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OPTICAL AND HYDRODYNAMICAL APPROACHES 
TO CHARGED PARTICLE BEAMS 

J. D. LAWSON 
Rutherford Laboratory, Chilton, Oxfordshire, England 

(Received 4 November 1974) 

Abstract-The optical paraxial ray equation for charged particles, including the effects of self fields, 
is discussed in both the laboratory and rotating Larmor frames. The corresponding beam envelope 
equation is derived, in the first instance for laminar flow but later for some non-laminar distributions. 
The equivalence between optical and hydrodynamical viewpoints is discussed in some detail, and the 
relation between pressure and emittance is explored. Finally, some of the characteristics of longi- 
tudinal energy spread in the beam are investigated. 

1. I N T R O D U C T I O N  
CHARGED particle beams may be looked at from two points of view. On the one 
hand there is the optical approach, in which the beam is considered as a bundle of 
orbits, whose properties obey optical laws, derived from the principles of classical 
mechanics. Alternatively, the beam may be considered as a hot gas, confined by 
external focusing fields, for which a hydrodynamic description is appropriate. 

The relation between these two approaches, and in particular the connection 
between the optical emittance, and hydrodynamic pressure and temperature is not 
immediately evident. In this paper a few simple beams are explored from both 
points of view, and the equivalence of the descriptions is illustrated. The aim is to 
provide a simple discussion of essential physical features rather than a formal and 
conplete analysis. 

Precisely what constitutes a ‘beam’ is not easy to define. The term is generally 
taken to  refer to a roughly cylindrical collection of charges, in which all the members 
of one species have a component of velocity of the same sign parallel to the axis. 
Sometimes only one type of particle is present, though often the system is partly or 
fully ‘neutralized’ by approximately stationary particles of the opposite sign. In 
many practical beams the velocity component parallel to the axis greatly exceeds the 
transverse velocity, and that the energy spread of the moving particles is small, a 
few percent or less. 

One of the commonest types of beam, that in a cathode ray tube, has extremely 
small energy spread and transverse velocities, and there is very little space charge 
interaction between the particles. At the other extreme, represented by pulsed rela- 
tivistic electron beams carrying tens of thousands of amps, the behaviour is dominated 
by self-field and image effects, and substantial transverse velocities can develop. 
Collisions may also be of importance. 

In the present paper we choose examples in which transverse velocities are 
small, but self fields may be important. Collisions are neglected unless the contrary 
is specifically stated. 

2.  PARAXIAL RAY EQUATION F O R  A S I N G L E  C H A R G E  
The basic equation of linear particle optics is the paraxial ray equation. This de- 

fines the trajectory of a charge. The form that we shall use is that appropriate to a 
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system with axial symmetry, containing longitudinal and radial components of elec- 
tric and magnetic field. For the moment we assume that these are produced by ex- 
ternal devices such as solenoids and axially symmetrical electrodes with holes for 
the beam to pass through. We restrict attention to trajectories near the axis, so that 
transverse velocities are small, and longitudinal field components are essentially 
independent of r ,  whereas radial components are proportional to r.  Relativistic 
units are used, /3 = u/c and y = (1 - /32)-1/2, from which it follows that the particle 
momentum is p = /3ymoc and the kinetic energy is ( y  - l)moc2. Differentation with 
respect to z is denoted by primes, so that drldt = /3crf. Because of the paraxial 
approximation, in which angles with the axis are small, the momentum in the z- 
direction is essentially independent of the transverse momentum, p z  w p .  The E, 
field may be written as ytmoc2/q, and the magnetic field B, as -2ymoQ2,/q, where QL 
is the Larmor frequency, equal to half the cyclotron frequency, QL = wJ2. (The 
negative sign indicates anticlockwise rotation in a positive field.) 

In these units, the paraxial equation may be written 

The symbols have been defined above except for Po, which represents the canonical 
angular momentum of the charge about the axis, P, = ymor28 + qAor. 

This equation, and its derivation, niay be found in most texts on electron optics; 
the cotation varies however and superficially it may present a different appearance. 
The form quoted here and its derivation, using the principle of least action, may be 
found in the text of PANOFSKY and PHILLIPS (1955). More directly the equation may 
be derived by finding the equation of motion of a particle in fields of the appropriate 
form, either directly or from the appropriate Lagrangian, and then changing the 
independent variable from t to z. PIERCE (1954) in a non-relativistic formulation uses 
a direct physical approach; KIRSTEIN, KINO and WATERS (1967) start from the non- 
relativistic Lagrangian. 

The equation contains only the z-components of the fields on the axis, radial 
components do not occur explicitly. This is because the divergence of the fields is 
zero, so that there is a relation between the fieid gradients along the axis and the 
radial fields. Thus the term containing y” is proportional to the radiai eiectric field. 

The given axial fields determine y f  and QL,  so that for a particle of given y at 
z = 0, the value of r as a function of z is determined for initial conditions rl, rl’ 
and for Po which is a constant of the motion. 

The angular co-ordinate is determined from the subsidiary equation 

That this is so may be seen by writing 

pe  = ps f qA,r = + iqB,r2 = - jrmoQLr2, (3) 

so that the integrand becomes pe/ymor2 = CO. 
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We now look at  some very simple solutions of equations (1) and (2), in which the 
electric field is zero. With this restriction equation (1) simplifies to 

If further, the magnetic field is uniform, we know that the solution represents 
a helical trajectory, of pitch 27~Bclw = .rr,9c/QL. 

If Po = 0, then the helix passes through the axis; the solution is r = r1 sin (Q,z/,~c); 
one period in z represents two revolutions of the particle. A particle moving from 
a zero field into a field of B, is illustrated in Fig. la. The radial field components at 
the end of the solenoid impart the angular velocity about the axis. 

As a second example we make r constant in a uniform magnetic field. There are 
obviously two such solutions, one representing a helix centred on the axis, and the 
other a particle moving in a straight line along a field line. To find the appropriate 
value of P, we set the first term in equation (4) equal to zero. This yields 

pe = &ymoQLr2. ( 5 )  

Figure l b  shows the trajectory of an electron passing from a field B,, where 
QL is -qB,/2ym0, to an equal field of opposite sign. This illustrates both types of 
solution; the azimuthal impulse from the radial fields associated with the cusp 
geometry is twice as great as that in the first example, so that the radius of the helix 
is twice as large. 

If B, varies slowly with z ,  so that the P” term in equation (1) is small, equation ( 5 )  
still holds; sincePo is a constant of the motion, yr2aL ,  or r2B, is invariant as expected. 

We note now a useful transformation which simplifies the equation. If the system 
is viewed in a frame of reference rotating with frequency mf, then axial and radial 

\ 2 Z n L / P  

Pe =1/2qBr2 

FIG. 1.-Two solutions of the paraxial ray equation (4), are represented. In the first of 
these pe is zero and RL jumps from zero to a constant value. The trajectory passes 
through the axis, and rotates about it with frequency a,. In the second, aL changes 
sign at the transition point, and a trajectory initially parallel to the axis rotates at 
constant radius with frequency 2R,. In the Larmor frame, the particle in the first dia- 
gram oscillates in the magnetic field region in a plane through the axis from one side of 
the beam to the other. The particle in the second diagram spirals round the axis with 

angular velocity R, on both sides of the transition region. 
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components of field are transformed according to the laws calculated in the Appen- 
dix. In particular, if only a field B, is present, and cof = Q, 

ET2 = -&rQLBzl = -yynzoQLzrr/q (6)  
Bzz = 0, 

where suffices 1 and 2 refer to the original and rotating frames. The force is now 
purely radial, and equations (4) and (2) become 

where is now the mechanical angular momentum in the rotating frame. This 
frame is called the “Larmor frame”. The trajectory shown in the right hand side of 
Fig. l a  becomes sinusoidal and also planar when viewed in this frame. The tra- 
jectory in Fig. l b  becomes a spiral of pitch 2n,9c/QL. 

Since in the Larmor frame the force is towards the axis, the projections of all 
trajectories on two orthogonal planes Ox and Qy through the axis are sinusoidal. 
Equations (7) and (8) may therefore be replaced by the simpler linear equations 

where the suffix L denotes that xL and yL are projections in the rotating Larmor 
frame. 

Initial conditions may be expressed in terms of x,, xL’, yL,  yL’ rather than 
r ,  r‘ ,  8, P,. If Pe is zero, the orbits pass through the axis, and this implies that x 
and y are simultaneously zero. 

Although the discussion has been confined to equation ( 5 ) ,  the same observations 
apply to equation (1). The forces arising from the electric field are not velocity 
dependent, and reinain unchanged duriog the transformation to the Larmor frame. 
Equation (i) in the iarmor frame is therefore unchanged except that P O  is :ep!zce:! 
by pe.  The equation of the x projection is 

In the absence of electric fields in the laboratory frame it takes the simple form 

where A(z) = /k /QL(z) .  
In the presence of electric fields, equation (10) can be simplified by a trans- 

formation to remove the xL’ term. This transformation, to “reduced variables” 
X ,  = ~ ~ ( f i y ) ~ ’ ~  yields after a little manipulation 

XLtt + X L / A 2 ( 2 )  = 0 (11) 
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which is of the same form as equation (11). This transformation is equivalent to 
‘Picht’s transformation’ X = W4x of non-relativistic electron optics. We shall use 
it in Section 8. 

Having reduced the paraxial equation to these simple forms, we now consider 
the effects of self-fields arising from currents and charges in the beam. 

3. SELF-FIELDS I N  A CYLINDRICAL BEAM 
In order to preserve linearity, and thereby the simplicity of our discussion, we 

consider the self-fields in a beam which has uniform charge and current density, 
moving through a stationary background of ions with charge density equal to a 
fraction f of that of the beam particles. Associated with the charge and current of 
the beam are a radial electric field and azimuthal magnetic field, both proportional to 
radius. The electric field acts directly on a charge in the beam to produce an outward 
force; the magnetic field acts also on the moving charges to produce a Y x B force, 
which acts radially inward. The net force is the sum of these two. The values can 
readily be calculated from Gauss’ theorem and Ampere’s law respectively. If N 
is the number of particles per unit length, a the beam radius, and r the co-ordinate of 
a charge, then 

These give rise to forces in the radial direction 

Writing /A, ,&~ = ljc2, the total force is 

The acceleration arising from this force is i = Flym,, whence r” = F/ym,,B2c2. 
Setting q2/4mom0c2 = ro, the classical radius of the charge, yields 

Writing Nro = v 

it is now possible to add a term -Kr/az(z) to the left hand side of equation (1) to 
take account of the self fields. In order to find r(z) from this equation we need to 
know a@). This itself is a function of the collective properties of the orbits; the 
relation between them, essential for self-consistency, is studied later. For the moment 
we assume all the orbits to be geometrically similar, so that for any particular par- 
ticle, r cc a. For a particle at the edge of the beam, r = 4. 

The quantity K determines the effect of the self fields on the particle orbits; 
it may be termed ‘generalized perveance’. For f = 0, and non-relativistic beams, 
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K = 2Nr0/j2,  which is proportional to I/V3’2, the perveance as normally defined. 
For completely neutral beams, K = -2471 = -21/IA where la is the AlfvCn current 
47r4ym,c3/q, for electrons equal to 17,000 By amps. (ALFVEN, 1939). Iff= 1 - j2 = 
l/y2 then K = 0 and the electric and magnetic forces balance; this is sometimes 
known as the ‘Budker condition’. (BUDKER, 1956). 

In the absence of external focusing, only the first term of equation (1) remains. 
In the presence of the perveance term Kr/a2, the trajectory equation of a charge at 
the edge of the beam, where r‘ = a,  is 

rr” = K. (18) 

If all trajectories are parallel to the axis where r = 0, then for positive K this 
defines the well known ‘beam spreading’ curve; for negative K the solution represents 
a pinch. (LAWSON, 1958). 

Another interesting example is provided by retaining a uniform magnetic field 
and setting r N  = 0; this represents a beam in which the outward space charge and 
centrifugal forces on every particle are exactly balanced by the Lorentz force. For 
Po = 0 this is known as ‘Brillouin flow’. (BRILLOUIN, 1945). Only the term 
QL2r/B2c2 remains from equation (1). Setting this equal to the perveance term, with 
r = a, yields 

K/a2 = QL2/B2c2. (1 9 )  

For an un-neutralized non-relativistic beam, from equation (17) 

K = 2Nq2/4ns,mop2c2 = a20D2/2p2c2, (20) 

where LC), is the plasma frequency, so that equation (19) becomes 

WD&2Q L 2 -  - 1 2 % ’  2 (21) 

In the laboratory frame it represents that particular balance between centrifugal, 
space charge and Lorentz forces, for which Po = 0. In the Larmor frame on the 
other hand the balance is between radial electric field and space charge forces only. 
The trajectories are straight lines paral!el to the axis. 

4. PARTICLE ACCELERATOR BEAMS 
Focusing by magnets in cyclic particle accelerators is also described by equations 

of the form of equation (Il), but with x in place of xL. The axis however is in general 
curved, and the values of P(z) are different in the orbit plane, and a direction per- 
pendicular to this plane. Indeed, in strong focusing systems R2 is of opposite sign 
in the two directions, and in both it alternates in sign as z varies. In particular, in a 
quadrupole focusing magnet, R2 has the same magnitude but opposite signs in the 
two planes. 

As in the cylindrical paraxial equation, the self-fields provide an extra linear 
focusing (or defocusing) term. The beam is no longer circular however, but ellipt- 
ical, and this introduces the complication that the focusing in the x direction is a 
function of the beam dimension b in the y direction. If fields arising from image 
forces in the walls are neglected, then the equations corresponding to equation (11). 
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but including the self-field terms are 

1 2K ) x = o  
"I  + (2 - a(a + b) 

2K 
b(a + b) 

For the special case of Ac = A,, a = b, these reduce to 

XI' + ($ - ?)x = 0. 

Since the purpose of the present paper is pedagogical, we confine attention hence- 
forth to  this particular case, but note that generalization to an elliptical beam is 
straightforward provided that there is no longitudinal magnetic field B,. If there is 
such a field the behaviour is complicated; fortunately such a configuration is not 
often encountered. 

Practical accelerator beams tend to have density profiles of gaussian shape, but 
for many purposes the uniform density model is a good approximation. 

5.  ENVELOPE EQUATION FOR LAMINAR BEAM 
The motion of a particular electron in a beam is described by equation (1) with 

the additional perveance term -Kr/a2. For a beam in which all the orbits are geo- 
metrically similar, the envelope equation is obtained by putting x = a in equation 
(1) and including the perveance term; this then becomes 

where Pea refers to a charge at the edge of the beam. In paraxial approximation the 
contribution to the B, field arising from the current associated with PO may readily 
be shown to be negligible. 

In the absence of external electric fields, y' and 7'' are zero and equation (24) 
simplifies to 

In the Larmor frame the equation is identical, except for pea in place of Pea. 
The physical significance of this equation is straightforward, it represents a 

balance between the inertial force (first term) and the focusing, self and centrifugal 
forces respectively. 

Some special solutions are of interest; two of these, corresponding to terms 1 
and 3 only (equation 18) and terms 2 and 3 only (equation 19) have already been 
discussed. The first and last terms only, represent the beam in free space; a manifold 
of straight lines produces the hyperboloidal envelope 
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The last two terms only of equation (25) represent a beam in which the self force 
balances the centrifugal force. This can only happen when K is negative so that 
the inward magnetic force dominates. For a completely neutralized beamK = -2v/y;  
writing pea = Blym,c the last term becomes (/11/B)2, and the equilibrium condition 
is the familiar relation 

Sketches of the solutions corresponding to the various combinations of terms in 
equation (25), with 3, independent of z, are shown in Fig. 2. Some, but not all, of 
these have been already discussed. 

Envelope,and orbits in  
Larmor frame [dot ted) .+=+I _-------- 1,2 I -  1 

I I I 

I I I 

FIG. 2.-These curves represent solutions of the envelope equation (25) in which only 
two of the four terms are present. The dctted lines represent projections of typical 

trajectories in the Larmcr frame. 

In the discussion so far we have been concerned only with laminar beams. There 
is no distinction between an orbit model and a hydrodynamic model, the force per 
unit volume is just the number density times the force on a single particle. The beam 
is cold, and exerts no pressure. 

Beams with finite pressure and temperature will now be described. 
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6. AN 'AZIMUTHALLY HOT' BEAM 

515 

The analysis in previous sections has been confined entirely to laminar beams. 
The paraxial equation however also applies to beams in which some or all of the 
particles have canonical angular momenta equal to -Pe, this is evident because only 
the square of Po occurs in the equation. 

As a simple example, we consider a beam in the Larmor frame, in which equal 
numbers of particles have angular momentum p e  and -Po. 

The paraxial equation in this context is best interpreted in a hydrodynamical 
sense. Although the equation is the same as that for which all particles have the 
same sign for pe ,  the physical interpretation is different. Instead of a rotating volume 
element with zero pressure, there is a stationary voluine element, with finite pressure. 
Instead of a centrifugal force, there is a force arising from a pressure gradient. To 
demonstrate explicitly that the term has the same form, we note that the velocity 

a particle at radius r is -J-po(r)/ymor. Writing ll rather than p for the pressure to  
avoid confusion, the element ITeo of the pressure tensor divided by the number of 
electrons no per unit volume is 

The outward force on this element arising from the pressure gradient is minus the 
divergence of the pressure tensor, which, in the absence of radial and longitudinal 
temperature may be shown to be -ll,,/r. The force per electron is therefore just 
po2/ymor3 as expected. The last term of the paraxial equation (1) could equally well 
have been written 

The argument so far has referred to the Larmor frame. I t  is readily verified that in 
the laboratory frame the fluid velocity at a point in this model is equal to  the L-r Q mor 
frequency times the radius, and that the centrifugal force on a volume eleaent 
balances theje x B, force. 

The temperature of the beam in a given direction may be defined by the relation 
nokT = Efi; in the azimuthal direction the temperature in either frame is accordingly 
IIeelnok, which is given by equation (28). 

cc nor2 for constant y andpe. Regarding the beam as a 
two dimensional gas of volume V cc u2, this implies that 17 V 2  is constant. The gas 
obeys the adiabatic law Tc V' = constant where y is the adiabatic exponent, equal to  
(2 + 2)/2 = 2. (Although illustrated here in a special context, the adiabatic gas 
laws for a collisionless system may easily be found directly from Liouville's theorem). 

From equation (29), 

7. A BEAM WITH ISOTROPIC TRANSVERSE TEMPERATURE 
Although a natural form to assume for the transverse velocity distribution in a 

finite temperature beam might be Maxwellian, this is not consistent with the uni- 
form density which has been assumed so far. We have already studied a very simple 
finite temperature distribution associated with a beam of uniform density; we now 
introduce another, which has an isotropic, though radius dependent, pressure. This 
is the 'microcanonical' distribution of KAPCHINSKIJ and VLADIMIRSKIJ (1959), which 



represents the paraxial limit of the distribution more recently studied by HAMMER 
and ROSTOKER (1970). The name reflects the fact that, in a beam which is uniform 
in the z direction, so that a is constant, all particles have the same transverse energy. 
The distribution is 

This distribution function represents a three dimensional hyper-ellipsoidal shell in four 
dimensional xx’yy’ space. it may be shown, by a generalization of the theorem of 
Archimedes, that a projection of such a shell on a plane is an elliptical area of uni- 
form density. In particular, the density in the xy plane (perpendicular to the beam 
axis) is uniform and bounded by a circle of radius a. In the xx’ or yy’ plane the pro- 
jection is an ellipse with semi-axes a and CI. The angle CI represents the maximum 
angle a trajectory makes with the axis. 

The projections of individual orbits in the xx’ or yy’ planes consist of concentric 
ellipses, representing simple harmonic motion in the uniform focusing field. In 
the xy plane however the projections are ellipses with semi-axes A and B such that 
A2 + B2 = a2. The axes are distributed uniformly with 8, (since there is no preferred 
direction); when A = B they are circles with radius a d ;  when B = 0 they are 
straight lines of length 2A = 2a, the orbits under these cocditions extending to the 
edge of the beam, as illustrated in Fig. 3. 

FIG. 3.-Projections on a plane perpendicular to the axis of some typical orbits in a 
uniform diameter beam with the microcanonical distribution defined by equation (30). 
The velocity of particles passing though any point on the projection is constant and 
isotropic, decreasing parabolically from a maximum value for the central point to zero 

for a point at the edge of the beam. 

From equation (301, it is evident that at any radius (x2 + y2)1/2, the value of 
x ’ ~  + f 2  is constant. Furthernore, because of the symmetry between x’ and y’,  

xy plane the angular distribution of trajectories passing through any point is uni- 
form. Setting x ’ ~  + y’2 = vL2//?2c2, equation (30) may be written 

=,, +I+- Luu Lln+ iau +I.-+ LuaL +I- LLtere is iio preferred orientation of the axes, ir foiiows that in the 

v2 = P2c2a2(a2 - r2)/a2. 

IT = ~ n o y m o ~ 2 ~ 2 a 2 ( a 2  - r2)/a2. 

(3 1) 
Since the distribution at a point is isotropic, T,.~ = r o e ,  the transverse pressure is a 
scalar, 

Unlike the previous example, the pressure is a maximum on the axis and decreases 
to zero at the beam edge. From equation (32) the force per unit volume nay  be 
found, 

(32) 

-- an - noymoj2c2cr2rla2. 
ar (33)  
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Normalized to a single particle this becomes, at  r = a ,  

where we have written 
F7 = ym,f12c2u2/a = ym,,f12c2&2/a3 (34) 

(35) E = aa. 

The quantity E is defined as the ‘emittance’ of the beam. It is seen to  be l/n 
times the area occupied by the trajectories projected on to the xx’ or yy’ plane. In 
our exampie the x and y axes, and the x’ and y‘ axes of the hyperellipsoid (equation 
30) were taken as equal; in general they need not be, and the emittance in the two 
planes can be different. This is the usual situation in particle accelerators, where the 
horizontal and vertical focusing are not of equal strength. 

Comparison of equation (34) with equation (29) shows that the force on a volume 
element associated with the emittance E is of the same form as that associated with the 
finite angular momentum in a laminar beam. Comparing equations (25) and (34) 

where 8, is the helix angle at the edge of the beam. 
It might be conjectured at this point that the envelope equation for a beam with 

emittance E would be as equation (25), but with the last term c2/a3. To make this 
statement precise, the meaning of E must be generalized, since it has so far been 
defined only in the context of a beam with a’ = 0. This may be done from equation 
(32). Assuming again that the gas obeys the law II V 2  = const, where II is measwed 
at r = 0, it follows that the r.h.s with r = 0 multiplied by a4 must be constant. 
Since no CC a-I, then a must be so that E = aa is invariant. In the next section 
we demonstrate from a different point of view that this area is invariant, though 
the shape and orientation of the projected ellipse vary as we move away from a 
region where a’ = 0. The distribution function corresponds to a hyperellipsoid 
with axes no longer parallel to the co-ordinate axes; superimposed on the isotropic 
velocity distribution at  a point in the beam is a radial velocity proportional to r ,  
but the pressure is still given by equation (33). 

From equation (36) it is evident that in the terms describing the angular momentum 
of a laminar beam, or the enitlance of a microcanonical beam, a and ea are equiv- 
alent. indeed, the projections on the xx’ plane of the orbits in both distributions 
are identical. As already stated, the microcanonical distribution represents a three 
dimensional shell in xx’ yy’ space, it may readily be verified that the distribution in 
the laminar beam represents a two dimensional shell, defined by the intersection of 
the three dimensional volumes 

x = y’a2,k y = -x1a2/&. (37) 
It is left to the reader to  interpret the appropriate curves in Fig. 2 in terms of a finite 
emittance rather than a finite angular momentum. 

In this section we have taken a beam with a particular transverse velocity dis- 
tribution, and shown how the paraxial ray equation may be interpreted in a hydro- 
dynamical sense. We now complete the discussion by writing it in completely hydro- 
dynamical form, with time as independent variable, for a beam viewed in the Larmor 
frame in which we also specify that E, = 0. 
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Since E, = 0, the z velocity is constant. The radial velocity of a volume element 
is U,. The equation expresses the radial acceleration of this element under the zction 
of focusing, space-charge, centrifugal and pressure gradient forces. 
The basic equation is 

Du, 1 an 
Dt nom 

where n, refers to the transverse pressure. The forces are observed in the moving 
frame, and consequently suitable Lorentz transformations must be applied to  the 
parameters which determine them. Furthermore, t on the left hand side must be 
multiplied by y to allow for time dilation when returning to  the laboratory frame. 
For example, in the pressure term no must be multiplied by y ,  and II divided by y. 
In the perveance term the self magnetic field of the electrons vanishes, but that 
arising from any ions must be included. The reader will readily verify that for a 
rotating microcanonical distribution in the Larmor frame equation (38) becomes 

Setting r = a, this becomes the envelope equation (25), with the addition of a 
pressure term. Unlike previous equations, this contains the effect of rotation as well 
as finite pressure. It is not difficult to show that the projected distribution on the 
xx‘ plane is elliptical with area equal to 1i.r times the square root of the expression in 
curly brackets. 

8. THE EMITTANCE CONCEPT 
Starting with the optical paraxial ray equation we have moved in the previous 

sections towards a hydrodynamic description of our beam, making use of the con- 
cepts of pressure and temperature. These have been expressed in terms of the emit- 
tance, a quantity closely associated with the transverse distribution function. So 
far, only the emittance of rather special distribution functions has been considered. 

More generally, we can usefully apply the concept to any beam which has two 
planes of symxetry Ox and Oy. The emittance cx of the beam where z = z,, can be de- 
flied as l / ~  times the projected area on the xx’ plane occupied by points corresponding 
to the trajectories as they pass the point z,. In practical beams the distribution does 
not have a sharp edge. The emittance can then be specified as the minimum area 
enclosing a given fraction of the points, or as the area where the density of points 
exceeds some given fraction of the maximum density. 

If we consider a group of points in phase space corresponding to particles passing 
the point zo at some instant, then by Liouville’s theorem the density of these points, 
and consequently the volume which they occupy, is invariant. If, furthermore, the 
x, y and z motion is uncoupled, the area which the projection occupies on the x ,p ,  
plane is invariant as the particles move along the z axis. In paraxial approximation 
x‘ is related to the transverse momentum as x’ = px/gym,c. It follows therefore that 
/?YE remains constant. This quantity is sometimes called the normalized emittance. 
Although the area of the projection on the x, pyx’ plane remains constant, the 
shape does not. How this varies for a linear system will be seen in the next section. 
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A good discussion of the emittance in an experimental context, and its relation 
to optical brightness is given by SEPTIER, (1967). We do not discuss this further, 
but now derive formally the envelope equation for a beam with finite emittance. 

9. OPTICAL DERIVATION O F  ENVELOPE EQUATION 
We now derive the projected envelope equation and discuss its solutions in terms 

of the emittance concept. No further mention will be made of hydrodynamic quan- 
tities. We allow for an accelerating electric field along the beam, and use as our 
starting point the equation in normalized variables, equation (12). The method 
closely follows that of GARREN (1969). For a system with finite B, and axial symmetry, 
X is measured in the Larmor frame. This analysis is also relevant to accelerators 
where B, is zero, the x and y directions are uncoupled, and the focusing in the two 
planes is different, (3, f A,>. 

We write the paraxial equation in the form 

x + Xl;tx2 = 0, (40) 
where A, is a function of z. This equation is now transformed by the introduction 
of phase-amplitude variables 

x = A w ( z )  cos (y(z) + 0). (41) 
The meaning of the various quantities will be evident later, as will the signiiicance of 
the seemingly arbitrary restriction on y imposed by the relation y‘ = l / w 2 .  Using 
this relation we can write X’ as 

(42) 

Four quantities w ,  y, A and 0 have been introduced; of these w and y are functions 
of z and are the same for all trajectories, whereas A and CP are independent of z and 
replace the values of x and X I  at z = 0 as constants specifying a particular trajectory. 
Substituting equation (41) into equation (40) it is found that w satisfies the equation 

W 1 W” + 7 - - = 0. 
Ax ( X )  w 3  

(43) 

This equation has many solutions, and it remains to choose an appropriate one. To 
do this we determine the relation between A,  X, X’ w and w’ found by eliminating 
y from equations (41) and (42), (using the fact that cos2 y + sin2 y = 1). This may 
be written 

or 

where 
(45) 
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An appropriate choice of initial conditions for following the development of a beam 
consisting of particles corresponding to points on the ellipse represented by equation 
(45) is found by matching initial values of w and w’ to CI, and / lo in accordance with 
equation (46). Points lying on a particular ellipse have a unique value of A ,  and a 
range of Q, from 0 to 2n. Points corresponding to trajectories with a different value 
of A lie on an ellipse scaled in size but otherwise geometrically similar. As z varies, 
the shape and orientation of the ellipse change in accordance with the variation of 
w and w’, and points corresponding to a given value of CD move round the ellipse. 
The area of the ellipse defined by equation (45) is 

s = .?rA2(poyo - CI$)--1/2. (47) 

From equation (46) the quantity in brackets is equal to unity, so that the area is 
invariant and equal to rA2.  

Consider now an ensemble of trajectories corresponding to points uniformly 
distributed inside the ellipse; as z varies these all move on geometrically similar 
ellipses, with the appropriate value of A .  Since the ellipse area is invariant, the den- 
sity of points remains constant, as expected from Liouville’s theorem; furthermore, 
since its area is just .?r x the normalized emittance of the beam, it follows that A ,  = 

where A.  is the maximum value of A .  The envelope equation of a beam 
consisting of trajectories constituting a uniformly filled ellipse in xx‘ space (all values 
of 0, A < A,) can readily be calculated. At any value of z, the edge particle in the 
beam corresponds to A = A,  = (/ly&)1/2, y + Q, = 0. From equation (41), X = 
A,w = ( / l y ~ ) l / ~ w  for such a particle; substituting in equation (43) it follows that the 
envelope equation is 

This equation is valid in the presence of an accelerating electric field. In the absence 
of such a field not only is it true that X = (py)1’2x but also X” = (/ly)*’2xN, so that 
equation (48) reduces to the form 

Equations (45) and (46) specify the parameters of the emittance ellipse; evidently 
when w f  = 0, at a waist in the beam, the ellipse is upright. The detailed behaviour of 
such ellipses has been studied in connection with beam transport systems (BANFQRD 
1962). 

Only in linear systems, where the paraxial equation applies, does the emittance 
diagram remain elliptical. Aberrations produce distortion, which in extreme cases 
produces filamentation of the diagram and an effective increase of emittance. This 
phenomenon is widely discussed in the accelerator literature; a treatment in the 
spirit of the present paper, in which the connection between emittance and entropy 
is explored, is given by LAWSON, LAPOSTQLLE and GLUCKSTERN (1973). 

10. LONGITUDINAL ENERGY SPREAD 
So far only the effects of transverse momentum spread have been discussed; all 

particles have been assumed to have the same momentum along the beam. In many 
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situations, where particles are accelerated in a gun or ion source for example, this 
is a good approximation. In  accelerators however, especially when the beam is 
bunched, longitudinal momentum spread, and the corresponding emittance, are of 
importance. 

The properties of such beams will not be discussed here, but one important 
feature should be noted. This is the fact that, even for non-relativistic beams, the 
energy spread measured in a frame moving with the beam is considerably less than 
that measured in the laboratory. Accelerating a beam away from a cathode by means 
of a grid placed close to it lowers the longitudinal temperature, but leaves the trans- 
verse temperature unchanged. 

To illustrate this effect, we consider two particles in the beam with energies 
ymoc2 and ( y  + Ay)moc2, where Aymoc2 is a typical energy difference seen in the 
Laboratory frame. Taking Ay < y ,  it follows that A@ = Ay(d@/dy) = Ay/@y3. 
The difference of velocities seen in a frame moving with one of the particles, AB2, 
follows from the law of addition of velocities, 

For A y / y  small this is always non-relativistic, (even though Ay may be large), so 
that the apparent energy in the moving frame is 

Ay2m0c2 = +(4y/@y)2moC2. (51) 

thermionic cathode of temperat12re -T,. A y  is of the order of k-Tc/nirc2, 2nd fer I 

This is always very much less than 4ym0c2. 
An interesting example is provided by a non-relativistic beam accelerated from a 

non-relativistic beam, from equation (51) 

The temperature in the accelerated beam is thus reduced in the ratio of the beam 
energy to a quarter of the thermal energy associated with the cathode. 

A beam originating from a cathode which is then accelerated therefore tends to  
~ E V Z  a verv J m a l l  !ongitndica! temper~txe. For beams in which co!!isions are im- 
portant there is a tendency for the transverse energy to be scattered into the longi- 
tudinal direction. This effect can be troublesome in electron microscope beams, 
where there is a high intensity associated with beam crossover in the focusing systems; 
it is known as the Boersch effect (BOERSCH, 1954, LQEFFLER, 1970). It is also of 
importance in charged particle storage rings, where it is sometimes known as the 
Touschek effect (BRUCK, 1966). 

11. CONCLUSION 
Paraxial beams with rather special velocity distributions have been studied both 

from hydrodynamical and optical points of view. In most practical situations only 
one of the descriptions will be appropriate; indeed, for many high current beams 
where time varying longitudinal fields are important the optical approach is clearly 
inadequate. Nevertheless it is instructive to see explicitly how the two approaches 
6 
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merge, and in particular explore the not entirely obvious relation between pressure 
and emittance. 
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APPENDIX 
Fields seen in a rotatingframe in a uniform magnetic field 

In a uniform magnetic field B, the forces on a moving particle may be written 

F, = mii: - rglzj = qaslrB1, (Ai j 

(A21 
In a frame of reference rotating with of, the angle O2 is related to the angle O1 in the stationary frame 
by the expression 8, = 8, + oft. Substituting in equations (A1)and (A2),and writing R, for -qB,,/m, 
yields for the forces in the new frame of reference 

F,, = m(r .2  r022) = -mrof(2R, - oJ + 2mr6,(RL - of) (A31 

('44) 

Fe = m(r& + 2i.6,) = --gB,,i. 

Fe, = m ( d 2  + 236,) = 2mi.(RL - cot). 

The force F, contains one component which is independent of the particle velocity in the frame 2, 
and one component perpendicular to the velocity. These can be identsed with E,, and Bzz, to give 

(A6) 
m 
4 

For the special case when 01 = R,, the equations reduce to 

Er, = -rwf(-2R,  + or) = -rol(l - B,,of/2RL). 

Bap = 0 Era = -4rRLB11. (A71 

If two species of particle with different mass are present, then it is only possible to arrive at the 
simple condition (A7) for one of them. If the second species represents background neutralization, 
this limitation is not troublesome. 
This transformation is limited to velocities which are non-relativistic in the transverse direction. 

The velocity in the z direction may be relativistic, if so, m is set equal to ym,. 


