
ward to obtain the values at any other point in the periodic lattice by matrix
multiplication.

We may also try to derive an analytical solution for the periodic dispersion
from the differential equation

η′′ + K η = κ . (7.87)

The solution is again the composition of the solutions for the homogeneous
and the inhomogeneous differential equation. First, we transform (7.87) into
normalized coordinates wη = η/

√
β and dϕ = dz/(νβ). In these coordinates

(7.87) becomes
d2wη

dϕ2
+ ν2wη = ν2β3/2κ = ν2F (ϕ) . (7.88)

An analytical solution to (7.88) has been derived in Sect. 2.5.4 and we
have accordingly

wη(ϕ) = w0η cos νϕ + ẇ0η

ν sin νϕ

+ν
∫ ϕ

0
F (τ) sin ν(ϕ− τ) dτ,

ẇη

ν (ϕ) = −w0η sin νϕ + ẇ0η

ν cos νϕ

+ν
∫ ϕ

0
F (τ) cos ν(ϕ− τ) dτ,

(7.89)

where we have set ẇ = d
dϕ w(ϕ). To select a periodic solution, we set

wη(2π) = wη(0) = w0η and ẇη(2π) = ẇ0η .

We insert these boundary conditions into (7.89) to determine
(
w0η, ẇ0η

)

and use the results in the first equation of (7.89) to get the general periodic
solution for the normalized dispersion function after some manipulations

wη(ϕ) =
ν

2 sinπν

∫ ϕ+2π

ϕ

F (τ) cos[ν(ϕ− τ + π)] dτ . (7.90)

Now we return to the original variables (η, z), and get from (7.90) the
equation for the periodic dispersion or η-function
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η(z) =

√
β(z)

2 sinπν

∫ z+Lp

z

√
β(ζ)
ρ(ζ)

cos ν[ϕ(z) − ϕ(ζ) + π] dζ . (7.91)

This solution shows clearly that periodic dispersion function at any point
z depends on all bending magnets in the ring. We also observe a fundamental
resonance phenomenon which occurs should the tune of the ring approach
an integer in which case finite equilibrium orbits for off-momentum particles
do not exist anymore. To get stable equilibrium orbits, the tune of the ring
must not be chosen to be an integer or in accelerator terminology an integer
resonance must be avoided

ν 
= n, (7.92)

where n is an integer.
This is consistent with solution (7.86), where we learned that C(z + Lp)

must be different from unity. Since C is the matrix element for the total ring
we have C = cos 2πν which obviously is equal to +1 only for integer values
of the tune ν. While (7.89) is not particularly convenient to calculate the
dispersion function, it clearly exhibits the resonance character and will be
very useful later in some other context, for example, if we want to determine
the effect of a single bending magnet.

Another way to solve the differential equation (7.88) will be considered
to introduce a powerful mathematical method useful in periodic systems. We
note that the perturbation term F (z) = β3/2(z)κ (z) is a periodic function
with the period Lp or 2π using normalized coordinates. The perturbation term
can therefore be expanded into a Fourier series

β3/2 κ =
∑

Fn einϕ, (7.93)

where
Fn =

1
2π

∮
β3/2κ e−inϕ dϕ (7.94)

or if we go back to regular variables

Fn =
1

2πν

∮ √
β(ζ)
ρ(ζ)

e−inϕ(ζ) dζ . (7.95)

Similarly, we may expand the periodic η-function into a Fourier series

wη(ϕ) =
∑

Wηn einϕ . (7.96)

Using both (7.93),(7.96) in (7.88), we get

(−n2 + ν2)
∑

Wηn einϕ = ν2
∑

Fn einϕ, (7.97)

which can be solved for the Fourier coefficients Wηn of the periodic dispersion
function
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Wηn =
ν2 Fn

ν2 − n2
. (7.98)

The periodic solution of the differential equation (7.88) is finally

wη(ϕ) =
+∞∑

n=−∞

ν2 Fn einϕ

ν2 − n2
. (7.99)

It is obvious again that the tune must not be an integer to avoid a reso-
nance. This solution is intrinsically periodic since ϕ is periodic and the relation
to (7.90) can be established by replacing Fn by its definition (7.94). Using
the property F−n = Fn, we get for a symmetric lattice and with formula
GR[1.445.6]1

wη(ϕ) =
+∞∑

n=−∞

einϕ ν
2π

∮
κ (ζ)

√
β(ζ) e−inζ dζ

ν2 − n2
(7.100)

=
ν

π

∮
κ (ζ)

√
β(ζ)

[
1

2ν2
+

∞∑
n=1

cosn(ζ − ϕ)
ν2 − n2

]
dζ

=
1

2 sin νπ

∮
κ (ζ)

√
β(ζ) cos(ν[ϕ− ζ + π]) dζ ,

which is the same as (7.90) since dτ = νβ dζ. For an asymmetric lattice the
proof is similar albeit somewhat more elaborate. Solution (7.100) expresses the
dispersion function as the combination of a constant and a sum of oscillatory
terms. Evaluating the nonoscillatory part of the integral, we find the average
value of the dispersion or η–function,

〈 η 〉 ≈ 〈β 〉
ν0

. (7.101)

This result by itself is of limited usefulness but can be used to obtain
an estimate for the momentum compaction factor αc defined analogous to
(5.128) by

αc =
1
Lp

∮
η (z)
ρ (z)

dz ≈ 〈η/ρ〉 . (7.102)

A good approximation for the momentum compaction factor is therefore
αc = 〈β〉/(ρ ν) and with (7.70) integrated only over the arcs of the ring

αc ≈
1
ν2

. (7.103)

Thus we find the interesting result that the transition energy γt is approx-
imately equal to the horizontal tune of a circular accelerator
1 We will abbreviate in this way formulas from the Table of Integrals, Series and

Products, I.S. Gradshteyn/I.M. Ryzhik, 4th edition.
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γt ≈ νx . (7.104)

As a cautionary note for circular accelerators with long straight sections,
only the tune of the arc sections should be used here since straight sections do
not contribute to the momentum compaction factor but can add significantly
to the tune.

7.2.4 Periodic Lattices in Circular Accelerators

Circular accelerators and long beam transport lines can be constructed from
fundamental building blocks like FODO cells or other magnet sequences which
are then repeated many times. Any cell or lattice unit for which a periodic
solution of the lattice functions can be found may be used as a basic building
block for a periodic lattice. Such units need not be symmetric but the solution
for a symmetric lattice segment is always periodic.

FODO cells as elementary building blocks for larger beam transport lat-
tices may lack some design features necessary to meet the objectives of the
whole facility. In a circular accelerator we need, for example, some component
free spaces along the orbit to allow the installation of experimental detectors
or other machine components like accelerating sections, injection magnets,
or synchrotron radiation producing insertion devices. A lattice made up of
standard FODO cells with bending magnets would not provide such spaces.

The lattice of a circular accelerator therefore exhibits generally more com-
plexity than that of a simple FODO cell. Often, a circular accelerator is made
up of a number of superperiods which may be further subdivided into seg-
ments with special features like dispersion suppression section, achromatic
sections, insertions, matching sections or simple focusing, and bending units
like FODO cells. To illustrate basic lattice design concepts, we will discuss
specific lattice solutions to achieve a variety of objectives.

Synchrotron Lattice

For a synchrotron whose sole function is to accelerate particles the problem
of free space can be solved quite easily. Most existing synchrotrons are based
on a FODO lattice recognizing its simplicity, beam dynamical stability, and
efficient use of space. To provide magnet free spaces, we merely eliminate some
of the bending magnets. As a consequence the whole ring lattice is composed
of curved as well as straight FODO cells. The elimination of bending magnets
must, however, be done thoughtfully since the dispersion function depends
critically on the distribution of the bending magnets. Random elimination of
bending magnets may lead to an uncontrollable perturbation of the dispersion
function. Often it is desirable to have the dispersion function vanish or at
least be small in magnet free straight sections to simplify injection and avoid
possible instabilities if rf-cavities are placed, where the dispersion function is
finite. The general approach to this design goal is, for example, to use regular
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Fig. 7.11. Typical FODO lattice for a separated function synchrotron

FODO cells for the arcs followed by a dispersion matching section, where the
dispersion function is brought to zero or at least to a small value leading finally
to a number of bending magnet free, straight FODO cells. As an example such
a lattice is shown in Fig. 7.11 for a 3.5 GeV synchrotron [67].

Figure 7.11 shows one quadrant of the whole ring and we clearly recognize
three different lattice segments including seven arc FODO half cells, two half
cells to match the dispersion function, and one half cell for installation of
other machine components. Such a quadrant is mirror reflected at one or the
other end to form one of two ring lattice superperiods. In this example, the
ring consists of two superperiods although another ring could be composed by
a different number of superperiods. A specific property of the lattice shown
in Fig. 7.11 is, as far as focusing is concerned, that the whole ring is made
up of equal FODO cells with only two quadrupole families QF and QD. The
betatron functions are periodic and are not significantly affected by the pres-
ence or omission of bending magnets which are assumed to have negligible
edge focusing. By eliminating bending magnets in an otherwise unperturbed
FODO lattice, we obtain magnet free spaces equal to the length of the bend-
ing magnets which are used for the installation of accelerating components,
injection magnets, and beam monitoring equipment.

Phase Space Matching

Periodic lattices like FODO channels exhibit unique solutions for the betatron
and dispersion functions. In realistic accelerator designs, however, we will not
be able to restrict the lattice to periodic cells only. We will find the need for
a variety of lattice modifications which necessarily require locally other than
periodic solutions. Within a lattice of a circular accelerator, for example, we
encountered the need to provide some magnet free spaces, where the dispersion
function vanishes. In colliding beam facilities, it is desirable to provide for a
very low value of the betatron function at the beam collision point to maximize
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the luminosity. These and other lattice requirements necessitate a deviation
from the periodic cell structure. Beam transport lines are in most cases not
based on periodic focusing. If such transport lines carry beam to be injected
into a circular accelerator or must carry beam from such an accelerator to
some other point, we must consider proper matching conditions at locations,
where lattices of different machines or beam transport systems meet [68, 69].
Joining arbitrary lattices may result in an inadequate over lap of the phase
ellipse for the incoming beam with the acceptance of the downstream lattice
as shown in Fig. 7.12a.

incoming beam acceptance

a) b) c)
Fig. 7.12. Matching conditions in phase space: mismatch (a), perfect match (b),
and efficient match (c)

For a perfect match of two lattices all lattice functions must be the same
at the joining point as shown in Fig. 7.12b

(βx, αx, βy, αy, η, η
′)1 = (βx, αx, βy, αy, η, η

′)2 . (7.105)

In this case, the phase ellipse at the end of lattice 1 is similar to the acceptance
ellipse at the entrance of lattice 2. Equality of both ellipses occurs only if
the acceptance in both lattices is the same. To avoid dilution of particles in
phase space perfect matching is desired in proton and ion beam transport
systems and accelerators. For electrons this is less critical because electron
beams regain the appropriate phase ellipse through synchrotron radiation and
damping. The main goal of matching an electron beam is to assure that the
emittance of the incoming beam is fully accepted by the downstream lattice as
shown in Fig. 7.12c. Perfect matching of all lattice functions and acceptances
with beam emittance, however, provide the most economic solution since no
unused acceptance exist. Matching of the dispersion function (η, η′) in addition
also assures that phase ellipses for off-momentum particles match as well.

Matching in circular accelerators is much more restrictive than that be-
tween independent lattices. In circular accelerators a variety of lattice seg-
ments for different functions must be tied together to form a periodic magnet
structure. To preserve the periodic lattice functions we must match them ex-
actly between different lattice segments. Failure of perfect matching between
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lattice segments can lead to periodic solutions of lattice functions which are
vastly different from design goals or do not exist at all.

In general there are six lattice functions to be matched requiring six vari-
ables or quadrupoles in the focusing structure of the upstream lattice to
produce a perfect match. Matching quadrupoles must not be too close to-
gether in order to provide some independent matching power for individual
quadrupoles. As an example, the betatron functions can be modified most
effectively if a quadrupole is used at a location, where the betatron function
is large and not separated from the matching point by multiples of π in be-
tatron phase. Most independent matching conditions for both the horizontal
and vertical betatron functions are created if matching quadrupoles are lo-
cated where one betatron function is much larger than the other allowing
almost independent control of matching condition.

It is impossible to perform such general matching tasks by analytic meth-
ods and a number of numerical codes are available to solve such problems.
Frequently used matching codes are TRANSPORT [70], or MAD [71]. Such
programs are an indispensable tool for lattice design and allow the fitting of
any number of lattice functions to desired values including boundary condi-
tions to be met along the matching section.

Dispersion Matching

A very simple, although not perfect, method to reduce the dispersion func-
tion in magnet free straight sections is to eliminate one or more bending
magnets close to but not at the end of the arc and preferably following a
focusing quadrupole, QF. In this arrangement of magnets the dispersion func-
tion reaches a smaller value compared to those in regular FODO cells with
a slope that becomes mostly compensated by the dispersion generated in the
last bending magnet. The match is not perfect but the dispersion function is
significantly reduced, where this is desirable, and magnet free sections can be
created in the lattice. This method requires no change in the quadrupole or
bending magnet strength and is therefore also operationally very simple as
demonstrated in the example of a synchrotron lattice shown in Fig. 7.11. We
note the less than perfect matching of the dispersion function which causes
a beating of an originally periodic dispersion function. In the magnet free
straight sections, however, the dispersion function is considerably reduced
compared to the values in the regular FODO cells.

More sophisticated matching methods must be employed, where a perfect
match of the dispersion function is required. Matching of the dispersion to
zero requires the adjustment of two parameters, η = 0 and η′ = 0, at the
beginning of the straight section. This can be achieved by controlling some
of the upstream quadrupoles. Compared to a simple two parameter FODO
lattice (Fig. 7.11), this variation requires a more complicated control system
and additional power supplies to specially control the matching quadrupoles.
This dispersion matching process disturbs the betatron functions which must
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Fig. 7.13. Lattice for a 1.2 GeV low emittance damping ring

be separately controlled and matched by other quadrupoles in dispersion free
sections. Such a matching method is utilized in a number of storage rings with
a special example shown in Fig. 7.13 [72]. Here, we note the perfect matching
of the dispersion function as well as the associated perturbation of the beta-
tron function requiring additional matching. Quadrupoles QFM and QDM are
adjusted such that η = 0 and η′ = 0 in the straight section. In principle this
could be done even without eliminating a bending magnet, but the strength
of the dispersion matching quadrupoles would significantly deviate from that
of the regular FODO quadrupoles and cause a large distortion of the betatron
function in the straight section. To preserve a symmetric lattice, the betatron
function must be matched with the quadrupoles Q1 and Q2 to get αx = 0
and αy = 0 at the symmetry points of the lattice.

Dispersion Suppressor

A rather elegant method of dispersion matching has been developed by Keil
[73]. Noting that dispersion matching requires two parameters he chooses to
vary the last bending magnets at the end of the arcs rather than quadrupoles.
The great advantage of this method is to leave the betatron functions and
the tunes undisturbed at least as long as we may ignore the end field focusing
of the bending magnets which is justified in large high energy accelerators.
This dispersion suppressor consists of four FODO half cells following directly
the regular FODO cells at a focusing quadrupole QF as shown in Fig. 7.14.
The strength of the bending magnets are altered into two types with a to-
tal bending angle of all four magnets to be equal to two regular bending
magnets.

The matching conditions can be derived analytically from the transforma-
tion matrix for the full dispersion suppressor as a function of the individual
magnet parameters. An algebraic manipulation program has been used to de-
rive a result that is surprisingly simple. If θ is the bending angle for regular
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Fig. 7.14. Dispersion suppressor lattice

FODO cell bending magnets and ψ is the betatron phase for a regular FODO
half cell, the bending angles θ1 and θ2 are determined by [73]

θ1 = θ

(
1 − 1

4 sin2 ψ

)
(7.106)

and

θ2 = θ

(
1

4 sin2 ψ

)
, (7.107)

where
θ = θ1 + θ2 . (7.108)

This elegant method requires several FODO cells to match the dispersion
function and is therefore most appropriately used in large systems. Where a
compact lattice is important, matching by quadrupoles as discussed earlier
might be more space efficient.

Magnet Free Insertions

An important part of practical lattice design is to provide magnet free spaces
which are needed for the installation of other essential accelerator components
or experimental facilities. Methods to provide limited magnet free spaces by
eliminating bending magnets in FODO lattices have been discussed earlier.
Often, however, much larger magnet free spaces are required and procedures
to provide such sections need to be formulated.

The most simple and straightforward approach is to use a set of quadru-
poles and focus the lattice functions βx, βy and η into a magnet free section
such that the derivatives αx, αy and η′ vanish in the center of this section. This
method is commonly applied to interaction areas in colliding beam facilities
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to provide optimum beam conditions for maximum luminosity at the collision
point. A typical example is shown in Fig. 7.15.
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Fig. 7.15. Lattice of the SPEAR storage ring

A more general design approach to provide magnet free spaces in a periodic
lattice is exercised in the storage ring shown in Fig. 7.16 [74] or the storage
ring as shown in Fig. 7.15 [75]. In the ADONE lattice the quadrupoles of a
FODO lattice are moved together to form doublets and alternate free spaces
are filled with bending magnets or left free for the installations of other com-
ponents.

Another scheme to provide magnet free spaces is exercised in the SPEAR
lattice (Fig. 7.15) where the FODO structure remains unaltered except that
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Fig. 7.16. Lattice of the ADONE storage ring
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the FODO cells have been separated in the middle of the QF quadrupoles.
A separation in the middle of the QD quadrupoles would have worked as
well. Since the middle of FODO quadrupoles are symmetry points, a modest
separation can be made with minimal perturbation to the betatron functions
and no perturbation to the dispersion function since η′ = 0 in the middle of
FODO quadrupoles.

Collins Insertion

A simple magnet free insertion for dispersion free segments of the lattice has
been proposed by Collins [76]. The proposed insertion consists of a focusing
and a defocusing quadrupole of equal strength but opposite polarity with a
long drift space in between as shown in Fig. 7.17. In thin lens approximation,
the transformation matrix for the insertion is

Mins =


 1 d

0 1




 1 0

1/f 1




 1 D

0 1




 1 0

−1/f 1




 1 d

0 1


 . (7.109)

dd

f
2

f
1

Collins insertion
D

β−function

Fig. 7.17. Collins insertion

This insertion matrix must be equated with the transformation matrix
for this same insertion expressed in terms of lattice functions at the insertion
point with the regular lattice

Mins =


 cosψ + α sinψ β sinψ

− 1+α2

β sinψ cosψ − α sinψ


 . (7.110)

Both matrices provide three independent equations to be solved for the drift
lengths d and D and for the focal length f of the quadrupoles. After multi-
plications of all matrices we equate matrix elements and get
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D =
α2

γ
, d =

1
γ
, and f = − α

γ
. (7.111)

These relations are valid for both planes only if αx = −αy. Generally this is
not the case for arbitrary lattices but for a weak focusing FODO lattice, this
condition is met well. We note that this design provides an insertion of length
D which is proportional to the value of the betatron functions at the insertion
point and requires that α 
= 0.

Of course any arbitrary insertion with a unity transformation matrix, I,
in both planes is a valid solution as well. Such solutions can in principle
always be enforced by matching with a sufficient number of quadrupoles. If
the dispersion function and its derivative is zero such an insertion may also
have a transformation matrix of −I. This property of insertions is widely
used in computer designs of insertions when fitting routines are available to
numerically adjust quadrupole strength such that desired lattice features are
met including the matching of the lattice functions to the insertion point. A
special version of such a solution is the low beta insertion for colliding beam
facilities.

Low Beta Insertions

In colliding beam facilities long magnet free straight sections are required
to allow the installation of high energy particle detectors. At the center of
these sections, where two counter rotating particle beams collide, the betatron
functions must reach very small values forming a narrow beam waist. This
requirement allows us to minimize the destructive beam–beam effect when
two beams collide and thereby maximize the luminosity of the colliding beam
facility [77].

An example for the incorporation of such a low beta insertion is shown in
Fig. 7.18 representing one of many variations of a low beta insertion in collid-
ing beam facilities [29]. The special challenge in this matching problem is to
provide a very small value for the betatron functions at the collision point. To
balance the asymmetry of the focusing in the closest quadrupoles the betatron
functions in both planes are generally not made equally small but the vertical
betatron function is chosen smaller than the horizontal to maximize the lu-
minosity. The length of the magnet free straight section is determined by the
maximum value for the betatron function that can be accepted in the first ver-
tically focusing quadrupole. The limit may be determined by just the physical
aperture available or technically possible in these insertion quadrupoles or by
the chromaticity and ability to correct and control chromatic and geometric
aberrations.

The maximum value of the betatron function at the entrance to the first
quadrupole, the minimum value at the collision point, and the magnet free
section are correlated by the equation for the betatron function in a drift
space. Assuming symmetry about the collision point, the betatron functions
develop from there like
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Fig. 7.18. Lattice functions of a colliding beam storage ring [78]. Shown is half
the circumference with the collision point, low beta, and vanishing dispersion at the
center

β(z) = β∗ +
z2

β∗ , (7.112)

where β∗ is the value of the betatron function at the symmetry point, z is the
distance from the collision point, and 2Lins is the full length of the insertion
between the innermost quadrupoles.

The distance L tended to be quite large to allow the installation of large
particle detectors for high energy physics experiment. As a consequence, the
betatron function became very large in the first quadrupoles causing severe
perturbations and limitations in particle dynamics. This, of course, created
a limit in the achievable luminosity. In new colliding beam facilities, like B-
factories, the Low beta creating quadrupoles are incorporated deeply into the
detectors, thus reducing L and the maximum value for the betatron functions.
This compromise resulted in significantly higher luminosity of colliding beams.

Example of a Colliding Beam Storage Ring

In electron or hadron colliding beam storage rings many of the previously
discussed design features are incorporated. Basically such facilities employ a
lattice which consists of a number of identical superperiods, where each super-
period includes a collision point or interaction region , a transition section for
matching of lattice functions, and an arc section which in most cases is made
up of a number of FODO cells. The collision points feature a minimum value
of the betatron functions to maximize the collision rate or luminosity requir-
ing a matching section to match the betatron functions to those of the FODO
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Fig. 7.19. Lattice functions in the PEP storage ring for one half of six symmetric
superperiods. The collision point and low beta section are at z = 0 and the arc
sections consist of FODO cells

cells in the arcs. In addition the transition section also serves to match the
finite dispersion from the arcs to the desired values in the interaction region.

In Fig. 7.19 the lattice of the Positron Electron Project, PEP, is shown
for one half of six symmetric superperiods. We will use this lattice as a refer-
ence to discuss beam dynamics issues, beam stability characteristics, and to
allow comparison with measurements. Some salient parameters for the PEP
colliding beam facility are compiled in Table 7.2.

The interaction region was designed to provide 20 m of magnet free space
for the installation of an experimental detector and the minimum value of the
vertical betatron functions at the collision point was designed to be β∗

y = 5
cm. This interaction region continues into the transition section with betatron
matching in the first part and betatron and dispersion matching close to the
arcs. At the symmetry points of the superperiod a short magnet free section
is included for installation of select beam manipulation and monitoring equip-
ment. The lattice functions in the FODO section are not perfectly matched
for economic reasons to minimize the number of independent power supplies.

From the lattice functions in Fig. 7.19, we note that the low beta insertion
and matching of the dispersion function are zero in the interaction region.
We also note very large values of the betatron functions in the interaction
region quadrupoles as a consequence of the low beta at the collision point and
the long distance to the first focusing quadrupole. The long magnet free dis-
tance between the first quadrupole doublet and the beginning of the transition
section is useful for the installation of accelerator equipment, especially for ac-
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Table 7.2. PEP lattice parameters

Energy, E(GeV) 15.0 Beam current, I(mA) 100

Circumference, C(m) 2200 Superperiodicity 6

Beam emittance, ε(nm) 125 Energy spread, σE/E 0.0010

Tunes, νx, νy 21.25, 18.19 Beta function at IP, β∗
x,y(m) 3.0/0.11

Nat. chromaticity, ξ0x, ξ0y -31.21, -99.47 Mom. comp. factor, αc 0.00257

Energy loss/turn, U(MeV) 26.98 Radiation power, Ps(MW) 2.698

Accelerating voltage, Vrf(MV) 39.43 Synchrotron tune, νs 0.0451

FODO parameters

Cell length, L(m) 14.4 Phase/cell, ψx,y(o) 56.0, 31.9

Bending radius, ρ(m) 165.5 Acceptance, Ax,y(µm) 29.9, 11.0

celerating rf-cavities, but is mainly a necessary lattice feature. The transition
from rather small betatron functions in the arc FODO lattice to large values
in the insertion quadrupoles cannot be accomplished without an appropriate
length of drift space to let the betatron functions grow. As this drift space is
reduced, the strength of the matching quadrupoles becomes very strong and
quickly neither theoretical nor technical solution to the matching problem are
found. The focusing from the interaction region quadrupoles must be such
that at the beginning of the matching section, here at Q3, not only the be-
tatron functions reach values comparable to those in the arc section but the
rate of change of the betatron functions, α = −β′/2, must be comparable as
well to those in the arcs.

This feature of lattice matching constitutes a severe limitation on the flex-
ibility for small rings and short beam transport systems to incorporate inser-
tions with desired properties of the lattice functions. Even if at low energies
such insertions might be technically possible the strong focusing and large
values of the betatron functions and divergencies can cause severe limitations
in beam stability due to aberrations. This should not prevent the accelerator
designer from trying to meet a particular design need, but it is prudent to
address beam stability problems as early as a linear lattice design has been
developed.
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7.3 FODO Lattice and Acceleration

So far we have ignored the effect of acceleration in beam dynamics. In spe-
cific cases, however, acceleration effects must be considered specifically if the
particle energy changes significantly along the beam line. In linear acceler-
ators such a need occurs at low energies when we try to accelerate a large
emittance beam through the small apertures of the accelerating sections. For
example, when a positron beam is to be created the positrons emerging from
a target within a wide solid angle are focused into the small aperture of a
linear accelerator. After some initial acceleration in the presence of a solenoid
field along the accelerating structure it is desirable to switch over to more eco-
nomic quadrupole focusing. Even at higher energies when the beam diameter
is much smaller than the aperture strong focusing is still desired to minimize
beam break up instabilities.

7.3.1 Lattice Structure

A common mode of focusing uses a FODO lattice in conjunction with the
linac structure. We may, however, not apply the formalism developed for
FODO lattices without modifications because the particle energy changes sig-
nificantly along the lattice. A thin lens theory has been derived by Helm [79]
based on a regular FODO channel in the particle reference system. Due to the
Lorentz contraction, the constant quadrupole separations L∗ in the particle
system increase in the laboratory system as the beam energy increases. To
show this quantitatively, we consider a FODO channel installed along a lin-
ear accelerator and starting at the energy γ0 with a constant cell half length
L̃ = γ0L

∗. The tick-marks along the scale in Fig. 7.20 indicate the locations of
the quadrupoles and the distances between magnets in the laboratory system
are designated by L1, L2 . . . .

L1 L2 L3 L4 L5 L6

Fig. 7.20. FODO channel and acceleration

With the acceleration α in units of the rest energy per unit length and γ0

the particle energy at the center of the first quadrupole the condition to have
a FODO channel in the particle system is

L̃ =
∫ L1

0

dz
1 + α z

γ0

=
γ0

α
ln
(

1 +
αL1

γ0

)
. (7.113)

The quantity 2L̃ is the length of a FODO cell and L1 is the distance between
the first and second quadrupole in the laboratory system. Solving for L1 we
get
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L1 = L̃
eκ − 1

κ
, (7.114)

where
κ =

α

γ0
L̃ . (7.115)

At the same time the beam energy has increased from γ0 to

γ1 = γ0 + αL1 . (7.116)

Equation (7.113) can be applied to any of the downstream distances be-
tween quadrupoles. The nth distance Ln, for example, is determined by an
integration from zn−1 to zn or equivalently from 0 to Ln

L̃ =
∫ Ln

0

dz
1 + α z

γn−1

=
γn−1

α
ln
(

1 +
αLn

γn−1

)
. (7.117)

While solving for Ln, we express the energy γn−1 by addition of the energy
gains, γn−1 =

∑n−1
i ∆γi = α

∑n−1
i Li, and taking the distances Li from

expressions (7.114), (7.117) we get for κ � 1

Ln = L̃
eκ − 1

κ
e(n−1)κ . (7.118)

In thin lens approximation, the distances between successive quadrupoles
increase exponentially in the laboratory system according to (7.118) to resem-
ble the focusing properties of a regular FODO channel with a cell length 2L∗

in the particle system under the influence of an accelerating field.
Such FODO channels are used to focus large emittance particle beams in

linear accelerators as is the case for positron beams in positron linacs. For
strong focusing as is needed for low energies where the beam emittance is
large, the thin lens approximation, however, is not accurate enough and a
more exact formulation of the transformation matrices must be applied [80],
which we will derive here in some detail.

7.3.2 Transverse Beam Dynamics and Acceleration

Transverse focusing can be significantly different along a linear accelerator due
to the rapid changing particle energy compared to a fixed energy transport
line, and the proper beam dynamics must be formulated in the presence of lon-
gitudinal acceleration. To derive the correct equations of motion we consider
the particle dynamics in the presence of the complete Lorentz force including
electrical fields

ṗ = eE + e [ṙ × B] . (7.119)

To solve this differential equation we consider a straight beam transport
line with quadrupoles aligned along the s-coordinate as we would have in a
linear accelerator. The accelerating fields are assumed to be uniform with a
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finite component only along the z-coordinate. At the location r = (x, y, z),
the fields can be expressed by E = (0, 0, α/e) and B = (gx, gy, 0), where the
acceleration α is defined by

α = e |E| . (7.120)

To evaluate (7.119), we express the time derivative of the momentum,
ṗ = γmṙ by

ṗ = γ̇mṙ + γmr̈ , (7.121)

where γ = E/mc2 is the particle energy in units of the rest energy. From
cṗ = Ė/β we find that γ̇ = αβ/mc2 and (7.121) becomes for the x-component

cṗx = αβmẋ +
1
c
E ẍ . (7.122)

In this subsection, we make ample use of quantities α, β, γ being accelera-
tion and relativistic parameters which should not be confused with the lattice
functions, which we will not need here. Bowing to convention, we refrain from
introducing new labels.

The variation of the momentum with time can also be expressed with the
Lorentz equation (7.119), and with the specified fields, we get

ṗx = −c e β g x . (7.123)

We replace the time derivatives in (7.122) by derivatives with respect to the
independent variable s

ẋ = β c x′, (7.124)

ẍ = β2 c2 x′′ +
α

γ3 m
x′,

and after insertion into (7.122) and equating with (7.123) the equation of
motion becomes

d2x

dz2
+

α

β2E

dx
dz

+
c e g

βE
x = 0, (7.125)

where we used the relation β2 + 1/γ2 = 1. With α
β = dcp/dz

cp0
and defining the

quantity

η0 =
dp/dz
p0

=
α

βcp0
, (7.126)

we get for the equation of motion in the horizontal plane, u = x

d2u

dz2
+

η0

1 + η0 z

du
dz

+
k0

1 + η0 z
u = 0, (7.127)

introducing the quadrupole strength k0 = eg
p0

. Equation (7.127) is also valid for
the vertical plane u = y if we only change the sign of the quadrupole strength
k0. Equation (7.127) is a Bessel’s differential equation, which becomes obvious
by defining a new independent variable
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ξ =
2β
η0

√
k0(1 + η0z) (7.128)

transforming (7.127) into

d2 u

dξ2
+

1
ξ

du
dξ

+ u = 0, (7.129)

which is the equation of motion in the presence of both transverse and longi-
tudinal fields.

Analytical Solutions

The solutions of the differential equation (7.129) are Bessel’s functions of the
first and second kind in zero order

u(z) = C1 I0(ξ) + C2 Y0(ξ) . (7.130)

In terms of initial conditions (u0, u
′
0) for s = 0 we can express the solutions

in matrix formulation

 u(z)

u′(z)


 = π

√
k0

η0




−I0 Y0

√
k0I1√

1+η0z

√
k0Y1√

1+η0z







Y10
Y00√

k0

I10
I00√
k0




u0

u′
0


 . (7.131)

Here we defined Zi = Zi

(
2β
η0

√
k0(1 + η0z)

)
and Zi0 = Zi0

(
2β
η0

√
k0

)
where Zi

stands for either of the Bessel’s functions Ii or Yi and i = 0, 1.

Transformation Matrices

The transformation matrix for a drift space can be obtained from (7.131) by
letting k0 → 0, but it is easier to just integrate (7.127) directly with k0 = 0. We
get from (7.127) u”

u′ = − η0
1+η0z , and after logarithmic integration u′ = 1

1+η0z +
const. After still another integration

u = u0 +
u′

0

η0
log (1 + η0z) (7.132)

or for a drift space of length L


 u(L)

u′(L)


 =


 1 1

η0
log (1 + η0L)

0 1
1+η0L




u0

u′
0


 . (7.133)

For most practical purposes we may assume that 2
√

k0
η0


 1 and may, there-
fore, use asymptotic expressions for the Bessel’s functions. In this approxima-
tion the transformation matrix of a focusing quadrupole of length � is
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Mf =


 σ cos∆ξ σ√

k0
sin∆ξ

−σ3
√
k0 sin∆ξ σ3 cos∆ξ


 (7.134)

+




σ
8

(
3
ξ0

+ 1
2

)
sin∆ξ σ

8
√

k0

∆ξ
ξ0ξ�

cos∆ξ

3σ3

8
∆ξ
ξ0ξ�

√
k0 cos∆ξ −σ3

8

(
1
ξ0

+ 3
2

)
sin∆ξ


 ,

where
σ4 =

1
1 + η0�

(7.135)

and with ∆ξ = ξ� − ξ0,

ξ0 =
2
η0

√
k0 and (7.136)

ξ� =
2
η0

√
k0(1 + η0�) . (7.137)

Similarly we get for a defocusing quadrupole

Md =


 σ cosh∆ξ σ√

k0
sinh∆ξ

−σ3
√
k0 sinh∆ξ σ3 cosh∆ξ


 (7.138)

+




σ
8

(
3
ξ0

+ 1
2

)
sinh∆ξ σ

8
√

k0

∆ξ
ξ0ξ�

cosh∆ξ

3σ3

8
∆ξ
ξ0ξ�

√
k0 cosh∆ξ −σ3

8

(
1
ξ0

+ 3
2

)
sinh∆ξ


 .

These transformation matrices can be further simplified for low accelerating
fields noting that η0�

4 � 1. In this case ξ� − ξ0 ≈
√
k0� = ψ and with

∆ =
1
8

(
3
ξ0

+
1
ξ�

)
≈ 1

8

(
3
ξ�

+
1
ξ0

)
(7.139)

we get for a focusing quadrupole the approximate transformation matrix

Mf =


σ 0

0 σ3






 cosψ 1√

k0
sinψ

−
√
k0 sinψ cosψ


 (7.140)

+


∆ sinψ 0

0 −∆ sinψ






and similarly for a defocusing quadrupole
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Md =


σ 0

0 σ3






 coshψ 1√

k0
sinhψ

−
√
k0 sinhψ coshψ


 (7.141)

+


∆ sinhψ 0

0 −∆ sinhψ




 .

Finally, the transformation matrix for a drift space of length L in an
accelerating system can be derived from either (7.140) or (7.141) by letting
k0 → 0 for

M0 =


 1 − 1

η0
log σ4

0 σ4


 , (7.142)

where σ4 = 1/(1 + η0L) in agreement with (7.122). In the limit of vanishing
accelerating fields η0 → 0 and we obtain back the well-known transformation
matrices for a drift space. Similarly, we may test (7.140), (7.141) for consis-
tency with regular transformation matrices.

In (7.140) to (7.142) we have the transformation matrices for all elements
to form a FODO channel in the presence of acceleration. We may now apply
all formalisms used to derive periodic betatron, dispersion functions, or beam
envelopes as derived in Sect. 7.1 for regular FODO cells. Considering one half
cell we note that the quadrupole strength k0 of the first half quadrupole is
determined by the last half quadrupole of the previous FODO half cell. We
have therefore two variables left, the half cell drift length L and the strength
k1 of the second half quadrupole of the FODO half cell, to fit the lattice
functions to a symmetric solution by requiring that αx = 0 and αy = 0.

7.3.3 Adiabatic Damping

Transformation matrices derived in this section are not phase space conserving
because their determinant is no more equal to unity. The determinant for a
drift space with acceleration is, for example,

detM0 = σ4 =
1

1 + η0z
, (7.143)

which is different from unity if there is a finite acceleration. The two-
dimensional (x, x′) phase space, for example, is not invariant anymore. For
example, the area of a rhombus in phase space, defined by the two vectors
x0 = (x, 0) and x′

0 = (0, x′
0), is reduced according to (7.143) to

|x,x′| =
1

1 + η0z
|x0,x

′
0| (7.144)

and the beam emittance, defined by x and x′, is therefore not preserved in
the presence of accelerating fields. This phenomenon is known as adiabatic
damping under which the beam emittance varies like
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ε =
1

1 + η0z
ε0 =

p0

p
ε0, (7.145)

where η0∆z = ∆E/E0 is the relative energy gain along the length ∆z of the
accelerator. From this we immediately see that the normalized phase space
area cp ε is conserved in full agreement with Liouville’s theorem. In beam
transport systems involving a linear accelerator it is therefore more convenient
and dynamically correct to use the truly invariant normalized beam emittance
defined by

εn = βγε . (7.146)

This normalized emittance remains constant even when the particle en-
ergy is changing due to external electric fields. In the presence of dissipating
processes like synchrotron radiation, scattering, or damping, however, even
the normalized beam emittance changes because Liouville’s theorem of the
conservation of phase space is not valid anymore.

From (7.144) we formally obtain the constancy of the normalized beam
emittance by multiplying with the momenta p0 and p = p0 (1 + η0z) for

|x, (1 + η0 z) p0 x′| = |x0, p0 x0
′| (7.147)

or with the transverse momenta p0 x′ = p0x and (1 + η0z) p0x
′ = px

|x, px | = |x0, p0x| = const. (7.148)

This can be generalized to a six-dimensional phase space, remembering that in

this case det(M0) =
(

1
1+η0z

)3

since the matrix has the form


 1 − 1

η0
log σ4

0 σ4




M0 =




1 − 4
η0

log σ4 0 0 0 0

0 σ4 0 0 0 0

0 0 1 − 4
η0

log σ4 0 0

0 0 0 σ4 0 0

0 0 0 0 1 A

0 0 0 0 0 σ4




, (7.149)

where A is an rf-related quantity irrelevant for our present arguments. For the
six-dimensional phase space with coordinates x, px, y, py, τ, ∆E, where
px, py are the transverse momenta, τ is the longitudinal position of the par-
ticle with respect to a reference particle and ∆E is the energy deviation we
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get finally with |x0, p0x, y0, p0y, τ 0, ∆E0| =




x0 0 0 0 0 0

0 p0x 0 0 0 0

0 0 y0 0 0 0

0 0 0 p0y 0 0

0 0 0 0 τ0 0

0 0 0 0 0 σ4




|x, px, y, py, τ, ∆E| = |x0, p0x, y0, p0y, τ 0, ∆E0| = const . (7.150)

These results do not change if we had included focusing in the transformation
matrix. From (7.140), (7.141), we see immediately that the determinants for
both matrices are

det(Mf ) ≈ det(Md) ≈ σ4 (7.151)

ignoring small terms proportional to ∆.

Problems

Use thin lens approximation unless otherwise noted.

7.1. For the FODO lattices in Table 7.1 calculate in thick lens approximation
the required quadrupole strengths to meet the other FODO cell parameters.

7.2 (S). Produce a conceptual design for a separated function proton syn-
chrotron to be used to accelerate protons from a kinetic energy of 10 GeV/c
to 150 GeV/c. The circular vacuum chamber aperture has a radius of R = 20
mm and is supposed to accommodate a beam with a uniform beam emit-
tance of ε = 5 mm mrad in both planes and a uniform momentum spread
of σE/E = ±0.1 %. The peak magnetic bending field is B = 1.8 T at 150
GeV/c.

7.3 (S). Specify a FODO cell to be used as the basic lattice unit for a 50
GeV synchrotron or storage ring. The quadrupole aperture for the beam shall
have a radius of R = 3 cm. Adjust parameters such that a Gaussian beam
with an emittance of εrms = 5 mm mrad in the horizontal plane, of εrms = 0.5
mm mrad in the vertical plane, and an energy spread of ∆E/E0 = 0.01
would fit within the quadrupole aperture. Ignore wall thickness of the vacuum
chamber.

(a) Considering the magnetic field limitations of conventional magnets,
adjust bending radius, focal length, and if necessary cell length to stay within
realistic limits for conventional magnets.

(b) What is the dipole field and the pole tip field of the quadrupoles?
Adjust the total number of cells such that there is an even number of FODO
cells and the tunes are far away from an integer or half integer resonance?
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7.4. Produce a conceptual design for a proton synchrotron to be used to ac-
celerate protons from a kinetic energy of 10 GeV/c to 150 GeV/c. The total
magnet aperture is G = 5 cm and the circular vacuum chamber aperture has a
radius of R = 2 cm and is supposed to accommodate a beam with a maximum
beam emittance of ε = 8 mm mrad. The peak magnetic bending field at 150
GeV/c is 1.8 T.
(a) Choose a half cell length L which provides the desired transverse accep-
tance for the specified vacuum chamber aperture. What is the maximum value
of the betatron and η-function? What is the quadrupole strength if its half
length is 5% of L and what is the deflection angle per bending magnet if the
length is 75% of L. How many dipoles and quadrupoles are required to com-
pose a ring?
(b) If the copper cross sectional area in the dipole coils is 20 cm2/coil, what
is the total power dissipation in the ring at 150 GeV/c (ρCu = 2µ Ohm cm at
20◦C) ? What is the circumference and what are the tunes of the machine?
(c) Is the injection energy above or below the transition energy? What is the
revolution frequency at injection and at maximum energy?

7.5 (S). Consider a ring composed of an even number 2nc of FODO cells. To
provide two component free spaces, we cut the ring at a symmetry line through
the middle of two quadrupoles on opposite sides of the ring and insert a drift
space of length 2� which is assumed to be much shorter than the value of the
betatron function at this symmetry point � � β0. Derive the transformation
matrix for this ring and compare with that of the unperturbed ring. What is
the tune change of the accelerator. The betatron functions will be modified.
Derive the new value of the horizontal betatron function at the symmetry
point in units of the unperturbed betatron function. Is there a difference to
whether the free section is inserted in the middle of a focusing or defocusing
quadrupole? How does the η-function change?

7.6. For one example determine the real quadrupole length required to pro-
duce the quoted betatron phase advances per FODO cell in Table 7.1. Com-
pare with thin lens quadrupole strengths.

7.7. Calculate the values of the betatron functions at the center of the
quadrupoles for FODO cells 1 and 2 in Table 7.1 and compare with the actual
thick lens betatron functions in Figs. 7.6 and 7.7. Discuss the difference.

7.8. The original lattice of Problem 7.5 is to be expanded to include dispersion
free cells. Incorporate into the lattice two symmetric dispersion suppressors
based on the FODO lattice of the ring following the scheme shown in Fig. 7.14.
Adjust the bending magnet strength to retain a total bending angle of 2π in
the ring. Incorporate the two dispersion suppressors symmetrically into the
ring and make a schematic sketch of the lattice.
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7.9. In the dispersion free region of Problem 7.8 introduce a symmetric Collins
insertion to provide a long magnet free section of the ring. Determine the para-
meters of the insertion magnets and drift spaces. Use thin lens approximation
to calculate a few values of the betatron functions in the Collins insertions
and plot betatron and dispersion functions through the Collins insertion.

7.10. For the complete ring lattice of Problem 7.9 make a parameter list
including such parameters as circumference, revolution time, number of cells,
tunes (use simple numerical integration to calculate the phase advance in the
Collins insertion), max. beam sizes, magnet types, length, and strengths.

7.11 (S). Sometimes two FODO channels of different parameters must be
matched. Show that a lattice section can be designed with a phase advance of
∆ψx = ∆ψy = π/2 which will provide the desired matching of the betatron
functions from the symmetry point of one FODO cell to the symmetry point
of the other cells. Such a matching section is also called a quarter wavelength
transformer and is applicable to any matching of symmetry points. Does this
transformer also work for curved FODO channels where the dispersion is
finite?

7.12. The fact that a Collins straight section can be inserted into any trans-
port line without creating perturbations outside the insertion makes these
insertions also a periodic lattice. A series of Collins straight sections can be
considered as a periodic lattice composed of quadrupole doublets and long
drift spaces in between. Construct a circular accelerator by inserting bending
magnets into the drift spaces d and adjusting the drift spaces to D = 5 m.
What is the phase advance per period? Calculate the periodic η-function and
make a sketch with lattice and lattice functions for one period.

7.13. Consider a regular FODO lattice as shown in Fig. 7.11, where some
bending magnets are eliminated to provide magnet free spaces and to reduce
the η-function in the straight section. How does the minimum value of the
η-function scale with the phase per FODO cell. Show if conditions exist to
match the η-function perfectly in the straight section of this lattice?

7.14. The quadrupole lattice of the synchrotron in Fig. 7.11 forms a pure
FODO lattice. Yet the horizontal betatron function shows some beating per-
turbation while the vertical betatron function is periodic. What is the source
of perturbation for the horizontal betatron function? An even stronger per-
turbation is apparent for the dispersion function. Explain why the dispersion
function is perturbed.

7.15. How many protons would produce a circulating beam of 1 A in the ring
of problem 7.2? Calculate the total power stored in that beam at 150 GeV/c.
By how many degrees could one liter of water be heated up by this energy?
The proton beam emittance be εx,y = 5 mm mrad at the injection energy of
10 GeV/c. Calculate the average beam width at 150 GeV/c along the lattice
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and assume this beam to hit because of a sudden miss-steering a straight piece
of vacuum chamber at an angle of 10 mrad. If all available beam energy is
absorbed in a 1mm thick steel vacuum chamber, by how much will the strip
of steel heat up? Will it melt? (specific heat cFe = 0.11 cal/g/◦C, melting
temperature TFe = 1528 ◦C.
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Particle Beam Parameters

Particle beams are characterized by a set of quantifying parameters being
either constants of motion or functions varying from point to point along a
beam transport line. The parameters may be a single particle property like
the betatron function which is the same for all particles within a beam or
quantities that are defined only for a collection of particles like beam sizes
or beam intensity. We will define and derive expressions for such beam para-
meters and use them to characterize particle beams and develop methods for
manipulation of such parameters.

8.1 Definition of Beam Parameters

Particle beams and individual particles are characterized by a number of pa-
rameters which we use in beam dynamics. We will define such parameters first
before we discuss the determination of their numerical value.

8.1.1 Beam Energy

Often we refer to the energy of a particle beam although we actually describe
only the nominal energy of a single particle within this beam. Similarly, we
speak of the beam momentum, beam kinetic energy, or the velocity of the
beam, when we mean to say that the beam is composed of particles with
nominal values of these quantities. We found in earlier chapters that the most
convenient quantity to characterize the “energy” of a particle is the momen-
tum for transverse beam dynamics and the kinetic energy for acceleration.
To unify the nomenclature it has become common to use the term energy for
both quantities noting that the quantity of pure momentum should be mul-
tiplied with the velocity of light, cp, to become dimensionally correct. Thus,
the particle momentum is expressed in the dimension of an energy without
being numerically identical either to the total energy or the kinetic energy but
approaching both for highly relativistic energies.
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8.1.2 Time Structure

A true collective beam parameter is the time structure of the particle stream.
We make the distinction between a continuous beam being a continuous flow of
particles and a bunched beam. Whenever particles are accelerated by means of
rf-fields a bunched beam is generated, while continuous beams can in general
be sustained only by dc accelerating fields or when no acceleration is required
as may be true for a proton beam in a storage ring. A pulsed beam consists
of a finite number of bunches or a continuous stream of particles for a finite
length of time. For example, a beam pulse from a linear accelerator is made
up of a finite string of micro bunches generated by rf-accelerating fields.

8.1.3 Beam Current

The beam intensity or beam current is expressed in terms of an electrical
current using the common definition of the ratio of the electrical charge passing
by a current monitor per unit time. For bunched beams, the time span during
which the charge is measured can be either shorter than the duration of the
bunch or the beam pulse or may be long compared to both. Depending on
which time scale we use, we define the bunch current or peak current, the
pulse current or the average current respectively.

In Fig. 8.1 the general time structure of bunched beams is shown. The
smallest unit is the microbunch, which is separated from the next microbunch
by the wavelength of the accelerating rf-field or a multiple thereof. The mi-
crobunch current or peak current Î is defined as the total microbunch charge
q divided by the microbunch duration τµ,

Î =
q

τµ
. (8.1)

The micropulse duration must be specially defined to take a nonuniform
charge distribution of the particular accelerator into account. A series of mi-
crobunches form a beam pulse which is generally determined by the duration
of the rf-pulse. In a conventional S-band electron linear accelerator, the rf-
pulse duration is of the order of a few micro seconds while a superconducting
linac can produce a continuous stream of microbunches thus eliminating the
pulse structure of the beam. An electrostatic accelerator may produce pulsed
beams if the accelerating voltage is applied only for short time intervals. The
pulse current Ip is defined as the average current during the duration of the
pulse. If the duration of the microbunch is τµ and the time between successive
microbunches is Tµ, the pulse current is

Ip = Î
τµ

Tµ
=

q

Tµ
. (8.2)

The average beam current, finally, is the beam current averaged over a
complete cycle of the particular accelerator.
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Fig. 8.1. Definitions for time structure and pulse currents. (a) Peak current, Î =
q/τµ, where τµ is the microbunch duration and q is the charge per microbunch. (b)
Pulse current Ip = Î τµ/Tµ = q/Tµ, where Tµ is the microbunch period. (c) Average
current 〈I〉 = IpTpνrep, with Tp the pulse duration and νrep the pulse repetition rate.
(d) Continuous beam current

〈I〉 = Ip
Tp

Tr
=

q

Tr

Tp

Tµ
=

nµ q

Trep
, (8.3)

where nµ is the number of microbunches per pulse and q is the charge in a
microbunch. In a beam transport line, this is the total charge passing by per
unit time, where the unit time is as long as the distance between beam pulses.
In a circular accelerator it is, for example, the total circulating charge divided
by the revolution time. For the experimenter using particles from a cycling
synchrotron accelerator the average current is the total charge delivered to
the experiment during a time long compared to the cycling time divided by
that time.

The “beam on–beam off” time is measured by the duty factor defined as
the fraction of actual beam time to total time at the experimental station.
Depending on the application, it is desirable to have a high duty factor where
the particles come more uniformly distributed in time compared to a low duty
factor where the same number of particles come in short bursts.
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8.1.4 Beam Dimensions

Of great importance for the design of particle accelerators is the knowledge
of beam size parameters like transverse dimensions, bunch length, and energy
spread as well as the particle intensity distribution in six-dimensional phase
space. In this respect, electron beams may behave different from beams of
heavier particles like protons which is a consequence of synchrotron radiation
and effects of quantized emission of photons on the dynamic parameters of
the electrons. Where such radiation effects are negligible, beams of any kind
of particles evolve the same way along a beam line. Specifically, we have seen
that in such cases the beam emittances are a constant of motion and the
beam sizes are therefore modulated only by the variation of the betatron and
dispersion functions as determined by the focusing structure. The particle
distribution stays constant while rotating in phase space. This is true for the
transverse as well as for the longitudinal and energy parameters.

A linear variation of beam emittances with energy is introduced when par-
ticles are accelerated or decelerated. We call this variation adiabatic damp-
ing, where the beam emittances scale inversely proportional with the particle
momentum and the transverse beam sizes, divergences, bunch length, and
energy spread scale inversely to the square root of the particle momentum.
This adiabatic damping actually is not a true damping process where the
area in phase space is reduced. It rather reflects the particular definition of
beam emittances with respect to the canonical dimensions of phase space. In
transverse beam dynamics we are concerned with geometric parameters and
a phase space element would be expressed by the product ∆u∆u′. Liouville’s
theorem, however, requires the use of canonical variables, momentum and po-
sition, and the same phase space element is ∆u∆pu, where ∆pu = p0u

′ and
u is any of the three degrees of freedom. Acceleration increases the particle
momentum p0 and as a consequence the geometric emittances ∆u∆u′ must
be reduced to keep the product ∆u∆pu constant. This reduction of the geo-
metric emittance by acceleration is called adiabatic damping and occurs in all
three degrees of freedom.

More consistent with Liouville’s theorem of constant phase space density
is the normalized emittance defined by

εn = βγε, (8.4)

where γ is the particle energy in units of the rest energy and β = v/c. This
normalized emittance obviously has the appropriate definition to stay constant
under the theorem of Liouville.

It is often difficult and impractical to define a beam emittance for the
whole beam. Whenever the beam is fuzzy at the edges it may not make sense
to include all particles into the definition of the beam emittance and provide
expensive aperture for the fuzzy part of the beam. In such cases one might
define the beam emittance containing 95% of the total beam intensity or what-
ever seems appropriate. Relativistic electron beams in circular accelerators are
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particularly fuzzy due to the quantized emission of synchrotron radiation. As
a consequence, the particle distribution transforms into a Gaussian distri-
bution. Later, we will discuss the evolution of the beam emittance due to
statistical effects in great detail and derive the particle distribution from the
Fokker–Planck equation. In this case we define the beam emittance for that
part of the beam which is contained within one standard unit of the Gaussian
distribution.

The beam emittance for particle beams is primarily defined by the char-
acteristic source parameters and source energy. Given perfect matching be-
tween different accelerators and beam lines during subsequent acceleration,
this source emittance is reduced inversely proportional to the particle mo-
mentum by adiabatic damping and stays constant in terms of normalized
emittance. This describes accurately the ideal situation for proton and ion
beams, for nonrelativistic electrons, and electrons in linear accelerators as
long as statistical effects are absent. A variation of the emittance occurs in
the presence of statistical effects in the form of collisions with other particles or
emission of synchrotron radiation and we will concentrate here in more detail
on the evolution of beam emittances in highly relativistic electron beams.

Statistical processes cause a spreading of particles in phase space or a con-
tinuous increase of beam emittance. In cases where this diffusion is due to the
particle density, the emittance increase may decrease significantly because the
scattering occurrence drops to lower and lower values as the particle density
decreases. Such a case appears in intrabeam scattering [81–83], where parti-
cles within the same bunch collide and exchange energy. It appears specifically
when particles exchange longitudinal momentum into transverse momentum
and gain back the lost longitudinal momentum from the accelerating cavities.
The beam “heats” up transversely which becomes evident in the increased
beam emittance and beam sizes.

Statistical perturbations due to synchrotron radiation, however, lead to
truly equilibrium states where the continuous excitation due to quantized
emission of photons is compensated by damping. Discussing first the effect of
damping will prepare us to combine the results with statistical perturbations
leading to an equilibrium state of the beam dimensions.

8.2 Damping

Emission of synchrotron radiation causes the appearance of a reaction force
on the emitting particle which must be taken into account to accurately de-
scribe particle dynamics. In doing so, we note from the theory of synchrotron
radiation that the energy lost into synchrotron radiation is lost through the
emission of many photons and we may assume that the energy loss is continu-
ous. Specifically, we assume that single photon emissions occur fast compared
to the oscillation period of the particle such that we may treat the effect of
the recoil force as an impulse.
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In general we must consider the motion of a particle in all three degrees of
freedom or in six-dimensional phase space. The appearance of damping stems
from the emission of synchrotron radiation in general, but the physics leading
to damping in the longitudinal degree of freedom is different from that in
the transverse degrees of freedom. The rate of energy loss into synchrotron
radiation depends on the particle energy itself being high at high energies and
low at low energies. As a consequence, a particle with a higher than ideal
energy will lose more energy to synchrotron radiation than the ideal particle
and a particle with lower energy will lose less energy. The combined result is
that the energy difference between such three particles has been reduced, an
effect that shows up as damping of the beam energy spread. With the damping
of the energy spread, we also observe a damping of its conjugate variable, the
longitudinal phase or bunch length.

In the transverse plane we note that the emission of a photon leads to a loss
of longitudinal as well as transverse momentum since the particle performs
betatron oscillations. The total lost momentum is, however, replaced in the
cavity only in the longitudinal direction. Consequently, the combined effect of
emission of a photon and the replacement of the lost energy in accelerating
cavities leads to a net loss of transverse momentum or transverse damping.

Although damping mechanisms are different for transverse and longitudi-
nal degrees of freedom, the total amount of damping is limited and determined
by the amount of synchrotron radiation. This correlation of damping decre-
ments in all degrees of freedom was derived first by Robinson [84] for general
accelerating fields as long as they are not so strong that they would apprecia-
bly affect the particle orbit.

8.2.1 Robinson Criterion

Following Robinson’s idea we will derive what is now known as Robinson’s
damping criterion by observing the change of a six-dimensional vector in
phase space due to synchrotron radiation and acceleration. The components
of this vector are the four transverse coordinates (x, x′, y, y′), the energy devi-
ation ∆E, and the longitudinal phase deviation from the synchronous phase
ϕ = ψ − ψs. Consistent with smooth approximation a continuous distribu-
tion of synchrotron radiation along the orbit is assumed as well as continuous
acceleration to compensate energy losses. During the short time dt the six-
dimensional vector

u =
(
x, x′, y, y′, ϕ, δE

)
(8.5)

will change by an amount proportional to dt. We may expand the transfor-
mations into a Taylor series keeping only linear terms and express the change
of the phase space vector in the form of a matrix transformation

∆u = u1 − u0 = dtMu0 . (8.6)

From the eigenvalue equation for this transformation matrix,
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Muj = λjuj ,

where uj are the eigenvectors, λi are the eigenvalues being the roots of the
characteristic equation det(M − λI) = 0 and I is the unity matrix. From
(8.6) we get

u1 = (1 + Mdt)u0 = (1 + λj dt)u0 ≈ u0eλj dt . (8.7)

Since the eigenvectors must be real the eigenvalues come in conjugate complex
pairs

λj = αi ± iβi,

where i = 1, 2, 3 and
j=6∑
j=1

λj = 2
i=3∑
i=1

αi . (8.8)

The quantities αi cause exponential damping or excitation of the eigen-
vectors depending on whether they are negative or positive, while the βi con-
tribute only a frequency shift of the oscillations.

Utilizing the transformation matrix M, we derive expressions for the eigen-
values by evaluating the expression d

dτ det(τM−λI)|τ=0 in two different ways.
With M = λjI we get

d
dτ

det [(τλi − λ) I]τ=0 =
d
dτ

j=6∏
j=1

(τλj − λ)|τ=0 = −λ5

j=6∑
j=1

λj . (8.9)

On the other hand, we may execute the differentiation on the determinant
directly and get

d
dτ

det (τM− λI)|τ=0 = (8.10)
∣∣∣∣∣∣∣∣∣∣∣∣

m11 m12 m13 · · ·
τm21 τm22 − λ τm23 · · ·
τm31 τm32 τm33 − λ · · ·
· · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣
τ=0

+

∣∣∣∣∣∣∣∣∣∣∣∣

τm11 − λ τm12 τm13 · · ·
m21 m22 m23 · · ·
τm31 τm32 τm33 − λ · · ·
· · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣
τ=0

+ · · ·

= −λ5m11 · · · − λ5m66 = −λ5

j = 6∑
j =1

mjj .
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Comparing (8.9)and (8.10) we note with (8.8) the relation

j=6∑
j−1

λj =
j=6∑
j−1

mjj = 2
i=3∑
i=1

αi (8.11)

between eigenvalues, matrix elements, and damping decrements. To further
identify the damping we must determine the transformation. The elements
m11,m33, and m55 are all zero because the particle positions (x, y, ϕ) are not
changed by the emission of a photon or by acceleration during the time dt.

m11 = 0 m33 = 0 m55 = 0 . (8.12)

The slopes, however, will change. Since synchrotron radiation is emitted
in the forward direction, we have no direct change of the particle trajectory
due to the emission process. We ignore at this point the effects of a finite
radiation opening angle θ = ±1/γ and show in connection with the derivation
of the vertical beam emittance that this effect is negligible while determining
damping. Acceleration will change the particle direction because the longitu-
dinal momentum is increased while the transverse momentum stays constant,
see Fig. 8.2.

As shown in Fig. 8.2, a particle with a total momentum p0 and a transverse
momentum p0⊥ due to betatron oscillation emits a photon of energy εγ . This
process leads to a loss of momentum −∆p = εγ/β, where β = v/c, and a loss
of transverse momentum. Acceleration will again compensate for this energy
loss. During acceleration the momentum is increased by ∆prf = +(Prf/cβ) dt,

prf
p

p0
p1

p0t

p1t

Fig. 8.2. Reduction of the transverse momentum of trajectories by acceleration.
For simplicity we assume here that the energy loss −∆p due to the emission of a
photon is immediately compensated by accelerating fields in an rf-cavity (∆prf)
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where Prf is the rf-power to the beam. The transverse momentum during this
acceleration is not changed and we therefore have (p0 −∆p)u′

0 = [p0 −∆p +
(Prf/cβ) dt]u′

1, where u′
0 and u′

1 are the slopes of the particle trajectory before
and after acceleration, respectively. With u′ = u̇/βc and cp0 = βE0 we have
to first order in ∆p and Prf dt

u̇1 =
E0

E0 + Prf dt
u̇0 ≈

(
1 − Prf dt

E0

)
u̇0 . (8.13)

From (8.7) we get with (8.13), using average values for the synchrotron
radiation power around the ring and with u = x or u = y

m22 = −〈Pγ〉
E0

and m44 = −〈Pγ〉
E0

, (8.14)

where we note that the rf-power is equal to the nominal synchrotron radiation
power 〈Pγ〉 = U0/T0. The energy variation of the particle is the combination
of energy loss −Pγ dt and gain Prf dt. With

Pγ(E) = Pγ(E0) +
∂Pγ

∂E

∣∣∣∣
0

∆E0 and Prf(ψ) = Prf(ψs) +
∂Prf

∂ψ

∣∣∣∣
ψs

ϕ,

where ϕ = ψ − ψs, we get

∆E1 = ∆E0 − Pγ(E) dt + Prf(ψ) dt

= ∆E0 −
∂Pγ

∂E

∣∣∣∣
0

∆E dt +
∂Prf

∂ψ

∣∣∣∣
ψs

ϕdt (8.15)

because Pγ(E0) = Prf(ψs). Equation (8.15) exhibits two more elements of the
transformation matrix

m65 =
∂Prf

∂ψ

∣∣∣∣
ψs

and m66 = − ∂Pγ

∂E

∣∣∣∣
0

. (8.16)

We now have all elements necessary to determine the damping decrements.
From (8.12), (8.14), (8.16) we get the sum of the damping decrements

i=3∑
i=1

αi = 1
2

j=6∑
j=1

mjj = −〈Pγ〉
E0

− 1
2

∂Pγ

∂E

∣∣∣∣
0

, (8.17)

which depends only on the synchrotron radiation power and the particle en-
ergy. This result was first derived by Robinson [84] and is known as Robinson’s
damping criterion.

We may separate the damping decrements. For a plane circular accelerator
without vertical bending magnets and coupling, the vertical damping decre-
ment αy = α2 can be extracted. Since the vertical motion is not coupled to
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either the horizontal or the synchrotron oscillations, we get from (8.14) and
(8.17)

αy = − 1
2

〈Pγ〉
E0

. (8.18)

The damping decrement for synchrotron oscillations has been derived in (6.27)
and is

αz = − 1
2

d〈Pγ〉
dE

∣∣∣∣
0

. (8.19)

The horizontal damping decrement finally can be derived from Robinson’s
damping criterion (8.17) and the two known decrements (8.18), (8.19) to be

αx = − 1
2

〈Pγ〉
E0

− 1
2

∂Pγ

∂E

∣∣∣∣
0

+ 1
2

d〈Pγ〉
dE

∣∣∣∣
0

. (8.20)

We may further evaluate the total and partial differential of the syn-
chrotron radiation power Pγ with energy E. The synchrotron radiation power
is proportional to the square of the particle energy E and magnetic field B
and the partial differential is therefore

∂Pγ

∂E

∣∣∣∣
0

= 2
〈Pγ〉
E0

. (8.21)

The total differential of the synchrotron radiation power depends not only
on the particle energy directly but also on the variation of the magnetic field
with energy as seen by the particle. A change in the particle energy causes a
shift in the particle orbit where the η-function is nonzero and this shift may
move the particle to a location with different field strength. To include all
energy dependent contributions, we inspect the definition

〈Pγ〉 =
1
T0

∮
Pγdτ

and noting that for highly relativistic particles (v ≈ c)

cdτ = ds =
(

1 +
η

ρ

∆E

E0

)
dz

we get

〈Pγ〉 =
1

cT0

∮
Pγ

(
1 +

η

ρ

∆E

E0

)
dz. (8.22)

Differentiating (8.22) with respect to energy, we get

d〈Pγ〉
dE

∣∣∣∣
0

=
1

cT0

∮ [
dPγ

dE

∣∣∣∣
0

+ Pγ
η

ρE0

]
dz, (8.23)

where
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dPγ

dE

∣∣∣∣
0

= 2
Pγ

E0
+ 2

Pγ

B0

dB
dx

dx
dE

= 2
Pγ

E0
+ 2

Pγ

E0
ρ k η .

Collecting all components, the synchrotron oscillation damping decrement
(8.19) is finally

αs = − 1
2

d 〈Pγ〉
dE

∣∣∣∣
0

= − 1
2

〈Pγ〉
E0

(2 + ϑ), (8.24)

where we used 〈Pγ〉 ∝
∮

κ2dz and Pγ0 ∝ κ2 with κ = 1/ρ

ϑ =

∮
κ3η
(
1 + 2ρ2k

)
dz∮

κ
2dz

. (8.25)

Similarly, we get from (8.20) for the horizontal damping decrement

αx = −1
2
〈Pγ〉
E0

(1 − ϑ) . (8.26)

In summary the damping decrements for betatron and synchrotron oscillations
can be expressed by

αz = −1
2
〈Pγ〉
E

(2 + ϑ) = −1
2
〈Pγ〉
E

Jz,

αx = −1
2
〈Pγ〉
E

(1 − ϑ) = −1
2
〈Pγ〉
E

Jx, (8.27)

αy = −1
2
〈Pγ〉
E

= −1
2
〈Pγ〉
E

Jy,

where the factors Ji are the damping partition numbers,

Jz = 2 + ϑ,

Jx = 1 − ϑ, (8.28)
Jy = 1.

Robinson’s damping criterion can be expressed by
∑

i

Ji = 4 . (8.29)

In more practical quantities, the damping decrements can be obtained with
(21.34) from

αu = − 1
3rec γ

3

〈
1
ρ2

〉
Ju. (8.30)

Damping can be obtained in circular electron accelerators in all degrees of
freedom. In transverse motion particles oscillate in the potential created by
quadrupole focusing and any finite amplitude is damped by synchrotron radi-
ation damping. Similarly, longitudinal synchrotron oscillations are contained
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by a potential well created by the rf-fields and the momentum compaction and
finite deviations of particles in energy and phase are damped by synchrotron
radiation damping. We note that the synchrotron oscillation damping is twice
as strong as transverse damping.

All oscillation amplitudes au in six-dimensional phase space are damped
(α < 0) or antidamped (α > 0) like

au = a0ueiαut (8.31)

and the damping or rise times are

τu =
1
au

. (8.32)

In a particular choice of lattice, damping rates can be shifted between
different degrees of freedom and special care must be taken when combined
function magnets or strong sector magnets are introduced into a ring lattice.

Both the synchrotron and betatron oscillation damping can be modified by
a particular choice of lattice. From (8.25) we note the contribution κ3η which
is caused by sector magnets. Particles with higher energies follow a longer
path in a sector magnet and therefore radiate more. Consequently synchrotron
damping is increased with ϑ. This term vanishes for rectangular magnets and
must be modified appropriately for wedge magnets. For a rectangular magnet

ϑrect =
∮

2κηk dz∮
κ

2dz
(8.33)

and for wedge magnets

ϑwedge =

∑
i

[
κ2θ0η0 +

∫
2(κη k) dz + κ2θeηe

]
i∮

κ2dz
. (8.34)

Here we add all contributions from all magnets i in the ring. The edge
angles at the entrance θ0 and exit θe are defined to be positive going from a
rectangular magnet toward a sector magnet.

The second term in the nominator of (8.25) becomes significant for com-
bined function magnets and vanishes for separated function magnets. Specif-
ically, a strong focusing gradient (k > 0) combined with beam deflection can
contribute significantly to ϑ. For ϑ = 1 all damping in the horizontal plane is
lost and antidamping or excitation of betatron oscillations appears for ϑ > 1.
This occurs, for example, in older combined function synchrotrons. At low en-
ergies, however, the beam in such lattices is still stable due to strong adiabatic
damping and only at higher energies when synchrotron radiation becomes sig-
nificant will horizontal antidamping take over and dictate an upper limit to
the feasibility of such accelerators. Conversely, vertical focusing (k < 0) can
be implemented into bending magnets such that the horizontal damping is
actually increased since ϑ < 0. However, there is a limit for the stability of
synchrotron oscillations for ϑ = 2.
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8.3 Particle Distribution in Longitudinal Phase Space

The particle distribution in phase space is rarely uniform. To determine the
required aperture in a particle transport system avoiding excessive losses we
must, however, know the particle distribution. Proton and ion beams involve
particle distributions which due to Liouville’s theorem do not change along
a beam transport system, except for the variation of the betatron and dis-
persion function. The particle distribution can therefore be determined by
measurements of beam transmission through a slit for varying openings. If
this is done at two points about 90◦ apart in betatron phase space, angular
as well as spatial distribution can be determined.

This procedure can also be applied to electrons in a transport system.
The distribution changes, however, significantly when electrons are injected
into a circular accelerator. We will discuss the physics behind this violation of
Liouville’s theorem and determine the resulting electron distribution in phase
space.

Relativistic electron and positron beams passing through bending mag-
nets emit synchrotron radiation, a process that leads to quantum excitation
and damping. As a result the original beam emittance at the source is com-
pletely replaced by an equilibrium emittance that is unrelated to the original
source characteristics. Postponing a rigorous treatment of statistical effects to
Chap. 9, we concentrate here on a more visual discussion of the reaction of
synchrotron radiation on particle and beam parameters.

8.3.1 Energy Spread

Statistical emission of photons causes primarily a change of particle energy
leading to an energy spread within the beam. To evaluate the effect of quan-
tized emission of photons on the beam energy spread, we observe particles
undergoing synchrotron oscillations so that a particle with an energy devia-
tion A0 at time t0 will have an energy error at time t of

A (t) = A0 eiΩ(t−t0) . (8.35)

Emission of a photon with energy ε at time t1 causes a perturbation and
the particle continues to undergo synchrotron oscillations but with a new
amplitude

A1 = A0eiΩ(t−t0) − ε eiΩ(t−t1) . (8.36)

The change in oscillation amplitude due to the emission of one photon
of energy ε can be derived from (8.36) by multiplying with its imaginary
conjugate to get

A2
1 = A2

0 + ε2 − 2εA0 cos [Ω (t1 − t0)] . (8.37)
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Because the times at which photon emission occurs is random we have for
the average increase in oscillation amplitude due to the emission of a photon
of energy ε 〈

∆A2
〉

=
〈
A2

1 −A2
0

〉
= ε2 . (8.38)

The rate of change in amplitude per unit time due to this statistical or
quantum excitation while averaging around the ring is

〈
dA2

dt

∣∣∣∣
q

〉

z

=
∫ ∞

0

ε2ṅ (ε) dε =
〈
Ṅph

〈
ε2
〉〉

z
, (8.39)

where ṅ (ε) is the number of photons of energy ε emitted per unit time and
energy bin dε. This can be equated to the total photon flux Ṅph multiplied by
the average square of the photon energy and again taking the average along
the orbit.

Damping causes a reduction in the synchrotron oscillation amplitude and
with A = A0eαst and the synchrotron oscillation damping time τz = 1/ |αz|
(8.27) 〈

dA2

dt

∣∣∣∣
d

〉

z

= − 2
τz

〈
A2
〉
. (8.40)

Both quantum excitation and damping lead to an equilibrium state
〈
Ṅph

〈
ε2
〉〉

z
− 2

τz

〈
A2
〉

= 0 , (8.41)

or solving for
〈
A2
〉

〈
A2
〉

= 1
2τz

〈
Ṅph

〈
ε2
〉〉

z
. (8.42)

Due to the central limit theorem of statistics the energy distribution due
to statistical emission of photons assumes a Gaussian distribution with the
standard root mean square energy spread σ2

ε = 1
2

〈
A2
〉
. The photon spectrum

will be derived in Part VIII and the integral in (8.39) can be evaluated to
give [85]

Ṅph

〈
ε2
〉

=
55

24
√

3
Pγ0εc . (8.43)

Replacing the synchrotron radiation power Pγ by its expression in (21.34)
and the critical photon energy εc = �ωc by (21.49) we get

Ṅph

〈
ε2
〉

=
55

32π
√

3

[
cCγ�c

(
mc2

)4
γ7κ3

]
(8.44)

and the equilibrium energy spread becomes finally with (8.27) and (21.34)

σ2
ε

E2
=

τz

4E2

〈
Ṅph

〈
ε2
〉〉

z
= Cq

γ2

Jz

〈
κ3
〉

z

〈κ2〉z
, (8.45)
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where
Cq =

55
32
√

3
�c

mc2
= 3.84 × 10−13 m (8.46)

for electrons and positrons. The equilibrium energy spread in an electron
storage ring depends only on the beam energy and the bending radius.

8.3.2 Bunch Length

The conjugate coordinate to the energy deviation is the phase and a spread of
particle energy also appears as a spread in phase or as a longitudinal particle
distribution and an equilibrium bunch length. From (6.71) we get

σ� =
c |ηc|
Ω

σε

E0
, (8.47)

and replacing the synchrotron oscillation frequency by its expression (6.35) we
finally get for the equilibrium bunch length in a circular electron accelerator

σ� =
√

2π c

ωrev

√
ηcE0

heV̂ cosψs

σε

E0
. (8.48)

We note that the equilibrium electron bunch length can be varied by vary-
ing the rf-voltage and scales like σ� ∝ 1/

√
V̂ which is a much stronger depen-

dence than the scaling obtained for nonradiating particles in Sect. 6.3.5. A very
small bunch length can be obtained by adjusting the momentum compaction
to a small value including zero. As the momentum compaction approaches
zero, however, second-order terms must be considered which has been dis-
cussed in detail in Sect. 6.4.2. An electron storage ring where the momentum
compaction is adjusted to be zero or close to zero is called an isochronous
ring [57] or a quasi-isochronous ring [58]. Such rings do not yet exist at this
time but are intensely studied and problems are being solved in view of great
benefits for research in high energy physics, synchrotron radiation sources,
and free electron lasers to produce short particle or light pulses.

8.4 Transverse Beam Emittance

The sudden change of particles energy due to the quantized emission of pho-
tons also causes a change in the characteristics of transverse particle motion.
Neither position nor the direction of the particle trajectory is changed during
the forward emission of photons. From beam dynamics, however, we know that
different reference trajectories exist for particles with different energies. Two
particles with energies cp1 and cp2 follow two different reference trajectories
separated at the position z along the beam transport line by a distance
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∆x (z) = η(z)
cp1 − cp2

cp0
, (8.49)

where η(z) is the dispersion function and cp0 is the reference energy. Although
particles in general do not exactly follow these reference trajectories, they do
perform betatron oscillations about these trajectories. The sudden change of
the particle energy causes a sudden change in the reference path and thereby
a sudden change in the betatron oscillation amplitude.

8.4.1 Equilibrium Beam Emittance

Postponing again a rigorous discussion of the evolution of phase space due
to statistical perturbations to the next chapter, we follow here a more intu-
itive path to determine the equilibrium transverse beam emittance. Similar to
the discussion leading to the equilibrium energy spread we will observe per-
turbations to the transverse motion caused by photon emission. In the case
of longitudinal quantum excitation it was sufficient to consider the effect of
photon emission on the particle energy alone since the particle phase is not
changed by this process.

As a particle emits a photon it will not change its actual position and
direction. However, the position of a particle with respect to the ideal reference
orbit is the combination of its betatron oscillation amplitude and a chromatic
contribution due to a finite energy deviation and dispersion. Variation of the
particle position u = uβ + η (∆E/E0) and direction u′ = u′

β + η′ (∆E/E0)
due to the emission of a photon of energy ε is described by

δu = 0 = δuβ + η ε
E or δuβ = −η ε

E ,

δu′ = 0 = δu′
β + η′ ε

E or δu′
β = −η′ ε

E .
(8.50)

We note the sudden changes in the betatron amplitudes and slopes because
the sudden energy loss leads to a simultaneous change in the reference orbit.
This perturbation will modify the phase ellipse the particles move on. The
variation of the phase ellipse γu2 + 2αuu′ + βu′2 = a2 is expressed by

γδ(u2
β) + 2αδ(uβu

′
β) + βδ(u′

β
2) = δ(a2)

and inserting relations (8.50) we get terms of the form δ(u2
β) = (uβ0 +δuβ)2−

u2
β0 etc. Emission of photons can occur at any betatron phase and we therefore

average over all phases. As a consequence, all terms depending linearly on
the betatron amplitude and its derivatives or variations thereof vanish. The
average variation of the phase ellipse or oscillation amplitude a due to the
emission of photons with energy ε then becomes

〈δa2〉 =
ε2

E2
0

H(z), (8.51)
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where
H(z) = βη′

2 + 2αη η′ + γη2 . (8.52)

We average again over all photon energies, multiply by the total number
of photons emitted per unit time, and integrate over the whole ring to get the
variation of the oscillation amplitude per turn

∆〈a2〉 =
1

cE2
0

∮
Ṅph〈ε2〉H(z) dz . (8.53)

The rate of change of the oscillation amplitude is then with z = ct

d〈a2〉
dt

∣∣∣∣
q

=
1
E2

0

〈
Ṅph〈ε2〉H(z)

〉
z
, (8.54)

where the index z indicates averaging around the ring. This quantum exci-
tation of the oscillation amplitude is compensated by damping for which we
have similar to (8.40) 〈

da2

dt

〉∣∣∣∣
d

= 2αx〈a2〉 . (8.55)

Equilibrium is reached when quantum excitation and damping are of equal
strength which occurs for

σ2
u

βu
=

τu

4E2

〈
Ṅph〈ε2〉Hu

〉
z
. (8.56)

Here we have used the definition of the standard width of a Gaussian
particle distribution

σ2
u = 〈u2(z)〉 = 1

2a
2βu (8.57)

with the betatron function βu and u = x or y. With (8.27), (8.44), and (21.34)
we finally get

εu =
σ2

u

βu
= Cq

γ2

Ju

〈κ3Hu〉
〈κ2〉 , (8.58)

which we define as the equilibrium beam emittance of a relativistic electron
in a circular accelerator.

8.4.2 Emittance Increase in a Beam Transport Line

In (8.53) we decided to integrate the quantum excitation over a complete turn
of a circular accelerator. This should not be taken as a restriction but rather
as an example. If we integrate along an open beam transport line we would
get the increase of the beam emittance along this beam line. This becomes
important for very high energy linear colliders where beams are transported
along the linear accelerator and some beam transport system in the final
focus section just ahead of the collision point. Any dipole field along the
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beam path contributes to an increase of the beam emittance, whether it be
real dipole magnets, dipole field errors, path displacements in a quadrupole,
or small correction magnets for beam steering. Since there is no damping, the
emittance growth is therefore in both planes from (8.53) and (8.57)

∆εu =
1

2 cE2
0

∫
Ṅph〈ε2〉Hu(z) dz . (8.59)

The function H is now evaluated with the dispersion functions Du(z) in-
stead of the periodic η-function with contributions from any dipole field, be it
a real bending magnet, dipole field errors, or the associated dipole correctors.
Since such errors occur in both planes there is an emittance increase in both
planes as well. With (8.44) the increase in beam emittance is finally

∆εu =
55Cγ �c (mc2)2

64π
√

3
γ5

∫
κ3Hu dz, (8.60)

where the integration is taken along the beam line. The perturbation of the
beam emittance in a beam transport line increases with the fifth power of the
particle energy. At very high energies we therefore expect a significant effect
of dipole errors on the beam emittance even if the basic beam transport line
is straight.

So far, we have not yet distinguished between the horizontal and vertical
plane since the evolution of the phase space does not depend on the particular
degree of freedom. The equilibrium beam emittance, however, depends on ma-
chine parameters and circular accelerators are not constructed symmetrically.
Specifically, accelerators are mostly constructed in a plane and therefore there
is no deflection in the plane normal to the ring plane. Assuming bending only
occurs in the horizontal plane, we may use (8.58) directly as the result for the
horizontal beam emittance u = x.

8.4.3 Vertical Beam Emittance

In the vertical plane, the bending radius ρv → ∞ and the vertical beam
emittance reduces to zero by virtue of damping. Whenever we have ideal
conditions like this it is prudent to consider effects that we may have neglected
leading to less than ideal results. In this case, we have neglected the fact that
synchrotron radiation photons are emitted not strictly in the forward direction
but rather into a small angle ±1/γ. Photons emitted at a slight angle exert
a recoil on the particle normal to the direction of the trajectory. A photon
emitted at an angle θ with respect to the direction of the trajectory and an
azimuth φ causes a variation of the vertical slope by

δy′ = − θ cosφ
ε

E0
,

while the position is not changed δy = 0. This leads to a finite beam emittance
which can be derived analogous to the general derivation above
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σ2
y

βy
=

τy

4E2

〈
Ṅph〈ε2θ2 cos2 φ〉βy

〉
z
. (8.61)

We set
〈ε2θ2 cos2 φ〉 ≈ 〈ε2〉

〈
θ2
〉 〈

cos2 φ
〉
≈ 〈ε2〉 1

2γ2

and finally get for the fundamental lower limit of the vertical beam emittance

σ2
y

βy
= εy = Cq

βy

2Jy

〈κ3〉
〈κ2〉 . (8.62)

Very roughly εy/εx = 1/γ2 � 1 and it is therefore justified to neglect this
term in the calculation of the horizontal beam emittance. This fundamental
lower limit of the equilibrium beam emittance is of the order of 10−13 m,
assuming the betatron function and the bending radius to be of similar mag-
nitude, and therefore indeed very small compared to actual achieved beam
emittances in real accelerators. In reality, we observe a larger beam emittance
in the vertical plane due to coupling or due to vertical steering errors which
create a small vertical dispersion and, consequently, a small yet finite vertical
beam emittance. As a practical rule the vertical beam emittance is of the
order of 1% or less of the horizontal beam emittance due to field and align-
ment tolerances of the accelerator magnets. For very small horizontal beam
emittances, however, this percentage may increase because the vertical beam
emittance due to vertical dipole errors becomes more significant.

Sometimes it is necessary to include vertical bending magnets in an oth-
erwise horizontal ring. In this case the vertical dispersion function is finite
and so is Hy(z). The vertical emittance is determined by evaluating (8.58)
while using the vertical dispersion function. Note, however, that all bending
magnets must be included in the calculation of equilibrium beam emittances
because for quantum excitation it is immaterial whether the energy loss was
caused in a horizontally or vertically bending magnet. The same is true for
the damping term in the denominator. Differences in the horizontal and ver-
tical beam emittance come from the different betatron and η-functions at the
location of the radiation source.

8.4.4 Beam Sizes

Beam parameters like width, height, length, divergence, and energy spread
are not all fixed independent quantities, but rather depend on emittances and
lattice and rf-parameters. These multiple dependences allow the adjustment of
beam parameters, within limits, to be optimum for the intended application.
In this section we will discuss such dependences.

A particle beam at any point of a beam transport line may be represented
by a few phase ellipses for different particle momenta as shown in Fig. 8.3. The
phase ellipses for different momenta are shifted proportional to the dispersion
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Fig. 8.3. Distribution of beam ellipses for a beam with finite emittance and mo-
mentum spread (schematic). The variation in the shape of the phase ellipses for
different energies reflect the effect of chromatic aberrations

function at that point and its derivative. Generally, the form and orientation
of the ellipses are slightly different, too, due to chromatic aberrations in the
focusing properties of the beam line. For the definition of beam parameters
we therefore need the knowledge of the lattice functions including chromatic
aberrations and the beam emittance and momentum spread.

The particle beam width or beam height is determined by the beam emit-
tance, the value of the betatron function, the value of the dispersion function,
and the energy spread. The betatron and dispersion functions vary along a
beam transport line and depend on the distribution of the beam focusing el-
ements. The beam sizes are therefore also functions of the location along the
beam line. From the focusing lattice these functions can be derived and the
beam sizes can be calculated.

The beam size of a particle beam is generally not well defined since the
boundaries of a beam tends to become fuzzy. We may be interested in the beam
size that defines all of a particle beam. In this case we look for that phase
ellipse that encloses all particles and obtain the beam size in the form of the
beam envelope. The beam half-width or half-height of this beam envelope is
defined by

uβ(z) =
√

εuβu(z) (8.63)

with u = (x, y). If there is also a finite momentum spread within the beam
particles the overall beam size or beam envelope is increased by the dispersion

uη(z) = ηu(z)
∆cp

cp0
(8.64)

and the total beam size is
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utot(z) = uβ(z) + uη(z) =
√

εuβu(z) + ηu(z)
∆cp

cp0
. (8.65)

This definition of the beam size assumes a uniform particle distribution
within the beam and is used mostly to determine the acceptance or the beam
stay clear , BSC , of a beam transport system. The acceptance of a beam trans-
port system is defined as the maximum emittance a beam may have and still
pass through the vacuum chambers of a beam line. In Fig. 8.3 this would be
the area of the ellipse that encloses the whole beam including off-momentum
particles. In practice, however, we would choose a larger acceptance to allow
for errors in the beam path.

Since the lattice functions vary along a beam line the required aperture
to let a beam with the maximum allowable emittance pass is not the same
everywhere along the system. To characterize the aperture variation consistent
with the acceptance, a beam stay clear (BSC) area is defined as the required
material free aperture of the beam line.

For a more precise description of the actual beam size the particle dis-
tribution must be considered. Most particle beams have a Gaussian or near-
Gaussian density distribution in all six dimensions of phase space and there-
fore the contributions to the beam parameters from different sources add in
quadrature. The beam parameters for Gaussian particle distributions are de-
fined as the standard values of the Gaussian distribution

σx, σx′ , σy, σy′ , σδ, σ�, (8.66)

where most designations have been defined and used in previous chapters
and where σδ = σε/cp0 and σ� is the bunch length. Quoting beam sizes in
units of σ can be misleading specifically in connection with beam intensities.
For example, a beam with a horizontal and vertical size of 1σ has a cross
section of 2σx2σy and includes only 46.59% of the beam. Therefore, beam
intensities are often given for 2σ’s or as in the case of proton and ion beam
for

√
6σ’s. In Table 8.1 the fraction of the total beam intensity is compiled

for a few generally used units of beam size measurement and for beam size,
cross section, and volume.

Table 8.1. Fraction of total beam intensity

One dimension Two dimension Three dimension

% % %

1σ 68.26 46.59 31.81

2σ 95.44 91.09 86.93
√

6σ 98.56 97.14 95.74
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The beam size for Gaussian beams is thereby

σu,tot =
√

εuβu(z) + η2(z)σ2
δ . (8.67)

Four parameters are required to determine the beam size in each plane
although in most cases the vertical dispersion vanishes.

8.4.5 Beam Divergence

The angular distribution of particles within a beam depends on the rotation
of the phase ellipse and we define analogous to the beam size an angular beam
envelope by

σu′,tot =
√

εuγu(z) + η′2(z)σ2
δ . (8.68)

Again, there is a contribution from the betatron motion, from a finite mo-
mentum spread, and from the associated chromatic aberration. The horizontal
and vertical beam divergences are also determined by four parameters in each
plane.

8.5 Variation of the Damping Distribution

Robinson’s criterion provides an expression for the overall damping in six-
dimensional phase space without specifying the distribution of damping in
the three degrees of freedom. In accelerators we make an effort to decouple
the particle motion in the three degrees of freedom as much as possible and
as a result we try to optimize the beam parameters in each plane separately
from the other planes for our application. Part of this optimization is the
adjustment of damping and as a consequence of beam emittances to desired
values. Robinson’s criterion allows us to modify the damping in one plane at
the expense of damping in another plane. This shifting of damping is done by
varying damping partition numbers defined in (8.28).

From the definition of the ϑ parameter is is clear that damping parti-
tion numbers can be modified depending on whether the accelerator lattice
is a combined function or a separated function lattice. Furthermore, we may
adjust virtually any distribution between partition numbers by choosing a
combination of gradient and separated function magnets.

8.5.1 Damping Partition and rf-Frequency

Actually such “gradients” can be introduced even in a separated function
lattice. If the rf-frequency is varied the beam will follow a path that meets the
synchronicity condition. Increasing the rf-frequency, for example, leads to a
shorter wavelength and therefore the total path length in the ring need to be
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shorter. As a consequence of the principle of phase stability the beam energy is
reduced and the beam follows a lower energy equilibrium orbit with the same
harmonic number as the reference orbit for the reference energy. Decreasing
the rf-frequency leads just to the opposite effect. The off-momentum orbits
pass systematically off center through quadrupoles which therefore function
like combined function gradient magnets.

To quantify this effect we use only the second term in expression (8.25)
for ϑ. The first term, coming from sector magnets, will stay unaffected. Dis-
placement of the orbit in the quadrupoles will cause a bending with a bending
radius

1
ρq

= k δx . (8.69)

An rf-frequency shift causes a momentum change of

∆p

p0
= − 1

αc

∆frf

frf
, (8.70)

which in turn causes a shift in the equilibrium orbit of

δx = η
∆p

p0
= − η

αc

∆frf

frf
, (8.71)

and the bending radius of the shifted orbit in quadrupoles is

1
ρq

= kδx = k η
∆p

p0
= − k

η

αc

∆frf

frf
. (8.72)

Inserting into the second term of (8.25), we get

∆ϑ = − 1
αc

∮
2 k2 η2 dz∮

1
ρ2
a
dz

∆frf

frf
, (8.73)

where ρa is the bending radius of the ring bending magnets All quantities in
(8.73) are fixed properties of the lattice and changing the rf-frequency leads
just to the expected effect. Specifically, we note that all quadrupoles con-
tribute additively irrespective of their polarity. We may apply this to a simple
isomagnetic FODO lattice where all bending magnets and quadrupoles have
the same absolute strength respectively with

∮
dz/ρ2 = 2π/ρa. Integration of

the nominator in (8.73) leads to
∮

2 k2η2dz = 2 k2(η2
max + η2

min)lq2nc,

where lq is half the quadrupole length in a FODO lattice, ηmax and ηmin are the
values of the η-function in the focusing QF and defocusing QD quadrupoles,
respectively, and nc is the number of FODO cells in the ring. With all this
the variation of the ϑ parameter
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∆ϑ = −nc
2 ρa

π αc lq

η2
max + η2

min

f2

∆frf

frf
. (8.74)

Here we have used the focal length f−1 = k lq. We replace in (8.74) the η
functions by expressions (7.74) derived for a FODO lattice, recall the relation
f = κL, and finally get [86]

∆ϑ = − ρa

ρ

1
αc

L

lq
(4κ2 + 1)

∆frf

frf
, (8.75)

where ρ is again the average bending radius in the FODO cell. The variation
of the ϑ parameter in a FODO lattice is the more sensitive to rf-frequency
variations the longer the cell compared to the quadrupole length and the
weaker the focusing. For other lattices the expressions may not be as simple as
for the FODO lattice but can always be computed numerically by integrations
and evaluation of (8.73).

By varying the rf-frequency and thereby the horizontal and longitudinal
damping partition number we have found a way to either increase or decrease
the horizontal beam emittance. The adjustments, however, are limited. To
decrease the horizontal beam emittance we would increase the horizontal par-
tition number and at the same time the longitudinal partition number would
be reduced. The limit is reached when the longitudinal motion becomes unsta-
ble or in practical cases when the partition number drops below about half a
unit. Other more practical limits may occur before stability limits are reached
if, for example, the momentum change becomes too large to fit in the vacuum
chamber aperture.

8.6 Variation of the Equilibrium Beam Emittance

In circular electron accelerators the beam emittance is determined by the
emission of synchrotron radiation and the resulting emittance is not always
equal to the desired value. In such situations methods to alter the equilibrium
emittance are desired and we will discuss in the next sections such methods
which may be used to either increase or decrease the beam emittance.

8.6.1 Beam Emittance and Wiggler Magnets

The beam emittance in an electron storage ring can be greatly modified by
the use of wiggler magnets both to increase [30] or to decrease the beam
emittance. A decrease in beam emittance has been noted by Tazzari [87]
while studying the effect of a number of wiggler magnets in a low emittance
storage ring design. Manipulation of the beam emittance in electron storage
rings has become of great interest, specifically, to obtain extremely small beam
emittances, and we will therefore derive systematic scaling laws for the effect
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of wiggler magnets on the beam emittance as well as on the beam energy
spread [87,88].

The particle beam emittance in a storage ring is the result of two com-
peting effects, the quantum excitation caused by the quantized emission of
photons and the damping effect. Both effects lead to an equilibrium beam
emittance observed in electron storage rings.

Independent of the value of the equilibrium beam emittance in a particu-
lar storage ring, it can be further reduced by increasing the damping without
also increasing the quantum excitation. More damping can be established by
causing additional synchrotron radiation through the installation of deflect-
ing dipole magnets like strong wiggler magnets. In order to avoid quantum
excitation of the beam emittance, however, the placement of wiggler magnets
has to be chosen carefully. As discussed earlier, an increase of the beam emit-
tance through quantum excitation is caused only when synchrotron radiation
is emitted at a place in the storage ring where the dispersion function is finite.
The emission of a photon causes a sudden energy loss and thereby also a sud-
den change of the particle’s equilibrium trajectory which causes a correspond-
ing increase in the betatron oscillation amplitude about the new equilibrium
orbit. Emittance reducing wiggler magnets therefore must be placed in areas
around the storage ring where the dispersion vanishes to minimize quantum
excitation. To calculate the modified equilibrium beam emittance, we start
from (8.54) and get with (8.44) and (8.57) an expression for the quantum ex-
citation of the emittance which can be expanded to include wiggler magnets

dε
dt

∣∣∣∣
q,0

=
2
3
reCq γ

5
〈
κ3H

〉
0
. (8.76)

The quantity H is evaluated for the plane for which the emittance is to
be determined, E is the particle energy, and ρ is the bending radius of the
regular ring magnets. The average 〈〉 is to be taken for the whole ring and the
index 0 indicates that the average

〈
κ3H

〉
0

be taken only for the ring proper
without wiggler magnets.

Since the contributions of different magnets, specifically of regular storage
ring magnets and wiggler magnets, are independent of each other, we may use
the results of the basic ring lattice and add to the regular quantum excitation
and damping the appropriate additions due to the wiggler magnets,

dε
dt

∣∣∣∣
q,w

=
2
3
reCq γ

5
[〈
κ3H

〉
0

+
〈
κ3H

〉
w

]
. (8.77)

Both, ring magnets and wiggler magnets, produce synchrotron radiation
and contribute to damping of the transverse particle oscillations. Again, we
may consider both contributions separately and adding the averages we get
the combined rate of emittance damping from (8.55) and (8.27)

dε
dt

∣∣∣∣
d,w

= −2
3
recεw Ju γ3

[〈
κ2
〉
0

+
〈
κ2
〉
w

]
, (8.78)
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where εw is the beam emittance with wiggler magnets and Ju is the damping
partition number with u = x, y. The equilibrium beam emittance is reached
when the quantum excitation rate and the damping rates are of equal magni-
tude. We add therefore (8.77) and (8.78) and solve for the emittance

εw = Cq
γ2

Jx

〈
κ3H

〉
0

+
〈
κ3H

〉
w

〈κ2〉0 + 〈κ2〉w
, (8.79)

where Cq is defined in (8.46). With ε0 being the unperturbed beam emit-
tance (ρw → ∞) , the relative emittance change due to the presence of wiggler
magnets is

εw
ε0

=
1 +
〈
κ3H

〉
w
/
〈
κ3H

〉
0

1 + 〈κ2〉w / 〈κ2〉0
. (8.80)

Making use of the definition of average parameter values we get with the
circumference of the storage ring C = 2πR

〈
κ3H

〉
0

= 1
C

∮ ∣∣κ3
0

∣∣Hdz,
〈
κ3H

〉
w

= 1
C

∮ ∣∣κ3
w

∣∣Hdz,
〈
κ2
〉
0

= 1
C

∮
κ2

0dz, and
〈
κ2
〉
w

= 1
C

∮
κ2

wdz .
(8.81)

Evaluation of these integrals for the particular storage ring and wiggler
magnet employed gives from (8.80) the relative change in the equilibrium
beam emittance. We note that the quantum excitation term scales like the
cube while the damping scales only quadratically with the wiggler curvature.
This feature leads to the effect that the beam emittance is always reduced for
small wiggler fields and increases only when the third power terms become
significant.

Concurrent with a change in the beam emittance, a change in the momen-
tum spread due to the wiggler radiation can be derived similarly:

σ2
εw

σ2
ε0

=
1 + 〈κ3〉w / 〈κ3〉0
1 + 〈κ2〉w/〈κ2〉0

. (8.82)

A closer inspection of (8.80) and (8.82) reveals basic rules and conditions
for the manipulations of beam emittance and energy spread. If the ring dis-
persion function is finite in the wiggler section, 〈Hw〉 
= 0 and strong quan-
tum excitation may occur depending on the magnitude of the wiggler magnet
bending radius ρw. This situation is desired if the beam emittance must be
increased [30]. If wiggler magnets are placed into a storage ring lattice where
the ring dispersion function vanishes, only the small dispersion function due
to the wiggler magnets must be considered for the calculation of 〈Hw〉 and
therefore only a little quantum excitation occurs. In this case the beam emit-
tance can be reduced since the wiggler radiation contributes more strongly
to damping and we call such magnets damping wigglers [87, 88]. Whenever
wiggler magnets are used which are stronger than the ordinary ring magnets
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ρw < ρ0 the momentum spread in the beam is increased. This is true for
virtually all cases of interest.

Conceptual methods to reduce the beam emittance in a storage ring have
been derived which are based on increased synchrotron radiation damping
while avoiding quantum excitation effects. Optimum lattice parameters nec-
essary to achieve this will be derived in the next section.

8.6.2 Damping Wigglers

The general effects of wiggler magnet radiation on the beam emittance has
been described and we found that the beam emittance can be reduced if the
wiggler is placed where η = 0 to eliminate quantum excitation 〈Hw〉 = 0. This
latter assumption, however, is not quite correct. Even though we have chosen
a place, where the storage ring dispersion function vanishes, the quantum
excitation factor Hw is not exactly zero once the wiggler magnets are turned
on because they create their own dispersion function (Fig. 8.4). To calculate
this dispersion function, we assume a sinusoidal wiggler field [88]

B(z) = Bw cos kpz, (8.83)

where kp = 2π/λp and λp is the wiggler period length. The differential equa-
tion for the dispersion function is then

η-function

ρ > 0 ρ < 0 ρ > 0

s

Fig. 8.4. Dispersion function in one period of a wiggler magnet

η′′ = κ = κw cos kpz, (8.84)

which can be solved by

η(z) = κw
k2
p

(1 − cos kpz) ,

η′(z) = κw
kp

sin kpz,
(8.85)

where we have assumed that the wiggler magnet is placed in a dispersion free
location η0 = η′0 = 0. With this solution, the first two equations (8.81) can be
evaluated. To simplify the formalism we ignore the z-dependence of the lattice
functions within the wiggler magnet setting αx = 0 and βx = const. Evalu-
ating integrals (8.81), we note that the absolute value of the bending radius
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must be used along the integration path because the synchrotron radiation
does not depend on the sign of the deflection. With this in mind, we evaluate
the integrals

∫ λp/2

0

∣∣κ3
∣∣ η2 dz and

∫ λp/2

0

∣∣κ3
∣∣ η′2 dz. For each half period of the

wiggler magnet the contribution to the integral is

∆

∫ λp/2

0

∣∣κ3
∣∣H dz =

12
5

1
βx

κ5
w

k5
p

+
4
15

κ5
wβx

k3
p

≈ 4
15

κ5
wβx

k3
p

, (8.86)

where the approximation λp � βx was made. For the whole wiggler magnet
with Nw periods the total quantum excitation integral is with the deflection
angle per wiggler half pole Θw = κw/kp

∫

w

∣∣κ3
w

∣∣H dz ≈ Nw
8
15

βx

ρ2
w

Θ3
w . (8.87)

Similarly, the damping integral for the total wiggler magnet is
∫

w

κ2 dz = πNw κwΘw . (8.88)

Inserting expressions (8.81), (8.87), (8.88) into (8.80) , we get for the emittance
ratio

εxw

εx0
=

1 + 4
15πNw

βx

〈H0〉
ρ2
0

ρ2
w
Θ3

w

1 + 1
2Nw

ρ0
ρw

Θw

, (8.89)

where 〈H0〉 is the average value of H in the ring bending magnets excluding
the wiggler magnets. We note from (8.89) that the beam emittance indeed
can be reduced by wiggler magnets if Θw is kept small. For easier numerical
calculation we replace 〈H0〉 by the unperturbed beam emittance which is from
(8.79) in the limit ρw → ∞

〈H0〉 =
Jx ρ0 εx0

Cq γ2
(8.90)

and get instead of (8.89)

εxw

εx0
=

1 + 4 Cq
15πJx

Nw
βx

εx0 ρw
γ2 ρ0

ρw
Θ3

w

1 + 1
2 Nw

ρ0
ρw

Θw

. (8.91)

The beam emittance is reduced by wiggler magnets whenever the condition

8
15π

Cq

Jx

βx

ε0 ρw
γ2 Θ2

w ≤ 1 (8.92)

is fulfilled. For large numbers of wiggler poles Nw → ∞ the beam emittance
reaches asymptotically a lower limit given by

εxw → 8
15π

Cq

Jx

βx

ρw
γ2 Θ2

w . (8.93)
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In this limit the ultimate beam emittance is independent of the unper-
turbed beam emittance. This derivation did not include any perturbation of
the original lattice functions due to focusing effects by the wiggler poles. Such
perturbations are either small or must be compensated such that our assump-
tions still are valid.

For many wiggler poles the increase in momentum spread also reaches an
asymptotic limit which is given from (8.82)

σ2
εw

σ2
εo

→ ρ0

ρw
=

Bw

B0
, (8.94)

where B0 is the magnetic field strength in the ring magnets. Beam stability
and acceptance problems may occur if the beam momentum spread is allowed
to increase too much and therefore inclusion of damping wigglers must be
planned with some caution.

8.7 Robinson Wiggler

The horizontal betatron motion in a combined function synchrotron FODO
lattice is not damped because ϑ > 1. Beam stability in a synchrotron therefore
exists only during acceleration when the antidamping is over compensated by
adiabatic damping, and the maximum energy achievable in a combined func-
tion synchrotron is determined when the quantum excitation becomes too
large to be compensated by adiabatic damping. In an attempt at the Cam-
bridge Electron Accelerator CEA to convert the synchrotron into a storage
ring the problem of horizontal beam instability was solved by the proposal [29]
to insert a damping wiggler consisting of a series of poles with alternating
fields and gradients designed such that the horizontal partition number be-
comes positive and −2 < ϑ < 1.

Such magnets can be used generally to vary the damping partition numbers
without having to vary the rf-frequency and thereby moving the beam away
from the center of the beam line.

8.7.1 Damping Partition and Synchrotron Oscillation

The damping partition number and, therefore, damping depend on the relative
momentum deviation of the whole beam or of particles within a beam from
the reference energy. During synchrotron oscillations, significant momentum
deviations can occur, specifically, in the tails of a Gaussian distribution. Such
momentum deviations, although only temporary, can lead to reduced damping
or outright antidamping [86]. To quantify this effect, we write (8.73) in the
form

∆ϑ =
∮

2 k2η2 dz∮
κ

2

a
dz

∆p

p0
= C0

∆p

p0
. (8.95)
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The momentum deviation is not a constant but rather oscillates with the
synchrotron oscillation frequency

∆p

p0
=

∆p

p0

∣∣∣∣
max

sinΩt = δmax sinΩt, (8.96)

where Ω is the synchrotron oscillation frequency. The damping partition num-
ber oscillates as well (8.95) and the damping decrement is therefore

1
τ

=
1
τx0

(1 − C0δmax sinΩt) . (8.97)

If the perturbation is too large we have antidamping during part of the
synchrotron oscillation period. As a consequence the beam is “breathing”
in its horizontal and longitudinal dimensions while undergoing synchrotron
oscillations. To quantify this, we calculate similar to (8.56) the total rate of
change of the betatron oscillation amplitude a2, as defined by the phase space
ellipse γu2+2αuu′+βu′2 = a2, composed of quantum excitation and modified
damping

d〈a2〉
dt

=
〈Ṅph〈ε2γ〉H〉

E2
0

− 2〈a2〉
τ

. (8.98)

The amplitude a2 has the dimension of an emittance but we are interested
here in the maximum amplitude which can be expressed in terms of a betatron
amplitude by a2 = u2

max/βu. Replacing the varying damping time by τ−1 =
τ−1
0 (1 − δmaxC0 sinΩt), (8.98) becomes

d〈u2
max〉

〈u2
max〉

=
2
τ0

δmaxC0 sinΩt dt,

which can be readily integrated to give

〈u2
max〉 = 〈u2

max,0〉 exp
[
2 δmaxC0

Ω τ0
(1 − cosΩt)

]
. (8.99)

A particle with a betatron amplitude umax,0 will, during the course of a
synchrotron oscillation period, reach amplitudes as large as umax.The effect
is the largest for particles with large energy oscillations. On the other hand,
the effect on the core of the beam is generally very small since δmax is small.

8.7.2 Can we Eliminate the Beam Energy Spread?

To conclude the discussions on beam manipulation we try to conceive a way to
eliminate the energy spread in a particle beam. From beam dynamics we know
that the beam particles can be sorted according to their energy by introducing
a dispersion function. The distance of a particle from the reference axis is
proportional to its energy and is given by
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xδ = D δ, (8.100)

where D is the value of the dispersion at the location under consideration and
δ = ∆E/E0 is the energy error. For simplicity we make no difference between
energy and momentum during this discussion. We consider now a cavity ex-
cited at a higher mode such that the accelerating field is zero along the axis,
but varies linearly with the distance from the axis. If now the accelerating
field, or after integration through the cavity, the accelerating voltage off axis
is

Vrf(xδ) = − xδ

D
E0, (8.101)

we have just compensated the energy spread in the beam. The particle beam
has become monochromatic, at least to the accuracy assumed here. In reality
the dispersion of the beam is not perfect due to the finite beam emittance.

We will discuss cavity modes and find that the desired mode indeed exists
and the lowest order of such modes is the TM110 mode. So far we have made no
mistake and yet Liouville’s theorem seems to be violated because this scheme
does not change the bunch length and the longitudinal emittance has been
indeed reduced by application of macroscopic fields.

The problem is that we are by now used to consider transverse and longitu-
dinal phase space separately. While this separation is desirable to manage the
mathematics of beam dynamics, we must not forget that ultimately beam dy-
namics occurs in six-dimensional phase space. Since Liouville’s theorem must
be true, its apparent violation warns us to observe changes in other phase
space dimensions. In the case of beam monochromatization we notice that the
transverse beam emittance has been increased. The transverse variation of the
longitudinal electric field is caused by virtue of Maxwell’s equations, the ap-
pearance of transverse magnetic fields which deflect the particles transversely
thus increasing the transverse phase space at the expense of the longitudinal
phase space.

This is a general feature of electromagnetic fields which is known as the
Panofsky–Wenzel theorem [89], stating that transverse acceleration occurs
whenever there is a transverse variation of the longitudinal accelerating field.
We will discuss this in more detail in Sect. 19.1.3. So, indeed we may mono-
chromatize a particle beam with the use of a TM110 mode, but only at the
expense of an increase in the transverse beam emittance.

8.8 Beam Life Time

Particles traveling along a beam transport line or orbiting in a circular accel-
erator can be lost due to a variety of causes. We ignore the trivial cases of
beam loss due to technical malfunctioning of beam line components or losses
caused by either complete physical obstruction of the beam line or a mismatch
of vacuum chamber aperture and beam dimensions. For a well-designed beam
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transport line or circular accelerator we distinguish two main classes for par-
ticle loss which are losses due to scattering and losses due to instabilities.
While particle losses due to scattering with other particles is a single parti-
cle effect leading to a gradual loss of beam intensity, instabilities can lead to
catastrophic loss of part or all of the beam. In this chapter, we will concentrate
on single particle losses due to interactions with residual gas atoms.

The effect of particle scattering on the beam parameters is different in a
beam transport line compared to a circular accelerator especially compared
to storage rings. Since a beam passes through transport lines only once, we
are not concerned about beam life time but rather with the effect of particle
scattering on the transverse beam size. For storage rings, in contrast, we
consider both the effect of scattering on the beam emittance and the overall
effect on the beam lifetime. Since long lifetimes of the order of many hours
are desired in storage rings even small effects can accumulate to reduce beam
performance significantly. In proton rings continuous scattering with residual
gas atoms or with other protons of the same beam can change the beam
parameters considerably for lack of damping. Even for electron beams, where
we expect the effects of scattering to vanish within a few damping times, we
may observe an increase in beam emittance. This is specifically true due to
intrabeam scattering for dense low emittance beams at low energies when
damping is weak.

Collisions of particles with components of residual gas atoms, losses due
to a finite acceptance limited by the physical or dynamic aperture, collisions
with other particles of the same beam, or with synchrotron radiation photons
can lead to absorption of the scattered particles or cause large deflections
leading to instable trajectories and eventual particle loss. The continuous loss
of single particles leads to a finite beam lifetime and may in severe cases
require significant hardware modifications or a different mode of operation to
restore a reasonable beam lifetime.

Each of these loss mechanisms has a particular parameter characterizing
and determining the severity of the losses. Scattering effects with residual gas
atoms are clearly dominated by the vacuum pressure while scattering effects
with other particles in the same beam depend on the particle density. Some
absorption of particles at the vacuum chamber walls will always occur due to
the Gaussian distribution of particles in space. Even for nonradiating proton
beams which are initially confined to a small cross section, we observe the
development of a halo of particles outside the beam proper due to intrabeam
scattering. The expansion of this halo is obviously limited by the vacuum
chamber aperture. In circular accelerators this aperture limitation may not
only be effected by solid vacuum chambers but also by “soft walls” due to
stability limits imposed by the dynamic aperture.

Longitudinal phase or energy oscillations are limited either by the available
rf-parameters determining the momentum acceptance or by the transverse
acceptance at locations, where the dispersion function is nonzero whichever is
more restrictive. A momentum deviation or spread translates at such locations
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into a widening of the beam and particle loss occurs if the momentum error is
too large to fit within the stable aperture. Transverse oscillation amplitudes
are limited by the transverse acceptance as limited by the vacuum chamber
wall or by aberrations due to nonlinear fields.

8.8.1 Beam Lifetime and Vacuum

Particle beams are generally confined within evacuated chambers to avoid ex-
cessive scattering on residual gas atoms. Considering multiple Coulomb scat-
tering alone the rms radial scattering angle of particles with momentum p
and velocity β passing through a scattering material of thickness L can be
described by [90,91]

ϑrms = Z
20MeV

βcp

√
L

Lr
, (8.102)

where Z is the charge multiplicity of the particle and Lr is the radiation length
of the scattering material. The scattering angle is the angle at which the
intensity has fallen to a fraction 1/e of the peak intensity. We may integrate
(8.102) and get the beam radius of a pencil beam after passing through a
scatterer of thickness L

r = Z
40MeVL

3β cp

√
L

Lr
. (8.103)

The beam emittance generated by scattering effects is then in both the
horizontal and vertical plane just the product of the projections of the distance
r of the particles from the reference path and the radial scattering angles ϑ
onto the respective plane. From (8.102), (8.103) the beam emittance growth
due to Coulomb scattering in a scatterer of length L is then

εx,y(rad m) = Z2 2
3

(
14(MeV)

βcp

)2
L2(m)
Lr(m)

. (8.104)

For atmospheric air the radiation length is Lr = 300.5 m and a pencil
electron beam with a momentum of say cp = 1000 MeV passing through 20 m
of atmospheric air would grow through scattering to a beam diameter of 6.9
cm or to a beam emittance of about 177 mrad mm in each plane. This is much
too big an increase in beam size to be practical in a 20 m beam transport line
let alone in a circular accelerator or storage ring, where particles are expected
to circulate at nearly the speed of light for many turns like in a synchrotron
or for many hours in a storage ring.

To avoid beam blow up due to scattering, we obviously need to provide an
evacuated environment to the beam with a residual gas pressure which must
be the lower the longer the beam is supposed to survive scattering effects.
This does not mean that beam transport in atmospheric pressure must be
avoided at all cost. Sometimes it is very useful to let a beam pass though
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air to provide free access for special beam monitoring devices specifically at
the end of a beam transport line before the beam is injected into a circular
accelerator. Obviously, this can be done only if the scattering effects through
very thin metallic windows and the short length of atmospheric air will not
spoil the beam emittance too much.

Elastic Scattering

As particles travel along an evacuated pipe they occasionally collide with
atoms of the residual gas. These collisions can be either on nuclei or electrons
of the residual gas atoms. The physical nature of the collision depends on the
mass of the colliding partners. Particles heavier than electrons suffer mostly an
energy loss in collisions with the atomic shell electrons while they lose little or
no energy during collisions with massive nuclei but are merely deflected from
their path by elastic scattering. The lighter electrons in contrast suffer both
deflection and energy losses during collisions.

In this section we concentrate on the elastic scattering process, where the
energy of the fast particle is not changed. For the purpose of calculating par-
ticle beam lifetimes due to elastic or Coulomb scattering we ignore screening
effects by shell electrons and mathematical divergence problems at very small
scattering angles. The scattering process is therefore described by the classical
Rutherford scattering with the differential cross section per atom in cgs units

dσ
dΩ

=
1

4πε0

(
zZe2

2βcp

)2 1
sin4 (θ/2)

, (8.105)

where z is the charge multiplicity of the incident particle, eZ is the charge
of the heavy scattering nucleus, θ is the scattering angle with respect to the
incident path, Ω is the solid angle with dΩ = sin θ dθ dϕ, and ϕ is the polar
angle.

To determine the particle beam lifetime or the particle loss rate we will
calculate the rate of events for scattering angles larger than a maximum value
of θ̂ which is limited by the acceptance of the beam transport line. Any particle
being deflected by an angle larger than this maximum scattering angle will
be lost. We integrate the scattering cross section over all angles greater than
θ̂ up to the maximum scattering angle π. With n scattering centers or atoms
per unit volume and N beam particles, the loss rate is

− dN
dt

= 2π cβnN

∫ π

θ̂

dσ
dΩ

sin θ dθ . (8.106)

Under normal conditions at 0◦C and a gas pressure of 760 mm mercury
the number of scattering centers in a homogeneous gas is equal to twice Avo-
gadro’s number A and becomes for an arbitrary gas pressure P

n = 2A P (Torr)
760

= 2 × 2.68675 × 1019 P (Torr)
760

. (8.107)
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The factor 2 comes from the fact that homogeneous gases are composed of
two atomic molecules, where each atom acts as a separate scattering center.
This assumption would not be true for single atomic noble gases which we do
not consider here, but will be included in a later generalization. The integral
on the r.h.s. of (8.106) becomes with (8.105)

∫ π

θ̂

sin θ dθ
sin4(θ/2)

=
2

tan2(θ̂/2)
. (8.108)

Dividing (8.106) by N we find an exponential decay of beam intensity with
time

N = N0 e−t/τ , (8.109)

where the decay time constant or beam lifetime is

τ−1 = cβ 2A P (Torr)
760

(
zZe2

2β cp

)2 4π

tan2(θ̂/2)
. (8.110)

The maximum acceptable scattering angle θ̂ is limited by the acceptance
εA of the beam transport line. A particle being scattered by an angle θ at
a location where the betatron function has the value βθ reaches a maximum
betatron oscillation amplitude of a =

√
βa βθ θ elsewhere along the beam

transport line where the betatron function is βa. The minimum value of A2/βA

along the ring lattice, where A is the vacuum chamber aperture or the limit
of the dynamic aperture whichever is smaller, is equal to the ring acceptance

εA =
A2

βA

∣∣∣∣
min

. (8.111)

For simplicity we ignore here the variation of the betatron function and
take an average value 〈β〉 at the location of the scattering event and finally
get for the maximum allowable scattering angle

θ̂2 =
εA
〈β 〉 . (8.112)

This angle is generally rather small and we may set tan(θ̂/2) ≈ (θ̂/2).
Utilizing these definitions and approximations we obtain for the lifetime of
a beam made up of singly charged particles z = 1 due to elastic Coulomb
scattering expressed in more practical units

τcs (hours) = 10.25
(cp)2

(
GeV2

)
εA (mm mrad)

〈β (m)〉 P (nTorr)
, (8.113)

where we have assumed that the residual gas composition is equivalent to
nitrogen gas N2 with Z2 ≈ 49. The Coulomb scattering lifetime is proportional
to the ring acceptance or proportional to the square of the aperture A where
A2/β is a minimum.
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The particle loss due to Coulomb scattering is most severe at very low
energies and increases with the acceptance of the beam transport line. Fur-
ther, the beam lifetime depends on the focusing in the transport line through
the average value of the betatron function. If instead of averaging the beta-
tron function we integrate the contributions to the beam lifetime along the
transport line we find that the effect of the scattering event depends on the
betatron function at the location of the collision and the probability that such
a collision occurs at this location depends on the gas pressure there. Therefore,
it is prudent to not only minimize the magnitude of the betatron functions
alone but rather minimize the product βP along the transport line. Specif-
ically, where large values of the betatron function cannot be avoided, extra
pumping capacity should be provided to reach locally a low vacuum pressure
for long Coulomb scattering lifetime.

We have made several simplifications and approximations by assuming a
homogeneous gas and assuming that the maximum scattering angle be the
same in all directions. In practical situations, however, the acceptance need
not be the same in the vertical and horizontal plane. First we will derive the
beam lifetime for nonisotropic aperture limits. We assume that the apertures
in the horizontal and vertical plane allow maximum scattering angles of θ̂x

and θ̂y. Particles are then lost if the scattering angle θ into a polar angle ϕ
exceeds the limits

θ >
θ̂x

cosϕ
and θ >

θ̂y

sinϕ
. (8.114)

The horizontal aperture will be relevant for all particles scattered into a
polar angle between zero and arctan(θ̂y/θ̂x) while particles scattered into a
polar angle of arctan(θ̂y/θ̂x) and π/2 will be absorbed by the vertical aperture
whenever the scattering angle exceeds this limit. We calculate the losses in
only one quadrant of the polar variable and multiply the result by 4 since the
scattering and absorption process is symmetric about the polar axis. Integral
(8.108) becomes in this case

∫ π

θ̂

sin θ dθ dϕ
sin4 (θ/2)

= 4
∫ arctan(θ̂y/θ̂x)

0

dϕ
∫ π

θ̂x/ cos ϕ

sin θ dθ
sin4 (θ/2)

(8.115)

+ 4
∫ π/2

arctan(θ̂y/θ̂x)
dϕ
∫ π

θ̂y/ sin ϕ

sin θ dθ
sin4 (θ/2)

.

The solutions of the integrals are similar to that in (8.108) and we get
∫ π

θ̂

sin θ dθ dϕ
sin4 (θ/2)

=
8

θ̂2
y

[
π +

(
R2 + 1

)
sin (2 arctanR) (8.116)

+2 (R− 1) arctanR] ,

where R = θ̂y/θ̂x.
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Using (8.116) instead of (8.108) in (8.110) gives a more accurate expression
for the beam lifetime due to Coulomb scattering. We note that for R = 1 we
do not get exactly the lifetime (8.110) but find a lifetime that is larger by a
factor of 1 + π/2. This is because we used a rectangular aperture in (8.116)
compared to a circular aperture in (8.108). The beam lifetime (8.113) now
becomes for a rectangular acceptance

τcs(hours) = 10.25
2π

F (R)
(cp)2(GeV2) εA(mm mrad)

〈β(m)〉P (nTorr)
. (8.117)

The function F (R)

F (R) = [π + (R2 + 1) sin(2 arctanR) + 2(R2 − 1) arctanR (8.118)

is shown in Fig. 8.5. For some special cases the factor 2π/F (R) assumes the
values given in the following table.

Shape of aperture Round Square Rectangular

ratio: R = θ̂y/θ̂x 1.00 1.00 0 → 1

2π/F (R) 1.00 1.22 2 → 1.22

2.0

1.8

1.6

1.4

1.2

1.0
0 .2 .4 .6 .8 1.0

2π/F(R)

R = θ
y
/ θ

x
^^

Fig. 8.5. Function F (R) to determine the acceptance for Coulomb scattering

Tacitly we have assumed that the vertical acceptance is smaller than the
horizontal acceptance which in most cases is true. In cases, where θ̂y > θ̂x, we
may use the same equations with x and y exchanged.

Particles performing large amplitude betatron oscillations form as a con-
sequence of Coulomb scattering a halo around the beam proper. In the case
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Fig. 8.6. Measurement of beam lifetime in an electron storage ring with a movable
scraper. The curve on the left shows the Coulomp scattering halo for amplitudes
larger than 6σ indicating a strong deviation from Gaussian particle distribution.
The curve on the right shows the beam lifetime as a function of scraper position.

of an electron storage ring the particle intensity in this halo reaches an equi-
librium between the constant supply of scattered electrons and synchrotron
radiation damping.

The deviation of the particle density distribution from a Gaussian distri-
bution due to scattering can be observed and measured. In Fig. 8.6 beam
lifetime measurements are shown for an electron beam in a storage ring as
a function of a variable ring acceptance as established by a movable scraper.
The abscissa is the actual position of the scraper during the beam lifetime
measurement, while the variable for the ordinate is the aperture for which a
pure Gaussian particle distribution would give the same beam lifetime.

If the particle distribution had been purely Gaussian, the measured points
would lie along a straight line. In reality, however, we observe an overpopu-
lation of particles in the tails of the distribution for amplitudes larger than
about 6σ forcing the scraper to be located farther away from the beam center
to get a beam lifetime equal to that of a pure Gaussian distribution. This over-
population or halo at large amplitudes is due to elastic Coulomb scattering
on the residual gas atoms.

Since the acceptance of the storage ring is proportional to the square of
the aperture at the scraper, we expect the beam lifetime due to Coulomb
scattering to vary proportional to the square of the scraper position. This is
shown in Fig. 8.7 for good vacuum and poor vacuum conditions. In the case
of poor vacuum, we find a saturation of the beam lifetime at large scraper
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Fig. 8.7. Beam lifetime in an electron storage ring as a function of the acceptance.
The transition of the curve on the right from a linear dependence of beam lifetime
on the acceptance to a constant lifetime occurs when the acceptance due to the
scraper position is equal to the ring acceptance

openings which indicates that the scraper is no longer the limiting aperture
in the ring. This measurement therefore allows an accurate determination of
the physical ring acceptance or the dynamic aperture whichever is smaller.

So far we have assumed the residual gas to consist of homogeneous two
atom molecules. This is not an accurate description of the real composition
of the residual gas although on average the residual gas composition is equiv-
alent to a nitrogen gas. Where the effects of a more complex gas composition
becomes important, we apply (8.110) to each different molecule and atom of
the residual gas. In (8.110) we replace the relevant factor P Z2 by a summa-
tion over all gas components. If Pi is the partial pressure of the molecules i
and Zj is the atomic number of the atom j in the molecule i we replace in
(8.110)

P Z2 →
∑
i,j

Pi Z
2
j (8.119)

and sum over all atoms i in the molecule j.

Inelastic Scattering

Charged particles passing through matter become deflected by strong electri-
cal fields from the atomic nuclei. This deflection constitutes an acceleration
and the charged particles lose energy through emission of radiation which is
called bremsstrahlung. If this energy loss is too large such that the particle
energy error becomes larger than the storage ring energy acceptance, the par-
ticle gets lost. We are therefore interested in calculating the probability for
such large energy losses to estimate the beam lifetime.
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The probability of suffering a relative energy loss δ =dE/E0 due to such
an inelastic scattering process has been derived by Bethe and Heitler [92,93].
For extreme relativistic particles and full screening this probability per unit
thickness of matter is [93]

dP = 2Φn
dδ
δ

(1 − δ)
[(

2 − 2δ + δ2

1 − δ
− 2

3

)
2 ln

183
Z1/3

+
2
9

]
, (8.120)

where n is the number of atoms per unit volume and the factor φ is with the
fine structure constant α = 1/137

Φ = r2
e Z

2 α, (8.121)

where re is the classical electron radius. We integrate this probability over all
energy losses larger than the energy acceptance of the storage ring δ ≥ δacc
and get after some manipulation and setting δacc � 1

P = 2Φn

1∫

δacc

dδ
δ

(1 − δ)
[(

2 − 2δ + δ2

1 − δ
− 2

3

)
2 ln

183
Z1/3

+
2
9

]
(8.122)

≈ 3
4

(− ln δacc)
(

4 ln
183
Z1/3

+
3
9

)
nΦ .

The radiation length Lr is defined as the distance over which the particle
energy has dropped to 1/e due to inelastic scattering. For highly relativistic
particles this length is given by [93]

1
Lr

= Φn

(
4 ln

183
Z1/3

+
2
9

)
. (8.123)

Combining (8.122) and (8.123), we find the simple solution that the prob-
ability for a particle to suffer a relative energy loss of more than δacc per
radiation length is

Prad = − 4
3

ln δacc . (8.124)

To calculate the beam lifetime or beam decay rate due to bremsstrahlung,
we note that the probability for a particle loss per unit time is equal to
the beam decay rate or equal to the inverse of the beam lifetime. The
bremsstrahlung lifetime is therefore

τ−1
bs = − 1

N0

dN
dt

= P
c

Lr
= −4

3
c

Lr
ln δacc . (8.125)

The radiation length for gases are usually expressed for a standard temper-
ature of 20◦C and a pressure of 760 Torr. Under vacuum conditions the radi-
ation length of the residual gas is therefore increased by the factor 760/PTorr.
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We again recognize the complex composition of the residual gas and define an
effective radiation length by

1
Lr,eff

=
∑

i

1
Lr,i

, (8.126)

where Lr,i is the radiation length for gas molecules of type i. From
(8.125), (8.126) the beam lifetime due to bremsstrahlung for a composite resid-
ual gas is

τ−1
bs = −4

3
c
∑

i

1
760

P̃i

Lr,i
ln δacc, (8.127)

where P̃i is the residual partial gas pressure for gas molecules of type i. Al-
though the residual gas of ultra high vacuum systems rarely includes a signif-
icant amount of nitrogen gas, the average value for 〈Z2〉 of the residual gas
components is approximately 50 or equivalent to nitrogen gas. For all practi-
cal purposes we may therefore assume the residual gas to be nitrogen with a
radiation length under normal conditions of Lr,N2 = 290m and scaling to the
actual vacuum pressure Pvac we get for the beam lifetime

τ−1
bs (hours−1) = 0.00653Pvac(nTorr) ln

1
δacc

. (8.128)

Basically the bremsstrahlung lifetime depends only on the vacuum pressure
and the energy acceptance and the product of beam lifetime and vacuum
pressure is a function of the energy acceptance δacc = ∆γ/γ,

τbs(hour)P (nTorr) =
153.14

ln(γ/∆γ)
. (8.129)

In tabular form we get:

δacc = ∆γ/γ 0.005 0.010 0.015 0.020 0.025

τ(hr)P (nTorr) 28.90 33.25 36.46 39.15 41.51

There are many more forms of interaction possible between energetic parti-
cles and residual gas atoms. Chemical, atomic, and nuclear reactions leading to
the formation of new molecules like ozone, ionization of atoms, or radioactive
products further contribute to energy loss of the beam particles and even-
tual loss from the beam. These effects, however, are very small compared to
Coulomb scattering or bremsstrahlung losses and may therefore be neglected
in the estimation of beam lifetime.

8.8.2 Ultra High Vacuum System

Accelerated particles interact strongly with residual gas atoms and molecules
by elastic and inelastic collisions. To minimize particle loss due to such colli-
sions we provide an evacuated beam pipe along the desired beam path. For
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open beam transport systems a high vacuum of 10−5 – 10−7 Torr is sufficient.
This is even sufficient for pulsed circular accelerators like synchrotrons, where
the particles remain only for a short time. In storage rings, however, particles
are expected to circulate for hours and therefore ultra high vacuum conditions
must be created.

Thermal Gas Desorption

To reach very low gas pressures in the region of 10−6 – 10−7 Torr for high
vacuum or even lower pressures in the regime of ultra high vacuum (UHV)
we must consider the continuous desorption of gas molecules from the walls
due to thermal desorption. Gas molecules adsorbed on the chamber surface
are in thermal equilibrium with the environment and the thermal energy of
the molecules assumes a statistically determined Boltzmann distribution. This
distribution includes a finite probability for molecules to gain a large enough
amount of energy to overcome the adsorption energy and be released from the
wall.

The total gas flow from the wall due to this thermal gas desorption depends
mostly on the preparation of the material. While for carefully cleaned surfaces
the thermal desorption coefficient may be of the order of 10−12 – 10−13 Torr
lt/sec/cm2, a bakeout to 140 – 300◦C can reduce this coefficient by another
order of magnitude.

Synchrotron Radiation induced Desorption

In high energy electron or positron accelerators a significant amount of energy
is emitted in the form of synchrotron radiation. This radiation is absorbed by
vacuum chamber walls and causes not only a heating effect of the chamber
walls but also the desorption of gas molecules adsorbed on the surface.

The physical process of photon induced gas desorption evolves in two steps
[94]. First a photon hitting the chamber walls causes an electron emission with
the probability ηe(ε), where ε is the photon energy. Secondly, the emission as
well as the subsequent absorption of that photo electron can desorb neutral
atoms from the chamber surface with the probability ηd. To calculate the
total desorption in a storage ring, we start from the differential synchrotron
radiation photon flux (21.56) which we integrate over the ring circumference
and now write in the form

dN(ε)
dt

=
8πα
9

γ
Ib
e

∆ω

ω
S(ζ), (8.130)

where ε = �ω is the photon energy, Ib the beam current, E the beam energy
and S(ζ) a mathematical function defined by (21.57).

The photoelectron current Ṅe results from the folding of (8.130 ) with the
photoelectron emission coefficient ηe(ω) for the material used to construct the
vacuum chamber and the integration over all photon energies,



8.8 Beam Life Time 331

Ṅe =
8πα

9 emc2
E Ib

∫ ∞

0

ηe(ω)
ω

S

(
ω

ωc

)
dω . (8.131)

The photoelectron emission coefficient depends on the choice of the ma-
terial for the vacuum chamber. Fig. 8.8 displays the photoelectron coefficient
for aluminum as a function of photon energy [95].
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Fig. 8.8. Photon electron coefficient ηe for aluminum [95]

We note there are virtually no photoelectrons for photon energies of less
than 10 eV. At 1460 eV the K-edge of aluminum causes a sharp increase of
the coefficient followed by a monotonous decrease for higher photon energies.

The photoelectron coefficient depends not only on the material of the
photon absorber but also on the incident angle. The probability of releasing
an electron from the surface is increased for shallow incidence of the photon.
The enhancement factor F (Θ) represents the increase in the photoelectron-
emission coefficient ηe(ε) due to a nonnormal incidence of a photon on the
surface, where Θ is the angle between the photon trajectory and the normal
to the absorbing material surface. For angles close to normal incidence the
enhancement factor scales like the inverse of the sine of the angle

F (Θ) =
1

sinΘ
. (8.132)

For larger angles, however, the enhancement factor falls off from the inverse
sine dependence as has been determined by measurements [96] and reaches
a maximum value of about seven for small angles. The gas production is
determined by the desorption rate Q, defined as the total number of neutral
atoms released along the circumference from the chamber surface,

Q = 2
22.4 × 760
6 × 1023

Ṅe ηd, (8.133)
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where Q is expressed in Torr lt/s and ηd is the desorption coefficient. The
factor 2 is due to the fact that a photo electron can desorb an atom while
leaving as well as while arriving at a surface. With (8.133) we get the average
vacuum pressure 〈P 〉 from

〈P 〉 =
Q

S
, (8.134)

where S is the total installed pumping speed in the storage ring. For a rea-
sonably accurate estimate of the photon flux we may use the small argument
approximation (21.60) for photon energies ε ≤ εc. Photons of higher energies
generally do not contribute significantly to the desorption since there are only
a few. To obtain the photon flux we therefore need to integrate only from 10
eV to ε ≈ εc the differential photon flux (21.60) folded with the photoelectron-
emission coefficient ηe(ε).

The desorption coefficient ηd is largely determined by the treatment of the
vacuum chamber like baking, beam cleaning, and argon discharge cleaning.
For example in the aluminum chamber of the storage ring SPEAR [97] the
desorption coefficient at 1.5 GeV was initially about ηd ≈ 5 × 10−3 then
5×10−4 after one month of operation, 10−4 after two months of operation, and
reached about 3× 10−6 after about one year of operation. These numbers are
not to be viewed too generally, since the cleaning process depends strongly on
the particular preparation of the surfaces. However, following well-established
cleaning procedures and handling of ultra high vacuum components these
numbers can be of general guidance consistent with observations on other
storage rings.

Laboratory measurements [95] show the following relationship between
photoelectron current Iphe = e Ṅe, desorption coefficient ηd, and total inte-
grated beam time of a vacuum system

ηd = 7 × 10−5 Iphe(A)
t(hr)0.63

. (8.135)

New vacuum chambers release much gas when the first synchrotron radiation
strikes the surface, but cleans as the radiation cleaning continues.

Problems

8.1 (S). What is the probability for a 6 GeV electron to emit a photon with
an energy of ε = σε per unit time traveling on a circle with radius ρ = 25
m. How likely is it that this particle emits another such photon within a
damping time? In evaluating quantum excitation and equilibrium emittances,
do we need to consider multiple photon emissions? (Use isomagnetic ring).

8.2 (S). How many photons are emitted by an electron of energy E on average
per turn.
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8.3. Consider a circular electron storage ring of your choice and specify beam
energy, current, ring circumference, and average vacuum chamber dimensions.
Calculate the total thermal gas desorption and the total required pumping
capacity in the ring. Now add synchrotron radiation and estimate the increase
of pumping speed needed after say 100 A h of beam operation. Plot the average
gas pressure as a function of integrated beam time.

8.4 (S). Calculate the synchrotron damping time for a 3 GeV storage ring
with a bending radius of ρ = 10 m and pure rectangular dipole magnets.
Assume 100% bending magnet fill factor. What is the synchrotron damping
time in this ring? How long does it take to radiate away all its energy?

8.5. An electron beam circulating in a 1.5 GeV storage ring emits synchrotron
radiation. The rms emission angle of photons is 1/γ about the forward direc-
tion of the particle trajectory. Determine the photon phase space distribution
at the source point and at a distance of 10 m away while ignoring the finite
particle beam emittance. Now assume a Gaussian particle distribution with a
horizontal beam emittance of εx = 1.5 × 10−7 rad m. Fold both the photon
and particle distributions and determine the photon phase space distribution
10 m away from the source point if the electron beam size is σx = 1.225 mm,
the electron beam divergence σx′ = 0.1225 mrad, and the source point is a
symmetry point of the storage ring. Assume the dispersion function to vanish
at the source point. For what minimum photon wavelength would the verti-
cal electron beam size appear diffraction limited if the emittance coupling is
10% ?

8.6. Consider an electron beam in an isomagnetic 6 GeV storage ring with a
bending radius of ρ = 20 m . Calculate the rms energy spread σε/E0 and the
damping time τs.



9

Vlasov and Fokker–Planck Equations

Mathematical tools have been derived in previous chapters to describe the dy-
namics of singly charged particles in electromagnetic fields. While the knowl-
edge of single-particle dynamics is essential for the development of particle
beam transport systems, we are still missing a formal treatment of the behav-
ior of multiparticle beams. In principle a multiparticle beam can be described
simply by calculating the trajectories of every single particle within this beam,
a procedure that is obviously too inefficient to be useful for the description of
any real beam involving a very large number of particles.

In this paragraph, we will derive concepts to describe the collective dy-
namics of a beam composed of a large number of particles and its evolution
along a transport line utilizing statistical methods that lead to well-defined
descriptions of the total beam parameters. Mathematical problems arise only
when we have a particle beam with neither a few particles nor very many
particles. Numerical methods must be employed if the number of particles are
of importance and where statistical methods would lead to incorrect results.

The evolution of a particle beam has been derived based on Liouville’s the-
orem assuring the constancy of the particle density in phase space. However,
this concept has not allowed us to determine modifications of particle distri-
butions due to external forces. Particle distributions are greatly determined
by particle source parameters, quantum effects due to synchrotron radiation,
nonlinear magnetic fields, collisions with other particles in the same beam,
and with particles in another beam or with atoms of the residual gases in
the beam environment to name only a few phenomena that could influence
that distribution. In this chapter, we will derive mathematical methods that
allow the determination of particle distributions under the influence of various
external electromagnetic forces.
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9.1 The Vlasov Equation

To study the development of a particle beam along a transport line, we
will concentrate on the evolution of a particle density distribution function
Ψ(r,p, t) in six-dimensional phase space where every particle is represented
by a single point. We consider a volume element of phase space that is small
enough that we may assume the particle density to be constant throughout
that element and determine its evolution in time. In doing so, we will further
assume a large, statistically significant number of particles in each volume
element and only a slow variation of the particle density from one volume
element to any adjacent volume element. To simplify the equations we re-
strict the following discussion to two-dimensional phase space (w, pw) and use
exclusively normalized coordinates w = x/

√
β.

The dynamics of a collection of particles can be studied by observing the
evolution of their phase space. Specifically, we may choose a particular phase
space element and follow it along its path taking into account the forces acting
on it. To do this, we select a phase space element in the form of a rectangular
box defined by the four corner points Pi in Fig. 9.1.
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Fig. 9.1. Two-dimensional motion of a rectangle in phase space

At the time t these corners have the coordinates

P1(w, pw),
P2(w + ∆w, pw), (9.1)
P3(w + ∆w, pw + ∆pw),
P4(w, pw + ∆pw) .

A short time ∆t later, this rectangular box will have moved and may be
deformed into a new form more like a parallelogram (Q1,Q2,Q3,Q4) as shown
in Fig. 9.1. In determining the volume of the new box at time t + ∆t we will
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assume the conservation of particles allowing no particles to be generated or
getting lost. To keep the derivation general the rate of change in the conjugate
variables is set to

ẇ = fw(w, pw, t),

ṗw = gw(w, pw, t),
(9.2)

where ẇ = dw/dt and ṗw = dpw/dt and the time interval ∆t is small enough
to allow linear expansion of the particle motion. In other words, the time
interval shall be chosen such that no physical parameters of the dynamical
system change significantly and a Taylor’s expansion can be applied. The new
corners of the volume element are then given by

Q1 [w + fw(w, pw, t)∆t, pw + gw(w, pw, t)∆t] ,
Q2 [w + ∆w + fw(w + ∆w, pw, t)∆t,

pw + gw(w + ∆w, pw, t)∆t] ,
Q3 [w + ∆w + fw (w + ∆w, pw + ∆pw, t)∆t, (9.3)

pw + ∆pw + gw(w + ∆w, pw + ∆pw, t)∆t] ,
Q4 [w + fw (w, pw + ∆pw, t)∆t,

pw + ∆pw + gw(w, pw + ∆pw, t)∆t] .

The goal of our discussion is now to derive an expression for the particle
density Ψ(w, pw, t) after a time ∆t. Because of the conservation of particles
we have

Ψ(w + fw ∆t, pw + gw ∆t, t + ∆t)∆AQ = Ψ(w, pw, t)∆AP , (9.4)

where ∆AP and ∆AQ are the areas in phase space as defined by the cor-
ner points Pi and Qi, respectively. From Fig. 9.1a and (9.1) we derive an
expression for the phase space areas which are at the starting time t

∆AP = ∆w ∆pw (9.5)

and at the time t + ∆t from (9.3)

∆AQ = ∆w ∆pw

[
1 +
(
∂fw

∂w
+

∂gw

∂pw

)
∆t

]
, (9.6)

where Taylor’s expansions have been used for the functions fw and gw retain-
ing only linear terms. To prove (9.6) we note that the area ∆AP has the form
of a rhombus with its sides determined by two vectors and the area, therefore,
is equal to the determinant formed by these two vectors. In our case these
vectors are P1 = (∆w, 0) pointing from P1 to P2 and P 2 = (0,∆pw) pointing
from P1 to P4. The area therefore is

|P 1,P 2| =

∣∣∣∣∣∣
∆w 0

0 ∆pw

∣∣∣∣∣∣
= ∆w∆pw = ∆AP (9.7)



338 9 Vlasov and Fokker–Planck Equations

in agreement with (9.5). A time interval ∆t later these vectors will have
changed as determined by (9.2). Each of the corner points Pi is moving al-
though with different speed thus distorting the rectangle Pi into the shape
Qi of Fig. 9.1b. To calculate the new vectors defining the distorted area we
expand the functions fw and gw in a Taylor’s series at the point (w, pw).
While, for example, the w-component of the movement of point P1 along
the w-coordinate is given by fw ∆t the same component for P2 changes by
fw ∆t + ∂fw

∂w ∆w∆t. The w-component of the vector Q1 therefore becomes
∆w + ∂fw

∂w ∆w∆t. Similarly, we can calculate the p-component of this vector
as well as both components for the vector Q2. The phase space area of the dis-
torted rectangle (Q1, Q2, Q3, Q4) at time t+∆t with these vector components
is then given by

|Q1,Q2| =

∣∣∣∣∣∣∣

∆w + ∂fw

∂w ∆w∆t ∂fw

∂pw
∆pw ∆t

∂gw

∂w ∆w∆t ∆pw + ∂gw

∂pw
∆pw ∆t

∣∣∣∣∣∣∣
= ∆AQ . (9.8)

Dropping second-order terms in ∆t we get indeed expression (9.6). Obviously,
the phase space volume does not change if

∂fw

∂w
+

∂gw

∂pw
= 0 (9.9)

in agreement with the result obtained in Chap. 5, where we have assumed that
the Lorentz force is the only force acting on the particle. In this paragraph,
however, we have made no such restrictions and it is this generality that allows
us to derive, at least in principle, the particle distribution under the influence
of any forces. The factor

[
1 +
(
∂fw

∂w
+

∂gw

∂pw

)
∆t

]
(9.10)

in (9.6) is the general Wronskian of the transformation and is not necessarily
equal to unity. We have such an example in the form of adiabatic damping.
Indeed we have damping or antidamping whenever the Wronskian is different
from unity.

To illustrate this, we use the example of a damped harmonic oscillator,
which is described by the second-order differential equation

ẅ + 2αw ẇ + ω2
0w = 0, (9.11)

or in the form of a set of two linear differential equations

ẇ = ω0pw = fw(w, pw, t) ,

ṗw = −ω0w − 2αw pw = gw(w, pw, t) .

(9.12)
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From this we indeed find the relation

∂fw

∂w
+

∂gw

∂pw
= −2αw , (9.13)

where αw is the damping decrement of the oscillator. We have obtained on a
general basis that the phase space density for harmonic oscillators will vary
only if damping forces are present. Here we use the term damping in a very
general way including excitation depending on the sign of the damping decre-
ment αw. The designation αw for the damping decrement may potentially
lead to some confusion with the same use for the betatron function α = − 1

2β
′.

However, we choose here to rather require some care than introduce against
common use new designations for the damping decrement or the betatron
functions. We also note that for all cases where the damping time is long
compared to the oscillation time, and we consider here only such cases, the
damping occurs for both conjugate trajectories.

The derivation in two-dimensional phase space can easily be generalized
to six-dimensional phase space with the generalized volume element

∆VP = ∆r∆p (9.14)

at time t and a time interval ∆t later

∆VQ = ∆r ∆p [1 + ∇rf ∆t + ∇pg ∆t] . (9.15)

The Nabla operators are defined by

∇r =
(

∂

∂w
,

∂

∂v
,

∂

∂u

)
and ∇p =

(
∂

∂pw
,

∂

∂pv
,

∂

∂pu

)
, (9.16)

where (w, v, u) are normalized variables and the vector functions f and g are
defined by the components f = (fw, fv, fu) and g = (gw, gv, gu).

Equation (9.4) can now be further reduced after applying a Taylor’s ex-
pansion to the density function Ψ . With (9.5), (9.6), and keeping only linear
terms

∂Ψ

∂t
+ fw

∂Ψ

∂w
+ gw

∂Ψ

∂pw
= −

(
∂fw

∂w
+

∂gw

∂pw

)
Ψ . (9.17)

It is straightforward to generalize this result again to six-dimensional phase
space

∂Ψ

∂t
+ f ∇rΨ+ g ∇pΨ = − (∇rf+∇pg)Ψ, (9.18)

which is called the Vlasov equation. If there is no damping the r.h.s. of the
Vlasov Equation vanishes and we have

∂Ψ

∂t
+ f ∇rΨ + g∇pΨ = 0 . (9.19)
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This is simply the total time derivative of the phase space density Ψ telling
us that in the absence of damping it remains a constant of motion. The preser-
vation of the phase space density is Liouville’s theorem and we have derived
in this paragraph the validity of this theorem for a Hamiltonian system with
vanishing dissipating forces (∇rf + ∇pg) = 0.

Equation (9.19) describes the evolution of a multiparticle system in phase
space where the physics of the particular particle dynamics is introduced
through the functions f (r,p, t) and g(r,p, t). The definition of these func-
tions in (9.2) appears similar to that for the Hamiltonian equations of motion.
In case r and p are canonical variables we may indeed derive these functions
from the Hamiltonian

ṙ = ∇pH = f ,

ṗ = −∇rH = g,
(9.20)

where H is the Hamiltonian of the system. We are, therefore, at least in
principle, able to solve the evolution of a multiparticle system in phase space if
its Hamiltonian is known. It should be emphasized, however, that the variables
(w, p) need not be canonical to be used in the Vlasov equation.

It is interesting to apply the Vlasov equation to simple one-dimensional
harmonic oscillators with vanishing perturbation. Introducing the canonical
variable p through ẇ = νp, the Hamiltonian becomes

H0 = 1
2νp

2 + 1
2νw

2 (9.21)

and the equations of motion are

ẇ = + ∂H0
∂p = νp = f,

ṗ = −∂H0
∂w = −νw = g .

(9.22)

It is customary for harmonic oscillators and similarly for particle beam
dynamics to use the oscillation phase as the independent or “time” variable.
Since we have not made any specific use of the real time in the derivation
of the Vlasov equation, we choose here the phase as the “time” variable. For
the simple case of an undamped harmonic oscillator ∂f

∂w = 0 and ∂g
∂p = 0, and

consequently, the Vlasov equation becomes from (9.17) with (9.22)

∂Ψ

∂ϕ
+ ν p

∂Ψ

∂w
− ν w

∂Ψ

∂p
= 0 . (9.23)

In cylindrical phase space coordinates (w = r cos θ, p = r sin θ, ϕ) this reduces
to the simple equation

∂Ψ

∂ϕ
− ν

∂Ψ

∂θ
= 0 . (9.24)

Any differentiable function with the argument (r, θ+νϕ) can be a solution
of (9.24) describing the evolution of the particle density Ψ with time
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Ψ(w,p
w
,ϕ)

ϕ

Fig. 9.2. Beam motion in phase space

Ψ(w, pw, ϕ) = F (r, θ + νϕ). (9.25)

The particle distribution in (w, pw) phase space merely rotates about the
center with the frequency ν and remains otherwise unchanged as shown in
Fig. 9.2. This is just another way of saying that an ensemble of many particles
behaves like the sum of all individual particles since any interaction between
particles as well as damping forces have been ignored. In (x, x′) phase space
this rotation is deformed into a “rotation” along elliptical trajectories. The
equation of motion in (w, pw) phase space is solved by r = const. indicating
that the amplitude r is a constant of motion. In (x, x′) phase space we set
w = x/

√
β and p =

√
β x′+ α√

β
x and get from r2 = w2 +p2

w for this constant
of motion

β x′2 + 2αxx′ + γ x2 = const., (9.26)

which is the Courant–Snyder invariant. The Vlasov equation allows us to
generalize this result collectively to all particles in a beam. Any particular
particle distribution a beam may have at the beginning of the beam transport
line or circular accelerator will be preserved as long as damping or other
statistical effects are absent.

9.1.1 Betatron Oscillations and Perturbations

The Vlasov equation will prove to be a useful tool to derive particle beam para-
meters. Specifically, it allows us to study the influence of arbitrary macroscopic
fields on particle density in phase space and on the characteristic frequency of
particle motion. To demonstrate this, we expand the example of the harmonic
oscillator to include also perturbation terms. For such a perturbed system the
equation of motion is
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ẅ + ν2
0 w = ν2

0 β
3
2

∑
n>0

pn β
n
2 wn, (9.27)

where the coefficients pn are the strength parameters for the nth-order per-
turbation term and the amplitude w is the normalized betatron oscillation
amplitude. The Vlasov equation allows us to calculate the impact of these
perturbation terms on the betatron frequency. We demonstrate this first with
a linear perturbation term (n = 1) caused by a gradient field error p1 = −δk
in a quadrupole. In this case the equation of motion is from (9.27)

ẅ + ν2
0 w = −ν2

0β
2 δk w (9.28)

or
ẅ + ν2

0 (1 + β2δk)w = 0 . (9.29)

This second-order differential equation can be replaced by two first-order
differential equations which is in general the most straightforward way to
obtain functions (9.2)

ẇ = ν0

√
1 + β2 δk p,

ṗ = −ν0

√
1 + β2 δk w .

(9.30)

Here it is assumed that the betatron function β and the quadrupole field
error δk are uniformly distributed along the beam line and therefore can be
treated as constants. This approach is justified here since we are interested
only in the average oscillation frequency of the particles and not in fast oscillat-
ing terms. The desired result can be derived directly from (9.30) without any
further mathematical manipulation by comparison with (9.22). From there
the oscillating frequency for the perturbed system is given by

ν = ν0

√
1 + β2 δk ≈ ν0 (1 + 1

2β
2δk), (9.31)

for small perturbations. The betatron frequency shift can be expressed by the
lowest order harmonic of the Fourier expansion for the periodic perturbation
function ν0 β

2 δk to give

2πν0

(
β2 δk

)
0

=
∮

ν0 β
2 δk dϕ =

∮
β δk dz, (9.32)

making use of the definition for the betatron phase dϕ =dz/ν0β. The tune
shift δν due to quadrupole field errors is therefore from (9.31)

δ ν = ν − ν0 =
1
4π

∮
β δk dz, (9.33)

in agreement with (12.54). Again, the Vlasov equation confirms this result
for all particles irrespective of the distribution in phase space. This procedure
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can be expanded to any order of perturbation. From the differential equation
(9.27) one gets in analogy to the equations of motion (9.30)

ẇ = ν0

√
1 − β3/2

∑
n>0

pnβn/2 wn−1 p,

ṗ = −ν0

√
1 − β3/2

∑
n>0

pnβn/2 wn−1 w .

(9.34)

For small perturbations the solution for the unperturbed harmonic oscilla-
tor w(ϕ) = w0 sin(νϕ+δ) may be used where δ is an arbitrary phase constant.
The tune shift ∆ν = ν − ν0 is thus

∆ν = −
∑

n > 0

1
4π

∮
pnβ

n+1
2 wn−1

0 sinn−1[ν0ϕ(z) + δ] dz . (9.35)

Not all perturbation terms contribute to a tune variation. All even terms
n = 2m, where m is an integer, integrate, for example, to zero in this approx-
imation and a sextupole field therefore does not contribute to a tune shift
or tune spread. This conclusion must be modified, however, due to higher
order approximations which become necessary when perturbations cannot be
considered small anymore. Further, we find from (9.35) that the tune shift
is independent of the particle oscillation amplitude only for quadrupole field
errors n = 1. For higher order multipoles the tune shift becomes amplitude
dependent resulting in a tune spread within the particle beam rather than a
coherent tune shift for all particles of the beam.

In a particular example, the tune spread caused by a single octupole
(n = 3) in a circular accelerator is given by

∆ν3 = − εw
8π

∮
p3β

2 dz, (9.36)

where w2
0 = εw is the emittance of the beam. Similar results can be found for

higher order multipoles.

9.1.2 Damping

At the beginning of this section we have decided to ignore damping and have
used the undamped Vlasov equation (9.19). Damping or antidamping effects
do, however, occur in real systems and it is interesting to investigate if the
Vlasov equation can be used to derive some general insight into damped sys-
tems as well. For a damped oscillator we use (9.12), (9.13) to form the Vlasov
equation in the form of (9.17). Instead of the phase we now use the real time
as the independent variable to allow the intuitive definition of the damping
decrement as the relative decay of the oscillation amplitude with time

∂Ψ

∂t
+ ω0 pw

∂Ψ

∂w
− (ω0 w + 2αw pw)

∂Ψ

∂pw
= +2αwΨ . (9.37)
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This partial differential equation can be solved analytically in a way similar
to the solution of the undamped harmonic oscillator by using cylindrical coor-
dinates. For very weak damping we expect a solution close to (9.25) where the
amplitude r in phase space was a constant of motion. For a damped oscillator
we try to form a similar invariant from the solution of a damped harmonic
oscillator

w = w0 e−αw t cos
√

ω2
0 − α2

w t = r e−αw t cos θ . (9.38)

With the conjugate component ω0 pw = ẇ, we form the expression

ω0 pw + αww√
ω2

0 − α2
w

= −w0 e−αwt sin
√

ω2
0 − α2

w t = −r e−αwt sin θ (9.39)

and eliminate the phase θ from (9.38), (9.39) keeping only terms linear in the
damping decrement αw and we obtain the “invariant”

r2 e− 2 αw t = w2 + p2
w + 2

αw

ω0
w pw . (9.40)

Obviously if we set αw = 0 we have the invariant of the harmonic oscillator.
The time dependent factor due to finite damping modifies this “invariant”.
However, for cases where the damping time is long compared to the oscillation
period we may still consider (9.40) a quasi-invariant. The phase coordinate θ
can be derived from (9.38), (9.39) as a function of w and pw as may be verified
by insertion into the differential equation (9.37). The solution for the phase
space density of a damped oscillator is of the form

Ψ(w, pw, t) = e2αwt F (r, Φ), (9.41)

where F (r, Φ) is any arbitrary but differentiable function of r and Φ and the
phase Φ is defined by

Φ = θ +
√

ω2
0 − α2

w t = arctan

(
+
ω0 pw + αww√

ω2
0 − α2

w w

)
+
√

ω2
0 − α2

w t . (9.42)

For very weak damping αw → 0 and solution (9.41) approaches (9.25)
where αw = 0 and νϕ = ω0t as expected. Therefore even for finite damping a
particle distribution rotates in phase space although with a somewhat reduced
rotation frequency due to damping. The particle density Ψ , however, changes
exponentially with time due to the factor e2αwt. For damping αw > 0, we get
an increase in the phase space density at a distance r from the beam center.
At the same time the real particle oscillation amplitudes (w, pw) are being
reduced proportional to e−αwt and the increase in the phase space density
at r reflects the concentration of particles at the beam center from larger
amplitudes due to damping.

In conclusion we found that in systems where velocity-dependent forces
exist, we have damping (αw > 0) or antidamping (αw < 0) of oscillation am-
plitudes. As has been discussed such forces do exist in accelerators leading to
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damping. Mostly, however, the Vlasov equation is applied to situations where
particles interact with self or external fields that can lead to instabilities. It
is the task of particle beam dynamics to determine the nature of such inter-
actions and to derive the circumstances under which the damping coefficient
αw, if not zero, is positive for damping or negative leading to beam instability.

9.2 Damping of Oscillations in Electron Accelerators

In electron accelerators we are concerned mainly with damping effects caused
by the emission of synchrotron radiation. All six degrees of freedom for par-
ticle motion are damped. Damping of energy oscillations occurs simply from
the fact that the synchrotron radiation power is energy dependent. Therefore
a particle with a higher energy than the reference particle radiates more and
a particle with less energy radiates less. The overall effect is that the energy
deviation is reduced or damped. Damping of the transverse motion is prin-
cipally a geometric effect. The photons of synchrotron radiation are emitted
into the direction of the particle motion. Therefore part of the energy loss is
correlated to a loss in transverse momentum. On the other hand, the lost en-
ergy is restored through accelerating fields with longitudinal components only.
The overall effect of an energy loss during the course of betatron oscillations
is therefore a loss of transverse momentum which leads to a reduction in the
transverse oscillation amplitude, an effect we call damping. In the next sec-
tion, we will discuss the physics leading to damping and derive the appropriate
damping decrement for different modes of oscillations.

9.2.1 Damping of Synchrotron Oscillations

In a real beam particles are spread over a finite distribution of energies close
to the reference energy. The magnitude of this energy spread is an important
parameter to be considered for both beam transport systems and for exper-
imental applications of particle beams. In general, a small energy spread as
small as possible is desired to minimize chromatic aberrations and for im-
proved accuracy of experimental observation. We will therefore derive the
parametric dependence of damping and discuss methods to reduce the energy
spread within a particle beam.

To do this, we consider a beam of electrons being injected with an arbi-
trary energy distribution into a storage ring ignoring incidental beam losses
during the injection process due to a finite energy acceptance. Particles in a
storage ring undergo synchrotron oscillations which are oscillations about the
ideal momentum and the ideal longitudinal position. Since energy and time
or equivalently energy and longitudinal position are conjugate phase space
variables, we will investigate both the evolution of the energy spread and the
longitudinal distribution or bunch length of the particle beam.



346 9 Vlasov and Fokker–Planck Equations

The evolution of energy spread or bunch length of the particle beam will
depend very much on the nature of particles and their energy. For heavy
particles like protons or ions there is no synchrotron radiation damping and
therefore the phase space for such beams remains constant. As a consequence,
the energy spread or bunch length also stays constant. A similar situation
occurs for electrons or positrons at very low energies since synchrotron ra-
diation is negligible. Highly relativistic electrons, however, produce intense
synchrotron radiation leading to a strong damping effect which is discussed
below in more detail.

The damping decrement αw is defined in the Vlasov equation by

∂f

∂w
+

∂g

∂p
= −2αw (9.43)

and can be calculated with the knowledge of the functions f and g. For the
conjugate variables (w, pw) we use the time deviation of a particle with respect
to the synchronous particle w = τ as shown in Fig. 9.3 and the difference of
the particle’s energy E from the synchronous or reference energy Es and set
pw = ε = E − Es.

τ>0
ct = s

particle bunch

reference par-
ticle

Fig. 9.3. Longitudinal particle position

Since f = dτ
dt = τ̇ and g = dε

dt = ε̇ we have to determine the rate of
change for the conjugate variables. The rate of change of τ is from (6.17) with
cp0 ≈ Es

dτ
dt

= − ηcβ
2 ε

Es
, (9.44)

where we have replaced the phase by the time ψ̇ = cβk0τ̇ and the relative
momentum error by the relative energy error since we consider here only
highly relativistic particles. The latter replacement is a matter of convenience
since we will be using the energy gain in accelerating fields.

The energy rate of change ε̇ is the balance of the energy gained in ac-
celerating fields and the energy lost due to synchrotron radiation or other
losses:

ε̇ =
1
T

[eVrf(τs + τ) − U(Es + ε)] , (9.45)

Where T is the time the particles take to travel the distance L. The energy
gain within the distance L for a particle traveling a time τ behind the reference
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or synchronous particle is eVrf (τs + τ) and U is the energy loss to synchrotron
radiation along the same distance of travel.

We apply these expressions to the simple situation of a linear accelerator of
length L where the momentum compaction factor vanishes (αc = 0) and where
there is no energy loss due to synchrotron radiation U ≡ 0. Furthermore, we
ignore for now other energy losses and have with ηc = 1/γ2

f = τ̇ = 1
γ2

ε
Es

,

g = ε̇ = 1
T eVrf(τs + τ) .

(9.46)

Inserting into (9.43) we find the damping decrement to vanish which is
consistent with observation and with the phenomenon of adiabatic damping.
This name is unfortunate in the sense that it does not actually describe a
damping effect in phase space as we just found out but rather describes the
variation of the relative energy spread with energy which is merely a conse-
quence of the constant phase space density or Liouville’s theorem. From the
Vlasov equation we learn that in the absence of damping the energy spread
ε stays constant as the particle beam gets accelerated. Consequently, the rel-
ative energy spread ε

Es
decreases as we would expect for adiabatic damping.

The Vlasov equation can still be used to describe adiabatic damping but we
need to use the relative energy spread as one of the variables. Instead of the
second equation (9.46), we then have

g =
d
dt

ε

E
=

ε
Es

− ε
E0

∆t
, (9.47)

where E0 is the particle energy at time t0, Es is the energy at time t = t0 +dt,
and Es = E0 + adt with a = dEs

dt = Ės the acceleration per unit time. We
choose the time interval dt small enough so that adt � E0 and get

g = − ε

Es

a

E0
= − ε

E0

Ė

E0
. (9.48)

The damping decrement becomes from (9.43) with δ = ε
E0

and ∂f /∂τ = 0

∂g

∂δ
= − Ė

Es
= −2αw = 2

1
δ

dδ
dt

(9.49)

and after integration

∫
dδ
δ

= ln
δ

δ0
= − 1

2

∫
Ė

Es
dt = − 1

2 ln
Es

E0
(9.50)

or

δ =
ε

E0

√
E0

Es
. (9.51)
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The relative energy spread in the beam is reduced during acceleration
inversely proportional to the square root of the energy. This reduction of the
relative energy spread is called adiabatic damping. Returning to the general
case we apply a Taylor’s expansion to the rf-voltage in (9.46) and get for terms
on the r.h.s. of (9.45) keeping only linear terms

e Vrf(τs + τ) = e Vrf(τs) + e
Vrf−
∂τ

τ, (9.52)

−U(Es + ε) = −U(Es)−
∂U

∂E

∣∣∣∣
Es

ε . (9.53)

Since the energy gain from the rf- field eVrf(τs) for the synchronous particle
just compensates its energy loss U(Es), we have instead of (9.45) now

ε̇ =
1
T

[
e V̇rf(τs) τ − ∂U

∂E

∣∣∣∣
Es

ε

]
, (9.54)

where we have set V̇rf = ∂Vrf
∂τ . The synchrotron oscillation damping decrement

can now be derived from (9.43) with (9.46), (9.54) to give

αs = + 1
2

1
T

∂U

∂E

∣∣∣∣
Es

. (9.55)

We will now derive the damping decrement for the case that the energy
loss is only due to synchrotron radiation. The energy loss along the transport
line L is given by

Us =
1
c

∫ L

0

Pγ ds, (9.56)

where Pγ = Cγ E4
s /ρ

2 is the synchrotron radiation power and the integration
is taken along the actual particle trajectory s. If ρ(z) is the bending radius
along z, we have ds

dz = 1 + x
ρ . With x = xβ + η ε

Es
and averaging over many

betatron oscillations, we get 〈xβ 〉 = 0 and

dz
dz

= 1 +
η

ρ

ε

E
. (9.57)

This asymmetric averaging of the betatron oscillation only is permis-
sible if the synchrotron oscillation frequency is much lower than the be-
tatron oscillation frequency as is the case in circular accelerators. With
ds = [1 + (η/ρ) (ε/Es)] dz in (9.56), the energy loss for a particle of energy
Es + ε is

Us(Es + ε) =
1
c

∫

L

Pγ

(
1 +

η

ρ

ε

Es

)
dz (9.58)

or after differentiation with respect to the energy
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∂Us

∂E

∣∣∣∣
Es

=
1
c

∫

L

[
dPγ

dE
+ Pγ

η

ρ

1
Es

]

Es

dz . (9.59)

The synchrotron radiation power is proportional to the square of the en-
ergy and the magnetic field Pγ ∼ E2

s B
2
0 which we use in the expansion

dPγ

dE
=

∂Pγ

∂E
+

∂Pγ

∂B0

∂B

∂E
= 2

Pγ

Es
+ 2

Pγ

B

∂B

∂x

∂x

∂E
. (9.60)

The variation of the synchrotron radiation power with energy depends
directly on the energy but also on the magnetic field if there is a field gradient
∂B
∂x and a finite dispersion function η = Es

∂x
∂E . The magnetic field as well as

the field gradient is to be taken at the reference orbit. Collecting all these
terms and setting 1

B0

∂B
dx = ρ k we get for (9.59)

∂Us

∂E

∣∣∣∣
Es

=
1
c

∫

L

(
2
Pγ

Es
+ 2

Pγ

Es
ρ k η +

Pγ

Es

η

ρ

)∣∣∣∣
Es

dz (9.61)

=
Us

Es


2 +

1
cUs

∫

L

Pγ η

(
1
ρ

+ 2 ρ k

)∣∣∣∣
Es

dz


 ,

where we have made use of Us = 1
c

∫
L

Pγ(Es) dz. Recalling the expressions
for the synchrotron radiation power and energy loss Pγ = Cγ E4

s /ρ
2 and

Us = Cγ E4
s

∫
dz/ρ2, we may simplify (9.61) for

∂U

∂E

∣∣∣∣
Es

=
Us

Es
(2 + ϑ), (9.62)

where the ϑ-parameter has been introduced in (8.25). We finally get from
(9.55) with (9.62) the damping decrement for synchrotron oscillations

αε =
Us

2T Es
(2 + ϑ) =

Us

2T Es
Jε=

〈Pγ〉
2Es

Jε , (9.63)

in full agreement with results obtained earlier. Since all parameters except
ϑ are positive we have shown that the synchrotron oscillations for radiating
particles are damped. A potential situation for antidamping can be created if
ϑ < −2.

9.2.2 Damping of Vertical Betatron Oscillations

Particles orbiting in a circular accelerator undergo transverse betatron oscil-
lations. These oscillations are damped in electron rings due to the emission
of synchrotron radiation. To calculate the damping decrement, we assume ac-
celerating fields evenly distributed around the ring to restore the lost energy.
In practice this is not true since only a few rf-cavities in a ring are located at
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one or more places around the ring. As long as the revolution time around the
ring is small compared to the damping time, however, we need not consider
the exact location of the accelerating cavities and may assume an even and
uniform distribution around the ring.

First we will derive the damping decrement for the vertical betatron oscil-
lation. In a plane accelerator with negligible coupling this motion is indepen-
dent of the other oscillations. This is not the case for the horizontal betatron
motion which is coupled to the synchrotron oscillation due to the presence
of a finite dispersion function. We will therefore derive the vertical damping
decrement first and then discuss a very general theorem applicable for the
damping in circular accelerators. This theorem together with the damping
decrement for the synchrotron and vertical betatron oscillations will enable
us to derive the horizontal damping in a much simpler way than would be
possible in a more direct way.

In normalized coordinates the functions f and g are for the vertical plane

dw
dϕ

= + ν p = f (w, p, ϕ), (9.64)

dp
dϕ

= − ν w = g (w, p, ϕ), (9.65)

where ν = νy, w = y/
√

βy,
1
νy

dw
dϕ =

√
βy y′ − 1

2

β′
y√
βy

y, and νy ϕ = ψy is the

vertical betatron phase.
Due to the emission of a synchrotron radiation photon alone the particle

does not change its position y nor its direction of propagation y′. With this
we now derive the damping within a path element ∆z which includes the
emission of photons as well as the appropriate acceleration to compensate
for that energy loss. Just after the emission of the photon but before the
particle interacts with accelerating fields, let the transverse momentum and
total energy be p⊥ and Es, respectively. The slope of the particle trajectory
is therefore (Fig. 9.4)

y′0 =
cp⊥
β Es

. (9.66)

Energy is transferred from the accelerating cavity to the particle at the
rate of the synchrotron radiation power Pγ and the particle energy increases
in the cavity of length ∆z from Es to Es + Pγ

∆z
β c and the slope of the par-

ticle trajectory becomes at the exit of the cavity of length ∆s due to this
acceleration

y′1 =
cp⊥

βEs + Pγ
∆z
c

≈ cp⊥
βEs

(
1 − Pγ

β Es

∆z

c

)
. (9.67)

We are now in a position to express the functions f and g in terms of physical
parameters. The function f is expressed by

f =
∆w

∆ϕ
=

y1 − y0√
βy ∆ϕ

=
y′0√
βy

∆z

∆ϕ
= ν

√
βy y′0, (9.68)
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Fig. 9.4. Acceleration and damping

where we made use of ∆ϕ = ∆z/(νβ). The damping decrement will depend
on the derivation df

dw which can be seen from (9.68) to vanish since f does not
depend on w

∂f

∂w
= 0 . (9.69)

The variation of the conjugate variable p with phase is from (9.64)

∆p

∆ϕ
=

dw1
dϕ − dw0

dϕ

ν ∆ϕ
. (9.70)

From linear beam dynamics, we find

dw1

dϕ
− dw0

dϕ
=
√

βy (y′1 − y′0) −
1
2

β′
y√
βy

(y1 − y0) (9.71)

and get with (9.67), (9.68)

g(w, p, ϕ) =
∆p

∆ϕ
=

−
√

βy
Pγ

β c Es
∆z y′0 + F (y)

ν ∆ϕ
. (9.72)

The function F (y) is a collection of y−dependent terms that become ir-
relevant for our goal. The degree of damping will be determined by the value
of the derivative ∂g

∂p which with y′0 = 1√
βy

dw
dϕ + 1

2β
′
y

1
βy

y0 becomes

∂g

∂p
= ν

∂g

∂ dw
dϕ

=
Pγ

β cEs

∆z

∆ϕ
. (9.73)

In the derivation of (9.73) we have used the betatron phase as the “time”
and therefore get the damping per unit betatron phase advance. Transforming
to the real time with ∆z

βc ∆ϕ = Trev
2π and (9.43)

∂g

∂p
=

Pγ

Es

Trev

2π
= 2αy

Trev

2π
(9.74)
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and solving for the vertical damping decrement1

αy =
〈Pγ〉
2Es

. (9.75)

In this last equation, we have used the average synchrotron radiation power
which is the appropriate quantity in the case of a nonisomagnetic ring. The
damping of the vertical betatron function is proportional to the synchrotron
radiation power. This fact can be used to increase damping when so desired
by increasing the synchrotron radiation power from special magnets in the
lattice structure.

9.2.3 Robinson’s Damping Criterion

The general motion of charged particles extends over all six degrees of freedom
in phase space and therefore the particle motion is described in six-dimensional
phase space as indicated in the general Vlasov equation (9.18). It is, however,
a fortunate circumstance that it is technically possible to construct acceler-
ator components in such a fashion that there is only a little or no coupling
between different pairs of conjugate coordinates. As a consequence, we can
generally treat horizontal betatron oscillations separate from the vertical be-
tatron oscillations and both of them separate from synchrotron oscillations.
Coupling effects that do occur will be treated as perturbations. There is some
direct coupling via the dispersion function between synchrotron and particu-
larly the horizontal betatron oscillations but the frequencies are very different
with the synchrotron oscillation frequency being in general much smaller than
the betatron oscillation frequency. Therefore in most cases the synchrotron os-
cillation can be ignored while discussing transverse oscillations and we may
average over many betatron oscillations when we discuss synchrotron motion.

A special property of particle motion in six-dimensional phase space must
be introduced allowing us to make general statements about the overall damp-
ing effects in a particle beam. We start from the Vlasov equation (9.18)

∂Ψ

∂t
+ f ∇rΨ + g∇p Ψ = − (∇r f + ∇p g)Ψ (9.76)

and define a total damping decrement αt by setting

∇rf + ∇pg = −2αt . (9.77)

The total damping decrement is related to the individual damping decre-
ments of the transverse and longitudinal oscillations but the precise depen-
dencies are not yet obvious. In the derivation of (9.18), we have expanded the
1 Generally, the letter αy is used for the vertical damping decrement. Since in beam

dynamics αy is also used to identify a lattice function, a mixup of the quantities
could occur. We have chosen not to use a different nomenclature, however, since
this choice is too deeply entrenched in the community. With some care, confusion
can be avoided.
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functions f and g in a Taylor series neglecting all terms of second or higher
order in time and got as a result the simple expression (9.77) for the overall
damping. Upon writing (9.77) in component form, we find from the compo-
nents of the l.h.s. that the overall damping decrement αt is just the sum of
all three individual damping decrements and we may therefore set

∇rf + ∇pg = −2αt = −2(αx + αy + αε) . (9.78)

From this equation and the linearity of the functions f and g describing the
physics of the dynamical system general characteristics of the damping process
can be derived. The damping decrement does not depend on the dynamic
variables of the particles and coupling terms do not contribute to damping.
The damping rate is therefore the same for all particles within a beam. In the
following paragraphs, we will discuss in more detail the general characteristics
of synchrotron radiation damping. Specifically, we will determine the functions
f and g and derive an expression for the total damping.

We consider a small section of a beam transport line or circular accelerator
including all basic processes governing the particle dynamics. These processes
are focusing, emission of photons, and acceleration. All three processes are
assumed to occur evenly along the beam line. The six-dimensional phase space
to be considered is

(x, x′, y, y′, τ, ε) . (9.79)

During the short time ∆t some of the transverse coordinates change and
it is those changes that eventually determine the damping rate. Neither the
emission of a synchrotron radiation photon nor the absorption of energy in
the accelerating cavities causes any change in the particle positions x, y, and
τ . Indicating the initial coordinates by the index 0 and setting βc∆t = ∆z we
get for the evolution of the particle positions within the length element ∆z in
the three space dimensions

x = x0 + x′
0 ∆z,

y = y0 + y′0 ∆z, (9.80)

τ = τ0 + ηc
ε0
Es

∆z

βc
.

The conjugate coordinates vary in a somewhat more complicated way. First
we note that the Vlasov equation does not require the conjugate coordinates
to be canonical variables. Indeed this derivation will become simplified if we
do not use canonical variables but use the slopes of the particle trajectories
with the reference path and the energy deviation. The change of the slopes
due to focusing is proportional to the oscillation amplitude and vanishes on
average. Emission of a synchrotron radiation photon occurs typically within
an angle of ±1/γ causing a small transverse kick to the particle trajectory. In
general, however, this transverse kick will be very small and we may assume
for all practical purposes the slope of the transverse trajectory not to be
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altered by photon emission. Forces parallel to the direction of propagation of
the particles can be created, however, through the emission of synchrotron
radiation photons. In this case, the energy or energy deviation of the particle
will be changed like

ε = ε0 − Pγ
∆z

βc
+ Prf

∆z

βc
. (9.81)

Here we use the power Pγ to describe the synchrotron radiation energy
loss rate a particle may suffer during the time βc∆t = ∆z. No particular
assumption has been made about the nature of the energy loss except that
during the time ∆t it be small compared to the particle energy. To compensate
this energy loss the particles become accelerated in rf- cavities. The power Prf

is the energy flow from the cavity to the particle beam, not to be confused
with the total power the rf-source delivers to the cavity.

The transverse slopes x′ and y′ are determined by the ratio of the trans-
verse to the longitudinal momentum u′ = pu/pz where u stands for x or y,
respectively. During the acceleration in the rf-cavity the transverse momentum
does not change but the total kinetic energy increases from Es to Es +Prf

∆z
βc .

As a consequence, the transverse slope of the trajectory is reduced and is after
a distance ∆z

u′ =
cpu

cpz + Prf β
∆z
βc

≈ u′
0 −

Prf

Es

∆z

βc
u′

0 . (9.82)

Explicitly, the transverse slopes now vary like

x′ = x′
0 − Prf

Es

∆z
βc x

′
0,

y′ = y′0 − Prf
Es

∆z
βc y

′
0 .

(9.83)

All ingredients are available now to formulate expressions for the functions f
and g in component form

f =
(
x′

0, y
′
0, ηc

ε
Es

)
,

g =
(
−Prf

Es
x′

0, −Prf
Es

y′0, −Pγ + Prf

)
.

(9.84)

With these expressions we evaluate (9.78) and find that ∇rf = 0. For the
determination of ∇pg we note that the cavity power Prf does not depend on
the particle energy and the derivative of the radiation power with respect to
the particle energy is

−∂Pγ

∂ε
= − 2

Pγ

Es
. (9.85)

Finally we note that the rf-power Prf is just equal to the radiation power Pγ

and finally get from (9.78)

αx + αy + αε = 2
Pγ

Es
. (9.86)
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The sum of all damping decrements is a constant, a result which has been
derived first by Robinson [84] and is known as the Robinson criterion.

The total damping depends only on the synchrotron radiation power and
the particle energy and variations of magnetic field distribution in the ring,
keeping the radiation power constant will not affect the total damping rate
but may only shift damping from one degree of freedom to another.

9.2.4 Damping of Horizontal Betatron Oscillations

With the help of the Robinson criterion, the damping decrement for the hor-
izontal betatron oscillation can be derived by simple subtraction. Inserting
(9.63), (9.77) into (9.86) and solving for the horizontal damping decrement we
get

αx =
Pγ

2Es
(1 − ϑ) . (9.87)

The damping decrements derived from the Vlasov equation agrees com-
pletely with the results obtained in Sect. 7.2 by very different means.

No matter what type of magnet lattice we use, the total damping depends
only on the synchrotron radiation power and the particle energy. We may,
however, vary the distribution of the damping rates through the ϑ-parameter
to different oscillation modes by a proper design of the focusing and bending
lattice in such a way that one damping rate is modified in the desired way
limited only by the onset of antidamping in another mode. Specifically, this is
done by introducing gradient bending magnets with a field gradient such as
to produce the desired sign of the ϑ parameter.

9.3 The Fokker–Planck Equation

From the discussions of the previous section it becomes clear that the Vlasov
equation is a useful tool to determine the evolution of a multiparticle system
under the influence of forces depending on the physical parameters of the
system through differentiable functions. If, however, the dynamics of a system
in phase space depends only on its instantaneous physical parameters where
the physics of the particle dynamics cannot be expressed by differentiable
functions, the Vlasov equation will not be sufficient to describe the full particle
dynamics. A process which depends only on the state of the system at the
time t and not on its history is called a Markoff process.

In particle beam dynamics we have frequently the appearance of such
processes where forces are of purely statistical nature like those caused, for
example, by the quantized emission of synchrotron radiation photons or by
collisions with other particles within the same bunch or residual gas atoms.
To describe such a situation we still have variations of the coordinates per
unit time similar to those in (9.2) but we must add a term describing the
statistical process and we therefore set
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ẇ = fw (w, pw, t) +
∑

ξi δ(t − ti) , (9.88)

ṗw = gw (w, pw, t) +
∑

πi δ (t − ti) , (9.89)

where ξi and πi are instantaneous statistical changes in the variables w and
pw with a statistical distribution in time ti and where δ(t − ti) is the Dirac
delta function. The probabilities Pw(ξ) and Pp(π) for statistical occurrences
with amplitudes ξ and π be normalized and centered

∫
Pw(ξ) dξ = 1,

∫
Pw(ξ) ξ dξ = 0,

∫
Pp(π) dπ = 1,

∫
Pp(π)π dπ = 0 .

(9.90)

The first equations normalize the probability amplitudes and the second
equations are true for symmetric statistical processes. The sudden change in
the amplitude ∆wi or momentum ∆pwi due to one such process is given by

∆wi =
∫

ξi δ(t− ti) dt = ξi, (9.91a)

∆pwi =
∫

πi δ(t− ti) dt = πi . (9.91b)

Analogous to the discussion of the evolution of phase space in the pre-
vious section, we will now formulate a similar evolution including statistical
processes. At the time t + ∆t, the particle density in phase space is taken to
be Ψ(w, pw, t+∆t) and we intend to relate this to the particle density at time
t. During the time interval ∆t there are finite probabilities Pw(ξ), Pp(π) that
the amplitude (w− ξ) or the momentum (pw − π) be changed by a statistical
process to become w or pw. This definition of the probability function also
covers the cases where particles during the time ∆t either jump out of the
phase space area ∆AP or appear in the phase space area ∆AQ.

To determine the number of particles ending up within the area ∆AQ,
we look at all area elements ∆AP which at time t are a distance ∆w = ξ
and ∆pw = π away from the final area element ∆AQ at time t + ∆t. As a
consequence of our assumption that the particle density is only slowly varying
in phase space, we may assume that the density Ψ is uniform within the area
elements ∆AP eliminating the need for a local integration. We may now write
down the expression for the phase space element and the particle density at
time t + ∆t by integrating over all values of ξ and π

I = ∆AP

∫ +∞

−∞

∫ +∞

−∞
Ψ(w − ξ, pw − π, t)Pw(ξ)Pp(π) dξ dπ, (9.92)

where we used the abbreviation I = Ψ(w+fw ∆t, pw+gw∆t, t+∆t)∆AQ. The
volume elements ∆AP and ∆AQ are given by (9.5), (9.6), respectively. The
statistical fluctuations may in general be of any magnitude. In particle beam
dynamics, however, we find that the fluctuations with reasonable probabilities
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are small compared to the values of the variables w and pw. The phase space
density can therefore be expanded into a Taylor series where we retain linear
as well as quadratic terms in ξ and π

Ψ(w − ξ, pw − π, t) = Ψ0 − ξ
∂Ψ0

∂w
− π

∂Ψ0

∂pw
(9.93)

+ 1
2ξ

2 ∂
2Ψ0

∂w2
+ 1

2π
2 ∂

2Ψ0

∂p2
w

+ ξπ
∂2Ψ0

∂w∂pw
,

where Ψ0 = Ψ(w, pw, t) and we finally get for the integrals with (9.90)

I = Ψ0 + 1
2

∂2Ψ0

∂w2

∫
ξ2Pw(ξ) dξ + 1

2

∂2Ψ0

∂p2
w

∫
π2Pp(π) dπ . (9.94)

For simplicity, we leave off the integration limits which are still from −∞ to
+∞. If we now set N to be the number of statistical occurrences per unit
time we may simplify the quadratic terms on the r.h.s. of (9.94) by setting

1
2

∫
ξ2Pw(ξ) dξ = 1

2

〈
Nξ ξ

2
〉
∆t, (9.95)

1
2

∫
π2Pp(π) dπ = 1

2

〈
Nπ π2

〉
∆t, (9.96)

and get similarly to the derivation of the Vlasov equation in Sect. 9.1

∂Ψ0

∂t
+ fw

∂Ψ0

∂w
+ gw

∂Ψ0

∂pw
= −

(
∂fw

∂w
+

∂gw

∂pw

)
Ψ0 (9.97)

+ 1
2

〈
Nξ ξ

2
〉 ∂2Ψ0

∂w2
+ 1

2

〈
Nπ π2

〉 ∂2Ψ0

∂p2
w

.

This partial differential equation is identical to the Vlasov equation except
for the statistical excitation terms and is called the Fokker–Planck equation
[98]. We define diffusion coefficients describing the flow in ξ and π space by

Dξ = 1
2

〈
Nξ ξ2

〉
, (9.98)

Dπ = 1
2

〈
Nπ π2

〉
, (9.99)

and the Fokker–Planck equation finally becomes

∂Ψ

∂t
+ fw

∂Ψ

∂w
+ gw

∂Ψ

∂pw
= 2αw Ψ + Dξ

∂2Ψ

∂w2
+ Dπ

∂2Ψ

∂p2
w

. (9.100)

For the case of damped oscillators the Fokker–Planck equation can be
derived similarly to (9.37) and is

∂Ψ

∂t
+ω0 pw

∂Ψ

∂w
− (ω0w+2αw pw)

∂Ψ

∂pw
= 2αwΨ +Dξ

∂2Ψ

∂w2
+Dπ

∂2Ψ

∂p2
w

. (9.101)

This form of the Fokker–Planck equation will be very useful to describe a par-
ticle beam under the influence of diffusion processes. In the following section,
we will derive general solutions which will be applicable to specific situations
in accelerator physics.
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9.3.1 Stationary Solution of the Fokker–Planck Equation

A unique stationary solution exists for the particle density distribution de-
scribed by the partial differential equation (9.100). To derive this solution we
transform (9.100) to cylindrical coordinates (w, pw) → (r, θ) with w = r cos θ
and pw = r sin θ. There are terms proportional to derivatives of the phase
space density with respect to the angle θ. One of these terms ω0Ψθ exists even
in the absence of diffusion and damping and describes merely the betatron
motion in phase space while the other terms depend on damping and diffu-
sion. The diffusion terms will introduce a statistical mixing of the phases θ
and after some damping times any initial azimuthal variation of the phase
space density will be washed out. We are here only interested in the station-
ary solution and therefore set all derivatives of the phase space density with
respect to the phase θ to zero. In addition we find it necessary to average
square terms of cos θ and sin θ. With these assumptions the Fokker–Planck
equation (9.100) becomes after some manipulations in the new coordinates

∂Ψ

∂t
= 2αwΨ+

(
αw r +

D

r

)
∂Ψ

∂r
+ D

∂2Ψ

∂r2
, (9.102)

where we have defined a total diffusion coefficient

D = 1
2 (Dξ + Dπ) . (9.103)

Equation (9.102) has some similarity with, for example, wave equations in
quantum mechanics which are solved by the method of separation of variables
and we expect the stationary solution for the phase space density to be of the
form Ψ(r, t) =

∑
n Fn(t)Gn(r). The solution Gn(r) must meet some particular

boundary conditions. Specifically, at time t = 0, we may have any arbitrary
distribution of the phase space density Gn0(r). Furthermore, we specify that
there be a wall at r = R beyond which the phase space density drops to zero
and consequently, the boundary conditions are

Gn(r < R) = Gn0(r),

Gn(r > R) = 0 .
(9.104)

By the method of separation of the constants we find for the functions Fn(t)

Fn(t) = const. e−αn t, (9.105)

where the quantity −αn is the separation constant. The general form of the
solution for (9.102) may now be expressed by a series of orthogonal functions
or eigenmodes of the distribution Gn(r) which fulfil the boundary conditions
(9.104)

Ψ(r, t) =
∑
n≥0

cn Gn(r) e−αn t . (9.106)
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The amplitudes cn in (9.106) are determined such as to fit the initial density
distribution

Ψ0(r, t = 0) =
∑
n≥0

cn Gn0(r) . (9.107)

With ansatz (9.106) we get from (9.102) for each of the eigenmodes the fol-
lowing second-order differential equation:

∂2Gn

∂r2
+
(

1
r

+
αw

D
r

)
∂Gn

∂r
+

αw

D

(
2 +

αn

αw

)
Gn = 0 . (9.108)

All terms with a coefficient αn > 0 vanish after some time due to damping
(9.105). Negative values for the damping decrements αn < 0 define instabil-
ities which we will not consider here. Stationary solutions, therefore, require
the separation constants to be zero αn = 0. Furthermore, all solutions Gn

must vanish at the boundary r = R where R may be any value including
infinity if there are no physical boundaries at all to limit the maximum par-
ticle oscillation amplitude. In the latter case where there are no walls, the
differential equation (9.108) can be solved by the stationary distribution

Ψ(r, t) =
∑
n≥0

αn=0

cn Gn(r) ∝ exp
(
−αw

2D
r2
)
, (9.109)

which can easily be verified by backinsertion into (9.108). The solution for the
particle distribution in phase space under the influence of damping αw and
statistical fluctuations D is a Gaussian distribution with the standard width

σr =
√

D

αw
. (9.110)

Normalizing the phase space density the stationary solution of the Fokker–
Planck equation for a particle beam under the influence of damping and sta-
tistical fluctuations is

Ψ(r) =
1√

2πσr

e−r2/2σ2
r . (9.111)

Eigenfunctions for which the eigenvalues αn are not zero are needed to
describe an arbitrary particle distribution, e.g., a rectangular distribution at
time t = 0. The Fokker–Planck equation, however, tells us that after some
damping times these eigensolutions have vanished and the Gaussian distri-
bution is the only stationary solution left. The Gaussian distribution is not
restricted to the r-space alone. The particle distribution in equilibrium be-
tween damping and fluctuations is also Gaussian in the normalized phase
space (w, pw) as well as in real space. With r2 = w2 + p2

w we immediately get
for the density distribution in the (w, pw) space

Ψ(w, pw) =
1

2πσwσpw

e−w2/2σ2
w e−p2

w/2σ2
pw , (9.112)
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where we have set σw = σpw
=
√

D
αw

. The standard deviation in w and pw is
the same as for r which is to be expected since all three quantities have the
same dimension and are linearly related.

In real space we have for u = x or u = y by definition u =
√
βu w and

p = ẇ
ν where ẇ = dw

dϕ . On the other hand, p =
√
βx x′ − β′

2
√

β
x and inserted

into (9.109) we get the density distribution in real space as

Ψ(u, u
′) ∝ exp

(
−γuu

2 − β′
u uu′ + βuu

′2

2σ2
w

)
. (9.113)

This distribution describes the particle distribution in real phase space
where particle trajectories follow tilted ellipses. Note that we carefully avoid
replacing the derivative of the betatron function with β′ = −2α because this
would lead to a definite confusion between the damping decrement and the
betatron function. To further reduce confusion we also use the damping times
τi = α−1

i . Integrating distribution (9.113) for all values of the angles u′, for
example, gives the particle distribution in the horizontal or vertical midplane.
Using the mathematical relation

∫ ∞
∞e−p2x2±qxdx =

√
π

p eq2/(4p2) [99], we get

Ψ( u ) =
1√

2π
√
βuσw

e−u2/2σ2
u , (9.114)

where the standard width of the horizontal Gaussian particle distribution is

σu =
√

βσw =
√

β
√

τuDu . (9.115)

The index u has been added to the diffusion and damping terms to indi-
cate that these quantities are in general different in the horizontal and ver-
tical plane. The damping time depends on all bending magnets, vertical and
horizontal, but only on the damping-partition number for the plane under
consideration. Similar distinction applies to the diffusion term.

In a similar way, we get the distribution for the angles by integrating
(9.113) with respect to u

Ψ(u′) =
√
β

√
2π
√

1 + 1
4 β′ 2σw

exp

[
− β u′ 2

2 (1+ 1
4 β′ 2)σ2

w

]
, (9.116)

where the standard width of the angular distribution is

σ′
u =

√
4 + β′ 2

4β
σw =

√
4 + β′ 2

4β

√
τuDu . (9.117)

We have not made any special assumption as to the horizontal or vertical
plane and find in (9.114)–(9.117) the solutions for the particle distribution in
both planes.
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In the longitudinal phase space the of motion are mathematically equal to
(9.11), (9.12). First we define new variables

ẇ = −Ωs0

ηc
τ̇ , (9.118)

where Ωs0 is the synchrotron oscillation frequency, ηc is the momentum com-
paction, and τ is the longitudinal deviation of a particle from the reference
particle. We define the conjugate variable by

p = − ε̇

E0
, (9.119)

where ε is the energy deviation from the reference energy E0. After differenti-
ation of (9.54) and making use of (9.55) and the definition of the synchrotron
oscillation frequency, we use these new variables and obtain two first-order
differential equations

ẇ = +Ωs p, (9.120)
ṗ = −Ωs w − 2αε p . (9.121)

These two equations are of the same form as (9.12) and the solution of the
longitudinal Fokker–Planck equation is therefore similar to (9.114)–(9.117).
The energy distribution within a particle beam under the influence of damping
and statistical fluctuations becomes with p = δ = ε/E0

Ψ(δ) =
1√

2πσδ

e−δ2/2σ2
δ , (9.122)

where the standard value for the energy spread in the particle beam is defined
by

σε

E0
=
√

τεDε . (9.123)

In a similar way, we get for the conjugate coordinate τ with w = Ωs
ηc

τ the
distribution

Ψ(τ) =
1√

2πστ

e−τ2/2σ2
τ . (9.124)

The standard width of the longitudinal particle distribution is finally

στ =
|ηc|
Ωs

√
τεDε . (9.125)

The deviation in time τ of a particle from the synchronous particle is
equivalent to the distance of these two particles. Since s = cβτ, we may define
the standard value for the bunch length by

σ� = cβ
|ηc|
Ωs

√
τεDε . (9.126)
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By application of the Fokker–Planck equation to systems of particles under
the influence of damping and statistical fluctuations, we were able to derive
expressions for the particle distribution within the beam. In fact, we were
able to determine that the particle distribution is Gaussian in all six degrees
of freedom. Since such a distribution does not exhibit any definite boundary
for the beam, it becomes necessary to define the size of the distributions in
all six degrees of freedom by the standard value of the Gaussian distribution.
Specific knowledge of the nature for the statistical fluctuations are required
to determine the numerical values of the beam sizes.

In Chap. 17 we will apply these results to determine the equilibrium beam
emittance in an electron positron storage ring where the statistical fluctuations
are generated by quantized emission of synchrotron radiation photons.

9.3.2 Particle Distribution within a Finite Aperture

The particle distribution in an electron beam circulating in a storage ring is
Gaussian if we ignore the presence of walls containing the beam. All other
modes of particle distribution are associated with a finite damping time and
vanish therefore after a short time. In a real storage ring we must, however,
consider the presence of vacuum chamber walls which cut off the Gaussian
tails of the particle distribution. Although the particle intensity is very small
in the far tails of a Gaussian distribution, we cannot cut off those tails too
tight without reducing significantly the beam lifetime. Due to quantum exci-
tation, we observe a continuous flow of particles from the beam core into the
tails and back by damping toward the core. A reduction of the aperture into
the Gaussian distribution therefore absorbs not only those particles which
populate these tails at a particular moment but also all particles which reach
occasionally large oscillation amplitudes due to the emission of a high energy
photon. The absorption of particles due to this effect causes a reduction in
the beam lifetime which we call the quantum lifetime.

The presence of a wall modifies the particle distribution especially close
to the wall. This modification is described by normal mode solutions with a
finite damping time which is now acceptable because any aperture less than
an infinite aperture absorbs beam particles thus introducing a finite beam
lifetime. Cutting off Gaussian tails at large amplitudes will not affect the
Gaussian distribution in the core and we therefore look for small variations
of the Gaussian distribution which become significant only quite close to the
wall. Instead of (9.109) we try the ansatz

Ψ(r, t) = e−
αw
2D r2

g(r) e−αt, (9.127)

where 1/α is the time constant for the distribution, with the boundary con-
dition that the particle density be zero at the aperture or acceptance defining
wall r = A or

Ψ(A, t) = 0 . (9.128)
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Equation (9.127) must be a solution of (9.102) and back insertion of (9.127)
into (9.102) gives the condition on the function g(r)

g′′ +
(

1
r
− r

σ2

)
g′ +

α

αw σ2
g = 0 . (9.129)

Since g(r) = 1 in case there is no wall, we expand into a power series

g(r) = 1 +
∑
k≥1

Ck xk, where x =
r2

2σ2
. (9.130)

Inserting (9.130) into (9.129) and collecting terms of equal powers in r we
derive the coefficients

Ck =
1

(k!)2

p=k∏
p=1

(p− 1 −X) ≈ − (k − 1)!
(k!)2

X, (9.131)

where X = α
2αw

� 1. The approximation X � 1 is justified since we expect
the vacuum chamber wall to be far away from the beam center such that the
expected quantum lifetime 1/α is long compared to the damping time 1/αw

of the oscillation under consideration. With these coefficients (9.130) becomes

g(r) = 1 − α

2αw

∑
k≥1

1
k k!

xk . (9.132)

For x = A2/(2σ2) 
 1 where A is the amplitude or amplitude limit for the
oscillation w, the sum in (9.132) can be replaced by an exponential function

∑
k≥1

1
k k!

xk ≈ ex

x
. (9.133)

From the condition g(A) = 0 we finally get for the quantum lifetime τq =
1/α

τq =
1
2
τw

ex

x
, (9.134)

where

x =
A2

2σ2
. (9.135)

The quantum lifetime is related to the damping time. To make the quan-
tum lifetime very large of the order of 50 or more hours, the aperture must
be at least about 7σw in which case x = 24.5 and ex/x = 1.8 × 109.

The aperture A is equal to the transverse acceptance of a storage ring
for a one-dimensional oscillation like the vertical betatron oscillation while
longitudinal or energy oscillations are limited through the maximum energy
acceptance allowed by the rf-voltage. Upon a closer look, however, we note a
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complication for horizontal betatron oscillations and synchrotron oscillations
because of the coupling from energy oscillation into transverse position due to
a finite dispersion function. We also have assumed that α/(2αw) � 1 which
is not true for tight apertures of less than 1σ. Both of these situations have
been investigated in detail [100, 101] and the interested reader is referred to
those references.

Specifically, if the acceptance A of a storage ring is defined at a location
where there is also a finite dispersion function, Chao [100] derives a combined
quantum lifetime of

τ =
en2/2

√
2παxn3

1
(1 + r)

√
r (1 − r)

, (9.136)

where n = A/σT , σ2
T

= σ2
x + η2σ2

δ , r = η2σ2
δ/σ

2
T
, A is the transverse aperture,

η is the dispersion function at the same location as A, σx is the transverse
beam size and σδ = σε/E is the standard relative energy width in the beam.

9.3.3 Particle Distribution in the Absence of Damping

To obtain a stationary solution for the particle distribution it was essential
that there were eigensolutions with vanishing eigenvalues αn = 0. As a result,
we obtained an equilibrium solution where the statistical fluctuations are com-
pensated by damping. In cases where there is no damping, we would expect
a different solution with particles spreading out due to the effect of diffusion
alone. This case can become important in very high energy electron–positron
linear colliders where an extremely small beam emittance must be preserved
along a long beam transport line. The differential equation (9.108) becomes
in this case

∂2 Gn

∂r2
+

1
r

∂Gn

∂r
+

αn

D
Gn = 0 . (9.137)

We will assume that a beam with a Gaussian particle distribution is in-
jected into a damping free transport line and we therefore look for solutions
of the form

Ψn(r, t) = cn Gn(r) e−αnt, (9.138)

where
Gn(r) = e−r2/2σ2

0 (9.139)

with σ0 being the beam size at t = 0. We insert (9.139) into (9.137) and obtain
an expression for the eigenvalues αn

αn =
2D
σ2

0

− D

σ4
0

r2 . (9.140)

The time-dependent solution for the particle distribution now becomes

Ψ(r, t) = A exp
(
−2D

σ2
0

t

)
exp
[(

− r2

2σ2
0

)(
1 − 2D

σ2
0

t

)]
. (9.141)
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Since nowhere a particular mode is used we have omitted the index n. Solution
(9.141) clearly exhibits the effect of the diffusion in two respects. The particle
density decays exponentially with the decrement 2D/σ2

0 . At the same time the
distribution remains to be Gaussian although being broadened by diffusion.
The time-dependent beam size σ is given by

σ2(t) =
σ2

0

1 − 2D
σ2
0
t
≈ σ2

0

(
1 +

2D
σ2

0

t

)
, (9.142)

where we have assumed that the diffusion term is small (2D/σ2
0)t � 1. Setting

σ2 = σ2
u = εuβu for the plane u where βu is the betatron function at the

observation point of the beam size σu. The time-dependent beam emittance
is

εu = εu0 +
2D
βu

t (9.143)

or the rate of change
dεu
dt

=
2D
βu

=
Dξ + Dπ

βu
. (9.144)

Due to the diffusion coefficient D we obtain a continuous increase of the
beam emittance in cases where no damping is available.

The Fokker–Planck diffusion equation provides a tool to describe the evo-
lution of a particle beam under the influence of conservative forces as well
as statistical processes. Specifically, we found that such a system has a sta-
tionary solution in cases where there is damping. The stationary solution for
the particle density is a Gaussian distribution with the standard width of the
distribution σ given by the diffusion constant and the damping decrement.

In particular, the emission of photons due to synchrotron radiation has the
properties of a Markoff process and we therefore find the particle distribution
to be Gaussian. Indeed we will see that this is true in all six dimensions of
phase space.

Obviously not every particle beam is characterized by the stationary so-
lution of the Fokker–Planck equation. Many modes contribute to the particle
distribution and specifically at time t = 0 the distribution may have any ar-
bitrary form. However, it has been shown that after a time long compared to
the damping times only one nontrivial stationary solution is left, the Gaussian
distribution.

Problems

9.1. Derive from the Vlasov equation an expression for the synchrotron fre-
quency while ignoring damping. A second rf-system with a different frequency
can be used to change the synchrotron tune. Determine a system that would
reduce the synchrotron tune for the reference particle to zero while providing
the required rf-voltage at the synchronous phase. What is the relationship
between both voltages and phases? Is the tune shift the same for all particles?
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9.2. Formulate an expression for the equilibrium bunch length in a storage
ring with two rf-systems of different frequencies to control bunch length.

9.3. To reduce coupling instabilities between bunches of a multibunch beam it
is desirable to give each bunch a different synchrotron tune. This can be done,
for example, by employing two rf-systems operating at harmonic numbers h
and h+1. Determine the ratio or required rf-voltages to split the tunes between
successive bunches by ∆ν/νs.

9.4. Attempt to damp out the energy spread of a storage ring beam in the
following way. At a location where the dispersion function is finite one could
insert a TM110-mode cavity. Such a cavity produces accelerating fields which
vary linearly with the transverse distance of a particle from the reference path.
This together with a linear change in particle energy due to the dispersion
would allow the correction of the energy spread in the beam. Derive the com-
plete Vlasov equation for such an arrangement and discuss the six-dimensional
dynamics. Show that it is impossible to achieve a monochromatic stable beam.

9.5. Energy loss of a particle beam due to synchrotron radiation provides
damping. Show that energy loss due to interaction with an external electro-
magnetic field does not provide beam damping.

9.6. An arbitrary particle distribution of beam injected into a storage ring
damps out while a Gaussian distribution evolves with a standard width spe-
cific to the ring design. What happens if a beam from another storage ring
with a Gaussian distribution is injected? Explain why this beam changes its
distribution to the ring specific Gaussian distribution.

9.7. Consider a 1.5 GeV electron storage ring with a bending field of 1.5 T.
Let the bremsstrahlung lifetime be 100 h, the Coulomb scattering lifetime 50
h, and the Touschek lifetime 60 h. Calculate the total beam lifetime including
quantum excitation as a function of aperture. How many “sigma’s” (A/σ)
must the aperture be in order not to reduce the beam lifetime by more than
10% due to quantum excitation?

9.8. Derive an expression for the diffusion due to elastic scattering of beam
particles on residual gas atoms. How does the equilibrium beam emittance
of an electron beam scale with gas pressure and beam energy? Determine an
expression for the required gas pressure to limit the emittance growth of a
proton or ion beam to no more than 1% per hour and evaluate numerical for
a proton emittance of 10−9 rad m at an energy of 300 GeV. Is this a problem
if the achievable vacuum pressure is 1 nTorr? Concentrating the allowable
scattering to one location of 10 cm length (gas jet as a target) in a ring of 4
km circumference, calculate the tolerable pressure of the gas jet.

9.9. Consider a long beam transport line made up of FODO cells for a 500
GeV electron beam with an emittance of 10−11 rad m. For a straight, 1 km long
beam line determine the FODO cell parameters and tolerance on quadrupole
alignment to keep the emittance growth along the beam line to less than 10%.
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9.10. For future linear electron colliders it may be desirable to provide a
switching of the beams from one experimental detector to another. Imagine a
linear collider system with two experimental stations separated transversely
by 50 m. To guide the beams from the linear accelerators to the experimental
stations use translating FODO cells and determine the parameters required
to keep the emittance growth of a beam to less than 10% (beam emittance
10−11 rad m at 500 GeV).

9.11. Use the Fokker–Planck equation and derive an expression for the equi-
librium beam emittance of a coupled beam.



10

Equilibrium Particle Distribution

The wide variety of particle beam applications often require very specific beam
characteristics in terms of say cross section, divergence, energy spread, or pulse
structure. To a large extent such parameters can be adjusted by particular
application of focusing and other forces. In this chapter, we will discuss some
of these methods of beam optimization and manipulation.

10.1 Particle Distribution in Phase Space

The beam emittance of particle beams is primarily defined by parameters
and source energy. Given perfect matching between different accelerators and
beam lines during subsequent acceleration, this source emittance is reduced
inversely proportional to the particle momentum by adiabatic damping and
stays constant in terms of normalized emittance. This accurately describes the
situation for proton and ion beams, for nonrelativistic electrons and electrons
in linear accelerators.

The beam emittance for relativistic electrons, however, evolves fundamen-
tally different in circular accelerators. Relativistic electron and positron beams
passing through bending magnets emit synchrotron radiation, a process that
leads to quantum excitation and damping. As a result, the original beam emit-
tance at the source is completely replaced by an equilibrium emittance that
is unrelated to the source characteristics.

10.1.1 Diffusion Coefficient and Synchrotron Radiation

Emission of a photon causes primarily a change of the particle energy but,
as a consequence, the characteristics of the particle motion is changed as
well. Neither position nor the direction of the particle trajectory is changed
during the forward emission of photons along the direction of the particle
propagation, ignoring for now the small transverse perturbation due to the
finite opening angle of the radiation of ±1/γ. From beam dynamics, however,
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we know that different reference trajectories exist for particles with different
energies. Two particles with energies cp0 and cp1 > cp0 follow two different
reference trajectories separated at the position z along the beam transport
line by a distance

∆x = η(z)
cp1 − cp0

cp0
, (10.1)

where η(z) is the dispersion function and cp0 is the reference energy. Although
particles in general do not exactly follow these reference trajectories, they do
perform betatron oscillations about them. The sudden change of the parti-
cle energy during the emission of a photon leads to a sudden change in the
reference path and thereby to a sudden change in the betatron oscillation
amplitude.

Following the discussion of the Fokker–Planck equation in Chap. 9, we
may derive a diffusion coefficient from these sudden changes in the coordi-
nates. Using normalized coordinates w = x/

√
β, the change in the betatron

amplitude at the moment a photon of energy εγ is emitted becomes

∆w = ξ = − η(z)√
βx

εγ
E0

. (10.2)

Similarly, the conjugate coordinate ẇ =
√
βx x′

β + αx xβ changes by

∆ẇ = π = −
√

βx η′(z)
εγ
E0

− αx√
βx

η(z)
εγ
E0

. (10.3)

The frequency at which these statistical variations occur is the same for ξ
and π and is equal to the number of photons emitted per unit time

Nξ = Nπ = N . (10.4)

From (10.2), (10.3) we get

ξ2 + π2 =
(

εγ
E0

)2
[
η2

βx
+
(√

βxη
′ +

αx√
βx

η

)2
]

=
(

εγ
E0

)2

H, (10.5)

where we have defined a special lattice function

H = βxη
′2 + 2αxηη

′
+γxη

2 . (10.6)

We are interested in the average value of the total diffusion coefficient (9.103)

D = 1
2 〈N (ξ2 + π2)〉z =

1
2E2

0

〈N 〈ε2γ〉H〉z, (10.7)

where the average 〈· · · 〉z is to be taken along the whole transport line or the
whole circumference of a circular accelerator. Since photon emission does not
occur outside of bending magnets, the average is taken only along the length
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of the bending magnets. To account for the variation in photon energies, we
use the rms value of the photon energies 〈ε2γ〉. The theory of synchrotron
radiation is discussed in much detail in Chap. 22 and we take in the following
paragraph only relevant results of this theory.

The number of photons emitted per unit time with frequencies between ω
and ω + dω is simply the spectral radiation power at this frequency divided
by the photon energy �ω. Here, we consider only bending magnet radiation
and treat radiation from insertion devices as perturbations. Of course, this
approach must be modified if a significant part of radiation comes from non-
bending magnet radiation. The spectral photon flux from a single electron is
from (22.149)

dn(ω)
dω

=
1

�ω

dP (ω)
dω

=
Pγ

�ω2
c

9
√

3
8π

∫ ∞

ζ

K5/3(x) dx, (10.8)

where ζ = ω/ωc. The total photon flux is by integration over all frequencies

N =
Pγ

�ωc

9
√

3
8π

∫ ∞

0

∫ ∞

ζ

K5/3(x) dx dζ (10.9)

which becomes with GR(6.561.16) and Γ (1/6)Γ (1/6) = 5π/3 after integration
by parts from AS(6.1.17)

N =
Pγ

�ωc

9
√

3
8π

∫ ∞

0

K5/3(ζ) dζ =
15
√

3
8

Pγ

�ωc
. (10.10)

The rms value of the photon energy 〈ε2γ〉 can be derived in the usual way
from the spectral distribution n (ω) by

〈ε2γ〉 =
�

2

N

∫ ∞

0

ω2n(ω) dω =
9
√

3Pγ�ωc

8πN

∫ ∞

0

ζ2

∫ ∞

ζ

K5/3(x) dxdζ (10.11)

and is after integration by parts

〈 ε2γ 〉 =
Pγ �ωc

N
9
√

3
8π

1
3

∫ ∞

0

ζ3K5/3(ζ) dζ . (10.12)

The integral of the modified Bessel’s function in (10.12) is from
GR[6.561.16] 4Γ (2 + 5

6 )Γ (2 − 5
6 ) where we use again AS(6.1.17) for

Γ
(

5
6

)
Γ ( 1

6 ) = 2π. Collecting all terms

N 〈 ε2γ 〉 =
55

24
√

3
Pγ �ωc (10.13)

and the diffusion coefficient (10.7) becomes

D =
1
2
〈N (ξ2 + π2)〉z =

55
48
√

3
〈Pγ �ωcH〉z

E2
0

. (10.14)
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The stationary solution for the Fokker–Planck equation has been derived
describing the equilibrium particle distribution in phase space under the in-
fluence of quantum excitation and damping. In all six dynamical degrees of
freedom the equilibrium distribution is a Gaussian distribution and the stan-
dard value of the distribution width is determined by the damping time and
the respective diffusion coefficient. In this chapter, we will be able to calculate
quantitatively the diffusion coefficients and from that the beam parameters.

10.1.2 Quantum Excitation of Beam Emittance

High energy electron or positron beams passing through a curved beam trans-
port line suffer from quantum excitation which is not compensated by damping
since there is no acceleration. In Sect. 9.3.3 we have discussed this effect and
found the transverse beam emittance to increase linearly with time (9.144)
and we get with (10.14)

dεx
cdt

=
dεx
dz

=
55

24
√

3
re �c

mc2
γ5

〈
H
ρ3

〉

z

. (10.15)

There is a strong energy dependence of the emittance increase along the
beam transport line and therefore the effect becomes only significant for very
high beam energies as proposed for linear collider systems. Since the emit-
tance blow up depends on the lattice function H, we would choose a very
strong focusing lattice to minimize the dilution of the beam emittance. For
this reason, the beam transport system for the linear collider at the Stan-
ford Linear Accelerator Center [102] is composed of very strongly focusing
combined bending magnets.

Particle distributions become modified each time we inject a beam into a
circular accelerator with significant synchrotron radiation. Arbitrary particle
distributions can be expected from injection systems before injection into a
circular accelerator. If the energy in the circular accelerator is too small to
produce significant synchrotron radiation the particular particle distribution
is preserved according to Liouville’s theorem while all particles merely rotate
in phase space as discussed in Sect. 9.1. As the beam energy is increased or if
the energy is sufficiently high at injection to generate significant synchrotron
radiation, all modes in the representation of the initial particle distribution
vanish within a few damping times while only one mode survives or builds up
which is the Gaussian distribution with a standard width given by the diffusion
constant and the damping time. In general, any deviation from this unique
equilibrium solution and be it only a mismatch to the correct orientation of
the beam in phase space will persist for a time not longer than a few damping
times.
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10.2 Equilibrium Beam Emittance

In circular electron accelerators, as in electron storage rings, quantum excita-
tion is counteracted by damping. Since quantum excitation is not amplitude
dependent but damping is, there is an equilibrium beam emittance when both
effects are equally strong. In the presence of quantum fluctuations Liouville’s
theorem is not applicable strictly anymore. In the case of an electron beam
in equilibrium the phase space density for a beam in equilibrium is preserved,
although in a different way. While Liouville’s theorem is based on Hamil-
tonian mechanics and demands that no particle should escape its phase space
position, we allow in the case of an electron beam in equilibrium that a parti-
cle may escape its phase space position but be replaced instantly by another
particle due to damping.

10.2.1 Horizontal Equilibrium Beam Emittance

The horizontal beam size is related to damping and diffusion coefficient from
(9.115) like

σ2
x

βx
= τx Dx . (10.16)

Damping times have been derived in Sect. 9.2 and with (10.7) the hori-
zontal beam size σx at a location where the value of the betatron function is
βx becomes

σ2
x

βx
=

〈N〈ε2γ〉H〉z
2E0 Jx〈Pγ〉z

. (10.17)

The ratio σ2
x/βx is consistent with our earlier definition of the beam emit-

tance. For a particle beam which is in equilibrium between quantum excitation
and damping, this ratio is defined as the equilibrium beam emittance being
equivalent to the beam emittance for all particles within one standard value
of the Gaussian distribution. For further simplification, we make use of ex-
pression (10.13) and get with the radiation power (22.59) and the critical
frequency (22.78) the horizontal beam emittance equation

εx = Cqγ
2 〈H/|ρ3|〉z
Jx 〈1/ρ2〉z

, (10.18)

where we adopted Sands’ [103] definition of a quantum excitation constant

Cq =
55

32
√

3
�c

mc2
= 3.84 × 10−13 m. (10.19)

The equilibrium beam emittance scales like the square of the beam energy
and depends further only on the bending radius and the lattice function H.
From the definition of H the horizontal equilibrium beam emittance depends
on the magnitude of the dispersion function and can therefore be adjusted
to small or large values depending on the strength of the focusing for the
dispersion function.
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10.2.2 Vertical Equilibrium Beam Emittance

The vertical beam emittance follows from (10.18) considering that the disper-
sion function and therefore H vanishes. Consequently, the equilibrium vertical
beam emittance seems to be zero because there is only damping but no quan-
tum excitation. In this case, however, we can no longer ignore the fact that the
photons are emitted into a finite although very small angle about the forward
direction of particle propagation. Each such emission causes both a loss in
the particle energy and a transverse recoil deflecting the particle trajectory.
The photons are emitted typically within an angle 1/γ generating a transverse
kick without changing the betatron oscillation amplitude. With δy = 0 and
δy′ = 1

γ
εγ

E0
, we get for the statistical variations

ξ2 = 0,

π2 = βy
1
γ2

(
εγ

E0

)
2 .

(10.20)

Following a derivation similar to that for the horizontal beam emittance,
we get for the vertical beam emittance equation

εy = Cq
〈βy/|ρ3|〉z
Jy〈1/ρ2〉z

. (10.21)

This is the fundamentally lower limit of the equilibrium beam emittance
due to the finite emission angle of synchrotron radiation. For an isomagnetic
ring the vertical beam emittance

εy = Cq
〈βy 〉z
Jy |ρ|

(10.22)

does not depend on the particle energy but only on the bending radius and the
average value of the betatron function. In most practical circular accelerator
designs, both the bending radius and the betatron function are of similar
magnitude and the fundamental emittance limit therefore is of the order of
Cq = 10−13 rad m, indeed very small compared to actually achieved beam
emittances.

The assumption that the vertical dispersion function vanishes in a flat cir-
cular accelerator is true only for an ideal ring. Dipole field errors, quadrupole
misalignments, and any other source of undesired dipole fields create a verti-
cal closed orbit distortion and an associated vertical dispersion function. This
vertical dispersion function, often called spurious dispersion function, is fur-
ther modified by orbit correction magnets but it is not possible to completely
eliminate it because the location of dipole errors are not known.

Since the diffusion coefficient D is quadratic in the dispersion function
(10.7), we get a contribution to the vertical beam emittance from quantum
excitation similar to that in the horizontal plane. Indeed, this effect on the
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vertical beam emittance is much larger than that due to the finite emission
angle of photons discussed above and is therefore together with coupling the
dominant effect in the definition of the vertical beam emittance.

The contribution to the vertical beam emittance is in analogy to the deriva-
tion leading to (10.18)

∆εy = Cq γ
2 〈Hy/|ρ3|〉z
Jy〈1/ρ2〉z

, (10.23)

where Hy is the average value along the ring circumference, i.e.,

Hy = 〈βy η′y
2 + 2αy ηy η′y + γy η2

y〉z . (10.24)

To minimize this effect, orbit correction schemes must be employed which
not only correct the equilibrium orbit but also the perturbation to the disper-
sion function. Of course, the same effect with a similar magnitude also occurs
in the horizontal plane but is in general negligible compared to ordinary quan-
tum excitation.

10.3 Equilibrium Energy Spread and Bunch Length

The statistical processes caused by the emission of synchrotron radiation pho-
tons affect not only the four transverse dimensions of phase space but also the
energy–time phase space. Particles orbiting in a circular accelerator emit pho-
tons with a statistical distribution of energies while only the average energy
loss is replaced in the accelerating cavities.

10.3.1 Equilibrium Beam Energy Spread

This leaves a residual statistical distribution of the individual particle energies
which we have derived in Sect. 9.3 to be Gaussian just like the transverse
particle distribution with a standard width given by (9.123). The conjugate
coordinate is the “time” w = Ω

ηc
τ where τ is the deviation in time of a particle

from the synchronous particle, and ε is the energy deviation of a particle from
the reference energy E0.

The emission of a photon will not change the position of the particle in
time and therefore ξ = 0. The conjugate coordinate being the particle energy
will change due to this event by the magnitude of the photon energy and we
have π = εγ/E0. Comparing with (10.5), we note that we get the desired
result analogous to the transverse phase space by setting H = 1 and using the
correct damping time for longitudinal motion. The equilibrium energy spread
then becomes from (9.123) in analogy to (10.18)

σ2
ε

E2
0

= Cqγ
2 〈| 1/ρ3 |〉z
Jε 〈1/ρ2〉z

, (10.25)
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which in a separated function lattice depends only on the particle energy
and the bending radius. In a fully or partially combined function lattice, the
partition number Jε can be modified providing a way to vary the energy
spread.

10.3.2 Equilibrium Bunch Length

There is also a related equilibrium distribution in the longitudinal dimen-
sion which defines the length of the particle bunch. This distribution is also
Gaussian and the standard bunch length is from (9.125), (9.126)

σ� = cβ
|ηc|
Ωs

σε

E0
. (10.26)

The equilibrium bunch length not only depends on the particle energy and
the bending radius but also on the focusing lattice through the momentum
compaction factor and the partition number as well as on rf-parameters in-
cluded in the synchrotron oscillation frequency Ωs. To exhibit the scaling, we
introduce lattice and rf-parameters into (10.26) to get with (10.25) and the de-
finition of the synchrotron frequency (6.32) an expression for the equilibrium
bunch length

σ2
� =

2π Cq

(mc2)2
ηc E

3
0 R2

Jε h eV̂0 cosψs

〈|1/ρ3|〉z
〈1/ρ2〉z

, (10.27)

where R is the average radius of the ring. The bunch length can be modified
through more parameters than any other characteristic beam parameter in the
six-dimensional phase space. Lattice design affects the resulting bunch length
through the momentum compaction factor and the partition number. Strong
focusing results in a small value for the momentum compaction factor and a
small bunch length. Independent of the strength of the focusing, the momen-
tum compaction factor can in principle be adjusted to any value including
zero and negative values by allowing the dispersion function to change sign
along a circular accelerator because the momentum compaction factor is the
average of the dispersion function αc = 〈η/ρ〉. In this degree of approxima-
tion the bunch length could therefore be reduced to arbitrarily small values by
reducing the momentum compaction factor. However, close to the transition
energy phase focusing to stabilize synchrotron oscillations is lost.

Introduction of gradient magnets into the lattice modifies the partition
numbers as we have discussed in Sect. 9.2.1. As a consequence, both the energy
spread and bunch length increase or decrease at the expense of the opposite
effect on the horizontal beam emittance. The freedom to adjust any of these
three beam parameters in this way is therefore limited but nonetheless an im-
portant means to make adjustments if necessary. Obviously, the rf-frequency
as well as the rf-voltage has a great influence on the bunch length. The bunch
length scales inversely proportional to the square root of the rf-frequency and
is shorter for higher frequencies. Generally, no strong reasons exist to choose
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a particular rf-frequency but might become more important if control of the
bunch length is important for the desired use of the accelerator. The bunch
length is also determined by the rate of change of the rf-voltage in the accel-
erating cavities at the synchronous phase

V̇ (ψs) =
d

dψ
V̂ sinψ

∣∣∣∣
ψ=ψs

= V̂ cosψs . (10.28)

For a single frequency rf-system the bunch length can be shortened when
the rf-voltage is increased. To lengthen the bunch the rf-voltage can be reduced
up to a point where the rf-voltage would fail to provide a sufficient energy
acceptance.

10.4 Phase-Space Manipulation

The distribution of particles in phase space is given either by the injector
characteristics and injection process or in the case of electron beams by the
equilibrium of quantum excitation due to synchrotron radiation and damping.
The result of these processes is not always what is desired and it is therefore
useful to discuss some method to modify the particle distribution in phase
space within the validity of Liouville’s theorem.

10.4.1 Exchange of Transverse Phase-Space Parameters

In beam dynamics we are often faced with a desire to change the beam size
in one of the six phase-space dimensions. Liouville’s theorem tells us that this
is not possible with macroscopic fields unless we let another dimension vary
as well so as not to change the total volume in six-dimensional phase space.

A very simple example of exchanging phase-space dimensions is the in-
crease or decrease of one transverse dimension at the expense of its conjugate
coordinate. A very wide and almost parallel beam, for example, can be fo-
cused to a small spot size where, however, the beam divergence has become
very large. Obviously, this process can be reversed too and we describe such
a process as the rotation of a beam in phase space or as phase-space rotation.

A more complicated but often very desirable exchange of parameters is
the reduction of beam emittance in one plane at the expense of the emit-
tance in the other plane. Is it, for example, possible to reduce say the vertical
beam emittance to zero at the expense of the horizontal emittance? Although
Liouville’s theorem would allow such an exchange other conditions in the
Hamiltonian theory will not allow this kind of exchange in multidimensional
phase space. The condition of symplecticity is synonymous with Liouville’s
theorem only in one dimension. For n dimensions the symplecticity condition
imposes a total of n(2n− 1) conditions on the dynamics of particles in phase
space [104]. These conditions impose an important practical limitation on the
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exchange between different degrees of freedom of phase space. Specifically, it
is not possible to reduce the smaller of two phase-space dimensions further at
the expense of the larger emittance, or if the phase space is the same in two
dimensions neither can be reduced at the expense of the other.

10.4.2 Bunch Compression

So far we have discussed only the exchange of transverse phase-space parame-
ters. Longitudinal phase space can also be exchanged by special application
of magnetic and rf-fields. Specifically, we often face the problem to compress
the bunch to a very short length at the expense of energy spread.

For linear colliders the following problem exists. Very small transverse
beam emittances can be obtained only in storage rings specially designed
for low equilibrium beam emittances. Therefore, an electron beam is injected
from a conventional source into a damping ring specially designed for low
equilibrium beam emittance. After storage for a few damping times the beam
is ejected from the damping ring again and transferred to the linear acceler-
ator to be further accelerated. During the damping process in the damping
ring, however, the bunch length will also reach its equilibrium value which in
practical storage rings is significantly longer than could be accepted in, for
example, an S-band or X-band linear accelerator. The bunch length must be
shortened.

This is done in a specially designed beam transport line between the damp-
ing ring and linear accelerator consisting of a nonisochronous transport line
and an accelerating section installed at the beginning of this line (Fig. 10.1).

The accelerating section is phased such that the center of the bunch does
not see any field while the particles ahead of the bunch center are acceler-
ated and the particles behind the bunch center are decelerated. Following this
accelerating section, the particles travel through a curved beam transport sys-
tem with a finite momentum compaction factor αc = 1

L0

∫ L0

0
η
ρ dz where L0 is

δ τ

δ
τ

τ
τ

δ
δ

δ
τ

longitudinal
phase ellipse

accelerating
section

chromatic bunch
compression section

dispersion
function

Fig. 10.1. Bunch-compressor system (schematic)
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the length of the beam transport line. Early particles within a bunch, having
been accelerated, follow a longer path than the reference particles at the cen-
ter of the bunch while the decelerated particles being late with respect to the
bunch center follow a shortcut. All particles are considered highly relativistic
and the early particles fall back toward the bunch center while late particles
catch up with the bunch center. If the parameters of the beam transport sys-
tem are chosen correctly the bunch length reaches its minimum value at the
desired location at, for example, the entrance of the linear accelerator. From
that point on the phase-space, rotation is halted because of lack of momentum
compaction in a straight line. Liouville’s theorem is not violated because the
energy spread in the beam has been increased through the phase-dependent
acceleration in the bunch-compression system.

Formulating this bunch compression in more mathematical terms, we start
from a particle distribution in longitudinal phase space described by the phase
ellipse

τ̂2
0 ε2 + ε̂20 τ

2 = τ̂2
0 ε̂20 = a2, (10.29)

where a is the longitudinal emittance and τ is the particle location along the
bunch measured from the bunch center such that τ > 0 if the particle trails the
bunch center. In the first step of bunch compression, we apply an acceleration

∆ε = −eV0 sinωrfτ ≈ −eV0 ωrfτ . (10.30)

The particle energy is changed according to its position along the bunch.
Replacing ε in (10.29) by ε + ∆ε and sorting we get

τ̂2
0 ε2 − 2τ̂2

0 eV0 ωrf ετ + (τ̂2
0 e2V 2

0 ω2
rf + ε̂20) τ

2 = a2, (10.31)

where the appearance of the cross term indicates the rotation of the ellipse.
The second step is the actual bunch compression in a nonisochronous trans-
port line of length L and momentum compaction ∆z/L = ηc ε/(cp0). Traveling
though this beam line, a particle experiences a shift in time of

∆τ =
∆z

βc
=

ηcL

βc

ε

cp0
. (10.32)

Again, the time τ in (10.31) is replaced by τ+∆τ to obtain the phase ellipse
at the end of the bunch compressor of length L. The shortest bunch length
occurs when the phase ellipse becomes upright. The coefficient for the cross
term must therefore be zero giving a condition for minimum bunch length:

eV0 = − cp0 βc

L ηc ωrf
. (10.33)

From the remaining coefficients of ε2 and τ2, we get the bunch length after
compression

τ̂ =
ε̂0

eVrf ωrf
(10.34)
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and the energy spread
ε̂ = τ̂0 ωrf eVrf , (10.35)

where we used the approximation τ̂0 eV0 ωrf 
 ε̂0. This is justified because
we must accelerate particles at the tip of th e bunch by much more than
the original energy spread to obtain efficient bunch compression. Liouville’s
theorem is obviously kept intact since

ε̂ τ̂ = ε̂0 τ̂0 . (10.36)

For tight bunch compression, a particle beam with small energy spread is
required as well as an accelerating section with a high rf-voltage and frequency.
Of course, the same parameters contribute to the increase of the energy spread
which can become the limiting factor in bunch compression. If this is the case,
one could compress the bunch as much as is acceptable followed by acceleration
to higher energies to reduce the energy spread by adiabatic damping, and then
go through a bunch compression again.

10.4.3 Alpha Magnet

Bunch compression requires two steps. First, an accelerating system must
create a correlation between particle energy and position. Then we utilize a
nonisochronous magnetic transport line to rotate the particle distribution in
phase space until the desired bunch length is reached.

The first step can be eliminated in the case of an electron beam generated
in an rf-gun. Here the electrons emerge from a cathode which is inserted
into an rf-cavity [105]. The electrons are accelerated immediately where the
acceleration is a strong function of time because of the rapidly oscillating field.
In Fig. 10.2 the result from computer simulations of the particle distribution in
phase space [31] is shown for an electron beam from a 3 GHz rf-gun [106,107]
(Fig. 10.3).

For bunch compression we use an alpha magnet which got its name from
the alpha-like shape of the particle trajectories. This magnet is made from
a quadrupole split in half where the other half is simulated by a magnetic
mirror plate at the vertical midplane. While ordinarily a particle beam would
pass through a quadrupole along the axis or parallel to this axis this is not
the case in an alpha magnet. The particle trajectories in an alpha magnet
have very unique properties which were first recognized by Enge [108]. Most
obvious is the fact that the entrance and exit point can be the same for all
particles independent of energy. The same is also true for the total deflection
angle. Borland [109] has analyzed the particle dynamics in an alpha magnet in
detail and we follow his derivation here. Particles entering the alpha magnet
fall under the influence of the Lorentz force

F L = eE + e[v × B], (10.37)
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where we ignore the electrical field. Replacing the magnetic field by its gradient
B = (g u3, 0, g u1), we get in the coordinate system of Fig. 10.4 the equation
of motion

d2u

dz2
= −σ2

[
du

dz
× u

]
, (10.38)

where the scaling factor
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σ2
(
m−2

)
=

e g

mc2βγ
= 5.86674 × 106 g(T/m)

βγ
, (10.39)

and the coordinate vector u = (u1, u2, u3).
By introducing normalized coordinates U = σ u and path length S = σz,

(10.38) becomes
d2U

dS2
= −

[
dU

dS
× (U3, 0, U1)

]
. (10.40)

The remarkable feature of (10.40) is the fact that it does not exhibit any
dependence on the particle energy or the magnetic field. One solution for
(10.40) is valid for all operating conditions and beam energies. The alpha
shaped trajectories are similar to each other and scale with energy and field
gradient according to the normalization introduced above.

Equation (10.40) can be integrated numerically and in doing so, Borland
obtains for the characteristic parameters of the normalized trajectory in an
alpha magnet [109]

θα = 0.71052 rad, Sα = 4.64210,

= 40.70991◦, Û1 = 1.81782,
(10.41)

where θα is the entrance and exit angle with respect to the magnet face, Sα

is the normalized path length, and Û1 is the apex of the trajectory in the
alpha magnet. We note specifically that the entrance and exit angle θα is
independent of beam energy and magnetic field. It is therefore possible to
construct a beam transport line including an alpha magnet.

Upon introducing the scaling factor (10.39), (10.41) becomes
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sα(m) = Sα

σ = 0.19166
√

βγ
g (T/m) ,

û1(m) = Û1
σ = 0.07505

√
βγ

g (T/m) .
(10.42)

Bunch compression occurs due to the functional dependence of the path length
on the particle energy. Taking the derivative of (10.42) with respect to the
particle momentum p̃0 = βγ, one gets the compression equation

dsα(m)
dp̃0

=
0.07505√

2 g (T/m) p̃0

. (10.43)

For bunch compression, higher momentum particles must arrive first be-
cause they follow a longer path and therefore fall back with respect to later
particles. For example, an electron beam with the phase-space distribution
from Fig. 10.2 becomes compressed as shown in Fig. 10.5.
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Fig. 10.5. Particle distribution in longitudinal phase space after compression in an
alpha magnet

Because of the small longitudinal emittance of the beam it is possible to
generate very short electron bunches of some 100 fs (rms) duration, which can
be used to produce intense coherent far infrared radiation [110].

10.5 Polarization of a Particle Beam

For high energy physics experimentation, it is sometimes important to have
beams of transversely or longitudinally polarized particles. It is possible, for
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example, to create polarized electron beams by photoemission from GaAs
cathodes [111]. From a beam dynamics point of view, we are concerned with
the transport of polarized beams through a magnet system and the resulting
polarization status. The magnetic moment vector of a particle rotates about a
magnetic field vector. A longitudinally polarized electron traversing a vertical
dipole field would therefore experience a rotation of the longitudinal polar-
ization about the vertical axis. On the other hand, the vertical polarization
would not be affected while passing through a horizontally bending magnet.
This situation is demonstrated in Fig. 10.6.
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path

spinB⊥⊥⊥⊥⊥ spin ΨΨΨΨΨ

ΨΨΨΨΨ⊥⊥⊥⊥⊥

Fig. 10.6. Precession of the particle spin in a transverse or longitudinal magnetic
field

Similarly, longitudinal polarization is not affected by a solenoid field. In
linear collider facilities, specific spin rotators are introduced to manipulate the
electron spin in such a way as to preserve beam polarization and obtain the
desired spin direction at an arbitrarily located collision point along the beam
transport line. For the preservation of beam polarization, it is important to
understand and formulate spin dynamics.

Electron and positron beams circulating for a long time in a storage ring
can become polarized due to the reaction of continuous emission of trans-
versely polarized synchrotron radiation. The evolution of the polarization has
been studied in detail by several researchers [100, 112–114] and the polariza-
tion time is given by [100]

1
τpol

=
5
√

3
8

e2
� γ5

m2c2ρ3
(10.44)

with a theoretically maximum achievable polarization of 92.38%. The polariza-
tion time is a strong function of beam energy and is very long for low energies.
At energies of several GeV, however, this time becomes short compared to the
storage time of an electron beam in a storage ring.
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This build up of polarization is counteracted by nonlinear magnetic field
errors which cause precession of the spin depending on the betatron ampli-
tude and energy of the particle thus destroying polarization. Again, we must
understand spin dynamics to minimize this depolarization. Simple relations
exist for the rotation of the spin while the particle passes through a magnetic
field. To rotate the spin by a magnetic field, there must be a finite angle
between the spin direction and that of the magnetic field. The spin rotation
angle about the axis of a transverse field depends on the angle between the
spin direction σs (|σs| = 1) and magnetic field B⊥ and is given by [114]

ψ⊥ = C⊥

(
1 +

1
γ

)
|σs × B⊥| �, (10.45)

where

ηg =
g − 2

2
= 0.00115965, (10.46)

C⊥ =
eηg

mc2
= 0.0068033

(
T−1m−1

)
, (10.47)

g is the gyromagnetic constant and B⊥� is the integrated transverse magnetic
field strength. Apart from a small term 1/γ, the spin rotation is independent
of the energy. In other words, a spin component normal to the field direction
can be rotated by 90o while passing though a magnetic field of 2.309 T m and
it is therefore not important at what energy the spin is rotated.

Equation (10.45) describes the situation in a flat storage ring with hori-
zontal bending magnets only unless the polarization of the incoming beam is
strictly vertical. Any horizontal or longitudinal polarization component would
precess while the beam circulates in the storage ring. As long as this spin is the
same for all particles, the polarization would be preserved. Unfortunately, the
small energy dependence of the precession angle and the finite energy spread
in the beam would wash out the polarization. On the other hand, the vertical
polarization of a particle beam is preserved in an ideal storage ring. Field
errors, however, may introduce a depolarization effect. Horizontal field errors
from misalignments of magnets, for example, would rotate the vertical spin.
Fortunately, the integral of all horizontal field components in a storage ring is
always zero along the closed orbit and the net effect on the vertical polariza-
tion is zero. Nonlinear fields, however, do not cancel and must be minimized
to preserve the polarization.

A transverse spin can also be rotated about the longitudinal axis of a
solenoid field and the rotation angle is

ψ‖ =
e

E

(
1 + ηg

γ

1 + γ

) ∣∣σs × B‖
∣∣ � . (10.48)

In a solenoid field it is therefore possible to rotate a horizontal polarization
into a vertical polarization or vice versa. Spin rotation in a longitudinal field
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is energy dependent and such spin rotations should therefore be done at low
energies if possible.

The interplay between rotations about a transverse axis and the longitu-
dinal axis is responsible for a spin resonance which destroys whatever beam
polarization exists. To show this, we assume a situation where the polarization
vector precesses just by 2π, or an integer multiple n thereof, while the particle
circulates once around the storage ring. In this case ψ⊥ = n 2π, eB⊥�/E = 2π,
and we get from (10.45)

n = ηg (1 + γ) . (10.49)

For n = 1, resonance occurs at a beam energy of E = 440.14 MeV. At
this energy any small longitudinal field interacts with the polarization vector
at the same phase, eventually destroying any transverse polarization. This
resonance occurs at equal energy intervals of

En(MeV) = 440.14 + 440.65 (n− 1) (10.50)

and can be used in storage rings as a precise energy calibration.
In Fig. 10.7 spin dynamics is shown for the case of a linear collider where

a longitudinally polarized beam is desired at the collision point. A longitudi-
nally polarized beam is generated from a source and accelerated in a linear
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Fig. 10.7. Spin manipulation during beam transfer from linear accelerator to damp-
ing ring and back
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accelerator. No rotation of the polarization direction occurs because no mag-
netic fields are involved yet. At some energy the beam is transferred to a
damping ring to reduce the beam emittance. To preserve polarization in the
damping ring the polarization must be vertical. In Fig. 10.7, we assume a lon-
gitudinal polarized beam coming out of the linear accelerator. A combination
of transverse fields, to rotate the longitudinal into a horizontal spin, followed
by a solenoid field which rotates the horizontal into a vertical spin, is used
in the transport line to the damping ring to obtain the desired vertical spin
orientation. This orientation is in line with all magnets in the damping ring
and the polarization can be preserved.

To obtain the desired rotation in the beam transport magnets at a given
energy, the beam must be deflected by a specific deflection angle which is from
(10.45)

θ =
e

βE
B⊥� =

ψ⊥
ηg

1
1 + γ

. (10.51)

Coming out of the damping ring the beam passes through a combination of
two solenoids and two transverse field sections. Depending on which solenoid
is turned on, we end up with a longitudinal or transverse polarization at the
entrance of the linac. By the use of both solenoids any polarization direction
can be realized.

Problems

10.1 (S). Show that the horizontal damping partition number is negative in
a fully combined function FODO lattice as employed in older synchrotron
accelerators. Why, if there is horizontal antidamping in such synchrotrons,
is it possible to retain beam stability during acceleration? What happens if
we accelerate a beam and keep it orbiting in the synchrotron at some higher
energy?

10.2. Use the high energy, linear part of the particle distribution in Fig. 10.2
and specify an alpha magnet to achieve best bunch compression at the obser-
vation point 2 m downstream from the magnet. Include variation of particle
velocities due to the finite energy spread. What are the parameters of the loop
in the alpha magnet? Show a particle distribution at the entrance and exit of
the alpha magnet. What do you have to do to get the shortest bunch length
at the observation point?

10.3. Specify relevant parameters for an electron storage ring made of FODO
cells with the goal to produce a very short equilibrium bunch length of σ� = 1
mm. Use superconducting cavities for bunch compression with a maximum
field of 10 MV/m and a total length of not more than 10% of the ring circum-
ference.

10.4. Describe spin rotations in matrix formulation.
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10.5. Consider an electron storage ring for an energy of 30 GeV and a bend-
ing radius of ρ = 500 m and calculate the polarization time. The vertical
polarization will be perturbed by spurious dipole fields. Use statistical meth-
ods to calculate the rms change of polarization direction per unit time and
compare with the polarization time. Determine the alignment tolerances to
get a polarized beam.
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Beam Emittance and Lattice Design

The task of lattice design for proton and ion beams can be concentrated to
a pure particle beam optics problem. Transverse as well as longitudinal emit-
tances of such beams are constants of motion and therefore do not depend on
the particular design of the beam transport or ring lattice. This situation is
completely different for electron and positron beams in circular accelerators
where the emission of synchrotron radiation determines the particle distrib-
ution in six-dimensional phase space. The magnitude and characteristics of
synchrotron radiation effects can, however, be manipulated and influenced by
an appropriate choice of lattice parameters. We will discuss optimization and
scaling laws for the transverse beam emittance of electron or positron beams
in circular accelerators.

Originally electron storage rings have been designed, optimized, and con-
structed for the sole use as colliding beam facilities for high energy physics.
The era of electron storage rings for experimentation at the very highest parti-
cle energies has, however, reached a serious limitation due to excessive energy
losses into synchrotron radiation. Of course, such a limitation does not exist
for proton and ion beams with particle energies up to the order of some tens
of TeV’s and storage rings are therefore still the most powerful and productive
research tool in high energy physics. At lower and medium energies electron
storage rings with specially high luminosity still serve as an important re-
search tool in high energy physics to study more subtle phenomena which
could not be detected on earlier storage rings with lower luminosity.

To overcome the energy limitation in electron colliding beam facilities,
the idea of linear colliders which avoid energy losses into synchrotron radia-
tion [115, 116] becomes increasingly attractive to reach ever higher center of
mass energies for high energy physics. Even though electron storage rings are
displaced by this development as the central part of a colliding beam facility
they play an important role for linear colliders in the form of damping rings
to prepare very small emittance particle beams.

The single purpose of electron storage rings for high energy physics has
been replaced by a multitude of applications of synchrotron radiation from
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such rings in a large variety of basic and applied research disciplines. It is
therefore appropriate to discuss specific design and optimization criteria for
electron storage rings.

Synchrotron radiation sources have undergone significant transitions and
modifications over past years. Originally, most experiments with synchrotron
radiation were performed parasitically on high energy physics colliding beam
storage rings. Much larger photon fluxes could be obtained from such sources
compared to any other source available. The community of synchrotron ra-
diation users grew rapidly and so did the variety of applications and fields.
By the time the usefulness of storage rings for high energy physics was ex-
hausted some of these facilities were turned over to the synchrotron radiation
community as fully dedicated radiation sources. Those are called first gener-
ation synchrotron radiation sources. They were not optimized for minimum
beam emittance and maximum photon beam brightness. Actually, the opti-
mization for high energy physics called for a maximum beam emittance to
maximize collision rates for elementary particle events. The radiation sources
were mostly bending magnets although the development and use of insertion
devices started in these rings. Typically, the beam emittance is in the 100’s
of nm.

As the synchrotron radiation community further grew, funds became avail-
able to construct dedicated radiation facilities. Generally, these rings were de-
signed as bending magnet sources but with reduced beam emittance (≤ 100
nm) to increase photon brightness. The design emittances were much smaller
than those in first generation rings but still large by present day standards.
The use of insertion devices did not significantly affect the storage ring designs
yet. These rings are called second generation rings.

Third generation synchrotron radiation sources have been designed and
constructed during the second half of the 1980s and into the 1990s. These
rings were specifically designed for insertion device radiation and minimum
beam emittance (4 ≤ εx ≤ 20 nm) or maximum photon beam brightness. As
such, they exhibit a large number of magnet-free insertion straight sections.

Finally, fourth generation synchrotron radiation sources are so far only un-
der discussion. A consensus seems to emerge within the community that such
sources may be based more on linear accelerators. For example, great efforts
are underway in a number of laboratories to design x-ray lasers. Such a source
would be based on the principle of a single pass FEL where a high energy and
high quality electron beam passing through a long undulator produces coher-
ent undulator radiation in the x-ray regime. A storage ring based alternative
has been proposed which uses the ring structure only as a distributor of ra-
diation to individual beam lines. An electron beam is injected continuously
from a high performance electron linear accelerator. Such a linac beam can
have a very low beam emittance which is preserved in the storage ring for
some number of turns before quantum excitation takes over. To compensate
for the high energy cost the spent electron beam is ejected from the storage
ring again and its energy is recovered.
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Whatever the applications, in most cases it is the beam emittance which
will ultimately determine the usefulness of the storage ring design for a par-
ticular application. We will derive and discuss physics and scaling laws for
the equilibrium beam emittance in storage rings while using basic phenomena
and processes of accelerator physics as derived in previous sections.

11.1 Equilibrium Beam Emittance in Storage Rings

The equilibrium beam emittance in electron storage rings is determined by
the counteracting effects of quantum excitation and damping as has been dis-
cussed earlier. Significant synchrotron radiation occurs only in bending mag-
nets and the radiation from each bending magnet contributes independently
to both quantum excitation and damping. The contribution of each bending
magnet to the equilibrium beam emittance can be determined by calculating
the average values for 〈

∣∣κ3
∣∣H〉 and 〈κ2〉 by

〈
H
| ρ3 |

〉

z

=
1
C

∫ C

0

∣∣κ3 (z)
∣∣H(z) dz , (11.1)

where H is defined by (8.52) and C is the circumference of the storage ring.
Obviously, this integral receives contributions only where there is a finite
bending radius and therefore the total integral is just the sum of individual
integrals over each bending magnet.

11.1.1 FODO Lattice

We consider here briefly the FODO lattice because of its simplicity and its
ability to give us a quick feeling for the scaling of beam emittance with lat-
tice parameters. The beam emittance can be manipulated at design time by
adjusting 〈H〉 to the desired value. To calculate the average value 〈H〉 in a
FODO lattice is somewhat elaborate. Here, we are interested primarily in the
scaling of the beam emittance with FODO lattice parameters. Recollecting
the results for the symmetric solutions of the lattice functions in a FODO
lattice (7.3), (7.5), (7.74) we notice the following scaling laws

β ∝ L , (11.2)

β′ ∝ L0 , (11.3)

η ∝ L2/ρ , (11.4)
η′ ∝ L/ρ , (11.5)

where L is the distance between the centers of adjacent quadrupoles. All three
terms in the function H(z) = γ(z) η2 + 2α(z) ηη′ + β(z) η′2 scale in a similar
fashion like
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{H(z)} =
{

1
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ρ
; L0L

2

ρ
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ρ
; L

L2

ρ

}
∝ L3

ρ2
(11.6)

and the equilibrium emittance for a FODO lattice then scales like

εx = Cqγ
2 〈H/ρ〉
〈1/ρ2〉 ∝ γ2L

3

ρ3
∝ γ2Θ3 , (11.7)

where Θ = �b/ρ is the deflection angle in each bending magnet. The propor-
tionality factor depends on the strengths of the quadrupoles and is large for
very weak or very strong quadrupoles. A minimum can be reached for a focal
length of | f | ≈ 1.06L in each half quadrupole resulting in a minimum beam
emittance achievable in a FODO lattice given in practical units by

ε(rad m) ≈ 10−11 E 2(GeV)Θ3 (deg3) , (11.8)

where ϕ = 2π/NM, NM is the number of bending magnets in the ring, and
NM / 2 is the total number of FODO cells in the ring. This result is significant
because it exhibits a general scaling law of the beam emittance proportional
to the square of the beam energy and the cube of the deflecting angle in each
bending magnet, which is valid for all lattice types. The coefficients, though,
vary for different lattices. While the beam energy is primarily driven by the
desired photon spectrum, we find that high brightness photon beams from
low emittance electron beams require a storage ring design composed of many
lattice cells with a small deflection angle per magnet. Of course, there are
some limits on how far one can go with this concept due to other limitations,
not the least being size and cost of the ring which both grow with the number
of lattice cells.

11.1.2 Minimum Beam Emittance

While the cubic dependence of the beam emittance on the bending angle
is a significant design criterion, we discuss here a more detailed optimization
strategy. The emittance is determined by the beam energy, the bending radius,
and the H-function. Generally, we have no choice on the beam energy which
is mostly determined by the desired critical photon energy of bending magnet
and insertion device radiation or cost. Similarly, the bending radius is defined
by the ring geometry, desired spectrum, etc. Interestingly, it is not the bending
radius but rather the bending angle which influences the equilibrium beam
emittance. The main process to minimize the beam emittance is to adjust the
focusing such that the lattice functions in the bending magnets generate a
minimum value for 〈H〉.

The equilibrium beam emittance (10.18)

εx =
σ2

x

βx
= Cq γ

2 〈H(z)/ρ3〉
〈1/ρ2〉 (11.9)
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depends only on the lattice function H(z) inside bending magnets where 1/ρ 
=
0. We may, therefore, independent of any lattice type, consider this function
only within bending magnets. For the purpose of this discussion we assume a
regular periodic lattice, where all lattice functions within each bending magnet
are the same, and concentrate therefore our discussion just on one bending
magnet. The average value 〈H/ρ3〉 for the whole ring will then be the same
as that for one magnet.

The contribution of any individual bending magnet with bending radius ρ
to the beam emittance can be determined by calculation of the average

〈H 〉 =
1
�b

∫ �b

0

H(z) dz , (11.10)

where �b is the length of the bending magnet and the bending radius is as-
sumed to be constant within a magnet. From here on, we ignore the index x
since we assume a flat storage ring in the horizontal plane. All lattice functions
are therefore to be taken in the horizontal plane.

In evaluating integral (11.1) we must include all contributions. The emis-
sion of photons depends only on the bending radius regardless of whether the
bending occurs in the horizontal or vertical plane. Since for the calculation
of equilibrium beam emittances only the energy loss due to the emission of
photons is relevant it does not matter in which direction the beam is bent.
The effect of the emission of a photon on the particle trajectory, however, is
different for both planes because dispersion functions are different resulting in
a different quantum excitation factor H. For a correct evaluation of the equi-
librium beam emittances in the horizontal and vertical plane (11.1) should be
evaluated for both planes by determining Hx and Hy separately but including
in both calculations all bending magnets in the storage ring.

The integral in (11.1) can be evaluated for each magnet if the values of
the lattice functions at the beginning of the bending magnet are known. With
these initial values the lattice functions at any point within the bending mag-
net can be calculated assuming a pure dipole magnet. With the definitions
of parameters from Fig. 11.1, we find the following expressions for the lattice
functions in a bending magnet where z is the distance from the entrance to
the magnet

β(z) = β0 − 2α0z + γ0z
2,

α(z) = α0 − γ0z,

γ(z) = γ0,

η(z) = η0 + η′0z + ρ (1 − cos θ) ,

η′(z) = η′0 + sin θ.

(11.11)

Here the deflection angle is θ = z/ρ and β0, α0, γ0, η0, η
′
0 are the values

of the lattice functions at the beginning of the magnet. Before we use these
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Fig. 11.1. Lattice functions in a bending magnet

equations we assume lattices where η0 = η′0 = 0. The consequences of this
assumption will be discussed later. Inserting (11.11) into (11.1) we get after
integration over one dipole magnet an expression of the form

〈H〉b = β0 B + α0ρA + γ0 ρ
2 C , (11.12)

where we have assumed the bending radius to be constant within the length �b
of the magnet and where A,B, and C are functions of the full dipole deflection
angle Θ = �b/ρ defined by

B =
1
2

(
1 − sin 2Θ

2Θ

)
,

A = 2
1 − cosΘ

Θ
− 3

2
sin2 Θ

Θ
− 1

2
Θ +

1
2

sin 2Θ , (11.13)

C =
3
4

+ 2 cosΘ +
5
4

sin 2Θ
2Θ

− 4
sinΘ

Θ
+

1
6
Θ2 − 1

4
Θ sin 2Θ +

3
2

sin2 Θ .

In a storage ring with dipole magnets of different strength all contributions
must be added to give the average quantum excitation term for the whole ring

〈
H
|ρ3|

〉

z

=
1
C

∑
i

〈
Hi

|ρ3
i |

〉

z

�b,i . (11.14)

Here we sum over all magnets i with length �b,i.
For small bending angles and an isomagnetic ring where all bending mag-

nets have the same strength and length expressions (11.13) can be approxi-
mated by

B ≈ 1
3Θ

2
(
1 − 1

5Θ
2
)
,

A ≈ − 1
4Θ

3
(
1 − 5

18Θ
2
)
, (11.15)

C ≈ 1
20Θ

4
(
1 − 5

14Θ
2
)
.
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The factor 〈
∣∣κ3
∣∣H/〈κ2〉〉z becomes for an isomagnetic ring simply |κ| 〈H〉

and the equilibrium beam emittance is with Jx = 1

εiso = Cq γ
2 |κ| 〈H〉z . (11.16)

Inserting (11.12) with (11.15 ) into (11.16) we get for the beam emittance
in the lowest order of approximation

εiso = Cq γ
2 Θ3

[
1
3
β0

�b
− 1

4
α0 +

1
20

γ0 �b

]
+ O(Θ4) , (11.17)

where γ0 = γ(z0) is one of the lattice functions not to be confused with the
particle energy γ.

Here we have assumed a completely separate function lattice where the
damping partition number Jx = 1. For strong bending magnets this assump-
tion is not quite justified due to the edge focusing of the bending magnets and
the damping partition number should be corrected accordingly.

Result (11.17) shows clearly a cubic dependence of the beam emittance
on the deflection angle Θ of the bending magnets which is a general lattice
property since we have not yet made any assumption on the lattice type yet.
Equations (11.12) and (11.17) have minima with respect to both α0 and β0.
By solving the derivation ∂〈H〉/∂α0 = 0 for α0 we get for the optimum value

α0 opt = −1
2
A

C

β0

ρ
. (11.18)

After inserting (11.18) into (11.12) the optimum value for β0 can be derived
from the derivative ∂〈H〉/∂β0 = 0 and is given by

β0,opt =
2C ρ√

4BC −A2
. (11.19)

We insert (11.19) into (11.18) for

α0,opt =
−A√

4BC −A2
(11.20)

and get for the optimum quantum excitation term (11.12) the simple expres-
sion

〈H〉min =
√

4BC −A2 ρ . (11.21)

For small deflection angles Θ � 1 expansions (11.15) can be used to give
the optimum lattice parameters at the entrance to the bending magnets where
η0 = η′0 = 0

α0,opt ≈ (1− 5
18 Θ2)

√
15√

1− 61
105 Θ2

≈
√

15
(
1 + 4

315Θ
2
)
,

β0,opt ≈
√

12(1− 5
14 Θ2)L

√
5
√

1− 61
105 Θ2

≈
√

12
5

(
1 − 7

105Θ
2
)
,

〈H〉min ≈ Θ3ρ

4
√

15

√
1 − 61

105Θ
2 ≈ Θ3ρ

4
√

15

(
1 − 61

210Θ
2
)
.

(11.22)
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The results are very simple for very small deflection angles where we may
neglect the quadratic terms in the brackets of (11.22) and get

α0,opt ≈
√

15 ; β0,opt ≈
√

12
5

�b ; 〈H 〉min ≈ Θ3 ρ

4
√

15
. (11.23)

With this, the minimum obtainable beam emittance in any lattice is from
(10.18)

εdba,min = Cq γ
2 〈H(z)/ρ3〉

〈1/ρ2〉 ≈ Cq γ
2 Θ3

4
√

15
. (11.24)

The results are very simple for small deflection angles but for angles larger
than about 33◦ per bending magnet the error for 〈H〉min exceeds 10% at which
point higher order terms must be included. It is interesting to note that the
next order correction due to larger bending angles gives a reduction in beam
emittance compared to the lowest order approximation. Higher order terms,
however, quickly stop and reverse this reduction.

For simplicity, we assumed that the dispersion functions η0 = 0 and η0 = 0.
Numerical methods must be used to find the optimum solutions for finite dis-
persion functions. In the following we consider only very small values η0 � 1
and η′0 � 1 to evaluate the impact of the correction for a finite dispersion on
the beam emittance. Retaining only linear terms in η0, η

′
0, and ϕ, the expres-

sion for 〈H〉 becomes

〈H〉η min = 〈H〉min +
1√
5

(
5
3
η0 + 6 η′0 �b

)
Θ + O(Θ2) . (11.25)

Obviously, the beam emittance can be further reduced for negative values
of η0 and η′0. This has been exploited in recent storage ring designs. Nonlinear
terms, however, quickly cause an increase in the beam emittance again, thus
limiting the gain.

In summary, it has been demonstrated that there are certain optimum
lattice functions in the bending magnets to minimize the equilibrium beam
emittance. No assumption about a particular lattice has been made yet. An-
other observation is that the beam emittance is proportional to the third
power of the magnet deflection angle (ε ∼ Θ3) and proportional to the square
of the beam energy (ε ∼ E2). Therefore many small deflection angles should
be used to achieve a small beam emittance. Low emittance storage rings,
therefore, are characterized by many short magnet lattice cells.

11.2 Beam Emittance in Periodic Lattices

To achieve a small particle beam emittance, a number of different basic mag-
net storage ring lattice units are available and in principle most any periodic
lattice unit can be used to achieve as small a beam emittance as desired.
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More practical considerations, however, will limit the minimum beam emit-
tance achievable in a lattice. While all lattice types to be discussed have been
used in existing storage rings and work well at medium to large beam emit-
tances, differences in the characteristics of particular lattice types become
more apparent as the desired equilibrium beam emittance is pushed to very
small values.

Of the large variety of magnet lattices that have been used in existing
storage rings, we will select four basic types and variations thereof to derive
and discuss basic scaling laws for the beam emittance. The chosen lattices
are among those most frequently used in storage ring design and therefore
are a good representation of existing accelerator design capabilities. The four
lattice types are

• the double bend achromat lattice (DBA),
• the triple bend achromat lattice (TBA),
• the triplet achromat lattice (TAL),
• the FODO lattice.

In the remainder of this section we discuss briefly emittance determining
characteristics of these lattice types.

11.2.1 The Double Bend Achromat Lattice (DBA)

The double bend achromat or DBA lattice is designed to make full use of the
minimization of beam emittance by the proper choice of lattice functions as
discussed earlier. In Fig. 11.2 the basic layout of this lattice is shown.

QF  QD           B                   QF                    B            QD  QF

Fig. 11.2. Double bend achromat (DBA) lattice (schematic) first proposed by
Panofsky [40]

A set of two or three quadrupoles provides the matching of the lattice func-
tions into the bending magnet to achieve the minimum beam emittance. The
central part of the lattice between the bending magnets may consist of one
or more quadrupoles and its only function is to focus the dispersion function
such that it is matched again to zero at the end of the next bending mag-
net resulting necessarily in a phase advance from bending magnet to bending
magnet of close to 180◦. This lattice type has been proposed first by Panof-
sky [40] and later by Chasman and Green [41] as an optimized lattice for a
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synchrotron radiation source. In Fig. 11.3 an example of a synchrotron light
source based on this type of lattice is shown representing the solution of the
design study for the European Synchrotron Radiation Facility ESRF [117].

2015 s(m)1050
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20
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30

η
x

β
x

β
y
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.2

0

η(m)β (m)

Fig. 11.3. European Synchrotron Radiation Facility, ESRF [117] (one half of 16
superperiods). The lattice is asymmetric to provide a mostly parallel beam in one
insertion and a small beam cross section in the other

The ideal minimum beam emittance (11.24) in this lattice type for small
bending angles and an isomagnetic ring with Jx = 1 is

εDBA =
Cq

4
√

15
γ2Θ3 (11.26)

or in more practical units

εDBA(rad m) = 5.036 × 10−13 E2(GeV2)Θ3(deg3) . (11.27)

In the actual ESRF lattice the parameters (α, β, ε), achieved while preserv-
ing a reasonable range of beam stability, fall short of the optimum parameters
(α∗

0, β
∗
0 , ε

∗
min) from (11.23) as shown in the following table:

Design values Ideal values

α = 1.27 α∗
0 = 3.873

β = 2.49 m β∗
0 = 3.04 m

ε = 28.8 × 10−11 rad m
GeV2 ε∗min = 8.96 × 10−11 rad m

GeV2

(11.28)

Obviously, the actual lattice functions and in particular the slope of the
betatron function differ from the optimum values as defined by (11.23) and
consequently the beam emittance is larger by a factor of 3 than it could
theoretically be. The reason for this are higher order chromatic and geometric
aberrations which become large for the ideal solution and would severely limit
the transverse stable area available for the beam.
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The optimum choice α∗
0 =

√
15 causes the betatron function to reach a

sharp minimum at about one third into the bending magnet and then to
increase from there on to large values causing nonlinear aberration problems
in subsequent quadrupoles. In general it is therefore difficult at best to reach
the optimum conditions of (11.26). For arbitrary values of α0, however, there
is still an optimum value for the initial betatron function β0 which can be
derived from (11.17) by differentiation with respect to β0 and solving for

β0

�b
=

√
3
20

√
1 + α2

0 . (11.29)

Inserting into (11.17) the beam emittance in units of the minimum beam
emittance ε∗

DBA
from (11.26) becomes

εDBA

ε∗
DBA

=
1
2
γ0 β

∗ + 8
β0

β∗ −
√

15α0 . (11.30)

This minimum beam emittance is plotted in Fig. 11.4 as a function of the
betatron function β0 for various parameters α0. It is apparent from Fig. 11.4
that more moderate values for α0 can be used without much loss in beam
emittance. This weak dependence can be used to lessen the problem caused by
nonlinear aberrations. Actually, the maximum value of the betatron function
β(�b) at the end of the bending magnet can be minimized for α0 = 4

17

√
15

at the expense of a loss in beam emittance of about a factor of 2. For this
condition we have the lattice parameters

α0

α∗
0

=
4
17

,
β(�b)
β∗

0(�b)
=

17
32

,
β0

β∗
0

=
23
68

,
εDFA

ε∗DFA

=
32
17

. (11.31)

This lattice type can be very useful for synchrotron light sources where
many component and dispersion free straight sections are required for the
installation of insertion devices. For damping rings this lattice type is not
quite optimum since it is a rather “open” lattice with a low bending magnet
fill factor and consequently a long damping time. Other more compact lattice
types must be pursued to achieve in addition to a small beam emittance also
a short damping time.

11.2.2 The Triple Bend Achromat Lattice (TBA)

The triple bend achromat lattice shown in Fig. 5.10 is a variation of the
double bend achromat lattice, where the dispersion function is rather small
in the case of a single central quadrupole. Since the central part of the double
bend achromat is the only place where the chromaticity can be corrected, the
small values of the dispersion function require rather strong sextupole fields.

To avoid the need for longer bending magnet free space and to let the
dispersion function reach larger values it has been proposed to use some of this
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Fig. 11.4. Scaling of beam emittance and lattice functions in a double bend achro-
mat (DBA) lattice

extra space for an additional bending magnet, although the larger dispersion
function in this dipole contributes more to the quantum excitation than the
other magnets [42,43].

11.2.3 The Triplet Achromat Lattice (TAL)

The triplet achromat lattice is a very compact lattice resulting in a small ring
circumference. The basic structure of this lattice type is shown in Fig. 11.5 in
its practical realization at the storage ring ACO [118].

QFB QD BQF
l
0

Fig. 11.5. Triplet achromat lattice (TAL) of the now defunct storage ring ACO

The lattice functions in the bending magnets are determined by their val-
ues in the middle of the insertion β = β∗ and α = α∗ = 0, since there are no
quadrupoles in the insertion straight sections. At the entrance to the bending
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magnet we have β0 = β∗ + (�20/β
∗), α0 = −�0/β

∗ and γ0 = 1/β∗ where �0 is
the distance of the magnet entrance to the middle of the insertion. With this
(11.12) becomes

〈H〉
TAL

=
(
β∗ +

�20
β∗

)
B − �0 ρ

β∗ A +
ρ2

β∗ C . (11.32)

Again there is an optimum value for β∗. Using expressions (11.15) one
obtains for small bending angles

〈H〉
TAL

= ρΘ3

[
1
20

�b
β∗ +

1
3
β∗

�b
+

1
3
�20
�2b

�b
β∗ +

1
4
�0
�b

�b
β∗

]
(11.33)

and the optimum value of the betatron function β∗ is from the minimum
condition d〈H〉TAL/dβ

∗ = 0
(
β∗

�b

)2

opt

=
3
4

(
1
5

+
�0
�b

+
4
3

�20
�b

2

)
. (11.34)

The minimum value for the quantum excitation factor becomes with (11.34)
from (11.33)

〈H〉min =
2
3
ρΘ3 β∗

�b

∣∣∣∣
opt

(11.35)

and the minimum beam emittance in an isomagnetic triplet achromat lattice
with Jx = 1 is finally with (11.34)

εTAL,min =
2
3
Cq γ

2 Θ3 β∗

�b

∣∣∣∣
opt

(11.36)

or in practical units

εTAL,min (rad m) = 52.01 × 10−13 β
∗

�b

∣∣∣∣
opt

E2(GeV2)Θ3(deg3) . (11.37)

Similar to the result in case of the double bend achromat the equilibrium
beam emittance scales like the square of the beam energy and the cube of
the deflection angle in the bending magnets, while the difference in the lattice
type shows up in a geometric factor.

The beam emittance varies only a little in the vicinity of the optimum
betatron function β∗. With b = β∗/β∗

opt and (11.34) this variation can be
expressed by

εTAL

εTAL,min

=
1
2

1 + b2

b
, (11.38)

which varies little for say 0.5 < b < 1.5.
A further reduction in the beam emittance can be obtained in this lattice

if the dispersion function in the magnet free insertion is not matched to zero,
η∗ 
= 0. It can be shown that in this case
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〈H〉
TAL

= ρΘ3

{[
1
20

�b
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3
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+
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�20
�2b
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β∗ +
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4
�0
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�b
β∗

]
(11.39)

− η∗
ρ

β0�b

(
1
7

+
�

�b
− ρ

�2b
η∗
)}

and looking for the optimum value of the dispersion function in the insertion
we get from ∂ 〈H〉 /∂η∗ = 0

η∗

�b

∣∣∣∣
opt

=
�0
2 ρ

(
1
3

+
�0
�b

)
. (11.40)

Using η∗ = η∗opt in (11.39) we may also derive an optimum value for the
betatron function

(
β∗

�b

)2

opt

=
1
4

(
4
15

+
�0
�b

+
�20
�b

2

)
, (11.41)

and the minimum beam emittance in an isomagnetic triplet achromat lattice
finally becomes

εTAL =
1
3
Cqγ

2 Θ3

(
4
15

+
�0
�b

+
�20
�b

2

)1/2

. (11.42)

With the optimization of the dispersion function the beam emittance can
be reduced by another factor 1.5–2 depending on the ratio �0/�b being zero
or very large, respectively. The optimum dispersion η∗ must be positive for
minimum beam emittance.

11.2.4 Limiting Effects

Given the usefulness of maximum photon beam brightness for experimenters
one might wonder why do not we just design storage rings with a beam emit-
tance below the diffraction limit. The answer has to do with limitations of
beam stability due to nonlinear betatron oscillations. To reduce the beam
emittance, we require stronger and/or more quadrupole focusing. The energy
spread in the beam causes a variation of focusing with lower energy parti-
cles being focused too much and higher energy particles focused too little as
indicated in Fig. 11.6. The total amount of focusing in a storage ring is a
measure for these chromatic aberrations, which can cause beam instability if
not corrected. For this reason, we must compensate the chromatic aberrations
which we call the storage ring chromaticity. Because the chromaticity derives
from focusing and we have different focusing in both planes, there are two
chromaticities, one for the horizontal and the other for the vertical plane.

Correction of the chromaticities can be accomplished by installing sextu-
pole magnets into the storage ring at locations where the dispersion is not
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Fig. 11.6. Origin and correction of chromatic effects and chromaticity

zero. The dispersion causes some degree of segregation between higher and
lower energy particles with higher energy particles gathering more outside of
the ideal orbit and lower energy particles more on the inside. Sextupoles can
be considered as quadrupoles with varying focal strength across the horizontal
aperture. A sextupole therefore can add some focusing for higher energy par-
ticles being outside of the ideal orbit (x > 0) and subtract some focusing for
lower energy particles at x < 0 (Fig. 11.6). That compensates the under and
over focusing these particles experience in the regular quadrupoles. Distribut-
ing sextupoles around the ring is therefore the preferred way to compensate
the storage ring chromaticity.

Every coin has two sides, however. The sextupole field increases quadrat-
ically with x and while we compensate the chromaticities, these same sex-
tupoles generate nonlinear, quadratic perturbations especially for particles
with large betatron oscillation amplitudes. These perturbations are known as
geometric aberrations generating pillowcase perturbations in the images as is
well known from light optics. The art of storage ring design is then to correct
the chromatic aberrations while keeping the geometric aberrations at a mini-
mum. This can be achieved up to a certain degree by distributing sextupoles
along the orbit at properly selected locations. It would therefore be wrong
to use just two sextupoles to correct the two chromaticities. The sextupole
strengths would be too high generating serious geometric aberrations. How-
ever, even with carefully distributing the sextupoles around the ring lattice,
we still deal with a nonlinear problem and we cannot expect to get perfect
compensation. There will always be a limit on the maximum stable betatron
oscillation amplitude in the storage ring. The design objective is to expand
the limit for large amplitude betatron oscillations. This limit is called the
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dynamic aperture in contrast to the physical aperture defined by the vacuum
chamber. There is no analytical solution for the dynamic aperture and it is
determined by numerical particle tracking programs which follow individual
particles for some thousands of turns through all nonlinear fields to probe
stability limits.

For a stable beam with a long beam lifetime, we must have a minimum
dynamic aperture to accommodate not only the beam proper but also a halo of
particles around the beam. This halo is made up of particles which have been
deflected by a small angle during elastic collisions with a residual gas atom.
Such collisions occur quite frequently, constantly populating the halo with new
particles. By damping, these particles lose betatron oscillation amplitudes and
leave slowly the halo again to join the beam proper. While there are only a few
particles in the halo at any one time, we cannot scrape off this halo by lack of
sufficient dynamic aperture. The beam lifetime could be reduced considerably
since there is a constant flow of particles into the halo and back to the beam.
This flow cannot be interrupted.

11.2.5 The FODO Lattice

The FODO lattice, shown schematically in Fig. 11.7 is the most commonly
used and best understood lattice in storage rings optimized for high energy
physics colliding beam facilities where large beam emittances are desired. This
choice is obvious considering that the highest beam energies can be achieved
while maximizing the fill factor of the ring with bending magnets.

BQDB

cell length: 2L

1/2QF 1/2QF

Fig. 11.7. FODO lattice (schematic)

This lattice provides the most space for bending magnets compared to
other lattices. The usefulness of the FODO lattice, however, is not only limited
to high energy large emittance storage rings. By using very short cells very
low beam emittances can be achieved as has been demonstrated in the first
low emittance storage ring designed [119] and constructed [72] as a damping
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ring for the linear collider SLC to reach an emittance of 11 × 10−9 m at 1
GeV.

The lattice functions in a FODO structure have been derived and dis-
cussed in detail and are generally determined by the focusing parameters of
the quadrupoles. Since FODO cells are not achromatic the dispersion function
is in general not zero at either end of the bending magnets.

The beam emittance can be derived analytically in thin lens approxima-
tion by integrating the quantum excitation factor along the bending magnets.
The result is shown in Fig. 11.8 where the function [〈H〉/(ρΘ3)] is plotted
as a function of the betatron phase advance per FODO half cell which is
determined by the focal length of the quadrupoles.
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Fig. 11.8. Electron beam emittance of a FODO lattice as a function of the betatron
phase advance per half cell in the deflecting plane

The beam emittance for an isomagnetic FODO lattice is given by [120]

εFODO = Cq γ
2Θ3 �b

�b,0

〈H〉
ρΘ3

, (11.43)

where �b,0 is the actual effective length of one bending magnet and 2�b is the
length of a FODO cell. From Fig. 11.8 it becomes apparent that the minimum
beam emittance is reached for a betatron phase of about 136.8◦ per FODO
cell. In this case 〈H〉/(ρΘ3) ≈ 1.25 and the minimum beam emittance in such
a FODO lattice in practical units is
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εFODO(radm) = 97.53 × 10−13 �b
�b,0

E2(GeV2)Θ3(deg3) . (11.44)

Comparing the minimum beam emittance achievable in various lattice
types as determined by (11.27), (11.37), (11.44), the FODO lattice seems to
be the least appropriate lattice to achieve small beam emittances. This, how-
ever, is only an analytical distinction. FODO cells can be made much shorter
than the lattice units of other structures and for a given circumference many
more FODO cells can be incorporated than for any other lattice. As a con-
sequence, the deflection angles per FODO cell can be much smaller. For very
low emittance storage ring, therefore, it is not a priori obvious that one lattice
is better than another. Additional requirements for a particular application
must be included in the determination of the optimum storage ring lattice.

An appropriate example is that of the damping ring for the Stanford Linear
Collider (SLC) (Fig. 11.9), where not only a small beam emittance is desired
but also a short damping time. The short damping time requirement demands
a ring circumference as small as possible to maximize the average synchrotron
radiation power. This is most effectively done in a FODO lattice where a high
percentage of the circumference is covered with dipole magnets. A double
focusing achromat lattice could give an equally small emittance but because
of the much more “open” magnet structure the damping time would be much
longer, thus missing design requirements.
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Fig. 11.9. Lattice structure for one of two superperiods of the SLC damping rings
[119] with two insertions for injection and ejection as well as rf-cavities
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On the other hand, small emittance storage rings to serve as high brilliance
photon sources require a significant number of magnet free insertions for the
installation of insertion devices like wiggler or undulator magnets while the
damping time is not a critical parameter. In this case a DFA, a TBA, or a TAL
lattice is more appropriate since they provide magnet free insertion straight
sections in a natural way.

A still smaller beam emittance than in a regular FODO lattice can be
achieved if the defocusing quadrupole is eliminated by using a combined func-
tion bending magnet that is focusing in the vertical plane [121]. In this case
the horizontal betatron function has a minimum in the bending magnet which
is close to the optimum condition discussed earlier in this section. Since only
the vertical focusing is combined with the bending field, ϑ < 0, and the vari-
ation of the damping partition number leads to an additional damping in
the horizontal plane, although consistent with Robinson’s damping criterion,
at the expense of the longitudinal damping. Lattices based on this combi-
nation of vertical focusing and horizontal bending have been worked out for
synchrotron radiation sources proposed and under construction.

11.2.6 Optimum Emittance for Colliding Beam Storage Rings

The single most important parameter of colliding beam storage rings is the
luminosity and most of the design effort is aimed at maximizing the collision
rate. As a consequence of thew beam beam effect, the beam emittance must be
chosen to be as large as possible for maximum luminosity. Since for most high
energy storage rings a FODO lattice is employed, it is clear that for maximum
emittance the phase advance per cell should be kept low as indicated in Fig.
11.9. Of course, there is a practical limit given by increasing magnet apertures
and associated costs.

Problems

11.1. For a fixed circumference of 500 m determine the lowest beam emittance
achievable at an energy of 6 GeV with a DBA, a TBA or FODO lattice.
Assume for the DBA lattice the unit cell of Fig. 11.3, for the TBA lattice Fig.
5.10, and for the FODO lattice a bending magnet fill factor of 50%. (Hint:with
a ruler estimate from the figures the bending magnet fill factor).

11.2 (S). Derive an approximate expression of the beam emittance in an
isomagnetic FODO lattice as a function of phase per cell and determine the
minimum value of the emittance. Use a lattice which is symmetric in both
planes and assume that the bending magnets are as long as the half cells
(�b = L).

11.3 (S). Consider a storage ring made of FODO cells at an energy of your
choice. How many bending magnets or half cells do your need to reach a beam
emittance of no more than εx = 5 × 10−9 rad m?
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Perturbations
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Perturbations in Beam Dynamics

The study of beam dynamics under ideal conditions is the first basic step to-
ward the design of a beam transport system. In the previous sections, we have
followed this path and have allowed only the particle energy to deviate from
its ideal value. In a real particle beam line or accelerator we may, however,
not assume ideal and linear conditions. More sophisticated beam transport
systems require the incorporation of nonlinear sextupole fields to correct for
chromatic aberrations. Deviations from the desired field configurations can be
caused by transverse or longitudinal misplacements of magnets with respect
to the ideal beam path. Of similar concern are errors in the magnetic field
strength, undesirable field effects caused in the field configurations at magnet
ends, or higher order multipole fields resulting from design, construction, and
assembly tolerances. Still other sources of errors may be beam–beam pertur-
bations, insertion devices in beam transport systems or accelerating sections,
which are not part of the magnetic lattice configurations. Such systems may
be magnetic detectors for high energy physics experiments, wiggler and un-
dulator magnets for the production of synchrotron radiation, and a gas jet
or immaterial field sources like that of a free electron laser interacting with
the particle beam to name just a few examples. The impact of such errors is
magnified in strong focusing beam transport systems as has been recognized
soon after the invention of the strong focusing principle. Early overviews and
references can be found, for example, in [20,122].

A horizontal bending magnet has been characterized as a magnet with
only a vertical field component. This is true as long as this magnet is perfectly
aligned, in most cases perfectly leveled. Small rotations about the magnet axis
result in the appearance of horizontal field components which must be taken
into account for beam stability calculations.

We also assumed that the magnetic field in a quadrupole vanishes at the
center of magnet axis. In the horizontal midplane of a quadrupole the vertical
field component has been derived as By = g x. If this quadrupole is displaced
horizontally with respect to the beam axis by a small amount δx we observe
a dipole field δBy = g δx at the beam axis. Similarly, a horizontal dipole field
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component is created for a vertical displacement of the quadrupole. These di-
pole field components in most cases are unintentional and lead to an undesired
deflection of the beam.

In addition, a quadrupole can be rotated by a small angle with respect
to the reference coordinate system. As a result we observe the appearance
of a small component of a “rotated quadrupole.” A sextupole magnet, when
displaced, introduces a dipole as well as a quadrupole field component on
the beam axis. In general we find that any displaced higher order multipole
introduces field errors on the beam axis in all lower order field configurations.

Although such misalignments and field errors are unintentional and un-
desired, we have to deal with their existence since there is no way to avoid
such errors in a real environment. The particular effects of different types of
errors on beam stability will be discussed. Tolerance limits on these errors as
well as corrective measures must be established to avoid destruction of the
particle beam. Common to all these perturbations from ideal conditions is
that they can be considered small compared to forces of linear elements. We
will therefore discuss mathematical perturbation methods that allow us to
determine the effects of perturbations and to apply corrective measures for
beam stability.

12.1 Magnet Field and Alignment Errors

In this section, field errors created by magnet misalignments like displacements
or rotations from the ideal location will be derived quantitatively. Such magnet
alignment errors, however, are not the only cause for field errors. External
sources like the earth magnetic field, the fields of nearby electrical current
carrying conductors, magnets connected to vacuum pumps, or ferromagnetic
material in the vicinity of beam transport magnets can cause similar field
errors. For example electrical power cables connected to other magnets along
the beam transport line can be hooked up such that the currents in all cables
are compensated. This occurs automatically for cases where the power cables
to and from a magnet run close together. In circular accelerators one might,
however, be tempted to run the cables around the ring only once to save the
high material and installation costs. This, however, causes an uncompensated
magnetic field in the vicinity of cables which may reach as far as the particle
beam pipe. The economic solution is to seek electrical current compensation
among all magnet currents by running electrical currents in different directions
around the ring. A careful design of the beam transport system can in most
cases minimize the impact of such field perturbations while at the same time
meeting economic goals.

Incidental field errors cannot be derived in a formal way but must be
evaluated individually by magnetic measurements. The main component of
such fields, however, can be described in most cases by a superposition of
a dipole and a gradient field. In the following paragraphs, we will restrict
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ourselves to the effects of magnet field and alignment errors. Misalignment
errors can be expressed by the transformation


 x̃

ỹ′


=


 cos δϕ sin δϕ

− sin δϕ cos δϕ




x

y


−


 δx

δy


 , (12.1)

where (x, y) are coordinates with respect to the ideal path, (δx, δy) are dis-
placement errors of the magnets from the ideal path, and δϕ is a rotational
error of the magnet with respect to the magnet axis and ideal coordinate
system (x, y, z). The sign convention adopted here is such that a counter-
clockwise rotation of the magnet is represented by a positive value of δϕ. The
coordinates (x̃, ỹ) describe the particle position with respect to the magnet
axes.

To demonstrate the types of field errors generated by magnet misalign-
ments we express transformation (12.1) in polar coordinates which is more
convenient to apply to the nth-order potential Vn(rm, ϕm). We use a cylindri-
cal coordinate system (rm, ϕm) which is centered and fixed in the displaced
magnet. The transformations rm = r−δr and ϕm = ϕ−δϕ relate the magnet
system to the coordinate system of the beam (r, ϕ) which is the reference
path. The magnet potential expressed with respect to the beam center is

e

p
Vn(r, ϕ) = − 1

n!
An (r − δr)n ein(ϕ−δϕ), (12.2)

where we apply the expansion (r − δr)n =
∑n

j=0

(
n
j

)
δrn−j rj . Since δϕ � 1

we have e−inδϕ ≈ 1− in δϕ = 1−n δϕ eiπ/2 and after some manipulation and
keeping only linear terms in the displacements the vector potential is

e

p
Vn(r, ϕ)≈−An

n!
[
rneinϕ − in δϕ rneinϕ

+
n−1∑
j=0

(
n

j

)
δrn−jrjeinϕ


+O(2). (12.3)

The effects of magnet misalignments becomes obvious. The first term in the
square bracket shows that to first order the original nth-order fields have not
been changed due to magnet misalignments. The second term demonstrates
the appearance of a “rotated” multipole component of the same nth-order with
the strength n δϕ being linearly proportional to the rotational misalignment.
Transverse misalignments lead to the third term which is the sum over a series
of lower order field components. Since δrn−j r j einϕ = (δr eiϕ)n−j r j ei jϕ =
(δx + i δy)n−j r j ei jϕ we find the perturbation terms to be of the order 0 ≤
j ≤ n− 1. A displaced octupole magnet, for example, generates at the beam
axis all lower order field components, like sextupole, quadrupole, and dipole
field.
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An upright quadrupole with the potential V = −g xy after rotation by
the angle δϕ is transformed into a composition of an upright and a rotated
quadrupole

V (x, y, z) = − cos(2 δϕ) g x y + 1
2 sin(2δϕ) g (x2 − y2), (12.4)

where δϕ < 0 for a clockwise rotation. Similar transformations are true for
other multipoles.

Multipole errors in magnets are not the only cause for perturbations. For
beams with large divergence or a large cross section, kinematic perturbation
terms may have to be included. Such terms are neglected in paraxial beam
optics discussed here, but will be derived in detail later.

12.1.1 Dipole Field Perturbations

Dipole fields are the lowest order magnetic fields and therefore also the lowest
order field errors. The defining equation of motion is

u′′ +
(
k + κ2

u

)
u = p0 (z) , (12.5)

where p0 (z) represents all dipole field errors, whether they be chromatic or
not. In trying to establish expressions for dipole errors due to field or alignment
errors, we note that the bending fields do not appear explicitly anymore in
the equations of motions because of the specific selection of the curvilinear
coordinate system and it is therefore not obvious in which form dipole field
errors would appear in the equation of motion (12.5). In (3.75) or (3.76) we
note, however, a dipole field perturbation due to a particle with a momentum
error δ. This chromatic term κx0 δ is similar to a dipole field error as seen
by a particle with the momentum cp0 (1 + δ). For particles with the ideal
energy we may therefore replace the chromatic term κ δ by a field error −∆κ.
Perturbations from other sources may be obtained by variations of magnet
positions (∆x,∆y) or magnet strengths. Up to second order, the horizontal
dipole perturbation terms due to magnet field (∆κ) and alignment errors
(∆x,∆y) are from (3.75)

p0x(z) = −∆κx0 + (κ2
x0 + k0)∆x + (2κx0 ∆κx0 + ∆k)∆x (12.6)

− 1
2m (∆x2 − 2xc ∆x−∆y2 + 2yc ∆y) + O(3),

where we used x = xβ +xc−∆x and y = yβ +yc−∆y with (xβ , yβ) the beta-
tron oscillations and (xc, yc) the closed orbit deviation in the magnet. In the
presence of multipole magnets the perturbation depends on the displacement
of the beam with respect to the center of multipole magnets.

There is a similar expression for vertical dipole perturbation terms and we
get from (3.76) ignoring vertical bending magnets (κy0 = 0) but not vertical
dipole errors, ∆κx0 
= 0,
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py0(z) = −∆κy0 − k0 ∆y −m (xc ∆y + yc ∆x) + O(3) . (12.7)

Such dipole field errors deflect the beam from its ideal path and we are
interested to quantify this perturbation and to develop compensating methods
to minimize the distortions of the beam path. In an open beam transport line
the effect of dipole field errors on the beam path can be calculated within the
matrix formalism.

A dipole field error at point zk deflects the beam by an angle θ. If M(zm|zk)
is the transformation matrix of the beam line between the point zk, where the
kick occurs, and the point zm, where we observe the beam position, we find a
displacement of the beam center line, for example, in the x-plane by

∆x = M12 θ, (12.8)

where M12 is the element of the transformation matrix in the first row and the
second column. Due to the linearity of the equation of motion, effects of many
kicks caused by dipole errors can be calculated by summation of individual
beam center displacements at the observation point zm for each kick. The
displacement of a beam at the location zm due to many dipole field errors is
then given by

∆x(zm) =
∑
k

M12(zm|zk) θk, (12.9)

where θk are kicks due to dipole errors at locations zk < zm and M12(zm|zk) is
the M12-matrix element of the transformation matrix from the perturbation
at zk to the monitor at zm.

Generally, we do not know the strength and location of errors. Statistical
methods are applied therefore to estimate the expectation value for beam
perturbation and displacement. With M12(zm|zk) =

√
βm βk sin(ψm − ψk)

we calculate the root mean square of (12.9) noting that the phases ψk are
random and cross terms involving different phases cancel. With 〈θ2

k〉 = σ2
θ

and 〈∆u2〉 = σ2
u we finally get from (12.9) the expectation value of the path

distortion at zm due to statistical errors with a standard value σθ

σu =
√

βm 〈βk〉
√

Nθ σθ, (12.10)

where 〈βk〉 is the average betatron function at the location of errors and Nθ

is the number of dipole field errors. Random angles and σθ are not obvious,
but if we identify the potential sources, we may be in a better position to
estimate σθ. For example, alignment errors of quadrupoles are related to σθ

by σθ = k�qσu, where σu is the rms alignment error and k�q is the inverse
focal length of the quadrupoles.

12.1.2 Existence of Equilibrium Orbits

Particles orbiting around a circular accelerator perform in general betatron
oscillations about the equilibrium orbit and we will discuss properties of this
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equilibrium orbit. Of fundamental interest is of course the fact that such equi-
librium orbits exist at all. We will not try to find conditions for the existence
of equilibrium orbits in arbitrary electric and magnetic fields but restrict this
discussion to fields with midplane symmetry as they are used in particle beam
systems. The existence of equilibrium orbits can easily be verified for particles
like electrons and positrons because these particles radiate energy in the form
of synchrotron radiation as they orbit around the ring.

In this section, we use the damping process to find the eventual equilibrium
orbit in the presence of arbitrary dipole perturbations. To do this, we follow an
orbiting particle starting with the parameters x = 0 and x′ = 0. This choice
of initial parameters will not affect the generality of the argument since any
other value of initial parameters is damped independently because of the linear
superposition of betatron oscillations.

As an electron orbits in a circular accelerator it will encounter a number of
kicks from dipole field errors or field errors due to a deviation of the particle
energy from the ideal energy. After one turn the particle position is the result
of the superposition of all kicks the particle has encountered in that turn.
Since each kick leads to a particle oscillation given by

x(z) =
√

β(z)βθ θ sin[νϕ(z) − νϕθ]

we find for the superposition of all kicks in one turn

x(z) =
√

β(z)
∑

i

√
βi θi sin[νϕ(z) − νϕi], (12.11)

where the index i indicates the location of the kicks. We ask ourselves now
what is the oscillation amplitude after many turns. For that we add up the
kicks from all past turns and include damping effects expressed by the factor
e−kT0/τ on the particle oscillation amplitude, where T0 is the revolution time,
kT0 is the time passed since the kick occurred k turns ago, and τ is the
damping time. The contribution to the betatron oscillation due to kicks, k
turns ago, is then given by

∆xk (z) =
√

β(z) e−kT0/τ
∑

i

√
βi θi sin[2πνk + νϕ(z) − νϕi] . (12.12)

Adding the contributions from all past turns results in the position x(z) of
the particle

x(z) =
∞∑

k=0

√
β(z) e−kT0/τ

∑
i

√
βiθi sin[2πνk + νϕ(z) − νϕi] . (12.13)

After some rearranging (12.13) becomes

x(z) = Cθ

∞∑
k=0

e−kT0/τ sin(2πνk) + Sθ

∞∑
k=0

e−kT0/τ cos(2πνk), (12.14)
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where
Cθ =

∑
i

√
β(z)βi θi cos[ϕ(z) − ϕi],

Sθ =
∑

i

√
β(z)βi θi sin[ϕ(z) − ϕi].

(12.15)

With the definition q = e−T0/τ we use the mathematical identities
∞∑

k=0

e−kT0/τ sin(2πνk) =
q sin 2πν

1 − 2q cos 2πν + q2
(12.16)

and ∞∑
k=0

e−kT0/τ cos(2πνk) =
1 − q cos 2πν

1 − 2q cos 2πν + q2
(12.17)

and finally get instead of (12.14)

x(z) =
Cθ q sin 2πν + Sθ (1 − q cos 2πν)

1 − 2q cos 2πν + q2
. (12.18)

The revolution time is generally much shorter than the damping time T0 � τ
and therefore q ≈ 1. In this approximation we get after some manipulation
and using (12.15)

x(z) =

√
β(z)

2 sinπν

∑
i

√
βi θi cos[νϕ(z) − νϕi + νπ] . (12.19)

Equation (12.19) describes the particle orbit reached by particles after some
damping times. The solution does not include anymore any reference to earlier
turns and kicks except those in one turn and the solution therefore is a steady
state solution defined as the equilibrium orbit .

The cause and nature of the kicks θi is undefined and can be any pertur-
bation, random or systematic. A particular set of such errors are systematic
errors in the deflection angle for particles with a momentum error δ for which
we set θi = δφi, where φi = �i/ρi is the deflection angle of the bending
magnet i. These errors are equivalent to those that led to the dispersion or
η–function. Indeed, setting η(z) = x(z)/δ in (12.19) we get solution (7.91) for
the η function. The trajectories x(z) = η(z) δ therefore are the equilibrium
orbits for particles with a relative momentum deviation δ = ∆p/p0 from the
ideal momentum p0.

In the next subsection we will discuss the effect of random dipole field
errors θi on the beam orbit. These kicks, since constant in time, are still
periodic with the periodicity of the circumference and lead to a distorted
orbit which turns out to be again equal to the equilibrium orbit found here.

To derive the existence of equilibrium orbits we have made use of the
damping of particle oscillations. Since this damping derives from the energy
loss of particles due to synchrotron radiation we have proof only for equi-
librium orbits for radiating particles like electrons and positrons. The result
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obtained also applies to any other charged particle. The damping time may
be extremely long, but is not infinite and a particle will eventually reach the
equilibrium orbit. The concept of equilibrium orbits is therefore valid even
though a proton or ion will never reach that orbit in a finite time but will
oscillate about it.

12.1.3 Closed Orbit Distortion

Solution (12.19) for the equilibrium orbit can also be derived directly by solv-
ing the equation of motion. Under the influence of dipole errors the equation
of motion is

u′′ + K(z)u = p0(z), (12.20)

where the dipole perturbation p0(z) is independent of coordinates (x, y) and
energy error δ. This differential equation has been solved earlier in Sect. 2.5.4,
where a dipole field perturbation was introduced as an energy error of the par-
ticle. Therefore, we can immediately write down the solution for an arbitrary
beam line for which the principal solutions C(z) and S(z) are known

u(z) = C(z)u0 + S(z)u′
0 + P (z) δ (12.21)

with
P (z) =

∫ z

0

p(ζ) [S(z)C(ζ) − S(ζ)C(z)] dζ . (12.22)

Result (12.21) can be interpreted as a composition of betatron oscillations with
initial values (u0, u

′
0) and a superimposed perturbation P (z) which defines

the equilibrium trajectory for the betatron oscillations. In (12.22) we have
assumed that there is no distortion at the beginning of the beam line, P (0) =
0. If there were already a perturbation of the reference trajectory from a
previous beam line, we define a new reference path by linear superposition of
new perturbations to the continuation of the perturbed path from the previous
beam line section. The particle position (u0, u

′
0) is composed of the betatron

oscillation (u0β , u
′
0β) and the perturbation of the reference path (u0c, u

′
0c).

With u0 = u0β + u0c and u′
0 = u′

0β + u′
0c, we get

u(z) =
[
u0β C(z) + u′

0β S(z)
]
+ [u0c C(z) + u′

0c S(z)] + P (z). (12.23)

In a circular accelerator we look for a self-consistent periodic solution. Because
the differential equation (12.20) is identical to that for the dispersion function,
the solution must be similar to (7.91) and is called the closed orbit, reference
orbit, or equilibrium orbit given by

uc(z) =

√
β(z)

2 sinπν

∮ z+C

z

p0(ζ)
√

β(ζ) cos [νϕ(z) − νϕ(ζ) + νπ] dζ, (12.24)

where C is the circumference of the accelerator. We cannot rely anymore on
a superperiodicity of length Lp since the perturbations p(ζ) due to misalign-
ment or field errors are statistically distributed over the whole ring. Again the
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integer resonance character discussed earlier for the dispersion function is ob-
vious, indicating there is no stable orbit if the tune of the circular accelerator
is an integer. The influence of the integer resonance is noticeable even when
the tune is not quite an integer. From (12.24) we find a perturbation p(z) to
have an increasing effect the closer the tune is to an integer value. The simi-
larity of the closed orbit and the dispersion function in a circular accelerator
is deeper than merely mathematical. The dispersion function defines closed
orbits for energy deviating particles approaching the ideal orbit as δ → 0.

In trying to establish expressions for dipole errors due to field or alignment
errors, we note that the bending fields do not appear explicitly anymore in
the equations of motions because of the specific selection of the curvilinear
coordinate system and it is, therefore, not obvious in which form dipole field
errors would appear in the equation of motion (12.20). In (2.31) we note,
however, a dipole field perturbation due to a particle with a momentum error
δ. This chromatic term κx0 δ is the dipole field error as seen by a particle
with the momentum cp0 (1 + δ). For particles with the ideal energy we may
therefore replace in (2.31) the chromatic term κ δ by the field error −∆κ. All
other perturbations are obtained by variations of magnet positions (∆x,∆y)
or magnet strengths. Up to second order the horizontal dipole perturbation
terms due to magnet field and alignment errors are from (2.31)

p0x(z) = −∆κx0 − (κ2
x0 + k0)∆x + (2κx0 ∆κx0 + ∆k)∆x (12.25)

− 1
2m (∆x2 −∆y2 + 2xc ∆x− 2yc ∆y) + O(3),

where we used x = xβ +xc +∆x and y = yβ +yc +∆y with (xβ , yβ) the beta-
tron oscillations and (xc, yc) the closed orbit deviation in the magnet. In the
presence of multipole magnets the perturbation depends on the displacement
of the beam with respect to the center of multipole magnets.

There is a similar expression for vertical dipole perturbation terms and we
get from (2.33) ignoring vertical bending magnets, κy0 = 0, but not vertical
dipole errors, ∆κx0 
= 0,

py0(z) = −∆κy0 + k0 ∆y + m (xc ∆y + yc ∆x) + O(3) . (12.26)

A vertical closed orbit distortion is shown in Fig. 12.1 for the PEP storage
ring with parameters compiled in Table 7.2 and Fig. 12.1. Here, a Gaussian
distribution of horizontal and vertical alignment errors with an rms error of
0.05 mm in all quadrupoles has been simulated. In spite of the statistical
distribution of errors a strong oscillatory character of the orbit is apparent
and counting oscillations we find 18 oscillations being equal to the vertical
tune of PEP as we would expect from the denominator of (12.24).

We also note large values of the orbit distortion adjacent to the interaction
points (dashed lines), where the betatron function becomes large, again in
agreement with expectations from (12.24) since uc ∝

√
β. A more regular

representation of the same orbit distortion can be obtained if we plot the
normalized closed orbit uc(z)/

√
β(z) as a function of the betatron phase ψ(z)
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Fig. 12.1. Simulation of the closed orbit distortion in the sixfold symmetric PEP
lattice due to statistical misalignments of quadrupoles by an amount 〈∆x〉rms =
〈∆y〉rms = 0.05 mm
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Fig. 12.2. Closed orbit distortion of Fig. 12.2 in normalized coordinates as a func-
tion of the betatron phase ψ

shown in Fig. 12.2. In this representation the strong harmonic close to the tune
becomes evident while the statistical distribution of perturbations appears
mostly in the amplitude of the normalized orbit distortion.

For the sake of simplicity terms of third or higher order as well as terms
associated with nonlinear magnets have been neglected in both (12.25) and
(12.26). All terms in (12.25) and (12.26) are considered small perturbations
and can therefore be treated individually and independent of all other pertur-
bations terms. Sextupole and higher multipole perturbations depend on the
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orbit itself and to get a self-consistent periodic solution of the distorted orbit,
iteration methods must be employed.

Solutions for equilibrium orbits can be obtained by inserting the pertur-
bation (12.25) or (12.26) into (12.24). First, we will concentrate on a situation
where only one perturbing kick exists in the whole lattice, assuming the per-
turbation to occur at z = zk and to produce a kick θk =

∫
p(ζ) dζ in the

particle trajectory. The orbit distortion at a location z < zk in the lattice is
from (12.24)

u0(z) = 1
2

√
β(z)β(zk) θk

cos [νπ − νϕ(zk) + νϕ(z)]
sinπν

. (12.27)

If on the other hand we look for the orbit distortion downstream from the
perturbation z > zk the integration must start at z, follow the ring to z = C,
and then further to z = z +C. The kick, therefore, occurs at the place C + zk

with the phase ϕ(C) + ϕ(zk) = 2π + ϕ(zu) and the orbit is given by

u0(z) = 1
2

√
β(z)β(zk) θk

cos[νπ − νϕ(z) + νϕ(zk)]
sinπν

. (12.28)

This mathematical distinction of cases z < zk and z > zk is a consequence
of the integration starting at z and ending at z+C and is necessary to account
for the discontinuity of the slope of the equilibrium orbit at the location of
the kick. At the point z = zk, both equations are obviously the same. In
Fig. 12.3 the normalized distortion of the ideal orbit due to a single dipole
kick is shown. In a linear lattice this distortion is independent of the orbit
and adds in linear superposition. If, however, sextupoles or other coupling or
nonlinear magnets are included in the lattice, the distortion due to a single
or multiple kick depends on the orbit itself and self-consistent solutions can
be obtained only by iterations.

ψ(z) ψ(z)

kickkick

∆u/√β ∆u/√β

Fig. 12.3. Distorted orbit due to a single dipole kick for a tune just above an integer
(left) and for a tune below an integer (right)
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In cases where a single kick occurs at a symmetry point of a circular
accelerator we expect the distorted orbit to also be symmetric about the kick.
This is expressed in the asymmetric phase terms of both equations. Indeed,
since ϕ(zk) − ϕ(z) = ∆ϕ for zk > z and ϕ(z) − ϕ(zk) = ∆ϕ for z > zk the
orbit distortion extends symmetrically in either direction from the location of
the kick.

The solution for the perturbed equilibrium orbit is specially simple at the
place where the kick occurs. With ϕ(z) = ϕ(zk) the orbit distortion is

uk = 1
2βk θk cotπν . (12.29)

In situations where a short bending magnet like an orbit correction magnet
and a beam position monitor are at the same place or at least close together,
we may use these devices to measure the betatron function at that place zk

by measuring the tune ν of the ring and the change in orbit uk due to a
kick θk. Equation (12.29) can then be solved for the betatron function βk at
the location zk. This procedure can obviously be applied in both planes to
experimentally determine βx as well as βy.

Statistical Distribution of Dipole Errors

In a real circular accelerator a large number of field and misalignment errors
of unknown location and magnitude must be expected. If the accelerator is
functional we may measure the distorted orbit with the help of beam posi-
tion monitors and apply an orbit correction as discussed later in this section.
During the design stage, however, we need to know the sensitivity of the ring
design to such errors in order to determine alignment tolerances and the de-
gree of correction required. In the absence of detailed knowledge about errors
we use statistical methods to determine the most probable equilibrium orbit.
All magnets are designed, fabricated, and aligned within statistical tolerances,
which are determined such that the distorted orbit allows the beam to stay
within the vacuum pipe without loss. An expectation value for the orbit dis-
tortion can be derived by calculating the root mean square of (12.24)

u2
0(z) =

β(z)
4 sin2 πν

∮ z+C

z

∮ z+C

z

p0(σ) p0(τ)
√

β(σ)
√

β(τ) (12.30)

× cos [ν (ϕz − ϕσ + π)] cos [ν (ϕz − ϕτ + π)] dσ dτ,

where for simplicity ϕz = ϕ(z), etc. This double integral can be evaluated
by expanding the cosine functions to separate the phases ϕσ and ϕτ . We
get terms like cos νϕσ cos νϕτ and sin νϕσ sin νϕτ or mixed terms. All these
terms tend to cancel except when σ = τ since both the perturbations and
their locations are statistically distributed in phase. Only for σ = τ will we
get quadratic terms that contribute to a finite expectation value for the orbit
distortion
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〈p2
0(τ)

[
cos2 ν(ϕz + π) cos2 νϕτ + sin2 ν(ϕz + π) sin2 νϕτ

]
〉

= 〈p2
0(τ)〉[cos2 ν(ϕz + π)〈cos2 νϕτ 〉 + sin2 ν(ϕz + π)〈sin2 νϕτ 〉]

= 〈p2
0(τ)〉 1

2 ,

and get with this for (12.30)

〈u2
0(z)〉 =

β(z)
8 sin2 πν

∑
i

〈p2
0(σi)β(σi) �2i 〉, (12.31)

where the integrals have been replaced by a single sum over all perturbing
fields of length �i. This can be done since we assume that the betatron phase
does not change much over the length of individual perturbations. Equation
(12.31) gives the expectation value for the orbit distortion at the point z
and since the errors are statistically distributed we get from the central limit
theorem a Gaussian distribution of the orbit distortions with the standard
deviation σ2

u(z) = 〈u2
0(z)〉 from (12.31). In other words if an accelerator is

constructed with tolerances 〈p2
0(σi)〉 there is a 68% probability that the orbit

distortions are of the order
√

〈u2
0(z)〉 as calculated from (12.31) and a 98%

probability that they are not more than twice that large.
As an example, we consider a uniform beam transport line where all

quadrupoles have the same strength and the betatron functions are periodic
like in a FODO channel. This example seems to be very special since hardly
any practical beam line has these properties, but it is still a useful example
and may be used to simulate more general beam lines for a quick estimate of
alignment tolerances. Assuming a Gaussian distribution of quadrupole mis-
alignments with a standard deviation σu and quadrupole strength k, the per-
turbations are p0 (z) = k σu and the expected orbit distortion is

√
〈u2

0(z)〉 =
√

β(z)Aσu, (12.32)

where A is called the error amplification factor defined by

A2 =
N

8 sin2 πν
〈(k�q)2β〉 ≈

N

8 sin2 πν

β

f 2
, (12.33)

〈(k�q)2 β〉 is taken as the average value for the expression in all N misaligned
quadrupoles, f is the focal length of the quadrupoles, and β is the average
betatron function.

The expectation value for the maximum value of the orbit distortion
〈 û2

0(z) 〉 is larger. In (12.31) we have averaged the trigonometric functions

〈cos2 νϕ(τ)〉 = 〈sin2 νϕ(τ) 〉 = 1
2

and therefore
〈û2

0〉 = 2 〈u2
0(z)〉 . (12.34)
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These statistical methods obviously require a large number of misalign-
ments to become accurate. While this is not always the case for shorter beam
lines it is still useful to perform such calculations. In cases where the statistical
significance is really poor, one may use 10 or 20 sets of random perturbations
and apply them to the beam line or ring lattice. This way a better evaluation
of the distribution of possible perturbations is possible.

Clearly, the tolerance requirements increase as the average value of be-
tatron functions, the quadrupole focusing, or the size of the accelerator or
number of magnets N is increased. No finite orbit can be achieved if the tune
is chosen to be an integer value. Most accelerators work at tunes which are
about one quarter away from the next integer to maximize the trigonometric
denominator | sinπν| ≈ 1. From a practical standpoint we may wonder what
compromise to aim for between a large aperture and tight tolerances. It is
a good practice to avoid perturbations as reasonable as possible and then,
if necessary, enlarge the magnet aperture to accommodate distortions which
are too difficult to avoid. As a practical measure it is possible to restrict the
uncorrected orbit distortion in most cases to 5–10 mm and provide magnet
apertures that will accommodate this.

What happens if the expected orbit distortions are larger than the vacuum
aperture which is virtually sure to happen at least during initial commission-
ing of more sensitive accelerators? In this case one relies on fluorescent screens
or electronic monitoring devices located along the beam line, which are sen-
sitive enough to detect even small beam intensities passing by only once. By
empirically employing corrector magnets, the beam can be guided from moni-
tor to monitor thus establishing a path and eventually a closed orbit. Once all
monitors receive a signal, more sophisticated and computerized orbit control
mechanism may be employed.

Closed Orbit Correction

Due to magnetic field and alignment errors a distorted equilibrium orbit is
generated as discussed in the previous section. Specifically for distinct local-
ized dipole field errors at position sj we got

u0(z) =

√
β(z)

2 sinπν

∑
j

θj

√
βj cos[νϕ(z) − νϕj + νπ] . (12.35)

Since orbit distortions reduce the available aperture for betatron oscilla-
tions and can change other beam parameters it is customary in accelerator
design to include a special set of magnets for the correction of distorted orbits.
These orbit correction magnets produce orbit kicks and have, therefore, the
same effect on the orbit as dipole errors. However, now the location and the
strength of the kicks are known. Before we try to correct an orbit it must
have been detected with the help of beam position monitors. The position
of the beam in these monitors is the only direct information we have about
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the distorted orbit. From the set of measured orbit distortions ui at the m
monitors i we form a vector

um = (u1, u2, u3, . . . , um) (12.36)

and use the correctors to produce additional “orbit distortions” at the moni-
tors through carefully selected kicks θk in orbit correction magnets which are
also called trim magnets. For n corrector magnets the change in the orbit at
the monitor i is

∆ui =
√
βi

2 sinπν

n∑
k=1

θk

√
βk cos [ν(ϕi − ϕk + π)] , (12.37)

where the index k refers to the corrector at z = zk. The orbit changes at
the beam position monitors due to the corrector kicks can be expressed in a
matrix equation

∆u
m

= M θ
n
, (12.38)

where ∆u
m

is the vector formed from the orbit changes at all m monitors,
θn is the vector formed by all kicks in the n correction magnets, and M is
the transformation matrix M = (Mik) with

Mik =
√
βi βk

2 sinπν
cos [ν(ϕi − ϕk + π)] . (12.39)

The distorted orbit can be corrected at least at the position monitors with
corrector kicks θk chosen such that ∆u

m
= −u

m
or

θn = −M−1 um . (12.40)

Obviously, this equation can be solved exactly if n = m and also for n > m
if not all correctors are used. Additional conditions could be imposed in the
latter case like minimizing the corrector strength.

While an orbit correction according to (12.40) is possible it is not always
the optimum way to do it. A perfectly corrected orbit at the monitors still
leaves finite distortions between the monitors. To avoid large orbit distortions
between monitors sufficiently many monitors and correctors must be distrib-
uted along the beam line. A more sophisticated orbit correction scheme would
only try to minimize the sum of the squares of the orbit distortions at the
monitors

(u
m
− ∆um)2min = (um −Mθn)2min, (12.41)

thus avoiding extreme corrector settings due to an unnecessary requirement
for perfect correction at monitor locations.

This can be achieved for any number of monitors m and correctors n, al-
though the quality of the resulting orbit depends greatly on the actual number
of correctors and monitors. To estimate the number of correctors and monitors
needed we remember the similarity of dispersion function and orbit distortion.
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Both are derived from similar differential equations. The solution for the dis-
torted orbit, therefore, can also be expressed by Fourier harmonics similar to
(7.99). With Fn being the Fourier harmonics of −β3/2(z)∆κ(z) the distorted
orbit is

u0(z) =
√

β(z)
+∞∑

n=−∞

ν2Fn einϕ

ν2 − n2
, (12.42)

which exhibits a resonance for ν = n. The harmonic spectrum of the uncor-
rected orbit u0(z) has therefore also a strong harmonic content for n ≈ ν.
To obtain an efficient orbit correction both the beam position monitor and
corrector distribution around the accelerator must have a strong harmonic
close to the tune ν of the accelerator. It is, therefore, most efficient to dis-
tribute monitors and correctors uniformly with respect to the betatron phase
ϕ(z) rather than uniform with z and use at least about four units of each per
betatron wavelength.

With sufficiently many correctors and monitors the orbit can be corrected
in different ways. One could excite all correctors in such a way as to compen-
sate individual harmonics in the distorted orbit as derived from beam position
measurement. Another simple and efficient way is to look for the first corrector
that most efficiently reduces the orbit errors then for the second most efficient
and so on. This latter method is most efficient since the practicality of other
methods can be greatly influenced by errors of the position measurements
as well as field errors in the correctors. The single most effective corrector
method can be employed repeatedly to obtain an acceptable orbit. Of similar
practical effectiveness is the method of beam bumps. Here, a set of three to
four correctors are chosen and powered in such a way as to produce a beam
bump compensating an orbit distortion in that area. This method is a local
orbit correction scheme while the others are global schemes.

As a practical example, we show the vertical orbit in the storage ring
PEP before and after correction (Fig. 12.4) in normalized units. The orbit
distortions are significantly reduced and the strong harmonic close to the
betatron frequency has all but disappeared. Even in normalized units the
orbit distortions have now a statistical appearance and a further correction
would require many more correctors. The peaks at the six interaction points
of the lattice, indicated by dashed lines, are actually small orbit distortions
and appear large only due to the normalization to a very small value of the
betatron function βy at the interaction point.

12.1.4 Quadrupole Field Perturbations

The dipole perturbation terms cause a shift in the beam path or closed orbit
without affecting the focusing properties of the beam line. The next higher
perturbation terms which depend linearly on the transverse particle offset
from the ideal orbit will affect focusing because these perturbations act just
like quadrupoles. Linear perturbation terms are of the form
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Fig. 12.4. Orbit of Fig. 12.2 before and after correction

u′′ +
(
ku + κ2

u

)
u = p1 (z) , (12.43)

where ku = ±k for x and y, respectively. More quantitatively, these linear
perturbations are from (12.25) and (12.26)

p1x (z) = −∆
(
kx + κ2

x

)
x−mx∆x + · · ·

p1y (z) = +∆ky y + m∆xy + · · · .
(12.44)

As a general feature, we recognize the ”feed down” from misalignments of
higher order multipoles. A misaligned sextupole, for example, generates dipole
as well as gradient fields. Any misaligned multipole produces fields in all lower
orders.

Quadrupole fields determine the betatron function as well as the phase
advance or tune in a circular accelerator. We therefore expect that linear field
errors will modify these parameters and we will derive the effect of gradient
errors on lattice functions and tune.

Betatron Tune Shift

Gradient field errors have a first-order effect on the betatron phase and tune.
Specifically in circular accelerators we have to be concerned about the tune
not to deviate too much from stable values to avoid beam loss. The effect of
a linear perturbation on the tune can be easily derived in matrix formulation
for one single perturbation. For simplicity we choose a symmetry point in the
lattice of a circular accelerator and insert on either side of this point a thin
half lens perturbation with the transformation matrix

Mp =


 1 0

−1/f 1


 , (12.45)



428 12 Perturbations in Beam Dynamics

where f−1 = − 1
2

∫
p1(z) dz and p1(z) is the total perturbation. Combining

this with the transformation of an ideal ring (5.76) with β = β0, α = α0 = 0,
and ψ0 = 2πν0

M0 =


 C(z) S(z)

C ′(z) S′(z)


 =


 cosψ0 β0 sinψ0

− 1
β0

sinψ0 cosψ0




we get for the trace of the total transformation matrix M = Mp M0 Mp

TrM = 2 cosψ0 − 2
β0

f
sinψ0, (12.46)

where β0 is the unperturbed betatron function at the location of the pertur-
bation and ψ0 = 2πν0 is the unperturbed phase advance per turn. The trace
of the perturbed ring is TrM = 2 cosψ and we therefore have

cosψ = cosψ0 −
β0

f
sinψ0 . (12.47)

With ψ = 2πν = 2πν0+2πδν and cosψ = cosψ0 cos 2πδν−sinψ0 sin 2πδν
we get for small perturbations the tune shift

δν =
1
2π

β0

f
= −β0

4π

∫
p1(z) dz . (12.48)

For more than a single gradient error one would simply add the individual
contribution from each error to find the total tune shift. The same result can
be obtained from the perturbed equation of motion

u′′ + K(z)u = p1(z)u . (12.49)

To show this, we introduce normalized coordinates w = u/
√
β and ϕ =∫

dz
νβ and (12.49) becomes

ẅ + ν2
0 w = ν2

0 β2(z) p1(z)w . (12.50)

For simplicity, we drop the index u and recognize that all equations must
be evaluated separately for x and y. Since both the betatron function β(z)
and perturbations p1(z) are periodic, we may Fourier expand the coefficient
of ν0w on the r.h.s. and get for the lowest, nonoscillating harmonic

F0 =
1
2π

∫ 2π

0

ν0 β
2 p1 dϕ =

1
2π

∮
β(z) p1(z) dz . (12.51)

Inserting this into (12.49) and collecting terms linear in w, we get
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ẅ + (ν2
0 − ν0 F0)w = 0 (12.52)

and the new tune ν = ν0 + δν is determined by

ν2 = ν2
0 − ν0 F0 ≈ ν2

0 + 2ν0 δν . (12.53)

Solving for δν gives the linear tune perturbation

δν = − 1
2F0 = − 1

4π

∮
β(z) p1(z) dz (12.54)

in complete agreement with the result obtained in (12.50). The tune shift
produced by a linear perturbation has great diagnostic importance. By varying
the strength of an individual quadrupole and measuring the tune shift it is
possible to derive the value of the betatron function in this quadrupole.

The effect of linear perturbations contributes in first approximation only
to a static tune shift. In higher approximation, however, we note specific
effects which can affect beam stability and therefore must be addressed in
more detail. To derive these effects we solve (12.50) with the help of a Green’s
function as discussed in Sect. 2.5.4 and obtain the perturbation

P (ϕ) =
∫ ϕ

0

ν0 β
2(χ) p1(χ)w(χ) sin [ν0(ϕ− χ)] dχ, (12.55)

where we have made use of the principal solutions. We select a particular, un-
perturbed trajectory, w(χ) = w0 cos (νχ) with ẇ0 = 0 and get the perturbed
particle trajectory

w(νϕ) = w0 cos (ν0ϕ) + w0ν0

∫ ϕ

0

β2p1 cos (ν0χ) sin [ν0(ϕ− χ)] dχ, (12.56)

where β = β(χ) and p1 = p1(χ). If, on the other hand, we consider the
perturbations to be a part of the lattice, we would describe the same trajectory
by

w(ψ) = w0 cos νψ . (12.57)

Both solutions must be equal. Specifically the phase advance per turn must
be the same and we get from (12.56) , (12.57) after one turn ϕ = 2π for the
perturbed tune ν = ν0 + δν

cos 2π(ν0 + δν) = cos 2πν0 + ν0

∫ 2π

0

β2(χ) p1(χ) cos(ν0χ) sin [ν0(2π − χ)] dχ,

(12.58)
which can be solved for the tune shift dν. Obviously the approximation breaks
down for large values of the perturbation as soon as the r.h.s. becomes larger
than unity. For small perturbations, however, we expand the trigonometric
functions and get
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δν = − 1
4π

∮
β(z) p1(z) dz (12.59)

− 1
4π sin 2πν0

∮
β(z) p1(z) sin [2ν0 (π − χ(z))] dz,

where dz = ν0 β(z) dχ.
The first term is the average tune shift which has been derived before,

while the second term is of oscillatory nature averaging to zero over many
turns if the tune of the circular accelerator is not equal to a half integer or
multiples thereof. We have found hereby a second resonance condition to be
avoided which occurs for half integer values of the tunes

ν0 
= 1
2 n . (12.60)

This resonance is called a half integer resonance and causes divergent so-
lutions for the lattice functions.

Resonances and Stop Band Width

Calculating the tune shift from (12.58), we noticed that there is no solution
if the perturbation is too large such that the absolute value of the r.h.s. be-
comes larger than unity. In this case the tune becomes imaginary leading to
ever increasing betatron oscillation amplitudes and beam loss. This resonance
condition occurs not only at a half integer resonance but also in a finite vicin-
ity, where 1 − cos (2πν0) is smaller than the perturbation term and the r.h.s
of (12.58) is larger than unity. The region of instability is called the stop band
and the width of unstable tune values is called the stop band width which
can be calculated by using a higher approximation for the perturbed solution.
Following the arguments of Courant and Snyder [20] we note that the pertur-
bation (12.55) depends on the betatron oscillation w(ϕ) itself and we now use
in the perturbation integral the first-order approximation (12.56) rather than
the unperturbed solution to calculate the perturbation (12.55). Then instead
of (12.58) we get

cos 2π(ν0 + δν) − cos 2πν0 = (12.61)

+ ν0

∫ 2π

0

β2(χ) p1(χ) cos(ν0χ) sin ν0(2π − χ) dχ

+ ν2
0

∫ 2π

0

β2(χ) p1(χ) sin ν0(2π − χ)

×
∫ χ

0

β2(ζ) p1(ζ) cos ν0ζ sin ν0(χ− ζ) dζ dχ .

This expression can be used to calculate the stop band width due to gra-
dient field errors which we will do for the integer resonance ν0 = n + δν and
for the half integer resonance ν0 = n + 1/2 + δν, where n is an integer and
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δν is the deviation of the tune from these resonances. To evaluate the first
integral I1, on the r.h.s. of (12.61) we make use of the relation

cos (ν0χ) sin [ν0(2π − χ)] = 1
2 sin (2πν0) + 1

2 sin[2ν0 (π − χ)]

and get with
∮
β(z) p1(z) dz = ν0

∫ 2π

0
β2(χ) p1(χ) dχ = 2π F0 from (12.52)

I1 = π F0 sin (2πν0) + 1
2ν0

∫ 2π

0

β2(χ) p1(χ) sin [2ν0(π − χ)] dχ .

The second term of the integral I1 has oscillatory character averaging to
zero over many turns and

I1 = πF0 sin 2πν0 ≈





2π2F0 δν for ν0 = n + δν

−2π2F0 δν for ν0 = n + 1
2 + δν

. (12.62)

The second integral I2 in (12.61) can best be evaluated while expressing
the trigonometric functions in their exponential form. Terms like e±iν(2π−2σ)

or e±iν(2π−2τ) vanish on average over many turns. With
∫ 2π

0

dχ
∫ χ

0

dζ = 1
2

∫ 2π

0

dχ
∫ 2π

0

dζ

we get for the second integral

I2 = −ν2
0

16

∫ 2π

0

β2(χ) p1(χ)
∫ 2π

0

β2(ζ) p1(ζ)

×
{

(ei2πν0 + e−i2πν0) − [ei2ν0(π−χ+ζ) + e−i2ν0(π−χ+ζ)]
}

dζ dχ.

Close to the integer resonance ν0 = n + δν and

I2,n = −ν2
0

16

∫ 2π

0

β2(χ) p1(χ)
∫ 2π

0

β2(ζ) p1(ζ) (12.63)

×
{

(ei2πδν + e−i2πδν) − [ei2n(ζ−χ) + e−i2n(ζ−χ)]
}

dζ dχ

and in the vicinity of the half integer resonance ν0 = n + 1
2 + δν

I2,n+1/2 = −ν2
0

16

∫ 2π

0

β2(χ) p1(χ)
∫ 2π

0

β2(ζ) p1(ζ)
{
−(ei2πδν + e−i2πδν)

+
[
ei2(n+ 1

2 ) (ζ−χ) + e−i2(n+ 1
2 ) (ζ−χ)

]}
dζ dχ .

The integrals are now easy to express in terms of Fourier harmonics of
ν0β

2 (ϕ) p1(ϕ), where the amplitudes of the harmonics Fj with j > 1 are
given by
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|Fj |2 = Fj F
∗
j =

ν2
0

π2

∫ 2π

0

β2(χ) p1(χ) e−ipχ dχ
∫ 2π

0

β2(ζ) p1(ζ) eipζ dζ .

For F0 we have the well-known result of 2F0 = Fj( j = 0). With this and
ignoring terms quadratic in δν we get for (12.63)

I2,n ≈ 1
8π

2
(
F 2

2n − 4F 2
0 cos 2πδν

)
(12.64)

and for (6.58)

I2,n+ 1
2
≈ − 1

8π
2
(
F 2

2n+1 − 4F 2
0 cos 2πδν

)
, (12.65)

respectively. At this point we may collect the results and get on the l.h.s. of
(12.61) for ν0 = n + δν

cos 2π(ν0 + δν) − cos 2πν0 = cos 2π(ν0 + δν) − 1 + 2π2 δν2 .

This must be equated with the r.h.s. which is the sum of integrals I1 and
I2 and with F 2

0 cos 2πδν ≈ 1 −O(δ4ν)

cos 2π(ν0 + δν) − 1 = −2π2 δν2 + 2π2 F0 δν + 1
8π

2(F 2
2n − 4F 2

0 ) . (12.66)

The boundaries of the stop band on either side of the integer resonance
ν0 ≈ n can be calculated from the condition that cos 2π(ν0 + δν) ≤ 1 which
has two solutions δν1,2. From (12.66) we therefore get

δν2 − F0 δν = 1
16 (|F2n |2 − 4F 2

0 )

and solving for δν
δν1,2 = 1

2 F0 ± 1
4 |F2n | (12.67)

the stop band width is finally

∆ν = δν1 − δν2 = 1
2 |F2n | =

1
2π

∮
β(z) p1(z) e−i2nζ(z) dz . (12.68)

The stop band width close to the integer tune ν ≈ n is determined by the
second harmonic of the Fourier spectrum for the perturbation. The vicinity of
the resonance for which no stable betatron oscillations exist increases with the
value of the gradient field error and with the value of the betatron function
at the location of the field error. For the half integer resonance ν0 ≈ n + 1

2 ,
the stop band width has a similar form

∆ν 1
2

= 1
2 |F2n+1| =

1
2π

∫ 2π

0

β(z) p1(z) e−i(2n+1)ζ(z) dz . (12.69)

The lowest order Fourier harmonic n = 0 determines the static tune shift
while the resonance width depends on higher harmonics. The existence of fi-
nite stop bands is not restricted to linear perturbation terms only. Nonlinear,
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higher order perturbation terms lead to higher order resonances and associ-
ated stop bands. In such cases one would replace in (12.50) the linear pertur-
bation β

1
2 p1(z)w by the nth-order nonlinear perturbation βn/2pn(z)wn and

basically go through the same derivation. Later in this chapter, we will use
a different way to describe resonance characteristics caused by higher order
perturbations. At this point we only note that perturbations of order n are
weighted by the n/2 power of the betatron function at the location of the
perturbation and a greater care must be exercised, where large values of the
betatron functions cannot be avoided. Undesired fields at such locations must
be minimized.

Perturbation of Betatron Functions

The existence of linear perturbation terms causes not only the tunes but also
betatron functions to vary around the ring or along a beam line. This variation
can be derived by observing the perturbation of a particular trajectory like
for example the sine-like solution given by

S0(z0|z) =
√

β(z)
√

β0 sin ν0[ϕ(z) − ϕ0] . (12.70)

The sine-like function or trajectory in the presence of linear perturbation
terms is by the principle of linear superposition the combination of the un-
perturbed solution and perturbation (2.80)

S(z0|z) =
√

β(z)
√

β0 sin ν0ϕ(z)

+
√

β(z)
∫ z

z0

p1(ζ)
√

β(ζ)S0(z0|ζ) sin ν0[ϕ(z) − ϕ(ζ)] dζ .

Following the sinusoidal trajectory for the whole ring circumference or
length of a superperiod Lp, we have with z = z0+Lp, β(z0+Lp) = β(z0) = β0,
and ϕ(z0 + Lp) = 2π + ϕ0

S(z0|z0 + Lp) = β0 sin 2πν0 + β0

∮ z0+Lp

z0

β(ζ) p1(ζ) (12.71)

× sin ν0[ϕ(ζ) − ϕ0] sin [ν0 (2π + ϕ0 − ϕ(ζ))] dζ .

The difference due to the perturbation from the unperturbed trajectory
(12.70) at z = z0 + Lp is

∆S = S(z0|z0 + Lp) − S0(z0|z0 + Lp) (12.72)

= β0

∫ z0+Lp

z0

β(ζ) p1(ζ) sin[ν0(ϕζ − ϕ0)] sin[ν0(2π + ϕ0 − ϕζ)] dζ,

where we abbreviated ϕ(z0) = ϕ0, etc. The variation of the sine-like function
can also be derived from the variation of the M12 element of the transformation
matrix for the whole ring
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∆S = ∆(β sin 2πν) = ∆β sin 2πν0 + β0 2π∆ν cos 2πν0 . (12.73)

We use (12.54) for the tune shift δν = − 1
2 F0, equate (12.73) with (12.72)

and solve for ∆β/β. After some manipulations, where we replace temporarily
the trigonometric functions by their exponential expressions, the variation of
the betatron function becomes at ϕ(z)

∆β(z)
β(z)

=
1

2 sin 2πν0

∮
β(ζ) p1(ζ) cos [2ν0 (ϕ(z) − ϕ(ζ) + π)] dζ . (12.74)

The perturbation of the betatron function clearly shows resonance char-
acter and a half integer tune must be avoided. We observe a close similarity
with solution (7.91) of the dispersion function or the closed orbit (12.19).
Setting dσ = ν0β(σ) dϕ we find by comparison that the solution for the per-
turbed betatron function can be derived from a differential equation similar
to a modified equation (7.88)

d2

dϕ2

(
∆β

β

)
+ (2ν0)2

∆β

β
= (2ν0)2

1
2
β2(z) p1(z) . (12.75)

Expanding the periodic function ν0 β
2 p1 =

∑
q Fq eiqϕ we try the periodic

ansatz
∆β

β
=
∑

q

Bq Fq eiqϕ (12.76)

and get from (12.75)
∑

q

[
−q2 + (2ν0)2

]
Bq Fq eiqϕ = 2ν0

∑
q

Fq eiqϕ .

This can be true for all values of the phase ϕ only if the coefficients of the
exponential functions vanish separately for each value of q or if

Bq =
2ν0

(2ν0)2 − q2
. (12.77)

Inserting into the periodic ansatz (12.76) the perturbation of the betatron
function in another form is

∆β

β
=

ν0

2

∑
q

Fq eiqϕ

ν2
0 − (q/2)2

. (12.78)

Again we recognize the half inter resonance leading to an infinitely large
perturbation of the betatron function. In the vicinity of the half integer res-
onance (ν0 ≈ n + 1

2 = q/2), the betatron function can be expressed by the
resonant term only

∆β

β
≈ 1

2 |F2n+1|
cos(2n + 1)ϕ
ν0−

(
n + 1

2

)
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and with |F2n+1 | = 2∆ν 1
2

from (12.69) we again get the perturbation of the
betatron function (12.74). The beat factor for the variation of the betatron
function is define by

BF = 1 +
(
∆β

β0

)

max

= 1 +
∆ν2n+1

2ν0 − (2n + 1)
, (12.79)

where ∆ν2n+1 is the half integer stop band width. The beating of the betatron
function is proportional to the stop band width and therefore depends greatly
on the value of the betatron function at the location of the perturbation. Even
if the tune is chosen safely away from the next resonance, a linear perturba-
tion at a large betatron function may still cause an unacceptable beat factor.
It is generally prudent to design lattices in such a way as to avoid large val-
ues of the betatron functions. As a practical note, any value of the betatron
function which is significantly larger than the quadrupole distances should be
considered large. For many beam transport problems this is easier said than
done. Therefore, where large betatron functions cannot be avoided or must
be included to meet our design goals, results of perturbation theory warn us
to apply a special care for beam line component design, alignment, and to
minimize undesirable stray fields.

12.2 Chromatic Effects in a Circular Accelerator

Energy-independent perturbations as discussed in previous sections can have a
profound impact on the stability of particle beams in the form of perturbations
of the betatron function or through resonances. Any beam transport line must
be designed and optimized with these effects in mind since it is impossible to
fabricate ideal magnets and align them perfectly. Although such field and
alignment errors can have a destructive effect on a beam, it is the detailed
understanding of these effects that allow us to minimize or even avoid such
problems by a careful design within proven technology.

To complete the study of perturbations, we note that a realistic particle
beam is never quite mono-energetic and includes a finite distribution of parti-
cle energies. Bending as well as focusing is altered if the particle momentum is
not the ideal momentum. We already derived the momentum-dependent ref-
erence path in transport lines involving bending magnets. Beyond this basic
momentum-dependent effect we observe other chromatic aberrations which
contribute in a significant way to the perturbations of lattice functions. The
effect of chromatic aberrations due to a momentum error is the same as that
of a corresponding magnet field error and to determine the stability charac-
teristics of a beam, we must therefore include such chromatic aberrations.
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12.2.1 Chromaticity

Perturbations of beam dynamics can occur in beam transport systems even
in the absence of magnet field and alignment errors. Deviations of particle
energies from the ideal design energy cause perturbations in the solutions
of the equations of motion. We have already derived the variation of the
equilibrium orbit for different energies. Energy related or chromatic effects can
be derived also for other lattice functions. Focusing errors due to an energy
error cause such particles to be imaged at different focal points causing a blur
of the beam spot. In a beam transport system, where the final beam spot
size is of great importance as, for example, at the collision point of linear
colliders, such a blur causes a severe degradation of the attainable luminosity.
In circular accelerators we have no such direct imaging task but note that the
tune of the accelerator is determined by the overall focusing and tune errors
occur when the focusing system is in error.

In this chapter we will specifically discuss effects of energy errors on tunes
of a circular accelerator and means to compensate for such chromatic aberra-
tions. The basic means of correction are applicable to either circular or open
beam transport systems if, for the latter case, we only replace the tune by
the phase advance of the transport line in units of 2π. The control of these
chromatic effects in circular accelerators is important for two reasons: to avoid
loss of particles due to tune shifts into resonances and to prevent beam loss
due to an instability, which we call the head–tail instability to be discussed
in more detail in Sect. 19.5.

The lowest order chromatic perturbation is caused by the variation of the
focal length of the quadrupoles with energy (Fig.12.5). This kind of error is
well known from light optics, where a correction of this chromatic aberration
can at least partially be obtained by the use of different kinds of glasses for
the lenses in a composite focusing system.

z

f (∆p/p
o
= 0)

f (∆p/p
o
 < 0)

f (∆p/p
o 
> 0)

Fig. 12.5. Chromatic focusing errors
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In particle beam optics no equivalent approach is possible. To still correct
for the chromatic perturbations we remember that particles with different
energies can be separated by the introduction of a dispersion function. Once
the particles are separated by energy we apply different focusing corrections
depending on the energy of the particles. Higher energy particles are focused
less than ideal energy particles and lower energy particles are overfocused. For
a correction of these focusing errors we need a magnet which is focusing for
higher energy particles and defocusing for lower energy particles (Fig.12.6).
A sextupole has just that property.

sextupole

focal length

=0
o

p/p

>0
o

p/p∆

∆

quadrupole

p/p∆ <0o

Fig. 12.6. Chromaticity correction with sextupoles

The variation of tunes with energy is called the chromaticity and is defined
by

ξ =
∆ν

∆p/p0
. (12.80)

The chromaticity derives from second and higher order perturbations in
(x, y, δ) and the relevant equations of motion are from

x′′ + k x = k x δ− 1
2m (x2 − y2),

y′′ − k x = −k y δ + mxy .
(12.81)

Setting x = xβ + ηx δ and y = yβ , assuming that ηy ≡ 0, we retain only
betatron oscillation terms involving xβ or yβ to derive chromatic tune shifts. In
doing so we note three types of chromatic perturbation terms: those depending
on the betatron motion only, those depending on the momentum error only,
and terms depending on both. With these expansions (12.81) become

x′′
β + k xβ = k xβ δ −mηx xβ δ − 1

2m (x2
β − y2

β) + O(3),

y′′β − k yβ = −k yβ δ + mηx yβ δ + mxβ yβ + O(3) .
(12.82)
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We ignore for the time being nonchromatic terms of second order which
will be discussed later as geometric aberrations and get

x′′
β + k xβ = (k −mηx)xβ δ,

y′′β − k yβ = −(k −mηx) yβ δ .
(12.83)

The perturbation terms are now linear in the betatron amplitude and
therefore have the character of a gradient error. From Sect. 12.1.4 we know
that these types of errors lead to a tune shift which by comparison with (12.54)
becomes in terms of a phase shift

∆ψx = − 1
2δ
∮
βx (k −mηx) dz,

∆ψy = 1
2δ
∮
βy (k −mηx) dz .

(12.84)

Equations (12.84) are applicable for both circular and open beam lines.
Using the definition of the chromaticity for circular accelerators we finally
have

ξx = − 1
4π

∮
βx (k −mηx) dz,

ξy = 1
4π

∮
βy (k −mηx) dz .

(12.85)

Similar to the definition of tunes the chromaticities are also an integral
property of the circular accelerator lattice. Setting the sextupole strength m
to zero one gets the natural chromaticities determined by focusing terms only

ξx0 = − 1
4π

∮
βx k dz,

ξy0 = 1
4π

∮
βy k dz .

(12.86)

The natural chromaticities are always negative which is to be expected since
focusing is less effective for higher energy particles (δ > 0) and therefore the
number of betatron oscillations is reduced.

For a thin lens symmetric FODO lattice the calculation of the chromatic-
ity becomes very simple. With the betatron function β+ at the center of a
focusing quadrupole of strength k+ = k and β− at the defocusing quadrupole
of strength k− = k, the chromaticity of one FODO half cell is

ξx0 = − 1
4π

(
β+

∫
k+ dz + β−

∫
k−dz

)
= −β+ − β−

4π

∫
k dz . (12.87)

With β+ (7.3) and β− (7.5) and
∫
kdz = 1/f = 1/(κL), where κ is the

FODO strength parameter and L is the length of a FODO half cell, we get
the chromaticity per FODO half cell in a more practical formulation

ξx0 = − 1
2π

1√
κ2 − 1

= − 1
π

tan (ψx/2) , (12.88)
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where ψx is the horizontal betatron phase for the full FODO cell. The same
result can be obtained for the vertical plane.

The natural chromaticity for each 90◦ FODO cell is therefore equal to 1/π.
Although this value is rather small, the total chromaticity for the complete
lattice of a storage ring or synchrotron, made up of many FODO cells, can
become quite large. For the stability of a particle beam and the integrity of
the imaging process by quadrupole focusing it is important that the natural
chromaticity be corrected.

It is interesting at this point to discuss for a moment the chromatic effect
if, for example, all bending magnets have a systematic field error with respect
to other magnets. In an open beam transport line the beam would follow an
off-momentum path as determined by the difference of the beam energy and
the bending magnet “energy.” Any chromatic aberration from quadrupoles as
well as sextupoles would occur just as discussed.

In a circular accelerator the effect of systematic field errors might be dif-
ferent. We consider, for example, the case where we systematically change
the strength of all bending magnets. In an electron storage ring, the particle
beam would automatically stay at the ideal design orbit with the particle en-
ergy being defined by the strength of the bending magnets. The strength of
the quadrupoles and sextupole magnets, however, would now be systemati-
cally too high or too low with respect to the bending magnet field and particle
energy. Quadrupoles therefore introduce a chromatic tune shift proportional
to the natural chromaticity while the sextupoles are ineffective because the
beam orbit leads through magnet centers. Changing the strength of the bend-
ing magnets by a fraction ∆ in an electron circular accelerator and measuring
the tune change ∆ν one can experimentally determine the natural chromatic-
ity (ξ0 = −∆ν/∆) of the ring. In Fig. 12.7 the measurement of the tunes
as a function of the bending magnet current is shown for the storage ring
SPEAR. From the slope of the graphs we derive the natural chromaticities of
the SPEAR storage ring as ξx = −11.4 and ξy = −11.7.

In a proton accelerator the beam energy must be changed through acceler-
ation or deceleration together with a change of the bending magnet strength
to keep the beam on the reference orbit before this measurement can be per-
formed.

12.2.2 Chromaticity Correction

Equations (12.85) clearly suggest the usefulness of sextupole magnets for chro-
matic correction. Sextupoles must be placed along the orbit of a circular ac-
celerator or along a beam transport line at locations where the dispersion
function does not vanish, ηx 
= 0. A single sextupole is sufficient, in principle,
to correct the chromaticity for the whole ring or transport line but its strength
may exceed technical limits or cause problems of geometric aberrations to the
beam stability. This is due to the nonlinear nature of sextupole fields which
causes dynamic instability for large amplitudes for which the sextupole field
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Fig. 12.7. Experimental determination of the natural chromaticity in a storage ring
by measuring the tunes as a function of the excitation current I = I0 + ∆I in the
bending magnets

is no more a perturbation. The largest betatron oscillation amplitude which is
still stable in the presence of nonlinear fields is called the dynamic aperture. To
maximize the dynamic aperture it is prudent to distribute many chromaticity
correcting sextupoles along the beam line or circular accelerator.

To correct both the horizontal and the vertical chromaticity two different
groups of sextupoles are required. For a moment we assume that there be
only two sextupoles. To calculate the required strength of these sextupoles
for chromaticity correction we use thin lens approximation, and replacing
integrals in (12.85) by a sum the corrected chromaticities are

ξx = ξx0 + 1
4π (m1 ηx1 βx1 + m2 ηx2 βx2) �s = 0,

ξy = ξy0 + 1
4π (m1 ηx1 βy1 + m2 ηx2 βy2) �s = 0 .

(12.89)

Here we assume that two different sextupoles, each of length �s, are avail-
able at locations z1 and z2. Solving for the sextupole strengths we get from
(12.89)

m1 �s= − 4π
ηx1

ξx0 βy2 − ξy0 βx2

βx1 βy2 − βx2 βy1
, (12.90a)

m2 �s= − 4π
ηx2

ξx0 βy1 − ξy0 βx1

βx1 βy2 − βx2 βy1
. (12.90b)

It is obvious that the dispersion function at sextupoles should be large to
minimize sextupoles strength. It is also clear that the betatron functions must
be different preferably with βx 
 βy at the m1 sextupole and βx � βy at
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the m2 sextupole to avoid “fighting” between sextupoles leading to excessive
strength requirements.

In general this approach based on only two sextupoles in a ring to cor-
rect chromaticities leads to very strong sextupoles causing both magnetic de-
sign problems and strong higher order aberrations. A more gentle correction
uses two groups or families of sextupoles with individual magnets distributed
more evenly around the circular accelerator and the total required sextupole
strength is spread over all sextupoles. In cases of severe aberrations, as dis-
cussed later, we will need to subdivide all sextupoles into more than two fam-
ilies for a more sophisticated correction of chromaticities. Instead of (12.89)
we write for the general case of chromaticity correction

ξx = ξx0 + 1
4π

∑
i mi ηxi βxi �si

ξy = ξy0 + 1
4π

∑
i mi ηxi βyi �si,

(12.91)

where the sum is taken over all sextupoles. In the case of a two family correc-
tion scheme we still can solve for m1 and m2 by grouping the terms into two
sums.

The chromaticity of a circular accelerator as defined in this section ob-
viously does not take care of all chromatic perturbations. Since the function
(k − mηx) in (12.83) is periodic, we can Fourier analyze it and note that
the chromaticity only describes the effect of the nonoscillating lowest order
Fourier component (12.86). All higher order components are treated as chro-
matic aberrations. In Sect. 14.2 we will discuss in more detail such higher
order chromatic and geometric aberrations.

12.3 Kinematic Perturbation Terms

The rules of linear beam dynamics allow the design of beam transport systems
with virtually any desired beam characteristics. Whether such characteristics
actually can be achieved depends greatly on our ability or lack thereof to
control the source and magnitude of perturbations. Only the lowest order
perturbation terms were discussed in the realm of linear, paraxial beam dy-
namics. With the continued sophistication of accelerator design and increased
demand on beam quality it becomes more and more important to also consider
higher order magnetic field perturbations as well as kinematic perturbation
terms.

The effects of such terms in beam-transport lines, for example, may com-
promise the integrity of a carefully prepared very low emittance beam for
linear colliders or may contribute to nonlinear distortion of the chromaticity
in circular accelerators and the associated reduced beam stability. Studying
nonlinear effects we will not only consider nonlinear fields but also the effects
of linear field errors in higher order, whether it be higher order perturbation
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terms or higher-order approximations for the equations of motion. The sources
and physical nature of perturbative effects must be understood to determine
limits to beam parameters and to design correcting measures.

Perturbations of beam dynamics not only occur when there are magnetic
field and alignment errors present. During the derivation of the general equa-
tion of motion in Chap. 2 we encountered in addition to general multipole
fields a large number of kinematic perturbation terms or higher order field
perturbations which appear even for ideal magnets and alignment. Gener-
ally, such terms become significant for small circular accelerators or wherever
beams are deflected in high fields generating bending radii of order unity or
less. If, in addition, the beam sizes are large the importance of such perturba-
tions is further aggravated. In many cases well-known aberration phenomena
from light optics can be recognized.

Of the general equations of motion, we consider terms up to third order for
ideal linear upright magnets and get the equation of motion in the horizontal
and deflecting plane

x′′ + (κ2
x + k)x = −κ3

xx
2 + 2κxk x2 + (1

2 κxk + 1
2 κ′′

x) y2 (12.92)

+ 1
2 κx (x′2 − y′

2) + κ′
x (xx′ + yy′)

+ 1
12 (−10κ2

xk + k′′ + κxκ
′′
x + κ′

x
2)x3 − (2κ2

x + 3
2 k )xx′2

+ 1
4 (+6κ2

xk + k′′ + 5κxκ
′′
x + κ′

x
2)xy2

− κxκ
′
x x2x′ + k′xyy′ − 1

2kxy
′2 + 1

2κ
2
xxy

′2

+ κxδ − κxδ
2 + κxδ

3 + (2κ2
x + k)x δ − κ′

xyy
′δ

+ 1
2κx(x′2 + y′

2)δ + (− 1
2κxk − 1

2κ
′′
x) y2δ

+ (2κxk + κ3
x)x2δ − (k + 2κ2

x)xδ2 + O(4) .

In the nondeflecting or vertical plane the equation of motion is

y′′ − ky = +2κxk xy − κ′
x (x′y − xy′) + κxx

′y′ (12.93)

− 1
12 ( + 2κ2

xk + k′′ + κxκ
′′
x + κ′2

x ) y3

− 1
4 (k′′ + κxκ

′′
x − 2κ2

xk + κ′2
x )x2y

+ 1
2k yy′2 − κxκ

′
x x2y′

− k′ xx′y + 1
2kx

′2y − (2κ2
x + k)xx′y′

− k yδ + κ′
x x′yδ − 2κxk xyδ + k yδ2 + O(4) .

It is quite clear from these equations that most perturbations become sig-
nificant only for large amplitudes and oblique particle trajectories or for very
strong magnets. The lowest order quadrupole perturbations are of third order
in the oscillation amplitudes and therefore become significant only for large
beam sizes. Second-order perturbations occur only in combined-function mag-
nets and for particle trajectories traversing a quadrupole at large amplitudes
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or offsets from the axis. Associated with the main fields and perturbation
terms are also chromatic variations thereof and wherever beams with a large
energy spread must be transported such perturbation terms become impor-
tant. Specifically, the quadrupole terms kxδ and kyδ determine the chromatic
aberration of the focusing system and play a significant role in the transport
of beams with large momentum spread. In most cases of beam dynamics, all
except the linear chromatic terms can be neglected.

Evaluating the effect of perturbations on a particle beam, we must care-
fully select the proper boundary conditions for bending magnets. Only for
sector magnets is the field boundary normal to the reference path and occurs
therefore at the same location z independent of the amplitude. Generally, this
is not true and we must adjust the integration limits according to the particle
oscillation amplitudes x and y and actual magnet boundary just as we did
in the derivation of linear transformation matrices for rectangular or wedge
magnets.

12.4 Control of the Central Beam Path

In circular accelerators the equilibrium orbit depends on all perturbations
and orbit corrections in the ring. Not so in an open beam transport system
where the distortions of the beam at a location s depend only on the upstream
perturbations. This is actually also the case in a circular accelerator during
injection trials while the beam is steered around the ring for the first turn
and has not yet established a closed orbit. Only after one turn the errors as
well as the corrections repeat and the particle starts to oscillate about the
equilibrium orbit. The results of this discussion can therefore also be applied
to large circular accelerators in support of establishing the first turn.

Beam-path correction schemes which are different from closed orbit correc-
tions in circular accelerators are required to steer a beam along a prescribed
beam path. On first thought one might just install a number of beam position
monitors, preferably about four monitors per betatron wavelength, and steer
the beam to the center of each monitor with an upstream steering magnet.
This method is efficient for short beam lines but may fail for long systems due
to an intrinsic instability of this correction scheme.

To review the nature of this instability, we discuss the path of a beam
through a very long beam-transport system as one might encounter in the
design of linear collider systems or for the first turn of a very large circular
accelerator. Since there is an infinite variety of beam-transport lattices we
restrict the discussion to a FODO channel. This restriction does not invalidate
the application of the derived results to other lattice types. The advantage
of a FODO channel is that analytical methods can be applied to develop an
optimized correction scheme. Such an optimum correction can then be applied
to any lattice by numeric methods.
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In linear collider systems, for example, such a long periodic focusing lattice
is required both along the linear accelerator and along beam-transport lines
from the linac to the collision point to prevent degradation of the beam quality
or beam loss. The linear beam dynamics is straightforward and most of the
beam dynamics efforts must be concentrated on the control of errors and
their effects on the beam. In this section we will derive characteristics of the
beam-path distortion due to dipole field errors.

The distortion of the beam path due to one kick caused by a localized
dipole field error develops exactly like the sine-like principal solution. With θ
the kick angle at a point along the transport line where the betatron phase is
ψθ, we get at any point z downstream with ψ(z) > ψθ the path distortion

∆u(z) =
√

β(z)
√

βθ sin[ψ(z) − ψθ] θ . (12.94)

The distortion depends on the value for the betatron function both at the
observation point and at the point of the dipole field error. Consequently, it is
important to minimize the probability for such errors at high beta points. The
actual distortion measured at a particular point also depends on the phase
difference [ψ(z)−ψθ] because the particle starts a sinusoidal oscillation at the
location of the dipole field error.

This oscillatory feature of the perturbation is constructively utilized in the
design of a particle spectrometer where we are interested in the momentum of
particles emerging from a point source like a fixed target hit by high energy
particles. We consider the target as the perturbation which acts like deflecting
particles from the direction of the incoming path. The emerging particles have
a wide distribution in scattering angles and momentum and it is interesting
for the study of scattering processes to measure the intensity distribution as
a function of these parameters.

Downstream from the target we assume a beam-transport system com-
posed of bending magnets and quadrupoles with focusing properties consis-
tent with the desired measurements. To measure the angular distribution for
elastic scattering the particle detectors are placed at ψ(z)−ψθ = 1

2π×(2n+1),
where ϕθ is the phase at the target and n is a positive integer.

In the case of inelastic scattering events we are interested to also measure
the loss of momentum. All particles with the same momentum are expected to
arrive at the same point of the particle detector independent of the starting
angle from the target. In this case, we place detectors also at the location
ψ(z) − ψθ = πn, which is an image point of the target. To measure the
momentum distribution a bending magnet is inserted into the beam line which
generates a dispersion and spreads out the particle beam according to the
momentum distribution for easy recording by particle detectors.

12.4.1 Launching Error

At the start of the transport line the beam may get launched with an error
in angle or position. The angle error is equivalent to a kick at the launch
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point causing a distortion of the beam path as determined by (12.94). A
position error at the launch point develops like a cosine-like trajectory and
the distortion of the beam path at the point z is given by

∆u(z) =

√
β(z)√
β0

cos[ψ(z) − ψ0]∆u0, (12.95)

where β0, ψ0, and ∆u0 are taken at the launch point. The ratio ∆u/∆u0 is
called the magnification of the beam-transport line since it determines the
distortion ∆u or beam size as a function of the distortion ∆u0 or beam size
at the starting point, respectively.

12.4.2 Statistical Alignment and Field Error

In a long beam-transport line with many focusing elements the error of the
beam position or angle at the end of the beam line depends on all errors. We
have therefore instead of (12.94) with dθ = ∆κ dζ

∆u(z) =
√

β(z)
∫ z

z0

√
β(ζ)∆κ (z) sin[ψ(z) − ψ(ζ)] dζ . (12.96)

In most cases, however, the errors can be assumed to be localized in a
thin magnet and we may set

∫
∆κ(z)dz = θi. After replacing the integral in

(12.96) with a sum over all kicks the path distortion is

∆u(z) =
√

β(z)
∑

i

√
β(zi)θi sin[ψ(z) − ψi] . (12.97)

In the case of a statistical distribution of the errors the probable displace-
ment of the beam position is given by

σu(z) =
√

β(z)
√

βavg σθ

√
1
2Nθ, (12.98)

where σu is the rms value of the path displacement along the beam line,
βavg is the average value of the betatron function at places, where errors
occur, σθ is the rms value of θ, and Nθ is the total number of errors. We
also made use of the statistical distribution of the error locations ψi and
have 〈sin2(ψ(z) − ψi)〉 = 1

2 . The errors θi can be dipole field errors but more
important they can be the result of misaligned quadrupoles with σθ = k� σq

where f = 1/(k�) is the focal length of the quadrupoles and σq is the rms
value of the transverse quadrupole misalignment.

Beam-transport lines which are particularly sensitive to statistical mis-
alignment errors are part of the Stanford Linear Collider (SLC) [62] and of
future linear colliders. In these projects an extremely small beam size is de-
sired and only strong focusing in the transport line can prevent a dilution of
the beam emittance. In the SLC approximately 500 bending magnets with a
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strong quadrupole component form a FODO channel and are used to trans-
port particles from the linear accelerator to the collision point where high
energy physics experiments are performed. The focal length of these magnets
is about f ≈ 3.0 m and the average value of the betatron function is βavg ≈ 5.3
m, since the phase advance per cell is φ = 108◦ and L ≈ 2.5 m. To obtain
a large luminosity for high energy experiments, the beam is focused down to
about σ ≈ 1.4µm at the collision point, where β(z) = 0.005 m. From (12.98)
we get with these parameters and σθ = 0.33σq for the probable displacement
of the beam center at the collision point

σu = 0.85σq, (12.99)

where σq is the rms misalignment error of the quadrupoles. Extreme accuracy
of the quadrupole position is required to aim the beam onto a target of 1.4
µm radius. In fact, the rms quadrupole alignment must be precise to better
than σq = 1.6µm. It is clear that on an absolute scale this precision cannot
be achieved with known alignment techniques. An orbit correction system
is required to correct for the unavoidable quadrupole misalignments. This
is possible for static misalignments but not for dynamic movement, due to
ground vibrations. For a detailed discussion of ground vibrations the reader
may consult the review article by Fischer [65].

Path Distortion and Acceleration

In a beam-transport line which also contains accelerating structures, the effect
of perturbations at low energies on the path distortion downstream are mod-
ified by adiabatic damping. The contribution of the kick angle θi occurring at
the energy γi in (12.97) to the path distortion is reduced at the energy γ by
the adiabatic damping factor

√
γi/γ.

It is interesting to note that the contribution of path distortions in a FODO
channel is independent of the acceleration. To show this, we assume a FODO
channel made up of equal strength quadrupoles as described in Sect. 7.3. The
distance between quadrupoles increases proportional to the beam energy and
as a consequence so does the betatron function. Since the beam emittance
scales like 1/γ it is obvious that the beam envelope

√
εβ is the same in each

quadrupole independent of the energy. Now we assume statistical quadrupole
misalignments of the same magnitude along the channel. Normalizing to the
contribution of the path distortion from an error at a location where the
beam energy is γ0, we find β(z) to scale like γ/γ0, βi like γi/γ0, and the
quadrupole strength or kick angle θi like γ0/γi. Adding the adiabatic damping
factor

√
γi/γ the individual contribution to path distortions are independent

of energy. We may therefore apply the results of this discussion to any FODO
channel with or without acceleration. This is even true for any periodic lattice
if we only sort the different quadrupole families into separate sums in (12.97).
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Correction of Path Distortions

To correct a static distortion of the beam path we use a set of beam position
monitors and a set of correction magnets. If we have an alternating sequence
of correctors and monitors it might seem to be sufficient to correct the beam
path at every monitor using the previous correction magnet. In long beam lines
this procedure may, however, lead to a resonant build up of distortions rather
than a correction. While the beam position is corrected at every monitor the
direction of the beam path at the monitors is not, leading to ever increasing
distortions between the monitors and to divergent corrector strengths. We may
prove this statement assuming a FODO channel with monitors and correctors
distributed as shown in Fig. 12.8. The mathematics can be simplified greatly
without loss of generality if we assume correctors and monitors to be located
in the middle of the quadrupoles. We also assume that the path distortion be
caused by quadrupole misalignments only and that the monitors be located
in every second quadrupole of the FODO channel only such that the betatron
function is the same for all monitors and correctors. Both assumptions are not
fundamental but simplify the formalism. The path be corrected perfectly at
the monitor Mi with ∆ui = 0 and therefore the path distortion at the monitor
Mi+1 is the combination of all errors θj between the monitors Mi and Mi+1

and a contribution from the slope of the path at the monitor Mi. The path
distortion at the monitor Mi+1 is therefore

∆ui+1 = β
∑

j
θj sin(ψi+1 − ψj) + β ∆u′

i sin∆ψ (12.100)

= β Si+1 + β ∆u′
i sin∆ψ,

and the slope

∆u′
i+1 =

∑
j
θj cos(ψi+1 − ψj) + ∆u′

i cos∆ψ (12.101)

= Ci+1 + ∆u′
i cos∆ψ,

Mi-1 Mi Mi+1
Ci-1 Ci Ci+1

cell cell cell
path uncorrected atMi+1

path corrected atMi+1

i

corrected path path not yet corrected

ui+1

Fig. 12.8. Beam-path correction
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where ∆ψ = ψi+1 −ψi is the phase difference between adjacent monitors and
Si+1, Ci+1 are obvious abbreviations.

The betatron phase at the monitor Mi+1 is ψi+1 and ψ(zj) = ψj is the
phase at the location of the errors between monitors Mi and Mi+1. Now, we
correct the path distortion with the corrector Ci and get for the displacement
at the monitor Mi+1

∆c ui = β Θi sin∆ψc, (12.102)

where Θi is the beam deflection angle by the corrector and ∆ψc is the phase
between the corrector Ci and monitor Mi+1. The corrector field is adjusted
to move the beam orbit such as to compensate the orbit distortion at the
monitor Mi+1 and the sum of (12.100) , (12.102) is therefore

0 = βSi+1 + β ∆u′
i sin∆ψ + β Θi sin∆ψc. (12.103)

The slope of the beam path at Mi+1 is the combination of the yet uncorrected
effects of errors and correctors

∆u′
i+1 = Ci+1 + ∆u′

i cos∆ψ + Θi cos∆ψc. (12.104)

Solving (12.103) for the corrector angle we get

Θi =
−Si+1 + ∆u′

i sin∆ψ

sin∆ψc
(12.105)

and inserted into (12.104) the slope of the beam path at the monitor Mi+1 is

∆u′
i+1 = Ci+1 + ∆u′

i cos∆ψ − (Si+1 + ∆u′
i sin∆ψ) tan∆ψc. (12.106)

Evaluating this recursion formula the path direction at monitor Mnis

∆u′
n =

n∑
m=1

(Cm − Sm cot∆ψc) (cos∆ψ + sinψ cot∆ψc)n−m . (12.107)

The expectation value for the path distortion is derived from the square of
(12.107), which gives

(∆u′
n)2 =

n∑
m=1

(Cm − Sm cot∆ψc)2 (cos∆ψ + ∆ψc sin∆ψ)2(n−m), (12.108)

where we have made use of the statistical nature of Cm and Sm causing all
cross terms to vanish. Evaluating the rms value for the orbit error we note
that statistically the terms Cm and Sm are independent of the index m and
get

〈(∆u′
n)2 〉 = 〈(C − S cot∆ψc)2〉

1 −H 2m

1 −H 2
(12.109)

with
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H = cos∆ψ + sin∆ψ cot∆ψc =
sin∆

sin∆ψc
(12.110)

and ∆ = ∆ψc + ∆ψ. For large numbers of magnets m → ∞ and (12.109)
leads to

〈(∆u′
n)2〉 = 〈(C − S cot∆ψc)2〉 ×





H 2m−2 for H 
 1,

m for H ≈ 1,
1

1−H 2 for H � 1 .

(12.111)

The result of a simple path correction as assumed depends greatly on
the position of the corrector magnet. If the corrector Ci is located at the
monitor Mi in a 90◦-FODO lattice the simple correction scheme works well
since H 2 � 1. On the other hand, if the corrector Ci is close to the monitor
Mi+1 then ∆ψc ≈ 0 and the correction scheme quickly diverges. Even in the
middle position we have a slow divergence proportional to the total number m.
This case is important for linear collider beam lines. Here the beam energies
are very high and therefore long corrector magnets are incorporated into the
quadrupoles which fill all space between the monitors. The effective position
of the corrector is therefore in the middle between the monitors. A correct
derivation for these extended correctors reveals the same behavior.

A more sophisticated path correction scheme is required to prevent a di-
vergent behavior. If the beam is observed in two consecutive monitors, it is
possible to correct in one of the two monitors position and angle. To do this,
we assume the layout of Fig. 12.9 to correct both, the position ∆u2 and the
angle ∆u′

2 at the monitor M2 with the use of the two correctors C1 and C2.
The corrected path and path direction at the monitor M2 are determined

by

∆u2 = 0 = ∆u0 + bΘ1 + BΘ2,

∆u′
2 = 0 = ∆u′

0 + dΘ1 + DΘ2,
(12.112)

M0 M1 M2
Ci-1 C1 C2

path uncorrected

u2 corrected
with C1

1

path and slope
corrected atM0

u’2=0 correction
with C2

2

Fig. 12.9. Complete beam-path correction scheme
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where we used elements of the transformation matrix from the first corrector

at C1 to the monitor M2, M(M2|C1) =


a b

c d


 and M(M2|C2) =


A B

C D




from the second corrector at C2 to the same monitor. The angles Θi are the
deflection angles of the corrector magnets. The slope ∆u′

2 can be determined
only through two position measurements at say M1 and M2. We must assume
that there are no errors between M1 and M2 to obtain a meaningful relation-
ship between the orbit position at these monitors. From the transformation

matrix M(M2|M1) =


m11 m12

m21 m22


 between both monitors we get for the or-

bit position in the second monitor ∆u2 = m11∆u1 +m12∆u′
1, which we solve

for the slope

∆u′
1 =

∆u2 −m11 ∆u0

m12
. (12.113)

All quantities on the r.h.s. can be measured or are known. With (12.112)
we can solve for the two corrector strengths

Θ1 =
D∆u1 −B∆u′

1

dB − bD
, (12.114)

Θ2=−d∆u1 − b∆u′
1

dB − bD
. (12.115)

It is easy to express the determinant by lattice functions

dB − bD =
√

βc
1 β

c
2 sin(ψ1 − ψ2), (12.116)

where the phases are taken at the locations of the correctors. Obviously, we
minimize the required corrector fields if the determinant in (12.114) is a max-
imum and we therefore choose the phase distance between correctors to be
close to 90◦ when ψ1 − ψ2 = π/2.

12.5 Dipole Field Errors and Dispersion Function

The dispersion function of a beam line is determined by the strength and
placement of dipole magnets. As a consequence, dipole field errors also con-
tribute to the dispersion function and we determine such contributions to the
dispersion function due to dipole field errors. First, we note from the general
expression for the linear dispersion function that the effect of dipole errors
adds linearly to the dispersion function by virtue of the linearity of the equa-
tion of motion. We may therefore calculate separately the effect of dipole
errors and add the results to the ideal solution for the dispersion function.
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12.5.1 Self Compensation of Perturbations

The linear superposition of individual dipole contributions to the dispersion
function can be used in a constructive way. Any contribution to the disper-
sion function by a short magnet can be eliminated again by a similar mag-
net located 180◦ in betatron phase downstream from the first magnet. If the
betatron function at the location of both magnets is the same, the magnet
strengths are the same too. For quantitative evaluation we assume two dipole
errors introducing a beam deflection by the angles θ1 and θ2 at locations with
betatron functions of β1 and β2 and betatron phases ψ1 and ψ2, respectively.
Since the dispersion function or fractions thereof evolve like a sine-like func-
tion, we find for the variation of the dispersion function at a phase ψ(z) ≥ ψ2

∆D(z) = θ1

√
ββ1 sin [ψ(z) − ψ1] + θ2

√
β β2 sin [ψ(z) − ψ2] . (12.117)

For the particular case where θ1 = θ2 and β1 = β2 we find

∆D(z) = 0 for ψ2 − ψ1 = (2n + 1)π . (12.118)

If θ1 = −θ2

∆D(z) = 0 for ψ2 − ψ1 = 2nπ, (12.119)

where n is an integer. This property of the dispersion function can be used
in periodic lattices if, for example, a vertical displacement of the beam line is
desired. In this case we would like to deflect the beam vertically and as soon
as the beam reaches the desired elevation a second dipole magnet deflects the
beam by the same angle but opposite sign to level the beam line parallel to
the horizontal plane again. In an arbitrary lattice such a beam displacement
can be accomplished without creating a residual dispersion outside the beam
deflecting section if we place two bending magnets at locations separated by
a betatron phase of 2π.

Similarly, a deflection in the same direction by two dipole magnets does
not create a finite dispersion outside the deflecting section if both dipoles
are separated by a betatron phase of (2n + 1)π. This feature is important to
simplify beam-transport lattices since no additional quadrupoles are needed
to match the dispersion function.

Sometimes it is necessary to deflect the beam in both the horizontal and
vertical direction. This can be done in a straightforward way by a sequence
of horizontal and vertical bending sections leading, however, to long beam
lines. In a more compact version, we combine the beam deflection in both
planes within one or a set of magnets. To obtain some vertical deflection in
an otherwise horizontally deflecting beam line, we may rotate a whole arc
section about the beam axis at the start of this section to get the desired
vertical deflection. Some of the horizontal deflection is thereby transformed
into the vertical plane. At the start of such a section we introduce by the
rotation of the coordinate system a sudden change in all lattice functions.
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Specifically, a purely horizontal dispersion function is coupled partly into a
vertical dispersion. If we rotate the beam line and coordinate system back at a
betatron phase of 2nπ downstream from the start of rotation, the coupling of
the dispersion function as well as that of other lattice functions is completely
restored. For that to work without further matching, however, we require that
the rotated part of the beam line has a phase advance of 2nπ in both planes
as, for example, a symmetric FODO lattice would have. This principle has
been used extensively for the terrain following beam transport lines of the
SLAC Linear Collider to the collision point.

12.5.2 Perturbations in Open Transport Lines

While these properties are useful for specific applications, general beam dy-
namics requires that we discuss the effects of errors on the dispersion function
in a more general way. To this purpose we use the general equation of motion
up to linear terms in δ and add constant perturbation terms. In the following
discussion we use only the horizontal equation of motion, but the results can
be immediately applied to the vertical plane as well. The equation of motion
with only linear chromatic terms and a quadratic sextupole term is then

x′′ + (k + κ2
x)x = kxδ − 1

2mx2(1 − δ) −∆κx(1 − δ) + O(2) . (12.120)

We observe two classes of perturbation terms, the ordinary chromatic
terms and those due to field errors. Taking advantage of the linearity of the
solution we decompose the particle position into four components

x = xβ + xc + ηx δ + vx δ, (12.121)

where xβ is the betatron motion, xc is the distorted beam path or orbit, ηx

is the ideal dispersion function, and vx is the perturbation of the dispersion
that derives from field errors. The individual parts of the solution are then
determined by the following set of differential equations:

x′′
β + (k + κ2

x)xβ = − 1
2mx2

β + mxβxc, (12.122a)

x′′
c + (k + κ2

x)xc = −∆κx − 1
2mx2

c , (12.122b)

η′′x + (k + κ2
x) ηx = κx, (12.122c)

v′′x + (k + κ2
x) vx = +∆κx + 1

2mx2
c + kxc −mxcηx . (12.122d)

In ansatz (12.121) we have ignored the energy dependence of the betatron
function since it will be treated separately as an aberration and has no impact
on the dispersion. We have solved (12.122a–c) before and concentrate therefore
on the solution of (12.122d). Obviously, the field errors cause distortions of
the beam path xc which in turn cause additional variations of the dispersion
function. The principal solutions are

C(z) =
√

β(z)/β0 cos [ψ(z) − ψ0] , (12.123)
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S(z) =
√

β(z)β0 sin [ψ(z) − ψ0] , (12.124)

and the Green function becomes

G(z, σ) = S(z) C(σ) − S(σ)C(z) =
√

β(z)β(σ) sin [ψ(z) − ψ(σ)] . (12.125)

With this the solution of (12.122d) is

vx(z) = −xc(z) (12.126)

+
√

βx(z)
∫ z

0

(k −mηx)
√

βx(ζ)xc(ζ) sin[ψx(z) − ψx(ζ)]dζ .

Here, we have split off the solution for the two last perturbation terms in
(12.122d) which, apart from the sign, is exactly the orbit distortion (12.122b).
In a closed lattice we look for a periodic solution of (12.126), which can be
written in the form

vx (z) = −xc(z) +

√
βx(z)

2 sinπνx
(12.127)

×
∫ z+Lp

z

(k −mηx)
√

βx(ζ)xc(ζ) cos [νx (ϕx(z) − ϕx(ζ) + π)] dζ,

where xc(z) is the periodic solution for the distorted orbit and Lp is the length
of the orbit. In the vertical plane we have exactly the same solution except
for a change in sign for some terms

vy(z) = −yc(z) −
√

βy(z)
2 sinπνy

(12.128)

×
∫ z+Lp

z

(k −mηx)
√

βy(ζ)yc(ζ) cos [νy (ϕy(z) − ϕy(ζ) + π)] dζ .

For reasons of generality we have included here sextupoles to permit chro-
matic corrections in long curved beam lines with bending magnets. The slight
asymmetry due to the term mηx in the vertical plane derives from the fact
that in real accelerators only one orientation of the sextupoles is used. Due
to this orientation the perturbation in the horizontal plane is − 1

2mx2(1 − δ)
and in the vertical plane mxy(1 − δ). In both cases we get the term mηx in
the solution integrals.

Again we may ask how this result varies as we add acceleration to such
a transport line. Earlier in this section we found that the path distortion is
independent of acceleration under certain periodic conditions. By the same ar-
guments we can show that the distortion of dispersions (12.127) and (12.128)
are also independent of acceleration and the result of this discussion can there-
fore be applied to any periodic focusing channel.
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12.6 Dispersion Function in Higher Order

The first-order change in the reference path for off-energy particles is propor-
tional to the relative momentum error. The proportionality factor is a function
of the position s and is called the dispersion function. This result is true only
in linear beam dynamics. We will now derive chromatic effects on the reference
path in higher order to allow a more detailed determination of the chromatic
stability criteria. The linear differential equation for the normalized dispersion
function is

d2w0

dϕ2
+ ν2 w0 = ν2β

3
2κ = ν2 F (ϕ), (12.129)

where ϕ is the betatron phase, w0 = η0/
√
β, β(z) is the betatron function, and

η(z) is the undisturbed dispersion function. The periodic solution of (12.129)
is called the normalized dispersion function w0(ϕ) =

∑+∞
n=−∞

ν2Fn einϕ

ν2−n2 and

F (ϕ) = β
3
2 κ =

∑
Fn einϕ . (12.130)

This linear solution includes only the lowest order chromatic error term
from the bending magnets and we must therefore include higher order chro-
matic terms into the differential equation of motion. To do that we use the
general differential equation of motion while ignoring all coupling terms

x′′ + (κ2 + k)x = +κδ − κδ2 + κδ3 − 1
2m (1 − δ)x2 + κ′xx′ (12.131)

− (κ3 + 2κk)(1 − δ)x2 + 1
2κ (1 − δ)x′2

+ (2κ2 + k)x δ − (k + 2κ2)xδ2 + O(4),

where κ = 1/ρ. We are only interested in the chromatic solution with vanishing
betatron oscillation amplitudes and insert for the particle position therefore

xη = η0 δ + η1 δ
2 + η2 δ

3 + O(4) . (12.132)

Due to the principle of linear superposition separate differential equations
exist for each component ηi by collecting on the right-hand side terms of
equal power in δ. For the terms linear in δ, we find the well-known differential
equation for the dispersion function

η′′0 + K(z) η0 = κ =
∑

n

F0n einϕ, (12.133)

where we also express the perturbations by its Fourier expansion. The terms
quadratic in δ form the differential equation

η′′1 + K(z) η1 = −
∑

n

F0n einϕ (12.134)

− 1
2mη2

0 − (κ3 + 2κk) η2
0 + 1

2κ η′20 + κ′η0η
′
0 + (2κ2 + k) η0

= −
∑

n

F0n einϕ +
∑

n

F1n einϕ,
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and terms cubic in δ are determined by

η′′2 + K(z) η2 = +
∑

n

F0n einϕ −
∑

n

F1n einϕ (12.135)

−mη0η1 − 2 (κ3 + 2κk) η0η1 + (2κ2 + k) η1

+ κη′0η
′
1 + κ′(η0η

′
1 + η′0η1) + κ′ η0η

′
0

= +
∑

n

F0n einϕ −
∑

n

F1n einϕ +
∑

n

F2n einϕ .

We note that the higher order dispersion functions are composed of the
negative lower order solutions plus an additional perturbation. After transfor-
mation of these differential equations into normalized variables, w = η/

√
β,

etc., we get with j = 0, 1, 2 differential equations of the form

ẅj(ϕ) + ν2
0 wj(ϕ) = ν2

0 β3/2F (z) =
m=j∑
m=0

n=∞∑
n=−∞

(−1)m+jFmn einϕ, (12.136)

where we have expressed the periodic perturbation on the r.h.s. by an ex-
panded Fourier series which in addition to the perturbation terms includes
the factor ν2

0 β3/2. Noting that the dispersion functions wj(ϕ) are periodic,
we try the ansatz

wj(ϕ) =
∑

n

wjn einϕ, (12.137)

and insertion into (12.136) allows us to solve for the individual Fourier coeffi-
cients wjn by virtue of the orthogonality of the exponential functions einϕ.We
get for the dispersion functions up to second order and reverting to the ordi-
nary η-function

η0(ϕ) = +
√

β
∑

n

F0n einϕ

ν2 − n2
, (12.138a)

η1(ϕ) = −
√

β
∑

n

F0n einϕ

ν2 − n2
+
√

β
∑

n

F1n einϕ

ν2 − n2
, (12.138b)

η2(ϕ) = +
√

β
∑

n

F0n einϕ

ν2 − n2
−
√

β
∑

n

F1n einϕ

ν2 − n2
+
√

β
∑

n

F2n einϕ

ν2 − n2
.

(12.138c)

The solutions of the higher order differential equations have the same
integer-resonance behavior as the linear solution for the dispersion function.
The higher order corrections will become important for lattices where strong
sextupoles are required in which cases the sextupole terms may be the major
perturbations to be considered. Other perturbation terms depend mostly on
the curvature κ in the bending magnets and, therefore, maybe small for large
rings or beam-transport lines with weak bending magnets.
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12.6.1 Chromaticity in Higher Approximation

So far we have used only quadrupole and sextupole fields to define and calcu-
late the chromaticity. From the general equations of motion we know, however,
that many more perturbation terms act just like sextupoles and therefore can-
not be omitted without further discussion. To derive the relevant equations
of motion from (3.75) , (3.76) we set x = xβ + ηxδ and y = yβ + ηyδ where
we keep for generality the symmetry between vertical and horizontal plane.
Neglecting, however, coupling terms we get with perturbations quadratic in
(x, y, δ) but at most linear in δ and after separating the dispersion function a
differential equation of the form (u = xβ or yβ)

u′′
β + K uβ = −∆K uβδ −∆Lu′

β δ, (12.139)

where

Kx = κ2
x + k, (12.140)

Ky = κ2
y − k, (12.141)

−∆Kx = 2κ2
x + k − (m + 2κ3

x + 4κxk) ηx (12.142)
−(m + 2κxk + 2κyk) ηy + κ′

xη
′
x − κ′

yη
′
y,

−∆Ky = 2κ2
y − k + (m− 2κyk + 2κxk ) ηx (12.143)

+(m− 2κ3
y + 4κyk) ηy − κ′

xη
′
x + κ′

yη
′
y,

−∆Lx = −∆Ly = +κ′
xηx + κ′

yηy + κxη
′
x + κyη

′
y (12.144)

= +
d
dz

(κxηx + κyηy) .

The perturbation terms (12.139) depend on the betatron oscillation ampli-
tude as well as on the slope of the betatron motion. If by some manipulation
we succeed in transforming (12.139) into an equation with terms proportional
only to u we immediately obtain the chromaticity. We try a transformation
of the form u = v f(z) where f(z) is a still to be determined function of z.
With u′ = v′f + v f ′ and u′′ = v′′f + 2v′f ′ + v f ′′ (12.139) becomes

v′′f + 2v′f ′ + v f ′′ + Kvf + ∆K v f δ + ∆Lv′f δ + ∆Lv f ′δ = 0 .
(12.145)

Now we introduce a condition defining the function f such that in (12.145)
the coefficients of v′ vanish. This occurs if

2f ′ = −∆Lfδ . (12.146)

To first order in δ this equation can be solved by

f = 1 + 1
2 δ (κx ηx + κy ηy) (12.147)

and (12.145) becomes
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v′′ + [K + ( f ′′ + δ∆K)] v = 0 . (12.148)

The chromaticity in this case is ξ = 1
4π

∮
( f ′′

δ + ∆K)βdz, which becomes
with 2f ′′

δ = d2

dz2 (κxηx + κyηy) and (12.142)

ξx =
1
4π

∮ (
f ′′

δ
+ ∆Kx

)
βx dz (12.149)

=
1
4π

∮
1
2

d2

dz2
(κxηx + κyηy)βx dz

− 1
4π

∮
βx [(2κ2

x + k) + κ′
xη

′
x + κ′

yη
′
y]

−(m + 2κ3
x + 4κxk) ηx−(m + 2κxk + 2κyk) ηy] dz .

The first integral can be integrated twice by parts to give
∮

1
2 (κxηx +

κyηy)β′′dz . Using β′′ = γx −Kβ and (12.149) the horizontal chromaticity is
finally

ξx =
1
4π

∮ [
−(k + 2 κ2

x) − κ′
xη

′
x − κ′

yη
′
y (12.150)

+(m + 2 κ3
x + 4 κx k)ηx + (m + 2 κxk + 2 κy k) ηy

]
βx dz

+
1
4π

∮
(κx ηx + κy ηy)γx dz .

A similar expression can be derived for the vertical chromaticity

ξy =
1
4π

∮ [
(2κ2

y + k) + κ′
xη

′
x + κ′

yη
′
y (12.151)

−(m + 2κxk + 3 κyk)ηy − (m + κ3
y + 3κyk)ηy

]
βy dz

+
1
4π

∮
(κxηx + κyηy)γy dz .

In deriving the chromaticity we used the usual curvilinear coordinate sys-
tem for which the sector magnet is the natural bending magnet. For rectan-
gular or wedge magnets the chromaticity must be determined from (12.151)
by taking the edge focusing into account. Generally, this is done by applying
a delta function focusing at the edges of dipole magnets with a focal length of

1
fx

=
1
ρ

tan ε

∫
δ(zedge) dz . (12.152)

Similarly, we proceed with all other terms which include focusing.
The chromaticity can be determined experimentally simply by measuring

the tunes for a beam circulating with a momentum slightly different from the
lattice reference momentum. In an electron ring, this is generally not pos-
sible since any momentum deviation of the beam is automatically corrected
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by radiation damping within a short time. To sustain an electron beam at a
momentum different from the reference energy, we must change the frequency
of the accelerating cavity. Due to the mechanics of phase focusing, a parti-
cle beam follows such an orbit that the particle revolution time in the ring
is an integer multiple of the rf-oscillation period in the accelerating cavity.
By proper adjustment of the rf-frequency the beam orbit is centered along
the ideal orbit and the beam momentum is equal to the ideal momentum as
determined by the actual magnetic fields.

If the rf-frequency is raised, for example, the oscillation period becomes
shorter and the revolution time for the beam must become shorter too. This
is accomplished only if the beam momentum is changed in such a way that
the particles now follow a new orbit that is shorter than the ideal reference
orbit. Such orbits exist for particles with momenta less than the reference
momentum. The relation between revolution time and momentum deviation
is a lattice property expressed by the momentum compaction which we write
now in the form

∆frf

frf
= − ηc

∆cp

cp0
. (12.153)

Through the knowledge of the lattice and momentum compaction we can re-
late a relative change in the rf-frequency to a change in the beam momentum.
Measurement of the tune change due to the momentum change determines
immediately the chromaticity.

12.7 Nonlinear Chromaticity

The chromaticity of a circular accelerator is defined as the linear rate of change
of the tunes with the relative energy deviation δ. With the increased amount
of focusing that is being applied in modern circular accelerators, especially in
storage rings, to obtain specific particle beam properties like very high energies
in large rings or a small emittance, the linear chromaticity term is no longer
sufficient to describe the chromatic dynamics of particle motion. Quadratic
and cubic terms in δ must be considered to avoid severe stability problems
for particles with energy error. Correcting the chromaticity with only two
families of sextupoles we could indeed correct the linear chromaticity but the
nonlinear chromaticity may be too severe to permit stable beam operation.

We derive the nonlinear chromaticity from the equation of motion ex-
pressed in normalized coordinates and including up to third-order chromatic
focusing terms

ẅ + ν2
00 w = ν2

00β
2p(ϕ)w = (a δ + b δ2 + c δ3)w, (12.154)

where the coefficients a, b, c are perturbation functions up to third order in δ
and linear in the amplitude w, and where ν00 is the unperturbed tune. From
(3.75) and (3.76) these perturbations are
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a = ν2
00β

2
[(
k + 2κ2

x

)
+ mηx + · · ·

]
, (12.155)

b = ν2
00β

2
[
−
(
k + 2κ2

x

)
−mηx + · · ·

]
, (12.156)

c = ν2
00β

2
[(
k + 2κ2

x

)
+ mηx + · · ·

]
. (12.157)

This equation defines nonlinear terms for the chromaticity which have been
solved for the quadratic term [123] and for the cubic term [124, 125]. While
second- and third-order terms become significant in modern circular accelera-
tors, higher order terms can be recognized by numerical particle tracking but
are generally insignificant.

Since the perturbations on the r.h.s. of (12.154) are periodic for a circular
accelerator we may Fourier expand the coefficients

a(ϕ) = a0 +
∑
n�=0

an einϕ,

b(ϕ) = b0 +
∑
n�=0

bn einϕ,

c(ϕ) = c0 +
∑
n�=0

cn einϕ.

(12.158)

From the lowest order harmonics of the perturbations we immediately get the
first approximation of nonlinear chromaticities

ν2
0 = ν2

00 − δ
(
a0 + b0δ + c0δ

2
)

(12.159)

or

ν2
0 = ν2

00

(
1 − β2

∫ 2π

0

p1(ϕ) dϕ
)

. (12.160)

With this definition we reduce the equation of motion (12.154)

ẅ + ν2
0 w = δ ν2

00β
2

(∑
n>0

2an cosnϕ + δ
∑
n>0

2bn cosnϕ + δ2
∑
n>0

2cn cosnϕ

)
w

(12.161)
The remaining perturbation terms on the r.h.s. look oscillatory and there-

fore seem not to contribute to an energy dependent tune shift. In higher order
approximation, however, we find indeed resonant terms which do not vanish
but contribute to a systematic tune shift. Such higher order tune shifts cannot
be ignored in all cases and therefore an analytical expression for this chro-
matic tune shift will be derived. To solve the differential equation (12.161),
we consider the r.h.s. as a small perturbation with δ serving as the smallness
parameter. Mathematical methods for a solution have been developed and are
based on a power series in δ. We apply this method to both the cosine- and
sine-like principal solution and try the ansatz

C(ϕ) =
∑
n≥0

Cn(ϕ) δn and S(ϕ) =
∑
n≥0

Sn(ϕ) δn. (12.162)
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Concentrating first on the cosine-like solution we insert (12.162) into (12.161)
and sort for same powers in δ noting that each term must vanish separately
to make the ansatz valid for all values of δ. The result is a set of differential
equations for the individual solution terms

C̈0 + ν2
0C0 = 0,

C̈1 + ν2
0C1 = p(ϕ)C0,

· · · · · · (12.163)

C̈n + ν2
0Cn = p(ϕ)Cn−1,

where derivatives C̈i are taken with respect to the phase ϕ, e.g., C̈i =
∂2Ci/∂ϕ

2.
These are defining equations for the functions C0, C1, . . . , Cn with Ci =

Ci(ϕ) and each function depending on a lower order solution. The lowest order
solutions are the principal solutions of the unperturbed motion

C0(ϕ) = cos ν0ϕ and S0(ϕ) =
1
ν0

sin ν0ϕ . (12.164)

The differential equations (12.163) can be solved with the Green’s function
method which we have applied earlier to deal with perturbation terms. All suc-
cessive solutions can now be derived from the unperturbed solutions through

Cn+1(ϕ) = 1
ν0

∫ ϕ

0
p(ζ) sin [ν0 (ζ − ϕ)] Cn(ζ) dζ,

Sn+1(ϕ) = 1
ν0

∫ ϕ

0
p(ζ) sin [ν0 (ζ − ϕ)] Sn(ζ) dζ .

(12.165)

With the unperturbed solution C0 we get for C1

C1(ϕ) =
1
ν0

∫ ϕ

0

p(ζ) sin [ν0 (ζ − ϕ)] cos (ν0ζ) dζ, (12.166)

and utilizing this solution C2 becomes

C2(ϕ) =
1
ν2
0

∫ ϕ

0

p(ζ) sin [ν0 (ζ − ϕ)] cos (ν0ζ) (12.167)

×
∫ ζ

0

p(ξ) sin [ν0 (ξ − ζ)] cos (ν0ξ) dξ dζ.

Further solutions are derived following this procedure although the formulas
get quickly rather elaborate. With the cosine- and sine-like solutions we can
formulate the transformation matrix for the whole ring

M =


C(2π) S(2π)

Ċ(2π) Ṡ(2π)


 (12.168)
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and applying Floquet’s theorem, the tune of the circular accelerator can be
determined from the trace of the transformation matrix

2 cos 2πν = C(2π) + Ṡ(2π), (12.169)

where Ṡ =dS/dϕ. With ansatz (12.162) this becomes

2 cos 2πν =
∑
n≥0

Cn(2π) δn +
∑
n≥0

Ṡn(2π) δn . (12.170)

Retaining only up to third-order terms in δ, we finally get after some manip-
ulations with (12.165)

cos 2πν = cos 2πν0 −
1

2ν0
sin 2πν0

∫ 2π

0

p(ζ) dζ (12.171)

+
1

2ν2
0

∫ 2π

0

∫ ζ

0

p(ζ) p(β) sin [ν0 (ζ − β − 2π)]

× sin [ν0 (β − α)] dβ dα

+
1

2ν3
0

∫ 2π

0

∫ ζ

0

∫ ξ

0

p(ζ) p(ξ) p(γ) sin [ν0 (ζ − γ − 2π)]

× sin [ν0 (ξ − ζ)] sin [ν0 (γ − ξ)] dγ dξ dζ .

These integrals can be evaluated analytically and (12.171) becomes after
some fairly lengthy but straightforward manipulations

cos 2πν = cos 2πν0 − δ2

(
π sin 2πν0

2ν0

∑
n>0

a2
n

n2 − 4ν2
0

)
(12.172)

− δ3

(
π sin 2πν0

ν0

∑
n>0

a2
n b2n

n2 − 4ν2
0

)

− δ3

{(
π sin 2πν0

4ν0

∑
s>0

∑
t>0

as bt

t2 − 4ν2
0

)

×


as+t

1 + 4ν2
0

t(s+t)

(s + t)2 − 4ν2
0

+ a|s−t|
1 − 4ν2

0
t(s−t)

(s + t)2 − 4ν2
0





+ O(δ4) .

This expression defines the chromatic tune shift up to third order. Note
that the tune ν0 is not the unperturbed tune but already includes the lowest
order approximation of the chromaticity (12.159). The relevant perturbations
here are linear in the betatron amplitude and drive therefore half integer reso-
nances as is obvious from (12.172). The main contribution to the perturbation
observed here are from the quadrupole and sextupole terms
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Fig. 12.10. Variation of the vertical tune with energy in the storage ring PEP if
the chromaticities are corrected by only two families of sextupoles

p(ϕ) = ν2
0β

2 (k −mηx)
(
δ − δ2 + δ3 · · ·

)
. (12.173)

In large storage rings the nonlinear chromaticity becomes quite significant
as demonstrated in Fig. 12.10. Here the tune variation with energy in the stor-
age ring PEP is shown both for the case where only two families of sextupoles
are used to compensate for the natural chromaticities [124]. Since in this ring
an energy acceptance of at least ±1% is required, we conclude from Fig. 12.10
that insufficient stability is available because of the nonlinear chromaticity
terms shifting the tunes for off-momentum particles to an integer resonance
within the desired energy acceptance.

For circular accelerators or rings with a large natural chromaticity it is
important to include in the calculation of the nonlinear chromaticity higher
order terms of the dispersion function ηx. Following the discussion in Sect. 12.6
we set in (12.173)

ηx(ϕ) = ηx0 + η1 δ + η2 δ
2 + · · · (12.174)

and find the Fourier components an and bn in (12.172) defined by

ν2
0 β2 (k −mηx0) =

∑
n≥0

2 an cosnϕ, (12.175)

−ν2
0 β2(k −mηx0 + mη1)=

∑
n≥0

2 bn cosnϕ . (12.176)

Nonlinear energy terms in the η-function can sometimes become quite
significant and must be included to improve the accuracy of analytical ex-
pressions for the nonlinear chromaticity. In such cases more sophisticated
methods of chromaticity correction are required to control nonlinear chro-
maticities as well. One procedure is to distribute sextupoles in more than two
families while keeping their total strength to retain the desired chromatic-
ity. Using more than two families of sextupoles allows us to manipulate the
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strength of specific harmonics an such as to minimize the nonlinear chro-
maticities. Specifically, we note in (12.172) that the quadratic chromaticity
term originates mainly from the resonant term a2

n

n2−4ν2
0
. This term can be min-

imized by a proper distribution of sextupoles suppressing the nth harmonic
of the chromaticity function ν2β2(k − mη). Special computer programs like
PATRICIA [124] calculate the contribution of each sextupole to the Fourier
coefficients an and provide thereby the information required to select opti-
mum sextupole locations and field strength to minimize quadratic and cubic
chromaticities.

12.8 Perturbation Methods in Beam Dynamics

In this chapter, mathematical procedures have been developed to evaluate the
effect of specific perturbations on beam dynamics parameters. It is the nature
of perturbations that they are unknown and certain assumptions as to their
magnitude and distribution have to be made. Perturbations can be systematic,
statistical but periodic or just statistical and all can have a systematic or
statistical time dependence.

Systematic perturbations in most cases become known through careful
magnetic measurements and evaluation of the environment of the beam line.
By construction magnet parameters may be all within statistical tolerances
but systematically off the design values. This is commonly the case for the
actual magnet length. Such deviations generally are of no consequences since
the assumed magnet length in the design of a beam-transport line is arbitrary
within limits. After the effective length of any magnet type to be included in a
beam line is determined by magnetic measurements, beam optics calculations
need to be repeated to reflect the variation in length. Similarly, deviations of
the field due to systematic errors in the magnet gap or bore radius can be
cancelled by experimental calibration of the fields with respect to the exci-
tation current. Left are then only small statistical errors in the strength and
length within each magnet type.

One of the most prominent systematic perturbation is an energy error
a particle may have with respect to the ideal energy. We have treated this
perturbation in much detail leading to dispersion or η-functions and chro-
maticities.

Other sources of systematic field errors come from the magnetic field of ion
pumps or rf-klystrons, from earth magnetic field, and current carrying cables
along the beam line. The latter source can be substantial and requires some
care in the choice of the direction the electrical current flows such that the
sum of currents in all cables is mostly if not completely compensated. Further
sources of systematic field perturbations originate from the vacuum chamber
if the permeability of the chamber or welding material is too high, if eddy
currents exist in cycling accelerators or due to persistent currents in super-
conducting materials which are generated just like eddy currents during the
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turn on procedure. All these effects are basically accessible to measurements
and compensatory measures in contrast to statistical perturbations as a result
of fabrication tolerances.

12.8.1 Periodic Distribution of Statistical Perturbations

Whatever statistical perturbations exist in circular accelerators, we know that
these perturbations are periodic, with the ring circumference being the period
length. The perturbation can therefore always be expressed by a Fourier series.
The equation of motion in the presence of, for example, dipole field errors is
in normalized coordinates

ẅ + ν2
0 w = − ν2

0β
3/2∆κ . (12.177)

The dipole perturbation β3/2∆κ is periodic and can be expressed by the
Fourier series

β3/2∆κ =
∑

n

Fn einϕ, (12.178)

where ν0ϕ is the betatron phase and the Fourier harmonics Fn are given by

Fn = − 1
2π

∮ [
−
√

β1/2(ζ)∆κ(ζ)
]

e−inϕ(ζ) dζ . (12.179)

The location of the errors is not known and we may therefore only calcu-
late the expectation value for the perturbation by multiplying (12.179) with
its complex conjugate. In doing so, we note that each localized dipole per-
turbation deflects the beam by an angle θ and replace therefore the integral
in (12.179) by a sum over all perturbations. With

∫
∆κdζ ≈ θ we get for

FnF
∗
n = |Fn|2

|Fn|2 =
1

4π2


∑

k

βk θ2
k +
∑
k �=j

√
βkβj θkθj e−in(ϕk−ϕj)


 , (12.180)

where βk is the betatron function at the location of the dipole perturbation.
The second sum in (12.180) vanishes in general, since the phases for the per-
turbations are randomly distributed.

For large circular accelerators composed of a regular lattice unit like FODO
cells we may proceed further in the derivation of the effects of perturbations
letting us determine the field and alignment tolerances of magnets. For sim-
plicity, we assume that the lattice magnets are the source of dipole perturba-
tions and that the betatron functions are the same at all magnets. Equation
(12.180) then becomes

|Fn|2 =
1

4π2
Nm βm σ2

θ , (12.181)
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where σθ is the expectation value for the statistical deflection angle due to
dipole perturbations. In a little more sophisticated approach, we would sep-
arate all magnets into groups with the same strength and betatron function
and (12.181) becomes

|Fn|2 =
1

4π2

∑
m

Nm βm σ2
θ,m, (12.182)

where the sum is taken over all groups of similar perturbations and Nm is
the number of perturbations within the group m. In a pure FODO lattice, for
example, obvious groups would be all QF’s, all QD’s, and all bending magnets.
From now on we will, however, not distinguish between such groups anymore
to simplify the discussion.

Periodic dipole perturbations cause a periodic orbit distortion which is
from (12.177)

w(ϕ) = −
∑

n

ν2
0 Fn

(ν2
0 − n2)

einϕ . (12.183)

The expectation value for the orbit distortion is obtained by multiplying
(12.183) with it’s complex conjugate and we get with w(ϕ) = u(z)/

√
β (z)

uu∗ = β(z) ν4 |Fn|2
+∞∑

n=−∞

einϕ

(ν2 − n2)

+∞∑
m=−∞

e−imϕ

(ν2 −m2)
. (12.184)

The sums can be replaced by −π cos ν(π−ϕ)
ν sin νπ and we finally get for the ex-

pectation value of the orbit distortion σu at locations with a betatron function
β

σ2
u = β

N β̄ σ2
θ

8 sin2 πν
, (12.185)

where β̄ is the average betatron function at the locations of perturbations.
This result is in full agreement with result (12.32) for misaligned quadrupoles,
where σθ = σu/f , σu is the statistical quadrupole misalignment, and f is the
focal length of the quadrupole.

This procedure is not restricted to dipole errors only but can be applied
to most any perturbation occurring in a circular accelerator. For this we de-
termine which quantity we would like to investigate, be it the tunes, the
chromaticity, perturbation of the dispersion functions, or any other beam
parameter. Variation of expressions for such quantities due to variations of
magnet parameters and squaring such variation we get the perturbation of
the quantity under investigation. Generally, perturbation terms of order n in
normalized coordinates are expressed by

Pn(z) = ν2
0 β3/2 βn/2pn (z) wn. (12.186)

Because the perturbations are assumed to be small, we may replace the
oscillation amplitudes wn in the perturbation term by their principle unper-
turbed solutions. Considering that the beam position w is a composite of, for



466 12 Perturbations in Beam Dynamics

example, betatron oscillation wβ , orbit distortion wc, and energy error wη we
set

w = wβ + wc + wη (12.187)

and note that any higher order perturbation contributes to the orbit, the eta-
function, the tunes, betatron functions, and other beam parameters. Orbit
distortions in sextupoles of strength m, for example, produce the perturba-
tions

P2(z) = 1
2 ν2

0 β5/2 mw2 (12.188)

which for wη = 0 can be decomposed into three components

P20(z) = 1
2 ν2

0 β5/2 mw2
c ,

P21(z) = ν2
0 β5/2 mwβ wc, (12.189)

P22(z) = 1
2 ν2

0 β5/2 mw2
β .

The perturbation P20 causes an orbit distortion and since the pertur-
bations are randomly distributed the contribution to the orbit according to
(12.185) is

σ2
u = βu

Ns βus σ
2
θ

8 sin2 πνu

, (12.190)

where Ns is the number of sextupoles, βus is the value of the betatron function
and σc is the rms orbit distortion at the sextupoles, σθ = 1

2mσ2
c �s, and �s is the

effective sextupole length. In cases of very strong sextupoles iteration methods
must be applied since the orbit perturbation depends on the orbit. Similarly,
we could have set wc = 0 to calculate the perturbation of the η-function due
to sextupole magnets.

The linear perturbation P21 in (12.189) causes a statistical tune shift and a
perturbation of the betatron function. Following the derivation of tune shifts
in Sect. 12.1.4, we find the expectation value for the tune shift to be

〈δ2ν〉 =
1

16π2

∑
k

βk mk�k 〈u2
0〉k, (12.191)

where 〈u2
0〉 is the random misalignment of the sextupole magnets or random

orbit distortions in the sextupoles.
We find the interesting result that sextupoles contribute to a tune error

only if there is a finite orbit distortion or misalignment u0, while a finite
betatron oscillation amplitude of a particle in the same sextupoles does not
contribute to a tune shift. Similarly, we may use the effects of systematic
errors to get expressions for the probable variation of the betatron function
(12.74) due to gradient errors from misaligned sextupoles.

In the approximation of small perturbations, we are able to determine
the expectation value for the effect of statistical errors on a particular beam
parameter or lattice function. This formalism is used particularly when we are
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interested to define tolerances for magnetic field quality and magnet alignment
by calculating backwards from the allowable perturbation of beam parameters
to the magnitude of the errors. Some specific statistical effects will be discussed
in subsequent sections.

12.8.2 Periodic Perturbations in Circular Accelerators

Alignment and field errors in circular accelerators not only cause a distor-
tion of the orbit but also a perturbation of the η-functions. Although these
perturbations occur in both the horizontal and vertical plane, we will discuss
only the effect in the vertical plane. While the derivations are the same for
both planes the errors contribute only to a small perturbation of the already
existing horizontal η-function while the ideal vertical η-function vanishes, and
therefore the perturbation can contribute a large variation of beam parame-
ters. This is specifically true for electron storage ring where the vertical beam
emittance is very small and a finite vertical η-function may increase this emit-
tance considerably.

Similar to (12.120) we use the equation of motion

y′′ − k y = +∆κy −∆κy δ − kyδ + mxy (12.192)

with the decomposition
y = yc + vy δ (12.193)

and get in normalized coordinates ỹ = y/
√

βy, while ignoring the betatron
motion, the differential equations for the orbit distortion ỹc

¨̃yc + ν2
y ỹc = + ν2

y β3/2
y (∆κy + mxcyc) (12.194)

and for the perturbation of the η-function ṽy = vy/
√

βy

¨̃vy + ν2
y ṽy = − ν2

y β3/2
y ∆κy + ν2

y β2
y (k −mηx) ỹc . (12.195)

First, we note in a linear lattice where m = 0 that the differential equations
for both the closed orbit distortion and the η-function perturbation are the
same except for a sign in the perturbation. Therefore, in analogy to (12.185)

〈v2
y(z)〉 =

β(z)β̄θ

8 sin2 πν

∑
i

σ2
θ . (12.196)

The perturbation of the η-function becomes more complicated in strong
focusing lattices where the chromaticity is corrected by sextupole fields. In
this case, we note that all perturbation terms on the r.h.s. are periodic and
we express them in Fourier series

ν2β3/2
y ∆κy =

n=+∞∑
n=−∞

Fn einϕ (12.197)
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with

Fn =
ν2

2π

∫ 2π

0

β3/2∆κy e−inτ dτ (12.198)

and

ν2β2
y(k −mηx) =

n=+∞∑
n=−∞

An einϕ (12.199)

with

An =
ν2

2π

∫ 2π

0

β2(k −mηx) e−inτ dτ . (12.200)

We also make use of the periodicity of the perturbation of the η-function and
set

ṽy =
n=+∞∑
n=−∞

En einϕ . (12.201)

Inserting (12.197)–(12.201) into (12.195) we get with the periodic solution of
the closed orbit

ỹc(ϕ) =
∑

n

Fn

ν2 − n2
einϕ (12.202)

∑
n

[(ν2 − n2)En + Fn] einϕ −
∑
m,r

Am Fr

ν2 − n2
ei(m+r)ϕ = 0 . (12.203)

Noting that this equation must be true for all phases ϕ all terms with
the same exponential factor must vanish separately and we may solve for the
harmonics of the η-function

En = − Fn

ν2 − n2
+
∑

r

An−r Fr

(ν2 − n2) (ν2 − r2)
. (12.204)

The perturbation of the η-function is therefore

ṽy(ϕ) = − ỹc(ϕ) +
∑
n,r

An−r Fr

(ν2 − n2) (ν2 − r2)
einϕ . (12.205)

We extract from the double sum on the r.h.s. of (12.205) all terms with
n = r and get from those terms the expression A0

∑
n

Fn

(ν2−n2)2 einϕ. The
coefficient A0, however, is just the natural chromaticity A0 = 2ξ0y/νy and the
perturbation of the η-function is from (12.205)

ṽy(ϕ) = −ỹc(ϕ) +
2ξy

νy

∑
n

Fn einϕ

(ν2 − n2)2
+
∑
n�=r

An−r Fr einϕ

(ν2 − n2)(ν2 − r2)
. (12.206)

By correcting the orbit distortion and compensating the chromaticity, we
are able to greatly reduce the perturbation of the vertical η-function. All terms
with r = 0 vanish for a truly random distribution of misalignment errors since
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F0 = 0. Taking the quadrupole lattice as fixed we find the remaining terms
to depend mainly on the distribution of the orbit correction Fr and sextupole
positions Ai. For any given sextupole distribution the orbit correction must
be done such as to eliminate as much as possible all harmonics of the orbit
in the vicinity of the tunes r 
≈ νy and to center the corrected orbit such that
F0 = 0.

Furthermore, we note that some care in the distribution of the sextupoles
must be exercised. While this distribution is irrelevant for the mere correction
of the natural chromaticities, higher harmonics of the chromaticity function
must be held under control as well. The remaining double sum is generally
rather small since the resonance terms have been eliminated and either ν − n
or ν−r is large. However, in very large rings or very strong focusing rings this
contribution to the perturbation of the η-function may still be significant.

12.8.3 Statistical Methods to Evaluate Perturbations

In an open beam-transport line the perturbation effect at a particular point de-
pends only on the upstream perturbations. Since perturbations cannot change
the position but only the slope of particle trajectories, we merely transform
the random kick angle θk from the location of the perturbation to the obser-
vation point. Adding all perturbations upstream of the observation point we
get with ψ = ψ(z)

u(z)=
√

β(z)
∑

k
ψk<ψ(z)

√
βk sin(ψ − ψk) θk,

u′(z)= 1√
β(z)

∑
k

ψk<ψ(z)

√
βk cos(ψ − ψk) θk .

(12.207)

The expectation value for the position of the beam center at the obser-
vation point becomes from the first equation of (12.207) noting the complete
independence of the perturbations

σu(z) =
√

β(z) 1
2N

√
β̄ σθ . (12.208)

Random variations of the beam position are customarily corrected by
special steering magnets if such correction is required at all. In long beam-
transport systems like those required in linear colliders a mere correction of
the beam position at the collision point, for example, may not be accept-
able. Specifically, nonlinear perturbations lead to an incoherent increase of
the beam size which can greatly reduce the usefulness of the colliding-beam
system. In the next subsection we will therefore discuss general perturbations
in beam-transport lines and their effect on the beam cross section.
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Control of beam size in transport lines

For the transport of beams with a very small beam size or beam emittance
like in a linear collider facilities we are especially concerned about the impact
of any kind of perturbation on the integrity of a small beam emittance. Errors
can disturb the beam size in many ways. We have already discussed the effect
of dipole errors on the dispersion. The distortion of the dispersion causes an
increase in the beam size due to the energy spread in the beam. Quadrupole
field errors affect the value of betatron functions and therefore the beam
size. Vertical orbit distortions in sextupoles give rise to vertical–horizontal
coupling. In this section we will try to evaluate these effects on the beam size.

We use the equations of motion (3.75) , (3.76) up to second order in x, y,
and δ, and assume the curvature to be small of the order or less than (x, y, δ).
This is a proper assumption for high energy beam transport lines like in linear
colliders. For lower energy beam lines very often this assumption is still correct
and where a better approximation is needed more perturbation terms must
be considered. For the horizontal plane we get

x′′ + (κ2
x + k)x = κxδ − κxδ

2 − ky − 1
2 m (x2 − y2)(1 − δ) (12.209)

−∆κx (1 − δ) + kxδ + ∆kx (1 − δ) + O(3)

and for the vertical plane

y′′ − k y = κy δ − κy δ2 − kx + mxy (1 − δ) − k y δ (12.210)
−∆κy (1 − δ) −∆k y (1 − δ) + O(3).

In these equations rotated magnets (κy, k,m) are included as small quan-
tities because rotational alignment errors of upright magnets cause rotated
error fields although no rotated magnets per se are used in the beam line. For
the solution of (12.209), (12.210) we try the ansatz

x =xβ + xc + ηxδ + vxδ + wxδ
2,

y = yβ + yc + ηyδ + vyδ + wyδ
2 .

(12.211)

Here we define (xβ , yβ) as the betatron oscillations, (xc, yc) is the orbit
distortions, (ηx, ηy) is the dispersion function, (vx, vy) is the perturbations
of the dispersion functions due to magnetic field errors, and (wx, wy) is the
first-order chromatic perturbation of the dispersion functions (ηtot = η + v +
wδ + · · · ). This ansatz leads to the following differential equations in the
horizontal plane where we assume the bending radii to be large and κx, κy

are therefore treated as small quantities:
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x′′
β + kxβ = −k yβ − 1

2 m (x2
β − y2

β) −m (xβxc − yβyc) + ∆kxβ , (a)

x′′
c + kxc = −∆κx + ∆kxc − k yc − 1

2m(x2
c − y2

c ), (b)

η′′x + kηx = +κx, (c)

v′′x + kvx = − k vy −m (xβ + xc) (ηx + vx) + m (yβ + yc) (ηy + vy) (d)

+∆k(xc + xβ) + ∆κx + ∆k (ηx + vx)

+kxβ + kxc + 1
2m(x2

c − y2
c ) + kyc,

w′′
x + k wx = −κx − 1

2m(η2
x + 2ηxvx − 2ηyvy − v2

y) + k(ηx + vx) (e)

= +m (xcηx + xcvx − ycηy − ycvy) + (ηx + vx)xβ − vyyβ .

(12.212)
Similarly, we get for the vertical plane

y′′β − kyβ = −kxβ + mxβyβ −∆kyβ + m (xcyβ + xβyc), (a)

y′′c − kyc = −∆κy −∆kyc − kxc + mxcyc, (b)

η′′y − kηy = +κy, (c)

v′′y − kvy = +∆κy − k(ηy + vy) + m (xβ + xc) (ηy + vy) (d)

+m (ηx + vx) (yβ + yc) + ∆k(yβ + yc) + k xc −mxcyc

−k(yβ + yc) −∆k(ηy + vy),

w′′
y − kwy = −κy + k(ηy + vy) (e)

= +m (ηxηy + ηxvy + vxηy + vxvy) .
(12.213)

The solution of all these differential equations is, if not already known,
straightforward. We consider every perturbation to be localized as a thin
element causing just a kick which propagates along the beam line. If βj is
the betatron function at the observation point and βi that at the point of the
perturbation pi the solutions of (12.212) , (12.213) have the form

uj =
√

βj

∑
i

√
βi sinψji

∫
pi dz . (12.214)

The kick due to the perturbation is θi =
∫
pi dz, where the integral is taken

along the perturbation assumed to be short. To simplify the equations to follow
we define the length �i = θi/〈pi〉. Since most errors derive from real magnets,
this length is identical with that of the magnet causing the perturbation and
ψji = ψj − ψi is the betatron phase between perturbation and observation
point. A closer look at (12.212) and (12.213) shows that many perturbations
depend on the solution itself requiring an iterative solution process. Here we
will, however, concentrate only an the first iteration.
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Ignoring coupling terms we have in (12.212) two types of perturbations,
statistically distributed focusing errors ∆k and geometric aberration effects
due to sextupoles. We assume here that the beam line is chromatically
corrected by the use of self-correcting achromats in which case the term
1
2m(x2

β − y2
β) is self-canceling. The expectation value for the betatron os-

cillation amplitude due to errors, setting 〈pi〉 = pi, is then

x2
β(z) = βx(z)

∑
i

βxi( pi �i )2 sin2 ψji (12.215)

or

〈x2
β(z)〉 = βx(z)βx 〈k2y2

β + ∆k2x2
β + m2(x2

βx
2
c + y2

βy
2
c )〉 1

2NM �2, (12.216)

where βx is the average value of the betatron functions at the errors, NM is
the number of perturbed magnets, and � is the magnet length. With k = kα,
where α is the rotational error, we get

〈x2
β(z)〉= 1

2βx(z)βx NM k2�2 (12.217)

×
[
σ2

α σ2
y + σ2

kσ
2
x +

m2

k2
(σ2

x σ2
yc − σ2

yσ
2
yc)
]
.

We have assumed the errors to have a Gaussian distribution with stan-
dard width σ. Therefore, σ2

α = 〈α2〉, σ2
k = 〈(∆k/k)2〉, σxc = 〈x2

c〉, etc.,
and σy, σx are the standard beam size for the Gaussian particle distrib-
ution. Since 〈x2

β(z)〉/β(z) = ∆εx is the increase in beam emittance and
σ2

x = εxβx, σ
2
y = εyβy we get for a round beam for which εx = εy and the

average values for the betatron functions are the same (βx = βy)

∆εx
εx

= 1
2β

2
NM k2 �2

[
σ2

α + σ2
k +

m2

k2
(σ2

xc + σ2
yc)
]

. (12.218)

To keep the perturbation of the beam small the alignment σα and magnet
field quality σk must be good and the focusing weak which, however, for other
reasons is not desirable. For a chromatically corrected beam line we have
k/m = η̄x, which can be used in (12.218). The perturbation of the vertical
beam emittance follows exactly the same results because we used a round
beam.

The expectation value for the shift of the beam path is derived from
(12.212a) , (12.213b) with (12.214) in a similar way as for the betatron os-
cillations

〈x2
c(z)〉 = 1

2βx(z)βx NM �2
[
〈∆κ2

x〉 + k2σ2
k〈x2

c〉 + k2 σ2
α〈y2

c 〉
]
. (12.219)

This expression for the path distortion, however, is not to be used to cal-
culate the perturbation of the dispersion. In any properly operated beam line
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one expects this path distortion to be corrected leading to a smaller residual
value depending on the correction scheme applied and the resolution of the
monitors. With some effort the path can be corrected to better than 1mm
rms which should be used to evaluate path-dependent perturbation terms in
(12.212), (12.213). In the vertical plane we get

〈y2
c (z)〉 = 1

2βy(z)βy NM �2
[
〈∆κ2

y〉 + k2σ2
k

〈
y2
c

〉
+ k2σ2

α〈x2
c〉
]
. (12.220)

The perturbation of the dispersion is with (12.212d) and (12.214)

vx(z) = −xc(z) +
√

βx(z)
∑

i

√
βxipxi�i sinψxji . (12.221)

In (12.212d) we note the appearance of the same perturbation terms as
for the path distortion apart from the sign and we therefore separate that
solution in (12.221). The perturbations left are then

pxi = (k −mηx) (xβ + xc) + m (yβ + yc) ηy + ∆k ηx + · · · (12.222)

In this derivation the betatron phase ψji does not depend on the energy
since the chromaticity is corrected. Without this assumption, we would get
another contribution to vx from the beam-path distortion. We also note that
the chromaticity factor (k − mηx) can to first order be set to zero for chro-
matically corrected beam lines. The expectation value for the distortion of the
dispersion is finally given by

〈v2
x(z)〉 = x2

c(z) + 1
2βx(z)βx NM �2

[
〈∆k2〉ηx

2 + m2ηy
2〈y2

β〉 + m2ηy
2〈y2

c 〉
]

(12.223)
or with some manipulation

〈v2
x(z)〉 = 〈x2

c(z)〉 + 1
2βx(z)βxNM k2�2

[
σ2

k ηx
2+
(
ηy

ηx

)2

(βy εy + σ2
yc)

]
.

(12.224)
The perturbation of the dispersion function is mainly caused by quadru-

pole field errors while the second term vanishes for a plane beam line where
ηy = 0. In principle, the perturbation can be corrected if a specific path dis-
tortion is introduced which would compensate the perturbation at the point
z as can be seen from (12.221). In the vertical plane we proceed just the same
and get instead of (12.221)

vy(z) = −yc(z) +
√

βy(z)
∑

i

√
βyi pyi �i sin ψyji (12.225)

with

pyi = −(k −mηx) (yβ + yc) + mvx(yβ + yc) (12.226)
+ m (ηy + vy ) (xβ + xc) −∆k(ηy + vy) − k (ηy + vy) .
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Again due to chromaticity correction we have (k −mηx) ≈ 0 and get for
the expectation value of

〈
v2

y

〉
in first approximation with vy ≡ 0 in (12.226)

and the average values η̄x and v̄x

〈v2
y(z)〉 = 〈y2

c (z)〉 + 1
2βy(z) β̄y NM k2 �2 (12.227)

×
[(

σ2
k + σ2

α +
〈x2

c〉
η̄2

x

)
η̄2

y +
v̄2

x

η̄2
x

(
βy εy + 〈 y2

c 〉
)]

.

For a plane beam line where ηy ≡ 0, we clearly need to go through a further
iteration to include the dispersion perturbation which is large compared to
ηy = 0. In this approximation, we also set yc(z) = 0 and

〈v2
y(z)〉 =

v̄2
x

η̄2
x

(
βyεy + 〈y2

c 〉
)
. (12.228)

Using this in a second iteration finally gives for the variation of the vertical
dispersion function due to field and alignment errors

〈v2
y(z)〉 = 〈y2

c (z)〉+ 1
2βy(z)β̄y NM k2�2

(
σ2

k + σ2
α +

〈x2
c〉

η̄2
x

)
(12.229)

×
[
(η̄2

y + v̄2
y) +

v̄2
y

η̄2
x

βxεx +
v̄2

x

η̄2
x

(βyεy + 〈y2
c 〉)
]
.

This second-order dispersion due to dipole field errors is generally small
but becomes significant in linear-collider facilities where extremely small beam
emittances must be preserved along beam lines leading up to the collision
point.

Problems

12.1. Design an electrostatic quadrupole with an aperture radius of 3 cm
which is strong enough to produce a tune split of δν = 0.01 between a counter
rotating particle and antiparticle beam at an energy of your choice. Assume
the quadrupole to be placed at a location with a betatron function of β = 10
m. How long must the quadrupole be if the electric field strength is to be
limited to no more than 15 kV/cm?

12.2 (S). Use the perturbation terms P22 (z) in (12.189) and show that pure
betatron oscillations in sextupoles do not cause a tune shift in first approxi-
mation. Identify the approximation made which may lead to a tune shift in
higher order. Why is there a finite tune shift for the P21 (z) term?

12.3. Consider a long, straight beam-transport line for a beam with an emit-
tance of ε = 10−12 rad m from the end of a 500 GeV linear collider linac
toward the collision point. Use a FODO channel with βmax = 5 m and deter-
mine lateral, rotational, and strength statistical tolerances for the FODO cell
quadrupoles to prevent the beam emittance from dilution of more than 10%.
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12.4. Derive the equation for the pole profile of an iron dominated octupole
with a bore radius R. To produce a field of 5 kG at the pole tip (R = 3 cm),
what total current in the coils is required?

12.5 (S). Show analytically that the dispersion function for a single bend-
ing magnet with a bending angle θ seems approximately to emerge from the
middle of the magnet with a slope D′ = θ.

12.6. Consider a compact storage ring optimized for x-ray lithography. The
circumference is 9 m, βx = βy = 1.2 m, and the beam emittances are εx = 10
mm mrad and εy = 5 mm mrad. The arcs consist of two 180◦ bending magnets
with a bending radius of ρ = 1.1 m and a vertical aperture g = 10 cm. The
bending magnet field drops off linearly in the fringe region which we assume
to be one vertical aperture long. Determine the five strongest nonchromatic
perturbation terms in the bending magnets and discuss their effect. Which
terms contribute to orbit distortions and which to the focusing or tune. What
is the average orbit distortion and tune shift? Are these effects the same for
all particles in the beam?

12.7. Use parameters of Example 4 in Table 7.1 for a FODO lattice and
construct a full ring. Adjust the quadrupole strength such that both tunes
are an integer plus a quarter. Calculate the rms alignment tolerance on the
quadrupoles required to keep the beam within σx = 0.1 mm and σx = 0.1
mm of the ideal orbit. What is the amplification factor? Determine the rms
deflection tolerance of the bending magnets to keep the beam within 0.1 mm
of the ideal orbit. A rotation of the bending magnets about its axis creates
vertical orbit distortions. If the magnets are aligned to a rotational tolerance of
σα = 0.17 mrad (this is about the limit of conventional alignment techniques)
what is the expectation value for the vertical orbit distortion?

12.8. Repeat the calculation of Problem 12.7 with the lattice Example 1 in
Table 7.1. The alignment tolerances are much relaxed with respect to the
ring in Problem 12.7. What are the main three contributions influencing the
tolerance requirements? Make general recommendations to relax tolerances.

12.9. Consider a compact storage ring with a circumference of 9 m, β̄x =
β̄y = 1.2 m and beam emittances εx = 10 mm mrad, and εy = mm mrad. The
arcs consist of two 180◦ sector bending magnets (ρ = 1.1 m) with a vertical
aperture of g = 10 cm. The bending magnet field drops off linearly in the
fringe region which we assume to be one vertical aperture long. Determine
the five strongest nonchromatic perturbation terms for the bending magnets.
Which terms contribute to the orbit and which to the focusing or the tune?
What is the average orbit distortion and tune shift? Are these effects the same
for all particles in the beam?

12.10. Consider statistical transverse alignment errors of the quadrupoles in
the large hadron collider lattice Example 4 in Table. 7.1 of 〈δx〉rms = 0.1
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mm. What is the rms path distortion at the end of one turn? Determine
the allowable rotational alignment error of the bending magnets to produce a
vertical path distortion of no more than that due to quadrupole misalignments.
How precise must the bending magnet fields be aligned to not contribute more
path distortion than the quadrupole misalignments.

12.11 (S). Use the lattice of Example 3 in Table 7.1 and introduce vertical
rms misalignments of all quadrupoles by 〈δx〉rms = 0.1 mm. Calculate the
vertical rms dispersion function. Then, add also rotational alignment errors
of the bending magnets by 〈δα〉rms = 0.17 mrad and calculate again the
vertical rms dispersion.

12.12 (S). We insert into the path of a particle beam two bending magnets of
equal but opposite strength. Such a deflection arrangement causes a parallel
displacement d of the beam path. Show that in this case the contribution
to the dispersion at the end of the second bending magnet is D = −d and
D′ = 0.

12.13 (S). For the ring in Problem 12.7 or 12.8 calculate the rms tolerance on
the quadrupole strength to avoid the integer or half integer resonance. What is
the corresponding tolerance on the quadrupole length? To avoid gradient fields
in bending magnets the pole profiles must be aligned parallel with respect to
the horizontal midplane. What is the angular tolerance for parallelism of the
poles?

12.14. Calculate the expectation value for the integer and half integer stop
band width of the ring in Problem 12.11. Gradient errors introduce a pertur-
bation of the betatron functions. What is the probable perturbation of the
betatron function for the case in Problem 12.11?

12.15. Consider a FODO cell equal to Examples 1, 2, and 4 in Table 7.1,
adjust the phase advance per cell to equal values and calculate the natural
chromaticities. Insert thin sextupoles into the center of the quadrupoles and
adjust to zero chromaticities. How strong are the sextupoles? Why must the
sextupoles for lattice 2 be so much stronger compared with lattice 4 even
though the chromaticity per cell is about the same?

12.16. Consider the transformation of phase ellipses through one full FODO
cell of the examples in Problem 12.15. Let the emittance for the phase ellipses
be ε = 10 mm mrad. First transform the equation for the phase ellipse into
a circle by setting u = x and v = αx + βx′. Transform the phase circle from
the center of the QF through one full FODO cell to the center of the next
QF ignoring any sextupole terms. Repeat this transformation but include now
the sextupole in the first QF only as calculated in Problem 12.15. Discuss the
distortions of the phase circle for the three different FODO lattices.
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12.17. Derive an expression for the probable variation of the betatron function
in a regular FODO lattice due to a statistical orbit distortion σu in sextupoles.
Assume the sextupoles to occupy the same location as the quadrupoles and
to have been adjusted to compensate the natural chromaticity of the FODO
lattice. What is the statistical contribution of this perturbation to the natural
chromaticity?

12.18. Derive an expression for the half integer stop band width due to orbit
errors in chromaticity correcting sextupoles. Calculate the half integer stop
band width for the ring of Problem 12.11 as a function of the rms orbit
distortion.

12.19. Derive an analytical expression for the nth-order integer stop band
width.



13

Hamiltonian Resonance Theory

Particle resonances in circular accelerators occur as a result of perturbation
terms involving particular Fourier harmonics. That approach is based on the
common knowledge that periodic perturbations of a harmonic oscillator can
cause a resonance when the perturbation frequency is equal to an eigenfre-
quency of the oscillator. In the realm of Hamiltonian resonance theory we will
be able to derive not only obvious resonant behavior but also resonant dynam-
ics which does not necessarily lead to a loss of the beam but to a significant
change of beam parameters. We also will be able to determine the strength of
resonances, effectiveness, escape mechanisms, and more.

13.1 Resonances

Perturbation terms in the equation of motion can lead to a special class of
beam instabilities called resonances, which occur if perturbations act on a
particle in synchronism with its oscillatory motion. While such a situation is
conceivable in a very long beam transport line composed of many periodic
sections, the appearance of resonances is generally restricted to circular ac-
celerators. There, perturbations occur periodically at every turn and we may
Fourier analyze the perturbation with respect to the revolution frequency. If
any of the harmonics of the perturbation terms coincides with the eigenfre-
quency of the particles a resonance can occur and particles may get lost. Such
resonances caused by field imperfections of the magnet lattice are also called
structural resonances or lattice resonances. We have already come across two
such resonances, the integer and the half integer resonances.

The characteristics of these two resonances is that the equilibrium orbit
and the overall focusing are not defined. Any small dipole or quadrupole error
would therefore lead to particle loss as would any deviation of the particle
position and energy from ideal values. Since these resonances are caused by
linear field errors, we also call them linear resonances. Higher order resonances
are caused in a similar way by nonlinear fields which are considered to be field
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errors with respect to the ideal linear lattice even though we may choose to
specifically include such magnets, like sextupoles or octupoles, into the lattice
to compensate for particular beam dynamics problems.

13.1.1 Resonance Conditions

In this section the characteristics of resonances in circular accelerators will be
derived in a general way starting from the equation of motion in normalized
coordinates with only the nth-order multipole perturbation term. This is no
restriction of generality since in linear approximation each multipole pertur-
bation having its own resonance structure will be superimposed to that of
other multipole perturbations. On the other hand, the treatment of only a
single multipole perturbation will reveal much clearer the nature of the res-
onance. The equation of motion in normalized horizontal coordinates for an
nth-order perturbation is from Sect. 5.3.1

ẅ + ν2
0 w = pn(ψ)wn−1, (13.1)

where ν0 is the unperturbed horizontal tune. A similar equation holds for
vertical oscillations v(ψ).

The perturbations can be any of the terms in the equations of motion
(2.31) , (2.33); however, we will consider primarily perturbation terms which
occur most frequently in circular accelerators and are due to rotated quadru-
pole or nonlinear multipole fields. The general treatment of resonances for
other perturbations is not fundamentally different and is left to the interested
reader. From Chap. 2 we extract the dominant perturbation terms in nor-
malized coordinates and compile them in Table 13.1 ordered by horizontal
perturbations of order n and vertical perturbations of order r. The perturba-
tions pn(ϕ) are periodic in ϕ and can be expanded into a Fourier series

pn(ϕ) =
∑
m

pnmeimϕ. (13.2)

Since the perturbation is supposed to be small, we will insert the unper-
turbed oscillation w0 on the right-hand side of (13.1). The general form of the
unperturbed betatron oscillation can be written like

w0(ϕ) = a eiν0ϕ + b e−iν0ϕ, (13.3)

where a and b are arbitrary constants and we may now express the amplitude
factor in the perturbation term wn−1(ϕ) by a sum of exponential terms which
we use on the right-hand side of (13.1) as a first approximation

wn−1(ϕ) ≈ wn−1
0 (ϕ) =

∑
|q| ≤n−1

Wq e−iqν0ϕ. (13.4)

We insert both (13.2) and (13.4) in (13.1) and get for the equation of
motion
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Table 13.1. Perturbation terms

Order p̄nx(ϕ) wn−1vr−1 p̄ny(ϕ) wn−1vr−1

n r

1 2 −ν2
x0β

3/2
x β

1/2
y kv

2 1 −ν2
y0β

1/2
x β

3/2
y kw

3 1 −ν2
x0β

5/2
x

1
2
mw2

2 2 −ν2
y0β

1/2
x β2

ym vw

1 3 +ν2
x0β

3/2
x βy

1
2
mv2

4 1 −ν2
x0β

3
x

1
6
r w3

3 2 +ν2
y0βxβ2

y
1
2
r w2v

2 3 +ν2
x0β

2
xβy

1
2
r wv2

1 4 −ν2
y0β

3
y

1
6
r v3

ẅ + ν2
0w =

∑
q,m

Wq pnm e−i(m+qν0)ϕ. (13.5)

The solution of this equation includes resonant terms whenever there is
a perturbation term with a frequency equal to the eigenfrequency ν0 of the
oscillator. The resonance condition is therefore

m + q ν0 = ν0 with |q| ≤ n− 1. (13.6)

From earlier discussions we expect to find the integer resonance caused
by dipole errors n = 1. In this case the index q can only be q = 0 and we get
from (13.6)

ν0 = m (13.7)

which is indeed the condition for an integer resonance.
Magnetic gradient field errors (n = 2) can cause both a half integer reso-

nance as well as an integer resonance. The index q can have the values 0 and
±1. Note however that not all coefficients Wq necessarily are nonzero. In this
particular case, the coefficient for q = 0 is indeed zero as becomes obvious
by an inspection of (13.3). The resonance conditions for these second-order
resonances are

m + ν0 = ν0 → m = 0 → tune shift,

m− ν0 = ν0 → m = 2ν0 → integer and half integer resonance,

m = ν0 → no resonance because W0 = 0.

(13.8)
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Among the resonance conditions (13.8) we notice that for m = 0 the effect
of the perturbation on the particle motion exists independent of the particular
choice of the tune ν0. The perturbation includes a nonvanishing average value
p20 which in this particular case represents the average gradient error of the
perturbation. Like any other gradient field in the lattice, this gradient error
also contributes to the tune and therefore causes a tune shift. From (13.1) we
find the new tune to be determined by ν2 = ν2

0 − p20 and the tune shift is
δν ≈ −p20/(2ν0) in agreement with our earlier result in Sect. 12.1.4.

Third-order resonances n = 3 can be driven by sextupole fields and the
index q can have values

q = −2, −1, 0, +1, +2 . (13.9)

Here we note that W1 = W−1 = 0 and therefore no resonances occur for
q = ±1. The resonance for sextupole field perturbations are then

m− 2ν0 = ν0 → m = 3ν0 → third-order resonance,

m = ν0 → m = ν0 → integer resonance,

m + 2ν0 = ν0 → m = −ν0 → integer resonance.

(13.10)

Sextupole fields can drive third-order resonances at tunes of

ν0 = p + 1
3 or ν0 = p − 1

3 , (13.11)

where p is an integer. Finally we derive resonance conditions for octupole
fields, n = 4, for

q = −3, −2, −1, 0, +1, +2, +3 (13.12)

and again some values of q do not lead to a resonance since the amplitude
coefficient Wq is zero. For octupole terms this is the case for q = 0 and q = ±2.
The remaining resonance terms are then

m − 3ν0 = ν0 → m = 4ν0 → quarter integer resonance,

m − ν0 = ν0 → m = 2ν0 → half integer resonance,

m + ν0 = ν0 → m = 0 → tune spread,

m + 3ν0 = ν0 → m = −2ν0 → half integer resonance.

(13.13)

The resonance condition for m = 0 leads to a shift in the oscillation fre-
quency. Different from gradient errors, however, we find the tune shift gen-
erated by octupole fields to be amplitude dependent ν2 = ν2

0 − p̄40 W
2
0 . The

amplitude dependence of the tune shift causes an asymmetric tune spread to
higher or lower values depending on the sign of the perturbation term p̄40
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while the magnitude of the shift is determined by the oscillation amplitude of
the particle.

The general resonance condition for betatron oscillations in one plane can
be expressed by

|m | = (|q| ± 1) ν0, (13.14)

where the value |q|+ 1 is the order of resonance. The index m is equal to the
order of the perturbation Fourier harmonics and we call therefore these res-
onances structural or lattice resonances to distinguish them from resonances
caused, for example, by externally driven oscillating fields.

The maximum order of resonances in this approximation depends on the
order of nonlinear fields present. An nth order multipole field can drive all
resonances up to nth order with driving amplitudes that depend on the actual
multipole field strength and locations within the lattice. The term resonance
is used very generally to include also effects which do not necessarily lead to a
loss of the beam. Such “resonances” are characterized by m = 0 and are inde-
pendent of the tune. In the case of gradient errors this condition was shown to
lead to a stable shift in tune for the whole beam. Unless this tune shift moves
the beam onto another resonance the beam stability is not affected. Similarly,
octupole fields introduce a spread of tunes in the beam proportional to the
square of the oscillation amplitude. Again no loss of particles occurs unless
the tune spread reaches into the stop band of a resonance. By induction we
conclude that all even perturbation terms, where n is an even integer, lead to
some form of tune shift or spread. No such tune shifts occur for uneven per-
turbations in the approximation used here. Specifically we note that dipoles,
sextupoles, or decapoles, etc. do not lead to a tune shift for weak perturba-
tions. Later, however, we will discuss the Hamiltonian resonance theory and
find, for example, that strong sextupole perturbations can indeed cause a tune
spread.

In this derivation of resonance parameters we have expanded the perturba-
tions into Fourier series and have assumed the full circular accelerator lattice
as the expansion period. In general, however, a circular accelerator is com-
posed of one or more equal superperiods. For a circular lattice composed of
N superperiods the Fourier expansion has nonzero coefficients only every nth
harmonic and therefore the modified resonance conditions are

| j |N = (|q| ± 1) ν0, (13.15)

where j is an integer. A high superperiodicity actually eliminates many reso-
nances and is therefore a desirable design feature for circular accelerator lat-
tices. The integer and half integer resonances, however, will always be present
independent of the superperiodicity because the equilibrium orbits and the
betatron functions, respectively, are not defined. On the other hand, integer
and half integer resonances driven by multipole perturbations may be elim-
inated in a high periodicity lattice with the overall effect of a reduced stop
band width. It should be noted here that the reduction of the number of
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resonances works only within the applied approximation. “Forbidden” reso-
nances may be driven through field and alignment errors which compromise
the high lattice periodicity or by strong nonlinearities and coupling creating
resonant driving terms in higher order approximation. Nevertheless, the for-
bidden resonances are weaker in a lattice of high periodicity compared to a
low periodicity lattice.

13.1.2 Coupling Resonances

Betatron motion in a circular accelerator occurs in both the horizontal and
vertical plane. Perturbations can be present which depend on the betatron os-
cillation amplitude in both planes. Such terms are called coupling terms. The
lowest order coupling term is caused by a rotated quadrupole or by the rota-
tional misalignment of regular quadrupoles. In general we have the equation
of motion

ẅ + ν2
0x w = p̄nr(ϕ)wn−1 vr−1, (13.16)

where n, r are integers and w describes betatron oscillations in one, the hori-
zontal, plane and v describes the betatron oscillation in the vertical plane.

Again we use the unperturbed solutions w0(ϕ) and v0(ϕ) of the equations
of motion in the form (13.3) and express the higher order amplitude terms in
the perturbation by the appropriate sums of trigonometric expressions:

p̄nr(ϕ) =
∑
m

p̄nrm eimϕ,

wn−1(ϕ) =
∑

|l| ≤n−1

Wl eilν0xϕ, (13.17)

vr−1(ϕ) =
∑

|q| ≤ r−1

Vq eiqν0yϕ .

Insertion into (13.16) gives after some sorting

ẅ + ν2
0x w =

∑
p̄nrm Wl Vq ei[(m+l ν0x+q ν0y) ϕ], (13.18)

where m, l, and q are integers. The resonance condition is

m + l ν0x + q ν0y = ν0x, (13.19)

and the quantity
|l| + |q| + 1 (13.20)

designates the order of the coupling resonances. Again, for a superperiodicity
N we replace m by j N , where j is an integer. As an example, we discuss a
perturbation term caused by a rotated quadrupole for which the equation of
motion is

ẅ + ν2
0 w = p̄1,2(ϕ) v . (13.21)
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In this case we have n = 1 and r = 2 and the resonance condition with
s = 0 and q = ±1 is from (13.19)

m + q ν0y = ν0x . (13.22)

Resonance occurs for

|m | = ν0x + ν0y and |m | = ν0x − ν0y . (13.23)

There is no coupling resonance for q = 0 since v0 = 0. The resonances
identified in (13.23) are called linear coupling resonances or a linear sum res-
onance and a linear difference resonance, respectively. In circular accelerator
design we therefore adjust the tunes such that a sum resonance is avoided.

Delaying proof for a later discussion we note at this point that the sum
resonance can lead to a loss of beam while the difference resonance does not
cause a loss of beam but rather leads to an exchange of horizontal and vertical
betatron oscillations.

13.1.3 Resonance Diagram

The resonance condition (13.19) has been derived for horizontal motion only,
but a similar equation can be derived for the vertical motion. Both resonance
conditions can be written in a more symmetric way

k ν0x + l ν0y = iN, (13.24)

where k, l, i are integers and |k|+ |l| is the order of the resonance. Plotting all
straight lines from (13.24) for different values of k, l, i in a (νy, νx) diagram
produces what is called a resonance diagram. In Fig. 13.1 an example of a
resonance diagram for N = 1 is shown displaying all resonances up to 3rd
order with |k| + |l| ≤ 3.

The operating points for a circular accelerator are chosen to be clear of
any of these resonances. It should be noted here that the resonance lines are
not mathematically thin lines in the resonance diagram but rather exhibit
some “thickness” which is called the stop band width. This stop band width
depends on the strength of the resonance as was discussed earlier.

Not all resonances are of the same strength and generally get weaker with
increasing order. While a particle beam would not survive on an integer or
a half integer resonance all other resonances are basically survivable. Only
in particular cases, where strong multipole field perturbations cause a higher
order resonance, we may observe beam loss. This is very likely to be the
case for third-order resonances in rings, where strong sextupole magnets are
employed to correct for chromatic aberrations.

The beneficial effect of a high superperiodicity or symmetry N in a cir-
cular accelerator becomes apparent in such a resonance diagram because the
density of resonance lines is reduced by the factor N and the area of sta-
bility between resonances to operate the accelerator becomes proportionately
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Fig. 13.2. Resonance diagram for a ring with superperiodicity 4, N = 4

larger. In Fig. 13.2, the resonance diagram for a ring with superperiodicity
four N = 4 is shown and the reduced number of resonances is obvious. Wher-
ever possible a high symmetry in the design of a circular accelerator should
be attempted. Conversely, breaking a high order of symmetry can lead to a
reduction in stability if not otherwise compensated.
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13.2 Nonlinear Hamiltonian

While simple Fourier expansions of perturbations around a circular accelerator
allow us to derive the locations of lattice resonances in the tune diagram, we
can obtain a much deeper insight into the characteristics of resonances through
the application of the Hamiltonian theory of linear and nonlinear oscillators.
Soon after the discovery of strong focusing, particle dynamicists noticed the
importance of perturbations with respect to beam stability and the possibility
of beam instability even in the presence of very strong focusing.

Extensive simulations and development of theories were pursued in an ef-
fort to understand beam stability in high energy proton synchrotrons then
being designed at the Brookhaven National Laboratory and CERN. The first
Hamiltonian theory of linear and nonlinear perturbations has been published
by Schoch [126] which also includes references to early attempts to solve per-
turbation problems. A modern, consistent and complete theory of all reso-
nances has been developed, for example, by Guignard [127]. In this text, we
will concentrate on main features of resonance theory and point the interested
reader for more details to these references.

Multipole perturbations have been discussed as the source of resonances
and we will discuss in this chapter the Hamiltonian resonance theory. The
equation of motion under the influence of an nth order perturbation is in
normalized coordinates (see Table 13.1)

ẅ + ν2
0w = p̄n(ψ)wn−1, (13.25)

which can also be derived from the nonlinear Hamiltonian

Hw =
1
2
ẇ2 +

1
2
ν2
0 w2 + pn(ϕ)

ν
n/2
0

2n/2
wn. (13.26)

Here we expand the expression for the perturbation p̄n(ϕ) from Table 13.1 by
some constant factors like

pn(ϕ) = −p̄n(ϕ)
1
n

(ν0

2

)−n/2

(13.27)

for future convenience.
To discuss resonance phenomena it is useful to perform a canonical trans-

formation from the coordinates (w, ẇ) to action-angle variables (J, ψ) which
can be derived from the generating function (2.57) and the new Hamiltonian
expressed in action-angle variables is

H = ν0 J + pn(ϕ)Jn/2 cosn (ψ − ϑ) . (13.28)

The action-angle variables take on the role of an “energy” and frequency
of the oscillatory system. Due to the phase-dependent perturbation pn (ϕ)
the oscillation amplitude J is no more a constant of motion and the circular
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Fig. 13.3. Nonlinear perturbation of phase space motion

motion in phase space of Fig. 13.3a becomes distorted as shown in Fig. 13.3b
for a sextupolar perturbation. The oscillator frequency ψ̇ = ∂ψ/∂ϕ = ν is
similarly perturbed and can be derived from the second Hamiltonian equation
of motion

∂H

∂J
= ψ̇ = ν = ν0 + n

2 pn(ϕ)Jn/2−1 cosn (ψ − ϑ) . (13.29)

Perturbation terms seem to modify the oscillator frequency ν0 but because
of the oscillatory trigonometric factor it is not obvious if there is a net shift
or spread in the tune. We therefore expand the perturbation pn(ϕ) as well
as the trigonometric factor cosn ψ to determine its spectral content. The dis-
tribution of the multipole perturbations in a circular accelerator is periodic
with a periodicity equal to the length of a superperiod or of the whole ring
circumference and we are therefore able to expand the perturbation pn(ϕ)
into a Fourier series

pn(ϕ) =
∑

q

pnq e−iqNϕ, (13.30)

where N is the superperiodicity of the circular accelerator. We also expand
the trigonometric factor in (13.29) into exponential functions, while dropping
the arbitrary phase ϑ

cosn ψ =
∑

|m|≤n

cnm eimψ (13.31)

and get
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pn(ϕ) cosn ψ =
∑

q

pnq e−iqNϕ
∑

|m|≤n

cnm eimψ

=
∑

q
|m|≤n

cnm pnq ei(mψ−qNϕ) (13.32)

= cn0 pn0 +
∑
q≥0

0<m≤n

2 cnm pnq cos(mψ − qNϕ) .

In the last equation, the perturbation pn(ϕ) is expanded about a symme-
try point merely to simplify the expressions of resonant terms. For asymmetric
lattices the derivation is similar but includes extra terms. We have also sepa-
rated the nonoscillatory term cn0pn0 from the oscillating terms to distinguish
between systematic frequency shifts and mere periodic variations of the tune.
Hamiltonian (13.28) now becomes with (13.32)

H = ν0 J + cn0 pn0 J
n/2 + Jn/2

∑
q≥0

0<m≤n

2 cnm pnq cos(mψ − qNϕ) . (13.33)

The third term on the r.h.s. consists mostly of fast oscillating terms which
in this approximation do not lead to any specific consequences. For the mo-
ment we will ignore these terms and remember to come back later in this
chapter. The shift of the oscillator frequency due to the lowest order pertur-
bation becomes obvious and may be written as

∂H

∂J
= ψ̇ = ν = ν0 + n

2 cn0 pn0 J
n/2−1 + oscillatory terms. (13.34)

Since cn0 
= 0 for even values of n only, we find earlier results confirmed,
where we observed the appearance of amplitude-dependent tune shifts and
tune spreads for even-order perturbations. Specifically we notice that there is
a coherent tune shift for all particles within a beam in the case of a gradient
field perturbation with n = 2 and a tune spread within a finite beam size for
all other higher and even-order multipole perturbations.

We should recapitulate at this point where we stand and what we have
achieved. The canonical transformation of the normalized variables to action-
angle variables has indeed eliminated the angle coordinate as long as we ne-
glect oscillatory terms. The angle variable therefore is in this approximation
a cyclic variable and the Hamiltonian formalism tells us that the conjugate
variable, in this case the amplitude J , is a constant of motion or an invariant.
This is an important result which we obtained by simple application of the
Hamiltonian formalism confirming our earlier expectation to isolate constants
of motion.

This has not been possible in a rigorous way since we had to obtain ap-
proximate invariants by neglecting summarily all oscillatory terms. In certain
circumstances this approximation can lead to totally wrong results. To isolate
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these circumstances we pursue further canonical transformations to truly sep-
arate from the oscillating terms all nonoscillating terms of order n/2 while the
rest of the oscillating terms are transformed to a higher order in the amplitude
J .

13.3 Resonant Terms

Neglecting oscillating terms is justified only in such cases where these terms
oscillate rapidly. Upon a closer inspection of the arguments in the trigono-
metric functions we notice however that for each value of m in (13.33) there
exists a value q which causes the phase

mr ψr ≈ mψ − q N ϕ (13.35)

to vary slowly possibly leading to a resonance. The condition for the occur-
rence of a resonance is ψr ≈ 0 or with ψ ≈ ν0ϕ

mrν0 ≈ rN, (13.36)

where we have set q = r to identify the index for which the resonance condition
(13.36) is met. The index mr is the order of the resonance and can assume
any integer value between 1 and n.

The effects of resonances do not only appear when the resonance condition
is exactly fulfilled for ψr = 0. Significant changes in the particle motion can
be observed when the particle oscillation frequency approaches the resonance
condition. We therefore keep all terms which vary slowly compared to the
betatron frequency ψ̇.

After isolating resonant terms we may now neglect all remaining fast os-
cillating terms with m 
= mr. Later we will show that these terms can be
transformed to higher order and are therefore of no consequence to the order
of approximation of interest. Keeping only resonant terms defined by (13.36),
we get from (13.33) the nth-order Hamiltonian in normalized coordinates

H = ν0 J + cn0 pn0 J
n/2 + Jn/2

∑
r

0<mr≤n

2 cnmr
pnr cos(mrψr) . (13.37)

The value of mr indicates the order of the resonance and we note that
the maximum order of resonance driven by a multipole of order n is not
higher than n. A dipole field therefore can drive only an integer resonance, a
quadrupole field up to a half integer resonance, a sextupole up to a third-order
resonance, an octupole up to a quarter resonance, and so forth. As we have
noticed before, whenever we derive mathematical results we should keep in
mind that such results are valid only within the approximation under consid-
eration. It is, for example, known [128] that sextupoles can also drive quarter
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integer resonances through higher order terms. In nonlinear particle beam dy-
namics any statement about stability or instability must be accompanied by
a statement defining the order of approximation made to allow independent
judgement for the validity of a result to a particular problem.

The interpretation of Hamiltonian (13.37) becomes greatly simplified after
another canonical transformation to eliminate the appearance of the indepen-
dent variable ϕ. We thereby transform to a coordinate system that moves
with the reference particle, thus eliminating the linear motion that we al-
ready know. This can be achieved by a canonical similarity transformation
from the coordinates (J, ψ) to (J1, ψ1) which we derive from the generating
function

G1 = J1

(
ψ − r Nϕ

mr

)
. (13.38)

From this we get the relations between the old and new coordinates

∂G1

∂J1
= ψ1 = ψ − r N

mr
ϕ (13.39)

and
∂G1

∂ψ
= J = J1 . (13.40)

The quantity ψ1 now describes the phase deviation of a particle from
that of the reference particle. Since the generating function depends on the
independent variable ϕ we get for the new Hamiltonian H1 = H +∂G1/∂ϕ or

H1 =
(
ν0 −

r N

mr

)
J1 + cn0 pn0 J

n/2
1 + p̃nr J

n/2
1 cos(nψ1) , (13.41)

where we have retained for simplicity only the highest order resonant term as
discussed earlier and have set

p̃nq = 2 cnmr
pnq . (13.42)

With ψ̇ = (dψ/dϕ) = ν and (13.36) a resonance condition occurs whenever

ν0 ≈ rN

mr
= νr . (13.43)

Setting ∆νr = ν0 − νr for the distance of the tune ν0 from the resonance
tune νr, the Hamiltonian becomes with all perturbation terms

H = ∆νr J1 +
∑

n

cn0 pn0 J
n/2
1 +

∑
n

J
n/2
1

∑
r

0<mr≤n

p̃nr cos(mrψ1) . (13.44)

The coefficients cn0 are defined by (13.31) and the harmonic amplitudes of
the perturbations are defined with (13.42) by the Fourier expansion (13.30).
The resonance order r and integer mr depend on the ring tune and are selected
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such that (13.43) is approximately met. A selection of most common multipole
perturbations are compiled in Table 13.1 and picking an nth-order term we
get from (13.27) the expression for pn(ϕ).

In the course of the mathematical derivation we started out in (13.26)
with only one multipole perturbation of order n. For reasons of generality,
however, all orders of perturbation n have been included again in (13.44). We
will, however, not deal with the complexity of this multiresonance Hamiltonian
nor do we need to in order to investigate the character of individual resonances.
Whatever the number of actual resonances may be in a real system the effects
are superpositions of individual resonances. We will therefore investigate in
more detail single resonances and discuss superpositions of more than one
resonance later in this chapter.

13.4 Resonance Patterns and Stop-Band Width

Equation (13.44) can be used to calculate the stop band width of resonances
and to explore resonance patterns which are a superposition of particle tra-
jectories H =const. in (ψ1, J1) phase space. Depending on the nature of the
problem under study, we may use selective terms from both sums in (13.44).
Specifically to illustrate characteristic properties of resonances, we will use
from the first sum the term c40p40, which originates from an octupole field.
From the second sum we choose a single nth-order term driving the rth-
resonance and get the simplified Hamiltonian

H1 = ∆νr J1 + c40 p40 J
2
1 + p̃nr J

n/2
1 cos(mrψ1) = const. (13.45)

To further simplify the writing of equations and the discussion of results we
divide (13.45) by p̃nr J

n/2
0 , where the amplitude J0 is an arbitrary reference

amplitude of a particle at the starting point J0 = J1 (ϕ = 0). Defining an
amplitude ratio or beat factor

R =
J

J0
, (13.46)

and considering only resonances of order mr = n, (13.45) becomes

∆R + ΩR2 + Rn/2 cosnψ1 = const. (13.47)

where the detuning from the resonance is

∆ =
∆νr

p̃nr J
n/2−1
0

(13.48)

and the tune-spread parameter

Ω =
c40 p40

p̃nr J
n/2−2
0

. (13.49)
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This expression has been derived first by Schoch [126] for particle beam
dynamics. Because the ratio R describes the variation of the oscillation am-
plitude in units of the starting amplitude J0, we call the quantity R the beat
factor of the oscillation.

Before we discuss stop bands and resonance patterns, we make some gen-
eral observations concerning particle stability. The stability of particle motion
in the vicinity of resonances depends strongly on the distance of the tune from
the nearest nth-order resonance and on the tune-spread parameter Ω. When
both parameters ∆ and Ω vanish we have no stability for any finite oscil-
lation amplitude, since it can be solved for all values of ψ1 only if R = 0.
For a finite tune-spread parameter Ω 
= 0 while ∆ = 0 and (13.47) becomes
R2
(
Ω + Rn/2−2 cosnψ1

)
= const. and resonances of order n > 4 exhibit some

range of stability for amplitudes Rn/2−2< |Ω|. Oscillations in the vicinity of,
for example, a quarter resonance are all stable for |Ω| > 1 and all unstable for
smaller values of the tune-spread parameter |Ω| < 1. A finite tune-spread pa-
rameter Ω appears in this case due to an octupolar field and has a stabilizing
effect at least for small amplitudes.

For very small oscillation amplitudes R → 0 the oscillating term in (13.47)
becomes negligible for n > 4 compared to the detuning term and the particle
trajectory approaches the form of a circle with radius R. This well behaved
character of particle motion at small amplitudes becomes distorted for reso-
nances of order n = 2 and n = 3 in the case of small detuning and a finite
tune spread parameter. We consider ∆ = 0 and have

ΩR2 + Rn/2 cosnψ = const., (13.50)

where n = 2 or n = 3. For very small amplitudes the quadratic term is negli-
gible and the dominant oscillating term alone is unstable. The amplitude for
a particle starting at R ≈ 0 and ψ1 = 0 grows to large amplitudes as ψ1 in-
creases, reaching values which make the quadratic tune-spread term dominant
before the trigonometric term becomes negative. The resulting trajectory in
phase space becomes a figure of eight for the half integer resonance as shown
in Fig. 13.4.

In the case of a third-order resonance small amplitude oscillations behave
similarly and follow the outline of a clover leave as shown in Fig. 13.5.

13.4.1 Half integer stop band

A more detailed discussion of (13.44) will reveal that instability due to reso-
nances does not only happen exactly at resonant tunes. Particle oscillations
become unstable within a finite vicinity of resonance lines in the resonance
diagram and such areas of instability are known as stop bands. The most
simple case occurs for Ω = 0 and a half integer resonance, where n = 2 and

R (∆ + cos 2ψ1) = const . (13.51)
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Fig. 13.4. (R, ψ1) phase-space motion for a half-integer resonance. Top row from
left to right: Ω = 0 and ∆ = (−5,−2,−1.1, 0, 2) ; bottom row: Ω = 1 and ∆ =
(−5,−2,−1.1, 0, 2) .

Fig. 13.5. (R, ψ1) phase space motion for a third-order resonance. Top row from
left to right: Ω = 0, ∆ = (−6,−2, 0, 3) ; bottom row: Ω = 1, ∆ = (−6,−2, 0, 3)

For this equation to be true for all values of the angle variable ψ1 we
require that the quantity in the brackets does not change sign while ψ1 varies
from 0 to 2π. This condition cannot be met if |∆| ≤ 1. To quantify this we
observe a particle starting with an amplitude J = J0 at ψ1 = 0 and (13.51)
becomes

R∆ + R cos 2ψ1 = ∆ + 1 . (13.52)

Now we calculate the variation of the oscillation amplitude R as the angle
variable ψ1 increases. The beat factor R reaches its maximum value at 2ψ1 =
π and is
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Rmax =
∆ + 1
∆− 1

> 0 . (13.53)

The variation of the amplitude R is finite as long as ∆ > 1. If ∆ < 0, we get
a similar stability condition

Rmax =
|∆| − 1
|∆| + 1

> 0 (13.54)

and stability occurs for ∆ < −1. The complete resonance stability criterion
for the half integer resonance is therefore

|∆| > 1 . (13.55)

Beam instability due to a half integer resonance, where n = 2, occurs
within a finite vicinity ∆νr = ± p̃2r = ±2c2rp2r as defined by (13.48) and the
total stop band width for a half integer resonance becomes

∆ν
(2)
stop = 2 p̃2r . (13.56)

The width of the stop band increases with the strength of the perturbation
but does not depend on the oscillation amplitude J0. However, for higher order
resonances the stop band width does depend on the oscillation amplitudes as
will be discussed later.

To observe the particle trajectories in phase space, we calculate the con-
tour lines for (13.47) setting n = 2 and obtain patterns as shown in Fig. 13.4.
Here the particle trajectories are plotted in the (ψ, J) phase space for a vari-
ety of detuning parameters ∆ and tune-spread parameters Ω. Such diagrams
are called resonance patterns. The first row of Fig. 13.4 shows particle tra-
jectories for the case of a half integer resonance with a vanishing tune-spread
parameter Ω = 0. As the detuning ∆ is increased we observe a deformation of
particle trajectories but no appearance of a stable island as long as |∆| < 1.
Although we show mostly resonance patterns for negative values of the de-
tuning ∆ < 0, the patterns look exactly the same for ∆ > 0 except that
they are rotated by 90◦. For |∆| > 1 the unstable trajectories part vertically
from the origin and allow the appearance of a stable island that grows as the
detuning grows. In the second row of resonance patterns, we have included
a finite tune-spread parameter of Ω = 1 which leads to a stabilization of all
large amplitude particle trajectories. Only for small amplitudes do we still
recognize the irregularity of a figure of eight trajectory as mentioned above.

13.4.2 Separatrices

The appearance of island structures as noticeable from the resonance patterns
is a common phenomenon and is due to tune-spread terms of even order like
that of an octupole field. In Fig. 13.6 common features of resonance patterns
are shown and we note specifically the existence of a central stable part and
islands surrounding the central part.
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Fig. 13.6. Common features of resonance patterns

The boundaries of the areas of stable motion toward the islands are called
separatrices. These separatrices also separate the area of stable motion from
that for unstable motion. The crossing points of these separatrices, as well as
the center of the islands, are called fixed points of the dynamic system and
are defined by the conditions

∂H1

∂ψ1
= 0 and

∂H1

∂J1
= 0 . (13.57)

Application of these conditions to (13.45) defines the location of the fixed
points and we find from the first equation (13.57) the azimuthal positions
ψ1 = ψf of the fixed points from

sin (mrψ1f) = 0 (13.58)

or
mrψ1f k = kπ, (13.59)

where k is an integer number in the range 0 < k < 2mr. From the second
equation (13.57) we get an expression for the radial location of the fixed points
Jf k

∆νr + 2c40 p40 Jf k + n
2 p̃nr J

n/2−1
f k cos(πk) = 0 . (13.60)

There are in principle 2mr separate fixed points in each resonance dia-
gram. Closer inspections show that alternately every second fixed point is a
stable fixed point, or an unstable fixed point, respectively. The unstable fixed
points coincide with the crossing points of separatrices and exist even in the
absence of octupole terms. Stable fixed points define the center of stable is-
lands and, except for the primary stable fixed point at the origin of the phase
diagram, exist only in the presence of a tune spread caused by octupole like
terms cn0 pn0 J

n/2 in (13.41), which contribute to beam stability. Trajecto-
ries that were unstable without the octupole term become closed trajectories
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Fig. 13.7. Fourth-order resonance patterns. From left to right: Ω = 0,
(∆ < 0, ∆ = 0, ∆ > 0)

within an island area centered at stable fixed points. This island structure
is characteristic for resonances since the degree of symmetry is equal to the
order of the resonance (see Fig. 13.7).

13.5 General Stop-Band Width

From the discussion of the half integer resonance, it became apparent that
certain conditions must be met to obtain stability for particle motion. Specif-
ically we expect instability in the vicinity of resonances and we will try to
determine quantitatively the area of instability or stop-band width for gen-
eral resonances. Similar to (13.52) we look for stable solutions from

R∆ + Rn/2 cosnψ1 = ∆± 1, (13.61)

which describes a particle starting with an amplitude R = 1. Equation (13.61)
must be true along all points of the trajectory and for reasons of symmetry
the particle oscillation amplitude approaches again the starting amplitude for
ψ1 = 0 as ψ1 → 2π/n. Solving for ∆ we get real solutions for R only if

∆+ ≥ − Rn/2 − 1
R− 1

=⇒ −1
2
n for R ≈ 1, (13.62)

where the index + indicates the sign to be used on the r.h.s. of (13.61).
Similarly, following a particle starting with R = 1 at ψ1 = π/n to ψ1 = 3π/n
we get the condition

∆− ≤ 1
2n . (13.63)

The total nth-order stop-band width is therefore with (13.48)

∆ν
(n)
stop = n | p̃nr| Jn/2−1

0 (13.64)

indicating that stable particle motion is possible only for tunes outside this
stop-band. The stop-band width of nonlinear resonances (n > 2) is strongly
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amplitude dependent and special effort must be exercised to minimize higher-
order perturbations. Where higher-order magnetic fields cannot be eliminated
it is prudent to minimize the value of the betatron functions at those locations.

Where higher-order magnetic fields cannot be eliminated it is prudent
to minimize the value of the betatron functions at those locations. Such a
case occurs, for example, in colliding-beam storage rings, where the strongly
nonlinear field of one beam perturbs the trajectories of particles in the other
beam. This effect is well known as the beam-beam effect.

Through a series of canonical transformations and redefinitions of parame-
ters we seem to have parted significantly from convenient laboratory variables
and parameters. We will therefore convert (13.64) back to variables we are
accustomed to use. Equation (13.42) becomes p̃nr = 2cnn pnr with q = r, and
mr = n, where r ≈ n

N ν0. Tacitly, lower order resonances mr < n have been
ignored. From (13.30) we find the Fourier component and from

pnr =
1
2π

∫ 2π

0

pn(ϕ) eirNϕdϕ, (13.65)

and from (13.31) we have cnn = 1
2n . The amplitude factor J

n/2−1
0 in (13.64)

is replaced by (5.96), which becomes with (2.59a), (2.59b) and ψ1 = 0

J0 =
1
2
ν0w

2
0 =

1
2
ν0

x2
0

β
. (13.66)

Finally, we recall definition (13.27) pn(ϕ) = − 1
npn (ϕ)

(
ν0
2

)−n/2and get
for the nth-order stop-band width

∆ν
(n)
stop =

wn−2
0

2n−1πν0

∣∣∣∣
∫ 2π

0

pn(ϕ) eirNϕdϕ
∣∣∣∣ , (13.67)

where pn is the nth-order perturbation from Table 13.1. This result is general
and includes our earlier finding for the half-integer resonance. For resonances
of order n > 2 the stop-band width increases with amplitude limiting the sta-
bility of particle beams to the vicinity of the axis (Fig. 13.8). The introduction
of sufficiently strong octupole terms can lead to a stabilization of resonances
and we found, for example, that the quarter resonance is completely stabi-
lized if Ω ≥ 1. For resonances of order n > 4, however, the term Rn/2 cosnψ1

becomes dominant for large values of the amplitude and resonance therefore
cannot be avoided.

Figure 13.9 shows, for example, a stable area for small amplitudes at the
5th-order resonance, as we would expect, but at larger amplitudes the motion
becomes unstable.

13.6 Third-Order Resonance

The third-order resonance plays a special role in accelerator physics and
we will therefore discuss this resonance in more detail. The special role is
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

n=   5      4          3                     2

J0

betatron tune,ν

Ω = 0

Fig. 13.8. Stop-band width as a function of the amplitude J0 for resonances of
order n = 2, 3, 4, 5 and detuning parameter Ω = 0

Fig. 13.9. Fifth-order resonance patterns. From left to right: Ω = 0,
(∆ < 0, ∆ = 0, ∆ > 0)

generated by the need to use sextupoles for chromaticity correction. While
such magnets are beneficial in one respect, they may introduce third-order
resonances that need to be avoided or at least kept under control. Sometimes
the properties of a third-order resonance are also used constructively to eject
particles at the end of a synchrotron acceleration cycle slowly over many turns.

In the absence of octupole fields the Hamiltonian for the third-order reso-
nance is from (13.45) for n = 3

H1 = ∆ν1/3 J1 + p̃3r J
3/2
1 cos 3ψ1 . (13.68)

We expand cos 3ψ1= cos3 ψ1 − 3 cosψ1 sin2 ψ1 and return to normalized coor-
dinates

w =
√

2 J1
ν0

cosψ1,

ẇ =
√

2ν0J1 sinψ1 .
(13.69)

In these coordinates the Hamiltonian reveals the boundaries of the stable
region from the unstable resonant region. Introducing the normalized coordi-
nates into (13.68), we get the Hamiltonian
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H1 = ∆ν1/3
ν0

2

(
w2 +

ẇ2

ν2
0

)
+ p̃3r

ν
3/2
0

23/2

(
w3 − 3w

ẇ2

ν2
0

)
. (13.70)

Dividing by p̃3r

(
ν0
2

)3/2 and subtracting a constant term 1
2W

3
0 , where

W0 =
4
3

∆ν1/3

p̃3r

√
2ν0

, (13.71)

the Hamiltonian assumes a convenient form to exhibit the boundaries between
the stable and unstable area

H̃1 = 3
2W0

(
w2 +

ẇ2

ν2
0

)
+
(
w3 − 3w

ẇ2

ν2
0

)
− 1

2W
3

0

=
(
w − 1

2W0

)(
w −

√
3
ẇ

ν0
+ W0

)(
w +

√
3
ẇ

ν0
+ W0

)
. (13.72)

This Hamiltonian has three linear solutions for H̃1 = 0 defining the sepa-
ratrices. The resonance plot for (13.72) is shown in Fig. 13.10 where we have
assumed that W0 is positive. For a given distribution of the sextupoles p̃3r

the resonance pattern rotates by 180◦ while moving the tune from one side
of the resonance to the other. Clearly, there is a stable central part bounded
by separatrices. The area of the central part depends on the strength and
distribution of the sextupole fields summarized by p̃3r and the distance ∆ν1/3

of the tune from the third-order resonance.
The higher order field perturbation p̃3r depends on the distribution of the

sextupoles around the circular accelerator. In the horizontal plane

p3x(ϕ) = −ν2
x0 β

5/2
x m. (13.73)

stable area

separatrices

w

dw/dt

Fig. 13.10. Third-order resonance
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or with (13.27)
p3x(ϕ) = 1

3

√
2νx0β

5/2
x m. (13.74)

The Fourier components of this perturbation are given by

p3r =
1
2π

∫ 2π

0

p3(ϕ) eirNϕdϕ (13.75)

and the perturbation term (13.42) becomes finally with mr = 3 and c33 = 1
8

from (13.31)

p̃3r =
√

2νx0

24π

∫ 2π

0

β5/2
x m eirNϕdϕ, (13.76)

where ϕ =
∫ z

0
dζ

νx0 βx
, m = m(ϕ) is the sextupole distribution, and βx = βx (ϕ)

the horizontal betatron function. From this expression, it becomes clear that
the perturbation and with it the stable area in phase space depends greatly on
the distribution of the sextupoles around the ring. Minimizing the rth-Fourier
component obviously benefits beam stability.

13.6.1 Particle Motion in Phase Space

It is interesting to study particle motion close to a resonance in some more
detail by deriving the equations of motion from Hamiltonian (13.68). The
phase variation is

∂H1

∂J1
=

∂ψ1

∂ϕ
= ∆ν1/3 + 3

2 p̃3r J
1/2
1 cos 3ψ1 . (13.77)

Now, we follow a particle as it orbits the ring and observe its coordinates
every time it passes by the point with phase ϕ0 or ψ0, which we assume for
convenience to be zero. Actually, we observe the particle only every third turn,
since we are not interested in the rotation of the resonance pattern in phase
space by 120◦ every turn.

For small amplitudes the first term is dominant and we note that the par-
ticles move in phase space clockwise or counterclockwise depending on ∆ν1/3

being negative or positive, respectively. The motion becomes more compli-
cated in the vicinity and outside the separatrices, where the second term is
dominant. For a particle starting at ψ1 = 0 the phase ψ1increases or decreases
from turn to turn and asymptotically approaches ψ1 = ±30◦ depending on
the perturbation p̃3r being positive or negative, respectively. The particles
therefore move clockwise or counterclockwise and the direction of this motion
is reversed, whenever we move into an adjacent area separated by separatrices
because the trigonometric term has changed sign.

To determine exactly the position of a particle after 3q turns we have with
ψ(q) = 3q 2πν0

ψ1(q) = 2π (3ν0 − rN) q. (13.78)
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With this phase expression we derive the associated amplitude J1q from
Hamiltonian (13.68) and may plot the particle positions for successive triple
turns 3q = 0, 3, 6, 9, . . . in a figure similar to Fig. 13.10. The change in the
oscillation amplitude is from the second Hamiltonian equation of motion

∂H1

∂ψ1
= −∂J1

∂ϕ
= −3 p̃3r J

3/2
1 sin 3ψ1 (13.79)

and is very small in the vicinity of ψ1 ≈ 0 or even multiples of 30o. For
ψ1 being equal to odd multiples of 30o, on the other hand, the oscillation
amplitude changes rapidly as shown in Fig. 13.10.

Problems

13.1. Plot a resonance diagram up to fourth order for the PEP lattice with
tunes νx = 21.28 and νy = 18.16 and a superperiodicity of six or any other
circular accelerator lattice with multiple superperiodicity. Choose the para-
meters of the diagram such that a resonance environment for the above tunes
of at least ±3 (± half the number of superperiods) integers is covered.

13.2. Choose numerical values for parameters of a single multipole in Hamil-
tonian (13.44) and plot a resonance diagram H (J, ψ) =const. Determine the
stability limit for your choice of parameters. What would the tolerance on the
multipole field perturbation be if you require a stability for an emittance as
large as ε = 100 mm mrad?

13.3 (S). Consider a simple optimized FODO lattice forming a circular ring.
Calculate the natural chromaticity (ignore focusing in bending magnets) and
correct the chromaticities to zero by placing thin sextupoles at the center
of the quadrupoles. Calculate and plot the horizontal third-order stop-band
width as a function of the horizontal tune.

13.4. Take the lattice of Problem 13.3 and adjust its tune to the third-order
resonance so that the unstable fixed point on the symmetry axis are 5 cm from
the beam center. Determine the equations for the separatrices. Choose a point
P just outside the stable area and close to the crossing of two separatrices
along the symmetry axis. Where in the diagram would a particle starting at
P be after 3, 6, and 9 turns? At what amplitude could you place a 5 mm thin
septum magnet to eject the beam from the accelerator?
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Hamiltonian Nonlinear Beam Dynamics

Deviations from linear beam dynamics in the form of perturbations and aber-
rations play an important role in accelerator physics. Beam parameters, qual-
ity, and stability are determined by our ability to correct and control such
perturbations. Hamiltonian formulation of nonlinear beam dynamics allows
us to study, understand, and quantify the effects of geometric and chromatic
aberrations in higher order than discussed so far. Based on this understanding
we may develop correction mechanisms to achieve more and more sophisti-
cated beam performance. We will first discuss higher order beam dynamics as
an extension to the linear matrix formulation followed by specific discussions
on aberrations. Finally, we develop the Hamiltonian perturbation theory for
particle beam dynamics in accelerator systems.

14.1 Higher Order Beam Dynamics

Chromatic and geometric aberrations appear specifically in strong focusing
transport systems designed to preserve carefully prepared beam characteris-
tics. As a consequence of correcting chromatic aberrations by sextupole mag-
nets, nonlinear geometric aberrations are introduced. The effects of both types
of aberrations on beam stability must be discussed in some detail. Based on
quantitative expressions for aberrations, we will be able to determine criteria
for stability of a particle beam.

14.1.1 Multipole Errors

The general equations of motion (3.75), (3.76) exhibit an abundance of driving
terms which depend on second or higher order transverse particle coordinates
(x, x′, y, y′) or linear and higher order momentum errors δ. Magnet alignment
and field errors add another multiplicity to these perturbation terms. Al-
though the designers of accelerator lattices and beam guidance magnets take
great care to minimize undesired field components and avoid focusing systems
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that can lead to large transverse particle deviations from the reference orbit,
we cannot completely ignore such perturbation terms.

In previous sections we have discussed the effect of some of these terms
and have derived among other effects such basic beam dynamics features as
the dispersion function, orbit distortions, chromaticity, and tune shifts as a
consequence of particle momentum errors or magnet alignment and field er-
rors. More general tools are required to determine the effect of any arbitrary
driving term on the particle trajectories. In developing such tools we will as-
sume a careful design of the accelerator under study in layout and components
so that the driving terms on the r.h.s. of (3.75), (3.76) can be treated truly
as perturbations. This may not be appropriate in all circumstances in which
cases numerical methods need to be applied. For the vast majority of accel-
erator physics applications it is, however, appropriate to treat these higher
order terms as perturbations.

This assumption simplifies greatly the mathematical complexity. Foremost,
we can still assume that the general equations of motion are linear differential
equations. We may therefore continue to treat every perturbation term sep-
arately as we have done so before and use the unperturbed solutions for the
amplitude factors in the perturbation terms. The perturbations are reduced
to functions of the location z along the beam line and the relative momentum
error δ only and such differential equations can be solved analytically as we
will see. Summing all solutions for the individual perturbations finally leads
to the composite solution of the equation of motion in the approximation of
small errors.

The differential equations of motion (3.75), (3.76) can be expressed in a
short form by

u′′ + K(z)u =
∑

µ,ν,σ,ρ,τ≥0

pµνσρτ (z)xµ x′ν yσ y′ρ δτ , (14.1)

where u = x or u = y and the quantities pµνσρτ (z) represent the coefficients
of perturbation terms. The same form of equation can be used for the vertical
plane but we will restrict the discussion to only one plane neglecting coupling
effects.

Some of the perturbation terms pµνσρτ can be related to aberrations known
from geometrical light optics. Linear particle beam dynamics and Gaussian
geometric light optics work only for paraxial beams where the light rays or
particle trajectories are close to the optical axis or reference path. Large de-
viations in amplitude, as well as fast variations of amplitudes or large slopes,
create aberrations in the imaging process leading to distortions of the image
known as spherical aberrations, coma, distortions, curvature, and astigma-
tism. While corrections of such aberrations are desired, the means to achieve
corrections in particle beam dynamics are different from those used in light
optics. Much of the theory of particle beam dynamics is devoted to diagnose
the effects of aberrations on particle beams and to develop and apply such
corrections.
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The transverse amplitude x can be separated into its components which
under the assumptions made are independent of each other

x = xβ + x0 + xδ +
∑

xµνσρτ . (14.2)

The first three components of solution (14.2) have been derived earlier and
are associated with specific lowest order perturbation terms:

xβ(z) is the betatron oscillation amplitude and a general solution of the ho-
mogeneous differential equation of motion with vanishing perturbations
pµνσρτ = 0 for all indices.

xc(z) is the orbit distortion and is a special solution caused by amplitude-
and momentum-independent perturbation terms like dipole field errors
or displacements of quadrupoles or higher multipoles causing a dipole
field error. The relevant perturbations are characterized by µ = ν =
σ = ρ = τ = 0 but otherwise arbitrary values for the perturbation
p00000. Note that in the limit p00000 → 0 we get the ideal reference
path or reference orbit xc(z) = 0.

xδ(z) is the chromatic equilibrium orbit for particles with an energy different
from the ideal reference energy, δ 
= 0, and differs from the reference
orbit with or without distortion xc(z) by the amount xδ(z) which is
proportional to the dispersion function η(z) and the relative momentum
deviation δ, xδ(z) = η (z) δ. In this case µ = ν = σ = ρ = 0 and τ = 1.

All other solutions xµνσρτ are related to remaining higher order perturba-
tions. The perturbation term p10000, for example, acts just like a quadrupole
and may be nothing else but a quadrupole field error causing a tune shift and
a variation in the betatron oscillations. Other terms, like p00100 can be corre-
lated with linear coupling or with chromaticity if p10001 
= 0. Sextupole terms
p20000 are used to compensate chromaticities, in which case the amplitude
factor x2 is expressed by the betatron motion and chromatic displacement

x2 ≈ (xβ + xδ)2 = (xβ + η δ)2 ≈ 2 η xβ δ . (14.3)

The x2
β term, which we neglected while compensating the chromaticity, is

the source for geometric aberrations due to sextupolar fields becoming strong
for large oscillation amplitudes and the η2δ2 term contributes to higher order
solution of the η-function. We seem to make arbitrary choices about which
perturbations to include in the analysis. Generally therefore only such per-
turbations are included in the discussion which are most appropriate to the
problem to be investigated and solved. If, for example, we are only interested
in the orbit distortion, xc, we ignore in lowest order of approximation the
betatron oscillation xβ and all chromatic and higher order terms. Should,
however, chromatic variations of the orbit be of interest one would evaluate
the corresponding component separately. On the other hand, if we want to
calculate the chromatic variation of betatron oscillations, we need to include
the betatron oscillation amplitudes as well as the off-momentum orbit xδ.
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In treating higher order perturbations we make an effort to include all
perturbations that contribute to a specific aberration to be studied or to define
the order of approximation used if higher order terms are to be ignored. A
careful inspection of all perturbation terms close to the order of approximation
desired is prudent to ensure that no significant term is missed. Conversely such
an inspection might very well reveal correction possibilities. An example is the
effect of chromaticity which is generated by quadrupole field errors for off-
momentum particles but can be compensated by sextupole fields at locations
where the dispersion function is finite. Here the problem is corrected by fields
of a different order from those causing the chromaticity.

To become more quantitative we discuss the analytical solution of (14.1).
Since in our approximation this solution is the sum of all partial solutions
for each individual perturbation term, the problem is solved if we find a gen-
eral solution for an arbitrary perturbation. The solution of, for example, the
horizontal equation of motion

x′′ + K(z)x = pµνσρτ xµ x′ν yσ y′
ρ
δτ (14.4)

can proceed in two steps. First we replace the oscillation amplitudes on the
r.h.s. by their most significant components

xµ→ (xβ + x0 + xδ)µ, x′ν→ (x′
β + x′

0 + x′
δ)

ν ,

yσ→ (yβ + y0 + yδ)σ, y′ρ→ (y′β + y′0 + y′δ)
ρ .

(14.5)

As discussed before, in a particular situation only those components are
eventually retained that are significant to the problem. Since most accelerators
are constructed in the horizontal plane we may set the vertical dispersion
yδ = 0. Decomposition (14.5) is inserted into the r.h.s of (14.4) and again only
terms significant for the particular problem and to the approximation desired
are retained. The solution xµνσρτ can be further broken down into components
each relating to only one individual perturbation term. Whatever number of
perturbation terms we decide to keep, the basic differential equation for the
perturbation is of the form

P ′′ + K(z)P = p (xβ , x
′
β , xc, x

′
c, xδ, x

′
δ, yβ , y

′
β , yc, y

′
c, yδ, y

′
δ, δ, z) . (14.6)

The second step in the solution process is to derive the actual solution
of (14.6). Demonstrating the principle of the solution process we restrict the
r.h.s. to linear and quadratic, uncoupled terms. In addition orbit distortions
and vertical dispersion are ignored. These assumptions reduce the complexity
of formulas without limiting the application of the solution process. We use
the principal solutions on the r.h.s. of the simplified equation (14.6) and set
for the betatron oscillations

xβ = Cx(z)xβ0 + Sx(z)x′
β0,

x′
β = C ′

x(z)xβ0 + S′
x(z)x′

β0,
(14.7)
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and for the off-momentum orbit

xδ = Cx(z)xδ0 + Sx(z)x′
δ0 + Dx(z) δ0,

x′
δ = C ′

x(z)xδ0 + S′
x(z)x′

δ0 + D′
x(z) δ0 .

(14.8)

As long as we do not include acceleration or energy losses the particle
energy stays constant and δ0 = δ(z) = const. The principal solutions depend
on the initial conditions xβ0, x

′
β0, xδ0, ...., etc. at z = 0 and (14.6) becomes

P (z)′′ + K(z)P (z) = p(xβ0, x
′
β0, xδ0, x

′
δ0, δ0, z) . (14.9)

This is exactly the form which has been discussed in Sect. 2.5.4 with the
solution

P (z) =
∫ z

0

p(ζ)G(z, ζ) dζ (14.10)

and the Green function defined by

G(z, ζ) = S(z)C(ζ) − C(z)S(ζ) . (14.11)

Following these steps we may calculate, at least in principle, the pertur-
bations P (z) for any arbitrary higher order driving term p(z). In practice,
however, even principal solutions of particle trajectories in composite beam
transport systems can be expressed only in terms of the betatron functions.
Since the betatron functions cannot be expressed in a convenient analytical
form, we are unable to express integral (14.10) in closed analytical form and
must therefore employ numerical methods.

14.1.2 Nonlinear Matrix Formalism

In linear beam dynamics this difficulty has been circumvented by the intro-
duction of transformation matrices, a principle which can be used also for
beam transport systems including higher order perturbation terms [129–131].
The solution of (14.1) can be expressed by (14.10) in terms of initial condi-
tions. Similar to discussions in the context of linear beam dynamics we solve
(14.9) for individual lattice elements only, where K(z) = const. In this case
(14.10) can be solved for any piecewise constant perturbation along a beam
line. Each solution depends on initial conditions at the beginning of the mag-
netic element and the total solution can be expressed in the form

x(z) = c110 x0 + c120 x
′
0 + c130 δ0 + c111 x

2
0 + c112 x0x

′
0 + · · · ·,

x′(z) = c210 x0 + c220 x
′
0 + c230 δ0 + c211 x

2
0 + c212 x0x

′
0 + · · · ·,

(14.12)

where the coefficients cijk are functions of z. The nomenclature of the indices
becomes obvious if we set x1 = x, x2 = x′, and x3 = δ. The coefficient cijk
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then determines the effect of the perturbation term xjxk on the variable xi.
In operator notation we may write

cijk = 〈xi|xj0xk0〉. (14.13)

The first-order coefficients are the principal solutions

c110(z) = C(z) , c210(z) = C ′(z),

c120(z) = S(z) , c220(z) = S′(z),

c130(z) = D(z), c230(z) = D′(z) .

(14.14)

Before continuing with the solution process, we note that the variation
of the oscillation amplitudes (x′, y′) are expressed in a curvilinear coordinate
system generally used in beam dynamics. This definition, however, is not iden-
tical to the intuitive assumption that the slope x′ of the particle trajectory is
equal to the angle Θ between the trajectory and reference orbit. In a curvi-
linear coordinate system the slope x′ = dx/dz is a function of the amplitude
x. To clarify the transformation, we define angles between the trajectory and
the reference orbit by

dx
ds

= Θ and
dy
ds

= Φ, (14.15)

where with the curvature κ = 1/ρ

ds = (1 + κx) dz . (14.16)

In linear beam dynamics there is no numerical difference between x′ and
Θ which is a second-order effect nor is there a difference in straight parts of
a beam transport line where κ = 0. The relation between both definitions is
from (14.15), (14.16)

Θ =
x′

1 + κx
and Φ =

y′

1 + κx
, (14.17)

where x′ = dx/dz and y′ = dy/dz. We will use these definitions and formu-
late second-order transformation matrices in a Cartesian coordinate system
(x, y, z). Following Brown’s notation [129], we may express the nonlinear so-
lutions of (14.4) in the general form

ui =
3∑

j=1

cij0uj0 +
3∑

j=1
k=1

Tijk(z)uj0 uk0, (14.18)

with
(u1, u2, u3) = (x,Θ, δ), (14.19)
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where z is the position along the reference particle trajectory. Nonlinear trans-
formation coefficients Tijk are defined similar to coefficients cijk in (14.13)
by

Tijk = 〈ui|uj0uk0〉, (14.20)

where the coordinates are defined by (14.19). In linear approximation both
coefficients are numerically the same and we have




c110 c120 c130

c210 c220 c230

c310 c320 c330


 =




C(z) S(z) D(z)

C ′(z) S′(z) D′(z)

0 0 1


 . (14.21)

Earlier in this section we decided to ignore coupling effects which could
be included easily in (14.18) if we set for example x4 = y and x5 = y′ and
expand the summation in (14.18) to five indices. For simplicity, however, we
will continue to ignore coupling.

The equations of motion (3.75), (3.76) are expressed in curvilinear co-
ordinates and solving (14.10) results in coefficients cijk which are different
from the coefficients Tijk if one or more variables are derivatives with respect
to z. In the equations of motion all derivatives are transformed like (14.17)
generating a Θ term as well as an xΘ term. If, for example, we were inter-
ested in the perturbations to the particle amplitude x caused by perturbations
proportional to x0 Θ0, we are looking for the coefficient T112 = 〈x |x0 Θ0 〉.
Collecting from (3.75) only second-order perturbation terms proportional to
xx′, we find

x = c112 x0 x
′
0 = c112 x0 Θ0 + O(3) . (14.22)

An additional second-order contribution appears as a spill over from the linear
transformation

x = c120 x
′
0 = c120 (1 + κx x0) Θ0 . (14.23)

Collecting all x0 Θ0 terms, we finally get

T112 = c112 + c120 κx = c112 + κxS(z) . (14.24)

To derive a coefficient like T212 = 〈Θ |x0 Θ0 〉 we also have to transform
the derivative of the particle trajectory at the end of the magnetic element.
First, we look for all contributions to x′ from x0x

′
0 terms which originate from

x′ = c220 x′
0 + c212x0x

′
0. Setting in the first term x′

0 = Θ0 (1 + κx x0) and in
the second term x0x

′
0 ≈ x0 Θ0, we get with c220 = S′(z) and keeping again

only second-order terms

x′ = [c212 + κx S
′(z)] x0 Θ0 . (14.25)

On the l.h.s. we replace x′ by Θ (1 + κx x) and using the principal solutions
we get
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xΘ ≈ (Cx x0 + SxΘ0) (C ′
x x0 + S′

x Θ0) = (CxS
′
x + C ′

xSx) x0 Θ0 (14.26)

keeping only the x0 Θ terms. Collecting all results, the second-order coefficient
for this perturbation becomes

T212 = 〈Θ |x0 Θ0 〉 = c212 + κx S
′(z) − κx (CxS

′
x + C ′

xSx) . (14.27)

In a similar way we can derive all second-order coefficients Tijk. Equa-
tions (14.18) define the transformation of particle coordinates in second order
through a particular magnetic element. For the transformation of quadratic
terms we may ignore the third-order difference between the coefficients cijk

and Tijk and get

x2 = (Cxx0 + Sxx
′
0 + Dxδ0)

2
,

xx′ = (Cxx0 + Sxx
′
0 + Dxδ0) (C ′

xx0 + S′
xx

′
0 + D′

xδ0)

xδ = (Cxx0 + Sxx
′
0 + Dxδ0) δ0

... etc.

(14.28)

All transformation equations can now be expressed in matrix form after
correctly ordering equations and coefficients and a general second-order trans-
formation matrix can be formulated in the form




x

Θ

δ

x2

xΘ

x δ

Θ2

Θ δ

δ2




= M




x0

Θ0

δ0

x2
0

x0 Θ0

x0 δ0

Θ2
0

Θ0 δ0

δ2
0




, (14.29)

where we have ignored the y-plane. The second-order transformation matrix
is then
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M = (14.30)


C S D T111 T112 T116 T122 T126 T166

C ′ S′ D′ T211 T212 T216 T222 T226 T266

0 0 1 0 0 0 0 0 0

0 0 0 C2 2CS 2CD S2 2SD D2

0 0 0 CC ′ CS′+C ′S CD′+C ′D SS′ SD′+S′D DD′

0 0 0 0 0 C 0 S D

0 0 0 C ′ 2 2C ′S′ 2C ′D S′ 2 2S′D′ D′ 2

0 0 0 0 0 C ′ 0 S′ D′

0 0 0 0 0 0 0 0 1




with C = Cx, S = Sx,. . . , etc.
A similar equation can be derived for the vertical plane. If coupling effects

are to be included the matrix could be further expanded to include also such
terms. While the matrix elements must be determined individually for each
magnetic element in the beam transport system, we may in analogy to linear
beam dynamics multiply a series of such matrices to obtain the transformation
matrix through the whole composite beam transport line. As a matter of fact
the transformation matrix has the same appearance as (14.29) for a single
magnet or a composite beam transport line and the magnitude of the nonlinear
matrix elements will be representative of imaging errors like spherical and
chromatic aberrations.

To complete the derivation of second-order transformation matrices we
derive, as an example, an expression of the matrix element T111 from the
equation of motion (3.75). To obtain all x2

0 terms, we look in (3.75) for per-
turbation terms proportional to x2, xx′, and x′2, replace these amplitude
factors by principal solutions (14.7) and collect only terms quadratic in x0 to
get the relevant perturbation

p(z) =
[
−
(

1
2 m + 2κxk + κ3

x

)
C2

x + 1
2κxC

′2
x + κ′

xCxC
′
x

]
x2

0 . (14.31)

First, we recollect that the theory of nonlinear transformation matrices is
based on the constancy of magnet strength parameters and we set therefore
κ′

x = 0. Where this is an undue simplification like in magnet fringe fields one
could approximate the smooth variation of κx by a step function. Inserting
(14.31) into (14.10) the second-order matrix element

c111 = T111 (14.32)

= −(1
2 m + 2κxk + κ3

x)
∫ z

0

C2
x(ζ)G(z, ζ) dζ − 1

2 κx

∫ z

0

C ′2
x (ζ)G(z, ζ) dζ .
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The integrands are powers of trigonometric functions and can be evaluated
analytically. In a similar way we may now derive any second-order matrix
element of interest. A complete list of all second-order matrix elements can
be found in [129].

This formalism is valuable whenever the effect of second-order pertur-
bations must be evaluated for particular particle trajectories. Specifically, it
is suitable for nonlinear beam simulation studies where a large number of
particles representing the beam are to be traced through nonlinear focusing
systems to determine, for example, the particle distribution and its deviation
from linear beam dynamics at a focal point. This formalism is included in
the program TRANSPORT [70] allowing the determination of the coefficients
Tijk for any beam transport line and providing fitting routines to eliminate
such coefficients by a proper adjustment and placement of nonlinear elements
like sextupoles.

14.2 Aberrations

From light optics we are familiar with the occurrence of aberrations which
cause the distortion of optical images. We have repeatedly noticed the sim-
ilarity of particle beam optics with geometric or paraxial light optics and it
is therefore not surprising that there is also a similarity in imaging errors.
Aberrations in particle beam optics can cause severe stability problems and
must therefore be controlled.

We distinguish two classes of aberrations, geometric aberrations and, for
off-momentum particles, chromatic aberrations. The geometric aberrations
become significant as the amplitude of betatron oscillations increases while
chromatic aberration results from the variation of the optical system parame-
ters for different colors of the light rays or in our case for different particle
energies. For the discussion of salient features of aberration in particle beam
optics we study the equation of motion in the horizontal plane and include
only bending magnets, quadrupoles and sextupole magnets. The equation of
motion in this case becomes in normalized coordinates w = x/

√
βx

ẅ + ν2
0w = ν2

0 β3/2 κ0 δ + ν2
0 β2 k0 w δ − 1

2 ν2
0 β5/2 m0 w

2, (14.33)

where β = βx.
The particle deviation w from the ideal orbit is composed of two contribu-

tions, the betatron oscillation amplitude wβ and the shift in the equilibrium
orbit for particles with a relative momentum error δ. This orbit shift wδ is
determined by the normalized dispersion function at the location of interest,
wδ = η̃ δ = η√

β
δ, and the particle position can be expressed by the composi-

tion
w = wβ + wδ = wβ + η̃δ. (14.34)

Inserting (14.34) into (14.33) and employing the principle of linear super-
position (14.33) can be separated into two differential equations, one for the
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betatron motion and one for the dispersion function neglecting quadratic or
higher order terms in δ. The differential equation for the dispersion function
is then

¨̃η + ν2
0 η̃ = ν2

0β
1/2κ + ν2

0 β2k η̃ δ − 1
2 ν2

0 β5/2mη̃2 δ, (14.35)

which has been solved earlier in Sect. 12.6. All other terms include the betatron
oscillation wβ and contribute therefore to aberrations of betatron oscillations
expressed by the differential equation

ẅβ + ν2
0 wβ = ν2

0 β2 k wβ δ − ν2
0 β2 mηwβ δ − 1

2 ν2
0 β5/2 mw2

β . (14.36)

The third term in (14.36) is of geometric nature causing a perturbation of
beam dynamics at large betatron oscillation amplitudes and, as will be dis-
cussed in Sect. 14.3, also gives rise to an amplitude-dependent tune shift. This
term appears as an isolated term in second order and no local compensation
scheme is possible. Geometric aberrations must therefore be expected when-
ever sextupole magnets are used to compensate for chromatic aberrations.

The first two terms in (14.36) represent the natural chromaticity and the
compensation by sextupole magnets, respectively. Whenever it is possible to
compensate the chromaticity at the location where it occurs both terms would
cancel for mη = k. Since the strength changes sign for both magnets going
from one plane to the other the compensation is correct in both planes. This
method of chromaticity correction is quite effective in long beam transport
systems with many equal lattice cells. An example of such a correction scheme
are the beam transport lines from the SLAC linear accelerator to the collision
point of the Stanford Linear Collider (SLC) [62]. This transport line consists
of a dense sequence of strong magnets forming a combined function FODO
channel (for parameters see Example 2 in Table 6.1). In these magnets dipole,
quadrupole, and sextupole components are combined in the pole profile and
the chromaticity compensation occurs locally.

This method of compensation, however, does not work generally in cir-
cular accelerators because of special design criteria which often require some
parts of the accelerator to be dispersion free and the chromaticity created by
the quadrupoles in these sections must then be corrected elsewhere in the lat-
tice. Consequently both chromaticity terms in (14.36) do not cancel anymore
locally and can be adjusted to cancel only globally.

The consequence of these less than perfect chromaticity correction schemes
is the occurrence of aberrations through higher order effects. We get a deeper
insight for the effects of these aberrations in a circular accelerator by noting
that the coefficients of the betatron oscillation amplitude wβ for both chro-
matic perturbations are periodic functions in a circular accelerator and can
therefore be expanded into a Fourier series. Only non oscillatory terms of
these expansions cancel if the chromaticity is corrected while all other higher
harmonics still appear as chromatic aberrations.
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14.2.1 Geometric Aberrations

Geometric perturbations from sextupole fields scale proportional to the square
of the betatron oscillation amplitude leading to a loss of stability for particles
oscillating at large amplitudes. From the third perturbation term in (14.36)
we expect this limit to occur at smaller amplitudes in circular accelerators
where either the betatron functions are generally large or where the focusing
and therefore the chromaticity and required sextupole correction is strong
or where the tunes are large. Most generally this occurs in large proton and
electron colliding-beam storage rings or in electron storage rings with strong
focusing.

Compensation of Nonlinear Perturbations

In most older circular accelerators the chromaticity is small and can be cor-
rected by two families of sextupoles. Although in principle only two sextupole
magnets for the whole ring are required for chromaticity compensation, this
is in most cases impractical since the strength of the sextupoles becomes too
large exceeding technical limits or leading to a loss of beam stability because
of intolerable geometric aberrations. For chromaticity compensation we gener-
ally choose a more even distribution of sextupoles around the ring and connect
them into two families compensating the horizontal and vertical chromaticity,
respectively. This scheme is adequate for most not too strong focusing circular
accelerators. Where beam stability suffers from geometric aberrations more
sophisticated sextupole correction schemes must be utilized.

To analyze the geometric aberrations due to sextupoles and develop cor-
rection schemes we follow a particle along a beam line including sextupoles.
Here we understand a beam line to be an open system from a starting point to
an image point at the end or one full circumference of a circular accelerator.
Following any particle through the beam line and ignoring for the moment
nonlinear fields we expect the particle to move along an ellipse in phase space
as shown in Fig. 14.1. Traveling through the complete beam line of phase
advance ψ = 2πν0 a particle moves for ν0 revolutions along the phase ellipse
in Fig. 14.1.

Including nonlinear perturbations due to, for example, sextupole magnets
the phase space trajectory becomes distorted from the elliptical form as shown
in Fig. 14.2. An arbitrary distribution of sextupoles along a beam line can
cause large variations of the betatron oscillation amplitude leading to a pos-
sible loss of particles on the vacuum chamber wall even if the motion is stable
in principle. The PEP storage ring [132] was the first storage ring to require a
more sophisticated sextupole correction [124] beyond the mere compensation
of the two chromaticities because geometric aberrations were too strong to
give sufficient beam stability. Chromaticity correction with only two families
of sextupoles in PEP would have produced large amplitude-dependent tune
shifts leading to reduced beam stability.
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x

x'

Fig. 14.1. Linear particle motion in phase space

x'

x

Fig. 14.2. Typical phase space motion in the presence of nonlinear fields

Such a situation can be greatly improved with additional sextupole fam-
ilies [124] to minimize the effect of these nonlinear perturbation. Although
individual perturbations may not be reduced much by this method the sum
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of all perturbations can be compensated to reduce the overall perturbation to
a tolerable level.

In this sextupole correction scheme the location and strength of the in-
dividual sextupoles are selected such as to minimize the perturbation of the
particle motion in phase space at the end of the beam transport line. Al-
though this correction scheme seems to work in not too extreme cases it is
not sufficient to guarantee beam stability. This scheme works only for one
amplitude due to the nonlinearity of the problem and in cases where sextu-
pole fields are no longer small perturbations we must expect a degradation
of this compensation scheme for larger amplitudes. As the example of PEP
shows, however, an improvement of beam stability can be achieved beyond
that obtained by a simple two family chromaticity correction. Clearly, a more
formal analysis of the perturbation and derivation of appropriate correction
schemes are desirable.

Sextupoles Separated by a I−Transformation

A chromaticity correction scheme that seeks to overcome this amplitude-
dependent aberration has been proposed by Brown and Servranckx [133]. In
this scheme possible sextupole locations are identified in pairs along the beam
transport line such that each pair is separated by a negative unity transfor-
mation

−I =




−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




. (14.37)

Placing sextupoles of equal strength at these two locations we get an ad-
ditive contribution to the chromaticity correction. The effect of geometric
aberrations, however, is canceled for all particle oscillation amplitudes. This
can be seen if we calculate the transformation matrix through the first sextu-
pole, the −I section, and then through the second sextupole. The sextupoles
are assumed to be thin magnets inflicting kicks on particle trajectories by the
amount

∆x′ = − 1
2m0�s

(
x2 − y2

)
, (14.38)

and
∆y′ = −m0�sxy, (14.39)

where �s is the sextupole length. We form a (4 × 4)-transformation matrix
through a thin sextupole and get
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


x

x′

y

y′




= Ms (x0, y0)




x0

x′
0

y0

y′0




=




1 0 0 0

− 1
2m0�sx0 1 1

2m0�sx0 0

0 0 1 0

0 0 m0�sx0 1







x0

x′
0

y0

y′0




. (14.40)

To evaluate the complete transformation we note that in the first sextupole
the particle coordinates are (x0, y0) and become after the −I-transformation
in the second sextupole (−x0,−y0). The transformation matrix through the
complete unit is therefore

Mt = Ms (x0, y0) (−I)Ms (−x0,−y0) = −I . (14.41)

Independent of the oscillation amplitude we observe a complete cancella-
tion of geometric aberrations in both the horizontal and vertical plane. This
correction scheme has been applied successfully to the final focus system of
the Stanford Linear Collider [134], where chromatic as well as geometric aber-
rations must be controlled and compensated to high accuracy to allow the
focusing of a beam to a spot size at the collision point of only a few microm-
eter.

The effectiveness of this correction scheme and its limitations in circular
accelerators have been analyzed in more detail by Emery [63] and we will dis-
cuss some of his findings. As an example, we use strong focusing FODO cells
for an extremely low emittance electron storage ring [63] and investigate the
beam parameters along this lattice. Any other lattice could be used as well
since the characteristics of aberrations is not lattice dependent although the
magnitude may be. The particular FODO lattice under discussion as shown in
Fig. 14.3, is a thin lens lattice with 90◦ cells, a distance between quadrupoles of
Lq = 3.6 m and an integrated half quadrupole strength of (k�q)−1 =

√
2Lq.

90o cell90o cell 90o cell

180o

sextupole sextupole

1/2QF QD QF QD QF QD 1/2QF

Fig. 14.3. FODO lattice and chromaticity correction
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The horizontal and vertical betatron functions at the symmetry points are
12.29 and 2.1088 m respectively. Three FODO cells are shown in Fig. 14.3
including one pair of sextupoles separated by 180◦ in betatron phase space.
We choose a phase ellipse for an emittance of ε = 200 mm-mrad which is an
upright ellipse at the beginning of the FODO lattice (Fig. 14.4(a)). Due to
quadrupole focusing the ellipse becomes tilted at the entrance to the first sex-
tupole (Fig. 14.4(b)). The thin lens sextupole introduces a significant angular
perturbation (Fig. 14.4(c)), leading to large lateral aberrations in the quadru-
pole QF (Fig. 14.4(d)). At the entrance to the second sextupole the distorted
phase ellipse is rotated by 180◦ and all aberrations are compensated again by
this sextupole (Fig. 14.4(e)). Finally, the phase ellipse at the end of the third
FODO cell is again an upright ellipse with no distortions left (Fig. 14.4(f)).
The range of stability therefore extends to infinitely large amplitudes ignoring
any other detrimental effects.

a) b) c)

d) e) f)

Fig. 14.4. Phase ellipses along a FODO channel including nonlinear aberrations
due to thin sextupole magnets separated by exactly 180◦ in betatron phase

The compensation of aberrations works as long as the phase advance be-
tween sextupoles is exactly 180◦. A shift of the second sextupole by a few
degrees or a quadrupole error resulting in a similar phase error between the
sextupole pair would greatly reduce the compensation. In Fig. 14.5 the evo-
lution of the phase ellipse from Fig. 14.4 is repeated but now with a phase
advance between the sextupole pair of only 175◦. A distortion of the phase
ellipse due to aberrations can be observed which may build up to instability as
the particles pass through many similar cells. Emery has analyzed numerically
this degradation of stability and finds empirically the maximum stable beta-
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a) b) c)

Fig. 14.5. Thin sextupole magnets separated by 175◦ in betatron phase space. The
unperturbed phase ellipse a. becomes slightly perturbed b. at the end of the first
triple FODO cell (Fig.14.3, and more so after passing through many such triplets c.

tron amplitude to scale with the phase error like ∆ϕ−0.52 [63]. The sensitivity
to phase errors together with unavoidable quadrupole field errors and orbit
errors in sextupoles can significantly reduce the effectiveness of this compen-
sation scheme.

The single most detrimental arrangement of sextupoles compared to the
perfect compensation of aberrations is to interleave sextupoles which means
to place other sextupoles between two pairs of compensating sextupoles [133].
Such interleaved sextupoles introduce amplitude dependent phase shifts lead-
ing to phase errors and reduced compensation of aberrations. This limitation
to compensate aberrations is present even in a case without apparent inter-
leaved sextupoles as shown in Fig. 14.6 for the following reason.

a) b) c)

Fig. 14.6. Phase ellipses along a FODO channel including nonlinear aberrations
due to finite length sextupole magnets placed exactly 180◦ apart. Phase ellipse (a)
transforms to (b) after one FODO triplet cell and to (c) after passage through many
such cells

The assumption of thin magnets is sometimes convenient but, as Emery
points out, can lead to erroneous results. For technically realistic solutions,
we must allow the sextupoles to assume a finite length and find, as a con-
sequence, a loss of complete compensation for geometric aberrations because
sextupoles of finite length are only one particular case of interleaved sextu-
pole arrangements. If we consider the sextupoles made up of thin slices we still
find that each slice of the first sextupole has a corresponding slice exactly 180◦

away in the second sextupoles. However, other slices are interleaved between
such ideal pairs of thin slices. In Fig. 14.6 the sequence of phase ellipses from
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Fig. 14.4 is repeated with the only difference of using now a finite length of
0.3 m for the sextupoles. From the last phase ellipse it becomes clear that the
aberrations are not perfectly compensated as was the case for thin sextupoles.
Although the −I-transformation scheme to eliminate geometric aberrations
is not perfectly effective for real beam lines it is still prudent to arrange sex-
tupoles in that way, if possible, to minimize aberrations and apply additional
corrections.

14.2.2 Filamentation of Phase Space

Some distortion of the unperturbed trajectory in phase space due to aberra-
tions is inconsequential to beam stability as long as this distortion does not
build up and starts growing indefinitely. A finite or infinite growth of the beam
emittance enclosed within a particular particle trajectory in phase space may
at first seem impossible since we deal with macroscopic, nondissipating mag-
netic fields where Liouville’s theorem must hold. Indeed numerical simulations
indicate that the total phase space occupied by the beam does not increase
but an originally elliptical boundary in phase space can grow, for example,
tentacles like a spiral galaxy leading to larger beam sizes without actually
increasing the phase space density. This phenomenon is called filamentation
of the phase space and evolves as shown in Fig. 14.7.

b) c)a)

Fig. 14.7. Filamentation of phase space after passage through an increasing number
of FODO cells

For particle beams this filamentation is as undesirable as an increase in
beam emittance or beam loss. We will therefore try to derive the causes for
beam filamentation in the presence of sextupole nonlinearities which are the
most important nonlinearities in beam dynamics. In this discussion we will
follow the ideas developed by Autin [135] which observes the particle motion
in action angle phase space under the influence of nonlinear fields.

The discussion will be general to allow the application to other nonlin-
earities as well. For simplicity of expression, we approximate the nonlinear
sextupoles by thin magnets. This does not restrict our ability to study the ef-
fect of finite length sextupoles since we may always represent such sextupoles
by a series of thin magnets. A particle in a linear lattice follows a circle in
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action angle phase space with a radius equal to the action J0. The appear-
ance of a nonlinearity along the particle trajectory will introduce an ampli-
tude variation ∆J to the action which is from the Courant–Snyder invariant
J = 1

2ν0w
2 + 1

2
1
ν0
ẇ2 for both the horizontal and vertical plane

∆Jx = νx0 w∆w + 1
νx0

ẇ ∆ẇ = 1
νx0

ẇ ∆ẇ,

∆Jy = νy0 v ∆v + 1
νy0

v̇ ∆v̇ = 1
νy0

v̇ ∆v̇,
(14.42)

since ∆w = ∆v = 0 for a thin magnet. Integration of the equations of motion
in normalized coordinates over the “length” � of the thin magnet produces a
variation of the slopes

∆ẇ = νx0

√
βx

1
2m� (x2 − y2),

∆v̇ = −νy0

√
βy m�xy .

(14.43)

We insert (14.43) into (14.42) and get in action-angle variables after lin-
earization of the trigonometric functions a variation of the action

∆Jx = m�
4

√
2Jxβx

νx0

{(
Jxβx − 2Jyβy

νx

νy

)
sinψx + Jxβx sin 3ψx

−Jyβy
νx

νy
[sin(ψx + 2ψy) + sin(ψx − 2ψy)]

}
,

∆Jy = m�
2

√
2Jxβx

νx0
Jyβy [sin(ψx + 2ψy) − sin(ψx − 2ψy)] .

(14.44)

Since the action is proportional to the beam emittance, (14.44) allow us
to study the evolution of beam filamentation over time. The increased action
from (14.44) is due to the effect of one nonlinear sextupole magnet and we
obtain the total growth of the action by summing over all turns and all sex-
tupoles. To sum over all turns we note that the phases in the trigonometric
functions increase by 2πν0,x,y every turn and we have for the case of a single
sextupole after an infinite number of turns expressions of the form

∞∑
n=0

sin[(ψxj + 2πνx0 n) + 2(ψyj + 2πνy0 n)], (14.45)

where ψxj and ψyj are the phases at the location of the sextupole j. Such
sums of trigonometric functions are best solved in the form of exponential
functions. In this case the sine-function terms are equivalent to the imaginary
part of the exponential functions

ei(ψxj+2ψyj) ei2π(νx0+2νy0)n . (14.46)

The second-factor forms an infinite geometric series and the imaginary part
of the sum is therefore
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Im
ei(ψxj+2ψyj)

1 − ei2π(νx0+2νy0)
=

cos[(ψxj − πνx0) + 2(ψyj − πνy0)]
2 sin[π(νx0 + 2νy0)]

. (14.47)

This solution has clearly resonant character leading to an indefinite in-
crease of the action if νx0 + 2νy0 is an integer. Similar results occur for the
other three terms and Autin’s method to observe the evolution of the action
coordinate over many turns allows us to identify four resonances driven by
sextupolar fields which can lead to particle loss and loss of beam stability if
not compensated. Resonant growth of the apparent beam emittance occurs
according to (14.44) for

νx0 = q1, or νx0 + 2νy0 = q3,

3νx0 = q2, or νx0 − 2νy0 = q4,
(14.48)

where qi are integers. In addition to the expected integer and third integer
resonance in the horizontal plane, we find also two third-order coupling reso-
nances in both planes where the sum resonance leads to beam loss while the
difference resonance only initiates an exchange of the horizontal and vertical
emittances. The asymmetry is not fundamental and is the result of our choice
to use only upright sextupole fields.

So far we have studied the effect of one sextupole on particle motion.
Since no particular assumption was made as to the location and strength of
this sextupole, we conclude that any other sextupole in the ring would drive
the same resonances and we obtain the beam dynamics under the influence
of all sextupoles by adding the individual contributions. In the expressions of
this section we have tacitly assumed that the beam is observed at the phase
ψx0,y0 = 0. If this is not the desired location of observation the phases ψxj

need to be replaced by ψxj − ψx0, etc., where the phases ψxj,yj define the
location of the sextupole j. Considering all sextupoles in a circular lattice we
sum over all such sextupoles and get, as an example, for the sum resonance
used in the derivation above from (14.44)

∆Jx,νx+2νy
= −

∑
j

mj�j

4

√
2Jxβxj

νx0
Jyβyj

νx

νy
sin(ψxj + 2ψyj) . (14.49)

Similar expressions exist for other resonant terms. Equation (14.49) indi-
cates a possibility to reduce the severity of driving terms for the four reso-
nances. Sextupoles are primarily inserted into the lattice where the dispersion
function is nonzero to compensate for chromaticities. Given sufficient flex-
ibility these sextupoles can be arranged to avoid driving these resonances.
Additional sextupoles may be located in dispersion free sections and adjusted
to compensate or at least minimize the four resonance driving terms without
affecting the chromaticity correction. The perturbation ∆J is minimized by
distributing the sextupoles such that the resonant driving terms in (14.44)
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are as small as possible. This is accomplished by harmonic correction which
is the process of minimization of expressions

∑
j
mj�j β

3/2
x eiψxj → 0, (14.50)

∑
j
mj�j β

3/2
x ei3ψxj → 0, (14.51)

∑
j
mj�j β

1/2
x βy eiψxj → 0, (14.52)

∑
j
mj�j β

1/2
x βy ei(ψxj+2ψyj) → 0, (14.53)

∑
j
mj�j β

1/2
x βy ei(ψxj−2ψyj) → 0 . (14.54)

The perturbations of the action variables in (14.44) cancel perfectly if
we insert sextupoles in pairs at locations which are separated by a −I-
transformation as discussed previously in this chapter. The distribution of
sextupoles in pairs is therefore a particular solution to (14.50) for the elimi-
nation of beam filamentation and specially suited for highly periodic lattices
while (14.50)−(14.54) provide more flexibility to achieve similar results in
general lattices and sextupole magnets of finite length.

Cancellation of resonant terms does not completely eliminate all aberra-
tions caused by sextupole fields. Because of the existence of nonlinear sex-
tupole fields the phases ψj depend on the particle amplitude and resonant
driving terms are therefore canceled only to first order. For large amplitudes
we expect increasing deviation from the perfect cancellation leading eventually
to beam filamentation and beam instability. Maximum stable oscillation am-
plitudes in the (x, y) space due to nonlinear fields form the dynamic aperture
which is to be distinguished from the physical aperture of the vacuum cham-
ber. This dynamic aperture is determined by numerical tracking of particles.
Given sufficiently large physical apertures in terms of linear beam dynamics
to meet particular design specifications, including some margin for safety, the
goal of correcting nonlinear aberrations is to extend the dynamic aperture
beyond the physical aperture. Methods discussed above to increase the dy-
namic aperture have been applied successfully to a variety of particle storage
rings, especially by Autin [135] to the antiproton cooling ring ACOL, where
a particularly large dynamic aperture is required.

14.2.3 Chromatic Aberrations

Correction of natural chromaticities is not a complete correction of all chro-
matic aberrations. For sensitive lattices nonlinear chromatic perturbation
terms must be included. Both linear as well as nonlinear chromatic perturba-
tions have been discussed in detail in Sect. 12.6. Such terms lead primarily to
gradient errors and therefore the sextupole distribution must be chosen such
that driving terms for half integer resonances are minimized. Together with



524 14 Hamiltonian Nonlinear Beam Dynamics

tune shifts due to gradient field errors we also observe a variation of the be-
tatron function. Chromatic gradient errors in the presence of sextupole fields
are

p1(z) = (k −mη) δ (14.55)

and the resulting variation of the betatron function has been derived in
Sect. 12.1.4. For perturbation (14.55) the linear variation of the betatron
function with momentum is from (12.74)

∆β(z)
β0

=
δ

2 sin 2πν0

∫ z+L

z

β (k −mη) cos[2ν0 (ϕz − ϕζ + 2π)]dζ, (14.56)

where L is the length of the superperiod, ϕz = ϕ(z), and ϕζ = ϕ(ζ). The same
result can be expressed in the form of a Fourier expansion for Ns superperiods
in a ring lattice by

∆β

β
= δ

ν0

4π

∑
q

Fq eiNsqϕ

ν2
0 − (Nsq/2)2

, (14.57)

where

Fq =
ν0

2π

∫ 2π

0

β2 (k −mη) eiNsqϕ dϕ . (14.58)

Both expressions exhibit the presence of half integer resonances and we
must expect the area of beam stability in phase space to be reduced for off-
momentum particles because of the increased strength of the resonances. Ob-
viously, this perturbation does not appear in cases where the chromaticity is
corrected locally so that (k −mη) ≡ 0 but few such cases exist. To minimize
the perturbation of the betatron function, we look for sextupole distributions
such that the Fourier harmonics are as small as possible by eliminating exces-
sive “fighting” between sextupoles and by minimizing the resonant harmonic
q = 2ν0. Overall, however, it is not possible to eliminate this β beat com-
pletely. With a finite number of sextupoles the β beat can be adjusted to zero
only at a finite number of points along the beam line.

In colliding-beam storage rings, for example, we have especially sensitive
sections just adjacent to the collision points. To maximize the luminosity the
lattice is designed to produce small values of the betatron functions at the
collision points and consequently large values in the adjacent quadrupoles. In
order not to further increase the betatron functions there and make the lattice
more sensitive to errors, one might choose to seek sextupole distributions such
that the β beat vanishes at the collision point and its vicinity.

Having taken care of chromatic gradient errors we are left with the varia-
tion of geometric aberrations as a function of particle momentum. Specifically,
resonance patterns vary and become distorted as the particle momentum is
changed. Generally this should not cause a problem as long as the dynamic
aperture can be optimized to exceed the physical aperture. A momentum error
will introduce only a small variation to the dynamic aperture as determined
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by geometric aberrations for on-momentum particles only. If, however, the
dynamic aperture is limited by some higher order resonances even a small
momentum change can cause a big difference in the stable phase space area.

Analytical methods are useful to minimize detrimental effects of geometric
and chromatic aberrations due to nonlinear magnetic fields. We have seen how
by a careful distribution of the chromaticity correcting sextupoles, resonant
beam emittance blows up and excessive beating of the betatron functions for
off-momentum particles can be avoided or at least minimized within the ap-
proximations used. In Sect. 14.3, we will also find that sextupolar fields can
produce strong tune shifts for larger amplitudes leading eventually to instabil-
ity at nearby resonances. Here again a correct distribution of sextupoles will
have a significant stabilizing effect. Although there are a number of different
destabilizing effects, we note that they are driven by only a few third-order
resonances. Specifically, in large circular lattices a sufficient number of sex-
tupoles and locations for additional sextupoles are available for an optimized
correction scheme. In small rings such flexibility often does not exist and
therefore the sophistication of chromaticity correction is limited. Fortunately,
in smaller rings the chromaticity is much smaller and some of the higher or-
der aberrations discussed above are very small and need not be compensated.
Specifically, the amplitude-dependent tune shift is generally negligible in small
rings while it is this effect which limits the dynamic aperture in most cases of
large circular accelerators.

The optimization of sextupole distribution requires an extensive analy-
sis of the linear lattice and time consuming albeit straightforward numerical
calculations which are best left for computer programs. The program HAR-
MON [136] has been developed particularly with this optimization procedure
in mind. Input requires a matched linear lattice with possible locations for
sextupoles. The program then adjusts sextupole strengths such as to correct
the chromaticities to the desired values while minimizing aberrations.

For open beam transport lines the program TRANSPORT [70], based on
a second-order transformation theory [130], provides a powerful way to elim-
inate any specified second-order aberration. A special second-order match-
ing routine allows us to match sextupole strengths to meet desired values for
second-order aberrations at a specified point along the lattice. Since the results
are broken down to reflect the contribution of all second-order transformation
elements, it is easy to identify the most detrimental.

In trying to solve aberration problems in beam dynamics we are, however,
mindful of approximations made and terms neglected for lack of mathematical
tools to solve analytically the complete nonlinear dynamics in realistic accel-
erators. The design goals for circular accelerators become more and more
demanding on our ability to control nonlinear aberrations. On one hand the
required cross-sectional area in the vicinity of the ideal orbit for a stable
beam remains generally constant for most designs but the degree of aberra-
tions is increased in an attempt to reach very special beam characteristics. As
a consequence, the nonlinear perturbations become stronger and the limits
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of dynamic aperture occur for smaller amplitudes compared to less demand-
ing lattices and require more and more sophisticated methods of chromaticity
correction and control of nonlinear perturbations.

14.2.4 Particle Tracking

No mathematical methods are available yet to calculate analytically the lim-
its of the dynamic aperture for any but the most simple lattices. High order
approximations are required to treat strong aberrations in modern circular ac-
celerator designs. The most efficient way to determine beam stability charac-
teristics for a particular lattice design is to perform numerical particle tracking
studies.

Aberrations in open beam transport lines have been studied since the early
days of strong focusing and second-order transformation matrices have been
derived by Brown [129–131] to quantify such aberrations. To study the effect
of aberrations on the focusing properties along an arbitrary beam line, the
program DECAY TURTLE [137] has been developed. This program traces a
large number of particles distributed over a specified range of initial coordi-
nates through the nonlinear beam transport system and provides an accurate
particle distribution in real or phase space at the desired location of the beam
line.

Circular accelerators are basically not different from very long periodic
beam transport lines and therefore programs like DECAY TURTLE could be
applied here as well. In many modern accelerator designs, however, second-
order simulation of aberrations is not sufficient anymore and additional simu-
lation features like the inclusion of synchrotron oscillations are required which
are not part of programs specially designed for beam transport lines. A num-
ber of tracking programs have been developed meeting such needs.

Perturbations of localized nonlinear fields on a particle trajectory are easy
to calculate and tracking programs follow single particles along their path
incorporating any nonlinear perturbation encountered. Since most nonlinear
fields are small, we may use thin lens approximation and passage of a particle
through a nonlinear field of any order inflicts therefore only a deflection on
the particle trajectory. During the course of tracking the deflections of all
nonlinearities encountered are accumulated for a large number of turns and
beam stability or instability is judged by the particle surviving the tracking
or not, respectively. The basic effects of nonlinear fields in numerical tracking
programs are therefore reduced to what actually happens to particles traveling
through such fields producing results in an efficient way. Of course from an
intellectual point of view such programs are not completely satisfactory since
they serve only as tools providing a little direct insight into actual causes for
limitations to the dynamic aperture and instability.

The general approach to accelerator design is to develop first a lattice in
linear approximation meeting the desired design goals followed by an analyt-
ical approach to include chromaticity correcting sextupoles in an optimized
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distribution. Further information about beam stability and dynamic aperture
can at this point only be obtained from numerical tracking studies. Exam-
ples of widely used computer programs to perform such tracking studies are
in historical order PATRICIA [124], MARYLIE [138], RACETRACK [139],
PATPET [140,141], BETA, and more.

Tracking programs generally require as input an optimized linear lattice
and allow then particle tracking for single particles as well as for a large num-
ber of particles simulating a full beam. Nonlinear fields of any order can be
included as thin lenses in the form of isolated multipole magnets like sex-
tupoles or multipole errors of regular lattice magnets. The multipole errors
can be chosen to be systematic or statistical and the particle momentum may
have a fixed offset or may be oscillating about the ideal momentum due to
synchrotron oscillations.

Results of such computer studies contribute information about particle
dynamics which is not available otherwise. The motion of single particles
in phase space can be observed together with an analysis of the frequency
spectrum of the particle under the influence of all nonlinear fields included
and at any desired momentum deviation.

Further information for the dynamics of particle motion can be obtained
from the frequency spectrum of the oscillation. An example of this is shown
in Fig. 14.8 as a function of oscillation amplitudes. For small amplitudes we
notice only the fundamental horizontal betatron frequency νx. As the oscilla-
tion amplitude is increased this basic frequency is shifted toward lower values
while more frequencies appear. We note the appearance of higher harmonics
of νx due to the nonlinear nature of motion.

The motion of a particle in phase space and its frequency spectrum as a
result of particle tracking can give a significant insight into the dynamics of
a single particle. For the proper operation of an accelerator, however, we also
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Fig. 14.8. Frequency spectrum for betatron oscillations with increasing amplitudes
(X) as determined by particle tracking with PATRICIA
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need to know the overall stability of the particle beam. To this purpose we
define initial coordinates of a large number of particles distributed evenly over
a cross section normal to the direction of particle propagation to be tested
for stability. All particles are then tracked for many turns and the surviving
particles are displayed over the original cross section at the beginning of the
tracking thus defining the area of stability or dynamic aperture.

Having pursued analytical as well as numerical computations to determine
the dynamic aperture we are still faced with the question: what to do if the
analytical optimization of sextupole distribution will not yield a dynamic aper-
ture as large as required? In such a case special features of tracking programs
may be employed to possibly maximize the dynamic aperture. Adjusting the
sextupole distribution due to analytical recipes does not tell us the magni-
tude of improvement to the dynamic aperture for each compensation because
each of the resonant terms has its weighting factor which is unknown to us.
In extreme cases where further improvement of the dynamic aperture is de-
sired, we may therefore rely on scientifically less satisfactory applications of
trial and error methods to get access to analytically unreachable corrections.
By varying the strength of a sextupole, one at a time, the dynamic aperture
is determined through particle tracking and any variation that produces an
increase in the dynamic aperture is accepted as the new sextupole strength.
As stated this method lacks scientific merit but is sometimes necessary to
reach the desired beam stability for a particular project. The program PATRI-
CIA provides some aid for this process by giving some information about the
strongest contributors to detrimental aberrations. By reducing the strength
of such sextupoles and increasing that of sextupoles which do not contribute
much to these aberrations the dynamic aperture can often be increased.

14.3 Hamiltonian Perturbation Theory

The Hamiltonian formalism has been applied to derive tune shifts and to
discuss resonance phenomena. This was possible by a careful application of
canonical transformation to eliminate, where possible, cyclic variables from
the Hamiltonian and obtain thereby an invariant of the motion. We have
also learned that this “elimination” process need not be perfect. During the
discussion of resonance theory, we observed that slowly varying terms function
almost like cyclic variables giving us important information about the stability
of the motion.

During the discussion of the resonance theory, we tried to transform per-
turbation terms to a higher order in oscillation amplitude than required by
the approximation desired and where this was possible we would then ignore
such higher order fast-oscillating terms. This procedure was successful for all
terms but resonant terms. In this section we will ignore resonant terms and
concentrate on higher order terms which we have ignored so far [142]. By an
application of a canonical identity transformation we try to separate from fast
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oscillating terms those which vary only slowly. To that goal, we start from the
nonlinear Hamiltonian (13.28)

H = ν0 J + pn(ϕ)Jn/2 cosn ψ . (14.59)

Fast-oscillating terms can be transformed to a higher order by a canonical
transformation which can be derived from the generating function

G1 = ψ J1 + g(ψ,ϕ)Jn/2
1 , (14.60)

where the function g(ψ,ϕ) is an arbitrary but periodic function in ψ and ϕ
which we will determine later. From (14.60) we get for the new angle variable
ψ1 and the old action variable J

ψ1 = dG1
dJ1

= ψ + n
2 g(ψ,ϕ)Jn/2−1,

J = dG1
dψ = J1 + ∂g

∂ψ J
n/2−1
1 ,

(14.61)

and the new Hamiltonian is

H1 = H +
dG1

dϕ
= H +

∂g(ψ,ϕ)
∂ ϕ

J
n/2
1 . (14.62)

We now replace the old variables (ψ, J) in the Hamiltonian by the new
variables (J1, ψ1) and expand the nth-root

Jn/2 =
(
J1 +

∂g

∂ ψ
J

n/2
1

)n/2

= J
n/2
1 +

n

2
∂g

∂ ψ
Jn−1

1 + · · · . (14.63)

With (14.61), (14.63) Hamiltonian (14.62) becomes

H1 = ν0 J1 + J
n/2
1

[
ν0

∂g

∂ ψ
+ pn(ϕ) cosn ψ +

∂g

∂ ϕ

]
(14.64)

+ Jn−1
1

[
n

2
pn(ϕ) cosn ψ

∂g

∂ ψ

]
+ O

(
J

n+1/2
1

)
.

We have neglected all terms of order n + 1/2 or higher in the amplitude
J as well as quadratic terms in g(ψ,ϕ) or derivations thereof. We still must
express all terms of the Hamiltonian in the new variables and define therefore
the function

Q(ψ,ϕ) = ν0
∂g

∂ ψ
+ pn(ϕ) cosn ψ +

∂w

∂ ϕ
. (14.65)

In the approximation of small perturbations we have ψ1 ≈ ψ or ψ1 =
ψ + ∆ψ and may expand (14.65) like
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Q1(ψ1, ϕ) = Q(ψ,ϕ) +
∂Q

∂ ψ
∆ψ (14.66)

= Q(ψ,ϕ) +
n

2
g(ψ1, ϕ)Jn/2−1

1

∂Q

∂ ψ
, (14.67)

where we used the first equation of (14.61). The Hamiltonian can be greatly
simplified if we make full use of the periodic but otherwise arbitrary function
g(ψ1, ϕ). With (14.67) we obtain from (14.64)

H1 = ν0 J1 + J
n/2
1 Q1(ψ1, ϕ)

+
n

2
Jn−1

1

[
pn(ϕ) cosn ψ1

∂w

∂ ψ
− g(ψ,ϕ)

∂Q

∂ ψ

]
+ · · · (14.68)

and we will derive the condition that

Q(ψ,ϕ) = 0 . (14.69)

First we set

cosn ψ1 =
n∑

m=−n

anmeimψ1 (14.70)

and try an expansion of w(ψ1, ϕ) in a similar way

g(ψ1, ϕ) =
n∑

m=−n

gm(ϕ)eim(ψ1−ν0ϕ). (14.71)

This definition of the function w is obviously still periodic in ψ and ϕ as long
as gm(ϕ) is periodic. With

∂w

∂ψ1
=

n∑
m=−n

gm(ϕ) im eim(ψ1−ν0ϕ) (14.72)

and
∂w

∂ϕ
=

n∑
m=−n

[
∂gm

∂ϕ
− iν0mgm(ϕ)

]
eim(ψ1−ν0ϕ) (14.73)

we get instead of (14.65)

Q(ψ1, ϕ) ≈ Q(ψ,ϕ) =

iν0

n∑
m=−n

mgm eim(ψ1−ν0ϕ) + pn(ϕ)
n∑

m=−n

anmeimψ1

+
n∑

m=−n

(
∂gm

∂ϕ
− iν0mgm

)
eim(ψ1−ν0ϕ) = 0
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noting from (14.67) that the difference ∆Q = Q(ψ1, ϕ)−Q(ψ,ϕ) contributes
nothing to the term of order J

n/2
1 for n > 2. The imaginary terms cancel and

we get

Q(ψ1, ϕ) ≈ pn(ϕ)
n∑

m=−n

anmeimψ +
n∑

m=−n

∂gm

∂ϕ
eim(ψ−ν0ϕ) = 0 . (14.74)

This equation must be true for all values of ϕ and therefore the individual
terms of the sums must vanish independently

pn(ϕ)anm +
∂gm

∂ϕ
e−imν0ϕ = 0 (14.75)

for all values of m. After integration we have

gm(ϕ) = gm0 − anm

∫ ϕ

0

pn(φ)eimν0φdφ (14.76)

and since the coefficients gm(ϕ) must be periodic, gm(ϕ) = gm(ϕ+ 2π
N ), where

N is the superperiodicity, we are able to eventually determine the function
g(ψ1, ϕ). With

gm(ϕ)eim(ψ1−ν0ϕ) = gm

(
ϕ +

2π
N

)
eim(ψ1−ν0ϕ− 2π

N ν0) (14.77)

and (14.76) we have

gm0eim(ψ−ν0ϕ) − anmeim(ψ−ν0ϕ)

∫ ϕ

0

pn(φ̄)eimν0φ̄dφ̄

= eim(ψ−ν0ϕ− 2π
N ν0) (gm0 − anm)

∫ ϕ+ 2π
N

0

pn(φ̄)eimν0φ̄dφ̄ .

Solving for gm0 we get

gm0

(
1 − eim 2π

N ν0

)
= anm

∫ 2π
N

0

pn(φ̄)eimν0φ̄dφ̄ . (14.78)

A solution for gm0 exists only if there are no perturbations and p(ϕ) ≡ 0
or if

(
1 − eim 2π

N ν0

)

= 0. In other words we require the condition

mν0 
= qN, (14.79)

where q is an integer number. The canonical transformation (14.60) leads to
condition (14.69) only if the particle oscillation frequency is off resonance.
We have therefore the result that all nonresonant perturbation terms can
be transformed to higher order terms in the oscillation amplitudes while the
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resonant terms lead to phenomena discussed earlier. From (14.78) we derive
gm0, obtain the function gm(ϕ) from (14.76), and finally the function g(ψ1, ϕ)
from (14.71). Since Q(ψ1, ϕ) = 0, we get from (14.68) the Hamiltonian

H1 = ν0 J1 + J
n/2
1 Q1(ψ1, ϕ) (14.80)

+
n

2
Jn−1

1

[
pn(ϕ) cosn ψ1

∂g

∂ ψ1
− g(ψ1, ϕ)

∂Q

∂ ψ1

]
+ · · · .

Nonresonant terms appear only in order Jn−1
1 . As long as such terms can

be considered small we conclude that the particle dynamics is determined
by the linear tune ν0, a tune shift or tune spread caused by perturbations
and resonances. Note that Hamiltonian (14.80) is not the complete form but
addresses only the nonresonant case of particle dynamics while the resonant
case of the Hamiltonian has been derived earlier.

We will now continue to evaluate (14.80) and note that the product

g(ψ1, ϕ)
∂Q(ψ1, ϕ)

∂ψ1
= 0 (14.81)

in this approximation and get

T (ψ,ϕ) =
n

2
pn(ϕ) cosn ψ

∂g

∂ψ
, (14.82)

where we have dropped the index on ψ and set from now on ψ1 = ψ which
is not to be confused with the variable ψ used before transformation (14.60).
Using the Fourier spectrum for the perturbations and summing over all but
resonant terms q 
= qr we get from (14.78)

gm0

(
1 − eim 2π

N ν0

)
= anm

∑
q �=qr

∫ 2π
N

0

pnqei(mν0−qN)ϕdϕ

= anm

∑
q �=qr

pnq
eim 2π

N ν0 − 1
i (mν0 − qN)

, (14.83)

or
gm0 = i anm

∑
q �=qr

pnq

mν0 − qN
. (14.84)

Note that we have excluded in the sums the resonant terms q = qr where
mrν0 − qrN = 0. These resonant terms also include terms q = 0 which do
not cause resonances of the ordinary type but lead to tune shifts and tune
spreads. After insertion into (14.76) and some manipulations we find

gm (ϕ) = i anm

∑
q �=qr

pnq

mν0 − qN
−anm

∑
q �=qr

∫ ϕ

0

pnqei(mν0−qN)φdφ (14.85)

= i anm

∑
q �=qr

pnq
ei(mν0−qN)ϕ

mν0 − qN
,
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and with (14.71)

g(ψ,ϕ) = i
n∑

m=−n

∑
q �=qr

anmpnq

mν0 − qN
eimψ e−iqN)ϕ . (14.86)

From (14.82) we get with (14.70) and (14.86)

T (ψ,ϕ) = i
n

2

∑
q �=qr

pnq e−iqNϕ
n∑

m=−n

anm eimψ mg(ψ,ϕ) . (14.87)

This function T (ψ,ϕ) is periodic in ψ and ϕ and we may apply a Fourier
expansion like

T (ψ,ϕ) =
∑

r

∑

s�= rν0
N

Trs ei(rψ−sNϕ), (14.88)

where the coefficients Trs are determined by

Trs =
N

4π2

2π∫

0

e−irψ dψ

2π/N∫

0

eisNϕ T (ψ,ϕ) dϕ . (14.89)

To evaluate (14.89) it is most convenient to perform the integration with
respect to the betatron phase ψ before we introduce the expansions with
respect to ϕ. Using (14.70), (14.71), (14.82), we get from (14.89) after some
reordering

Trs = i
nN

4π

n∑
m=−n

m

∫ 2π

0

n∑
j=−n

anj

2π
ei(j+m−r)ψ dψ

×
∫ 2π/N

0

pn(ϕ) gm(ϕ) ei(mν0−sN)ϕ dϕ .

The integral with respect to ψ is zero for all values j + m − r 
= 0 and is
therefore equal to an,r−m

Trs = i
nN

4π

m∑
m=−n

mam,r−m

2π/N∫

0

pn(ϕ) gm(ϕ) e−i(mν0−sN)ϕ dϕ . (14.90)

Expressing the perturbation pn(ϕ) by its Fourier expansion and replacing
gm(ϕ) by (14.85), (14.90) becomes

Trs = −n

2

n∑
m =−n

mam,r−m an,m

∑
q �=qr

pn,s−q pn,q

mν0 − qN
. (14.91)

With this expression we have fully defined the function T (ψ,ϕ) and obtain
for the nonresonant Hamiltonian (14.80)



534 14 Hamiltonian Nonlinear Beam Dynamics

H = ν0 J + Jn−1
∑

r

∑
s �= r

N ν0

Trs ei(rψ−sNϕ) . (14.92)

We note in this result a higher order amplitude-dependent tune spread
which has a constant contribution T00 as well as oscillatory contributions.

Successive application of appropriate canonical transformations has led
us to derive a detailed insight into the dynamics of particle motion in the
presence of perturbations. Of course, every time we applied a canonical trans-
formation of variables it was in the hope of obtaining a cyclic variable. Except
for the first transformation to action angle variables, this was not completely
successful. However, we were able to extract from perturbation terms depend-
ing on both action and angle variables such elements that do not depend on
the angle variable. As a result, we are now able to determine to a high order
of approximation shifts in the betatron frequency caused by perturbations as
well as the occurrence and nature of resonances.

Careful approximations and simplifications had to be made to keep the
mathematical formulation manageable. Specifically we had to restrict the per-
turbation theory in this section to one order of multipole perturbation and we
did not address effects of coupling between horizontal and vertical betatron
oscillations.

From a more practical viewpoint one might ask to what extent this higher
order perturbation theory is relevant for the design of particle accelerators. Is
the approximation sufficient or is it more detailed than needed? As it turns out
so often in physics we find the development of accelerator design to go hand
in hand with the theoretical understanding of particle dynamics. Accelerators
constructed up to the late 1960s were designed with moderate focusing and low
chromaticities requiring no or only very weak sextupole magnets. In contrast
more modern accelerators require much stronger sextupole fields to correct
for the chromaticities and as a consequence, the effects of perturbations, in
this case third-order perturbations, become more and more important. The
ability to control the effects of such perturbations actually limits the perfor-
mance of particle accelerators. For example, in colliding-beam storage rings
the strongly nonlinear fields introduced by the beam–beam effect limit the at-
tainable luminosity while a lower limit on the attainable beam emittance for
synchrotron light sources or damping rings is determined by strong sextupole
fields.

14.3.1 Tune Shift in Higher Order

In (13.34) we found the appearance of tune shifts due to even order multipole
perturbations only. Third-order sextupole fields, therefore, would not affect
the tunes. This was true within the degree of approximation used at that
point. In this section, however, we have derived higher order tune shifts and
should therefore discuss again the effect of sextupolar fields on the tune.
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Before we evaluate the sextupole terms, however, we like to determine the
contribution of a quadrupole perturbation to the higher order tune shift. In
lower order we have derived earlier a coherent tune shift for the whole beam.
We use (14.91) and calculate T00 for n = 2

T00 =
∑
q �=qr

p2,q p2,−q

2∑
m=−2

ma2,m a2,−m

mν0 − qN
. (14.93)

With 4a2,2 = a2,−2 = 2a2,0 = 1 and a2,1 = a2,−1 = 0 the term in the bracket
becomes

−2
−2ν0 − qN

+
2

2ν0 − qN
=

2qN
(2ν0)

2 − (qN)2

and (14.93) is simplified to

T00 = −
∑
q �=qr

p2,q p2,−q
2qN

(2ν0)
2 − (qN)2

. (14.94)

In this summation we note the appearance of the index q in pairs as a
positive and a negative value. Each such pair cancels and therefore

T00,2 = 0, (14.95)

where the index 2 indicates that this coefficient was evaluated for a second-
order quadrupole field. This result is not surprising since all quadrupole fields
contribute directly to the tune and formally a quadrupole field perturbation
cannot be distinguished from a “real” quadrupole field.

In a similar way we derive the T00 coefficient for a third-order multipole
or a sextupolar field. From (14.91) we get

T00,3 = −3
2

∑
q �=qr

p3,q p3,−q

3∑
m=−3

ma3,m a3,−m

mν0 − qN
. (14.96)

Since cos3 ψ is an even function we have a3,m = a3,−m, a3,1 = 3
8 and

a3,3 = 1
8 . The second sum in (14.96) now becomes

1
64

(
3

3ν0 + qN
+

q

ν0 + qN
+

q

ν0 − qN
+

3
3ν0 − qN

)

=
1
64

(
18ν0

ν2
0 − (qN)2

+
18ν0

(3ν0)
3 − (qN)2

)
,

and after separating out the terms for q = 0, (14.96) becomes

T00,3 = − 15
32ν0

p2
3,0 (14.97)

− 27ν0

64

∑
q �=qr

p3,q p3,−q

[
1

ν2
0 − (qN)2

+
1

(3ν0)
3 − (qN)2

]
.
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This expression in general is nonzero and we found, therefore, that sextu-
pole fields indeed contribute to a tune shift although in a high order of ap-
proximation. This tune shift can actually become very significant for strong
sextupoles and for tunes close to an integer or third integer resonances. Al-
though we have excluded resonances (q = qr) , terms close to resonances be-
come important. Obviously, the tunes should be chosen such as to minimize
both terms in the bracket of (14.97). This can be achieved with ν0 = qN+ 1

2N
and 3ν0 = rN + 1

2N where q and r are integers. Eliminating ν0 from both
equations we get the condition 3q − r + 1 = 0 or r = 3q + 1. With this we
finally get from the two tune conditions the relation 2ν0 = (2q + 1)N or

νopt =
2q + 1

2
N . (14.98)

Of course, an additional way to minimize the tune shift is to arrange
the sextupole distribution in such a way as to reduce strong harmonics in
(14.97). In summary, we find for the nonresonant Hamiltonian in the presence
of sextupole fields

H3 = ν0 J + T 00,3 J
2 + higher order terms (14.99)

and the betatron oscillation frequency or tune is given by

ν = ν0 + 2T 00,3 J . (14.100)

In this higher order approximation of beam dynamics we find that sextu-
pole fields cause an amplitude dependent tune shift in contrast to our earlier
first-order conclusion

∆ν

ν0
=

ν − ν0

ν0
= T00,3

(
γu2 + 2uu′ + β u′ 2

)
= T00,3 ε, (14.101)

where we have used (1.49) with ε the emittance of a single particle oscil-
lating with a maximum amplitude a2 = βε. We have shown through higher
order perturbation theory that odd order nonlinear fields like sextupole fields,
can produce amplitude-dependent tune shifts which in the case of sextupole
fields are proportional to the square of the betatron oscillation amplitude and
therefore similar to the tune shift caused by octupole fields. In a beam where
particles have different betatron oscillation amplitudes this tune shift leads to
a tune spread for the whole beam.

In practical accelerator designs requiring strong sextupoles for chromatic-
ity correction it is mostly this tune shift which moves large amplitude particles
onto a resonance thus limiting the dynamic aperture. Since this tune shift is
driven by the integer and third-order resonance, it is imperative in such cases
to arrange the sextupoles such as to minimize this driving term for geometric
aberration.
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Problems

14.1 (S). Derive the expression for the second-order matrix element T166 and
give a physical interpretation for this term.

14.2 (S). Show that the perturbation proportional to x2
0 is p

(
z
∣∣x2

0

)
=[(

− 1
2m− κ3 − 2κk

)
C + 1

2κ C ′ 2
]
x2

0, where C = C (z) = cos
√
kz and C ′ (z) =

C ′ (z) and the second-order matrix element T111 = (− 1
2m−κ3−2κk) 1

3k

[
kS2+

(1 − C)] + 1
6κ
[
2 (1 − C) − kS2

]
.

14.3. Expand the second-order transformation matrix to include path length
terms relevant for the design of an isochronous beam transport system and
derive expressions for the matrix elements. Which elements must be adjusted
and how would you do this? Which parameters would you observe to control
your adjustment?

14.4. Sextupoles are used to compensate for chromatic aberrations at the ex-
pense of geometric aberrations. Derive a condition for which the geometric
aberration has become as large as the original chromatic aberration. What is
the average perturbation of geometric aberrations on the betatron motion?
Try to formulate a “rule of thumb” stability criteria for the maximum sextu-
pole strength. Is it better to place a chromaticity correcting sextupole at a high
beta location (weak sextupole) or at a low beta location (weak aberration)?

14.5. Consider both sextupole distributions of Problem 14.6 and form a pha-
sor diagram of one of expressions (14.50)–(14.54) for the first four or more
FODO cells. Discuss desirable features of the phasor diagram and explain
why the −I correction scheme works well. A phasor diagram is constructed
by adding vectorially each term of one of expressions (14.50)–(14.54) going
along a beam line.

14.6 (S). Consider a large circular accelerator made of many FODO cells with
a phase advance of 90◦ per cell. Locate chromaticity correcting sextupoles at
the center of each quadrupole and calculate the magnitude for one of the
five expressions (14.50)–(14.54). Now place noninterleaved sextupole in pairs
180◦ apart and calculate the same two expressions for the new sextupole
distribution.

14.7. The higher order chromaticity of a lattice may include a strong quadratic
term. What dependence on energy would one expect in this case for the beta
beat? Why? Can your findings be generalized to higher order terms?

14.8 (S). Use the lattice of Problem 14.6 and determine the tunes of the ring.
Are the tunes the best choices for the superperiodicity of the ring to avoid
resonance driven sextupole aberrations? How would you go about improving
the situation?
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14.9. Consider the lattice of Problem 14.6 and locate chromaticity correct-
ing sextupoles at the center of quadrupoles such that they conform with the
−I-transformation scheme. Derive an expression for the tune shift with am-
plitude as a function of a phase error between sextupole pairs. How precise,
for example, must the phase advance be controlled in this lattice in order for
the tune shift with amplitude parameter (∆νx/νx)/εx not to exceed a value
of 1000 m−1?

14.10. Consider the lattice of Problem 14.6 and place one octupole, for con-
venience, at the center of a quadrupole to generate a tune spread of ∆ν = 0.02
for then Landau damping in a beam with an emittance of ε = 0.1 mm mrad.
Determine the fourth-order stability diagram and derive the stability limit.
Will a 10σ beam survive? Does your result change as you spread the octupole
terms over several quadrupoles and how?



Part V

Acceleration



15

Charged Particle Acceleration

Particle acceleration by rf-fields has been discussed, for example, in consider-
able detail in [143, 144] where relationships between longitudinal phase oscil-
lation and beam stability are derived and discussed. The accelerating fields
were assumed to be available in resonant cavities, but we ignored conditions
that must be met to generate such fields and ensure positive energy transfer
to the particle beam. In this chapter, we will discuss relevant characteristics
of rf-cavities and study the interaction of the rf-generator with accelerating
cavity and beam.

It is not the intention here to develop a general microwave theory but we
will restrict ourselves rather to such aspects which are of importance for parti-
cle accelerator physics. Considerable performance limits occur in accelerators
by technical limitations in various accelerator systems as, for example, the
rf-system and it is therefore useful for the accelerator designer to have a basic
knowledge of such limits.

15.1 Preinjector and Beam Preparation

Although the proper choice of the initial rf-phase with respect to the par-
ticle beam greatly determines the final beam quality, the flexibility of such
adjustments is limited. Special attention must be given to the preparation
of the beam before acceleration. In most cases, particles are generated in a
continuous stream or from a microwave source of different frequency. Depend-
ing on the particle source, special devices are used for initial acceleration and
bunching of the beam. We will discuss basic principles of beam preparation.

15.1.1 Prebuncher

Many particle sources, be it for electrons, protons, or ions, produce a continu-
ous stream of particles at modest energies limited by electrostatic acceleration
between two electrodes. Not all particles of such a beam will be accelerated
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because of the oscillatory nature of the accelerating field. For this reason and
also in the case short bunches or a small energy spread at the end of the linac
is desired, the particles should be concentrated at a particular phase. This
concentration of particles in the vicinity of an optimum phase maximizes the
particle intensity in the bunch in contrast to a mechanical chopping of a con-
tinuous beam. To bunch particles requires specific beam manipulation which
we will discuss here in more detail.

A bunched beam can be obtained from a continuous stream of nonrelativis-
tic particles by the use of a prebuncher. The basic components of a prebuncher
is an rf-cavity followed by a drift space. As a continuous stream of particles
passes through the prebuncher, some particles get accelerated and some are
decelerated. The manipulation of the continuous beam into a bunched beam
is best illustrated in the phase space diagrams of Fig. 15.1.

Figure 15.1(a) shows the continuous particle distribution in energy and
phase at the entrance of the prebuncher. Depending on the phase of the
electric field in the prebuncher at the time of passage, a particle becomes
accelerated or decelerated and the particle distribution at the exit of the pre-

E
0,kin

0

2--2

a.)

E
kin

- 2-2

E
kin

- 2-2

c.)

b.)

Fig. 15.1. Phase space diagrams for a continuous beam passing through a pre-
buncher. Before acceleration (a) and right after (b). A distance L downstream of
the buncher cavity the phase space distribution shows strong bunching (c)
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buncher is shown in Fig. 15.1(b). The particle distribution has been distorted
into a sinusoidal energy variation. Since the particles are nonrelativistic the
energy modulation reflects also a velocity modulation. We concentrate on the
origin of the distribution at ϕ = 0 and ∆Ekin = 0 as the reference phase
and note that particles ahead of this reference phase have been decelerated
and particles behind the reference phase have been accelerated. Following this
modulated beam through the drift space we observe due to the velocity mod-
ulation a bunching of the particle distribution which reaches a maximum at
some distance as shown in Fig. 15.1(c). A significant beam intensity has been
concentrated close to the reference phase of the prebuncher.

The frequency used in the prebuncher depends on the desired bunch dis-
tribution. For straight acceleration in a linear accelerator one would choose
the same frequency for both systems. Often, however, the linear accelerator is
only an injector into a bigger circular accelerator which generally operates at
a lower frequency. For optimum matching to the final circular accelerator the
appropriate prebuncher frequency would be the same as the cavity frequency
in the circular accelerator cavity.

The effect of the prebuncher can be formulated analytically in the vicinity
of the reference phase. At the exit of the prebuncher, operating at a voltage
V = V0 sinϕ, the energy spread is

∆Ekin = eV0 sinϕ = mc2β γ3∆β, (15.1)

which is related to a velocity spread ∆β. Perfect bunching occurs a time ∆t
later when

∆v∆t =
ϕ

2π
λrf . (15.2)

Solving for ∆t we get for nonrelativistic particles with γ = 1 and β � 1

∆t =
λrf

2π
mv

eV0
(15.3)

and optimum bunching occurs a distance L downstream from the cavity

L = v ∆t =
2Ekin

krf eV0
, (15.4)

where krf = 2π/λrf and λrf is the rf-wavelength in the prebuncher cavity. The
minimum bunch length in this case is then

δL =
δEkin

krf eV0
, (15.5)

where δEkin is the total energy spread in the beam before the prebuncher.
In this derivation, we have greatly idealized the field variation being lin-

ear instead of sinusoidal. The real bunching is therefore less efficient than the
above result and shows some wings as is obvious from Fig. 15.1(c). In a com-
promise between beam intensity and bunch length one might let the bunching
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go somewhat beyond the optimum and thereby pull in more of the particle
intensity in the wings.

There are still particles between the bunches which could either be elim-
inated by an rf-chopper or let go to be lost in the linear accelerator because
they are mainly distributed over the decelerating field period in the linac.

15.1.2 Beam Chopper

A conceptually simple way to produce a bunched beam is to pass a continuous
beam from the source through a chopper system, where the beam is deflected
across a narrow slit resulting in a pulsed beam behind the slit. The principle
components of such a chopper system are shown in Fig. 15.2.

particle bunches slit

pulsedpermanent
field
deflector

field deflector absorber

Fig. 15.2. Principal functioning of a chopper system

As was mentioned in the previous section this mode of bunching is rather
wasteful and therefore an rf-prebuncher which concentrates particles from a
large range of phases toward a particular phase is more efficient for particle
bunching. However, we still might want to add a beam chopper.

One such reason could be to eliminate most of the remaining particles
between the bunches from the prebuncher. Although these particles most likely
get lost during the acceleration process a significant fraction will still reach
the end of the linac with an energy spread between zero and maximum energy.
Because of their large energy deviation from the energy of the main bunches,
such particles will be lost in a subsequent beam transport system and therefore
create unnecessary high radiation levels. It is therefore prudent to eliminate
such particles at low energies. A suitable device for that is a chopper which
consists of an rf-cavity excited similar to the prebuncher cavity but with the
beam port offset by a distance r from the cavity axis. In this case the same rf-
source as for the prebuncher or main accelerator can be used and the deflection
of particles is effected by the azimuthal magnetic field in the cavity.

The prebuncher produces a string of bunches at the prebuncher frequency.
For many applications, however, a different bunch structure is desired. Specifi-
cally it often occurs that only one single bunch is desired. To produce a single
pulse, the chopper system may consist of a permanent magnet and a fast
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pulsed magnet. The permanent magnet deflects the beam into an absorber
while the pulsed magnet deflects the beam away from the absorber across
a small slit. Let the distance between the center of the pulsed magnet and
the slit be D (Fig. 15.2), the slit aperture ∆, and the rate of change of the
magnetic field Ḃ. For an infinitely thin beam the pulse length behind the slit
is then

τb =
∆

D ϕ̇
=

∆

D

cp

e Ḃ �
, (15.6)

where ϕ is the deflection angle, � is the effective magnetic length of the pulsed
magnet, and cp is the momentum of the particles. In order to clean the beam
between bunches or to select a single bunch from a train of bunches the chop-
per parameters must be chosen such that only the desired part of the beam
passes through.

15.2 rf-Waveguides and Cavities

Commonly, high frequency rf-fields are used to accelerate charged particles
and the interaction of such electromagnetic waves with charged particles has
been discussed in the previous chapter together with the derivation of syn-
chronization conditions to obtain continuous particle acceleration. In doing so
plane rf-waves have been used ignoring the fact that such fields do not have
electrical field components in the direction of particle and wave propagation.
Although this assumption has not made the results obtained so far obsolete,
a satisfactory description of the wave–particle interaction must include the
establishment of appropriate field configurations.

Electromagnetic waves useful for particle acceleration must exhibit field
components in the direction of particle propagation which in our coordinate
system is the z-direction. The synchronization condition can be achieved in
two ways. First, an electromagnetic wave travels along the direction of the
desired particle acceleration with a phase velocity which is equal to the velocity
of the particle. In this case, a particle starting, say, at the crest of the wave
where the field strength is largest, would be continuously accelerated at the
maximum rate as it moves along with the wave. Another way of particle
acceleration occurs from electromagnetic fields created in rf-cavities placed at
particular locations along the particle path. In this case, the phase velocity
of the wave is irrelevant. For positive particle acceleration the phase of the
electromagnetic field must be adjusted such that the integrated acceleration is
positive, while the particle passes through the cavity. Obviously, if the velocity
of the particle or the length of the cavity is such that it takes several oscillation
periods for a particle to traverse the cavity no efficient acceleration is possible.

15.2.1 Wave Equation

To generate electromagnetic field components in the direction of wave prop-
agation we cannot use free plane waves, but must apply specific boundary
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conditions by properly placing conducting metallic surfaces to modify the
electromagnetic wave into the desired form. The theory of electromagnetic
waves, waveguides, and modes is well established and we repeat here only
those aspects that are relevant to particle acceleration. For more detailed
reading consult, for example, [145–149]. Maxwell’s equations for our applica-
tion in a charge free environment are

∇(εE) = 0, ∇× E = −dB

dt
,

∇B = 0, c2∇× B = εµ
dE

dt
,

(15.7)

and we look for solutions in the form of rf-fields oscillating with frequency ω.
A uniform medium is assumed which need not be a vacuum but may have a
dielectric constant ε and a magnetic permeability µ. Maxwell’s curl equations
then become

∇× E = −iωB,

c2∇× B = i εµωE .
(15.8)

Eliminating the magnetic field strength from both equations and using the
vector relation ∇× (∇× a) = ∇ (∇a) −∇2a, we get the wave equations

∇2E + k
2
E = 0,

∇2B + k
2
B = 0,

(15.9)

where k = εµω2/c2. In the case of a plane wave propagating along the z-axis
the transverse partial derivatives vanish

∂

∂x
=

∂

∂y
= 0, (15.10)

since field parameters of a plane wave do not vary transverse to the direction of
propagation. The differential equation (15.9) for the electrical field component
then becomes with ε0µ0 = 1/c2

(
∂2

∂z2 + k2

)
E = 0 (15.11)

and the solution is
E⊥ = E0 ei (ωt−kz), (15.12)

where for nontrivial solutions E0 
= 0. For real values of the wave number k
the solutions of (15.9) describe waves propagating with the phase velocity

vph =
z

t
=

c
√
εµ

≤ c . (15.13)
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An imaginary component of k, on the other hand, would lead to an ex-
ponential damping term for the fields, a situation that occurs, for example,
in a conducting surface layer where the fields decay exponentially over a dis-
tance of the skin depth. Between conducting boundaries, the wave number
is real and describes propagating waves of arbitrary frequencies. As has been
noted before, however, such plane waves lack electrical field components in
the direction of propagation. In the following section, we will therefore derive
conditions to obtain from (15.9) waves with longitudinal field components.

15.2.2 Rectangular Waveguide Modes

Significant modification of wave patterns can be obtained from the proximity
of metallic boundaries. To demonstrate this, we evaluate the electromagnetic
field of a wave propagating along the axis of a rectangular metallic pipe or
rectangular waveguide as shown in Fig. 15.3. Since we are interested in getting
a finite value for the z-component of the electrical field we try the ansatz

Ez = ψx(x)ψy(y)ψz(z) (15.14)

and look for boundary conditions that are required to obtain nonvanishing
longitudinal fields. Insertion into (15.9)a gives

ψ′′
x(x)

ψx(x)
+

ψ′′
y (y)

ψy(y)
+

ψ′′
z (z)

ψz(z)
= −k2, (15.15)

where the r.h.s. is a constant while the functions ψu(u) are functions of the
variable u = x, y, or z alone. In order that this equation be true for all values
of the coordinates, the ratios ψ′′

u(u)
ψu(u) must be constant and we may write (15.15)

in the form
k2

x + k2
y + k2

z = k2, (15.16)

where the parameters ku are constants.

b

a

y

z x

Fig. 15.3. Rectangular waveguide
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Differentiating (15.14) twice with respect to z results in the differential
equation for the z-component of the electrical field

d2Ez

dz2 = −k2
z Ez, (15.17)

which can readily be solved. The wavenumber k must be real for propagating
waves and with the definition

k2
c = k2

x + k2
y, (15.18)

we get
kz =

√
k2 − k2

c . (15.19)

Solution (15.14) of the wave equation for the z-component of the electrical
field is then finally

Ez = E0z ψx(x) ψy(y) ei (ωt−kzz) . (15.20)

The nature of the parameters in this equation will determine if the wave
fields are useful for acceleration of charged particles. The phase velocity is
given by

vph =
ω

kz
=

ω√
k2 − k2

c

. (15.21)

An electromagnetic wave in a rectangular metallic pipe is propagating
only if the phase velocity is real or k > kc and the quantity kc is therefore
called the cutoff wave number. For frequencies with a wave number less than
the cutoff value the phase velocity becomes imaginary and the wave decays
exponentially like exp

(
−
√

|k2 − k2
c |z
)
.

Conducting boundaries modify electromagnetic waves in such a way that
finite longitudinal electric field components can be produced which, at least
in principle, can be used for particle acceleration. Although we have found
solutions seemingly suitable for particle acceleration, we cannot use such an
electromagnetic wave propagating, for example, in a smooth rectangular pipe
to accelerate particles. Inserting (15.16) into (15.21), the phase velocity of a
traveling waveguide mode in a rectangular pipe becomes

vph =
c

√
εµ
√

1 − (kc/k)2
(15.22)

and is with k > kc, for example, in vacuum or air (ε ≈ µ ≈ 1) larger than the
velocity of light. As a consequence, there can be no net acceleration since the
wave rolls over the particles, which cannot move faster than the speed of light.
This problem occurs in a smooth pipe of any cross section. We must therefore
seek for modifications of a smooth pipe in such a way that the phase velocity is
reduced or to allow a standing wave pattern, in which case the phase velocity
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does not matter anymore. The former situation occurs for traveling wave linac
structures, while the latter is specially suited for single accelerating cavities.

For a standing wave pattern kz = 0 or k = kc and with (15.16), (15.18)
the cutoff frequency is

ωc =
c kc√
εµ

. (15.23)

To complete solution (15.20) for transverse dimensions, we apply boundary
conditions to the amplitude functions ψx and ψy. The rectangular waveguide
with a width a in the x-direction and a height b in the y-direction (Fig. 15.3)
be centered along the z-axis. Since the tangential component of the electrical
field must vanish at conducting surfaces, the boundary conditions are

ψx(x)= 0 for x = ± 1
2a,

ψy(y)= 0 for y = ± 1
2b .

(15.24)

The solutions must be cosine functions to meet these boundary conditions
and the complete solution (15.20) for the longitudinal electric field can be
expressed by

Ez = E0 cos
(mπx

a

)
cos
(nπy

b

)
ei (ωt−kz z), (15.25)

where m ≥ 1 and n ≥ 1 are arbitrary integers defining transverse field modes.
The trigonometric functions are eigenfunctions of the differential equation
(15.17) with boundary conditions (15.24) and the integers m and n are eigen-
values. In a similar way we get an expression for the z-component of the
magnetic field strength Bz. The boundary conditions require that the tangen-
tial magnetic field component at a conducting surface is the same inside and
outside the conductor which is equivalent to the requirement that

∂Bz

∂x

∣∣∣∣
x=± 1

2 a

= 0 and
∂Bz

∂y

∣∣∣∣
y=± 1

2 b

= 0 . (15.26)

These boundary conditions can be met by sine functions and the z-
component of the magnetic field strength is therefore in analogy to (15.25)
given by

Bz = B0 sin
(mπx

a

)
sin
(nπy

b

)
ei (ωt−kzz) . (15.27)

The cutoff frequency is the same for both the electrical and magnetic field
component and is closely related to the dimension of the waveguide. With
definition (15.18) the cutoff frequency can be determined from

k2
c = +k2

x + k2
y =
(mπ

a

)2

+
(nπ

b

)2

. (15.28)

All information necessary to complete the determination of field compo-
nents have been collected. Using (15.9), (15.25) the component equations are
with ∂

∂z = −ikz and k0 = ω/c
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ωBx = i∂Ez

∂y − kz Ey, εµk0Ex = −ic∂Bz

∂y + kzcBy ,

ωBy = kzEx − i∂Ez

∂x , εµk0Ey = −kzcBx + ic∂Bz

∂x ,

ωBz = i∂Ey

∂x − i∂Ex

∂y , εµk0Ez = −ic∂By

∂x + ic∂Bx

∂y .

(15.29)

From the first four equations we may extract expressions for the transverse
field components Ex, Ey, Bx, By as functions of the known z-components

Ex = i
(
k2

z−k2
)−1
(
kz

∂Ez

∂x + k0c
∂Bz

∂y

)
,

Ey = i
(
k2

z−k2
)−1
(
kz

∂Ez

∂y − k0c
∂Bz

∂x

)
,

cBx = i
(
k2

z−k2
)−1
(
kzc

∂Bz

∂x −µεk0
∂Ez

∂y

)
,

cBy = i
(
k2

z−k2
)−1
(
kzc

∂Bz

∂y +µεk0
∂Ez

∂x

)
,

(15.30)

where
k2

z = k2 −
(mπ

a

)2

−
(nπ

b

)2

(15.31)

and k2 = εµω2/c2.
By an application of proper boundary conditions at the conducting sur-

faces of a rectangular waveguide we have derived expressions for the z-
component of the electromagnetic fields and are able to formulate the re-
maining field components in terms of the z-component. Two fundamentally
different field configurations can be distinguished depending on whether we
choose Ez or Hz to vanish. All field configurations, for which Ez = 0, form
the class of transverse electrical modes or short TE-modes. Similarly, all fields
for which Hz = 0, form the class of transverse magnetic modes or short TM-
modes. Each class of modes consists of all modes obtained by varying the
integers m and n. The particular choice of these mode integers is commonly
included in the mode nomenclature and we speak therefore of TMmn- or
TEmn-modes.

For the remainder of this chapter we will concentrate only on the transverse
magnetic or TM-modes, since TE-modes are useless for particle acceleration.
The lowest order TM-mode is the TM11-mode producing the z-component
of the electrical field, which is maximum along the z-axis of the rectangular
waveguide and falls off from there like a cosine function to reach zero at the
metallic surfaces. Such a mode would be useful for particle acceleration if it
were not for the phase velocity being larger than the speed of light. In the
next subsection, we will see how this mode may be used anyway. The next
higher mode, the TM21-mode would have a similar distribution in the vertical
plane but exhibits a node along the z-axis. Because the field is zero along the
axis, we get acceleration only if the particle beam passes off-axis through the
waveguide in which case we may as well build only one half of the waveguide
and excite it to a TM11-mode.
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Before we continue the discussion on field configurations we note that elec-
tromagnetic waves with frequencies above the cutoff frequency (k > kc) prop-
agate along the axis of the rectangular waveguide. A waveguide wavelength
can be defined by

λg =
2π√

k2 − k2
c

> λ, (15.32)

which is always longer than the free space wavelength λ = 2π/k and

1
λ2

=
1
λ2

g

+
1
λ2

c

, (15.33)

where λc = 2π/kc.
The frequency of this traveling electromagnetic wave is from (15.32) with

(15.16), (15.23)

ω = ωc

√
1 +

k2
g

k2
c

. (15.34)

Electromagnetic energy travels along the waveguide with a velocity known
as the group velocity defined by

vg =
dω
dkg

=
c

√
µε

√
1 − k2

c

k2
<

c
√
µε

< c . (15.35)

In contrast to the phase velocity, the group velocity is always less than the
speed of light as it should be. Rectangular waveguides are mostly used to trans-
port high frequency microwaves from the generator to the accelerating cavity.
The bandwidth of waveguides is rather broad and the mechanical tolerances
relaxed. Small variation in dimension due to pressurization or evacuation to
eliminate field breakdown does not generally matter.

15.2.3 Cylindrical Waveguide Modes

For accelerating cavities we try to reach the highest fields possible at a well-
defined wavelength. Furthermore, accelerating cavities must be operated un-
der vacuum. These requirements result in very tight mechanical tolerances
which can be met much easier in round rf-cavities. Analogous to the rec-
tangular case we therefore derive field configurations in cylindrical cavities
(Fig. 15.4). The derivation of the field configuration is similar to that for rec-
tangular waveguides although now the wave equation (15.9) is expressed in
cylindrical coordinates (r, ϕ, z) and we get for the z-component of the electri-
cal field

∂2Ez

∂r2 +
1
r

∂Ez

∂r
+

1
r2

∂2Ez

∂ϕ2 +
∂2Ez

∂z2 + εµ
ω2

c2
Ez = 0 . (15.36)
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a1

ϕ

d

Fig. 15.4. Cylindrical resonant cavity (pill box cavity)

In a stationary configuration the field is expected to be periodic in ϕ
while the z-dependence is the same as for rectangular waveguides. Using the
derivatives ∂

∂ϕ = −im, where m is again an eigenvalue, and ∂
∂z = −ikz, we

get from (15.36)

∂2Ez

∂r2 +
1
r

∂Ez

∂r
+
(
k2
c − m2

r2

)
Ez = 0 (15.37)

and k2
c = k2−k2

z consistent with its previous definition. This differential equa-
tion can be solved with Bessel’s functions in the form [150]

Ez = E0 Jm(kcr) ei(ωt−mϕ−kzz), (15.38)

which must meet the boundary condition Ez = 0 for r = a, where a is the
radius of the cylindrical waveguide. The location of the cylindrical boundaries
are determined by the roots of Bessel’s functions of order m. For the lowest
order m = 0 the first root a1 is at

kca1 = 2.405 or at a radius a1 =
2.405
kc

(15.39)

and the field configuration is shown in Fig. 15.5.
Similar to rectangular waveguides we can derive the other field components

from (15.8) and get

Er = i
(
k2

z − k2
)−1 (

kz
∂Ez

∂r + i ck0
m
r B

z

)
,

Eϕ = i
(
k2

z − k2
)−1 (i kz

m
r Ez − ck0

∂Bz

∂r

)
,

cBr = i
(
k2

z − k2
)−1 (

ckz
∂Bz

∂r −i εµk0
m
r Ez

)
,

cBϕ = i
(
k2

z − k2
)−1 (i ckz

m
r B

z
+ εµk0

∂Ez

∂r

)
.

(15.40)
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Fig. 15.5. Electromagnetic field pattern for a TM010-mode in a circular waveguide.
Three-dimensional field configuration (a) and radial dependence of fields (b)

From (15.32) we conclude that the cutoff wave number must be positive

k2
c = k2

0 − k2 > 0, (15.41)

in order to obtain a traveling wave rather than a wave decaying exponentially
along the waveguide

(
k2
c < 0

)
. Solving for k we get with ωc = ckc

k2 = k2
0

(
1 − ω2

c

ω2

)
. (15.42)

The cutoff frequency is determined by the diameter of the waveguide
and limits the propagation of electromagnetic waves in circular waveguides
to wavelengths which are less than the diameter of the pipe. Waves with
longer wavelengths have an imaginary propagation factor k and decay expo-
nentially along the waveguide. To determine the phase velocity of the wave
we set ψ = ωt− kz = const. and get from the derivative ψ̇ = ω − kż = 0 the
phase velocity

vph = ż =
ω

k
. (15.43)

Inserting (15.42) into (15.43) we again get a phase velocity which exceeds
the velocity of light and therefore any velocity a material particle can reach,
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vph =
c√

1 − ω2
c/ω

2
> c . (15.44)

The phase velocity of the electromagnetic wave in a circular metallic tube
is larger than the velocity of light. We were able to modify plane electromag-
netic waves in such a way as to produce the desired longitudinal electric field
component but note that these fields are not yet suitable for particle accelera-
tion because the phase rolls over the particles and the net acceleration is zero.
To make such electromagnetic waves useful for particle acceleration further
modifications of the waveguide are necessary to slow down the phase velocity.

To complete our discussion we also determine the group velocity, which
is the velocity of electromagnetic energy transport along the waveguide. The
group velocity vg is defined by

vg =
dω
dk

. (15.45)

Differentiating (15.41) with respect to k, we get

k =
ω

c2
dω
dk

(15.46)

or with k = ω/vph the group velocity

vg =
dω
dk

=
c2k

ω
= c

c

vph
< c, (15.47)

since vph > c.

15.3 Linear Accelerator

The phase velocity vph must be equal to the particle velocity vp for efficient
acceleration and we need to modify or “load” the waveguide structure to
reduce the phase velocity. This can be done by inserting metallic structures
into the aperture of the circular wave guide. Many different ways are possible,
but we will consider only the disk-loaded waveguide which is the most common
accelerating structure for electron linear accelerators.

In a disk-loaded waveguide metallic plates are inserted normal to the
waveguide axis at periodic intervals with iris apertures to allow for the passage
of the particle beam as shown in Fig. 15.6.

The boundary conditions and therefore the electromagnetic fields in such
a structure are significantly more complicated than those in a simple circular
tube. It would exceed the goal of this text to derive the theory of disk-loaded
waveguides and the interested reader is referred to the review article by Slater
[151].

Insertion of disks in periodic intervals into a uniform waveguide essentially
creates a sequence of cavities with electromagnetic coupling through either the
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beam path

disk
iris

Fig. 15.6. Disk-loaded accelerating structure for an electron linear accelerator
(schematic)

central hole, holes at some radius on the disks, or external coupling cavities.
The whole arrangement of cells acts like a band pass filter allowing electro-
magnetic fields of certain frequencies to propagate. By a proper choice of the
geometric dimensions the pass band can be adjusted to the desired frequency
and the phase velocity can be designed to be equal to the velocity of the parti-
cles. For electron linear accelerators the phase velocity is commonly adjusted
to the velocity of light since electrons quickly reach such a velocity.

15.3.1 Basic Waveguide Parameters

Without going into structure design and detailed determination of geometric
parameters we can derive parameters relating to the acceleration capability
of such structures. Conservation of energy requires that

∂W

∂t
+

∂P

∂z
+ Pw + nevEz = 0, (15.48)

where W is the stored energy per unit length, P is the energy flux along z,
Pw are wall losses per unit length, and nev Ez is the energy transferred to n
particles with charge e each moving with the velocity v in the electric field
Ez. The wall losses are related to the quality factor Q of the structure

Q =
ωW

Pw
, (15.49)

where Pw/ω are wall losses per unit length and per radian of field oscillation.
The energy flux P is with the group velocity vg

P = vg W . (15.50)

In the case of equilibrium, the stored energy in the accelerating structure
does not change with time, ∂W/∂t = 0, and
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∂P

∂z
= −Pw − ib Ez = −ω P

vgQ
− ibEz, (15.51)

where ib = nev is the beam current. Considering the case of small beam
loading ib Ez � ωP/(vgQ) we may integrate (15.51) to get

P = P0 exp
(
− ω

vgQ
z

)
= P0 e−2αz, (15.52)

where we have defined the attenuation coefficient

2α =
ω

vgQ
. (15.53)

Equation (15.52) shows an exponential decay of the energy flux along the
accelerating structure with the attenuation coefficient 2α. The wall losses are
often expressed in terms of the total voltage or the electrical field defined by

Pw =
V̂ 2

0

Zs L
=

Ê2

rs
, (15.54)

where Zs is the shunt impedance for the whole section, Ê is the maximum
value of the accelerating field, Ez = Ê cosψs, ψs is the synchronous phase at
which the particle interacts with the wave, rs is the shunt impedance per unit
length, and L is the length of the cavity. From (15.54) we get with (15.51)
and (15.53) for negligible beam current the accelerating field

Ê2 =
ω

vg

rs
Q

P = 2αrsP . (15.55)

The total accelerating voltage along a structure of length L is

V0 =
∫ L

0

Ezdz = Ê cosψs

∫ L

0

e−αz dz (15.56)

or after integration

V0 =
1 − e−αL

α
Ê cosψs . (15.57)

Defining an attenuation factor τ by

τ = αL (15.58)

we get with (15.55) for the total accelerating voltage per section of length L

V0 =
√

rsLP0

√
2τ

1 − e−τ

τ
cosψs . (15.59)

The maximum energy is obtained if the particles are accelerated at the
crest of the wave, where ψs = 0. Since the attenuation factor is τ =
ωL/(2vgQ), we get for the filling time of the structure
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tF =
L

vg
=

2Q
ω

τ . (15.60)

As an example for an electron linear accelerator, the SLAC linac structure
has the following parameters [152]:

frf = 2856 MHz L = 10 ft = 3.048m

rs = 53 MΩ/m P0 = 8 MW

Q ≈ 15000 τ = 0.57 .

(15.61)

Tacitly it has been assumed that the shunt impedance rs is constant result-
ing in a variation of the electrical field strength along the accelerating section.
Such a structure is called a constant impedance structure and is characterized
physically by equal geometric dimensions for all cells.

In a constant impedance structure the electric field is maximum at the be-
ginning of the section and drops off toward the end of the section. A more effi-
cient use of accelerating sections would keep the electric field at the maximum
possible value just below the field breakdown throughout the whole section.
A structure with such characteristics is called a constant gradient structure
because the field is now constant along the structure.

A constant gradient structure can be realized by varying the iris holes
in the disks to smaller and smaller apertures along the section. This kind of
structure is actually used in the SLAC accelerator as well as in most modern
linear electron accelerators. The field Ê = const. and therefore from (15.52)
with (15.58)

∂P

∂z
=

P (L) − P0

L
= − (1 − e−2τ )

P0

L
. (15.62)

On the other hand, we have from (15.51)

∂P

∂z
= −ω P0

Qvg
= const. (15.63)

and to make ∂P/∂z constant the group velocity must vary linearly with the
local rf-power like

vg ∼ P (z) = P0 +
∂P

∂z
z . (15.64)

Furthermore, since ∂P/∂z < 0 the group velocity is made to decrease along
the section by reducing gradually the iris radii. From (15.63)

vg(z) = −ω

Q

P (z)
∂P/∂z

(15.65)

or with (15.62)

vg(z) = − ω

Q

P0 + ∂P
∂z z

∂P/∂z
= +

ω

Q

L− (1 − e−2τ ) z
1 − e−2τ

(15.66)
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and the filling time is after integration of (15.66)

tF =
∫ L

0

dz
vg

= 2τ
Q

ω
. (15.67)

The electric field in the accelerating section is from (15.54) with (15.51)

Ê =

√
rs

∣∣∣∣
∂P

∂z

∣∣∣∣ (15.68)

and the total accelerating voltage V0 or gain in kinetic energy per section is

∆Ekin = eV0 = e

∫ L

0

Ez dz = e
√

rsLP0

√
1 − e−2τ cosψs, (15.69)

where ψs is the synchronous phase at which the particles travel with the
electromagnetic wave. The energy gain scales with the square root of the
accelerating section length and rf-power delivered.

As a numerical example, we find for the SLAC structure from (15.69) the
gain of kinetic energy per 10 ft section as

∆Ekin (MeV) = 10.48
√

P0 (MW), (15.70)

where P0 is the rf-power delivered to the section. The energy gain (15.70) is
the maximum value possible ignoring beam loading or energy extraction from
the fields by the beam. The total accelerating voltage is reduced when we
include beam loading due to a beam current ib. Referring the interested reader
to [152] we only quote the result for the energy gain in a linear accelerator
with constant gradient sections including beam loading

Vi =
√

rsLP0

√
1 − e−2τ − 1

2
ib rs L

(
1 − 2τ e−2τ

1 − e−2τ

)
. (15.71)

For the SLAC linac structure this equation becomes with τ = 0.57

Ekin = 10.48
√

P0 (MW) − 37.47 ib (A) . (15.72)

The beam loading depends greatly on the choice of the attenuation factor
τ as is shown in Figs. 15.7, 15.8, where the coefficients fv =

√
1 − e2τ and

fi = 1
2

(
1 − 2τ e−2τ

1−e−2τ

)
are plotted as functions of τ . Both coefficients increase

as the attenuation factor is increased and reach asymptotic limits. The ra-
tio fv/fi, however, decreases from infinity to a factor two which means that
beam loading occurs much stronger for large values of the attenuation fac-
tor compared to low values. During the design of the linac structure, it is
therefore useful to know the intended use requiring different optimization for
high-energy or high-current acceleration.
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Fig. 15.7. Energy coefficient fv as a function of τ
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Fig. 15.8. Beam loading coefficient fi as a function of τ

We may also ask for the efficiency of transferring rf-power into beam power
which is defined by

η =
ib Vi

P0
= ib

√
rsL

P0

√
1 − e−2τ − 1

2
i2b rs

L

P0

(
1 − 2τ e−2τ

1 − e−2τ

)
. (15.73)

The linac efficiency has clearly a maximum and the optimum beam current
is

ib,opt =
√

P0

rsL

(1 − e−2τ )3/2

1 − (1 + 2τ) e−2τ
. (15.74)

The optimum beam current is plotted in Fig. 15.9 as a function of the
attenuation coefficient τ and the linac efficiency is shown in Fig. 15.10 as a
function of beam current in units of the optimum current with the attenuation
factor as a parameter.

The optimum beam current increases as the attenuation factor is reduced
while the linac efficiency reaches a maximum for the optimum beam current.
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Fig. 15.9. Optimum beam current as a function of τ
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Fig. 15.10. Linac efficiency as a function of beam current

15.3.2 Particle Capture in a Linear Accelerator Field

The capture of particles and the resulting particle energy at the end of the
accelerating section depend greatly on the relative synchronism of the parti-
cle and wave motion. If particles with velocity vp are injected at low energy
(vp � c) into an accelerator section designed for a phase velocity vph ≥ vp the
electromagnetic wave would roll over the particles with a reduced acceleration.
The particle velocity and phase velocity must be equal or at least close to each
other. Because small mismatches are quite common, we will discuss particle
dynamics under those circumstances and note that there is no fundamen-
tal difference between electron and proton linear accelerators. The following
discussion is therefore applicable to any particle type being accelerated by
traveling electromagnetic fields in a linear accelerator.

We observe the relative motion of both the particle and the wave from the
laboratory system. During the time ∆t particles move a distance ∆zp = vp ∆t
and the wave a distance ∆zph = vph ∆t. The difference in the distance traveled
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can be expressed in terms of a phase shift

∆ψ = − k (∆zph −∆zp) = − k (vph − vp)
∆zp

vp
. (15.75)

The wave number k is
k =

ω

vph
=

2πc
λrf vph

(15.76)

and inserted into (15.75) the relative phase shift over a distance ∆zp becomes

∆ψ = −2πc
λrf

vph − vp

vph vp
∆zp . (15.77)

To complete the equation of motion we consider the energy gain of the
particles along the same distance ∆zp which is

∆Ekin = − eEz(ψ)∆zp . (15.78)

Equations (15.77) and (15.78) form the equations of motion for particles in
phase space. Both equations are written as difference equations for numerical
integration since no analytic solution exists. For the most trivial case vph =
vp and ψ = const. allowing an easy integration of (15.78). This trivial case
becomes the overwhelming common case for electrons which reach a velocity
very close to the speed of light. Consistent with this, most accelerating sections
are dimensioned for a phase velocity equal to the speed of light.

As an illustrative example, we integrate (15.77) and (15.78) numerically
to determine the beam parameters at the end of a single 3 m long accelerating
section (vph = c) for an initial particle distribution in phase and momentum
at the entrance to the accelerating section. This situation is demonstrated in
Figs. 15.11 and 15.12 for a constant field gradient of Ê = 12.0 MeV/m [109].
The momentum and phase at the end of the accelerating section are shown as
functions of the initial momentum and phase. We note from Figs. 15.11 and
15.12 that particles can be captured in the accelerating field only in the vicinity
of ψ0 = −90◦at almost any initial phase and momentum. Particles become
trapped in the negative field performing random motion. This situation is
particularly severe for low momentum particles because they do not travel
with the phase velocity of the accelerating wave yet. On the other hand,
particles which enter the accelerating section ahead of the crest gain maximum
momentum while the wave’s crest sweeps over them.

Such diagrams calculated for particular parameters under consideration
provide valuable information needed to prepare the beam for optimum accel-
eration. The most forgiving operating parameters are where the contour lines
are far apart. In those areas a spread in initial phase or momentum has little
effect on the final phase or energy. If a beam with a small momentum spread at
the end of acceleration is desired, the initial phase should be chosen to be at
small positive values or just ahead of the wave crest as shown in Fig. 15.11.
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Fig. 15.11. Capture of electrons in a 3 m linac section for initial phase ψ0 and
initial kinetic energy Ekin,0. Contour lines are lines of constant particle energy in
keV at the end of the section. The phase ψ0 = 0 corresponds to the crest of the
accelerating wave.
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Fig. 15.12. Capture of electrons in a 3 m linac section for initial phase ψ0 and
initial kinetic energy Ekin,0. Contour lines are lines of constant particle energy at
the end of the section. The phase ψ0 = 0 corresponds to the crest of the accelerating
wave.

Even for a long bunch the final momentum spread is small while reaching the
highest total energy.

On the other hand, if a short bunch length at the end of acceleration
is of biggest importance, an initial phase of around ψ0 ≈ 100◦ seems to be
more appropriate. In this case, however, the final momentum is lower than
the maximum possible momentum and the momentum spread is large.
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Once the particular particle distribution delivered to the linear accelerator
and the desired beam quality at the end is known one can use Figs. 15.11 and
15.12 for optimization. Conversely such diagrams can be used to judge the
feasibility of a particular design to reach the desired beam characteristics.

15.4 rf-Cavities

Acceleration in a disk-loaded waveguide as applied in linear accelerators is
quite effective, but for some applications it is desired to have more control
over individual accelerating cavities while the actual acceleration is of sec-
ondary importance. Individual cavities can be realized by considering two
waves traveling in opposite directions on the same axis of a waveguide. In
the case of rectangular waveguides both fields have the form (15.25) and the
superposition of both fields is

Ez = 2E0 cos
(mπx

a

)
cos
(nπy

b

)
cos
(pπz

d

)
ei ωt, (15.79)

where p is an integer and with (15.32)

d =
pπ

kz
=

pλg

2
. (15.80)

The superposition of two equal but opposite waves form a standing wave
with nodes half a waveguide wavelength apart. Closing off the waveguide at
such node points with a metallic surface fulfils automatically all boundary
conditions. The resulting rectangular box forms a resonant cavity enclosing
a standing electromagnetic wave which, in principle, can be used for particle
acceleration since the phase velocity has become irrelevant. In analogy to the
waveguide mode nomenclature, we extend the nomenclature to cavities by
adding a third index for the eigenvalue p. The lowest cavity mode is then the
TM110-mode. The indices m and n cannot be zero because of the boundary
conditions for Ez. For p = 0 we find Ez to be constant along the whole length
of the cavity varying only with x and y. The boundary conditions are met
automatically at the end caps since with p = 0 also k = 0 and the transverse
field components vanish everywhere. The electrical field configuration for the
TM110-mode consists therefore of a finite Ez-component being constant only
along z and falling off transversely from a maximum value along the z-axis at
the center of the cavity to zero at the walls.

Similarly, we may form a cylindrical cavity by two counter propagating
waves. By adding endcaps at z = ± 1

2 d standing waves are established and
with kz = pπ

d we get from (15.38)

k2
c = εµ

ω2

c2
− p2π2

d2
. (15.81)
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Solving for the resonance frequency ω of the lowest order or the TM010-
mode (Fig. 15.5), we get with (15.39), m = 0 and p = 0

ω010 =
c

√
εµ

2.405
a1

(15.82)

and the z-component of the electrical field is

Ez = 2Ez,010 J0

(
2.405

r

a1

)
cos (ω010t) . (15.83)

The resonance frequency is inversely proportional to the radius of the cav-
ity and to keep the size of accelerating cavities manageable, short wave radio
frequencies are chosen. For electron linear accelerators a wavelength of λ = 10
cm is often used corresponding to a frequency of 2997.93 MHz and a cavity
radius of a1 = 3.38 cm. For storage rings a common frequency is 499.65 MHz
or λ = 60 cm and the radius of the resonance cavity is a1 = 22.97 cm. The size
of the cavities is in both cases quite reasonable. For much lower rf-frequencies
the size of a resonant cavity becomes large. Where such low frequencies are
desired the diameter of a cavity can be reduced at the expense of efficiency
by loading it with magnetic material like ferrite with a permeability µ > 1
as indicated by (15.82). This technique also allows the change of the reso-
nant frequency during acceleration to synchronize with low energy protons,
for example, which have not yet reached relativistic energies. To keep the
rf-frequency synchronized with the revolution frequency, the permeability of
the magnetic material in the cavity can be changed by an external electrical
current. The drawback of using materials like ferrites is that they are lossy in
electromagnetic fields, get hot, and produce significant outgassing in vacuum
environments.

The nomenclature for different modes is similar to that for rectangular
waveguides and cavities. The eigenvalues are equal to the number of field
maxima in ϕ, r, and z and are indicated as indices in this order. The TM010-
mode, therefore, exhibits only a radial variation of field strength independent
of ϕ and z. Again, we distinguish TM-modes and TE-modes but continue to
consider only TM-modes for particle acceleration. Electrical fields in such a
cavity have all the necessary properties for particle acceleration. Small open-
ings along the z-axis allow the beam to pass through the cavity and gain
energy from the accelerating field. Cylindrical cavities can be excited in many
different modes with different frequencies. For particle acceleration the di-
mensions of the cavity are chosen such that at least one resonant frequency
satisfies the synchronicity condition of the circular accelerator. In general this
is the frequency of the TM010-mode which is also called the fundamental cav-
ity mode or frequencies.

From expressions (15.40) we find that the lowest order TM-mode does not
include transverse electrical field components since kz = 0 and m = 0. The
only transverse field is the azimuthal magnetic field which is with (15.83)
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c
√
εµ

Bϕ = − iEz,010 J1

(
2.405

r

a1

)
eiω010t . (15.84)

15.4.1 Energy Gain

The kinetic energy gained in such a cavity can be obtained by integrating
the time-dependent field along the particle path. Let the cavity center be
located at z = 0 and a particle entering the cavity at time ω010t = −π/2 or at
z = −d/2 may encounter the phase δ of the microwave field. The electric field
along the z-axis as seen by the particle traveling with velocity v has the form
Ez = Ez0 sin

(
ω z

v + δ
)

and we get for the kinetic energy gain of a particle
passing through the cavity with velocity v

∆Ekin = eEz0

∫ 1
2 d

− 1
2 d

cos
(
ω
z

v
+ δ
)

dz . (15.85)

In general, the change in the particle velocity is small during passage of one
rf-cavity and the integral is a maximum for δ = π/2 when the field reaches a
maximum at the moment the particle is half way through the cavity. Defining
an accelerating cavity voltage

Vrf = Ez0d = E010d (15.86)

the kinetic energy gain is after integration

∆Ekin = eVrf

sin ωd
2v

ωd
2v

= eVcy, (15.87)

where we have defined an effective cavity voltage and the transit-time factor

T =
sin ωd

2v
ωd
2v

. (15.88)

The transit-time factor provides the correction on the particle acceleration
due to the time variation of the field while the particles traverse the cavity. In
a resonant pill box cavity (Fig.15.13a) we have d = λ/2 and the transit-time
factor for a particle traveling approximately at the speed of light is

Tpillbox =
2
π

< 1 . (15.89)

As the cavity length or the active accelerating gap in the cavity is reduced,
the transient time factor can be increased. The simple pill box cavity may be
modified by adding nose cones (Fig. 15.13(b) or by adding drift tubes at the
entrance and exit of the cavity as shown in Fig. 15.13(c). In this case the
parameter d in (15.88) is the active accelerating gap.

For small velocities (v � c), the transit time factor and thereby the energy
gain is small or maybe even negative. Maximum energy gain is obtained for
particles traveling at or close to the speed of light. Externally driven acceler-
ating cavity.
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Fig. 15.13. Resonant cavities with drift tubes (schematic)

15.4.2 rf-Cavity as an Oscillator

Accelerator cavities can be described as damped oscillators with external ex-
citation. Damping occurs due to energy losses in the walls of the cavity and
transfer of energy to the particle beam while an external rf-power source is
connected to the cavity to sustain the rf-fields. Many features of an acceler-
ating cavity can be expressed in well-known terms of a damped, externally
excited harmonic oscillator which is described in the form

ẍ + 2αẋ + ω2
0 = D eiωt, (15.90)

where α is the damping decrement, ω0 is the unperturbed oscillator frequency,
ω is the frequency, and D is the amplitude of the external driving force.
The equilibrium solution can be expressed in the form x = Aeiωt, where the
complex amplitude A is determined after insertion of this ansatz into (15.90)

A =
D

ω2
0 − ω2 + i2αω

= a eiΨ . (15.91)

The angle Ψ is the phase shift between the external excitation and the
oscillator and the amplitude a =Re(A) is from (15.91)

a =
D√

(ω2
0 − ω2)2 + 4α2ω2

. (15.92)

Plotting the oscillation amplitude a as a function of the excitation fre-
quency ω, we get the resonance curve for the oscillator as shown in Fig. 15.14.
The resonance frequency at which the oscillator reaches the maximum ampli-
tude depends on the damping and is

ωr =
√

ω2
0 − 2α2 . (15.93)
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Fig. 15.14. Resonance curve for a damped oscillator

For an undamped oscillator the resonance amplitude becomes infinite but
is finite whenever there is damping. The oscillator can be excited within a
finite distance from the resonance frequency and the width of the resonance
curve at half maximum amplitude is

∆ω 1
2
≈ ±2

√
3α for α � ωr . (15.94)

If there were no external excitation to sustain the oscillation, the amplitude
would decay like a ∝ e−αt. The energy of the oscillator scales like W ∝ A2

and the energy loss per unit time P = −dW/dt = 2αW, which can be used to
determine the quality factor of this oscillator as defined in (15.114)

Q =
ωr

2α
. (15.95)

The quality factor is reduced as damping increases. For the case of an
accelerating cavity, we expect therefore a higher Q-value called the unloaded
Q0 when there is no beam, and a reduced quality factor called loaded Q when
there is a beam extracting energy from the cavity. The time constant for the
decay of oscillation amplitudes or the cavity damping time is

td =
1
α

=
2Q
ωr

, (15.96)

which is the same as the cavity filling time (15.117) and the field amplitude
decays to 1/e during Q/π oscillations. Coming back to the equation of motion
(15.90) for this oscillator, we have the solution

x(t) = a ei(ωt+Ψ) (15.97)

noting that the oscillator assumes the same frequency as the external excita-
tion but is out of synchronism by the phase Ψ . The magnitude and sign of
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this phase shift depend on the excitation frequency and can be derived from
(15.91) in the form

ω2
r − ω2 + i2αω =

D

a
e−iΨ =

D

a
(cosΨ − i sinΨ) .

Both the real and imaginary parts must separately be equal and we get
for the phase shift between excitation and oscillator

cotΨ =
ω2 − ω2

r

2αω
≈ 2Q

ω − ωr

ωr
, (15.98)

where we have made use of (15.95) and the approximation ω ≈ ωr. For ex-
citation at the resonance frequency we find the oscillator to lag behind the
driving force by 1

2π and is almost in phase or totally out of phase for very low
or very high frequencies, respectively. In rf-jargon this phase shift is called the
tuning angle.

15.4.3 Cavity Losses and Shunt Impedance

Radio frequency fields can be enclosed within conducting surfaces only be-
cause electrical surface currents are induced by these fields which provide
the shielding effect. For a perfect conductor with infinite surface conductivity
these currents would be lossless and the excitation of such a cavity would
persist indefinitely. This situation is achieved to a considerable degree, al-
beit not perfect, in superconducting cavities. In warm cavities constructed
of copper or aluminum the finite resistance of the material causes surface
currents to produce heating losses leading to a depletion of field energy. To
sustain a steady field in the cavity, radio frequency power must be supplied
continuously. The surface currents in the conducting cavity boundaries can
be derived from Maxwell’s curl equation or Ampere’s law (15.8) as it is also
called. In cylindrical coordinates this vector equation becomes for the lowest
order TM-mode in component form

−∂Bϕ

∂z
= µ0µjr,

0= jϕ, (15.99)
∂rBϕ

r ∂r
=

Bϕ

r
+

∂Bϕ

∂r
= µ0µjz + i

εµ

c2
ωEz .

Because we do not consider perfectly but only well-conducting boundaries,
we expect fields and surface currents to penetrate somewhat into the conduct-
ing material. The depth of penetration of fields and surface currents into the
conductor is well known as the skin depth [145]

δs =
√

2
µ0µwω σw

, (15.100)
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where σw is the conductivity of the cavity wall and µw is the permeability of
the wall material. The azimuthal magnetic field component induces surface
currents in the cylindrical walls as well as in the end caps. In both cases
the magnetic field decays within a skin depth from the surface inside the
conductor. The first equation (15.99) applies to the end caps and the integral
through the skin depth is

∫ S+δs

S

∂Bϕ(r)
∂z

dz ≈ Bϕ(r)|S+δs
S ≈ −Bϕ(r, S), (15.101)

since Bϕ(r, S + δs) ≈ 0 just under the surface S of the wall. We also integrate
the third equation (15.99) at the cylindrical walls and get for the first term∫
Bϕ/r dr ≈ Bϕδs/a1, which is negligibly small, while the second term has

a form similar to (15.101). The electrical term Ez vanishes because of the
boundary condition and the surface current densities for the cylindrical wall
and end caps, respectively, are therefore related to the magnetic fields by

µ0µjz δs = Bϕ(a1, z),

µ0µjr δs = Bϕ(r,± 1
2d) .

(15.102)

The cavity losses per unit wall surface area are given by

dPcy

dS
= r̃s j

2
s , (15.103)

where js is the surface current and r̃s is the surface resistance given by

r̃s =
√

µ0µwω

2σw
. (15.104)

With js = jr,z δs, (15.84), (15.100) , and the integration of (15.103) is per-
formed over all inside surfaces of the cavity to give

Pcy =
1
4
ε0 ωδsε

µw

µ
E2

010

∫

S

J2
1

(
2.405

r

a1

)
dS, (15.105)

where ε and µ are the dielectric constant and permeability of the mater-
ial inside the cavity, respectively, and µw is the wall permeability. Evaluat-
ing the integral over all surfaces, we get for the cylindrical wall the integral
value 2π a1d J

2
1 (2.405). For each of the two end caps the integral 2π

∫ a1

0
J2
1

(2.405 r
a1

) r dr must be evaluated and is from integration tables [99]

2π
∫ a1

0

J2
1

(
2.405

r

a1

)
r dr = πa2

1J
2
1(2.405) . (15.106)

The total cavity wall losses become finally with Vrf = E010 d from (15.86)
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Pcy =
1
2
πε0ωδsε

µw

µ
V 2

rf J2
1 (2.405)

a1(a1 + d)
d2

. (15.107)

It is convenient to separate fixed cavity parameters from adjustable para-
meters. Once the cavity is constructed, the only adjustable parameter is the
strength of the electrical field E010 or the effective cavity voltage Vcy. Ex-
pressing the cavity losses in terms of an impedance, we get from (15.107) and
(15.87)

Pcy =
V 2

cy

2Rs
, (15.108)

where the cavity shunt impedance including transient time factor is defined
by 1

Rs =
1

πε0

1
ωδsε

µ

µw

d2

a1(a1 + d)
1

J2
1(2.405)

(
sin ωd

2v
ωd
2v

)2

. (15.109)

The factor of 2 in (15.108) results from the fact that on average the rf-
voltage is

〈
V 2

cy = V̂ 2
cy sin2 ωt

〉
= 1

2 V̂
2
cy . In accelerator design, we prefer some-

times to use the shunt impedance per unit length or the specific shunt im-
pedance. The required length depends on the accelerating voltage needed and
the rf-power available. With the cavity shunt impedance per unit length

rs =
Rs

d
, (15.110)

and the cavity losses are instead of (15.108)

Pcy =
V̂ 2

cy

2rsLcy
, (15.111)

where Lcy is the total length of all cavities producing the voltage V̂cy. Since the
cavity shunt impedance scales like Rs ∝ 1/

√
ω and the length for a resonant

cavity like d ∝ 1/ω, the specific shunt impedance is proportional to the square
root of the rf-frequency rs ∝

√
ω favoring high frequencies. A practical limit

is reached when the cavity apertures become too small for the particle beam
to pass through or when the size of the cavities prevents an efficient cooling
of wall losses.

As an example, we calculate from (15.109) the shunt impedance for a pill
box cavity designed for a resonance frequency of 358 MHz. The wavelength is
λ = 85 cm, the cavity length d = 42.5 cm and the cavity radius a1 = 32.535
cm. This cavity was constructed with nose cones for the storage ring PEP
[153] from aluminum. With a skin depth of δs = 4.44µm the specific shunt
impedance becomes rs = 15.2 MΩ/m while the measured value for this cavity
is 18.0 MΩ/m.
1 The shunt impedance is defined in the literature sometimes by Pcy = V 2

cy/Rs in
which case the numerical value of the shunt impedance is larger by a factor of 2.
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The difference is due to two competing effects. The open aperture along
the axis for the beam has the tendency to reduce the shunt impedance while
the nose cones being a part of the actual cavity increase the transient time fac-
tor and thereby the effective shunt impedance (15.109). The simple example
of a pill box cavity produces rather accurate results, however, for more precise
estimates computer programs have been developed to calculate the mode fre-
quencies and shunt impedances for all modes in arbitrary rotational symmetric
cavities (for example, SUPERFISH [154] or URMEL [155]). More sophisti-
cated three-dimensional programs are available (for example, MAFIA [155])
to simulate rf-properties of arbitrary forms of cavities.

The specific shunt impedance for a pill box cavity can be expressed in a
simple form as a function of the rf-frequency only and is for realistic cavities
approximately

rs(MΩ/m) ≈ 1.28
√

frf (MHz) for copper and

rs(MΩ/m) ≈ 1.06
√

frf (MHz) for aluminum .
(15.112)

The shunt impedance should be maximum in order to minimize cavity
losses for a given acceleration. Since the interior of the cavity must be evac-
uated µ = ε = 1 and µw = 1 because we do not consider magnetic materials
to construct a cavity. The only adjustable design parameters left are the skin
depth and the transient time factor. The skin depth can be minimized by
using well-conducting materials like copper or aluminum.

To derive the quality factor of the cavity the energy W stored in the
electromagnetic field within the cavity must be calculated. The field energy
is the volume integral of the square of the electrical or magnetic field and we
have in the case of a TM010-mode with W = 1

2ε0 ε
∫

V
E2

z dV and (15.83) for
the stored cavity energy

W = 1
2ε0 εE

2
010 d a

2
1 J

2
1 (2.405) . (15.113)

The quality factor Q of a resonator is defined as the ratio of the stored energy
to the energy loss per radian

Q = 2π
stored energy

energy loss/cycle
= ω

W

Pcy
, (15.114)

or with (15.107), (15.113)

Q =
d

δs

µw

µ

a1

a1 + d
. (15.115)

The quality factor determines the cavity time constant since the fields de-
cay exponentially like e−t/τcy due to wall losses, where τcy is the cavity time
constant and the decay rate of the stored energy in the cavity is

dW
dt

= − 2
τcy

W . (15.116)



572 15 Charged Particle Acceleration

The change in the stored energy is equal to the cavity losses Pcy and the cavity
time constant is from (15.114)

τcy =
2W
Pcy

=
2Q
ω

, (15.117)

which is also called the cavity filling time because it describes the build up
time of fields in a cavity following a step function application of rf-power.

15.5 rf-Parameters

A variety of rf-parameters has to be chosen for a circular accelerator. Some
parameters relate directly to beam stability criteria and are therefore easy to
determine. Other parameters have less of an impact on beam stability and
are often determined by nonphysical criteria like availability and economics.
Before rf-parameters can be determined a few accelerator and lattice para-
meters must be known. Specifically, we need to know the desired minimum
and maximum beam energy, the beam current, the circumference of the ring,
the momentum compaction factor, and the bending radius of the magnets.
Further, we make a choice of the maximum desired rate of particle accelera-
tion per turn or determine the energy loss per turn to synchrotron radiation
which needs to be compensated. During the following discussion we assume
that these parameters are known.

One of the most prominent parameters for rf-accelerating systems is the
rf-frequency of the electromagnetic fields. For highly relativistic beams there
is no fundamental reason for a particular choice of the rf-frequency and it can
therefore be selected on technical and economic grounds. The rf-frequency
must, however, be an integer multiple, the harmonic number, of the particle
revolution frequency. The harmonic number can be any integer from a beam
stability point of view. In specific cases, the harmonic number need to be
a multiple of a smaller number. Considering, for example, a colliding beam
facility with NIP collision points an optimum harmonic number is divisible by
NIP/2. In this case NIP/2 bunches could be filled in each of the two counter
rotating beams leading to a maximum collision rate. Other such considerations
may require the harmonic number to contain additional factors. In general,
most flexibility is obtained if the harmonic number is divisible by many small
factors.

Within these considerations the harmonic number can be chosen from a
large range of rf-frequencies without generally affecting beam stability. Given
complete freedom of choice, however, a low frequency is preferable to a high
frequency. For low rf-frequencies the bunch length is longer and electromag-
netic interaction with the beam environment is reduced since high frequency
modes are not excited significantly. A longer bunch length also reduces the
particle density in the bunch and thereby potentially troublesome intrabeam
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scattering [83, 156]. In proton and heavy ion beams a longer bunch length
leads to a reduced space charge tune shift and therefore allows us to accel-
erate a higher beam intensity. For these reasons lower frequency systems are
used mostly in low energy (γ < 100) circular accelerators. The downside of
low rf-frequencies is the fact that the accelerating cavities become very large
or less efficient and rf-sources are limited in power capability.

The size of circular accelerators imposes a lower limit on the rf-frequency
since the synchronicity condition requires that the rf-frequency be at least
equal to the revolution frequency in which case the harmonic number is equal
to unity. A higher harmonic number to accommodate more than a single
particle bunch further increases the required rf-frequency. Most electron and
very high energy proton accelerators operate at rf-frequencies of a few hundred
MHz, while lower frequencies are preferred for ion or medium energy proton
accelerators.

For some applications it is critical to obtain short particle bunches which
is much easier to achieve with a high rf-frequency. The appropriate choice of
the rf-frequency therefore depend much on the desired parameters for the par-
ticular application and is mostly chosen as a compromise between competing
requirements including economic considerations like cost and availability.

15.5.1 Synchronous Phase and rf-voltage

The most common use of an rf-system is for acceleration while particles pass
through a resonant cavity at the moment when the voltage reaches the crest
of the rf-wave and particles gain a kinetic energy equivalent to the full cav-
ity voltage. This is the general accelerating mode in linear accelerators. In
circular accelerators, however, the principle of phase focusing requires that
particles be accelerated off the crest at a synchronous phase ψs, where the
effective accelerating voltage is Va = V̂cy sinψs. The peak rf-voltage V̂cy and
the synchronous phase are determined by the desired momentum acceptance
and acceleration per turn.

The momentum acceptance of a circular accelerator has been derived in
Chap. 6, is proportional to the square root of the cavity voltage, and must
be adjusted for the larger of several momentum acceptance requirements. To
successfully inject a beam into a circular accelerator the voltage must be
sufficiently large to accept the finite momentum spread in the injected beam.
In addition, any phase spread or timing error of the incoming beam translates
into momentum errors due to synchrotron oscillations. For acceleration of a
high intensity beam an additional allowance to the rf-voltage must be made
to compensate beam loading, which will be discussed later in more detail.

After injection into a circular accelerator an electron beam may change
considerably its momentum spread due to quantum excitation as a result
of emitting synchrotron radiation. This momentum spread has a Gaussian
distribution and to assure long beam lifetime the momentum acceptance must
be large enough to contain at least seven standard deviations. In proton and
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heavy ion accelerators some phase space manipulation may be required during
the injection process which contributes another lower limit for the required
rf-voltage. In general, there are a number of requirements that determine
the ultimate momentum acceptance of an accelerator and the most stringent
requirement may very well be different for different accelerator designs and
applications. Generally, circular accelerators are designed for a momentum
acceptance of a few percent.

Problems

15.1 (S). Design a 500 MHz prebuncher system for a 3 GHz linear accelerator.
Particles in a continuous beam from the source have a kinetic energy of E0 =
100 keV with an energy spread of ±0.02%. Specify the optimum prebuncher
voltage and drift length to compress the maximum intensity into a bunch with
a phase distribution of less than ±12◦ at 3 GHz.

15.2. Discuss the graphs in Figs. 15.11 and 15.12. Specifically explain in words
the particle dynamics behind nonuniform features. How come particles get
accelerated even though they enter the linac while the accelerating field is
negative? Use a computer to reproduce these graphs and then produce such
graphs for particles with an initial kinetic energy of between 50 keV and 150
keV of conventional thermionic electron guns.

15.3. Derive expressions for the maximum electric field strength and the
waveguide losses per unit length for the TE10 mode in a rectangular waveguide.
Use this result to design a waveguide for 3 GHz. Calculate the cut-off fre-
quency, the phase and group velocities, and the waveguide wavelength. What
criteria did you use to choose the dimensions a and b? Sketch the electrical
and magnetic fields.

15.4. Consider a rectangular box cavity with copper walls and dimensioned
for an rf-wavelength of λ = 10.5 cm. Calculate the wall losses due to the
fundamental field only and determine the shunt impedance per unit length
rs and the quality factor Q for this cavity. These losses are due to surface
currents within a skin depth generated by the EM fields on the cavity surface
due to Maxwell’s equations. Compare these parameters with those of (15.61).
Is the shape of the cavity very important? Determine the resonance width
and temperature tolerance for the cavity.

15.5. Plot the electrical and magnetic field distribution for the three low-
est order modes in a rectangular and cylindrical cavity. Calculate the shunt
impedance and compare the results. Which type of cavity is more effective?

15.6. Derive a general expression of the shunt impedance for general TM-
modes in a cylindrical cavity.
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15.7. Assume the rectangular waveguides of problem 15.3 to be made of cop-
per with a surface resistivity of Rs = 2.61×10−7

√
frfΩ. What is the maximum

rf-power that can be carried in this waveguide if the electric fields are limited
by breakdown to 1 MV/m?

15.8. Consider a pill box cavity made from copper with dimensions suitable
for 3 GHz. Surface currents cause heating losses. Apply Maxwell’s equations
to the surfaces of the pill box cavity to determine these surface currents and
calculate the power loss due to surface resistance. Calculate the value of the
quality factor Q as defined in (15.49). Determine the resonance width of the
cavity and the temperature tolerance to keep the driving frequency within the
resonance.

15.9. Consider a pill box cavity with copper walls for a storage ring and choose
an rf-frequency of 750 MHz. Derive an expression for the wall losses due to
the fundamental field only and derive an expression for the shunt impedance
of the cavity defined by Rcy = V 2

rf/Prf, where Vrf is the maximum rf-voltage
and Prf is the cavity wall losses. What are the rf-losses if this cavity is used in
the ring of Problem 15.11? Assume that you can cool only about 100 kW/m
of cavity length. How many cavities would you need for your ring example?

15.10. In electron linear accelerators operating at 3 GHz accelerating fields
of more than 50 MeV/m can be reached. Why can such high fields not be
used in a storage ring? Discuss quantitatively, while scaling linac parameters
to the frequency of your choice in the storage ring.

15.11. Consider a high energy electron storage ring with a FODO lattice.
Determine the equilibrium energy spread and specify rf-parameters which
will be sufficient to compensate for synchrotron radiation losses and provide
an energy acceptance for all particles in a Gaussian energy distribution up to
7σε/E. What is the synchrotron tune and the bunch length in your storage
ring?

15.12. The ESRF synchrotron light source has a momentum compaction fac-
tor of ηc = −3.1 × 10−4, a first-order perturbation α1 = 5.5 × 10−4 and
〈γx〉 ≈ 1.8 and 〈γy〉 ≈ 0.8. Calculate the maximum allowable beam emittance
of the incoming beam to keep the energy shift of the rf-bucket due to the
largest betatron oscillations within 0.5%. The beam emittance of the stored
beam is ε = 6.9×10−9 rad m. What is the energy shift for particles oscillating
with an amplitude of 10σ? Compare with the rms energy spread of 0.1%?

15.13. Sometimes it is desirable to lengthen the electron bunch. This can be
done by installing a second rf-system tuned such that the slope of the rf-
voltage at the synchronous angle is reduced. Determine the frequency of such
a second rf-system and derive in linear approximation the bunch lengthening
as a function of the second rf-voltage.
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15.14. Calculate for a SLAC type linac section the noload energy gain, the
optimum beam current, and the energy gain with optimum beam loading for
an rf-power of P0 MW and a pulse length of 2.5 µs. What is the linac efficiency
for this current? Assume the acceleration of only one bunch of 1010 electrons.
What is the energy gain and the linac efficiency in this case?

15.15. Consider a SLAC type linear accelerator section connected to an rf-
source of 25 MW. The stored field energy is depleted by the particle beam.
If there are 109 electrons per microbunch, how many such bunches can be
accelerated before the energy gain is reduced by 1%? The field energy is
replenished from the rf-source at a rate given by the rf-power and the filling
time. What is the average beam current for which the energy gain is constant
for all bunches?
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Beam–Cavity Interaction

The proper operation of the rf-system in a particle accelerator depends
more than any other component on the detailed interaction with the par-
ticle beam. This results from the observation that a particle beam can induce
fields in the accelerating cavities of significant magnitude compared to the
generator produced voltages and we may therefore not neglect the presence of
the particle beam. This phenomenon is called beam loading and can place se-
vere restrictions on the beam current that can be accelerated. In this chapter,
main features of such interaction and stability conditions for most efficient
and stable particle acceleration will be discussed.

16.1 Coupling between rf-Field and Particles

In our discussions about particle acceleration we have tacitly assumed that
particles would gain energy from the fields in accelerating cavities merely by
meeting the synchronicity conditions. This is true for a weak particle beam
which has no significant effect on the fields within the cavity. As we try,
however, to accelerate an intense beam, the actual accelerating fields become
modified by the presence of considerable electrical particle beam currents.
This beam loading can be significant and ultimately limits the maximum
beam intensity that can be sustained.

The phenomenon of beam loading will be defined and characterized in
this section leading to conditions and parameters to assure positive energy
flow from the rf-power source to the beam. Fundamental consideration to this
discussion are the principles of energy conservation and linear superposition of
fields which allow us to study field components from one source independent
of fields generated by other sources. Specifically, we may treat beam induced
fields separately from fields generated by rf-power sources.
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16.1.1 Network Modelling of an Accelerating Cavity

The electrical excitation of a rf-cavity can be accurately described by an os-
cillator as discussed in Section 15.4.2 and therefore we will use characteristic
parameters and terminology of externally driven, damped oscillators in our
further discussions of rf-systems. Electrically, an accelerating cavity can be
represented by a parallel resonant circuit (Fig. 16.1) which is driven by an ex-
ternal rf-current source Ig from a generator and image currents of the particle
beam Ib.

C IbRsLVg

Ig

Ig/2

Rs/ Vcy

Fig. 16.1. Network model for an rf-generator and an accelerating cavity

The amount of rf-power available from the generator in the accelerating
cavity depends greatly on the relative impedance of cavity and generator. Both
have to be matched to assure optimum power transfer. To derive conditions
for that we define the internal impedance of the current source or rf-generator
in terms of the cavity shunt impedance Rs of an empty cavity as defined in
(15.108)

Rg =
Rs

β
, (16.1)

where β is the coupling coefficient still to be defined. This coefficient depends
on the actual hardware of the coupling arrangement for the rf-power from the
generator at the entrance to the cavity and quantifies the generator impedance
as seen from the cavity in units of the cavity shunt impedance Rs (Fig. 16.1).
Since this coupling coefficient depends on the hardware, we need to specify
the desired operating condition to determine the proper adjustment of the
coupling during assembly. This adjustment is done by either rotating a loop
coupler with respect to the cavity axis or adjustment of the aperture in the
case of capacitive coupling through a hole.

The inductance L and capacitance C form a parallel resonant circuit with
the resonant frequency

ωr =
1√
LC

. (16.2)

The rf-power available at the cavity from the generator is

Pg = 1
2YLV

2
g , (16.3)
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where YL is the loaded cavity admittance including energy transfer to the
beam and Vg is the generator voltage. Unless otherwise noted, the voltages,
currents, and power used in this section are the amplitudes of otherwise os-
cillating quantities. At resonance where all reactive power vanishes we use
the generator current Ig and network admittance Y = Yg + YL to replace the
generator voltage

Vg =
Ig
Y

=
Ig

Yg + YL

and get after insertion into (16.3) the generator power in the form

Pg =
1
2

YL

(Yg + YL)2
I2
g . (16.4)

Noting that the generator power has a maximum, which can be determined
from ∂Pg/∂YL = 0, we obtain the well-known result that the rf-power transfer
from the generator becomes a maximum if the load is matched to the internal
impedance of the generator by adjusting

Yg = YL or RL =
Rs

β
, (16.5)

replacing the admittances by the respective impedances. The maximum avail-
able rf-power at the cavity is therefore with Yg = β/Rs

Pg =
1
8
Rs

β
I2
g . (16.6)

To calculate the quality factor for a cavity, we note the stored energy is
W = 1

2CV 2 and the energy loss rate Pcy = 1
2V

2/R. Using definition (15.114)
the unloaded quality factor becomes with R = Rs at resonance

Q0 = ωrCRs . (16.7)

The admittance for the total circuit as seen by the beam is that of cavity plus
generator or

1
Rb

=
β

Rs
+

1
Rs

=
1 + β

Rs
. (16.8)

From this and (16.7) we get the loaded quality factor

Q = ωrCRb =
Q0

1 + β
. (16.9)

Off resonance the generator voltage and current are no more in phase. The
phase difference can be derived from the complex impedance of the network,
which is the same seen from the generator as well as seen from the beam

1
Z

=
1
Rb

+ iωC +
1

iωL
. (16.10)
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The complex impedance becomes with (16.2), (16.9)

1
Z

=
1
Rb

(
1 + iQ

ω2 − ω2
r

ω ωr

)
(16.11)

and with Ig = Vg/Z the generator current is

Ig =
Vg

Rb

(
1 + iQ

ω2 − ω2
r

ω ωr

)
=

Vg

Rb
(1 − i tanΨ) . (16.12)

Close to resonance the tuning angle Ψ becomes from (16.12) with ω ≈ ωr

tanΨ ≈ −Q
ω2 − ω2

r

ω ωr
≈ −2Q

ω − ωr

ωr
(16.13)

in agreement with (15.98) except for a phase shift of −90◦, which was in-
troduced here to be consistent with our definition of the synchronous phase
ψs. The variation of the tuning angle is shown in Fig. 16.2 as a function of
the generator frequency. From (16.12) , the generator voltage at the cavity is
finally

Vg =
IgRb

1 − i tanΨ
= IgRb cosΨ eiΨ . (16.14)

At frequencies below the resonance frequency the tuning angle is positive
and therefore the generator current lags the voltage by the phase Ψ . This case
is also called inductive detuning since the impedance looks mainly inductive.
Conversely, the detuning is called capacitive detuning because the impedance
looks mostly capacitive for frequencies above the resonance frequency.

A bunched particle beam passing through a cavity acts as a current just
like the generator current and therefore the same relationships with respect to
beam-induced voltages exist. In the case of capacitive detuning, for example,
the beam-induced voltage Vb lags in phase behind the beam current Ib.

The effective accelerating voltage in the cavity is a composition of the
generator voltage, the induced voltage, and the phase relationships between

-90
-60
-30
0
30
60
90

tuning angle (deg)

frequency
res

Fig. 16.2. Tuning angle ψ as a function of the generator frequency
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themselves and relative to the particle beam. To assure a stable beam, the
resulting cavity voltage must meet the requirements of particle acceleration
to compensate, for example, the lost energy into synchrotron radiation. We
determine the conditions for that by deriving first the generator voltage Vgr at
resonance and without beam loading while voltage and current are in phase.
From Fig. 16.1 we get

Vgr =
Ig

Yg + YL
=

Ig
1

Rs
+ β

Rs

=
RsIg
1 + β

(16.15)

and with (16.6) the generator voltage at resonance becomes

Vgr =
2
√

2β
1 + β

√
RsPg . (16.16)

The generator voltage at the cavity is therefore with (16.14)

Vg = Vgr cosΨ eiΨ . (16.17)

This is the cavity voltage seen by a negligibly small beam and can be
adjusted to meet beam stability requirements by varying the tuning angle Ψ
and rf-power Pg.

16.2 Beam Loading and rf-System

For more substantial beam currents the effect of beam loading must be in-
cluded to obtain the effective cavity voltage. Similar to the derivation of the
generator voltage in a cavity, we may derive the induced voltage from the
beam current passing through that cavity. Since there is no fundamental dif-
ference between generator and beam current, the induced voltage is in analogy
to (16.17)

Vb = −Vbr cosΨ eiΨ , (16.18)

where the negative sign indicates that the induced voltage is decelerating
the beam. The particle distribution in the beam occurs in bunches and the
beam current therefore can be expressed by a Fourier series. Here we are only
interested in the harmonic Ih of the beam current and find for bunches short
compared to the rf-wavelength

Ih = 2Ib (16.19)

where Ib is the average beam current and h the harmonic number. The ap-
proximation for short bunches with � � λrf- holds as long as sin krf-� ≈ krf-�
with krf- = 2π/λrf-. For longer bunches, the factor 2 becomes a more compli-
cated form factor as can be derived from an appropriate Fourier expansion.
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At the resonance frequency ωr = hω0, the beam induced voltage in the cavity
is then with (16.8) from (16.15)

Vbr =
RsIh
1 + β

=
2RsIb
1 + β

. (16.20)

The resulting cavity voltage is the superposition of both voltages, the
generator and the induced voltage. This superposition, including appropriate
phase factors, is often represented in a phasor diagram. In such a diagram, a
complex quantity z̃ is represented by a vector of length |z̃| with the horizon-
tal and vertical components being the real and imaginary part of z̃, respec-
tively. The phase of this vector increases counter clockwise and is given by
tanϕ =Im(z̃) /Re(z̃). In an application to rf-parameters, we represent volt-
ages and currents by vectors with a length equal to the magnitude of voltage
or current and a counter clockwise rotation of the vector by the phase angle
ϕ.

The particle beam current can be chosen as the reference being parallel
to the real axis and we obtain from the quantities derived so far the phasor
diagram as shown in Fig. 16.3. First we determine the relationships between
individual vectors and phases and then the correct adjustments of variable rf-
parameters. In Fig. 16.3 the generator current is assumed to have the still to
be determined phase ϑ with respect to the beam current while the generator
voltage and beam induced voltage lag by the phase Ψ behind the beam current.
The resulting cavity voltage Ṽ cy is the phasor addition of both voltages Ṽ g +
Ṽ b as shown in Fig. 16.3.

The adjustment of the rf-system must now be performed in such a way as
to provide the desired gain in kinetic energy U0 = e V̂cy sinψs where V̂cy is
the maximum value of the cavity voltage and ψs the synchronous phase. To
maximize the energy flow from the generator to the cavity, the load must be
matched such that it appears to the generator purely resistive. This is achieved

ψ
Ib

Vb

Vbr

Vcy

Vgr Ig

Vb

Vg

U0

ψ

ψg

ψs

ψg-ψ

Fig. 16.3. Phasor diagram for an accelerating cavity and arbitrary tuning angle
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by adjusting the phase ψg to get the cavity voltage Vcy and generator current
Ig in phase which occurs for

ψg = 1
2π − ψs (16.21)

as shown in Fig. 16.4. Obviously, this is only true for a specific value of the
beam current. General operation will deviate from this value and therefore
we often match to the maximum desired beam current. For lower currents,
where the energy transfer is not optimum anymore, some loss of efficiency is
acceptable.

Ib

Vb

Vbr

Vcy

Vgr

Ig

Vb

Vg

U0

ψg
ψs

ψg-ψ
ψm

ψm

Fig. 16.4. Phasor diagram with optimum tuning angle

The tuning angle adjustment for optimum matching can be derived from
Fig. 16.4 and applying the law of sines we have with (16.17)

Vb

Vcy
=

Vbr cosΨm

Vcy
=

sinΨm

sinψg
=

sinΨm

cosψs
. (16.22)

The optimum tuning angle is from (16.22)

tanΨm =
Vbr

Vcy
cosψs . (16.23)

This tuning is effected by a shift in the resonant frequency of the cavity
with respect to the generator frequency by, for example, moving a tuner in or
out. From (16.13) we get with (16.9), (16.20), (16.23) for the frequency shift
or frequency tuning

δω = ω − ωr = − ωr

2Q0

Pb

Pcy
cotψs, (16.24)

where the cavity power is defined by



584 16 Beam–Cavity Interaction

Pcy =
V 2

cy

2Rs
(16.25)

and the beam power by
Pb = IbVcy sinψs . (16.26)

To determine the required generator power the components of the cavity
voltage vector can be expressed by other quantities and we get from Fig. 16.4

Vcy sinψs = Vgr cosΨm cos (ψg − Ψm) − Vbr cos2 Ψm (16.27)

and

Vcy cosψs = Vgr cosΨm sin (ψg − Ψm) + Vbr cosΨm sinΨm . (16.28)

Combining both equations to eliminate the phase (ψg − Ψm) , we get

V 2
gr =

(
Vcy

sinψs

cosΨm
+ Vbr cosΨm

)2

+
(
Vcy

cosψs

cosΨm
− Vbr sinΨm

)2

(16.29)

and with (16.16), (16.20) the required generator power for the condition of
optimum matching is

Pg =
V 2

cy

2Rs

(1 + β)2

4β

[(
sinψs

cosΨm
+

2RsIb
Vcy (1 + β)

cosΨm

)2

(16.30)

+
(

cosψs

cosΨm
− 2RsIb

Vcy (1 + β)
sinΨm

)2
]
.

This expression can be greatly simplified with (16.23) to become

Pg,opt =
(1 + β)2

8βRs

(
Vcy +

2RsIb
1 + β

sinψs

)2

. (16.31)

Equation (16.31) represents a combination of beam current through Ib, rf–
generator power Pg, coupling coefficient β, and shunt impedance Rs to sustain
a cavity voltage Vcy. Specifically, considering that the rf-power Pg and coupling
coefficient β are fixed by the hardware installed a maximum supportable beam
current can be derived as a function of the desired or required cavity voltage.
Solving for the cavity voltage, (16.31) becomes after some manipulation

Vcy =
√

2βRs

1 + β

(√
Pg,opt +

√
Pg,opt −

1 + β

β
Pb

)
. (16.32)

This expression exhibits a limit for the beam current above which the sec-
ond square root becomes imaginary. The condition for real solutions requires
that
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Pb ≤ β

1 + β
Pg,opt (16.33)

leading to a limit of the maximum sustainable beam current of

Ib ≤ β

1 + β

Pg

Vcy sinψs
. (16.34)

An inspection of (16.31) shows that the required generator power can
be further minimized by adjusting for the optimum coupling coefficient β.
Optimum coupling can be derived from ∂Pg/∂β = 0 with the solution

βopt = 1 +
2RsIb
Vcy

sinψs = 1 +
Pb

Pcy
. (16.35)

The minimum generator power required to produce an accelerating voltage
Vcy sinψs is therefore from (16.31) with (16.35)

Pg,min =
V 2

cy

2Rs
βopt = βoptPcy (16.36)

and the optimum tuning angle from (16.23)

tanΨopt =
βopt − 1
βopt + 1

cotψs . (16.37)

In this operating condition all rf-power from the generator is absorbed by
the beam-loaded cavity and no power reflection occurs. The maximum beam
power is therefore Pb = Pg − Pcy and the maximum beam current

Ib ≤ Pg

Vcy sinψs
− Vcy

2Rs sinψs
. (16.38)

Conditions have been derived assuring most efficient power transfer to the
beam by a proper adjustment of the cavity power input coupler to obtain the
optimum coupling coefficient. Of course this coupling coefficient is optimum
only for a specific beam current which in most cases is chosen to be the
maximum desired beam current.

We are now in a position to determine the total rf-power flow. From con-
servation of energy we have

Pg = Pcy + Pb + Pr, (16.39)

where Pr is the reflected power which vanishes for the case of optimum cou-
pling.

A proper adjustment of the accelerating cavity can be tested with the
help of a pulsed rf-generator. Directional couplers in the transmission line
from generator to cavity allow the monitoring of the forward and reflected
power while a loop probe in the cavity detects the field strength in the cavity.
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Application of an rf-pulse to the cavity results first in a large reflected power
since the cavity is completely mismatched. Both, cavity wall losses and beam
acceleration, require full fields to become optimally effective for matching. In
terms of the circuit diagram the capacitance is empty and the load impedance
is zero at the very beginning of the pulse. As the capacitor charges up the
field in the cavity reaches its operating value and the reflected power drops
to zero for a properly adjusted coupling coefficient. Conversely, the coupling
coefficient can be inferred from the measurement of the reflected power. At the
moment the generator pulse comes to an end, the energy stored in the cavity
starts to decay and from observation of the decay time the quality factor can
be derived.

In Fig. 16.5 [157] measured signals of the forward generator power and the
reflected power are shown for the pulsed operation of a 3 GHz rf-electron gun.
Most of the rf-power is reflected because the coupling is set such that optimum
power transfer is obtained at a high beam current. The reflected power is lower
in the middle of the rf-pulse when the cavity voltage and losses are highest.
Adding an electron beam further reduces the reflected power (Fig. 16.6) . As
the beam current develops during the pulse, the matching improves without
reaching its optimum value due to a deliberate limitation of the beam cur-
rent below the optimum current. Obviously, the effect of beam loading must
be included to achieve maximum energy transfer from the generator to the
particle beam.
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Fig. 16.5. Observation of beam loading in an accelerating cavity (rf-gun), generator
power to the cavity Pg(solid), and reflected power Pr (dashed). In this case no
electron beam is present [157]
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Fig. 16.6. Observation of beam loading in an accelerating cavity (rf-gun), generator
power to the cavity Pg(solid), and reflected power Pr (dashed). The bottom trace
shows the beam current Ib [157]

16.3 Higher Order Mode Losses in an rf-Cavity

The importance of beam loading for accurate adjustments of the rf-system
has been discussed qualitatively but not yet quantitatively. In this paragraph,
quantitative expressions will be derived for beam loading. Accelerating cav-
ities constitute an impedance to a particle current and a bunch of particles
with charge q passing through a cavity induces electromagnetic fields into a
broad frequency spectrum limited at the high frequency end by the bunch
length. The magnitude of the excited frequencies in the cavity depends on the
frequency dependence of the cavity impedance, which is a function of the par-
ticular cavity design and need not be known for this discussion. Fields induced
within a cavity are called modes, oscillating at different frequencies with the
lowest mode being the fundamental resonant frequency of the cavity. Although
cavities are designed primarily for one resonant frequency, many higher or-
der modes or HOMs can be excited at higher frequencies. Such modes occur
above the fundamental frequency first at distinct well-separated frequencies
with increasing spectral densities at higher frequencies.

For a moment we consider here only the fundamental frequency and deal
with higher order modes later. Fields induced by the total bunch charge act
back on individual particles modifying the overall accelerating voltage seen
by the particle. To quantify this we use the fundamental theorem of beam
loading formulated by Wilson [158] which states that each particle within a
bunch sees one half of the induced field while passing through the cavity.
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We prove this theorem by conducting a Gedanken experiment proposed by
Wilson. Consider a bunch of particles with charge q passing through a lossless
cavity inducing a voltage Vi1 in the fundamental mode. This induced field
is opposed to the accelerating field since it describes a loss of energy. While
the bunch passes through the cavity this field increases from zero reaching
a maximum value at the moment the particle bunch leaves the cavity. Each
particle will have interacted with this field and the energy loss corresponds to
a fraction f of the induced voltage Vi,h, where the index h indicates that we
consider only the fundamental mode. The total energy lost by the bunch of
charge q is

∆E1 = −q1f Vi,h . (16.40)

This energy appears as field energy proportional to the square of the voltage

W1 = c1V
2

i,h, (16.41)

where c1 is a constant.
Now consider another bunch with the same charge q2 = q1 = q follow-

ing behind the first bunch at a distance corresponding to half an oscillation
period at the fundamental cavity frequency. In addition to its own induced
voltage this second bunch will see the field from the first bunch, now being
accelerating, and will therefore gain an energy

∆E2 = q1Vi,h − q2f Vi,h = qVi,h (1 − f ) . (16.42)

After passage of the second charge, the cavity returns to the original state
before the first charge arrived because the field from the first charge having
changed sign exactly cancels the induced field from the second charge. The
cavity has been assumed lossless and energy conservation requires therefore
that ∆E1 + ∆E2 = 0 or −q f Vi,h + qVi,h (1 − f ) = 0 from which we get

f = 1
2 (16.43)

proving the statement of the fundamental theorem of beam loading. The en-
ergy loss of a bunch of charge q due to its own induced field is therefore

∆E1 = − 1
2qVi,h . (16.44)

This theorem will be used to determine the energy transfer from cavity
fields to a particle beam. Calculating the induced voltages in rf-cavities, or
in arbitrarily shaped vacuum chambers providing some impedance for the
particle beam can become very complicated. For cylindrically symmetric cav-
ities the induced voltages can be calculated numerically with programs like
SUPERFISH [154], URMEL [155], or MAFIA [155].

For a more practical approach Wilson [158] introduced a loss parameter k
which can be determined either by electronic measurements or by numerical
calculations. This loss parameter for the fundamental mode loss of a bunch
with charge q is defined by
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∆Eh = khq
2 (16.45)

and together with (16.44) we get the induced voltage

Vi,h = −2khq (16.46)

or after elimination of the charge

∆Eh =
V 2

i,h

4kh
, (16.47)

where the index h indicates that the parameter should be taken at the fun-
damental frequency. The loss parameter can be expressed in terms of cavity
parameters. From the definition of the cavity quality factor (15.114) and cav-
ity losses from (15.111) we get

2Rcy

Q
=

V 2

ωW
, (16.48)

where ω is the frequency and W is the stored field energy in the cavity. Apply-
ing this to the induced field, we note that ∆Eh is equal to the field energy Wh

and combining (16.47), (16.48) the loss parameter to the fundamental mode
in a cavity with shunt impedance Rh and quality factor Qh is

kh =
ωh

4
Rh

Qh
. (16.49)

The excitation of higher order mode fields by the passing particle bunch
leads to additional energy losses which are conveniently expressed in units of
the energy loss to the fundamental mode

∆Ehom = (rhom − 1)∆Eh, (16.50)

where rhom is the ratio of the total energy losses into all modes to the loss
into the fundamental mode only. The induced higher order field energy in the
cavity is therefore

Whom = (rhom − 1)Wh . (16.51)

Again we may define a loss parameter kn for an arbitrary nth-mode and get
analogous to (16.49)

kn =
ωn

4
2Rn

Qn
, (16.52)

where Rn and Qn are the shunt impedance and quality factor for the nth-
mode or frequency ωn, respectively. The total loss parameter due to all modes
is by linear superposition

k =
∑

n

kn . (16.53)

The task to determine the induced voltages has been reduced to the deter-
mination of the loss parameters for individual modes or if this is not possible
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or desirable we may use just the overall loss parameter k as may be determined
experimentally. This is particularly convenient for cases where it is difficult
to calculate the mode losses but much easier to measure the overall losses by
electronic measurements.

The higher order mode losses will become important for discussion of beam
stability since these fields will act back on subsequent particles and bunches
thus creating a coupling between different parts of one bunch or different
bunches.

16.3.1 Efficiency of Energy Transfer from Cavity to Beam

Higher order mode losses affect the efficiency by which energy is transferred
to the particle beam. Specifically, since the higher order mode losses depend
on the beam current we must expect some limitation in the current capability
of the accelerator.

With these preparations we have now all information to calculate the trans-
fer of energy from the cavity to the particle beam. Just before the arrival of a
particle bunch, let the cavity voltage as generated by the rf-power source be

Vcy = −Vg eiΨg , (16.54)

where Vg is the generator voltage and Ψg the generator voltage phase with re-
spect to the particle beam. To combine the generator voltage with the induced
voltage, we use phasor diagrams in the complex plane.

The generator voltage is shown in Fig. 16.7 as a vector rotated by the
angle Ψg from the real axis representing the cavity state just before the beam
passes. The beam induced voltage is parallel and opposite to the real axis.
Both vectors add up to the voltage V just after the beam has left the cavity.

V

Vb

ψg

Vcy

ψg

Fig. 16.7. Phasor diagram for cavity voltages with beam loading



16.4 Beam Loading 591

The difference of the fundamental field energy before and after passage of
the particle bunch is equal to the energy transferred to the passing particle
bunch minus the higher order field energy and is from the phasor diagram
(Fig. 16.7)

∆Ehom = α
(
V 2

cy − V 2
)
−Whom = α

(
2VcyVb cosΨg − V 2

b

)
−Whom, (16.55)

where α is the proportionality factor between the energy gain ∆E and the
square of the voltage defined by α = ∆E/V 2. With (16.45), (16.46) , we get
from (16.55) the net energy transfer to a particle bunch [159]

∆Ehom = α
(
2VcyVb cosΨg − rhomV 2

b

)
. (16.56)

The energy stored in the cavity before arrival of the beam is Wcy = αV 2
cy

and the energy transfer efficiency to the beam becomes

η =
∆Eh

Wcy
= 2

Vb

Vcy
cosΨg − rhom

V 2
b

V 2
cy

. (16.57)

It is obvious from (16.57) that energy transfer is not guaranteed by the
synchronicity condition or the power of the generator alone. Specifically, the
second term in (16.57) becomes dominant for a large beam intensity and the
efficiency may even become negative indicating reversed energy transfer from
the beam to cavity fields. The energy transfer efficiency has a maximum for
Vb = cos Ψg

rhom
Vcy and is

ηmax =
cos2 Ψg

rhom
, (16.58)

a result first derived by Keil, Schnell, and Zotter [160] and is therefore fre-
quently called the Keil–Schnell–Zotter criterion. The maximum energy trans-
fer efficiency is limited by the phase of the generator voltage and the higher
order mode losses.

16.4 Beam Loading

Only one passage of a bunch through a cavity has been considered in the pre-
vious section. In circular accelerators, however, particle bunches pass periodi-
cally through the accelerating cavities and we have to consider the cumulative
build up of induced fields. Whenever a particle bunch is traversing a cavity the
induced voltage from this passage is added to those still present from previous
bunch traversals. For simplicity, we assume a number of equidistant bunches
along the circumference of the ring, where adjacent bunches are separated by
an integer number mb of the fundamental rf-wavelength. The induced voltage
decays exponentially by a factor e−ρ between two consecutive bunches where

ρ =
tb
td

, (16.59)



592 16 Beam–Cavity Interaction

tb is the time between bunches and td is the cavity voltage decay time for
the fundamental mode. The phase of the induced voltage varies between the
passage of two consecutive bunches by

ϕ = ωhtb − 2πmb . (16.60)

At the time a bunch passes through the cavity, the total induced voltages
are the superposition of all fields induced by previous bunches

Vi = Vi,h

(
1 + e−ρeiϕ + e−2ρei2ϕ + · · ·

)
(16.61)

shown in Fig. 16.8 as the superposition of all induced voltages in the form
of a phasor diagram together with the resultant induced voltage Vi. The sum
(16.61) can be evaluated to be

Vi = Vi,h
1

1 − e−ρeiϕ
, (16.62)

which is the total induced voltage in the cavity just after the last bunch passes;
however, the voltage seen by this last bunch is only half of the induced voltage
and the total voltage Vb acting back on the bunch is therefore

Vb = Vi,h

(
1

1 − e−ρeiϕ
− 1

2

)
. (16.63)

The voltage Vi,h can be expressed in more practical units. Considering the
damping time (15.96) for fields in a cavity we note that two damping times
exist, one for the empty unloaded cavity td0 and a shorter damping time td
when there is also a beam present. For the unloaded damping time we have
from (15.96)

ϕ

Vi,2

Vi,1

Vi,4

Vi

Vi,3

Fig. 16.8. Phasor diagram for the superposition of induced voltages in an acceler-
ating cavity
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td0 =
2Q0h

ωh
, (16.64)

where Q0h is the unloaded quality factor. From (16.45), (16.47) we get with
q = I0tb, where I0 is the average beam current,

Vi,h =
ωh

2Q0h
RhI0tb

and with (16.64)

Vi,h = RhI0
tb
td0

. (16.65)

Introducing the coupling coefficient β, we get from (16.9), (16.64)

td0 = (1 + β) tb . (16.66)

In analogy to (16.59) we define

ρ0 =
ρ

1 + β
=

tb
td0

(16.67)

and (16.65) becomes
Vi,h = ρ0RhI0 . (16.68)

We are finally in a position to calculate from (16.63), (16.68) the total beam
induced cavity voltage Vb in the fundamental mode for circular accelerators.

16.5 Phase Oscillation and Stability

In the course of discussing phase oscillations we found it necessary to select
carefully the synchronous phase depending on the particle energy being below
or above the transition energy. Particularly, we found that phase stability
for particles above transition energy requires the rf-voltage to decrease with
increasing phase. From the derivative of (16.27) with respect to ψs we find with
(16.21) and since Vgr cosΨ > 0 the condition for phase stability sin(ψg−Ψm) <
0 or

1
2
π < ψs + Ψm <

3
2
π . (16.69)

From (16.28) and (16.69) we get

−Vcy |cosψs| − Vbr sinΨm cosΨm < 0

or with (16.23)
Vbr sinψs < Vcy, (16.70)

which is Robinson’s phase-stability criterion or the Robinson condition [161]
for the tuning angle of the accelerator cavity. The maximum current that can
be accelerated in a circular accelerator with stable phase oscillations is limited
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by the effective cavity voltage. In terms of rf-power, (16.70) is with (16.20)
equivalent to

Pb ≤ (1 + β)Pcy (16.71)

and the stability condition for the coupling coefficient is from (16.35)

β > βopt − 2 . (16.72)

The stability condition is always met for rf-cavities with optimum coupling
β = βopt.

16.5.1 Robinson Damping

Correct tuning of the rf-system is a necessary but not a sufficient condition for
stable phase oscillations. In Chapter 6 we found the occurrence of damping
or anti-damping due to forces that depend on the energy of the particle. Such
a case occurs in the interaction of bunched particle beams with accelerating
cavities or vacuum chamber components which act like narrow band reso-
nant cavities. The revolution time of a particle bunch depends on the average
energy of particles within a bunch and the Fourier spectrum of the bunch
current being made up of harmonics of the revolution frequency is therefore
energy dependent. On the other hand, by virtue of the frequency dependence
of the cavity impedance, the energy loss of a bunch in the cavity due to beam
loading depends on the revolution frequency. We have therefore an energy
dependent loss mechanism which can lead to damping or worse anti-damping
of coherent phase oscillation and we will therefore investigate this phenom-
enon in more detail. Robinson [161] studied first the dynamics of this effect
generally referred to as Robinson damping or Robinson instability.

Above transition energy, the revolution frequency is lower for higher bunch
energies compared to the reference energy and vice versa. To obtain damping
of coherent phase oscillations, we would therefore tune the cavity such that
the bunch would loose more energy in the cavity while at higher energy during
the course of coherent synchrotron oscillation and loose less energy at lower
energies. In this situation, the impedance of the cavity should decrease with
increasing frequency for damping to occur as demonstrated in Fig. 16.9.

Here the resonance curve or impedance spectrum is shown for the case of
a resonant frequency above the beam frequency hω0 in Fig. 16.9(a) and below
the beam frequency in Fig 16.9(b). Consistent with the arguments made above
we would expect damping in the case of Fig. 16.9(b) for a beam above transi-
tion and antidamping in the case of Fig. 16.9(a). Adjusting the resonance fre-
quency of the cavity to a value below the beam frequency hω0 where ω0 is the
revolution frequency is called capacitive detuning . Conversely, we would tune
the cavity resonance frequency above the beam frequency (ωr > hω0) or in-
ductively detune the cavity for damping below transition energy (Fig. 16.9(a).

In a more formal way we fold the beam-current spectrum with the im-
pedance spectrum of the cavity and derive scaling laws for the damping as well
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Fig. 16.9. Cavity tuning for positive Robinson damping below and above transition
energy

as the shift in synchrotron frequency. During phase oscillations the revolution
frequency is modulated and as a consequence the beam spectrum includes
in addition to the fundamental frequency two side bands or satellites. The
beam-current spectrum is composed of a series of harmonics of the revolution
frequency up to frequencies with wavelength of the order of the bunch length

I(t) = Ib +
∑
n>0

In cos (nω0t− ϕ) , (16.73)

where Ib is the average circulating beam current and ϕ is a phase shift with
respect to the reference particle. The Fourier coefficient for bunches short
compared to the wavelength of the harmonic is given by

In = 2Ib . (16.74)

Here we restrict the discussion to the interaction between beam and cavity
at the fundamental cavity frequency and the only harmonic of interest in the
beam spectrum is therefore the hth harmonic

Ih(t) = 2Ib cos (hω0t− ϕ) . (16.75)

By virtue of coherent synchrotron oscillations the phase oscillates for each
particle in a bunch like

ϕ(t) = ϕ0 sinΩst, (16.76)

where ϕ0 is the maximum amplitude and Ωs is the synchrotron oscillation
frequency of the phase oscillation. We insert this into (16.75) and get after
expanding the trigonometric functions for small oscillation amplitudes ϕ0 � 1
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Ih(t) = 2Ib cos (hω0t) − Ibϕ0 [cos (hω0t + Ωst) − cos (hω0t−Ωst)] . (16.77)

This expression exhibits clearly sidebands or satellites in the beam spec-
trum at hω0±Ωs. Folding the expression for the beam current with the cavity
impedance defines the energy loss of the particle bunch while passing through
the cavity. The cavity impedance is a complex quantity which was derived
in (16.11) and its real part is shown together with the beam spectrum in
Fig. 16.10. The induced voltage in the cavity by a beam Ih(t) = Ih coshω0t is

Vh = −ZIh(t) = −ZrIh cos (hω0t) − ZiIh sin (hω0t) , (16.78)

where we have split the impedance in its real and imaginary part and have
expressed the imaginary part of the induced voltage by a 1

2π phase shift.
Applying (16.78) to all components of the beam current (16.77) we get the
induced voltage in the cavity

Vh = −Z0
r 2Ib cosnω0t− Z0

i 2Ib sinnω0t (16.79)

+ Z+
r Ibϕ0 cosnω0t cosΩst− Z+

i Ibϕ0 sinnω0t sinΩst

+ Z+
i Ibϕ0 sinnω0t cosΩst + Z+

i Ibϕ0 cosnω0t sinΩst

− Z−
r Ibϕ0 cosnω0t cosΩst + Z−

r Ibϕ0 sinnω0t sinΩst

− Z−
i Ibϕ0 sinnω0t cosΩst + Z−

i Ibϕ0 cosnω0t sinΩst,

where Z0, Z+, and Z− are the real (r) and imaginary (i) cavity impedances
at the frequencies hω0, hω0 + Ωs, hω0 −Ωs, respectively. We make use of the
expression for the phase oscillation (16.76) and its derivative

frequency

res

Fig. 16.10. Cavity impedance and beam spectrum in the vicinity of the fundamental
rf frequency ωrf = hω0
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ϕ̇(t) = ϕ0Ωs cosΩst, (16.80)

multiply the induced voltage spectrum (16.79) by the current spectrum
(16.77), and get after averaging over fast oscillating terms at frequency hω0

〈VhIh〉 = −2I2
b

{
Z0

r −
[
Z0

i − 1
2

(
Z+

i + Z−
i

)]
ϕ− Z+

r − Z−
r

2Ωs
ϕ̇

}
. (16.81)

This is the rate of energy loss of the particle bunch into the impedance
of the cavity. Dividing by the total circulating charge T0Ib we get the rate of
relative energy loss per unit charge

dε
dt

=
〈eVhIh〉
T0IbE0

= − ϕ̈

βckhηc
, (16.82)

where T0 is the revolution time and Ib is the average beam current.
We made use of the relation between the energy deviation from the ideal

energy and the rate of change of the phase (6.17) on the r.h.s. of the equation.
From (16.81), (16.82) and making use of the definition of the synchrotron
frequency in (6.32) Ω2

s0 = ckhηc
E0T0

eVcy cosψs, we get a differential equation of
the form

ϕ̈ + 2αR ϕ̇ + ω2
cy ϕ = 0 (16.83)

with a Robinson damping decrement

αR =
βΩs0

2Vcy cosψs

(
Z+

r − Z−
r

)
Ib, (16.84)

and a detuned cavity frequency

ω2
cy =

−2βΩ2
s0

Vcy cosψs

[
Z0

i − 1
2
(
Z+

i + Z−
i

)]
Ib . (16.85)

The unperturbed phase equation (6.26) is

ϕ̈ + 2αs0 ϕ̇ + Ω2
s0 ϕ = 0 , (16.86)

and combining both, we derive a modification of both the damping and oscil-
lation frequency. The combined damping decrement is

αs = αs0 +
βΩs0

Vcy cosψs

(
Z+

r − Z−
r

)
Ib > 0 , (16.87)

where αs0 is the radiation damping in electron accelerators. The total damping
decrement must be positive for beam stability. The interaction of the beam
with the accelerating cavity above transition where cosψs < 0 is stable for all
values of the beam current if Z+

r < Z−
r or if the cavity resonant frequency is

capacitively detuned. Due to the imaginary part of the impedance the inter-
action of beam and cavity leads to a synchrotron oscillation frequency shift
given by
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Ω2
s = Ω2

s0 −
2βΩ2

s0

Vcy cosψs

[
Z0

i − 1
2
(
Z+

i + Z−
i

)]
Ib . (16.88)

This frequency shift has two components, the incoherent frequency shift
due to the impedance Z0

i at the fundamental beam frequency hω0 and a
frequency shift for coherent bunch-phase oscillations due to the imaginary part
of the cavity impedances. For small frequency shifts ∆Ωs = Ωs −Ωs0, (16.88)
can be linearized for

∆Ωs

Ωs0
=

−Ibβ

Vcy cosψs

[
Z0

i − 1
2
(Z+

i + Z−
i )
]
. (16.89)

The cavity impedance is from (16.10)

Z = Rs

1 − iQ0
ω2−ω2

r
ωrω

1 + Q2
0

(
ω2−ω2

r
ωrω

)2 . (16.90)

From the imaginary part of the cavity impedance and capacitive detuning we
conclude that above transition energy, the incoherent synchrotron tune shift
is negative

∆Ωs,incoh < 0 (16.91)

while the coherent synchrotron tune shift is positive

∆Ωs,coh > 0 . (16.92)

This conclusion may in special circumstances be significantly different due
to other passive cavities in the accelerator. The shift in the synchrotron tune
is proportional to the beam current and can be used as a diagnostic tool to
determine the cavity impedance or its deviation from the ideal model (16.90).

In the preceding discussion it was assumed that only resonant cavities
contribute to Robinson damping. This is correct to the extent that other
cavity-like structures of the vacuum enclosure in a circular accelerator have
a low quality factor Q for the whole spectrum or at least at multiples of the
revolution frequency and therefore do not contribute significantly to this effect
through a persistent energy loss over many turns. Later we will see that such
low-Q structures in the vacuum chamber may lead to other types of beam
instability.

16.5.2 Potential Well Distortion

The synchrotron frequency is determined by the slope of the rf-voltage at
the synchronous phase. In the last subsection the effect of beam loading at
the cavity fundamental frequency was discussed demonstrating the need to
include the induced voltages in the calculation of the synchrotron oscillation
frequency. These induced voltages cause a perturbation of the potential well
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and as a consequence a change in the bunch length. In this subsection we will
therefore also include higher order interaction of the beam with its environ-
ment.

It is not possible to derive a general expression for the impedance of all
components of a vacuum chamber in a circular accelerator. However, measure-
ments [162] have shown that the impedance spectrum of circular accelerator
vacuum chambers, while excluding accelerating cavities, has a form similar to
that of the SPEAR storage ring shown in Fig. 16.11.

43210

∝ ω-0.68

Z
c

Z(ω)

f = ω/2π(GHz)

∝ ω

f
c

Fig. 16.11. SPEAR impedance spectrum [162]

Up to the transition frequency ft, which is determined by vacuum chamber
dimensions, the impedance is predominantly inductive and becomes capaci-
tive above the transition frequency. We are looking here only for fields with
wavelength longer than the bunch length which may distort the rf-voltage
waveform such as to change the slope for the whole bunch. Later we will con-
sider shorter wavelengths which give rise to perturbations within the bunch.
Because the bunch length is generally of the order of vacuum chamber di-
mensions we only need to consider the impedance spectrum below transition
frequency which is predominantly inductive. To preserve generality, however,
we assume a more general but still purely imaginary impedance defined by

Z(ω)‖ = iωZ‖ . (16.93)

Studying the modification of a finite bunch length due to potential-well
distortions we use for mathematical simplicity a parabolic particle distribution
[163] in phase (Fig. 16.12) normalized to the bunch current

∫ ϕ�

−ϕ�
I(ϕ) dϕ = Ib

I(ϕ) =
3Ib
4ϕ�

(
1 − ϕ2

ϕ2
�

)
, (16.94)

where 2ϕ� is the bunch length expressed in terms of a phase with respect to
the fundamental rf-wavelength. The combined induced voltage in the whole
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3Ib/4 l

- l l0

Fig. 16.12. Current distribution for potential well distortion

vacuum chamber is

VZ = Z‖
dI
dt

= hω0Z‖
dI
dϕ

= h Im
(
Z‖/n

) dI
dϕ

, (16.95)

where we have introduced the normalized impedance

Z‖
n

= iω0Z‖, (16.96)

which is the longitudinal impedance divided by the frequency in units of the
revolution frequency or by the mode number n = ω/ω0. Inserting (16.94) into
(16.95) we get the induced voltage

VZ = −
3hIb Im

(
Z‖/n

)
2ϕ3

�

ϕ, (16.97)

which must be added to the rf-voltage Vrf = Vcy sin (ψs + ϕ). Forming an
effective voltage we get

Veff = Vcy cosψs

(
1 −

3hIb Im
(
Z‖/n

)
2ϕ3

�Vcy cosψs

)
ϕ + Vcy sinψs . (16.98)

This modification of the effective cavity voltage leads to an incoherent shift
of the synchrotron oscillation frequency

Ω2
s

Ω2
s0

= 1 − 3ηceIb
4πϕ3

�E ν2
s

Im
(
Z‖/n

)
, (16.99)

where we used the definition of the synchrotron tune ν2
s = ηceVcy cos ψs

2πhE .
Above transition energy cosψs < 0 and therefore the frequency shift is

positive for Im(Z‖/n) < 0 and negative for Im{Z‖/n} > 0. We note specifi-
cally that the shift depends strongly on the bunch length and increases with
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decreasing bunch length, a phenomenon we observe in all higher order mode
interactions.

Note that this shift of the synchrotron oscillation frequency does not ap-
pear for coherent oscillations since the induced voltage also moves with the
bunch oscillation. The bunch center actually sees always the unaltered rf-field
and oscillates according to the slope of the unperturbed rf-voltage. The co-
herent synchrotron oscillation frequency therefore need not be the same as
the incoherent frequency. This has some ramification for the experimental
determination of the synchrotron oscillation frequency.

The shift in incoherent synchrotron oscillation frequency also reflects a
change in the equilibrium bunch length which is different for proton or ion
beams compared to an electron bunch. The energy spread of radiating elec-
tron beams is determined only by quantum fluctuations due to the emission
of synchrotron radiation and is independent of rf-fields. The electron bunch
length scales therefore inversely proportional to the synchrotron oscillation
frequency and we get with Ωs/Ωs0 = σ�0/σ� from (16.99) after solving for
σ�/σ�0

σ3
�

σ3
�0

− σ�

σ�0
− 8ηceIb

9π2
√

2πσ3
�0E ν2

s

Im
(
Z‖
n

)
= 0, (16.100)

where we replaced the parabolic current distribution by a Gaussian distribu-
tion with equal total bunch current and equal intensity in the bunch center by
setting ϕ� = 3

√
2π/4hσ�/R and where σ�0 is the unperturbed bunch length.

Nonradiating particles, in contrast, must obey Liouville’s theorem and
the longitudinal beam emittance �∆p will not change due to potential-well
distortions. For proton or ion bunches we employ the same derivation for
the bunch lengthening but note that the bunch length scales with the energy
spread in such a way that the product of bunch length � and momentum
spread ∆p remains constant. Therefore � ∝ 1/

√
Ωs and the perturbed bunch

length is from (16.99) with � = (R/h)ϕ�

�4

�40
− 3ηceIb

4πE ν2
s

R
3

�30
Im
(
Z‖
n

)
�

�0
− 1 = 0 . (16.101)

Of course, along with this perturbation of the proton or ion bunch length goes
an opposite perturbation of the momentum spread.

Problems

16.1 (S). Consider an electron storage ring to be used as a damping ring for
a linear collider. The energy is E = 1.21GeV, circumference C = 35.27 m,
bending radius ρ = 2.037 m, momentum compaction factor αc = 0.01841,
rf harmonic number h = 84, and cavity shunt impedance of Rcy = 8.4 MΩ.
An intense bunch of Ne = 5 × 1010 particles is injected in a single pulse and
is stored for only a few ms to damp to a small beam emittance. Specify and
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optimize a suitable rf-system and calculate the required rf-cavity power, cavity
voltage, and coupling factor first while ignoring beam loading and then with
beam loading. Assume a quantum lifetime of 1 h.

16.2. The synchrotron radiation energy loss per turn is U = 93.0 keV, the
beam current is I = 68.0 mA, and the radiation power Psyn = 6.32 kW.
The energy spread is σE

E = 0.0727% and the required acceptance is 6σE

E =
0.436% for a beam lifetime of at least 1 h. From (6.65) we solve for the
function F (q) = 1.202 and q = 1.902. The required minimum rf-voltage is
Vcy = qU = 176.9 kV. Including the cavity power Pcy = 1.86 kW, the total
minimum rf-power needed is Ptot = 8.18 kW. From (16.35) the optimum
coupling βopt = 4.40 and for this coupling factor the generator just has to
provide the cavity losses and the synchrotron power. The coupling factor is
optimum only for one beam current and the efficiency is different for different
currents because the ccavity coupling factor is determined by hardware design.
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17

Dynamics of Coupled Motion

In linear beam dynamics transverse motion of particles can be treated sepa-
rately in the horizontal and vertical plane. This can be achieved by a proper
selection, design, and alignment of beam transport magnets. Fabrication and
alignment tolerances, however, will introduce, for example, rotated quadru-
pole components where only upright quadrupole fields were intended. The
perturbation caused creates a coupling of both the horizontal and vertical
oscillation and independent treatment is no longer accurate. Such linear cou-
pling can be compensated in principle by additional rotated quadrupoles, but
the beam dynamics for coupling effects must be known to perform a proper
compensation.

Since coupling is caused by linear as well as nonlinear fields, we observe this
effect in virtually any accelerator. In order to be able to manipulate coupling in
a controlled and predictable way, we need to understand its dynamics in more
detail. In this chapter, we will derive first the equations of motion for the two
most general sources of coupling, the solenoid field and the field of a rotated
quadrupole, solve the equations of motion, and formulate modifications to
beam dynamics parameters and functions of linear uncoupled motion.

17.1 Equations of Motion in Coupled Systems

The most generally used magnets that introduce coupling in beam transport
systems are rotated quadrupoles and solenoid magnets and we will restrict
our discussion of coupled beam dynamics to such magnets defining the realm
of linear coupling. Equations (3.75), (3.76) include all linear and nonlinear
coupling terms up to third order. The equations of motion in the presence of
upright and rotated quadrupoles as well as solenoid fields are

x′′ + kx = −k y + S y′ + 1
2S

′y,

y′′ − ky = −k x− S x′ − 1
2S

′x
(17.1)



606 17 Dynamics of Coupled Motion

where the solenoid field is expressed by

S(z) =
e

p
Bs(z) . (17.2)

In the following subsections we will derive separately the transformation
through both rotated quadrupoles and solenoid magnets.

17.1.1 Coupled Beam Dynamics in Skew Quadrupoles

The distribution of rotated or skew quadrupoles and solenoid magnets is ar-
bitrary and therefore no analytic solution can be expected for the differential
equations (17.1). Similar to other beam line elements, we discuss solutions
for the equations of motion within individual magnets only and assume that
strength parameters within hard-edge model magnets stay constant. We dis-
cuss first solutions of particle motion in skew quadrupoles alone and ignore
solenoid fields. The equations of motion for skew quadrupoles are from (17.1)

x′′ + k y = 0,

y′′ + k x = 0 .
(17.3)

These equations look very similar to the equations for ordinary upright
quadrupoles except that the restoring forces now depend on the particle am-
plitude in the other plane. We know the solution of the equation of motion for
an upright focusing and defocusing quadrupole and will try to apply these so-
lutions to (17.3). Combining the observation that each quadrupole is focusing
in one plane and defocusing in the other with the apparent mixture of both
planes for a skew quadrupole, we will try an ansatz for (17.3) which is made
up of four principal solutions

x = a cosϕ + b√
k

sinϕ + c coshϕ + d√
k

sinhϕ,

y = A cosϕ + B√
k

sinϕ + C coshϕ + D√
k

sinhϕ,
(17.4)

where ϕ =
√
k z and the variable z varies between zero and the full length of

the quadrupole, 0 < z < �q. The coefficients a, b, c, . . . ,D, must be determined
to be consistent with the initial parameters of the trajectories (x0, x

′
0, y0, y

′
0).

For z = 0 we get

x0 = a + c, y0 = A + C,

x′
0 = b + d, y′0 = B + D .

(17.5)

Solutions (17.4) must be consistent with (17.3) from which we find

a = A, c = −C,

b = B, d = −D .
(17.6)
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From (17.5), (17.6) we finally get the coefficients consistent with the initial
conditions and the differential equations (17.3)

a = A = 1
2 (x0 + y0), b = B = 1

2 (x′
0 + y′0),

c = −C = 1
2 (x0 − y0), d = −D = 1

2 (x′
0 − y′0) .

(17.7)

With these definitions the transformation through a skew quadrupole is



x

x′

y

y′




= Msq




x0

x′
0

y0

y′0




, (17.8)

where Msq is the transformation matrix for a skew quadrupole,

Msq(s|0) =
1
2




C+ 1√
k
S+ C− 1√

k
S−

−
√
kS− C+ −

√
kS+ C−

C− 1√
k
S− C+ (ϕ) 1√

k
S+

−
√
kS+ C− −

√
kS− C+




, (17.9)

with C± = C±(ϕ) = cosϕ ± coshϕ and S± = S±(ϕ) = sinϕ ± sinhϕ and
ϕ =

√
kz.

This transformation matrix is quite elaborate and becomes useful only
for numerical calculations on computers. We again employ thin lens approx-
imation where the quadrupole length vanishes (�sq → 0) in such a way as to
preserve the integrated magnet strength or the focal length f . The matrix
(17.9) then reduces to the simple form

Msq(0 |�sq ) =




1 �sq 0 0

0 1 −1/f 0

0 0 1 �sq

−1/f 0 0 1




, (17.10)

where the focal length is defined as f−1 = k �sq. Note that we have not set
�sq = 0 but retained the linear terms in �sq, which is a more appropriate
thin lens approximation for weak skew quadrupoles of finite length. Along
the diagonal, the transformation matrix looks like a drift space of length �sq
while the off-diagonal elements describe the coupling due to the thin skew
quadrupole.



608 17 Dynamics of Coupled Motion

17.1.2 Particle Motion in a Solenoidal Field

The equations of motion in a solenoid can be derived from (3.72a), neglecting
all transverse beam deflection and electric fields

x′′ − 1
2

x′

z′2
dz′2

dz = e
p z′(y′Bs −By),

y′′ − 1
2

y′

z′2
dz′2

dz = e
p z′(Bx − x′Bs),

(17.11)

where the solenoid field component Bs, assumed to be colinear with the z-
direction, can be derived from (3.83)

B =
(
− 1

2B
′
s x,− 1

2B
′
s y,Bs

)
. (17.12)

Following the same derivation as in Sect. 3.3, the general equations of motion
in a solenoid field including up to third-order terms are

x′′ = +
e

p
Bs y

′ + 1
2

e

p
B′

sy (17.13)

+ 1
4

e

p
(2x′2y′Bs + x′2yB′

s + 2y′3Bs + yy′2B′
s) + O(4),

y′′= −e

p
Bs x

′ − 1
2

e

p
B′

sx (17.14)

− 1
4

e

p
(2x′y′2Bs + xy′2B′

s + 2x′3Bs + xx′2B′
s) + O(4) .

Considering only linear terms, the equations of motion in a solenoidal field
simplify to

x′′ = + e
pBs y

′ + 1
2

e
pB

′
sy,

y′′ = − e
pBs x

′ − 1
2

e
pB

′
sx,

(17.15)

exhibiting clearly coupling terms. In a uniform field, where B′
s = 0, the particle

trajectory assumes the form of a helix parallel to the axis of the solenoid field.
The equations of motion (17.15) have been derived under the assumption of

paraxial rays so that we can set v ≈ vz. In a solenoid field this approximation
is not generally acceptable since we may, for example, be interested in using a
solenoid to focus particles emerging from a target at large angles. We therefore
replace all derivatives with respect to z by derivatives with respect to time,
use the particle velocity v, and replace d

dz → 1
v

d
dt . In a uniform solenoid field

the equations of motion are then

ẍ = +
(

e
pBsv

)
ẏ = ωL ẏ,

ÿ = −
(

e
pBsv

)
ẋ = −ωL ẋ,

(17.16)

where the Larmor frequency is defined by
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ωL =
eBsv

p
=

ec2

E
Bs, (17.17)

and E is the total particle energy. Multiplying (17.16) by ẋ and ẏ, respectively,
and adding both equations we get d(ẋ2 + ẏ2)/dt = 0 or

ẋ2 + ẏ2 = v2
t = const . (17.18)

The transverse particle velocity vt or total transverse momentum of the
particle cpt stays constant during the motion in a uniform solenoid field. For
ẋ0 = 0 and ẏ0 = vt, for example, the transverse velocities can be expressed
by

ẋ = vt sinωLt,

ẏ = vt cosωLt,
(17.19)

and the solutions of the equations of motion are

x(t) = x0 − vt
ωL

cosωLt,

y(t) = y0 + vt
ωL

sinωLt .
(17.20)

The amplitude of the oscillating term in (17.20) is equal to the radius of the
helical path

ρh =
pt

eBs
, (17.21)

where we have used the Larmor frequency (17.17) and set the transverse mo-
mentum pt = γmvt. The longitudinal motion is unaffected by the solenoid field
and v̇z = 0 as can be derived from the Lorentz equation since all transverse
field components vanish and

z(t) = z0 + vz t . (17.22)

The time to complete one period of the helix is

T =
2π
ωL

(17.23)

during which time the particle moves along the z-axis a distance

∆z = 2π
pz

eBs
, (17.24)

where pz is the z-component of the particle momentum.
The solutions of the equations of motion for a solenoid magnet are more

complex since we must now include terms that depend on the slope of the par-
ticle trajectories as well. Ignoring skew quadrupoles the differential equations
of motion in a solenoid magnet become from (17.15)
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x′′ − S(z) y′ − 1
2S

′(z) y = 0,

y′′ + S(z)x′ + 1
2S

′(z)x = 0 .
(17.25)

Coupling between both planes is obvious and the variation of coordinates
in one plane depends entirely on the coordinates in the other plane. We note
a high degree of symmetry in the equations in the sense that both coordinates
change similarly as a function of the other coordinates. This suggests that a
rotation of the coordinate system may help simplify the solution of the differ-
ential equations. We will therefore try such a coordinate rotation in complex
notation by defining

R = (x + i y) e−i φ(z), (17.26)

where the rotation angle φ may be a function of the independent variable z.
A single differential equation can be formed from (17.25) in complex notation

(x + iy)′′ + iS(z) (x + i y)′ + i 1
2 S′(z) (x + iy) = 0. (17.27)

Rotation (17.26) can now be applied directly to (17.27) and with

(x + iy)′ = R′ eiφ + iφ′ R e+iφ

and

(x + iy)′′ = R′′ eiφ + 2 iφ′ R′ eiφ + iφ′′ R eiφ − φ′2 R eiφ, (17.28)

we get after insertion into (17.26) and sorting of terms

R′′ − [S(z)φ′ + φ′2]R + i 2 [φ′ + 1
2S(z)]R′ + i [φ′′ + 1

2S
′(z)]R = 0 . (17.29)

At this point, the introduction of the coordinate rotation allows a great
simplification (17.28) by assuming a continuous rotation along the beam axis
with a rotation angle defined by

φ(z) = − 1
2

∫ z

z0

S(ζ) dζ, (17.30)

where the solenoid field starts at z0. We are able to eliminate two terms in the
differential equation (17.28). Since a positive solenoid field generates Lorentz
forces that deflect the particles onto counter clockwise spiraling trajectories,
we have included the negative sign in (17.30) to remain consistent with our
sign convention. From (17.30) it follows that φ′ = − 1

2S(z) and φ′′ = − 1
2S

′(z),
which after insertion into (17.28) results in the simple equation of motion

R′′ + 1
4 S2(z)R = 0 . (17.31)

With R = v + iw, we finally get two uncoupled equations
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v′′ + 1
4S

2(z) v = 0, (17.32)

w′′ + 1
4S

2(z)w = 0 .

Introducing a coordinate rotation allows us to reduce the coupled differen-
tial equations (17.25) to the form of uncoupled equations of motion exhibiting
focusing in both planes. At the entrance to the solenoid field φ = 0 and there-
fore v0 = x0 and w0 = y0. To determine the particle motion through the
solenoid field of length Ls we simply follow the particle coordinates (v, w)
through the solenoid as if it were a quadrupole of strength ks = 1

4 S2(Ls)
followed by a rotation of the coordinate system by the angle −φ(Ls) thus
reverting to Cartesian coordinates (x, y).

17.1.3 Transformation Matrix for a Solenoid Magnet

Similar to the transformation through quadrupoles and other beam transport
magnets, we may formulate a transformation matrix for a solenoid magnet.
Instead of uncoupled (2 × 2)-transformation matrices, however, we must use
(4× 4)-matrices to include coupling effects. Each coordinate now depends on
the initial values of all coordinates, x(z) = (x0, x

′
0, y0, y

′
0), etc. The transfor-

mation through a solenoid is performed in two steps in which the first is the
solution of (17.32) in the form of the matrix Ms, and the second is a coordi-
nate rotation introduced through the matrix Mr. The total transformation is
therefore 



x

x′

y

y′




= Mr Ms




x0

x′
0

y0

y′0




. (17.33)

In analogy to the transformation through an upright quadrupole, we get
from (17.32) the transformation matrix Ms from the beginning of the solenoid
field at z0 to a point z inside the solenoid magnet. The strength parameter in
this case ( 1

4S
2) is assumed to be constant along the length of the magnet and

the transformation matrix is

Ms(z0|z) =




cosφ 2
S sinφ 0 0

−S
2 sinφ cosφ 0 0

0 0 cosφ 2
S sinφ

0 0 −S
2 sinφ cosφ




, (17.34)

where φ = 1
2Sz. The next step is to introduce the coordinate rotation Mr

which we derive from the vector equation

(x + iy) = (v + iw) e−iφ(z), (17.35)
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where the vectors are defined like x = (x, x′), etc. Note that the value of the
rotation angle φ is proportional to the strength parameter and the sign of the
solenoid field defines the orientation of the coordinate rotation. Fortunately,
we need not keep track of the sign since the components of the focusing matrix
Ms are even functions of z and do not depend on the direction of the solenoid
field.

By separating (17.35) into its real and imaginary part and applying Euler’s
identity eα = cosα+i sinα, we get for the rotation matrix at the point z within
the solenoid magnet

Mr =




cosφ 0 sinφ 0

−S
2 sinφ cosφ S

2 cosφ sinφ

− sinφ 0 cosφ 0
S
2 cosφ − sinφ −S

2 sinφ cosφ




. (17.36)

The total transformation matrix for a solenoid magnet from z0 = 0 to z is
finally the product of (17.34) and (17.36)

Msol(0|z < L) =




cos2 φ 1
S sin 2φ 1

2 sin 2φ 2
S sin2 φ

−S
2 sin 2φ cos 2φ S

2 cos 2φ sin 2φ

− 1
2 sin 2φ − 2

S sin2 φ cos2 φ 1
S sin 2φ

−S
2 cos 2φ − sin 2φ −S

2 sin 2φ cos 2φ




. (17.37)

This transformation matrix is correct inside the solenoid magnet but cau-
tion must be taken applying this transformation matrix for the whole solenoid
by setting z = Ls. The result would be inaccurate because of a discontinuity
caused by the solenoid fringe field. Only the focusing matrix Ms for the whole
solenoid becomes a simple extension of (17.34) to the end of the solenoid by
setting φ(Ls) = Φ = 1

2SLs.
Due to the solenoid fringe field, which in hard-edge approximation adopted

here is a thin slice, the rotation matrix exhibits a discontinuity. For z = Ls+ε,
where ε → 0 the phase is φ(Ls) = Φ but the solenoid strength is now zero,
S = 0. Therefore, the rotation matrix (17.36) assumes the form

Mr =




cosΦ 0 sinΦ 0

0 cosΦ 0 sinΦ

− sinΦ 0 cosΦ 0

0 − sinΦ 0 cosΦ




. (17.38)

Notice that this matrix at the solenoid entrance is just the unit matrix.
This does not mean that we ignored the entrance fringe field, it only indicates
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that this effect is already included in (17.37) . After multiplication of (17.34)
with (17.38), the transformation matrix for a complete solenoid magnet is
finally

Msol(0|L) =




cos2 Φ 1
S sin 2Φ 1

2 sin 2Φ 2
S sin2 Φ

−S
4 sin 2Φ cos2 Φ −S

2 sin2 Φ 1
2 sin 2Φ

− 1
2 sin 2Φ − 2

S sin2 Φ cos2 Φ 1
S sin 2Φ

S
2 sin2 Φ − 1

2 sin 2Φ −S
4 sin 2Φ cos2 Φ




. (17.39)

Comparing matrices (17.37), (17.39), we find no continuous transition be-
tween both matrices since only one matrix includes the effect of the fringe
field. In reality, the fringe field is not a thin lens and therefore a continuous
transition between both matrices can be derived. To stay consistent with the
rest of this book, however, we assume for our discussions hard-edge magnet
models.

From matrix (17.34) some special properties of particle trajectories in a
solenoid can be derived. For Φ = 1

2π a parallel beam becomes focused to a
point at the magnet axis. A trajectory entering a solenoid with the strength
Φ = 1

2 SL = π/2 at say y0 will follow half a period of a spiraling trajectory
with a radius ρ = y0/2 and exit the solenoid at x = y = 0. Similarly, a beam
emerging from a point source on the axis and at the start of the solenoid field
will have been focused to a parallel beam at the end of the solenoid. Such a
solenoid is used to focus, for example, a divergent positron beam emerging
from the target source and is called a λ/4-lens or quarter-wavelength solenoid
for obvious reasons.

The focusing properties of the whole solenoid are most notable when the
field strength is weak and the focal length is long compared to the length of
the solenoid. In this case, the focal length can be taken immediately from the
M21 and M43 element of the transformation matrix as we did for quadrupoles
and other focusing devices and is with φ = 1

2SLs

1
fx

= M21 = − 1
2 S sinφ cosφ, (17.40)

1
fy

= M43 = − 1
2 S sinφ cosφ. (17.41)

In contrast to quadrupole magnets, the focal length of a solenoid magnet
is the same in both planes and is in thin lens approximation, φ = 1

2SLs → 0
while S2Ls =const.

1
fsol

=
1
4
S2Ls =

1
4

(
e

p

)2

B2
s Ls . (17.42)

The thin lens transformation matrix for a weak solenoid is thereby
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Msol(0|L) =




1 0 0 0

− 1
fsol

1 0 0

0 0 1 0

0 0 − 1
fsol

1




. (17.43)

The focal length is always positive and a solenoid will therefore always be
focusing independent of the sign of the field or the sign of the particle charge.

Transformation matrices have been derived for the two most important
coupling magnets in beam transport systems, the skew quadrupole and the
solenoid magnet, which allow us now to employ linear beam dynamics in full
generality including linear coupling. Using (4×4)-transformation matrices any
particle trajectory can be described whether coupling magnets are included
or not. Specifically, we may use this formalism to incorporate compensating
schemes when strongly coupling magnets must be included in a particular
beam transport line.

17.2 Betatron Functions for Coupled Motion

For the linear uncoupled motion of particles in electromagnetic fields we have
derived powerful mathematical methods to describe the dynamics of single
particles as well as that of a beam composed of a large number of particles.
Specifically, the concept of phase space to describe a beam at a particular
location and the ability to transform this phase space from one point of the
beam transport line to another allow us to design beam transport systems
with predictable results. These theories derived for particle motion in one
degree of freedom can be expanded to describe coupled motion in both the
horizontal and vertical plane.

17.3 Conjugate Trajectories

Lattice functions have been defined to express solutions to the equations of
motion for individual trajectories. Conversely, there must be a way to express
these lattice functions by the principal solutions of the equation of motion.
This would enable us to determine lattice functions for coupled particle mo-
tion by integrating the equations of motion for two orthogonal trajectories.
To do this, we start from the differential equation of motion in normalized
coordinates for which two linearly independent principal solutions are given
by

w1(ϕ) = cos (νϕ) ,

w2(ϕ) = sin (νϕ) .
(17.44)
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For simplicity, we set the initial amplitudes equal to unity and get in
regular coordinates with u(z) = w

√
β(z) the conjugate trajectories as

u1(z) =
√

β(z) cosψ(z),

u2(z) =
√

β(z) sinψ(z),
(17.45)

where u(z) stands for x(z) or y(z), and their derivatives

u′
1(z) = − α(z)√

β(z)
cosψ(z) − 1√

β(z)
sinψ(z),

u′
2(z) = − α(z)√

β(z)
sinψ(z) + 1√

β(z)
cosψ(z) .

(17.46)

Using (17.45), (17.46) all lattice functions can be expressed in terms of
conjugate trajectories like

β(z) = u2
1(z) + u2

2(z) ,

α(z) = −u1(z)u
′
1(z) − u2(z) u′

2(z) , (17.47)

γ(z) = u′2
1 (z) + u′2

2 (z) .

The betatron phase advance ∆ψ = ψ − ψ0 between the point z = 0 and
the point z can be derived from

cos(ψ − ψ0) = cosψ cosψ0 + sinψ sinψ0,

where ψ0 = ψ(0) and ψ = ψ(z). With (17.45), (17.47) we get

cosψ(z) =
u1(z)√
β(z)

=
u1(z)√

u2
1(z) + u2

2(z)
(17.48)

and similarly,

sinψ(z) =
u2(z)√
β(z)

=
u2(z)√

u2
1(z) + u2

2(z)
. (17.49)

The betatron phase advance is then given by

cos (ψ − ψ0) =
u1u10 + u2u20√

u2
1 + u2

2

√
u2

10 + u2
20

, (17.50)

where ui = ui(z) and ui0 = ui(0). Finally, we can express the elements of the
transformation matrix from z = 0 to z by

M(z|0) =


M11 M12

M21 M22


 =


u1 u

′
20 − u2 u

′
10 u10 u2 − u1 u20

u′
1 u

′
20 − u′

2 u
′
20 u10 u

′
2 − u20 u

′
1


 . (17.51)

The two linearly independent solutions (17.45) can also be used to define
and characterize the phase space ellipse. At the start of a beam line we set
z = 0 and ψ(0) = 0 and define an ellipse by the parametric vector equation
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u(0) = a [u1(0) cosφ− u2(0) sinφ], (17.52)

where

u(0) =


u0

u′
0


 and ui(0) =


ui0

u′
i0


 . (17.53)

As the parameter φ varies over a period of 2π, the vector follows the outline
of an ellipse. To parametrize this ellipse we calculate the area enclosed by the
phase ellipse. The area element is dA = u′du0, from (17.52) we get

du0 = a [u10 sinφ− u20 cosφ] dφ (17.54)

and the area enclosed by the ellipse is

A = 2 a2

∫ π

0

(u′
10 cosφ− u′

20 sinφ) (u10 sinφ− u20 cosφ) dφ (17.55)

= a2π (u10u
′
20 − u′

10u20) = a2π,

since the expression in the brackets is the Wronskian, which we choose to
normalize to unity. The Wronskian is an invariant of the motion and therefore
the area of the phase ellipse along the beam transport line is preserved. The
vector equation (17.52) describes the phase ellipse enclosing a beam with the
emittance a2 = ε.

The formalism of conjugate trajectories has not produced any new insight
into beam dynamics that we did not know before but it is an important tool
for the discussion of coupled particle motion and provides a simple way to
trace individual particles through complicated systems.

Ripken [164] developed a complete theory of coupled betatron oscillations
and of particle motion in four-dimensional phase space. In our discussion of
coupled betatron motion and phase space transformation we will closely follow
his theory. The basic idea hinges on the fact that the differential equations
of motion provide the required number of independent solutions, two for os-
cillations in one plane and four for coupled motion in two planes, to define a
two- or four-dimensional ellipsoid which serves as the boundary in phase space
for the beam enclosed by it. Since the transformations in beam dynamics are
symplectic, we can rely on invariants of the motion which are the basis for the
determination of beam characteristics at any point along the beam transport
line if we only know such parameters at one particular point.

Before we discuss coupled motion in more detail it might be useful to rec-
ollect some salient features of linear beam dynamics. The concept of conjugate
trajectories can be used to define a phase ellipse at z = 0 in parametric form.
Due to the symplecticity of the transformations we find the area of the phase
ellipse to be a constant of motion and we may describe the phase ellipse at any
point z along the beam line is given by (17.52) . The Wronskian is a constant
of motion normalized to unity in which case the phase ellipse (17.52) has the
area A = πε, where ε is the beam emittance for the beam enclosed by the
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ellipse. The solutions are of the form (17.45) and forming the Wronskian we
find the normalization

β φ′ = 1 (17.56)

as we would expect.
Analogous to (17.52) we try the ansatz

v(z) =
√
εI [v1(z) cosϑI − v2(z) sinϑI ] cosχ (17.57)
+
√
εII [v3(z) cosϑII − v4(z) sinϑII ] sinχ

to describe coupled motion. As the independent variables χ, ϑI , and ϑII vary
from 0 to 2π the vector v covers all points on the surface of a four-dimensional
ellipsoid while the shape of the ellipse varies along the beam line consistent
with the variation of the vector functions vi. In this ansatz we chose two
modes of oscillations indicated by the indices I and II. If the oscillations were
uncoupled, we would identify mode-I with the horizontal oscillation and mode-
II with the vertical motion and (17.57) would still hold with χ = 0 having only
horizontal nonvanishing components while v3,4 contain nonzero components
only in the vertical plane for χ = π/2. For independent solutions vi of coupled
motion, we try

x1(z) =
√

βxI(z) cosφxI(z), y1(z) =
√

βyI(z) cosφyI(z),

x2(z) =
√

βxI(z) sinφxI(z), y2(z) =
√

βyI(z) sinφyI(z),

x3(z) =
√

βxII(z) cosφxII(z), y3(z) =
√

βyII(z) cosφyII(z),

x4(z) =
√

βxII(z) sinφxII(z), y4(z) =
√

βyII(z) sinφyII(z),

(17.58)

which is consistent with the earlier definitions of conjugate trajectories. Earlier
in this section we defined conjugate trajectories to be independent solutions
normalized to the same phase ellipse and developed relationships between
these trajectories and betatron functions. These relationships can be expanded
to coupled motion by defining betatron functions for both modes of oscillations
similar to (17.47)

βxI = x2
1 + x2

2, βxII = x2
3 + x2

4, (17.59)

βyI = y2
1 + y2

2 , βyII = y2
3 + y2

4 . (17.60)

The phase functions can be defined like (17.48) by

cosφxI =
x1√

x2
1 + x2

2

, cosφxII =
x3√

x2
3 + x2

4

, (17.61)

cosφyI =
y1√

y2
1 + y2

2

, cosφyII =
y3√

y2
3 + y2

4

. (17.62)

All other lattice functions can be defined in a similar way. By following
the conjugate trajectories and utilizing the (4 × 4)-transformation matrices
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including coupling effects we are able to determine the betatron functions at
any point along the coupled beam transport line. To correlate parameters of
the four-dimensional phase ellipse with quantities that can be measured, we
write the solutions in the form

x1(z) =
√

βxI(z) cosφxI(z), x2(z) =
√

βxI(z) sinφxI(z),

x′
1(z) =

√
γxI(z) cosψxI(z), x′

2(z) =
√

γxI(z) sinψxI(z),
(17.63)

and similar for all other solutions. Comparing the second equations in (17.63)
with the derivative of the first equations we find the definitions

γxI =
β2

xI
φ′2

xI
+ α2

xI

βxI

(17.64)

and

ψxI = φxI − arctan
βxIφ

′
xI

αxI

. (17.65)

The other parameters γxII , etc. are defined similarly and the phase ellipse
(17.57) can now be expressed by the four-dimensional vector

v(z) =
√
εI




√
βxI cos (φxI + ϑI)

√
γxI cos (ψxI + ϑI)√
βyI cos (φyI + ϑI)

√
γyI cos (ψyI + ϑI)




cosχ (17.66)

+
√
εII




√
βxII cos (φxII + ϑII)

√
γxII cos (ψxII + ϑII)√
βyII cos (φyII + ϑII)

√
γyII cos (ψyII + ϑII)




sinχ .

This vector covers all points on the surface of the four-dimensional ellip-
soid as χ, ϑI , and ϑII vary independently from 0 to 2π. For one-dimensional
oscillations we know from the definition of the phase ellipse that the product√
εu

√
βu is equal to the beam size or beam envelope Eu and

√
εu

√
γu is equal

to the angular beam envelope Au, where u = x or y. These definitions of beam
envelopes can be generalized to coupled motion but we find from (17.66) that
the envelopes have two contributions. Each point on the phase ellipse for an
uncoupled beam appears now expanded into an ellipse with an area πεII as
shown in Fig. 17.1.

In a real beam transport line we are not able to observe experimentally
the four-dimensional phase ellipse. By methods of emittance measurements,
however, we may determine the area for the projection of the four-dimensional
ellipsoid onto the (x− x′), the (y − y′), or the (x− y)-plane.
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A= πε
II

A= πε
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(εβ)
II

1/2

(εβ)
I
1/2

Fig. 17.1. Phase space ellipse for coupled motion

To do that we note in (17.66) that the maximum amplitude of a particle
in the u-plane occurs for φuI,II = −ϑuI,II and a projection angle χ given by
sin2 χ = εuII βuII

Eu
, where the beam envelope for coupled motion is given by

Eu =
√

εuIβuI + εuIIβuII . (17.67)

Similarly, we get from the second component of (17.66) the angular envelope

Au =
√

εuIγuI + εuIIγuII (17.68)

for ψuI,II = −ϑ̃uI,II and a projection angle given by

sin2 χ =
εuII βuII

Au
. (17.69)

To completely determine the phase ellipse we also calculate the slope x′

for the particle at x = Ex which is the slope of the envelope E′. Taking the
derivative of (17.67) we get

E′
u = − εuIαuI + εuIIαuII√

εuIβuI + εuIIβuII

. (17.70)

Expressing the equation of the phase ellipse in terms of these envelope
definitions we get

A2
u u2 − 2E′

u Eu uu′ + E2
u u′2 = ε2u (17.71)
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and inserting u = Eu and u′ = E′
u into (17.71) we get for the emittance of

the projection ellipse

εu = Eu

√
A2

u − E′
u
2 . (17.72)

The envelope functions can be measured noting that E2 = σ11, A
2 = σ22,

and EE′ = −σ12 where σij are elements of the beam matrix. Because of the
deformation of the four-dimensional phase ellipse through transformations, we
cannot expect that the projection is a constant of motion and the projected
emittance is therefore of limited use.

A more important and obvious projection is that onto the (x, y)-plane
which shows the actual beam cross section under the influence of coupling.
For this projection we use the first and third equation in (17.66) and find
an elliptical beam cross section. The spatial envelopes Ex and Ey have been
derived before in (17.67) and become here

Ex =
√

εxIβxI + εxIIβxII , (17.73)

Ey =
√

εyIβyI + εyIIβyII . (17.74)

The y-coordinate for Ex, which we denote by Exy, can be derived from
the third equation in (17.66) noting that now ϑyI,II = −φxI,II , χ is given by
(17.69) and

Exy =
εI
√

βxIβyI cos∆φI + εII
√

βxIIβyII cos∆φII√
εxIβxI + εxIIβxII

, (17.75)

where ∆φI,II = φxI,II − φyI,II .
The beam cross section is tilted due to coupling whenever Ex,y 
= 0. The

tilt angle ψ of the ellipse is determined by

tan 2ψ =
2Ex Exy

E2
x − E2

y

(17.76)

or more explicitly

tan 2ψ = 2
εI
√

βxIβyI cos∆φI + εII
√

βxIIβyII cos∆φII

εxI∆βI + εxII∆βII
. (17.77)

The beam cross section of a coupled beam is tilted as can be directly
observed, for example, through a light monitor which images the beam cross
section by the emission of synchrotron light. This rotation vanishes as we
would expect for vanishing coupling when βxII → 0 and βyI → 0. The tilt
angle is not a constant of motion and therefore different tilt angles can be
observed at different points along a beam transport line.

We have discussed Ripken’s theory [164] of coupled betatron motion which
allows the formulation of beam dynamics for arbitrary strength of coupling.
The concept of conjugate trajectories and transformation matrices through
skew quadrupoles and solenoid magnets are the basic tools required to deter-
mine coupled betatron functions and the tilt of the beam cross section.
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17.4 Hamiltonian and Coupling

In practical beam transport systems particle motion is not completely con-
tained in one or the other plane although special care is being taken to avoid
coupling effects as much as possible. Coupling of the motion from one plane
into the other plane can be generated through the insertion of actual rotated
magnets or in a more subtle way by rotational misalignments of upright mag-
nets. Since such misalignments are unavoidable, it is customary to place weak
rotated quadrupoles in a transport system to provide the ability to counter
what is known as linear coupling caused by unintentional magnet misalign-
ments. Whatever the source of coupling, we consider such fields as small per-
turbations to the particle motion.

The Hamiltonian treatment of coupled motion follows that for motion in a
single plane in the sense that we try to find cyclic variables while transforming
away those parts of the motion which are well known. For a single particle
normalized coordinates can be defined which eliminate the z-dependence of
the unperturbed part of the equations of motion. Such transformations cannot
be applied in the case of coupled motion since they involve the oscillation
frequency or betatron phase function which is different for both planes.

17.4.1 Linearly Coupled Motion

We will derive some properties of coupled motion for the case of linear cou-
pling introduced, for example, by a rotated quadrupole. Equations of linearly
coupled motion are with k = p(z) of the form

x′′ + k x = −p(z) y,

y′′ − y x = −p(z)x,
(17.78)

which can be derived from the Hamiltonian for linearly coupled motion

H = 1
2 x′ 2 + 1

2 y′
2 + 1

2k x2 − 1
2k y2 + p(z)x y . (17.79)

This Hamiltonian is composed of an uncoupled Hamiltonian H0 and the
perturbation Hamiltonian for linear coupling

H1 = p(z)x y . (17.80)

The solutions for the uncoupled equations with integration constants cu and
φ are of the form

u(z) = cu

√
βu cos [ψu(z) + φ] ,

u′(z) = − cu√
βu

{αu(z) cos [ψu(z) + φ] + sin [ψu(z) + φ]} ,
(17.81)
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and applying the method of variation of integration constants, we try the
ansatz

u(z) =
√

2au(z)
√
βu cos [ψu(z) + φ(z)] ,

u′(z) = −
√

2au(z)
βu

{αu(z) cos [ψu(z) + φ(z)] + sin [ψu(z) + φ(z)]} ,
(17.82)

for the coupled motion. We use the coordinates (a, φ) as new variables and to
show that the new variables are canonical, we use the Hamiltonian equations
∂H/∂u′ =du/dz and ∂H/∂u = −du′/dz and get

∂H

∂u′ =
∂H0

∂u′ +
∂H1

∂u′ =
du
dz

=
∂u

∂z
+

∂u

∂a

∂a

∂z
+

∂u

∂φ

∂φ

∂z
. (17.83)

A similar expression exists for the second Hamiltonian equation of motion

∂H

∂u
=

∂H0

∂u
+

∂H1

∂u
= −du′

dz
= −∂u′

∂z
− ∂u′

∂a

∂a

∂z
− ∂u′

∂φ

∂φ

∂z
. (17.84)

For uncoupled oscillators we know that a = const. and φ = const. and
therefore ∂u/∂z = ∂H0/∂u

′ and ∂u′/∂z = −∂H0/∂u. With this we derive
from (17.81)–(17.84) the equations

∂H1

∂φ
=

∂H1

∂u

∂u

∂φ
+

∂H1

∂u′
∂u′

∂φ
= −da

dz
,

∂H1

∂a
= +

∂H1

∂u

∂u

∂a
+

∂H1

∂u′
∂u′

∂a
=

dφ
dz

,

(17.85)

demonstrating that the new variables (φ, a) are canonical variables and (17.82)
are canonical transformations. Applying (17.82) to the perturbation Hamil-
tonian (17.80) with appropriate indices to distinguish between horizontal and
vertical plane, the perturbation Hamiltonian becomes

H1 = 2 p(z)
√

βxβy
√
axay cos (ψx + φx) cos (ψy + φy) , (17.86)

where z is still the independent variable. The dynamics of linearly coupled
motion becomes more evident after isolating the periodic terms in (17.86).
For the trigonometric functions we set

cos (ψu + φu) = 1
2

[
ei(ψu+φu) + e−i(ψu+φu)

]
(17.87)

and the Hamiltonian assumes the form

H1 = 1
2p(z)

√
βxβy

√
axay

∑
lx,ly

ei[lx(ψx+φx)+ly(ψy+φy)], (17.88)

where the integers nonzero integers lx and ly are defined by
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lx, ly ∃ (−1, 1) . (17.89)

Similar to the one-dimensional case we try to separate constant or slowly
varying terms from the fast oscillating terms and expand the exponent in
(17.88) like

lxψx + lyψy − lxν0xϕ− lyν0yϕ

+ lxν0xϕ + lyν0yϕ + lyψy + lyφy, (17.90)

where ν0u are the tunes for the periodic lattice, ϕ = 2πz/L, and L is the
length of the lattice period. The first four terms in (17.90) are periodic with
the period ϕ (L) = 2π + ϕ (0). Inserting (17.90) into (17.88) we get with
ψu (L) = 2πν0u + ψu (0)

H1 = 1
2

∑
lx,ly

p(z)
√

βxβyei[lxψx+lyψy−lxν0xϕ−lyν0yϕ]

×√
axay

∑
lx,ly

ei[lxν0xϕ+lyν0yϕ+lyψy+lyφy ] . (17.91)

In this form we recognize the periodic factor

A (ϕ) = p(z)
√

βxβyei[lxψx+lyψy−lxν0xϕ−lyν0yϕ] . (17.92)

since betatron functions and perturbations p(z) =k(z) are periodic. After
expanding (17.92) into a Fourier series

L

2π
A (ϕ) =

∑
q

κq,lx,lyeiqNϕ (17.93)

coupling coefficients can be defined by

κq,lx,ly =
1
2π

∫ 2π

0

L

2π
A (ϕ) e−iqNϕdϕ

=
1
2π

∫ L

0

k
√

βxβyei[lxψx+lyψy−(lxν0x+lyν0y−qN ) 2π
L z]dz . (17.94)

Since κq,1,1 = κq,−1,−1 and κq,1,−1 = κq,−1,1, we have with −1 ≤ l ≤ +1

κq,l =
1
2π

∫ L

0

k
√

βxβyei[ψx+l ψy−(ν0x+l ν0y−qN ) 2π
L z] dz . (17.95)

The coupling coefficient is a complex quantity indicating that there are two
orthogonal and independent contributions which also require two orthogonally
independent corrections. Now that the coupling coefficients are defined in a
convenient form for numerical evaluation we replace the independent variable
z by the angle variable ϕ = 2πz/L and obtain the new Hamiltonian H̃1 =
2π
L H1 or
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H̃ =
∑

q

κq,l
√
axay cos (φx + lφy + ∆qϕ) , (17.96)

where
∆q = ν0x + l ν0y − qN . (17.97)

Most terms in (17.96) are fast oscillating and therefore cancel before any
damage can be done to particle stability. One term, however, is slowly varying
for q = r defining the resonance condition for coupled motion (∆q ≈ 0) or

rN ≈ ν0x + l ν0y . (17.98)

In this resonant case, the quantity ∆r is the distance of the tunes from the
coupling resonance as defined by (17.97) with q = r. Neglecting all fast oscil-
lating terms we apply one more canonical transformation (φu, au) →

(
φ̃u, ãu

)

to eliminate the independent variable ϕ from the Hamiltonian. In essence, we
thereby use a coordinate system that follows with the unperturbed particle
and exhibits only the deviations from the ideal motion. From the generating
function

G = ãx

(
φx + 1

2∆rϕ
)

+ ãy

(
φy + l 12∆rϕ

)
(17.99)

we get for the new variables

φ̃x = ∂G
∂ãx

= φx + 1
2∆r ϕ, ãx = ∂G

∂φx
= ax,

φ̃y = ∂G
∂ãy

= φy + l 12∆r ϕ, ãy = ∂G
∂φy

= ay,
(17.100)

and the new Hamiltonian for the rotating coordinate system is

H̃r = H̃ +
∂G

∂ϕ
= H̃ +

1
2
∆r ax + l

1
2
∆r ay . (17.101)

For simplicity we drop the tilde on the amplitudes and use (ax, ay) . The
resonant Hamiltonian becomes after this transformation

H̃r =
1
2
∆r (ax + lay) + κr,l

√
axay cos

(
φ̃x + l φ̃y

)
(17.102)

and application of the Hamiltonian formalism gives the equations of motion

∂ax

∂ϕ = −∂H̃r

∂φ̃x
= κr,l

√
axay sin

(
φ̃x + l φ̃y

)
,

∂ay

∂ϕ = −∂H̃r

∂φ̃y
= l κr,l

√
axay sin

(
φ̃x + l φ̃y

)
,

(17.103)

and
∂φ̃x

∂ϕ = ∂H̃r
∂ax

= 1
2∆r + 1

2κr,l

√
ay

ax
cos
(
φ̃x + l φ̃y

)
,

∂φ̃y

∂ϕ = ∂H̃r
∂ay

= l 12∆r + 1
2κr,l

√
ax

ay
cos
(
φ̃x + l φ̃y

)
.

(17.104)

From these equations we can derive criteria for the stability or resonance
condition of coupled systems. Depending on the value of l we distinguish a
sum resonance if l = +1 or a difference resonance if l = −1.
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Linear Difference Resonance

In the case of a difference resonance, where l = −1, we add both equations of
(17.103) and get

d
dϕ

(ax + ay) = 0 . (17.105)

The coupled motion is stable because the sum of both amplitudes does
not change. Both amplitudes ax and ay will change such that one amplitude
increases at the expense of the other but the sum of both will not change
and therefore neither amplitude will grow indefinitely. Since ax and ay are
proportional to the beam emittance, we note that the sum of the horizontal
and vertical emittance stays constant as well,

εx + εy = const. (17.106)

The resonance condition (17.98) for a difference resonance becomes [19]

νx − νymr = N . (17.107)

Our discussion of linear coupling resonances reveals the feature that a dif-
ference resonances will cause an exchange of oscillation amplitudes between
the horizontal and vertical plane but will not lead to beam instability. This
result is important for lattice design. If emittance coupling is desired, one
would choose tunes which closely meet the resonance condition. Conversely,
when coupling is to be avoided or minimized, tunes are chosen at a safe dis-
tance from the coupling resonance.

There exists a finite stop-band width also for the coupling resonance just
as for any other resonance and we have thanks all the mathematical tools
to calculate that width. Since the beam is not lost at a difference coupling
resonance, we are also able to measure experimentally the stop-band width by
moving the tunes through the resonance. The procedure becomes obvious after
linearizing the equations of motion (17.103), (17.104). Following a suggestion
by Guignard [127], we define new variables similar in form to normalized
coordinates

w =
√
axeiφ̃x ,

v = √
ayeiφ̃y .

(17.108)

Taking derivatives of (17.108) with respect to ϕ and using (17.103), (17.104)
we get after some manipulation the linear equations

dw
dϕ

= i
1
2

(κv + ∆rw) ,

dv
dϕ

= i
1
2

(κw −∆rv) ,
(17.109)

where we have set for simplicity κr,−1 = κ.
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These equations can be solved analytically and will provide a further in-
sight into the dynamics of coupled oscillations. We will look for characteristics
of coupled motion which do not depend on initial conditions but are general
for all particles. Expecting the solutions w and v to describe oscillations, we
assume that the motion in both planes depends on the initial conditions w0, v0

in both planes due to the effect of coupling. For simplicity, however, we study
the dynamics of a particle which starts with a finite amplitudes w0 
= 0 in the
horizontal plane only and set v0 = 0. The ansatz for the oscillations be

w(ϕ) = w0

(
a eiνϕ + b e−iνϕ

)
,

v(ϕ) = w0

(
c eiνϕ + d e−iνϕ

)
,

(17.110)

where we define an as yet undefined frequency ν. Inserting (17.110) into
(17.109) the coefficients of the exponential functions vanish separately and
we get from the coefficients of eiνϕ the two equations

2νa = κc + ∆ra,

2νc = κa + ∆rc,
(17.111)

from which we may eliminate the unknowns a and c to get the defining equa-
tion for the oscillation frequency

ν = 1
2

√
∆2

r + κ2 . (17.112)

While determining the coefficients a, b, c, d, we note that due to the initial
conditions a+ b = 1 and c+ d = 0. Similar to (17.111) we derive another pair
of equations from the coefficients of e−iνϕ

2νb = κd−∆rb,

2νd = κb + ∆rd,
(17.113)

which completes the set of four equations required to determine with (17.112)
the four unknown coefficients

a = 2ν+∆r
4ν , b = 2ν−∆r

4ν ,

c = κ
4ν , d = − κ

4ν .
(17.114)

With this, solutions (17.110) become

w(ϕ) = w0 cos νϕ + iw0
∆r
2ν sin νϕ,

v(ϕ) = +iw0
κ
2ν sin νϕ,

(17.115)

and by multiplication with the complex conjugate and (17.108) we get expres-
sions for the coupled beam emittances (εu = 2au)
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ax = ax0
1

4ν2

(
∆2

r + κ2 cos2 νϕ
)
,

ay = ax0
κ2

4ν2 sin2 νϕ .
(17.116)

The ratio of maximum values for beam emittances in both planes under
the influence of linear coupling is from (17.116)

εy
εx

=
κ2

∆2
r + κ2

. (17.117)

The emittance coupling increases with the strength of the coupling coef-
ficient and is equal to unity at the coupling resonance or for large values of
κ. At the coupling resonance we observe complete exchange of emittances at
the frequency ν. If on the other hand, the tunes differ and ∆r 
= 0, there will
always be a finite oscillation amplitude left in the horizontal plane because we
started with a finite amplitude in this plane. A completely symmetric result
would be obtained only for a particle starting with a finite vertical amplitude
as well.

We may now collect all results and derive the particle motion as a function
of time or ϕ. For example, the horizontal particle position is determined from
(17.82), where we set

√
ax = w e−iφ̃x and further replace w by (17.110). Here,

we are only interested in the oscillation frequencies of the particle motion
and note that the oscillatory factor in (17.82) is Re

[
ei(ψx+φx)

]
. Together with

other oscillatory quantities e−iφ̃x and w we get both in the horizontal and
vertical plane terms with oscillatory factors

Re
[
ei(ψu+φu−φ̃u±νϕ)

]
, (17.118)

where the index u stands for either x or y. The phase ψu = νuϕ and from
(17.100) and l = −1 the difference resonance φ̃u = φu ± 1

2∆rϕ. These expres-
sions used in (17.118) define two oscillation frequencies

νI,II = νx,y ∓ 1
2∆r ± ν (17.119)

or with (17.112)
νI,II = νx,y ∓ 1

2∆r ± 1
2

√
∆2

r + κ2 . (17.120)

We have again found the result that under coupling conditions the be-
tatron oscillations assume two modes. In a real accelerator only these mode
frequencies can be measured while close to the coupling resonance. For very
weak coupling (κ ≈ 0) the mode frequencies are approximately equal to the
uncoupled frequencies νx,y, respectively. Even for large coupling this equality
is preserved as long as the tunes are far away from the coupling resonance or
∆r 
 κ.

The mode frequencies can be measured while adjusting quadrupoles such
that the beam is moved through the coupling resonance. During this adjust-
ment the detuning parameter ∆r varies and changes sign as the coupling res-
onance is crossed. For example, if we vary the vertical tune across a coupling
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resonance from below, we note that the horizontal tune or νI does not change
appreciably until the resonance is reached, because −∆r +

√
∆2

r + κ2 ≈ 0.
Above the coupling resonance, however, ∆r has changed sign and νI increase
with ∆r. The opposite occurs with the vertical tune. Going through the cou-
pling resonance the horizontal tune has been transformed into the vertical
tune and vice versa without ever getting equal.

Actual tune measurements [165] are shown in Fig. 17.2 as a function of
the excitation current of a vertically focusing quadrupole. The vertical tune
change is proportional to the quadrupole current and so is the parameter ∆r.
While increasing the quadrupole current, the vertical tune is increased and
the horizontal tune stays practically constant. We note that the tunes actually
do not cross the linear coupling resonance during that procedure, rather the
tune of one plane is gradually transformed into the tune of the other plane
and vice versa. Both tunes never become equal and the closest distance is
determined by the magnitude of the coupling coefficient κ.

The coupling coefficient may be nonzero for various reasons. In some cases
coupling may be caused because special beam characteristics are desired. In
most cases, however, coupling is not desired or planned for and a finite linear
coupling of the beam emittances is the result of rotational misalignments of
upright quadrupoles. Where this coupling is not desired and must be mini-
mized, we may introduce a pair or two sets of rotated quadrupoles into the
lattice to cancel the coupling due to misalignments. The coupling coefficient
(17.95) is defined in the form of a complex quantity. Both orthogonal com-
ponents must therefore be compensated by two orthogonally located skew

Fig. 17.2. Measurements of mode frequencies as a function of detuning for linearly
coupled motion [165]
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quadrupoles and the proper adjustment of these quadrupoles can be deter-
mined by measuring the width of the linear coupling resonance.

Linear Sum Resonance

To complete the discussion, we will now set l = +1 and get from (17.98) the
resonance condition for a sum resonance

νx + νy = mrN . (17.121)

Taking the difference of both equations (17.103), we get

d
dϕ

(ax − ay) = 0, (17.122)

which states only that the difference of the emittances remains constant. Cou-
pled motion in the vicinity of a sum resonance is therefore unstable allow-
ing both emittances to grow unlimited. To solve the equations of motion
(17.103), (17.104) , we try the ansatz

u =
√
axeiΦx + i

√
ayeiΦy . (17.123)

From the derivative du/dϕ, we get with (17.103), (17.104)

du
dϕ

= i12 (∆r u− κ u∗) , (17.124)

and for the complex conjugate
du∗

dϕ
= −i12 (∆r u∗ + κ u) . (17.125)

Solving these differential equations with the ansatz

u = a eiνϕ + b e−iνϕ, (17.126)

and the complex conjugate

u∗ = a e−iνϕ + b eiνϕ, (17.127)

we get after insertion into (17.124), (17.125) analogous to (17.111) the oscil-
lation frequency

ν = 1
2

√
∆2

r − κ2 . (17.128)
This result shows that motion in the vicinity of a linear sum resonance

becomes unstable as soon as the detuning is less than the coupling coefficient.
The condition for stability is therefore

∆r > κ . (17.129)

By a careful choice of the tune difference to avoid a sum resonance and
careful alignment of quadrupoles, it is possible in real circular accelerators to
reduce the coupling coefficient to very small values. Perfect compensation of
the linear coupling coefficient eliminates the linear emittance coupling alto-
gether. However, nonlinear coupling effects then become dominant which we
cannot compensate for.
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17.4.2 Higher Order Coupling Resonances

So far all discussions on coupled motions and resonances have been based
on linear coupling effects caused by rotated quadrupole fields. For higher or-
der coupling the mathematical treatment of the beam dynamics is similar
although more elaborate. The general form of the nth-order resonance condi-
tion (17.98) is

lxνx + lyνy = mrN with |lx| + |ly| ≤ n . (17.130)

The factors lx and ly are integers and the sum |lx| + |ly| is called the
order of the resonance. In most cases it is sufficient to choose a location in
the resonance diagram which avoids such resonances since circular accelerators
are generally designed for minimum coupling. In special cases, however, where
strong sextupoles are used to correct chromaticities, coupling resonances can
be excited in higher order. The difference resonance 2νx − 2νy, for example,
has been observed at the 400 GeV proton synchrotron at the Fermi National
Laboratory. Further information on higher order coupling resonances can be
obtained from [128], where all sum and difference resonances are discussed in
great detail.

17.4.3 Multiple Resonances

We have only discussed isolated resonances. In general, however, nonlinear
fields of different orders do exist, each contributing to the stop band of reso-
nances. A particularly strong source of nonlinearities occurs due to the beam–
beam effect in colliding-beam facilities where strong and highly nonlinear fields
generated by one beam cause significant perturbations to particles in the other
beam. The resonance patterns from different resonances are superimposed cre-
ating new features of particle instability which were not present in any of the
resonances while treated as isolated resonances. Of course, if one of these res-
onances is unstable for any oscillation amplitude the addition of other weaker
resonances will not change this situation.

Combining the effects of several resonances should cause little change for
small amplitude oscillations since the trajectory in phase space is close to a
circle for resonances of any order provided there is stability at all. Most of
the perturbations of resonance patterns will occur in the vicinity of the island
structures. When island structures from different resonances start to overlap,
chaotic motion can occur and may lead to stochastic instability. The onset of
island overlap is often called the Chirikov criterion after Chirikov [166], who
has studied extensively particle motion in such situations.

It is beyond the scope of this text to evaluate the mathematical criteria
of multiresonance motion. For further insight and references the interested
reader may consult articles in [167–170]. A general overview and extensive
references can also be found in [171].
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Problems

17.1 (S). Can we to rotate a horizontal flat 10 GeV beam by 90◦ with a
solenoid? If yes, what is the strength of the solenoid and where along the
z-axis do we have a flat vertical beam?

17.2 (S). In circular accelerators rotated quadrupoles may be inserted to
compensate for coupling due to misalignments. Assume a statistical distribu-
tion of rotational quadrupole errors which need to be compensated by special
rotated quadrupoles. How many such quadrupoles are required and what cri-
teria would you use for optimum placement in the ring?

17.3 (S). Consider a lattice made of 61 FODO cells with 90◦ per cell in both
planes. The half cell length be L = 5 m and the full quadrupole length � = 0.2
m. The FODO half cell length is L = 5 m. Introduce a Gaussian distribu-
tion of rotational quadrupole misalignments. Calculate and plot the coupling
coefficient for the ring and the emittance ratio as a function of the rms mis-
alignment. If the emittance coupling is to be held below 1% how must the
lattice be retuned and how well must the quadrupoles be aligned? Insert two
rotated quadrupoles into the lattice such that they can be used to compen-
sate the coupling due to misalignments. Calculate the required quadrupole
strength.

17.4. Consider a point source of particles (e.g., a positron conversion target)
on the axis of a solenoidal field. Determine the solenoid parameters for which
the particles would exit the solenoid as a parallel beam. Such a solenoid is
also called a λ/4-lens, why? Let the positron momentum be 10 MeV/c. What
is the maximum solid angle accepted from the target that can be focused
to a beam of radius r = 1 cm? What is the exit angle of a particle which
emerges from the target at a radius of 1mm? Express the transformation of
this λ/4-lens in matrix formulation.

17.5. Choose a FODO lattice for a circular accelerator and insert at a sym-
metry point a thin rotated quadrupole. Calculate the tilt of the beam cross
section at this point as a function of the strength of the rotated quadrupole.
Place the same skew quadrupole in the middle of a FODO half cell and deter-
mine if the rotation of the beam aspect ratio at the symmetry point requires
a stronger or a weaker field. Explain why.

17.6. Use the measurement in Fig. 17.2 and determine the coupling coefficient
κ

17.7. Assume two cells of a symmetric FODO lattice and determine the beta-
tron functions for a phase advance of 90◦ per cell. Now introduce a rotational
misalignment of the first quadrupole by an angle α which generates coupling
of the horizontal and vertical betatron oscillations.
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(a). Calculate and plot the perturbed betatron functions βI and βII and com-
pare with the unperturbed solution.
(b). If the beam emittances are εI = εII mm mrad, what is the beam aspect
ratio and beam rotation at the end of cell one and two with and without the
rotation of the first quadrupole?
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Statistical and Collective Effects

Transverse and longitudinal beam dynamics as discussed in earlier chapters is
governed by purely single-particle effects where the results do not depend on
the presence of other particles or any interactive environment. Space-charge
effects were specifically excluded to allow the detailed discussion of single-
particle dynamics. This restriction is sometimes too extreme and collective
effects must be taken into account where significant beam intensities are de-
sired. In most applications high beam intensities are desired and it is therefore
prudent to test for the appearance of space charge and other intensity effects.

Collective effects can be divided into two distinct groups according to the
physics involved. The compression of a large number of charged particles into
a small volume increases the probability for collisions of particles within the
same beam. Because particles perform synchrotron and betatron oscillations,
statistical collisions occur in longitudinal, as well as transverse phase space
often causing a mixing of phase space coordinates; the other group of collec-
tive effects includes effects which are associated with electromagnetic fields
generated by the collection of all particles in a beam.

The study and detailed understanding of the cause and nature of collective
effects or collective instabilities with corrective measures is important for a
successful design of the accelerator. Most accelerator design and developments
are conducted to eliminate collective effects as much as possible through self-
imposed limitation on the performance or installation of feedback systems
and other stabilizing control mechanisms. Beyond that, we also must accept
limitations in beam performance imposed by nature or lack of understanding
and technological limits. Pursuit of accelerator physics is an attempt to explore
and push such limits as far as nature and general understanding of the subject
allows.
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18.1 Statistical Effects

Coupling of individual particles to the presence of other particles may occur
through very short range forces in collisions with each other. In this section,
we will discuss statistical effects related to the finite number of particles and
from collision processes within a particle bunch.

18.1.1 Schottky Noise

Electrical current is established by moving charged particles. The finite elec-
trical charge and finite number of elementary particles gives rise to statistical
variations of the electrical current. This phenomenon has been observed and
analyzed by Schottky [172] and we will discuss this Schottky noise in the realm
of particle dynamics in circular accelerators. The information included in the
Schottky noise is of great diagnostic importance for the nondestructive deter-
mination of particle beam parameters, a technique which has been developed
at the ISR [173] and has become a standard tool of beam diagnostics.

We consider a particle k with charge q orbiting in an accelerator with
the angular revolution frequency ωk and define a particle line density by
2πRλ(t) = 1 where 2πR is the circumference of the ring. On the other hand,
we may describe the orbiting particle by delta functions

q = q

∫ 2π

0

+∞∑
m=−∞

δ(ωkt + θk − 2πm) dθ,

where ωk is the angular revolution frequency of the particle k and θk is its
phase at time t = 0. The delta function can be expressed by a Fourier series
and the line-charge density at time t becomes

qλk(t) =
q

2πR

[
1 + 2

∞∑
n=1

cos(nωkt + nθk)

]
. (18.1)

From a pick up electrode close to the circulating particle, we would obtain
a signal with a frequency line spectrum ω = nωk where n is an integer. In a
real particle beam there are many particles with a finite spread of revolution
frequencies ωk and therefore the harmonic lines nωk spread out proportionally
to n. For not too high harmonic numbers the frequency spreads do not yet
overlap and we are able to measure the distribution of revolution frequencies.
Tuning the spectrum analyzer to ω, we observe a signal with an amplitude pro-
portional to N(ω/n) δω

n where N(ω/n) is the particle distribution in frequency
space and δω is the frequency resolution of the spectrum analyzer. The signal
from the pick up electrode is proportional to the line-charge density which is
at the frequency ω from (18.1)

qλrms(ω) =
√

2 q

2πR

√
N(ω/n)

δω

n
(18.2)
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and has been derived first by Schottky for a variety of current sources [172].
The spread in the revolution frequency originates from a momentum spread
in the beam and measuring the Schottky spectrum allows its nondestructive
determination.

Individual particles orbiting in an accelerator perform transverse betatron
oscillations which we describe, for example, in the vertical plane by

yk(t) = ak cos(νkωkt + ψk), (18.3)

where ak is the amplitude and ψk is the phase of the betatron oscillation for
the particle k at time t = 0. The difference signal from two pick up electrodes
above and below the particle beam is, in linear approximation, proportional
to the product of the betatron amplitude (18.3) and the line-charge density
(18.1) and is of the form

Dk(t)= Ak

∞∑
n=0

cos[(n− νk)(ωkt + φk)] (18.4)

+Ak

∞∑
n=0

cos[(n + νk)(ωkt + ϕk)],

where we have ignored terms at frequencies nωk. The transverse Schottky
signal is composed of two side bands for each harmonic at frequencies

ω = (n± νk)ωk, (18.5)

which are also called the fast wave for ω = (n + νk)ωk and the slow wave for
ω = (n− νk)ωk.

The longitudinal Schottky noise depends on the rms contribution of all
particles which are spread over a range of revolution frequencies due to a mo-
mentum spread and over betatron frequencies by virtue of the chromaticity.
For ∆ωrms = ηcω0δrms and ∆νrms = ξyδrms where ω0 is the revolution fre-
quency of the bunch center, δrms(= ∆prms/p0) is the rms relative momentum
error, ηc is the momentum compaction, and ξy is the vertical chromaticity,
the frequency distribution of the signal from the pick up is

ω = [n± (νy0 + ξyδk)] (ω0 + ηcω0δk) (18.6)

= (n± νy0)ω0 + [(n± νy0) ηc ± ξy]ω0 δk + O(δ2) .

The momentum spread δk causes a frequency spread which is different for
the slow and fast wave. For example, for positive chromaticity above transi-
tion, ηc < 0 and the frequency spreads add up for the slow wave and cancel
partially for the fast wave. This has been verified experimentally for a coasting
proton beam in the ISR [173].

A transverse Schottky scan may exhibit the existence of weak resonances
which may dilute the particle density, specifically in a coasting proton or ion
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beam. To control coasting beam instabilities, it is desirable to make use of
Landau damping by introducing a large momentum and tune spread. This
tune spread, however, can be sufficiently large to spread over higher order
resonances and blow up that part of the beam which oscillates at those res-
onance frequencies. A Schottky scan can clearly identify such a situation as
reported in [173].

In this text we are able to touch only the very basics of Schottky noise
and the interested reader is referred to references [174–177] for more detailed
discussions on the theory and experimental techniques to obtain Schottky
scans and how to interpret the signals.

18.1.2 Stochastic Cooling

The “noise” signal from a circulating particle beam includes information which
can be used to drive a feedback system in such a way as to reduce the beam
emittance, longitudinal as well as transverse. Due to the finite number of par-
ticles in a realistic particle beam, the instantaneous center of a beam at the
location of a pick up electrode exhibits statistical variations. This statisti-
cal displacement of a slice of beam converts to a statistical slope a quarter
betatron wavelength downstream. The signal from the small statistical dis-
placement of the beam at the pick up electrode can be amplified and fed back
to the beam through a kicker magnet located an odd number of quarter wave-
length downstream, assuming that the statistical variations do not smear out
between pick up electrode and kicker. Van der Meer [178] proposed this ap-
proach to reduce the transverse proton beam emittance in ISR for increased
luminosity and the process is now known as stochastic cooling.

This process of correction is not a statistical process and we must ask
ourselves if this is an attempt to circumvent Liouville’s theorem. It is not.
Due to the finite number of particles in the beam, the phase space is not
uniformly covered by particles but rather exhibits many holes. The method
of stochastic cooling detects the moment one of these holes appears on one or
the other side of the beam in phase space. At the same moment, the whole
emittance is slightly shifted with respect to the center of the phase space and
this shift can be both detected and corrected. The whole process of stochastic
cooling therefore only squeezes the “air” out of the particle distribution in
phase space. The most prominent application of this method occurs in the
cooling of an antiproton beam to reach a manageable beam emittance for
injection into high energy proton antiproton colliders. Discussing this process
in more detail, theoretically as well as technically, would exceed the scope of
this text and the interested reader is referred to a series of articles published
in [179].

18.1.3 Touschek Effect

The concentration of many particles into small bunches increases the probabil-
ity for elastic collisions between particles. This probability is further enhanced
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considering that particles perform transverse betatron as well as longitudinal
synchrotron oscillations. In each degree of freedom, we have acceptance limits
and if a particle’s oscillation amplitude exceeds such limits due, for exam-
ple, to a collision with another particle one or both particles can get lost. In
this section, we discuss the process of single collisions where the momentum
transfer is large enough to lead to the loss of both particles involved in the col-
lision and postpone the discussion of multiple collisions with small momentum
transfer to the next section.

We may consider two collision processes which could lead to beam loss.
First, we observe two particles performing synchrotron oscillations and col-
liding head-on in such a way that they transfer their longitudinal momentum
into transverse momentum. This collision process is insignificant in particle
accelerators because the longitudinal motion does not include enough mo-
mentum to increase the betatron oscillation amplitude enough for particle
loss. On the other hand, transverse oscillations of particles represent large
momenta and a transfer into longitudinal momenta can lead to the loss of
both particles. This effect was discovered on the first electron storage ring
ever constructed [81,180] and we therefore call this the Touschek effect.

In this text, we will not pursue a detailed derivation of the collision process
and refer the interested reader to [181–183]. Of particular interest is the ex-
pression for the beam lifetime as a result of particle losses due to a momentum
transfer into the longitudinal phase space exceeding the rf-bucket acceptance
of ∆p/p0|rf . Whenever such a transfer occurs both particles involved in the col-
lision are lost. The beam decay rate is proportional to the number of particles
in the bunch and the beam current therefore decays exponentially. Last, but
not least, a loss occurs only if there is sufficient momentum in the transverse
motion to exceed the rf-momentum acceptance. We assume the momentum
acceptance to be limited by the rf-voltage and combining these parameters in
a collision theory results in a beam lifetime for a Gaussian particle distribution
given by

1
τ

= − 1
Nb

dNb

dt
=

r2
c cNb

8π σx σy σ�

λ3

γ2
D(ε), (18.7)

where rc is the classical particle radius, σx, σy, σ� are the standard values of the
Gaussian bunch width, height, and length, respectively, and λ−1 = ∆p/p0|rf
the momentum acceptance parameter. The function D(ε) (Fig. 18.1) is defined
by [183]

D(ε)=
√
ε

[
−3

2
e−ε +

ε

2

∫ ∞

ε

lnu

u
e−u du (18.8)

+
1
2
(3ε− ε ln ε + 2)

∫ ∞

ε

e−u

u
du
]
,

where the argument is
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Fig. 18.1. Touschek lifetime function D (ε)

ε =
(
∆prf

γ σp

)2

with σp =
mcγ σx

βx
. (18.9)

Particle losses due to the Touschek effect is particularly effective at low
energies and where the rf-acceptance is small. For high particle densities
Nb/(σx σy σ�) the rf-acceptance should therefore be maximized. This seems
to be the wrong thing to do because the bunch length is reduced at the same
time and the particle density becomes even higher but a closer look at (18.7)
shows us that the Touschek lifetime increases faster with rf-acceptance than
it decreases with bunch length.

18.1.4 Intrabeam Scattering

The Touschek effect describes collision processes which lead to immediate loss
of both colliding particles. In reality, however, there are many other collisions
with only small exchanges of momentum. While these collisions do not lead
to immediate particle loss, there might be sufficiently many during a damping
time in electron storage rings or during the storage time for proton and ion
beams to cause a significant increase in the bunch volume, or in the case of a
coasting beam an increase in beam cross section. During the discussion of the
Touschek effect we neglected the transfer from the longitudinal momentum
space into transverse momentum space because the transverse momentum ac-
ceptance is larger than the longitudinal acceptance and particles are generally
not lost during such an exchange. This is not appropriate any more for the
multiple Touschek effect or intrabeam scattering where we are interested in
all collisions.
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The multiple Touschek effect was observed in the first ever constructed
storage ring, AdA (Anello di Accumulatione), in Frascati, Italy. The Touschek
effect had been expected and analyzed before but did give too pessimistic
beam lifetimes compared to those observed in AdA. A longer beam lifetime
had been obtained because of multiple elastic scattering between particles
increasing the bunch volume and thereby reducing the Touschek effect [81].

During the exchange of momentum as a consequence of collisions between
particles within the same bunch or beam, each degree of freedom can increase
its energy or temperature because the beam is able to absorb any amount of
energy from the rf- system. We are particularly interested in the growth times
of transverse and longitudinal emittances to asses the long-term integrity of
the particle beam. The multiple Touschek effect or intrabeam scattering has
been studied extensively [83,156] and we will not repeat here the derivations
but merely recount the results.

The growth time of the beam emittances for Gaussian particle distribu-
tions are for the longitudinal phase space or momentum and bunch distribu-
tion [83,156]

τ−1
p =

1
2σ2

p

dσ2
p

dt
= A

σ2
h

σ2
p

f(a, b, c), (18.10)

where the particle bunch density is expressed by

A =
r2
ccNb

64π2σz σp σx σy σx′ σy′ β3 γ4
(18.11)

with the standard dimensions of a Gaussian distribution for the bunch length
σz, the relative momentum spread σp, horizontal and vertical betatron ampli-
tudes σx and σy as well as horizontal and vertical divergences σx′ and σy′ . Nb

is the number of particles per bunch. The constants rc and β = v/c, finally,
are the classical particle radius and velocity in units of the velocity of light.

The function

f(a, b, c) = 8π
∫ 1

0

{
ln
[
c2

2

(
1
√
p

+
1
√
q

)]
− 0.577...

}
1 − 3x2

√
pq

dx, (18.12)

where
p = a2 + x2(1 − a2), q = b2 + x2(1 − b2),

a = σh

γσx′
, b = σh

γσy′
,

σ2
h = σ2

p σ2
x

σ2
x+η2 σ2

p
, c2 = β2σ2

h

√
2πσy

rc
.

The transverse emittance growth times are similarly given by

τ−1
x =

1
2σ2

x

dσ2
x

dt
= A

[
f

(
1
a
,
b

a
,
c

a

)
+

η2σ2
p

σx
f (a, b, c)

]
, (18.13)

and
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τ−1
y =

1
2σ2

y

dσ2
y

dt
= Af

(
1
b
,
a

b
,
c

b

)
. (18.14)

These expressions allow the calculations of the emittance growth rate,
which for electron accelerators are in most cases negligible compared to radi-
ation damping but become significant in proton and ion storage rings where
high particle densities and long storage times are desired. From the density
factor A it is apparent that high particle density in six-dimensional phase
space increases the growth rates while this effect is greatly reduced at higher
beam energies.

18.2 Collective Self-Fields

The electric charges of a particle beam can become a major contribution to the
forces encountered by individual particles while traveling along a beam trans-
port line or orbiting in a circular accelerator. These forces may act directly
from beam to particle or may originate from electromagnetic fields being ex-
cited by the beam interaction with its surrounding vacuum chamber. In this
section, we will derive expressions for the fields from a collection of particles
and determine the force due to these fields on an individual test particle. We
use the particle charge q rather than the elementary charge e to cover par-
ticles with multiple charges like ions for which q = eZ. For all cases to be
correct, we should distinguish between the electrical charge of particles in the
beam and that of the individual test particle. This, however, would signifi-
cantly complicate the expressions and we use therefore the same charge for
both the beam and test particles. In a particular situation whenever particles
of different charges are considered, the sign and value of the charge factors in
the formulas must be reconsidered.

18.2.1 Stability of a Charged-Particle Beam

Individual particles in an intense beam are under the influence of strong re-
pelling electrostatic forces creating the possibility of severe stability problems.
Particle beam transport over long distances could be greatly restricted unless
these space-charge forces can be kept under control. First, it is interesting to
calculate the magnitude of the problem.

If all particles would be at rest within a small volume, we would clearly
expect the particles to quickly diverge from the center of charge under the
influence of the repelling forces from the other particles. This situation may
be significantly different in a particle beam where all particles propagate in
the same direction. We will therefore calculate the fields generated by charged
particles in a beam and derive the corresponding Lorentz force due to these
fields. Since the Lorentz force equation is invariant with respect to coordinate
transformations, we may derive this force either in the laboratory system or
in the moving system of the particle bunch.
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We will perform the calculations first in the laboratory system and assume
a continuous stream of particles moving along the z-axis with the velocity
vz. Assuming a uniform particle density distribution ρ0 within the beam we
find for symmetry reasons only a radial electrical field Er and an azimuthal
magnetic field Bϕ. The radial electric field Er at a distance r from the beam
axis can be derived from Coulomb’s law ∇E = 1

ε0
ρ0 expressed in cylindrical

coordinates which becomes after integration

Er =
1

2ε0
ρ0 r . (18.15)

Similarly, we get from Ampere’s law ∇×B = µ0ρ0v the azimuthal magnetic
field

Bϕ = 1
2µ0ρ0vr . (18.16)

These field components determine the Lorentz force due to electromagnetic
fields generated by the beam itself and acting on a particle within that beam

Fr = e (Er − v Bϕ) = 1
2ε0e

ρ0

γ2
r . (18.17)

Only the radial component of the Lorentz force is finite. The Lorentz force
remains repelling but due to a relativistic effect we find that the repelling elec-
trostatic force at higher energies is increasingly compensated by the magnetic
field. The total Lorentz force due to space charges therefore vanishes like γ−2

for higher energies. Obviously this repelling space charge force is generally
much stronger for proton and especially for ion beams because of the smaller
value for γ and, in the case of ions, because of the larger charge multiplicity
which increases the space-charge force by a factor of Z.

We find the same result, if we derive the Lorentz force in the moving system
S∗ of the particle beam and then transform to the laboratory system. In this
moving system we have obviously only the repelling electrostatic force since
the particles are at rest and the only field component is the radial electrical
field which is from (18.15)

F ∗
r = eE∗

r =
1

2ε0
eρ∗0 r

∗ . (18.18)

Transforming this equation back into the laboratory system we note that
this force is purely radial and therefore acts only on the radial momentum.
With Fr = dpr/dt and pr = p∗r we find F ∗ = γFr since dt = γ dt∗. The charge
densities in both systems are related by ρ∗ = ρ/γ, the radii by r∗ = r, and
the Lorentz force in the laboratory system becomes thereby

Fr = 1
2ε0e

ρ0

γ2
r (18.19)

in agreement with (18.17).
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We obtained the encouraging result that at least relativistic particle beams
become stable under the influence of their own fields. For lower particle en-
ergies, however, significant diverging forces must be expected and adequate
focusing measures must be applied. The physics of such space charge domi-
nated beams is beyond the scope of this book and is treated elsewhere, for
example, in considerable detail in [184].

18.2.2 Self-Field for Particle Beams

The self-fields of a beam depend on beam parameters like particle type, par-
ticle distribution, bunching, and energy of the particle. Here, we will derive
the nature and effect of these self-fields in a more restricted way for common
particle beam cases in accelerators.

To determine self-fields, we consider a continuous beam of particles with
a line charge λ or a volume charge ρ(x, y). The electric fields within a beam
are derived from a potential V defined by

�V = − 1
ε0

ρ(x, y), (18.20)

where ρ, being the electric charge density in the beam, is finite within and
zero outside the beam. Similarly, the magnetic vector potential is defined by

∆A = − 1
ε0

vρ(x, y) . (18.21)

For a particle beam, we may set v ≈ (0, 0, v) and the vector potential
therefore contains only a longitudinal component A = (0, 0, Az).

Generally, particle beams have an elliptical cross section and the solution
to (18.20) for such a beam with constant charge density, ρ = const. has been
derived by Teng [185, 186]. Within the elliptical beam cross section, where
x ≤ a and y ≤ b, the electric potential is

V (x, y) = − 1
2ε0

ρ
ab

a + b

[
x2

a
+

y2

b

]
(18.22)

and a, b are the horizontal and vertical half axis, respectively. The vector
potential for the magnetic field is from the discussions above

Az(x, y) = − 1
2ε0

ρ
v

c

ab

a + b

[
x2

a
+

y2

b

]
(18.23)

and both the electric and magnetic field can be derived by simple differentia-
tions

E = −∇V and B = ∇× A (18.24)

for
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Ex =
1

4πε0
4qλ

a(a + b)
x, Ey =

1
4πε0

4qλ
b(a + b)

y, (18.25)

and
Bx = −cµ0

4π
4qλβ

b(a + b)
y, By =

cµ0

4π
4qλβ

a(a + b)
x, (18.26)

where β = v/c and the linear charge density λ is defined by

λ = πab ρ(x, y) . (18.27)

Comparing (18.25) and (18.26) reveals the relationship between electric and
magnetic self-fields of the beam to be (18.27)

cBx = −βEy, cBy = +βEx . (18.28)

The electric as well as the magnetic field scales linearly with distance from the
beam center and therefore both cause focusing and a tune shift in a circular
accelerator.

In many applications it is not acceptable to assume a uniform transverse
charge distribution. Most particle beams either have a bell-shaped particle
distribution or a Gaussian distribution as is especially the case for electrons
in circular accelerators. We therefore use in the transverse plane a Gaussian
charge distribution given by

ρ(x, y) =
λ

2πσxσy
exp
[
− x2

2σ2
x

− y2

2σ2
y

]
. (18.29)

Although many particle beams, but specifically electron beams, come in
bunches with a Gaussian distribution in all degrees of freedom, we will only in-
troduce a bunching factor for the longitudinal variable and refer the interested
reader for the study of a fully six-dimensional Gaussian charge distribution
to [187].

The potential for a transverse bi-Gaussian charge distribution (18.29) can
be expressed by [186]

V (x, y) = − e

4πε0
λ

∞∫

0

1 − exp
[
− x2

2(σ2
x+t) −

y2

2(σ2
y+t)

]
√

(σ2
x + t)(σ2

y + t)
dt, (18.30)

which can be verified by back insertion into (18.20). From this potential we
obtain for example the vertical electric field component by differentiation

Ey = −∂V (x, y)
∂y

=
e

4πε0
λ y

∞∫

0

exp
[
− x2

2(σ2
x+t) −

y2

2(σ2
y+t)

]

(σ2
y + t)

√
(σ2

x + t)(σ2
y + t)

dt . (18.31)

No closed analytical expression exists for these integrals unless we restrict
ourselves to a symmetry plane with x = 0 or y = 0 and small amplitudes
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y � σy or x � σx, respectively. These assumptions are appropriate for most
space-charge effects and the potential in the vertical midplane becomes

V (x = 0, y � σy) = − 1
4πε0

λ

σy(σx + σy)
y2 . (18.32)

For reasons of symmetry a similar expression can be derived for the hori-
zontal mid plane by merely interchanging x and y in (18.32). The associated
electric fields are for x = 0 and y � σy

Ex =
1

4πε0
2λ

σx(σx + σy)
x, Ey =

1
4πε0

2λ
σy(σx + σy)

y, (18.33)

and the magnetic fields according to (18.28) are from (18.33)

Bx = −cµ0

4π
2λβ

σy(σx + σy)
y, By = +

cµ0

4π
2λβ

σx(σx + σy)
x . (18.34)

All fields increase linearly with amplitude and we note that the field com-
ponents in the horizontal midplane are generally much smaller compared to
those in the vertical midplane because most particle beams in circular accel-
erators are flat and σy � σx.

Forces from Space-Charge Fields

The electromagnetic self-fields generated by the collection of all particles
within a beam exert forces on individual particles of the same beam or of
another beam. The Lorentz force due to these fields can be expressed by

F = eE fe + e[v × B] fefv, (18.35)

where we have added to the usual expression for the Lorentz force the fac-
tors fe and fv. Because the fields act differently depending on the relative
directions and charge of beam and individual particle distinct combinations
occur. We set fe = 1 if both the beam particles and the individual particle
have the same sign of their charge and fe = −1 if their charges are of opposite
sign. Similarly we set fv = 1 or fv = −1 depending on whether the beam
and individual particle have the same or opposite direction of movement with
respect to each other.

The vertical force from the self-field, for example, of a proton beam on
an individual proton within the same beam moving with the same velocity is
from (18.35)

Fy(↑↑,++) = +e(1 − β2)Ey . (18.36)

An antiproton moving in the opposite direction through a proton beam would
feel the vertical force

Fy(↑↓,+−) = −e(1 + β2)Ey . (18.37)
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Expansion to other combinations of particles and directions of velocities
are straightforward. For ions the charge multiplicity Z must be added to the
fields or the individual particle or both depending on the case. The possible
combinations of the force factors ±(1 ± β2) are summarized in Table 18.1.

Table 18.1. Table Self-field force factors

++ ↑↑ +− ↑↑ ++ ↑↓ +− ↑↓

−− ↑↑ −+ ↑↑ −− ↑↓ −+ ↑↓

+
(
1 − β2

)
−
(
1 − β2

)
+
(
1 + β2

)
−
(
1 + β2

)

The ±-signs in Table 18.1 indicate the charge polarity of beam and particle
and the arrows indicate the relative direction. We note a great difference
between the case where particles move in the same direction and the case of
beams colliding head-on.

18.2.3 Beam–Beam Effect

In colliding beam facilities two counterrotating beams within one storage ring
or counterrotating beams from two intersecting storage rings are brought into
collision to create a high center of mass energy at the collision point which
transforms into known or unknown particles to be studied by high energy
experimentalists. The event rate is given by the product of the cross section
for the particular event and the luminosity which is determined by storage ring
operating conditions. By definition, the luminosity is the density of collision
centers in the target multiplied by the number of particles colliding with this
target per unit time. In the case of a colliding beam facility one beam is the
target for the other beam. For simplicity we assume here that both beams
have the same cross section. We also assume that each beam consists of B
bunches. In this case the luminosity is

L =
N1

BA
N2frev, (18.38)

where N1 and N2 are the total number of particles in each beam, A is the
cross section of the beams, and frev is the revolution frequency in the storage
ring. In most storage rings the transverse particle distribution is Gaussian or
bell-shaped and since only the core of the beam contributes significantly to
the luminosity we may define standard beam sizes for all kinds of particles.
For a Gaussian particle distribution the effective beam cross section is

Ag = 4πσxσy (18.39)
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and the luminosity

L =
N1

4π σx σy B
N2frev . (18.40)

The recipe for high luminosity is clearly to maximize the beam intensity
and to minimize the beam cross section. This approach, however, fails because
of the beam–beam effect which, due to electromagnetic fields created by the
beams themselves, causes a tune shift and therefore limits the amount of beam
that can be brought into collision in a storage ring. The beam–beam effect
has first been recognized and analyzed by Amman and Ritson [188].

In the case of counter rotating beams colliding at particular interaction
points in a colliding-beam facility, we always have fv = −1 but the colliding
particles still may be of equal or opposite charge. In addition, there is no
contribution from magnetic image fields since collisions do not occur within
magnets. Even image fields from vacuum chambers are neglected because the
beam–beam interaction happens only over a very short distance. A particle in
one beam will feel the field from the other beam only during the time it travels
through the other beam which is equal to the time it takes the particle to travel
half the effective length of the oncoming bunch. With these considerations in
mind, we obtain for the beam–beam tune shift in the vertical plane from
(18.73) with fcorr = 1 and assuming head-on collisions of particle–antiparticle
beams (fe = −1)

∆νy,bb =
rc Ntot

2π B γ

β∗
y

σ∗
y(σ∗

x + σ∗
y)

(18.41)

and in the horizontal plane

∆νx,bb =
rc Ntot

2π B γ

β∗
x

σ∗
x(σ∗

x + σ∗
y)

, (18.42)

where ∗ indicates that the quantities be taken at the interaction point. In cases
where other particle combinations are brought into collision or when both
beams cross under an angle these equations must be appropriately modified
to accurately describe the actual situation.

From (18.37) and (18.33) we find for two counterrotating beams of particle
and antiparticle a vertical beam–beam force of

Fy = − 1
4πε0

e(1 + β2) 2λ

σy (σx + σy)
y . (18.43)

This force is attractive and therefore focusing, equivalent to that of a quadru-
pole of strength

k = − Fy/y

c2β2γm
(18.44)

causing a vertical tune shift of
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δνy =
1
4π

∫

coll

βy k dz . (18.45)

Integrating over the collision length which is equal to half the bunch length
� because colliding beams move in opposite directions, we note that the linear
charge density is λ = eN/B/�, where N is the total number of particles per
beam and B is the number of bunches per beam. With these replacements
the beam beam tune shift finally becomes

δνy =
r0Nβy

2πBσy(σx + σy)
, (18.46)

where r0 is the classical particle radius of the particle which is being disturbed.
Obviously, the tune shift scales linearly with particle intensity or particle beam
current and inversely with the beam cross section. Upon discovery of this effect
it was thought that the ±particle beam intensity is limited when the tune shift
is of the order of ≈ 0.15–0.2 which is the typical distance to the next resonance.
Experimentally, however, it was found that the limit is much more restrictive
with maximum tune shift values of ≈ 0.04–0.06 for electrons [188–191] and
less for proton beams [192].

A definitive quantitative description of the actual beam–beam effect has
not been possible yet due to its highly nonlinear nature. Only particles with
very small betatron oscillation amplitudes will experience the linear tune shift
derived above. For betatron oscillations larger than one σ, however, the field
becomes very nonlinear turning over to the well-known 1/r-law at large dis-
tances from the beam center.

In spite of the inability to quantitatively describe the beam–beam effect
by the linear tune shift it is generally an accepted practice to quantify the
beam–beam limit by the value of the linear tune shift. This is justified since
the nonlinear fields of a particle beam are strictly proportional to the linear
field and therefore the linear tune shift is a good measure for the amount of
nonlinear fields involved.

18.2.4 Transverse Self-Fields

Expressions for space-charge fields originating from a beam of charged par-
ticles have been derived earlier and we obtained for a Gaussian transverse
distribution of particles with charge q the electric fields (18.33)

Ex =
1

4πε0
2λ

σx (σx + σy)
x

Ey =
1

4πε0
2λ

σy (σx + σy)
y,

(18.47)

and the magnetic fields (18.34)
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Bx = −c µ0

4π
2λβ

σy (σx + σy)
y,

By = +
c µ0

4π
2λβ

σx (σx + σy)
x .

(18.48)

The local linear particle density λ is defined by

λ(z) =
∫ ∫

ρ(x, y, z)dxdy, (18.49)

where ρ(x, y, z) is the local particle density normalized to the total number
of particles in the beam

∫∞
−∞ λ(z)dz = Np. With these fields and the Lorentz

equation, we formulate the transverse force acting on a single particle within
the same particle beam. Since both expressions for the electrical and magnetic
field differ only by the factor β we may, for example, derive from the Lorentz
equation the vertical force on a particle with charge q

Fy = q (1 − β2)Ey =
1

4πε0
2qλ

γ2σy(σx + σy)
y, (18.50)

where γ = 1/
√

1 − β2.
The space-charge force appears at its strongest for nonrelativistic parti-

cles and diminishes quickly like 1/γ2 for relativistic particles. In accelera-
tor physics, however, particle beams are carried from low to high energies
and therefore space-charge effects may become important during some or all
phases of acceleration. This is specifically true for heavy particles like protons
and ions for which the relativistic parameter γ is rather low for most any
practically achievable particle energies.

The radial fields for a round beam with radius r0 and uniform transverse
particle density are from (18.47, 18.48)

for r ≤ r0





Er(z) = 1
4πε0

2λ(z) r
r2
0
,

Bϕ(z) = − cµ0
4π 2λ(z)β r

r2
0
.

(18.51)

Similarly

for r ≥ r0





Er(z) = 1
4πε0

2λ(z) 1
r ,

Bϕ(z) = − cµ0
4π 2λ(z)β 1

r .
(18.52)

When r 
 r0 (18.52) is true even for arbitrary beam cross sections and
transverse particle distributions.

18.2.5 Fields from Image Charges

Discussing space charges, we have ignored so far the effect of metallic and
magnetic surfaces close to the beam. The electromagnetic self-fields of the
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beam circulating in a metallic vacuum chamber and between ferromagnetic
poles of magnets must meet certain boundary conditions on such surfaces.
Laslett [193] derived appropriate corrections to free space electromagnetic
fields by adding the electromagnetic fields from all image charges to the fields
of the particle beam itself.

Following his reasoning, we consider a particle beam with metallic and
ferromagnetic boundaries as shown in Fig. 18.2. For full generality, let the
elliptical particle beam be displaced in the vertical plane by ȳ from the mid-
plane, the metallic vacuum chamber and magnet pole are simulated as pairs
of infinitely wide parallel surfaces at ±b and ±g, respectively, and the obser-
vation point of the fields be at y. The linear particle density is

beam

y
2b 2g

magnet pole

vacuum chamber
reference
path

y

x

Fig. 18.2. Particle beam with metallic and ferromagnetic boundaries

λ =
Ntot

nb �b
=

Ntot

nb

√
2πσ�

, (18.53)

where Ntot is the total number of particle in the circulating beam, nb is the
number of bunches, �b =

√
2πσ� is the effective bunch length, and σ� is the

standard bunch length for a Gaussian distribution.
The locations and strength of the electrical images of a line current in the

configuration of Fig. 18.2 are shown in Fig. 18.3. The boundary condition for
electric fields is Ez(b) = 0 on the surface of the metallic vacuum chamber and
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4b
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y
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2b+   +yy

4b-  +yy

4b+  -yyy

y

y

y

y

chamber wall

distances from
observation point

observation of field E(y)

Fig. 18.3. Location and source of image fields

is satisfied if the image charges change sign from image to image. To calculate
the electrical field Ey(y), we add the contributions from all image fields in the
infinite series

Ey,image(y) =
1

4πε0
2λ (18.54)

×
(

1
2b− ȳ − y

− 1
2b + ȳ + y

− 1
4b + ȳ − y

+
1

4b− ȳ + y

+
1

6b− ȳ − y
− 1

6b + ȳ + y
− 1

8b + ȳ − y
+

1
8b− ȳ + y

+
1

10b− ȳ − y
− 1

10b + ȳ + y
− · · ·

)
.
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These image fields must be added to the direct field of the line charge
to meet the boundary condition that the electric field enter metallic surfaces
perpendicular. Equation (18.54) can be split into two series with factors (ȳ+y)
and (ȳ−y) in the numerator; we get after some manipulations with ȳ+y � b
and ȳ − y � b

Ey,image(y) =
1

4πε0
λ

b2

[ ∞∑
m=1

ȳ + y

(2m− 1)2
+

∞∑
m=1

ȳ − y

4m2

]
, (18.55)

=
1

4πε0
λ

b2

[
(ȳ + y)

π2

8
+ (ȳ − y)

π2

24

]
,

=
1

4πε0
λ

b2
π2

12
(2ȳ + y) =

1
4πε0

4q λ
b2

ε1(2ȳ + y) .

The electric image fields depend linearly on the deviations ȳ and y from
the axis of bunch center and test particle, respectively, and act therefore like
a quadrupole causing a tune shift.

A similar derivation is used to get the magnetic image fields due to ferro-
magnetic surfaces at ±g above and below the midplane. The magnetic field
lines must enter the magnetic pole faces perpendicular and the image currents
therefore flow in the same direction as the line current causing a magnetic force
on the test particle which is opposed to that by the magnetic field of the beam
itself.

Bunched beams generate high frequency electromagnetic fields which do
not reach ferromagnetic surfaces because of eddy current shielding by the
metallic vacuum chamber. For magnetic image fields we distinguish therefore
between dc and ac image fields. The dc Fourier component of a bunched beam
current is equal to twice the average beam current cβλB, where the Laslett
bunching factor B is the bunch occupation along the ring circumference de-
fined by

B =
λ

λ
=

nb�b
2πR

. (18.56)

The dc magnetic image fields are derived similar to electric image fields
with Bϕ = −2λβ/r from (18.51), (18.52) and are with (18.56)

Bx,image,dc(y) =
cµ0

4π
2λβ
g2

B

[ ∞∑
m=1

ȳ + y

(2m− 1)2
+

∞∑
m=1

ȳ − y

4m2

]
(18.57)

=
cµ0

4π
λβ

g2
B

[
(ȳ + y)

π2

8
+ (ȳ − y)

π2

24

]

=
cµ0

4π
4λβ
g2

Bε2(2ȳ + y) .

The magnetic image fields must penetrate the metallic vacuum chamber
to reach ferromagnetic poles. This is no problem for dc or low frequency field
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components but in the case of bunched beams relevant frequencies are rather
high and eddy current shielding of the vacuum chamber for ac magnetic fields
must be taken into account. In most cases we may assume that they do not
penetrate the thick metallic vacuum chamber. Consequently, we ignore here
the effect of ferromagnetic poles and consider only the contribution of mag-
netic ac image fields due to eddy currents in vacuum chamber walls. Similar
to electric image fields, the magnetic image fields are in analogy to (18.55)

Bx,image,ac(y) = −c µ0

4π
λβ

b2
(1 −B)

π2

12
(2 ȳ + y),

= −c µ0

4π
4λβ
b2

(1 −B)ε1(2 ȳ + y), (18.58)

where the factor (1 − B) accounts for the subtraction of the dc component
βλB.

Similar to the electric image fields, the magnetic image fields must be
added to the direct magnet fields (18.48) from the beam current to meet the
boundary condition of normal field components at ferromagnetic surfaces.

The coefficients ε1 and ε2 are the Laslett form factors which are for infinite
parallel plate vacuum chambers and magnetic poles

ε1 =
π2

48
and ε2 =

π2

24
. (18.59)

The vacuum chamber and ferromagnetic poles are similar to infinitely wide
surfaces. While this is a sufficiently accurate approximation for the magnet
poles, corrections must be applied for circular or elliptical vacuum chambers.
Laslett [193] has derived what we call now Laslett form factors for vacuum
chambers with elliptical cross sections and variable aspect ratios which are
compiled in Table 18.2.

Table 18.2. Laslett incoherent tune shift form factors for elliptical vacuum cham-
bers

a/b :1 1 5/4 4/3 3/2 2/1 ∞

ε1 : 0 0.090 0.107 0.134 0.172 0.206

1a is the horizontal and b is the vertical half axis of an elliptical vacuum chamber

All relevant field components have been identified and we collect these
fields first for ȳ = 0 and obtain from (18.47), (18.55) for the electric field in
the vertical midplane

Ey(y) =
c2µ0

4π
2λ

σy (σx + σy)

[
1 +

2σy(σx + σy)
b2

ε1

]
y . (18.60)

From (18.48), (18.57) the dc magnetic field is
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Bx,dc = −cµ0

4π
2λβ B

σy (σx + σy)

[
1 − 2σy(σx + σy)

g2
ε2

]
y (18.61)

and from (18.58) the ac magnetic field

Bx,ac = −cµ0

4π
2λβ

σy(σx + σy)

[
1 +

2σy(σx + σy

b2
ε1

]
(1 −B)y . (18.62)

Tacitly, we have assumed that the transverse particle distribution is Gaussian
which is a true representation of an electron beam but may not be correct for
proton or ion beams. The standard deviations σ of a Gaussian distribution
are very well defined and can therefore be replaced by other quantities like
the full-width half maximum or as the particle distribution may require.

The electromagnetic force due to space charge on individual particles in
a beam has been derived and it became obvious that image field effects can
play a significant role in the perturbation of the beam. The fields scale lin-
early with amplitude for very small amplitudes and act therefore like focusing
quadrupoles. At larger amplitudes, however, the fields reach a maximum and
then evanesce like 1/r. Consequently, the field gradient is negative decaying
quickly with amplitude.

A complete set of direct and image fields have been derived which must
be considered to account for space-charge effects. Similar derivations lead to
other field components necessary to determine horizontal space-charge forces.
In most accelerators, however, the beam cross section is flat and so is the
vacuum chamber and the magnet pole aperture. As a consequence, we expect
the space-charge forces to be larger in the vertical plane than in the horizontal
plane.

18.2.6 Space-Charge Effects

The Lorentz force on individual particles can be calculated from the space-
charge fields and we get

Fy =
1

4πε0
2 fpλ (1 − β2fv)

σy(σx + σy)
fcorr y =

1
4πε0

qF y, (18.63)

where the correction factor due to image fields is with β2γ2 = γ2 − 1,

fcorr = 1 +
2σy(σx + σy)

b2
ε1[1 + (γ2 − 1)B] + ε2(γ2 − 1)

b2

g2
B (18.64)

and

F =
1

4πε0
2 fpλ (1 − β2fv)

σy(σx + σy)
fcorr . (18.65)

The factors fp and fv determine signs depending on the kind of particles
interacting and the direction of travel with respect to each other. Specifically,
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fp = sign(q qb) where q is the charge of a test particle and qb is the charge
of the field creating particles, e.g., is the charge of a bunch. Similarly, fv =
sign(vvb) where v is the direction of travel for the test particle and vb is the
direction of travel of the bunch. To calculate the space-charge force of head-on
colliding proton and antiproton beams, for example, we would set fp = −1
and fv = −1.

There is a significant cancellation of two strong terms, the repulsive elec-
trical field and the focusing magnetic field, expressed by the factor 1− β2 for
space-charge forces within a highly relativistic beam. This cancellation can
be greatly upset if particle beams become partially neutralized by collecting
other particles of opposite charge within the beams’ potential well. For ex-
ample, proton beams can trap electrons in the positive potential well as can
electron beams trap positive ions in the negative potential well. To avoid such
partial neutralization and appearance of unnecessarily strong space-charge
effects, clearing electrodes must be installed over much of the ring circumfer-
ence to extract with electrostatic fields low energy electrons or ions from the
particle beam.

The electromagnetic space-charge force on an individual particle within a
particle beam increases linearly with its distance from the axis. A similar force
occurs for the horizontal plane and both fields therefore act like a quadrupole
causing a tune shift. This has been recognized and analyzed early by Kerst
[194] and Blewett [195]. A complete treatment of space-charge dominated
beams can be found in [184]. The equation of motion under the influence of
space-charge forces can be written in the form

mγ ü + Du =
∂Fu

∂u
u with u = (x, y) . (18.66)

We get the regular form u′′ + (k0 + ∆k)u = 0 with ü = u′′ (cβ)2 and fv = 1,
where k0 describes the quadrupole strength and the space-charge strength is
expressed by

∆k =
1

mc2γβ2

∂Fu

∂u
= − 2 rc

β2γ3

λ

σy(σx + σy)
fcorr, (18.67)

where rc = q2

4πε0mc2 is the classical particle radius

re = 2.817938 × 10−15 m for electrons and

rp = 1.534698 × 10−18 m for protons.
(18.68)

For ions with charge multiplicity Z and atomic number A the classical particle
radius is rion = rp Z2/A.

Space-Charge Dominated Beams

So far, space-charge effects or space-charge focusing has been consistently ne-
glected in the discussions on transverse beam dynamics. In cases of low beam
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energy and high particle densities, it might become necessary to include space-
charge effects. They are defocusing in both planes and compensation there-
fore require additional focusing in both planes. However, it should be noted
that particles closer to the beam surface will not experience the same linear
space-charge defocusing as those near the axis and therefore a compensation
of space-charge focusing works only for part of the beam. Here, we will not
get involved with the dynamics of heavily space charge dominated particle
beams1. but try to derive a criterion by which we can decide whether or not
space-charge forces are significant in transverse particle beam optics.

This distinction becomes obvious from the equation of motion including
space charges. From (18.66), (18.67) we get the equation of motion

u′′ +
[
k0 −

2 rc
β2 γ3

λ

σy(σx + σy)
fcorr

]
u = 0, (18.69)

where we ignored the image current corrections. Space-charge forces can be
neglected if the integral of the space-charge force over a length L which is
characteristic for the average distance between quadrupoles in the beam line
is small compared to the typical integrated quadrupole length k0�qor if

2 rc
β2 γ3

∫

L

λ fcorr

σy(σx + σy)
dz � k0�q . (18.70)

The effect of space-charge focusing is most severe where the beam cross section
is smallest and (18.70) should therefore be applied specifically to such sections
of the beam transport line. Obviously, the application of this formula requires
some subjective judgement as to how much smaller space-charge effects should
be. To aid this judgement, one might also calculate the average betatron phase
shift caused by space-charge forces and compare with the total phase advance
along the beam line under investigation. In this case we look for

2 rc
β2γ3

∫

L

βuλ fcorr

σy(σx + σy)
dz � ψ0(L) (18.71)

to determine the severity of space-charge effects. The nominal phase advance
ψ0,u(L) is defined such that ψ0,u(0) = 0 at the beginning of the beam line.

Space-Charge Tune Shift

Space-charge focusing may not significantly perturb the lattice functions but
may cause a big enough tune shift in a circular accelerator moving the beam
onto a resonance. The beam current is therefore limited by the maximum
allowable tune shift in the accelerator which is for a linear focusing force F (z)
given by

1 The interested reader may consult [184].
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∆νu = − 1
4π

rc
β2γ

∫ Lint

0

F (z)βu dz . (18.72)

The integration in (18.72) is taken over that part of the path in each revolution
where the force is effective. For the effect on particles within the same beam
this is the circumference and for the beam–beam effect it is the total length
of all head on collisions per turn.

The tune shifts are not the same for all particles due to the nonuniform
charge distribution within a beam. Only particles close to the beam center suf-
fer the maximum tune shift while particles with increasing betatron oscillation
amplitudes are less affected. The effect of space charge therefore introduces
a tune spread rather than a coherent tune shift and we refer to this effect as
the incoherent space-charge tune shift.

As a particular case, consider the space-charge tune shift of a particle
within a beam of equal species particles. Applying the Lorentz force (18.63)
with (18.65) the space-charge tune shift becomes from (18.72)

∆νu,sc = −rcλ

2π
fp(1 − β2fv)

β2γ

∫
βu

σu(σx + σy)
fcorr dz, (18.73)

where the local linear particle density λ is defined by (18.53) and rc is the
classical particle radius.

The maximum incoherent space-charge tune shift is from (18.73) with
fp = 1, fv = 1, (1 − β2) = 1/γ2 and (18.65)

∆νu,sc,incoh = − rc λ

2πβ2γ3

[∫ 2πR̄

0

βu

σu(σx + σy)
dz (18.74)

+2(1 + β2γ2B)
∫ Lvac

0

βuε1
b2

dz + 2β2γ2B

∫ Lmag

0

βu ε2
g2

dz

]
,

where the integration length Lvac is equal to the total length of the vacuum
chamber and Lmag is the total length of magnets along the ring circumference.
Note, however, that this last term appears only at low frequencies because of
eddy-current shielding in the vacuum chamber at high frequencies. Observing
the tune on a betatron side band at a high harmonic of the revolution fre-
quency may not exhibit a tune shift due to this term while one might have a
contribution at low frequencies.

A coherent space-charge tune shift can be identified by setting y = ȳ in the
field expressions (18.55), (18.57), (18.58) to determine the fields at the bunch
center. The calculation is similar to that for the incoherent space-charge tune
shift except that we define new Laslett form factors for this case

ξ2 =
π2

16
(18.75)

for the image fields from the magnetic pole and form factors ξ1 which depend
on the aspect ratio of an elliptical vacuum chamber (Table 18.3).
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Table 18.3. Laslett coherent tune shift form factors for elliptical vacuum chambers

a/b :1 1 5/4 4/3 3/2 2/1 ∞

ξ1 : 0 0.090 0.107 0.134 0.172 0.206

1a is the horizontal and b is the vertical half axis of an elliptical vacuum chamber

The coherent space-charge tune shift is analogous to (18.74)

∆νu,sc,coh = − rc λ

2π β2 γ3

[∫ 2πR̄

0

βu

σu(σx + σy)
dz (18.76)

+2(1 + β2γ2B)
∫ Lvac

0

βu ξ1
b2

dz + 2β2γ2B

∫ Lmag

0

βub
2ξ2

g2
dz

]
.

In both cases, we may simplify the expressions significantly for an approximate
calculation by applying smooth approximation βu ≈ R/ν0u and assuming a
uniform vacuum chamber and magnet pole gaps. With these approximations,
(18.73) becomes

∆νu,sc = − rc Ntot R

2π ν0u B

fp (1 − β2fv)
β2 γ

〈 fcorr〉
σ̄u (σ̄x + σ̄y)

, (18.77)

where

〈fcorr〉 = 1 +
σ̄u (σ̄x + σ̄y)

b̄2

[
ε1(1 + β2γ2B) + ε2β

2γ2 b̄2

ḡ2
B

]
. (18.78)

Symbols with an overbar are the values of quantities averaged over the cir-
cumference of the ring and ν0u is the unperturbed tune in the plane (x, y).
The incoherent tune shift (18.74) then becomes

∆νu,sc, incoh≈− rc Ntot R

2π ν0u B β2γ3

[
1

σ̄u(σ̄x + σ̄y)
(18.79)

+2 (1 + β2γ2B)
ε1
b̄2

+ 2 β2γ2B
ε2
ḡ2

ηb

]
,

where ηb = Lmag/(2πR̄) is the magnet fill factor and the coherent tune shift
(18.76) becomes

∆νu,sc, coh≈− rc Ntot R

2π ν0u B β2γ3

[
1

σ̄u (σ̄x + σ̄y)
(18.80)

+
2(1 + β2γ2B)

b̄2
ξ1 +

2β2γ2B

ḡ2
ξ2ηb

]
.
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The tune shift diminishes proportional to the third power of the particle
energy. As a matter of fact in electron machines of the order of 1 GeV or
more, space-charge tune shifts are generally negligible. For low energy pro-
tons and ions, however, this tune shift is of great importance and must be
closely controlled to avoid beam loss due to nearby resonances. While a max-
imum allowable tune shift of 0.15–0.25 seems reasonable to avoid crossing a
strong third-order or half-integer resonance, practically realized tune shifts
can be significantly larger of the order 0.5–0.6 [196–198]. Independent of the
maximum tune shift actually achieved in a particular ring, space charge forces
ultimately lead to a limitation of the beam current.

18.2.7 Longitudinal Space-Charge Field

Within a continuous particle beam traveling along a uniform vacuum chamber
we do not expect longitudinal fields to arise. We must, however, consider what
happens if the longitudinal charge density is not uniform since this is a more
realistic assumption. For the case of a round beam of radius r0 in a circular
vacuum tube of radius rw (Fig. 18.4), the fields can be derived by integrating
Maxwell’s equation ∇× E = − ∂B

∂t and with Stoke’s law
∮

E ds = − ∂

∂t

∫
B dA, (18.81)

where dA is an element of the area enclosed by the integration path s. The
integration path shown in Fig. 18.4 leads to the determination of the electrical
field Ez0 at the center of the beam.

Integrating the l.h.s. of (18.81) along the integration path we get with
(18.51), (18.52)

E
r

∆z

beam

r
w

vacuum chamber

integration path

E
z0

E
w0

E
r

Fig. 18.4. Space-charge fields due to a particle beam traveling inside a circular
metallic vacuum chamber
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Ez0 ∆z +
∫ rw

0

Er(z + ∆z)dr − Ezw ∆z −
∫ rw

0

Er(z)dr (18.82)

= (Ez0 − Ezw)∆z +
q

4πε0

(
1 + 2 ln

rw
r0

)
∂λ

∂z
∆z,

where a Taylor expansion was applied to the linear particle density λ(z+∆z)
and only linear terms were retained. Ezw is the longitudinal electrical field on
the vacuum chamber wall.

For the r.h.s. of (18.81) we use the expressions for the magnetic field
(18.51) , (18.52) and get with

∫
BϕdA = ∆z

∫
Bϕdr

−β

c
q

(
1 + 2 ln

rw
r0

)
∂λ

∂t
∆z = β2q

(
1 + 2 ln

rw
r0

)
∂λ

∂z
∆z (18.83)

while using the continuity equation

∂λ

∂t
+ βc

∂λ

∂z
= 0 . (18.84)

The longitudinal space-charge field is therefore

Ez0 = Ezw − q

4πε0
1
γ2

(
1 + 2 ln

rw
r0

)
∂λ

∂z
(18.85)

and vanishes indeed for a uniform charge distribution because Ezw = 0 for a
dc current. However, variations in the charge distribution cause a longitudinal
field which together with the associated ac field in the vacuum chamber wall
acts on individual particles.

The perturbation of a uniform particle distribution in a circular accel-
erator is periodic with the circumference of the ring and we may set for the
longitudinal particle distribution keeping only the nth harmonic for simplicity

λ = λ0 + λn ei(nθ−ωnt), (18.86)

where ωn is the nth harmonic of the perturbation (ωn = nω0). Of course a
real beam may have many modes and we need therefore to sum over all modes
n. In the case of instability, it is clear that the whole beam is unstable if one
mode is unstable; however, in the case of stability for one mode it is possible
that another mode is unstable because of the frequency dependence of the
complex impedance.

With the derivative dλ/dz, smooth approximation and θ = z/R̄ with R̄ the
average ring radius an integration of (18.85) around the circular accelerator
gives the total induced voltage due to space-charge fields

Vz0 = 2πR̄Ezw − i
In

4πε0
2πn
βc γ2

(
1 + 2 ln

rw
r0

)
ei(nθ−ωnt) . (18.87)

In this expression we have also introduced the nth harmonic of the beam-
current perturbation In = βc qλn. Equation (18.87) exhibits a relation of the
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induced voltage to the beam current. Borrowing from the theory of electrical
currents, it is customary to introduce here the concept of a frequency depen-
dent impedance which will become a powerful tool to describe the otherwise
complicated coupling between beam current and induced voltage. We will
return to this point in Chap. 19.

18.3 Beam-Current Spectrum

In the last section a beam stability issue appeared based on instantaneous
current variations. This is particularly true in circular accelerators where the
particle distribution is periodic with the circumference of the ring. On one
hand, we have an orbiting particle beam which constitutes a harmonic oscilla-
tor with many eigen frequencies and harmonics thereof and, on the other hand,
there is an environment with a frequency-dependent response to electromag-
netic excitation. Depending on the coupling of the beam to its environment
at a particular frequency, periodic excitations occur which can create pertur-
bations of particle and beam dynamics. This interaction is the subject of this
discussion. In this text, we will concentrate in Chap. 19 on the discussion of
basic phenomena of beam–environment interactions or beam instabilities. For
a more detailed introduction into the field of beam instabilities, the interested
reader is referred to the general references for this chapter. In this discussion,
we will follow mainly the theories as formulated by Chao [199], Laclare [200],
Sacherer [201], and Zotter [202].

Since the coupling of the beam to its environment depends greatly on
the frequency involved, it seems appropriate to discuss first the frequency
spectrum of a circulating particle beam.

18.3.1 Longitudinal Beam Spectrum

In the case of a single circulating particle of charge q in each of nb equidistant
bunches, a pick up electrode located at azimuth ϕ would produce a signal
proportional to the single-particle beam current which is composed of a series
of delta function signals

i‖(t, ϕ) = q
+∞∑

k=−∞
δ(t− ϕ

2π
T0 − k

T0

nb
− τ), (18.88)

where τ is the longitudinal offset of the particle from the reference point, nb is
the number of equidistant bunches and T0 is the revolution time (Fig. 18.4).
Of course, for a single particle nb = 1.

With the revolution frequency ω0 = 2π/T0, we use the mathematical rela-
tions 2π

∑+∞
k=−∞ δ(y − 2πk) =

∑+∞
p=−∞ eipy and |c| δ(cy) = δ(y) for
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τ
ϕ

4
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m
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M M-1

Fig. 18.5. Particle distribution along the circumference of a circular accelerator
and definition of parameters

+∞∑
k=−∞

δ

(
x− 2πk

nbω0

)
=

nbω0

2π

+∞∑
p=−∞

eipnbω0 x (18.89)

to replace the delta functions and

eiy sin ψ =
+∞∑

n=−∞
Jn(y) einψ (18.90)

to replace the term including the synchrotron oscillation τ = τ̂ cos[(m +
νs)ω0t+ζi] where νs is the synchrotron oscillation tune. The term mω0t reflects
the mode of the longitudinal particle distribution in all buckets. This distrib-
ution is periodic with the periodicity of the circumference and the modes are
the harmonics of the distribution in terms of the revolution frequency.

Inserting (18.89) on the r.h.s. of (18.88) and replacing the term e−ipnbω0τ

with (18.90) one gets

i‖(t, ϕ) =
qnbω0

2π

+∞∑
p=−∞

+∞∑
n=−∞

i−nJn(qnbω0τ̂) (18.91)

× ei[(pnb+nm+nνs)ω0t−pnbϕ+nζi].

Performing a Fourier transform

i‖(ω, ϕ) =
1
2π

+∞∫

−∞

i(t, ϕ) e−iωt dt (18.92)
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we get instead of (18.91) the single particle longitudinal current spectrum

i‖(ω, ϕ) =
qnbω0

2π

+∞∑
p=
−∞

+∞∑
n=
−∞

i−nJn(pnbω0τ̂) e−i(pnbϕ−nζi) δ(Ω), (18.93)

where Ω = ω−(pnb+nm+nνs)ω0 and making use of the identity
∫

e−iωt dt =
2πδ(ω). This spectrum is a line spectrum with harmonics of the revolution fre-
quency separated by nbω0. Each of these main harmonics is accompanied on
both sides with satellites separated by Ωs = νsω0. The harmonics mω0 finally
are generated by a nonuniform particle distribution along the circumference
which may be due to synchrotron oscillations of individual bunches or nonuni-
form bunch intensity or both. Schematically, some of the more important lines
of this spectrum are shown in Fig. 18.6 for a single particle.

-3ωs

-2ωs-ω
s ω s

2ω s

3ω s
-3ωs

-2ωs-ωs ω s

2ω s

3ω s

(p+1)ω0pω0(p-1)ω0

3ω
s

-3ω
s

-2ωs-ωs ω s

2ω s

Fig. 18.6. Current spectrum of a single particle orbiting in a circular accelerator
and executing synchrotron oscillations

In the approximation of small synchrotron oscillation amplitudes, one may
neglect all terms with |n| > 1 and the particle beam includes only the frequen-
cies ω = [p nb ± (m + νs)]ω0. In Sect. 16.5.1 the interaction of this spectrum
for p = h with the narrow-band impedance of a resonant cavity was discussed
in connection with Robinson damping.

A real particle beam consists of many particles which are distributed in
initial phase ζi as well as in oscillation amplitudes τ̂ . Assuming the simple
case of equal and equidistant bunches with uniform particle distributions in
synchrotron phase ζi we may set n = 0. The time-independent particle dis-
tribution is then Φ0(t, τ̂) = φ0(τ̂) which is normalized to unity and the total
beam-current spectrum is given by

I‖(ω, ϕ) = Ib

+∞∑
p=−∞

δ(ω −Ω0) e−ipϕ

∫ +∞

−∞
J0(pnbω0τ̂)φ0(τ̂) dτ̂ , (18.94)

where Ib = q/T0 is the bunch current and Ω0 = pnbω0. All synchrotron
satellites vanished because of the uniform distribution of synchrotron phases
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and lack of coherent bunch oscillations. Observation of synchrotron satellites,
therefore, indicates a perturbation from this condition either by coherent oscil-
lations of one or more bunches (n 
= 0, τ̂ 
= 0) or coherent density oscillations
within a bunch Φ0(t, τ̂) = f (ζi).

The infinite sum over p represents the periodic bunch distribution along
the circumference over many revolutions whether it be a single or multiple
bunches. The beam-current spectrum is expected to interact with the im-
pedance spectrum of the environment and this interaction may result in a
significant alteration of the particle distribution Φ(t, τ̂). As an example for
what could happen, the two lowest order modes of bunch oscillations are
shown in Fig. 18.7

a. b.

Fig. 18.7. Dipole mode oscillation (a) and quadrupole bunch shape oscillations (b)

In lowest order a collection of particles contained in a bunch may perform
dipole mode oscillations where all particles and the bunch center oscillate
coherently (Fig. 18.7 (a). In the next higher mode, the bunch center does
not move but particles at the head or tail of the bunch oscillate 180◦ out of
phase. This bunch shape oscillation is in its lowest order a quadrupole mode
oscillation as shown in Fig. 18.7 (b). Similarly, higher order mode bunch shape
oscillations can be defined.

18.3.2 Transverse Beam Spectrum

Single particles and a collection of particles in a bunch may also perform
transverse betatron oscillations constituting a transverse beam current which
can interact with its environment. Again, we first observe only a single particle
performing betatron oscillations

u = û cosψ(t), (18.95)

where u = x or u = y, ψ(t) is the betatron phase, and the transverse current
is

i⊥(t, ϕ) = i‖(t, ϕ) û cosψ(t) . (18.96)

Note that the transverse current has the dimension of a current moment rep-
resented by the same spectrum as the longitudinal current plus additional
spectral lines due to betatron oscillations. The betatron phase is a function
of time and depends on the revolution frequency and the chromaticity, which
both depend on the momentum of the particle. From the definition of the
momentum compaction dω/ω0 = ηc δ, chromaticity ξu = dν/δ, and relative
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momentum deviation δ = dp/p0, the variation of the betatron phase with
time is

ψ̇(t) = ωu = ν0

(
1 +

ξu

ν0
δ

)
ω0 (1 + ηc δ) , (18.97)

≈ ν0 ω0 +
(
ν0 +

ξu

ηc

)
ω0 τ̇ ,

where we have kept only linear terms in δ and replaced the relative momentum
deviation δ by the synchrotron oscillation amplitude τ̇ = −ηcδ. Equation
(18.97) can be integrated for

ψ(t) = ν0 ω0(t− τ) − ω0
ξu

ηc
τ + ψ0 (18.98)

and (18.96) becomes with (18.83), (18.90), (18.93)

i⊥(t, ϕ) = i‖(t, ϕ) û cosψ(t) (18.99)

= q û cosψ(t)
+∞∑

m=−∞
δ

(
t− ϕ

2π
T0 −m

T0

nb

)

= q û
eiψ(t) + e−iψ(t)

2
nb

T0

+∞∑
p=−∞

ei[pnbω0(t−τ)−pϕ] .

Following the derivation for the longitudinal current and performing a Fourier
transform we get the transverse beam spectrum

i⊥(ω, ϕ) =
q

2T0
û eiψ0

+∞∑
p=−∞

+∞∑
n=−∞

i−nJn

{[
(p + ν0)nbω0 −

ξu

ηc

]
τ̂

}
(18.100)

× e−i(pϕ−nζi) δ(Ωu),

where Ωu = ω−(p+ν0)nbω0+nΩs defines the line spectrum of the transverse
single particle current (Fig. 18.8).
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Fig. 18.8. Oscillation spectrum of a single particle orbiting in a circular accelerator
and executing betatron and synchrotron oscillations
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We note that the betatron harmonics (p + ν0)nbω0 are surrounded by
synchrotron oscillation satellites, however, in such a way that the maximum
amplitude is shifted in frequency by ω0ξu/ηc. It is interesting to note at this
point that the integer part of the tune ν0 cannot be distinguished from the
integer p of the same value. This is the reason why a spectrum analyzer shows
only the fractional tune ∆νω0.

The transverse current spectrum is now just the sum of all contributions
from each individual particles. If we assume a uniform distribution Φ(t, τ̂ , û)
in betatron phase, we get no transverse coherent signal because 〈eiψ0〉 = 0,
although the incoherent space-charge tune shift is effective. Additional coher-
ent signals appear as a result of perturbations of a uniform transverse particle
distribution.

Problems

18.1. Verify that (18.22) and (18.30) are indeed solutions of the respective
Poisson equation.

18.2. Prove that (18.32) is indeed the potential for small vertical amplitudes
and x = 0.

18.3. Calculate the linear beam–beam tune shift for each beam under the
following head on colliding beam conditions:

(a) A 250 GeV proton beam colliding with a fully ionized 30 GeV/u Au ion
beam (proton emittance εx,y = 20 mm mrad, gold ion emittance εx,y = 33
mm mrad, β∗

x,y = 2.0 m, proton intensity 1011 p/bunch, a total of 60
bunches per beam, gold ion intensity 109 Au ions/bunch).

(b) A 250 GeV proton beam colliding with a fully ionized 100 GeV/u Au ion
beam (parameters same as in (a)) but gold ion emittance εx,y = 10 mm
mrad).

(c) A 30 GeV electron beam colliding with a 820 GeV proton beam. The
circumference of the rings is 6336 m, there are 2.1 × 1013 protons and
0.8 × 1013 electrons in 210 bunches and the beam sizes at the collision
point are σx/y = 0.29/0.07 mm for the proton beam and 0.26/0.02 mm
for the electron beam respectively.

(d) A 1.5 GeV electron beam colliding with a 1.5 GeV positron beam at
a collision point with εx = 0.67 mm mrad, emittance coupling 27.7%,
β∗

x = 1.3 m, β∗
y = 0.1 m, and a beam current of 66 mA [78].

18.4. Estimate the strength of the octupole field component of the proton
beam in RHIC at the collision point. Would an octupole be technically feasible
to compensate for the beam–beam octupole term?

18.5. At the Stanford Linear Collider, (SLC), an electron beam collides with
a positron beam at up to 50 GeV per beam. Each bunch contains 5 × 1011
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particles and is focused to a beam diameter of 2.0 µm at the collision point
where the betatron functions in both planes are β∗ = 0.005 m. Calculate the
beam–beam tune shift and the focal length of the beam lens for a bunch length
of � = 1 mm. Compare with beam–beam limits in storage rings. Why can we
tolerate a much greater beam–beam tune shift in a linear collider compared
with a storage ring?

18.6. Show that the horizontal damping partition number is negative in a
fully combined function FODO lattice as employed in older synchrotron ac-
celerators. Why, if there is horizontal antidamping in such synchrotrons, is
it possible to retain beam stability during acceleration? What happens if we
accelerate a beam and keep it orbiting in the synchrotron at some higher
energy?

18.7. Future colliding beam facilities for high energy physics experimentation
are based on two linear accelerators aimed at each other and producing beams
of very high energy for collision. In this arrangement synchrotron radiation
is avoided compared to a storage ring. We assume that such beams can be
directed to different detectors. Design an S-shaped beam transport system
based on a FODO lattice, which would allow the beams to be directed into a
detector being displaced by the distance D normal to the linac axis. The beams
have an energy of E0 = 1000 GeV and a beam emittance of ε = 1.0 × 10−12

m which should not be diluted in this beam transport system by more than
10%. Determine quadrupole and bending magnet parameters.

18.8. Strong focusing is required along a 500 GeV linear accelerator. Mis-
alignments and path correction introduce dipole fields which are the source
of synchrotron radiation and quantum excitation. Assume a normalized emit-
tance of γε = 10−6 m and an initial beam energy of 1 GeV at the entrance
to the linac. The high energy linac has a circular aperture of 3 mm diameter.
Design a FODO cell with sufficient focusing to contain this beam within a
radius of 0.5 mm leaving the rest for path distortions. The distance between
quadrupoles increases linearly with energy. Determine with statistical meth-
ods the number and strength of the quadrupoles for an acceleration of 100
MeV/m. Determine the alignment tolerances for these quadrupoles to keep
the emittance increase due to quantum excitation in the dipole field from
misaligned quadrupoles and due to correctors to 10%.

18.9. Consider the FODO lattice along the linear accelerator in Problem 18.8
and estimate the increase in beam energy spread due to synchrotron radiation
from the finite beam size in quadrupoles.

18.10. Consider an electron beam in a 6 GeV storage ring with a bending
radius of ρ = 20 m in the bending magnets. Calculate the rms energy spread
σε/E0 and the damping time τ . What is the probability for a particle to emit
a photon with an energy of σε and 2σε. How likely is it that this particle
emits another such photon within a damping time? In evaluating the particle
distribution, do we need to consider multiple photon emissions?



Problems 669

18.11. Consider one of the storage rings in Table 7.1 and calculate the equilib-
rium beam emittance and energy spread. To manipulate the beam emittance
we vary the rf-frequency. Determine the maximum variation possible with this
method.

18.12. A large hadron collider LHC is being constructed in the LEP tunnel
of 28 km circumference at CERN in Geneva. The maximum proton energy is
15 TeV. Determine the magnetic bending field required if 80% of the circum-
ference can be used for bending magnets. Calculate the synchrotron radiation
power for a circulating proton current of 200 mA, damping times, equilibrium
beam emittance, and energy spread.

18.13. Determine basic FODO lattice parameters for a 2 GeV e+/e− colliding
beam storage ring with two collision points to reach a design luminosity of
Le = 1031 cm−2s−1. The betatron functions at the collision point is β∗

y = 5
cm and β∗

x = 1.3 m and the emittance coupling is 10%. Calculate beam sizes
in the arc, aperture requirements, circumference, and beam current. What is
the total synchrotron radiation power? Adjust, if necessary, your design to
keep the maximum synchrotron radiation power at the vacuum chamber wall
below a practical limit of 5 kW/m.

18.14 (S). The linear focusing of the beam–beam effect changes also the
betatron function. Derive an expression that relates the change in the value
of the betatron function β∗

y at the collision point to the beam–beam tune shift
δν

18.15. Compare both, the PEP storage ring (Table 7.2, Fig. 6.19) at 6 GeV
and the ESRF ring (Fig. 11.3, ρ = 20 m, εx = 9 × 10−9 m rad at 6 GeV,
C = 800 m) as synchrotron light sources. Consider adding damping wigglers to
reduce the beam emittances. Where are the optimum locations in the lattices
for such damping wigglers? Calculate the reduction of the beam emittance in
both rings per unit length of damping wiggler and determine the minimum
emittance achievable in each ring. In doing so ignore the space availability
for the wiggler magnets needed in each ring. Why are damping wigglers more
effective in a large ring compared to a smaller ring?



19

Wake Fields and Instabilities

While discussing self-fields of a charged particle bunch, we noticed a signifi-
cant effect from nearby metallic surfaces. The dynamics of individual parti-
cles as well as collective dynamics of the whole bunch depends greatly on the
electromagnetic interaction with the environment. Such interactions must be
discussed in more detail to establish stability criteria for particle beams.

The electric field from a charge in its rest frame extends isotropically from
the charge into all directions. In the laboratory frame, this field is Lorentz
contracted and assumes for a charge in a uniform beam pipe the form shown
in Fig. 19.1. The contracted field lines spread out longitudinally only within
an angle ±1/γ. This angle is very small for most high energy electron beams
and we may describe the single-particle current as well as its image current
by a delta function. Some correction must be made to this assumption for
lower energy protons and specifically ions for which the angle 1/γ may still
be significant. In the following discussions, however, we will assume that the
particle energy is sufficiently large and γ 
 1.

Electron storage rings are being planned, designed, constructed, and op-
erated for a variety of applications. While in the past such storage rings were
optimized mostly as colliding beam facilities for high energy physics, in the
future most applications for storage rings seem to be connected with the
production of synchrotron radiation. Some of these radiation sources will be
designed for higher energy particle beams (few GeV) to produce hard x-rays
while others have moderate to low beam energies (� 100 MeV) to, for exam-
ple, produce VUV and soft x-rays or to drive free electron lasers.

The beam in an electron storage ring is composed of bunches which are
typically a few centimeters long and are separated by a distance equal to one
or more rf-wavelengths. The total number of bunches in a storage ring can
range from one bunch to a maximum of h bunches, where h is the harmonic
number for the storage ring system. The particle beam therefore covers a
wide frequency spectrum from the kHz regime of the order of the revolution
frequency up to many GHz limited only by the bunch length. On the other
hand, the vacuum chamber environment constitutes an impedance which can



672 19 Wake Fields and Instabilities

become significant in the same frequency regime and efficient coupling can
occur leading to collective effects. The most important impedance in an accel-
erator is that of the accelerating cavity at the cavity fundamental frequency.
Since the particle beam is bunched at the same frequency, we observe a very
strong coupling which has been extensively discussed in Sect. 16.4 in connec-
tion with beam loading. In this section, we will therefore ignore beam loading
effects in resonant cavities at the fundamental frequency and concentrate only
on higher order mode losses and interaction with the general vacuum chamber
environment.

Depending on the particular application and experiment conducted, it may
be desirable to store only a single bunch with the highest intensity possible.
In other cases the maximum total achievable intensity is desired in as many
bunches as possible and the particular bunch distribution around the ring
does not matter. In either case the ultimate electron beam intensity will most
probably be limited by instabilities caused by electromagnetic interaction of
the beam current with the environment of the vacuum chamber. We ignore
here technical limitations due to, for example, insufficient available rf-power
or inability to cool the radiation heating of the vacuum chamber.

Since the radiation intensity produced is directly proportional to the stored
electron beam current, it is obvious that the usefulness of such a radiation
source depends among other parameters on the maximum electron beam cur-
rent that can be stored in each bunch or in the storage ring.

19.1 Definitions of Wake Field and Impedance

The image currents of a charge q traveling along the axis of a uniform and
perfectly conducting tube move with the charge without losses and no forces
are generated that would act back on the particle. This is different for a
resistive wall where the image fields drag a significant distances behind the
charge or in the case of an obstacle extending into the tube or any other
sudden variation of the tube cross section (Fig. 19.1).

particle bunch

vacuum chamber wall

b.)a.)

sudden change of chamber
cross section

Fig. 19.1. Coupling of a charged particle beam to the environment; uniform cham-
ber cross section (a) and obstacle on vacuum chamber surface (b)
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In any of these cases, wake fields are created which have the ability to
pull or push the charge q or test particles following that charge. Because of
causality, no such fields exist ahead of a relativistically moving charge.

Energy losses and gains of a single or collection of particles can cause
significant modifications in the dynamics of particle motion. Specifically, we
are concerned that such forces may lead to particle or beam instability which
must be understood in detail to determine limitations or corrective measures
in a particular accelerator design. The interaction of a charged particle beam
with its environment can be described in time domain or frequency domain
where both have their advantages and disadvantages when it comes to evaluate
their effect on particle dynamics.

Parasitic Mode Losses and Impedances

In time domain, the interaction is described by wake fields which then act
on charges. In frequency domain, vacuum chamber components can be rep-
resented as a frequency dependent impedance. We used this picture before
while discussing properties of accelerating cavities. Many vacuum chamber
components or sudden changes in cross section behave like cavities and repre-
sent therefore frequency-dependent impedances. Together with the frequency-
spectrum of the beam, we find strong coupling to the vacuum chamber if the
impedance and particle beam have a significant component at the same fre-
quency. The induced voltage V (ω) from this interaction is proportional to the
collective particle current I(ω) and the impedance Z(ω), acting as the pro-
portionality factor, describes the actual coupling from the particle beam via
the vacuum chamber environment to the test particle. Mathematically, we set

V (ω) = −Z(ω) I(ω) (19.1)

indicating by the minus sign that the induced voltage leads to an energy
loss for beam particles. The impedance is in general complex and depends
for each piece of vacuum chamber including accelerating cavities or accidental
cavities, on its shape, material, and on the frequency under consideration. The
coupling impedance for a particular vacuum chamber component or system
may be narrow band with a quality factor Q 
 1 like that in an accelerating
cavity or broad band with Q ≈ 1 due to a sudden change in the vacuum
chamber cross section.

Fields induced by the beam in a high Q structure are restricted to a narrow
frequency width and persist for a long time and can act back on subsequent
particle bunches or even on the same particles after one or more revolutions.
Such narrow-band impedances can be the cause for multibunch instabilities
but rarely affect single bunch limits. The main source for a narrow-band im-
pedance in a well-designed accelerator comes from accelerating cavities at the
fundamental as well as higher order mode frequencies. There is little we can or
want to do about the impedance at the fundamental frequency which is made
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large by design for efficiency, but research and development efforts are under-
way to design accelerating cavities with significantly reduced impedances for
higher order modes or HOMs.

The source for broad-band impedances are discontinuities in cross section
or material along the vacuum chamber including accelerating cavities, flanges,
kicker magnets with ferrite materials, exit chambers electrostatic plates, beam
position monitors, etc. Many higher order modes over a wide frequency range
can be excited in such discontinuities by a passing short particle bunch, but
all modes decoher very fast. Only for a very short time are these mode fields
in phase, adding up to a high field intensity but at the time of arrival of the
next particle bunch or the same bunch after one or more revolutions these
fields have essentially vanished. Broad-band wake fields are therefore mainly
responsible for the appearance of single-bunch beam instabilities.

Due to tight particle bunching by the rf-system to about 5% of the rf-
wavelength, we have large instantaneous currents with significant amplitudes
of Fourier components at harmonics of the revolution frequency up to about
20 times the rf-frequency or down to wavelength of a few centimeters. Strong
electromagnetic interaction between electron bunches and cavity-like struc-
tures as part of the vacuum enclosure must therefore be expected. Any but the
smallest steps in the cross section of the vacuum chamber constitute cavity-
like structures. A bunch passing by such a structure deposits electromagnetic
energy which in turn causes heating of the structure and can act back on
particles in a later segment of the same bunch or in a subsequent bunch.
Schematically such fields, also called wake fields, are shown in Fig. 19.1 where
the beam passes by a variation in the cross section of the vacuum chamber.
We will discuss the nature and the frequency spectrum of these wake fields
to determine the effect on the stability of the beam and to develop counter
measures to minimize the strength and occurrence of these wake fields.

We distinguish broad-band parasitic losses where the quality factor Q is of
the order of unity from narrow band losses with higher Q values. Fields from
broad-band losses last only a very short time of the order of one period and are
mainly responsible for single bunch instabilities, where the fields generated by
electrical charges in the head of the bunch act back on the particles in the tail
of the same bunch. Due to the low value of the quality factor (Q ≈ 1) these
broad band wake fields decay before the next bunch arrives. These kinds of
losses are mainly due to sudden changes of the vacuum chamber cross section.
Since these fields last only for a short time, they are responsible for single-
bunch instabilities.

Other structures, shaped like resonant cavities, can be excited by a passing
particle bunch in narrow-band field modes with relatively high values for the
quality factor Q. Such fields persist a longer time and can act back on some
or all subsequent bunches as well as on the same bunch after one or more
revolutions. Due to their persistence they may cause multibunch instabilities.

Both types of fields can appear as longitudinal or transverse modes and
cause correspondingly longitudinal or transverse instabilities. Obviously, a



19.1 Definitions of Wake Field and Impedance 675

perfect vacuum chamber would have a superconducting surface and be com-
pletely uniform around the ring. This is not possible in reality because we need
rf-systems which by their nature are not smooth, injection/ejection compo-
nents, synchrotron light ports, bellows, and beam position monitors. While we
cannot avoid such lossy components we are able by proper design to minimize
the detrimental effects of less than ideal components.

The loss characteristics of a particular piece or of the vacuum chamber for
the whole ring is generally expressed in terms of an impedance Z or in terms
of a loss factor k. To illustrate the different nature of wake fields, we assume
a cavity like change in the cross section of the vacuum chamber as shown in
Fig. 19.2.

magnetic field
electric field

beam pulse

r-z plane r-ϕ plane

E B

Fig. 19.2. Longitudinal parasitic mode in a pill box cavity

A bunch passing through such a structure on an axis excites in lowest order
a longitudinal electrical field and a transverse magnetic field as shown. Such
a field pattern will not cause a transverse deflection of the whole beam since
the electrical field is strictly longitudinal and the transverse magnetic field is
zero on the axis and out of phase. For this situation we define a longitudinal
impedance Z‖ by

Z‖(ω) = −
∫

E(ω) dz

I(ω)
, (19.2)

where E(ω) is the electric field at the frequency ω and I(ω) is the Fourier
transform of the bunched beam current. The r.h.s. of (19.2) is the energy
gained per unit charge and is equivalent to an accelerating voltage divided by
the current, where the actual frequency dependence depends on the specific
physical shape of the “resonating” structure.

In a similar way we can define a transverse impedance. A beam passing off
an axis through a “cavity” excites asymmetric fields, as shown in Fig. 19.3,
proportional to the moment of the beam current I(ω)∆x, where ∆x is the
displacement of the beam from the axis.

Such an electrical field is connected through Maxwell’s equation with a
finite transverse magnetic field on an axis, as shown in Fig. 19.3, which causes
a transverse deflection of the beam. Consistent with the definition of the
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beam pulse

cavity wall
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Fig. 19.3. Transverse parasitic mode in a pill box cavity

longitudinal impedance we define a transverse impedance by

Z⊥(ω) = i
∫

(E(ω)+ [v × B(ω)])⊥dz

I(ω)∆x
, (19.3)

where v is the velocity of the particle and B(ω) is the magnetic field compo-
nent of the electromagnetic field at frequency ω. In general the impedances
are complex

Z(ω) = ZRe(ω) + iZIm(ω) . (19.4)

The resistive part of the impedance can lead to a shift in the betatron oscilla-
tion frequency of the particles while the reactive or imaginary part may cause
damping or antidamping.

The impedance is a function of the frequency and its spectrum depends on
the specific design of the vacuum chambers in a storage ring. The longitudinal
impedance of vacuum chambers has been measured in SPEAR and in other
existing storage rings and has been found to follow a general spectrum as a
consequence of similar design concepts of storage ring components. SPEAR
measurements, as shown in Fig. 16.11, demonstrate the general form of the
frequency spectrum of the vacuum chamber impedance [162].

Characteristic for the spectrum is the cutoff frequency, fc, at which the
linear impedance function reaches a maximum and above which the fields are
able to propagate in the vacuum chamber. This cutoff frequency obviously is
determined by the aperture of the vacuum chamber and therefore occurs at
different frequencies for different rings with different vacuum chamber aper-
tures. For the longitudinal broad band impedance at high frequencies above
the cutoff frequency fc we have the simple power law

Z‖(ω) = Zcω
−0.68, (ω > ωc) . (19.5)

To simplify comparisons between different storage rings we define a nor-
malized impedance Z/n as the impedance at the cutoff frequency divided
by the mode number n which is the ratio of the cutoff frequency fc to the
revolution frequency frev
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This definition of the normalized impedance can be generalized to all fre-
quencies and together with (19.5) the impedance spectrum becomes

∣∣∣∣
Z‖
n

∣∣∣∣
eff

=
∣∣∣∣
Z‖
n

∣∣∣∣
c

(
ω

ωc

)−1.68

. (19.7)

Where only one is known, we can make an estimate of the other one
through the approximate relation which is correct only for cylindrically sym-
metric structures [201,203]

Z⊥ =
2R
b2

Z‖
n

, (19.8)

where 2πR is the ring circumference and b is the typical vacuum chamber
radius. The longitudinal impedance of the whole storage ring vacuum system
including rf-cavities can be determined by measuring the energy loss of par-
ticles in a high intensity bunch compared to the energy loss for particles in a
low intensity bunch. Such loss measurements are performed by observing the
shift in synchronous phase for the low and high intensity beam. The parasitic
losses of rf-cavities can be calculated very accurately with computer programs
or are known from laboratory measurements. From the separate knowledge of
cavity and total ring losses we derive the vacuum chamber losses by simple
subtraction.

A bunched particle beam of high intensity represents a source of electro-
magnetic fields, called wake fields [204] in a wide range of wavelengths down
to the order of the bunch length. The same is true for a realistic coasting
beam where fluctuations in beam current simulate short particle bunches on
top of an otherwise uniform beam.

Introducing wake fields and higher order mode losses, we distinguish two
groups, the longitudinal and the transverse wake fields. The longitudinal wake
fields being in phase with the beam current cause energy losses to the beam
particles, while transverse wakes deflect particle trajectories. There is no field
ahead of relativistically moving charge due to causality. From the knowledge
of such wake fields in a particular environment we may determine the effect
on a test charge moving behind a charge q.

The character of local wake fields depends greatly on the actual geom-
etry and material of the vacuum chamber and we may expect a significant
complication in the determination of wake field distributions along a vacuum
enclosure of an actual accelerator. It is not practical to evaluate these fields
in detail along the beam path and fortunately we do not need to. Since the
effects of localized fields are small compared to the energy of the particles, we
may integrate the wake fields over a full circumference. As we will see, this
integral of the field can be experimentally determined.
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One may wonder how the existence of an obstacle in the vacuum chamber,
like a disk which is relatively far away from the charge q, can influence a test
particle following closely behind the charge q. To illustrate this, we consider
the situation shown in Fig. 19.4.

c > v
e q

v

q

Fig. 19.4. Catch up of wake fields with test particle

Long before the charge reaches the obstruction, fields start to diverge from
the charge toward the obstruction to get scattered there. Some of the scattered
fields move again toward the charge and catch up with it due to its slightly
faster speed.

19.1.1 Longitudinal Wake Fields

The details of this catch up process are, however, of little interest compared
to the integrated effect of wake fields on the test particle. Each charge at the
position z creates a wake field for a particle at location z̃ < z and this wake
field persists during the whole travel time along an accelerator segment L
assuming that the distance ζ = z − z̃ does not change appreciably along L.
We define now a longitudinal wake function by integrating the longitudinal
wake fields E‖ along the interaction length L, which might be the length of
a vacuum chamber component, a linear accelerator or the circumference of a
circular accelerator, and normalize it to a unit charge. By integrating, which
is the same as averaging over the length L, we eliminate the need to calculate
everywhere the complicated fields along the vacuum chambers. The wake field
at the location of a test particle at z̃ from a charge q at location z is then
(Fig. 19.4)

W‖(ζ) =
1
q

∫

L

E‖(z, t− ζ/βc) dz, (19.9)

where ζ = z − z̃ > 0. The wake function is measured in V/Cb using practical
units and is independent of the sign of the charge. To get the full wake field
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for a test particle, one would integrate the wake function over all particles
ahead of the test particle.

The longitudinal wake function allows us to calculate the total energy loss
of the whole bunch by integrating over all particles. We consider a test particle
with charge e at position z̃ and calculate the energy loss of this particle due
to wake fields from charges further ahead at z ≥ z̃. The total induced voltage
from a collection of particles with distribution λ(z) on the test charge at z̃ is
then determined by the wake potential1

VHOM(z̃) = −e

∫ ∞

z̃

λ(z)W‖(z − z̃) dz, (19.10)

where a negative sign was added to indicate that the wake fields are decel-
erating. Integrating over all slices dz̃, the total energy loss of the bunch into
HOM fields is

∆UHOM = −
∫ ∞

−∞
eλ(z̃) dz̃

∫ ∞

z̃

eλ(z)W‖(z − z̃) dz
︸ ︷︷ ︸

wake potential at z̃

. (19.11)

The linear distribution λ(z) of particles with charge e is normalized to the
total number of particles Nb in the bunch

∫
λ(z)dz = Nb. It is interesting

to perform the integrations in (19.11) for a very short bunch such that the
wake function seen by particles in this bunch is approximately constant and
equal to W0. In this case, we define the function w(z̃) =

∫∞
z̃

eλ(z) dz and the
double integral assumes the form −

∫∞
−∞ w dw = 1

2 (eNb)2 where we have used
the normalization w(−∞) = eNb. Particles in a bunch see therefore only 50%
of the wake fields produced by the same bunch consistent with our earlier
formulation of the fundamental theorem of wake fields discussed in Sect. 16.3
in connection with wake fields in rf-cavities. By the same argument, each
particle sees only half of its own wake field.

Wake functions describe higher order mode losses in the time domain. For
further discussions, we determine the relationship to the concept of impedance
in the frequency domain and replace in (19.10) the charge distribution with
the instantaneous current passing by z̃

I(z̃, t) = Î0 ei(kz̃−ωt) . (19.12)

The beam current generally includes more than one mode k but for sim-
plicity we consider only one in this discussion. Integrating over all parts of
the beam which have passed the location z̃ before, the wake potential (19.10)
becomes
1 Expression (19.9) is sometimes called the wake potential. We do not follow this

nomenclature because expression (19.9) does not have the dimension of a potential
but (19.10) does.
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VHOM(z̃, t) = − 1
cβ

∫ ∞

z̃

I

(
z̃, t +

z − z̃

cβ

)
W‖(z − z̃) dz . (19.13)

Consistent with a time-dependent beam current, the induced voltage de-
pends on location z̃ and time as well. The wake function vanishes due to
causality for z − z̃ < 0 and the integration can therefore be extended over all
values of z. With (19.12), ζ = z− z̃ and applying a Fourier transform (19.13)
becomes

VHOM(t, ω) = −I(t, ω)
1
cβ

∫ ∞

−∞
e−i ωζ/cβW‖(ζ) dζ . (19.14)

From (19.14) we define the longitudinal coupling impedance in the frequency
domain

Z‖(ω) =
1
cβ

∫ ∞

−∞
e−i ωζ/cβW‖(ζ) dζ, (19.15)

which has in practical units the dimension Ω. The impedance of the environ-
ment is the Fourier transform of the wake fields left behind by the beam in
this environment. Because the wake function has been defined in (19.9) for the
length L of the accelerator under consideration, the impedance is an integral
parameter of the accelerator section L as well. Conversely, we may express
the wake function in terms of the impedance spectrum

W‖(z) =
1
2π

∫ ∞

−∞
Z‖(ω) ei ωz/cβ dω . (19.16)

The interrelations between wake functions and impedances allow us to use
the most appropriate quantity for the problem at hand. Generally, it depends
on whether one wants to work in the frequency or the time domain. For the-
oretical discussions, the well-defined impedance concept allows quantitative
predictions for beam stability or instability to be made. In most practical ap-
plications, however, the impedance is not quite convenient to use because it is
not well known for complicated shapes of the vacuum chamber. In a linear ac-
celerator, for example, we need to observe the stability of particles in the time
domain to determine the head–tail interaction. The most convenient quantity
depends greatly on the problem to be solved, theoretically or experimentally.

Loss Parameter

In a real accelerator, the beam integrates over many different vacuum chamber
pieces with widely varying impedances. The interaction of the beam with the
vacuum chamber impedance leads to an energy loss which has to be compen-
sated by the rf-system. We are therefore not able to experimentally determine
the impedance or wake function of a particular vacuum chamber element.
Only the integrated impedance for the whole accelerator can sometimes be
probed at specific frequencies by observing specific instabilities as we will
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discuss later. The most accurate quantity to measure the total resistive im-
pedance for the whole accelerator integrated over all frequencies is the loss
factor or loss parameter.

We characterize this loss through the loss factor k defined by

k =
∆U

q2
, (19.17)

where ∆U is the total energy deposited by the passing bunch and q is the
total electrical charge in this bunch. This definition is a generalization of
the energy loss of a single particle passing once through a resonator where
k = −(ω/4) (Rs/Q) and Rs is the shunt impedance of this resonator. The loss
factor is related to the real part of the impedance by

k =
2
q2

∫ ∞

o

Re[Z(ω)] I2(ω) dω,

and depends strongly on the bunch length as can be seen from measurements
of the loss factor in SPEAR [158] shown in Fig. 19.5. Specifically, we find the
loss factor to scale with the bunch length like

k(σ�) ∼ σ−1.21
� . (19.18)

Similar to the definitions of impedances, we also distinguish a longitudinal
and a transverse loss factor. The loss factor can be related to the wake function
and we get from comparison with (19.11) the relation
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Fig. 19.5. Dependence of the overall loss factor k in the storage ring SPEAR on
the bunch lenth [158]
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k‖
HOM

=
1
N2

b

∫ ∞

−∞
λ(z̃) dz̃

∫ ∞

z̃

λ(z)W‖(z − z̃) dz . (19.19)

The loss parameter can be defined for the complete circular accelerator or
for a specific vacuum chamber component installed in a beam line or acceler-
ator. Knowledge of this loss factor is important to determine possible heating
effects which can become significant since the total higher order mode losses
are deposited in the form of heat in the vacuum chamber component. In a cir-
cular accelerator, the energy loss rate or heating power of a beam circulating
with revolution frequency f0 is

PHOM = kHOM

I2
0

f0 nb
, (19.20)

where nb is the number of bunches in the beam and I0 = nb qNb f0 is the av-
erage circulating beam current in the accelerator. As an example, we consider
a circulating beam of 1mA in one bunch of the LEP storage ring where the
revolution frequency is about f0 = 10 kHz. The heating losses in a component
with loss factor kHOM = 0.1 V/pCb would be 10 W. This might not seem much
if the component is large and an external cooling fan might be sufficient. On
the other hand, if the vacuum component is small and not accessible like a
bellow this heating power might be significant and must be prevented by de-
sign. The higher order heating losses scale like the average current, the bunch
current, and inversely proportional with the revolution frequency. For a given
circulating beam current, the losses depend therefore greatly on the number of
bunches and the size of the circular accelerator. As the bunch length becomes
smaller, higher and higher modes can be excited as demonstrated by the steep
increase in loss parameter with decreasing bunch length (Fig. 19.5). Although
we try to apply a careful design to all accelerator components to minimize
the impedance it is prudent to be aware of this heating effect while develop-
ing accelerators that involve significantly reduced bunch length like those in
quasi-isochronous storage rings or beams accelerated by laser beams.

The loss parameter can be measured by observing the shift in the synchro-
nous phase. A bunch of particles circulating in an accelerator loses energy due
to the resistive impedance of the vacuum chamber. This additional energy
loss is compensated by an appropriate shift in the synchronous phase which
is given by

∆UHOM = eNbVrf | sinφs − φs0|, (19.21)

where φs0 is the synchronous phase for a very small beam current and Vrf is
the peak rf-voltage. The loss factor is then with Nb the number of particles
per bunch

kHOM =
∆UHOM

e2N2
b

. (19.22)

Performing this measurement as a function of rf-voltage one can establish
a curve similar to that shown in Fig. 19.5 for the storage ring SPEAR and
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the dependence of the loss parameter on the bunch length can be used to
determine the total resistive impedance of the accelerator as a function of
frequency. To do that, we write (19.19) in terms of Fourier transforms

k‖
HOM

=
π

e2N2
b

∫ ∞

−∞
Zres(ω) |I(ω)|2 dω (19.23)

and recall that the bunch or current distribution in a storage ring is Gaussian

I(τ) =
I0√
2πστ

e−τ2/2σ2
τ . (19.24)

The Fourier transform of a Gaussian distribution is

I(ω) = I0 e−
1
2 ω2σ2

τ , (19.25)

where I0 is the total bunch current and inserting (19.25) into (19.23), we get

k‖
HOM

=
π I0
e2N2

b

∫ ∞

−∞
Zres(ω) e−ω2 σ2

τ dω . (19.26)

With (19.26) and the measurement k‖
HOM

(σ�), where σ� = cστ , one may
solve for Zres(ω) and determine the resistive-impedance spectrum of the ring.
Unfortunately, it is not possible to attach a resistance meter to an accelera-
tor to determine its impedance and we will have to apply a variety of wake
field effects on the particle beams to determine the complex impedance as a
function of frequency. No single effect, however, will allow us to measure the
whole frequency spectrum of the impedance.

19.1.2 Transverse Wake Fields

Similar to the longitudinal case we also observe transverse wake fields with
associated impedances. Such fields exert a transverse force on particles gen-
erated by either transverse electrical or magnetic wake fields. Generally such
fields appear when a charged particle beam passes off center through a nonuni-
form but cylindrical or through an asymmetric vacuum chamber. Transverse
wake fields can be induced only on structures which also exhibit a longitudinal
impedance. A beam traveling off center through a round pipe with perfectly
conducting walls will not create longitudinal and therefore also no transverse
wake fields.

We consider a charge q passing through a vacuum chamber structure with
an offset ∆u = (∆x,∆y) in the horizontal or vertical plane as shown in
Fig. 19.3.

In analogy to the definition of the longitudinal wake function (19.9), we
define a transverse wake function per unit transverse offset by
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W⊥(ζ, t) = +

∫
L
{E(t− ζ/βc) + c[β × B(t− ζ/βc)]}⊥ dz

q ∆u
, (19.27)

which is measured in units of V/Cb/m. Consistent with definition (19.15) of
the longitudinal impedance, the transverse coupling impedance is the Fourier
transform of the transverse wake functions defined by

Z⊥(ω) = i
1
cβ

∫ ∞

−∞
e−i ωζ/cβ W⊥(ζ) dζ (19.28)

adding the factor i to indicate that the action of the transverse force is a mere
deflection while the particle energy stays constant. This transverse impedance
is measured in Ω. The inverse relation is similar to the longitudinal case

W⊥(z) = i
1
2π

∫ ∞

−∞
Z⊥(ω) ei ωz/cβ dω . (19.29)

19.1.3 Panofsky–Wenzel Theorem

The general relationship between longitudinal and transverse wake fields is
expressed by the Panofsky-Wenzel theorem [89]. Panofsky and Wenzel studied
the effect of transverse electromagnetic fields on a particle trajectory and
applied general relations of electromagnetic theory to derive a relationship
between longitudinal and transverse electromagnetic forces. We will derive the
same result in the realm of wake fields. The Lorentz force on a test particle
at z̃ due to transverse wake fields from charges at location z > z̃ causes a
deflection of the particle trajectory and the change in transverse momentum
of the test particle is after integration over all charges at locations z < z̃

cp⊥ =
e

β

∫ ∞

−∞
[E + (v × B)]⊥ dz . (19.30)

Note that the wake fields vanish because of causality for ζ < 0. The fields can
be expressed by the vector potential E⊥ = −∂A⊥/∂t and B⊥ = (∇× A)⊥.
The particle velocity has only one nonvanishing component v= (0, 0, v) and
(19.30) becomes with ∂z/∂t = v

cp⊥ = −ce

∫ d

0

=d/dz︷ ︸︸ ︷(
∂

∂t

∂t

∂z
+

∂

∂z

)
A⊥ dz

︸ ︷︷ ︸
=0

+ ce∇⊥

∫ d

0

A‖ dz, (19.31)

where we made use of the vector relation for v×(∇×A)+A × (∇ × v)︸ ︷︷ ︸
=0

which

is equal to ∇⊥(vA) − (v∇) A⊥−(A∇) v︸ ︷︷ ︸
=0

noting that the particle velocity is

a constant.
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The integrand in the first integral of (19.31) is equal to the total derivative
dA⊥/dz and the integral vanishes because the fields vanish for ζ = ±∞. After
differentiation with respect to the time t (19.31) becomes

dp⊥
dt

= − e∇⊥

∫ ∞

−∞
E‖ dz (19.32)

which is in terms of forces
∂

∂z
F⊥ = −∇⊥F ‖ . (19.33)

The longitudinal gradient of the transverse force or electromagnetic field is
proportional to the transverse gradient of the longitudinal force or electro-
magnetic field and knowledge of one allows us to calculate the other.

19.2 Impedances in an Accelerator Environment

The vacuum chamber of an accelerator is too complicated in geometry to al-
low an analytical expression for its impedance. In principle each section of the
chamber must be treated individually. By employing two or three-dimensional
numerical codes it may be possible to determine the impedance for a particu-
lar component and during a careful design process for a new accelerator, this
should be done to avoid later surprises. In [205] expressions for many geome-
tries are compiled. Yet, every accelerator is somewhat different from another
and will have its own particular overall impedance characteristics. For this
reason, we focus in these discussions specifically on such instabilities which
can be studied experimentally revealing impedance characteristics of the ring.
However, depending on the frequency involved, there are a few classes of im-
pedances which are common to all accelerators and may help understand the
appearance and strength of certain instabilities. In this section, we will discuss
such impedances to be used in later discussions on stability conditions and
growth rate of instabilities.

Consistent with (18.97), (19.10) the longitudinal impedance for a circular
accelerator is defined as the ratio of the induced voltage at frequency ω to the
Fourier transform of the beam current at the same frequency

Z‖(ω) = −
∫

E‖(ω) dz

I(ω)
(19.34)

=
1

4πε0
1

eNb

∫

L

E‖(z, t− ζ/βc) e−iωζ/βc dz .

Similarly the transverse impedance is from (19.27), (19.28) the ratio of induced
transverse voltage to the transverse moment of the beam current

Z⊥(ω) = −i

∫
(E⊥ + [v × B]⊥)|(z,t−ζ/βc)e−iωζ/βc dz

I(ω)∆u
, (19.35)

where ∆u is the horizontal or vertical offset of the beam from the axis.
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19.2.1 Space-Charge Impedance

In (18.87) we found an induced voltage leading to an energy gain or loss due
to a collection of charged particles. It is customary to express (18.87) in a form
exhibiting the impedance of the vacuum chamber. In the case of a perfectly
conducting vacuum chamber Ezw = 0 and (18.87) becomes

Vz = −Z‖sc In ei(nθ−ωnt), (19.36)

where the longitudinal space-charge impedance Z‖sc is defined by 2

Z‖sc(ω) = − i
ε0c

n

2βγ2

(
1 + 2 ln

rw
r0

)
. (19.37)

This expression is correct for long wavelength below cutoff of the vacuum
chamber or for ω < c/rw. The space-charge impedance is purely reactive and,
as we will see, capacitive. It is customary to divide the impedance by the
harmonic number n defining a normalized impedance

Z‖sc(ωn)
n

= − i
ε0c

1
2βγ2

(
1 + 2 ln

rw
r0

)
, (19.38)

where n = ωn/ω0 and ω0 the nominal revolution frequency.
For a round beam of radius r0 and offset from the axis of a round beam

pipe with diameter 2rw a transverse space-charge impedance can be derived

Z⊥sc(ωn) = − i
ε0c

R̄

β2γ2

(
1
r2
0

− 1
r2
w

)
, (19.39)

where R̄ is the average ring radius. The transverse space-charge impedance is
inversely proportional to β2 and is therefore especially strong for low energy
particle beams.

19.2.2 Resistive Wall Impedance

The particle beam induces an image current in the vacuum chamber wall
in a thin layer with a depth equal to the skin depth. For less than perfect
conductivity of the wall material, we observe resistive losses which exert a
pull or decelerating field on the particles. This pull is proportional to the
beam current and integrating the fields around a full circumference of the
accelerator, we get for the associated longitudinal resistive wall impedance in
a uniform tube of radius rw at frequency ωn

Z‖(ωn)
n

∣∣∣∣
res

=
1 − i
n

R̄

crw

√
µrωn

2ε0 σ
=

1 − i
n

R̄

rwσ δskin
, (19.40)

2 Note: the factor 1/ (ε0c) =
√

µ0/ε0 = Z0 = 376.73 Ω is often called the free space
impedance. We will not use it because it is not a physical quantity but only a
convenient unit scaling factor.
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where the skin depth is defined by [145]

δskin(ωn) =
√

2
µ0µr ωn σ

. (19.41)

The longitudinal resistive wall impedance decays with increasing frequency
and therefore plays an important role only for low frequencies. The transverse
resistive wall impedance for a round beam pipe is

Z⊥(ωn)res =
2R̄
r2
w

Z‖(ωn)
n

∣∣∣∣
res

. (19.42)

19.2.3 Cavity-Like Structure Impedance

The impedance of accelerating cavities or cavity-like objects of the vacuum
chamber can be described by the equivalent of a parallel resonant circuit for
which the impedance is from (16.11)

1
Z‖

∣∣∣∣
cy

(ω) =
1
Rs

(
1 + iQ

ω2 − ω2
r

ωr ω

)
, (19.43)

where Q is the quality factor and Rs is the cavity impedance at the resonance
frequency ωr or cavity shunt impedance. Taking the inverse, we get for the
normalized impedance

Z‖
n

∣∣∣∣
cy

(ω) =
∣∣∣∣
Z‖
n

∣∣∣∣
0

1 − iQω2−ω2
r

ωr ω

1 + Q2 (ω2−ω2
r )2

ω2
r ω2

, (19.44)

where
∣∣Z

n

∣∣
0

= Rs is purely resistive.
Vacuum chamber impedances occur, for example, due to sudden changes

of cross section, flanges, beam position monitors, etc., and are collectively
described by a cavity-like impedance with a quality factor Q ≈ 1. This is
justified because fields are induced in these impedances at any frequency.
From (19.44) the longitudinal broad-band impedance is therefore

Z‖
n

∣∣∣∣
bb

(ω) =
∣∣∣∣
Z‖
n

∣∣∣∣
0

1 − i ω2−ω2
r

ωr ω

1 + (ω2−ω2
r )2

ω2
r ω2

. (19.45)

This broad-band impedance spectrum is shown in Fig. 19.6 and we note
that the resistive and reactive part exhibit different spectra.

The resistive broad-band impedance has a symmetric spectrum and scales
like ω2 for low frequencies decaying again for very high frequencies like 1/ω2.
At low frequencies, the broad-band impedance (19.45) is almost purely reac-
tive and inductive scaling linear with frequency
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Fig. 19.6. Resistive and reactive broad-band impedance spectrum

Z‖
n

∣∣∣∣
bb

(ω) = i
∣∣∣∣
Z‖
n

∣∣∣∣
0

ω

ωr
for ω � ωr . (19.46)

At high frequencies the impedance becomes capacitive

Z‖
n

∣∣∣∣
bb

(ω) = − i
∣∣∣∣
Z‖
n

∣∣∣∣
0

ωr

ω
for ω 
 ωr (19.47)

and decays slowly with frequency than the resistive impedance. We note,
however, that the reactive broad-band impedance spectrum changes sign and
beam stability or instability depends therefore greatly on the actual cou-
pling frequency. At resonance, the broad-band impedance is purely resistive
as would be expected.

Sometimes it is convenient to have a simple approximate correlation be-
tween longitudinal and transverse impedance in a circular accelerator. This
has been done for a round vacuum pipe of radius rw where the transverse
broad-band impedance can be calculated from [203]

Z⊥(ωn) ≈ 2R̄
r2
w

Z‖(ωn) . (19.48)

Although this correlation is valid only for the resistive wall impedance in
a round beam pipe, it is often used for approximate estimates utilizing the
broad-band impedance.

19.2.4 Overall Accelerator Impedance

At this point, we have identified all significant types of impedances we gen-
erally encounter in an accelerator which are the space charge, resistive wall,
narrow-band impedances in high Q cavities, and broad-band impedance. In
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Fig. 19.7. Qualitative spectra of resistive and reactive coupling impedances in a
circular accelerator

Fig. 19.7 we show qualitatively these resistive as well as reactive impedance
components as a function of frequency.

At low frequency the reactive as well as the resistive component of the
resistive wall impedance dominates while the space charge impedance is in-
dependent of frequency. The narrow-band cavity spectrum includes the high
impedances at the fundamental and higher mode frequencies.

Generally, it is not possible to use a uniform vacuum chamber in circular
accelerators. Deviations from a uniform chamber occur at flanges, bellows,
rf-cavities, injection/ejection elements, electrostatic plates, etc. It is not con-
venient to consider the special impedance characteristics of every vacuum
chamber piece and we may therefore look for an average impedance as seen
by the beam. The broad-band impedance spectrum created by chamber com-
ponents in a ring reaches a maximum at some frequency and then diminishes
again like 1/ω. This turn over of the broad-band impedance function depends
on the general dimensions of all vacuum chamber components of a circular
accelerator and has to do with the cutoff frequency for traveling waves in
tubes.

In Fig. 19.8, the measured impedance spectrum of a storage ring was shown
and is typical for complex storage ring vacuum chambers which are generally
composed of similar components exhibiting at low frequencies an inductive
impedance increasing linearly with frequency and diminishing again at high
frequencies. This is also the characteristics of broad-band cavity impedance
and therefore expressions for broad-band impedance are useful tools in de-
veloping theories for beam instabilities and predicting conditions for beam
stability. The induced voltage for the total ring circumference scales like L İw
where L is the wall inductance and İw is the time derivative of the image
current in the wall. With (18.86) the induced voltage is
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Fig. 19.8. Impedance spectrum of the storage ring SPEAR

∆Vz0 = −L
dI
dt

= iω L(ω) In ei(nθ−ωnt) (19.49)

where the inductive impedance is defined by

Z‖ind = −iω L(ω) . (19.50)

The total induced voltage due to space charge, resistive, and inductive wall
impedance is finally

Vzw = −Z‖In ei(nθ−ωnt), (19.51)

where the total longitudinal normalized impedance at frequency ωn is from
(19.38), (19.40), (19.50)

Z‖(ωn)
n

= i
1

2ε0βc γ2

(
1 + 2 ln

rw
r0

)
− i

ω0

4πε0
L(ωn) + (1 − i)

R̄

rwσ δskin
.

(19.52)

From the frequency dependence, we note that space-charge and induc-
tive wall impedances become more important at high frequencies while the
resistive wall impedance is dominant at low frequencies. The inductive wall
impedance derives mostly from vacuum chamber discontinuities like sudden
change in the vacuum chamber cross section, bellows, electrostatic plates,
cavities, etc. In older accelerators, little effort was made to minimize the im-
pedance and total ring impedances of |Z‖/n| ≈ 20–30Ω were not uncommon.
Modern vacuum design have been developed to greatly reduce the impedance
mostly by avoiding changes of vacuum chamber cross section or by introduc-
ing gentle transitions and impedances of the order of |Z‖/n| ≈ 1 Ω can be
achieved whereby most of this remaining impedance comes from accelerating
rf-cavities.
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From (19.52), we note that the space-charge impedance has the opposite
sign of the inductive impedance and is therefore capacitive in nature. In gen-
eral, we encounter in a realistic vacuum chamber resistive as well as reactive
impedances causing both real frequency shifts or imaginary shifts manifesting
themselves in the form of damping or instability. In subsequent sections, we
will discuss a variety of such phenomena and derive stability criteria, beam-
current limits, or rise times for instability. At this point, it is noteworthy to
mention that we have not made any assumption as to the nature of the par-
ticles involved and we may therefore apply the results of this discussion to
electron as well as proton and ion beams.

19.2.5 Broad-Band wake Fields in a Linear Accelerator

The structure of a linear accelerator constitutes a large impedance for a
charged particle beam, specifically, since particle bunches are very short com-
pared to the periodicity of the accelerator lattice. Every single cell resembles a
big sudden change of the vacuum chamber cross section and we expect there-
fore a large accumulation of wake fields or impedance along the accelerator.
The wake fields can be calculated numerically [204] and results for both the
longitudinal and transverse wakes from a point charge are shown in Fig. 19.9
as a function of the distance behind this point charge. Broad-band wake fields
for other structures look basically similar to those shown in Fig. 19.9. Specif-
ically, we note the longitudinal wake to be strongest just behind the head of
the bunch while the transverse wake builds up over some distance. For an
arbitrary particle distribution, one would fold the particle distribution with
these wake functions to obtain the wake potential at the location of the test
particle.
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Fig. 19.9. Time dependence of longitudinal (left) and transverse (right) wake fields
from a point charge moving through one 3.3 cm long cell of a SLAC type 3GHz
linear accelerator structure
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19.3 Coasting-Beam Instabilities

The space-charge impedance as well as resistive and reactive wall impedances
extracts energy from a circulating particle beam. As long as the particle dis-
tribution is uniform, this energy loss is the same for all particles and requires
simple replacement in acceleration cavities. In reality, however, some mod-
ulation of the longitudinal particle distribution cannot be avoided and we
encounter therefore an uneven energy loss along the coasting particle beam.
This can have serious consequences on beam stability and we therefore need
to discuss stability criteria for coasting beams.

19.3.1 Negative-Mass Instability

Consider a beam in a ring below transition energy. The repulsive electrostatic
field from a lump in the charge distribution causes particles ahead of the lump
to be accelerated and particles behind the lump to be decelerated. Since accel-
erated particles will circulate faster and decelerated particles circulate slower,
we observe a stabilizing situation and the lumpy particle density becomes
smoothed out.

At energies above transition energy the situation changes drastically. Now
the acceleration of a particle ahead of a lump leads to a slower revolution
frequency and it will actually move closer to the lump with every turn. Simi-
larly a particle behind the lump becomes decelerated and circulates therefore
faster, again catching up with the lump. We observe an instability leading
to a growing concentration of particles wherever a small perturbation started
to occur. We call this instability the negative-mass instability [206] because
acceleration causes particles to circulate slower similar to the acceleration of
a negative mass. The same mechanism can lead to stabilization of oscillations
if the forces are attractive rather than repulsive. Nature demonstrates this in
the stability of Saturn’s rings.

We will derive conditions of stability for this effect in a more quantita-
tive way. The stability condition depends on the variation of the revolution
frequency for particles close to the small perturbation of an otherwise uni-
form longitudinal particle distribution and we therefore investigate the time
derivative of the revolution frequency

dω
dt

=
∂ω

∂t
+

∂ω

∂θ

∂θ

∂t
, (19.53)

which can also be expressed in the form

dω
dt

=
dω
dE

dE
dt

=
ηcω0

β2E0

dE
dt

, (19.54)

where ηc is the momentum compaction. The energy change per unit time is
for a longitudinal impedance Zz and nth harmonic of the beam current
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dE
dt

= q Vz0
ω0

2π
= −qZz Inei(nθ−ωt) ω0

2π
, (19.55)

where q = eZ > 0 is the electrical charge of the particle and Z is the charge
multiplicity. Collecting all terms for (19.54) we get with

ω = ω0 + ωnei(nθ−Ωt) (19.56)

the relation

ωn(Ω − nω0) = −i
qηcω

2
0

2πβ2

InZz

E0
. (19.57)

This can be further simplified with the continuity equation

∂λ

∂t
+

1
R̄

∂

∂θ
(βc λ) =

∂λ

∂t
+

∂λ

∂θ
ω0 +

∂ω

∂θ
λ0 = 0

and we get with (18.86), (19.56)

(Ω − nω0) In = ωnn I0 . (19.58)

Replacing ωn in (19.57) by expression (19.58, ) we finally get for the per-
turbation frequency Ω with I0 = βcλ0

∆Ω2 = (Ω − nω0)2 = − i
n q ηc ω

2
0 I0

2πβ2 E0
Z‖ . (19.59)

Equation (19.59) determines the evolution of the charge or current pertur-
bation λn or In, respectively. With ∆Ω = ∆Ωr + i∆Ωi, the current perturba-
tion is

In ei(nθ−nω0t−∆Ωrt−i∆Ωit) = In e∆Ωit ei(nθ−nω0t−∆Ωrt), (19.60)

exhibiting an exponential factor which can cause instability or damping since
there is a positive as well as negative solution from (19.59) for the frequency
shift ∆Ωi. The situation in a particular case will depend on initial conditions
describing the actual perturbation of the density distribution, however, differ-
ent initial perturbations must be expected to be present along a real particle
distribution including at least one leading to instability.

Beam stability occurs only if the imaginary part of the frequency shift
vanishes. This is never the case if the impedance has a resistive component
causing a resistive wall instability [207]. From (19.59) and the resistive wall
impedance (19.40) we may derive a growth rate for the instability

1
τ res wall

= Im{∆Ω} =

√√
2 − 1√

2
n2qηcω2

0 I0R

2πcβ2E0 rw

√
2πω0µ

nσ
. (19.61)
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This result requires some more discussion since we know that circular
accelerators exist, work, and have metallic vacuum chambers with a resistive
surface. The apparent discrepancy is due to the fact that we have assumed
a monochromatic beam which indeed is unstable but also unrealistic. In the
following sections, we include a finite momentum spread, find a stabilizing
mechanism called Landau damping, and derive new stability criteria.

Below transition energy, ηc > 0, will assure stability of a coasting beam
as long as we consider only a purely capacitive impedance like the space-
charge impedance (19.37) in which case ∆Ωi = 0. Above transition energy
ηc < 0 and the negative-mass instability appears as long as the impedance
is capacitive or Zi > 0. For an inductive impedance, the stability conditions
are exchanged below and above transition energy. In summary, we have the
following longitudinal coasting beam stability conditions:

if Zr 
= 0 → ∆ωi 
= 0 →





always stable

resistive wall instability
(19.62)

if Zr = 0









Zi < 0

(inductive)
→





stable for γ > γtr or ηc < 0

unstable for γ ≤ γtr or ηc > 0



Zi > 0

(capacitive)
→





stable for γ < γtr or ηc > 0

unstable for γ ≥ γtr or ηc < 0 .

(19.63)

It is customary to plot the stability condition (19.59) in a (Zr, Zi) diagram
with ∆Ωi as a parameter. We solve (19.59) for the imaginary impedance Zi

and get

Zi = sgn(ηc) a

[(
Zr

2∆Ωi

)2

∓
(
∆Ωi

a

)2
]
, (19.64)

where

a =
n q |ηc|ω2

0 I0
2πβ2 E0

(19.65)

and plot the result in Fig. 19.10. Only the case ηc > 0 is shown in Fig. 19.10
noting that the case ηc < 0 is obtained by a 180◦ rotation of Fig. 19.10
about the Zr-axis. Figure 19.10 demonstrates that beam stability occurs only
if Zr = 0 and Zi > 0. Knowing the complex impedance for a particular
accelerator, Fig. 19.10 can be used to determine the rise time 1/τ = ∆Ωi of
the instability.

The rise time or growth rate of the negative-mass instability above transi-
tion is for a beam circulating within a perfectly conducting vacuum chamber
from (19.37) and (19.59)

1
τ neg mass

=
nω0

βcγ

√√√√q |ηc| c I0
(
1 + 2 ln rw

r0

)

β E0
. (19.66)
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Fig. 19.10. Stability diagram for a coasting monochromatic particle beam

In this section, it was implicitly assumed that all particles have the same
momentum and, therefore, the same revolution frequency ω0 allowing a change
of the revolution frequency only for those particles close to a particle density
perturbation. This restriction to a monochromatic beam is not realistic and
provides little beam stability for particle beams in a circular accelerator. In
the following section, we will discuss the more general case of a beam with
a finite momentum spread and review beam stability conditions under more
realistic beam parameters.

19.3.2 Dispersion Relation

In the previous section, conditions for beam stability were derived based on a
monochromatic particle beam. The rise time of the instability depends criti-
cally on the revolution frequency and we may assume that the conditions for
beam stability may change if we introduce the more realistic case of a beam
with a finite momentum spread and therefore a finite spread of revolution
frequencies. In Chap. 9, we discussed the mathematical tool of the Vlasov
equation to describe collectively the dynamics of a distribution of particles in
phase space. We will apply this tool to the collective interaction of a particle
beam with its environment.

The canonical variables describing longitudinal motion of particles are the
azimuth θ and relative momentum error δ = ∆p/p0. Neglecting radiation
damping, the Vlasov equation is

∂Ψ

∂t
+ θ̇

∂Ψ

∂θ
+ δ̇

∂Ψ

∂δ
= 0, (19.67)
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where Ψ(δ, θ, t) is the particle distribution. For a coasting beam with a small
perturbation

Ψ = Ψ0 + Ψn ei(nθ−ωnt) (19.68)

we get after insertion in (19.67) and sorting terms the relation

i (ωn − nω)Ψn =
δ̇

ei(nθ−ωnt)

∂Ψ0

∂δ
. (19.69)

Making use of the correlation between particle momentum and revolution
frequency, we get from (19.69) with ∂Ψ0

∂δ = ∂Ψ0
∂ω

∂ω
∂δ = ηcω0

∂Ψ0
∂ω

Ψn = −i
ηcω0δ̇

ei(nθ−ωnt)

∂Ψ0

∂ω

1
ωn − nω

. (19.70)

Integrating the l.h.s. of (19.70) over all momenta, we get for the perturbation
current

q
βc

R̄

∫ ∞

−∞
Ψn(δ) dδ = In .

At this point, it is convenient to transform from the variable δ to the
frequency ω and obtain the particle distribution in these new variables

Ψ(δ, θ) = ηcω0 Φ(ω, θ) . (19.71)

Performing the same integration on the r.h.s. of (19.70), we get with (19.55)
and δ̇ = (dE/dt)/(β2E0) the dispersion relation [208]

1 = − i
q2 ω3

0 ηc Zz

2π β2E0

∫
∂Φ0/∂ω

ωn − nω
dω . (19.72)

The integration is to be taken over the upper or lower complex plane
where we assume that the distribution function Φ vanishes sufficiently fast at
infinity. Trying to establish beam stability for a particular particle distribu-
tion, we solve the dispersion relation for the frequency ωn or frequency shift
∆ωn = ωn − nω which is in general complex. The real part causes a shift in
the frequency while the imaginary part determines the state of stability or
instability for the collective motion.

For example, it is interesting to apply this result to the case of a coasting
beam of monochromatic particles as discussed in the previous section. Let
the particle distribution be uniform in θ and a delta function in energy. In
the dispersion relation, we need to take the derivative with respect to the
revolution frequency and therefore set

∂Φ0

∂ω
=

Np

2π
∂

∂ω
δ(ω − ω0) . (19.73)

Insertion into (19.72) and integration by parts results in
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∫ ∞

−∞

∂Φ0/∂ω

ωn − nω
dω =

Nb

2π
n

(ωn − nω0)2
(19.74)

which is identical to the earlier result (19.59) in the previous section. Appli-
cation of the Vlasov equation therefore gives the same result as the direct
derivation of the negative-mass instability conditions as it should be.

We may now apply this formalism to a beam with a finite momentum
spread. In preparation to do that, we note that the integrand in (19.72) has a
singularity at ω = ωn/n which we take care of by applying Cauchy’s residue
theorem for

∫
∂Φ0/∂ω

ωn − nω
dω =

∫

nω �=ωn

∂Φ0/∂ω

ωn − nω
dω − iπ

∂Φ0

∂ω

∣∣∣∣
ωn/n

. (19.75)

The dispersion relation (19.72) then assumes the form

1 = i
q2ω3

0 ηc Zz

2πβ2E0

[
i
π

n

∂Φ0

∂ω

∣∣∣∣
ω= ωn

n

− P.V.

∫
∂Φ0/∂ω

ωn − nω
dω

]
, (19.76)

where P.V. indicates that only the principal value of the integral be taken.
The solutions of the dispersion function depend greatly on the particle

distribution in momentum or revolution-frequency space. To simplify the ex-
pressions, we replace the revolution frequency by its deviation from the refer-
ence value [209]. With 2S being the full-width half maximum of the particular
momentum distribution (Fig. 19.11), we define the new variables

x =
ω − ω0

S
and x1 =

∆ωn

nS
=

Ω − nω0

nS
. (19.77)

In these variables the particle distribution becomes

f (x) =
2π S

Nb
Φ(ω) (19.78)

x

fwhm = 2 S

1-1

Fig. 19.11. Particle distribution f (x)
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which is normalized to f (±1) = 1
2 f (0) and

∫
f (x)dx = 1. The full momen-

tum spread at half maximum intensity is

∆p

p0
=

2S

|ηc|ω0
(19.79)

and (19.76) becomes with this

1 = − i
2q Zz I0

πβ2E0nηc

(
∆p
p0

)
2

[
P.V.

∫ ∞

−∞

∂f0(x)/∂x
x1 − x

dx− iπ
∂f0

∂x

∣∣∣∣
x1

]
. (19.80)

It is customary to define parameters U, V by

V + iU =
2q I0

πβ2E0ηc

(
∆p
p0

)2

(Zr + iZi)z

n
(19.81)

and the dispersion relation becomes finally with this

1 = −(V + iU) I, (19.82)

where the integral

I =

[
P.V.

∫ ∞

−∞

∂f0(x)/∂x
x1 − x

dx− iπ
∂f0

∂x

∣∣∣∣
x1

]
. (19.83)

For a particular accelerator all parameters in (19.82) are known, at least
in principle, and we may determine the status of stability or instability for a
desired beam current I0 by solving for the generally complex frequency shift
∆ω. The specific boundary of stability depends on the actual particle distrib-
ution in momentum. Unfortunately, (19.82) cannot be solved analytically for
an arbitrary momentum distribution and we will have to either restrict our
analytical discussion to simple solvable distributions or to numerical evalua-
tion.

For reasonable representations of real particle distributions in an accelera-
tor a central region of stability can be identified for small complex impedances
and finite spread in momentum. Regions of stability have been determined for
a number of particle distributions and the interested reader is referred for more
detailed information on such calculations to references [202,210–213]

As an example, we use a simple particle distribution (Fig. 19.12)

f (x) =
1
π

1
1 + x2

(19.84)

and evaluate the dispersion relation (19.82). The integral in (19.83) becomes
now after integration by parts



19.3 Coasting-Beam Instabilities 699

-8 -4 0 4 8

1/π

x

f(x)

Fig. 19.12. Particle distribution in momentum space

P.V.

∫ ∞

−∞

1
(1 + x2)(x1 − x)2

dx, (19.85)

exhibiting a new singularity at x = i while the integration path still excludes
the other singularity at x = x1. Applying the residue theorem

∫
f (z)dz
z − z0

= i 2πRes[ f(z), z0] = i 2π lim
z→z0

(z − z0) f (z) (19.86)

we get

P.V.

∫ ∞

−∞

1
(1 + x2)(x1 − x)

dx =
1

(x1 − i)2
. (19.87)

The second term in (19.83) is

− iπ
∂f0

∂x

∣∣∣∣
x1

= i
2x1

(1 + x2
1)2

(19.88)

and the dispersion relation (19.82) becomes

1 = −i(V + iU)
(

1
(x1 − i)2

+ i
2x1

(1 + x2
1)2

)
. (19.89)

We solve this for (x1 − i)2 and get

x1 = i ±
√

−i (V + iU)
(

1 + i
2x1

(i + x1)2

)
. (19.90)

For a small beam current i0, we get x1 ≈ i and the second term in the
square bracket becomes approximately 1/2. Recalling definition (19.77) for
x1, we get from (19.90)

∆Ω = inS ±
√

3
2n

2S2(U − iV ), (19.91)

where from (19.79) S = 1
2 |ηc|ω0∆p/p0. The significant result in (19.91) is the

fact that the first term on the right-hand side has a definite positive sign and
provides therefore damping which is called Landau damping [214].
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Recalling the conditions for the negative-mass instability of a mono-
chromatic beam, we did not obtain beam stability for any beam current if
Zr ∝ V = 0 and the reactive impedance was inductive or Zi ∝ U < 0. Now
with a finite momentum spread in the beam we get in the same case

∆Ωneg.mass = inS ± i
√

3
2n

2S2|U |, (19.92)

where S2|U | is independent of the momentum spread. We note that it takes a
finite beam current (U ∝ I0) to overcome Landau damping and cause insta-
bility. Of course Landau damping is proportional to the momentum spread S
and does not occur for a monochromatic beam. Equation (19.91) serves as a
stability criterion for longitudinal coasting-beam instabilities and we will try
to derive a general expression for it. We write (19.91) in the form

∆Ω = inS ±
√
a− i b (19.93)

and get after evaluating the square root

∆Ω = inS ±
(√

r + a

2
− i

√
r − a

2

)
, (19.94)

where r =
√
a2 + b2. Beam stability occurs for Im{∆Ω} > 0 or

n2S2 =
r − a

2
(19.95)

which is in more practical quantities recalling definition (19.79) for S

(
∆p

p0

)2

≥ 3
2π

q I0
β2E0|ηc|

(
|Zz|
n

− Zi

n

)
. (19.96)

We may solve (19.96) for the impedance and get an equation of the form

Zi = AZ2
r − 1

4A
(19.97)

which is shown in Fig. 19.13.
Any combination of actual resistive and reactive impedances below this

curve causes beam instability for the particle distribution (19.84). We note
the significant difference to Fig. 19.10 where the impedance had to be purely
positive and reactive to obtain beam stability.

Other momentum distributions like f(x) ∝ (1−x2)m lead to similar results
[210] although the stability curves allow less resistive impedance than the
distribution (19.84). As a safe stability criterion which is true for many such
distributions including a Gaussian distribution we define the area of stability
by a circle with a radius R = Zi|Zr=0 = 1/(4A). With this assumption, the
stability criterion for the longitudinal microwave instability is
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Fig. 19.13. Stability diagram for the particle distribution (19.96)

|Zz|
n

≤ F
β2E0|ηc|

qI0

(
∆p

p0

)2

, (19.98)

where the form factor F = π/3 for distribution (19.84) and is generally of
the order of unity for other bell shaped distributions. The criterion (19.98)
has been derived by Keil and Schnell [215] and is generally known as the
Keil–Schnell stability criterion. For a desired beam current and an allowable
momentum spread an upper limit for the normalized impedance can be de-
rived.

The impedance seen by the particle beam should obviously be minimized
to achieve the highest beam–beam currents. A large value of the momentum
compaction is desirable here to increase the mixing of the revolution frequen-
cies as well as a large momentum spread to achieve high beam currents. A
finite momentum spread increases beam stability where there was none for a
monochromatic coasting beam as discussed earlier. This stabilization effect of
a finite momentum spread is called Landau damping.

19.3.3 Landau Damping

In previous sections, we repeatedly encountered a damping phenomenon as-
sociated with the effect of collective fields on individual particle stability.
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Common to the situations encountered is the existence of a set of oscillators
or particles under the influence of an external driving force. Particularly, we
are interested in the dynamics when the external excitation is caused by the
beam itself. Landau [214] studied this effect bearing his name first, and later
Hereward [216] formulated the theory for application to particle accelerators.

We consider a bunch of particles where each particle oscillates at a different
frequency Ω, albeit within a small range of frequencies. The equation of motion
for each oscillator under the influence of the force F e−iωt is

ü + Ω2 u = F e−iωt (19.99)

and the solution

u = F
e−iωt

2ω

(
1

Ω − ω
− 1

Ω + ω

)
. (19.100)

Folding this solution with the distribution function of particles in frequency
space

ψ(ω) =
1
Nb

dNb

dΩ
(19.101)

one obtains the center of mass amplitude of the bunch

ū = F
e−iωt

2ω

∫ ∞

−∞

[
ψ(Ω)
Ω − ω

− ψ(Ω)
Ω + ω

]
dΩ (19.102)

or with ψ(Ω) = ψ(−Ω) and
∫∞
−∞

ψ(Ω)
Ω−ω dΩ = −

∫∞
−∞

ψ(Ω)
Ω+ω dΩ

ū = F
e−iωt

ω

∫ ∞

−∞

ψ(Ω)
Ω − ω

dΩ . (19.103)

Here we apply again Cauchy’s residue theorem and get

ū = F
e−iωt

ω

[
+iπ ψ(ω) + P.V.

∫ ∞

−∞

ψ(Ω)
Ω − ω

dΩ
]
. (19.104)

The derivation up to here appears quite abstract and we pause a moment to
reflect on the physics involved here. We know that driving an oscillator at res-
onance leads to infinitely large amplitudes and that is what the mathematical
formulation above expresses. However, we also know that infinite amplitudes
take an infinite time to build up and the solutions gained above describe only
the state after a long time. The same result can be obtained in a physically
more realistic way if we apply the excitation at time t = 0 and look for the
solution at t → ∞ as has been shown by Hofmann [217]. As an added result
of this time evolution derivation, we obtain the correct sign for the residue
which we have tacitly assumed to be negative, but mathematically could be
of either sign.

To understand the damping effect, we calculate the velocity ¯̇u and get from
(19.104)
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¯̇u = −iω ū

= F e−iωt

[
+π ψ(ω) − i P.V.

∫ ∞

−∞

ψ(Ω)
Ω − ω

dΩ
]
. (19.105)

The bunch velocity is in phase with the external force for the residue
term allowing extraction of energy from the external force. The principal
value term, on the other hand, is out of phase and no work is done. If, for
example, the external force is due to a transverse wake field generated by
a bunch performing coherent betatron oscillations, the described mechanism
would extract energy from the wake field thus damping the coherent betatron
oscillation. The question is where does the energy go?

For this, we study the time evolution of the solution for the inhomogeneous
differential equation (19.99) in the form

u = a sinΩt +
F

Ω2 − ω2
sinωt . (19.106)

At time t = 0 we require that the amplitude and velocity of the bunch
motion be zero u(t = 0) = 0 and u̇(t = 0) = 0. The oscillation amplitude

a = − ω

Ω

F

Ω2 − ω2
(19.107)

and the final expression for the solution to (19.99) is for Ω 
= ω

uΩ �=ω(t) =
F

Ω2 − ω2

(
sinωt− ω

Ω
sinΩt

)
. (19.108)

Close to or at resonance Ω = ω + ∆ and (19.108) becomes

uΩ=ω(t) = − F

2ω

(
t cosωt− sinωt

ω

)
. (19.109)

The oscillation amplitude of particles at resonance grows continuously with
time while the width of the resonance shrinks like 1/t thus absorbing energy
linear in time. This Landau damping depends critically on the resistive inter-
action with the wake fields or external forces and is mathematically expressed
by the residue term. This residue term, however, depends on the particle den-
sity at the excitation frequency ω and is zero if the particle distribution in
frequency space does not overlap with the frequency ω. For effective Landau
damping to occur such an overlap is essential.

19.3.4 Transverse Coasting-Beam Instability

Particle beams traveling off center through vacuum chamber sections can in-
duce transverse fields which act back on the beam. We express the strength of
this interaction by the transverse coupling impedance. In terms of the trans-
verse coupling impedance, the force is
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F⊥ = i
q Z⊥ I0 u

2πR
, (19.110)

where I0 is the beam current, u is the transverse beam displacement, Z⊥/(2πR)
is the average transverse coupling impedance, and 2πR̄ is the ring circumfer-
ence. The equation of motion is then

ü + ν2
0ω

2
0 u = −i

q Z⊥ I0

2πRmγ
(u + ū) (19.111)

with u being the betatron oscillation amplitude of an individual particle and ū
being the amplitude of the coherent bunch oscillation. Since the perturbation
is linear in the amplitudes, we expect tune shifts from the perturbations. The
incoherent tune shift due to individual particle motion will be incorporated
on the l.h.s. as a small tune shift

δν0 = i
c q Z⊥ I0

4π ν0 ω0 E0
. (19.112)

The transverse impedance is generally complex and we get therefore from
the real part of the coupling impedance a real tune shift while the imaginary
part leads to damping or antidamping depending on the sign of the impedance.
The imaginary frequency shift is equal to the growth rate of the instability
and is given by

1
τ

= Im{ω} =
q Re{Z⊥} I0
4πRmγ ωβ0

. (19.113)

For a resistive transverse impedance, we therefore observe always instabil-
ity known as the transverse resistive wall instability.

Similar to the case of a longitudinal coasting beam, we find instability for
any finite beam current just due to the reactive space-charge impedance alone,
and again we have to rely on the Landau damping to obtain beam stability
for a finite beam intensity. To derive transverse stability criteria including the
Landau damping, we consider the coherent tune shift caused by the coherent
motion of the whole bunch for which the equation of motion is

ü + ω2
β0 u = 2ν0ω0 [U + (1 + i)V ] ū, (19.114)

where
U + (1 + i)V = −i

c q Z⊥ I0
4πν0 E0

, (19.115)

The coherent beam oscillation must be periodic with the circumference of
the ring and is of the form ū = û ei(nθ−ωt). As can be verified by back insertion
the solution of (19.114) is

y = [U + (1 + i)V ]
2ν0ω0

ν2
1ω

2
0 − (nω0 − ω)2

ū . (19.116)
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Now we must fold (19.116) with the distribution in the spread of the
betatron oscillation frequency. This spread is mainly related to a momentum
spread via the chromaticity and the momentum compaction. The distribution
ψ(δ) where δ = ∆p/p0, is normalized to unity

∫
ψ(δ)dδ = 1 and the average

particle position is ū =
∫
uψ(δ)dδ. The dispersion relation is then with this

from (19.116)

1 = [U + (1 + i)V ]
∫ ∞

−∞

2ν0ω0ψ(δ)dδ
ν2
1ω

2
0 − (nω0 − ω)2

, (19.117)

or simplified by setting ν1 ≈ ν0 and ignoring the fast wave (n + ν)ω0 [218]

1 = [U + (1 + i)V ]
∫ ∞

−∞

ψ(δ)dδ
ω − (n− ν0)ω0

. (19.118)

This is the dispersion relation for transverse motion and can be evaluated
for stability based on a particular particle distribution in momentum. As
mentioned before, the momentum spread transforms to a betatron oscillation
frequency spread by virtue of the momentum compaction

∆νβ = νβ0 ∆ω0 = νβ0 ηc δ ω0 (19.119)

and by virtue of the chromaticity

∆νβ = ξu δ . (19.120)

The Landau damping provides again beam stability for a finite beam cur-
rent and finite coupling impedances, and the region of stability depends on
the actual particle distribution in momentum.

19.4 Longitudinal Single-Bunch Effects

The dynamics in bunched particle beams is similar to that of a coasting
beam with the addition of synchrotron oscillations. The frequency spectrum
of the circulating beam current contains now many harmonics of the revolu-
tion frequency with sidebands due to betatron and synchrotron oscillations.
The bunch length depends greatly on the interaction with the rf-field in the
accelerating cavities but also with any other field encountered within the ring.
It is therefore reasonable to expect that wake fields may have an influence on
the bunch length which is know as potential well distortion.

19.4.1 Potential Well Distortion

From the discussions on longitudinal phase space motion in circular acceler-
ators, it is known that the particle distribution or bunch length depends on
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the variation in time of the rf-field interacting with the beam in the accel-
erating cavities. Analogously, we would expect that wake fields may have an
impact on the longitudinal particle distribution [219]. For a particular wake
field, we have studied this effect in Chap. 15 recognizing that a bunch passing
through an rf-cavity causes beam loading by exciting fields at the fundamental
frequency in the cavity. These fields then cause a modification of the bunch
length. In this section, we will expand on this thought and study the effect
due to higher order mode wake fields.

To study this in more detail, we ignore the transverse particle distribution.
The rate of change in the particle momentum can be derived from the integral
of all longitudinal forces encountered along the circumference and we set with
δ = dp/p0

dδ
dt

=
qF (τ)
β2E0T0

, (19.121)

where qF (τ) is the sum total of all acceleration and energy losses of a particle
at a position z = βcτ from the bunch center or reference point over the course
of one revolution and T0 is the revolution time. The change of τ per unit time
depends on the momentum compaction of the lattice and the momentum
deviation

dτ
dt

= − ηc δ . (19.122)

Both equations can be derived from the Hamiltonian

H = − 1
2ηcδ

2 −
∫ τ

0

qF (τ̄)
β2E0T0

dτ̄ . (19.123)

For an electron ring and small oscillation amplitudes, we have

qF (τ) = qVrf(τs + τ) − U(E) + qVw(τ) = q
∂Vrf

∂τ

∣∣∣∣
τs

τ + qVw(τ), (19.124)

where we ignored radiation damping and where Vw(τ) describes the wake
field. In the last form, the equation is also true for protons and ions if we set
the synchronous time τs = 0. Inserting (19.124) into (19.123) and using the
definition of the synchrotron oscillation frequency Ω2

s0 = ω2
0

hηcqV̂rf cos ψs0
2πβ2E0

, we
get the new Hamiltonian

H = − 1
2ηc δ

2 − 1
2

Ω2
s0

ηc
τ2 −

∫ τ

0

qVw(τ̄)
β2E0T0

dτ̄ . (19.125)

Synchrotron Oscillation Tune Shift

First we use the Hamiltonian to formulate the equation of motion and deter-
mine the effect of wake fields on the dynamics of the synchrotron motion. The
equation of motion is from (19.125)



19.4 Longitudinal Single-Bunch Effects 707

τ̈ + Ω2
s0 τ = sign(ηc)

2π Ω2
s0 Vw

ω0 hVrf | cosψs0|
, (19.126)

where we have made use of the definition of the unperturbed synchrotron
oscillation frequency Ωs0. We express the wake field in terms of impedance
and beam spectrum

Vw(t) = −
∫ ∞

−∞
Z‖(ω) I(t, ω) eiωt dω, (19.127)

and use (18.94) for

Vw(t) = − Ib

∞∑
p=−∞

Z‖(p)Ψ(p) e−ipω0τ , (19.128)

where Ib is the bunch current and

Ψ(p) =
∫ +∞

−∞
J0(pω0τ̂)Φ(t, τ̂) dτ̂ .

The maximum excursion τ̂ during phase oscillation is much smaller than the
revolution time and the exponential factor

eipω0τ ≈ 1 + ipω0τ − 1
2p

2ω2
0τ

2 + O(3) (19.129)

can be expanded. After insertion of (19.123, 19.124) into (19.126) the equation
of motion is

τ̈ + Ω2
s0 τ ≈ (19.130)

−sign(ηc)
2π Ib Ω2

s0

ω0 hVrf | cosψs0|

∞∑
p=−∞

Z‖(p)Ψ(p)
(
1 − ipω0τ − 1

2p
2ω2

0τ
2
)
.

The first term is independent of τ and causes a synchronous phase shift due
to resistive losses

∆ψs = sgn(ηc)
2π Ib

Vrf | cosψs0|

∞∑
p=−∞

Re{Z‖(p)}Ψ(p) . (19.131)

For a resistive positive impedance, for example, the phase shift is negative
above transition indicating that the beam requires more energy from the rf-
cavity. By measuring the shift in the synchronous phase of a circulating bunch
as a function of bunch current, it is possible to determine the resistive part of
the longitudinal impedance of the accelerator. To do this one may fill a small
amount of beam in the bucket upstream from the high intensity bunch and
use the signal from the small bunch as the time reference against which the
big bunch will shift with increasing current.
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The second term in (19.130) is proportional to τ and therefore acts like a
focusing force shifting the incoherent synchrotron oscillation frequency by

∆Ωs = − sign(ηc)
π IbΩs0

hVrf | cosψs0|

∞∑
p=−∞

Im{Z‖(p)} pΨ(p) . (19.132)

The real part of the impedance is symmetric in p and therefore cancels in
the summation over p which leaves only the imaginary part consistent with
the expectation that the tune shift be real. At this point, it becomes neces-
sary to introduce a particular particle distribution and an assumption for the
impedance spectrum. For long bunches, the frequencies involved are low and
one might use for the impedance the space charge and broad-band impedance
which both are constant for low frequencies. In this case, the impedance can
be extracted from the sum in (19.132) and the remaining arguments in the
sum depend only on the particle distribution.

For a parabolic particle distribution, for example, (19.132) reduces to [200]

∆Ωs = − sgn(ηc)
16 Ib

π3B3hVrf | cosψ0|
Im
{
Z‖(p)

p

}
, (19.133)

where B is the bunching factor B = �/(2πR̄) with � the effective bunch length.
A measurement of the incoherent synchrotron tune shift as a function of

bunch current allows the determination of the reactive impedance of the ac-
celerator for a given particle distribution. This tune shift is derived from a
measurement of the unperturbed synchrotron frequency Ωs0 for a very small
beam current combined with the observation of the quadrupole mode fre-
quency Ω2s as a function of bunch current. The incoherent tune shift is then

∆Ωs,incoh = µ (Ω2s − 2Ωs0), (19.134)

where µ is a distribution dependent form factor of order 2 for a parabolic
distribution [220].

The third and subsequent terms in (19.130) contribute nonlinear effects
making the synchrotron oscillation frequency amplitude dependent similar to
the effects of nonlinear fields in transverse beam dynamics.

Bunch Lengthening

A synchrotron frequency shift is the consequence of a change in the longi-
tudinal focusing and one might expect therefore also a change in the bunch
length. In first approximation, one could derive expressions for the new bunch
length by scaling with the synchrotron tune shift. Keeping the phase space
area constant in the proton and ion case or keeping only the energy spread
constant in the electron case, a rough estimate for bunch lengthening can be
obtained for a specific particle distribution. Since the electron bunch length
scales inversely proportional to the synchrotron frequency, we have
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σ�

σ�0
=

Ωs

Ωs0
= 1 +

∆Ωs

Ωs0
. (19.135)

From (19.135), one can determine for an electron beam the potential well
bunch lengthening or shortening, depending on the sign of the reactive im-
pedance. For a proton or ion beam, the scaling is somewhat different because
of the preservation of phase space.

This approach to understanding potential well bunch lengthening assumes
that the particle distribution does not change which is an approximate but
not correct assumption. The deformation of the potential well is nonlinear
and can create significant variations of the particle distribution, specifically,
for large amplitudes.

In this discussion, we determine the stationary particle distribution ψ(τ, δ)
under the influence of wake fields by solving Vlasov’s equation

∂ψ

∂t
+ τ̇

∂ψ

∂τ
+ δ̇

∂ψ

∂δ
= 0 . (19.136)

For a stationary solution, ∂ψ
∂t = 0 and therefore any function of the Hamil-

tonian is a solution of the Vlasov equation. Since the Hamiltonian does not
exhibit explicitly the time variable, any such function could be the stationary
solution which we are looking for and we set therefore ψ(τ, δ) = ψ(H). The
local particle density is then after integrating over all momenta

λ(τ) = Nb

∫ ∞

−∞
ψ(H) dδ, (19.137)

where Nb is the number of particles per bunch or with (19.125)

λ(τ) = Nb

∫ ∞

−∞
ψ

(
− 1

2ηcδ
2 − 1

2

Ω2
s0

ηc
τ2 −

∫ τ

0

qVw(τ̄)
β2E0T0

dτ̄
)

dδ̄ . (19.138)

Without wake fields, the distribution of an electron beam is Gaussian and
the introduction of wake fields does not change that for the energy distribu-
tion. We make therefore the ansatz

ψ(τ, δ) = A exp
(

H
ηc σ2

δ

)
= Aδ exp

(
1
2

δ2

σ2
δ

)
Aλ λ(τ), (19.139)

where Aδ and Aλ are normalization factors for the respective distributions.
Integrating over all momenta, the longitudinal particle distribution is finally

λ(τ) = Nb Aλ exp
(
− 1

2

τ2

σ2
τ

− q

ηcβ2E0T0σ2
δ

∫ τ

0

Vw(τ̃) dτ̃
)
, (19.140)

where we used σδ = Ωsoστ/|ηc| from (10.26). A self-consistent solution of
this equation will determine the longitudinal particle distribution under the
influence of wake fields. Obviously, this distribution is consistent with our
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earlier results for an electron beam in a storage ring in the limit of no wake
fields. The nature of the wake fields will then determine the distortion from
the Gaussian distribution.

As an example, we assume a combination of an inductive (L) and a resistive
(R) wake field

Vw = −L
dI
dt

−RIb . (19.141)

Such a combination actually resembles rather well the real average impe-
dance in circular accelerators at least at lower frequencies as evidenced in the
impedance spectrum of the SPEAR storage ring shown in Fig. 19.8. Inserting
(19.141) into (19.140) while setting for a moment the resistance to zero, R = 0,
we get after integration the transcendental equation

λ(τ) = Nb Aλ exp
[
− 1

2

τ2

σ2
τ

− q2LNb λ(τ)
ηc β2E0 T0 σ2

δ

]
, (19.142)

which must be solved numerically to get the particle distribution λ(τ). We
note that the inductive wake does not change the symmetry of the particle
distribution in τ . For large values of τ , the particle distribution must approach
zero to meet the normalization requirement, limτ→∞ λ(τ) = 0, and the par-
ticle distribution is always Gaussian for large amplitudes. The effect of the
inductive wake field is mainly concentrated to the core of the particle bunch.

Evaluating numerically (19.142), we distinguish between an electron beam
and a proton or ion beam. The momentum spread σδ in the case of an electron
beam is determined by quantum effects related to the emission of synchrotron
radiation and is thereby for this discussion a constant. Not so for proton and
ion beams which are subject to Liouville’s theorem demanding a strong corre-
lation between bunch length and momentum spread such that the longitudinal
phase space of the beam remains constant. Equation (19.142) has the form

f(t) = K exp
[
− 1

2 t
2 − f (t)

]
(19.143)

or after differentiation with respect to t

df (t)
dt

= − t f (t)
1 + f (t)

. (19.144)

For strong wake fields f (t) 
 1 and (18.52) can be integrated for

f (t) = f0 − 1
2 t2 . (19.145)

The particle distribution at the bunch center assumes more and more the
shape of a parabolic distribution as the wake fields increase. Figure 19.14
shows the particle distribution for different strengths of the wake field.

Now we add the resistive wake field component. This field actually extracts
energy from the bunch and therefore one expects that the whole bunch is
shifted such as to compensate this extra loss by moving to a higher field in
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Fig. 19.14. potential well distortion of Gaussian particle distributions for an in-
ductive wake field (a), and for a combination of an inductive and a resistive wake
field (b)

the accelerating cavities. Inserting the full wake field (19.141) into (19.140)
results in the distribution

λ(τ) = Nb Aλ exp
[
− 1

2

τ2

σ2
τ

− aLNbλ(τ) − aRNb

∫ τ

0

λ(τ̄) dτ̄
]
, (19.146)

where

a =
q2

ηcβ E0 T0σ2
δ

. (19.147)

Looking for a shift of the tip of the particle distribution, we get from dλ/dτ =
0 the location of the distribution maximum

τmax ∝ Nb λ(τmax) . (19.148)

The maximum of the particle distribution is therefore shifted proportional
to the bunch intensity and the general distortion is shown in Fig. 19.14b for a
resistive wake much larger than generally encountered in an accelerator. The
distortion of the particle distribution leads to a deviation from a Gaussian
distribution and a variation of the bunch length. In the limit of a strong and
inductive wake field, for example, the full-width half maximum value of the
bunch length increases like

τfwhm = στ

√
f0 =

q στ

β σδ

√
β LNb λ(τ)
ηc E0 T0

. (19.149)

The bunch length changes as the bunch intensity is increased while the sign
and rate of change is dependent on the actual ring impedance spectrum on
hand. We have used an induction as an example for the reactive impedance
in a ring because it most appropriately represents the real impedance for
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lower frequencies or longer bunch length. In general, this potential well bunch
lengthening may be used to determine experimentally the nature and quantity
of the ring impedance by measuring the bunch length as a function of bunch
current.

Turbulent Bunch Lengthening

At higher bunch currents the bunch lengthening deviates significantly from
the scaling of potential well distortion and actually proceeds in the direction
of true lengthening. Associated with this lengthening is also an increase in
the particle momentum spread. The nature of this instability is similar to the
microwave instability for coasting beams.

Considering long bunches, a strong instability with a rise time shorter than
the synchrotron oscillation period and high frequencies with wavelength short
compared to the bunch length, we expect basically the same dynamics as was
discussed earlier for a coasting beam. This was recognized by Boussard [221]
who suggested a modification of the Keil–Schnell criterion by replacing the
coasting-beam particle density by the bunch density. For a Gaussian particle
distribution, the peak bunch current is

Î = I0
2πR√
2π σ�

, (19.150)

where I0 is the average circulating beam current per bunch, and the bunch
length is related to the energy spread by

σ� =
βc |ηc|
Ωs0

σε

E0
. (19.151)

With these modifications, the Boussard criterion is
∣∣∣∣
Zz

n

∣∣∣∣ ≤ F
β3E0|ηc|2

qI0
√

2π νs0

(
σε

E0

)3

, (19.152)

where the form factor F is still of the order unity.
As a consequence of this turbulent bunch lengthening we observe an in-

crease of the energy spread as well as an increase of the bunch length. The
instability does not necessarily lead to a beam loss but rather to an adjust-
ment of energy spread and bunch length such that the Boussard criterion is
met. For very low beam currents the stability criterion is always met up to
a threshold where the r.h.s. of (19.152) becomes smaller than the l.h.s. Upon
further increase of the beam current beyond the threshold current the energy
spread and consequently the bunch length increases to avoid the bunched
beam microwave instability.
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19.5 Transverse Single-Bunch Instabilities

Transverse wake fields can also greatly modify the stability of a single bunch.
Specifically at high frequencies, we note an effect of transverse wake fields
generated by the head of a particle bunch on particles in the tail of the same
bunch. Such interaction occurs for broad-band impedances where the bunch
generates a short wake including a broad spectrum of frequencies. In the first
moment all these fields add up being able to act back coherently on particles
in the tail but they quickly decoher and vanish before the next bunch arrives.
This effect is therefore a true single-bunch effect. In order to affect other
bunches passing by later, the fields would have to persist a longer time which
implies a higher Q value of the impedance structure which we ignore here.

19.5.1 Beam Break-up in Linear Accelerators

A simple example of a transverse microwave instability is the phenomenon of
beam break-up in linear accelerators. We noted repeatedly that the impedance
of vacuum chambers originates mainly from sudden changes in cross section
which therefore must be avoided to minimize impedance and microwave insta-
bilities. This, however, is not possible in accelerating cavities of which there
are particularly many in a linear accelerator. Whatever single-pass microwave
instabilities exist they should become apparent in a linear accelerator. We
have already discussed the effect of longitudinal wake fields whereby the fields
from the head of a bunch act back as a decelerating field on particles in the
tail. In the absence of corrective measures we therefore expect the particles in
the tail to gain less energy than particles in the head of an intense bunch.

Transverse motion of particles is confined to the vicinity of the linac axis by
quadrupole focusing in the form of betatron oscillations while traveling along
the linear accelerator. However, coherent transverse betatron oscillations can
create strong transverse wake fields at high bunch intensities. Such fields may
act back on subsequent bunches causing bunch to bunch instabilities if the
fields persist long enough. Here we are more interested in the effect on the
same bunch. For example, the wake fields of the head of a bunch can act
back on particles in the tail of the bunch. This interaction is effected by
broad-band impedances like sudden discontinuities in the vacuum chamber
which are abundant in a linear accelerator structure. The interaction between
particles in the head of a bunch on particles in the tail of the same bunch can
be described by a two macroparticle model resembling the head and the tail.

Transverse wake fields generated by the head of a bunch of particles are
proportional to the transverse oscillation amplitude of the head, and we de-
scribe the dynamics of the head and tail of a bunch in a two particle model
where each particle represents half the charge of the whole bunch as shown in
Fig. 19.15.

The head particle with charge 1
2qNb performs free betatron oscillations

while the tail particle responds like a driven oscillator. Since all particles



714 19 Wake Fields and Instabilities

x
h

particle bunchtail

head

x
t

Fig. 19.15. Head–tail dynamics of a particle bunch represented by two macropar-
ticles

travel practically at the speed of light, the longitudinal distribution of particles
remains fixed along the whole length of the linear accelerator. The equations of
motion in smooth approximation where kβ = 1/(ν0 βu) and βu is the average
value of the betatron function in the plane u are for both macroparticles

x′′
h + k2

β xh = 0,

x′′
t + k2

β xt = rc
xh
γ

∫∞
z̃

λ(z)W̃⊥(z − z̃) dz = rc Nb W̃⊥
2γ xh,

(19.153)

where we use the indices h and t for the head and tail particles, respectively,
and introduce the average wake field per unit length

W̃⊥ =
W⊥
Lacc

. (19.154)

For simplicity, it was assumed in (19.153) that the beam is just coasting
along the linear accelerator to demonstrate the dynamics of the instability. If
the beam is accelerated the adiabatic damping effect through the increase of
the energy must be included.

Because of causality only the tail particle is under the influence of a wake
field. The transverse wake field W⊥(2σz), for example, which is shown in
Fig. 19.3, is to be taken at a distance 2σz behind the head particle. Insert-
ing the solution xh(z) = x̂h cos kβz into the second equation, we obtain the
solution for the betatron oscillation of the tail particle in the form

xt(z) = x̂h cos kβz + x̂h
rc Nb W̃⊥

4γ kβ
z sin kβz . (19.155)

The second term in this expression increases without bound leading to
particle loss or beam break-up as soon as the amplitude reaches the edge of
the aperture. If the bunch does reach the end of the linear accelerator of length
Lacc, the betatron oscillation amplitude of the tail has grown by a factor

Fbb =
x̂t

x̂h
=

rc Nb W̃⊥ Lacc

4γ kβ
. (19.156)
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One consequence of this instability is an apparent increase in beam emit-
tance long before beam loss occurs. A straight bunch with a small cross section
becomes bent first like a banana and later like a snake and the transverse dis-
tribution of all particles in the bunch occupies a larger cross-sectional area
than before. This increase in apparent beam size has a big detrimental effect
on the attainable luminosity in linear colliders and therefore must be mini-
mized as much as possible. The two particle model adopted here is insufficient
to determine a more detailed structure than that of a banana. However, set-
ting up equations similar to (19.153) for more than two macroparticles will
start to reveal the oscillatory nature of the transverse bunch perturbation.

One scheme to greatly reduce the beam break-up effect is called BNS
damping in reference to its inventors Balakin et al. [222] and has been suc-
cessfully implemented into the Stanford Linear Collider [223]. The technique
utilizes the fact that the betatron oscillation frequency depends by virtue of
the chromaticity on the energy of the particles. By accelerating the bunch be-
hind the crest of the accelerating field the tail gains less energy than the head.
Therefore the tail is focused more by the quadrupoles than the head. Since the
transverse wake field introduces defocusing this additional chromatic focusing
can be used for compensation.

Of course this method of damping the beam break-up by accelerating
ahead of the crest is counterproductive to compensating for the energy loss
of tail particles due to longitudinal wake fields. In practice, BNS damping is
applied only at lower energies where the instability is strongest and in that
regime the energy reducing effect of the longitudinal wake field actually helps
to maximize BNS damping. Toward the end of the linear accelerator at high
beam energies, the beam break-up effect becomes small ∝ 1/γ and the bunch
is now moved ahead of the crest to reduce the energy spread in the beam.

19.5.2 Fast Head–Tail Effect

Transverse bunch perturbations due to broad-band impedances are not re-
stricted to linear accelerators but occur also in circular accelerators. In a
circular proton accelerator, for example, the “length” is for all practical pur-
poses infinite, there is no radiation damping and therefore even weak trans-
verse wake fields can in principle lead to transverse bunch blow up and beam
loss. This instability is known as the fast head–tail instability or strong head–
tail instability and has been first discussed and analyzed by Kohaupt [224].
The dynamics in a circular accelerator is, however, different from that in a
linear accelerator because particles in the head of a bunch will not stay there
but rather oscillate between head and tail in the course of synchrotron oscilla-
tions. These synchrotron oscillations disturb the coherence between head and
tail and the instability becomes much weaker.

On the other hand, particles in circular accelerators and especially in stor-
age rings are expected to circulate for a long time and even a much reduced
growth rate of the transverse bunch blow up may still be too strong. The
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dynamics of interaction is similar to that in a linear accelerator at least dur-
ing about half a synchrotron oscillation period 1

2 ts, but during the next half
period the roles are interchanged for individual particles. Particles traveling
for one half period in the head of the bunch find themselves close to the tail
for the next half period only to reach the head again and so forth. To under-
stand the dynamics over many oscillations, we set up equations of motion for
two macroparticles resembling the head and tail of a particle bunch similar
to (19.153) , but we now use the time as the independent variable. The dis-
tance ζ between head and tail particle varies between 0 and the maximum
distance of the two macro particles 2� during the course of a synchrotron os-
cillation period and since the transverse wake field increases linearly with ζ,
we set W⊥(ζ) = W⊥(2σ�) sinΩst. With this the equations of motion are for
0 ≤ t ≤ ts/2

ẍ1 + ω2
β x1 = 0,

ẍ2 + ω2
β x2 = rc β2c2Nb W̃⊥(2σ�) sin Ωst

2 γ x1,
(19.157)

where W̃⊥ = W⊥/(2πR̄) is the wake function per unit length. For the next
half period ts/2 ≤ t ≤ ts

ẍ1 + ω2
β x1 = rc β2c2 Nb W̃⊥(2�) sin Ωst

2 γ x2,

ẍ2 + ω2
β x2 = 0 .

(19.158)

For further discussions we consider solutions to (19.157), (19.158) in the
form of phasors defined by

x(t) = x(0) eiωβt = x− i
ẋ

ωβ
. (19.159)

The first equation (19.157) can be solved immediately for

x1(t) = x1(0) eiωβt (19.160)

and the second equation (19.157) becomes with (19.160)

ẍ2 + ω2
β x2 = A sinΩst eiωβt x1(0), (19.161)

where

A =
rc β

2c2 Nb W̃⊥(2�)
2 γ

. (19.162)

The synchrotron oscillation frequency is generally much smaller than the
betatron oscillation frequency (Ωs � ωβ) and the solution of (19.162) becomes
with this approximation

x2(t) = x2(0) eiωβt +
1
ωβ

∫ t

0

[Ax1(0) sinΩst
′ eiωβt′ ] sinωβ(t− t′) dt′
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or after some manipulation

x2(t) = x2(0) eiωβt − ix1(0)1
2a(1 − cosΩst) eiωβt, (19.163)

where a = A/(ωβ Ωs). During the second half synchrotron oscillation period,
the roles of both macroparticles are exchanged. We may formulate the trans-
formation through half a synchrotron oscillation period in matrix form and
get with 1 − cos

(
Ωs

1
2 ts
)

= 2 for the first half period

x1(ts/2)

x2(ts/2)


 = eiωβts/2


 1 0

−ia 1




 x1(0)

x2(0) .


 (19.164)

and for the second half period

x1(ts)

x2(ts)


 = eiωβts/2


 1 −ia

0 1




x1(ts/2)

x2(ts/2)


 . (19.165)

Combining both half periods one gets finally for a full synchrotron oscillation
period 

x1(ts)

x2(ts)


 = eiωβts


 1 − a2 −ia

−ia 1




x1(0)

x2(0)


 . (19.166)

The stability of the motion after many periods can be extracted from
(19.166) by solving the eigenvalue equation


 1 − a2 −ia

−ia 1




x1

x2


 = λ


x1

x2


 . (19.167)

The characteristic equation

λ2 − (2 − a2)λ + 1 = 0 (19.168)

has the solution
λ1,2 = (1 − 1

2a
2) ±

√
(1 − 1

2a
2)2 − 1 (19.169)

and the eigenvalues can be expressed by

λ = e±iΦ, (19.170)

where (1 − 1
2a

2) = cosΦ for |a| ≤ 2 or

|a| =
rc β

2c2 Nb W̃⊥(2�)
2γ ωβ Ωs

≤ 2 . (19.171)

The motion remains stable since no element of the transformation matrix
increases unbounded as the number of periods increases to infinity. In the
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form of a stability criterion, the single-bunch current Ib = qNb frev must not
exceed the limit

Ib ≤ 4 q γ ω2
0 νβ νs

rc βcW⊥(2�)
, (19.172)

where q is the charge of the particles and (νβ , νs) is the betatron and syn-
chrotron tune, respectively. In a storage ring, it is more convenient to use
impedance rather than wake fields. Had we set up the equations of motion
(19.153), (19.154) expressing the perturbing force in terms of impedance we
would get the same results but replacing the wake field by

W⊥(2�) =
ω0

π
Im{Z⊥} (19.173)

and the threshold beam current for the fast head–tail instability becomes

Ib ≤ 4π q γω0 νβ νs

rc βc Im{Z⊥
n }

. (19.174)

The bunch current Ib is a threshold current which prevents us from filling
more current into a single bunch. Exceeding this limit during the process of
filling a bunch in a circular accelerator leads to an almost immediate loss of
the excess current. This microwave instability is presently the most severe
limitation on single-bunch currents in storage rings and special care must be
employed during the design to minimize as much as possible the transverse
impedance of the vacuum chamber system.

The strength of the instability becomes more evident when we calculate
the growth time for a beam current just by an increment ε above the threshold.
For |a| > 2 we have (1 − 1

2a
2) = − coshµ and the eigenvalue is λ = e±µ. The

phase µ = 0 at threshold and coshµ ≈ 1 + 1
2µ

2 for a = 2 + ε and we get

µ = 2
√
ε . (19.175)

In each synchrotron oscillation period the eigenvalues increase by the factor
eµ or at a growth rate of 1

τ = µ
ts

= 2
√

ε
ts

. If, for example, the beam current
exceeds the threshold by 10%, we have ε = 0.2 and the rise time would be
τ/ts = 0.89 or the oscillation amplitudes increase by more than a factor of 2
during a single synchrotron oscillation period. This is technically very difficult
to counteract by a feedback system.

We have assumed that transverse wake fields are evenly distributed around
the accelerator circumference. In a well-designed accelerator vacuum chamber,
however, most of the transverse wake field occur in the accelerating cavities
and therefore only the transverse betatron oscillation amplitude in the cavities
are relevant. In this case, one recalls the relation νβ ≈ R̄/βu and we replace in
(19.174) the average value of the betatron function by the value in the cavities
for

Ib ≤ 4 q γ Ωs

rc βu,cy W⊥,cy(2�)
. (19.176)
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This result suggest that the betatron function in the plane u = x or u = y
at the location of cavities should be kept small and the synchrotron oscillation
frequency should be large. The exchange of head and tail during synchrotron
oscillation slows down considerably the growth rate of the instability. The
result (19.176) is the same as the amplification factor (19.156) if we consider
that in a linear accelerator the synchrotron oscillation period is infinite.

As we approach the threshold current, the beam signals the appearance
of the head–tail instability on a spectrum analyzer with a satellite below the
betatron frequency. The threshold for instability is reached when the satellite
frequency reaches a value ωsat = ωβ − 1

2 Ωs. This becomes apparent when
replacing the transformation matrix in (19.166) by the eigenvalue


x1(ts)

x2(ts)


 = eiωβts eiΦ


x1(0)

x2(0)


 . (19.177)

The phase reaches a value of Φ = π at the stability limit and (19.177) becomes
at this limit 

x1(ts)

x2(ts)


 = ei

(
ωβ− 1

2Ωs

)
ts


x1(0)

x2(0)


 . (19.178)

At this point, it should be noted, however, that the shift of the betatron
frequency to 1

2Ωs is a feature of the two macroparticle model. In reality there
is a distribution of particles along the bunch and while increasing the beam
current the betatron frequency decreases and the satellite νβ − νs moves until
both frequencies merge and become imaginary. This is the point of onset for
the instability. It is this feature of merging frequencies which is sometimes
called mode mixing or mode coupling.

19.5.3 Head–Tail Instability

Discussing the fast head–tail instability we considered the effect of transverse
wake fields generated by the head of a particle bunch on the transverse beta-
tron motion of the tail. We assumed a constant betatron oscillation frequency
which is only an approximation since the betatron frequency depends on the
particle energy. On the other hand, there is a distinct relationship between
particle energy and particle motion within the bunch, and it is therefore likely
that the dynamics of the head–tail instability becomes modified by considering
the energy dependence of the betatron oscillation frequency.

Like in the previous section, we represent the particle bunch by two
macroparticles which perform synchrotron oscillations being 180◦ apart in
phase. The wake fields of the head particle act on the tail particle while the
reverse is not true due to causality. However, during each half synchrotron
oscillation period the roles become reversed.
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In (19.163), we obtained an expression which includes the perturbation
term and consider the variation of this term due to chromatic oscillations of
the betatron frequency. The perturbation term is proportional to eiωβt and
we set therefore with δ = ∆p/p0

ωβ = ωβ(δ) = ωβ0 +
∂ωβ

∂δ
δ + O(δ2) . (19.179)

The chromaticity is defined by the betatron tune shift per unit relative mo-
mentum deviation

ξβ =
∆νβ

δ
(19.180)

and (19.179) becomes with ωβ = νβ ω0

ωβ = ωβ0 + ξβ δ ω0 . (19.181)

The momentum deviation is oscillating at the synchrotron frequency and is
correlated with the longitudinal motion by

δ = − Ωs �

βc |ηc|
sinΩst, (19.182)

where 2� is the maximum longitudinal distance between the two macroparti-
cles. Combining (19.181), (19.182) we get

ωβ = ωβ0 −
Ωs � ξβ

νβ R̄ |ηc|
sinΩst, (19.183)

where the second term is much smaller than unity so that we may expand the
exponential function of this term to get

eiωβt ≈ eiωβ0t

[
1 − i

Ωs � ξβ

νβ R̄ |ηc|
t sin(Ωst)

]
. (19.184)

The expression in the square bracket is the variation of the scaling factor
a in (19.163) and we note, specifically, the appearance of the imaginary term
which gives rise to an instability. The phase Φ in the eigenvalue equation
(19.170) becomes for small beam currents Φ ≈ a and with (19.184)

Φ = a

[
1 − i

Ωs � ξβ

πνβ R̄ |ηc|
ts

]
, (19.185)

where we have set t = 1
2 ts and 〈sinΩst〉 ≈ 2/π. The first term represents

the fast head–tail instability with its threshold characteristics discussed in
the previous section. The second term is an outright damping or antidamping
effect being effective at any beam current. This instability is called the head–
tail effect discovered and analyzed by Pellegrini [225] and Sands [226] at the
storage ring ADONE.
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Considering only the imaginary term in (19.185), we note an exponential
growth of the head–tail instability with a growth rate

1
τ

=
Ωs a � ξβ

πνβ R̄ |ηc|
=

� ξβ rc βcNb W̃⊥(2�)
2πγ|ηc|ν2

β

. (19.186)

Instability may occur either in the vertical or the horizontal plane depend-
ing on the magnitude of the transverse wake function in both planes. There
are two modes, one stable and one unstable depending on the sign of the chro-
maticity and momentum compaction. Above transition ηc < 0 and the beam
is unstable for negative chromaticity. This instability is the main reason for
the insertion of sextupole magnets into circular accelerators to compensate for
the naturally negative chromaticity. Below transition, the situation is reversed
and no correction of chromaticity by sextupoles is required. From (19.186),
we would conclude that we need to correct the chromaticity exactly to zero
to avoid instability by one or the other mode. In reality, this is not the case
because a two-particle model overestimates the strength of the negative mode.
Following a more detailed discussion including Vlasov’s equation [199] it be-
comes apparent that the negative mode is much weaker to the point where,
at least in electron accelerators, it can be ignored in the presence of radiation
damping.

Observation of the head–tail damping for positive chromaticities or mea-
suring the risetime as a function of chromaticity can be used to determine the
transverse wake function or impedance of the accelerator [176,227]. Measure-
ments of head–tail damping rates have been performed in SPEAR [227] as a
function of chromaticity and are reproduced in Figs. 19.16 and 19.17.

We clearly note the linear increase of the damping rate with chromaticity.
The scaling with energy and beam current is less linear due to a simultaneous
change in bunch length. Specifically the bunch length increases with beam
intensity causing the wake fields to drop for a smaller damping rate.
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Fig. 19.16. Measurement of the head–tail damping rate in SPEAR as a function
of chromaticity (a) and beam energy (b) [227]
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Fig. 19.17. Measurement of the head–tail damping rate in SPEAR as a function
of beam current [227]

19.6 Multibunch Instabilities

Single-bunch dynamics is susceptible to all kinds of impedances or wake fields
whether it be narrow- or broad-band impedances. This is different for multi-
bunch instabilities or coupled-bunch instabilities [176, 220–229]. In order for
wake fields to generate an effect on more than one bunch it must persist at least
until the next bunch comes by the location of the impedance. We therefore
expect multibunch instabilities only due to high Q or narrow-band impedances
like those encountered in accelerating cavities. Higher order modes in such
cavities persist sometime after excitation and actually reach a finite amplitude
in a circular accelerator where the orbiting beam may periodically excite one
or the other mode. Because these modes have a high quality factor they are
also confined to a narrow frequency spread. The impedance spectrum we need
to be concerned with in the study of multibunch instabilities is therefore a
line spectrum composed of many cavity modes.

To study the effect of these modes on the circulating beam, we must fold
the beam current spectrum with the mode spectrum and derive from this
interaction conditions for beam stability. We will do this for the case of the two
lowest order mode oscillations only where all bunches oscillate in synchronism
at the same phase or are 90◦ out of phase from bunch to bunch respectively.
Of course in a real accelerator higher order modes can be present too and must
be taken into account. Here we must limit ourself, however, to the discussion
of the physical effect only and direct the interested reader to more detailed
discussions on this subject in [199–202].
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We consider the dynamics of rigid coupled bunches ignoring the internal
motion of particles within a single bunch. The beam spectrum is then from
(18.93) with q the bunch charge and observing at ϕ = 0 for simplicity

I‖(ω, ϕ) =
qnbω0

2π

+∞∑
p=−∞

+∞∑
n=−∞

i−n Jn(pnbω0τ̂) δ(ω −Ωn), (19.187)

where now Ωn = (pnb + nm + nνs)ω0 and where we have replaced the syn-
chrotron frequency by the synchrotron tune and the phase ζi for individ-
ual particles by the mode of the bunch distribution setting ζi = mω0t with
0 ≤ m ≤ nb.

A beam of nb equidistant bunches can oscillate in nb different modes.
Two bunches, for example, can oscillate in phase or 180◦ out of phase; four
bunches can oscillate with a phase difference of 0◦, 90◦, 180◦, and 270◦ between
consecutive bunches. In general the order of the mode m defines the phase
difference of consecutive bunches by

∆φ = m
360◦

nb
. (19.188)

To determine the multibunch dynamics we calculate first the induced volt-
age V (t) by the beam current in the impedance Z(ω) and then fold the voltage
function with the beam function to calculate the energy loss per turn by each
particle. Knowing this, we will be able to formulate the equation of motion for
the synchrotron oscillation. Specifically, we will be able to formulate frequency
shifts and damping or antidamping due to the interaction of the multibunch
beam with its environment to identify conditions for beam stability.

For simplicity we assume small phase oscillations τ̂ � 1 and consider only
the fundamental beam frequency and the first satellite n = 0, 1. With this
(19.187) becomes

I‖(ω) =
qnbω0

2π

+∞∑
p=−∞

J0(pnbω0τ̂) δ(ω −Ω0) − i J1(pnbω0τ̂) δ(ω −Ω1),

(19.189)
where Ω0 = p nbω0, Ω1 = (pnb + m + νs)ω0, and Ji are Bessel’s functions.
The induced voltage spectrum is V (ω) = Z(ω) I(ω) and its Fourier transform
V (t) =

∫
V (ω)eiωt dω or

V‖(t)=
qnbω0

2π

+∞∑
p=−∞

[
J0(τ̂Ω0)Z(Ω0) eiΩ0t (19.190)

−iJ1(τ̂ Ω0)Z(Ω1) eiΩ1t
]
.

The energy loss per particle is then defined by integrating in time the product
of voltage function and single-bunch current function
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U =
1
Nb

∫
V‖(t)

I‖(t + τ)
nb

dt, (19.191)

Nb is the number of particles per bunch and Tb = T0/nb is the time between
passage of consecutive bunches. The bunch current can be expanded for τ � 1

I‖(t + τ) ≈ I‖(t) + τ
d
dt

I‖(t) . (19.192)

The Fourier transforms of both current and its derivative with respect to time
are correlated by

d
dt

I‖(ω) = iω I‖(ω) (19.193)

and (19.192) becomes in frequency domain with (19.189)

I‖(t + τ) =
qnbω0

(2π)2

∫ +∞∑
p=−∞

(1 + iωτ) (J0 δ0 − iJ1 δ1) eiωt dt, (19.194)

where we have used some abbreviations which become obvious by comparison
with (19.189). Inserting (19.194) and (19.190) into (19.191), we get

U =
(qω0)2nb

(2π)2 Nb

∫

t

∫

ω

∑
p

(
J0 Z0eiΩ0t − iJ1Z1eiΩ1t

)
(19.195)

× (1 + iωτ)
∑

r

(J0 δ0r − iJ1 δ1r) eiωt dω dt .

For abbreviation we have set δi = δ(Ωi), Zi = Z(Ωi), J0 = J0(Ω0), and
J1 = J1(Ω0). An additional index has been added to indicate whether the
quantity is part of the summation over p or r. Before we perform the time
integration we reverse the first summation by replacing p → −p and get terms
like

∫
e−i(Ω0−ω)t dt = 2πδ0, etc. and (19.195) becomes

U=
(qω0)2nb

2πNb

∫

ω

∑
p

(J0 Z0δ0r + iJ1Z1δ1r) (19.196)

× (1 + iωτ)
∑

r

(J0 δ0 − i J1δ1) dω .

The integration over ω will eliminate many components. Specifically, we
note that all cross terms δ0δ1 vanish after integration. We also note that the
terms δ0pδ0r vanish unless r = p. With this in mind we get from (19.196)

U =
(qω0)2nb

2πNb

∑
p

(J2
0 Z0 + iΩ0τ J2

0 Z0 + J2
1 Z1 + iΩ1τJ

2
1 Z1) . (19.197)

Finally the summation over p leads to a number of cancellations consider-
ing that the resistive impedance is an even and the reactive impedance an odd
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function. With Z0 = Zr0 + iZi0, Zr0(ω) = Zr0(−ω) and Zi0(ω) = −Zi0(−ω),
(19.197) becomes

U=
(q ω0)2nb

2πNb

+∞∑
p=−∞

[J2
0 (τ̂ Ω0)Zr(Ω0) + J2

1 (τ̂ Ω0)Zr(Ω1) (19.198)

+i τ Ω1J
2
1 (τ̂ Ω1)Zr(Ω1) − τ Ω1J

2
1 (τ̂ Ω1)Zi(Ω1)] .

The first and second term are the resistive energy losses of the circulating
beam and synchrotron oscillations, respectively, while the third and fourth
term are responsible for the stability of the multi bunch beam.

The equation of motion for synchrotron oscillations has been derived in
Chap. 6 and we found that frequency and damping are determined by the
accelerating rf-field and energy losses. We expect therefore that the energy
loss derived for coupled bunch oscillations will also lead to frequency shift
and damping or antidamping. Specifically, we have for the equation of motion
from (6.25)

ϕ̈ + ω2
0

h ηc

2πβc cp0
e
dV
dψ

∣∣∣∣
ψs

ϕ− 1
T0

dU
dE

∣∣∣∣
E0

ϕ̇ = 0, (19.199)

where we notice the phase proportional term which determines the unper-
turbed synchrotron frequency

Ω2
s0 = ω2

0

h ηc

2πβcp0
e

dV
dψ

∣∣∣∣
ψs

= ω2
0

h ηc eV̂0 cosψs

2π β cp0
. (19.200)

The term proportional to ϕ̇ gave rise to the damping decrement

αs0 = − 1
2T0

dU
dE

∣∣∣∣
E0

. (19.201)

The modification of the synchrotron frequency is with = τ = ϕ/hω0 from
(19.96) − (19.98) similar to the derivation of the unperturbed frequency

Ω2
s = Ω2

s0 + ω2
0

hηcnb

βcp0Nb

+∞∑
p=−∞

τΩ1[qf0 J1(τ̂Ω1)]2Zi(Ω1), (19.202)

where f0 = ω0/2π is the revolution frequency. Note that ηc < 0 above tran-
sition and the additional damping or energy loss due to narrow-band im-
pedances reduces the frequency as one would expect.

Similarly we derive the modification of the damping decrement from the
imaginary term in (19.198) noting that the solution of the synchrotron os-
cillation gives τ̇ = −iΩsτ with ϕ = hω0τ and the damping decrement for a
multibunch beam is

αs = αs0 −
ω0ηcnb

2cp0 Nb

+∞∑
p=−∞

Ω1

Ωs
[q f0 J1(τ̂Ω1)]2Zr(Ω1) . (19.203)
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For proton and ion beams we would set αs0 = 0 because there is no
radiation damping and the interaction of a multibunch beam with narrow-
band impedances would provide damping or antidamping depending on the
sign of the damping decrement for each term. If, however, only one term is
antidamped the beam would be unstable and get lost as was observed first at
the storage ring DORIS [230]. It is therefore important to avoid the overlap
of any line of the beam spectrum with a narrow-band impedance in the ring.

Since this is very difficult to achieve and to control, it is more convenient to
minimize higher order narrow-band impedances in the ring by design as much
as possible to increase the rise time of the instabilities. In electron storage
rings the situation is similar, but now the instability rise time must exceed
the radiation damping time. Even though, modern storage rings are designed
for high beam currents and great efforts are being undertaken to reduce the
impedance of higher cavity modes by designing monochromatic cavities where
the higher order modes are greatly suppressed [231–234].

We have discussed here only the dipole mode of the longitudinal coupled-
bunch instability. Of course, there are more modes and a similar set of instabil-
ities in the transverse dimensions. A more detailed discussion of all aspects of
multibunch instabilities would exceed the scope of this text and the interested
reader is referred to the specific literature, specifically to [199–202].

Problems

19.1. Specify a damping ring at an energy of 1.5 GeV and an emittance of
10−10 m rad. The rf-frequency be 500 MHz and 1011 electrons are to be stored
into a single bunch at full coupling. Calculate the Touschek lifetime and the
coherent and incoherent space-charge tune shift. Would the beam survive in
case a tune shift of ∆Qy = 0.05 were permissible?

19.2. Derive (19.97) from (19.96) and show that the constant A in (19.97) is
given by A = 3

4π
qI0

β2E0|ηc|δ2 , where δ = ∆p/p0.

19.3. Use the wake field for the SLAC linear accelerator structure (Fig. 19.9)
and calculate the energy loss of a particle in the tail of a 1 mm long bunch
of 1011 electrons for the whole SLAC linear accelerator of 3 km length. This
energy droop along a bunch is mostly compensated by accelerating the bunch
ahead of the crest of the accelerating wave. This way the particles in the head
of the bunch gain less energy than the particles in the tail of the bunch. The
extra energy gain of the tail particles is then lost again due to wake field losses.
How far off the crest must the bunch be accelerated for this compensation?

19.4. Consider the phenomenon of beam break-up in a linear accelerator and
split the bunch into a head, center, and tail part with a particle distribution
Nb/4 to Nb/2 to Nb/4. Set up the equations of motion for all three particles
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including wake fields and solve the equations. Show the exponential build-
up of oscillation amplitudes of the tail particle. Perform the same derivation
including BNS damping where each macroparticle has a different betatron
oscillation frequency. Determine the condition for optimum BNS damping.

19.5. Determine the perturbation of a Gaussian particle distribution under
the influence of a capacitive wake field. In particular, derive expressions for
the perturbation of the distribution (if any) and the change in the fwhm bunch
width as a function of στ in the limit of small wakes. If there is a shift in the
distribution what physical effects cause it ? Hint: think of a loss mechanism
for a purely reactive but capacitive wake field.

19.6. During the discussion of the dispersion relation we observed the stabiliz-
ing effect of Landau damping and found the stability criterion (19.98) stating
that the threshold current can be increased proportional to the square of the
momentum spread in the beam. How does this stability criterion in terms of a
momentum spread relate to the conclusion in the section on Landau damping
that the beam should have a frequency overlap with the excitation frequency?
Why is a larger momentum spread better than a smaller spread?

19.7. Determine stability conditions for the fast head–tail instability in a
storage ring of your choice assuming that all transverse wake fields come
from accelerating cavities. Use realistic parameters for the rf-system and the
number of cells appropriate for your ring. What is the maximum permissible
transverse impedance for a bunch current of 100 ma? Is this consistent with
the transverse impedance of pill box cavities? If not how would you increase
the current limit?

19.8. Calculate the real and imaginary impedance for the first longitudinal
and transverse higher order mode in a pill box cavity and apply these to
determine the multibunch beam limit for a storage ring of your choice assum-
ing that the beam spectrum includes the HOM frequency. Calculate also the
frequency shift at the limit.



Part VIII

Synchrotron Radiation



20

Fundamental Processes

Ever since J.C. Maxwell formulated his unifying electromagnetic theory in
1873, the phenomenon of electromagnetic radiation has fascinated the minds
of theorists as well as experimentalists. The idea of displacement currents was
as radical as it was important to describe electromagnetic waves. It was only
14 years later when G. Hertz in 1887 succeeded to generate, emit, and receive
again electromagnetic waves, thus, proving experimentally the existence of
such waves as predicted by Maxwell’s equations. The sources of the radiation
are oscillating electric charges and currents in a system of metallic wires. In
this text, we discuss the generation of electromagnetic radiation emitted by
free electrons from first principles involving energy and momentum conserva-
tion as well as Maxwell’s equations.

20.1 Radiation from Moving Charges

Analytical formulation of the emission of electromagnetic radiation posed a
considerable challenge. Due to the finite speed of light one cannot make a
snapshot to correlate the radiation field at the observer with the position of
radiating charges. Rather, the radiation field depends on the position of the ra-
diating charges some time earlier, at the retarded time, when the radiation was
emitted. Already in 1867 L. Lorenz included this situation into his formulation
of the theory of electromagnetic fields and introduced the concept of retarded
potentials. He did, however, not offer a solution to the retarded potentials of
a point charge. Liénard [1] in 1898 and independently in 1900 Wiechert [2]
derived for the first time expressions for retarded potentials of point charges
like electrons. These potentials are now called the Liénard–Wiechert poten-
tials relating the scalar and vector potential of electromagnetic fields at the
observation point to the location of the emitting charges and currents at the
time of emission. Using these potentials, Liénard was able to calculate the
energy lost by electrons while circulating in a homogenous magnetic field.
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In 1907 [235,236] and 1912 [237] Schott formulated and published his clas-
sical theory of radiation from an orbiting electron. He was primarily interested
in the spectral distribution of radiation and hoped to find an explanation for
atomic radiation spectra. Verifying Liénard’s conclusion on the energy loss,
he derived the angular and spectral distribution and the polarization of radi-
ation. Since this classical approach to explain atomic spectra was destined to
fail, his paper was forgotten and only 40 years later were many of his findings
rediscovered.

20.1.1 Why Do Charged Particles Radiate?

Before we dive into the theory of electromagnetic radiation in more detail we
may first ask ourselves why do charged particles radiate at all? Emission of
electromagnetic radiation from charged particle beams (microwaves or syn-
chrotron radiation) is a direct consequence of the finite velocity of light. A
charged particle in uniform motion through vacuum is the source of electric
field lines emanating from the charge radially out to infinity. While the charged
particle is at rest or moving uniformly these field lines also are at rest or in
uniform motion together with the particle. Now, we consider a particle being
suddenly accelerated for a short time. That means the field lines should also
be accelerated. The fact that the particle has been accelerated is, however,
still known only within the event horizon in a limited area close to the parti-
cle. The signal of acceleration travels away from the source (particle) only at
the finite speed of light. Field lines close to the charged particle are directed
radially toward the particle, but far away, the field lines still point to the
location where the particle would be had it not been accelerated. Somewhere
between those two regimes the field lines are distorted and it is this distortion
traveling away from the particle at the speed of light what we call electro-
magnetic radiation. The magnitude of these field distortions is proportional
to the acceleration.

In a linear accelerator, for example, electrons are accelerated along the
linac axis and therefore radiate. The degree of actual acceleration, however, is
very low because electrons in a linear accelerator travel close to the velocity of
light. The closer the particle velocity is to the velocity of light the smaller is
the actual acceleration gained from a given force, and the radiation intensity
is very small. In a circular accelerator like a synchrotron, on the other hand,
particles are deflected transversely to their direction of motion by magnetic
fields. Orthogonal acceleration or the rate of change in transverse velocity is
very large because the transverse particle velocity can increase from zero to
very large values in a very short time while passing through the magnetic field.
Consequently, the emitted radiation intensity is very large. Synchrotron radi-
ation sources come therefore generally in form of circular synchrotrons. Linear
accelerators can be the source of intense synchrotron radiation in conjunction
with a transversely deflecting magnet.
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20.1.2 Spontaneous Synchrotron Radiation

Charged particles do not radiate while in uniform motion, but during accelera-
tion a rearrangement of its electric fields is required and this field perturbation,
traveling away from the charge at the velocity of light, is what we observe as
electromagnetic radiation. Free accelerated electrons radiate similarly to those
in a radio antenna, although now the source (antenna) is moving. Radiation
from a fast moving particle source appears to the observer in the laboratory
as being all emitted in the general direction of motion of the particle. This for-
ward collimation is particularly effective for highly relativistic electrons where
most of the radiation is concentrated into a small cone around the forward
direction with an opening angle of 1/γ, typically 0.1 to 1 mrad, where γ is
the particle energy in units of its rest mass.

Radiation can be produced by magnetic deflection in a variety of ways.
Whether it be a single kick-like deflection or a periodic right–left deflection,
the radiation characteristics reflect the particular mode of deflection. Specific
radiation characteristics can be gained through specific modes of deflections.
Here, we will only briefly address the main processes of radiation genera-
tion and come back later for a much more detailed discussion of the physical
dynamics.

In an undulator the electron beam is periodically deflected transversely to
its direction of motion by weak sinusoidally varying magnetic fields, generat-
ing periodic perturbations of the electric field lines. A receiving electric field
detector recognizes a periodic variation of the transverse electromagnetic field
components and interprets this as quasi-monochromatic radiation. In every-
day life periodic acceleration of electrons occurs in radio and TV antennas
and we may receive these periodic field perturbations with a radio or TV re-
ceiver tuned to the frequency of the periodic electron motion in the emitting
antenna. The fact that we consider relativistic electrons is not fundamental,
but we restrict ourselves in this text to high energy electrons only.

To the particle the wavelength of the emitted radiation is equal to the
undulator period length (λp) divided by γ due to relativistic Lorentz con-
traction. In a stationary laboratory system, this wavelength appears to the
observer further reduced by another factor 2γ due to the Doppler effect. The
undulator period length of the order of centimeters is thus reduced by a fac-
tor γ2 (106–108) to yield short wavelength radiation in the VUV and x-ray
regime. The spectral resolution of the radiation is proportional to the num-
ber of undulator periods Np and its wavelength can be shifted by varying the
magnetic field. Most radiation is emitted within the small angle of (γ

√
Np)−1.

Increasing the magnetic field strength causes the pure sinusoidal transverse
motion of electrons in an undulator to become distorted due to relativistic ef-
fects generating higher harmonic perturbations of the electron trajectory. Con-
sequently, the monochromatic undulator spectrum exhibits higher harmonics
and changes into a line spectrum. For very strong fields, many harmonics
are generated which eventually merge into a continuous spectrum from IR to
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hard x-rays. In this extreme, we call the source magnet a wiggler magnet.
The spectral intensity varies little over a broad wavelength range and drops
off exponentially at photon energies higher than the critical photon energy,
εcrit ∝ Bγ2. Changing the magnetic field, one may vary the critical photon
energy to suit experimental requirements. Compared to bending magnet ra-
diation, wiggler radiation is enhanced by the number of magnet poles Np and
is well collimated within an angle of 1/γ to say 10/γ, or a few mrad.

A bending magnet is technically the most simple radiation source. Radi-
ation is emitted tangentially to the orbit similar to a search light while well
collimated in the nondeflecting or vertical plane. The observer at the experi-
mental station sees radiation from only a small fraction of the circular path
which can be described as a piece of a distorted sinusoidal motion. The ra-
diation spectrum is therefore similar to that of a wiggler magnet while the
intensity is due to only one pole. Because bending magnets define the geom-
etry of the electron beam transport system or accelerator, it is not possible
to freely choose the field strength and the critical photon energy is therefore
fixed. Sometimes, especially in lower energy storage rings, it is desirable to ex-
tend the radiation spectrum to higher photon energies into the x-ray regime.
This can be accomplished by replacing one or more conventional bending
magnet with a superconducting magnet, or superbends, at much higher field
strength. To preserve the ring geometry the length of these superbends must
be chosen such that the deflection angle is the same as it was for the conven-
tional magnet that has been replaced. Again, superbends are part of the ring
geometry and therefore the field cannot be changed.

A more flexible version of a radiation hardening magnet is the wavelength
shifter. This is a magnet which consists of a high field central pole and two
weaker outside poles to compensate the deflection by the central pole. The
total deflection angle is zero and therefore the field strength can be chosen
freely to adjust the critical photon energy. Its design is mostly based on su-
perconducting magnet technology, particularly in low energy accelerators, to
extend (shift) the critical photon energy available from bending magnets to
higher values.

A variety of more complicated magnetic field arrangements have been de-
veloped to primarily generate circularly or elliptically polarized radiation. In
such magnets horizontal as well as vertical magnetic fields are sequentially
employed to deflect electrons into some sort of helical motion giving raise to
the desired polarization effect.

20.1.3 Stimulated Radiation

The well-defined time structure and frequency of undulator radiation can be
used to stimulate the emission of even more radiation. In an optical kly-
stron [238] coherent radiation with a wavelength equal to the fundamental
undulator wavelength enters an undulator together with the electron beam.
Since the electron bunch length is much longer than the radiation wavelength,
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some electrons lose energy to the radiation field and some electrons gain en-
ergy from the radiation field while interacting with the radiation field. This
energy modulation can be transformed into a density modulation by passing
the modulated electron beam through a dispersive section. This section con-
sists of deflecting magnetic fields arranged in such a way that the total path
length through the dispersive section depends on the electron energy. The pe-
riodic energy modulation of the electron bunch then converts into a periodic
density modulation. Now we have microbunches at a distance of the undula-
tor radiation wavelength. This microbunched beam travels through a second
undulator where again particles can lose or gain energy from the radiation
field. Due to the microbunching, however, most particles are concentrated at
phases where there is only energy transfer from the particle to the radiation
field, thus providing a high gain of radiation intensity.

In a more efficient variation of this principle, radiation emitted by elec-
trons passing through an undulator is recycled by optical mirrors in such a
way that it passes through the same undulator again together with another
electron bunch. The external field stimulates more emission of radiation from
the electrons, and is again recycled to stimulate a subsequent electron bunch
until there are no more bunches in the electron pulse. Generating from a linear
accelerator a train of thousands of electron bunches one can generate a large
number of interactions, leading to an exponential growth of electromagnetic
radiation. Such a devise is called a free electron laser or FEL.

20.1.4 Electron Beam

In this text we consider radiation from relativistic electron beams only. Such
beams can be generated efficiently by acceleration in microwave fields. The
oscillatory nature of microwaves makes it impossible to produce a uniform
stream of particles, and the electron beam is modulated into bunches at the
distance of the microwave wavelength. Typically the bunch length is a few
percent of the wavelength. The circumference of the storage ring must be an
integer multiple, the harmonic number, of the rf-wavelength. The rf-system
actually provides potential wells, rf-buckets, which rotate around the ring.
These buckets may or may not be filled with electrons and those electrons
contained in a bucket are said to form an electron bunch. With special equip-
ment in the injector it is possible to store any arbitrary pattern of electron
bunches consistent with the equidistant distribution of the finite number of
buckets equal to the harmonic number. Specifically, it is possible to operate
the storage ring with all buckets filled or with just a single bunch or only a
few bunches. The bunched nature of the electron beam and the fact that these
bunches circulate in a storage ring determine the time structure and spectrum
of the emitted radiation. Typically, the bunch length in storage rings is 30–100
ps at a distance of 2–3 ns depending on the rf-frequency.

During the storage time of the particle beam, the electrons radiate and it is
this radiation that is extracted and used in experiments of basic and applied
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research. Considering, for example, only one bunch rotating in the storage
ring, the experimenter would observe a light flash at a frequency equal to
the revolution frequency frev. Because of the extremely short duration of the
light flash many harmonics of the revolution frequency appear in the light
spectrum. At the low frequency end of this spectrum, however, no radiation
can be emitted for wavelength longer than about the dimensions of the metal-
lic vacuum chamber surrounding the electron beam. For long wavelengths the
metallic boundary conditions for electromagnetic fields cannot be met pro-
hibiting the emission of radiation. Practically, useful radiation is observed
from storage rings only for wavelengths below the microwave regime, or for
λ � 1 mm.

20.2 Conservation Laws and Radiation

The emission of electromagnetic radiation from free electrons is a classical
phenomenon. We may therefore use a visual approach to gain some insight
into conditions and mechanisms of radiation emission. First, we will discuss
necessary conditions that must be met to allow an electron to emit or absorb
a photon. Once such conditions are met, we derive from energy conservation a
quantity, the Poynting vector, relating energy transport or radiation to elec-
tromagnetic fields. This will give us the basis for further theoretical definitions
and discussions of radiation phenomena.

The emission of electromagnetic radiation involves two components, the
electron and the radiation field. For the combined system energy–momentum
conservation must be fulfilled. These conservation laws impose very specific
selection rules on the kind of emission processes possible. To demonstrate
this, we plot the energy versus momentum for both electron and photon. In

relativistic terms, we have the relation γ =
√

1 + (βγ)2 between energy γ and
momentum βγ. For consistency in quantities used we normalize the photon
energy to the electron rest energy, γp = εp/mc2, where εp is the photon
energy and mc2 is the electron rest mass. Similarly, we express the speed
of light by βp = cp/c = 1/n where n > 1 is the refractive index of the
medium surrounding the photon. With these definitions and assuming, for
now, vacuum as the medium (n = 1) the location of a particle or photon in
energy–momentum space is shown in Fig. 20.1a.

Energy and momentum of a particle are related such that it must be lo-
cated on the “particle” line in Fig. 20.1a. Similarly, a photon is always located
on the “photon” line. Transfer of energy between particle and photon must
obey energy–momentum conservation. In Fig. 20.1(b) we apply this principle
to a free electron in vacuum emitting (absorbing) a photon. To create a pho-
ton the electron would have to lose (gain) an amount of momentum which
is numerically equal to the energy gained (lost) by the photon. Clearly, in
this case the electron would end up at a location off the “particle” line, thus
violating momentum conservation. That cannot happen, and such a process
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Fig. 20.1. Energy–momentum relationship for particles and photons. (a) Violation
of energy or momentum conservation during emission and absorption of electromag-
netic radiation by a free electron traveling in perfect vacuum (βp = 1)(b)

is therefore not permitted. A free electron in vacuum cannot emit or absorb
a photon without violating energy–momentum conservation.

20.2.1 Cherenkov Radiation

We have been careful to assume an electron in perfect vacuum. What happens
in a material environment is shown in Fig. 20.2. Because the refractive index
n > 1, the phase velocity of radiation is less than the velocity of light in
vacuum and with β = 1/n, the “photon” line is tilted toward the momentum
axis.

Formally, we obtain this for a photon from the derivative dγ/d(βγ), which
we expand to dγ

d(βγ) = dγ
dω

dω
dk

dk
d(βγ) and get with γ = �ω/mc2, k = nω

c , and the
momentum βγ = �

mck, the derivative

dγp

d (βγ)p
=

1
n

< 1, (20.1)

where we have added the subscript p to differentiate between photon and
electron parameters.

The dispersion function for a photon in a material environment has a slope
less than unity as shown in Fig. 20.2. In this case, the numerical value of the
photon momentum is less than the photon energy, analogous to the particle
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Fig. 20.2. Energy and momentum conservation in a refractive environment with
n > 1

case. To create a photon of energy γp we set γp = −∆γ = −β∆βγ from (1.30),
where from (20.1) the photon energy γp = 1

n (βγ)pand get from both relations
(βγ)p = −nβ∆βγ . Because of symmetry, no momentum transverse to the
particle trajectory can be exchanged, which means radiation is emitted uni-
formly in azimuth. The change in longitudinal momentum along the trajectory
is −∆βγ = (βγ)p

∣∣∣
‖

= (βγ)p cos θ . In a dielectric environment, free electrons

can indeed emit or absorb a photon, although only in a direction given by
the angle θ with respect to the electron trajectory. This radiation is called
Cherenkov radiation, and the Cherenkov angle θ is given by the Cherenkov
condition

nβ cos θ = 1 . (20.2)

Note that this condition is not the same as saying whenever an electron
passes though a refractive medium with n > 1 there is Cherenkov radiation.
The Cherenkov condition requires that nβ > 1 which is, for example, not the
case for an electron beam of less than 20 MeV traveling through air.

20.2.2 Compton Radiation

To generate electromagnetic radiation from free electrons in vacuum without
violating energy–momentum conservation, we may employ the Compton effect
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which is the scattering of an incoming photon by the electron. In energy–
momentum space this process is shown in Fig. 20.3. The electron, colliding
head-on with an incoming photon absorbs, this photon and emits again a
photon of different energy. In this process it gains energy but loses momentum
bringing the electron in the energy–momentum space to an intermediate point,
PI , from where it can reach its final state on the “particle” line by emitting a
photon as shown in Fig. 20.3. This is the process involved in the generation of
synchrotron radiation. Static magnetic fields in the laboratory system appear
as electromagnetic fields like an incoming (virtual) photon in the electron
system with which the electron can collide. Energy–momentum conservation
gives us the fundamental and necessary conditions under which a free charged
particle can emit or absorb a photon. We turn our attention now to the actual
interaction of charged particles with an electromagnetic field.

γ

βγ

Fig. 20.3. Energy and momentum conservation for Compton scattering process

20.3 Electromagnetic Radiation

Phenomenologically, synchrotron radiation is the consequence of a finite value
for the velocity of light. Electric fields extend infinitely into space from charged
particles in uniform motion. When charged particles become accelerated, how-
ever, parts of these fields cannot catch up with the particle anymore and give
rise to synchrotron radiation. This happens more so as the particle velocity
approaches the velocity of light.

The emission of light can be described by applying Maxwell’s equations
to moving charged particles. The mathematical derivation of the theory of
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radiation from Maxwell’s equations is straightforward although mathemati-
cally elaborate and we will postpone this to Chap. 22. Here we follow a more
intuitive discussion [239] which displays visually the physics of synchrotron
radiation from basic physical principles.

Electromagnetic radiation occurs wherever electric and magnetic fields ex-
ist with components orthogonal to each other such that the Poynting vector

S =
1
µ0

[E × B] 
= 0 . (20.3)

It is interesting to ask what happens if we have a static electric and mag-
netic field such that [E × B] 
= 0 . We know there is no radiation but the
Poynting vector is nonzero. Applying energy conservation (1.32), we find the
first two terms to be zero which renders the third term zero as well. For a
static electric and magnetic field the integral defining the radiation loss or
absorption is equal to zero and therefore no radiation or energy transport
occurs.

Similarly, in the case of a stationary electrostatic charge, we note that the
electrostatic fields extend radially from the charge to infinity which violates
the requirement that the field be orthogonal to the direction of observation or
energy flow. Furthermore, the charge is stationary and therefore there is no
magnetic field.

20.3.1 Coulomb Regime

Next, we consider a charge in uniform motion. In the rest frame of the moving
charge we have no radiation since the charge is at rest as just discussed.
In the laboratory system, however, the field components are different. Since
the charge is moving, it constitutes an electric current which generates a
magnetic field. Formulating the Poynting vector in the laboratory system we
express the fields by the pure electric field in the particle rest frame L∗. That
we accomplish by an inverse Lorentz transformations to (1.37), where the
laboratory system L now moves with the velocity −βz with respect to L∗ and
βz in (1.37) must be replaced by −βz for




Ex

Ey

Ez

cBx

cBy

cBz




=



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





E∗
x

E∗
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cB∗
z




. (20.4)

In the laboratory system L the components of the Poynting vector (20.3)
become then with B∗ = 0
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cµ0Sx = −γβzE
∗
xE

∗
z ,

cµ0Sy = −γβzE
∗
yE

∗
z , (20.5)

cµ0Sz = +γ2βz

(
E∗2

x + E∗2
y

)
,

where ∗ indicates quantities in the moving system L∗ and βz = vz /c. The
Poynting vector is nonzero and describes the flow of field energy in the envi-
ronment of a moving charged particle. The fields drop off rapidly with distance
from the particle and the “radiation“ is therefore confined close to the location
of the particle. Specifically, the fields are attached to the charge and travel
in the vicinity and with the charge. This part of electromagnetic radiation
is called the Coulomb regime in contrast to the radiation regime and is, for
example, responsible for the transport of electric energy along electrical wires
and transmission lines.

We will ignore this regime in our further discussion of synchrotron radi-
ation because we are interested only in free radiation which is not anymore
connected to electric charges. It should be noted, however, that measure-
ments of radiation parameters close to radiating charges may be affected by
the presence of the Coulomb radiation regime. Such situations occur, for ex-
ample, when radiation is observed close to the source point. Related theories
deal with this mixing by specifying a formation length defining the minimum
distance from the source required to sufficiently separate the Coulomb regime
from the radiation regime.

20.3.2 Radiation Regime

In this text we are only interested in the radiation regime and therefore ignore
from now on the Coulomb regime. To describe the physics of emission of
radiation, we consider a coordinate system moving with a constant velocity
equal to that of the charged particle and associated electric fields. The charge
is at rest in the moving reference system, the electric field lines extend radially
out to infinity, and there is no radiation as discussed before. Acceleration of
the charge causes it to move with respect to this reference system generating
a distortion of the purely radial electric fields of a uniformly moving charge
(Fig. 20.4). This distortion, resulting in a rearrangement of field lines to the
new charge position, travels outward at the velocity of light giving rise to
what we call radiation.

To be more specific, we consider a positive charge in uniform motion for
t � 0, then we apply an accelerating force at time t = 0 for a time ∆T
and observe the charged particle and its fields in the uniformly moving frame
of reference. Due to acceleration the charge moves in this reference system
during the time ∆T from point A to point B and as a consequence the field
lines become distorted within a radius c∆T from the original location A of
the particle. It is this distortion, traveling away from the source at the speed
of light, that we call radiation.
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The effects on the fields are shown schematically in Fig. 20.4 for an accel-
eration of a positive charge along its direction of motion. At time t = 0 all
electric field lines extend radially from the charge located at point A to in-
finity. During acceleration fieldlines emerge from the charge now at locations
between A and B. The new field lines must join the old field lines which, due to
the finite velocity of light, are still unperturbed at distances larger than c∆T.
As long as the acceleration lasts, a nonradial field component, parallel and op-
posite to the acceleration, is created. Furthermore, the moving charge creates
an azimuthal magnetic field B∗

ϕ(t) and the Poynting vector becomes nonzero
causing the emission of radiation from an accelerated electrical charge.

electrical field
lines

c∆T

charge > 0

acceleration

Poynting vector: SSSSS

long. electric field
component EEEEEz

magnetic field BBBBBϕ

A B

Fig. 20.4. Distortion of fields due to longitudinal acceleration

Obviously, acceleration would not result in any radiation if the velocity of
propagation for electromagnetic fields were infinite, c → ∞. In this case the
radial fields at all distances from the charge would instantly move in synchrony
with the movement of the charge. Only the Coulomb regime would exist.

The electrical field perturbation is proportional to the electrical charge q
and the acceleration a∗. Acceleration along the z-axis generates an electric
field E∗

z 
= 0 and its component normal to the direction of observation scales
like sinΘ∗, where Θ∗ is the angle between the line of observation and the
direction of particle acceleration. During the acceleration a fixed amount of
field energy is created which propagates radially outward from the source.
Since the total radiation energy must stay constant and the volume of the
expanding spherical sheath of field perturbation increases like R2, the field
strength decays linearly with distance R. With this, we make the ansatz
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x

z

Fig. 20.5. Spatial radiation distribution in the rest frame of the radiating charge

E∗
‖ = − 1

4πε0
ea∗

c2R
sinΘ∗ (20.6)

for the electric field, where we have added a factor c2 in the denominator
to be dimensionally correct. For an electron (e < 0) the field perturbation
would be positive pointing in the direction of the acceleration. As expected
from the definition of the Poynting vector, the radiation is emitted predom-
inantly orthogonal to the direction of acceleration and is highly polarized in
the direction of acceleration. From (1.34)

S =
1

cµ0
E∗2

‖ n∗, (20.7)

where n∗ is the unit vector in the direction of observation from the observer
toward the radiation source. The result is consistent with our earlier finding
that no free radiation is emitted from a charge at rest or uniform motion (a∗ →
0). The spatial radiation distribution is from (20.6) and (20.7) characterized
by a sin2 Θ∗ distribution resembling the shape of a doughnut as shown in
Fig. 20.5, where the acceleration occurs along the x-axis.

Acceleration may not only occur in the longitudinal direction but also in
the direction transverse to the velocity of the particle as shown in Fig. 20.6.
The distortion of field lines in this case creates primarily transverse or radial
field components. The radiation field component transverse to the direction
of observation is

E∗
⊥ = −µ0

4π
ea∗

R
cosΘ∗ . (20.8)
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Fig. 20.6. Distortion of field lines due to transverse acceleration

This case of transverse acceleration describes the appearance of syn-
chrotron radiation created by charged particles being deflected in magnetic
fields. Similar to (20.7) the Poynting vector for transverse acceleration is

S =
1

cµ0
E∗2

⊥ n∗ . (20.9)

Problems

20.1 (S). Use the definition for β the momentum, the total, and kinetic energy
and derive expressions p (β,Ekin) , p (Ekin), and Ekin.

20.2 (S). Simplify the expressions obtained in Problem 20.1 for large energies,
γ 
 1. Derive from the relativistic expressions the classical nonrelativistic
formulas.

20.3. Show that dγ/dt = γ3βdβ/dt.

20.4 (S). Consider electrons to be accelerated in the 3 km long SLAC linear
accelerator with a uniform gradient of 20 MeV/m. The electrons have a ve-
locity v = c/2 at the beginning of the linac. What is the length of the linac
in the rest frame of the electron? Assume the particles at the end of the 3
km long linac would enter another 3 km long tube and coast through it. How
long would this tube appear to be to the electron?
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20.5 (S). An electron beam orbits in a circular accelerator with a circum-
ference of 300 m at an average current of 250 mA and the beam consists of
500 equally spaced bunches each 1 cm long. How many particles are orbiting?
How many electrons are there in each bunch? Assuming, the time structure of
synchrotron radiation is the same as the electron beam time structure specify
and plot the radiation time structure in a photon beam line.

20.6 (S). Consider a relativistic electron traveling along the z-axis. In its own
system, the electrical field lines extend radially from the charge. Considering
only the xz-plane, derive an expressions for the electrical field lines in the
laboratory frame of reference. Sketch the field pattern in the electron rest
frame and in the laboratory system of reference.

20.7 (S). A circular accelerator with a circumference of 100 m contains a uni-
form distribution of singly charged particles orbiting with the speed of light. If
the circulating current is 1 A, how many particles are orbiting? We instantly
turn on an ejection magnet so that all particles leave the accelerator during
the time of one revolution. What is the peak current at the ejection point?
How long is the current pulse duration? If the accelerator is a synchrotron
accelerating particles at a rate of 100 acceleration cycles per second, what is
the average ejected particle current?

20.8 (S). Use a 10 MeV electron beam passing through atmospheric air. Can
you observe Cherenkov radiation, and if so at what angle? Answer the same
questions also for a 50 MeV electron beam. Describe and explain with Fig. 20.2
the fundamental difference of your results (nair = 1.0002769 for λ = 5600 Å).

20.9. Verify that for a 10 MeV electron colliding head-on with a Ti-Saphire
laser (λ = 0.8 µm) the wavelength in its own system is λ∗ = 40.88 nm.
Also show that the wavelength of the backscattered photon in the laboratory
system is λγ = 10.4 Å. What electron beam energy do you need to produce
1 Å radiation? What is the maximum acceptance angle allowable to still get
a photon beam with a band width of 10% or less? Show that the acceptance
angle is ±18.15 mrad.

20.10 (S). A 10 MeV electron beam passes with normal incidence through a
plate of translucent plastic (n = 1.7). Is there any Cherenkov radiation, and
if so at what angle? Where does this radiation escape the plate?

20.11 (S). Show that the product of two 4-vectors is Lorentz invariant.

20.12 (S). Show that the product of the 4-momentum and 4-spacetime of a
photon is proportional to the phase of the electromagnetic wave.

20.13 (S). An electron beam orbits in a circular accelerator with a circum-
ference of 300 m at an average current of 250 mA and the beam consists of
500 equally spaced bunches each 1 cm long. How many particles are orbiting?
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How many electrons are there in each bunch? Assuming the time structure of
synchrotron radiation is the same as the electron beam time structure specify
and plot the radiation time structure in a photon beam line.

20.14 (S). A circular accelerator with a circumference of 100 m contains a
uniform distribution of singly charged particles orbiting with the speed of
light. If the circulating current is 1 A, how many particles are orbiting? We
instantly turn on an ejection magnet so that all particles leave the accelerator
during the time of one revolution. What is the peak current at the ejection
point? How long is the current pulse duration? If the accelerator is a syn-
chrotron accelerating particles at a rate of 100 acceleration cycles per second,
what is the average ejected particle current?

20.15 (S). From Heisenberg’s uncertainty relation construct a “characteristic
volume” of a photon with energy εph = �ω. What is the average electric field
in this volume for a 1 eV photon and an x-ray photon of 10 keV?

20.16. Consider a beam of 123.8 meV and 10 keV photons, both at a power
density of 100 W/mm2. How many photons occupy their respective “charac-
teristic volumes?” Show that the photon flux density is 1.875 × 1010 photons
(100 meV)/mm3 and 1.875 × 105 photons(10 keV)/mm3. Verify that 61.07
photons (123.8 meV) and 1.44 × 10−18 photons (10 keV) occupy, on average,
their own characteristic volume in a 100 W/mm2 beam. The x-ray photon
distribution is indeed sparse among its characteristic volume. What are the
respective characteristic volumes?

20.17 (S). Prove that n × E = cB for plane waves.

20.18 (S). Derive from (1.58) the formula for the classical Doppler effect valid
for sound waves emitted at a frequency fs from a source moving with velocity
v and received at an angle ϑ.

20.19 (S). Show that (1.33) and (1.34) are the same for electromagnetic
waves.

20.20 (S). Consider an electron storage ring at an energy of 800 MeV, a
circulating current of 1 A and a bending radius of ρ = 1.784 m. Calculate
the energy loss per turn, and the total synchrotron radiation power from all
bending magnets. What would the radiation power be if the particles were
800 MeV muons.

20.21 (S). For the electron beam of Problem 20.20 calculate the critical en-
ergy and plot the radiation spectrum. What is the useful frequency range for
experimentation assuming that the spectral intensity should be within 1% of
the maximum value? Express the maximum useful photon energy in terms of
the critical photon energy (only one significant digit!).
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20.22 (S). What beam energy would be required to produce x-rays from the
storage ring of Problem 20.20 at a critical photon energy of 10 keV? Is that
energy feasible from a conventional magnet point of view or would the ring
have to be larger? What would the new bending radius have to be?

20.23 (S). The design of the European Large Hadron Collider [240] calls for
a circular proton accelerator for energies up to 10 TeV. The circumference is
26.7 km and the bending radius ρ = 2887 m. Calculate the energy loss per
turn due to synchrotron radiation and the critical photon energy. What is the
synchrotron radiation power for a circulating beam of 164 m A?

20.24 (S). Consider a 7GeV electron ring with a circulating beam of 200 mA
and a bending radius of ρ = 20 m. Your experiment requires a photon flux of
106 photons/s at a photon energy of 8 keV, within a band width of 10−4 onto
a sample with a cross section of 10×10µm2and your experiment is 15 m away
from the source point. Can you do your experiment on a bending magnet
beam line of this ring?

20.25 (S). Bending magnet radiation (ρ = 2 m) from a 800 MeV, 500 mA
storage ring includes a high intensity component of infrared radiation. Calcu-
late the photon beam brightness for λ =10 µm radiation at the experimental
station which is 5 m away from the source. The electron beam cross section
is σb,x × σb,y = 1.1 × 0.11 mm and its divergence σb,x′ × σb,y′ = 0.11 × 0.011
mrad. What is the corresponding brightness for infrared radiation from a
black body radiator at 2000 oK with a source size of x × y = 10 × 2 mm2

(Hint: the source length L = ρ2θrad,where ±θrad is the vertical opening angle
of the radiation.)

20.26 (S). How well are the electron beam parameters of Problem 20.25 at
the source matched to the photon beam? Show the phase space ellipses of
both the electron and the photon beam in phase space and in x and y.
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Overview of Synchrotron Radiation

After Schott’s [235] unsuccessful attempt to explain atomic radiation with
his electromagnetic theory no further progress was made for some 40 years
mainly because of lack of interest. Only in the mid 1940s did the theory of
electromagnetic radiation from free electrons become interesting again with
the successful development of circular high energy electron accelerators. At
this time powerful betatrons [194] were put into operation and it was Iva-
nenko and Pomeranchouk [241] who first in 1944 pointed out a possible limit
to the betatron principle and maximum energy due to energy loss from emis-
sion of electromagnetic radiation. This prediction was used by Blewett [195]
to calculate the radiation energy loss per turn in a newly constructed 100
MeV betatron at General Electric. In 1946 he measured the shrinkage of the
orbit due to radiation losses and the results agreed with predictions. On April
24, 1947 visible radiation was observed for the first time at the 70 MeV syn-
chrotron built at General Electric [242–244]. Since then, this radiation is called
synchrotron radiation.

The energy loss of particles to synchrotron radiation causes technical and
economic limits for circular electron or positron accelerators. As the particle
energy is driven higher and higher, more and more rf-power must be supplied
to the beam not only to accelerate particles but also to overcome energy
losses due to synchrotron radiation. The limit is reached when the radiation
power grows to high enough levels exceeding technical cooling capabilities or
exceeding the funds available to pay for the high cost of electrical power.
To somewhat ameliorate this limit, high energy electron accelerators have
been constructed with ever increasing circumference to allow a more gentle
bending of the particle beam. Since the synchrotron radiation power scales
like the square of the particle energy (assuming constant magnetic fields)
the circumference must scale similarly for a constant amount of rf-power.
Usually, a compromise is reached by increasing the circumference less and
adding more rf-power in spaces along the ring lattice made available by the
increased circumference. In general the maximum energy in large circular
electron accelerators is limited by the available rf-power while the maximum
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energy of proton or ion accelerators and low energy electron accelerators is
more likely limited by the maximum achievable magnetic fields in bending
magnets.

What is a nuisance for researchers in one field can provide tremendous
opportunities for others. Synchrotron radiation is emitted tangentially from
the particle orbit and within a highly collimated angle of ±1/γ. The spectrum
reaches from the far infrared up to hard x-rays, the radiation is polarized and
the intensities greatly exceed other sources specifically in the vacuum ultra-
violet to x-ray region. With these properties synchrotron radiation was soon
recognized to be a powerful research tool for material sciences, crystallogra-
phy, surface physics, chemistry, biophysics, and medicine to name only a few
areas of research. While in the past most of this research was done parasiti-
cally on accelerators built and optimized for high energy physics the usefulness
of synchrotron radiation for research has become important in its own right
to justify the construction and operation of dedicated synchrotron radiation
sources all over the world.

21.1 Radiation Sources

Deflection of a relativistic particle beam causes the emission of electromag-
netic radiation which can be observed in the laboratory system as broadband
radiation, highly collimated in the forward direction. The emission is related
to the deflection of a charged particle beam and therefore sweeps like a search
light across the detection apparatus of the observer. It is this shortness of
the observable radiation pulse which implies that the radiation is detected as
synchrotron radiation with a broad spectrum. The width of the spectrum is
characterized by the critical photon energy (21.49) and depends only on the
particle energy and the bending radius of the magnet. Generally, the radiation
is produced in bending magnets of a storage ring, where an electron beam is
circulating for hours.

In order to adjust the radiation characteristics to special experimental
needs, other magnetic devices are being used as synchrotron radiation sources.
Such magnets are known as insertion devices since they do not contribute to
the overall deflection of the particle beam in the circular accelerator. Their
effect is localized and the total deflection in an insertion device is zero. In this
chapter, we give a short overview of all radiation sources and their character-
istics and postpone more detailed discussions of insertion device radiation to
Chap. 23.

21.1.1 Bending Magnet Radiation

The radiation from bending magnets is emitted tangentially from any point
along the curved path like that of a searchlight and appears therefore as
a swath of radiation around the storage ring as shown in Fig. 21.1. In the
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Fig. 21.1. Radiation swath from bending magnets in an electron storage ring

vertical, nondeflecting plane, however, the radiation is very much collimated
with a typical opening angle of ±1/γ.

The temporal structure of synchrotron radiation reflects that of the elec-
tron beam. Electrons circulating in the storage ring are concentrated into
equidistant bunches. The distance between bunches is equal to an integer
multiple (usually equal to unity) of the rf-wavelength (60 cm for 500 MHz)
while the bunch length itself is of the order of 1 to 3 cm or 30 to 100 ps de-
pending on beam energy and rf-voltage. As a consequence, the photon beam
consists of a series of short 30–100 ps flashes every 2 ns (500 MHz) or integer
multiples thereof.

Radiation is emitted in a broad spectrum reaching, in principal, from
mircowaves up to the critically photon energy (21.49) and beyond with fast
declining intensities. The long wavelength limit of the radiation spectrum is
actually limited by the vacuum chamber, which causes the suppression of ra-
diation at wavelength longer than its dimensions. The strength of bending
magnets, being a part of the geometry of the storage ring cannot be freely
varied to optimize for desired photon beam characteristics. This is specifically
limiting in the choice of the critical photon energy. While the lower photon
energy spectrum is well covered even for rather low energy storage rings, the
x-ray region requires high beam energies and/or high magnetic fields. Often,
the requirements for x-rays cannot be met with existing bending magnet and
storage ring parameters.

21.1.2 Superbends

The critical photon energy from bending magnet radiation (21.51) is deter-
mined by the magnet field and the particle energy. The combination of both
quantities may not be sufficient to extend the synchrotron radiation spectrum
into the hard x-ray regime, especially in low energy storage rings. In this
case, it is possible to replace some or all original bending magnets by much
stronger but shorter magnets, called superbends. To be more specific, conven-
tional bending magnets are replaced by high field, shorter superconducting
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magnets deflecting the electron beam by the same angle to preserve the stor-
age ring geometry. Since conventional bending magnet fields rarely exceed 1.5
T, but superconducting magnets can be operated at 5 to 6 T or higher, one
can gain a factor of 3 to 4 in the critical photon energy and extend the photon
spectrum toward or even into the hard x-ray regime.

21.1.3 Wavelength Shifter

The installation of superbends is not always feasible or desirable. To still
meet the need for harder x-ray radiation in a low energy storage ring, it is
customary to use a wavelength shifter. Such a device may consist of three
or five superconducting dipole magnets with alternating magnetic field direc-
tions. For this latter reason, a wavelength shifter is a true insertion device.
The limitation to three or five poles is purely technical and may be eased as
superconducting magnet and cryo-technology progresses. Figure 21.2 shows
schematically a three-pole wavelength shifter.

Fig. 21.2. Magnetic field distribution along the beam path for a wavelength shifter

The particle beam passing through this wavelength shifter is deflected up
and down or left and right in such a way that no net deflection remains.
To meet this condition, the longitudinal field distribution of a horizontally
deflecting wavelength shifter must obey the condition

∫ ∞

−∞
By (y = 0, z) d z = 0 . (21.1)

A wavelength shifter with such field properties is neutral on the geometry of
the particle beam path through a storage ring and therefore can be made in
principle as strong as necessary or technically feasible.

Only the central high field pole is used as the radiation source, while the
two side poles compensate the beam deflection from the central pole. In a
five-pole wavelength shifter the three central poles would be used as radia-
tors, while both end poles again act as compensators. Mostly, the end poles
are longer than the central poles and operate at a lower field. As their name
implies, the primary objective in wavelength shifters is to extend the photon



21.1 Radiation Sources 753

spectrum while the enhancement of intensity through radiation accumulation
from many poles, while desirable, is of secondary importance. To maximize
the desired effect, wavelength shifters are often constructed as high field su-
perconducting magnets to maximize the critical photon energy for the given
particle beam energy. Some limitations apply for such devices as well as for
any other insertion device. The end fields of magnets can introduce particle
focusing and nonlinear field components may introduce aberrations and cause
beam instability. Both effects must either be kept below a critical level or be
compensated.

21.1.4 Wiggler Magnet Radiation

The principle of a wavelength shifter is extended in the case of a wiggler-
magnet. Such a magnet consists of a series of equal dipole magnets with
alternating magnetic field direction. Again, the end poles must be configured
to make the total device neutral to the geometry of the particle beam path
such that the conditions

∫
Bdz = 0 are met in both planes.

The main advantage of using many magnet poles is to increase the photon
flux. Like a single bending magnet, each of the Nm magnet poles produces a
fan of radiation in the forward direction and the total photon flux is Nm-times
larger than that from a single pole. Wiggler magnets may be constructed as
electromagnets with fields up to 2 T to function both as a flux enhancer and
as a more modest wavelength shifter compared to the superconducting type.
An example of an 8-pole, 1.8 T electromagnetic wiggler magnet [245] is shown
in Fig. 21.3.

Fig. 21.3. Electromagnetic wiggler magnet with eight 1.8 T poles
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In this figure, the magnet gap is wide open, to display the flat vacuum
chamber running through the magnet between the poles. The pole pieces in
the lower row are visible surrounded by water cooled excitation coils. During
operation, both rows of wiggler poles are closed to almost touch the flat vac-
uum chamber. When the magnet is closed, a maximum magnetic field of 1.8
T can be obtained. Strong fields can be obtained from electromagnets, but
the space requirement for the excitation coils limits the number of poles that
can be installed within a given length.

Progress in the manufacturing of high field permanent magnet material
permits the installation of many more poles into the same space compared to
an electromagnet. An example of a modern 26 pole, 2.0 T permanent magnet
wiggler is shown in Fig. 21.4 [246].

Figure 21.4 shows the wiggler magnet during magnetic measurement with
the rail in front of the magnet holding and guiding the Hall probe. The in-
creased number of poles and simplified design compared to the electromagnetic
wiggler in Fig. 21.3 are clearly visible.

For short wiggler poles, we express the magnetic field by

By (x, y = 0, z) = B0 sin
2πz
λp

(21.2)

Fig. 21.4. Permanent magnet wiggler with 26 poles, a 175 mm period length, and
a maximum field of 2.0 T
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and the maximum beam deflection from the axis is equal to the deflection
angle per half pole

ϑ =
B0

Bρ

∫ λp/4

0

sin
2πz
λp

d z =
B0

Bρ

λp

2π
, (21.3)

where Bρ is the beam rigidity. Multiplying this with the beam energy γ, we
define the wiggler strength parameter

K = γϑ =
ecB0

mc2
λp

2π
= 0.934B0 (T) λp (cm) . (21.4)

This wiggler strength parameter is generally much larger than unity. Con-
versely, a series of alternating magnet poles is called a wiggler magnet if the
strength parameter K 
 1 and condition (21.1) is met. As we will see later, a
weak wiggler magnet with K � 1 is called an undulator and produces radia-
tion with significant different characteristics. The magnetic field strength can
be varied in both electromagnetic wigglers as well as in permanent magnet
wigglers . While this is obvious for electromagnets, the magnetic field strength
in permanent magnets depends on the distance between magnet poles or on
the gap height g. By varying mechanically the gap height of a permanent
magnet wiggler, the magnetic field strength can be varied as well. The field
strength also depends on the period length and on the design and magnet
materials used. For a wiggler magnet constructed as a hybrid magnet with
Vanadium Permendur poles, the field strength along the midplane axis scales
approximately like [154]

By(T) ≈ 3.33 exp
[
− g

λp

(
5.47 − 1.8

g

λp

)]
, for 0.1λp � g � 10λp, (21.5)

where g is the gap aperture between magnet poles. This dependency is also
shown in Fig. 21.5 and we note immediately that the field strength drops off
dramatically for magnet gaps of the order of a period length or greater.

On the other hand, significant field strengths can be obtained for small
gap apertures and it is therefore important to install the insertion device at
a location where the beam dimension normal to the deflection plane is small.

The total radiation power can be derived by integrating (21.32) through
the wiggler magnet. The result of this integration is

〈Pγ〉 = 1
3 rcmc2 c γ2K2 4π2

λ2
p

, (21.6)

or in practical units

〈Pγ (W)〉 = 632.7E2 B2
0 I Lu, (21.7)

where I is the circulating beam current, and Lu = Npλp is the length of the
wiggler magnet.



756 21 Overview of Synchrotron Radiation

0 .0 1 0 .1 1g /λp

0

1

2

3
B y (T )

Fig. 21.5. On-axis field strength in a Vanadium Permendur hybrid wiggler magnet
as a function of gap aperture (21.5)

For a sinusoidal field distribution B0 sin 2π
λp

z, the desired wavelength shift-
ing property of a strong wiggler magnet can be obtained only in the forward
direction. Radiation emitted at a finite angle with respect to the wiggler axis
is softer because it is generated at a source point where the field is lower.
The hardest radiation is emitted in the forward direction from the crest of
the magnetic field. For a distance ∆z away from the crest, the emission angle
in the deflection plane is ψ = 1

ρ0

λp
2π sin 2π

λp
∆z and the curvature at the source

point is 1
ρ = 1

ρ0

√
1 −
(

γψ
K

)2

, where we have made use of (21.4). Consequently,

the critical photon energy for radiation in the direction ψ with respect to the
wiggler axis varies with the emission angle ψ like

εc = εc0

√
1 −
(
γψ

K

)2

. (21.8)

At the maximum deflection angle ψmax = θ = K/γ the critical photon energy
has dropped to zero, reflecting a zero magnetic field at the source point.

This property is undesirable if more than one experimental station is sup-
posed to receive hard radiation from the same wiggler magnet. The strength
of the wiggler magnet sweeps the electron beam over a considerable angle, a
feature which can be exploited to direct radiation not only to one experimen-
tal station along the axis but also to two or more side stations on either side
of the wiggler axis. However, these side beam lines at an angle ψ 
= 0 receive
softer radiation than the main beam line. This can be avoided if the poles of
the wiggler magnet are lengthened thus flattening the sinusoidal field crest.
As the flat part of the field crest is increased, hard radiation is emitted into
an increasing angular cone.
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21.1.5 Undulator Radiation

So far, we have discussed insertion devices designed specifically to harden the
radiation spectrum or to increase the radiation intensity. Equally common is
the implementation of insertion devices to optimize photon beam quality by
maximizing its brightness or to provide specific characteristics like elliptically
polarized radiation. This is done with the use of undulator magnets, which are
constructed similar to wiggler magnets, but are operated at a much reduced
field strength.

Fundamentally, an undulator magnet causes particles to be only very
weakly deflected with an angle of less than ±1/γ and consequently the trans-
verse motion of particles is nonrelativistic. In this picture, the electron motion
viewed from far away along the beam axis appears as a purely sinusoidal trans-
verse oscillation similar to the electron motion in a linear radio antenna driven
by a transmitter and oscillating at the station’s carrier frequency. The radia-
tion emitted is therefore monochromatic with a period equal to the oscillation
period.

To be more precise, viewed from far away the particle appears to be at
rest or in uniform motion as long as the electron has not yet reached the un-
dulator magnet. Upon entering the magnet the electron performs sinusoidal
transverse oscillations and returns to its original motion again after it exits
the undulator. As a consequence of this motion and in light of earlier dis-
cussions, we observe emission of radiation at the frequency of the transverse
oscillating beam motion. If Np is the number of undulator periods, the electric
field lines have been perturbed periodically Np-times and the radiation pulse
is composed of Np oscillations. In the particle rest frame L∗ the undulator
period length is Lorentz contracted to λ∗

γ = λp/γ which is the wavelength of
the emitted radiation. Because the radiation includes only a finite number of
Np oscillations, the radiation is not quite monochromatic but rather quasi-
monochromatic with a band width of 1/Np. This situation is illustrated in
Fig. 21.6(a).

In Fig. 21.6(b) the radiation lobe and spectrum is shown in the laboratory
system. The monochromatic nature of the radiation is somewhat lost because
radiation emitted at different angles experiences different Doppler shifts. Of
course, the radiation is again quasi-monochromatic even in the laboratory
system when observed through a narrow pin hole along the axis. This mono-
chromatic radiation is called the fundamental undulator radiation and has for
K � 1 a wavelength of

λγ ≈ λp

2γ2
. (21.9)

The situation becomes more complicated as the undulator strength is in-
creased. Two new phenomena appear, an oscillatory forward motion and a
transverse relativistic effect. The first phenomenon that we need to discuss
is the fact that the transverse motion becomes relativistic. As a consequence
of this, the pure sinusoidal transverse motion becomes distorted. There is a
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Fig. 21.6. Beam dynamics and spectra radiation lobes, in the particle rest system
(a) and the laboratory system (b) for a weak undulator (K � 1)

periodic Lorentz contraction of the longitudinal coordinate, which is larger
when the particle travels almost parallel to the axis in the vicinity of the os-
cillation crests and is smaller when in between crests. The cusps and valleys of
the sinusoidal motion become Lorentz-contracted in the particle system thus
perturbing the sinusoidal motion as shown in Fig. 21.7.

This perturbation is symmetric about the cusps and valleys causing the
appearance of odd and only odd (3rd, 5th, 7th,...) harmonics of the funda-

Fig. 21.7. Distortion of sinusoidal motion due to relativistic perturbation of trans-
verse motion
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mental oscillation period. From an undulator of medium strength (K � 1) we
observe therefore along the axis a line spectrum of odd harmonics in addition
to the fundamental undulator radiation.

The second phenomenon to be discussed is the periodic modulation of the
longitudinal motion. The longitudinal component of the particle velocity is
maximum when the particle travels close to the crest of the oscillations and
at a minimum when it is close to the axis crossings. In a reference system
which moves uniformly with the average longitudinal particle velocity along
the axis, the particle performs periodic longitudinal oscillations in addition to
the transverse oscillations. For each transverse period, the particle performs
two longitudinal oscillations and its path looks therefore like a figure of eight
(8). This situation is shown in Fig. 21.8.

Fig. 21.8. Beam dynamics, radiation lobes and spectrum in the particle rest system
for a stronger undulator (K � 1)

We have now two orthogonal accelerations, one transverse and one longitu-
dinal, and two radiation lobes as indicated in Fig. 21.8. Since the longitudinal
motion occurs at twice the frequency of the transverse motion, we observe
now radiation also at twice the fundamental frequency. Of course, the rela-
tivistic perturbation applies here too and we have therefore a line spectrum
which includes two series, one with all odd harmonics and one with only even
harmonics. Even and odd harmonic radiation is emitted in the particle sys-
tem in orthogonal directions and therefore we find both radiation lobes in the
laboratory system spatially separated as well. The odd harmonics all have
their highest intensities along the undulator axis, while the even harmonic
radiation is emitted preferentially into an angle 1/γ with respect to the axis
and has zero intensity along the axis.

In another equally valid view of undulator radiation, the static and periodic
magnetic undulator field appears in the rest frame of the electron as a Lorentz-
contracted electromagnetic field or as monochromatic photon of wavelength
λ∗ = λp/γ. The emission of photons can therefore be described as Thomson
scattering of virtual photons by free electrons [93] resulting in monochromatic
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radiation in the direction of the particle path. Viewed from the laboratory
system, the radiation is Doppler shifted and applying (1.58) the wavelength
of the backscattered photons is

λph =
λp

γ2 (1 + β n∗
z)

. (21.10)

Viewing the radiation parallel to the forward direction (ϑ ≈ 0), (1.59)
becomes with nz = cosϑ∗ ≈ 1 − 1

2 ϑ∗2, and β ≈ 1

1 + β n∗
z =

β + n∗
z

nz
≈ 2 − 1

2
ϑ∗2

nz
. (21.11)

Setting nz ≈ 1, the fundamental wavelength of the emitted radiation is

λ1 =
λp

γ2

1
2 − 1

2
ϑ∗2

nz

≈ λp

2γ2

(
1 +

1
4

ϑ∗2
)

. (21.12)

With (1.60) the angle ϑ∗ of the particle trajectory with respect to the
observation is transformed into the laboratory system like ϑ∗ = 2γϑ. We
distinguish two configurations. One where ϑ = K/γ =const. describing the
particle motion in a helical undulator, where the magnetic field, being normal
to the undulator axis, rotates about this axis. The other more common case
is that of a flat undulator, where the particle motion follows a sinusoidal path
in which case ϑ = ϑund + ϑobs . Here ϑund = K

γ sin kpz is the observation
angle due to the periodic motion of the electrons in the undulator and ϑobs

is the actual observation angle. With these definitions and taking the average〈
ϑ2

und

〉
we get γ2ϑ2 = 1

2K
2 +γ2ϑ2

obs. Depending on the type of undulator, the
wavelength of radiation from an undulator with a strength parameter K is

λ1 =





λp

2γ2

(
1 + K2 + γ2ϑ2

obs

)
for a helical undulator

λp

2γ2

(
1 + 1

2 K2 + γ2ϑ2
obs

)
for a flat undulator.

(21.13)

From now on only flat undulators will be considered in this text and read-
ers interested in more detail of helical undulators are referred to [34]. No
special assumptions have been made here which would prevent us to apply
this derivation also to higher harmonic radiation and we get the general ex-
pression for the wavelength of the kth harmonic

λk =
λp

2γ2k

(
1 + 1

2K
2 + γ2ϑ2

obs

)
. (21.14)

The additional terms 1
2K

2+γ2ϑ2
obs compared to (21.9) comes from the correct

application of the Doppler effect. Since the particles are deflected periodically
in the undulator, we view even the on-axis radiation at a periodically varying
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angle which accounts for the 1
2K

2-term. Of course, observation of the radiation
at a finite angle ϑobs generates an additional red-shift expressed by the term
γ2ϑ2

obs.
In more practical units, the undulator wavelengths for the kth harmonic

are expressed from (21.14) by

λk

(
Å
)

= 13.056
λp (cm)

k E2
(
GeV2

) (1 + 1
2 K2 + γ2ϑ2

obs

)
(21.15)

and the corresponding photon energies are

εk (eV) = 950
k E2

(
GeV2

)

λp (cm)
(
1 + 1

2 K2 + γ2ϑ2
obs

) . (21.16)

Recollecting the discussion of undulator radiation, we found that the first
harmonic or fundamental radiation is the only radiation emitted for K � 1.
As the undulator parameter increases, however, the oscillatory motion of
the particle in the undulator deviates from a pure sinusoidal oscillation. For
K > 1 the transverse motion becomes relativistic, causing a deformation of
the sinusoidal motion and the creation of higher harmonics. These harmon-
ics appear at integral multiples of the fundamental radiation energy. Only
odd harmonics are emitted along the axis (ϑ ≈ 0) while even harmonics are
emitted into a small angle from the axis. As the undulator strength is fur-
ther increased more and more harmonics appear, each of them having a finite
width due to the finite number of undulator periods, and finally merging
into the well-known broad spectrum of bending or wiggler magnet radiation
(Fig. 21.9).

Fig. 21.9. Transition from quasi-monochromatic undulator radiation to broadband
wiggler radiation

We find no fundamental difference between undulator and wiggler mag-
nets, one being just a stronger version of the other. From a practical point of
view, the radiation characteristics are very different and users of synchrotron
radiation make use of this difference to optimize their experimental capabili-
ties. In Chap. 23 we will discuss the features of undulator radiation in much
more detail.
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The electron motion through an undulator with Np periods includes that
many oscillations and so does the radiation field. Applying a Fourier trans-
formation to the field, we find the spectral width of the radiation to be

∆λ

λ
=

1
Np

. (21.17)

In reality, this line width is increased due to the finite aperture of the
radiation detection elements, and due to a finite energy spread and finite
divergence of the electron beam. Typical experimental undulator spectra are
shown in Fig. 21.10 for increasing undulator strength K [247].

Fig. 21.10. Measured radiation spectrum from an undulator for different strength
parameters K. The intensity at low photon energies are reduced by absorption in a
Be-window

Although this radiation was measured through a pin hole and on-axis,
we still recognize even harmonic radiation since the pin hole covers a finite
solid angle and lets some even harmonic radiation through. Furthermore, the
measured intensities of the line spectrum do not reflect the theoretical expec-
tation for the lowest harmonics at higher values of K. This is an artifact of
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the experimental circumstances, where the x-rays have been extracted from
the storage ring vacuum chamber through a Be-window. Such a window works
very well for hard x-rays but absorbs heavily at photon energies below some
3 keV.

The concentration of all radiation into one or a few spectral lines is very
desirable for many experiments utilizing monochromatic photon beams since
radiation is produced only in the vicinity of the desired wavelength at high
brightness. Radiation at other wavelengths creating undesired heating effects
on optical elements and samples is greatly eliminated.

21.1.6 Back Scattered Photons

The principle of Thomson backscattering or Compton scattering of the static
undulator fields can be expanded to that of photon beams colliding head-on
with the particle beam. In the electron system of reference the electromagnetic
field of this photon beam looks fundamentally no different than the electro-
magnetic field from the undulator magnet. We may therefore apply similar
arguments to determine the wavelength of back scattered photons. The basic
difference of both effects is that in the case of back scattered photons the
photon beam moves with the velocity of light toward the electron beam and
therefore the electron sees twice the Lorentz contracted photon frequency and
we expect therefore a back scattered photon beam at twice the Doppler shifted
frequency. That extra factor of 2 does not apply for undulator radiation since
the undulator field is static and the relative velocity with respect to the elec-
tron beam is c. If λL is the wavelength of the incident radiation or incident
laser, the wavelength of the backscattered photons is

λγ =
λL

4γ2

(
1 + γ2ϑ2

obs

)
, (21.18)

where ϑobs is the angle between the direction of observation and the particle
beam axis. Scattering, for example, a high intensity laser beam from high
energy electrons produces a monochromatic beam of hard x-rays which is
highly collimated within an angle of ±1/γ. If the laser wavelength is, for
example, λL=10 µm and the particle energy is 100 MeV the wavelength of
the backscattered x-rays would be 1.3 Å or the photon energy would be 9.5
keV which is well within the hard x-ray regime.

Photon Flux

The intensity of the backscattered photons can be calculated in a simple way
utilizing the Thomson scattering cross section [93]

σTh = 8π
3 r2

c = 6.65 × 10−25 cm2. (21.19)
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The total scattering event rate or the number of back scattered photons
per unit time is then

Nsc = σTh L , (21.20)

where L is called the luminosity. The value of the luminosity is independent
of the nature of the physical reaction and depends only on the intensities and
geometrical dimensions of the colliding beams. The definition of the luminosity
is the product of the target density of one beam by the “particle” flux of the
other beam onto this target. Therefore the luminosity can be determined by
folding the particle density in one beam with the incident “particles” per
unit time of the other beam. Obviously, only those parts of the beam cross
sections count which overlap with the cross section of the other beam. For
simplicity, we assume a Gaussian distribution in both beams and assume that
both beam cross sections are the same. In a real setup one would focus the
electron beam and the photon beam to the same optimum cross section given
by the Rayleigh length (24.59). We further consider the particle beam as the
target for the photon beam.

With Ne electrons in each bunch of the particle beam within a cross section
of 2πσxσy the particle density is Ne/ 2πσxσy.We consider now a photon beam
with the same time structure as the electron beam. If this is not the case only
that part of the photon beam which actually collides with the particle beam
within the collision zone may be considered. For an effective photon flux Ṅph

the luminosity is

L =
NeṄph

2πσxσy
. (21.21)

Although the Thomson cross section and therefore the photon yield is very
small, this technique can be used to produce photon beams with very specific
characteristics. By analyzing the scattering distribution this procedure can
also be used to determine the degree of polarization of an electron beam in a
storage ring.

So far, it was assumed that the incident and scattered photon energies are
much smaller than the particle energy in which case it was appropriate to
use the classical case of Thomson scattering. However, we note from (21.18)
that the backscattered photon energy increases quadratically with the particle
energy and therefore at some energy the photon energy becomes larger than
the particle energy which is nonphysical. In the case of large photon energies
comparable with the particle energy, Compton corrections [248–250] must be
included. The Compton cross section for head-on collision is given by [251]

σC =
3σTh

4x

[(
1 − 4

x
− 8

x2

)
ln (1 + x) +

1
2

+
8
x2

− 1
2 (1 + x)2

]
, (21.22)

where x = 4γ�ω0
mc2 , and �ω0 is the incident photon energy. The energy spectrum

of the scattered photons is then [251]
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dσC

d y
=

3σTh

4x

[
1 − y +

1
1 − y

− 4y
x (1 + y)

+
4y2

x2 (1 − y)2

]
, (21.23)

where y = �ω/E is the scattered photon energy in units of the particle energy.

21.2 Radiation Power

Synchrotron radiation properties can be described in more detail by integrat-
ing the Poynting vector (20.7) over a closed surface enclosing the radiating
charge. With (20.6) and n∗dA∗ = R2 sinΘ∗dΘ∗dΦ∗ we get the total radiation
power from a single electron in its own rest frame

P ∗ =
∫

S∗dA∗ = 2
3rc

mc2

c3
a∗2, (21.24)

where we have set q2 = 4πε0 rcmc2. From the discussion of 4-vectors, we know
that the square of the 4-acceleration is invariant to Lorentz transformations
and get from (B.21) for the total radiation power in the laboratory system

P = 2
3rcmcγ6

[
β̇

2 −
(
β × β̇

)2
]
. (21.25)

Equation (21.25) expresses the radiation power in a simple way and allows us
to calculate other radiation characteristics based on beam parameters in the
laboratory system. The radiation power is greatly determined by the geometric
path of the particle trajectory through the quantities β and β̇ . Specifically,
if this path has strong oscillatory components we expect that motion to be
reflected in the synchrotron radiation power spectrum. This aspect will be
discussed later in more detail. Here we distinguish only between acceleration
parallel β̇ ‖or perpendicular β̇ ⊥to the propagation β of the charge and set
therefore

β̇ =β̇ ‖ + β̇ ⊥ . (21.26)

Insertion into (21.25) shows the total radiation power to be composed of
separate contributions from parallel and orthogonal acceleration. Separating
both contributions we get the synchrotron radiation power for both parallel
and transverse acceleration, respectively,

P‖ = 2
3rcmcγ6 β̇

2

‖, (21.27)

P⊥ = 2
3rcmcγ4

⊥β̇
2
. (21.28)

Expressions have been derived that define the radiation power for paral-
lel acceleration like in a linear accelerator or orthogonal acceleration found
in circular accelerators or deflecting systems. We note a similarity for both
contributions except for the energy dependence. At highly relativistic energies
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the same acceleration force leads to much less radiation if the acceleration is
parallel to the motion of the particle compared to orthogonal acceleration.
Parallel acceleration is related to the accelerating force by mv̇‖ = 1

γ3 dp‖/dt
and after insertion into (21.27) the radiation power due to parallel acceleration
becomes

P‖ =
2
3

rc
mc

(dp‖
d t

)2

. (21.29)

The radiation power for acceleration along the propagation of the charged
particle is therefore independent of the energy of the particle and depends
only on the accelerating force or with dp‖/dt =dE/dz on the energy increase
per unit length of accelerator. Different from circular electron accelerators
we encounter therefore no practical energy limit in a linear accelerator at
very high energies. In contrast very different radiation characteristics exist
for transverse acceleration as it happens, for example, during the transverse
deflection of a charged particle in a magnetic field. The transverse acceleration
v̇⊥ is expressed by the Lorentz force

dp⊥
d t

= γmv̇⊥ = e [v ×B] (21.30)

and after insertion into (21.28) the radiation power from transversely accel-
erated particles becomes

P⊥ = 2
3

rc
mc

γ2

(
dp⊥
d t

)2

. (21.31)

From (21.29), (21.31) we find that the same accelerating force leads to a
much higher radiation power by a factor γ2 for transverse acceleration com-
pared to longitudinal acceleration. For all practical purposes, technical limita-
tions prevent the occurrence of sufficient longitudinal acceleration to generate
noticeable radiation. From here on we will stop considering longitudinal ac-
celeration unless specifically mentioned and eliminate, therefore, the index ⊥
setting for the radiation power P⊥ = Pγ . We also restrict from now on the
discussion to singly charged particles and set q = e ignoring extremely high
energies where multiple charged ions may start to radiate. Replacing the force
in (21.31) by the Lorentz force (21.30) we get

Pγ =
4π
µ0

2 r2
c c

3 (mc2)2
B2 E2 = CBB2 E2, (21.32)

where

CB =
4π
µ0

2 r2
c c

3 (mc2)2
= 6.077 9 × 10−8 W

T2GeV2 = 379.35
1

T2GeV s
. (21.33)

The synchrotron radiation power scales like the square of the magnetic field
and the square of the particle energy. Replacing the deflecting magnetic field
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B by the bending radius ρ, the instantaneous synchrotron radiation power
becomes

Pγ =
2
3
rcmc3

β4γ4

ρ2
(21.34)

or in more practical units,

Pγ =
cCγ

2π
E4

ρ2
, (21.35)

where

Cγ =
4π
3

rc

(mc2)3
= 1.41733 × 10−14 msW

GeV4 = 8.8460 × 10−5 m
GeV3 . (21.36)

The electromagnetic radiation of charged particles in transverse magnetic
fields is proportional to the fourth power of the particle momentum βγ and
inversely proportional to the square of the bending radius ρ. The synchrotron
radiation power increases very fast for high energy particles and provides the
most severe limitation to the maximum energy achievable in circular accel-
erators. We note, however, also a strong dependence on the kind of particles
involved in the process of radiation. Because of the much heavier mass of
protons compared to the lighter electrons we find appreciable synchrotron
radiation only in electron accelerators.

In storage rings with different magnets and including insertion devices it
is important to formulate the average radiation power of an electron during
the course of one turn. In this case we calculate the average

〈Pγ〉 =
c

2π
CγE

4

〈
1
ρ2

〉
= CγE

4 frev

2π

∮
dz
ρ2

. (21.37)

The radiation power of protons is actually smaller compared to that for
electrons by the fourth power of the mass ratio or by the factor

Pe

Pp
= 18364 = 1.1367 × 1013 . (21.38)

In spite of this enormous difference measurable synchrotron radiation has
been predicted by Coisson [252] and was indeed detected at the 400 GeV
proton synchrotron, SPS (Super Proton Synchrotron), at CERN in Geneva
[253,254]. Substantial synchrotron radiation is expected in multi-TeV proton
colliders like the LHC (Large Hadron Collider) at CERN [240].

Knowledge of the synchrotron radiation power allows us now to calculate
the energy loss per turn of a particle in a circular accelerator by integrating
the radiation power along the circumference of the circular accelerator

U0 =
∮

Pγdt = 2
3rcmc2β3γ4

∮
dz
ρ2

. (21.39)
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In an isomagnetic lattice, where the bending radius is the same for all
bending magnets ρ =const., the integration around a circular accelerator can
be performed and the energy loss per turn due to synchrotron radiation is

U0 = Pγ
2πρ
βc

= 4π
3 rcmc2β3 γ

4

ρ
. (21.40)

The integration obviously is to be performed only along those parts of
the circular accelerator where synchrotron radiation occurs, or along bending
magnets only. In more practical units, the energy loss of relativistic electrons
per revolution in a circular accelerator with an isomagnetic lattice and a
bending radius ρ is given by

U0,iso (GeV) = Cγ
E4(GeV4)

ρ(m)
. (21.41)

For a beam of Ne particles or a circulating beam current I = efrevNe the
total average radiation power is

〈Ps〉 = U0
I

e
, (21.42)

or in more practical units

〈Ps (MW)〉iso = 0.088463
E4 (GeV)

ρ (m)
I (A) . (21.43)

The total synchrotron radiation power scales like the fourth power of the
particle energy and is inversely proportional to the bending radius. The strong
dependence of the radiation on the particle energy causes severe practical
limitations on the maximum achievable energy in a circular accelerator.

21.3 Spectrum

Synchrotron radiation from relativistic charged particles is emitted over a
wide spectrum of photon energies. The basic characteristics of this spectrum
can be derived from simple principles as suggested in [145]. For an observer
synchrotron light has the appearance similar to the light coming from a light-
house. Although the light is emitted continuously an observer sees only a
periodic flash of light as the aperture mechanism rotates in the lighthouse.
Similarly, synchrotron light emitted from relativistic particles will appear to
an observer as a single flash if it comes from a bending magnet in a transport
line passed through by a particle only once or as a series of equidistant light
flashes as bunches of particles orbit in a circular accelerator.

Since the duration of the light flashes is very short the observer notes a
broad spectrum of frequencies as his eyes or instruments Fourier analyze the
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Fig. 21.11. Temporal pulse formation of synchrotron radiation

pulse of electromagnetic energy. The spectrum of synchrotron light from a
circular accelerator is composed of a large number of harmonics with fun-
damental frequency equal to the revolution frequency of the particle in the
circular accelerator. These harmonics reach a cutoff where the period of the
radiation becomes comparable to the duration of the light pulse. Even though
the aperture of the observers eyes or instruments are assumed to be infinitely
narrow we still note a finite duration of the light flash. This is a consequence
of the finite opening angle of the radiation as illustrated in Fig. 21.11. Syn-
chrotron light emitted by a particle traveling along the orbit cannot reach
the observer before it has reached the point P0 when those photons emitted
on one edge of the radiation cone at an angle −1/γ aim directly toward the
observer. Similarly, the last photons to reach the observer are emitted from
point P1 at an angle of +1/γ. Between point P0 and point P1 we have there-
fore a deflection angle of 2/γ. The duration of the light flash for the observer
is not the time it takes the particle to travel from point P0 to point P1 but
must be corrected for the finite time of flight for the photon emitted at P0 . If
particle and photon would travel toward the observer with exactly the same
velocity the light pulse would be infinitely short. However, particles move
slower following a slight detour and therefore the duration of the light pulse
equals the time difference between the first photons from point P0 arriving at
the observer and the last photons being emitted by the particles at point P1.
Although the particle reaches point P0 at time t = 0 the first photon can be
observed at point P1 only after a time

tγ =
2ρ sin 1

γ

c
. (21.44)

The last photon to reach the observer is emitted when the particle arrives at
point P1 at the time

te =
2ρ
βcγ

. (21.45)

The duration of the light pulse δt is therefore given by the difference of both
travel times (21.44), (21.45)
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δt = te − tγ =
2ρ
βcγ

−
2ρ sin 1

γ

c
. (21.46)

The sine function can be expanded for small angles keeping linear and
third-order terms only and the duration of the light pulse at the location of
the observer is after some manipulation

δt =
4ρ

3cγ3
. (21.47)

The total duration of the electromagnetic pulse is very short scaling inversely
proportional to the third power of γ. This short pulse translates into a broad
spectrum. Using only half the pulse length for the effective pulse duration the
spectrum reaches up to a maximum frequency of about

ωc ≈
1

1
2δt

≈ 3
2
c
γ3

ρ
, (21.48)

which is called the critical photon frequency of synchrotron radiation. The
critical photon energy εc = �ωc is then given by

εc = Cc
E3

ρ
, (21.49)

with
Cc =

3 �c

2 (mc2)3
. (21.50)

For electrons, numerical expressions are

εc (keV) = 2.2183
E3
(
GeV3

)
ρ (m)

= 0.66503E2
(
GeV2

)
B (T) . (21.51)

The synchrotron radiation spectrum from relativistic particles in a circular
accelerator is made up of harmonics of the particle revolution frequency ω0

with values up to and beyond the critical frequency (21.51). Generally, a real
synchrotron radiation beam from say a storage ring will not display this har-
monic structure. The distance between harmonics is extremely small compared
to the extracted photon frequencies in the VUV and x-ray regime while the
line width is finite due to the energy spread and beam emittance.

For a single pass of particles through a bending magnet in a beam transport
line we observe the same spectrum. Specifically, the maximum frequency is
the same assuming similar parameters. Synchrotron radiation is emitted in a
particular spatial and spectral distribution, both of which will be derived in
Chap. 22, and we will use here only some of these results. A useful parameter
to characterize the photon intensity is the photon flux per unit solid angle
into a frequency bin ∆ω/ω and from a circulating beam current I defined by
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d2Ṅph

dθdψ
= CΩE2I

∆ω

ω

(
ω

ωc

)2

K2
2/3 (ξ) F (ξ, θ) , (21.52)

where ψ is the angle in the deflecting plane and θ is the angle normal to the
deflecting plane,

CΩ =
3α

4π2e (mc2)2
= 1.3255 × 1016 photons

s mrad2 GeV2 A 100%BW
, (21.53)

α is the fine structure constant, and

F (ξ, θ) =
(
1 + γ2θ2

)2
(

1 +
γ2θ2

1 + γ2θ2

K2
1/3 (ξ)

K2
2/3 (ξ)

)
. (21.54)

The functions K1/3 (ξ) and K2/3 (ξ) , displayed in Fig. 21.12, are modified
Bessel’s functions with the argument

ξ = 1
2

ω

ωc

(
1 + γ2θ2

)3/2
. (21.55)

Synchrotron radiation is highly polarized in the plane normal (σ-mode), and
parallel (π-mode), to the deflecting magnetic field. The relative flux in both
polarization directions is given by the two components in the second bracket
of function F (ξ, θ) in (21.54). The first component is equal to unity and
determines the photon flux for the polarization normal to the magnetic field
or σ-mode, while the second term relates to the polarization parallel to the
magnetic field which is also called the π-mode. Equation (21.52) expresses

ω/ω

)

)

Fig. 21.12. Modified Bessel’s functions K1/3 (ξ) and K2/3 (ξ)
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both the spectral and spatial photon flux for both the σ-mode radiation in
the forward direction within an angle of about ±1/γ and for the π-mode off
axis.

For highly relativistic particles the synchrotron radiation is collimated very
much in the forward direction and we may assume that all radiation in the
nondeflecting plane is accepted by the experimental beam line. In this case, we
are interested in the photon flux integrated over all angles θ. This integration
will be performed in Chap. 22 with result (22.157)

dṄph

dψ
=

4α
9

γ
I

e

∆ω

ω
S

(
ω

ωc

)
, (21.56)

where ψ is the deflection angle in the bending magnet, α is the fine structure
constant, and the function S (x) is defined by

S

(
ω

ωc

)
=

9
√

3
8π

ω

ωc

∞∫

ω/ωc

K5/3 (x̄) dx̄ (21.57)

with K5/3(x) a modified Bessel’s function. The function S(ω/ωc) is known as
the universal function of synchrotron radiation and is shown in Fig. 22.11. In
practical units, the angle integrated photon flux is

dṄph

dψ
= Cψ E I

∆ω

ω
S

(
ω

ωc

)
(21.58)

with Cψ defined by

Cψ =
4α

9emc2
= 3.9614 × 1019 photons

s rad A GeV
. (21.59)

The spectral distribution depends only on the particle energy, the crit-
ical frequency ωc, and a purely mathematical function. This result has
been derived originally by Ivanenko and Sokolov [255] and independently by
Schwinger [256]. Specifically it should be noted that the spectral distribution,
if normalized to the critical frequency, does not depend on the particle en-
ergy and can therefore be represented by a universal distribution shown in
Fig. 21.13.

The energy dependence is contained in the cubic dependence of the critical
frequency acting as a scaling factor for the actual spectral distribution. The
synchrotron radiation spectrum in Fig. 21.13 is rather uniform up to the
critical frequency beyond which the intensity falls off rapidly. This synchrotron
radiation spectrum has been verified experimentally soon after such radiation
sources became available [257,258].

Equation (21.56) is not well suited for quick calculation of the radiation
intensity at a particular frequency. We may, however, express (21.56) in much
simpler form for very low and very large frequencies making use of limiting
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Fig. 21.13. Universal function of the synchrotron radiation spectrum, S(ω/ωc)

expressions of Bessel’s functions for large and small arguments. For small
arguments x = ω

ωc
� 1, an asymptotic approximation [150] for the modified

Bessel’s function, may be used to give instead of (21.58)

dṄph

dψ
≈ Cψ E I

∆ω

ω
1.333

(
ω

ωc

)1/3

. (21.60)

Similarly, for high photon frequencies x = ω
ωc


 1 we get

dṄph

dψ
≈ Cψ E I

∆ω

ω
0.77736

√
x

ex
, (21.61)

where x = ω
ωc

. Both approximations are included in Fig. 21.13 and display
actually a rather good representation of the real spectral radiation distribution
over all but the central portion of the spectrum. Specifically, we note the slow
increase in the radiation intensity at low frequencies and the exponential drop
off above the critical frequency.

21.4 Spatial Photon Distribution

The expressions for the photon fluxes (21.52), (21.56) provide the opportunity
to calculate the spectral distribution of the photon beam divergence. Photons
are emitted into a narrow angle and we may represent this narrow angular
distribution by a Gaussian distribution. The effective width of a Gaussian
distribution is

√
2πσθ and we set

dṄph

dψ
≈ d2Ṅph

dθ dψ
√

2πσθ . (21.62)
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With (21.52), (21.58) the angular divergence of the forward lobe of the photon
beam or for a beam polarized in the σ-mode is

σθ (mrad) =
Cψ√
2πCΩ

1
E

S (x)
x2K2

2/3

(
1
2x
) =

f (x)
E (GeV)

, (21.63)

where x = ω/ωc. For the forward direction θ ≈ 0 the function f (x) =
σθ (mrad) E (GeV) is shown in Fig. 21.14 for easy numerical calculations.

0 .0 0 0 1 0 .0 0 1 0 .0 1 0 .1 1 1 0

0 .0 1

0 .1

1

1 0

≈0.5463/ x 1 /3

x  =  ω/ωc

f (x )

Fig. 21.14. Scaling function f(x) = σθ(mrad) E(GeV) for the photon beam diver-
gence in (21.63)

For wavelengths ω � ωc, (21.63) can be greatly simplified to become in
more practical units

σθ (mrad) ≈ 0.54626
E (GeV)

(
ω

ωc

)1/3

=
7.124

[ρ (m) εph (eV)]1/3
, (21.64)

where ρ is the bending radius and εph is the photon energy. The photon beam
divergence for low photon energies compared to the critical photon energy is
independent of the particle energy and scales inversely proportional to the
third root of the bending radius and photon energy.
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21.5 Fraunhofer Diffraction

Synchrotron radiation is emitted from a rather small area equal to the cross
section of the electron beam. In the extreme and depending on the photon
wavelength the radiation may be spatially coherent because the beam cross
section in phase space is smaller than the wavelength. This possibility of creat-
ing spatially coherent radiation is important for many experiments specifically
for holography and we will discuss in more detail the conditions for the particle
beam to emit such radiation.

Reducing the particle beam cross section in phase space by diminishing
the particle beam emittance reduces also the source size of the photon beam.
This process of reducing the beam emittance is, however, effective only to
some point. Further reduction of the particle beam emittance would have no
effect on the photon beam emittance because of diffraction effects. A point-
like photon source appears in an optical instrument as a disk with concentric
illuminated rings. For synchrotron radiation sources it is of great interest to
maximize the photon beam brightness which is the photon density in phase
space. On the other hand, designing a lattice for a very small beam emittance
can cause beam stability problems. It is therefore prudent not to push the par-
ticle beam emittance to values much less than the diffraction-limited photon
beam emittance. In the following, we will therefore define diffraction-limited
photon beam emittance as a guide for low emittance lattice design.

For highly collimated synchrotron radiation it is appropriate to assume
Fraunhofer diffraction . Radiation from an extended light source appears dif-
fracted in the image plane with a radiation pattern which is characteristic for
the particular source size and radiation distribution as well as for the geom-
etry of the apertures involved. For simplicity, we will use the case of a round
aperture being the boundaries of the beam itself although in most cases the
beam cross section is more elliptical. In spite of this simplification, however,
we will obtain all basic physical properties of diffraction which are of interest
to us. We consider a circular light source with diameter 2a. The radiation field
at point P in the image plane is then determined by the Fraunhofer diffraction
integral [259]

U(P ) = C

∫ a

0

∫ 2π

0

e−ikρw cos(Θ−ψ)dΘ ρdρ. (21.65)

Here k is the wave number of the radiation and w is the sine of the angle
between the light ray and the optical axis as shown in Fig. 21.15.

With α = Θ − ψ and the definition of the lowest order Bessel’s function
J0 (x) = 1

2π

∫ 2π

0
e−ix cos αdα, (21.65) can be expressed by the integral

U(P ) = 2πC
∫ a

0

J0 (kρw) ρdρ . (21.66)

This integral can be solved analytically as well with the identity
∫ x

0
J0 (y) ydy=

xJ1(x). The radiation intensity is proportional to the square of the radiation
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Fig. 21.15. Diffraction geometry

field and we finally get for the radiation intensity in the image plane at the
point P

I(P ) = I0
4J 2

1 (kaw)
(kaw)2

, (21.67)

where I (P ) = |U(P )|2 and I0 = I (w → 0) is the radiation intensity at the
image center. This result has been derived first by Airy [260]. The radiation
intensity from a light source of small circular cross section is distributed in
the image plane due to diffraction into a central circle and concentric rings
illuminated as shown in Fig. 21.16.

Fig. 21.16. Fraunhofer diffraction for a cicular uniform light source
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Tacitly, we have assumed that the distribution of emission at the source is
uniform which is generally not correct for a particle beam. A Gaussian distri-
bution is more realistic resembling the distribution of independently radiating
particles. We must be careful in the choice of the scaling parameter. The rel-
evant quantity for the Fraunhofer integral is not the actual particle beam size
at the source point but rather the apparent beam size and distribution. By
folding the particle density distribution with the argument of the Fraunhofer
diffraction integral we get the radiation field from a round, Gaussian particle
beam,

UG(P ) = const.
∫ ∞

0

exp
(
− ρ2

2σ2
r

)
J0 (kρw) ρdρ, (21.68)

where σr is the apparent standard source radius. Introducing the variable
x = ρ/

√
2σr and replacing kρw =

√
2xk σrw = 2x

√
z we get from (21.68)

UG(P ) = const.
∫ ∞

0

e−x2
xJ0

(
2x

√
z
)

dx (21.69)

and after integration

UG(P ) = const. exp
[
− 1

2 (kσrw)2
]
. (21.70)

The diffraction pattern from a Gaussian light source (Fig. 21.17) does not
exhibit the ring structure of a uniform source. The radiation field assumes
rather the form of a Gaussian distribution in the emission angles w with a
standard width of σ2

r′ =
〈
w2
〉

or

σr′ =
1

k σr
. (21.71)
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Fig. 21.17. Fraunhofer diffraction for a Gaussian luminescence at the light source
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21.6 Spatial Coherence

Synchrotron radiation is emitted into a broad spectrum with the lowest fre-
quency equal to the revolution frequency and the highest frequency not far
above the critical photon energy. Detailed observation of the whole radiation
spectrum, however, may reveal significant differences to these theoretical spec-
tra at the low frequency end. At low photon frequencies we may observe an
enhancement of the synchrotron radiation beyond intensities predicted by the
theory of synchrotron radiation as discussed so far. We note from the defi-
nition of the Poynting vector that the radiation power is a quadratic effect
with respect to the electric charge. For photon wavelengths equal and longer
than the bunch length, we expect therefore all particles within a bunch to
radiate coherently and the intensity to be proportional to the square of the
number Ne of particles rather than linearly proportional as is the case for high
frequencies. This quadratic effect can greatly enhance the radiation since the
bunch population can be from 108–1011 electrons.

Generally such radiation is not emitted from a storage ring beam because
radiation with wavelengths longer than the vacuum chamber dimensions are
greatly damped and will not propagate along a metallic beam pipe [261] . This
radiation shielding is fortunate for storage ring operation since it eliminates
an otherwise significant energy loss mechanism. Actually, since this shielding
affects all radiation of sufficient wavelength both the ordinary synchrotron ra-
diation and the coherent radiation are suppressed. New developments in stor-
age ring physics, however, may make it possible to reduce the bunch length by
as much as an order of magnitude below presently achieved short bunches of
the order of 10 mm. Such bunches would then be much shorter than vacuum
chamber dimensions and the emission of coherent radiation in some limited
frequency range would be possible. Much shorter electron bunches of the order
of 1-2 mm and the associated coherent radiation can be produced in linear
accelerators [262,263], and specifically with bunch compression [264] a signif-
icant fraction of synchrotron radiation is emitted spontaneously as coherent
radiation [265].

In this section, we will discuss the physics of spontaneous coherent syn-
chrotron radiation while distinguishing two kinds of coherence in synchrotron
radiation, the temporal coherence and the spatial coherence. Temporal co-
herence occurs when all radiating electrons are located within a short bunch
of the order of the wavelength of the radiation. In this case the radiation from
all electrons is emitted with about the same phase. For spatial coherence the
electrons may be contained in a long bunch but the transverse beam emit-
tance must be smaller than the radiation wavelength. In either case there is
a smooth transition from incoherent radiation to coherent radiation as de-
termined by a form factor which depends on the bunch length or transverse
emittance.

Similar to the particle beam characterization through its emittance we
may do the same for the photon beam and doing so for the horizontal or
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vertical plane we have with σx,y = σr/
√

2 and σx′,y′ = σr′ /
√

2 the photon
beam emittance

εph,x,y =
1
2
σrσr′ =

λ

4π
. (21.72)

This is the diffraction-limited photon emittance and reducing the electron
beam emittance below this value would not lead to an additional reduction
in the photon beam emittance. To produce a spatially coherent or diffraction-
limited radiation source the particle beam emittance must be less than the
diffraction-limited photon emittance

εx,y ≤ λ

4π
. (21.73)

Obviously, this condition is easier to achieve for long wavelengths. For
visible light, for example, the electron beam emittance must be smaller than
about 5×10−8 rad m to be a spatially coherent radiation source. After having
determined the diffraction-limited photon emittance we may also determine
the apparent photon beam size and divergence. The photon source extends
over some finite length L along the particle path which could be either the
path length required for a deflection angle of 2/γ or a much longer length in
the case of an undulator radiation source to be discussed in the next section.
With σr′ the diffraction-limited beam divergence the photons seem to come
from a disk with diameter (Fig. 21.18)

D = σr′L . (21.74)

On the other hand, we know from interference theory the correlation

D sinσr′ ≈ Dσr′ = λ (21.75)

and eliminating D from both equations gives the diffraction-limited photon
beam divergence

L

σ'r

D

Fig. 21.18. Apparent photon source size
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σr′ =

√
λ

L
. (21.76)

With this we finally get from (21.71) also the diffraction-limited source size

σr =
1
2π

√
λL . (21.77)

The apparent diffraction-limited, radial photon beam size and divergence
depend both on the photon wavelength of interest and the length of the source.

21.7 Temporal Coherence

To discuss the appearance of temporal coherent synchrotron radiation, we con-
sider the radiation emitted from each particle within a bunch. The radiation
field at a frequency ω from a single electron is

Ej ∝ ei(ωt+ϕj), (21.78)

where ϕj describes the position of the jth electron with respect to the bunch
center. With zj the distance from the bunch center, the phase is

ϕj =
2π
λ

zj . (21.79)

Here we assume that the cross section of the particle beam is small com-
pared to the distance to the observer such that the path length differences
from any point of the beam cross section to observer are small compared to
the shortest wavelength involved. The radiation power is proportional to the
square of the radiation field and summing over all electrons we get

P (ω) ∝
Ne∑
j,l

EjE∗
l ∝

Ne∑
j,l

ei(ωt+ϕj)e−i(ωt+ϕl)

=
Ne∑
j,l

exp i(ϕj − ϕl) = Ne +
Ne∑
j �=l

exp i (ϕj − ϕl) . (21.80)

The first term Ne on the r.h.s. of (21.80) represents the ordinary incoherent
synchrotron radiation with a power proportional to the number of radiating
particles. The second term averages to zero for all but long wavelengths. The
actual coherent radiation power spectrum depends on the particular particle
distribution in the bunch. For a storage ring bunch it is safe to assume a
Gaussian particle distribution and we therefore use the density distribution

ΨG (z) =
Ne√
2πσ

exp
(
− z2

2σ2

)
, (21.81)
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where σ is the standard value of the Gaussian bunch length. Instead of sum-
ming over all electrons we integrate over all phases and folding the density
distribution (21.81) with the radiation power (21.80) we get with (21.79)

P (ω) ∝ Ne + Ne
Ne − 1
2πσ2

I1I2, (21.82)

where the integrals I1 and I2 are defined by

I1 =
∫ +∞

−∞
exp
(
− z2

2σ2
+ i 2π

z

λ

)
d z, (21.83a)

I2 =
∫ +∞

−∞
exp
(
− w2

2σ2
+ i 2π

w

λ

)
dw, (21.83b)

and z = 1
2 πλϕj and w = 1

2πλϕl. The factor Ne − 1 reflects the fact that we
integrate only over different particles. Both integrals are equal to the Fourier
transform for a Gaussian particle distribution. With

∫ +∞

−∞
exp
(
− z2

2σ2
+ i 2π

z

λ

)
d z =

√
2πσ exp

[
−2π2

(σ
λ

)2
]

(21.84)

we get from (21.82) for the total radiation power at the frequency ω = 2πc/λ

P (ω) = p (ω) Ne

[
1 + (Ne − 1) g2 (σ, λ)

]
, (21.85)

where p (ω) is the radiation power from one electron and the Fourier transform

g2 (σ, λ) = exp
[
−2π2

(σ
λ

)2
]

(21.86)

is called the form factor. With the effective bunch length

� =
√

2πσ (21.87)

this form factor finally becomes

g2 (�, λ) = exp
[
−π

�2

λ2

]
. (21.88)

The coherent radiation power falls off rapidly for wavelengths as short
or even shorter than the effective bunch length �. In Fig. 21.19 the relative
coherent radiation power is shown as a function of the effective bunch length
in units of the radiation wavelength. The fast drop off is evident and for an
effective bunch length of about � ≈ 0.6λ the radiation power is reduced to
only about 10% of the maximum power for very short bunches, when � � λ.
Particle beams from a linear accelerator have often a more compressed particle
distribution of a form between a Gaussian and a rectangular distribution. If
we take the extreme of a rectangular distribution
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λ)

π /λ

Fig. 21.19. Form factor g2(�, λ) for a Gaussian and rectangular particle distribution

Ψr (z) =





1 for − 1
2� < z < 1

2�

0 otherwise
, (21.89)

we expect to extend the radiation spectrum since the corners and sharp
changes of the particle density require a broader spectrum in the Fourier
transform. Following the procedure for the Gaussian beam we get for a rec-
tangular particle distribution the Fourier transform

g (�) =
sinx

x
, (21.90)

where x = π�/λ. Figure 21.19 also shows the relative coherent radiation power
for this distribution and we note a significant but scalloping extension to
higher radiation frequencies. Experiments have been performed with picosec-
ond electron bunches from linear accelerators both at Tohoku University [262]
and at Cornell University [263] which confirm the appearance of this coherent
part of synchrotron radiation.

21.8 Spectral Brightness

The optical quality of a photon beam is characterized by the spectral bright-
ness defined as the six-dimensional volume occupied by the photon beam in
phase space

B =
Ṅph

4π2σx σx′ σy σy′ dω
ω

, (21.91)

where Ṅph is the photon flux defined in (21.58). For bending magnet radiation
there is a uniform angular distribution in the deflecting plane and we must
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therefore replace the Gaussian divergence σx′ by the total acceptance angle
∆ψ of the photon beam line or experiment. The particle beam emittance
must be minimized to achieve maximum spectral photon beam brightness.
However, unlimited reduction of the particle beam emittance will, at some
point, seize to further increase the brightness. Because of diffraction effects
the electron beam emittance need not be reduced significantly below the limit
(21.72) discussed in the previous section.

For a negligible particle beam emittance and deflection angle ∆ψ the max-
imum spectral brightness is therefore from (21.72, 21.91)

Bmax=
4

λ2 dω
ω

Ṅph . (21.92)

For a realistic synchrotron light source the finite beam emittance of the
particle beam must be taken into account as well which is often even the
dominant emittance being larger than the diffraction-limited photon beam
emittance. We may add both contributions in quadrature and have for the
total source parameters

σtot,x =
√

σ2
b,x + 1

2 σ2
r , σtot,x′ =

√
σ2

b,x′ + 1
2 σ2

r′ , (21.93)

σtot,y =
√

σ2
b,y + 1

2 σ2
r , σtot,y′ =

√
σ2

b,y′ + 1
2 σ2

r′ , (21.94)

where σb refers to the respective particle beam parameters.

21.8.1 Matching

A finite particle beam emittance does reduce the photon beam brightness from
its ideal maximum. The amount of reduction, however, depends on the match-
ing to the photon beam. The photon beam size and divergence are the result
of folding the diffraction-limited source emittance with the electron beam size
and divergence. In cases where the electron beam emittance becomes compa-
rable to the diffraction-limited emittance the effective photon beam brightness
can be greatly affected by the mutual orientation of both emittances. Match-
ing both orientations will maximize the photon beam brightness.

This matching process is demonstrated in Fig. 21.20. The left side shows
a situation of poor matching in two-dimensional x − x′ phase space. In this
case the electron beam width is very large compared to the diffraction-limited
source size while its divergence is small compared to the diffraction limit.
The effective photon beam distribution in phase space is the folding of both
electron beam parameters and diffraction limit and is much larger than either
of its components. The photon beam width is dominated by the electron beam
width and the photon beam divergence is dominated by the diffraction limit.
Consequently, the effective photon density in phase space and photon beam
brightness are reduced.
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To improve the situation one would focus the electron beam to a smaller
beam size at the source point at the expense of beam divergence. The reduc-
tion of the electron beam width increases directly the photon beam brightness
while the related increase of the electron beam divergence is ineffective be-
cause the diffraction limit is the dominant term. Applying more focusing may
give a situation shown on the right side of Fig. 21.20 where the folded pho-
ton phase space distribution is reduced and the brightness is correspondingly
increased. Of course, if the electron beam is focused too much we have the
opposite situation as discussed. There is an optimum focusing for optimum
matching. To find this optimum we use the particle beam parameters

x x

x ’ x ’
d iffrac tio n  lim it

e le c tro n  b eam

c o m b in ed  so u rce  
p h a se  sp ac e

Fig. 21.20. Matching of the electron beam emittance to the diffraction-limited
emittance to gain maximum photon beam brightness

σ2
b,x,y = εx,yβx,y and σ2

b,x′,y′ =
εx,y

βx,y
, (21.95)

where βx,y are the betatron functions at the photon source location and εx,y

are the beam emittances, in the horizontal and vertical plane, respectively.
Including diffraction limits, the product

σtot,xσtot,x′ =
√

εxβx + 1
2 σ2

r

√
εx
βx

+ 1
2 σ2

r′ (21.96)

has a minimum ( d
dβx

σtot,xσtot,x′ = 0) for

βx =
σr

σr′
=

L

2π
. (21.97)

A similar optimum occurs for the vertical betatron function at the source
point. The optimum value of the betatron functions at the source point de-
pends only on the length of the undulator.
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The values of the horizontal and vertical betatron functions should be
adjusted according to (21.97) for optimum photon beam brightness. In case
the particle beam emittance is much larger than the diffraction-limited pho-
ton beam emittance, this minimum is very shallow and almost nonexistent
in which case the importance of matching becomes irrelevant. As useful as
matching may appear to be, it is not always possible to reach perfect match-
ing because of limitations in the storage ring focusing system. Furthermore it
is practically impossible to get a perfect matching for bending magnet radia-
tion since the effective source length L is very small, L = 2ρ/γ.

21.9 Photon Source Parameters

In the previous paragraph, we have assumed that there is no dispersion at the
source point. This is not always true and we have to modify our beam sizes to
take the effect of energy spread and dispersion into account. Still simplifying,
we use only the horizontal dispersion. Where this is not acceptable, the vertical
dispersion effects have to be added in quadrature. The beam width or height is
defined by the contribution of the betatron phase space σβ,x,y and the energy
phase space ση,x,y and is

σb,x,y =
√

σ2
β,x,y + σ2

η =

√
εx,yβ, x, y +

(
η
σε

E0

)2

(21.98)

with σ2
β,x,y = εx,yβx,y, ση = η σε

E0
, γx,y = 1+α2

x,y

βx,y
, and αx,y = − 1

2β
′

x,y. Similarly,
we get for the beam divergence

σb,x′,y′ =
√

σ2
β,x′,y′ + σ2

η′ =

√
εx,yγx,y +

(
η′

σε

E0

)2

. (21.99)

These beam parameters resemble in general the source parameters of the
photon beam. Deviations occur when the beam emittance becomes very small,
comparable to the photon wavelength of interest. First the matching condi-
tions should be checked and modified if necessary. Second, the photon source
parameters may be modified by diffraction effects which limit the apparent
source size and divergence to some minimum values even if the electron beam
cross section and divergence should be very small. For radiation at a wave-
length λ, the diffraction-limited radial photon source parameters are 1

σr =
1
2π

√
λL and σr′ =

√
λ

L
. (21.100)

1 Many authors use a different definition σr = σr/
√

2. The difference is mainly that
the subscript r refers to radiation and the related beam parameters are already
projected to the x- or y-plane. In this text, we use the subscript r from the radial
coordinate since we derive the diffraction effects from a round beam.
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Projection onto the horizontal or vertical plane gives σx,y = σr/
√

2, etc.
Due to diffraction, it is not useful to push the electron beam emittance to
values much smaller than

εx,y =
λ

4π
. (21.101)

For an arbitrary electron beam cross section the photon source parameters
are the quadratic sums of both contributions

σ2
ph,x,y = σ2

b,x,y + 1
2 σ2

r , (21.102)

σ2
ph,x′,y′ = σ2

b,x′,y′ + 1
2 σ2

r′ . (21.103)

The contribution from diffraction can be ignored if

εx,y 
 λ

4π
, (21.104)

which is generally true in the x−direction but not in the y−direction because
of the small coupling in storage ring.

Problems

21.1 (S). Consider a 30-pole wiggler magnet with 10 cm wide poles, a field
distribution By(T) = 2.0 sin 2π

λp
z and a period length of λp = 7.0 cm. Deter-

mine the magnetic force between the upper and lower row of poles. Is this
force attractive or repulsive? Why?

21.2. In the SLAC linear accelerator electrons can be accelerated to 50 GeV
at a rate of 17 MeV/m. Calculate to total radiation power from 109 electrons
at 50 MeV and 50 GeV due to longitudinal acceleration. Compare with the
radiation power if this bunch of 109 electrons is deflected at the same energies
by 1◦ in a 0.1 T bending magnet.

21.3 (S). Derive an expression for the total synchrotron radiation power from
a wiggler magnet.

21.4 (S). In Chap. 20 we mentioned undulator radiation as a result of Comp-
ton scattering of the undulator field by electrons. Derive the fundamental
undulator wavelength from the process of Compton scattering.

21.5 (S). An undulator is constructed from hybrid permanent magnet mate-
rial with a period length of λp = 5.0 cm. What is the fundamental wavelength
range in a 800 MeV storage ring and in a 7 GeV storage ring if the undulator
gap is to be at least 10 mm?

21.6 (S). Determine the tuning range for a hybrid magnet undulator in a 2.5
GeV storage ring with an adjustable gap g � 10 mm. Plot the fundamental
wavelength as a function of magnet gap for two different period lengths, λp =
15 mm and λp = 75 mm. Why are the tuning ranges so different?
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21.7 (S). What is the probability for a 6 GeV electron to emit a photon with
an energy of ε = σε per unit time traveling on a circle with radius ρ = 25
m. How likely is it that this particle emits another such photon within a
damping time? In evaluating quantum excitation and equilibrium emittances,
do we need to consider multiple photon emissions? (Use isomagnetic ring)

21.8 (S). How many photons are emitted by an electron of energy E on
average per turn.

21.9. Verify the numerical validity of (21.4), (21.43), (21.51), (21.53), and
(21.59).

21.10. Consider an electron storage ring at an energy of 1 GeV, a circulating
current of 200 mA and a bending radius of ρ = 2.22 m. Calculate the energy
loss per turn, the critical energy, and the total synchrotron radiation power. At
what frequency in units of the critical frequency has the intensity dropped to
1% of the maximum? Plot the radiation spectrum and determine the frequency
range available for experimentation.

21.11. What beam energy would be required to produce x-rays from the stor-
age ring of Problem 21.10 at a critical photon energy of 10 keV? Is that energy
feasible from a conventional magnet point of view or would the ring have to
be larger? What would the new beam energy and bending radius have to be?

21.12. Consider a storage ring with an energy of 1 GeV and a bending radius
of ρ = 2.5 m. Calculate the angular photon flux density dṄ/dψ for a high
photon energy ε̂ where the intensity is still 1% of the maximum spectral in-
tensity. What is this maximum photon energy? Installing a wavelength shifter
with a field of B = 6 T allows the spectrum to be greatly extended. By how
much does the spectral intensity increase at the photon energy ε̂ and what is
the new photon energy limit for the wavelength shifter?

21.13. Derive an expression for the average velocity component β̄z = v̄z/c of
a particle traveling through an undulator magnet of strength K.

21.14. Consider an electromagnetic wavelength shifter in a 1 GeV storage
ring with a central pole length of 30 cm and a maximum field of 6 T. The
side poles are 60 cm long and, for simplicity, assume that the field in all poles
has a sinusoidal distribution along the axis. Determine the focal length due
to edge focusing for the total wavelength shifter. To be negligible, the focal
length should typically be longer than about 30 m. Is this the case for this
wavelength shifter?

21.15. Consider a 26-pole wiggler magnet with a field By(T) = 2.0 sin 2π
λp

z

and a period length of λp = 15.0 cm as the radiation source for a straight
through photon beam line and two side stations at an angle ϑ = ±4 mrad in
a storage ring with a beam energy of 2.0 GeV. What is the critical photon
energy for the photon beam in the straight ahead beam line and in the two
side stations?
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21.16. Collide a 25 MeV electron beam with a 1 kW CO2 laser beam (λ = 10.0
µm). What is the energy of the backscattered photons? Assume a diffraction-
limited interaction length of twice the Rayleigh length and an electron beam
cross section matching the photon beam. Calculate the x-ray photon flux for
an electron beam from a 3 GHz linear accelerator with a pulse length of 1 µm
and a pulse current of 100 mA.



22

Theory of Synchrotron Radiation

The phenomenon of synchrotron radiation has been introduced in a conceptual
way and a number of basic relations have been derived. In this chapter we will
approach the physics of synchrotron radiation in a more formal way to exhibit
detailed characteristics. Specifically, we will derive expressions for the spatial
and spectral distribution of photon emission in a way which is applicable later
for special insertion devices.

The theory of synchrotron radiation is intimately related to the electro-
magnetic fields generated by moving charged particles. Wave equations can be
derived from Maxwell’s equations and we will find that any charged particle
under the influence of external forces can emit radiation. We will formulate
the characteristics of this radiation and apply the results to highly relativistic
particles.

22.1 Radiation Field

The electromagnetic fields for a single moving point charge will be derived
first and then applied to a large number of particles. Fields are determined by
Maxwell’s equations (1.1) for moving charges in vacuum, εr = 1 and µr = 1.
The magnetic field can be derived from a vector potential A defined by

B = ∇×A . (22.1)

Inserting the vector potential into Faraday’s law (1.1) we have ∇ ×(
E + ∂A

∂t

)
= 0, or after integration

E = −∂A

∂t
−∇ϕ, (22.2)

where ϕ is the scalar potential. We choose the scalar potential such that
c∇A+ 1

c
∂ϕ
∂t = 0, a condition known as the Lorentz gauge. With (A.21) applied
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to A the expression for the electric field together with Ampere’s law (1.1)
results in the wave equation

∇2A − 1
c2

∂2A

∂t2
=

1
ε0

ρβ . (22.3)

Similarly, we derive the wave equation for the scalar potential

∇2ϕ− 1
c2

∂2ϕ

∂t2
= − 1

ε0
ρ . (22.4)

These are the well-known wave equations with the solutions

A(t) =
µ0

4π

∫
vρ(x, y, z)

R

∣∣∣∣
tr

dxdy dz (22.5)

and

ϕ(t) =
1

4πε0

∫
ρ(x, y, z)

R

∣∣∣∣
tr

dxdy dz . (22.6)

Because of the finite velocity of light, all quantities under the integrals
must be evaluated at the retarded time

tr = t− 1
c
R(tr), (22.7)

when the radiation was emitted by the moving charge, in contrast to the
time t when the radiation is observed at a distant point. The quantity R is
the distance between the observation point P (x, y, z) and the location of the
charge element ρ(xr, yr, zr)dxrdyrdzr at the retarded time tr. The vector

R =(xr − x, yr − y, zr − z) (22.8)

points away from the observation point to the charge element at the retarded
time as shown in Fig. 22.1.

Special care must be exercised in performing the integrations. Although
we consider only a point charge q, the integral in (22.6) cannot be replaced
by q/R but must be integrated over a finite volume followed by a transition
to a point charge. As we will see this is a consequence of the fact that the
velocity of light is finite and therefore the movement of charge elements must
be taken into account.

To define the quantities involved in the integration we use Fig. 22.1. The
combined field at the observation point P at time t comes from all charges
located at a distance R away from P . We consider the contribution from all
charges contained within a spherical shell centered at P with a radius R and
thickness dr to the radiation field at P and time t. Radiation emitted at time
tr will reach P at the time t. If dσ is a surface element of the spherical shell,
the volume element of charge is dxdy dz =dσdr. The retarded time for the
radiation from the outer surface of the shell is tr and the retarded time for the
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ρ

σ

Fig. 22.1. Retarded position of a moving charge distribution

radiation from the charge element on the inner surface of the shell is tr − dr
c .

From Fig. 22.1 we find the electromagnetic field observed at P at time t to
originate from the fractional charges within the volume element dσd r or from
the charge element dq = ρdσdr.

The radiation observed at point P and time t is the sum of all radiation
arriving simultaneously at P . Elements of this radiation field may have been
emitted by different charge elements and at different times and locations. In
the case of only one electrical charge moving with velocity v, we have to
include in the integration those charge elements that move across the inner
shell surface into the volume dσdr during the time dr/c. For a uniform charge
distribution this additional charge is dq = ρvndtdσ where n is the vector
normal to the surface of the shell and pointing away from the observer

n =
R

R
. (22.9)

With d t =dr/c and β = v/c, we get then for both contributions to the charge
element

dq = ρ(1 + nβ) dr dσ . (22.10)

Depending on the direction of the velocity vector β, we find an increase
or decrease in the radiation field from moving charges. We solve (22.10) for
ρdr dσ and insert into integrals (22.5), (22.6). Now we may use the assumption
that the electrical charge is a point charge and get for the retarded potentials
of a moving point charge q at time t and observation point P

A(P, t) =
µ0

4π
q

R

β

1 + nβ

∣∣∣∣
tr

(22.11)

and

ϕ(P, t) =
1

4πε0
q

R

1
1 + nβ

∣∣∣∣
tr

. (22.12)
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These equations are known as the Liénard–Wiechert potentials and express
the field potentials of a moving charge as functions of the charge parameters
at the retarded time. To obtain the electric and magnetic fields we insert the
retarded potentials into (22.1), (22.2) noting that the differentiation must be
performed with respect to the time t and location P of the observer while the
potentials are expressed at the retarded time tr.

In both equations for the vector and scalar potential we have the same
denominator

r = R(1 + nβ) . (22.13)

It will become necessary to calculate the derivative of the retarded time
with respect to the time t and since tr = t−R/c the time derivative of tr is

dtr
dt

= 1 − 1
c

dR
dtr

dtr
dt

. (22.14)

The variation of the distance R with the retarded time depends on the
velocity v of the moving charge and is the projection of the vector v d tr onto
the unity vector n. Therefore,

dR = v ndtr (22.15)

and (22.14) becomes
dtr
dt

=
1

1 + nβ
=

R

r
. (22.16)

The electric field (22.2) is with (22.11), (22.12), and (22.16) after a few
manipulations expressed by

4πε0
E

q
= −1

c

R

r2

∂β

∂tr
+

βR

cr3

∂r

∂tr
+

1
r2

∇rr . (22.17)

In evaluating the nabla operator and other differentials we remember that
all parameters on the r.h.s. must be taken at the retarded time (22.7) which
itself depends on the location of the observation point P . To distinguish be-
tween the ordinary nabla operator and the case where the dependence of the
retarded time on the position P (x, y, z) must be considered, we add to the
nabla symbol the index r like ∇r. The components of this operator are then

∂
∂x

∣∣
r

= ∂
∂x + ∂tr

∂x
∂

∂tr
, and are similar for the other components. We evaluate

first
∇rr = ∇rR + ∇r (βR) (22.18)

and with ∇R = −n from (22.8)

∇rR = −n +
∂R

∂tr
∇tr . (22.19)

For the gradient of the retarded time, we get



22.1 Radiation Field 793

∇tr = ∇
[
t− 1

c
R(tr)

]
= −1

c
∇rR = −1

c

(
−n +

∂R

∂tr
∇tr

)
(22.20)

and performing the differentiation we get with ∂xr
∂tr

= vx, ...

∂R

∂tr
=

∂R

∂xr

∂xr

∂tr
+

∂R

∂yr

∂yr

∂tr
+

∂R

∂zr

∂zr

∂tr
= nv . (22.21)

Solving (22.20) for ∇tr we get

∇tr =
R

cr
(22.22)

and (22.19) finally becomes

∇rR = −n +
R

r
(β n) . (22.23)

For the second term in (22.18) we note that the velocity v does not depend
on the location of the observer and with ∇rR−1, (22.22), and

dR

dtr
= v (22.24)

we get for the second term in (22.18)

∇r (β R) = −β +
∂(β R)
∂tr

∇tr = −β +
(

R
∂β

∂tr

)
R

cr
+ β2 R

r
. (22.25)

To complete the evaluation of the electric field in (22.17), we express the
derivative ∂r

∂tr
with

∂r

∂tr
=

∂R

∂tr
+

∂(β R)
∂tr

= cnβ + cβ2 + R
∂β

∂tr
, (22.26)

where we made use of (22.21). Collecting all differential expressions required
in (22.17) we get with (22.18), (22.23), (22.25), (22.26)

4πε0
E

q
=

1
r2

[
−n− β +

R

r

(
nβ +β2 + 1

c β̇ R
)]

r

− R

cr2
β̇ + β

R

r3

(
nβ +β2 + 1

c β̇ R
)

r
, (22.27)

where β̇ =dβ /d tr. After some manipulation and using (A.10), the equation
for the electrical field of a charge q moving with velocity v becomes

4πε0
E

q
=

1 − β2

r3
(R + Rβ )r +

1
cr3

{
R ×

[
(R + Rβ )r ×

dβ

dtr

]}∣∣∣∣
r

, (22.28)
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where we have added the index r as a reminder that all quantities on the r.h.s.
of (22.28) must be taken at the retarded time tr.

This equation for the electric field of a moving charge has two distinct
parts. The first part is inversely proportional to the square of the distance
between radiation source and observer and depends only on the velocity of
the charge. For a charge at rest β = 0 this term reduces to the Coulomb field
of a point charge q. The area close to the radiating charge where this term
is dominant is called the Coulomb regime. The field is directed toward the
observer for a positive charge at rest and tilts into the direction of propagation
as the velocity of the charge increases. For highly relativistic particles we note
the Coulomb field becomes very small.

We will not further consider this regime since we are interested only in
the radiation field far away from the moving charge. The second term in
(22.28) is inversely proportional to the distance from the charge and depends
on the velocity as well as on the acceleration of the charge. This term scales
linearly with the distance r falling off much slower than the Coulomb term
and therefore reaches out to large distances from the radiation source. We call
this regime the radiation regime and the remainder of this chapter will focus
on the discussion of the radiation from moving charges. The electrical field in
the radiation regime is

4πε0
E(t)
q

∣∣∣∣
rad

=
1
cr3

{
R ×

[
(R + Rβ )r ×

dβ

dtr

]}∣∣∣∣
r

. (22.29)

The polarization of the electric field at the location of the observer is purely
orthogonal to the direction of observation R. Similar to the derivation of the
electric field, we can derive the expression for the magnetic field and get from
(22.1) with (22.11)

B= ∇r×A =q

[
∇r ×

β

r

]
=

q

r
[∇r × β ] − q

r2
[∇rr × β ] , (22.30)

where again all parameters on the r.h.s. must be evaluated at the retarded
time. The evaluation of the “retarded” curl operation ∇r×β becomes obvious
if we evaluate one component only, for example, the x-component
(

∂

∂y
+

∂tr
∂y

∂

∂tr

)
βz −

(
∂

∂z
+

∂tr
∂z

∂

∂tr

)
βy = [∇× β ]x +

[
∇tr ×

dβ

dtr

]

x

.

(22.31)
In a similar way, we get the other components and find with (22.22) and

the fact that the particle velocity β does not depend on the coordinates of
the observation point (∇× β = 0),

[∇rr × β ] = [∇× β ] +
[
∇tr ×

dβ

dtr

]
=

1
cr

[
R × dβ

dtr

]
.

The gradient ∇rr has been derived earlier in (22.18) and inserting this
into (22.30) we find the magnetic field of an electrical charge moving with
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velocity v

4πcε0
B

q
= − 1

r2
(β × n) − R

cr2

[
dβ

dt
×n

]∣∣∣∣
r

(22.32)

+
R

r3

(
β n+β2 +

1
c

dβ

dt
R

)
[β × n]

∣∣∣∣
r

.

Again, there are two distinct groups of field terms. In the case of the
electrical field the terms that fall off like the square of the distance are the
Coulomb fields. For magnetic fields such terms appear only if the charge is
moving β 
=0 and are identical to the Biot–Savart fields. Here we concentrate
only on the far fields or radiation fields which decay inversely proportional to
the distance from the source. The magnetic radiation field is then given by

4πcε0
B(t)
q

∣∣∣∣
rad

= − R

cr2

[
dβ

dt
× n

]

r

+
R

cr3

(
dβ

dt
R

)
[β × n]r . (22.33)

Comparing the magnetic field (22.33) with the electrical field (22.28) re-
veals a very simple correlation between both fields. The magnetic field can be
obtained from the electric field, and vice versa, by mere vector multiplication
with the unit vector n

B= 1
c [E × n]r . (22.34)

From this equation we can deduce special properties for the field directions
by noting that the electric and magnetic fields are orthogonal to each other
and both are orthogonal to the direction of observation n. The existence of
electric and magnetic fields can give rise to radiation for which the Poynting
vector is

S =
1

cµ0
[E × B]r = ε0c [E × (E × n)]r . (22.35)

Using again the vector relation (A.10) and noting that the electric field
is normal to n, we get for the Poynting vector or the radiation flux in the
direction to the observer

S = −ε0c E2
r n
∣∣
r
. (22.36)

Equation (22.36) defines the energy flux density measured at the observa-
tion point P and time t in the form of synchrotron radiation per unit cross
section and parallel to the direction of observation n. All quantities express-
ing this energy flux are still to be taken at the retarded time. For practical
reasons it becomes desirable to express the Poynting vector at the retarded
time as well. The energy flux at the observation point, in terms of the retarded
time, is then dW/dtr = (dW/dt) (dt/dtr) and instead of (22.36) we express
the Poynting vector with (22.16) like

Sr = S
d t

d tr
= −ε0cE

2 [(1 + β n) n ]r . (22.37)

The Poynting vector in this form can be readily used for calculations like
those determining the spatial distribution of the radiation power.
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22.2 Total Radiation Power and Energy Loss

So far, no particular choice of the reference system has been assumed, but a
particularly simple reference frame L∗ is the one which moves uniformly with
the charge before acceleration. From now on, we use a single particle with a
charge e. To an observer in this reference system, the charge moves due to
acceleration and the electric field in the radiation regime is from (22.29)

E∗(t) =
1

4πε0
e

cR

[
n ×

(
n× dβ ∗

dt

) ]∣∣∣∣
r

. (22.38)

The synchrotron radiation power per unit solid angle and at distance R
from the source is from (22.37) with v = 0

dP ∗

dΩ
= −nS∗R2

r = ε0c E∗2R2
∣∣
r
. (22.39)

Introducing the classical particle radius by e2 = 4πε0rcmc2 we obtain
expressions which are independent of electromagnetic units and with (22.38)

dP ∗

dΩ
=

rcmc2

4πc

∣∣∣∣n ×
(

n × dβ ∗

dt

)∣∣∣∣
2

r

=
rcmc2

4πc
dβ ∗

dt

∣∣∣∣
2

r

sin2 ϑr, (22.40)

where ϑr is the retarded angle between the direction of acceleration and the
direction of observation n. Integration over all solid angles gives the total ra-
diated power. With dΩ = sinϑrdϑrdφ, where φ is the azimuthal angle with
respect to the direction of acceleration, the total radiation power is in agree-
ment with (21.24)

P ∗ =
2
3
rcmc

∣∣∣∣
dβ ∗

dt

∣∣∣∣
2

r

. (22.41)

This equation has been derived first by Larmor [6] within the realm of
classical electrodynamics. The emission of a quantized photon, however, exerts
a recoil on the electron varying its energy slightly. Schwinger [266] investigated
this effect and derived a correction to the radiation power like

P ∗ = P ∗
classical

(
1 − 55

16
√

3

εc
E

)
, (22.42)

where εc is the critical photon energy and E is the electron energy. The correc-
tion is generally very small and we ignore therefore this quantum mechanical
effect in our discussions.

22.2.1 Transition Radiation

Digressing slightly from the discussion of synchrotron radiation we turn our
attention to the solution of (22.39) . Generally, we do not know the fields E∗
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and to solve (22.40) we need to know more about the particular trajectory
of the particle motion. In the case of transition radiation, we have, however,
all information to formulate a solution. Transition radiation is emitted when
a charged particle passes through the boundary of two media with different
dielectric constant. We will not go into the detailed general theory of transition
radiation but concentrate on the case where a charged particle passes through
a thin metallic foil in vacuum. As the particle passes through the foil backward
transition radiation is emitted when the particle enters the foil and forward
radiation is emitted when it appears on the other side. The emitted radiation
energy can be derived directly from (22.39). First, we replace the electric
radiation field by the magnetic field component and (22.39) becomes simply

dε(t)
dt

= ε0c B∗2(t)R2
∣∣
r
dΩ . (22.43)

From Parceval’s theorem (A.29) we know that
∫ ∞

−∞
B2(t) dt =

1
2π

∫ ∞

−∞
B2(ω) dω . (22.44)

The emission of transition radiation occurs in a very short time τ = ω−1
p ,

where ωp is the plasma frequency. For this reason, the transition radiation
frequency reaches into the x-ray regime. We limit ourselves here to frequencies
ω which are much lower such that τ � ω−1. The magnetic field is nonzero
only during the emission process and we can therefore set

B(ω) =
∫ ∞

−∞
B(t) eiωt dt ≈

∫ τ/2

−τ/2

B(t) dt . (22.45)

To solve this integral we recall the definition of the vector potential B(t) =
∇× Ar and keep in mind that all quantities are to be taken at the retarded
time. Expressing in component form ∇×Ar =

{
∂Az

∂y − ∂Ay

∂z , ∂Ax

∂z − ∂Az

∂x , ∂Ax

∂z −
∂Az

∂x

}
tr=t− 1

c
R(t)

the derivatives are ∂Az

∂y = ∂Az

∂tr
∂tr
∂y , etc. With ∂tr

∂y = 1
c

yr−y
R = ny

c

we get ∂Az

∂y − ∂Ay

∂z = 1
c

∂Az

∂tr
ny − 1

c
∂Ay

∂tr
nz or finally

B(t) = ∇× Ar =
1
c
nr ×

∂

∂tr
Ar =

1
c

∂

∂tr
[n × A]r . (22.46)

The magnetic field spectrum (22.45) then becomes simply

B(ω) =
∫ τ/2

−τ/2

B(t) dt =
1
c

[n × A]r|
final
initial

. (22.47)

Initially, while the electron has not yet vanished into the metallic foil,
the vector potential is made up of the Liènard–Wiechert potentials of a free
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electron and its image charge (a positron) moving in the opposite direction.
The vector potential is therefore

A = 4πcε0
eβ

R(1 + β n)︸ ︷︷ ︸
electron

+ 4πcε0
eβ

R(1 − β n)︸ ︷︷ ︸
.

positron

(22.48)

Instead of (22.43) we use the spectral radiation energy
dε(ω) = 1

µ0
R2dΩ 1

2π B∗2
r (t) dω 2, where the extra factor of 2 comes from using

only positive frequencies ω > 0, and get with (22.48) and e2 = rcmc24πε0

d2ε

dωdΩ
=

1
4π2

rcmc2

c

{
n × β

1 + β n
+

n × β

1 − β n

}2

=
rcmc2

π2c
|n × z|2

(
β

1 − β2 (nz)2

)2

,

where we used β ≈ βz and where z is the unit vector along the z-axis.
The emission angle ϑ is taken with respect to the z-axis. The spectral and
spatial transition radiation distribution from a single electron is finally with
nz = cosϑ and n× z = sinϑ

d2ε

dωdΩ
=

rcmc2

π2c

β2 sin2 ϑ

(1 − β2 cos2 ϑ)2
. (22.49)

The spatial radiation distribution of transition radiation is shown in
Fig. 22.2. No radiation is emitted along the axis ϑ = 0 while the radiation in-
tensity reaches a maximum at an emission angle of 1/γ. Equation (22.49) does

ϑ γ

Fig. 22.2. Intensity distribution d2ε
dωdΩ

π2c
rcmc2

of transition radiation
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not exhibit any frequency dependence, which is due to the fact that the emis-
sion process occurs in a very short time generating a uniform spectrum. Very
high frequencies in the x-ray regime, where the spectral intensity is expected
to drop, have been excluded in this derivation.

Integrating (22.49) over a half space, we get

dε
dω

=
2rcmc2

πc

∫ π/2

0

β2 sin2 ϑ

(1 − β2 cos2 ϑ)2
sinϑ dϑ

=
2rcmc2

πc

1
4β

[(
1 + β2

)
ln

1 + β

1 − β
− 2β

]
, (22.50)

which is for relativistic particles γ 
 1

dε(ω)
dω

≈ 2rcmc2

πc
ln γ . (22.51)

The spectral energy emitted into one half space by a single electron in
form of transition radiation is uniform for all frequencies reaching up into the
soft x-ray regime and depends only logarithmically on the particle energy.

22.2.2 Synchrotron Radiation Power

Coming back to synchrotron radiation we must define the electron motion in
great detail. It is this motion which determines many of the photon beam
characteristics. The radiation power and spatial distribution in the electron
system are identical to that from a linear microwave antenna being emitted
normal to the direction of acceleration with a sin2 distribution.

In Sect. B.6.2 we have shown that the radiation power is invariant to
Lorentz transformations, we may set P = P ∗ and the total radiation power
in the laboratory system is

P = 2
3 rcmcγ6

[
β̇2 − (β × β̇)2

]
, (22.52)

which has been discussed before leading to (21.25). Equation (22.52) expresses
the radiation power in a simple way and allows us to calculate other radiation
characteristics based on beam parameters in the laboratory system. Specifi-
cally, we will distinguish between acceleration parallel dβ

dt

∣∣∣
‖

and perpendicular

dβ
dt

∣∣∣
⊥

to the propagation β of the charge and therefore set

dβ

dt
=

dβ

dt

∣∣∣∣
‖

+
dβ

dt

∣∣∣∣
⊥
. (22.53)

Insertion into (22.52) shows the total radiation power to consist of sepa-
rate contributions from parallel and orthogonal acceleration. Separating both
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contributions, we get the synchrotron radiation power for both parallel and
transverse acceleration, respectively,

P‖ = 2
3rcmcγ6 dβ

dt

∣∣∣∣
2

‖
, (22.54)

P⊥ = 2
3rcmcγ4 dβ

dt

∣∣∣∣
2

⊥
. (22.55)

Expressions have been derived that define the radiation power for parallel
acceleration like in a linear accelerator or orthogonal acceleration found in
circular accelerators or deflecting systems. We note a similarity for both con-
tributions except for the energy dependence. At relativistic energies, the same
acceleration force leads to much less radiation if the acceleration is parallel
to the motion of the particle compared to orthogonal acceleration. Parallel
acceleration is related to the accelerating force F‖by v‖ = 1

γ3

dp‖
dt and after

insertion into (22.54) the radiation power due to parallel acceleration becomes

P‖ =
2
3
rc c

mc2

(dp‖
dt

)2

. (22.56)

The radiation power for acceleration along the propagation of the charged
particle is therefore independent of the energy of the particle and depends only
on the accelerating force or with dp‖/dt = βcdE/dx on the energy increase
per unit length, dE/dx, of the accelerator.

In contrast, we find very different radiation characteristics for transverse
acceleration as it happens, for example, during the transverse deflection of
a charged particle in a magnetic field. The transverse acceleration v⊥ is ex-
pressed by the Lorentz force

d p⊥
d t

= γmv̇⊥ = ce [β × B] , (22.57)

and after insertion into (22.55) the radiation power from transversely accel-
erated particles becomes

P‖ = 2
3rcmcγ2

(
d p⊥
d t

)2

. (22.58)

Comparing (22.56) with (22.58) we find that the same accelerating force leads
to a much higher radiation power by a factor γ2 for transverse acceleration
with respect to longitudinal acceleration. For all practical purposes technical
limitations prevent the occurrence of sufficient longitudinal acceleration to
generate noticeable radiation. We express the deflecting magnetic field B by
the bending radius ρ and get the instantaneous synchrotron radiation power
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Pγ = 2
3rcmc2

c β4γ4

ρ2
, (22.59)

or in more practical units

Pγ(GeV/s) =
cCγ

2π
E4

ρ2
, (22.60)

where we use Sands’ definition of the radiation constant [267]

Cγ =
4π
3

rc
(mc2)3

= 8.8575 × 10−5 m/GeV3
. (22.61)

This numerical value is correct for relativistic electrons and positrons and
must be modified for other particles.

From here on, we will stop considering longitudinal acceleration unless
specifically mentioned and replace therefore the index ⊥ by setting P⊥ = Pγ .
We also restrict from now on the discussion to singly charged particles and
set q = e ignoring extremely high energies where multiple charged ions start
to radiate.

The electromagnetic radiation of charged particles in transverse magnetic
fields is proportional to the fourth power of the particle momentum βγ and
inversely proportional to the square of the bending radius ρ. The radiation
emitted by charged particles being deflected in magnetic fields is called syn-
chrotron radiation. The synchrotron radiation power increases very fast for
high energy particles and provides the most severe limitation to the maximum
energy achievable in circular accelerators. We note also a strong dependence on
the kind of particles involved in the process of radiation. Because of the much
heavier mass of protons compared to the lighter electrons, we find apprecia-
ble synchrotron radiation only in circular electron accelerators. The radiation
power of protons is actually smaller compared to that for electrons by the
fourth power of the mass ratio or by the factor

Pe

Pp
= 18364 = 1.36 × 1013 . (22.62)

In spite of this enormous difference measurable synchrotron radiation has
been predicted by Coisson [252] and was indeed detected at the 400 GeV pro-
ton synchrotron SPS at CERN [253, 254]. Substantial synchrotron radiation
is expected in circular proton accelerators at a beam energy of 10 TeV and
more.

The knowledge of the synchrotron radiation power allows us now to calcu-
late the energy loss of a particle per turn in a circular accelerator by integrating
the radiation power along the circumference L0 of the circular accelerator

∆E =
∮

Pγ dt = 2
3rc mc2β3γ4

∫

L0

ds
ρ2

. (22.63)
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If we assume an isomagnetic lattice where the bending radius is the same
for all bending magnets ρ = const., and integrate around a circular accelerator,
the energy loss per turn due to synchrotron radiation is given by

∆E = 4π
3 rc mc2β3 γ

4

ρ
. (22.64)

The integration obviously is to be performed only along those parts of
the circular accelerator where synchrotron radiation occurs or along bending
magnets only. In more practical units, the energy loss of relativistic electrons
per revolution in a circular accelerator with an isomagnetic lattice and a
bending radius ρ is given by

∆E = Cγ
E4

ρ
. (22.65)

From this energy loss per particle in each turn we calculate the total syn-
chrotron radiation power for a beam of Ne particles. The total synchrotron
radiation power for a single particle is its energy loss multiplied by the revo-
lution frequency of the particle around the circular orbit. If L0 is the circum-
ference of the orbit we have for the revolution frequency frev = βc/L0 and for
the circulating particle current I = efrevNe. The total synchrotron radiation
power is then

Pγ(MW) = Cγ
E4(GeV)

ρ(m)
I(A) . (22.66)

The total synchrotron radiation power scales like the fourth power of en-
ergy and is inversely proportional to the bending radius. The strong depen-
dence of the radiation on the particle energy causes severe practical limitations
on the maximum achievable energy in a circular accelerator.

22.3 Spatial and Spectral Radiation Distribution

Expressions for the radiation fields and Poynting vector exhibit strong vecto-
rial dependences on the directions of motion and acceleration of the charged
particles and on the direction of observation. These vectorial dependences
indicate that the radiation may not be emitted isotropically but rather into
specific directions forming characteristic radiation patterns. Similarly, we note
a strong dependence on the photon frequency. In the following paragraphs,
we will investigate theses dependences closer.

22.3.1 Radiation Lobes

In this section we will derive these spatial radiation characteristics and deter-
mine the direction of preferred radiation emission.
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βββββ
.
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z

Fig. 22.3. Radiation pattern in the particle frame of reference or for nonrelativistic
particles in the laboratory system

In (22.40) the radiation power per unit solid angle is expressed in the
reference frame of the particle

dP
dΩ

=
rcmc

4π
β̇∗2

r sin2 Θ (22.67)

showing a particular directionality of the radiation as shown in Fig. 22.3. The
radiation power is mainly concentrated in the (x, y)-plane and is proportional
to sin2 Θ where Θ is the angle between the direction of acceleration, in this
case the z-axis, and the direction of observation n. The radiation pattern
in Fig. 22.3 is formed by the end points of vectors with the length dP/dΩ
and angles Θ with respect to the z-axis. Because of symmetry, the radiation
is isotropic with respect to the polar angle ϕ and, therefore, the radiation
pattern is rotation symmetric about the direction of acceleration or in this
case about the z-axis.

This pattern is the correct representation of the radiation for the reference
frame of the radiating particle. We may, however, also consider this pattern as
the radiation pattern from nonrelativistic particles like that from a linear radio
antenna. For relativistic particles the radiation pattern differs significantly
from the nonrelativistic case. The Poynting vector in the form of (22.37) can
be used to calculate the radiation power per unit solid angle in the direction
to the observer −n

dP
dΩ

= − nS R2
∣∣
r

= ε0c E2 (1 + β n)R2
∣∣
r
. (22.68)
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θ ϕ

Fig. 22.4. Radiation geometry in the laboratory frame of reference for highly rela-
tivistic particles

We calculate the spatial distribution of the synchrotron radiation for the
case of acceleration orthogonal to the propagation of the particle as it happens
in beam transport systems where the particles are deflected by a transverse
magnetic fields. The particle is assumed to be located at the origin of a right-
handed coordinate system as shown in Fig. 22.4 propagating in the z-direction
and the orthogonal acceleration in this coordinate system occurs along the x-
axis.

With expression (22.29) for the electric fields in the radiation regime the
spatial radiation power distribution (22.68) becomes

dP
dΩ

=
c

4π
rcmc2

R5

c3r5

{
n ×

[
(n + β ) × β̇

]}2

. (22.69)

We will now replace all vectors by their components to obtain the direc-
tional dependency of the synchrotron radiation. The vector n pointing from
the observation point to the source point of the radiation has from Fig. 22.4
the components

n = (− sin θ cosϕ,− sin θ sinϕ, cos θ) , (22.70)

where the angle θ is the angle between the direction of particle propagation
and the direction of emission of the synchrotron light −n. The x-component
of the acceleration can be derived from the Lorentz equation

γm v̇x =
d px

dt
= c eβzBy . (22.71)

With vz ≈ v we have 1/ρ = c eBy/cp = ceBy/(γmcv) and the acceleration
vector is

v̇⊥ = (v̇, 0, 0) =
(
v2

ρ
, 0, 0

)
. (22.72)
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The velocity vector is
v = (0, 0, v) (22.73)

and after replacing the double vector product in (22.69) by a single vector
sum

n × [(n + β ) × β ] = (n + β ) (n β )−β (1 + n β ), (22.74)

we may now square the r.h.s. of (22.69) and replace all vectors by their com-
ponents. The denominator in (22.69) then becomes

r5 = R5(1 + nβ )5 = R5(1 − β cos θ)5, (22.75)

and the full expression for the radiation power exhibiting the spatial distrib-
ution is finally

dP
dΩ

=
rcmc2c

4π
β4

ρ2

(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 ϕ
(1 − β cos θ)5

. (22.76)

This equation describes the instantaneous synchrotron radiation power per
unit solid angle from charged particles moving with velocity v and being ac-
celerated normal to the propagation by a magnetic field. The angle θ is the
angle between the direction of observation −n and propagation v/v. Inte-
gration over all angles results again in the total synchrotron radiation power
(22.59).

In Fig. 22.5 the radiation power distribution is shown in real space as
derived from (22.76). We note that the radiation is highly collimated in the
forward direction along the z-axis which is also the direction of particle propa-
gation. Synchrotron radiation in particle accelerators or beam lines is emitted
whenever there is a deflecting electromagnetic field and emerges mostly tan-
gentially from the particle trajectory. An estimate of the typical opening angle
can be derived from (22.76). We set ϕ = 0 and expand the cosine function for
small angles cos θ ≈ 1− 1

2 θ2. With β ≈ 1− 1
2 γ−2 we find the radiation power

to scale like (γ−2 + θ2)−3. The radiation power is therefore reduced to about
one eighth the peak intensity at an emission angle of θγ = 1/γ or virtually all
synchrotron radiation is emitted within an angle of

θγ = ± 1
γ

(22.77)

with respect to the direction of the particle propagation.
From Fig. 22.5 we observe a slightly faster fall off for an azimuthal an-

gle of ϕ = 0 which is in the plane of particle acceleration and propagation.
Although the synchrotron radiation is emitted symmetrically within a small
angle of the order of ± 1

γ with respect to the direction of particle propa-
gation, the radiation pattern from a relativistic particle as observed in the
laboratory is very different in the deflecting plane from that in the nonde-
flecting plane. While the particle radiates from every point along its path,
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ϕ

Fig. 22.5. Spatial synchrotron radiation distribution

the direction of this path changes in the deflecting plane but does not in
the nondeflecting plane. The synchrotron radiation pattern from a bending
magnet therefore resembles the form of a swath where the radiation is emitted
evenly and tangentially from every point of the particle trajectory as shown in
Fig. 22.6.

The extreme collimation of the synchrotron radiation and its high intensity
in high energy electron accelerators can cause significant heating problems as
well as desorption of gas molecules from the surface of the vacuum chamber.

← e -

sy n c hro tro n  ra d ia tio n

Fig. 22.6. Synchrotron radiation from a circular particle accelerator
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In addition, the high density of thermal energy deposition on the vacuum
chamber walls can cause significant mechanical stresses causing cracks in the
material. A careful design of the radiation absorbing surfaces to avoid dam-
age to the integrity of the material is required. On the other hand, this same
radiation is a valuable source of photons for a wide variety of research appli-
cations where, specifically, the collimation of the radiation together with the
small source dimensions are highly desired features of the radiation.

22.3.2 Synchrotron Radiation Spectrum

Synchrotron radiation from relativistic charged particles is emitted over a
wide spectrum of photon energies. The basic characteristics of this spectrum
can be derived from simple principles as suggested in [145] and discussed in
Sect. 21.3 and extends from very low photon energies up to about the critical
photon energy

εc = 3
2�c

γ3

ρ
. (22.78)

The significance of the critical photon energy is its definition for the upper
bound for the synchrotron radiation spectrum. The spectral intensity falls
off rapidly for photon energies above the critical photon energy. In practical
units, the critical photon energy is

εc(keV) = 2.218
E3(GeV)

ρ(m)
= 0.665E2(GeV)B(T) . (22.79)

The synchrotron radiation spectrum from relativistic particles in a circular
accelerator is made up of harmonics of the particle revolution frequency ω0 and
extends to values up to and beyond the critical frequency (22.78). Generally,
a real synchrotron radiation beam from say a storage ring will not display this
harmonic structure. The distance between the harmonics is extremely small
compared to the extracted photon frequencies in the VUV and x-ray regime
while the line width is finite due to the energy spread in a beam of many
particles and the spectrum therefore becomes continuous. For a single pass of
particles through a bending magnet in a beam transport line, we observe the
same spectrum, although now genuinely continuous as can be derived with the
use of Fourier transforms of a single light pulse. Specifically, the maximum
frequency is the same assuming similar parameters.

22.4 Radiation Field in the Frequency Domain

Synchrotron radiation is emitted within a wide range of frequencies. As we
have seen in the previous paragraph, a particle orbiting in a circular accelera-
tor emits light flashes at the revolution frequency. We therefore expect in the
radiation frequency spectrum all harmonics of the revolution frequency up to
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very high frequencies limited only by the very short duration of the radiation
pulse being sent into a particular direction toward the observer. The number
of harmonics increases with beam energy and reaches at the critical frequency
the order of γ3.

The frequency spectrum of synchrotron radiation has been derived by
many authors. In this text, we will stay closer to the derivation by Jack-
son [145] than others. The general method to derive the frequency spectrum
is to transform the electric field from the time domain to the frequency domain
by the use of Fourier transforms. Applying this method, we will determine the
radiation characteristics of the light emitted by a single pass of a particle in
a circular accelerator at the location of the observer. The electric field at the
observation point has a strong time dependence and is given by (22.29) while
the total radiation energy for one pass is from (22.38)

dW
dΩ

= −
∫ ∞

−∞

dP
dΩ

dt =
∫ ∞

−∞
SrnR2dt = ε0cR

2

∫ ∞

−∞
E2

r (t) dt . (22.80)

The transformation from the time domain to the frequency domain is per-
formed by a Fourier transform or an expansion into Fourier harmonics. This
is the point where the particular characteristics of the transverse acceleration
depend on the magnetic field distribution and are, for example, different in
a single bending magnet as compared to an oscillatory wiggler magnet. We
use here the method of Fourier transforms to describe the electric field of a
single particle passing only once through a homogeneous bending magnet. In
the case of a circular accelerator the particle will appear periodically with the
period of the revolution time and we expect a correlation of the frequency
spectrum with the revolution frequency. This is indeed the case and we will
later discuss the nature of this correlation. Expressing the electrical field Er(t)
by its Fourier transform, we set

Er(ω) =
∫ ∞

−∞
Er(t) e−iωtdt, (22.81)

where −∞ < ω < ∞. Applying Parceval’s theorem (A.29) the total absorbed
radiation energy from a single pass of a particle is therefore

dW
dΩ

= ε0 c
R2

2π

∫ ∞

−∞
|Er(ω) |2 dω . (22.82)

Evaluating the electrical field by its Fourier components, we derive an
expression for the spectral distribution of the radiation energy

d2W

dΩdω
= ε0

c

π
|Er(ω) |2 R2

r , (22.83)

where we have implicitly used the fact that Er(ω) = Er(−ω) since Er(t) is
real. To calculate the Fourier transform, we use (22.29) and note that the
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electrical field is expressed in terms of quantities at the retarded time. The
calculation is simplified if we express the whole integrand in (22.81) at the
retarded time and get with tr = t− 1

cR(tr) and dtr = R(tr)
r dt instead of (22.81)

Er(ω) =
1

4πε0
e

c

∫ ∞

−∞

R ×
[
(R + β R) × β̇

]

r2R

∣∣∣∣∣∣
r

e−i ω(tr+
Rr
c ) dtr . (22.84)

We now require that the radiation be observed at a point sufficiently far
away from the source that during the time of emission the vector R(tr) does
not change appreciably in direction. This assumption is generally justified
since the duration of the photon emission is of the order of 1/(ωLγ), where
ωL = c/ρ is the Larmor frequency. The observer therefore should be at a
distance from the source large compared to ρ/γ. Equation (22.84) together
with (22.14) may then be written like

Er(ω) =
1

4πε0
e

cR

∫ ∞

−∞

n ×
[
(n+β ) × β̇

]

(1 + n β )2

∣∣∣∣∣∣
r

e−i ω(tr+
Rr
c ) dtr . (22.85)

With
n ×

[
(n + β ) × β̇

]

(1 + nβ )2
=

d
dtr

n × (n × β )
1 + n β

, (22.86)

we integrate (22.85) by parts while noting that the integrals vanish at the
boundaries and get

Er(ω) =
1

4πε0
− i eω
cR

∫ ∞

−∞
[n × (n × β )]r e−i ω(tr+

Rr
c ) dtr . (22.87)

After insertion into (22.83) the spectral and spatial intensity distribution
is

d2W

dΩ dω
=

rcmc2

4πc
ω2

∣∣∣∣
∫ ∞

−∞
[n × (n × β )] e−i ω(tr+

Rr
c ) dtr

∣∣∣∣
2

r

. (22.88)

The spectral and spatial radiation distribution depends on the Fourier
transform of the particle trajectory which itself is a function of the magnetic
field distribution. The trajectory in a uniform dipole field is different from
say the step function of real lumped bending magnets or oscillating deflecting
fields from wiggler magnets and the radiation characteristics may therefore be
different. In this chapter, we will concentrate only on a uniform dipole field
and postpone the discussion of specific radiation characteristics for insertion
devices to Chap. 23.

The integrand in (22.88) can be expressed in component form to simplify
integration. For that we consider a fixed coordinate system (x, y, z) as shown
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Fig. 22.7. Radiation geometry

in Fig. 22.7. The observation point is far away from the source point and we
focus on the radiation that is centered about the tangent to the orbit at the
source point. The observation point P and the vectors R and n are therefore
within the (y, z)-plane and radiation is emitted at angles θ with respect to
the z-axis.

The vector from the origin of the coordinate system P0 to the observation
point P is r, the vector R is the vector from P to the particle at Pp, and rp

is the vector from the origin to Pp. With this we have

r = rp − R (tr) , (22.89)

where rpand Rr are taken at the retarded time. The exponent in (22.88) is
then

ω(tr + Rr/c) = ω(tr + nRr/c) =
ω

c
(ctr + nrp − nr) (22.90)

and the term −ω
c nr is independent of the time generating only a constant

phase factor which is completely irrelevant for the spectral distribution and
may therefore be ignored.

In determining the vector components, we note from Fig. 22.7 that now
the coordinate system is fixed in space. Following the above discussion the
azimuthal angle is constant and set to ϕ = 1

2 π because we are interested only
in the vertical radiation distribution. The horizontal distribution is uniform
by virtue of the tangential emission along the orbit. With these assumptions,
we get the vector components for the vector n from (22.70)

n = (0,− sin θ,− cos θ) . (22.91)

The vector rp is defined by Fig. 22.7 and depends on the exact variation of
the deflecting magnetic field along the path of the particles. Here we assume
a constant bending radius ρ and have
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rp = [−ρ cos(ωLtr), 0, ρ sin(ωLtr)] , (22.92)

where ωL = βc/ρ is the Larmor frequency. From these component represen-
tations the vector product

nrp = −ρ sin(ωLtr) cos θ . (22.93)

Noting that both arguments of the trigonometric functions in (22.93) are
very small, we may expand the r.h.s. of (22.93) up to third order in tr and the
factor tr + nrp/c in (22.90) becomes

ctr + nrp = ctr − ρ
[
ωLtr − 1

6 (ωLtr)3
(
1 − 1

2 θ2
)]

. (22.94)

With ωL = βc/ρ we get tr(1 − ρωL/c) = (1 − β) tr ≈ tr/(2γ2). Keeping
only up to third order terms in ωLtr and θ we have finally for high energetic
particles β ≈ 1

tr +
nrp

c
= 1

2

(
γ−2 + θ2

)
tr + 1

6ω
2
Ltr

3 . (22.95)

The triple vector product in (22.88) can be evaluated in a similar way. For
the velocity vector we derive from Fig. 22.7

β = β [−sign(1/ρ) sin(ωLtr), 0, cos(ωLtr)] . (22.96)

Consistent with the definition of the curvature, the sign of the curvature
sign(1/ρ) is positive for a positive charge and a positive magnetic field vector
By. The vector relation (A.10) and (22.91), (22.96) can be used to express the
triple vector product in terms of its components

n × (n × β ) = β
[
sign(1/ρ) sin(ωLtr), 1

2 sin 2θ cos(ωLtr),− sin2 θ cos(ωLtr)
]
.

(22.97)
Splitting this three-dimensional vector into two parts will allow us to char-

acterize the polarization states of the radiation. To do this, we take the unit
vector u⊥ in the x-direction and u‖ a unit vector normal to u⊥ and normal
to r. The y- and z-components of (22.97) are then also the components of
u‖ and we may express vector (22.97) by

n × (n × β ) = β sign(1/ρ) sin(ωLtr)u⊥ + β sin θ cos(ωLtr)u‖ . (22.98)

Inserting (22.95) and (22.98) into integrand (22.87) we get with β ≈ 1

Er(ω) = − 1
4πε0

e

R

ω

c

∫ ∞

−∞

[
sign(1/ρ) sin(ωLtr)u⊥ + sin θ cos(ωLtr)u‖

]
eX dtr,

(22.99)
where

X = −i
ω

2γ2

[
(1 + γ2θ2) tr + 1

3γ
2ω2

Lt
3
r

]
.
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Two polarization directions have been defined for the electric radiation
field. One of which, u⊥, is in the plane of the particle path being perpen-
dicular to the particle velocity and to the deflecting magnetic field. Following
Sokolov and Ternov [268] we call this the σ-mode (u⊥ = uσ). The other polar-
ization direction in the plane containing the deflecting magnetic field and the
observation point is perpendicular to n and is called the π-mode (u‖ = uπ).
Since the emission angle θ is very small, we find this polarization direction
to be mostly parallel to the magnetic field. Noting that most accelerators or
beam lines are constructed in the horizontal plane, the polarizations are also
often referred to as the horizontal polarization for the σ-mode and as the
vertical polarization for the π-mode.

22.4.1 Spectral Distribution in Space and Polarization

As was pointed out by Jackson [145], the mathematical need to extend the
integration over infinite times does not invalidate our expansion of the trigono-
metric functions where we assumed the argument ωLtr to be small. Although
integral (22.99) extends over all past and future times, the integrand oscil-
lates rapidly for all but the lowest frequencies and therefore only times of the
order ctr = ± ρ/γ centered about tr contribute to the integral. This is a direct
consequence of the fact that the radiation is emitted in the forward direction
and therefore only photons from a very small segment of the particle trajec-
tory reach the observation point. For very small frequencies of the order of
the Larmor frequency, however, we must expect considerable deviations from
our results. In practical circumstances such low harmonics will, however, not
propagate in the vacuum chamber [261] and the observed photon spectrum is
therefore described accurately for all practical purposes.

The integral in (22.99) can be expressed by modified Bessel ’s functions
in the form of Airy’s integrals as has been pointed out by Schwinger [256].
Since the deflection angle ωLtr is very small, we may use linear expansions
sin(ωLtr) ≈ ωLtrand cos(ωLtr) ≈ 1. Inserting the expression for the elec-
tric field (22.99) into (22.82) we note that cross terms of both polarizations
vanish u⊥u‖ = 0 and the radiation intensity can therefore be expressed by
two separate orthogonal polarization components. Introducing in (22.99) the
substitutions [256]

ωLtr =
√

1
γ2

+ θ2 x, (22.100)

ξ = 1
3

ω

ωL

1
γ3

(1 + γ2θ2)3/2 = 1
2

ω

ωc
(1 + γ2θ2)3/2, (22.101)

where �ωc is the critical photon energy, the argument in the exponential factor
of (22.99) becomes

ω

2γ2

[
(1 + γ2θ2) tr + 1

3γ
2ω2

Lt
3
r

]
= 1

2ξ(3x + x3) . (22.102)
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With these substitutions, (22.99) can be evaluated noting that only even
terms contribute to the integral. With ωLtr and θ being small quantities we
get integrals of the form [269]

∫∞
0

cos
[
1
2ξ(3x + x3)

]
dx = 1√

3
K1/3(ξ),∫∞

0
sin
[
1
2ξ(3x + x3)

]
dx = 1√

3
K2/3(ξ),

(22.103)

where the functions Kν are modified Bessels’s functions of the second kind.
These functions assume finite values for small arguments but vanish expo-
nentially for large arguments as shown in Fig. 21.12. Fast converging series
for these modified Bessels’s functions with fractional index have been derived
by Kostroun [270]. The Fourier transform of the electrical field (22.99) finally
becomes

Er(ω) = − 1
4πε0

√
3e

cR

ω

ωc
γ(1+γ2θ2)

[
sign

(
1
ρ

)
K2/3(ξ)uσ − i

γθK1/3(ξ)√
1 + γ2θ2

uπ

]
,

(22.104)
describing the spectral radiation field far from the source for particles traveling
through a uniform magnetic dipole field. Later, we will modify this expression
to make it suitable for particle motion in undulators or other nonuniform
fields.

The spectral synchrotron radiation energy emitted by one electron per
pass is proportional to the square of the electrical field (22.104) and is from
(22.83)

d2W

dΩdω
=

3 rcmc

4π2
γ2

(
ω

ωc

)2

(1 + γ2θ2) 2

[
K2

2/3(ξ)u2
σ +

γ2θ2K2
1/3(ξ)

1 + γ2θ2
u2

π

]
.

(22.105)
The radiation spectrum has two components of orthogonal polarization,

one in the plane of the particle trajectory and the other almost parallel to
the deflecting magnetic field. In (22.104) both polarizations appear explicitly
through the orthogonal unit vectors. Forming the square of the electrical field
to get the radiation intensity, cross terms disappear because of the orthogo-
nality of the unit vectors uσand uπ. The expression for the radiation inten-
sity therefore preserves separately the two polarization modes in the square
brackets of (22.105) representing the σ-mode and π-mode of polarization,
respectively.

It is interesting to study the spatial distribution for the two polarization
modes in more detail. Not only are the intensities very different but the spatial
distribution is different too. The spatial distribution of the σ-mode is directed
mainly in the forward direction while the π-mode radiation is emitted into
two lobes at finite angles and zero intensity in the forward direction θ = 0. In
Fig. 22.8 the instantaneous radiation lobes are shown for both the σ- and the
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Fig. 22.8. Radiation lobes for σ− and π−mode polarization

π-mode at the critical photon energy and being emitted tangentially from the
orbit at the origin of the coordinate system.

22.4.2 Spectral and Spatial Photon Flux

The radiation intensity W from a single electron and for a single pass may
not always be the most useful parameter. A more useful parameter is the
spectral photon flux per unit solid angle into a frequency bin ∆ω/ω and for a
circulating beam current I

d2Ṅph (ω)
dθ dψ

=
d2W (ω)
dω dΩ

1
�

I

e

∆ω

ω
. (22.106)

Here we have replaced the solid angle by its components, the vertical angle
θ and the bending angle ψ. In more practical units the differential photon flux
is

d2Ṅph (ω)
dθ dψ

= CΩE2I
∆ω

ω

(
ω

ωc

)2

K 2
2/3(ξ)F (ξ, θ), (22.107)

where

CΩ =
3α

4π2e(mc2)2
= 1.3273 × 1016 photons

s mrad2 GeV2A
, (22.108)

I is the circulating particle beam current, α is the fine structure constant, and

F (ξ, θ) = (1 + γ2θ2) 2

[
1 +

γ2θ2

1 + γ2θ2

K 2
1/3(ξ)

K 2
2/3(ξ)

]
. (22.109)

For approximate numerical calculations of photon fluxes, we may use the
graphic representation in Fig. 21.12 for the modified Bessel ’s function.

The spatial radiation pattern varies with the frequency of the radiation.
Specifically, the angular distribution concentrates more and more in the for-
ward direction as the radiation frequency increases. The radiation distribution
in frequency and angular space is shown for both the σ-(Fig. 22.9) and the
π-mode (Fig. 22.10) at the fundamental frequency. The high collimation of
synchrotron radiation in the forward direction makes it a prime research tool
to probe materials and its atomic and molecular properties.
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Fig. 22.9. Distribution in frequency and angular space for σ−mode radiation

Fig. 22.10. Distribution in frequency and angular space for π-mode radiation

22.4.3 Harmonic Representation

Expression (22.105) can be transformed into a different formulation empha-
sizing the harmonic structure of the radiation spectrum. The equivalence be-
tween both formulations has been shown by Sokolov and Ternov [268] ex-
pressing the modified Bessel’s functions K1/3 and K2/3 by regular Bessel’s
functions of high order. With ν = ω

ωL
the asymptotic formulas for ν 
 1 are

K1/3(ξ) =
√

3π√
1 − β2 cos2 θ

Jν(νβ cos θ), (22.110)

K2/3(ξ) =
√

3π
1 − β2 cos2 θ

J ′
ν(νβ cos θ), (22.111)

where ξ = ν
3

(
1 − β2 cos2 θ

)3/2 ≈ ν
3

(
γ−2 + β2θ2

)3/2 for small angles. These
approximations are justified since we are only interested in very large harmon-
ics of the revolution frequency. The harmonic number ν for the critical photon
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frequency, for example, is given by νc = ωc/ωL = 3
2γ

3 which for practical cases
is generally a very large number. Inserting these approximations into (22.105)
gives the the formulation that has been derived first by Schott [235–237] in
1907 long before synchrotron radiation was discovered in an attempt to cal-
culate the radiation intensity of atomic spectral lines

d2P

dΩdν
=

rcmc3

2πρ2
ν2
[
J ′2

ν (ν cos θ) + θ2J 2
ν(ν cos θ)

]
, (22.112)

where we have introduced the radiation power P = W c
2πρ . This form still

exhibits the separation of the radiation into the two polarization modes.

22.4.4 Spatial Radiation Power Distribution

Integrating over all frequencies we obtain the angular distribution of the syn-
chrotron radiation. From (22.105) we note the need to perform integrals of the
form

∫∞
−∞ ω2K2

µ(aω) dω, where aω = ξ. The solution can be found in the in-
tegral tables of Gradshteyn and Ryzhik [99] as solution number GR (6.576.4)1

∫ ∞

0

ω2K2
µ(aω) dω =

π2

32a3

1 − 4µ2

cosπµ
, (22.113)

for a > 0, and −1.5 < µ < 1.5 . Applying this solution to (22.105) and
integrating over all frequencies, we get for the angular energy distribution of
the synchrotron radiation per electron

dW
dΩ

=
7
16

rcmc2

ρ

γ5

(1 + γ2θ2)5/2

(
1 +

5
7

γ2θ2

1 + γ2θ2

)
. (22.114)

This result is consistent with the angular radiation power distribution
(22.76) where we found that the radiation is collimated very much in the
forward direction with most of the radiation energy being emitted within an
angle of ±1/γ. There are two contributions to the total radiation intensity, the
σ-mode and the π-mode. The σ-mode has a maximum intensity in the forward
direction, while the maximum intensity for the π-mode occurs at an angle of
θπ = 1/(

√
5/2 γ). The quantity dW/dΩ is the radiation energy per unit solid

angle from a single electron and a single pass and the average radiation power
is therefore Pγ = W /Trev or (22.114) becomes

dPγ

dΩ
=

7 rcmc3

32πρ2

γ5

(1 + γ2θ2)5/2

(
1 +

5
7

γ2θ2

1 + γ2θ2

)
. (22.115)

1 In this chapter we will repeatedly need results from mathematical tables. We ab-
breviate such solutions with the first letters of the author names and the formula
number.
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Integrating (22.115) over all angles θ, we find the synchrotron radiation
power into both polarization modes, the σ-mode perpendicular to the mag-
netic field and the π-mode parallel to the magnetic field. In doing so, we note
first that (22.115) can be simplified with (22.59) and β = 1

dPγ

dΩ
=

21
32

Pγ

2π
γ

(1 + γ2θ2)5/2

(
1 +

5
7

γ2θ2

1 + γ2θ2

)
. (22.116)

This result is consistent with (22.76) although it should be noted that
(22.116) gives the average radiation power from a circular accelerator with
uniform intensity in ψ, while (22.76) is the instantaneous power into the for-
ward lobe. Equation (22.116) exhibits the power into each polarization mode
for which the total power can be obtained by integration over all angles. First,
we integrate over all points along the circular orbit and get a factor 2π since
the observed radiation power does not depend on the location along the orbit.
Continuing the integration over all angles of θ, we find the contributions to
the integral to become quickly negligible for angles larger than 1/γ. If it were
not so, we could not have used (22.116) where the trigonometric functions
have been replaced by their small arguments. Both terms in (22.116) can be
integrated readily and the first term becomes with GR (2.271.6) [99]

∫ θmaxγ�1

θmaxγ�1

γ d θ

(1 + γ2θ2)5/2
=

4
3
. (22.117)

The second term is with GR [2.272.7] [99]

∫ θmaxγ�1

θmaxγ�1

γ3θ2 dθ
(1 + γ2θ2)7/2

=
4
15

. (22.118)

With these integrals and (22.116) we express the radiation power into the σ-
and π-mode with Pγ from (22.59) by

Pσ = 7
8Pγ ,

Pπ = 1
8Pγ .

(22.119)

The horizontally polarized component of synchrotron radiation greatly
dominates the photon beam characteristics and only 12.5% of the total in-
tensity is polarized in the vertical plane. In the forward direction the σ-
polarization even approaches 100%. Obviously, the sum of both components
is equal to the total radiation power. This high polarization of the radiation
provides a valuable characteristic for experimentation with synchrotron radi-
ation. In addition, the emission of polarized light generates a slow polarizing
reaction on the particle beam orbiting in a circular accelerator like in a storage
ring [114].
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22.5 Asymptotic Solutions

Expressions for the radiation distribution can be greatly simplified if we re-
strict the discussion to very small or very large arguments of the modified
Bessel’s functions for which approximate expressions exist [150]. Knowledge
of the radiation distribution at very low photon frequencies becomes impor-
tant for experiments using such radiation or for beam diagnostics where the
beam cross section is being imaged to a TV camera using the visible part
of the radiation spectrum. To describe this visible part of the spectrum, we
may in most cases assume that the photon frequency is much lower than the
critical photon frequency.

22.5.1 Low Frequencies and Small Observation Angles

For very small arguments or low frequencies and small angles, we find the
following approximations AS (9.6.9) [150]:

K2
1/3(ξ −→ 0) ≈ Γ 2(1/3)

22/3

(
ω

ωc

)−2/3 1
1 + γ2θ2

, (22.120a)

K2
2/3(ξ −→ 0) ≈ 22/3Γ 2(2/3)

(
ω

ωc

)−4/3 1
(1 + γ2θ2)2

, (22.120b)

where the Gamma functions Γ (1/3) = 2.6789385 and Γ (2/3) = 1.351179 and
from (22.102)

ξ =
1
2

ω

ωc
(1 + γ2θ2)3/2 . (22.121)

Inserting this into (22.107) the photon flux spectrum in the forward direction
becomes for θ = 0 and ω

ωc
� 1

d2Ṅph

dθdψ
≈ CΩ E2I Γ 2(2/3)

(
2ω
ωc

)2/3
∆ω

ω
. (22.122)

The photon spectrum at very low frequencies is independent of the particle
energy since ωc ∝ E3. Clearly, in this approximation there is no angular de-
pendence for the σ-mode radiation and the intensity increases with frequency.
The π-mode radiation on the other hand is zero for θ = 0 and increases in
intensity with the square of θ as long as the approximation is valid.

22.5.2 High Frequencies or Large Observation Angles

For large arguments of the modified Bessel’s functions or for high frequen-
cies and large emission angles different approximations hold. In this case,
the approximate expressions are actually the same for both Bessel’s func-
tions indicating the same exponential drop off for high energetic photons AS
(9.7.2) [150]
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K2
1/3(ξ −→ ∞) ≈ π

2
e−2ξ

ξ
, (22.123a)

K2
2/3(ξ −→ ∞) ≈ π

2
e−2ξ

ξ
. (22.123b)

The photon flux distribution in this approximation becomes from (22.107)

d2Nph

dθdψ
≈ 3rcmc2

4π� c
γ2 ω

ωc
e−2ξ

√
1 + γ2θ2

∆ω

ω

I

e

(
1 +

γ2θ2

1 + γ2θ2

)
, (22.124)

where Nph is the number of photons emitted per pass. The spatial radiation
distribution is greatly determined by the exponential factor and the relative
amplitude with respect to the forward direction therefore scales like

exp
{
− ω

ωc

[(
1 + γ2θ2

)3/2 − 1
]}

. (22.125)

We now look for the specific angle for which the intensity has fallen to 1/e.
Since ω 
 ωc, this angle must be very small γθ � 1 and we can ignore other
θ-dependent factors. The exponential factor becomes equal to 1/e for

3
2

ω

ωc
γ2θ2

1/e ≈ 1 (22.126)

and solving for θ1/e we finally get

θ1/e =
√

2
3

1
γ

ωc

ω
for ω 
 ωc . (22.127)

The high energy end of the synchrotron radiation spectrum is more and
more collimated into the forward direction. The angular distribution is graph-
ically illustrated for both polarization modes in Figs. 22.9 and 22.10.

22.6 Angle-Integrated Spectrum

Synchrotron radiation is emitted over a wide range of frequencies and it is of
great interest to know the exact frequency distribution of the radiation. Since
the radiation is very much collimated in the forward direction, it is useful
to integrate over all angles of emission to obtain the total spectral photon
flux that might be accepted by a beam line with proper aperture. To that
goal, (22.105) will be integrated with respect to the emission angles to obtain
the frequency spectrum of the radiation. The emission angle θ appears in
(22.105) in a rather complicated way which makes it difficult to perform the
integration directly. We replace therefore the modified Bessel’s functions by
Airy’s functions defined by AS (10.4.14) and AS (10.4.31) [150]
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Ai(z) =
√
z√
3π

K1/3(ξ), (22.128a)

Ai′(z) = − z√
3π

K2/3(ξ) . (22.128b)

With the definition
η = 3

4

ω

ωc
(22.129)

we get from (22.102)

z =
(

3
2ξ
)2/3 = η2/3

(
1 + γ2θ2

)
. (22.130)

We apply this to the periodic motion of particles orbiting in a circular ac-
celerator. In this case the spectral distribution of the radiation power can be
obtained by noting that the differential radiation energy (22.105) is emitted
every time the particle passes by the source point. A short pulse of radiation is
sent toward the observation point at periodic time intervals equal to the rev-
olution time Trev = c

2πρ . The spectral power distribution (22.105) expressed
by Airy functions is

d2Pγ

dω dΩ
=

9Pγ

2π
γ

ωc

[
η2/3 Ai′ 2 (z) + η4/3γ2θ2Ai2 (z)

]
. (22.131)

To obtain the photon frequency spectrum, we integrate over all angles of
emission which is accomplished by integrating along the orbit contributing a
mere factor of 2π and over the angle θ. Although this latter integration is to
be performed between -π/2 and +π/2, we choose the mathematically easier
integration from −∞ to +∞ because the Airy functions fall off very fast for
large arguments. In fact, we have already seen that most of the radiation is
emitted within a very small angle of ±1/γ. The integrals to be solved are of
the form

∫∞
0

θnAi2
[
η2/3(1 + γ2θ2

]
d θ where n = 0 or 2. We concentrate first

on the second term in (22.131), and form with (22.103) and (22.128a) the
square of the Airy function

θ2 Ai2(z) =
1
π2

∫ ∞

0

θ2 cos
[
1
3x

3 + zx
]

dx
∫ ∞

0

θ2 cos
[
1
3 y3 + z y

]
dy .

(22.132)
We solve these integrals by making use of the trigonometric relation

cos(α + 1
2β) cos(α− 1

2β) = cosα cosβ . (22.133)

After introducing the substitutions x + y = s and x − y = t, we obtain
integrals over two terms which are symmetric in s and t and therefore can be
set equal to get

θ2Ai2(z) =
1

2π2

∫ ∞

0

∫ ∞

0

θ2 cos
[

1
12s

3 + 3 s t2 + z s
]
dsdy, (22.134)
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where the factor 1
2 comes from the transformation of the area element dsdy =

ds√
2

dt√
2
. In our problem we replace the argument z by the expression z =

η2/3
(
1 + γ2θ2

)
and integrate over the angle θ

π2

∫ ∞

−∞
θ2Ai2(z) dθ =

∫∫∫ ∞

−∞
θ2 cos

[
1
12s

3 + 3st2 + sη2/3
(
1 + γ2θ2

)]
dsdy dθ .

(22.135)
The integrand is symmetric with respect to θ and the integration therefore

needs to be performed only from 0 to ∞ with the result being doubled. We
also note that the integration is taken over only one quadrant of the (s, t)-
space. Further simplifying the integration, the number of variables in the
argument of the cosine function can be reduced in the following way. We
note the coefficient 1

4 t2 + η2/3γ2θ2 which is the sum of squares. Setting 1
2 t =

r cosϕ and η1/3γθ = r sinϕ this term becomes simply r2. The area element
transforms like d td θ = 2/(η1/3γ) r dr dϕ and integrating over ϕ from 0 to
π/2, since we need integrate only over one quarter plane, (22.135) becomes
finally

∞∫

−∞

θ2Ai2 (z) dθ =
1

2πηγ3

∫∫ ∞

0

r2 cos
[

1
12s

3 + s η2/3 + r2
]
r dr ds .

(22.136)
The integrand of (22.136) has now a form close to that of an Airy integral

and we will try to complete that similarity. With q = (3ξ/2)1/3x the definition
of the Airy functions AS (10.4.31) [150] are consistent with (22.128)

Ai(z) =
1
π

∫ ∞

0

cos
[
1
3q

3 + z q
]
dq . (22.137)

Equation (22.136) can be modified into a similar form by setting

w3 = 1
4s

3 and s (η2/3 + r2) = y w . (22.138)

Solving for w we get w = s / 22/3and with y = 22/3(η2/3+r2), ds = 22/3dw,
and dy = 25/3r dr (22.136) becomes

∫ ∞

−∞
θ2Ai2(z) dθ =

1
4ηγ3

∫ ∞

y0

( y

22/3
− η2/3

)
Ai(y) dy , (22.139)

where we have used the definition of Airy’s function and where the integration
starts at

y0 = (2η)2/3 =
(

3
2

ω

ωc

)2/3

(22.140)

corresponding to r = 0.
We may separate this integral into two parts and get a term yAi(y) under

one of the integrals. This term is by the definition of Airy’s functions AS
(10.4.1) [150] equal to Ai′′. Integration of this second derivative gives



822 22 Theory of Synchrotron Radiation

∫ ∞

y0

Ai′′(y) dy = −Ai′(y0) (22.141)

and collecting all terms in (22.139) we have finally
∫ ∞

−∞
θ2Ai2(z) dθ = − 1

4η1/3γ3

[
Ai′(y0)

y0
+
∫ ∞

y0

Ai(y) dy
]
. (22.142)

The derivation of the complete spectral radiation power distribution
(22.131) also requires the evaluation of the integral

∫
Ai′′(z) d θ. This can

be done with the help of the integral
∫
Ai′′(z) dθ and the integral we have

just derived. We follow a similar derivation that led us just from (22.135) to
(22.136) and get instead of (22.142)

∫ ∞

−∞
Ai2(z) dθ = − 1

2η1/3γ

∫ ∞

y0

Ai(y) dy . (22.143)

Recalling the definition of the argument y = η2/3
(
1 + γ2θ2

)
, we differen-

tiate (22.143) twice with respect to η2/3 to get

2
∫ ∞

−∞

[
Ai′′(z) + Ai′2(z)

]
dθ = − 21/3

η1/3γ
Ai ′(y0) . (22.144)

Using the relation Ai′′(z) = zAi (z) and results (22.141), (22.142) in (22.144)
we get

∫ ∞Ai′2

−∞
(z) dθ = −η1/3

4γ

[
3Ai ′ (y0)

y0
+
∫ ∞

y0

Ai(y) dy
]
. (22.145)

At this point, all integrals have been derived that are needed to describe
the spectral radiation power separately in both polarization modes and the
spectral radiation power from (22.131) becomes

dPγ

dω
=

27Pγω

16ω2
c

[(
−3Ai ′ (y0)

y0
−
∫ ∞

y0

Ai(y) dy
)

−
(
Ai′ (y0)

y0
+
∫ ∞

y0

Ai(y) dy
)]

. (22.146)

The first term describes the σ-mode of polarization and the second term
describes the π-mode. Combining both polarization modes, we may derive a
comparatively simple expression for the spectral radiation power. To this goal,
we replace the Airy’s functions by modified Bessel’s functions

Ai′ (y0)
y0

= − 1√
3π

K2/3(x0), (22.147)

where from (22.128), (22.129), and (22.139) x0 = ω/ωc. With
√
y dy =dx, the

recurrence formula 2K ′
2/3 = −K1/3 + K5/3 and (22.128) the Airy integral is
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∫ ∞

y0

Ai(y) dy = − 2√
3π

∫ ∞

x0

K ′
2/3(x) dx− 1√

3π

∫ ∞

x0

K5/3(x) dx

= 2√
3π

K2/3(x0) − 1√
3π

∫ ∞

x0

K5/3(x) dx . (22.148)

We use (22.147) and (22.148) in (22.146) and get the simple expression for
the synchrotron radiation spectrum

dPγ

dω
=

Pγ

ωc

9
√

3
8π

ω

ωc

∫ ∞

x0

K5/3(x) dx =
Pγ

ωc
S

(
ω

ωc

)
, (22.149)

where we defined the universal function

S

(
ω

ωc

)
= 9

√
3

8π

ω

ωc

∫ ∞

ω/ωc

K5/3(x)dx . (22.150)

The spectral distribution depends only on the critical frequency ωc, the
total radiation power, and a purely mathematical function. This result has
been derived originally by Ivanenko and Sokolov [255] and independently by
Schwinger [256]. Specifically, it should be noted that the synchrotron radiation
spectrum, if normalized to the critical frequency, does not depend on the par-
ticle energy and is represented by the universal function shown in Fig. 22.11.
The energy dependence is contained in the cubic dependence of the critical
frequency acting as a scaling factor for the real spectral distribution. The
mathematical function is properly normalized as we can see by integrating
over all frequencies.

∫ ∞

0

dPγ

dω
dω = 9

√
3

8π Pγ

∫ ∞

0

x0

∫ ∞

x0

K5/3(x)dxdx0 . (22.151)

Fig. 22.11. Universal function: S(ξ) = 9
√

3
8π

ξ
∫∞

ξ
K5/3(x) dx, with ξ = ω/ωc
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After integration by parts, the result can be derived from GR [6.561.16] [99]
∫ ∞

0

dPγ

dω
dω = 9

√
3

16π Pγ

∫ ∞

0

x2
0 K5/3(x0)dx0 = Γ (4/3) Γ (2/3) . (22.152)

Using the triplication formula AS (6.1.19) [150] the product of the gamma
functions becomes

Γ (4/3)Γ (2/3) = 4
9

2π√
3
. (22.153)

With this equation the proper normalization of (22.151) is demonstrated as
∫ ∞

0

dPγ

dω
dω = Pγ . (22.154)

Of more practical use is the spectral photon flux per unit angle of deflection
in the bending magnet. With the photon flux dṄph =dP/�ω we get from
(22.149)

dṄph

dψ
=

Pγ

2π�ωc

∆ω

ω
S

(
ω

ωc

)
(22.155)

and with (22.59) and (22.78)

dṄph

dψ
=

4α
9

γ
I

e

∆ω

ω
S

(
ω

ωc

)
, (22.156)

where ψ is the deflection angle in the bending magnet and α is the fine struc-
ture constant. In practical units, this becomes

dṄph

dψ
= Cψ E I

∆ω

ω
S

(
ω

ωc

)
(22.157)

with
Cψ =

4α
9emc2

= 3.967 × 1016 photons
s mrad A GeV

. (22.158)

The synchrotron radiation spectrum in Fig. 22.11 is rather uniform up to
the critical frequency beyond which the intensity falls off rapidly. Equation
(22.149) is not well suited for quick calculation of the radiation intensity at
a particular frequency. We may, however, express (22.149) in a much sim-
pler form for very low and very large frequencies making use of approximate
expressions of Bessel’s functions for large and small arguments.

For small arguments
(
x = ω

ωc
� 1

)
we find with AS (9.6.9) [150]

K5/3(x −→ 0) ≈ Γ
(

5
3

) 22/3

x5/3
, (22.159)

which allows us to integrate (22.152) readily and get instead of (22.149)

dPγ

dω
≈ 9

√
3

8π

Pγ

ωc
22/3 Γ (2/3)

(
ω

ωc

)1/3

≈ 1.333
(

ω

ωc

)1/3
Pγ

ωc
. (22.160)
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For high photon frequencies
(
x = ω

ωc

 1

)
the modified Bessel’s function

becomes from AS (9.7.2) [150]

K5/3(x 
 1) ≈
√

π

2
e−x

√
x

(22.161)

and after integration with GR (3.361.1) and GR (3.361.2) [99], (22.149) be-
comes

dPγ

dω
≈ 9

√
3

8
√

2π

Pγ

ωc

√
ω

ωc
e−ω/ωc ≈ 0.77736

Pγ

ωc

√
ω

ωc
eω/ωc . (22.162)

Both approximations are included in Fig. 22.11 and actually display a
rather good representation of the real spectral radiation distribution. Specif-
ically, we note the slow increase in the radiation intensity at low frequencies
and the exponential drop off above the critical frequency.

22.7 Statistical Radiation Parameters

The emission of synchrotron radiation is a classical phenomenon. For some
applications it is, however, useful to express some parameters in statistical
form. Knowing the spectral radiation distribution, we may follow Sands [267]
and express some quantities in the photon picture. We have leading to derive
expressions for the equilibrium beam size and energy spread. Equilibrium
beam parameters are determined by the statistical emission of photons and
its recoil on the particle motion. For this purpose, we are mainly interested in
an expression for ε2

ph and the photon flux at energy εph. From these quantities,

we may derive an expression for the average photon energy
〈
ε2
ph

〉
z

emitted

along the circumference of the storage ring. With Π (εph) being the probability
to emit a photon with energy εph we have

〈
ε2
ph

〉
z

=
∫ ∞

0

ε2
phΠ (εph) dεph . (22.163)

The probability Π (εph) is defined by the ratio of the photon flux ṅ(εph)
emitted at energy εph to the total photon flux Ṅph

Π (εph) =
ṅ(εph)
Ṅph

. (22.164)

The photon flux at εph is related to the spectral photon power by
εphṅ(εph) dεph = P (εph) dεph. Integrating (22.155) over all angles ψ and mul-
tiplying by �ω = εph we get for the spectral radiation power

P (εph) dεph = εph
dṄ
dεph

dεph =
Pγ

εc
S

(
εph

εc

)
dεph,
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and

ṅ(εph) =
Pγ

ε2
c

S (x)
x

, where x =
εph

εc
. (22.165)

The total number of emitted photons per unit time is just the integral

Ṅph =
∫ ∞

0

ṅ(εph) dεph =
Pγ

εc

∫ ∞

0

S (x)
x

dx =
15
√

3
8

Pγ

εc
. (22.166)

With this, the probability to emit a photon of energy εph is finally

Π (εph) =
8

15
√

3
1
εc

S (x)
x

, (22.167)

and 〈
ε2
ph

〉
z

=
8ε2

c

15
√

3

∫ ∞

0

xS(x) dx =
11
27

ε2
c . (22.168)

To calculate equilibrium beam parameters, for example in Chap. 14, we
need to know the quantity

〈
Ṅph〈ε2

ph〉
〉

z
which is now from (22.166), (22.168)

〈
Ṅph〈ε2〉

〉
z

=
55

24
√

3
〈εcPγ〉z , (22.169)

where the average is to be taken along the orbit and around the storage ring
through all magnets. Expressing the critical photon energy by (22.78) and the
radiation power by (22.59), we finally get

〈
Ṅph〈ε2〉

〉
z

=
55

24
√

3
rccmc2 �c γ7

〈
1
ρ3

〉

z

. (22.170)

Problems

22.1 (S). Integrate the radiation power distribution (22.76) over all solid
angles and prove that the total radiation power is equal to (22.59).

22.2 (S). In the ESRF (European Synchrotron Radiation Facility) syn-
chrotron radiation source in Grenoble (France) an electron beam of 200 mA
circulates at an energy of 6 GeV. The bending magnet field is 1.0 T. Calculate
and plot the spectral photon flux into a band width of 0.1% and an acceptance
angle of 10 mrad as a function of photon energy.

22.3 (S). Derive an expression identifying the angle at which the spectral
intensity has dropped to p% from the maximum intensity. Derive approximate
expressions for very low or very large photon energies. Find the angle at which
the total radiation intensity has dropped to 10%.

22.4. Derive the wave equations (22.3) and (22.4).
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22.5. Derive (22.17).

22.6. Derive (22.28) from (22.27). Show that the electrical field in the radi-
ation regime is purely orthogonal to the direction of observation. Is the field
also parallel to the acceleration?

22.7. Design a synchrotron radiation source for a photon energy of your
choice. Use a simple FODO lattice and specify the minimum beam energy,
beam current, and bending radius which will produce a bending magnet pho-
ton flux of 1014 photons/sec/mrad at the desired photon energy and into a
band width of ∆ω/ω = 1%. What is the minimum and maximum photon
energy for which the photon flux is at least 1011 photons/sec/mrad? How big
is your ring assuming a 30% fill factor for bending magnets?



23

Insertion Device Radiation

Synchrotron radiation from bending magnets is characterized by a wide spec-
trum from microwaves up to soft or hard x-rays as determined by the critical
photon energy. To optimally meet the needs of basic research with synchrotron
radiation, it is desirable to provide specific radiation characteristics that can-
not be obtained from ring bending magnets but require special magnets. The
field strength of bending magnets and the maximum particle beam energy in
circular accelerators like a storage ring are fixed leaving no adjustments to
optimize the synchrotron radiation spectrum for particular experiments. To
generate specific synchrotron radiation characteristics, radiation is often pro-
duced from special insertion devices installed along the particle beam path.
Such insertion devices introduce no net deflection of the beam and can there-
fore be incorporated in a beam line without changing its geometry. Motz [28]
proposed first the use of undulators or wiggler magnets to optimize character-
istics of synchrotron radiation. By now, such magnets have become the most
common insertion devices consisting of a series of alternating magnet poles
deflecting the beam periodically in opposite directions as shown in Fig. 23.1.

wiggler
period

N S N S N S N S N NS S SN

sinusoidal beam path

N

λ
p

beam

Θ

Fig. 23.1. Trajectory of a particle beam in a flat wiggler magnet
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In Chap. 21 the properties of wiggler radiation were discussed briefly in an
introductory way. Here we concentrate on more detailed and formal deriva-
tions of radiation characteristics from relativistic electrons passing through
undulator and wiggler magnets.

There is no fundamental difference between wiggler and undulator radia-
tion. An undulator is basically a weak wiggler magnet. The deflection in an
undulator is weak and the transverse particle momentum remains nonrela-
tivistic. The motion is purely sinusoidal in a sinusoidal field, and the emitted
radiation is monochromatic at the particle oscillation frequency which is the
Lorentz-contracted periodicity of the undulator period. Since the radiation is
emitted from a moving source the observer in the laboratory frame of reference
then sees a Doppler-shifted frequency. We call this monochromatic radiation
the fundamental radiation or radiation at the fundamental frequency of the
undulator.

As the undulator field is increased, the transverse motion becomes stronger
and the transverse momentum starts to become relativistic. As a consequence,
the so far purely sinusoidal motion becomes periodically distorted causing
the appearance of harmonics of the fundamental monochromatic radiation.
These harmonics increase in number and density with further increase of the
magnetic field and, at higher frequencies, eventually merge into one broad
spectrum characteristic for wiggler or bending magnet radiation. At very low
frequencies, the theoretical spectrum is still a line spectrum showing the har-
monics of the revolution frequency. Of course, there is a low frequency cutoff
at a wavelength comparable to or longer than vacuum chamber dimensions
which therefore do not show-up as radiation.

An insertion device does not introduce a net deflection of the beam and
we may therefore choose any arbitrary field strength which is technically fea-
sible to adjust the radiation spectrum to experimental needs. The radiation
intensity from a wiggler magnet can also be made much higher compared to
that from a single bending magnet. A wiggler magnet with say 10 poles acts
like a string of 10 bending magnets or radiation sources aligned in a straight
line along the photon beam direction. The effective photon source is therefore
10 times more intense than the radiation from a single bending magnet with
the same field strength.

Wiggler magnets come in a variety of types with the flat wiggler mag-
net being the most common. In this wiggler type only the component By is
nonzero deflecting the beam in the horizontal plane. To generate circularly or
elliptically polarized radiation, a helical wiggler magnet [34] may be used or a
combination of several flat wiggler magnets deflecting the beam in orthogonal
planes which will be discussed in more detail in Sect. 23.3.2.
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23.1 Particle Dynamics in a Periodic Field Magnet

Particle dynamics and resulting radiation characteristics for an undulator have
been derived first by Motz [28] and later in more detail by other authors
[271]– [272]. A sinusoidally varying vertical field causes a periodic deflection
of particles in the (x, z)-plane shown in Fig. 23.1. To describe the particle
trajectory, we use the equation of motion

n
ρ

=
ec

mc2γβ2
[β × B] , (23.1)

where β is the particle velocity and get with (3.111) the equations of motion
in component form

d2x

dt2
= − eB0

γmc

dz
dt

cos (kpz)

d2z

dt2
= +

eB0

γmc

dx
dt

cos (kpz) , (23.2)

where we have set kp = 2π/λp and d z = βcd t with β = v/c.
Equations (23.2) describe the coupled motion of a particle in the sinusoidal

field of a flat wiggler magnet. This coupling is common to the particle motion
in any magnetic field but generally in beam dynamics we set d z/d t ≈ v and
dx/d t ≈ 0 because dx/d t � dz/d t. This approximation is justified in most
beam transport applications for relativistic particles, but here we have to be
cautious not to neglect effects that might be of relevance on a very short time
or small geometric scale comparable to the oscillation period and wavelength
of synchrotron radiation.

We will keep the dx/dt term and get from (23.2) with d z/d t ≈ v and
after integrating twice that the particle trajectory follows the magnetic field in
the sense that the oscillatory motion reaches a maximum where the magnetic
field reaches a maximum and crosses the beam axis where the field is zero. We
start at the time t = 0 in the middle of a magnet pole where the transverse
velocity ẋ0 = 0 while the longitudinal velocity ż0 = βc and integrate both
equations (23.2) utilizing the integral of the first equation in the second to get

dx
dt

= −βc
K

γ
sin (kpz) ,

dz
dt

= βc

[
1 − K2

2γ2
sin2 (kpz)

]
. (23.3)

The transverse motion describes the expected oscillatory motion and the
longitudinal velocity v exhibits a periodic modulation reflecting the varying
projection of the velocity vector to the z-axis. A closer inspection of this
velocity modulation shows that its frequency is twice that of the periodic
motion. It is convenient to describe the longitudinal particle motion with
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respect to a Cartesian reference frame moving uniformly along the z-axis
with the average longitudinal particle velocity β̄ c = 〈ż〉 which can be derived
from the second equation of (23.3)

β̄ = β
(
1 − K2

4γ2

)
. (23.4)

In this reference frame the particle follows a figure-of-eight trajectory com-
posed of the transverse oscillation and a longitudinal oscillation with twice the
frequency. We will come back to this point since both oscillations contribute
to the radiation spectrum. A second integration of the second equation of
(23.3) results finally in the equation of motion in component representation

x(t) =
K

γkp
cos
(
kpβ̄ct

)
,

z(t) = β̄ct +
K2

8γ2kp
sin2

(
2kpβ̄ct

)
, (23.5)

where we set z = β̄ c t. The maximum amplitude a of the transverse particle
oscillation is finally

a =
K

γkp
=

λpK

2πγ
. (23.6)

This last expression gives another simple relationship between the wiggler
strength parameter and the transverse displacement of the beam trajectory

a (µm) = 0.8133
λp (cm) K

E (GeV)
. (23.7)

For general cases, this beam displacement is very small.
As mentioned earlier, a wiggler magnet should be transparent to the elec-

tron beam which can be achieved only approximately. Every pole end gener-
ates some fringe fields which cause a focusing effect on the particle beam. In
low energy storage rings with strong superconducting wavelength shifters, this
effect can be a major perturbation which requires significant compensation in
the ring lattice proper. A detailed derivation of such fringe fields and their
effect on the beam can be found in Sect. 4.3.6. Here, we will only repeat some
of the more salient features and results.

The beam path in a wiggler magnet is generally not parallel to the reference
trajectory z because of the transverse deflection in the wiggler field following
a periodic sinusoidal form along the reference path. For this reason, the fringe
field component Bz appears to the particle partially as a transverse field which
varies linearly with y. Such a field term constitutes focusing similar to that in
a quadrupole with a strength for each wiggler pole end of

ky � = − 1
fy

= − λp

8ρ2
0

. (23.8)
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The focusing occurs in the vertical plane only assuming that the wiggler mag-
net deflects the beam in the horizontal plane, and is positive and independent
of the sign of the deflection. For N wiggler poles, we have 2N times the
focusing strength of each individual pole end and the focal length of the to-
tal wiggler magnet of length Lw = 1

2N λp expressed in units of the wiggler
strength parameter K becomes

1
fy

=
K2

2γ2
k2
p Lw . (23.9)

23.2 Undulator Radiation

The physical process of undulator radiation is not different from the radia-
tion produced from a single bending magnet. However, the radiation received
at great distances from the undulator exhibits special features which we will
discus in more detail. Basically, we observe an electron performing Np os-
cillations while passing through an undulator, where Np is the number of
undulator periods. The observed radiation spectrum is the Fourier transform
of the electron motion and therefore quasi-monochromatic with a finite line
width inversely proportional to the number of oscillations performed.

23.2.1 Fundamental Wavelength

Undulator radiation can also be viewed as a superposition of radiation fields
from Np sources yielding quasi-monochromatic radiation as a consequence of
interference. To see that, we observe the radiation at an angle ϑ with respect
to the path of the electron as shown in Fig. 23.2.

The electron travels on its path at an average velocity given by (23.4) and
it takes the time

τ =
λp

cβ̄
=

λp

cβ [1 −K2/(4γ2)]
(23.10)

to move along one undulator period. During that same time, the radiation
front proceeds a distance

λ γ

τ

λ βτ

ϑ

Fig. 23.2. Interference of undulator radiation
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sph = τ c =
λp

β [1 −K2/(4γ2)]
(23.11)

moving ahead of the particle since sph > τcβ̄. For constructive superposition
of radiation from all undulator periods, we require that the difference sph −
λp cosϑ be equal to an integer multiple of the wavelength λk or for small
observation angles ϑ � 1

k λk =
λp

β [1 −K2/(4γ2)]
− λp

(
1 − 1

2
ϑ2

)
. (23.12)

After some manipulations, we get with K2/γ2 � 1 and β ≈ 1 for the kth
harmonic of the fundamental wavelength of radiation into an angle ϑ

λk =
λp

2γ2 k

(
1 +

1
2
K2 + γ2ϑ2

)
. (23.13)

From an infinitely long undulator, the radiation spectrum consists of spec-
tral lines at a wavelength determined by (23.13). In particular, we note that
the shortest wavelength is emitted into the forward direction while the ra-
diation at a finite angle ϑ appears red-shifted by the Doppler effect. For an
undulator with a finite number of periods, the spectral lines are widened to a
width of about 1/Np or less as we will discuss in the next section.

23.2.2 Radiation Power

The radiation power is from (22.41)

P =
2
3
rc mc | β̇∗ |2r , (23.14)

where ∗ indicates quantities to be evaluated in the particle reference system.
We may use this expression in the particle system to calculate the total ra-
diated energy from an electron passing through an undulator. The transverse
particle acceleration is expressed by mv̇∗ = dp⊥/dt∗ = γdp⊥/dt where we
used t∗ = t/γ and inserting into (23.14) we get

P =
2
3
rc γ

2

mc

(
dp⊥
dt

)2

. (23.15)

The transverse momentum is determined by the particle deflection in the
undulator with a period length λp and is for a particle of momentum cp0

p⊥ = p̂ sinωpt, (23.16)

where p̂ = p0θ and ωp = ckp = 2πc/λp. The angle θ = K/γ is the maximum
deflection angle defined in (3.122). With these expressions and averaging over
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one period, we get from (23.15) for the instantaneous radiation power from a
charge e traveling through an undulator

Pinst =
1
3
crcmc2γ2K2k2

p, (23.17)

where rc is the classical electron radius. The duration of the radiation pulse is
equal to the travel time through an undulator of length Lu = λpNp and the
total radiated energy per electron is therefore

∆E =
1
3
rc mc2γ2K2 k2

p Lu . (23.18)

In more practical units

∆E(eV) = Cu
E2 K2

λ2
p

Lu = 725.69
E2(GeV)K2

λ2
p(cm)

Lu(m) (23.19)

with

Cu =
4π2 rc
3mc2

= 7.2569 × 10−20 m
eV

. (23.20)

The average total undulator radiation power for an electron beam circulating
in a storage ring is then just the radiated energy (23.18) multiplied by the
number of particles Nb in the beam and the revolution frequency or

Pavg =
1
3
rc cmc2γ2K2k2

p Nb
Lu

2π R̄
(23.21)

or
Pavg(W) = 6.336E2(GeV)B2

0(kG)I(A)Lu(m), (23.22)

where I is the circulating electron beam current. The total angle integrated
radiation power from an undulator in a storage ring is proportional to the
square of the beam energy and maximum undulator field B0 and to the beam
current and undulator length.

23.2.3 Spatial and Spectral Distribution

For bending magnet radiation, the particle dynamics is relatively simple being
determined only by the particle velocity and the bending radius of the magnet.
In a wiggler magnet, the magnetic field parameters are different from those
in a constant field magnet and we will therefore derive again the synchrotron
radiation spectrum for the beam dynamics in a general wiggler magnet. No
special assumptions on magnetic field configurations have been made to derive
the radiation spectrum (22.88) and we can therefore use this expression to-
gether with the appropriate beam dynamics to derive the radiation spectrum
from a wiggler magnet
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θ

ϕ

ϑ

Fig. 23.3. Particle trajectory and radiation geometry in a wiggler magnet

d2W

dω dΩ
=

rc mcω2

4π2

∣∣∣∣
∫ ∞

−∞
n × [n × β] e−iω (tr+

R
c )d tr

∣∣∣∣
2

. (23.23)

The integrand in (23.23) can be evaluated from known particle dynamics in
a wiggler magnet noting that all quantities are to be taken at the retarded
time tr. The unit vector from the observer to the radiating particle is from
Fig. 23.3

n = −x cosϕ sinϑ− y sinϕ sinϑ− z cosϑ . (23.24)

The exponent in (23.23) includes the term R/c = nR/c. We express again
the vector R from the observer to the particle by the constant vector r from
the origin of the coordinate system to the observer and the vector rp from
the coordinate origin to the particle for R = −r + rp as shown in Fig. 23.3.

The r-term gives only a constant phase shift and can therefore be ignored.
The location vector rp of the particle with respect to the origin of the coor-
dinate system is

rp(tr) = x(tr)x + z(tr) z

and with solutions (23.5) we have

rp(tr) =
K

kp γ
cos(ωptr) x +

[
β̄c tr +

K2

8π kp
sin(2ωp tr)

]
z , (23.25)

where
ωp = kp β̄c . (23.26)

The velocity vector finally is just the time derivative of (23.25)

β(tr) = −K

γ
β̄ sin(ωptr)x + β̄

[
1 +

K2

4γ2
cos(2ωptr)

]
z . (23.27)



23.2 Undulator Radiation 837

We use these vector relations to evaluate the integrand in (23.23). First, we
express the triple vector product n× [n × β] by its components and get with
(23.24), (23.27)

n× [n × β] = +x

[
−K

γ
β̄ sin2 ϑ cos2 ϕ cosωptr +

K

γ
β̄ sinωptr

+β̄

(
1 +

K2

4γ2
cos 2ωptr

)
sinϑ cosϑ cosϕ

]

+ y

[
−K

γ
β̄ sin2 ϑ sinϕ cosϕ sinωptr

+β̄

(
1 +

K2

4γ2
cos 2ωptr

)
sinϑ cosϑ sinϕ

]
(23.28)

+ z

[
−K

γ
β̄ sinϑ cosϑ cosϕ cosωptr

+β̄

(
1 +

K2

4γ2
cos 2ωptr

)(
cos2 ϑ− 1

) ]
.

This expression can be greatly simplified considering that the radiation
is emitted into only a very small angle ϑ � 1. Furthermore, we note that
the deflection due to the wiggler field is in most practical cases very small
and therefore K � γ and β̄ = β

(
1 − K2

4γ2

)
≈ β. Finally, we carefully set

β ≈ 1 where this term does not appear as a difference to unity. With this and
ignoring second-order terms in ϑ and K/γ we get from (23.28)

n × [n × β ] =
(
β̄ ϑ cosϕ + β̄

K
γ

sin (ωptr)
)

x +
(
β̄ ϑ sinϕ

)
y . (23.29)

The vector product in the exponent of the exponential function is just the
product of (23.24) and (23.25)

1
c
nrp(tr) = −Kβ̄

γωp
sinϑ cosϕ cos (ωptr) −

(
β̄ tr +

K 2β̄

8γ2ωp

sin 2ωp tr

)
cosϑ .

(23.30)
Employing again the approximation ϑ � 1 and keeping only linear terms we
get from (23.30)

tr +
1
c
nrp(tr) = tr(1− β̄ cosϑ)− K β̄ϑ

γωp
cosϕ cos (ωptr)−

K 2 β̄

8γ2ωp

sin (2ωp tr) .

(23.31)
With (23.4) and cosϑ ≈ 1 − 1

2 ϑ2, the first term becomes

1 − β̄ cosϑ =
1

2γ2

(
1 +

1
2
K2 + γ2ϑ2

)
=

ωp

ω1
, (23.32)

where we have defined the fundamental wiggler frequency ω1 by
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ω1 = ωp
2γ2

1 + 1
2K

2 + γ2ϑ2
(23.33)

or the fundamental wavelength of the radiation

λ1 =
λp

2γ2

(
1 +

1
2
K2 + γ2ϑ2

)
(23.34)

in full agreement with (23.13) . At this point, it is worth to remember that the
term 1

2 K2 becomes K2 for a helical wiggler [34]. With (23.32), the complete
exponential term −iω

[
tr + 1

cnrp(tr)
]

in (23.23) can be evaluated to be equal
to

−i
ω

ω1

[
ωptr −

Kβ̄ϑ

γ

ω1

ωp
cosϕ cos (ωptr) −

K2β̄

8γ2

ω1

ωp
sin (2ωptr)

]
, (23.35)

and (23.23) can be modified with this expression into a form suitable for
integration by inserting (23.29) and (23.32) into (23.23) for

d2W

dω dΩ
=

rc mcω2

4π2
β̄

2

(23.36)

×
∣∣∣∣
∫ ∞

−∞

[
ϑ cosϕ +

K

γ
sin (ωptr )

]
x + (ϑ sinϕ) y eXdtr

∣∣∣∣
2

,

where

X =
{
−i

ω

ω1

[
ωptr −

Kϑ

γ

ω1

ωp
cosϕ cos (ωptr) −

K2

8γ2

ω1

ωp
sin (2ωp tr)

]}
.

We are now ready to perform the integration of (23.36) noticing that the
integration over all times can be simplified by separation into an integral along
the wiggler magnet alone and an integration over the rest of the time while
the particle is traveling in a field free space. We write symbolically
∫ ∞

−∞
=
∫ πNp/ωp

−πNp/ωp

(K 
= 0) +
∫ ∞

−∞
(K = 0) −

∫ πNp/ωp

−πNp/ωp

(K = 0) . (23.37)

First, we evaluate the second integral for K = 0 which is of the form
∫ ∞

−∞
eiκωt dt =

2π
|κ|δ(ω),

where δ(ω) is the Dirac δ-function. The value of the integral is nonzero only
for ω = 0 in which case the factor ω2 in (23.36) causes the whole expression
to vanish. The second integral is therefore zero.

The third integral has the same form as the second integral, but since the
integration is conducted only over the length of the wiggler magnet we get



23.2 Undulator Radiation 839

∫ πNp/ωp

−πNp/ωp

e−i ω
2γ2 tr dtr =

2πNp

ωp

sin πNp
2γ2

ω
ωp

πNp
2γ2

ω
ωp

. (23.38)

The value of this integral reaches a maximum of 2πNp
ωp

for ω → 0. From
(23.36) we note the coefficient of this integral to include the angle ϑ � 1/γ and
the whole integral is therefore of the order or less than Lu/(cγ), where Lu =
Npλp is the total length of the wiggler magnet. This value is in general very
small compared to the first integral and can therefore be neglected. Actually,
this statement is only partially true since the first integral, as we will see, is a
fast varying function of the radiation frequency with a distinct line spectrum.
Being, however, primarily interested in the peak intensities of the spectrum
we may indeed neglect the third integral. Only between the spectral lines
does the radiation intensity from the first integral become so small that the
third integral would be a relatively significant although absolutely a small
contribution.

To evaluate the first integral in (23.37) with K 
= 0 we follow Alferov [271]
and introduce with (23.33) the abbreviations

C =
2K β̄ γϑ cosϕ

1 + 1
2K

2 + γ2ϑ2
, (23.39a)

S =
K2 β̄

4
(
1 + 1

2K
2 + γ2ϑ2

) (23.39b)

and get from (23.36) the exponential functions in the form

e−i ω
ω1

ωptr ei ω
ω1

C cos ωptr ei ω
ω1

S sin 2ωptr . (23.40)

The integral in the radiation power spectrum (23.36) has two distinct
forms, one where the integrand is just the exponential function multiplied by
a time-independent factor while the other includes the sine function sinωptr
as a factor of the exponential function. To proceed further we replace the
exponential functions by an infinite sum of Bessel’s functions

eiκ sin ψ =
p=∞∑

p=−∞
Jp(κ) eipψ (23.41)

and apply this identity to the first integral type in (23.36). Applying the
identity (23.41) also to the second and third exponential factors in (23.40),
we get with ea cos x = ea sin(x+π/2) the product of the exponential functions

e−i
(

ω
ω1

ωptr− ω
ω1

C cos ωptr− ω
ω1

S sin 2ωptr
)

=
∞∑

m=
−∞

∞∑
n=
−∞

Jm(u)Jn(v) ei 12 πne−i Rωωptr ,

(23.42)
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where

Rω =
ω

ω1
− n− 2m,

u =
ω

ω1
S, and (23.43)

v =
ω

ω1
C .

The time integration along the length of the wiggler magnet is straight-
forward for this term since no other time-dependent factors are involved and
we get

∫ πNp/ωp

−πNp/ωp

e−i
(

ω
ω1

−n−2m
)

ωptr d tr =
2πNp

ωp

sin (πNp Rω)
πNp Rω

. (23.44)

In the second form of the integrand, we replace the trigonometric factor,
sinωptr, by exponential functions and get with (23.44) integrals of the form

∫ πNp/ωp

−πNp/ωp

sinωptr e−iRω ωptr d tr

= −i
1
2

∫ πNp/ωp

−πNp/ωp

(
ei ωptr − e−i ωptr

)
e−iRω ωptrd tr (23.45)

= i
πNp

ωp

sin [πNp (Rω + 1)]
πNp(Rω + 1)

− i
πNp

ωp

sin [πNp (Rω − 1)]
πNp (Rω − 1)

.

Both integrals (23.44) and (23.45) exhibit the character of multibeam in-
terference spectra well known from optical interference theory. The physical
interpretation here is that the radiation from the Np wiggler periods consists
of Np photon beamlets which have a specific phase relationship such that the
intensities are strongly reduced for all frequencies but a few specific frequencies
as determined by the sin x

x -factors. The resulting line spectrum, characteristic
for undulator radiation, is the more pronounced the more periods or beamlets
are available for interference. To get a more complete picture of the interfer-
ence pattern, we collect now all terms derived separately so far and use them
in (23.36) which becomes with (23.40)

d2W

dω dΩ
= a

∣∣∣∣∣
∫ πNp/ωp

−πNp/ωp

[(A0 + A1 sinωptr ) x + B0 y]

×e−i ω
ω1

ωptr ei v cos ωptr ei u sin 2ωptr d tr

∣∣∣
2

, (23.46)

where a = rc mc β̄2

4π2 ω2, A0 = ϑ cosϕ,A1 = K
γ , and B0 = ϑ sinϕ . Introducing

identity (23.40), the photon energy spectrum becomes
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d2W

dω dΩ
= a

∣∣∣∣∣
∫ πNp/ωp

−πNp/ωp

[(A0 + A1 sinωptr ) x + B0 y]

×
∞∑

m=−∞

∞∑
n=−∞

Jm(u)Jn(v) ei 12 πne−iRωωptr d tr

∣∣∣∣∣
2

(23.47)

and after integration with (23.44) and (23.45)

d2W

dω dΩ
= a

∣∣∣∣∣∣∣
xA0

∞∑
m=
−∞

∞∑
n=
−∞

Jm(u)Jn(v) ei 12 πn 2πNp

ωp

sin (πNp Rω)
πNpRω

+ xA1

∞∑
m=
−∞

∞∑
n=
−∞

Jm(u)Jn(v) ei 12 πn (23.48)

× i
πNp

2ωp

[
sin [πNp(Rω + 1)]
πNp(Rω + 1)

− i
πNp

ωp

sin [πNp (Rω − 1)]
πNp (Rω − 1)

]

+y B0

∞∑
m=
−∞

∞∑
n=
−∞

Jm(u)Jn(v) ei 12 πn 2πNp

ωp

sin (πNpRω)
πNpRω

∣∣∣∣∣∣∣

2

.

To determine the frequency and radiation intensity of the line maxima, we
simplify the double sum of Bessel’s functions by selecting only the most dom-
inant terms. The first and third sums in (23.48) show an intensity maximum
for Rω = 0 at frequencies

ω = (n + 2m)ω1, (23.49)

and intensity maxima appear therefore at the frequency ω1 and harmonics
thereof. The transformation of a lower frequency to very high values has two
physical components. In the system of relativistic particles, the static mag-
netic field of the wiggler magnet appears Lorentz-contracted by the factor γ,
and particles passing through the wiggler magnet oscillate with the frequency
γωp in its own system emitting radiation at that frequency. The observer in
the laboratory system receives this radiation from a source moving with rel-
ativistic velocity and experiences therefore a Doppler shift by the factor 2γ.
The wavelength of the radiation emitted in the forward direction, ϑ = 0, from
a weak wiggler magnet, K � 1, with the period length λp is therefore reduced
by the factor 2γ2. In cases of a stronger wiggler magnet or when observing at
a finite angle ϑ, the wavelength is somewhat longer as one would expect from
higher order terms of the Doppler effect.

From (23.48) we determine two more dominant terms originating from the
second term for Rω ± 1 = 0 at frequencies

ω = (n + 2m− 1) ω1 (23.50a)
ω = (n + 2m + 1) ω1, (23.50b)
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respectively. The summation indices n and m are arbitrary integers between
−∞ and ∞. Among all possible resonant terms we collect such terms which
contribute to the same harmonic k of the fundamental frequency ω1. To collect
these dominant terms for the same harmonic we set ω = ωk = k ω1 where k is
the harmonic number of the fundamental and express the index n by k and
m to get

from (23.49): n = k − 2m,

and from (23.50a): n = k − 2m + 1 (23.51)
and(23.50b): n = k − 2m− 1 .

Introducing these conditions into (23.48) all trigonometric factors assume
the form sin(πNp ∆ωk/ω1)

πNp ∆ωk/ω1
, where

∆ωk

ω1
=

ω

ω1
− k (23.52)

and we get the photon energy spectrum of the kth harmonic

d2Wk(ω)
dω dΩ

=
rc mc β̄

2
N2

p

γ2

ω2

ω2
p

[
sin (πNp ∆ωk/ω1)

πNp ∆ωk/ω1

]2

×
∣∣∣∣∣+x A0

∞∑
m=−∞

Jm(u)Jk−2m(v) ei 1
2 π(k−2m)

+ y B0

∞∑
m=−∞

Jm(u)Jk−2m(v) ei 12 π(k−2m) (23.53)

+ i 1
2 xA1

∞∑
m=−∞

Jm(u)Jk−2m+1(v) ei 12 π(k−2m+1)

−i 1
2 x A1

∞∑
m=−∞

Jm(u)Jk−2m−1(v) ei 12 π(k−2m−1)

∣∣∣∣∣
2

.

All integrals exhibit the resonance character defining the locations of the
spectral lines. The (sinx/x) terms are known from interference theory and
represents the line spectrum of the radiation. Specifically, the number Np of
beamlets, here source points, determines the spectral purity of the radiation.
In Fig. 23.4 the (sinx/x) function is shown for Np = 5 and Np = 100. It is
clear that the spectral purity greatly improves as the number of undulator
periods is increased. This is one of the key features of undulator magnets to
gain spectral purity by maximizing the number of undulator periods.

The spectral purity or line width is determined by the shape of the
(sinx/x) function. We define the line width by the frequency at which
sinx/x = 0 or where πNp ∆ωk /ω1 = π defining the line width for the kth
harmonic
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∆ωk

ωk
= ± 1

kNp
. (23.54)

The spectral width of the undulator radiation is reduced proportional to
the number of undulator periods, but reduces also proportional to the har-
monic number.

The Bessel functions Jm(u), etc. determine mainly the intensity of the
line spectrum. For an undulator with K � 1, the argument u ∝ K2 �
1 and the contributions of higher order Bessel’s functions are very small.
The radiation spectrum consists therefore only of the fundamental line. For
stronger undulators with K > 1, higher order Bessel’s functions grow and
higher harmonic radiation appears in the line spectrum of the radiation.

Summing over all harmonics of interest, one gets the total power spectrum.
In the third and fourth terms of (23.53) we use the identities i e±iπ/2 = ∓ 1,
Jm(u) eiπm = J−m(u) and abbreviate the sums of Bessel’s functions by the
symbols

∑
1

=
∞∑

m=−∞
J−m(u)Jk−2m(v) (23.55a)

∑
2

=
∞∑

m=−∞
J−m(u) [Jk−2m−1(v) + Jk−2m+1(v)] . (23.55b)

The total number of photons Nph emitted into a spectral band width
∆ω/ω by a single electron moving through a wiggler magnet is finally with
Nph(ω) = W (ω)/(�ω)
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dNph(ω)
dΩ

= αγ2β̄2N2
p

∆ω

ω

∞∑
k=1

k2

[
sin (πNp ∆ωk/ω1)

πNp ∆ωk/ω1

]2
(23.56)

× (2γϑ
∑

1 cosϕ−K
∑

2)
2
x2 + (2γϑ

∑
1 sinϕ)2 y2

(
1 + 1

2K
2 + γ2ϑ2

)2 ,

where α is the fine structure constant and where we have kept the coordinate
unit vectors to keep track of the polarization modes. The vectors x and y
are orthogonal unit vectors indicating the directions of the electric field or
the polarization of the radiation. Performing the squares does therefore not
produce cross terms and the two terms in (23.56) with expressions (23.55)
represent the amplitude factors for both polarization directions, the σ-mode
and π-mode, respectively.

We also made use of (23.52) and the resonance condition

ω

ωp
=

k ω1 + ∆ωk

ωp
≈ k

ω1

ωp
=

2γ2 k

1+ 1
2K

2 + γ2ϑ2
, (23.57)

realizing that the photon spectrum is determined by the (sinx/x)2 function.
For not too few periods, this function is very small for frequencies away from
the resonance conditions.

Storage rings optimized for very small beam emittance are being used as
modern synchrotron radiation sources to reduce the line width of undulator
radiation and concentrate all radiation to the frequency desired. The progress
in this direction is demonstrated in the spectrum of Fig. 23.5 derived from
the first electron storage ring operated at a beam emittance below 10 nm at
7.1 GeV [273]. In Fig. 23.5 a measured undulator spectrum is shown as a
function of the undulator strength K [247]. For a strength parameter K � 1
there is only one line at the fundamental frequency. As the strength para-
meter increases, additional lines appear in addition to being shifted to lower
frequencies. The spectral lines from a real synchrotron radiation source are
not infinitely narrow as (23.68) would suggest. Because of the finite size of
the pinhole opening, some light at small angles with respect to the axis passes
through, and we observe therefore also some signal of the even order harmonic
radiation.

Even for an extremely small pin hole, we would observe a similar spectrum
as shown in Fig. 23.5 because of the finite beam divergence of the electron
beam. The electrons follow oscillatory trajectories due not only to the undu-
lator field but also due to betatron oscillations. We observe therefore always
some radiation at a finite angle given by the particle trajectory with respect
to the undulator axis. Fig. 23.5 also demonstrates the fact that all experi-
mental circumstances must be included to meet theoretical expectations. The
amplitudes of the measured low energy spectrum is significantly suppressed
compared to theoretical expectations which is due to a Be-window being used
to extract the radiation from the ultrahigh vacuum chamber of the acceler-
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Fig. 23.5. Measured frequency spectrum from an undulator for different strength
parameters K [247]

ator. This material absorbs radiation significantly below a photon energy of
about 3 keV.

While we observe a line spectrum expressed by the (sinx/x)2 function, we
also notice that this line spectrum is red-shifted as we increase the observation
angle ϑ. Only, when we observe the radiation though a very small aperture, pin
hole, do we actually see this line spectrum. Viewing the undulator radiation
through a large aperture integrates the linespectra over a finite range of angles
ϑ producing an almost continuous spectrum with small spikes at the locations
of the harmonic lines.

The difference between a pin hole undulator spectrum and an angle in-
tegrated spectrum becomes apparent from the experimental spectra shown
in Fig. 23.6 [273]. While the pin hole spectrum demonstrates well the line
character of undulator radiation, much radiation appears between these spec-
tral lines as the pin hole is removed and radiation over a large solid angle is
collected by the detector. The pin hole undulator line spectrum shows up as
mere spikes on top of a broad continuous spectrum.
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Fig. 23.6. Actual radiation spectra from an undulator with a maximum field of
0.2 T and a beam energy of 7.1 GeV through a pin hole and angle integrated after
removal of the pin hole [273]

The overall spatial intensity distribution includes a complex set of different
radiation lobes depending on frequency, emission angle, and polarization. In
Fig. 23.7 the radiation intensity distributions described by the last factor in
(23.56)

Iσ,k =
(2γϑΣ1 cosϕ−K Σ2)2

(1+ 1
2K

2 + γ2ϑ2)2

for the σ-mode polarization and

Iπ,k =
(2γϑΣ1 sinϕ)2

(1+ 1
2 K2 + γ2ϑ2)2

for the π-mode polarization are shown for the lowest order harmonics.
We note clearly the strong forward lobe at the fundamental frequency in σ-

mode while there is no emission in π-mode along the path of the particle. The
second harmonic radiation vanishes in the forward direction, an observation
that is true for all even harmonics. By inspection of (23.56), we note that
v = 0 for ϑ = 0 and the square bracket in (23.55b) vanishes for all odd indices
or for all even harmonics k. There is therefore no forward radiation for even
harmonics of the fundamental undulator frequency.

A contour plot of the first harmonic σ- and π-mode radiation is shown
in Fig. 23.8. There is a slight asymmetry in the radiation distribution be-
tween the deflecting and nondeflecting plane as one might expect. It is ob-
vious that the pin hole radiation is surrounded by many radiation lobes not
only from the first harmonics but also from higher harmonics compromising
the pure line spectrum for large apertures.
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Fig. 23.7. Undulator radiation distribution in σ- and π-mode for the lowest order
harmonics

23.2.4 Line Spectrum

To exhibit other important and desirable features of the radiation spectrum
(23.56), we ignore the actual frequency distribution in the vicinity of the
harmonics and set ∆ωk = 0 because the spectral lines are narrow for large
numbers of wiggler periods Np. Further, we are interested for now only in the
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Fig. 23.8. Contour plot of the first harmonic σ-mode (solid) and π-mode (dashed)
undulator radiation distribution

forward radiation where ϑ = 0, keeping in mind that the radiation is mostly
emitted into a small angle 〈ϑ〉 = 1/γ.

There is no radiation for the π-mode in the forward direction and the only
contribution to the forward radiation comes from the second term in (23.56)
of the σ-mode. From (23.43), we get for this case with ω /ω1 = k

u0 =
kK2

4 + 2K2
and v0 = 0 . (23.58)

The sums of Bessel’s functions simplify in this case greatly because only the
lowest order Bessel’s function has a nonvanishing value for v0 = 0. In the
expression for Σ2, all summation terms vanish except for the two terms for
which the index is zero or for which

k − 2m− 1 = 0, or k − 2m + 1 = 0 (23.59)

and

∑
2

=
∞∑

m=−∞
J−m(u) [Jk−2m−1(0) + Jk−2m+1(0)]

= J− 1
2 (k−1)(u0) + J− 1

2 (k+1)(u0) . (23.60)
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The harmonic condition (23.59) implies that k is an odd integer. For even
integers, the condition cannot be met as we would expect from earlier dis-
cussions on harmonic radiation in the forward direction. Using the identity
J−n = (−1)n Jn and (23.58), we get finally with Nph = W / �ω the photon
flux per unit solid angle from a highly relativistic particle passing through an
undulator

dNph(ω)
dΩ

∣∣∣∣
θ=0

= αγ2N2
p

∆ω

ω

K2

(
1 + 1

2K
2
)2

∞∑
k=1

k2

(
sinπNp ∆ωk/ω1

πNp ∆ωk/ω1

)2

JJ2,

(23.61)
where the JJ-function is defined by

JJ =
[
J 1

2 (k−1)

(
kK2

4 + 2K2

)
+ J 1

2 (k+1)

(
kK2

4 + 2K2

)]
. (23.62)

The amplitudes of the harmonics are given by

Ak(K) =
k2 K2

(1+ 1
2K

2)2
JJ2 . (23.63)

The strength parameter greatly determines the radiation intensity as
shown in Fig. 23.9 for the lowest order harmonics. For the convenience of
numerical calculations, Ak(K) is tabulated for odd harmonics in Table 23.1.
For weak magnets, K � 1, the intensity increases with the square of the
magnet field or undulator strength parameter. There is an optimum value for
the strength parameter for maximum photon flux depending on the harmonic

Fig. 23.9. Undulator radiation intensity Ak(K) in the forward direction as a func-
tion of the strength parameter K for the six lowest order odd harmonics
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Table 23.1. Amplitudes Ak(K) for k = 1, 3, 5, 7, 9, 11

K A1 A3 A5 A7 A9 A11

0.1 0.010 0 0 0 0 0

0.2 0.038 0 0 0 0 0

0.4 0.132 0.004 0 0 0 0

0.6 0.238 0.027 0.002 0 0 0

0.8 0.322 0.087 0.015 0.002 0 0

1.0 0.368 0.179 0.055 0.015 0.004 0.001

1.2 0.381 0.276 0.128 0.051 0.019 0.007

1.4 0.371 0.354 0.219 0.118 0.059 0.028

1.8 0.320 0.423 0.371 0.286 0.206 0.142

2.0 0.290 0.423 0.413 0.354 0.285 0.220

5.0 0.071 0.139 0.188 0.228 0.261 0.290

10.0 0.019 0.037 0.051 0.064 0.075 0.085

20.0 0.005 0.010 0.013 0.016 0.019 0.022

under consideration. In particular, radiation in the forward direction at the
fundamental frequency reaches a maximum photon flux for strength parame-
ters K ≈ 1.3. The photon flux per unit solid angle increases like the square of
the number of wiggler periods Np, which is a result of the interference effect
of many beams concentrating the radiation more and more into one frequency
and its harmonics as the number of interfering beams is increased.

The radiation opening angle is primarily determined by the (sinx/x)2

term. We define the rms opening angle for the kth harmonic radiation by
ϑk being the angle for which sinx/x = 0 for the first time. In this case,
x = π or Np ∆ωk/ω1 = 1. With ω1 = ωp

2γ2

1+ 1
2 K2 , ωk = k ωp

2γ2

1+ 1
2 K2+γ2ϑ2

k

, and
∆ωk

ω1
=
∣∣∣ωk

ω1
− k
∣∣∣ , we get Np k γ2 ϑ2

k

1+ 1
2 K2+γ2ϑ2

k

= 1 or after solving for ϑk

ϑ2
k =

1 + 1
2 K2

γ2 (kNp − 1)
. (23.64)

Assuming an undulator with many periods kNp 
 1, the rms opening
angle of undulator radiation is finally

σr′ = 1√
2
ϑk ≈ 1

γ

√
1 + 1

2 K2

2 k Np
. (23.65)
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Radiation emitted into a solid angle defined by this opening angle

dΩ = 2π σ2
r′ (23.66)

is referred to as the forward radiation cone. The opening angle of undulator
radiation becomes more collimated as the number of periods and the order
of the harmonic increases. On the other hand, the radiation cone opens up
as the undulator strength K is increased. We may use this opening angle to
calculate the total photon intensity of the kth harmonic within a bandwidth
∆ω
ω into the forward cone

Nph(ωk)|ϑ=0 = παNp
∆ω

ωk
k

K2

1 + 1
2K

2
JJ2, (23.67)

where ωk = k ω1. The radiation spectrum from an undulator magnet into
the forward direction has been reduced to a simple form exhibiting the most
important characteristic parameters. Utilizing (23.63), the number of photons
emitted into a band width ∆ω

ωk
from a single electron passing through an

undulator in the kth harmonic is

Nph(ωk)|ϑ=0 = π αNp
∆ω

ωk

1 + 1
2K

2

k
Ak(K) . (23.68)

Equation (23.68) is to be multiplied by the number of particles in the
electron beam to get the total photon intensity. In the case of a storage ring,
particles circulate with a high revolution frequency and we get from (23.68) by
multiplication with I / e, where I is the circulating beam current, the photon
flux

dNph(ωk)
d t

∣∣∣∣
ϑ=0

= π αNp
I

e

∆ω

ωk

1 + 1
2K

2

k
Ak(K) . (23.69)

The spectrum includes only odd harmonic since all even harmonics are
suppressed through the cancellation of Bessel’s functions.

23.2.5 Spectral Undulator Brightness

The spectral brightness of undulator radiation is defined as the photon density
in six-dimensional phase space

B (ω) =
Ṅph(ω)

4π2 σxσx′σyσy′(dω/ω)
. (23.70)

In the laser community, this quantity is called the radiance while the term
spectral brightness is common in the synchrotron radiation community. The
maximum value of the brightness is limited by diffraction to

Bmax = Ṅph
(4 / λ2)
dω/ω

. (23.71)
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The actual photon brightness is reduced from the diffraction limit due to
betatron motion of the particles, transverse beam oscillation in the undulator,
apparent source size on the axis, and under an oblique angle. All of these effects
tend to increase the source size and reduce brightness.

The particle beam cross section varies in general along the undulator. We
assume here for simplicity that the beam size varies symmetrically along the
undulator with a waist at its center. From beam dynamics it is then known
that, for example, the horizontal beam size varies like σ2

b = σ2
b0 + σ′2

b0 s
2,

where σb0 is the beam size at the waist, σ′
b0 is the divergence of the beam at

the waist, and − 1
2L � s � 1

2L is the distance from the waist. The average
beam size along the undulator length L is then

〈σ2
b〉 = σ2

b0 + 1
12σ

′2
b0 L

2 . (23.72)

Similarly, due to an oblique observation angle ϑ with respect to the (y, z)-
plane or ψ with respect to the (x, z)-plane we get a further additive contri-
bution 1

6 ϑL to the apparent beam size. Finally, the apparent source size is
widened by the transverse beam wiggle in the periodic undulator field. This
oscillation amplitude is from (23.6) a = λpK / (2πγ).

Collecting all contributions and adding them in quadrature, the total ef-
fective beam-size parameters are given by

σ2
t,x =

1
2
σ2

r + σ2
b0,x +

(
λpK

2πγ

)2

+
1
12

σ2
b0,x′L2 +

1
36

ϑ2L2, (23.73a)

σ2
t,x′ =

1
2
σ2

r′ + σ2
b0,x′ , (23.73b)

σ2
t,y =

1
2
σ2

r + σ2
b0,y +

(
λpK

2πγ

)2

+
1
12

σ2
b0,y′L2 +

1
36

ψ2L2, (23.73c)

σ2
t,y′ =

1
2
σ2

r′ + σ2
b0,y′ , (23.73d)

where the particle beam sizes can be expressed by the beam emittance and
betatron function as σ2

b = ε β, σ′
b
2 = ε/β, and the diffraction limited beam

parameters are σr =
√

λ/L, and σr′ =
√
λL/(2π).

23.3 Elliptical Polarization

During the discussion of bending magnet radiation in Chap. 22 and inser-
tion radiation in this chapter, we noticed the appearance of two orthogonal
components of the radiation field which we identified with the σ-mode and
π-mode polarization. The π-mode radiation is observable only at a finite angle
with the plane defined by the particle trajectory and the acceleration force
vector, which is in general the horizontal plane. As we will see, both polariza-
tion modes can, under certain circumstances, be out of phase giving rise to
elliptical polarization. In this section, we will briefly discuss such conditions.
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23.3.1 Elliptical Polarization from Bending Magnet Radiation

The direction of the electric component of the radiation field is parallel to
the particle acceleration. Since radiation is the perturbation of electric field
lines from the charge at the retarded time to the observer, we must take
into account all apparent acceleration. To see this more clear, we assume an
electron to travel counterclockwise on an orbit traveling from say a 12-o’clock
position to 9-o’clock and then 6-o’clock. Watching the particle in the plane
of deflection, the midplane, we notice only a horizontal acceleration which
is maximum at 9-o’clock. Radiation observed in the midplane is therefore
linearly polarized in the plane of deflection.

Now we observe the same electron at a small angle above the midplane.
Apart from the horizontal motion, we notice now also a vertical motion. Since
the electron follows pieces of a circle this vertical motion is not uniform but
exhibits acceleration. Specifically, at 12-o’clock the particle seems to be accel-
erated only in the vertical direction (downward), horizontally it is in uniform
motion; at 9-o’clock the acceleration is only horizontal (towards 3-o’clock) and
the vertical motion is uniform; finally, at 6-o’clock the electron is accelerated
only in the vertical plane again (upward). Because light travels faster than the
electron, we observe radiation first coming from the 12-o’clock position, then
from 9-o’clock, and finally from 6-o’clock. The polarization of this radiation
pulse changes from downward to horizontal (left–right) to upward which is
what we call elliptical polarization where the polarization vector rotates with
time. Of course, in reality we do not observe radiation from half the orbit, but
only from a very short arc segment of angle ±1/γ. Yet, even this short piece
of the orbit has all the features just used to explain elliptical polarization in
a bending magnet.

If we observe the radiation at a small angle from below the midplane, the
sequence of accelerations is opposite, upward-horizontal (left–right)-downward.
The helicity of the polarization is therefore opposite for an observer below or
above the midplane. This qualitative discussion of elliptical polarization must
become obvious also in the formal derivation of the radiation field. A closer
inspection of the radiation field (22.104) from a bending magnet

Er(ω) = −
√

3
4πε0

e

cR

ω

ωc
γ(1 + γ2ϑ2)

[
sign

(
1
ρ

)
K2/3(ξ)uσ − i

γϑK1/3(ξ)√
1 + γ2ϑ2

uπ

]

(23.74)
shows that both polarization terms are 90◦ out of phase. As a consequence,
the combination of both terms does not just introduce a rotation of the polar-
ization direction but generates a time-dependent rotation of the polarization
vector which we identify with circular or elliptical polarization. In this par-
ticular case, the polarization is elliptical since the π-mode radiation is always
weaker than the σ-mode radiation. The field rotates in time just as expected
from the qualitative discussion above.
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Fig. 23.10. Acceleration along an arc-segment of the particle trajectory in (a)
a bending magnet, (b) polarization as a function of time, and (c) radiation field
components as a function of time

We may quantify the polarization property considering that the electrical
field is proportional to the acceleration vector β̇. Observing radiation at an
angle with the horizontal plane, we note that the acceleration being normal to
the trajectory and in the midplane can be decomposed into two components
β̇x and β̇z as shown in Fig. 23.10(a).

The longitudinal acceleration component together with a finite observation
angle ϑ gives rise to an apparent vertical acceleration with respect to the
observation direction and the associated vertical electric field component is

Ey ∝ β̇y = ny β̇z + nx ny β̇x .

An additional component appears, if we observe the radiation also at an angle
with respect to the (x, y)-plane which we, however, ignore here for this discus-
sion. The components nx, ny are components of the observation unit vector
from the observer to the source with ny = − sinϑ. We observe radiation first
from an angle ϑ > 0. The horizontal and vertical radiation field components
as a function of time are shown in Fig. 23.10(b). Both being proportional to
the acceleration (Fig. 23.10(a)), we observe a symmetric horizontal field Ex

and an antisymmetric vertical field Ey. The polarization vector (Fig. 23.10(c))
therefore rotates with time in a counterclockwise direction giving rise to el-
liptical polarization with lefthanded helicity. Observing the radiation from
below with ϑ < 0, the antisymmetric field switches sign and the helicity
becomes righthanded. The visual discussion of the origin of elliptical polar-
ization of bending magnet radiation is in agreement with the mathematical
result (23.74) displaying the sign dependence of the π-mode component with
ϑ.

The intensities for both polarization modes are shown in Fig. 23.11 as a
function of the vertical observation angle ϑ for different photon energies. Both
intensities are normalized to the forward intensity of the σ-mode radiation.
From Fig. 23.11 it becomes obvious that circular polarization is approached
for large observation angles. At high photon energies both radiation lobes
are confined to very small angles but expand to larger angle distributions for
photon energies much lower than the critical photon energy.
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Fig. 23.11. Relative intensities of σmode and π-mode radiation as a function of
vertical observation angle θ for different photon energies

The elliptical polarization is left or right handed depending on whether
we observe the radiation from above or below the horizontal midplane. Fur-
thermore, the helicity depends on the direction of deflection in the bending
magnet or the sign of the curvature, sign(1/ρ). By changing the sign of the
bending magnet field the helicity of the elliptical polarization can be reversed.
This is of no importance for radiation from a bending magnet since we cannot
change the field without loss of the particle beam but is of specific impor-
tance for elliptical polarization state of radiation from wiggler and undulator
magnets.

23.3.2 Elliptical Polarization from Periodic Insertion Devices

We apply the visual picture for the formation of elliptically polarized radiation
in a bending magnet to the periodic magnetic field of wiggler and undulator
magnets. The acceleration vectors and the associated field vectors are shown
in Figs. 23.12(a) and 23.12(b) for one period, and, similar to the situation
in bending magnets, we do not expect any elliptical polarization in the mid-
plane where ϑ = 0. Off the mid-plane, we observe now the radiation from a
positive and a negative pole. From each pole we get elliptical polarization but
the combination of lefthanded polarization from one pole with righthanded
polarization from the next pole leads to a cancellation of elliptical polarization
from periodic magnets (Fig. 23.12(c)). In bending magnets, this cancellation
did not occur for lack of alternating deflection. Since there are generally an
equal number of positive and negative poles in a wiggler or undulator mag-
net the elliptical polarization is completely suppressed. Ordinary wiggler and
undulator magnets do not produce elliptically polarized radiation.
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Fig. 23.12. Acceleration vectors along one period of (a) a wiggler magnet, (b) the
associated polarization vectors, and (c) the corresponding radiation fields

Asymmetric Wiggler Magnet

The elimination of elliptical polarization in periodic magnets results from a
compensation of left- and right-handed helicity and we may therefore look for
an insertion device in which this symmetry is broken. Such an insertion device
is the asymmetric wiggler magnet which is designed similar to a wavelength
shifter with one strong central pole and two weaker poles on either side such
that the total integrated field vanishes or

∫
By ds = 0. A series of such magnets

may be aligned to produce an insertion device with many poles to enhance the
intensity. The compensation of both helicities does not work anymore since
the radiation depends on the magnetic field and not on the total deflection
angle. A permanent magnet rendition of an asymmetric wiggler magnet is
shown in Fig. 23.13

The degree of polarization from an asymmetric wiggler depends on the
desired photon energy. The critical photon energy is high for radiation from
the high field pole, ε+c , and lower for radiation from the low field pole, ε−c .
For high photon energies εph ≈ ε+c the radiation from the low field poles is
negligible and the radiation is essentially the same as from a series of bend-
ing magnets with its particular polarization characteristics. For lower photon

By

z

permanent magnet blocks

Fig. 23.13. Asymmetric wiggler magnet
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energies ε−c < εph < ε+c the radiation intensities from high and low field pole
become similar and cancellation of the elliptical polarization occurs. At low
photon energies εph < ε−c the intensity from the low field poles exceeds that
from the high field poles and we observe again elliptical polarization although
with reversed helicity.

Elliptically Polarizing Undulator

The creation of elliptically and circularly polarized radiation is important for
a large class of experiments using synchrotron radiation and special inser-
tion devices have therefore been developed to meet such needs in an opti-
mal way. Different approaches have been suggested and realized as sources
for elliptically polarized radiation, among them for example, those described
in [274, 275]. All methods are based on permanent magnet technology, some-
times combined with electromagnets, to produce vertical and horizontal fields
shifted in phase such that elliptically polarized radiation can be produced.
Utilizing four rows of permanent magnets which are movable with respect
to each other and magnetized as shown in Fig. 23.14, elliptically polarized
radiation can be obtained.

Figure 23.15 shows the arrangement in a three-dimensional rendition to
visualize the relative movement of the magnet rows [274,276].

The top as well as the bottom row of magnet poles is split into two rows,
each of which can be shifted with respect to each other. This way, a continuous
variation of elliptical polarization from left to linear to right-handed helicity
can be obtained. By shifting the top magnet arrays with respect to the bottom
magnets the fundamental frequency of the undulator radiation can be varied
as well. Figure 23.16 shows a photo of such a magnet [275].

Fig. 23.14. Permanent magnet arrangement to produce elliptically polarized un-
dulator radiation [276]
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Fig. 23.15. Three-dimensional view of an elliptically polarizing undulator, EPU
[276]

Fig. 23.16. Undulator for elliptically polarized radiation [275]
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Problems

23.1 (S). Consider an undulator magnet with a period length of λp = 5 cm in
a 7 GeV storage ring. The strength parameter is K = 1. What is the maximum
oscillation amplitude of an electron passing through this undulator? What is
the maximum longitudinal oscillation amplitude with respect to the reference
system moving with velocity β̄?

23.2 (S). An undulator with 50 poles, a period length of λp = 5 cm, and
a strength parameter of K = 1 is to be installed into a 1 GeV storage ring.
Calculate the focal length of the undulator magnet. Does the installation of
this undulator require compensation of its focusing properties? How about a
wiggler magnet with K = 5 ?

23.3 (S). Consider expression (23.69) for the photon flux into the forward
cone. We also know that the band width of undulator radiation scales like
∆ω/ωk ∝ 1/Np. With this, the photon flux (23.69) becomes independent of
the number of undulator periods! Explain in words, why this expression for
the photon flux is indeed a correct scaling law.

23.4 (S). A hybrid undulator is to be installed into a 7 GeV storage ring to
produce undulator radiation in a photon energy range of 4 keV to 15 keV.
The maximum undulator field shall not exceed a value of B0 ≤ 2 T at a gap
aperture of 10 mm. The available photon flux in the forward cone shall be at
least 10% of the maximum flux within the whole spectral range. Specify the
undulator parameters and show that the required photon energy range can
be covered by changing the magnet gap only.

23.5 (S). Consider an electron colliding head-on with a laser beam. What is
the wavelength of the laser as seen from the electron system. Derive from this
the wavelength of the “undulator” radiation in the laboratory system.

23.6 (S). An electron of energy 2 GeV performs transverse oscillations in a
wiggler magnet of strength K = 1.5 and period length λp = 7.5 cm. Calcu-
late the maximum transverse oscillation amplitude. What is the maximum
transverse velocity in units of c during those oscillations. Define and calcu-
late a transverse relativistic factor γ⊥. Note that for K � 1 the transverse
relativistic effect becomes significant in the generation of harmonic radiation.

23.7 (S). Calculate for a 3 GeV electron beam the fundamental photon energy
(ϑ = 0) for a 100 period undulator with K = 1.0 and a period length of λp = 5
cm. What is the maximum angular acceptance angle ϑ of the beam line, if the
radiation spectrum is to be restricted to a bandwidth of 10%?

23.8. Add to the purely sinusoidal field of an ideal undulator additional terms
(say 3–5) which would become necessary for a symmetric perturbation of the
fundamental field due to relativistic effects in strong undulators or due to long
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poles. Solve the equations of motion in the moving reference system (23.2) .
Which harmonics are involved in the perturbation of the purely sinusoidal
motion? Can you relate them to the radiation spectrum in the laboratory
system?

23.9. The undulator radiation intensity is a function of the strength parame-
ter K. Find the strength parameter K for which the fundamental radiation
intensity is a maximum. Determine the range of K-values where the intensity
of the fundamental radiation is at least 10% of the maximum.

23.10. Verify the relative intensities of σ-mode and π-mode radiation in
Fig. 23.12 for two quantitatively different pairs of observation angles ϑ and
photon energies ε/εc.

23.11. Design an asymmetric wiggler magnet assuming hard edge fields and
optimized for the production of elliptical polarized radiation at a photon en-
ergy of your choice. Calculate and plot the photon flux of polarized radiation
in the vicinity of the optimum photon energy.

23.12. Show from (23.56) that along the axis, ϑ = 0, radiation is emitted only
in odd harmonics.

23.13. Show from (23.53) that undulator radiation does not produce ellipti-
cally polarized radiation.

23.14. Design a hybrid undulator for a 3 GeV storage ring to produce 4 keV
to 15 keV photon radiation. Optimize the undulator parameters such that
this photon energy range can be covered with the highest flux possible and
utilizing lower order harmonics (order 7 or less). Plot the radiation spectrum
that can be covered by changing the gap height of the undulator.

23.15. Calculate the total undulator (Np = 50, λp = 4.5 cm, K = 1.0)
radiation power from a 200 mA, 6 GeV electron beam. Pessimistically, assume
all radiation to come from a point source and be contained within the central
cone. Determine the power density at a distance of 15 m from the source.
Compare this power density with the maximum acceptable of 10 W/mm2.
How can you reduce the power density, on say a mask, to the acceptable value
or below?

23.16. Use the beam and undulator from Problem 23.15 and estimate the
total radiation power into the forward cone alone. What percentage of all
radiation falls within the forward cone?
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Free Electron Lasers

Synchrotron radiation is emitted when electromagnetic fields exert a force on
a charged particle. This opens the possibility to apply external fields with spe-
cific properties for the stimulation of electrons to emit even more radiation.
Of course, not just any external electromagnetic field would be useful. Fields
at some arbitrary frequency would not work because particles interacting with
such fields would in general be periodically accelerated and decelerated with-
out any net energy transfer. The external field must have a frequency and
phase such that a particle may continuously lose energy into synchrotron
radiation. Generally, it is most convenient to recycle and use spontaneous ra-
diation emitted previously by the same emission process. In this part, we will
discuss in some detail the process of stimulation as it applies to a free electron
laser.

In a free electron laser (FEL) quasi-monochromatic, spontaneous radiation
emitted from an undulator is recycled in an optical cavity to interact with the
electron beam causing accelerations which are periodic with the frequency of
the undulator radiation. In order to couple the particle motion to the strictly
transverse electromagnetic radiation field, the path of the electrons is modu-
lated by periodic deflections in a magnetic field to generate transverse velocity
components. In a realistic setup, this magnetic field is provided in an undu-
lator magnet serving both as the source of radiation and the means to couple
to the electric field. The transverse motion of the particle results in a gain
or loss of energy from/to the electromagnetic field depending on the location
of the particle with respect to the phase of the external radiation field. The
principle components of a FEL are shown in Fig. 24.1.

An electron beam is guided by a bending magnet unto the axis of an
undulator. Upon exiting the undulator, the beam is again deflected away from
the axis by a second bending magnet, both deflections to protect the mirrors
of the optical cavity. Radiation that is emitted by the electron beam while
travelling through the undulator is reflected by a mirror, travels to the mirror
on the opposite side of the undulator and is reflected there again. Just as
this radiation pulse enters the undulator again, another electron bunch joins
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Fig. 24.1. Free electron laser setup (schematic)

to establish the emission of stimulated radiation. The electron beam pulse
consists of a long train of many bunches, much longer than the length of the
optical cavity such that many beam-radiation interactions can be established.

24.1 Small Gain Regime

We may follow this process in great detail observing an electron as it travels
through say the positive half period of its oscillatory trajectory. During this
phase, the electron experiences a negative acceleration from the undulator
magnet field which is in phase with the oscillation amplitude. Acceleration
causes a perturbation of the electric fields of the electron as was discussed
in detail in Chap. 6. This perturbation travels away from the source at the
speed of light, which is what we call electromagnetic radiation. For an elec-
tron, the electric radiation field points in the direction of the acceleration.
As the electron travels through the positive half wave, it emits a radiation
field made of half a wave. Simultaneously, this radiation field, being faster
than the electron, travels ahead of the electron by precisely half a wavelength.
This process tells us that the radiation wavelength is closely related to the
electron motion and that it is quasi-monochromatic. Of course, for a strong
undulator the sinusoidal motion becomes perturbed and higher harmonics ap-
pear, but the principle arguments made here are still true. Now, the electron
starts performing the negative half of its oscillation and, experiencing a pos-
itive acceleration, emits the second halfwave of the radiation field matching
perfectly the first halfwave. This happens in every period of the undulator and
when the electron reaches the end of the last period a radiation wave com-
posed of Np oscillations exists ahead of the electron. This process describes
the spontaneous radiation emission from an electron in an undulator magnet.

The radiation pulse just created is recycled in the optical cavity to reenter
the undulator again at a later time. The length of the optical cavity must
be adjusted very precisely to an integer multiple of both the radiation wave-
length and the distance between electron bunches. Under these conditions,
electron bunches and radiation pulses enter the undulator synchronously. A
complication arises from the fact that the electrons are contained in a bunch
which is much longer than the wavelength of the radiation. The electrons are
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distributed for all practical purposes uniformly over many wavelengths. For
the moment, we ignore this complication and note that there is an electron
available whenever needed.

We now pick an electron starting to travel through a positive half wave
of its oscillation exactly at the same time and location as the radiation wave
starts its positive field half period. The electron, experiences then a downward
acceleration from the radiation field. During its motion the electron is contin-
uously accelerated until it has completed its travel through the positive half
oscillation. At the same time, the full positive have wave of the radiation field
has moved over the electron. At this moment the electron and the radiation
field are about to start their negative half periods. Continuing its motion now
through the negative half period, the electron still keeps loosing energy be-
cause it now faces a negative radiation field. The fact that the radiation field
“slides” over the electron just one wavelength per undulator period ensures a
continuous energy transfer from electron to the radiation field. The electron
emits radiation which is now exactly in synchronism with the existing radia-
tion field and the new radiation intensity is proportional to the acceleration
or the external radiation field. Multiple recycling and interaction of radia-
tion field with electron bunches results therefore in an exponential increase in
radiation intensity.

At this point, we must consider all electrons, not just the one for which the
stimulation works as just described. This process does not work that perfect
for all particles. An electron just half a wavelength behind the one discussed
above would continuously gain energy from the radiation field and any other
electron would loose or gain energy depending on its phase with respect to the
radiation. It is not difficult to convince oneself that on average there may not
be any net energy transfer one way or another and therefore no stimulation
or acceleration. To get actual stimulation, some kind of asymmetry must be
introduced.

To see this, we recollect the electron motion in a storage ring in the pres-
ence of an rf-field in the accelerating cavity. In Sect. 6.2.1 we discussed the
phase space motion of particles under the influence of a radiation field. The ra-
diation field of a FEL acts exactly the same although at a much shorter wave-
length. The electron beam extends over many buckets as shown in Fig.24.2
and it is obvious that in its interaction with the field half of the electrons
gain and the other half loose energy from/to the radiation field. The effect of
the asymmetry required to make the FEL work is demonstrated in Fig. 24.3.
Choosing an electron beam energy to be off-resonance by a small amount,
the energy gain and losses for all electrons within a bucket becomes unbal-
anced and we can choose a case where all electrons on average loose energy
into (FEL) or gain energy (particle acceleration by a radiation field) from the
radiation field. The arrows in the first bucket of Fig. 24.3 show clearly the
imbalance of energy gain or loss. What it means to choose an electron beam
energy off-resonance will be discussed in more detail in the next section, where
we formulate quantitatively the processes discussed so far only qualitatively.
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Fig. 24.2. Interaction of an electron beam (on-resonace energy) with the radiation
field of a FEL. The arrows in the first bucket indicate the direction of particle motion
in its interaction with the electromagnetic field

Fig. 24.3. Interaction of an electron beam (off-resonance energy) with the radiation
field of a FEL

We concentrate on the case where only a small fraction of the particle
energy is extracted such that we can neglect effects on particle parameters.
This regime is called the “small-gain” regime. Specifically, we ignore changes
in the particle energy and redistribution in space as a consequence of the
periodic energy modulation.

24.1.1 Energy Transfer

Transfer of energy between a charged particle and an electromagnetic wave
is effected by the electric field term of the Lorentz force equation and the
amount of transferred energy is

∆W = e

∫
EL dz = e

∫

L

Evdt, (24.1)

where EL is the external field or the Laser field in the optical cavity and v
the particle velocity. In free space v⊥EL and therefore there is no energy
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transfer possible, ∆W ≡ 0. Generating some transverse velocity v⊥ through
periodic deflection in an undulator, we get from (23.3)

vx = +βc
K

γ
sin (kpz) , (24.2)

where kp = 2π/λp. The external radiation field can be expressed by

EL = E0L cos (ωLt− kLz + ϕ0) (24.3)

and the energy transfer is

∆W = e

∫
vELdt = e

∫
vxELdt

= eβc
K

γ
E0L

∫
cos (ωLt− kLz + ϕ0) sin (kpz) dt (24.4)

= 1
2eβc

K

γ
E0L

∫ (
sinΨ+ − sinΨ−) dt,

where
Ψ± = ωLt− (kL ± kp) z + ϕ0 . (24.5)

The energy transfer appears to be oscillatory, but continuous energy trans-
fer can be obtained if either Ψ+= const. or Ψ−= const. In this case

dΨ±

dt
= ωL − (kL ± kp) ż = 0 (24.6)

and we must derive conditions for this to be true. The velocity ṡ is from (23.3)

ż = β̄c + βc
K2

4γ2
cos (2kpz) , (24.7)

where the average drift velocity β̄c is defined by

ds̄
dt

= β̄c = βc

(
1 − K2

4γ2

)
. (24.8)

We slightly modify condition (24.6) and require that it be true only on average

dΨ±

dt
= ωL − (kL ± kp)

dz̄
dt

= 0, (24.9)

or

(kL ± kp)β
(

1 − K2

4γ2

)
− kL = 0 . (24.10)

With β ≈ 1 − 1/2γ2 and kp � kL, (24.10) becomes

kL

[(
1 − 1

2γ2

)(
1 − K2

4γ2

)
− 1
]
± kp ≈ 0, (24.11)



866 24 Free Electron Lasers

or for γ 
 1

− kL

2γ2

(
1 +

1
2
K2

)
± kp = 0 . (24.12)

Equation (24.12) can be met only for the +sign or for

kp =
kL

2γ2

(
1 +

1
2
K2

)
, (24.13)

which is identical to the definition of the fundamental undulator radiation
wavelength

λL =
λp

2γ2

(
1 +

1
2
K2

)
. (24.14)

Radiation at the fundamental wavelength of undulator radiation guaran-
tees a continuous energy transfer from the particles to the electromagnetic
wave or stimulation of radiation emission by an external field. For this reason,
it is most convenient to use spontaneous undulator radiation as the external
field to start the build-up of the free electron laser.

24.1.2 Equation of Motion

The energy gain dW of the electromagnetic field is related to the energy
change dγ of the electron by

dγ
ds

= − 1
mc2

dW
βcdt

(24.15)

or with (24.4)
dγ
ds

= −eKE0L

2γmc2
(
sinΨ+ − sinΨ−) . (24.16)

With the substitution sinx = −Re
(
i eix
)

dγ
dz

=
eKE0L

2γmc2
Re
(
i eiΨ+ − i eiΨ−

)
. (24.17)

In Ψ± = ωLt − (kL ± kp) z (t) + ϕ0, we replace the location function s(t) by
its expression (23.5)

z (t) = β̄ct︸︷︷︸
= s̄

+
K2

8γ2kp
sin
(
2kpβ̄ct

)
︸ ︷︷ ︸

� β̄ct

, (24.18)

composed of an average position s̄ and an oscillatory term. With kp � kL

dγ
dz

=
eβK E0L

2γmc2
Re
{

i exp
[
i
kLK

2

8γ2kp
sin (2kpz̄)

] [
eiΨ̄+ − eiΨ̄−

]}
(24.19)
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and the the phase
Ψ̄± = ωLt− (kL ± kp) z̄ + ϕ0 . (24.20)

With the definition exp (ix sinφ) =
∑n=+∞

n=−∞Jn (x)einφ we finally get

dγ
dz

=
eβK E0L

2γmc2
Re
[
i
∑n=+∞

n=−∞Jn

(
kLK

2

8γ2kp

)
ei2nkpz̄

(
eiΨ̄+ − eiΨ̄−

)]
. (24.21)

The infinite sum reflects the fact that the condition for continuous energy
transfer can be met not only at one wavenumber but also at all harmonics
of that frequency. Combining the exponential terms and sorting for equal
wavenumbers h kp, where h is an integer, we redefine the summation index by
setting

2nkp + kp = h kp −→ n =
h− 1

2
(24.22a)

2nkp − kp = h kp −→ n =
h + 1

2
(24.22b)

and get

dγ
dz

=
eβK E0L

2γmc2

∞∑
h=1

[
Jh−1

2
(x) − Jh+1

2
(x)
]
Re
{

i ei[(kL+h kp) z̄−ωLt+ϕ0]
}

︸ ︷︷ ︸
=− sin[(kL+h kp) z̄−ωLt+ϕ0]

,

(24.23)
where x = K2

4+2K2 . Using the JJ-function (23.62) the energy transfer is

dγ
dz

= −eβK E0L

2γmc2

∞∑
h=1

[JJ ] sinΨ . (24.24)

For maximum continuous energy transfer sinΨ = const. or

dΨ
dt

= (kL + h kp)
dz
dt

− ωL (24.25)

= (kL + h kp) βc

(
1 − K2

4γ2

)
− ωL

= (kL + h kp)
(

1 − 1
2γ2

)
c

(
1 − K2

4γ2

)
− ckL

= − ckL

2γ2

(
1 +

1
2
K2

)
+ h kpc = 0,

where we assumed that kL 
 h kp, which is true since λp 
 λL and the
harmonic number of interest is generally unity or a single digit number. This
condition confirms our earlier finding (24.14) and extends the synchronicity
condition to multiples h of the fundamental radiation frequency
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λL =
λp

2γ2h

(
1 +

1
2
K2

)
. (24.26)

The integer h therefore identifies the harmonic of the radiation frequency with
respect to the fundamental radiation.

In a real particle beam with a finite energy spread we may not assume that
all particles exactly meet the synchronicity condition. It is therefore useful to
evaluate the tolerance for meeting this condition. To do this, we define a
resonance energy

γ2
r =

kL

2h kp

(
1 +

1
2
K2

)
, (24.27)

which is the energy at which the synchronicity condition is met exactly. For
any other particle energy γ = γr + δγ we get from (24.25) and (24.27)

dΨ
ds

= 2h kp
δγ

γr
. (24.28)

With the variation of the energy deviation d
dz δγ = dγ

dz

∣∣∣
γr

− dγr
dz = dγ

dz

∣∣∣
γr

and

(24.24) we get from (24.28) after differentiating with respect to z

d2Ψ

dz2
= 2h kp

d
dz

δγ

γr
= −eh kpK E0L

γ2
r mc2

[JJ ] sinΨ(z), (24.29)

where, for simplicity, we use only one harmonic h. This equation can be written
in the form

d2Ψ

dz2
+ Ω2

L sinΨ = 0 (24.30)

exhibiting the dynamics of a harmonic oscillator. Equation (24.30) is known
as the Pendulum equation [277] with the frequency

Ω2
L =

eh kpK E0L

γ2
r mc2

|JJ | . (24.31)

While interacting with the external radiation field, the particles perform
harmonic oscillations in a potential generated by this field. This situation
is very similar to the synchrotron oscillation of particles in a storage ring
interacting with the field of the rf-cavities as was discussed in Sect. 6.2.1. In
phase space, the electron perform synchrotron oscillations at the frequency
ΩL while exchanging energy with the radiation field.

24.1.3 FEL-Gain

Having established the possibility of energy transfer from an electron to a
radiation field, we may evaluate the magnitude of this energy transfer or the
gain in field energy per interaction process or per pass. One pass is defined
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by the interaction of an electron bunch with the radiation field while passing
through the entire length of the undulator. The gain in the laser field ∆WL =
−mc2ne∆γ,where ∆γ is the energy loss per electron and pass to the radiation
field and ne the number of electrons per bunch. The energy in the laser field

WL =
1
8π

1
2
E2

0L V, (24.32)

where V is the volume of the radiation field. With this, we may define the
FEL-gain for the kth harmonic by

Gk =
∆WL

WL
= −mc2nb∆γ

1
16πE

2
0LV

= −4πmc2γrne

hkpE2
0LV

〈∆Ψ ′〉ne
, (24.33)

making use of (24.28). 〈∆Ψ ′〉ne
is the average value of ∆Ψ ′=Ψ ′

f − Ψ ′
0 for all

electrons per bunch, where Ψ ′
0 is defined at the beginning of the undulator

and Ψ ′
f at the end of the undulator. To further simplify this expression, we

use (24.31), solve for the laser field

E0L =
mc2γ2

r Ω
2
L

ehKkpV [JJ ]
, (24.34)

and define the electron density nb = ne/V.Here we have tacitly assumed that
the volume of the radiation field perfectly overlaps the volume of the electron
beam. This is not automatically the case and must be achieved by carefully
matching the electron beam to the diffraction dominated radiation field. If
this cannot be done, the volume V is the overlap volume, or the larger of
both. With this the FEL-gain becomes

G = −8πe2nbhK
2kp[JJ ]2

mc2γ3
r Ω

4
L

〈∆Ψ ′〉ne
(24.35)

Numerical evaluation of 〈∆Ψ ′〉ne
can be performed with the pendulum

equation. Multiplying the pendulum equation 2Ψ ′ and integrating we get

Ψ ′2 − 2Ω2
L cosΨ = const. (24.36)

Evaluating this at the beginning of the undulator

Ψ ′2 − Ψ ′2
0 = 2Ω2

L (cosΨ − cosΨ0) , (24.37)

which becomes with Ψ ′
0 = 2N kp

γ0−γr
γr

and Ψ ′
b = Ψ from (24.28)

Ψ ′2 =
(

2hkp
γ0 − γr

γr

)2

+ 2Ω2
L (cosΨ − cosΨ0) (24.38)

Finally,
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Ψ ′ (z) = 2h kp
γ − γr

γr

√
1 +

Ω2
L

2k2 k2
p

γ2
r

(γ − γr)
2 [cosΨ (z) − cosΨ0], (24.39)

or with
w = h kpLu

γ − γr

γr
, (24.40)

where Lu = Npλp is the undulator length,

Ψ ′ (z) =
2w
Lu

√
1 +

L2
uΩ

2
L

2w2
[cosΨ (z) − cosΨ0] . (24.41)

We solve this by expansion and iteration. For a low gain FEL, the field
E0L is weak and does not influence the particle motion. Therefore ΩL � 1 and
(24.41) becomes

Ψ ′ ≈ 2w
L

[
1 +

1
2
L2Ω2

L

2w2
(cosΨ − cosΨ0)

−1
8
L4Ω4

L

4w4
(cosΨ − cosΨ0)

2 + · · ·
]
. (24.42)

In the lowest order of iteration Ψ ′
0 = 2w

L and ∆Ψ ′
(0) = 0 for all particles,

which means there is no energy transfer. For first-order approximation, we
integrate Ψ ′

0 (z) = 2w
Lu

to get Ψ(1)(z) = 2w
Lu

z + Ψ0 and

∆Ψ ′
(1) = Ψ ′(Lu) − Ψ ′

1 (0) = L Ω2
L

2w [cos (2w + Ψ0) − cosΨ0] + O(2) (24.43)

from (24.42). Averaging over all initial phases occupied by electrons 0 ≤ Ψ0 ≤
2π

〈∆Ψ ′
1〉 =

LΩ2
L

2w
1
2π

∫ 2π

0

[cos (2w + Ψ0) − cosΨ0] dΨ0 = 0 . (24.44)

No energy transfer to the laser field occurs in this approximation either.
We need a still higher order approximation. The higher order correction to
Ψ ′

1 (s) = Ψ ′
0 (s) + δΨ ′

1 (s) is from (24.42)

δΨ ′
(1) =

LΩ2
L

2w
[cosΨ − cosΨ0] , (24.45)

and the correction to Ψ1 (s) is

δΨ(1) =
LΩ2

L

2w

∫ L

0

[
cos
(

2w
L

z + Ψ0

)
− cosΨ0

]
ds

=
LΩ2

L

4w2
[sin (2w + Ψ0) − sinΨ0 − 2w cosΨ0] . (24.46)
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The second-order approximation to the phase is then Ψ1(z) = 2w
Lu

z +Ψ0 +
δΨ(1) and using (24.42) in second order as well we get

∆Ψ ′
(2) = L Ω2

L
2w

[
cos
(
2w + Ψ0 + δΨ(1)

)
− cosΨ0

]

− L 3Ω4
L

4w2 [cos (2w + Ψ0) − cosΨ0]
2 + · · · , (24.47)

where in the second order term only the first order phase Ψ1(z) = 2w
Lu

z + Ψ0

is used. The first term becomes with δΨ(1) � Ψ0 + 2w

cos (2w + Ψ0 + δΨ1) − cosΨ0 (24.48)
≈ cos (2w + Ψ0) − δΨ1 sin (2w + Ψ0) − cosΨ0 (24.49)

and

∆Ψ ′
2 =

L3
u Ω4

L

16w3

{
8w2

L2
uΩ

2
[cos (2w + Ψ0) − cosΨ0]

− 2 sin (2w + Ψ0) [sin (2w + Ψ0) − sinΨ0 − 2w cosΨ0]

− [cos (2w + Ψ0) − cosΨ0]
2 + · · ·

}
. (24.50)

Now, we average over all initial phases assuming a uniform distribution of
particles in z or in phase. The individual terms then become

〈cos (2w + Ψ0) − cosΨ0〉 = 0〈
sin2 (2w + Ψ0)

〉
= 1

2

〈sin (2w + Ψ0) sinΨ0〉 = 1
2 cos (2w) (24.51)

〈sin (2w + Ψ0) cosΨ0〉 = 1
2 sin (2w)

〈cos (2w + Ψ0) cosΨ0〉 = 1
2 cos (2w) .

With this
〈∆Ψ ′

2〉 = −L3
u Ω4

L
16w3 [1 − cos (2w) − w sin (2w)] (24.52)

and finally with [1 − cos (2w) − w sin (2w)] /w3 = − d
dw

(
sin w

w

)2

〈∆Ψ ′
2〉 =

L3
u Ω4

L

8
d

dw

(
sinw

w

)2

. (24.53)

The FEL-gain is finally from (24.35)

Gk = −πrcnbhK2L3
ukp

γ3
r

[JJ ]2
d

dw

(
sinw

w

)2

, (24.54)

where we may express the particle density nb by beam parameters as obtained
from the electron beam source
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nb =
ne

V
=

ne

π2σ2�
, (24.55)

where σ is the radius of a round beam. With these definitions, and Î = cene/�
the electron peak current the gain per pass becomes

Gk = −22/3πrchλ3/2L3
u

cσ2λ
5/2
p

Î

�

K2 [JJ ]2(
1 + 1

2K
2
)3/2

d
dw

(
sinw

w

)2

. (24.56)

The gain depends very much on the choice of the electron beam energy
through the function (24.40) , which is expressed by the gain curve as shown
in Fig. 24.4.

Fig. 24.4. Free electron laser gain curve G ∝- d
dw

(
sin w

w

)2

There is no gain if the beam energy is equal to the resonance energy,
γ = γr. As has been discussed in the introduction to this chapter, we must
introduce an asymmetry to gain stimulation of radiation or gain and this
asymmetry is generated by a shift in energy. For a monochromatic electron
beam maximum gain can be reached for w ≈ 1.2. A realistic beam, however, is
not monochromatic and the narrow gain curve indicates that a beam with too
large an energy spread may not produce any gain. There is no precise upper
limit for the allowable energy spread but from Fig. 24.4 we see that gain is
all but gone when |w| � 5. We use this with (24.40) and (24.27)to formulate
a condition for the maximum allowable energy spread

∣∣∣∣
δγ

γ

∣∣∣∣�
2γ2

r λL

1 + 1
2K

2
. (24.57)

For efficient gain the geometric size of the electron beam and the radia-
tion field must be matched. In (24.55) we have introduced a volume for the
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electron bunch. Actually, this volume is the overlap volume of radiation field
and electron bunch. Ideally, one would try to get a perfect overlap by forming
both beams to be equal. This is in fact possible and we will discuss the condi-
tions for this to happen. First, we assume that the electron beam size varies
symmetrically about the center of the undulator. The beam size develops like

σ2 (z) = σ2
0 +
(

ε

σ0

)2

z2 (24.58)

with distance z from the beam waist. To maximize gain we look for the mini-
mum average beam size within an undulator. This minimum demands a sym-
metric solution about the undulator center. Furthermore, we may select the
optimum beam size at the center by looking for the minimum value of the
maximum beam size within the undulator. From dσ2/dσ2

0 = 0, the optimum
solution is obtained for z = 1

2Lu = σ2
0/ε = β0. For β0 = 1

2Lu the beam cross
section grows from a value of σ2

0 in the middle of the undulator to a maximum
value of 2σ2

0 at either end.
The radiation field is governed by diffraction. Starting at a beam waist,

the growth of the radiation field cross section due to diffraction is quantified
by the Rayleigh length

zR = π
w2

0

λ
, (24.59)

where w0 is the beam size at the waist and λ the wavelength. This length is
defined as the distance from the radiation source (waist) to the point at which
the cross section of the radiation beam has grown by a factor of two. For a
Gaussian beam, we have for the beam size at a distance z from the waist

w2(z) = w2
0 + Θ2 z2, (24.60)

where Θ = λ
πw0

is the divergence angle of the radiation field. This is exactly
the same condition as we have just discussed for the electron beam assuming
the center of the undulator as the source of radiation.

Problem

24.1 (S). Consider an electron travelling through an undulator producing
radiation. Show, that the radiation front travels faster than the electron by
one fundamental radiation wavelength per undulator period.
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Chapter 1

1.2 From Maxwell’s equations we have ∇E = ρ/ε0. We integrate this over
a cylindrical volume including part or all of the charge and get with Gauss’s
Integral Theorem:

∫
∇EdV =

∮
Eda = Er2πrL, where L is the length of the

cylindrical beam considered. The electrical field has for symmetry reasons only
a radial component. The r.h.s. of Maxwell’s equation is then the integral over
the volume contained within the surface used on the l.h.s. 1

ε0

∫
ρdV = ρ

ε0
πr2L

(for r < R), and ρ
ε0
πR2L (for r > R), and the radial electrical field component

is Er = ρ
2ε0

r (for r < R), and Er = ρ
2ε0

R2 1
r (for r > R). Similarly we get

for the magnetic field after integration
∫

∇ × B dV = ρ
ε0

∫
v dV = ρ

ε0
βπr2L

(for r < R) and ρ
ε0
βπR2L (for r > R). Since v = (0, 0, vz), symmetry restricts

the r.h.s. to only a z-component and the field to only a ϕ-component. We get∫
∇ × B dV =

∫ ∂Bϕ

∂r dV = BϕL2πr. Solving for the field, we get Bϕ = ρ
2ε0

βr

(for r < R) and ρ
2ε0

βR2 1
r (for r > R).

1.3 We integrate Maxwell’s equation ∇E = ρ(r)
ε0

over a cylindrical vol-
ume concentric to the beam. The l.h.s. becomes

∫
∇EdV =

∮
Eda =

2πrErL,where da is an element of the cocentric cylindrical surface and L
is an arbitrary length along the beam axis. Since an infinitely long beam is
assumed, only a radial electric field component exists. The r.h.s. is integrated
over the same cylinder 2π ρ0

ε0
L
∫ r

0
exp(− r̄2

2σ2 )r̄ dr̄ =2π ρ0
ε0

σ2L[1 − exp(− r2

2σ2 )]

and the radial electric field component is finally Er = ρ0
ε0

σ2

r [1 − exp(− r2

2σ2 )].
In a similar way the magnetic field can be obtained. Only the azimuthal com-
ponent is non zero given by Bϕ = ρ0

ε0
β σ2

r [1−exp(− r2

2σ2 )]. The fields vanish for
r → 0 and for r = σ are Er = ρ0

ε0
σ
[
1 − e−1/2

]
and Bϕ = ρ0

ε0
βσ
[
1 − e−1/2

]
.

1.4 The circulating beam current is defined by i = enfrev = env/C, where
n is the number of particles circulating, frev is the revolution frequency, v
is the particle velocity, and C is the accelerator circumference. The number
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of particles representing a current of 1A are n = iC/(Ev) = 6.2458 ×1012.
The ejected beam resembles a pulse with a pulse current of 1A since particles
are assumed to be distributed uniformly. The pulse length is given by the
revolution time τ = C/(βc) = 1.0007µs assuming β ≈ 1. The synchrotron
produces 10 pulses of 1.0007µs duration and at a pulse current of 1A. The
average beam current is therefore iavg = 10 × τ × 1(A) = 10 µA .

1.5 The bending radius ρ of a particle’s path due to a force F is given
by the equality of this force with the centrifugal force: γmv2

ρ = F or
ρ = β2γmc2/F . The gravitational force is F = f mM

R2 = 1.6397 × 10−26

kg m s−2, where the proton mass m = 1.6726231 × 10−27kg, the mass of
the earth M = 5.98 × 1024 kg, and the earth’s radius R = 6.380 × 106 m.
Numerically, the gravitational constant is f = 6.67259 × 10−11 m3 kg−1 s−2

and for a 1eV proton
(
γ = 1 + 1

0.938×109 = 1 + 1.0661 × 10−9
)

the velocity

β ≈
√

2Ekin/mc2 = 4.617 5×10−5. With these parameters, the bending radius
is ρ = 1.955× 107 m and therefore negligible compared to any bending radius
occurring in a realistic beam transport. Equivalent electromagnetic fields can
be derived from the Lorentz equation. The electrical field equivalent to the
gravitational force is Eel = F/e = 1.023 × 10−7 V/m and the corresponding
magnetic field is B = F/ (ecβ) = 7.393 × 10−12 T. The ratio of electrical to
magnetic field is 13837 and is just equal to the particle velocity as it should be.
For 10 TeV protons created in an intergalactic supernova (β ≈ 1) the gravita-
tional force is the same and therefore the bending radius is increased by the
increase in the factor β2γ. This factor is 4.696 6× 109 and the bending radius
is ρ = 9.18 × 1010 km. The required electrical field to bend the same does
not depend on the particle energy, while the required magnetic field scales
inversely proportional to β and is therefore reduced to B = 3.414 × 10−16 T.
The field ratio finally has changed from 13837 to 2.996 5 × 108 = c making
the magnetic field the more efficient field to bend relativistic particles. This
is indeed a small field, actually about a million times smaller than intergalac-
tic magnetic fields of some 10−10 T. Cosmic rays therefore seem to be more
affected by intergalactic magnetic fields than by gravitational field.

1.6 The fields at the surface of the beam are Er = ρ
2ε0

R and Bϕ = ρ
2ε0

βR. The
charge density for the cylindrical slug of charge is ρ = e n

πR2� = 1.275 × 107

C/m3. The electrical field on the surface of the beam is then (β ≈ 1) Er = ρ
2ε0

r

= 1.44×1011 V/m and the magnetic field is Bϕ = ρ
2ε0

βR = 1.44×1011 T. The
peak electrical current is defined by I = Q/τ , where Q = e1010 is the total
charge, and τ is the duration of the current pulse τ = 1

βc = 3.3356 × 10−12

sec. The peak current is then I = 480.33 A. Two particle beams either attract
or repel each other depending on whether we use an e+ + e− system or an
e−+e− or e++e+ system. For γ 
 1 the forces due to electrical and magnetic
field are the same and act along a line including the particle in one beam and
the center of charge of the other beam. The longitudinal forces cancel as both
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beams pass each other and the radial forces are Fr = e ρβ
2ε0

R2

r , where now
r = 10µm. From Problem 1.5 we have for the curvature F/

(
γmv2

)
and the

deflection angle is then θ = 2�F/
(
γmv2

)
= 2e ρβ

2ε0
R2

r
1

γmv2 = 1.152 × 10−5

rad. This deflection is significant and can be used as a diagnostic means to
probe the closeness of both beams which eventually must be steered to collide
head-on.

1.8 Plane waves can be expressed by a = a0 exp [−i (ω − kr)] , where the wave
propagation vector k = kn, k = ω/c and n is the unit vector in the direction
of wave propagation. Applied to the fields (E, B) and using Ampere’s law
∇ × E = −∂B

∂t , we get on the l.h.s. ∇ × E = ∇ exp [−i (ω − kr)] × E0 =i
∇ (kr) × E = i k∇ (nr) × E =i k [n × E] . The r.h.s. is ∂B

∂t = −iωB.
Equating both sides gives finally n × E = cB.

1.9 Solve E2 = (cp)2 +
(
mc2

)2 for (cp)2 = E2 −
(
mc2

)2, extract E, and
replace E/mc2 = γ, and E = Ekin + mc2 to get with β =

√
1 − 1/γ2

finally cp = β
(
Ekin + mc2

)
. Replacing β we get after some manipulation:

cp = mc2
√

(E2
kin/ (mc2) + 1)2 − 1, and finally Ekin = E−mc2 = mc2 (γ − 1).

For very large energies γ 
 1 we get cp ≈ Ekin, and Ekin ≈ mc2γ. For non-
relativistic particles we set γ ≈ 1 + δ where δ = Ekin/mc2 = 1

2β
2, therefore

β ≈
√

2δ and with Ekin = 1
2mv and keeping only terms linear in β we get

cp =
√

2δ (1 + δ)mc2 ≈ cmv or the classical definition of the momentum
p = mv.

1.11 (a)E = Ekin +mc2 = 200 + 936 = 1136 MeV, (b) cp=
√

E2 − (mc2)2 =

643.74 MeV, (c) β =
√

1 − γ−2 = 0.56667.

1.14 A length dz of the linac in the laboratory system appears to the electron
Lorentz contracted by the relativistic factor γ. Since the electron energy varies
along the linac we must integrate the contraction along the full length of
the linac. The linac length as seen by the electron is therefore

∫
dz

γ(z) , where
γ (z) = γ0 + α z, and the acceleration α = 20/mc2 = 39.139 m−1. From
β0 = 1

2 we get γ0 = 4
3 and with γL = γ0 + αL = 1.1742 × 105 the integral

is
∫

dz
γ(z) = 1

α ln
(

γL

γ0

)
= 0.291 m or 29.1 cm. For an electron, coasting with

energy γL along a 3000m long tube, this tube appears to be 3000/γL = 0.02555
m or 2.55 cm.

1.15 Time dilatation expands the lifetime by the relativistic factor γ com-
pared to the lifetime in the particles rest frame. For 20(100) MeV pions γ
= 1.1433(1.7165) and the mean lifetime in the laboratory system is there-
fore τ = 29.76(44.68) ns. The pion intensity falls to 50% after a travel
time of t = −τ ln 1

2 or t = 20.63 (30.97) ns. The velocities of the pions are
v = 1.454 (2.44)× 108 m/s and the distances traveled in time τ are s = 2.999
or s = 7.56 m. Pion beams are used for cancer treatment and the increased
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travel time/distance is significant to guide a significant percentage of the beam
at the available energy from the production target over thick shielding walls
to the patient.

1.17 The invariant center of mass energy of colliding particles is defined by
E2

cm =
∑

E2
i −
∑

(cpi)
2. For the collision of a positron with a target electron

assumed to be at rest this evaluates to E2
cm =

(
γmc2 + mc2

)2 − (γβmc2
)2 =

2 (γ + 1)m2c4 or Ecm =
√

2 (γ + 1)mc2. This is also the available energy to
produce new particles since no particles must be conserved in a positron-
electron collision. In an electron–electron collision the available energy would
be only Eavail = Ecm − 2mc2because the lepton number must be conserved
in the collision. The same calculation for head-on collision of such particles
would produce a center of mass energy of Ecm = 2γmc2. Obviously, head-on
collisions provide more available energy to produce new particles.

1.18 From the invariant E2
cm =

∑
E2

i −
∑

(cpi)
2 we get for a particle colliding

with a target particle at rest: E2
cm =

(
γmc2 + mtc

2
)2−(γβmc2

)2 =
(
γmc2

)2+(
mtc

2
)2 + 2γmmtc

4 − γ2β2m2c4, where mt is the mass of the target particle.
The available energy to produce a ψ/J particle must be 3.1 GeV. In the case of
a proton colliding with a target proton, the center of mass energy must be at
least Ecm = 3.1 GeV + 2mc2, because the proton number must be preserved.
With m = mt we get Ecm =

√
2 (γ + 1)mc2 = 3.1 + 2mc2 and solving for

the particle energy we get γ = 1
2

(
3.1

0.938 + 2
)
− 1 = 13.071. The proton energy

must therefore be at least Ep � 12.264 GeV. That energy was available at the
Brookhaven AGS. In the case of a positron colliding with a target electron
the center of mass energy is also the available energy since the lepton number
in this case is zero. Therefore

√
2 (γ + 1)mc2 = 3.1 GeV and the minimum

positron energy γ = 1
2

(
3.1

0.000511

)2 − 1 = 1.840 × 107 or E = 9402.9 GeV.
This energy is not available at any existing particle accelerator. Only in an
electron–positron colliding beam storage ring like SPEAR is it possible in
head-on collisions to reach sufficient center of mass energy to produce a ψ/J
particle.

1.19 We look for the minimum kinetic energy necessary to perform the
reaction, which means the resulting particles have after collision no kinetic
energy left. The length of the 4-vector (cp, iE) = pµ after the collision is
therefore −16M2 which must be equal to the length of the 4-vector before
collision or −16M2 = (p1,µ + p2,µ)2 = p2

1,µ + 2p1,µp2,µ + p2
2,µ = −2M2 +

2p1,µp2,µ and p1,µp2,µ = −7M2. For the two protons before collision p1,µp2,µ =
(cp1, iE) (0, iM) = −EM. With this we get finally E = 7M or the minimum
total proton energy required to produce antiprotons is 7M or subtracting the
mass of the incoming proton the minimum kinetic energy must be Ekin = 5.6
GeV. The 6.2 GeV Berkeley Bevatron was designed to do just this allowing
the discovery of the antiproton.
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1.20 ã∗b̃
∗
= a∗1b

∗
1 + a∗2b

∗
2 + a∗3b

∗
3 − a∗4b

∗
4

= a1b1 + a2b2 + γ2 (a3 − βa4) (b3 − βb4) − γ2 (βa3 − a4) (βb3 − b4)

= a1b1 + a2b2 + γ2a3b3 − βγ2 (a3b4 + a4b3)

+ β2γ2 (a4b4 − a3b3) + βγ2 (a3b4 + a4b3) − γ2a4b4

= a1b1 + a2b2 + γ2
(
1 − β2

)
︸ ︷︷ ︸

=1

a3b3 − γ2
(
1 − β2

)
︸ ︷︷ ︸

=1

a4b4

= a1b1 + a2b2 + a3b3 − a4b4 .

1.21 ã = dṽ
dτ = γ d

dt

(
γ ds̃

dt

)
= γ2 d2s̃

dt2 + γṽ dγ
dt = γ2 d2s̃

dt2 + ṽ γ4

c2 (va) or in
component form ã = (ãx, ãy, ãz, i ãt) we get ãx = γ2ax + γ4βx (β a) , . . . ,
ãt = γ4 (β a) , where a is the ordinary acceleration. The other components
can be obtained in a similar way. Experimental verification through, for ex-
ample, observation of synchrotron radiation parameters.

1.22 From the maximum proton energy and field we derive the bending radius
of the magnets. Ekin = 200 GeV → E = 200.938 GeV→ β = 0.9999 and with
Z = A = 1 the curvature is 1

ρ = 0.2999 B
βE = 5.134 × 10−3 or ρ = 194.79

m. The maximum gold momentum is cp = βE = 0.299Z Bρ/A = 78.538
GeV and the maximum kinetic energy is with mc2 = 0.938 GeV Ekin =√

(cp)2 + (mc2)2 −mc2 = 77.61 GeV/nucleon. The total energy of a gold ion
is E = 15473 GeV.

1.23 The gold ion velocity is β0 =
√

1 − (mc2)2 / (Ekin + mc2)2 = 0.3708.
The maximum gold energy in the AGS is from 1/ρ = c (BZ) / (βpEA) =

const. with βp =
√

1 − (mc2)2 / (Ekin + mc2)2 = 0.99948 finally EAu =
Z
AβEp = 2.0625 GeV/nucleon. The circulating beam current is given by
i = eZnAucβ/C, where Z is the charge multiplicity, nAu is the number of cir-
culation gold ions, and C is the circumference of the AGS. The velocity of the
gold ions at injection is β = 0.3708 and at maximum energy β = 0.94988. The
current by nAu gold ions at injection is then i = eZnAucβ0/C = 1.8549×10−3

A. At maximum energy the current is i = eZnAucβ/C = 4.7517×10−3 A. The
ion current increases during acceleration because of the increase in particle
velocity.

1.24 We formulate the 4-vectors in laboratory frame before and after scat-
tering. To describe electron and photons we use the velocity ũ = (γ, γu) and
energy–momentum 4-vector ck̃ = (ω,k). Specifically, this is in the lab frame:
ck̃L = (ωL,−ωLz) and ũL = (γ, γuLz), where z is a unit vector. We assume
both the electron and photons to travel along the z-axis. After scattering
ũL = (γ, γuLz) and ck̃L = (ωχ, ωχz), where ωχ is the frequency of the scat-
tered photon. Here, we have assumed that the photon energy is much less than
the electron energy. The product of both 4-vectors is Lorentz invariant and is
therefore the same before and after scattering, or ωχ (1 + uL) = ωχ (1 − uL)
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and solving for the scattered frequency ωχ = ωL
1+uL
1−uL

≈ 4ωLγ
2, where we

made use of γ−2 = 1 − u2
L .

1.25 Here, the only difference to Problem 1.24 is that the undulator field does
not move, or that ck̃L = (ωu, 0), where ωu = 2πc/λu, and ũL = (γ, γuLz).
After scattering ck̃L = (ωχ, ωχz) and ũL = (γ, γuLz) as in Problem 1.24.
Equating again the Lorentz invariant products gives ωu = ωχ (1 − uL) or
ωχ = ωu

1
1−uL

≈ 2ωLγ
2. This is the fundamental radiation frequency emitted

by electrons from an undulator.

1.26 From the variational principle δ
∫ t1

t0
L(t) dt = 0 and the definition

of the Hamiltonian H(qi, pi, t) =
∑

q̇i Pi − L(qi, q̇i, t), we have δ
∫ t1

t0
L(t)

dt = δ
∫ t1

t0
L(ϕ)dϕ

dt dt = δ
∫ t1

t0

∑
q̇i Pi −H(qi, pi, t)dt = δ

∫ t1
t0

∑ ∂qi

∂ϕ
dϕ
dt Pi

−H(qi, pi, ϕ)dϕ
dt dt. We conclude that Ht = dϕ

dt Hϕ.

1.28 We apply d
dt

∂L
∂ẋ − ∂L

∂x = 0 to Lagrangian (1.86)

L = −mc2
√

1 − 1
c2

(
ẋ2 + ẏ2 + ż2 + h2ż2

)
+ e (ẋAx + ẏAy + hżAz) − eφ in

curvilinear coordinates. With β2
h =

(
ẋ2 + ẏ2 + ż2 + h2ż2

)
/c2 we get ∂L

∂x =

m hκxż2√
1−β2

h

+e
(
ẋ∂Ax

∂x + ẏ
∂Ay

∂x + hż ∂Az

∂x + κxżAz

)
−e∂φ

∂x and d
dt

∂L
∂ẋ = d

dt

(
ẋ√

1−β2
h

)

+e∂Ax

∂x ẋ+e∂Ax

∂y ẏ+e∂Ax

∂z ż = γmhκxż
2+e∂Ax

∂x ẋ+e
∂Ay

∂x ẏ+e∂Az

∂x ż+eκxżAz−e∂φ
∂x .

In curvilinear coordinates B = ∇× A =
{

1
h

[
∂
∂y (hAz) − ∂Ay

∂z

]
, 1

h

[
∂Ax

∂z −
∂
∂z (hAz)

]
,
[

∂Ay

∂x − ∂Ax

∂y

]}
, and we can replace ∂Ax

∂y = ∂Ay

∂x − Bz and ∂Ax

∂z =
∂
∂y (hAz) + hBy = h∂Az

∂x + κxAz + hBy and thereby replace the terms in-
volving vector potential by magnetic fields to give d

dt (γmẋ) = γmhκxż
2 +

e (ẏBz − żBy) + eEx which is the same as (1.77a).

Chapter 2

2.1 We use Lagrangian (1.86) L = −mc2
√

1 − β2 + e (ẋ Ax + ẏ Ay + h ż Az)
−eϕ and evaluate d

dt
∂L
∂ẋ − ∂L

∂x = 0 to get first, ∂L
∂x = γm ẋ + eAx and sec-

ond d
dt

∂L
∂ẋ = d

dt (γm ẋ) + e
(
ẋ∂Ax

∂x + ẏ ∂Ax

∂y + ż ∂Ax
∂z

)
. Then ∂L

∂x = γm ż2hκx +

e
[
ẋ∂Ax

∂x + ẏ ∂Ax

∂y + ż ∂Ax

∂z
∂(hAz)

∂x

]
+eEx and the Lagrange equation is d

dt (γm ẋ)+

e
[
ẋ∂Ax

∂x + ẏ ∂Ax

∂y + ż ∂Ax

∂z

]
= γm ż2hκx + e

[
ẋ∂Ax

∂x + ẏ
∂Ay

∂x + ż ∂(hAz)
∂x

]
+ eEx or

after reordering and replacing ∂Ay

∂x − ∂Ax

∂y = Bz and ∂(hAz)
∂x − ∂Ax

∂z = hBy

the equation of motion is finally d
dt (γm ẋ) = γm ż2hκx + e [ẏBz + hBy ż] +

eEx. Inserting into the Lagrange equations d
dt

∂L
∂ż − ∂L

∂z = 0 we get first
∂L
∂z = γm ż2hh′ + e

[
ẋ∂Ax

∂z + ẏ ∂Ax

∂z + żh∂Az

∂z

]
− e∂ϕ

∂z = γm ż2h
(
κ′

xx + κ′
yy
)

+

e
[
ẋ∂Ax

∂z + ẏ
∂Ay

∂z + żh∂Az

∂z

]
+ eEz
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and second ∂L
∂ẋ = d

dt

(
mγh2ż

)
+ edhAz

dt . With ∂Ax

∂z = hBy + ∂hAz

∂x and
∂Ay

∂z = −hBx+ ∂hAz

∂y the equation of motion is then d
dt

(
γmh2ż

)
= γm ż2hκx+

γm ż2h
(
κ′

xx + κ′
yy
)

+ e [hBy ẋ− h ẏBx] + eEz .

2.2 Application of (2.38) to (2.35) gives the Lagrangian L = −mc2
√

1 − β2 +
e v

s′ (x′Ax + y′Ay + hAz)−eϕ and from this L+γmc2

γmv
s′

v = s′+ e
γmv (x′Ax + y′Ay

+hAz) − eϕ
γmv

s′

v . Dividing by the momentum p = γmv and setting p = p0
1−δ ,

L+γmc2

p
s′

v = s′ + (1 − δ) e
p0

(x′Ax + y′Ay + hAz) − (1 − δ) eϕ
p0

s′

v . The varia-

tional principle ∆
∫

L+γmc2

p
s′

v dt = ∆
∫

L+γmc2

p dz = ∆
∫
L̃ dz = 0 because

constant additions or factors to the Lagrangian do not change the variational
principle.

2.4 Use the definition of the bending radius (2.4) 1
ρ = ec

βE B and remember
that we express the particle energy only in Volts, which is E/e. For 1 GeV par-
ticles we have then E/e = 109 V. With this we have 1

ρ (m) = c
109

B(T)
βE/e(GV) ≈

0.2998 B(T)
βE(GeV) . In the last step of the equation we get a bit sloppy by using the

energy in GeV as is commonly done. Numerically, however, we would insert
only the voltage in GV.

2.5 We evaluate the second derivative of the solution P ′′(z) and insert into
(2.79). From the first derivative P ′(z) = S′(z)

∫ z

0
p(z̃)C(z̃) dz̃ +S(z)C(z) p(z)

−C ′(z)
∫ z

0
p(z̃)S(z̃) dz̃−S(z)C(z) p(z) = S′(z)

∫ z

0
p(z̃)C(z̃) dz̃−C ′(z)

∫ z

0
p(z̃)

S(z̃) dz̃, we obtain with the property of Wronskian (2.78) for the principal so-
lutions the second derivative P ′′(z) = S′′(z)

∫ z

0
p(z̃)C(z̃) dz̃ + S′(z)C(z) p(z)

−C ′(z)
∫ z

0
p(z̃)S(z̃) dz̃ −C ′(z)S(z) p(z) = p(z) + S′′(z)

∫ z

0
p(z̃)C(z̃) dz̃ − C ′′

(z)
∫ z

0
p(z̃)S(z̃) dz̃. Recalling that S” = −KS and C” = −KC, we insert the

expression for P ′′(z) and (2.80) into (2.79) and verify the validity of ansatz
(2.80) . The function P (z) is therefore indeed a particular solution of the in-
homogeneous differential equation (2.79).

2.6 The Cartesian coordinates (x, x′) are identical to the normalized coor-
dinates (w, ẇ) except for some scaling factors if we consider the indepen-
dent variable to be z in both cases. The transformations are then given
from (2.59) by x′ = −vx tanψ and J = 1

2
νx2

cos2 ψ or x =
√

2J/ν cosψ and
x′ = −

√
2νJ sinψ. With this, the Hamiltonian is K = νJ sin2 ψ + D J

ν cos2 ψ.
The frequency of the oscillator is ψ̇ or from the equation of motion ∂K

∂J =
ψ̇ = ν sin2 ψ + D 1

ν cos2 which requires that D = ν2. Finally, K = νJ and
∂K
∂J = ψ̇ = ν as we would expect.

Chapter 3

3.1 A horizontal deflection can be accomplished by a horizontal electric field
generated between two vertical plane electrodes (x = const) connected to a
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potential V . Since the aperture is 2 cm we place the electrodes at a position
of x = ±1 cm. The deflection angle is given by ϕ = e |E| �/

(
β2E

)
, where

� = 0.1 m and E = Ekin + mc2 = 10 + 511 = 521 MeV. With this, we
get β2E = 19.808 MeV. The required electric field is now |E| = ϕβ2E

�e =
0.01 19.808

0.1 = 01.981 MV/m= 1981 kV/m ≈ 20 kV/cm. A potential of ±20 kV
on the electrodes would be sufficient. This is a total potential difference of 40
kV across 2 cm which may just not spark dependent on the air humidity.

3.2 The focal length of an electric quadrupole is 1
f = k� = 1

Rb
g� =

e
β2E g�. Solving for the gradient g, we get g = β2E

e�
1
f = 19.81·106

0.1
1
10 = 19.81

MV/m2. The profile of the electrodes is given by V2 = −Rbk
1
2

(
x2 − y2

)
=

−g 1
2

(
x2 − y2

)
= 19.81·106

2

(
x2 − y2

)
. The profile of the electrodes is therefore

given by V = 9.905 ·106
(
x2 − y2

)
= 24763. The r.h.s. derives from the poten-

tial for x = 0.05 m and y = 0. The electrode potentials are V = ±24763 V.

3.3 B = ∇× A =
(

∂Az

∂y − ∂Ay

∂z , ∂Ax

∂z − ∂Az

∂x ,
∂Ay

∂x − ∂Ax
∂y

)
= (Bx, By, 0). This

eliminates all z-dependence and the transverse components of the vector po-
tential Ax, Ay may be set to zero for B = ∇× A =

(
∂Az

∂y ,−∂Az

∂x , 0
)
. If we

derive the magnet field from a potential B = −∇V , we get ∂Az

∂y = −∂V
∂x

and ∂Az

∂x = ∂V
∂y or Az = −

∫
∂V
∂x dy and Az =

∫
∂V
∂y dx. For a dipole mag-

net Bx = 0 and By = B0 and the potential is V = −B0y + f (x) , where
f (x) is an arbitrary function. From this ∂Az

∂y = 0 and ∂Az

∂x = −B0 and
Az =

∫
∂V
∂y dx = −B0x. For a quadrupole field the potential is V = −gxy

and
(

∂Az

∂y = gy, ∂Az

∂x = −gx
)
. After integration Az = 1

2gy
2 + f (x) and

Az = − 1
2gx

2 + g (y) to give Az = − 1
2g
(
x2 − y2

)
. Reflecting their defini-

tion, both V and Az depend differently on the coordinates but are equivalent
otherwise for purely transverse fields.

3.4 Such a magnet is basically a quadrupole which is displaced to gener-
ate a dipole field component along the path of the beam. From 1

ρ = k∆x

the displacement ∆x = 1
300·0.45 = 0.00741 m or 7.41 mm. The sextu-

pole term is a small perturbation of the quadrupole profile. From (3.67)
and the definitions for Aij we get for this combined field magnet V =
βE
ec

[
1
ρy + kxy + 1

6m
(
3x2y − y3

)]
= 0.557y + 75.15xy + 640

(
3x2y − y3

)
=

const. The constant can be estimated as follows: At a displacement ∆x = 7.41
mm we require an aperture of r = 1 cm and so we define one point of
the profile by (x = 7.41 mm, y = 10 mm). Inserted into the profile equation
, we get V (0.00741, 0.010) = 0.01155285 and the pole profile is described by
0.557y + 75.15xy + 640

(
3x2y − y3

)
= 0.01155285.

3.5 Forces between magnet pole exist because a change of the field volume
is associated with a change of field energy. Increasing the gap of a dipole
magnet while keeping the field constant results in an increase of field energy
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and therefore the force tries to reduce the gap or the distance between poles.
The field energy in the dipole magnet with a pole gap g is Ef = 1

2µ0
B2w�g =

1.52

2·4π10−7 g = 3.58 × 106 g J. The force is F = −dE/dg = 3.58 × 106 N. The
force does not depend on the pole gap and does attract the poles.

3.6 See Section 3.1.3 for solution. With respect to the numerical part of the
question, we calculate the gradient to be g = k�

0.3βE = 500
50·0.3 = 33.33 T/m

and the coil excitation current must be Icoil = gR2

2µ0
= 11937 A turns.

3.7 Since this is a cylindrical problem, we use the definition of the magnetic
potential in (3.3) V (r, ϕ, z) = −Rb

∑
n≤0

1
n!An(z) rn einϕ from which we get

the magnetic fields. From Maxwell’s equation we have ∇×E = −∂B/∂t and
integrating over the cross section of the rotating coil we get an emf of mV =
−∂Φ/∂t, where Φ = Φ̂ cos 2πνt is the flux through the coil. At time t = 0 we
assume the coil to be parallel with the midplane enclosing the maximum flux
Φ̂ = Bϕ2R. We ignore the length of the coil because the field is assumed to be
uniform longitudinally. From the potential, we get Bϕ ∝ einϕ and ϕ = 2πνt
and the induced voltage in the coil is mV ∝ 2πν

∑
n ein2πνt. The signal

voltage from the rotating coil includes therefor all harmonics of the magnetic
field. Usually the harmonics are normalized to the ideal field of the magnet
at r = 1cm. The signal of the ideal magnet of order s is mVs ∝ 2πνs eis2πνt

and the relative strengths rns of the harmonics are rns = Rn−s Vn

Vs
.

3.8 A finite width of a quadrupole is like superimposing poles of opposite
polarity on both sides of a pole. This is a symmetric perturbation with two
negative poles within a 90◦ quadrant. We may complete this picture by as-
suming that there is also an additional pole superimposed on the main pole
with the same polarity. We have now in each quadrant a main pole with a
somewhat lower quadrupole field and three poles describing the perturbation
by a multipole. In the case of a quadrupole this would be a 12-pole. Since the
perturbation is nonlinear but symmetric about the main pole, we observe all
odd harmonics of the quadrupole field, 3 × 4 = 12-pole, 5 × 4 = 20-pole, etc.
These perturbations are due to the finite width of the quadrupole and have
nothing to do with tolerances. We therefore call these harmonics, “allowed”
harmonics or multipole components.

3.9 The fields scale differently depending on the multipole field order. The
quadrupole scales linearly and therefore B2 (1cm) = B2

1
1.79 = 0.20832 T. The

next higher order field is the sextupole field which scales quadratically and
the normalized field is therefore B3 (1cm) = 1

B2

B3
1.792 = 1.872 7×10−4. Similar

renormalization leads to B4 (1cm) = 1.925×10−5, B5 (1cm) = 1.683 3×10−5,
B6 (1cm) = 1.896 4× 10−5, B7 (1cm) = 2.918 6× 10−7 , B8 (1cm) = 1.875 1×
10−7, B9 (1cm) = 2.322 8 × 10−8, B10 (1cm) = 1.806 6 × 10−7. The 12-pole
and 20-pole components do not follow the general downward trend and are
larger, because they are ”allowed” harmonics due to the finite pole width.
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3.10 The upright octupole potential is from Table 3.1 given by − e
pV4 (x, y) =

r 1
6

(
x3y − xy3

)
= const. From the geometry of an octupole the pole tip is at

a radius R and angle 22.5◦ or at x = R cos (22.5), y = R sin (22.5). With
these values the constant or potential of the pole is x3y − xy3 = 0.25R4.
It is actually easier to do the calculation for a rotated octupole, which has
a pole tip in the midplane at x = R and y = 0. From Table 3.1 the po-
tential is −V4 (x, y) = o 1

24

(
x4 − 6x2y2 + y4

)
= const. and the equation for

the pole profile is
(
x4 − 6x2y2 + y4

)
= R4. The field in the midplane is

Bx (x, 0) = o 1
6x

3. The field at the pole tip is 0.5 T and the octupole strength
is therefore o = 6·0.5

0.033 = 1.111 1 × 105 T/m3. To calculate the coil excitation
current, we integrate from the octupole center along the x-axis to the pole
giving

∫ R

0
1
6x

3dx = 1
24R

4. The integration through the iron is zero as is the
integration back along the 45◦ line from the return yoke to the magnet center,
because field and integration path are orthogonal. Similar to the calculation
of the excitation current for the quadrupole, we have Icoil = o

24µ0
R4 = 2984.2

A turns.

3.11 For a pure dipole field the current distribution scales like cosϕ. We
assume the coil thickness to be h (θ) = h0 cosϕ and the current density at
ϕ = 0 is from dI (ϕ) = I1 cosϕ dϕ and ∆A = h (ϕ)R∆ϕ just j = I1

R ∆θ h0
. To

generate a field of B0 = µ0H0 = 5 T we need a peak current of I1 = 2RH1 =
2RB0

µ0
= 2.387 × 105 A and ̂ = 109 = 2.387×105∆ϕ

R ∆ϕ h0
and h0 = 7.96 mm. The

maximum coil thickness is therefore about 8 mm.

Chapter 4

4.2 Transform through doublet and 5 m drift space to focal point. We need
only the M11 element of the total transformation matrix, which must be zero
to let a parallel trajectory entering the doublet go through the focal point
such that x = M11x0 = 0. We have M11,x = 1 − d+D

|f1| − D
|f2| + dD

|f1f2| = 0.
Since we want the focal point in both planes, we have a second equation
M11,y = 1+ d+D

|f1| + D
|f2| +

dD
|f1f2| = 0. From both equations we isolate f1 and f2

for f1 =
√

6 m and f2 = 5/
√

6 m. The total focal lengths in both planes are
different f∗

x = 5
√

6√
6−1

= 8.4495 m and f∗
y = 5

√
6√

6+1
= 3.5505 m. The definition of

these focal lengths is the distance of two principal planes from the focal point.
The principal planes, one for each plane, are located at the intersection of the
parallel incoming trajectory and the extension of the trajectories reaching the
focal point. The principal planes are the positions of virtual lenses resembling
the doublet. These lenses is at a different location for both planes.

4.3 The transformation matrix of a quadrupole doublet with a drift space of

length d between quadrupoles is


 1 − d/f1 d

−1/f∗ 1 − d/f2


, where 1

f∗ = 1
f1

+ 1
f2

−
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d
f1 f2

. We set 1
f1

= − 1
f2

= 0.2 m−1 and get for the on-energy focal lengths in
both planes 1

f∗ = 1
25 or f∗ = 25 m. Since the combined focal length depends

quadratically on the energy, we get a ±10% spread in focal length. The beam
width at the focal point is with f1 = 5 m is r2 = εβ = (1 − d/f1)

2
εβ0 +

d2 εγ0 = 0.64 εβ0 + 1 × ε2

εβ0
= 0.64 r2

0 + ε2

r2
0
. The beam emittance is ε = r0r

′
0

and therefore the spot size in the horizontal plane is r2
x = 0.64 r2

0 + r′0
2 and

in the vertical plane with f1 = −5 m is r2
y = 1.44 εβ0 +1 × ε2

εβ0
= 1.44 r2

0 + ε2

r2
0
.

For the last question on dispersive beam sizes set |f1| = 5 ×
(
1 + ∆p

p0

)
and

calculate rx,y(∆p/p0).

4.4 The total focal lengths in both planes are different f∗
x = 5

√
6√

6−1
= 8.4495

m and f∗
y = 5

√
6√

6+1
= 3.5505 m. These focal lengths must be measured between

focal point and two principal planes. The principal planes, one for each plane,
are located at the intersection of the parallel incoming trajectory and the
extension of the trajectories reaching the focal point. The principal planes
resemble a thin lens resembling the doublet. This lens is at a different location
in both planes.

4.5 We start from u =
√
ε
√
β cos (ψ + δ), calculate the derivative u′ =

−√
ε α√

β
cos (ψ + δ) −

√
ε√
β

sin (ψ + δ), and eliminate from both equations the

phase terms to get βu′2 + 2αu′u + α2u2 + u2

β = ε. Defining a coordinate
transformation by w = u/

√
β and ẇ =

√
βu′ + α u√

β
and inserting we get

w2 + ẇ2 = ε which is the equation of a circle. The derivative ẇ = dw/dψ and
the new independent variable is the phase ψ.

4.9 Equations (4.64) and (4.68) give the focal lengths for a wedge magnet
in both planes: 1

κ0fx
= (tan ηe + tan η0) cos θ− tan ηe tan η0 +sin θ and 1

κ0fy
=

tan ηe + tan η0 + 1
3δfe + 1

3δf0. We choose both edge angles to be the same
and require that both focal lengths be the same as well. This results in the
condition 2 tan η cos θ − tan2 η + sin θ = 2 tan η + 2

3δf which can be solved for
the wedge angle η.

4.11 The deflection angle ϑ = u′
0 and we assume u0 = 0. Then the betatron

amplitude downstream from point z0 is just u (z) =
√
ββ0 sin (ψ − ψ0) × ϑ.

From this it is clear that the value of the betatron function should be as large
as possible at both points to get a large kick amplitude.

4.12 To construct the symmetric beam bump, we follow the beam path to the
middle position (M) where the amplitude xM =

√
(βQFβQD)sin(∆ψ)θ1, and

where ∆ψ is the phase advance between the first kick of angle θ1 and position
(M). This beam path also has an angle of x′ =

√
(βQF/βQD) cos∆ψθ1. The

amplitude xM = 0.02 m and a second kick of angle θM = −xM? to make the
bump parallel to the axis at (M). The second half of the beam bump and
trim settings are just the inverse of the first half. The betatron functions in
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this 90◦ FODO cells are βQF? = L(2 +
√

2) and βQD? = L(2 −
√

2). The
phase advance ∆ψ = 3(π/4) and may solve for θQF? = xM/L. The path angle

at the midpoint is x′M = −
√

(2 +
√

2)/(2 −
√

2(1/
√

2)(xM ). The maximum
bump amplitude occurs not at the midpoint because there is a defocusing
quadrupole. The trim strength would be a minimum if the phase advance
between first trim and midpoint would be 90◦.

Chapter 5

5.1 First, from x =
√
εβ cos (ψ) we try w = x/

√
β =

√
ε cos (ψ). The derivative

with respect to ψ is then ẇ =
√
ε sin (ψ). The (w, ẇ) phase space is clearly

a circle with radius ε. We perform now the derivative dw
dψ = d

dψ = x√
β

=
√

βx′β+xα/
√

ββ
β =

√
βx′ +x α√

β
, where we have used the relation dz = βdψ and

get with
√
βx′ = ẇ − αw from the phase space ellipse βx′2 + 2αxx′ + γx2 =

(ẇ − αw)2 + 2αw (ẇ − αw) + γβw2 = ẇ2 − 2αwẇ+α2w2 + 2αwẇ− 2α2w2 +
γβw2 = ẇ + w2 = ε. The transformation w = x/

√
β and ẇ =

√
βx′ − αx/

√
β

results in circular particle trajectories in phase space and the new coordinates
are the normalized coordinates.

5.2 First, we transform the phase ellipse as in Problem 5.1. This transfor-
mation is scale preserving since its determinante is equal to unity. The phase
ellipse is now a circle with radius

√
ε and therefore the area of the circle is πε.

5.3 Write (5.41) in component form and replace beam matrix elements with
their definitions (5.38) .

5.5 The transformation matrix of such a transformer between symmetry

points P0 and P1 is
(

0
√

β0β1

− 1√
β0β1

0

)
. The transformation of β0 through such

a transformer is with α0 = 0 β1 = C2β0+ 1
β0

S2 = β1 and γ1 = C ′2β0+ 1
β0

S′2 =
1
β1

= γ1. The dispersion function transforms through this matching section
like a trajectory and we would look for η1 = Cη0 + Sη′0 = Cη0. A π/2 trans-
former does not work for the dispersion functions since C = 0.

Chapter 6

6.1 The proton energy after accelerating gap i is Ekin(MeV) = 1 + 0.5i.
At the energies under consideration the protons are nonrelativistic and their

velocities is vi = c
√

2Ekin
mc2 = c

√
2(1+0.5i)

938 = 1.384 3 × 107
√

(1 + 0.5 · i) m/s.
The period of the 500 MHz rf-field is 2 ns and the tube lengths therefore
must be �i + �gap = n 2 10−9vi, where n is an integer and �i 
 �gap. The
first three sections are (n = 1) �1 + �gap = 3.39 cm, �2 + �gap = 3.92 cm, and
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�3 + �gap = 4.377 5 cm. To meet the requirement of a minimum tube length
of 15 cm we need to choose n1 ≥ 5, n2 ≥ 4, n3 ≥ 4.

6.2 Each proton travels at a slightly different velocity due to a finite energy
spread. We assume nonrelativistic protons and get for the velocity spread
∆v
v0

= ± 1
2

∆E
E0

. The time τ it takes for debunching is equal to the time it take
for the fastest particle to travel the separation of bunches ∆ = C/nb, where
C is the circumference. The debunching time is then τ = C

nb

E0
v0∆E

6.4 The accelerating rate is given by dEkin
dt = freveVrf sinψs.We solve for the

synchronous phase and insert into (6.75) and get (∆cp
cp0

2
= eV0

πh|ηc| cp0
[cosϕ+

1 + (2 arcsin dEkin/dt
freveVrf

+ ϕ− π)dEkin/dt
freveVrf

].

6.6 We start from (6.53) and write it in the form of a linear harmonic oscil-
lator ϕ̈ + Ω2

0
sin ϕ cos ψs−sin ψs (1−cos ϕ)

ϕ cos ψs
ϕ = 0 and the synchrotron frequency is

Ω2 = Ω2
0

sin ϕ cos ψs−sin ψs (1−cos ϕ)
ϕ cos ψs

. This frequency is Ω2 ≈ Ω2
0 for small ampli-

tudes and reaches zero at the separatrix. There is also a ϕ-dependence of the
synchrotron frequency indicating a periodic variation as the particle travels
along the phase space trajectory.

6.7 The longitudinal emittance is
(

∆̂p
p0

∣∣∣
0

)
ϕ̂0 = Ω0

h ωrev |ηc| ϕ̂
2
0 and does not

change by increasing the rf-voltage. Since Ω0 ∝
√
Vrf, we get

√
Vrf,0ϕ̂

2
0 =

√
Vrf,1ϕ̂

2
1 or ϕ̂1 = ϕ̂0

(
Vrf,0
Vrf,1

)1/4

. The bunch length scales like the fourth root
of the rf-voltage.

Chapter 7

7.2 We start from an optimum FODO lattice with κ =
√

2 , β̂ = L
(
2 +

√
2
)

and η̂ = L2

2ρ

(
4 +

√
2
)
. The beam width is then σ̂2

x = εβ̂ + η̂2
(

σE

E

)2 and the

beam height σ̌2
y = εβ̌. Since σy < σx we get σ̂2

x + σ̌2
y = R2 ≈ ε

(
β̂ + β̌

)
+

η̂2
(

σE

E

)2
. From the peak magnetic field 1

ρ = 0.0036 m−1 and we can solve
for L. The length of the bending magnet should be no more than 0.8L and
each bending magnet deflects the beam by ψb = 0.8L

ρ . To complete a ring, we

need n = 2π/ψb half cells. Numerically, we get R2 ≈ ε
(
β̂ + β̌

)
+ η̂2

(
σE

E

)2 =

εL 4+ 1
20.0036L2

(
4 +

√
2
)
0.0012 or 104R2 = 0.2L+9.75 10−5L2 = 4 or solving

for half the cell length L = 19.818 m.

7.3 For a Gaussian beam the largest beam size is along one axis or in the
case of an optimum FODO lattice σ̂2

x = εxβ̂ + η̂2
(

σE

E

)2
< R2 from which we

get L since σ̂2
y = εyβ̂ � σ̂2

x. The bending radius and angle is for a maximum
field of 1.8 T 1

ρ = 0.0108 m−1 and ψb = 0.8L/ρ, respectively, with the total
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number of cells nc = 2π/ (2ψb) . The focal length of a half quadrupole is
f = κL =

√
2L and k−1 =

√
2L�q = 0.05

√
2L2 assuming that the total

quadrupole length is 10% of L. Numerically, we get R2 = εxβ̂ + η̂2
(

σE

E

)2 =
εxL 4+ 1

20.0108L2
(
4 +

√
2
)
0.012 or 104R2 = 0.2L+0.0292L2 = 9 and solving

for half the cell length L = 14.463 m. The bending field is 1.8 T and therefore
within practical limits, the quadrupole gradient is g = kE

0.3 = 11.268 T/m
and the pole tip field is Bt = g R = 11.268 × 0.03 = 0.338 T, which is
well within practical limits of 1T. The number of FODO cells is nc = π

ψb
=

25.141 and to make it an even number of cell, say 26, we may decrease the
bending magnet field by a factor 25.141/26 to 1.740 5 T. Now the tunes are
Qx,y = 26 × 0.25 = 6.5 or right on a destructive half integer resonance. By
raising the quadrupole strengths, we increase the tunes to Qx,y = 6.75 or
by ∆Qx,y = 0.00481 per half cell. The new quadrupole strengths are from
sinψ = 1

κ = k�qL or sin [2π (0.125 + 0.00481)] = 0.728 15 = k×0.05×14.4632

from which we get the new quadrupole strength k = 0.069 62 and gradient
g = 11.603 T/m which is still within practical limits.

7.5 The transformation matrix of an unperturbed FOFO cell is M0 =(
cosψ0 β0 sinψ0

− 1
β0

sinψ0 cosψ0

)
and for nc cells forming a half ring the transforma-

tion matrix is M0n =
(

cosΨ0 β0 sinΨ0
− 1

β0
sinΨ0 cosΨ0

)
, where Ψ0 = ncψ0. Inserting a

drift space of length � at the beginning and end of the half ring results in a

new transformation matrix Mn =
(

1 �
0 1

)(
cosΨ0 β0 sinΨ0

− 1
β0

sinΨ0 cosΨ0

)(
1 �
0 1

)
=

(
cosΨ0 − �

β0
sinΨ0 β0 sinΨ0 + 2� cosΨ0 − �2

β0
sinΨ0

− 1
β0

sinΨ0 cosΨ0 − �
β0

sinΨ0

)
. This must be equal to

a new symmetric matrix Mn =
(

cosΨ β sinΨ
− 1

β sinΨ cosΨ

)
and equating matrix el-

ements on both sides we can solve for the new phase Ψ and betatron func-
tion β. The tune change is ∆Q = (Ψ − Ψ0) /π which we get from the equal-
ity cosΨ = cosΨ0 − �

β0
sinΨ0 and the change of the betatron function is

(β0 − β) = ∆β = β (sin Ψ0−sin Ψ)
sin Ψ = β0

(sin Ψ0−sin Ψ)
sin Ψ0

. Since η′ = 0 at the in-
sertion point, we do not find a change in the η-function by inserting a drift
space.

7.11 For α1 = α2 = 0, the transformation matrix of an arbitrary match-

ing section is Mm =
( √

β2
β1

cosψ
√
β1β2 sinψ

− 1√
β1β2

sinψ
√

β1
β2

cosψ

)
=
(
C S
C ′ S′

)
and the trans-

formation of the betatron function between two symmetry points is β2 =
C2β1 + 1

β1
S2. Especially simple solutions exist if the phases ∆ψx = ∆ψy = π/2

in which case Cx = Cy = 0 and the sine-like matrix element is adjusted
such that S2

x,y = β2,x,yβ1,x,y.We have made no use of any FODO parameter
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and therefore the matching works between any two symmetry points where
α1 = α2 = 0.

Chapter 8

8.1 The probability of emitting a photon of energy ε in a unit time is ṅ(εph) =
Pγ

ε2
c

S(x)
x . We are looking for the case ε = σε = E2

mc2

√
55�c

64
√

3mc2Jsρ
= 10.9 MeV.

For εc = 3
2�cγ3

ρ = 19166 eV, the ratio x = 1
γ

√
55mc2ρ

144
√

3Js�c
= 227.54 
 1

and Pγ

ε2
c

= 23826 1/eVs. The probability becomes with this ṅ(εph) ≈ 1.86 ×
10−96! We may, without calculation, conclude that no second photon of this
energy will be emitted within a damping time. Energy is emitted in very small
fractions of the electron energy.

8.2 From (22.166) we get the number of photons emitted per unit time Ṅph =
15

√
3

8
Pγ

εc
= 3.158 × 106 γ

ρ and per radian ṅ = 0.01063γ ≈ γ
100 . From this the

number of photons emitted per turn is ṅt = 2π 0.01063γ ≈ 6.679 γ
100

8.4 First we note that Js = 2 for rectangular magnets and the damping
time is from (8.30) τ−1

s = 2
3rec γ

3
〈

1
ρ2

〉
= 1139.6 s−1 or τs = 1

1139.6 =
0.877 ms. On the other hand, the energy loss per turn is U (GeV) =
8.85 × 10−5E4 (GeV) /ρ (m) = 7.1685 × 10−4 GeV or 0.023895% of the par-
ticles energy. At this rate the particle radiates all its energy away in 4185.0
turns. To orbit one turn it takes the particle 2πρ/c = 2.096 × 10−7s or to ra-
diate away all its energy 8.770 9 ms. In other words, the synchrotron damping
time is just as long as it takes the particle to radiate away all its energy.

Chapter 9

9.1 We use the coordinates (ψ,∆cp/cp0) for which the changes per unit time
are ψ̇ = −hω0ηc

∆cp
cp0

(h is harmonic number, ω0 is revolution frequency) and
d
dt

∆cp
cp0

= eVrf(ψ)−U(E)
cp0T0

with Vrf (ψ) the rf-voltage and U (E) the energy loss per

turn at energy E. Expanding we get eVrf (ψ)−U (E) ≈ eVrf (ψs)+ e dVrf
dψ

∣∣∣
ψs

−

U (E0) − 4U (E0) dE
E0

= e dVrf
dψ

∣∣∣
ψs

ϕ − 4U (E0)β2 dcp
cp0

, where ϕ is the phase

deviation from the synchronous phase ψs. The last term gives rise to damp-
ing which we ignore and d

dt
∆cp
cp0

= 1
cp0T0

e dVrf
dψ

∣∣∣
ψs

ϕ. Following the discussion

leading to the Vlasov equation we scale the coordinates ϕ →
√

cp0T0
edVrf/dψ|ψs

ϕ

and ∆cp
cp0

→
√

1
−hω0ηc

∆cp
cp0

to get
√

cp0T0
edVrf/dψ|ψs

ϕ̇ = −hω0ηc

√
1

−hω0ηc

∆cp
cp0

or
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ϕ̇ = ω0

√
− hηc

2πcp0
e dVrf

dψ

∣∣∣
ψs

∆cp
cp0

and d
dt

∆cp
cp0

= ω0

√
−hηc
2πcp0

e dVrf
dψ

∣∣∣
ψs

ϕ. The syn-

chrotron oscillation frequency is then just the coefficient to the coordinates

Ωs = ω0

√
−hηc
2πcp0

e dVrf
dψ

∣∣∣
ψs

. To make the synchrotron oscillation frequency zero

we need a second rf-system adjusted such that dVrf
dψ

∣∣∣
ψs

= 0. For simplicity

of discussion, we assume sinusoidal rf-voltages and an additional rf-system at
twice the frequency of the first. For maximum efficiency, we phase the second
rf-system such that ψ2 = 0 at the synchronous phase of the first system. The
conditions are then Vrf sinψs = V1 sinψs and Vrf cosψs = V1 cosψs + V2 = 0
from which we can isolate the voltages to be V1 = Vrf and V2 = cosψsVrf.

9.2 The equilibrium bunch length is given by (8.48) and is with dVrf
dψ

∣∣∣
ψs

=

V̂ cosψs for this problem σ� =
√

2π c
ωrev

√
ηcE0

hedVrf/dψ|ψs

σε

E0
. The bunch length

can be manipulated by adjusting the relative phase and voltages of both rf-
systems. In general, for a two frequency rf-system the combined voltage is
Vrf = V1 sinω1t + V2 sin (ω2t + δ) , where δ is the phase shift between both
systems and dVrf

dψ

∣∣∣
ψs

= V1 cosω1ts + V2 cos (ω2ts + δ) with the synchronous

time ts = ψs/ω1.

9.5 An external field acts the same on all particles in a beam. If the beam
as a whole performs coherent transverse or longitudinal oscillations, we may
consider the situation being just one macroparticle. One could consider an
external field which does depend on the amplitude of the macroparticle and
this field would then damp the coherent oscillations because ∂f

∂w 
= 0.This is
the case for feedback system to damp instable oscillations. The beam position
is measured at one point and the signal acts back on the beam after some
amplification. However, damping, as we get from the emission of synchrotron
radiation, is not possible by external fields. Each individual particle has a
different coordinate but the external field is the same for all particles.

Chapter 10

10.1 The damping characteristics are determined by the partition num-
bers and the ϑ-parameter. Horizontal motion becomes antidamped when

ϑ =
∮

κ3
0η(1+2ρ2k)dz∮

κ2
0dz

≥ 1.We evaluate the integral in thin lens approxima-
tion for only one half cell, since all others are the same, and assume that
kQF = |kQD| = k and �QF = �QD = � . ϑ = κ0 (η̂ + η̌) + 2ρ (η̂ − η̌) k. Further-
more, (η̂ + η̌) = κ0L

2
k� and (η̂ − η̌) k = κ0

L
� . With this the ϑ-parameter is

finally ϑ = κ0 (η̂ + η̌)+ 2ρ (η̂ − η̌) k = κ2
0L

2
k� +2L

� . It follows from � � L that
ϑ > 1 and that the horizontal betatron oscillation is antidamped. It is only
because of the adiabatic damping during acceleration that the beam does not
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blow up. If the acceleration is too slow or if there is no acceleration anymore,
the beam emittance will grow indefinitely.

Chapter 11

11.2 For
〈

H
| ρ3 |

〉
z

= 1
C

∫ C

0

∣∣∣ 1
ρ3

∣∣∣H(z) dz where 〈H(z)〉=
〈
βη′2

〉
+ 〈2αηη′〉 +〈

γη2
〉

we need to formulate an analytical expression. Since all bending mag-
nets contribute similarly, only one has to be evaluated. We estimate the av-
erage values from known solutions in the middle of FODO-cell quadrupoles
(7.3), (7.74), (7.5). Transforming through the QF, the slopes η′QF = −η̂/f ,

η′QD =−η̌/f , and
〈
βη′2

〉
≈ 1

2

(
β̂η′2QF+β̌η′2QD

)
= 1

2

[
Lκ(κ+1)√

κ2−1

η̂2

f 2 + Lκ(κ−1)√
κ2−1

η̌2

f 2

]
=

L3

ρ2
4κ2+5

4
√

κ2−1
. For the second term we get from the transformation αQF = 1

f β̂ and

αQD = 1
f β̌.With this 〈2αηη′〉 ≈ 1

2

(
2αQFη̂η

′
QF + 2αQDη̂η′QD

)
= −L3

ρ2
κ2

√
κ2−1

.

For 〈2αηη′〉 we need 〈η〉 ≈ 1
2 (η̂ + η̌) = L2κ2

ρ , 〈η′〉 ≈
(

η̂−η̌
L

)
= L

ρ κ and

α = −β′/2 = − 1
2

β̂−β̌
L for 〈2αηη′〉 ≈ −L3

ρ2

κ4(4κ2+5)
2
√

κ2−1
. Finally, we note

that γ (z) is constant in a drift space (bending magnet) and is from ma-
trix transformation at the exit of QF γQF = 1

κ2L2 β̂ + 1
β̂

=const. With

this
〈
γη2
〉
≈
(

1
κ2L2 β̂ + 1

β̂

)
1
2

(
η̂2 + η̌2

)
= L3

ρ2

κ2(4κ2+1)
2
√

κ2−1
. Collecting all terms

〈H(z)〉 ≈ L3

ρ2

κ2(4κ2−3)
4
√

κ2−1
and the minimum is from ∂H/∂κ = 0 reached for

12κ4 − 19κ2 + 6 = 0 or for κ ≈ 1.0713. The associated FODO phase advance
per cell is φ ≈ 138◦.

11.3 We use an energy of E = 2 GeV and an optimized 90◦ lattice for
which from Fig. 11.8 〈H〉 /

(
ρΘ3

)
≈ 3. We also assume that only 75%

of the ring is occupied by bending magnets and therefore �b/�b,0 = 0.75.
Solving (11.43) for the bending angle per bending magnet we get Θ =(

εx

Cqγ2
1

〈H〉/(ρΘ3)
�b,0
�b

)1/3
180
π = 3.845◦. To compose a ring, we need at least

94 bending magnets or quadrupoles to reach a minimum beam emittance of
εx = 5 × 10−9m.

Chapter 12

12.1 We use the perturbation P22(z) = 1
2 ν2

0 β5/2 mw2
β in the equation

of motion ẅβ+ ν2
0wβ= 1

2 ν2
0 β5/2 mw2

β and get after reordering the equation

ẅβ+ ν2
0

(
1 + 1

2β
5/2 mw

β

)
wβ = 0. On average, the sextupoles do not con-

tribute in linear approximation to a tune shift
(〈

1
2β

5/2 mw
β

〉
= 0
)
. In higher
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order, however, there is some tune shift which we can expect from the fact that
the contribution to the tune shift while wβ > 0 compared to the case when
wβ < 0. The P21 (z)-term contributes to a tune shift because a beam being off-
set in a sextupole feels a quadrupole field component and therefor a tune shift.
The equation of motion shows this directly ẅβ+ ν2

0

(
1 + 1

2β
5/2 mwc

)
wβ = 0

and the tune shift is δν ≈ ν0
1
4

〈
β5/2 mwc

〉
.

12.5 At the bending magnet exit the dispersion is D = ρ
(
1 − cos �b

ρ

)
and

the slope D′ = sin �b
ρ . Extrapolating back, we expect the dispersion to start

with a slope of D′ at a distance s before the bending magnet exit. Therefore,
s sin �b

ρ = ρ
(
1 − cos �b

ρ

)
and using �b

ρ � 1 we get s ≈ 1
2�b demonstrating that

the dispersion function seems to start in the middle of the bending magnet.

12.11 With the errors ∆ 1
ρ� = θ, and A =

√
β(z)

2 sin πν the vertical η-function
is ηy (z) = A

∮
∆ 1

ρ

√
β (s) cos ν [ϕ (z) − ϕ (s) + π]ds = A

∑
i

√
βiθi cos ν[ϕ (z)

−ϕi+π]. The expectation value for the dispersion function is for N statistically
distributed errors

〈
η2

y

〉
≈ A2

∑
i βiθ

2
i cos2 νπ = 1

4β (z)Nβ̄
〈
θ2
〉
cot2 νπ, where

σθ =
√

〈θ2〉 is the rms deflection angle due to misalignment errors and β̄
is the average value of the betatron function at the location of errors. For
random quadrupole misalignment errors (σx) and �, the length of the error
field, σθ = k�σx, and for bending magnet rotational errors (σα) σθ = �

ρσα.Use
numerical values from lattice 3 in Table 7.1 to estimate the actual expectation
value of the vertical dispersion function.

12.12 The transformation through both bending magnets and the drift space
L between them is with ρ > 0(

1 L + 2� − (L + �)
0 1 0
0 0 1

)
=

(
1 � ρ (1 − cos θ)
0 1 sin θ
0 0 1

)(
1 L 0
0 1 0
0 0 1

)(
1 � ρ (cos θ − 1)
0 1 − sin θ
0 0 1

)
.

From this, we get the dispersion at the end of the second bending magnet
D = − (L + �) sin θ = −d and D′ = 0.

12.13 The tune change due to quadrupole field errors is ∆ν = 1
4π

∑
i βi (∆k�)i

and with σk =
√

(∆k�)2 the expectation value is σν = 1
4πNqβ̄σk. To have a

96% probability of avoiding an integer or half integer resonance 2σν should
be less than 0.25 or σν,q = 1

4πNqβ̄σk < 0.125. With numerical values Nq

and β̄ one can solve for the rms quadrupole field tolerance σk. Manufacturing
tolerances resulting in nonparallelism of bending magnet poles cause gradient
field errors as well. If the angle between pole surfaces is α then the field will
be B (x) ≈ B0G0

G0+αx ≈ B0

(
1 − α

G0
x
)
. From this, we eliminate the gradient field

error δk = − 1
ρ

α
G0

and get the rms tune shift σν,b = 1
4πNbβ̄b

�b
ρG0

σα, where G0

is the nominal gap between magnet poles, �b /ρ is the bending angle, Nb is the
number of magnets, and β̄b is the average value of the betatron function in the
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bending magnets. The total allowable tune shift is then σν =
√

σ2
ν,q + σ2

ν,b <

0.125 determining the gradient field and parallelism tolerances.

Chapter 13

13.3 We use an energy E, a FODO half cell length L, and a bending fill
factor of 50% or �b = L/2. We assume that there are N = 21 FODO cells.
The natural chromaticities are in both planes from (12.88) ∆ξx,y = − 1

2π per
FODO half cell and the sextupole strengths are mF�s = ∆ξ

η̂(β̂−β̌) and mD�s =

− ∆ξ

η̌(β̂−β̌) . The phase differences between similar sextupoles (SFs or SDs) are

∆ϕ = 2π/N. The stop band width ∆ν
(3)
stop = −νx0

4π
x0√
β0

∣∣∣∫ 2π

0
β

5/2
x m ei3νx0ϕdϕ

∣∣∣
becomes with νx0βxdϕ =dz and replacing the integral with sums over all
SFs and SDs ∆ν

(3)
stop = − 1

4π
x0√
β0

∣∣∣
[∑N−1

k=0 β
3/2
x m�s exp (i 3νx0∆ϕk)

∣∣∣
SF

+
∑N−1

k=0 β
3/2
x m�s exp [i 3νx0∆ϕ (k + 1/2)]

∣∣∣
SD

]∣∣∣ . The sums become
∑N−1

k=0 exp [i 3νx0∆ϕk] = exp(i6πνx0)−1
exp(i6πνx0/N)−1 and exp

(
i 3νx0

2N ∆ϕ
)∑N−1

k=0

exp [i3νx0∆ϕk] = exp
(
i 3πνx0

N2

) exp(i6πνx0)−1
exp(i6πνx0/N)−1 . Finally, the stop band width is

∆ν
(3)
stop = − 1

4π
x0∆ξ√

β0

∣∣∣∣
[

β̂3/2
x

η̂(β̂−β̌) − β̌3/2
x

η̌(β̂−β̌) exp
(
i 3πνx0

N2

)] exp(i6πνx0)−1
exp(i6πνx0/N)−1

∣∣∣∣ . In the

vicinity of the third-order resonance (νx0 ≈ 3 + δν), we set exp
(
i 3πνx0

N2

)
≈

exp
(
i 9π
N2

)
and exp(i6πνx0)−1

exp(i6πνx0/N)−1 ≈ i6πδν
exp(i18π/N)−1 and get ∆ν

(3)
stop ∝ x0 δν. For fi-

nite betatron amplitudes x0 the stop band width scales like the tune distance
δν from the third-order resonance.

Chapter 14

14.1 First, we find from (2242) all second-order terms in δ. The term −κxδ
2.is

the only such term which we use to calculate with C (ζ) = cos (ζ/ρ) and
S(ζ) = ρ sin (ζ/ρ) the perturbation
P (z, δ) = −δ2

∫
κx [S (z)C (ζ) − C (z)S (ζ)]dζ = −δ2ρ (1 − cos z/ρ) . Since

no slopes are involved, T166 = c166 = −ρ
(
1 − cos z

ρ

)
. we could have guessed

this result, since the perturbation term is the same as for the dispersion ex-
cept a factor −δ. This second-order term is therefore just the second-order
chromatic perturbation.

14.2 From (3.75) we collect the quadratic perturbation terms(
− 1

2m − κ3
x − 2κxk

)
x2+ 1

2 κxx
′2 and with x = Cx0 and x′ = C ′x0 we get the

desired perturbation p
(
ζ
∣∣x2

0

)
=
[(
− 1

2m− κ3 − 2κk
)
C2 + 1

2κ C ′ 2
]
x2

0. Note
that we ignore the κ′-term since we exclude nonconstant strength parameters.
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With this perturbation, integral (14.10)
T111 =

∫ z

0
p
(
ζ
∣∣x2

0

)
[S (z)C (ζ) − C (z)S (ζ) dζ] =(

− 1
2m− κ3 − 2κk

)
1
3k

[
kS2 + (1 − C)

]
+ κ

6

[
2 (1 − C) − kS2

]
, where C,S are

the principal solutions of linear beam dynamics.

14.6 We consider a ring made of a total of Nc = 61 FODO cells, each with
a phase advance of 90◦ and the tune is then ν = 15.25. This ring has 61
QFs and QDs. The betatron functions in the middle of the quadrupoles are
β = L

(
2 ±

√
2
)

and the η-function η = L2

2ρ

(
4 ±

√
2
)
. The natural chro-

maticity ξx,y = −Nc
π and the change in chromaticity due to sextupoles

∆ξx,y = Nc
1
4π

[
(βηm�s)QF ± (βηm�s)QD

]
= Nc

1
4π

L3

2ρ

[
±
(
10 + 6

√
2
)
m�sQF

±
(
10 − 6

√
2
)
m�sQD

]
= ∓ξx,y. In another form 18.485m�sQF+1.515m�sQD =

8ρ
L3 and −1.515m�sQF − 18.485m�sQD = 8ρ

L3 , which can be solved for the two
sextupole families m�sQF = −m�sQD = 2ρ

3
√

2L3 . We use this result for (14.50)

and get
∑

j mj�j β
3/2
x exp (iψxj) =

∣∣∣β3/2
x m�s

∣∣∣
QF

−
∣∣∣β3/2

x m�s

∣∣∣
QD

exp (iπ/4) 
= 0

because of cancellations within every four cells. Only the contribution of the
last cell is uncompensated. If we place noninterleaved sextupoles in pairs 180◦

apart there is total cancellation and the driving term is zero.

14.8 The tunes of the ring are in both planes ν = 15.25. Equations (14.44)–
(14.48) exhibit mainly integer and third-order resonances. A proper choice on
the tunes can minimize these aberration terms. A tune of 15.25 is close to
a multiple of 3 and therefore efficient at driving a third-order resonance. A
better tune would be say 16.25, 16.75, or 17.25. One could argue that 16.75 or
17.25 might give the lowest driving terms, although this ignores the variation
of sextupole strengths and betatron functions. To find the minimum driving
terms (14.44)–(14.48) must be evaluated.

Chapter 15

15.1 We excite the prebuncher to a total effective voltage of V̂rf and the linear
part scales with 3 GHz phase like Vrf = V̂rf ϕ500. For simplicity, we assume the
electrons to be nonrelativistic and the velocity deviation from the 100 keV

reference particle δv =
√

2E0
m

(√
Ekin
E0

− 1
)

=
√

2E0
m

(√
1 + eV̂rf

E0
ϕ500 − 1

)
≈

√
2E0
m

eV̂rf
2E0

ϕ500. A distance � downstream from the prebuncher the reference

particle arrives at a time τ = �/v0 = �/
√

2E0/m. During this same time a
particle at phase ϕ500 will advance or fall back with respect to the reference
particle by the distance λ

2πϕ500 to arrive at the same time as the reference
particle. Therefore, we require δv τ = λ

2πϕ500 and the shortest bunch length is
obtained at � = λ

2π
2E0

eV̂rf
. In this ideal (linear) case the resulting bunch length

is zero independent of the original bunch length. In reality, the sinusoidal
variation of the prebuncher voltage results in a finite S-like bunch distribution
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in phase space. We may overcompress the bunch by going slightly beyond the
distance �, thus getting a slightly higher intensity within a finite phase distance
of, for example, ±12◦ at 3 GHz.

Chapter 16

16.1 The synchrotron radiation energy loss per turn is U = 93.0 keV, the
beam current is I = 68.0 mA, and the radiation power Psyn = 6.32 kW. The
energy spread is σE

E = 0.0727% and the required acceptance is 6σE

E = 0.436%
for a beam lifetime of at least one hour. From (6.65) we solve for the function
F (q) = 1.202 and q = 1.902. Ignoring beam loading the required minimum
rf-voltage is Vrf = qU = 176.9 kV. Including the cavity power Pcy = 1.86 kW,
the total minimum rf-power needed is Ptot = 8.18 kW. Beam loading will
change these parameters. From (16.35) the optimum coupling βopt = 4.40.

Chapter 17

17.3 From (17.95) we calculate the coupling from statistical errors to be

κrms =
√
〈κ2〉 = 1

2π (δk �q)
√

βxβyNq where δk is the strength of the error,
the length of the error is �q and Nq = 122 the number of errors. For 90◦

cells the quadrupole strength has to be k = 2/
(√

2L�q
)

=
√

2 and δk=
k δα. In the lattice we have Nq = 122 quadrupoles, for 90◦ cells βxβy =
L
(
2 +

√
2
)
L
(
2 −

√
2
)

= 2L2, and the rms coupling is κrms = 38.8 δα. In
the sample lattice we have equal tunes νx = νy and therefore the emittance
coupling is always 100%. To get a finite emittance coupling we must separate
the tunes by fine adjustment of the quadrupoles and choose, for example, tunes
like νx = 15.20 and νy = 15.15 or ∆ν = 0.05. The emittance coupling is from
(17.117) εy

εx
= κ2

∆ν2+κ2 = 0.01. Solving for the coupling, we get κ ≈ 5 × 10−3

which determines the rotational alignment tolerance of the quadrupoles to
δαrms ≈ 0.13 mrad.

Chapter 18

18.14 The beam–beam tune shift is δν = 1
4πβ

∗
y∆ (k�) . We split the ring

at the collision point and insert half of the beam–beam focusing on either
side of the symmetry point. With the transformation matrix of the unper-
turbed ring being M0 we get for the perturbed ring M = PM0P, where

P =

(
1 0

− 1
2∆ (k�) 1

)
, M0 =

(
cos 2πν0 β∗

y0 sin 2πν0
− 1

β∗
y0

sin 2πν0 cos 2πν0

)
, and

M =

(
cos 2πν β∗

y sin 2πν
− 1

β∗
y

sin 2πν cos 2πν

)
. Performing the matrix multiplications, we
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look for the determination of the perturbed betatron function at the col-
lision point only for the terms C = cos 2πν0 − 1

2∆ (k�)β∗
y0 sin 2πν0 and

S =
(
β∗

y0 sin 2πν0

)
. The perturbed betatron function is β∗

y = (cos 2πν0−
1
2∆ (k�)β∗

y0 sin 2πν0

)2
β∗

y0 +
(
β∗

y0 sin 2πν0

)2 1
β∗

y0
or the linear change of the be-

tatron functions is ∆β∗
y

β∗
y0

≈ −2πδν sin 4πν0 .

Chapter 20

20.1 Solve E = (cp) + (mc) for (cp) = E − (mc), extract E and re-
place E/mc2 = γ , and E = Ekin + mc2 to get with β =

√
1 − γ−2 fi-

nally cp = β(Ekin + mc2). Replacing β we get after some manipulation
cp = mc2

√
(E2

kin /mc2 + 1)2 − 1, and finally Ekin = mc2(γ − 1).

20.2 For very large energies γ 
 1 and cp ≈ Ekin, and Ekin ≈ mc2γ. For
nonrelativistic particles, set γ ≈ 1 + δ, where δ = Ekin/mc2 = 1

2β
2; therefore

β ≈
√

2δ. With Ekin = 1
2mv2 and keeping only terms linear in β, we get

cp =
√

2δ(1 + δ)mc2 ≈ cmv or the classical definition of the momentum
p = mv.

20.4 A length ds of the linac in the laboratory system appears to the electron
Lorentz contracted by the relativistic factor γ. Since the electron energy varies
along the linac we must integrate the contraction along the full length of
the linac. The linac length as seen by the electron is therefore

∫
ds

γ(s) , where
γ(s) = γ0 + αs, and the acceleration α = 20/mc2 = 39.14 1/m. From β0 = 1

2
we get γ0 = 4

3 and with γ = 4
3 + 39.14 · 3000 = 1.17 × 105 the integral is∫

ds
γ(s) = 1

α ln γ
γ0

or numerically 1
39.14 ln 1.17×105

4/3 = 0.291 m. For an electron
coasting with energy γ along a 3000 m long tube, the tube appears to be
3000/γ = 0.0256 m or 2.56 cm long.

20.5 The revolution frequency is frev = c/C = 1.0 × 106 1/s and the total
number of particles orbiting ne = I/e/frev = 1.560 4 × 1012 electrons or
3.1208 × 109 electron/bunch. The photon pulses image exactly those of the
electron bunches. Therefore, there is a 1 cm long photon pules every 0.6 m,
or in time one 30 ps photon pulses every 2 ns.

20.6 The geometry of the field lines in the particle system of reference can
be expressed by x = z tanα, where α is an arbitrary angle defining the angle
of the field line with respect to the z-axis. In the laboratory system, the z-
coordinate is Lorentz contracted and the equation for the field lines becomes
x = tan α

γ z . The distribution of radial field lines is compressed in the z-
direction by a factor γ.

20.7 The circulating beam current is defined by i = enfrev = env/C, where
n is the number of particles circulating, frev is the revolution frequency, v ≈ c
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the particle velocity, and C is the accelerator circumference. The number of
particles representing a current of 1A are n = iC/ev = 2.08 × 1012. The
ejected beam resembles a pulse with a pulse current of 1A since particles
are assumed to be distributed uniformly. The pulse length is given by the
revolution time τ = C/c = 0.333 µs. The synchrotron produces 100 pulses
of 1µ sec duration and at a pulse current of 1A. The average beam current is
therefore iavg = 100 × τ × 1 = 33.3 µA.

20.8 The Cherenkov condition is βnair cos θ = 1. For electrons β (10 MeV) =
0.99869 and β (50 MeV) = 0.9999478. The Cherenkov angle for 10 MeV
electrons is (cos θ = 1.001 > 1) imaginary. In order to preserve energy and
momentum, the electron energy must have a minimum energy such that
nβ > 1. For 50 MeV electrons this condition is met and the Cherenkov angle
is θCh = arccos

(
1

0.9999478×1.0002769

)
= 1.214◦.

20.10 The Cherenkov angle is θCh = arccos
(

1
0.99869·1.7

)
= 53.9◦. This radi-

ation will meet the other side of the plate at an this angle an will be totally
reflected, because according to Snell’s law the maximum angle is θS = 41.8◦.
The radiation continues to be reflected until it reaches the small side of the
plate in which case the incident angle is now 36.1◦ and can escape the plate.

20.11 In the systemL the two 4-vectors be ã (a1, a2, a3,ia4) and b̃ (b1, b2, b3,ib4)
and their product is a1b1 +a2b2 +a3b3−a4b4. In system L∗ the same product
would be a∗1b

∗
1 + a∗2b

∗
2 + a∗3b

∗
3 − a∗4b

∗
4 and applying a Lorentz transformation

we get a∗1b
∗
1 + a∗2b

∗
2 + a∗3b

∗
3 − a∗4b

∗
4 = a1b1 + a2b2 + (γa3 − βγa4)(γb3 − βγb4)−

(−βγa3 + γa4)(−βγb3 + γb4) = a1b1 + a2b2 + γ2a3b3 − βγ2a3b4 − βγ2a4b3 +
β2γ2a4b4−β2γ2a3b3 +βγ2a3b4 +βγ2a4b3−γ2a4b4 = a1b1 +a2b2 +a3b3−a4b4
q.e.d.

20.12 In the system L the two 4-vectors be ã (a1, a2, a3,ia4) and b̃ (b1, b2, b3,ib4)
and their product is a1b1 +a2b2 +a3b3−a4b4. In system L∗ the same product
would be a∗1b

∗
1 + a∗2b

∗
2 + a∗3b

∗
3 − a∗4b

∗
4 and applying a Lorentz transformation

we get a∗1b
∗
1 + a∗2b

∗
2 + a∗3b

∗
3 − a∗4b

∗
4 = a1b1 + a2b2 + (γa3 − βγa4)(γb3 − βγb4)−

(−βγa3 + γa4)(−βγb3 + γb4) = a1b1 + a2b2 + γ2a3b3 − βγ2a3b4 − βγ2a4b3 +
β2γ2a4b4−β2γ2a3b3 +βγ2a3b4 +βγ2a4b3−γ2a4b4 = a1b1 +a2b2 +a3b3−a4b4
q.e.d.

20.13 The revolution frequency is frev = c/C = 1.0 × 106 1/s and the
total number of particles orbiting ne = I/e/frev = 1.560 4 × 1012 electrons
or 3.1208× 109electron/bunch. The photon pulses image exactly those of the
electron bunches. Therefore, there is a 1 cm long photon pules every 0.6 m,
or in time one 30 ps photon pulses every 2 ns.

20.14 The circulating beam current is defined by i = enfrev = env/C, where
n is the number of particles circulating, frev is the revolution frequency, v ≈ c
the particle velocity, and C is the accelerator circumference. The number of
particles representing a current of 1A are n = iC/ev = 2.08 × 1012. The
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ejected beam resembles a pulse with a pulse current of 1A since particles
are assumed to be distributed uniformly. The pulse length is given by the
revolution time τ = C/c = 0.333 µs. The synchrotron produces 100 pulses
of 1µ sec duration and at a pulse current of 1A. The average beam current is
therefore iavg = 100 × τ × 1 = 33.3 µA.

20.15 We use the uncertainty relation ∆x∆p = ∆x �k ≥ � or ∆x ≥ 1/k and
the “characteristic volume” of a photon is Vph = λ3

8π3 . The average electric
field within this volume is from ε = 1

2ε0
E2Vph = �ω or E = k2

√
2ε0�c . For a

0.1238 eV photon (CO2 laser) the wavelength is λ = 10 µm and the average
electric field is E = 2.96 × 10−7 V/m. In the case of a 10 keV x-ray photon
the field is E = 1.93 kV/m

20.18 The relativistic Doppler effect is ω∗γ (1 + βz n
∗
z) = ω and for the

classical case we set γ = 1, n∗
z = cosϑ, and β = v/v0, where v0 is the

velocity of the wave (light or acoustic). The relative Doppler shift is then
∆f
fs

= v
v0

cosϑ.

20.17 We describe EM-waves by E = E0 exp [i (ωt− knr)] and the magnetic
field by B = B0 exp [i (ωt− knr)], where k = kn and n is a unit vector
parallel to k. Inserted into Maxwell’s equation ∇×E = −Ḃ we get with k =
ω/c for the l.h.s.: ∇× inrkE =i∇nrk×E and for the r.h.s. Ḃ =iω B = ickB.
With ∇ nr = ∇ (nxx + nyy + nzz) = n we finally get cB = n × E. This
equation tells us that the electric and magnetic wave fields are orthogonal.

20.19 With cB = n × E from Problems 20.17 and 22.34 we get E×(n×)E =
E2n, what was to be demonstrated.

20.20 The energy loss per turn is from (21.41) U0 = 20.32 keV and the total
radiation power P = 20.32 kW. In the case of muons, we have the mass ratio
mµ/me = 206.8 and the energy loss is reduced by the 4th-power of this ratio
to become U0µ = 11.1 µeV, which is completely negligible.

20.21 The maximum photon flux occurs at a photon energy of about ε =
0.286 εc and S(0.286) ≈ 0.569. To find the 1% photon energy we use (21.61)
to scale the photon flux and have 0.777

√
x/ expx = 0.00569, which is solved

by x = 5.795. Appreciable radiation exists up to almost six times the critical
photon energy.

20.22 From (21.51) we have E = [0.4508 εc (keV) ρ (m)]1/3 = 8.04231/3 =
2.003 5 GeV. The magnetic field necessary for a bending radius of ρ = 1.784
m would be B = 3.75 T, which is way beyond conventional magnet technology.
Either superconducting magnets must be used to preserve the ring geometry
or a new ring must be constructed with bending magnets which must be longer
by at least a factor of 2.5.
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20.23 The bending radius is ρ = 2887 m, the energy loss is U0 =

88.5E4

ρ

(
me
mp

)4

= 399.4 keV, and the critical photon energy εc = 2.2E3

ρ

(
me
mp

)3

= 929.3 eV. The synchrotron radiation power is P = 65.5 kW.

20.24 The critical photon energy is εc = 38.04 keV and ε/εc = 0.21.
The universal function is S(0.21) = 0.5625 and the photon flux dṄph

dψ =
Cψ E I ∆ω

ω S (0.21) = 3.118 5×1012 photons/mrad. The vertical opening angle√
2πσθ = 0.251 mr resulting in an effective beam height at the experiment

of Y = 3.77 mm. A beam size of 10 µm at 15 m corresponds to an angle of
0.667 µrad at the source. The total photon flux into the required sample cross
section is then Ṅph = 5.53× 106 photons/s, which is more than required. For
a still higher photon flux one might apply some photon focusing.

20.25 In the horizontal plane the radiation distribution is uniform and an
angle of ∆ψ = 0.2 mr will produce a photon beam width of 1 mm at a
distance of 5 m. The critical photon energy is εc = 563 eV and ε/εc =
0.124/563 = 0.00022. For the IR radiation the vertical opening angle θrad =
11.3 mr (
 1/γ !) and the source length L = 0.045 m. The total source
height is σtot,y =

√
0.112 + 0.1072 = 0.153 mm and the vertical divergence

σtot,y′ = 14.9 mr. The photon flux for λ =10 µm and S(0.00022) = 0.0805
is d Ṅph/dψ = 1.275 1015 photons/s/mr/100%BW. The photon brightness is

then B = (dṄph/dψ)∆ψ

2πσtot,yσtot,y′
= 1.275 ·1015 0.2

2π·0.153·14.9 = 1.780 × 1013 photons
s×mm2×mr2×100%BW .

20.26 From Exercise 20.25 L = 0.045 m and the diffraction limited source
size and divergence are σr = 1

2π

√
λL = 0.107 mm and σr′ =

√
λ
L = 14.9

mr, respectively. This is to be compared with the electron beam parameters
(σb,x, σb,y) = (1.1, 0.11) mm and σ (b,x′ , σb,y′) = (0.11, 0.011) mr. There
is a considerable mismatch in the x-plane with σr/

√
2 = 0.076 mm � σb,x

and σr′/
√

2 = 10.5 mr 
 σb,x′ . In the vertical plane the mismatch is small.
In both planes the diffraction limited photon emittance is εph,x,y = 797 nm,
which is much larger than the electron beam emittances in both planes. The
10µm IR radiation is therefore spatially coherent.

Chapter 21

21.1 In first approximation, we assume that all the fields are contained within
the two rows of poles and no field leaks out. Separating the poles by dg requires
to generate the additional field energy dε = Fdg, where F is the force between
poles. Since dε > 0 for dg > 0, the force is attractive, meaning that the poles
are attracted. The force is then F = dεm

dg = w
2µ0

∫ 15λp

0
B2(z) dz = 20889

N = 2.13 tons.

21.3 The instantaneous radiation power is given by (21.32) Pγ (GeV/s) =
379.35B2 E2. The total energy loss of an electron due to wiggler radia-
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tion power can be obtained by integrating through the wiggler field for
∆E (GeV) = 189.67B2

0 E2 Lu
βc and the total radiation power for a beam current

I is Pu (W) = 632.67B2
0E

2LuI.

21.4 In the electron rest frame energy conservation requires �ω+mc2 = �ω′+√
c2p2 + (mc2)2, where �ω and �ω′ are the incoming and outgoing photon

energies, respectively, and cp is the electron momentum after the scattering
process. Solving for cp we get c2p2 = �

2 (ω − ω′)2 + 2�mc2 (ω − ω′). For mo-
mentum conservation, we require that �k = �k′ +p with the angle ϑ between
k and p. From this we get c2p2 = (�ω′)2 + (�ω)2 − 2�

2ω ω′ cosϑ . Comparing
booth expressions for cp we get −2�ωω′+ 2�mc2 (ω − ω′) = −2�

2ω ω′ cosϑ
or �

mc2 (1 − cosϑ) = 1
ω′ − 1

ω = λ′−λ
2πc . We look for radiation emitted in the for-

ward direction or for ϑ = 180o and get for the scattered wavelength λ′ = λ ,
because 4π�c

mc2 ≈ 4.8 10−12 � λ. Note that all quantities are still defined in
the electron rest frame. The wavelength of the undulator field in the electron
system is λ = λ∗

p
γ , where now L∗ is the laboratory system of reference and

the scattered radiation in the laboratory system due to the Doppler effect is
λ∗ = λ∗

p
2γ2

(
1 + 1

2K
2
)
, which is the expression for the fundamental wavelength

of undulator radiation.

21.5 The fundamental wavelengths for a very weak undulator (K � 1, e.g.,
wide open gap) are λ (800 MeV) = 102 Å and λ (7 GeV) = 1.33 Å which are
the shortest achievable wavelengths. For a 10 mm gap the field is from (21.5)
B = 1.198 T and the maximum value of the strength parameter is K = 5.595.
With this the longest wavelength in the fundamental is λ = 1698.5 Å for the
800 MeV ring and λ = 22.147 Å for the 7 GeV ring.

21.6 The short wavelength limits are given for a wide open undulator, K � 1,
and are λ = 3.13 Å for λp = 15 mm and λ = 15.7 Å for λp = 75 mm. The long
wavelength limits are determined by the magnetic fields when the undulator
gaps are closed to 10 mm. The fields are from (21.5) B0 (λp = 15 mm) = 0.19
T and B0 (λp = 75 mm) = 1.66 T, respectively. The undulator strengths are
K (λp = 15 mm) = 0.270 and K (λp = 75 mm) = 1.35 and the wavelengths
λ (λp = 15 mm) = 3.24 Å and λ (λp = 75 mm) = 30.0 Å. The tuning range
is very small for the 15 mm undulator and about a factor of 2 for the long
period undulator. The ranges are so different because the K-value can be
varied much more for longer period undulators.

21.7 The probability of emitting a photon of energy ε in a unit time is
ṅ(εph) = Pγ

ε2
c

S(x)
x . We are looking for the case ε = σε = E2

mc2

√
55�c

64
√

3mc2Jsρ
=

10.9 MeV. For εc = 3
2�cγ3

ρ = 19166 eV, the ratio x = 1
γ

√
55mc2ρ

144
√

3Js�c
= 227.54


 1 and Pγ

ε2
c

= 23826 1/eVs. The probability becomes with this ṅ(εph) ≈
1.86 × 10−96! We may, without calculation, conclude that no second photon
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of this energy will be emitted within a damping time. Energy is emitted in
very small fractions of the electron energy.

21.8 From (22.166) we get the number of photons emitted per unit time
Ṅph = 15

√
3

8
Pγ

εc
= 3.158 × 106 γ

ρ and per radian ṅ = 0.01063γ ≈ γ
100 .

Chapter 22

22.1 Integration of (22.76) over ϕ results in factors 2π and π for the two terms
in the nominator, respectively, and we have the integrals 2π

∫ π

0
sin θ

(1−β cos θ)5
dθ−

π
(
1 − β2

) ∫ π

0
sin3 θ

(1−β cos θ)5
dθ = 4π

(1−β2)2
−

4
3 π

(1−β2)2
= 4πγ4

(
1 − 1

3

)
= 4πγ4 2

3 .

With this, the radiation power is Ptot = 2
3rcmc2cβ4γ4

ρ2 , which is (22.59)

22.2 The vertical opening angle is 1/γ = 0.085 mr and therefore all radiation
will be accepted. The spectral photon flux into an opening angle of ∆ψ = 10
mr is therefore given from (22.155) by Ṅph = CψEI ∆ω

ω S
(

ω
ωc

)
∆ψ. With the

critical photon energy εc = 23.94 keV the spectral photon flux from an ESRF
bending magnet is Ṅph = 4.75 × 1014 S

(
εph(keV)

23.94

)
.

22.2 We use (22.105) and get with ξ = 1
2

ω
ωc

(1 + γ2θ2)3/2 for the p% point
d2W (10%)

dΩdω / d2W
dΩdω = (1 + γ2θ2) 2

[
K2

2/3(ξ)

K2
2/3(0)

+ γ2θ2

1+γ2θ2

K2
1/3(ξ)

K2
2/3(0)

]
= 0.1. Solving for θ

gives the angle at which the intensity has dropped to 10%. For low frequen-

cies d2W (10%)
dΩdω / d2W

dΩdω →
ξ→0

1 + γ2θ2

1+γ2θ2
Γ 4(1/3)

28/3Γ 4(2/3)

(
ω
ωc

)4/3

= p, and for large

arguments d2W (10%)
dΩdω / d2W

dΩdω →
ξ→∞

exp( ω
ωc )

exp[ ω
ωc

(1+γ2θ2)3/2]
1+2γ2θ2√

1+γ2θ2
= p. All expres-

sions have to be evaluated numerically. The angle at which the total radia-
tion intensity has dropped to 10% is from (22.114) given by dW (10%)

dΩ /dW
dΩ =

1
(1+γ2θ2)5/2

(
1 + 5

7
γ2θ2

1+γ2θ2

)
= p, which can be solved by γθ = 1.390 for

p = 10%.

Chapter 23

23.1 From (23.6) the amplitude of the oscillatory motion in an undulator is
a⊥ = λpK

2πγ = 0.05·1
2π(7/0.000511) = 0.581 µm. The longitudinal oscillation amplitude

is from (23.5) a‖ = K2

8γ2kp
= 0.053 Å. Both amplitudes are very small, yet are

responsible for the high intensities of radiation.

23.2 The focal length for a single pole end is given by (23.9) 1
f1,y

= π2

2γ2
K2

λp
=

2.58 × 10−5 m−1 and for the whole undulator 1
fy

= π2

2γ2
K2

λp
2N = 0.00258
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m−1 or fy = 387.60 m. This focal length is very long compared to the focal
lengths of the ring quadrupole, which are of the order of the distance between
quadrupoles. Typically, the focal length of any insertion should be more than
about 50 m to be negligible. The wiggler magnet with K = 5, on the other
hand, produces a focal length of fy = 15.50 m which is too strong to be
ignored and must be compensated. The difference comes from the fact that
its the deflection angle which is responsible for focusing and 1

fy
∝ θ2 . Focusing

occurs only in the nondeflecting plane and 1
fx

= 0 .

23.3 This result appears nonphysical, yet it is correct, but requires some
interpretation. The number of photons emitted into the forward cone is con-
stant. Note that the forward cone angle decreases with increasing number of
periods. The constant number of photons is emitted into a smaller and smaller
cone. Outside this forward cone there is still much radiation and integration
of all radiation would give the more intuitive result that the total radiation
power increases with number of undulator periods.

23.4 To solve this problem, we do not rely on exact calculations, but are
satisfied with the precision of reading graph 21.5. We also use iterations to get
the solution we want. The fundamental flux drops below 10% for K < 0.25,
and we use this value to get 15 keV radiation. From the definition of the
fundamental photon energy we get the periodlength λp = 3.0 cm. To generate
4 keV radiation we need to change K enough to raise the factor

(
1 + 1

2K
2
)

from a low value of 1.031 by a factor of 15/4 to a value of 3.87 or to a high
of K = 2.4, which corresponds to a field of B = 0.857 T. Unfortunately, that
field requires a gap of g = 8.1 mm which is less than allowed. We have to
increase the periodlength to say λp = 3.5 cm, which gives a maximum photon
energy for K = 0.25 of εph = 12.9 keV. We plan to use the 3rd harmonic to
reach 15 keV. To reach εph = 4 keV, we need K = 2.16, a field of B = 0.661
T, which requires an allowable gap of g = 11.7 mm. We use the 3rd harmonic
to reach εph = 15 keV at K = 1.82. With this result we may even extend the
spectral range on both ends.

23.5 In the electron system the wavelength of the laser beam is Lorentz
contracted by a factor of 1

2γ , where the factor of 2 is due to the fact that the
relative velocity between both beams is 2c. The wavelength in the laboratory
system is therefore λ = λL

4γ2 , since K � 1 for the laser field.

23.6 The maximum transverse oscillation amplitude is 4.57 µm and the trans-
verse velocity in units of c is just equal to the maximum deflection angle β⊥ =
θ = K/γ = 0.38 mr. The transverse relativistic factor γ⊥ ≈ 1+7× 22× 10−8,
indeed very small, yet enough to start generating relativistic perturbations in
the transverse particle motion.

23.7 The fundamental wavelength is λ = λp
2γ2

(
1 + 1

2K
2 + γ2ϑ2

)
and for ϑ =

0, we have the fundamental wavelength λ = 10.88 Å. The natural bandwidth
is 1/Np = 1% and we look therefore for an angle ϑ̂ such that the wavelength
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has increased by no more than 9%, or γ2ϑ̂2

1+ 1
2 K2 = 0.09 and solving for ϑ̂, we get

ϑ̂ = ±6 2.6 µrad.

Chapter 24

24.1 We may solve this problem two ways. First, we use the average drift
velocity β̄ = β

(
1 − K2

4γ2

)
and calculate the time it takes the electron to

travel along one period, te = λp

cβ̄
≈ λp

cβ

(
1 + K2

4γ2

)
. During that same time

the photon travels a distance sγ = cte = λp
β

(
1 + K2

4γ2

)
and the difference

is δs = sγ − λp = λp

(
1
β − 1

)
+ λp

β
K2

4γ2 ≈ λp
2γ2

(
1 + 1

2K
2
)
, which is just

equal to the fundamental radiation wavelength. We may also integrate the
path length along the sinusoidal trajectory and get for one quarter period
se = λp

2π

∫ π/2

0

√
1 + θ2 cos2 xdx = λp

2π EllipticE
(
−θ2
)

which is the Legendre
elliptical integral of the second kind. Since the argument will always be very
small, we may expand EllipticE

(
−θ2
)
≈ π

2 + 0.393 θ2 for small arguments
and get the electron travel time for one period te = 4λp

2π
1
cβ

(
π
2 + 0.393 θ2

)
.

The path length difference between the photon, cte, and electron, λp, is

δs = cte − λp = λp
1
β

(
1 + 0.393 θ2

π/2

)
−λp ≈ λp

2γ2

(
1 +

8 · 0.393
π︸ ︷︷ ︸
≈1

1
2K

2

)
which

is again the fundamental wavelength of radiation.
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Appendices



A

Useful Mathematical Formulae

A.1 Vector Algebra

Electric and magnetic fields are vectors which are defined by direction and
magnitude in space E(x, y, z) and B(x, y, z), where we use a Cartesian coor-
dinate system (x, y, z). The distribution of such vectors is called a vector field
in contrast to a scalar field such as the distribution of temperature T (x, y, z).
In component form such vectors can be written as

E = Ex x + Ey y + Ez z . (A.1)

Vectors can be added by adding their components:

E + B = (Ex + Bx)x + (Ey + By)y + (Ez + Bz)z (A.2)

or multiplied in two different ways:
scalar product, resulting in a scalar

E B = ExBx + EyBy + EzBz = |E| |B| cos θ (A.3)

where θ is the angle between the vectors, and the
vector product, resulting in a vector

E × B = (EyBz − EzBy, EzBx − ExBz, ExBy − EyBx), (A.4)

where |E × B| = |E| |B| sin θ. The resulting vector is orthogonal to both
vectors E and B and the vectors [E,B,E×B] form a right handed orthogonal
coordinate system.

A.1.1 Differential Vector Expressions

To describe the variation of scalar and vector fields we define a gradient for
scalars
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∇T = gradT =
(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
, (A.5)

which is a vector.
For vectors we define two differential expressions. The first is the diver-

gence of a vector field:

∇E = divE =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
, (A.6)

which is a scalar.
Geometrically, the divergence of a vector is the outward flux of this vec-

tor per unit volume. As an example consider a small cube with dimensions
dx,dy.dz. Put this cube in a uniform vector field and you get zero divergence,
because the flux into the cube is equal to the flux out. Now, put the cube into
a field free area and place a positive charge into the cube. The flux of fields
is all outwards and the divergence is nonzero.

The divergence can be evaluated by integrating over all volume and we
get with Gauss’s integral theorem (A.23)

∫

V

∇E dV =
∮

Enda, (A.7)

where n is a unit vector normal to the surface and da a surface element. The
volume integral becomes an integral over the outer surface.

The second differential expression is the ”curl” of a vector:

∇× B =
(
∂Bz

∂y
− ∂By

∂z
,
∂Bx

∂z
− ∂Bz

∂x
,
∂By

∂x
− ∂Bx

∂y

)
. (A.8)

The ”curl” of a vector per unit area is the circulation about the direction of
the vector.

A.1.2 Algebraic Relations

a (b × c) = b (c × a) = c (a × b) (A.9)
a × (b × c) = b (ac) − c (ab) (A.10)

(a × b) (c × d) = (ac) (bd)− (bc) (ad) (A.11)
a × (b × c) + b × (c × a) + c × (a × b) = 0 (A.12)

(a × b) × (c × d) = c [(a × b) d] − d [(a × b) c]
(A.13)
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A.1.3 Differential Relations

∇ (aϕ) = ϕ∇a + a∇ϕ (A.14)
∇× (aϕ) = ϕ (∇× a) − a ×∇ϕ (A.15)
∇ (a × b) = b (∇× a) −a (∇× b) (A.16)

∇× (a × b) = (b∇) a − (a∇) b + a (∇b) − b (∇a) (A.17)
∇ (ab) = (b∇) a + (a∇) b + a × (∇× b) + b × (∇× a) (A.18)

∇× (∇ϕ) = 0 (A.19)
∇ (∇× a) = 0 (A.20)

∇× (∇× a) = ∇ (∇a) −∆a (A.21)

A.1.4 Integral Relations

∫

V

∇ϕdr =
∮

S

ϕû dσ (A.22)

∫

V

∇a dr =
∮

S

aû dσ Gauss’ Law (A.23)

∫

S

(∇×a) û dσ =
∮

ads Stoke’s Law (A.24)

A.1.5 Series Expansions

For δ � 1

√
1 + δ = 1 +

∑
n > 0

δn

22n−1
≈ 1 +

1
2
δ − 1

8
δ2 +

1
32

δ3.... (A.25)

1
1 + δ

= 1 +
∑
n > 0

i2n δn ≈ 1 − δ + δ2 − δ3 + ..... (A.26)

A.1.6 Fourier Transform

f (t) =
1
2π

∫ ∞

−∞
F (ω) eiωtdω (A.27)

F (ω) =
∫ ∞

−∞
f (t) e−iωtdt (A.28)
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A.1.7 Parceval’s Theorem

∫ ∞

−∞
F 2(t) dt =

1
2π

∫ ∞

−∞
F 2(ω) dω, (A.29)

where F (t) = 1
2π

∫
F (ω) e−iωt dω and F (ω) =

∫
F (t) eiωt dt.

A.1.8 Coordinate Transformations

Cartesian coordinates

ds2 = dx2 + dy2 + dz2

dV = dxdy dz

∇ψ =
(
∂ψ

∂x
,
∂ψ

∂y
,
∂ψ

∂z

)
(A.30a)

∇a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z

∇× a =
(
∂az

∂y
− ∂ay

∂z
,
∂ax

∂z
− ∂az

∂x
,
∂ay

∂x
− ∂ax

∂y

)

∆ψ =
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2

Transformation into new coordinates (u, v, w) , where x = x(u, v, w),
y = y(u, v, w) and z = z(u, v, w)

ds2 =
du2

U2
+

dv2

V 2
+

dw2

W 2

dV =
du
U

dv
V

dw
W

∇ψ =
(
U

∂ψ

∂u
, V

∂ψ

∂v
,W

∂ψ

∂w

)
(A.31)

∇a = UVW

[
∂

∂u

au

VW
+

∂

∂v

av

UW
+

∂

∂w

aw

UV

]

∇× a =





VW
[

∂
∂v

aw

W − ∂
∂w

av

V

]
, UW

[
∂

∂w
au

U − ∂
∂u

aw

W

]
,

UV
[

∂
∂u

av

V − ∂
∂v

au

U

]





∆ψ = UVW

[
∂

∂u

(
U

VW

∂ψ

∂u

)
+

∂

∂v

(
V

UW

∂ψ

∂v

)
+

∂

∂w

(
W

UV

∂ψ

∂w

)]

where
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U−1 =

√(
∂x

∂u

)2

+
(
∂y

∂u

)2

+
(
∂z

∂u

)2

,

V −1 =

√(
∂x

∂v

)2

+
(
∂y

∂v

)2

+
(
∂z

∂v

)2

,

W−1 =

√(
∂x

∂w

)2

+
(

∂y

∂w

)2

+
(

∂z

∂w

)2

,

and

au = axU
∂x

∂u
+ ayU

∂y

∂u
+ azU

∂z

∂u
,

av = axV
∂x

∂v
+ ayV

∂y

∂v
+ azV

∂z

∂v
,

aw = axW
∂x

∂w
+ ayW

∂y

∂w
+ azW

∂z

∂w
.

Transformation to cylindrical coordinates (r, ϕ, ζ)

(x, y, z) = (r cosϕ, r sinϕ, ζ)

ds2 = dr2 + r2dϕ2 + dζ2

dV = r dr dϕdζ

∇ψ =
[
∂ψ

∂r
,
1
r

∂ψ

∂ϕ
,
∂ψ

∂ζ

]
(A.32)

∇a=
1
r

∂

∂r
(rar) +

1
r

∂aϕ

∂ϕ
+

∂aζ

∂ζ

∇× a=
[
1
r

∂aζ

∂ϕ
− ∂aϕ

∂ζ
,
∂ar

∂ζ
− ∂aζ

∂r
,
1
r

∂

∂r
(raϕ) − 1

r

∂ar

∂ϕ

]

∆ψ=
∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2

∂2ψ

∂ϕ2
+

∂2ψ

∂ζ2
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Transformation to polar coordinates (r, ϕ, θ)

(x, y, z) = (r cosϕ sin θ, r sinϕ sin θ, r cos θ)

ds2 = d r2 + r2 sin2 θ dϕ2 + r2 dθ2

dV = r2 sin θ dr dϕdθ

∇ψ =
[
∂ψ

∂r
,
1
r

∂ψ

∂ϕ
,

1
r sin θ

∂ψ

∂θ
,

]
(A.33)

∇a=
1
r2

∂

∂r

(
r2 ar

)
+

1
r sin θ

∂

∂ϕ
(sinϕaϕ) +

1
r sin θ

∂aθ

∂θ

∇× a=




1
r sin θ

(
∂(sin θ aζ)

∂ϕ − ∂aϕ

∂θ

)
, 1

r sin θ

(
∂ar

∂θ − sin θ ∂(raθ)
∂r

)
,

1
r

(
∂
∂r (raϕ) − ∂ar

∂ϕ

)
.




∆ψ=
1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin2 θ

∂2ψ

∂ϕ2
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)

Transformation to curvilinear coordinates of beam dynamics

ds2 = dx2 + dy2 + (1 + κx x + κy y)2 dz2 = dx2 + dy2 + h2 dz2

dV = dxdy hdz

∇ψ =
∂ψ

∂x
x +

∂ψ

∂y
y +

1
h

∂ψ

∂z
z,

∇a =
1
h

[
∂ (hax)

∂x
+

∂ (h ay)
∂y

+
∂az

∂z

]
, (A.34)

∇× a =
1
h

[
∂(h az)

∂y
− ∂ay

∂z

]
x +

1
h

[
∂ax

∂z
− ∂(h az)

∂x

]
y+
[
∂ay

∂x
− ∂ax

∂y

]
z

∆ψ=
1
h

[
∂

∂x

(
h
∂ψ

∂x

)
+

∂

∂y

(
h
∂ψ

∂y

)
+

∂

∂z

(
1
h

∂ψ

∂z

)]
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Physical Formulae and Parameters

B.1 Physical Constants

Review of Particle Physics, W.-M. Yao et al. journal of Physics G 33, 1 (2006)

speed of light in vacuum c = 2.99792458 × 108 m / s

electric charge unit e = 1.60217653 × 10−19 C

electron rest energy mec
2 = 0.51099818 MeV

fine structure constant α = 1/137.036

Avogadro’s number A = 6.021415 × 1023 1/ mol

molar volume at STP 22.4140 × 10−3 m3/mol

atomic mass unit amu = 931.49404 MeV

classical electron radius rc = 2.81794033 × 10−15 m

p/e− mass ratio mp/me = 1836.1527

Planck’s constant h = 4.1356675 × 10−15 eV s

Planck’s constant � = 6.5821192 × 10−16 eVs

�c = 197.326968 MeV fm

Compton wavelength λC = 2.42631058 × 10−12 m

λ of a 1eV photon �c/e = 12398.419 Å

Thomson cross-section σT = 0.66524587 × 10−28 m2

Boltzmann constant k = 1.3806505 × 10−23 J / K

Stephan-Boltzmann σ = 5.67040 × 10−8 W m−2 K−4
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Permittivity of vacuum ε0 = 8.85418782 × 10−12 C/(V m)

Permeability of vacuum µ0 = 1.25663706 × 10−6 Vs/(A m)

B.2 Relations of Fundamental Parameters

fine structure constant α = e2

4πε0 �c

classical electron radius rc = e2

4πε0mec2

B.3 Unit Conversion

Table B.1. Energy Conversion Table

calories Joule eVolt wavenumber degKelvin

[cal] [J] [eV] [1/cm] [◦K]

1 cal 1 4.186 2.6127 1019 2.1073 1023 3.0319 1023

1 J 0.23889 1 6.2415 1018 5.0342 1022 7.2429 1022

1 eV 3.8274 10−20 1.6022 10−19 1 8065.8 11604

1/cm 4.7453 10−24 1.9864 10−23 1.2398 10−4 1 1.4387

1 ◦K 3.2984 10−24 1.3807 10−23 8.6176 10−5 0.69507 1

B.4 Maxwell’s Equations

∇E = 1
ε0ερ,

∇B = 0

∇ × E = −∂B
∂t ,

∇ × B = µ0µρv + ε µ
c2

∂E
∂t .

F = qE + q [v × B]

Coulomb’s law

Faraday’s law

Ampère’s law

Lorentz force

(B.1)

where ε, µ are the relative dielectricity and permeability, respectively.
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Table B.2. Equation Conversion Factors

variable replace cgs variable by SI variable

potential,voltage Vcgs

√
4πε0 VMKS

electric field Ecgs

√
4πε0 EMKS

current, current density Icgs, jcgs 1/
√

4πε0 IMKS, jMKS

charge, charge density q, ρ 1/
√

4πε0 qMKS, ρMKS

resistance Rcgs

√
4πε0 RMKS

capacitance Ccgs 1/
√

4πε0 CMKS

inductance Lcgs

√
4πε0 LMKS

magnetic induction Bcgs

√
4π/µ0 BMKS

Table B.3. Numerical Conversion Factors

quantity label replace cgs units by SI units

voltage U 1 esu 300 V

electric field E 1 esu 3 104 V/cm

current I 1 esu 10 c = 2.9979 109 A

charge q 1 esu (10c)−1 = 3.3356 10−10 C

resistance R 1 s/cm 8.9876 1011 Ω

capacitance C 1 cm (1/8.9876) 10−11 F

inductance L 1 cm 1 109 Hy

magnetic induction B 1 Gauss 3 10−4 Tesla

magnetic field H 1 Oersted 1000/4π = 79.577 A/m

force f 1 dyn 10−5 N

energy E 1 erg 10−7 J

B.5 Wave and Field Equations

Definition of potentials

vector potential A: B = ∇× A (B.2)

scalar potential ϕ : E = −∂A

∂t
−∇ϕ, (B.3)
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Wave equations in vacuum

∆A − 1
c2

∂2A

∂t2
=

ρβ

ε0
(B.4)

∆ϕ− 1
c2

∂2ϕ

∂t2
= − ρ

ε0
(B.5)

Vector and scalar potential in vacuum

A(t) =
1

4πc2ε0

∫
vρ(x, y, z)

R

∣∣∣∣
tret

dxdy dz (B.6)

ϕ(t) =
1

4πc2ε0

∫
ρ(x, y, z)

R

∣∣∣∣
tret

dxdy dz (B.7)

Vector and scalar potential for a point charge q in vacuum

A(P, t) =
1

4πcε0
q

R

β

1 + nβ

∣∣∣∣
tret

(B.8)

ϕ(P, t) =
1

4πcε0
1
c

q

R

1
1 + nβ

∣∣∣∣
tret

(B.9)

Radiation field in vacuum

E(t) =
1

4πcε0
q

r3

{
R ×

[
(R + βR) × β̇

]}∣∣∣
tret

(B.10)

cB (t)= [E × n]tret (B.11)

B.6 Relativistic Relations

B.6.1 Lorentz Transformation

Quantities x∗ etc. are taken in the particle system L∗,while quantities x etc.
refer to the laboratory system L. The particle system L∗ is assumed to move
at the velocity β along the z-axis with respect to the laboratory system L.
Lorentz transformation of coordinates




x∗

y∗

z∗

ct∗




=




1 0 0 0

0 1 0 0

0 0 γ −βγ

0 0 −βγ γ







x

y

z

ct




. (B.12)
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Lorentz transformation of frequencies (relativistic Doppler ef-
fect)

ω = ω∗γ (1 + β n∗
z) (B.13)

Lorentz transformation of angles (collimation)

θ ≈ sin θ∗

γ(1 + β cos θ∗)
. (B.14)

B.6.2 Four-Vectors

Properties of 4-vectors are used in this text to transform physical phenomena
from one inertial system to another.
Space-time 4-vector

s̃ = (x, y, z, ict) , (B.15)

World time
cτ =

√
−s̃2. (B.16)

Properties of 4-vectors
length of a 4-vector is Lorentz invariant
any product of two 4-vectors is Lorentz invariant

Lorentz transformation of time. From (B.16)

cdτ =
√

c2 (dt)2 − (dx)2 − (dy)2 − (dz)2

=
√

c2 −
(
v2

x + v2
y + v2

z

)
dt

=
√

c2 − v2dt =
√

1 − β2cdt

or
dτ =

1
γ

dt . (B.17)

Velocity 4-vector

ṽ =
ds̃
dτ

= γ
ds̃
dt

= γ (ẋ, ẏ, ż, ic) . (B.18)

4-acceleration

ã =
dṽ
dτ

= γ
d
dt

(
γ

ds̃
dt

)
(B.19)

4-acceleration ã = (ãx, ãy, ãz, i ãt) in component form

ãx = γ2ax + γ4βx (β a) , (B.20)

where a is the ordinary acceleration.



918 B Physical Formulae and Parameters

B.6.3 Square of the 4-acceleration

ã2 = γ6
{

a2 − [β × a]2
}

= ã∗2. (B.21)

in particle system (β = 0, γ = 1)

ã∗2 = a∗2. (B.22)

B.6.4 Miscellaneous 4-Vectors and Lorentz Invariant Properties

4-vector: invariance of

space-time isotropy of space

s̃ = (r, ict) s̃2 = −c2τ2

momentum-energy mass

c p̃ = (cp, iE) c2p̃2 = −A2m2c4

wave number isotropy of space

c k̃ = (ck, iω) c2k̃
2

= 0

velocity speed of light

ṽ = γ (ṙ, ic) ṽ2 = −c2

acceleration radiation intensity or Poynting vector

ã = γ2a + γ4β (β a) ã2 =
[
γ2a + γ4β (β a)

]2

current divergence charge conservation

∇̃j̃ =
(
−∇j,i∂ρ

∂t

)
(∇j)2 −

(
∂ρ
∂t

)2

= −
(

∂ρ0
∂t

)2

= 0

current density charge density

j̃ = (j, iρc) j̃
2

= −ρ2
0c

2

force, inertial system

c˜̇p =
(
cṗ, iĖ

)
c2˜̇p2

= 0

field potential Maxwell’s equations

Ã = (A, iφ)

4-divergence d’Alambertian

∇̃ =
(
−∇, i ∂

∂t

)
� = ∇2 − ∂2

∂t2

τ : world time



C

Transformation Matrices in Beam Dynamics

In this section, we will collect transformation matrices for elements discussed
in various parts of this book. Generally, we assume the following designations:

C(z), S(z),D(z)





cosine and sine like solution and dispersion

function, respectively

C ′(z), S′(z), ..etc. derivatives are taken with respect to z

u(z) u(z) can be either x(z) or y(z)

� path (arc) length of element

δ = ∆p/p0 relative momentum error

ϕ =
√

|k0|� quadrupole phase

f quadrupole focal length

Θ =
√

|k + κ2
x|� deflection angle of synchrotron magnet

θ = κx� = �/ρ0 deflection angle of bending magnet

η0 and ηe





magnet entrance and exit angles with respect to

sector magnet, η0 = ηe = −θ/2 < 0 for rect. magnet

L straight length of bending magnet

2G full magnet gap aperture
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C.1 General Transformation Matrix




u(z)

u′(z)

δ




=




C(z) S(z) D(z)

C ′(z) S′(z) D′(z)

0 0 1







u0(z)

u′
0(z)

δ




= M(�|0)




u0(z)

u′
0(z)

δ




(C.1)

C.1.1 Symmetric Magnet Arrangement

Mtot = Mr M =


CS′ + SC ′ 2SCS′

2CC ′ CS′ + SC ′


 (C.2)

In a symmetric lattice segment, the diagonal elements of the transformation
matrix are equal.

C.1.2 Inverse Transformation Matrix

If M =


 C S

C ′ S′


 =⇒ inverse matrix is Mi =


 S′ −S

−C ′ C


 , (C.3)

and the total transformation matrix is Mtot = Mi M =


 1 0

0 1



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C.2 Specific Transformation Matrices

C.2.1 Drift Space

Md(�|0) =




1 � 0

0 1 0

0 0 1


 (C.4)

C.2.2 Bending Magnets

Sector Magnet

In deflecting plane (� arc length)

Ms,ρ(�|0) =




cos θ ρ0 sin θ ρ0(1 − cos θ)

− 1
ρ0

sin θ cos θ sin θ

0 0 1




(C.5)

and in the non-deflecting plane (ignoring edge focusing)

Ms,0(�|0) =




1 � 0

0 1 0

0 0 1




. (C.6)

Including edge focusing, we have in the non-deflecting plane

Ms,0(�|0) =




1 + 1
3θ δf � 0

2
3δf/ρ0 + 1

9θδ
2
f /ρ0 1 + 1

3θ δf 0

0 0 1




(C.7)

Wedge Magnet

In deflecting plane
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Mw,ρ(�|0) =




cos θ − sin θ tan η0 ρ0 sin θ ρ(1 − cos θ)

− tan ηe+tan η0
ρ0

cos θ − 1−tan ηe tan η0
ρ0

sin θ cos θ − sin θ tan ηe sin θ(1 − cos θ) tan ηe

0 0 1




(C.8)

and in the non-deflecting plane

Mw,0(�|0) =




1 − �
ρ0
t0 � 0

− 1
ρ0

(te + t0) + �
ρ2
0
tet0 1 − �

ρ0
te 0

0 0 1


 , (C.9)

where t0,e = − tan η0,e − δ0,e/3 and δ0,e = G/
(
ρ0 cos2 η0,e

)
.

Rectangular Magnet

In the deflecting plane with η0 = ηe = −θ/2

Mr,ρ (� | 0) =




1 ρ0 sin θ ρ0(1 − cos θ)

0 1 2 tan(θ/2)

0 0 1


 , (C.10)

and in the non-deflecting plane

Mr,0 (�|0) =




1 − �
fy

� 0

− 2
fy

+ �
f 2

y
1 − �

fy
0

0 0 1


 , (C.11)

where 1
fy

= 1
ρ0

tan
(

θ
2

) (
1 − 2G

3L

)
.

Synchrotron Magnet

For a focusing synchrotron magnet
(
K = k0 + κ2

x > 0, Θ =
√

k0 + κ2
x�
)

Msy,f(�|0) =




cosΘ 1√
K

sinΘ 1−cos Θ√
K

−
√
K sinΘ cosΘ sin θ

0 0 1


 (C.12)

and a defocusing synchrotron magnet
(
K = k0 + κ2

x < 0, Θ =
√
|k0 + κ2

x|�
)
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Msy,d(�|0) =




coshΘ 1√
|K|

sinhΘ 1−cosh Θ√
‖K‖√

|K| sinhΘ coshΘ sinhΘ

0 0 1


 (C.13)

C.2.3 Quadrupol

Focusing Quadrupole
(
k0 > 0, ϕ =

√
k0�
)

MQF (� |0) =




cosϕ 1√
k0

sinϕ 0

−
√
k0 sinϕ cosϕ 0

0 0 1


 (C.14)

Defocusing Quadrupole
(
k0 < 0, ϕ =

√
|k0|�

)

MQD (� |0) =




coshϕ 1√
|k0|

sinhϕ 0
√
|k0| sinhϕ coshϕ 0

0 0 1


 (C.15)

Quadrupole Doublet

A quadrupole doublet formed by two quadrupoles of focal length f1 and f2

and separated by the distance d has the transformation matrix

Mdb (d |0) =




1 − d/f1 d 0

−1/f ∗ 1 − d/f2 0

0 0 1




, (C.16)

where 1
f ∗ = 1

f1
+ 1

f2
− d

f1 f2
.

Quadrupole Triplet

Symmetric quadrupole triplet made of two equal doublets

Mtr = Mr M =




1 − 2d 2/f 2 2d (1 + d/f) 0

−1/f ∗ 1 − 2d 2/f 2 0

0 0 1




, (C.17)

where 1
f ∗ = 1

f1
+ 1

f2
− d

f1 f2
.
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134. J.J. Murray, K.L. Brown, and T. Fieguth. In 1987 IEEE Part. Accel. Conf.
Washington, number IEEE Cat. No. 87CH2387-9, 1987.

135. B. Autin. The cern anti-proton collector. Technical Report CERN 74-2, CERN,
Geneva, 1974.

136. M.H.R. Donald. Chromaticity correction in circular accvelerators and storage
rings. Part I, a users’ guide to the harmon program. Technical Report PEP
Note-331, SLAC, Stanford, CA, 1979.

137. K.L. Brown, D.C. Carey, and C.Iselin. Decay turtle — a computer program
for simulating charged particle beam transport systems, including decay cal-
culations. Technical Report CERN 57-23, CERN, Geneva, 1957.

138. D.R. Douglas and A. Dragt. IEEE Trans. NS, 28:2522, 1981.
139. A. Wrulich. Proc. workshop on accelerator orbit and partickle tracking pro-

grams. Technical Report BNL-317615, BNL, Brookhaven, NY, 1982.
140. S. Ohnuma. Patpet is a combination of the programs patricia and petros. the

program petros allows us to study the effect of errors and has been developed
by kewisch and steffen. the combination of both programs was performed by
Emery, Safranek, and Wiedemann. Technical Report SSRL ACD-36, SSRL,
Stanford, CA, 1988.

141. J. Kewisch and K.G. Steffen. Technical Report DESY PET-76/09, DESY,
Hamburg, 1976.

142. F.T. Cole. Longitudinal motion in circular accelerators. In M. Month and
M. Dienes, editors, Physics of Particle Accelerators, volume AIP 153, page 44.
Am. Inst. Phys., New York, 1987.

143. F.T. Cole. Nonlinear transformations in action-angle variables. Technical Re-
port TM-179, FERMI Lab, Batavia, IL, 1969.

144. W.T. Weng. Fundamentals — longitudinal motion, volume AIP 184 of Physics
of Particle Accelerators, page 4243. Am. Inst. Phys., New York, 1989.

145. J.D. Jackson. Classical Electrodynamics, 2nd edition. Wiley, New York, 1975.
146. W.H.K. Panofsky and M. Phillips. Classical Electricity and Magnetism.

Addison-Wesley, Reading, 1962.
147. A.B. Baden Fuller. Microwaves. Pergamon, Oxford, 1969.
148. N. Marcuvitz, editor. Waveguide Handbook. McGraw-Hill, New York, 1951.
149. S. Ramo, J.R. Whinnery, and T. van Duzer. Fields and Waves in Communi-

cation Electronic. Wiley, New York, 1984.
150. M. Abramovitz and I. Stegun. Handbook of Mathematical Functions. Dover,

New York, 1972.
151. J.C. Slater. Rev. Mod. Phys., 20:473, 1948.
152. R. Neal, editor. The 2 mile Linear Accelerator. Benjamin, New York, 1968.
153. M.A. Allen, L.G. Karvonen, J.L. Pelegrin, and P.B. Wilson. IEEE Trans. NS,

24:1780, 1977.
154. K. Halbach and F. Holsinger. Part. Accelerators, 7:213, 1976.
155. T. Weiland. Nucl. Instrum. Methods, 212:13, 1983.
156. A. Piwinski. CERN Accelerator School, CAS, volume CERN 85-19, page 29.

CERN, Geneva, 1986.
157. Sakhorn Rimjaem. Generation of Far Infra-Red Radiation from Relativistic

Electron Beams. PhD thesis, Chiang Mai University, Chian Mai, Thailand,
April 2006.



References 931

158. P.B. Wilson, R. Servranckx, A.P. Sabersky, J. Gareyte, G.E. Fischer, and A.W.
Chao. IEEE Trans. NS, 24:1211, 1977.

159. P.L. Morton and V.K. Neil. The interaction of a ring of charge passing through
a cylindrical rf cavity. UCRL-18103, page 365, Berkeley, CA, 1968. LBNL.

160. E. Keil, W. Schnell, and B. Zotter. Technical Report CERN-ISR-LTD/76-22,
CERN, Geneva, 1976.

161. K.W. Robinson. Stability of beam in radiofrequency system. Technical Report
CEA-11, CEAL-1010, Harvard University, Cambridge, USA, 1956, 1966.

162. A.W. Chao and J. Gareyte. Technical Report Int Note-197, SLAC, Stanford,
CA, 1976.

163. A. Hofmann. In Lecture Notes of Physics, volume 296, page 99. Springer, Berlin,
Heidelberg, 1986.

164. G. Ripken. Technical Report R1-70/04, DESY, Hamburg, 1970.
165. J. Safranek. SPEAR Lattice for High Brightness Synchrotron Radiation. PhD

thesis, Stanford University, Stanford, CA, 1992.
166. B. Chirikov. Phys. Rpts., 52:263, 1979.
167. In Nonlinear Dynamics Aspects in Particle Accelerators, volume 247. Lect.

Notes Phys. Springer, Berlin, Heidelberg, Germany, 1986.
168. M. Month and J.C. Herrera, editors. Nonlinear Dynamics and the Beam–Beam

Interaction, volume 57. AIP Conf. Proc. American Institute of Physics, New
York, 1979.

169. M. Month and M. Dienes, editors. Physics of Particle Accelerators, volume
184. AIP Conf. Proc. American Institute of Physics, New York, 1989.

170. J.M. Greene. J. Math. Phys., 20:1183, 1979.
171. In Space Charge Dynamics, volume 296. Lect. Notes Phys. Springer, Berlin,

Heidelberg, Germany, 1988.
172. W. Schottky. Ann. Phys., 57:541, 1918.
173. J. Borer, P. Bramham, H.G. Hereward, K. Hübner, W. Schnell, and L. Thorn-

dahl. In 9th Int. Conf. on High Energy Accelerators, page 53. Stanford Linear
Accelerator Center, Stanford, 1974.

174. H.G. Hereward. Technical Report CERN 77-13, CERN, Geneva, 1977.
175. W. Schnell. Technical Report CERN 57-23, CERN, Geneva, 1977.
176. J. Gareyte and F. Sacherer. In 9th Int. Conf. on High Energy Accelerators,

page 341. Stanford Linear Accelerator Center, Stanford, 1974.
177. D. Boussard. Technical Report CERN 87-03, CERN, Geneva, CH, 1987.
178. S. Van der Meer. Technical Report, CERN, 1972.
179. In Antiprotons for Colliding Beam Facilities, number CERN-84-15. CERN Ac-

celerator School, CERN, Geneva, CH, 1984.
180. C. Bernardini, G.F. Caorazza, G. DiGiugno, G. Ghigo, J. Haissinski, P. Marin,

R. Querzoli, and B. Touschek. Phys. Rev. Lett., 10:407, 1963.
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I-transformation 523
(3 × 3)-transformation matrix 61
4-acceleration 15
4-vector 13, 917

acceleration 765, 917
charge/current density 17
current divergence 17
EM potential 16
energy–momentum 15
force 16
space–time 917
velocity 917

4-velocity 15

aberration
chromatic 271, 435, 436, 485
geometric 271

aberrations 512
chromatic 92, 402, 503
geometric 91, 403, 503

accelerating
fields 191, 195
rf wave 194
sections 193, 196, 208, 411, 558
structure 193
voltage 199, 201, 556

acceleration 194
electrostatic field 191
longitudinal 765
transverse 765

acceptance 218, 242, 265
longitudinal 218
efficiency 220

achromat 146, 179
double bend 397
first order 146
linear 178

achromatic lattice 145
adiabatic capture 220
adiabatic damping 292, 300, 338, 347,

348, 369
ADONE 269
Airy’s functions 819
alignment 503

tolerances 424
alignment error 411, 422, 503

displacement 412, 413
rotational 413

alpha magnet 380
Alvarez structure 196
Ampere turns 41
Ampère’s law 3, 5, 7, 10
amplification factor 423
aperture 44, 66
approximations made

ctr = ± ρ/γ 812
sin(ωLtr) ≈ ωLtr 812

arc length 131
AS(x.y.z), see footnote 816
astigmatism 91
asymmetric wiggler 856
attenuation coefficient 556
attenuation factor 556, 558
average current 290
Avogadro’s number 322

backscattered photons 763
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beam break-up 713
beam center

displacement 415
beam current

optimum 559
beam dynamics 7, 37, 46

linear 115
beam emittance 154, 158

equilibrium 305, 373
horizontal 373
longitudinal 218
longitudinal 218
measurement 164
minimum 392
quantum excitation 306
scaling 392
vertical 374

beam envelope 169, 308
angular 310

beam lifetime 323
beam loading 558
beam matrix 161, 162
beam monitoring 424
beam optics 7, 37

linear 115
beam position monitors 424
beam pulse 290
beam rigidity 39
beam stay clear 309
beam transport lines 38, 237
beam waist 160
beam-beam effect 271, 411, 648
beat factor 435
bending magnet 40, 68

radiation 734
radius 39

Bessel’s functions
modified 812

beta beat 524
betatron

phase 55
betatron function 166, 168, 784

average 254
measurement 422
perturbations 433
symmetric 239
transformation 159
transformation in drift space 170

betatron oscillation 50, 168, 416

amplitude 505
betatron phase 167
betatron tune shift 427
Biot–Savart fields 795
BNS damping 715
bore radius 70
bremsstrahlung 327
brightness 775, 851

diffraction-limited 783
spectral 782

broad-band parasitic losses 674
BSC 309
bunch 216, 735

compression 379
current 290
length 213, 216, 303, 361, 376, 735

manipulation 223
pattern 735,

bunched beam 290
bunching 541, 543

C q 303
canonical

momentum 20, 21, 24
transformation 205, 528, 529
variables 205

capacitive detuning 594
carbon content 72
Cauchy’s residue theorem 697
Cauchy–Riemann equations 96
cavity losses 569
CB 766
Cc 770
cells 237
central limit theorem 302, 423
Cγ 767, 801
characteristic length 74
charge multiplicity 8
Chasman Green lattice 179, 398
Cherenkov

angle 738
condition 738
radiation 737, 738

chopper 542, 544
rf 544

chromatic
aberrations 92, 441, 512
effects 89, 436
error 60
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terms 91
tune shift 439

chromaticity 402, 403, 437
correction 440, 441, 514
FODO cell 438
function 463
horizontal 457
measurement

natural 438, 439
vertical 457

CK 104
closed orbit 258, 418, 422

correction 424
coherence

spatial 778
temporal 780

coherent
radiation power 781

coherent radiation 778
coil slot 71
collective effects 635
collective instabilities 635
colliding beam facilities 271
collimation 18, 733

angle 805, 917
collision point 271
combined function 300

lattice 87, 116
CΩ 771, 814
composite focusing system 144
Compton effect 738
Compton scattering 763
constant gradient structure 557
constant impedance structure 557
coordinate system

curvilinear 81, 87
cosine-like solutions 56
Coulomb field 794
Coulomb regime 740, 741, 794
Coulomb scattering 322

multiple 321
Coulomb’s law 3
coupled motion 621
coupling 92

resonance 484, 485
terms 484

Courant–Snyder invariant 168, 173,
341

Cψ 772, 824

critical photon
energy 734, 770, 807
frequency 770

Cu 835
current density

maximum 71
cutoff wave number 553
cutoff-frequency 549
cyclic 54

coordinates 25
variables 54, 528

cyclotron 39

d’Alembert’s principle 18
damping 200

adiabatic 369
damping criterion

Robinson 294, 297
damping decrement 200, 339, 343, 346

horizontal 355
total 352
vertical 352

damping partition 310
numbers 299

damping ring 378
damping time 416
damping wiggler 100, 314
DBA lattice 397
decapole magnet 77
defocusing quadrupole 121, 279
detectors for high energy physics 411
dielectric constant 4
difference resonance 485, 624
diffraction 775, 873

Fraunhofer 775
intergral, Fraunhofer 775
limit 785

emittance 779
source divergence 779
source size 780

diffusion coefficients 357
dipole field 65

errors 415
dipole kick

single 422
dipole magnet 40
dipole sector magnets 131
disk-loaded waveguide 554
dispersion 145
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dispersion function 60, 61, 91, 217,
259, 419, 454

measurement 177
spurious 374

dispersion suppressor 267
dissipating forces 58
divergence

photon beam 773
Doppler effect 18, 733, 917
double bend achromat 179, 397
doublet 144
drift space 120, 278, 280
duty factor 291
dynamic aperture 327, 404, 440, 527,

528

edge focusing
wiggler magnet 832

Ehrenfest’s theorem 199
eigenvalue equation 244, 260
eigenvalues 244
eigenvector 260
eigenvector equation 252
electromagnetic radiation 731, 732
electromagnetic waves

traveling 193
electron beam 735
electrostatic field 87

multipole 87
patterns 87

emittance
diffraction limited 779, 786
longitudinal 205
normalized 292

energy
conservation 10, 736

energy errors 436
energy gain

total 199
energy loss 802

per turn 767, 801
energy spectrum

measurement 184
energy spread 361

equilibrium 375
envelope 169
equation of motion 9, 46, 48

general 89
homogeneous 55

inhomogeneous 59
linear 55

equilibrium beam emittance 305
equilibrium orbit 258, 416–418
equipotential surfaces 44, 67
ESRF, EuropeanSynchrotronRadiation-

Facility 398
η-function 256, 259

average value 262
Euler’s formula 245
Euler’s identity 612
Euler–Lagrange equations 19
excitation coils 71
excitation current 41, 70

Faraday’s law 3, 5, 7
head–tail instability 715, 720

fast 715
FEL 199, 217, 735, 861

small gain 864
Fermi National Laboratory 630
field error 411, 413, 503

sources of 412
field gradient 42, 79

maximum 72
field quality

gradient 70
fielderrors

statistical dipole 422
figure of eight trajectory 832
filamentation 220, 520
filling time 556
first-order achromat 146
fitting program 183
fixed point 212

stable 212, 496
unstable 212, 496

flat undulator 760
Floquet’s coordinates 172
Floquet’s theorem 250
FNAL 630
focal length 42, 44, 117, 144, 256
focal point 42
focusing

in bending magnets 129
principle of 42
sector magnets 129

focusing devices 42
focusing quadrupole 120, 278, 279
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focusing strength 44
FODO cell 238

maximum acceptance 124, 238, 241,
443

optimum 241
region of stability 246

FODO lattice 238, 391
FODO parameter 240
Fokker–Planck equation 174, 357–359,

362, 370, 372
force

centrifugal 38
Lorentz 38

form factor 781
formation length 741
forward cone 851
forward radiation 851
four vector

acceleration 917
velocity 917

four vectors
space-time 917

Fraunhofer
diffraction 775
diffraction integral 775

free electron laser 199, 211, 217, 735,
861

Frenet–Serret coordinates 22, 23, 29
frequency

Larmor 39
fringe field 119

effect of finite pole gap 133
fringe field effect

bending magnet 131
fringe field focusing

wiggler magnet 832
fringe fields 72, 131

bending magnet 133
fringe field focusing 133
fundamental frequency 830, 837
fundamental theorem of beam loading

587
fundamental wavelength 757, 760, 834

gain curve 872
gap height 131

magnetpole shimming 70
Gauss’ theorem 4, 10
Gaussian distribution 5, 359

generating function 529
generator voltage 580
geometric aberrations 91, 512, 513
good field region 69
GR(x.y.z), see footnote 816
gradient field 79

errors 481
quality 70
btolerance 69

Green’s function 59
Greens function method 60
group velocity 554, 557

half integer resonance 430, 481
Hamilton’s integral principle 18
Hamiltonian 173, 205, 208

beam dynamics 32, 52
formulation of beam dynamics 49
nonlinear 529

Hamiltonian equations 24
Hamiltonian perturbation theory 503
hard edge model 46, 119, 125, 131
harmonic correction 523
harmonic number 196, 202, 572, 671,

735
harmonic oscillator 55

damped 338
harmonics 758
head–tail instability 436

fast 720
heavy ion storage rings 214
helical undulator 760
helicity 855
high frequency electromagnetic fields

192
higher order modes 674

losses 200
Hill’s equation 250
HOMs 674
hybrid magnet 755

impedance 672
broad band 674, 68s
internal 578
resistive wall 686
shunt 578
space charge 686

induction 7
insertion 252, 268
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device 411, 750
Collins 268
low beta 268, 271
quadrupoles 271

instability
multibunch 674
single bunch 674

integer resonance 261, 430, 481
interaction region 272
intrabeam scattering 293
inverse matrix 124
iron dominated quadrupole magnets

67
isochronous 148

quasi 303
storage ring 217, 224, 303
system 146

isomagnetic
lattice 768

isomagnetic ring 394

JJ-function 849, 867

Keil–Schnell stability criterion 591,
701

kinematic perturbation 414
kinetic energy 558

Lagrange function 21
Lagrangian 20

formulation of beam dynamics 49
Lamor frequency 809
Laplace equation 63, 80
Large Hadron Collider 747
Larmor frequency 39
Laslett form factors 658
lattice 237

achromatic 145
functions 168
periodic 237
resonances 479, 483
symmetric 237
unit 238

LHC 747, 767
libration 206
Liénard–Wiechert potentials 6, 731,

792
linac efficiency 559
line spectrum 842

undulator 849
linear

accelerator 347, 732
achromats 178
approximation 116
beam dynamics 37, 117
collider 364, 389
coupling resonances 485
fields 37, 116
superposition 418, 421
systems 115

Liouville’s theorem 155, 220, 292, 335,
340, 347

Lithium lens 43
longitudinal

emittance 205, 218
fields 191, 193
oscillations 200
phase space 202
stability limit 211
tune 255

Lorentz
contraction 13, 733
force equation 8, 21, 37, 87, 646
gauge 6, 789
transformation 12, 916

loss parameter 588, 680
low beta insertion 271
low carbon steel 72
luminosity 265, 272, 407, 647, 764

MAD 266
MAGNET 70
magnet

bending 40
decapole 77
dipole 40
excitation current 41
iron dominated 40
octupole 77
quadrupole 44, 66
rotated 76
sextupole 77
superconducting 40
synchrotron 73
upright 76

magnet free spaces 268
magnet lattice 38, 116, 237
magnet misalignments 412, 413
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magnetic field expansion 86

magnetic permeability 40

magnetic-field equation 80

magnetic-field potential 86

magnetization curve 72

Markoff process 355

matching 265

dispersion 266

phase space 219

photon beam 783

Twiss parameters 264

matching codes 266

matching conditions 265

matrix formulation 57, 119

Maxwell’s equations 3, 731, 789, 914

measurement

beam emittance 164

betatron function 422

dispersion function 177

energy spectrum 184

tune 255

micro bunch 290

microwave instability

stability criterion 700

midplane symmetry 76

misalignment errors 413

modes

parasitic 673

Moivre’s formula 245

momentum

conservation 736

acceptance 211, 213

compaction 188, 201, 203, 217, 361

compaction factor 187, 198, 262

approximate value 262

error 47

resolution 186

spread 561

moving rf-buckets 209, 215

multipole 77

error

allowed 70

fields 63, 77

upright 78

rotated 79

magnets 77

strength parameters 77, 78

terms 82

Nabla operator 339
natural chromaticity 438

measurement 439
necktie diagram 246
negative mass instability 692
normalized coordinates 168, 172
normalized emittance 292

octupole magnet 74, 77, 413
operating point 253, 485
optical klystron 734
optimum phase advance 241
orbit 249

correction
magnets 425
schemes 426

distortion 91, 425, 505
dominant harmonic 420
harmonic content 426
equilibrium 416
kicks 424

order of resonance 483
oscillations

amplitude 203
longitudinal 254
phase 254
synchrotron 254

over voltage factor 213

Panofsky–Wenzel theorem 319
parabolic current sheet lens 43
parallel acceleration 800
parasitic losses

broad band 674
parasitic modes 673
paraxial beam optics 31, 414
paraxial beams 47
Parseval’s theorem 797, 808
particle beam dynamics 46
particle bunch 216
particle distribution

Gaussian 780
longitudinal 361

particle motion
collective 153

particle tracking 526
path length 42, 46, 146
pathlength

momentum dependence 187
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peak current 290
pendulum equation 868
periodic dispersion function 256
periodic lattice

characteristic coefficient 250
determinant of matrix 250
lattice functions 252
trace of matrix 250

permanent magnet
wiggler 755

permeability 4, 72, 546
perturbation 341

betatron function 433
dipolefield 415
kinematic 414, 441

perturbation terms 414, 419, 480, 504
perturbations 59

magnetic field 441
phase diagram 212
phase ellipse 158, 160, 161, 265

parameters 159
phase equation 200, 202
phase focusing 167, 194, 204
phase oscillation 200, 209, 254

coherent 594
damping decrement 200

phase planes 153
phase space

density 220
diagram 209
dynamics longitudinal 194
ellipse, transformation 160, 215
filamentation 221
longitudinal 202, 361
matching 219, 264
particle beam in 153
region 209, 211
rotation 377
stable 218

phase velocity 194, 553
photon beam

divergence 773
matching 783
temporal structure 751

photon energy
critical 734, 770, 807
undulator 761

photon flux
angular 772, 773

differential 814
per unit solid angle 770
spectral 824

photon source
parameter 783

photons
backscattered 763

physical ring acceptance 327
pin hole 845
plasma lens 43
Poincaré integral 205
Point to point imaging 144
POISSON 70
Poisson’s equation 644
polarization 813, 852

elliptical 734, 852
π−mode 771, 852
σ−mode 771, 852
states 811
time 384

pole face 147
angles 147
entrance 147
exit 147
rotation 135

pole profile 68
pole root 72
pole shape 68
potential

retarded 791, 916
scalar 789
scalar 6
vector 789
vector 6
well 206, 209

distortion 705
Poynting vector 11, 736, 740, 795
prebuncher 542
principal solutions 56
principle of phase focusing 207, 219
proton

radiation power 767
pulse current 290
pulsed beam 290
pure sector magnet 176

quadrupole 68
defocusing 121, 279
design concepts 67
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doublet 123, 144
end field effects 125
focusing 120, 279
fringe field correction 125
magnet 44, 66
misalignments 423
rotated 605

quality factor 555
quantum excitation 306
quantum lifetime 363
quarter wavelength transformer 284
quasi-isochronous ring 217

radiance 851
radiation

bending magnet 750
coherent 778
forward 851
longitudinal acceleration 743
regime 741
shielding 778
spectrum 768, 813
spontaneous 862
stimulated 861
synchrotron 739
transverse acceleration 765

radiation cleaning 332
radiation cone 805
radiation field 793, 794, 916

longitudinal acceleration 742
spectral 813

radiation length 328
radiation lobes 803
radiation power 765

instantaneous 766, 767, 800
orthogonal acceleration 800
parallel acceleration 800
spatial distribution 805, 817
total 768, 796
undulator 835
wiggler 755

radiation regime 741, 794
radiation sources

first generation 390
fourth generation 390
second generation 390
third generation 390

radio antenna 733
radio frequency fields 192

Rayleigh length 873
rectangular magnet 138, 178

magnet length 138
recursion formula 81
reference orbit 418
reference path 258, 418
reference phase 198
reference trajectory 46
relativistic relations 916
resistive wall 672
resistive-wall instability

transverse 704
resonance 430, 479

conditions 480, 481, 482, 630
coupling 484, 630

linear difference 485, 624
linear sum 485

forbidden 484
half integer 430, 481, 495, 497
higher order 482, 485
integer 430, 481
isolated 480
lattice 479, 483
linear 479
nonlinear 479, 483
order 483, 485
pattern 493, 495
resonance diagram 485
structural 479, 483
sum 624, 629
third-order 498

retarded
potentials 731, 791
time 731, 790

revolution frequency 188, 201, 255,
736, 769

rf cavities 192
rf fields 192
rf frequency 201, 572

fundamental 196
rf phase 196
rf-bucket 206, 211, 735

moving 209, 215, 219
stationary 207, 214, 218

ring
acceptance 323
isomagnetic 394

Robinson criterion 310, 355
damping 594
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damping criterion 294, 297
damping decrement 597
wiggler 317

rotated magnet 76
Rutherford scattering 322

satellite frequencies 255
saturation 72
scalar potential 5, 6, 44, 66, 80, 789
scattering

inelastic 327
sector magnet 129, 147
self fields

electric 644
magnetic 644
space-charge 646

separated-function lattice 87, 116, 300
separatrix 206, 213
sextupole 74

magnet 77
shimming

magnet pole 70
shunt impedance 556, 570, 578

specific 570
sine-like solutions 56
skin depth 568
SLAC linac structure 557
SLC, Stanford Linear Collider 406
small gain FEL 864
smooth approximation 254, 294
solenoid 92
space charge

fields 649
forces 642
self-fields 646
tune shift 573

spatial coherence 778
spatial distribution

synchrotron radiation 804
SPEAR 269
special relativity 11
spectral

brightness 782, 851
line width 842
photon flux 824
purity 842

spectrometer 183
spectrum 768
spin

dynamics 384
precession 385
rotators 384

spontaneous radiation 862
SPS 767
stability criterion 244, 245, 253, 495
stability limit

longitudinal 211
stability limits 233
stable phase space 218
standing wave 193
Stanford Linear Collider, SLC 406
stationary buckets 214
stimulated radiation 861
stochastic cooling 638
Stoke’s theorem 5, 7
stop band 430, 432, 483, 493

width 430, 483, 485, 495
nth−order 498

storage ring 735
strength parameter 755
strong focusing 55, 116
structural resonances 479
sum resonance 485, 624
superbend 734, 751
superconducting magnets 40
superperiodicity 483
superperiods 237, 263, 264, 483
surface resistance 569
symmetric FODO lattice 239
symmetric quadrupole triplet 124
synchronicity condition 194–196, 208
synchronous

particle 208
rf-phase 195, 198, 204, 207, 214

synchrotron 732
magnet 73, 116, 131, 177

defocusing 177
focusing 177

oscillation 50, 201, 254
damping decrement 348

frequency 200, 201, 203, 214, 361
tune 202, 255

synchrotron radiation 100, 199, 416,
739, 744, 801

angular distibution 816
coherent 778
energy loss per turn 215, 767, 801
harmonics 815
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losses 215
polarization 812

π−mode 812
σ−mode 812

power per unit solid angle 796
spatial distribution 804, 805, 809,

813
spectral distribution 809, 813
spectrum 823
total power 796, 802

TBA, triple bend achromat 399
temporal coherence 778
thermal desorption 330
ϑ−parameter 349
thin lens approximation 122, 239
third-order resonances 482
Thomson scattering 763

cross section 763
time dilatation 13
tolerance

gradient 69
tolerance requirements 424
tolerances

assembly 411, 422
quadrupole field 427
statistical 422

Touschek effect 639
transformation matrix 57, 278

chromatic 255
defocusing quadrupole 121
driftspace 120
focusing quadrupole 121
FODO cell 239
in normalized coordinates 173
in terms of betatron functions 170
inverse lattice 124
quadrupole doublet 123
rectangular magnet 137
reversed lattice 123
sector magnet 131
sector magnet fringe field 134
synchrotron magnet 130, 177
triplet 124
wedge magnet 136

transient time 193, 570
factor 565, 570

transition energy 188, 203
transition radiation 796

approximate 263
spatial distribution 798
spectral distribution 799
total energy 799

TRANSPORT 266
transport line

nonisochronous 378
transverse acceleration 800
transverse fields 39
travel time 188
trim magnets 425
triple bend achromat 180, 399
triplet achromat 400
tune 253

approximate 254
synchrotron oscillation 202

tune measurement 255
tune shift 342, 430

amplitude dependence 482
coherent 704
space charge 573
synchrotron oscillation 708

tune spread 343
tuneshift 429

fielderrors 427
Twiss parameters 159

undulator 411, 733, 830
flat 760
helical 760
line spectrum 733
period 733
strength parameter 755

undulator magnet 99, 755, 757
line spectrum 849

undulator radiation
fundamental 757, 760
period length 733

unity transformation matrix 252
universal function 772, 823
upright magnets 76

vacuum
high 330
ultra high 330

vacuum chamber environment 199
Vanadium Permendur 755
variables

cyclic 54



948 Index

vector potential 5, 6, 789
Vlasov’s equation 174, 339, 709
voltage breakdown 191

wake fields 671, 672, 674
wall losses 555
wave equation 6, 790, 915
wave number 197
waveguide

disk-loaded 554
wavelength

fundamental 757
shifter 734, 752
undulator 761

weak focusing 116
wedge magnet 135, 147
Wideroe linear accelerator structure

196

Wideroe principle 196

wiggler magnet 99, 182, 411, 734,
753, 830

achromat 182

asymmetric 856

critical photon energy 756

dispersion function 182

electromagnetic 755

flat 100

fringe field focusing 832

helical 100

permanent magnet 755

strength parameter 103, 755

wire lens 43

world time 14, 917

Wronskian determinant 58, 338




