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historical evolution of Artificial Intelligence
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• Artificial Intelligence (AI) is the simulation of human intelligence in machines that are 

designed to think, learn, and make decisions.

• Machine Learning (ML) is an approach to AI where the algorithms learn from the data.

And then rise of Neural 

network!



Turing Test
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So many criticisms of the Turing Test!

GPT-4.5 was judged to be human 73% 

of the time during five-minute text-

based conversations



Basis of Neural Network
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Hinton’s application of NN  
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• Hinton’s work: Backpropagation, AlexNet and “Attention is All you need” like 

transformers.



AI Applications 
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GPT3 trained on NVIDIA V100 GPUs GPT4 trained on NVIDIA H100 chipsVS



AI, ML and DL relation 
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AI: Broad goal of mimicking human intelligence.

ML: Achieving AI through data-driven learning.

DL: Achieving ML using neural networks with multiple layers.



ML Types 
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Data with correct label:

• MC simulation of 

signal and bkg

• Classification and 

Regression

Unlabeled data:

• LHC data

• Clustering

Agent interact with env:

• No static dataset

• Used in robotics



What part of ML We going to Cover
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• Introduce key machine learning architectures: Deep Neural Networks (DNNs), Convolutional 

Neural Networks (CNNs), Quantum Machine Learning (QML), and Generative Adversarial 

Networks (GANs). The training process is covered for each model.

• Highlight the core structure and intuition behind each model.

• Demonstrate how these models are applied in particle physics, with real-world researches from 

classification of signal from background and event simulation.

• Graph Neural Networks (GNN), Recurrent Neural Networks (RNN), Transformers, 

Unsupervised learning and Reinforcement learning are not covered in this talk!

DNN GANCNN QML
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Deep Neural Network
(Multi layer perceptron)



Why Deep Neural Network? 
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4. Open source tools and models

1. Better algorithm and understanding

2. Computing power (GPU and TPU)

3. Data with labels 



Simplest DNN 
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Adding non linearity

Learnable params



DNN Forward Propagation  
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First hidden layer



DNN Forward Propagation   
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Activation function



DNN Forward Propagation  
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Second hidden layer



DNN Forward Propagation  
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Normalized probabilities

Model’s output



Activation Functions
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Binary classification Zero-centered Fast to compute 

Multiclass classification



Loss Function as NLL  
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Predicted prob

•  Adjust the model's parameters 𝜃 (W;b) to minimize a loss (negative log likelihood).

𝒇𝟑 close to 1 would make 
loss close to 0. 



DNN Backward Propagation (SGD)  
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Hyper Parameters
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1. Number of Hidden Layers:
• More layers → model can learn 

complex patterns, but harder to train.
• Too deep → risk of overfitting or 

vanishing gradients.
2. Number of Neurons per Layer:

• More neurons → more capacity, but 
also more computation.

• Too few → underfitting, too many → 
overfitting.

3. Learning Rate:
• Controls how fast the model updates 

Too small → slow convergence
• Too large → unstable training, may 

overshoot minima. 
4. Number of Epochs: How many times the 

model sees the full training set.
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SUSY Simplified Models

We target gluino pair production (from a strong SUSY interaction) with off-shell top and 

bottom squarks in the decay products

Gtt Gbb

channels
0 lepton (0L)

1 lepton (1L)

0 lepton (0L)

1 lepton (1L)

• Potentially high cross-section for gluino pair production

• Target final states with large amount of ET
miss and 𝑁𝑗𝑒𝑡 ≥ 4, 𝑁𝑏𝑗𝑒𝑡 ≥ 3.

• Main background is top pair production 𝒕 ҧ𝒕 

Paper link

https://link.springer.com/article/10.1140/epjc/s10052-023-11543-6
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Preselection Distributions
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• Inclusive effective mass, to select highly energetic events:

𝑚𝑒𝑓𝑓
𝑖𝑛𝑐𝑙 = Σi≤n 𝑝𝑇

𝑗𝑖 + Σ𝑗≤𝑚 𝑝𝑇

𝑙𝑒𝑝𝑗 + 𝐸𝑇
𝑚𝑖𝑠𝑠

• Transverse mass to remove semileptonic 𝑡 ҧ𝑡 and W+jets events:

𝑚𝑇 = 2𝑝𝑇
𝑙 𝐸𝑇

𝑚𝑖𝑠𝑠(1 − cos Δ𝜙( Ԧ𝑝𝑇
𝑚𝑖𝑠𝑠, Ԧ𝑝𝑇

𝑙  )) 
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Cut-and-count

▪ Define signal regions (SRs) targeting different regions of the signal grid that is 

parametrized by the mass splitting between the gluino and lightest SUSY particle (LSP):

• optimized to maximize the significance of a discovery

▪ Non-overlapping control regions (CRs):

• low signal contamination

• high ttbar purity

• used to derive scale factors by fitting to data

▪ Non-overlapping validation regions (VRs):

• validate CRs normalization factors

• check the extrapolations between signal and 

control region

▪ If there are no large excesses or deficits in the VRs, 

then open the box (unblind)!



DNN Architecture and Signal Region
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• DNN to discriminate Gtt or Gbb events from SM:

• Inputs: four-momenta of the 10 leading jets, 4 

leading leptons, 4 leading fat jets and 𝑝𝑇
𝑚𝑖𝑠𝑠

• Three fully hidden layers with 128 neurons

• ReLU activation function for hidden layers

• P(𝐺𝑡𝑡), P(𝐺bb), P( ҧ𝑡𝑡), P(Z+jets), other P(bkg)

• Same policy to define kinematic regions:

• CR: defined at high 𝑃( ҧ𝑡𝑡 ) and low 𝑃(𝐺𝑡𝑡). 
Enriched in ҧ𝑡𝑡 background 

• VR: intermediate values of 𝑃( ҧ𝑡𝑡) and 𝑃(𝐺𝑡𝑡)

• SR: defined at high 𝑃(𝐺𝑡𝑡) and low 𝑃( ҧ𝑡𝑡). DNN 

threshold with max significance is chosen



Signal Exclusion Limits
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• For each signal mass point, the trained parameterized NN is applied to estimate the 

expected signal and background yields in optimized SRs.

• A statistical test - CL𝑠  method - compares observed data with the background-only and 

signal+background hypotheses.

• Mass points are excluded at 95% confidence level if the CLs is less than 0.05.

Gtt exclusion limits Gbb exclusion limits
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Convolutional Neural Network (CNN)



Application of CNNs (input images)
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Image classification Handwritten recognition

Object detection (autonomous driving)



Why not DNN for images?
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Oops so many parameters



CNN Kernel and Convolution
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What about ML not included 
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Kernel Input



CNN and Spatial relation in an image
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• In images (and other grid-like data), nearby pixels are correlated.

• Patterns like edges, textures, and shapes are built from local groupings of pixels.

• Convolutional layers apply small local filters (e.g., 3×3) across the image.

• This lets the network learn local patterns first, then combine them into more complex 

structures in deeper layers.

• Fully connected layers treat all inputs as independent, losing spatial info.



Pooling Layers 
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Classical CNN Architecture 
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Higgs Identification using CNN
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• Goal: Identify Higgs boson (signal) decays using jet 

substructure from QCD background.

• Focus on Higgs → bb̄, the dominant decay mode.

• Signal forms a single fat jet with 2-prong substructure. 

Background typically 1-prong, diffuse, asymmetric energy 

deposition.

• Simulation provided by ATLAS/SLAC collaborators.

• Each event is converted to a 25×25 energy image in η–φ 

space.

• Data preparation: images are centered, zero-padded to 

32×32, and normalized.

Higgs

QCD



All CNN Models
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Baseline model

LaNet1 model

LaNet2 model

LaNet3 same as the base model with wider CNN layers (more channels)



CNN Results (ROC and AUC)
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Learning plot ROC plot

Good to have it

A high AUC was achieved despite the small 
image sizes and without relying on transfer 
learning for jet classification.



Misclassified Images and Suggestions
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Truth label: Higgs
Prediction: Background

Truth label: Background
Prediction: Higgs

• Data augmentation might help:

• Small random rotations

• Small translations

• Random flipping

• Combine model’s outputs (majority 

vote) to improve generalization.
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Quantum Machine Learning (QML)



QML: A Rapidly Emerging Field! 
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• Quantum Machine Learning is an incredibly new and evolving area of science.

• Finding comprehensive references is still challenging.

• IBM is currently one of the few organizations offering structured documentation and 

educational material, primarily through Qiskit Learning.

• QML involves both hardware and software components.

• Hardware topics such as qubit technologies, quantum gates at the physical level, and 

noise mitigation will not be covered.

• In this presentation, I will focus only on the software side.



Quantum Processor Unit (QPU)
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• Quantum computing is an area of computer science that 

uses the principles of quantum theory. Quantum theory 

explains the behavior of energy and material on the 

atomic and subatomic levels.

• Quantum computing uses subatomic particles, such as 

electrons or photons in hardware and computation:

• superconducting qubits (like IBM's and Google's 

devices) involve electrons indirectly through 

superconductivity

• photonic qubits directly use the polarization of a 

single photon to encode quantum information.

https://www.ibm.com/think/topics/qubit#:~:text=Made%20from%20superconducting%20materials%20operating,for%20their%20relatively%20robust%20coherence.&text=Using%20sophisticated%20laser%20technology%2C%20trapped,also%20be%20used%20as%20qubits.


Qubits vs Bits
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• A qubit is a two-level quantum system where the two basis qubit states are usually written 

as |0⟩ and |1⟩.

• A qubit can be in state |0⟩ and |1⟩ or (unlike a classical bit) in a linear combination of both 

states. The name of this phenomenon is superposition (1/√2 |0⟩ + 1/√2 |1⟩).

• Qubit superposition allowing exponential memory representation with just a few qubits. 

So, with 3 bits, you can represent only one of these 8 possible combinations, while with 3 

qubits, you can represent all 8 combinations simultaneously.



Entanglement 
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• Quantum entanglement links two or more qubits so their states are interdependent, no 

matter the distance between them.

• Measurement of one entangled qubit instantly determines the state of the other. 

• EPR paradox (1935): challenged quantum entanglement, but later experiments confirmed 

its reality. Entanglement cannot be used to transmit information, as measurement 

outcomes are random and require classical communication to reveal correlations.

• Enables quantum computers to represent and process exponentially more complex 

information.



Quantum Operators (unitary matrices)
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Basic quantum operators

H gate and then CNOT gate to make entanglement

H gate make superposition

Computation in backup



What is QML?
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• QML combines quantum computing’s ability to handle complex, high-dimensional 

problems with machine learning’s need for optimization and pattern recognition, aiming 

for faster and more powerful data processing.



Step 1: Feature Mapping (Data Encoding)
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2 qubit angle encoding using H, Phase (P) and CNot gates 

• Perform quantum embedding to encode x into a quantum state.



Step 2: Variational Ansatz

46Free parameters inside operators to learn and minimize the loss

• Train the model (Ansatz) using quantum circuits with free weights.



Step 3:Post Processing
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QML in ttH Analysis
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• Identify the Higgs boson production in association with 

to top quark – antiquark pairs.

• Allow studying the Yukawa coupling of the Higgs 

boson in a purely fermionic process.

• Semi leptonic channel to cancel QCD. ҧ𝑡𝑡𝑔  is the 

dominant background. 

• Preselection: 𝑛𝑗𝑒𝑡 ≥ 4, 𝑛𝑏−𝑡𝑎𝑔 ≥ 2, 𝑛𝑙𝑒𝑝𝑡𝑜𝑛 = 1. 

• Principal Component Analysis used to reduce the 

dimensionality of input features by projecting them 

onto a set of uncorrelated components that capture the 

most variance, enabling more efficient input encoding 

for quantum models with less qubits.



Benchmark Models
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• DNN and BDT models are trained in two ways:

• Using the full 67 input feature

• Using only 16 latent features from PCA

• Classical models perform well even on reduced 

feature sets.

• Classical models in were trained on a large dataset 

(2M) enabling stable and high-performance results.



Variational Quantum Classifier
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Quantum Support Vector Model

51
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Generative AI



GenAI Importance
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• Data Bottleneck: 
• “There’s not enough human-made data in the world to train future AI systems.” -- Jensen 

Huang, NVIDIA CEO.

• GenAI can create synthetic data that mimics real-world and  anomaly distributions.

• GenAI generates physics events much faster than traditional simulators. 

• GenAI simulates rare disease cases for training doctors/AI systems when real data is limited.

GAN VAE Diffusion



Generative Adversarial Network
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• Both the generator and the discriminator are neural networks. The generator output is 

connected directly to the discriminator input.

• Through backpropagation, the discriminator's classification provides a signal that the 

generator uses to update its weights.



Discriminator Training
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• GAN training proceeds in alternating periods:

1. The discriminator trains for a lot of epochs. We keep the generator constant 

during the discriminator training phase. As discriminator training tries to figure 

out how to distinguish real data from fake 



Generator Training
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• GAN training proceeds in alternating periods:

2. The generator trains for one or more epochs. Similarly, we keep the discriminator 

constant during the generator training phase. Otherwise the generator would be 

trying to hit a moving target and might never converge.



GAN MinMax Loss 
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• The discriminator maximizes the loss (D(x)=1 and D(G(z))=0) by distinguishing real 

from fake images, aiming for high confidence on real and low on fake.

• The generator minimizes the loss (D(G(z))=1) by producing fake images that fool the 

discriminator into classifying them as real.

• At convergence, the generator perfectly fools the discriminator (𝐷(𝑥)=0.5, D(G)=0.5).

recognize real images better recognize generated  images better



GAN for Event Generation
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• High Energy Physics simulations, such as those using Geant4 in ATLAS and 

CMS, are extremely computationally expensive. GAN is faster and scalable 

• The dataset consists of jet images, which are 2D histograms of particle energy 

depositions in the calorimeter, constructed in 𝜂-𝜙 space grid.

• The data includes boosted W boson jets (signal) and QCD jets (background), both 

generated using Pythia at14 TeV.



Convolution vs Locally connected
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• CNN layers:

1. Use shared filters that scan across the entire 

image.

2. Assume translational invariance — the same 

feature can appear anywhere.

3. Less suitable when location itself encodes 

physical meaning.

• Locally connected layers:

1. Similar to CNNs but do not share weights 

across positions.

2. Learn unique filters for each spatial region of 

the input.

3. Better suited when spatial position has 

physical interpretation

4. More parameters, higher computation cost



GAN Architecture
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• Generator: Starts from a 100-dimensional vector and uses up-sampling to produce realistic 

jet images of size 25×25 in (η, φ) space, simulating both signal and background events

• Discriminator: CNN to distinguish real simulated events (from Geant4) from fake events 

produced by the generator.

Two NVIDIA Titan X GPU for 

training!



GAN Event Distributions
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Mass distribution 𝒑𝑻 distribution

True (simulated) average energy 

deposition

Generated (GAN) average energy 

deposition
Difference



GAN Speed-up
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29 ms

2.1 ms
0.14 ms

LAGAN is much faster!
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Summary

• Deep Neural Networks: introduced basic structure and training process using forward and 

backward propagation. Applied to tasks like classification of events and SUSY-background 

separation.

• Convolutional Neural Networks: explained how CNNs exploit spatial structure of detector 

data. Used in jet image analysis from Higgs boson decay and event classification.

• Quantum Machine Learning: discussed principles of qubits and quantum circuits. Highlighted 

potential applications in high-dimensional data and speedup of certain learning tasks.

• Generative Adversarial Networks: covered how GANs generate realistic physics events. Used 

for fast detector simulation and event classification.



ML Roadmap
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1. Introduction to machine learning:

• non neural network models: Google course

• neural network models specially DNN and CNN: Coursera

• MIT neural network course: link

2. Graph Neural Network: Stanford CS224 course 

3. Recurrent neural network: Stanford lecture

4. Generative Deep Learning: O’reilly book 

5. Quantum Computation: IBM Qiskit quantum course 

6. Quantum Machine Learning: IBM QML course

7. Tensorflow Tutorial

8. Pytorch Tutorial

https://developers.google.com/machine-learning/crash-course
https://www.coursera.org/specializations/deep-learning/paidmedia?utm_medium=sem&utm_source=gg&utm_campaign=b2c_namer_deep-learning_deeplearning-ai_ftcof_specializations_px_dr_bau_gg_sem_pr-bd_us-ca_en_m_hyb_17-08_x&campaignid=904733485&adgroupid=46370300620&device=c&keyword=deeplearning%20ai%20coursera&matchtype=b&network=g&devicemodel=&creativeid=415429098219&assetgroupid=&targetid=aud-1242392722792:kwd-659621418624&extensionid=&placement=&gad_source=1&gad_campaignid=904733485&gbraid=0AAAAADdKX6YaD8NBqVhB1FaZWB2r-kX_d&gclid=Cj0KCQjw_dbABhC5ARIsAAh2Z-TMw8Jqukf3XxEkboAc5-aPjMmqHD92qlT0lkMqNaLlu6rmaOvYakMaAlYZEALw_wcB
https://introtodeeplearning.com/
https://web.stanford.edu/class/cs224w/
https://cs231n.stanford.edu/slides/2021/lecture_10.pdf
https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/
https://learning.quantum.ibm.com/course/basics-of-quantum-information
https://open.hpi.de/courses/qc-machineLearning2023?locale=en
https://zerotomastery.io/courses/learn-tensorflow/
https://www.learnpytorch.io/
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Backup



AI History

66



Classification metrics in ML

67
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SUSY Definition of Key Variables

Δ𝜙min
4𝑗

 to suppress multijets in which 𝐸𝑇
𝑚𝑖𝑠𝑠 is aligned with one jet:

Δ𝜙min
4𝑗

= min(|𝜙1 − 𝜙
𝐸𝑇

𝑚𝑖𝑠𝑠 |, … , 𝜙4 − 𝜙
𝐸𝑇

𝑚𝑖𝑠𝑠 )

Inclusive effective mass, to select highly energetic events:

𝑚𝑒𝑓𝑓
𝑖𝑛𝑐𝑙 = Σi≤n 𝑝𝑇

𝑗𝑖 + Σ𝑗≤𝑚 𝑝𝑇

𝑙𝑒𝑝𝑗
+ 𝐸𝑇

𝑚𝑖𝑠𝑠

𝑚𝑇 to remove  semileptonic 𝑡 ҧ𝑡 and W+jets events (region ≥ 1 lepton) :

𝑚𝑇 = 2𝑝𝑇
𝑙 𝐸𝑇

𝑚𝑖𝑠𝑠(1 − cos Δ𝜙( Ԧ𝑝𝑇
𝑚𝑖𝑠𝑠, Ԧ𝑝𝑇

𝑙  )) 

Effective mass, to select highly energetic events:

𝑚𝑒𝑓𝑓
𝑖𝑛𝑐𝑙 = ∑𝑝𝑇

𝑗
+ ∑𝑝𝑇

𝑙𝑒𝑝
+ 𝐸𝑇

𝑚𝑖𝑠𝑠
𝑚𝑇,𝑚𝑖𝑛

𝑏−𝑗𝑒𝑡𝑠 min transverse mass between 𝐸𝑇
𝑚𝑖𝑠𝑠 and three leading b-jets:

𝑚𝑇,𝑚𝑖𝑛
𝑏−𝑗𝑒𝑡𝑠

 = min
𝑖≤3

( 2𝑝𝑇
𝑏−𝑗𝑒𝑡𝑖𝐸𝑇

𝑚𝑖𝑠𝑠 1 − cos Δ𝜙 Ԧ𝑝𝑇
𝑚𝑖𝑠𝑠, Ԧ𝑝𝑇

𝑏−𝑗𝑒𝑡𝑖  )

𝑀𝐽

∑,4 sum of the mass of re-clustered jets (higher for Gtt signal):

𝑀𝐽

∑,4 = ∑𝑖≤4𝑚𝐽,𝑖 



CNN Stacking
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CNN Variables
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QSVM Power
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Bell State Computation
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GAN MinMax Loss 
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GAN Features

74



Application of Deep learning to Jet charge

75

• The jet charge method is crucial in verifying the top 

quark charge, heavy boson identification (W′/Z′), 

quark vs. gluon jet discrimination.

• This study explores classical deep learning models 

like DNN, CNN, GNN and quantum ML models 

for improved jet charge classification. 

• The jet charge observables are defined as (where is 

a tunable parameter affecting charge sensitivity):

Momentum weighted jet charge distribution 



Convolutional NN and Graph NN

76

Convolutional Neural Networks (CNNs):

• CNNs process jet images by analyzing pixel charge distributions in η-φ space.

• They capture spatial correlations of energy deposits to classify jet charge.

• Can differentiate between quark-initiated and gluon-initiated jets using learned spatial features.

Graph Neural Networks (GNNs):

• GNNs model jets as graphs, where tracks are nodes and edges encode relationships.

• Capture relational and topological information beyond fixed-grid structures.

• Effective in handling variable-sized track information per jet.

Pixelated representation of jets in 𝜼 − 𝝓 space Graph representation of a leading jet



Quantum ML application

77

• Quantum Feature Map: Maps classical jet charge 

data into a higher-dimensional quantum Hilbert 

space using parametrized quantum circuits, enabling 

more expressive representations.

• Quantum Kernel: Compute similarity between 

quantum-embedded jets, allowing for efficient 

discrimination using quantum support vector 

machines.

• Challenges: Noisy quantum hardware, limited qubit 

connectivity, and circuit depth constraints impact 

practical implementation.

Quantum feature map and kernel

Accuracy for QSVM in few eventsAccuracy for VQC in few events



Anomaly detection using Gen AI

78

• Train Autoencoder or variational AE on SM 

background events and reconstruct them 

well.

• New Physics events, which deviate from 

learned patterns, lead to high reconstruction 

errors, signaling potential anomalies. 

• In GAN-based anomaly detection, the 

generator learns to produce events that 

resemble Standard Model (SM) data, while 

the discriminator is trained to distinguish 

between real and generated events.

• if the discriminator assigns a high anomaly 

score (i.e., the event is unlike both real and 

generated SM events), it may indicate a 

Beyond Standard.
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