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historical evolution of Artificial Intelligence

Can
Machine
Think?
Symbolic Al Boom
- The programs developed in the - Rise of Expert Systems
years after the Dartmouth - The Knowledge Revolution
Workshop were, - The Money Return
- Computers were solving algebra
word problems, proving theorems
i i d | i k
Bll‘th Of AI Eﬂgﬁ:metry and learning to speal 1 980'1 987
L P —— . And then rise of Neural
1952-1956 1956-1974 network!

In the 1940s and 50s, a handful of

scientists from a variety of fields

(mathematics, psychology, 1 974'1 980 1 987'1 993
engineering, economics and political

science) began to discuss the — _

possibility of creating an artificial

brain. Al Winter Bust : 2nd Al Winter
- Limited Computer Power The collapse was due to the failure of
- There are many problems that can commercial vendors to develop a wide
probably only be solved in variety of workable solutions.As
exponential time dozens of companies failed, the
- Can still only handle trivial versions perception was that the technology
of the problems. was not viable

- The end of funding

Acrtificial Intelligence (Al) is the simulation of human intelligence in machines that are
designed to think, learn, and make decisions.

Machine Learning (ML) is an approach to Al where the algorithms learn from the data.



Turing Test

1950 - Alan Turing
Can Machine Think?

1950: Alan Turing publishes
"Computing Machinery and
igence” which proposes the

Computing Machinery and Intelligence

A. M. Turing
1950

1 The Imitation Game

I propose to consider the quealwn “Can machines think?” This should begin
i s 0f ne: 2 defi

mpt
hich is closely rela t d to it and is expressed in relatively

l propose to Consider https://web.iitd.ac.in/~sumeet/Turing50.pdf
the question, 'Can
machines think?'

So many criticisms of the Turing Test!

~Alan Turing

GPT-4.5 was judged to be human 73%
of the time during five-minute text-
based conversations




Basis of Neural Network

1965 - Anatolii Gershman, Alexey Ilvakhnenko, Valentin Lapa

Deep Learning - Multi Layered Perceptron

1965 : The Group Method of Data
Handling (GMDH) is a data-driven
approach to modeling that is based
on a multi-layered architecture of
interconnected polynomial models.

Aulti-layer perceptron (MLPDIs a

type of artificial neural network (ANN)
that is composed of multiple layers of
interconnected nodes, or "neurons”.
MLPs are typically used for
supervised learning tasks, such as
classification and regression.

lvakhnenko is often considered as
the father of deep learning.

Third hidden
layer




Hinton’s application of NN

2006 - Geoffrey Hinton

Improvement in Speech and
Image Recognition

2006: Geoffrey Hinton and his team
develop deep learning algori

significantly improve&peech recognition
and@ﬁgf@

Deep Belief Networks, which allows for
efficient and effective training of large-
scale neural networks for machine
learning tasks.

A fast learning algorithm for deep belief nets *

* Hinton’s work: Backpropagation, AlexNet and “Attention is All you need” like
transformers.



Al Applications

Large Language Model

2015: OpenAl is founded by a group of
entrepreneurs - Elon Musk, Sam Altman, Reid
Hoffman etc - they pledged $1Billion

2017: OpenAl releases GPT-1

2018: OpenAl releases GPT-2

2019: Microsoft backed OpenAl with $1Billion
2020: OpenAl releases a new version of GPT-3

2020: OpenAl releases a tool known as DALL-E

2021: OpenAl announces plans to develop and
release GPT-3 under an open-source license.

2022: OpenAl releases GPT-3 Prime

GPT3 trained on NVIDIA V100 GPUs

115M

GPT1

GPT2

GPT3

VS

GPT4 trained on NVIDIA H100 chips




Al, ML and DL relation

Artificial Intelligence

Machine Learning

Deep Learning A subset of Al that Aty FecigUE Bt
The subset of machine learning includes abstruse e::ﬁ:ie;?s?upmu’;enrs
composed of algorithms that permit statistical techniques i labhe Neih
software to train itself to perform tasks, that enable machines ) .g 2 g
: : i : logic, if-then rules,
like speech and image recognition, by to improve at tasks =
: : : ; decision trees, and
exposing multilayered neural networks to with experience. The e
vast amounts of data. category includes : . g
diote b (includingdeep
learning)

Al: Broad goal of mimicking human intelligence.

ML: Achieving Al through data-driven learning.
DL: Achieving ML using neural networks with multiple layers.



Unsupervised Learning

Unlabeled data:
e LHC data
« Clustering

Machine Learning

Supervised Learning

\ ”n ‘AA‘
N ‘A
A A

Data with correct label:

*  MC simulation of
signal and bkg

» Classification and
Regression

Reinforcement Learning

A = Agent
R = Reward Points
R=+2

T A

TRAH \\
R=+3 Al

Al \-
\ RMJ Fel

Al
R=-6
R=0 A2

A2

Agent interact with env:
* No static dataset
e Used in robotics



What part of ML We going to Cover

Introduce key machine learning architectures: Deep Neural Networks (DNNs), Convolutional
Neural Networks (CNNs), Quantum Machine Learning (QML), and Generative Adversarial
Networks (GANS). The training process is covered for each model.

Highlight the core structure and intuition behind each model.

Demonstrate how these models are applied in particle physics, with real-world researches from
classification of signal from background and event simulation.

Graph Neural Networks (GNN), Recurrent Neural Networks (RNN), Transformers,
Unsupervised learning and Reinforcement learning are not covered in this talk!

DNN CNN QML GAN




Deep Neural Network
(Multi layer perceptron)



Why Deep Neural Network?

1. Better algorithm and understanding 3. Data with labels

deep learning

other learning
algorithms

performance

FEATURE LEARNING CLASSIFICATION

amount of data

2. Computing power (GPU and TPU) 4. Open source tools and models

f PYTORCH offX

I Microsoft ++ dm/C
CNTK G2 mypet

gensim spaCy theano
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Simplest DNN

z(x) =wlx+b

f(x) = g(w'x +0)

e X, f(x) inputand output

e z(x) pre-activation

e« w,b weights and bias »  Learnable params

e g activation function

Adding non linearity

12



DNN Forward Propagation

Lo

€y

First hidden layer

h
b()
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DNN Forward Propagation

Activation function

h




DNN Forward Propagation

Second hidden layer

b

\s@, o
gpacit
3 ¥

b
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DNN Forward Propagation

Model’s output

softmax

o Normalized probabilities

o f(x) = softmax(z°) = softmaxr(W°h(x) + b°)

16



Activation Functions

Binary classification Zero-centered Fast to compute

. : : 1 ) ) 2x _ 1 - - - - . » - » -
sigm(x) = T tanh(z) = Z% o relu(z) = max(0, x)
sigm’(z) = sigm(x)(1 — sigm(x)) tanh’(z) = 1 — tanh(xz)? relu’(z) = 1,=0
- o1 -
1 e’
softmax (X) — . Multiclass classification
n T .
D i-1€” :
e’r

17



L_oss Function as NLL

* Adjust the model's parameters 8 (W;b) to minimize a loss (negative log likelihood).

Predicted prob

~ N\

U(E(x*;6),5°) = nll(x,y"; 6) = — log £ (x";6),,

example y° =3

(f(x%;0),y°) = [

fo
f3

fr—1

— 10g f3 f3 close to 1 would make
loss close to 0.
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DNN Backward Propagation (SGD)

J(w) ",’/ Gradient
1

Initialize € randomly

Global cost minimum
’// Jmin(w)
For £/ epochs perform: " y

e Randomly select a small batch of samples (B C S)
o Compute gradients: A = VyLg(0)
o Update parameters: 0 < 60 — nA
o 11 > (s called the learning rate

e Repeat until the epoch is completed (all of S is covered)

19



Hyper Parameters

Number of Hidden Layers:
* More layers - model can learn

complex patterns, but harder to train.

* Too deep - risk of overfitting or
vanishing gradients.
Number of Neurons per Layer:
* More neurons - more capacity, but
also more computation.
* Too few = underfitting, too many -
overfitting.
Learning Rate:
* Controls how fast the model updates
Too small - slow convergence
* Too large - unstable training, may
overshoot minima.
Number of Epochs: How many times the
model sees the full training set.

@ Starting Point
Vs P

20



SUSY Simplified Models

We target gluino pair production (from a strong SUSY interaction) with off-shell top and
bottom squarks in the decay products

Gtt

0 lepton (OL)

| L
Olepton (OL) "= -hannels

1lepton (1L) “— T feptor-e-

» Potentially high cross-section for gluino pair production
Paper link * Target final states with large amount of E;™sSand Njo; = 4, Npjer = 3.

« Main background is top pair production tt

21


https://link.springer.com/article/10.1140/epjc/s10052-023-11543-6

Preselection Distributions
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Number of jets ET™ [GeV] mi [GeV]

 Inclusive effective mass, to select highly energetic events:

. . lep : .
M = Sien PY' + Zjam by | + EFS

» Transverse mass to remove semileptonic tt and W+jets events:

my = _|2pLETSS(1 — cos A (BISS, pl )
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Cut-and-count

Define signal regions (SRs) targeting different regions of the signal grid that is
parametrized by the mass splitting between the gluino and lightest SUSY particle (LSP):

« optimized to maximize the significance of a discovery

Non-overlapping control regions (CRs):

* low signal contamination
 high ttbar purity
» used to derive scale factors by fitting to data

Non-overlapping validation regions (VRS):

 validate CRs normalization factors
» check the extrapolations between signal and
control region

If there are no large excesses or deficits in the VRs,
then open the box (unblind)!

m
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SUSY here

V4
]
&,

Experimentally excluded

m(g)~2xm(xg)
more jets
less energy per jet

m(g)>>mi(xg)
fewer jets, more

energy per jet

merged decays
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DNN Architecture and Signal Region

DNN to discriminate Gtt or Gbb events from SM:

Inputs: four-momenta of the 10 leading jets, 4

_—

leading leptons, 4 leading fat jets and p7sS
Three fully hidden layers with 128 neurons
ReLU activation function for hidden layers

P(Gtt), P(Ghb), P(Et), P(Z+jets), other P(bkg)

Same policy to define kinematic regions:

CR: defined at high P(tt) and low P(Gtt).
Enriched in tt background

VR: intermediate values of P(tt) and P(Gtt)

SR: defined at high P(Gtt) and low P(tt). DNN
threshold with max significance is chosen

3
Qe @]
Qe N A
0- 77O
Qe o 0
o - @) 20
o 0 0
o o : 0
2 e 9
/ : N, o
o : o U
(‘35:‘” }j
CF
d
CR (1)
VR SR
P(Gtt)
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Signal Exclusion Limits

» For each signal mass point, the trained parameterized NN is applied to estimate the
expected signal and background yields in optimized SRs.

« Astatistical test - CLs method - compares observed data with the background-only and
signal+background hypotheses.

» Mass points are excluded at 95% confidence level if the CLs is less than 0.05.

Gtt exclusion limits Gbb exclusion limits

& production, § — i+, m(@) >> (@) @ production, § — bb+7,, m(@) >> m(g)
= _||||||||||||lll|\l\|\l‘|l"|"‘|"'|"'_ s 7|||||||||\|‘|\\‘|\||||||||||||\||||||||ﬁ
3 - ATLAS 1 - -~ Expected Limit (£100) 8 - ATLAS - - - Expected Limit (+16,,,) 1
o 20 f=_1_3 TeV, 130 £ Observed Limit (£16305) o PO (=13Tev, 139 b == Observed Limit (+105asr) |
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Convolutional Neural Network (CNN)



Application of CNNs (input images)

Image classification cﬁ Handwritten recognition
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[Krizhevsky 2012] [Ciresan et al. 2013]

[Faster R-CNN - Ren 2015] [NVIDIA dev blog]

Object detection (autonomous driving)



Why not DNN for images?

Motivations

Standard Dense Layer for an image input:

x = Input((640, 480, 3), dtype='float32')
# shape of x is: (None, 646, 480, 3)

x = Flatten()(x)

# shape of x is: (None, 640 x 480 x 3)

z = Dense(1000)(x)

Oops so many parameters

How many parameters in the Dense layer?
640 x 480 x 3 x 1000 + 1000 = 922M!

Spatial organization of the input is destroyed by Flatten

<We never use Dense layers directly on large images-Most standard
solution is convolution layers

28



CNN Kernel and Convolution

e xisa 3 X 3 chunk (dark area) of the image (blue array)
e Each output neuron is parametrized with the 3 x 3 weight
matrix w (small numbers)

The activation obtained by sliding the 3 X 3 window and computing:

z(z) = relu(w’z + b)

29



What about ML not included

2D-convolutions (actually 2D cross-correlation):
Kernel Input

(f*9)(z,y) =D > f(n,m).g(xz+n,y+m)

n m

f is a convolution kernel or filter applied to the 2-d map g (our
image)

30



CNN and Spatial relation in an image

In images (and other grid-like data), nearby pixels are correlated.
Patterns like edges, textures, and shapes are built from local groupings of pixels.
Convolutional layers apply small local filters (e.g., 3%x3) across the image.

This lets the network learn local patterns first, then combine them into more complex
structures in deeper layers.

Fully connected layers treat all inputs as independent, losing spatial info.

31



Pooling Layers

 Spatial dimension reduction

e Local invariance

e No parameters: max or average of 2x2 units

max pool with 2x2 filters
and stride 2

w | O

NI N O =

| O 0| &

32



Classical CNN Architecture

Classic ConvNet Architecture

Input

fc_3 fc_4
Fully-Connected Fully-Connected

Neural Network Neural N

Convolution Convolution

Max-Pooling (5 x5) kernel Max-Pooling

e Convolution + activation (relu)
e Convolution + activation (relu)

e Maxpooling 2x2

INPUT ' nl channels nl channels n2 channels n2 channels
(28 x28x1) (24 x24 xn1) (12x12 xn1) (8x8xn2) (4x4xn2)

@
n3 units

Output

 Fully connected layers
e Softmax

etwork

CO nV b lo C ks Conv_1 Conv_2 RelU activation I

valid padding 2x2) valid padding (2x2) . fivrv::out)
@0
e

N X

OUTPUT
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Higgs ldentification using CNN

Higgs

Signal colorflow energy image

Goal: Identify Higgs boson (signal) decays using jet
substructure from QCD background.

Focus on Higgs — bb, the dominant decay mode.

Signal forms a single fat jet with 2-prong substructure.
Background typically 1-prong, diffuse, asymmetric energy

180
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20

deposition. R T T

n

Simulation provided by ATLAS/SLAC collaborators. acb

Each event is converted to a 25%x25 energy image in n—¢@
space.

Data preparation: images are centered, zero-padded to
32x32, and normalized.

Background colorflow energy image
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40

30

20

10



All CNN Models

Baseline model ‘ @
‘ output layer
[Comys-32| |COMY3-G4)
LaNetl model .

(32s32:32) (Ba=16=16) |DENSE-1024]

NN NS

Al N

[CONV3-32)x2 [CONV3-64]x2 [CONV3-128]3 [CONV3-256]x3
(32x32x32) (64x16x16) (128%8x8) (256x4x4) [DENSE-4096]x2 DENSE-1000

LaNet2 model . . . O Grm— ﬂ

[CONV3-32)x3 [CONV3-64)x3 [CONV3-128)x3 (CONV3-256)3 [CONV3-512)x3

(32¢32x32) (64x16x16) (128x8x8) (256x4x4) (512x2x2) [DENSE-4006]x2 DENSE-1000

LaNet3 same as the base model with wider CNN layers (more channels)
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CNN Results (ROC and AUC)

Accuracy

0.85 -

0.80 -

0.75 -

0.70 -

0.65 -

0.60 -

0.55 -

0.50 -

0.45 -

Learning plot

Accuracies with 0.5 Dropout

|
10

- Good to have it
— Training accuracy
< Validation accuracp

| i
15 20

Epochs
Model AUC | Accuracy
FDA 0.654

AdaBoost 0.873 0.798
SimpleModel | 0.877 0.774
LaNet 0.895 0.812
LaNetTwo 0.896 0.825
LaNetThree | 0.904 0.820

True Positive Rate

ROC plot
L Higgs Boson Receiver Operalting Characteristics
-
0.8 -
0.6 - / /
0.4 - LaNetThree (area = 0.904)
/ LaNetTwo (area = 0.896)
/ ~— LaNet (area = 0.895)
0.2 - — SimpleCNN (area = 0.877)
AdaBoost (area = 0.873)
~—— FDA on pull data (area = 0.654)
0.0 | | | | -
0.0 0.2 0.4 0.6 0.8 L0

False Positive Rate

A high AUC was achieved despite the small
image sizes and without relying on transfer
learning for jet classification.
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Misclassified Images and Suggestions

Truth label: Background
Prediction: Higgs

0
0.16
0.12
1o 0.08
15 0.04
0.00
20
—-0.04
25
—-0.08
30
-0.12
0 5 10 15 20 25 30

Data augmentation might help:
* Small random rotations
* Small translations
» Random flipping

v

Truth label: Higgs
Prediction: Background

0.20
0.16
0.12
0.08
0.04
0.00
—-0.04
—-0.08
-0.12
0 5 10 15 20 25 30

Combine model’s outputs (majority
vote) to improve generalization.
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Quantum Machine Learning (QML)



QML: A Rapidly Emerging Field!

Quantum Machine Learning is an incredibly new and evolving area of science.
Finding comprehensive references is still challenging.

IBM is currently one of the few organizations offering structured documentation and
educational material, primarily through Qiskit Learning.

QML involves both hardware and software components.

Hardware topics such as qubit technologies, quantum gates at the physical level, and
noise mitigation will not be covered.

In this presentation, | will focus only on the software side.
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Quantum Processor Unit (QPU)

Quantum computing is an area of computer science that
uses the principles of quantum theory. Quantum theory
explains the behavior of energy and material on the
atomic and subatomic levels.

Quantum computing uses subatomic particles, such as
electrons or photons in hardware and computation:

« superconducting qubits (like IBM's and Google's
devices) involve electrons indirectly through
superconductivity

* photonic qubits directly use the polarization of a
single photon to encode quantum information.

40


https://www.ibm.com/think/topics/qubit#:~:text=Made%20from%20superconducting%20materials%20operating,for%20their%20relatively%20robust%20coherence.&text=Using%20sophisticated%20laser%20technology%2C%20trapped,also%20be%20used%20as%20qubits.

Qubits vs BIts

* A qubit is a two-level quantum system where the two basis qubit states are usually written
as |0) and [1).

* A qubit can be in state |0) and |1) or (unlike a classical bit) in a linear combination of both
states. The name of this phenomenon is superposition (1/v2 [0) + 1/72 [1)).

* Qubit superposition allowing exponential memory representation with just a few qubits.
So, with 3 bits, you can represent only one of these 8 possible combinations, while with 3
qubits, you can represent all 8 combinations simultaneously.

Classical Bit

|0) 7' Brt N Bt

. 0 . . 0 1 0 o e P
i “.r s, u - UU.‘.‘H ----------
sl | 1' e |O) % |1 | One out of 2N possible permutations |
M 5 1) V2
o ! Quantum Bit
/ 1Bt N Bt
Q1! 1) vy 2100000+, {1100--0)+a,[110-0) + -+ + ag1111-1)
] ' 0 i ()4)\ ) (, SRS
Classical Bit Qubit e m - - -
[ All of 2" possible permutations ]
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Entanglement

Quantum entanglement links two or more qubits so their states are interdependent, no
matter the distance between them.

Measurement of one entangled qubit instantly determines the state of the other.

EPR paradox (1935): challenged quantum entanglement, but later experiments confirmed
its reality. Entanglement cannot be used to transmit information, as measurement
outcomes are random and require classical communication to reveal correlations.

Enables quantum computers to represent and process exponentially more complex
information.

1

= @* = (1T + |4y
Step 1 e! e?
Step 2 O OF = — (I11) + |414)) 100 light years away @
o g V2 still entangled el

—— I

Step 3 measure e': 50% to get |T) , assume obtained |T) for e!

collapse

o+ o
e —— - e
/—/-’ e i 77\,
@ |T) Earth 100 light years away |1) @
~7 ~—e! e~
N s

42



Quantum Operators (unitary matrices)

H gate make superposition

— Example

Basic quantum operators

i1
Single-qubi Controlled-NOT H=(‘f \@1) S=(; 0) T=((13 i)
— Single-qubit gates —  — Controlled- — 5 5 i ;

1+ 1=
THSH=(2 ?)
1 i
V2 V2

— Toffoli gate

H gate and then CNOT gate to make entanglement

— Example

LLLLL

Computation in backup




What is QML?

QML combines quantum computing’s ability to handle complex, high-dimensional
problems with machine learning’s need for optimization and pattern recognition, aiming

for faster and more powerful data processing.

The main goal of Quantum Machine Learning (QML) is to speed things up by applying what we know from
quantum computing to machine learning

L~

/

Exponentially
large Hilbert
space
Entanglement
Superposition

Interference

[

N

Inference
Optimization
Fitting over a large
feature/hyperpara

meter space

\

/
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Step 1: Feature Mapping (Data Encoding)

* Perform guantum embedding to encode x into a quantum state.

Parameterized Quantum Circuit

How to encode data into M
a ? k
quantum state?
Ud)(z) — = 7! Post-processing
Pre-processing 7y Ug ;

Input: @« ~ Pp

2 qubit angle encoding using H, Phase (P) and CNot gates



Step 2: Variational Ansatz

« Train the model (Ansatz) using quantum circuits with free weights.

Parameterized Quantum Circuit

M

®Rn — ==
|0> i Ud)(m) -
Pre-processing 7y Ug

®
Input: @ ~ Pp IO) m

xr —» ¢(x)

IM

The “variationa

The “guess” or trial function is the unitary U parameterized by a set of

free parameters @ that will be updated during training.

Mj,

_

, optimizable
part of the circuit.

Post-processing

w

Free parameters inside operators to learn and minimize the loss
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Step 3:Post Processing

Parameterized Quantum Circuit

i D

®n — I
10) = U(b(w) a— = R Post-processing
Pre-processing 7y Ug :
‘ @m : :
Input: ® ~ Pp |0> < {(‘Mk x, 9 =1
x —» o) JSSS— - »

({0}, )
- 7

The measurement output is then used to
construct a decision function, a
probability distribution, a boundary, etc.

Quantum information is turned back into classical information by

evaluating the expectation value of an observable, or measurement.
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QML in ttH Analysis

Identify the Higgs boson production in association with
to top quark — antiquark pairs.

Allow studying the Yukawa coupling of the Higgs
boson in a purely fermionic process.

Semi leptonic channel to cancel QCD. ttg is the
dominant background.

Preselection: n/¢¢ > 4,nP~ta9 > 2 plevton — 1

Principal Component Analysis used to reduce the
dimensionality of input features by projecting them
onto a set of uncorrelated components that capture the
most variance, enabling more efficient input encoding
for quantum models with less qubits.
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Benchmark Models

DNN and BDT models are trained in two ways:

» Using the full 67 input feature
« Using only 16 latent features from PCA

Classical models perform well even on reduced
feature sets.

Classical models in were trained on a large dataset
(2M) enabling stable and high-performance results.

Signal Efficiency (TPR)

N(train): 1827808, N(test) 456952

1.0 —
0.8
0.6
0.4+
I’:’I’
,:,I
0.2 i I DNN, AUC = 0.704 = 0.001
Ji7 DNN(latent), AUC = 0.623 + 0.002
I;ﬁ’ —— BDT, AUC = 0.691 = 0.001
P BDT(latent), AUC = 0.652 + 0.002
0'%.0 0.2 0.4 0.6 0.8

Background Efficiency (FPR)

1.0
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Variational Quantum Classifier
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Quantum Support Vector Model

Ut(@)  U() D = Ky = |[(0[UN(Z)U(Z5)]0)]

N'BIn=576, N'est=720 (x5)
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3
E
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o
3
£
w
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L(cy Cn) Ci B Hzfz{‘?z iy ]'y C 504
2
i=1 =1 Jl:]_ o
0.2 e
S QSVM (4 qubits): AUC = 0.657 += 0.014
"~ SVM rbf: AUC = 0.651 + 0.010
P4 Random Classifier
D'%.D 0.2 0.4 0.6 0.8 1.0

Background Efficiency (FPR)
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Generative Al



GenAl Importance

« Data Bottleneck:
* “There’s not enough human-made data in the world to train future Al systems.” -- Jensen
Huang, NVIDIA CEO.
» GenAl can create synthetic data that mimics real-world and anomaly distributions.

» GenAl generates physics events much faster than traditional simulators.

« GenAl simulates rare disease cases for training doctors/Al systems when real data is limited.

GAN VAE Diffusion

encode —» decode —»
Po(Xe-1lxr)

N

X X1 Xo

Training Set ﬂ“
Ran ise t

-al| ™"

Generator Fake image

q(xe|xe—1)

————— Forward Diffusion
------ = Reverse Diffusion
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Generative Adversarial Network

Both the generator and the discriminator are neural networks. The generator output is
connected directly to the discriminator input.

Through backpropagation, the discriminator's classification provides a signal that the
generator uses to update its weights.

Sample

Y

Real images

SSO|
Jojeuiwinosig

Discriminator

— Generator Sample

SSO0|
Jojelausdn)

Random input




Discriminator Training

« GAN training proceeds in alternating periods:

1. The discriminator trains for a lot of epochs. We keep the generator constant
during the discriminator training phase. As discriminator training tries to figure
out how to distinguish real data from fake

{====== Backpropagation

Sample Discriminator

\ 4

Real images

Y
SSO|
Jojeuiwiiasiqg

Generator » Sample

Random input
SSO|
Jojeiauan)




Generator Training

* GAN training proceeds in alternating periods:

2. The generator trains for one or more epochs. Similarly, we keep the discriminator
constant during the generator training phase. Otherwise the generator would be
trying to hit a moving target and might never converge.

Sample

\ 4

Real images

SS0|
dojeulwinasig

Discriminator >

A/

— Generator »  Sample

SSO0]
J0ojelauas)

Random input

< 1 Backpropagation




GAN MinMax Loss

Discriminator

Generator
| \ recognize real images better recognize generated images better

minmax V(D, @) = Egnpy,() [10g D(2)] + Eznp. () [log(1 — D(G(2)))]-

‘ Maximize Discriminator Expected value (E) for log- Expected value (E) for log-loss of
erformance loss of Discriminator given Discriminator given Generator given z
e Caneraion x sampled from Pdata sampled from Platent
performance
How well the Discriminator How bad the Discriminator works on
works on real data counterfeit data

The discriminator maximizes the loss (D(x)=1 and D(G(z))=0) by distinguishing real
from fake images, aiming for high confidence on real and low on fake.

The generator minimizes the loss (D(G(z))=1) by producing fake images that fool the
discriminator into classifying them as real.

At convergence, the generator perfectly fools the discriminator (D(x)=0.5, D(G)=0.5).
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GAN for Event Generation

High Energy Physics simulations, such as those using Geant4 in ATLAS and
CMS, are extremely computationally expensive. GAN is faster and scalable

The dataset consists of jet images, which are 2D histograms of particle energy
depositions in the calorimeter, constructed in n-¢ space grid.

The data includes boosted W boson jets (signal) and QCD jets (background), both
generated using Pythia at14 TeV.

3
1.0} ] 10* §
s &
o E
S 10t &
2 o5
<
=
5
= 100
& | l
3
= 10t
i
£ -05 ]
g = -
E 102
2 n
-1.0
[ |
L L L L L 10'3
-10 —05 0.0 0.5 1.0

[Transformed] Pseudorapidity (n)
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Convolution vs Locally connected

CNN layers:
1. Use shared filters that scan across the entire
image.
2. Assume translational invariance — the same

featur
Less suitable when location itself encodeé
physical meaning.

Locally connected layers:

1. Similar to CNNs but do not share weights
across positions.
2. Learn unique filters for each spatial region of

3. Better suited when spatial position has . e
hysical interpretation SRS

4. More parameters, higher computation cost
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GAN Architecture

» Generator: Starts from a 100-dimensional vector and uses up-sampling to produc
jet images of size 25x25 in (n, ¢) space, simulating both signal and background events

» Discriminator: CNN to distinguish real simulated events (from Geant4) from fake events
produc he generator.
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GAN Event Distributions

Mass distribution pr distribution
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GAN Speed-up

Method | Hardware # events / sec Relative Speed-up
Pythia CPU 34 1
LAGAN | CPU 470 14
LAGAN | GPU 7200 210
29 ms

N
(&2

N
o

=
o

Time required to generate a jet image (ms)
o o

Pythia (CPU only)  LAGAN (CPU) LAGAN (GPU)

LAGAN is much faster!
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Summary

Deep Neural Networks: introduced basic structure and training process using forward and
backward propagation. Applied to tasks like classification of events and SUSY-background
separation.

Convolutional Neural Networks: explained how CNNs exploit spatial structure of detector
data. Used in jet image analysis from Higgs boson decay and event classification.

Quantum Machine Learning: discussed principles of qubits and quantum circuits. Highlighted
potential applications in high-dimensional data and speedup of certain learning tasks.

Generative Adversarial Networks: covered how GANs generate realistic physics events. Used
for fast detector simulation and event classification.
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ML Roadmap

Introduction to machine learning:
* non neural network models: Google course
* neural network models specially DNN and CNN: Coursera
MIT neural network course: link

Graph Neural Network: Stanford CS224 course

Recurrent neural network: Stanford lecture

Generative Deep Learning: O’reilly book

Quantum Computation: IBM Qiskit quantum course
Quantum Machine Learning: IBM QML course
Tensorflow Tutorial

Pytorch Tutorial
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https://developers.google.com/machine-learning/crash-course
https://www.coursera.org/specializations/deep-learning/paidmedia?utm_medium=sem&utm_source=gg&utm_campaign=b2c_namer_deep-learning_deeplearning-ai_ftcof_specializations_px_dr_bau_gg_sem_pr-bd_us-ca_en_m_hyb_17-08_x&campaignid=904733485&adgroupid=46370300620&device=c&keyword=deeplearning%20ai%20coursera&matchtype=b&network=g&devicemodel=&creativeid=415429098219&assetgroupid=&targetid=aud-1242392722792:kwd-659621418624&extensionid=&placement=&gad_source=1&gad_campaignid=904733485&gbraid=0AAAAADdKX6YaD8NBqVhB1FaZWB2r-kX_d&gclid=Cj0KCQjw_dbABhC5ARIsAAh2Z-TMw8Jqukf3XxEkboAc5-aPjMmqHD92qlT0lkMqNaLlu6rmaOvYakMaAlYZEALw_wcB
https://introtodeeplearning.com/
https://web.stanford.edu/class/cs224w/
https://cs231n.stanford.edu/slides/2021/lecture_10.pdf
https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/
https://learning.quantum.ibm.com/course/basics-of-quantum-information
https://open.hpi.de/courses/qc-machineLearning2023?locale=en
https://zerotomastery.io/courses/learn-tensorflow/
https://www.learnpytorch.io/
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Al History

History of Al

- : _i
T E ::;, .
Evolution of Turning Birth of Al : First First First Al Expert
Arrtificial Machine Dartmounth Chatboat : Intellgence winer System
NeUurons Conference ELIZA Robot :

WABOT -1

S B BB s e e o

WO m

Second Al IBM Deep blue: Alin Home |BMs Watson: Google now Chatbot Eugene Amazon

L |

Winer first computer Roomba Wins a quiz Goostman: Wines Echo
to beat a world show a” Turing test
chess champion jav va oint
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Classification metrics in ML

Classification Metrics Formulas

Predicted
Actual Positive Negative Row Totals
TP
Positive P FN TotActPos | €= Recall = "0
Negative FP TN TotActNeg | €= Specificity N
TotAcNeg
Col Totals | TotPredPos| TotPredNeg Total B # Wrong
oL = ———=
Total
# Right e
Accuracy = AT
Total Recall * Precision
o TP F=2* —
Precision = —— Recall + Precision
TotPredPos
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SUSY Definition of Key Variables

Aqum to suppress multijets in which EZ*SS is aligned with one jet:

AP = min(lgps — Ppmiss |, ) | Pa — P gmiss|)

Inclusive effective mass, to select highly energetic events:

l lep;
MG} = Sien DY + Gjem Py + EFESS

b—jets
T, min

m>Jets = min(\/ZpT_]et"ET’i"iSS (1 cos A¢g (”’"SS g et )))

T min i<3 'ET

min transverse mass between E7*S and three leading b-jets:

M]Z'4 sum of the mass of re-clustered jets (higher for Gtt signal):
z,
M] t= Zisz}m],i




CNN Stacking

28x28x3
24x24x4
5x5x3x4 /

/

e Kernel size aka receptive field (usually 1, 3, 5,7, 11)

e Output dimension: length - kernel size + 1



CNN Variables

B Equation (5.1): Transverse Momentum of the Jet

) = (zf i ) (z: sin(4) )

Explanation:

* pr is the total transverse momentum of the entire jet.
* Each pixel contributes to the jet's total z- and y-momentum:
¢ pe= N Ticos()
py = 3 I;sin(¢;)
¢ So the total pr is the Euclidean norm:

pr=\/Pi+ P

@ Physically, this gives the total transverse momentum vector of the jet, using the per-

pixel contributions.

&l¢ Equation (5.2): Invariant Mass of the Jet

2 2
m*(I) = (ZL—) - (1) - (ZL Siﬂh(m))

Explanation: This is a version of the energy-momentum relation:
m® = E* — py — p?
where:
> ; I; approximates the total energy (not exact, but in these images it works since

energies are projected using pr).

¥ I;sinh(n;) corresponds to the longitudinal momentum p,, using the identity:
p: = prsinh(n)

@ So, the total mass is reconstructed from the sum of pixel intensities and their

geometric arrangement in the 7 — ¢ plane.




QSVM Power

Ad hoc dataset
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Bell State Computation

@ Goal:

Produce the Bell state

&) = éuom )

=i Step I: Initial state

= Step 2: Apply Hadamard to the first qubit

The Hadamard gate acts on a single qubit:

1 |1 1
H‘E[l ,1]

To apply it to the first qubit in a 2-qubit system, use the tensor product:

H®I=#
V2

Apply it to [00):

(7@ Dj0o) = 7= | 1| = Z=(100) + [10)

oo =

= Step 3: Apply the CNOT gate

CNOT gate matrix (control = qubit 0, target = qubit 1):
CNOT =

Apply it to the previous result:

onot- | L

: = —5(00) + 11)

1
0
1
0




GAN MinMax Loss

Why the Generator Minimizes and the Discriminator Maximizes

The minimax loss in GANs is defined as a two-player game, where the generator (G) and
discriminator (D) have opposing goals. The loss function, as given in the paper (Section 3,
Equation 3.1), is:

L(D,G) = Efpyur)[log D(I)] + E.p,()[log(1 — D(G(2)))]
The GAN training objective is:

minmax £(D, G)
G D

+ Discriminator’s Goal (maxp): The discriminator wants to maximize L. It does this by:

« Making D(I) == 1 for real images (I ~ Dgata), S0 log D(I) = log 1 = 0, contributing a
large (less negative) value to the first term.

« Making D(G(z)) = 0 for fake images (G(z)), solog(1 — D(G(z))) =~ log(1 —0) =
log 1 = 0, contributing a large (less negative) value to the second term.

« A high L (closer to 0) means D is good at distinguishing real jet images (e.g., Pythia-
generated) from fake ones (LAGAN-generated).

« Generator's Goal (ming): The generator wants to minimize L. It only affects the second term,
E;p,(z)[log(1 — D(G(z)))], because G generates G(z). To minimize L:

« G wants D(G(z)) =~ 1, meaning the discriminator thinks fake images are real. This makes
log(1 — D(G(z))) = log(1 — 1) = log 0 — —oo, driving the second term (and thus L) to
a very negative value.

« By making fake jet images look real, G "fools” D, reducing L.
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GAN Features

One of the unique properties of high energy particle physics is that we have a library of useful jet
observables that are physically motivated functions f : R?°*?5 — R whose features are qualitatively
(and in some cases, quantitatively) well-understood. We can use the distributions of these observables
to assess the abilty of the GAN to mimic Pythia. Three such features of a jet image I are the mass

m, transverse momentum pr, and n-subjettiness 1oy [41]:

p2T(I) = (ZL cos(gbi)) + (ZL sin(qbi)) (5.1)

m*(I) = (ZL) —pi(I) - (ZIiSinh(nz‘)) (5.2)
Tn(I) x Zjimina (\/(nz - ﬂa)z + (sz - qba)Q) ) (53)

To1(I) = 72(I) /71 (1), (5.4)
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Application of Deep learning to Jet charge

The jet charge method is crucial in verifying the top
quark charge, heavy boson identification (W'/Z’),
quark vs. gluon jet discrimination.

This study explores classical deep learning models
like DNN, CNN, GNN and quantum ML models
for improved jet charge classification.

The jet charge observables are defined as (where is
a tunable parameter affecting charge sensitivity):
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Convolutional NN and Graph NN

Convolutional Neural Networks (CNNs):

» CNNs process jet images by analyzing pixel charge distributions in n-¢ space.
» They capture spatial correlations of energy deposits to classify jet charge.

» Can differentiate between quark-initiated and gluon-initiated jets using learned spatial features.

Graph Neural Networks (GNNSs):

* GNNs model jets as graphs, where tracks are nodes and edges encode relationships.
» Capture relational and topological information beyond fixed-grid structures.

» Effective in handling variable-sized track information per jet.

0.0 1.00
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-1.0
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-0.50
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-1.00

-25 =20 -15 -10 -05 0.0 -2 0

Pixelated representation of jets in n — ¢ space
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—0.50

-0.75

-1.00

Graph representation of a leading jet
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Quantum ML application

Quantum Feature Map: Maps classical jet charge
data into a higher-dimensional quantum Hilbert
space using parametrized quantum circuits, enabling
more expressive representations.

Quantum Kernel: Compute similarity between
qguantum-embedded jets, allowing for efficient
discrimination using quantum support vector
machines.

Challenges: Noisy quantum hardware, limited qubit
connectivity, and circuit depth constraints impact
practical implementation.

Number of events

Accuracy for VQC in few events

do

q1

EEombombnn

2
meas =

Quantum feature map and kernel

A—

‘Oul

|

o -
o — -
[0 €x) ve) —F =
v — —-= :
0] — -

i

1020

Accuracy for QSVM in few events
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Anomaly detection using Gen Al

Train Autoencoder or variational AE on SM
background events and reconstruct them
well.

New Physics events, which deviate from
learned patterns, lead to high reconstruction
errors, signaling potential anomalies.

In GAN-based anomaly detection, the
generator learns to produce events that
resemble Standard Model (SM) data, while
the discriminator is trained to distinguish
between real and generated events.

if the discriminator assigns a high anomaly
score (i.e., the event is unlike both real and
generated SM events), it may indicate a
Beyond Standard.

ANOMALY DETECTION PERFORMANCE EVALUATION

Kernel Machine

«
Features p—
An, Ag, py PR 5
)
AP g : =
‘_;‘ | £ 2 ] [
WV - Clustering algorithms (2) Quantum VS Classical
g i z QKmeans / QKmedians A0 F
LHC Colksion 4 /
$: X2 0: Z—X AT
HEP data 5 z
Beyond —'wm
M

Training Set Imﬂu Dlscrlmmator Real
Random Noise 4[
Fake
- i

Fake image

Generator
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