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THE EMITFANCE CONCEPT 

J D Lawson 
Rutherford Appleton Laboratory, Chilton, Oxon, OXll  0QX, UK 

ABSTRACT 

An informal descriptive account is first given of the emittance 
concept and its underlying physical basis. This is followed by a discussion 
of the connection between emittance and entropy,  and a number  of 
questions relating to problems of current interest concerning such topics as 
emittance growth and equipartition between different degrees of freedom 
are raised. Although no new results are obtained, it is hoped that the 
discussion may be helpful in the search for new insights. The paper differs 
from that presented at the conference, and contains ideas which arose in 
discussion with T P Wangler at Los Alamos after the conference. 

INTRODUCTION 

The term 'emittance' seems to have emerged in the early fifties, 
soon after the advent of alternating gradient focusing, and the general use 
of matrix techniques in accelerator design. It was preceded by the concept 
of 'admittance', defined in 1952 by Sigurgeirsson I for an alternating 
gradient synchrotron as 

"where f2 is the solid angle, within which the direction of motion for a 
particle has to fall if it is to remain in the synchrotron without striking the 
walls of the vacuum chamber." In his discussion, which is in the context 
of the synchrotron, z is the vertical direction and x is the radial distance 
from the equilibrium orbit, neglecting the small curvature. (Here we use y 
and x for these two quantities). He shows that for symmetry about the xy 
and zy planes (his notation) the x and z variables can be separated, and that 
the bounding contour in the two directions is elliptical, and further that 
the area of the ellipses does not vary along the length of the beam. In 
general the areas of the ellipses corresponding to the two planes are 
different. The extension to emittance, as a figure of merit defining a beam 
with particles having coordinates that would just fill such an ellipse is 
straightforward. Further extension of the concept to the longitudinal 
direction is not difficult as discussed below. 

The emittance was soon seen to be a convenient figure of merit for 
ion sources, though it was immediately recognized that a single number 
cannot contain information about the distribution of points projected on 
the xx' or yy' planes. This difficulty is particularly evident  when 
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2 The Emi t tance  Concept 

aberrat ions are present ,  so that  the distr ibution is not  elliptical. For 
distributions that are roughly  elliptical, conventions such as defining the 
emit tance as the area of the smallest ellipse containing say 95% of the 
points are convenient,  if not  elegant. In mode rn  usage the emittance is 

the area of the appropriate area divided by 7r. 

Before discussing further some of the complications associated with 
the idea of emittance, some general observations about the properties of 
ensembles of particles in a Hamiltonian system without  collisions will be 
summar ized .  

LIOUVILLE'S THEOREM 

This t heo rem appl ies  to ensembles  of part icles m o v i n g  in a 
conservative system, under  the action of an external potential,  plus that 
arising from the smoothed-out  self-fields of the particles themselves. By 
' smoothed-out '  is mean t  that individual  particle-particle collisions are 
excluded; only the average fields, which do not depend on the positions of 
the individual  particles, are included.  The theorem,  which  is simply 
proved  from Hamilton's  equations and continuity, states that the density 
in 6 dimensional  phase-space in the ne ighbourhood of any chosen point 
remains constant. From this it follows that if a surface is d rawn around a 
por t ion of the phase-space 'fluid', its volume remains invariant  though 
its shape can vary. 

It is this invar iance that  makes  the emit tance  a useful  concept, 
though it is important  to distinguish properties associated with the overall 
distribution from those associated with its projections. First we note that 
the variables xx' and yy'  associated with the transverse emit tance are not 
canonical,  so that  xx' space is not  strictly 'phase-space'.  In paraxial 

approximation,  however ,  x ~ = px/pz ,  so that ~yx' and x are canonical. It is 
readily shown that for a linear focusing system, in which x, y and z motion 
are decoup led ,  projected areas enclosing a fixed number  of points (each 
cor responding  to a particle) are conserved.  Fur thermore ,  shapes are 
conserved  apar t  f rom rotat ion and stretching. In part icular ,  ellipses 
remain  elliptical. These features are not  present  in linear systems with 
coupling between x and y directions, (for example, skew quadrupoles,  or 
quadrupole  + solenoid). For linear systems with axial symmetry ,  such as 
solenoids or convent ional  magnet ic  lenses, the x and y mot ion  can be 
decoupled by making a transformation to the Larmor frame, which rotates 

with angular velocity COL = -eBz/2ymo. 

For m o n o e n e r g e t i c  beams,  wi th  un i fo rm  line dens i ty  in the 
direction of propagation, the transverse emittance can be determined from 
a knowledge  of the particle positions and velocities in a small slice of 
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beam of length Az. If, however ,  there is s tructure in the z-direction, as is 
the case in a linear accelerator or synchrotron,  the particles in a complete  
bunch  need  to be considered.  The length  of the  b u n c h  is just  one  
wavelength  in a linac, or the c i rcumference C d iv ided  by  the opera t ing  
harmonic  number  n in a synchrotron.  Momenta  can be measu red  wi th  

respect  to a particle moving  at a velocity fK or f C / n .  Al ternat ively ,  
particles can be specified in terms of their phase  wi th  respect  to the  

accelerating field and its derivative, ~ and (~. In such cyclic systems any  
particles leaving the front of the bunch are replaced by others enter ing at 
the rear. 

In this discussion some elementary properties of emit tance for l inear 
systems have  been summar ized ;  before p roceed ing  it is necessary  to 
at tempt a definition. 

DEHNITIONS OF EMITrANCE 

The progress  of a beam can be r ep re sen t ed  in genera l  by  the 
evolution of a distribution of points in six-dimensional  phase space. In 
most  beams the system is conservative, ( though a notable exception is an 
electron b e a m  or very  h igh energy  p ro ton  b e a m  w h e r e  synch ro t ron  
radia t ion is emitted).  The quest ion now is h o w  best  to quant i fy  this 
distribution in terms of a single number.  A heuristic me thod  is to take a 
value proport ional  to the m i n i m u m  sized hyper-el l ipsoid (or ellipse for 
projections involving one spatial co-ordinate)  c i rcumscr ibing a certain 
fraction of the points. More precise is a description in terms of moments .  
The r.m.s, emittance r of a projection in the xx' plane m a y  be defined as 2,3 

~2 = [16](< x 2 >< x '2 > - < xx' >2) (2) 

The factor 16 is in t roduced in ref. 2 but  not  in ref. 3. Its purpose  is to 
ensure par i ty  wi th  the earlier alternative definit ion in which  the area of 

uniformly popula ted  ellipse in xx' space is taken as ~8. (See for example  
ref. 4). 

The following points are well established: 

1) For a linear system in which  x, y and  z mot ion  is decoupled,  the 

normal ized  emit tance ~Tr is invariant.  In the presence of space- 
charge there are a l imited number  of distributions which  p roduce  a 
uniform projected distribution with sharp edge, and hence provide  a 
linear contribution to the focusing; the best known  of these is that  of 
Kapchinskij and Vladimirskij, (K-V), discussed fur ther  below. The 
envelope equation for such beams, known  as the K-V equat ion,  is, 
for a drifting unaccelerated beam, 
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e~ __2K = 0 (3) 
R+k(x)x- ~ - x + y  

where  k(x) represents the focusing force and K is the dimensionless 
perveance.  

2) For beams with non-uniform charge density, so that the contribution 
to focusing is non-linear,  the K-V envelope equations are still valid 
p rov ided  that  a) x and y are in terpre ted  as r.m.s, values,  b) the 
distribution has elliptical symmetry3. 

3) The value of ~ is not, however,  invariant. Al though the value dr  
for a given situation can be found,  the w a y  that ~ varies cannot be 
de te rmined .  

Most of the discussion so far has been confined to linear systems 
with separable variables. When the variables are coupled there are further 
invariants,  cor responding  to Eq. 2 though  these are considerably more 
complicated in form 5. 

So far, precise defini t ion has been given only  of the projected 

emit tance ex or Cy. For systems with axial symmet ry  'radial emittance'  is 
sometimes used, with definition similar to Eq. 2 but  with r in place of x. In 
a linear system this appears quite logical, since the envelope equation is as 
Eq. 2 with r substituted for x and y. This is convenient for examining non- 
linear systems in which some form of spherical aberration is present, such 
as might  arise from imperfect lenses or non-linear space-charge forces in a 
beam with non-uni form radial densi ty distribution. (As an example see 
ref. 6, this conference). It must  be emphasized,  however ,  that in general, 
a l though  x 2 + y2 = r 2, it is not  true that x '2 + y.2 = r,2 unless the initial 
beam has no particles wi th  angular  velocity about  the axis. The rr' 
emit tance is thus useful  for initially laminar  beams,  but  is less so, for 
example ,  for beams whe re  thermal  velocities arising f rom cathodes or 
p lasma ion sources are important.  

Alternative definitions of emittance have been used including both 
x and  y mot ion  in cylindrical beams. Using a hyd rodynamic  approach 
rather than the usual optical one, Lee, Yu and Barletta 7 define it as 

# 2 =  ,~ 2 Ix, 2 + y, 2 _ r, 2 ) (4) 

and  use this to calculate emittance growth in a converging beam where 
the deviation from ballistic trajectories arising from space-charge is small. 
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THE PROBLEM OF EMITTANCE GROWTH 

Of great technical importance is the question of how the emittance of 
a beam grows as it passes down an accelerator or a beam transport system. 
Much progress has been made in this field since pioneering work at CERN 
and Brookhaven over 20 years ago, but the subject is far from completely 
unders tood.  Modern  computers  have enabled m a n y  impress ive  
computations and similations to be made, but it is still not clear whether 
any further physical insights await revelation. It is not the intention to 
review this very extensive work here, but merely to list some questions 
which seem not to be resolved. It is assumed that the reader is familiar 
with recent work of Hofmann, Reiser, Wangler and others and earlier 
work of Lapostolle concerning the concept of non-linear field energy and 
its conversion to particle energy in the process of emittance growth. (See 
for example ref. 8 and earlier references therein). Some questions to 
which there do not seem to be agreed answers are listed below. Some of 
these will be discussed further in the next section. 

(1) A beam is fed into a long uniform focusing system. In the presence 
of space-charge, but not Coulomb collisions, is a final equilibrium 
with Vz >> Vx, Vy ultimately attained? 

(2) If so, is it possible other than by direct computer  simulation to 

determine the final emittance ~f from the initial value ~i and the 
initial matching conditions? 

(3) Does the velocity distribution eventually become Maxwellian in the 
absence of collisions? 

(4) Can we make any estimate of the time to reach equilibrium in terms 

of ei, a / a 0  and matching conditions? (Here (~/c~0 is the tune 
depression of the 'equivalent' K-V beam with the same value of e). 

(5) What happens in a periodic system? Does the beam evolve to a 
periodically fluctuating state with Maxwellian velocity distribution? 

(6) In a beam with unequal transverse energies in the two directions 
parallel  to the symmet ry  planes, unde r  what  condit ions is 
equipartition achieved? What is the physical mechanism? 

(7) As 6, but for bunches in a linac. 

(8) Can we find a way of estimating these equipartition times? 
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It is not difficult to add further related questions to this list. In the 
next section the physical nature of emittance is discussed, in the hope that 
this may lead to some further insights into the above questions. 

THE PHYSICAL NATURE OF EMITTANCE 

Emittance may be regarded as a figure of merit for the quality of a 
particle beam; it is clearly related to brightness, a fundamental concept in 
light optics, and much discussed also in electron optics. (A typical paper in 
which these relationships may be seen is given as ref. 9). Although 
brightness is strictly defined locally, the overall brightness of a particle 
beam is often defined as proportional to the current divided by the product 

of ex and ey. In both light optics and charged-particle optics there is a 
tendency for the quality of a transmitted beam to be degraded by 
aberrations and by misalignments and distortions of the focusing 
elements. In charged-particle optics there is the additional complication of 
self-fields. 

An alternative point of view is to regard the emittance as 
representing the effect of a force tending to disperse the beam. The 
envelope equation (3) can equally well be expressed in terms of time as the 

independent variable. Multiplying Eq. 3 by term by ym0 ~2 converts it into 

?m0~. If we now consider the force on a small volume element of the 
beam rather than on individual particles as before, the second term 
represents the attractive focusing force, and the fourth the space charge 
repulsion. It is not difficult to show that the emittance term arises from a 
negative radial pressure gradient 10. For a matched gaussian beam the 
temperature  is everywhere constant, but the density and hence nkT 
decreases with radius. For a beam with a K-V distribution on the other 
hand the density is constant but the pressure decreases with radius. 

Perhaps the most fundamental viewpoint, however, is obtainable 
from statistical mechanics. The particles in the beam represent an 
ensemble in phase-space evolving in time under  the constraints of 
Liouville's theorem. As observed earlier, the fundamental constraint is 
that the phase-space density in the neighbourhood of a particular point 
remains constant. For a given distribution it is by no means immediately 
evident how to use this fact to determine how the various moments of 
the distribution, such as those specifying the r.m.s, emittance or beam 
radius, evolve with time. Energy must also be conserved, and it is now 
believed that in an external potential independent of z the t ransverse  
energy (kinetic + potential + field energy) observed in the beam frame is 
conserved. This enables correlations between radial density distribution 
and emittance to be made, but does not allow predictions of how either of 
these quantities varies with z. 
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At this point  we  make  connect ion wi th  the optical v i ewpo in t  and 
note that aberrations and non-linearities in a focusing channel,  act on a 
beam that is not  matched,  (so that the dis tr ibut ion is not  i ndependen t  of 
z), to cause phase  mixing of  the osillations of indiv idual  part icles,  and 
f i lamentat ion of the phase  space.  F i lamenta t ion  can also occur  in a 
drift ing expanding  beam. Such f i lamentat ion in general  increases  the 
projected emittances of the beam. (This is not  a lways so, artificial s ingular  

dis t r ibut ions can be constructed in which  r decreases  monotonically11).  
Coupl ing,  even in linear sys tems can cause ' twisting' of the phase-space  

dis t r ibut ion in which the values  of the projec ted  emit tances  ex and r 
oscillate. This is observed in the well  known  n = 0.2 coupl ing resonance  
in cyclotrons. 

EMITTANCE A N D  ENTROPY 

A connection be tween emittance and ent ropy was  first noted  as long 
as 30 years  ago. This idea was  later explored  in a short  paper ,  and an 
a t tempt  was  made  to relate the en t ropy  to other  variables regard ing  the 
beam as a 'drifting gas' descr ibed in terms of t he rmodynamic  var iables  
such as pressure,  temperature,  and internal energy 12. This did  not  lead to 
any n e w  insights of practical  value,  and the connect ion  has pe rhaps  
acquired the status of an intellectual curiosity. It is wor th  re-examining 
the quest ion,  to see whether  any useful  results might  be  obtained.  For 
simplicity, we  start as in ref. 12 wi th  a one dimensional  sys tem descr ibed 
by  an ensemble  of N points on the xx' plane. This plane is then d iv ided  
into cells of area A, such that each cell contains many  points,  bu t  the cell 
size is small compared  with that  of the overall  distribution. With  these 
assumptions,  and Boltzmann's definition of entropy,  

S = k ha W, (5) 

where  W is the number  of ways  that the points can be  assigned to the cells 
to p r o d u c e  the given d is t r ibut ion ,  it is s h o w n  in ref. 12 that  for a 
uniformly filled ellipse of area ~e 

So = ha z~- ha A, (6) 

where  SO has been written for S / k N .  (Note that r is the r.m.s, emit tance  
including the factor 16 in Eq. 3). For other distributions there is a different 
numerical  factor under  the logarithm in the first term on the r.h.s, of Eq. 6, 
leading to an additional constant to be  added  to So in Eq. 6. 

One  fea ture  that  this m o d e l  s h o w s  is the  g r o w t h  of  ef fec t ive  
emittance arising from filamentation. If the densi ty  dis tr ibut ion varies b y  
only a small amount  from one cell to the next, distort ion of the shape  of 
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the distribution does not affect the entropy. If, however, the distribution 
becomes excessively filamented this is no longer the case. When the 
width of the filaments becomes comparable or less than the cell size more 
cells are occupied, and the entropy increases. If the cell size is set equal to 
that which can be resolved by the measur ing apparatus,  then the 
emittance increase becomes analogous to the entropy increase of two 
almost identical fluids that are mixed. This is the classic 'mixing' 
problem. If some red fluid is dropped in to an otherwise identical 
colourless fluid, the boundary between the two can at first clearly be seen; 
later mixing occurs until the whole gradually assumes a uniform pink 
colour. 

Following the analogy between emittance and entropy, both would 
at first sight appear to be a measure of the disorder of the system. 
Unfortunately the correspondence is not so good as might first appear. For 
example, returning to the one dimensional system described above, if 
instead of the points being uniformly distributed within an elliptical 
contour they are distributed round its circumference only, (corresponding 
to particles all oscillating with the same ampli tude but uniformly 
distributed in phase,) the entropy and emittance are very different. 
Because of the very small number of cells occupied the entropy will be 
extremely small. The r.m.s, emittance will, on the other hand, be four 
times as large. Likewise, for a two dimensional system the K-V 
distribution is represented in phase-space by a three-dimensional shell and 
thus has zero four-dimensional hyper-volume. This represents a highly 
ordered system with low entropy. The less ordered 'waterbag', in which 
the centre of the hyperellipsoidal shell is uniformly filled, has very much 
higher  entropy. If, on the other hand,  projections of these two 
distributions on the xx' plane are considered, the ellipse is filled, 
uniformly for the K-V distribution and with parabolic density profile 
decreasing to zero for the waterbag; the emittance of the less ordered 
waterbag distribution is now lower. 

A further example to illustrate this is the projected emittance of a 
uniform beam of radius a0 with axial symmetry confined by electrostatic 

lenses, but rotating with angular velocity 0 about the axis. The flow is 
laminar and therefore highly ordered, the temperature is zero, but the 

projected emittance on the xx' plane is an ellipse of area/~ given by 

e = a~ O/v2. (7) 

In xx' yy' space the points corresponding to this distribution lie on a two- 
dimensional surface with entropy even less than that of a K-V distribution 
with the same projected emittance. (Note, however, that for a rotating 
beam confined by a solenoid, the emittance must be measured in the 
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Larmor frame. It may then be zero if 0 is zero in this frame, as would  be 
the case, for example, with Brillouin flow). 

We conclude that emittance cannot be directly related to disorder. Despite 
these anomalies,  the correspondence be tween emit tance and en t ropy  
might  not  be so bad for less singular distributions. In many  practical 
situations the transverse velocity distribution is not far from Maxwellian. 
Cons ide ra t ion  of the en t ropy  migh t  enable the final equ i l ib r ium 
configuration of a long beam to be determined,  though it mus t  first be 
established that  such an equil ibrium exists. To avoid this difficulty 
consideration of the following simpler problem is proposed.  A parabolic 
potential well with axial symmetry is provided over a finite length. This 
might  be a section of a charged cylinder which is transparent to charged 
particles. At time t = 0 a gas of charged particles with axial symmetry ,  
radial velocity, and arbitrary radial distribution which is independent  of z 
is released in the potential well. The particles move radially, and because 
of the non-linearity of the space-charge force with radius,  indiv idual  
particle oscillations of different ampli tude will phase-mix. This is similar 
to, but  simpler than, the problem of a mismatched beam launched into a 
uniform focusing channel. (If the presence of ends is objected to, a r ing 
configuration can be substituted). Now  it is reasonable to suppose that this 
simpler artificial system will arrive at some final equil ibrium. The 
following questions might  be asked about its behaviour. 

(1) Does the particle motion remain both independent  of z and wi thout  
z-velocity, or does the emergence of chaotic behaviour give rise to 
z-variation and z-velocities? 

(2) If so, does this imply that in a beam there is no final steady state with 
Vz >> Vx, Vy? 

(3) Does the dis t r ibut ion become Maxwell ian,  and  if so is there 
equipartition between radial and z directions? 

In the above questions collisions have been ignored, but  we know 
that they will ul t imately lead to a Maxwell ian dis t r ibut ion in three 
dimensions ,  with conserved energy and m a x i m u m  entropy.  We may  
further enquire: 

(4) Can anything be said about relative time constants for relaxation to a 
Maxwel l ian d is t r ibut ion  by collisions and the  c o r r e s p o n d i n g  
relaxation time by chaotic effects (if there is one)? 

(5) Is the final distribution obtained by solving Poisson's equation with 
the  Bol tzmann  equat ion  13, wi th  energy conservat ion and  the 
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constraint that the entropy should be a maximum? (The self-fields 
will contribute to the internal energy U of the system). 

At this point  it may  be asked what  the relevance of considering the 
above quest ions is to the problem of how the emit tance and radial 
distribution of a beam develops. It can only give some indication of what  
the behaviour after a very long time might  be, and this is probably of no 
practical interest at the present  time. Transport  systems of such great 
length do not  exist, and if they did then the beam behaviour  would  
probably be more influenced by misalignments of the focusing elements. 

More generally, it may be asked whether  the concepts of statistical 
mechanics and thermodynamics can yield new insights, or pu t  on a more 
firm footing recent work on emittance growth. 

CONCLUSION 

Unders tanding  of emittance growth and equiparti t ion phenomena 
in particle beams where space-charge forces are large are incomplete. It is 
not clear whether  any new physical principles remain to be discovered 
that  might  provide  insights of practical value. It is hoped  that the 
informal discussion in the present paper might  suggest lines for further 
thought  and enquiry. 
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